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ADAPTIVE OUTPUT FEEDBACK STABILIZATION
FOR NONLINEAR SYSTEMS WITH UNKNOWN
POLYNOMIAL-OF-OUTPUT GROWTH RATE
AND SENSOR UNCERTAINTY

Yanjun Shen and Lei Lin

In this paper, the problem of adaptive output feedback stabilization is investigated for a
class of nonlinear systems with sensor uncertainty in measured output and a growth rate of
polynomial-of-output multiplying an unknown constant in the nonlinear terms. By develop-
ing a dual-domination approach, an adaptive observer and an output feedback controller are
designed to stabilize the nonlinear system by directly utilizing the measured output with uncer-
tainty. Besides, two types of extension are made such that the proposed methods of adaptive
output feedback stabilization can be applied for nonlinear systems with a large range of sensor
uncertainty. Finally, numerical simulations are provided to illustrate the correctness of the
theoretical results.

Keywords: adaptive stabilization, polynomial-of-output growth rate, measurement sensi-
tivity, output feedback, observer

Classification: 93D15,93D21,93C10

1. INTRODUCTION

In the past decades, the problem of stabilization has been studied for nonlinear sys-
tems with lower-triangular form via output feedback. Various control methods have
been developed for nonlinear systems with known growth rate [21, 25], unknown growth
rate [13, 18], unknown polynomial-of-output growth rate [5, 6, 14, 15] and growth rate
depending on input and output [1, 2]. For instance, in [15], an output feedback con-
troller design method was presented for nonlinear systems with uncertain control coef-
ficient and unknown polynomial-of-output growth rate. The authors in [6] considered
output-feedback stabilization for nonlinear systems with input matching uncertainty and
unknown polynomial-of-output growth rate. Global regulation was discussed for a class
of nonlinear time-delay systems by output feedback [5]. In the above literatures, all
results have been achieved by assuming that the output can be measured accurately.

Recently, researchers have paid a great deal of attention on output feedback stabi-
lization for nonlinear systems with unknown measurement sensitivity or unknown out-
put function. In [23], the problem of global output feedback stabilization was studied
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for upper-triangular systems with unknown output function by using the homogeneous
domination approach. A design method of sampled-data output feedback control was
proposed for a class of nonlinear systems with unknown output function [22]. The au-
thors in [19] illustrated that nonlinear systems with unknown control coefficients could
be transformed into nonlinear systems with unknown output function, and then designed
output-feedback controllers for a class of uncertain nonlinear systems with unknown out-
put function and unknown growth rate. There exists a critical assumption in [19, 22, 23],
that is differentiability of the output function, which may not always hold in practice.
There also exists another basic assumption, that is a limit range of the unknown mea-
surement sensitivity. To cope with unknown measurement sensitivity, a dual-domination
approach was proposed to stabilize the nonlinear systems [3]. Furthermore, the authors
studied output feedback regulation for nonlinear systems with unknown measurement
sensitivity and unknown linear growth rate [8]. The problem of output feedback sta-
bilization was also considered for nonlinear systems with sensor uncertainty, unknown
linear growth rate and stochastic disturbances in [12]. However, there are no results of
output feedback stabilization for nonlinear systems with sensor uncertainty and unknown
polynomial-of-output growth rate, which motivates this paper.

In this paper, the problem of adaptive output feedback stabilization is investigated
for a class of nonlinear systems with sensor uncertainty and a growth rate of polynomial-
of-output multiplying an unknown constant in the nonlinear terms. Our major contri-
butions include: (I) We propose an adaptive output feedback stabilization with two
variable gains and a constant gain to deal with the unknown constant, the polynomial-
of-output, and the sensor uncertainty. (II) We also extend our methods such that the
proposed adaptive output feedback stabilization can be applied for nonlinear systems
with a larger range of sensor uncertainty.

The remainder of this paper is organized as follows. In Section 2, we present some
useful lemmas and problem description. Our main results are given in Section 3, that
is, adaptive output feedback stabilization for a class of nonlinear systems with growth
rate depending on output and sensor uncertainty. In Section 4, we extend the proposed
methods to nonlinear systems with a larger range of sensor uncertainty. Numerical
simulations are provided to illustrate the validity of the proposed design methods in
Section 5. Section 6 concludes this paper.

2. PRELIMINARIES AND PROBLEM DESCRIPTION

In this paper, we consider the following single-input single-output (SISO) uncertain
nonlinear system:  ẋi = xi+1 + fi(t, x), i = 1, . . . , n− 1,

ẋn = u+ fn(t, x),
y = θ(t)x1,

(1)

where x = (x1, . . . , xn)T ∈ Rn, u ∈ R and y ∈ R are the system state, control input
and measurement output. The functions fi: R+ × Rn → R are continuous in the first
argument and locally Lipschitz in the rest argument. The sensor sensitivity θ(t) (t ∈ R+)
is an unknown continuous function.

We need the following assumptions.
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Assumption 2.1. There exists a known integer p ≥ 1 and an unknown constant % > 0
such that

|fi(t, x)| ≤ %(1 + |x1|p)(|x1|+ · · ·+ |xi|), i = 1, . . . , n.

Assumption 2.2. The sensor sensitivity θ(t) is an unknown continuous function satis-
fying θ(t) ∈ [1− θ̄, 1 + θ̄], where θ̄ is an allowable sensitivity error.

Remark 2.3. Unlike [24], the constant % in the growth rate is assumed to be unknown
in this paper. Compared with the Assumption 2 in [8], the growth rate in Assump-
tion 2.1 is not an unknown constant, but a time-varying function related to the output.
This undoubtedly increases the difficulty of designing an output feedback controller. In
particular, since (1 + |x1|p) > 1, the condition that satisfies Assumption 2 in [8] also
satisfies Assumption 2.1. Thus, Assumption 2.1 has a wider range of applications.

