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Abstract

Graphs provide a ubiquitous and universal data structure that can be applied in
many domains such as social networks, biology, chemistry, physics, and computer
science. In this thesis we focus on two fundamental paradigms in graph learning:
representation learning and similarity learning over graph-structured data. Graph
representation learning aims to learn embeddings for nodes by integrating topological
and feature information of a graph. Graph similarity learning brings into play with
similarity functions that allow to compute similarity between pairs of graphs in a
vector space. We address several challenging issues in these two paradigms, designing
powerful, yet efficient and theoretical guaranteed machine learning models that can
leverage rich topological structural properties of real-world graphs.

This thesis is structured into two parts. In the first part of the thesis, we will
present how to develop powerful Graph Neural Networks (GNNs) for graph represen-
tation learning from three different perspectives: (1) spatial GNNs, (2) spectral GNNs,
and (3) diffusion GNNs. We will discuss the model architecture, representational
power, and convergence properties of these GNN models. Specifically, we first study
how to develop expressive, yet efficient and simple message-passing aggregation
schemes that can go beyond the Weisfeiler-Leman test (1-WL). We propose a general-
ized message-passing framework by incorporating graph structural properties into an
aggregation scheme. Then, we introduce a new local isomorphism hierarchy on neigh-
borhood subgraphs. We further develop a novel neural model, namely GraphSNN,
and theoretically prove that this model is more expressive than the 1-WL test. After
that, we study how to build an effective and efficient graph convolution model with
spectral graph filters. In this study, we propose a spectral GNN model, called DFNets,
which incorporates a novel spectral graph filter, namely feedback-looped filters. As a
result, this model can provide better localization on neighborhood while achieving
fast convergence and linear memory requirements. Finally, we study how to capture
the rich topological information of a graph using graph diffusion. We propose a novel
GNN architecture with dynamic PageRank, based on a learnable transition matrix.
We explore two variants of this GNN architecture: forward-euler solution and invariable
feature solution, and theoretically prove that our forward-euler GNN architecture is
guaranteed with the convergence to a stationary distribution.

In the second part of this thesis, we will introduce a new optimal transport distance
metric on graphs in a regularized learning framework for graph kernels. This optimal
transport distance metric can preserve both local and global structures between graphs
during the transport, in addition to preserving features and their local variations.
Furthermore, we propose two strongly convex regularization terms to theoretically
guarantee the convergence and numerical stability in finding an optimal assignment
between graphs. One regularization term is used to regularize a Wasserstein distance
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xii

between graphs in the same ground space. This helps to preserve the local clustering
structure on graphs by relaxing the optimal transport problem to be a cluster-to-
cluster assignment between locally connected vertices. The other regularization term
is used to regularize a Gromov-Wasserstein distance between graphs across different
ground spaces based on degree-entropy KL divergence. This helps to improve the
matching robustness of an optimal alignment to preserve the global connectivity
structure of graphs. We have evaluated our optimal transport-based graph kernel
using different benchmark tasks. The experimental results show that our models
considerably outperform all the state-of-the-art methods in all benchmark tasks.
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Chapter 1

Introduction

1.1 Background

Graphs are indispensable mathematical objects that allow us to model complex rela-
tionships (i.e., edges) between entities (i.e., nodes). With the advancement of science,
graphs have been receiving considerable attention in various disciplines, including so-
cial science, chemistry, physics, medicine, bioinformatics, computer science, and many
other related fields. For instance, molecular graphs, drug-drug interaction networks,
friendship networks, recommender systems, transportation networks, protein-protein
interaction networks, document link networks, finite element meshes, and 3D scene
graphs are some examples from different domains [10, 91, 32, 187, 94].

In the last two decades, machine learning methods have achieved an enormous
success in analyzing graph-structured data [294, 268, 131]. Graph learning plays
a vital role to capture useful insights from hidden patterns of networks in many
real-world applications. For instance, molecular property prediction in chemistry,
advertising a new product to users in recommender systems, 3D object detection in
computer graphics & computer vision, social interaction prediction in social science,
and traffic forecasting in transportation [74, 268, 131, 180, 288, 236, 227, 200]. Typi-
cally, graph learning tasks compute low-dimensional vectors for entities or an entire
graph by considering node features and structural properties that relate to the local
neighborhood of entities and their relationships. Then. these low-dimensional vectors
can be used to perform prediction on a desired learning task on graphs.

There are two fundamental learning problems in machine learning on graphs: (1)
graph representation learning, and (2) graph similarity learning. The main idea of
graph representation learning is to learn low-dimensional vector representations for
graphs (or their nodes) that reflect the properties of interests, e.g., local neighbor-
hood structure. The main idea of graph similarity learning is to learn a similarity
function that enables to measure how similar or different pairs of graphs are in a
low-dimensional vector space.

1.1.1 Graph Representation Learning

Representation learning is not a new paradigm, which has been explored since past
several decades in various domains such as natural language processing, signal

1
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Graph Neural Networks:

How to represent nodes/graphs in a vector space?
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Figure 1.1: (a) Representation learning learn a function that encodes each node or entire graph
structure into a low-dimensional embedding; (b) Similarity learning learn a similarity function
that measures the similarity between pairs of graphs.

processing, and computer vision by machine learning research community [14]. The
evolution of the field of representation learning [27] has been influenced by the
studies on the Euclidean domain. Studies of the Euclidean domain are concerned
about the geometry of flat surfaces such as grids in a 1-dimensional (1D) or 2-
dimensional (2D) space, which follows a simple relational regular structure. Audio
signals and text are good examples of 1D grid structured data that can be modelled
by Recurrent Neural Networks (RNNs); RNNs can encode sequential relationships
to build representations for signals and texts on speech recognition and machine
translation tasks [282, 213, 139, 51, 50, 45]. On the other hand, images and videos
are good examples for 2D grid structured data that can be modelled by Convolution
Neural Networks (CNNs); CNNs are parameterized neural networks with spatial
locality and shift-invariance properties to learn representations for images on image
classification and image segmentation & reconstruction [260, 206, 287, 142].

Traditional machine learning approaches for graph-structured data primarily rely
on graph statistics such as clustering coefficients or node degrees [19], or use hand-
craft features for local neighborhood structure [147]. These approaches have several
limitations. For example, they are inflexible and cannot adapt to the learning process;
extracting graph statistics may be expensive and time consuming. A number of stud-
ies have been devoted to address these issues through learning representations that
encode the structural information of graphs. More concretely, graph representation
learning learns embeddings for entities such that structural relationships between
entities are preserved in an embedding space. Then, these learned graph representa-
tions can be used as features for downstream machine learning tasks such as node
classification [283], link prediction [52, 61], clustering [41, 132], and visualization
[32]. Take link prediction [52, 61] in social networks for example, pairwise properties
between nodes are encoded into node representations such that similarities between
nodes are preserved.

The existing graph representation learning methods generally fall into two cate-
gories: (1) shallow embedding methods, and (2) deep learning methods [57, 32].

Shallow embedding methods. The central idea of shallow embedding methods is
to map graph entities into low-dimensional latent embeddings such that local neigh-
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borhood similarities between entities are preserved [196, 241, 257, 258]. Previously,
there was a growing interest to map high dimensional structural properties into a
lower dimensional vector space by taking into consideration short random walks over
a graph. A number of works have been developed such as DeepWalk, LINE, and
node2vec [196, 241, 95] which linearize a given graph using random walks. However,
these methods have several limitations. DeepWalk [196] uses uniform random walks
for finding neighbors; hence, it cannot control over the explored neighborhoods. In
LINE [241], the authors proposed a breadth-first strategy to sample nodes such that
the likelihood is maximized independently over 1-hop and 2-hop neighbors. Hence,
LINE has no flexibility in exploring nodes in further depths. In node2vec [95, 201], it
avoids these limitations by exploring graph neighborhoods through the higher order
biased random walks. However, node2vec takes into account truncated random walks
to capture the local neighborhoods of nodes. Hence, this method ignores long-distance
global relationships in a graph [293]. Furthermore, node2vec cannot capture different
semantics that associate with attributes of a given source node and has substantial
runtime overhead with large networks [293].

Later, Liu et al. [154] proposed a novel algorithmic framework called scalable
attribute aware network embedding with locality (SANE) to learn joint graph representa-
tions from both node attributes and graph topology. However, this method can lead
to some misalignment between an attribute space and a topological space. Thus, it
may give rise to an issue that a linear mapping between the attribute and topological
spaces is not preserved. In this study, the authors used one of the classical methods
called locally linear embedding (LLE) [212, 154] to embed attributes. The LLE defines
neighbors of a source node using a collection of nodes with similar attributes, which
is also known as k-nearest neighbors [241, 212]. The complexity of this framework is
at least quadratic to the number of nodes in a graph, which is inefficient when a
graph is large. Also, the LLE fails on noisy data and outliers. Thus, smoothness of a
dataset is a critical factor for LLE-based analysis, and it is less accurate in preserving
global pairwise similarity. The locality assumption of SANE may not be valid and
comparable when considering a large number of neighbors.

Another line of shallow embedding methods is to learn embeddings from matrix
factorization, using the traditional dimensional reduction technique, called Laplacian
eigenmaps, [13]. This is a simple encoder-decoder method. Following this work, a
number of methods have been proposed for learning graph embeddings using a
pair-wise inner product decoder [3, 35, 188]. Meng et al. [202] introduced robust
node representations for graphs with multiple views. Inspired by this method, several
methods have been proposed for multi-view graph representation learning, such as
multi-view matrix factorizing methods [92, 231] and multi-view clustering methods
[150, 149, 238, 295]. However, those methods have some limitations such as lack
of weight learning and insufficient collaboration of views to find a robust node
representation [202]. Hence, a collaboration framework that can overcome those
limitations was suggested, which is able to integrate different views to vote for robust
node representations and also implicitly learn voting weights of each view through
an attention-based approach. However, there is an inherent problem that how to fully
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leverage the multi-view information on graphs. The search strategy is also rigid and
lacks scalability for large networks.

In the early stages, most of graph representation models were based on shallow
architectures. As information process of a graph is often non-linear and complicated
[57], linear functions may not be sufficient to map a graph into a vector space. There
has been a growing interest in developing deep neural models for graph representation
learning since deep neural models have the ability to capture non-linear structures
on graph-structured data and approximate an arbitrary objective. Compared with
shallow embedding methods using linear functions, deep neural models can improve
the robustness and also retrieve highly compressed powerful representations for graph
embeddings through non-linear models [91].

Deep learning methods. Deep neural models on graphs were initially inspired by
the work proposed by Sperduti et al. [235]. In this work, features are extracted
from graphs by a recursive linear aggregation scheme with a non-linear activation
function. Later, Baskin et al. [11] introduced a parameter sharing model that considers
transformation invariants on node and edge features. Gori et al. [90] and Scarselli
et al. [218] introduced new neural network models that can recursively aggregate
the neighborhood feature information with RNNs. Following these two models, to
improved the efficiency and convergence, Li et al. [144] introduced a gated graph
sequence network that refines the information propagation of RNNs with a gating
mechanism. These recursively neighborhood feature aggregation methods are also
known as message-passing neural networks (MPNNs) or spatial Graph Neural Networks
(spatial GNNs).

In the past several years, due to the rising trends in network analysis and predic-
tion, generalizing MPNNs to graphs has attracted considerable interest [82, 247, 99,
216, 157, 63]. Xu et al. [275] proposed a message-passing neural network architecture,
namely graph isomorphism networks (GIN) to analyze the expressive power of the
MPNNs, which builds connections with the Weisfeiler-Lehman test (1-WL test). Fol-
lowing this method, one interesting challenge is to design an expressive, yet efficient
spatial message-passing aggregation scheme to go beyond the 1-WL test. In general,
there are three main directions of extending GNNs beyond the 1-WL test: (1) building
higher-order GNNs based on higher-order WL algorithms (i.e. k-WL with k ≥ 3) or
their variants [167, 176, 175]; (2) counting on pre-defined substructures as additional
node features [23]; (3) augmenting node identifiers or random features into GNNs
[280, 250, 217]. However, these methods still have some limitations. We can obtain
more powerful GNN models via higher order WL methods such as k-GNN [175],
which nevertheless require high computational overheads and are not really useful
in practice. If we have some prior knowledge about an application (e.g., triangles
and cliques are useful in social networks), we can count topological features such
as triangles and cliques, and add them into node features. This is useful for some
applications; however, the problem is that this requires domain expertise for different
applications and we have to know what kind of local structures could be useful for
different applications in advance. Augmenting node identifiers or random features
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for GNNs are either difficult or too costly to ensure permutation invariance.
Previously, Bruna et al. [28] introduced a notion of spectral convolution on graphs,

which is indirectly defined as convolution operation through the spectral graph theory
[53]. Following this study, a number of methods have been proposed to improve,
extend and approximate these spectral convolutions [27, 60, 65, 71, 99, 122, 171, 299],
which has led to state-of-the-art performance on several benchmark tasks such as
semi-supervised node classification task on spectral GNNs. The key idea behind these
spectral GNNs on designing spectral graph filters is to approximate the frequency
responses of graph filters using a polynomial function (e.g. Chebyshev filters [65]) or
a rational polynomial function (e.g. Cayley filters [137] and ARMA [20]). Polynomial
filters are sensitive to changes in the underlying graph structure. They are also very
smooth and can hardly model sharp changes. Rational polynomial filters are more
powerful to model localization, but they often have to trade off with computational
efficiency, resulting in higher learning and computational complexities as well as
numerical instability.

Despite the success of spectral GNNs and spatial GNNs, there is an another
perspective on GNNs, called diffusion GNNs, which is based on the graph diffusion
process [128, 125, 291]. One of the main problems in GNNs is to develop powerful
models that can capture rich and varying graph structures, thereby being able to
obtain better representations for homophily and heterophily graphs. Although we
can apply a neighborhood message aggregation scheme for homophlic graphs since
locally connected vertices on a graph share the same class labels, it is difficult to
generalize a neighborhood message aggregation scheme for heterophilic graphs
because locally connected vertices on a graph have different class labels. In recent
years, a number of works have addressed this issue by developing diffusion GNNs
that can adapt to both homophilic or heterophilic graphs [49, 297, 72]. Due to the use
of a standard PageRank setting, these methods have several drawbacks. Standard
PageRanK restricts the landing probabilities to 1-hop neighbors; on the other hand,
these landing probabilities are predefined and fixed. Thus, most of diffusion GNNs
cannot capture long-range dependencies of a graph into the probability transition
matrix of PageRank.

1.1.2 Graph Similarity Learning

The popularity of graph similarity learning has been degraded after the rise of graph
representation learning, but graph similarity learning still remains an appealing
paradigm for comparing pairs of graphs. Generally, similarity learning is also known
as metric learning, which learns a function to measure the similarity or distance
between pairs of objects. A number of methods for graph similarity learning have
been proposed from different domains such as computer vision, information retrieval,
neuroscience, bioinformatics, chemoinformatics, and natural language processing [169,
97, 115, 136, 148, 107, 21, 160, 234, 290]. Face recognition in computer vision, protein-
protein networks analysis for disease diagnosis in bioinformatics, molecular graphs
classification in chemoinformatics, brain networks neurological disorder diagnosis
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in neuroscience, and text similarity learning in natural language processing are few
examples of similarity learning applications.

Previously, a number of works have emerged which study different graph sim-
ilarity metrics such as graph edit distance [30, 265], maximum common subgraph
[31, 255, 207] and full-graph or sub-graph isomorphism [66, 16, 224, 276] in order to
address the graph similarity search and graph matching problems. Generally, the
computation cost of these similarity metrics is NP-complete [281]. Despite the fact that
some heuristic and pruning methods have been introduced to speed up computation,
these heuristic methods are inefficient for large graphs and their suboptimal solutions
are unbounded [281]. To address these limitations of graph similarity learning meth-
ods, the most commonly considered solution is to first employ a mapping function
that can map graphs into a low-dimensional vector space, and then apply kernelized
machine learning algorithms such as support vector machines (SVMs) to classify pairs
of graphs (i.e., graph kernels).

Inspired by the success of optimal transport theory, optimal transport has been
applied in a variety of fields such as computer vision [78], image processing [77],
and neural networks [5]. An optimal transport distance [252] compares the similarity
between two probability distributions by incorporating a ground distance into the
underlying geometric metric space, aiming to capture the geometric nature of these
probability distributions. A graph can be viewed as a discrete probability distribution
in some geometric metric space; therefore, optimal transport can be used to measure
the similarity between two graphs.

According to whether optimal transport techniques have been used in computing
graph kernels, we group graph kernel methods into two categories: (1) non-optimal-
transport graph kernels (traditional graph kernels): non-optimal-transport graph
kernels focus on comparing similarity of graphs based on their substructure patterns
such as subtree, cycles, shortest paths, graphlets, and etc. [107, 22, 225, 226], and
(2) optimal-transport-based graph kernels: optimal-transport techniques are used to
explore the geometric nature of graphs by viewing graphs as discrete distributions in
a geometric metric space when computing their graph similarity. There are several
limitations in non-optimal-transport graph kernels. One of the main limitations is
that, they require substructures to be pre-defined based on domain expertise, which is
not always available in practice. Further, they often ignore topological structure and
feature distributions on graphs. In recent years, optimal-transport graph kernels are
emerging as a more popular research direction [182, 245, 164]. Nonetheless, existing
optimal-transport graph kernels still have some limitations. Optimal-transport graph
kernels primarily ignore the connection between topological structures and feature
information in their transport plans, and also do not consider the local clustering
structures of graphs. Furthermore, they still suffer from preserving global connectivity
structures of graphs during the transportation.
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1.2 Research Objectives

Graphs are irregular with complex relationships between nodes. This brings up new
challenges on how to develop powerful machine learning models that can effectively
handle intrinsic structural properties of graph structured data. Specifically, there are
three key challenges that we will address in this thesis:

• How to improve the representation power of machine learning models on
graphs?

• How to effectively design machine learning models to preserve intrinsic proper-
ties of graphs?

• How to ensure theoretical properties that can guarantee the convergence and
numerical stability for machine learning techniques on graphs?

To address these challenges, in this thesis, we explore the solutions for the follow-
ing two research objectives:

(1) We will design expressive yet simple and efficient GNNs that can learn powerful
representations for distinguishing the graph structured data;

(2) We will develop a powerful graph kernel function that can preserve local intrinsic
properties and reliably measure the similarity between pairs of graphs with
theoretically guaranteed convergence.

1.3 Contributions

In this thesis, we aim to address the aforementioned research objectives. We study
graph representation learning from three different aspects of graph neural network
(GNN) architectures: (1) spectral GNNs, (2) spatial GNNs, and (3) diffusion GNNs.
Then we propose a graph similarity learning method, which aims to build a kernel
function that can incorporate intrinsic graph properties into a learning framework.
Below, the main contributions of this thesis are summarized:

Contribution I: We propose expressive yet simple spatial GNNs that can go beyond
the 1-WL test with a theoretically provable guarantee.

Contribution II: We design a new class of spectral graph filters and incorporate it
into an effective, yet efficient spectral GNN architecture.

Contribution III: We propose two GNN architectures based on dynamic PageRank
to capture rich and varying graph structures, i.e, homophily and heterophily.

Contribution IV: We develop a regularized optimal transport graph kernel that can
preserve intricate structures on graphs with theoretically guaranteed convergence.

In the following, we elaborate on these contributions one by one.
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1.3.1 Spatial Graph Neural Networks

The first problem that we study in this thesis is to design expressive yet simple GNNs
that can go beyond the 1-WL test with a theoretically provable guarantee. We propose
a new perspective on designing powerful GNNs without sacrificing computational
simplicity and efficiency. In this work, we introduce a GNN framework namely,
generalized message-passing (GMP) framework, which enables a general way of
injecting structural information into a message-passing aggregation scheme. Our
main contributions of this work lie in three folds.

• Firstly, we develop a new hierarchy of local isomorphism on neighborhood
subgraphs. There exist a natural class of isomorphic graphs, which strictly lies
in between neighborhood subgraph isomorphism and neighborhood subtree
isomorphism, which is known as overlap subgraph isomorphism. The general
idea is that if two graphs are isomorphic in terms of subgraph isomorphism,
then these two graphs are isomorphic in terms of overlap isomorphism. On the
other hand, if two graphs are isomorphic in terms of overlap isomorphism, then
they must be isomorphic in terms of subtree isomorphism.

• Secondly, we develop a generalized message-passing scheme for GNNs by
incorporating structural information. This generalized message-passing scheme
can inject local structural information via structural coefficients into a message-
passing aggregation scheme to learn the representations for vertices, compared
with the standard message passing aggregation schemes [100].

• Thirdly, we propose a novel GNN model called GraphSNN for graph learning and
prove that GraphSNN is more expressive than the 1-WL test in distinguishing
graph structures. The message-passing aggregation scheme of GraphSNN is
an instantiation of our generalized message-passing scheme. A specific kind
of structural coefficients is designed and then carefully incorporated into a
message-passing aggregation scheme to ensure the injectivity of a function for
message-passing aggregation over neighbourhood subgraphs.

1.3.2 Spectral Graph Neural Networks

The main idea behind this work is to design a spectral graph filter by approximating
the eigendecomposition using a rational polynomial function [118, 137].

Graph filters can generally be divided into three different groups. The first
one is basis dependent filters, which corresponds to the traditional spectral filters
[171]. There are several limitations in these filters. One is high computational
complexity since they require to perform eigendecomposition explicitly and apply
graph Fourier transform. The parameter complexity is linear with respect to the
number of vertices and it is also hard to generalize across graphs. The second group
of graph filters are polynomial filters [65], which can mitigate some issues of basis
dependent filters. A polynomial filter can approximate the eigendcomposition as a
polynomial function. These polynomial filters are efficient and guarantee the stability
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under graph perturbation. This reduces the parameter complexity to constant time
and improves the localization on graph filters. However, polynomial filters are very
smooth and hard to model sharp changes. The last group is rational polynomial filters
[137, 20], which are more powerful to model localization on graphs. However, they
have higher learning and computational complexities as well as numerical instabilities.
Existing rational polynomial filters can accept the narrow band of frequencies. Thus,
these rational polynomial filters cannot capture the better characteristic properties
of a graph. That is because, according to spectral graph theory [53], characteristic
properties of a graph depend on graph frequencies.

Our work is built upon rational polynomial filters. We propose a new class of
spectral graph filters, known as feedback-looped filters, which enable a better localization
due to its rational polynomial form. The design of feedback-looped filters alleviates
the matrix inversion of rational polynomial form through a recursive function. There-
fore, our feedback-looped filters have linear convergence time and linear memory
complexity w.r.t the number of edges of a graph. Specifically, feedback-looped filtering
contains two filtering components: feedforward and feedback filters. The feedforward
filtering employs k-hop localized polynomial filters, and feedback filtering refines the
k-hop localized features that captured by the feedforward filtering to ameliorate the
accuracy. We formulate a convex constrained optimization problem to learn optimal
coefficients of feedback-looped filters and propose a new spectral convolutional layer
with feedback-lopped filters.

To avoid numerical instabilities and gradient vanishing or exploding during the
training, we propose two techniques: scaled-normalization and cut-off frequency. The
scaled-normalization technique helps to reduce the spectral radius bound of Laplacian
to alleviate numerical instability of a feedback-looped filter. The cut-off frequency
technique helps to accept a wider range of frequencies in order to alleviate the narrow
band frequency issue of rational polynomial filters. These techniques together enable
feedback-looped filters to better capture characteristic properties of graphs.