The nonlinear system (1) with Assumption 2.1 is significant not only in control the-
ory but also in engineering practice. Some models such as circuits with nonlinear resis-
tance [17] and business cycles [4] can be described as,

ϑ̈+ µ(1− ϑ2)ϑ̇+ ϑ = u, (2)

where µ is an unknown constant. Suppose that only the variable ϑ is measurable.
Coordinate transformation x1 = ϑ, x2 = ϑ̇ transforms the system (2) into the following
form  ẋ1 = x2,

ẋ2 = u− x1 − µ(1− x2
1)x2,

y = x1.
(3)

Obviously, the condition in Assumption 2.1 holds with % = max{1, |µ|}, p = 2. There-
fore, the system (3) is in the form of the system (1).

Remark 2.4. Due to manufacturing reasons, there always exists a sensitivity error θ(t)
in Assumption 2.2. For instance, as shown in [3], the displacement sensor of a magnetic
bearing suspension system experiences ±10% sensitivity error, which means that the
sensor sensitivity θ(t) satisfies θ(t) ∈ [1− 0.1, 1 + 0.1].

The following inequalities are referred from [10, 20] and will be used later.

Lemma 2.5. (Krstic and Deng [10]) For (x, y)T ∈ R2, the following Young’s inequality
holds,

xy ≤ vp

p
|x|p +

1

qvq
|y|q,

where v > 0, the constants p > 1 and q > 1 satisfy (p− 1)(q − 1) = 1.

Lemma 2.6. (Yang and Lin [20]) For p ∈ [1,+∞) and any xi ∈ R, i = 1, . . . , n, the
following inequality holds,

(|x1|+ · · ·+ |xn|)p ≤ np−1(|x1|p + · · ·+ |xn|p).
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3. MAIN RESULTS

In this section, we will construct an output feedback controller with two variable gains
and a constant gain for the nonlinear system (1) with unknown sensor sensitivity θ(t) and
the growth rate of polynomial-of-output (1+ |x1|p) multiplying the unknown constant %.

For the system (1), we construct the following observer
˙̂x1 = x̂2 − (L1L2)a1x̂1,
˙̂x2 = x̂3 − (L1L2)2a2x̂1,
...

˙̂xn = u− (L1L2)nanx̂1,

(4)

where the dynamic gains L1 and L2 are updated by

L̇1 = L1−2σ
2

(( x̂1

Lσ1

)2

+
( y

(1− θ̄)Lσ1

)2)
, L1(0) = 1, (5)

L̇2 = −α(L2 − 1) + β
(

1 +
( |y|

1− θ̄

)p)2

, L2(0) = 1, (6)

respectively, x̂ = (x̂1, . . . , x̂n)T ∈ Rn is the observer state. ai > 0, for i = 1, . . . , n are
coefficients of the Hurwitz polynomial h1(s) = sn + a1s

n−1 + · · · + an−1s + an. σ is a
constant satisfying 0 < σ < 1/(2p). α, β are two positive constants to be designed.

Introduce the following change of coordinates,

ei =
xi − x̂i

(L1L2)i−1+σ
, i = 1, . . . , n, (7)

z1 =
x1

(L1L2)σ
, zi =

x̂i

(L1L2)i−1+σLi−1
3

, i = 2, . . . , n, (8)

where L3 ≥ 1 is a constant gain. The controller u(t) is given by

u = (L1L2)n+σLn3 v,
v = −bn(L1L2)−σy − bn−1z2 − . . .− b1zn,

(9)

where b1, . . . , bn are control gains.
From (1), (4), (7) and (8), we have

ė = L1L2Ae+ L1L2az1 −
(
L̇1

L1
+ L̇2

L2

)
Dσe+ F, (10)

where e = (e1, . . . , en)T , Dσ = diag(σ, 1 + σ, . . . , n− 1 + σ),

A =


−a1 1 . . . 0

...
...

. . .
...

−an−1 0 . . . 1
−an 0 . . . 0

, F =


1

(L1L2)σ f1
1

(L1L2)1+σ f2

...
1

(L1L2)n−1+σ fn

.
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Consider the augmented system described by
ẋ1 = x2 + f1(t, x),
˙̂x2 = x̂3 − (L1L2)2a2x̂1,
...

˙̂xn = u− (L1L2)nanx̂1.

(11)

From (7)- (9), the augmented system (11) can be rewritten as follows,

ż = L1L2L3Bz + L1L2L3Bzbn(1− θ(t))z1 + L1L2D1e2

+L1L2

L3
D2(e1 − z1)−

(
L̇1

L1
+ L̇2

L2

)
Dσz + Fz,

(12)

where z = (z1, . . . , zn)T , Bz = (0, 0, . . . , 1)T , D1 = (1, 0, . . . , 0)T ,

B =
( 0 1 . . . 0

...
...

. . .
...

0 0 . . . 1
−bn −bn−1 . . . −b1

)
, D2 =


0
a2
1
L3
a3

...
1

Ln−2
3

an

, Fz =


1

(L1L2)σ f1

0
...
0

.

We can suitably choose the coefficients bi, i = 1, . . . , n− 1, such that the matrix B is
Hurwitz. Then, there exist two positive definite matrices P and Q satisfying [9]

ATP + PA ≤ −2I, c1I ≤ DσP + PDσ ≤ c2I,
BTQ+QB ≤ −2I, c3I ≤ DσQ+QDσ ≤ c4I,

(13)

where ci > 0, i = 1, . . . , 4 are four real constants.
Then, we have the following results.

Proposition 3.1. For any tf ∈ (0,+∞], there exists an unique solution to the closed-
loop system (10) – (12) on the maximal interval [0, tf ). Moreover, if the following con-
ditions are satisfied,

α ≤ min

{
1

c2
,

1

c4

}
, (14)

and

β ≥ max

{
1

c1
,

1

c3

}
, (15)

L3 ≥ max

{
1,

1 + 4k1

8ρ
, 12‖P‖2, 2‖Q‖‖a‖

}
, (16)

and

0 < θ̄ < min

{
1,

1

bn‖Q‖

}
, (17)

where k1 = 3 + 2‖Q‖2 + ‖P‖2‖a‖2, and ρ = 1 − bnθ̄‖Q‖, then, the variable L1(t) is
bounded on [0, tf ).
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P r o o f . Since the vector fields of the closed-loop system (1), (4), (5) and (6) are con-
tinuous and locally Lipschitz in (x, x̂, L1, L2), there exists an unique solution to the
closed-loop system on the maximal interval [0, tf ).