1.3.3 Diffusion Graph Neural Networks

We introduce a novel GNN architecture in this work to capture the rich topological
information of a graph using graph diffusion. According to the literature, we can
categorize existing diffusion based GNNs into three different groups. The first one is,
homogeneous isotropic diffusion, which is direction independent and is treated in the
same way in everywhere. The second one is non-homogeneous isotropic diffusion,
which is position dependent and direction independent, which can be treated as an
attention mechanism [38]. The third one is non-homogeneous anisotropic diffusion,
which is both position and direction dependent [12]. In this work, we propose a
novel homogeneous isotropic diffusion GNN. We build the connection with dynamic
PageRank and introduce two different solutions:

(1) Forward Euler solution: a simple and fast approach that reflects spatial dependen-
cies between a current node with its long-range neighborhood dependencies to
build the connection with a GNN message passing aggregation scheme;
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(2) Invariable feature solution: a flexible approach that generalizes both personalised
PageRank and heat kernel.

These two methods can effectively incorporate the dynamic PageRank to employ
the different local structures on a graph. We incorporate a new learnable PageRank
transition matrix, which helps to encode local topological information with long range
dependencies. This alleviates several limitations in the standard PageRank model.
Thus, we can improve the generalization capability of our diffusion GNN architecture
on homophilic and heterophilic graphs.

1.3.4 Regularized Optimal Transport Graph Kernels

The last problem that we study in this thesis is to develop a powerful and theoretically
guaranteed graph kernel framework with regularized optimal transport. In this work,
we introduce a novel optimal transport based distance metric on graphs, namely
Regularized Wasserstein (RW) discrepancy. This RW discrepancy regularizes the optimal
transport learning problem by two strongly convex regularization terms to compute a
distance between graphs.

• One regularization term is used to regularize a Wasserstein distance between
graphs in the same ground space. This regularization term helps to preserve the
local clustering structure on graphs by relaxing the optimal transport problem
to be a cluster-to-cluster assignment between locally connected vertices.

• The other regularization term is used to regularize Gromov-Wasserstein distance
between graphs across different ground spaces with a degree-entropy KL diver-
gence term. This regularization term helps to improve the matching robustness
of an optimal alignment to preserve the global connectivity structure of graphs.

Due to the strong convexity of these two regularization terms, we can find an opti-
mal assignment between graphs by theoretically guaranteeing the convergence and
numerical stability. Our optimal transport problem also considers the feature local
variations on graphs, which measure how features change with respect to the un-
derlying neighborhood structure of a graph. Thus, feature similarity matrices of our
optimal transport problem can capture features and their local variations into a cost
function. Therefore, this regularized optimal transport problem can preserve both
local and global structure of graphs during the transport.

1.4 Thesis Outline

The rest of this thesis is organised as follows. In Chapter 2, we provide a com-
prehensive literature review of the related work studied in this thesis. Then, the
main contributions of this thesis are arranged into Chapters 3-6 in two parts. In
the first part of this thesis, we present how we develop powerful GNNs for graph
representation learning from three different perspectives. In Chapter 3, we study the
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§1.4 Thesis Outline 11

problem of enhancing the expressive power of the spatial GNNs that can go beyond
the 1-WL. In Chapter 4, we study the problem of designing an efficient spectral GNN
with a new class of graph filters. In Chapter 5, we study the problem of designing
diffusion GNNs with dynamic PageRank to capture rich and varying graph struc-
ture. In the second part of this thesis, we introduce a optimal transport based graph
kernel method for graph similarity learning. In Chapter 6, we study the problem of
designing a powerful learning framework for graph kernels with regularized optimal
transport, which is theoretically robust with guaranteed convergence. For each of
Chapters 3-6, we start with an overview of the specific problems studied in the
chapter, and then propose the model architecture, theoretical analysis, experimental
results and a summary of the chapter. We finally conclude the thesis and discuss
future research opportunities in Chapter 7.
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Chapter 2

Related Work

This chapter provides the background and related work. Specifically, this chapter
elaborates different types of GNNs and kernel methods, i.e., spatial GNN methods,
spectral GNN methods, diffusion GNN methods, and graph kernel methods, which
have been developed in the literature for graph classification and node classifications.

2.1 Graph Representation Learning

GNNs belong to a class of Neural Network (NN) models, which are used to process
the graph structured data. In this section, we review the recent research in graph
representation learning from three different perspectives: (1) spatial GNNs, (2) spectral
GNNs, and (3) diffusion GNNs.

2.1.1 Spatial Graph Neural Networks

A number of works have been undertaken in the literature to expand message-passing
neural networks (MPNNs) for arbitrarily graph structured data. The early stages of
message-passing GNNs were motivated by the work done by Sperduti et al. [235],
who proposed a neural architecture with recursive neural networks for directed acyclic
graphs. Initially, the notion of message-passing GNNs was outlined by Gori et al. [90]
and further studied by Scarselli et al. [218], and Gallicchio et al. [82] for generalising
the recursive neural networks to apply with more general class of graph structured
data such as directed, undirected, and cyclic graphs. In particular, these message-
passing GNNs learnt node representations by propagating neighborhood information
with an iterative scheme using recurrent graph neural networks (RecGNNs). This
iterative scheme terminates when a stable fixed point is reached. However, these
neural message-passing schemes cannot be efficiently converged and, they are more
expensive on large graphs. To mitigate limitations in RecGNNs, Li et al. [144]
proposed a gated graph sequence network by refining the information propagation
step with a gating mechanism. However, this approach can be worked well on small
graphs and also remains computationally expensive.

Later, Kipf & Welling [122] introduced a simple and efficient aggregation scheme
by averaging the neighborhood features with a normalized adjacency matrix. Conse-
quently, Gilmer et al. [85] proposed a general view of GNN with message-passing

13
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aggregation scheme. In this paradigm, each node recursively aggregates feature
vectors of its neighboring nodes to compute a new feature vector. Following on these
two works, a number of works have been proposed with message-passing GNNs that
take graph structured data as input and build a function to compute embeddings
for graph nodes by considering the topological structure and features of nodes and
edges [247, 99, 216, 157, 63]. These MPNNs are also known as spatial GNNs since
they follow a message-passing aggregation scheme to learn low dimensional vector
space representations for nodes in a graph by exchanging and aggregating messages
from spatially close neighbors. Thus, local structure of each node can be incorporated
into the message-passing scheme.

Spatial GNN methods use different message-passing aggregation functions to
preserve the spatial locality on a graph. These aggregation functions of spatial
GNNs are parametric. For instance, GAT [247] introduced a weighted aggregation
scheme with a multi-head self-attention mechanism over neighborhood feature vectors.
Hamilton et al. [99] proposed an aggregation scheme by concatenating multiple layers
with skip-connection and they used neighborhood sampling techniques to reduce the
computation cost.

2.1.1.1 Message-Passing Neural Networks on Graphs

Let G = (V, E, X) be an undirected and weighted graph, where V is a set of vertices,
E ⊆ V × V is a set of edges, and X ∈ R|V|× f be a matrix of input feature vectors
where xv ∈ R f is an input feature vector associated with each v ∈ V. Let A ∈ R|V|×|V|

is an adjacency matrix of G, which encodes the weights of edges. Message-passing
aggregation scheme is a basic building block of spatial GNNs, which has two main
steps: (1) for each node v ∈ V, a message-passing aggregation scheme recursively
aggregates the feature vectors of nodes in the neighborhood of v, and (2) then, the
aggregated information combines with the feature vector of v itself to obtain a new
representation.

Let h(t)v be a hidden embedding of node v ∈ V. In each iteration t, a message-
passing neural network (MPNN) update the hidden embeddings by aggregating
neighborhood information (i.e., N (v)) of node v. We can express the message-passing
update rule as follows:

h(t+1)
v = Combine

t
(

h(t)v , Aggregate
t(h(t)u , ∀u ∈ N (v))

)
= Combine

(
h(t)v , m(t)

N (v)

)
,

(2.1)

where m(t)
N (v)) = Aggregate

t(h(t)u , ∀u ∈ N (v)), Combine is a differentiable function,
Aggregate is a differentiable and permutation invariant function, and mN (v)) is a
message that is computed by aggregating the embeddings of neighbors N (v) of node
v. Then Combine function combines the previous embedding h(t)v of node v and the
message m(t)

N (v)) to compute the new embedding h(t+1)
v for node v. When t = 0, we set
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h0
v = xv, where xv refers to the input feature vector for node v as an initial embedding.

After completing the K iterations, we set the last layer output as a final embedding
for each node. Since there is no natural ordering on nodes, such message-passing
aggregation schemes are usually required to be permutation-invariant [166, 119, 83].
Then the readout phase computes an embedding for the entire graph using some
readout function over final node embeddings as follows:

hG = Readout

(
{h(t)v |v ∈ G}

)
, (2.2)

where Readout is a permutation invariant function to the node states in order for
achieving MPNN to be invariant to graph isomorphism.

There are two common message-passing techniques [34]: (1) isotropic technique: a
neighborhood aggregation function that treats edge weights equally in every edge di-
rection (i.e., GCN [122] and GraphSAGE [99]); (2) anisotropic technique: an anisotropic
technique assigns different weights for every edge and performs weighted aggregation
of neighborhood features (i.e., GAT [247] and GatedGCN [24]).

Despite advances of spatial GNNs, Xu et al. [275] shows that existing MPNNs
are not powerful enough to distinguish some graph structures. The main intuition of
this work is that if f : G → Rz is a message-passing GNN function that can map any
two non-isomorphic graphs Gi and Gj into different embeddings, then the 1-WL test
also identify Gi and Gj are not isomorphic. From the theoretical perspective, the WL
hierarchy is used to analyze the expressive power of message-passing GNNs [216]. We
will discuss more about the connection between WL hierarchy and message-passing
GNNs in the next section.

2.1.1.2 Graph Isomorphism and WL Algorithm

The main goal of graph isomorphism is to determine whether there is an edge
preserving bijection between the nodes of two graphs. Specifically, if we have two
graphs, we need to check whether these two graphs are structurally equivalent or
not. Graph isomorphism problem is neither P or NP-complete [240]. There are many
heuristics for graph isomorphism testing. In this thesis, we use the classical graph
isomorphism algorithm called 1-WL test.

WL hierarchy is a well-established framework for graph isomorphism tests [93].
Introduced by Weisfeiler and Lehman [262], the first-order WL algorithm (also called
1-WL or color refinement) is a computationally efficient heuristic for testing graph
isomorphism [9]. The 1-WL test is an iterative color refinement procedure that starts
with the same color for all nodes. Then, the color refinement of 1-WL test follows the
following iteration:

h(t+1)
v = hash

(
h(t)v ,

{{
h(t)u : ∀u ∈ N (v)

}})
, (2.3)

where h(t)v is the color of node v at iteration t, N (v) is the set of neighbors of node v
and

{{
.
}}

is a multiset of colors.
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This color refinement process terminates after finite number of iterations. 1-WL
test examines neighbors of each node and then refine their colors based on their
neighborhood. In each iteration, the WL test applies recoloring hash function. This
recoloring hash function is designed as an injective function since we need to map two
nodes with different multisets into two distinct colors. We refine the colors until the
colors of a graph is unchanged anymore between two adjacent iterations. Then, we
analyze the colors between two graphs. If 1-WL test outputs two different colors for
two different graphs, then these two graphs are non-isomorphic. However, if 1-WL
test gives the same colors for two graphs, we cannot draw a conclusion that these two
graphs are isomorphic since colors may be equal for two non-isomorphic graphs as
well.

WL test can be extended from 1-WL to higher-order WL (k-WL) test, where k
refers to the order of the tuple. The general idea is the same for both 1-WL and k-WL
tests, but the color refinement procedure of k-WL is different from 1-WL, where 1-WL
gives a color to each 1-tuple of node and k-WL gives a color to each k-tuples of nodes.
Specifically, multisets of k-WL is defined as all k-tuples of nodes that differ in one
element of the target k-tuple of nodes [110]. For each k-tuple, we assign a color, then
the color of each k-tuple is refined iteratively based on the color of neighbors of each
k-tuple. If we go higher in the hierarchy of k-WL test, it is known that k-WL is strictly
more powerful than (k-1)-WL when k≥3 [33, 93].

Message-passing GNNs are typically considered as a differentiable neural general-
ization of the WL algorithms on graphs. It has been reported [275] that some popular
GNNs such as GraphSAGE [99] are at most powerful as 1-WL in distinguishing
graph structures. Xu et al. [275] has shown that Graph Isomorphism Network (GIN)
is as powerful as 1-WL. At its core, GIN provides an injective aggregation scheme
that is defined as a function over multisets of feature vectors, and thus GIN has
the representational power to map any two different multisets of feature vectors to
different representations in an embedding space.

2.1.1.3 Spatial GNNs Beyond 1-WL

In this section, we discuss the spatial GNN models that can go beyond 1-WL and
their limitations. A considerable amount of efforts have been devoted to improve the
expressive power of GNNs beyond 1-WL.

Generally, there are three directions: (1) Several works proposed higher-order
variants of GNNs that are as powerful as k-WL with k ≥ 3 [8]. For example, Morris
et al. [175] introduced k-order graph networks that are expressive as a set-based
variant of k-WL, Maron et al. [167] proposed a reduced 2-order graph network that
is as expressive as 3-WL, and Morris et al. [176] proposed a local version of k-WL
which considers only a subset of vertices in a neighborhood. However, these more
expressive GNNs are impractical to use due to their inherent high computational costs
and sophisticated design. (2) Some works attempted to incorporate inductive biases
based on isomorphism counting on pre-defined topological features such as triangles,
cliques, and rings [23, 155, 172], similar to the traditional ideas of graph kernels [277].
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However, pre-defining topological features requires domain-specific expertise, which
is often not readily available. (3) Most recently, several works explored the ideas of
augmenting GNNs using node identifiers or random features. For example, Vignac
et al. [250] proposed a method that maintains a “local context" for each node based
on manipulating node identifiers in a permutation equivariant way. You et al. [280]
developed ID-GNNs by taking into account the identity information of vertices. Chen
et al. [48] and Murphy et al. [177] assigned one-hot IDs to vertices based on the ideas
of relational pooling. Sato et al. [217] added a random feature to each node to improve
the representational capability of GNNs.

Our spatial GNN model in Chapter 3 is different from existing models by inject-
ing properties of structural interactions among vertices based on a natural class of
isomorphic graphs in the local neighborhood (i.e., overlap subgraph isomorphism)
into a message-passing aggregation scheme of GNNs.

2.1.2 Spectral Graph Neural Networks

Spectral GNNs are based on the concepts of spectral graph theory [53]. The main
idea of spectral GNNs is to define a convolution operation on graphs in the spectral
domain. The main intuition for the spectral convolution comes from the graph
signal processing domain [229], which relies on spectral graph filters [137]. Spectral
graph filters define the convolution operation indirectly on graphs via eigenvalue
decomposition of a graph Laplacian [28, 104]. However, eigenvalue decomposition
on a graph Laplacian is computationally expensive. To avoid this issue, a number
of works [20, 65, 101, 122, 137, 146] have studied the approximation of eigenvalue
decomposition by a polynomial or rational polynomial function.

The first notable spectral GNNs was introduced by Bruna et al. [28], which consid-
ered a parameterized learnable diagonal matrix as a spectral filter, and extended a
convolution operation on graphs. This spectral GNN is not computationally efficient
nor localized over k-hop neighborhood. To address this issue, Henaff et al. [104]
proposed a spectral filter with parameterized smooth coefficients to obtain the local-
ization. Defferrard et al. [65] proposed ChebNet, based on the truncated Chebyshev
polynomial approximation for eigenvalue decomposition. This Chebyshev polynomial
filter is exactly localized on k-hop neighborhood. A number of works have been moti-
vated by this work over the last several years and introduced various spectral GNNs.
Kipf & Welling [122] proposed a simplified graph convolutional networks (GCNs)
by employing first order approximation of the Chebyshev filters. Later, Bianchi et al.
[20] introduced convolutional neural networks with auto-regressive moving average
(ARMA) filters, which is more powerful for designing the k-hop neighborhood local-
ization on graph structured data since ARMA filter is a rational polynomial function.
However, this ARMA convolution is unstable and computationally expensive. We will
discuss these spectral filters and convolution operations below.
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2.1.2.1 Spectral Convolution on Graphs
We let n = |V| and m = |E|. A graph signal is a function x : V → R and can be
represented as a vector x ∈ Rn whose ith component xi is the value of x at the ith vertex
in V. The graph Laplacian is defined as L = I−D−1/2AD−1/2, where D ∈ Rn×n

is a diagonal matrix with Dii = ∑j Aij and I is an identity matrix. L has a set of
orthogonal eigenvectors {ui}n−1

i=0 ∈ Rn, known as the graph Fourier basis, and non-
negative eigenvalues {λi}n−1

i=0 , known as the graph frequencies [53]. L is diagonalizable
by the eigendecomposition such that L = UΛUH, where Λ = diag ([λ0, . . . , λn−1]) ∈
Rn×n and UH is a hermitian transpose of U. We use λmin and λmax to denote the
smallest and largest eigenvalues of L, respectively.

Given a graph signal x, the graph Fourier transform of x is x̂ = UHx ∈ Rn and its
inverse is x = Ux̂ [215, 229]. The graph Fourier transform enables us to apply graph
filters in the vertex domain. A graph filter h can filter x by altering (amplifying or
attenuating) the graph frequencies as

h(L)x = h(UΛUH)x = Uh(Λ)UHx = Uh(Λ)x̂. (2.4)

Here, h(Λ) = diag([h(λ0), . . . , h(λn−1)]), which controls how the frequency of each
component in a graph signal x is modified. However, applying graph filtering as in
Eq. 2.4 requires the eigendecomposition of L, which is computationally expensive.
To address this issue, several works [20, 65, 101, 122, 137, 146] have studied the
approximation of h(Λ) by a polynomial or rational polynomial function, which we
will discuss in the following.

2.1.2.2 Spectral Graph Filters for GNNs

Here, we present several spectral graph filters with polynomial approximation (i.e.,
Chebyshev and Lanczos filters) and rational polynomial approximation (i.e., Cayley
and ARMA filters).

Chebyshev filters. Hammond et al. [101] first proposed to approximate h(λ) by a
polynomial function with kth-order polynomials and Chebyshev coefficients. Later,
Defferrard et al. [65] developed Chebyshev filters for spectral GNNs on graphs. A
Chebyshev filter is defined as

hθ(λ̃) =
k−1

∑
j=0

θjTj(λ̃), (2.5)

where θ ∈ Rk is a vector of learnable Chebyshev coefficients, λ̃ ∈ [−1, 1] is rescaled
from λ, the Chebyshev polynomials Tj(λ) = 2λTj−1(λ) − Tj−2(λ) are recursively
defined with T0(λ) = 1 and T1(λ) = λ, and k controls the size of filters, i.e., localized
in k-hop neighborhood of a vertex [101]. Kipf and Welling [122] simplified Chebyshev
filters by restricting to 1-hop neighborhood.

Lanczos filters. Liao et al. [146] used the Lanczos algorithm to generate a low-
rank matrix approximation T for the graph Laplacian. They used the affinity matrix
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S = D−1/2AD−1/2. Since L = I− S holds, L and S share the same eigenvectors
but have different eigenvalues. As a result, L and S correspond to the same x̂. To
approximate the eigenvectors and eigenvalues of S, they diagonalize the tri-diagonal
matrix T ∈ Rm×m to compute Ritz-vectors V ∈ Rn×m and Ritz-values R ∈ Rm×m, and
thus S ≈ VRVT. Accordingly, a k-hop Lanczos filter operation is,

hθ(R) =
k−1

∑
j=0

θjRj, (2.6)

where θ ∈ Rk is a vector of learnable Lanczos filter coefficients. Thus, spectral
convolutional operation is defined as hθ(S)x ≈ Vhθ(R)VTx. Such Lanczos filter
operations can significantly reduce computation overhead when approximating large
powers of S, i.e. Sk ≈ VRkVT. Thus, they can efficiently compute the spectral graph
convolution with a very large localization range to easily capture the multi-scale
information of the graph.

Cayley filters. Observing that Chebyshev filters have difficulties in detecting narrow
frequency bands due to λ̃ ∈ [−1, 1], Levie et al. [137] proposed Cayley filters, based
on Cayley polynomials:

hθ,s(λ) = θ0 + 2Re(
k−1

∑
j=1

θj(sλ− i)j(sλ + i)−j), (2.7)

where θ0 ∈ R is a real coefficient and (θ1, . . . , θk−1) ∈ Ck−1 is a vector of complex coef-
ficients. Re(x) denotes the real part of a complex number x, and s > 0 is a parameter
called spectral zoom, which controls the degree of “zooming” into eigenvalues in Λ.
Both θ and s are learnable during training. To improve efficiency, the Jacobi method is
used to approximately compute Cayley polynomials.

ARMA filters. Bianchi et al. [20] sought to address similar issues as identified in
[137]. However, different from Cayley filters, they developed a first-order ARMA filter,
which is approximated by a first-order recursion:

x̄(t+1) = aL̃x̄(t) + bx, (2.8)

where a and b are the filter coefficients, x̄(0) = x, and L̃ = (λmax − λmin)/2I− L.
Accordingly, the frequency response is defined as:

h(λ̃) =
r

λ̃− p
, (2.9)

where λ̃ = (λmax − λmin)/2λ, r = −b/a, and p = 1/a [113]. Multiple ARMA1 filters
can be applied in parallel to obtain a ARMAk filter. However, the memory complexity
of k parallel ARMA1 filters is k times higher than ARMA1 graph filters.

We make some remarks on how these existing spectral filters are related to each
other. (i) As discussed in [20, 137, 146], polynomial filters (e.g. Chebyshev and
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Lanczos filters) can be approximately treated as a special kind of rational polynomial
filters. (ii) Chebyshev filters can be regarded as a special case of Lanczos filters. (iii)
Although both Cayley and ARMAk filters are rational polynomial filters, they differ
in how they approximate the matrix inverse implied by the denominator of a rational
function. Cayley filters use a fixed number of Jacobi iterations, while ARMAk filters
use a first-order recursion plus a parallel bank of k ARMA1.

2.1.3 Diffusion Graph Neural Networks

According to the relationship between random walk and message-passing aggrega-
tion scheme [124], GCN [122] converges to a random walk limit distribution when
increasing the number of layers. This issue is known as oversmoothing. Previously,
Klicpera et al. proposed a diffusion GNN, namely graph diffusion convolution (GDC)
[125], by introducing a connection between personalized PageRank (PPR) [189] and
random walk limit distribution. PageRank has been used in a variety of graph analysis
tasks such as gene and protein ranking in bioinformatics, object ranking in database
queries, and analysis correlations of brain activities in Neuroscience [189, 86]. Es-
sentially, PageRank encodes rich topological information via landing probabilities of
random walks over graphs [140]. A question that is naturally provoked is whether
one can leverage PageRank or more generally graph diffusion to strengthen the
representational power of GNNs.

The main building block of diffusion is classical graph diffusion scheme [125, 6].
In recent years, several works have been studied diffusion with PPR and heat kernel
since they are easy to derive from classical graph diffusion scheme [125, 291, 124, 49].
We can easily build the connection between spectral filters and graph diffusion by
truncating classical graph diffusion, which has been explored in [125].

Recent work explored the possibility of developing new diffusion GNN models
based on dynamic systems. Chamberlain et al. [38] proposed GRAND based on
temporal spatial discretization of partial differential equation (PDE). They control
dynamics by learning a diffusivity parameter, similar to attention based GNNs. Eliasof
et al. [72] proposed PDE-GNN by examining the connection between time-dependent
PDE and GNNs. Unlike these methods, in this thesis, we focus on homogeneous
graph diffusion for GNNs.

2.1.3.1 Diffusion on Graphs with PDEs

The study on PDEs has been explored by many scientists in the past from eighteenth
century. A diffusion process can be expressed as a PDE [127, 190]. In many domains,
diffusion PDEs are widely considered as a dominant paradigm for modeling the
data such as computer graphics [26, 151, 191, 237], image processing [29, 70, 246,
261, 233, 195], and computer vision [17, 39, 37]. In machine learning, PDEs are used
to model physics informed learning [145, 228, 56, 214, 205] and neural networks
[203, 269, 69, 46, 38].