Next, consider the following Lyapunov function

V1 = V11(e) + V12(z) = eTPe+ zTQz, (18)

where V11(e) = eTPe, V12(z) = zTQz.
The derivative of the function V11(e) is given by

V̇11(e) = L1L2e
T (ATP + PA)e+ 2L1L2e

TPaz1

−
(
L̇1

L1
+ L̇2

L2

)
eT (DσP + PDσ)e+ 2eTPF.

(19)

From (5) and (6), we can deduce that L1 ≥ 1, L2 ≥ 1, and L̇1 ≥ 0.

Due to |θ(t)|
1−θ̄ ≥ 1, we have(

1 +
( |y|

1− θ̄

)p)2

≥ (1 + |x1|p)2, (20)

From (13), it follows that

−
(
L̇1

L1
+ L̇2

L2
)eT (DσP + PDσ

)
e

≤ − L̇1

L1
c1‖e‖2 − L̇2

L2
eT (DσP + PDσ)e

≤ − L̇2

L2
eT (DσP + PDσ)e.

(21)

Substituting (6) into (21), from (14) (15) and (20), we obtain

− L̇2

L2
eT (DσP + PDσ)e

= αeT (DσP + PDσ)e− 1
L2

(
α+ β

(
1 +

(
|y|

1−θ̄

)p))
eT (DσP + PDσ)e

≤ αc2‖e‖2 − 1
L2

(
α+ β

(
1 +

(
|y|

1−θ̄

)p)2)
c1‖e‖2

≤ L2‖e‖2 − 1
L2

(1 + |x1|p)2‖e‖2.

(22)

It follows from Lemma 2.5 that

2L1L2e
TPaz1 ≤ L1L2‖e‖2 + L1L2‖P‖2‖a‖2‖z‖2 (23)

From (7), (8), Lemma 2.6 and Assumption 2.1, we obtain

‖F‖ ≤ %(1 + |x1|p)
(
|x1|

(L1L2)σ + |x1|+|x2|
(L1L2)1+σ + · · ·+ |x1|+···+|xn|

(L1L2)n−1+σ

)
≤ %(1 + |x1|p)

(
n|x1|

(L1L2)σ + (n−1)|x2|
(L1L2)1+σ + · · ·+ |xn|

(L1L2)n−1+σ

)
≤ %(1 + |x1|p)

(
n|x1|

(L1L2)σ + (n−1)(|x̂2|+(L1L2)1+σ|e2|)
(L1L2)1+σ + · · ·+

(|x̂n|+(L1L2)n−1+σ|en|)
(L1L2)n−1+σ

)
≤ %(1 + |x1|p)

(
n

n∑
i=1

Li−1
3 |zi|+ (n− 1)

√
n‖e‖

)
.

(24)
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Lemma 2.5 and the inequality (24) imply that

2eTPF ≤ 2‖e‖‖P‖%(1 + |x1|p)
(
n

n∑
i=1

Li−1
3 |zi|+ (n− 1)

√
n‖e‖

)
≤ 1

L2
(1 + |x1|p)2‖e‖2 + L2‖P‖2%2

(
n

n∑
i=1

Li−1
3 |zi|+ (n− 1)

√
n‖e‖

)2

≤ 1
L2

(1 + |x1|p)2‖e‖2 + 2L2‖P‖2%2(n2
( n∑
i=1

Li−1
3 )2‖z‖2 + (n− 1)2n‖e‖2

)
.

(25)

Substituting (22), (23) and (25) into (18), we have

V̇11(e) ≤ −L1L2‖e‖2 + L1L2‖P‖2‖a‖2‖z‖2 + L2‖e‖2

+2L2‖P‖2%2
(
n2
( n∑
i=1

Li−1
3

)2

‖z‖2 + (n− 1)2n‖e‖2
)
.

(26)

The derivative of V12(z) along the system (12) is given as follows,

V̇12(z) ≤ L1L2L3z
T (BTQ+QB)z + 2L1L2L3z

TQBzbn
(1− θ(t))z1 + 2L1L2z

TQD1e2 + 2L1L2

L3
zTQD2(e1 − z1)

−
(
L̇1

L1
+ L̇2

L2
)zT (DσQ+QDσ

)
z + 2zTQFz.

(27)

Similar to the inequality (22), we obtain

−
(
L̇1

L1
+ L̇2

L2
)zT (DσQ+QDσ

)
z

≤ αc4‖z‖2 − 1
L2
c3(α+ β

(
1 +

(
|y|

1−θ̄

)p)2

)‖z‖2

≤ L1L2‖z‖2 − 1
L2

(1 + |x1|p)2‖z‖2.

(28)

Note that ‖D1‖ = 1, ‖D2‖ ≤ ‖a‖. From (16) and Lemma 2.5, we have

2L1L2z
TQD1e2 + 2L1L2

L3
zTQD2e1

≤ L1L2

2 ‖e‖
2 + 2L1L2‖Q‖2‖z‖2

+L1L2

4 ‖e‖
2 + 4L1L2

L2
3
‖Q‖2‖a‖2‖z‖2

≤ 3L1L2

4 ‖e‖2 + 2L1L2‖Q‖2‖z‖2 + L1L2‖z‖2.