Diffusion PDEs consist of various discretization schemes to build the connection
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with message-passing aggregation scheme. The message-passing aggregation scheme
on spatial GNNs is conceptually similar to the discrete diffusion process on graphs
[38]. The diffusion process occurs along edges, where difference between spatially
close node features is equivalent to the analogy of spatial derivatives. The spatial
discretization in the following differentiable equation is intuitive on a graph in a
continuous time space,

∂X(u, t)
∂t

= div[∇X(u, t)], (2.10)

where ∇X(u, t) is the gradient-flow along edges on node u at time t and div is the
divergence aggregation of features along edges. The gradient-flow on a graph is a
function based on edges, which allows to obtain difference between feature vectors of
target node u and its spatially close neighbors, i.e., (∇X)uv = Xu − Xv, where node v
is an adjacent node of node v. The divergence is the sum of in-flows and out-flows of
nodes (sum of edge gradient-flows), i.e., (div(X))u = ∑v∈N (u) WuvXv, where Wuv is
the weight between node u and node v. By using these two concepts together, we can
generalize the diffusion process on graphs as follows [242],

∂X(t)
∂t

= div[H(X(t), t)∇X(t)], (2.11)

where H = diag(a[Xu(t), Xv(t), t]) ∈ Rn×n is a diagonal matrix and a is a function
that determines the similarity between nodes. The term a[Xu(t), Xv(t), t] is time
dependent; however in this thesis, we will consider as a time independent similarity
function a[Xu(t), Xv(t)] for simplicity. We can reformulate the Eq. 2.11 using the
definitions of div and ∇X(t) as follows:

∂X(t)
∂t

= (A(X(t))− I)X(t), (2.12)

where A(X(t)) refers to an adjacency matrix of a graph, X(t) refers to a feature matrix,
and I refers to an identity matrix.

There are various numerical methods for solving non-linear diffusion problems.
We solve our non-linear diffusion equations using a finite difference method by
discretizing the spatial temporal derivative. There are two popular schemes that
can be used to discretize a spatial temporal derivative: (1) explicit scheme: this is
the most simple way to perform the discretization using a forward euler method;
(2) implicit scheme: this is based on the backward time difference to discretize the
spatial temporal derivative. In this thesis, we use an explicit scheme to build the
connection between diffusion equations and a message-passing aggregation scheme.
Let M(X(t)) = (A(X(t))− I) and s > 0 be a smaller time step. We have,

X(t+1) − X(t)

s
= M(X(t))X(t) (2.13)

where t refers to a forward time-step, which is known as a discretization parameter.
We can reformulate Eq. 2.13 as X(t+1) =

(
I + sM(X(t))

)
X(t). This is a simple iterative
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scheme, equivalent to a message-passing aggregation scheme in spatial GNNs.
GNNs can be seen as a discretization of PDEs. Generally, there are three types of

diffusion GNNs:

(1) Homogeneous isotropic diffusion (i.e., GCN [122]): diffusion is same in every
direction - ∂X

∂t = ∆X, where ∆X = div(∇X) refers to the Laplacian operator.

(2) Non-homogeneous isotropic diffusion (i.e., GAT [247]): position dependent and
direction independent diffusion - ∂X

∂t = −div(a∇X), where a is a scalar value
that refers to a learnable position dependent diffusivity parameter.

(3) Non-homogeneous anisotropic diffusion (i.e., directional GNNs [12]): position
and direction dependent diffusion - ∂X

∂t = −div(A∇X), where A is a matrix that
refers to a learnable position and direction dependent diffusivity parameter.

2.2 Graph Similarity Learning

In the following, we review the recent research in the field of graph similarity learning
from two different perspectives: (1) non-optimal transport (non-OT) graph kernels,
and (2) optimal transport graph kernels.

Graph kernels play a vital role in bridging the gap between graph structured data
and kernel-based methods in machine learning [221] such as support vector machines
(SVM), kernel principal component analysis (PCA), or kernel regression [106]. Graph
kernels offer an appealing paradigm for measuring the similarity between graphs. In
the last several decades, kernel methods have been extended to build graph kernels
for solving classification tasks on graphs, which can be categorized into two main
classes: non-optimal transport-based graph kernels and optimal transport-based
graph kernels. Non-optimal transport-based graph kernels was inspired by Haussler’s
framework for R-convolution kernels [102], which compare combinatorial real-valued
feature vectors of all pairs of nodes. These kernel methods use non-linear kernel
function to perform comparison between graphs in order to capture complex relational
dependencies. Specifically, most of graph kernels in this category have focused on
comparing graphs based on their substructures such as subtrees, cycles, shortest paths,
and graphlets [107, 22, 225, 226]. They have been used in a wide range of fields such
as chemoinformatics, bioinformatics, neuroscience, social networks, and computer
vision [131, 253].

Despite the success of many years, R-convolution kernels often fail to leverage the
useful information due to the intriguing combinatorial nature of graphs. They are
primarily depend on substructure aggregation strategies. Thus, these methods have
inherent limitations such as they exclude feature and structural distributions of graphs,
and local clustering structure. These substructure aggregation methods are often
simple and lacking the ability to consider complex characteristics of graph structured
data. They also require substructures to be pre-defined based on domain-specific
expertise which is not always available in practical applications. In recent years,
there is considerable attention on optimal transport-based graph kernel methods to
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avoid these limitations [182, 245, 243]. We will discuss the definition of graph kernel,
optimal transport and graph kernel methods with optimal transport in the following.

2.2.1 Graph Kernels

Graph kernels have been extensively studied in the past years (see the survey by Kriege
et al. [131]). Let G be a non-empty set of graphs. A kernel function κ : G × G → R

is defined s.t. there exists a map φ : G → H with κ(Gi, Gj) =
〈
φ(Gi), φ(Gj)

〉
H,

where H refers to a reproducing kernel Hilbert space (RKHS) [102]. Traditionally,
κ must be symmetric and positive semidefinite (PSD) kernel because this enables
kernel-based learning methods such as SVM to solve classification problems efficiently
by convex quadratic programming [96]. However, many practical applications may
produce indefinite kernels [199, 210, 183] and cannot be theoretically supported in
the traditional kernel setting. For example, standard SVM learning with an indefinite
kernel is a nonconvex optimization problem [96]. Therefore, several approaches have
been proposed to address the issues of indefinite kernels, e.g., applying spectral
transformations on indefinite kernels, reformulating a kernel learning problem into a
convex optimization problem, etc. [193, 210, 184, 156, 47].

2.2.2 Non-Optimal Transport Graph Kernels

A number of non-OT graph kernel techniques have been proposed in the last two
decades. Specifically, these graph kernel methods are motivated by empirical success
of the classification tasks, theoretical properties, and adaptability to specific applica-
tion domains. The main intuition on non-OT graph kernels is to compute embedding
vectors based on characteristic properties of a graph such as subtree patterns, sub-
graphs, random-walks, and shortest paths. There are two main frameworks to design
non-OT graph kernels: (1) R-convolution framework and (2) optimal assignment
(OA) framework. These two techniques are decomposed a graph into its substructure
patterns. Then, R-convolution and OA are defined a convolution operation and a
bijective function on substructure patterns to measure the similarity between graphs,
respectively [102, 130].

R-convolution kernels are widely studied domain compared to OA kernels. The
R-convolution kernel measures the structural similarity between graph by comparing
each substructure patterns such as subgraphs, graphlets, edges, and walks & paths.
One of the main limitations of these R-convolution kernels is that they visit same
substructure pattern multiple times, which is caused some redundancy in graph
structural similarity comparison. For instance, in walk-based graph kernels [163]
introduced some redundancy since there is a high probability to obtain high similarity
value due to repeated visits of the same node. However, OA graph kernels can avoid
this limitation since they consider a bijection between graph structures.

R-convolution kernels with subgraph patterns focus on comparing similarity be-
tween graphs by viewing a graph as bags of subgraph patterns. Shervashidze et
al. [225] proposed a graph kernel by counting occurrences of graphlets (subgraph
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patterns), where each graphlet is an instance of a non-isomorphic subgraph pattern.
This graphlet kernel does not consider vertex attributes. Horváth et al. [107] in-
troduced a cyclic pattern graph kernel that consider tree patterns and cycles on a
graph. Da San Martino et al. [59] introduced a tree-based graph kernel method that
decomposes a graph into multisets of ordered directed acyclic graphs. They extended
a convolution tree kernel method to directed acyclic graphs to compute the similarity
between graphs. Kriege et al. [129] proposed a subgraph matching kernel. This kernel
considers the isomorphic subgraph patterns to find the similarity between two graphs.

Shervashidze et al. [226] proposed a new class of kernel method based on 1-WL
algorithm for graphs with discrete attributes, which is known as WL-subtree kernel.
The 1-WL test maps neighborhood feature vectors of every node into a discrete label,
which is computed using a hash function. Then, WL-subtree kernel uses these labels
to compare graph similarities. In this work, the authors have been proposed another
two variants of this method namely, WL-edge and WL-shortest-path kernels, which
follows the same procedure. Later, Morris et al. [174] proposed a graph kernel method
by incorporating the higher dimensional WL algorithm such as k-WL algorithm with
k > 1. Instead of iteratively refining the labels of vertices, this k-WL kernel method
refines k-tuples of vertices to obtain the node embeddings. They also provided an
efficient approximation to scale up the k-WL kernel to large graph datasets. Hido
et al. [105] introduced a linear time graph kernel method, which is similar to the
WL-subtree kernel. Later, Orsini et al. [186] introduced a graph invariant kernel,
which can explore the high-dimensional and continuous node features. This method
is first decomposed graphs into a set of subgraphs, and then compared graphs by
R-convolution operation on node invariants. Later, Neumann et al. [179] introduced a
propagation kernel, which is based on a randomized approach with locality-sensitive
hashing technique to obtain embeddings for nodes in each iteration.

The walk & path-based graph kernels that compare sequences of edge or vertex
attributes by considering traversal algorithms with shortest path or random walks.
The shortest-path kernel [22], which compares the length of the shortest paths of all
pairs of vertices between two graphs. This requires more computational cost for large
graph datasets. Gärtner et al. [84] proposed a random walk-based graph kernels,
which count the number of common walks between two graphs. Feragen et al. [75]
proposed a GraphHopper kernel that is defined on attributed graphs (a graph with
node and edges feature information). This graph kernel compares the shortest paths
with the same length between graphs by incorporating node feature information.

However, there are several limitations on R-convolution graph kernel methods.
They require substructure patterns to be pre-specified based on the domain expertise,
which is not always available in practical applications. On the other hand, they simply
ignore the topological structure and feature distributions.

OA-based kernel methods compare two graphs to find-out correspondences of
structural elements such as cycles, triangles, and functional groups between two
graphs. Fröhlich et al. [81] proposed an OA kernel for finding the similarity between
attributed molecular graphs by comparing some structural elements of molecules
such as rings, functional groups, etc. Specifically, this OA kernel captures an optimal
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assignment by using the maximal weighted bipartite matching between embeddings
of two molecules. This optimal assignment is based on the bijectivity mapping
between substructures. However, these graph kernels are not PSD methods [249].
Several works have been done based on OA kernels with indefinite assignments
[249, 253]. Moreover, indefinite graph kernel methods with SVM have been found
to work well empirically [116]. Later, Kriege et al. [130] proposed a graph kernel
method that employs a WL algorithm and uses optimal assignments of vertices. This
WL-OA kernel provides a better classification accuracy on real world datasets than
the WL-subtree kernel method. However, this WL-OA kernel does not perform well
on continuous attributed graph structured data.

2.2.3 Optimal Transport

Typically, optimal transport compares two probability distributions by moving one
distribution to the other distribution in an optimal way that minimizes a total cost
of transporting probability masses [198, 251]. The distance introduced by this total
transportation cost is known as the Wasserstein distance or Earth Mover’s distance.

A Wasserstein distance can be defined as a distance function between two prob-
ability distributions on a metric space. Let µ and ν be two probability distributions
on a metric space M, which is equipped with a ground distance c (i.e., Euclidean
distance). Thus, p-Wasserstein distance (p ∈ [0, ∞)) is defined as follows:

Wp(µ, ν) =
(

inf
γ∈π(µ,ν)

∫
M×M

c(x, y)p dγ(x, y)
) 1

p
, (2.14)

where π(µ, ν) is a set of all probabilistic couplings and γ is a probabilistic coupling
matrix over metric spaceM×M between marginals µ and ν.

This optimal transport problem was first introduced by Monge [170], and then
after Kantorovich et al. [117] relaxed the deterministic nature of the original optimal
transport problem to a more tractable one. In recent years, optimal transport has
been widely revisited across machine learning applications such as image generative
models [211], image segmentation [204], object matching & recognition [168, 198], and
graph kernels [245].

Throughout this thesis, we consider 1-Wasserstein distance, where p = 1. In
viewing graphs as discrete distributions in a geometric metric space M, optimal
transport techniques can be used to explore the geometric nature of graphs. Therefore,
we can reformulate the continuous Wasserstein distance in Eq. 2.14 as a discrete
Wasserstein distance.

W1(µ, ν) = min
γ∈π(µ,ν)

〈
γ, C

〉
F, (2.15)

where C is a cost function matrix which measures the cost of moving a probability
mass from µ to ν (cost matrix C computes the distance c(x, y) between each element x
in µ and y in ν),

〈
., .
〉

F denotes the Frobenius dot product
A feature embedding function ξ f : V → Rm associates each vertex with a feature

representation in a metric space (Rm, d f ). A structure embedding function ξs : V → Rk
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associates each vertex with a structural representation in a metric space (Rk, ds).
We can define the notion of discrete probability distribution for graphs [243]. Let
Σn := {µ ∈ Rn

+ : ∑n
i µi = 1} be a histogram which encodes the weight µi of each vertex

vi ∈ V according to some prior information, e.g. uncertainty or relative importance.
We set µ = (1/n)1n (i.e., uniform distribution) if no prior information is available,
where 1n is a n-dimensional vector of ones. Then, a graph G can be represented as a
discrete probability distribution in the product space of (Rm, d f ) and (Rk, ds), where
δ refers to a Dirac function that corresponds to the feature and structure embeddings
of vertices:

p =
n

∑
i=1

µiδ(ξ f (vi), ξs(vi)). (2.16)

Given two graphs G1 and G2 with n1 and n2 vertices, respectively, we denote their
discrete probability distributions as µ ∈ Σn1 and ν ∈ Σn2 . The set of probabilistic
couplings between G1 and G2 is defined as:

π(µ, ν) =
{

γ ∈ R
n1×n2
+ | γ1n2 = µ, γT1n1 = ν

}
.

In this thesis, we aim to formalize a regularized optimal transport problem for
graph kernel learning by finding an optimal coupling γ̂ between two graphs:

γ̂ = argmin
γ∈π(µ,ν)

〈
γ, C

〉
F + λΘ(γ), (2.17)

where λ ∈ [0, 1] and Θ(γ) is a regularizer on γ. Then, given a set of graphs G, we
define a graph kernel: G × G → R where the kernel value for each pair of graphs in
G is defined upon their optimal transport distance.

There are several benefits that we can obtain from regularized optimal transport
instead of using classical optimal transport problems. For instance, we can smooth
the Wasserstein distance estimation, encode the prior knowledge of data, and also
build numerically a stable and robust optimization procedure that can guarantee
convergence [198].

2.2.4 Optimal Transport Graph Kernels

Optimal transport has recently received revived interests from the machine learning
community, due to its elegant way to measure the distance between two probability
spaces. Following [168], Peyré et al. [197] introduced a Gromov-Wasserstein distance
to compare pairwise similarity matrices from different metric spaces. Later, several
studies have devoted to distance metrics for graphs. Titouan et al. [243] proposed a
fused Gromov-Wasserstein distance to combine Wasserstein and Gromov-Wasserstein
distances in order to jointly leverage feature and structural information of graphs. To
capture global graph structure, Maretic et al. [164] proposed a Wasserstein distance
between graph signal distributions by resorting to graph Laplacian matrices. This
method was initially constrained to graphs of the same sizes, but recently extended
to graphs of different sizes by formulating graph matching as a one-to-many assign-
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ment problem [165]. Xu et al. [273] proposed to jointly align graphs and learn node
embeddings using a Gromov-Wasserstein distance. To reduce computational complex-
ity, Gromov-Wasserstein distances are often computed using a Sinkhorn algorithm
[58, 232]. Recently, a scalable method was proposed in [272] to recursively partition
and align large-scale graphs based on a Gromov-Wasserstein distance.

In recent years, various learning-based graph kernels have been proposed [277,
131]. Among them, several studies have attempted to cast the problem of measuring
graph similarity as an instance of computing optimal transport distances for graphs
in a kernel-based framework. Nikolentzos et al. [182] introduced a Wasserstein
distance metric to compare graphs based on their node embeddings. Later, Togninalli
et al. [245] proposed a method of computing a Wasserstein distance between the
node feature distributions of two graphs in the Weisfeiler-Lehman framework [262].
Titouan et al. [243] combined Wasserstein and Gromov-Wasserstein distances in order
to jointly leverage feature and structural information of graphs. These recent advances
have achieved state-of-the-art results for graph classification tasks.

However, since optimal transport relies on cost functions to compare graphs but
there is no ordering on vertices of a graph, a key challenge is, how to effectively define
cost functions that can preserve intrinsic properties of graphs during the transport.
Further, real-world graphs are often irregular and exhibit different geometric char-
acteristics. This raises the challenge on how to develop a solid theoretical basis to
ensure convergence and numerical stability for optimal transport learning on graphs.
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Chapter 3

Structured Feature Aggregation for
Spatial Graph Neural Networks

3.1 Overview

Despite advances of GNNs in various graph learning tasks such as node classification
[122, 274], graph classification [275, 267] and link prediction [285], there is still a
lack of theoretical understanding of how to design powerful and practically useful
GNNs that can capture rich structural information of graphs. Recent studies [275, 175]
have explored the connections between GNNs and the Weisfeiler-Lehman (1-WL) test
[262]. By representing a neighborhood as a multiset of feature vectors and treating
the neighborhood aggregation as an aggregation function over multisets, Xu et al.
[275] showed that message-passing GNNs are at most as powerful as the 1-WL test in
distinguishing graph structures. However, many simple graph structures still cannot
be distinguished by the 1-WL test, e.g., G1 and G2 shown in Figure 3.1. A question is
how to design expressive yet simple GNNs that can go beyond the WL test with a
theoretically provable guarantee?

In this chapter, we study the problem of improving the expressive power of GNNs
that can go beyond the 1-WL. This work is grounded in three observations: (i) Treating
a neighborhood as a multiset of feature vectors ignores the rich structural information
among vertices in the neighborhood, thereby limiting the representational capacity of
the model. Thus, we represent a neighborhood as a neighborhood subgraph in which
vertices are structurally related, and show that the 1-WL test is only as powerful
as distinguishing neighborhood subgraphs in terms of their subtree structures in
the neighborhood. (ii) There exists a natural class of isomorphic graphs, which
strictly lies in between subgraph isomorphism and subtree isomorphism. We call it
overlap (subgraph) isomorphism. The notion of overlap subgraph characterizes structural
interactions of vertices and incorporate structural information into a GNNs message-
passing aggregation scheme. (iii) By designing a proper function for quantifying
structural interactions of vertices and preserving the injectiveness of a message-passing
aggregation scheme, more expressive GNNs can be developed. We propose a new
GNN model that is strictly more expressive than the 1-WL test to demonstrate an
instance of this kind.

31
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Figure 3.1: An overview of our proposed framework for GNNs that can go beyond the WL
test in distinguishing non-isomorphic graphs G1 and G2. The overlap subgraphs of G1 and G2

are structurally different, which are captured by structural coefficients defined in Eq. 3.4.

The main contributions of this chapter are as follows:

• We introduce a new hierarchy of local isomorphism to characterize different
classes of local structures in neighborhood subgraphs, and discuss its connec-
tions with the 1-WL test and GNNs.

• We develop a simple yet powerful framework to inject structural properties
into a message-passing aggregation scheme, and theoretically characterize how
GNNs can be designed to be more expressive beyond the 1-WL test.

• We propose a novel neural model for graph learning, called GraphSNN, and
prove that GraphSNN is strictly more expressive than the the 1-WL test in
distinguishing graph structures.

• We show that, due to the way of injecting structural properties into a structured-
message-passing aggregation scheme, GraphSNN can overcome the oversmooth-
ing issue [42, 292, 141].

• We have conducted experiments on benchmark tasks [108]. The experimental
results show that our model is highly efficient and can significantly improve the
state-of-the-art methods without sacrificing computational simplicity.

The rest of this chapter is organised as follows. In Section 3.2, we present a new
hierarchy of local isomorphism, a GNN model beyond 1-WL and a generalized mes-
sage passing GNN. In Section 3.3, we analyze the expressive power and complexity
of the proposed GNN model. In Section 3.4, we discuss the experimental setup. In
Section 3.5, we compare the performance of our proposed GNN method against the
baseline methods. Section 3.6 summarises the chapter.
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3.2 Graph Neural Networks Go Beyond Weisfeiler-Lehman

In this section, we characterize a new hierarchy of graph isomorphism based on local
neighborhood subgraphs and explore its connections to 1-WL. We also present a novel
generalized message-passing framework which enables to inject local structure into
an aggregation scheme, in light of overlap subgraphs. We theoretically characterize
how GNNs can be designed to be more expressive than 1-WL in this framework.

3.2.1 A New Hierarchy of Local Isomorphism

Let G = (V, E, X) be a simple, undirected graph with a set V of vertices, a set E
of edges and X ∈ R|V|× f be a matrix of input feature vectors where xv ∈ R f is an
input feature vector associated with each v ∈ V. The set of neighbors of a vertex v
is denoted by N (v) = {u ∈ V|(v, u) ∈ E}. The neighborhood subgraph of a vertex v,
denoted by Sv, is the subgraph induced in G by Ñ (v) = N (v) ∪ {v}, which contains
all edges in E that have both endpoints in Ñ (v). For two adjacent vertices v and u,
i.e., (v, u) ∈ E, the overlap subgraph Svu between v and u is defined as Svu = Sv ∩ Su.

Let Si and Sj be the neighborhood subgraphs of two vertices i and j that are not
necessarily adjacent, and hv be the feature vector of a vertex v ∈ V. In the following,
we define three notions of isomorphism, which correspond to different classes of local
structures in neighborhood subgraphs.

Definition 1. Si and Sj are subgraph-isomorphic, denoted as Si 'subgraph Sj, if there
exists a bijective mapping g : Ñ (i) → Ñ (j) such that g(i) = j and for any two vertices
v1, v2 ∈ Ñ (i), v1 and v2 are adjacent in Si iff g(v1) and g(v2) are adjacent in Sj, and
hv1 = hg(v1) and hv2 = hg(v2).

Definition 2. Si and Sj are overlap-isomorphic, denoted as Si 'overlap Sj, if there exists
a bijective mapping g : Ñ (i) → Ñ (j) such that g(i) = j and for any v′ ∈ N (i) and
g(v′) = u′, Siv′ and Sju′ are subgraph-isomorphic.

Definition 3. Si and Sj are subtree-isomorphic, denoted as Si 'subtree Sj, if there exists
a bijective mapping g : Ñ (i) → Ñ (j) such that g(i) = j and for any v′ ∈ Ñ (i) and
g(v′) = u′, hv′ = hu′ .

The following theorem 1 states that there is a hierarchy among the notions of
local isomorphism on neighborhood subgraphs, where subgraph-isomorphism is the
strongest one, subtree-isomorphism is the weakest, and overlap-isomorphism lies
in between. Figure 3.2 shows two groups of graphs: one is distinguishable w.r.t.
subgraph-isomorphism but not overlap-isomorphism, while the other is distinguish-
able by overlap-isomorphism but not subtree-isomorphism.