(29)

Moreover,

−2L1L2

L3
zTQD2z1 ≤ 2L1L2

L3
‖Q‖‖a‖‖z‖2 ≤ L1L2‖z‖2. (30)

Assumption 2.1 and Lemma 2.5 imply that

2zTQFz ≤ 1
L2

(1 + |x1|p)2|‖z‖2 + L2%
2‖Q‖2‖z‖2. (31)

Substituting (28) – (31) into (27), one can obtain that

V̇12(z) ≤ −2(L1L2L3)‖z‖2 + 2(L1L2L3)‖Q‖bn|(1− θ(t))|‖z‖2
+ 3L1L2

4 ‖e‖2 + 3L1L2‖z‖2 + 2L1L2‖Q‖2‖z‖2 + L2%
2‖Q‖2‖z‖2. (32)
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It follows from (26) and (32) that

V̇1 ≤ − 1
4L1L2‖e‖2 + L1L2‖P‖2‖a‖2‖z‖2 + L2‖e‖2

+2L2‖P‖2%2
(
n2
( n∑
i=1

Li−1
3

)2

‖z‖2 + (n− 1)2n‖e‖2
)

−2(L1L2L3)‖z‖2 + 2(L1L2L3)‖Q‖bn|(1− θ(t))|‖z‖2
+3L1L2‖z‖2 + 2L1L2‖Q‖2‖z‖2 + L2%

2‖Q‖2‖z‖2.

(33)

According to the condition (17), we have 1 > 1−bn|1−θ(t)|‖Q‖ ≥ 1−bnθ̄‖Q‖ = ρ > 0.
From the condition (16), the inequality (33) can be rewritten as follows,

V̇1 ≤ −L1L2L3

(
2ρ− 3+2‖Q‖2+‖P‖2‖a‖2

L3
− 2‖P‖2%2n2

(∑n
i=1 L

i−1
3

)2
+%2‖Q‖2

L1L3

)
‖z‖2

−L2

(
1
4L1 − (1 + 2‖P‖2%2(n− 1)2n))‖e‖2

≤ −L2L1L3

(
2ρ− k1

L3
− k2

L1L3

)
‖z‖2 − L2

(
1
4L1 − k3

)
‖e‖2

≤ −L2

(
1
4L1 − k2 − k3)(‖e‖2 + ‖z‖2

)
,

(34)

where k1 = 3 + 2‖Q‖2 + ‖P‖2‖a‖2, k2 = 2‖P‖2%2n2(
∑n
i=1 L

i−1
3 )2 + %2‖Q‖2, k3 =

1 + 2‖P‖2%2(n− 1)2n.
Assume that L1(t) is not bounded on the interval [0, tf ), then

lim
t→tf

L1(t) = +∞. (35)

Since L̇1 ≥ 0 and L1 ≥ 1, L1(t) is a monotone nondecreasing function. From (35),
there exists a time t∗ > 0 such that L1(t) ≥ 4(k2 + k3 + 1),∀t ∈ [t∗, tf ). Then, from the
differential inequality (34), we have

V̇1(t) ≤ −L2(‖e‖2 + ‖z‖2),∀t ∈ [t∗, tf ).

From (5) and Lemma 2.6, one can obtain that

L̇1 = L1−2σ
2

((
x̂1

Lσ1

)2

+
(

y
(1−θ̄)Lσ1

)2)
= L2(z1 − e1)2 + L2

(
θ(t)

1−θ̄

)2

z2
1

≤ L2γ(‖e‖2 + ‖z‖2),

where γ = 2 +
(

1+θ̄
1−θ̄

)2

. Hence,∫ tf
t∗
L̇1 dt ≤

∫ tf
t∗
L2γ(‖e‖2 + ‖z‖2) dt ≤ γV1(‖e(t∗)‖, ‖z(t∗)‖).

Therefore,

+∞ = L1(tf )− L1(t∗) =
∫ tf
t∗
L̇1 dt ≤ γV1(‖e(t∗)‖, ‖z(t∗)‖),

which is impossible. Thus, the dynamic gain L1 is bounded on [t∗, tf ) and limt→tf L1(t)
is finite.
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Now, consider the change of coordinates

ξi =
xi − x̂i

(L∗1L2)i−1+σ
, i = 1, . . . , n, (36)

and

ε1 =
x1

(L∗1L2)σ
, εi =

x̂i

(L∗1L2)i−1+σLi−1
3

, (37)

where L∗1 is a constant satisfying

L∗1 > max
{
L1(+∞), 12

√
n− 1‖P‖‖a‖L1, 6%

2‖P‖2 ,

12L1
√
n(bn(1 + θ̄) +

n−1∑
i=1

bi)‖P‖,
2+2‖P‖2%2n2(

n∑
i=1

Li−1
3 )2

L3
,

2 + 2‖P‖2%2(n− 1)2n
}
.

(38)

It can be deduced from (1), (4), (36) and (37) that

ξ̇ = L∗1L2Aξ + L∗1L2aε1 − L1L2Maξ1

+L1L2Maε1 − L̇2

L2
Dσξ + F ∗,

(39)

where M = diag
[
1, L1

L∗
1
, . . . ,

(
L1

L∗
1

)n−1]
, F ∗ =


1

(L∗
1L2)σ f1
1

(L∗
1L2)1+σ f2

...
1

(L∗
1L2)n−1+σ fn

.

From (11), (36) and (37), we have

ε̇ = L∗1L2L3Aε+ L∗1L2L3aε1 + L1L2Γaξ1 + L∗1L2D1ξ2

−L1L2Γaε1 +Bz
u

(L∗
1L2)n−1+σLn−1

3

− L̇2

L2
Dσε+ F ∗ε ,

(40)

where Γ = diag

[
0, L1

L∗
1L3

, . . . ,
(

L1

L∗
1L3

)n−1
]
, F ∗ε =


1

(L∗
1L2)σ f1

0
...
0

.

�

Proposition 3.2. If the conditions (14) – (16) are satisfied, then, the variables L2(t),
ε(t), ξ(t) are bounded on [0, tf ).