Theorem 1. The following statements are true: (a) If Si 'subgraph Sj, then Si 'overlap Sj; but
not vice versa; (b) If Si 'overlap Sj, then Si 'subtree Sj; but not vice versa.
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Figure 3.2: (a) Si and Sj are overlap-isomorphic (i.e., having the same overlap subgraph) but
not subgraph-isomorphic; (b) Four neighborhood subgraphs {Svi |i = 1, 2, 3, 4} are subtree-
isomorphic (i.e., having the same subtree) but not overlap-isomorphic.

Proof. In the following, we prove the statements in this theorem one by one.
For Statement (a), by Si 'subgraph Sj and Definition 1, we know that there exists

a bijective mapping g′ : Ñ (i) → Ñ (j) such that for the vertex i and any vertex
v′ ∈ N (i), i and v′ are adjacent in Si iff j = g(i) and u′ = g(v′) are adjacent in Sj, and
hi = hj and hv′ = hu′ , where g is a bijective mapping between Si and Sj as defined by
Definition 1. Then for each pair of overlap subgraphs Siv′ and Sju′ , we can further
extend g′ along g on Siv′ and Sju′ . That is, g′(v) = u iff g(v) = u. If v in Siv′ , by the
definition of overlap subgraph, v must either be i or a neighbor of i. Hence u = g′(v)
in this case must be either j or a neighbor of j. By the definition of g and the fact that
g′(v) = u iff g(v) = u, we know that for any two vertices v1 and v2 in Siv′ , they are
adjacent in Siv′ iff their corresponding vertices g′(v1) and g′(v2) are adjacent in Sju′

and their corresponding feature vectors are indistinguishable, i.e, Siv′ 'subgraph Sju′

for any v′ ∈ N (i) and g(v′) = u′. Conversely, if Si 'overlap Sj, then it is possible that
Si 6'subgraph Sj as shown by the two graphs in Figure 3.2(a).

For Statement (b), if Si 'overlap Sj, then to prove Si 'subtree Sj we need to show
that there exists a bijective mapping g : Ñ (i) → Ñ (j) such that g(i) = j and, for
any v′ ∈ Ñ (i) and g(v′) = u′, the feature vectors of v′ and u′ are indistinguishable,
i.e., hv′ = hu′ . By Def. 2, we can find a bijective mapping g′ : Ñ (i) → Ñ (j) such
that g′(i) = j and, for any v′ ∈ N (i) and g′(v′) = u′, Siv′ and Sju′ are subgraph-
isomorphic. This implies that g′ cannot distinguish the feature vectors of v′ and u′

for any v′ ∈ Ñ (i) and g(v′) = u′. Similarly, the converse does not necessarily hold
and one counterexample is the set of graphs as shown in Figure 3.2(b) which are
subtree-isomorphic but not overlap-isomorphic.

Let S = {Sv|v ∈ V} be the set of neighborhood subgraphs in G and ζ : S →
Rd map each neighborhood subgraph in S into a node embedding in Rd. The
following theorem states that GNNs that are as powerful as 1-WL can distinguish two
neighborhood subgraphs only w.r.t. subtree-isomorphism at each layer.

Theorem 2. Let M be a GNN. M is as powerful as 1-WL in distinguishing non-isomorphic
graphs if M has a sufficient number of layers and each layer can map any Si and Sj in S into
two different embeddings (i.e., ζ(Si) 6= ζ(Sj)) if and only if Si 6'subtree Sj.

Proof. We first show that, for any two graphs G1 and G2, if they can be distinguished
by 1-WL, then they must be distinguishable by such a GNN M as well. Suppose that
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1-WL takes k iterations to distinguish G1 and G2, i.e., 1-WL yields the same multiset
of node labels on G1 and G2 in the iterations from 0 to k-1, but two different multisets
of node labels on G1 and G2 in the k-th iteration. To derive a contradiction, we assume
that a GNN M that satisfies the above two conditions cannot distinguish G1 and G2 in
the iterations from 0 to k. Since 1-WL can distinguish G1 and G2 in the k-th iteration,
it means that there must exist two neighborhood subgraphs, say Si and Sj, which
correspond to two different multisets of node labels on G1 and G2 at the k-th iteration.
These two different multisets of node labels correspond to two different multisets
of feature vectors in their neighborhoods, i.e., {{hv|v ∈ N (i)}} 6= {{hu|u ∈ N (j)}}.
By Def. 3, we know that Si 6'subtree Sj. Then this means that ζ(Si) 6= ζ(Sj), which
contradicts the assumption that M cannot distinguish G1 and G2 in the iteration k.

Now, we show the other direction that, for any two graphs G1 = (V1, E1) and
G2 = (V2, E2), if they can be distinguished by such a GNN M, then they must be
distinguishable by 1-WL. Similarly, suppose that at the k-th iteration, M maps the
neighborhood subgraphs of these two graphs into two different multisets of node
embeddings, i.e., {{ζ(Sv)|v ∈ V1}} 6= {{ζ(Su)|v ∈ V2}}. This is means that we can find
at least two different neighborhood subgraphs Si and Sj such that ζ(Si) 6= ζ(Sj). For
such neighborhood subgraphs Si and Sj, we know that Si 6'subtree Sj. Then this means
that Si and Sj correspond to either hi 6= hj or {{hv|v ∈ N (i)}} 6= {{hu|u ∈ N (j)}},
which can be relabeled by 1-WL into two different new labels. Thus, 1-WL can also
distinguish such neighborhood subgraphs, and accordingly distinguish G1 and G2.

3.2.2 A Generalized Message-Passing Framework

In this section, we present a generalized message-passing framework (GMP). The GMP
injects the local structure into a message-passing scheme. Let S∗ = {Svu|(v, u) ∈ E}
be the set of overlap subgraphs in G. We define structural coefficients for each vertex v
and its neighbors, i.e., ω : S ×S∗ → R such that Avu = ω(Sv, Svu). A question arising
is: what are the desirable properties of such a function ω? Ideally, it should quantify
how a vertex v structurally interacts with its neighbor u in the local neighborhood. Let
u, u′ ∈ N (v), Svu = (Vvu, Evu) and Svu′ = (Vvu′ , Evu′), a carefully designed ω should
exhibit the following properties:

(1) Local closeness: ω(Sv, Svu) > ω(Sv, Svu′) if Svu and Svu′ are complete graphs
with Svu = Ki, Svu′ = Kj, and i > j, where Ki refers to a complete graph on i
vertices.

(2) Local denseness: ω(Sv, Svu) > ω(Sv, Svu′) if Svu and Svu′ have the same number
of vertices but differ in the number of edges s.t. |Vvu| = |Vvu′ | and |Evu| > |Evu′ |.

(3) Isomorphic invariant: ω(Sv, Svu) = ω(Sv, Svu′) if Svu and Svu′ are isomorphic.

Figure 3.3 illustrates the first two properties. Let {{·}} denote a multiset, Ã =
(Ãvu)v,u∈V where Ãvu is a normalised value of Avu. We denote the feature vec-
tor of v at the t-th layer by h(t)v and h(0)v = xv. Then, the (t+1)-th layer of an aggregation
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Figure 3.3: (a) Local closeness: for overlap subgraphs that are complete graphs, their structural
coefficients increase with the number of vertices; (b) Local denseness: for overlap subgraphs
that have the same number of vertices, their structural coefficients increase with the number
of edges.

scheme can be defined as:

m(t)
a = Aggregate

N
({{

(Ãvu, h(t)u )|u ∈ N (v)
}})

, (3.1)

m(t)
v = Aggregate

I
({{

Ãvu|u ∈ N (v)
}
}
)

h(t)v , (3.2)

h(t+1)
v = Combine

(
m(t)

v , m(t)
a

)
. (3.3)

Aggregate
N(·) and Aggregate

I(·) are two possibly different parameterized functions.
Here, m(t)

a is a message aggregated from the neighbors of v and their structural
coefficients, and m(t)

v is an “adjusted” message from v after performing an element-
wise multiplication between Aggregate

I(·) and h(t)v to account for structural effects
from its neighbors. Then, m(t)

v and m(t)
a are combined by Combine(·) to obtain the

feature vector h(t+1)
v .

3.2.3 A Graph Neural Network Model Beyond 1-WL
Let M be a GNN whose aggregation scheme Φ is defined by Eq. 3.1-Eq. 3.3. Generally,
there are many different ways of designing ω and Φ functions within the GMP
framework, leading to GNNs with different expressive powers. To elaborate this,
we propose a novel GNN model, named GraphSNN, whose aggregation scheme
is an instantiation of our GMP framework. We prove that the expressive power of
GraphSNN goes beyond 1-WL.

3.2.3.1 Model design

In the following, we provide a definition of ω that satisfies the properties of local
closeness, local denseness, and isomorphic invariant. One key idea behind this
definition is to make it capable of being generalized to support different graph
learning tasks, controlled by λ > 0 (will be further discussed in Section 3.5.6):

ω(Sv, Svu) =
|Evu|

|Vvu| · |Vvu − 1| |Vvu|λ. (3.4)
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This definition allows us to formulate a weighted adjacency matrix A = (Avu)v,u∈V

for GraphSNN. To compare structural coefficients across different neighboring nodes,
we normalize A to Ã by Ãvu = Avu

∑u∈N (v) Avu
. Alternatively, A can be normalized using

Softmax or other normalization techniques. For each vertex v ∈ V, the feature vector
at the (t+1)-th layer is generated by

h(t+1)
v = Mlpθ

(
γ(t)
(

∑
u∈N (v)

Ãvu + 1
)

h(t)v + ∑
u∈N (v)

(
Ãvu + 1

)
h(t)u

)
, (3.5)

where γ(t) is a learnable scalar parameter. Since N (v) refers to one-hop neighbors of
v, one can stack multiple layers to handle more than one-hop neighborhood. Note
that, to ensure the injectivity in the feature aggregation in the presence of structural
coefficients, we add 1 into the first and second terms in Eq. 3.5. This design is critical
for guaranteeing the expressiveness of GraphSNN beyond 1-WL, as will be discussed
in the proofs of the lemmas and Theorem 4 in Section 3.3.

3.2.3.2 Connections to Previous Work

In the following, we discuss how our framework generalizes the existing message-
passing GNNs in the literature such as GCN [122], GraphSAGE [99], GAT [247] and
GIN [275] as special cases. Table 3.1 presents the local aggregation schemes used by
these existing GNN models. They differ from each other w.r.t. the way of aggregating
feature vectors in a neighborhood and how they are combined with the current
vertex’s feature itself, i.e., summation or concatenation. Here, αvu is an attention
coefficient capturing the importance of a neighbor in GAT, ε is a learnable or fixed
scalar parameter used in GIN, W is a learnable weight matrix, and σ is a non-linear
activation function, such as ReLU.

Note that, as defined in Eq. 3.3, m(t)
a and m(t)

v refer to the messages aggregated by
Aggregate

N(·) and Aggregate
I(·), respectively.

GNN Model Aggregate
N(·) Aggregate

I(·) Combine(·)
GCN ∑

u∈N (v)

W(t)h(t)u√
|N (u)||N (v)|

W(t)h(t)v√
|N (v)||N (v)|

σ(Sum(m(t)
v , m(t)

a ))

GraphSAGE ∑
u∈N (v)

h(t)u
|N (v)| h(t)v σ(W(t) ·Concat(m(t)

v , m(t)
a ))

GAT ∑
u∈N (v)

αvuW(t)h(t)u αvvW(t)h(t)v σ(Sum(m(t)
v , m(t)

a ))

GIN ∑
u∈N (v)

h(t)u (1 + ε)h(t)v Mlpθ(Sum(m(t)
v , m(t)

a ))

Table 3.1: Comparison of the aggregation schemes used in existing message-passing GNNs
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3.2.3.3 Formulation of GraphGNNM

The purpose of GraphGNNM formulation is to evaluate how effectively our ag-
gregation scheme with structural coefficients can learn representations for vertices,
compared with the corresponding standard message-passing aggregation scheme.