P r o o f . The derivative of V21(ε) = εTPε along the system (40) is given as follows,

V̇21(ε) = L∗1L2L3ε
T (ATP + PA)ε+ 2L1L2ε

TPΓaξ1
+2L∗1L2L3ε

TPaε1 − 2L1L2ε
TPΓaε1

+2L∗1L2ε
TPD1ξ2 + 2εTPF ∗ε + 2εTPBz

u
(L∗

1L2)n−1+σLn−1
3

− L̇2

L2
εT (DσP + PDσ)ε.

(41)
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Note that ‖D1‖ = 1, ‖Γ‖ ≤
√
n− 1. From (38) and Lemma (2.5), we have

2L1L2ε
TPΓaξ1 ≤ 6(n− 1)L1L2

L3
‖a‖2‖P‖2ξ2

1 + 1
6L1L2L3‖ε‖2

≤ 6(n− 1)L1L2

L3
‖a‖2‖P‖2ξ2

1 + 1
6L
∗
1L2L3‖ε‖2,

(42)

2L∗1L2L3ε
TPaε1 ≤ 6L∗1L2L3‖a‖2‖P‖2ε2

1 + 1
6L
∗
1L2L3‖ε‖2. (43)

From (38), we obtain

−2L1L2ε
TPΓaε1 ≤ 2

√
n− 1L1L2‖P‖‖a‖‖ε‖2

≤ 1
6L
∗
1L2L3‖ε‖2.

(44)

Since ‖D1‖ = 1, from (16) and Lemma 2.5, we have

2L∗1L2ε
TPD1ξ2 ≤ 6

L∗
1L2

L3
‖P‖2ξ2

2 + 1
6L
∗
1L2L3‖ε‖2

≤ 1
2L
∗
1L2‖ξ‖2 + 1

6L
∗
1L2L3‖ε‖2.

(45)

It follows from (38), Assumption 2.1 and Lemma 2.5 that

2εTPF ∗ε ≤ 1
L2

(1 + |x1|p)2‖ε‖2 + L2%
2‖P‖2‖ε‖2

≤ 1
L2

(1 + |x1|p)2‖ε‖2 + 1
6L
∗
1L2L3‖ε‖2.

(46)

Using the inequalities (6), (20), (14) and (15), we have

− L̇2

L2
εT (DσP + PDσ)ε

≤ αc2‖ε‖2 − 1
L2
c1

(
α+ β

(
1 +

(
|y|

1−θ̄

)p)2)
‖ε‖2

≤ L2‖ε‖2 − 1
L2

(1 + |x1|p)2‖ε‖2.
(47)

From (9) and (37), it follows that

u
(L∗

1L2)n−1+σLn−1
3

= L2
Ln1L3

(L∗
1)n−1 (−bnθ(t)ε1 −

n−1∑
i=1

bi

(
L∗

1

L1

)n−i
εn+1−i).

Moreover, from (38), we have

2εTPBz
u

(L∗
1L2)n−1+σLn−1

3

≤ 2L1L2L3‖P‖‖ε‖
(
bn(1 + θ̄)‖ε1‖+

n−1∑
i=1

bi‖εn+1−i‖
)

≤ 2L1L2L3

(
bn(1 + θ̄) +

n−1∑
i=1

bi

)
‖P‖‖ε‖(|ε1|+ |ε2|+ · · ·+ |εn|)

≤ 2L1L2L3
√
n
(

(1 + θ̄) +
n−1∑
i=1

bi

)
‖P‖‖ε‖2

≤ 1
6L
∗
1L2L3‖ε‖2.

(48)

Substituting (42) – (48) into (41), one can obtain

V̇21(ε) ≤ −L∗1L2L3‖ε‖2 + 6(n− 1)L1L2

L3
‖a‖2‖P‖2ξ2

1

+6L∗1L2L3‖a‖2‖P‖2ε2
1 + 1

2L
∗
1L2‖ξ‖2 + L2‖ε‖2.

(49)
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The derivative of V22(ξ) = ξTPξ along the system (39) is given by

V̇22(ξ) = L∗1L2ξ
T (ATP + PA)ξ + 2L∗1L2ξ

TPaε1

−2L1L2ξ
TPMaξ1 + 2L1L2ξ

TPMaε1

− L̇2

L2
ξT (DσP + PDσ)ξ + 2ξTPF ∗.

(50)

From Lemma 2.5, we can obtain

2L∗1L2ξ
TPaε1 ≤ 6L∗1L2‖P‖2‖a‖2ε2

1 + 1
6L
∗
1L2‖ξ‖2. (51)

Since ‖M‖ ≤
√
n, the condition (38) and Lemma 2.5 imply

−2L1L2ξ
TPMaξ1 ≤ 6nL∗1L2‖P‖2‖a‖2ξ2

1 + 1
6L
∗
1L2‖ξ‖2, (52)

2L1L2ξ
TPMaε1 ≤ 6nL∗1L2‖P‖2‖a‖2ε2

1 + 1
6L
∗
1L2‖ξ‖2. (53)

Note that,

‖F ∗‖ ≤ (1 + |x1|p)%
(
n

n∑
i=1

Li−1
3 |εi|+ (n− 1)

√
n‖ξ‖

)
.

Thus, from Lemma 2.5 and Lemma 2.6, we have

2ξTPF ∗ ≤ 1
L2

(1 + |x1|p)2‖ξ‖2

+2L2‖P‖2%2
(
n2
( n∑
i=1

Li−1
3

)2

‖ε‖2 + (n− 1)2n‖ξ‖2
)
.

(54)

From (6), (14), (15) and (20), it follows that

− L̇2

L2
ξT (DσP + PDσ)ξ

≤ αc4‖ξ‖2 − 1
L2
c3

(
α+ β

(
1 +

(
|y|

1−θ̄

)p)2)
‖ξ‖2

≤ L2‖ξ‖2 − 1
L2

(1 + |x1|p)2‖ξ‖2.
(55)

Substituting (51) – (55) into (50) yields

V̇22(ξ) ≤ −
(

3
2L
∗
1L2 − 2L2‖P‖2%2(n− 1)2n− L2

)
‖ξ‖2

+6L∗1L2‖P‖2‖a‖2ε2
1 + 6nL∗1L2‖P‖2‖a‖2ξ2

1

+6nL∗1L2‖P‖2‖a‖2ε2
1 + 2L2‖P‖2%2n2

( n∑
i=1

Li−1
3

)2

‖ε‖2
(56)

Then, (49) and (56) imply that

V̇2 = V̇21(ε) + V̇22(ξ)

≤ −L2(L∗1L3 − 2‖P‖2%2n2(
n∑
i=1

Li−1
3 )2 − 1)‖ε‖2

−L2(L∗1 − 2‖P‖2%2(n− 1)2n− 1)‖ξ‖2

+L2(6(n− 1)
L∗

1

L3
‖a‖2‖P‖2 + 6nL∗1‖P‖2‖a‖2)ξ2

1

+L2(6L∗1L3‖P‖2‖a‖2 + 6L∗1‖a‖2‖P‖2 + 6nL∗1‖P‖2‖a‖2)ε2
1

≤ −L2(‖ε‖2 + ‖ξ‖2) +m2L2ξ
2
1 +m3L2ε

2
1,

(57)
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wherem2 = 6(n−1)
L∗

1

L3
‖a‖2‖P‖2+6nL∗1‖P‖2‖a‖2, m3 = 6L∗1L3‖a‖2‖P‖2+6L∗1‖P‖2‖a‖2

+ 6nL∗1‖P‖2‖a‖2.
From (36), (37) and Lemma 2.6, we have

m2L2ξ
2
1 +m3L2ε

2
1 = L2

(
m2(x1−x̂1)2

(L∗
1L2)2σ +

m3x
2
1

(L∗
1L2)2σ

)
≤ L2

(2m2+m3)(x2
1+x̂2

1)
(L∗

1L2)2σ

≤ (2m2 +m3)L1−2σ
2

((
x̂1

Lσ1

)2

+
(

y
(1−θ̄)Lσ1

)2)
≤ (2m2 +m3)L̇1.

Hence
V̇2 ≤ −L2(‖ε‖2 + ‖ξ‖2) + (2m2 +m3)L̇1,∀t ∈ [0, tf ). (58)

From (58), it follows that

λmin(P )(‖ε‖2 + ‖ξ‖2)− (ε(0)TPε(0) + ξ(0)TPξ(0))

≤ −
∫ t

0
L2(‖ε‖2 + ‖ξ‖2) dt

+(2m2 +m3)(L1(t)− 1),∀t ∈ [0, tf ).

Then,
‖ε‖2 + ‖ξ‖2 ≤ 1

λmin(P ) (ε(0)TPε(0) + ξ(0)TPξ(0)

+(2m2 +m3)(L1(t)− 1)),∀t ∈ [0, tf ),∫ t
0
L2(‖ε‖2 + ‖ξ‖2) dt ≤ ε(0)TPε(0) + ξ(0)TPξ(0)

+(2m2 +m3)(L1(t)− 1),∀t ∈ [0, tf ).

From Proposition 1, we have L1 is bounded on [0, tf ), thus,
∫ t

0
L2‖ε‖ dt,

∫ t
0
L2‖ξ‖ dt,

ε and ξ are bounded on [0, tf ). Then, e(t) and z(t) are bounded on [0, tf ).
Because L1 and z1 are bounded on [0, tf ), we have

| x1

Lσ2
| = Lσ1 |z1| ≤ C,∀t ∈ [0, tf ),

where C is a real constant. Then,

|x1| ≤ CLσ2 ,∀t ∈ [0, tf ).

Since 0 < σ < 1
2p , from Lemma (2.5), one can obtain

L̇2 = −α(L2 − 1) + β
(

1 +
(
|y|

1−θ̄

)p)2

≤ −αL2 + 2β
(

1+θ̄
1−θ̄

)2p

C2pL2pσ
2 + 2β + α,

≤ −α2L2 + b,∀t ∈ [0, tf ),

where b > 0 is a suitable constant. Obviously, L2 is bounded on [0, tf ). �

Theorem 3.3. For the system (1) with the Assumptions 2.1 and 2.2 and a given allow-
able sensitivity error θ̄, if the conditions (14) – (17) hold, then, under the output feedback
controller (4) – (6) and (9), the system (1) converges to the equilibrium at origin, which
means that limt→+∞ x(t) = limt→+∞ x̂(t) = 0.
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P r o o f . From Proposition 1 and 2, we can obtain that L1, L2, ε, ξ are bounded
on the interval [0,+∞) and

∫ +∞
0

L2‖ε‖ dt ≤ +∞,
∫ +∞

0
L2‖ξ‖dt ≤ +∞. By the

Barbalat’s Lemma [7], we have limt→+∞ ε(t) = 0 and limt→+∞ ξ(t) = 0. There-
fore, limt→+∞ e(t) = 0 and limt→+∞ z(t) = 0, which implies that limt→+∞ x(t) = 0
andlimt→+∞ x̂(t) = 0. Since L1, L2 are bounded and limt→+∞ x(t) = 0, limt→+∞ x̂(t) =
0, we have limt→+∞ u(t) = 0. The proof is completed. �

Remark 3.4. Although θ(t) is unknown, the output with the measurement error is
known and available. That is, the measurable output contains unknown disturbance.
Moreover, the output with the measurement error y(t) is directly applied to design the
output feedback controller (9). In order to stabilize the nonlinear system (1), we use two
variable gains L1, L2 and a constant gain L3. The unknown constant %, and polynomial-
of-output (1 + |x1|p) are coped with by the variable gains L1, and L2, respectively. The
constant gain L3 is used to deal with the sensor uncertainty θ(t).

4. FURTHER EXTENSIONS

From Theorem 3.3, we can obtain that the sensor uncertainty θ(t) is in a small neigh-
borhood near 1, which implies that the measured output is very close to the actual
output. However, in practice, it may occur that the measured output is very larger or
very smaller than the actual output, such as θ(t) ∈ [1.04, 2.16] or θ(t) ∈ [0.455, 0.945].
In what follows, we discuss the problem of adaptive output feedback stabilization under
such cases.

In order to derive one of our extension, we need the following assumption.

Assumption 4.1. The sensor sensitivity θ(t) is an unknown continuous function satis-
fying θ(t) ∈ [R(1− θ̄), R(1 + θ̄)], where R is a known positive constant. Then, Rθ̄ is an
allowable sensitivity error.

Remark 4.2. Compared with Assumption 2.2 [12, 16], θ(t) has a wider range. In fact,
let R = 1, Assumption 4.1 is reduced to Assumption 2.2. Therefore, Assumption 2.2
can be regarded as a special case of Assumption 4.1.

Consider the following coordinate transformation,

si = Rxi, i = 1, . . . , n,

δ(t) = θ(t)
R , ω = Ru,

and

gi(t, x) = Rfi(t, x), i = 1, . . . , n.

The system (1) can be written as, ṡi = si+1 + gi(t, s), i = 1, . . . , n− 1,
ṡn = ω + gn(t, s),
y = δ(t)s1.
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From Assumption 2.1, we can obtain

|gi(t, s)| = R|fi(t, x)| ≤ %(1 + |x1|p)R(|x1|+ · · ·+ |xi|)
= %(1 + | s1R |

p)(|s1|+ · · ·+ |si|),

Then,

δ(t) ∈ [1− θ̄, 1 + θ̄].

Construct the following observer
˙̂x1 = x̂2 − (L1L2)a1x̂1,
˙̂x2 = x̂3 − (L1L2)2a2x̂1,
...

˙̂xn = u− (L1L2)nanx̂1,

(59)

where the dynamic gains L1 and L2 are updated by

L̇1 = L1−2σ
2

((
Rx̂1

Lσ1

)2

+
(

y
(1−θ̄)Lσ1

)2)
, L1(0) = 1, (60)

and

L̇2 = −α(L2 − 1) + β
(

1 +
(
|y|

R(1−θ̄)

)p)2

, L2(0) = 1, (61)

x̂ = (x̂1, . . . , x̂n)T ∈ Rn is observer state.

Consider the following coordinate transformation,

ŝi = Rx̂i, i = 1, . . . , n.

χi =
si − ŝi

(L1L2)i−1+σ
, i = 1, . . . , n,

ς1 =
s1

(L1L2)σ
, ςi =

ŝi

(L1L2)i−1+σLi−1
3

, i = 2, . . . , n.

The controller u(t) is given by

u(t) = ω
R , ω = (L1L2)n+σLn3ν,

ν = −bn(L1L2)−σy − bn−1ς2 − . . .− b1ςn.
(62)

Then, we have the following results.

Theorem 4.3. For the system (1) with the Assumptions 2.1 and 4.1, if the param-
eters θ̄, α, β, L3 satisfy the conditions (16) – (17), then, under the output feedback
controller (59) – (61) and (62), the system (1) converges to the equilibrium at origin,
which means that limt→+∞ x(t) = limt→+∞ x̂(t) = 0.



Adaptive output feedback stabilization 651

P r o o f . Using the same methods to Theorem 3.3, we can easily obtain the conclusions.
Detailed proofs are omitted.

In what follows, we make an other extension.

Consider the following system: ẋi = xi+1 + fi(t, x), i = 1, . . . , n− 1,
ẋn = u+ fn(t, x),
y = θ(t)Rx1,

(63)

where x = (x1, . . . , xn)T ∈ Rn, u ∈ R and y ∈ R are the system state, control input and
measurement output. The sensor sensitivity θ(t) (t ∈ R+) is an unknown continuous
function. R ∈ R is an unknown positive constant. �

Besides Assumptions 2.1, the system is required to meet the following assumption.

Assumption 4.4. There exist two positive constants R1 and R2 such that R1 ≤ R ≤
R2 and R2

R1
≤ 1+θ̄

1−θ̄ .

Construct the following observer
˙̂x1 = x̂2 − (L1L2)a1x̂1,
˙̂x2 = x̂3 − (L1L2)2a2x̂1,
...

˙̂xn = u− (L1L2)nanx̂1,

(64)

where the dynamic gains L1 and L2 are given by

L̇1 = L1−2σ
2

((
R2x̂1

Lσ1

)2

+
(

y
(1−θ̄)Lσ1

)2)
, L1(0) = 1, (65)

and

L̇2 = −α(L2 − 1) + β
(

1 +
(

|y|
R1(1−θ̄)

)p)2

, L2(0) = 1. (66)

The controller u(t) is given as

u(t) = (L1L2)n+σLn3ν,

ν = −bn(L1L2)−σ y
R2
− bn−1

x̂2

(L1L2)σL3
− . . .− b1 x̂n

(L1L2)n−1+σLn−1
3

. (67)

Theorem 4.5. For the system (63) with Assumptions 2.1 and Assumptions 4.4, if the
sensor sensitivity θ(t) satisfies

θ(t) ∈
[R2(1− θ̄)

R1
, 1 + θ̄

]
,

and the conditions (16) – (17) hold, then, under the output feedback controller (64) –
(66) and (67), the system (63) converges to the equilibrium at origin, which means that
limt→+∞ x(t) = limt→+∞ x̂(t) = 0.

P r o o f . The proofs are similar to Theorem 3.3 and omitted. �
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5. NUMERICAL SIMULATIONS

Case 1. Consider the following SISO nonlinear system with sensor uncertainty, ẋ1 = x2,
ẋ2 = u− x1 − µ(1− x2

1)x2,
y = θ(t)x1,

(68)

where µ is an unknown constant and θ(t) is an unknown function. It is easy to verify
that system (68) satisfies Assumption 2.1 with p = 2, % = max{1, |µ|}.

Based on Theorem 3.3, set a1 = 1.5, a2 = 1.5, b1 = 1, b2 = 0.5, σ = 0.24. From (13),

we choose P =
(

1.6667 −1
−1 2.1112

)
, Q =

(
3.5 2
2 3

)
. Then, we obtain c1 = 0.3515,

c2 = 5.6842, c3 = 0.4301, c4 = 8.6900 and 1
bn‖Q‖ = 0.3798. Obviously, we have θ̄ ≤

min{1, 0.3798}. According to (14) - (16), we construct the following controller for the
system (68), 

˙̂x1 = x̂2 − 1.5L1L2x̂1,
˙̂x2 = u− 1.5(L1L2)2x̂1,

u = 1502(L1L2)2.24
(
− 0.5(L1L2)−0.24y − x̂2

150(L1L2)1.24

)
,

L̇1 = L0.52
2

(
x̂2
1

L0.48
1

+ y2

0.752L0.48
1

)
, L1(0) = 1,

L̇2 = −0.115(L2 − 1) + 2.85
(

1 + y2

0.752

)2

, L2(0) = 1.

In the numerical simulation, we set the parameters µ = 3, α = 0.115, β = 2.85,
L3 = 150, and the measurement error θ(t) = 1 + 0.2 sin(10t) satisfying θ(t) ∈ [0.8, 1.2],
and the initial conditions x1(0) = 0.35, x2(0) = 1, x̂1(0) = 2, x̂2(0) = 5. The simulation
results are shown in Figures 1 – 5. It is observed that limt→+∞ x1(t) = limt→+∞ x2(t) =
limt→+∞ x̂1(t) = limt→+∞ x̂2(t) = 0, limt→+∞ u(t) = 0, which demonstrates the effec-
tiveness of the controller.
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Fig. 1. The trajectories of the states of the closed-loop system.
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Fig. 5. The trajectory of the input u.

Case 2. Consider the following SISO nonlinear system (68) with measurement sensi-
tivity θ(t) = Rδ(t), where R is a positive real number and δ(t) is an unknown function.

Based on Theorem 4.3, set the same values of the parameters a1, a2, b1, b2, σ to
those in Case 1. We have θ̄ ≤ min{1, 0.3798}. According to (14) - (16), we construct
the following output feedback controller,

˙̂x1 = x̂2 − 1.5L1L2x̂1,
˙̂x2 = u− 1.5(L1L2)2x̂1,

u = 1502(L1L2)2.24
(
− 0.5(L1L2)−0.24 y

R −
x̂2

150(L1L2)1.24

)
,

L̇1 = L0.52
2

(
R2x̂2

1

L0.48
1

+ y2

0.752L0.48
1

)
, L1(0) = 1,

L̇2 = −0.115(L2 − 1) + 2.85
(

1 + y2

R20.752

)2

, L2(0) = 1.

In the numerical simulation, we set the parameters µ = 3, α = 0.115, β = 2.85,
L3 = 150, R = 100, δ(t) = 1 + 0.2 sin(10t), and the initial conditions x1(0) = 0.5,
x2(0) = 2, x̂1(0) = 1, x̂2(0) = 1. The simulation results are shown in Figures 6 – 10. It is
observed that limt→+∞ x1(t) = limt→+∞ x2(t) = limt→+∞ x̂1(t) = limt→+∞ x̂2(t) = 0,
limt→+∞ u(t) = 0, which demonstrates the effectiveness of the controller.
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Fig. 6. The trajectories of the states of the closed-loop system.
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Fig. 7. The trajectories of the states of the observer.
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Case 3. Consider the following SISO nonlinear system (68) with θ(t) = Rδ(t), where R
is an unknown positive real number and the measurement sensitivity δ(t) is an unknown
function.

Based on Theorem 4.5, set the same values of the parameters a1, a2, b1, b2, σ to
those in Case 1. We have θ̄ ≤ min{1, 0.3798}. According to (14) – (16), we construct
the following output feedback controller,

˙̂x1 = x̂2 − 1.5L1L2x̂1,
˙̂x2 = u− 1.5(L1L2)2x̂1,

u = 1502(L1L2)2.24(−0.5(L1L2)−0.24 y
R1
− x̂2

150(L1L2)1.24 ),

L̇1 = L0.52
2

(
R2

1x̂
2
1

L0.48
1

+ y2

0.752L0.48
1

)
, L1(0) = 1,

L̇2 = −0.115(L2 − 1) + 2.85(1 + y2

R2
20.752 )2, L2(0) = 1.

In the numerical simulation, we set the parameters R = 50, R1 = 45, R2 = 60, µ = 3,
α = 0.115, β = 2.85, L3 = 150, and δ(t) = 1 + 0.2| sin(10t)| satisfying δ(t) ∈ [1, 1.2], and
the initial conditions x1(0) = 0.35 ,x2(0) = 1, x̂1(0) = 1, x̂2(0) = 1. The simulation re-
sults are shown in Figures 11 – 15. It is observed that limt→+∞ x1(t) = limt→+∞ x2(t) =
limt→+∞ x̂1(t) = limt→+∞ x̂2(t) = 0, limt→+∞ u(t) = 0, which demonstrates the effec-
tiveness of the controller.
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Fig. 11. The trajectories of the states of the closed-loop system.
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Fig. 12. The trajectories of the states of the observer.
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6. CONCLUSION

The problem of adaptive output-feedback stabilization was investigated for a class of
uncertain nonlinear systems in this paper. The growth rate of the nonlinear systems
was unknown and could be described as polynomial-of-output multiplying an unknown
constant. Because of the existence of sensor uncertainty, the measurement output was
not accurate. By developing the dual-domination approach, an adaptive output-feedback
controller was designed to deal with the problem. Then, the methods were extended to
nonlinear systems with larger sensor uncertainty. Finally, numerical simulations were
provided to illustrate the effectiveness of the theoretical results.
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