For each of these structural message-passing GNNs, denoted as M, we construct a
variant GraphSNNM by replacing its standard aggregation scheme with our aggrega-
tion scheme as formulated in Eq. 3.5. These variants are used in our experiments for
node classification benchmark tasks (see Section 3.5.1) in order to evaluate how our
aggregation scheme with structural coefficients can improve performance, compared
with their standard message-passing aggregation schemes. Below are the details of
these variants.

GCN and GraphSNNGCN : Graph Convolutional Network (GCN) [122] applies

a normalized mean aggregation to combine the feature vector of a node v with the
feature vectors in its neighborhood N (v):

h(t+1)
v = σ

( W(t)h(t)v√
|N (v)||N (v)|

+ ∑
u∈{N (v)}

W(t)h(t)u√
|N (v)||N (u)|

)
. (3.6)

√
|N (u)||N (v)| is a normalization constant for the edge (v, u), which originates from

the normalized adjacency matrix D−1/2AD−1/2. W(t) is a trainable weight matrix and
σ is a non-linear activation function such as ReLU. We generalize GCN to a model
under the GMP framework, namely GraphSNNGCN , to improve the expressive power
of GCN. We first construct a normalized structural coefficient matrix Ã. Then each
neural layer of GraphSNNGCN is expressed as:

h(t+1)
v = σ

(
γ(t)
(

∑
u∈N (v)

Ãvu + 1
) W(t)h(t)v√
|Ñ (v)||Ñ (v)|

+ ∑
u∈N (v)

(
Ãvu + 1

) W(t)h(t)u√
|Ñ (u)||Ñ (v)|

)
.

(3.7)

GraphSAGE and GraphSNNGraphSAGE: GraphSAGE [99] learns aggregation func-

tions to induce new node feature vectors by sampling and aggregating features from
a node’s local neighborhood. GraphSAGE has considered three different aggregation
functions: mean aggregator, LSTM aggregator, and pooling aggregator. In our work,
we mainly focus on the mean aggregator that, for each vertex v, takes the mean of the
feature vectors of the nodes in its neighborhood and concatenates it with the feature
vector of v as shown below:

h(t+1)
v = σ

(
W(t) ·Concat

( 1
|N (v)| ∑

u∈N (v)
h(t)u , h(t)v

))
, (3.8)

where W(t) is a learnable weight matrix, . refers to a matrix multiplication, and
σ represents a non-linear activation function. We also generalize GraphSNN to a
model under the GMP framework, namely GraphSNNGraphSAGE. This model first
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takes a mean aggregation of the feature vectors in the neighborhood N (v) and then
concatenates it with the feature vector of v itself in the following manner:

h(t+1)
v = σ

(
W(t) ·

( 1
|N (v)| ∑

u∈N (v)

(
Ãvu + 1

)
h(t)u ⊕ γ(t)

(
∑

u∈N (v)
Ãvu + 1

)
h(t)v

))
. (3.9)

GAT and GraphSNNGAT: Graph Attention Network (GAT) [247] linearly trans-
forms the input feature vectors and performs a weighted sum of the feature vectors
for vertices in a neighborhood after the transformation. GAT computes attention
weights α

(t)
vu using an attention mechanism and aggregates the feature vectors in a

neighborhood as follows:

h(t+1)
v = σ

(
∑

(v,u)∈E
α
(t)
vu W(t)h(t)u

)
, (3.10)

where W(t) is a trainable weight matrix and σ represents a non-linear activation
function. We generalize GAT to a model, called GraphSNNGAT, in the GMP frame-
work. Firstly, we aggregate the feature vectors based on structural coefficients in our
aggregation scheme, i.e., we compute

h̃(t)u = γ(t)
(

∑
z∈N (u)

Ãuz + 1
) h(t)u√
|Ñ (u)||Ñ (u)|

+ ∑
z∈N (u)

(
Ãuz + 1

) h(t)z√
|Ñ (z)||Ñ (u)|

(3.11)
and

h̃(t)v = γ(t)
(

∑
z′∈N (v)

Ãvz′ + 1
) h(t)v√
|Ñ (v)||Ñ (v)|

+ ∑
z′∈N (v)

(
Ãvz′ + 1

) h(t)z′√
|Ñ (z′)||Ñ (v)|

.

(3.12)
We then construct attention coefficients α

(t)
vu on these aggregated feature vectors as

follows:

α
(t)
vu =

exp
(

LeakyReLU
(
aT[W(t)h̃(t)v ⊕W(t)h̃(t)u ]

))
∑z∈N (v) exp

(
LeakyReLU

(
aT[W(t)h̃(t)v ⊕W(t)h̃(t)z ]

)) , (3.13)

where ⊕ represents the concatenation, W(t) is a learnabe weight matrix and a is a
learnable weight vector. After that, we aggregate the neighborhood features as follows
using attention coefficients.

h(t+1)
v = σ

(
∑

(v,u)∈E
α
(t)
vu W(t)h̃(t)u

)
, (3.14)

where W(t) is a learnable weight matrix, and σ represents a non-linear activation
function. We use multi-head attention as stated in the original work [247].

GIN and GraphSNNGIN : Graph Isomorphism Network (GIN) [275] takes the
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sum aggregation over neighbors in a neighborhood, followed by a 2-layer MLP. ε(t+1)

is a learnable parameter or fixed scalar. Each neural layer is expressed as:

h(t+1)
v = Mlp

(t+1)
(
(1 + ε(t+1))h(t)v + ∑

u∈N (v)
h(t)u

)
. (3.15)

Here, we consider one of GIN variants employed in the original paper, where the
learnable parameter ε = 0, and generalize it to GraphSNNGIN as defined bwlow:

h(t+1)
v = Mlp

(t+1)
(

γ(t)
(

∑
u∈N (v)

Ãvu + 1
)

h(t)v + ∑
u∈N (v)

(
Ãvu + 1

)
h(t)u

)
. (3.16)

3.3 Theoretical Analysis

In this section, we first prove that a GNN can be more expressive than 1-WL if ω is
powerful enough to distinguish structures beyond neighborhood subtrees and the
neighborhood aggregation function Φ is injective under a sufficient number of layers
by Theorem 3. Then, we prove that GraphSNN message-passing aggregation scheme
is an injective by Lemma 1 and Lemma 2. Then, we prove that GraphSNN is more
expressive than 1-WL for distinguishing non-isomorphic graphs by Theorem 4.

3.3.1 Expressiveness Analysis

Theorem 3. M is strictly more expressive than 1-WL in distinguishing non-isomorphic
graphs if M has a sufficient number of layers and also satisfies the following conditions:

(1) M can distinguish at least two neighborhood subgraphs Si and Sj with Si 'subtree Sj,
Si 6'subgraph Sj and {{Ãiv′ |v′ ∈ N (i)}} 6= {{Ãju′ |u′ ∈ N (j)}};

(2) Φ
(

h(t)v , {{h(t)u |u ∈ N (v)}}, {{(Ãvu, h(t)u )|u ∈ N (v)}}
)

is injective.

Proof. We prove this theorem in two steps. First, we prove that a GNN M satisfying
the above conditions can distinguish any two graphs that are distinguishable by
1-WL by contradiction. Assume that there exist two graphs G1 and G2 which can be
distinguished by 1-WL but cannot be distinguished by M. Further, suppose that 1-WL
cannot distinguish these two graphs in the iterations from 0 to k-1, but can distinguish
them in the k-th iteration. Then, there must exist two neighborhood subgraphs Si and
Sj whose neighboring nodes correspond to two different multisets of node labels at

the k-th iteration, i.e., {{h(k)v |v ∈ N (i)}} 6= {{h(k)u |u ∈ N (j)}}. By the above condition
(2), we know that Φ is injective. Thus, for Si and Sj, Φ would yield two different
feature vectors at the k-th iteration. This means that M can also distinguish G1 and G2,
which contradicts the assumption. Our proof in the first step is done. For the second
step, we can prove that there exist at least two graphs that can be distinguished by M
but cannot be distinguished by 1-WL. Figure 3.1 presents two of such graphs.
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We first generalize the result of universal functions over multisets [275] to universal
functions over pairs of multisets since Eq. 3.5 involves not only node features but also
structural coefficients. Assume that H, A andW are countable sets where H is a node
feature space, A is a structural coefficient space, and W = {Aijhi|Aij ∈ A, hi ∈ H}.
Let H and W be two multisets containing elements from H andW , respectively, and
|H| = |W|.

Lemma 1. There exists a function f s.t. π(H, W) = ∑h∈H,w∈W f (h, w) is unique for any
distinct pair of multisets (H, W).

Proof. Since H and W are countable, there must exist two functions ψ1 : H → Nodd
mapping h ∈ H to odd natural numbers and ψ2 : W → Neven mapping w ∈ W to
even natural numbers. Further, for any pair of multisets (H, W), since the cardinality
of H and W is bounded, there must exist a number N ∈ N such that |H| < N and
|W| < N. Thus, we can find a prime number P > 2N. Then we have a mapping f
as f (h, w) = P−ψ1(h) + P−ψ2(w) such that ∑h∈H,w∈W f (h, w) is unique for each distinct
pair of (H, W).

We can extend the injectiveness of π(H, W) to π′(hv, H, W) as in the lemma below.

Lemma 2. There exists a function f s.t. π′(hv, H, W) = γ f (hv, |H|hv)+∑h∈H,w∈W f (h, w)
is unique for any distinct (hv, H, W), where hv ∈ H, |H|hv ∈ W , and γ is an irrational
number.

Proof. As hv ∈ H and |H|hv ∈ W , we may have f (hv, |H|hv) = P−ψ1(hv) + P−ψ1(|H|hv)

where ψ1 : H →Nodd and ψ2 :W →Neven as defined in the proof for Lemma 1. Let
(hv1, H1, W1) and (hv2, H2, W2) be two different tuples. Then, there are two cases:

(1) When hv1 = hv2 but (H1, W1) 6= (H2, W2), by Lemma 1, we know that:
∑

h∈H1,w∈W1

f (h, w) 6= ∑
h∈H2,w∈W2

f (h, w). Thus, π′(hv1, H1, W1) 6= π′(hv2, H2, W2).

(2) When hv1 6= hv2, we prove π′(hv1, H1, W1) 6= π′(hv2, H2, W2) by contradiction.
Assume that π′(hv1, H1, W1) = π′(hv2, H2, W2). Then, we have:

γ f (hv1, |H1|hv1) + ∑
h∈H1,w∈W1

f (h, w) = γ f (hv2, |H2|hv2) + ∑
h∈H2,w∈W2

f (h, w).

This gives us the following equation:

γ
(

f (hv1, |H1|hv1)− f (hv2, |H2|hv2)
)
=
(

∑
h∈H2,w∈W2

f (h, w)
)
−
(

∑
h∈H1,w∈W1

f (h, w)
)

.

When γ is an irrational number, L.H.S. of the above equation is irrational
but R.H.S. is rational. There is a contradiction. Thus, π′(hv1, H1, W1) 6=
π′(hv2, H2, W2).

– 22 December 2022



42 Structured Feature Aggregation for Spatial Graph Neural Networks

Since any function over (hv, H, W) can be decomposed as:

g(γ f (hv, |H|hv) + ∑
h∈H,w∈W

f (h, w)),

similar to Xu et al. [275], we use a parameterized multi-layer perceptron (Mlp) to learn
f and g. The following theorem characterizes the expressive power of GraphSNN.

Theorem 4. GraphSNN is more expressive than 1-WL in testing non-isomorphic graphs.

Proof. We prove this theorem by showing that GraphSNN is a GNN satisfying the
conditions stated in Theorem 3. There are two conditions:

(1) Consider the two graphs shown in Figure 3.1. GraphSNN can distinguish these
two neighborhood subgraphs Si and Sj with {{Ãiv′ |v′ ∈ N (i)}} 6= {{Ãju′ |u′ ∈
N (j)}}.

(2) By Lemmas 1 and 2 as well as the fact that MLP as a universal approximator
[275] can be used to model and learn the functions f and g, we know that
GraphSNN also satisfies this condition.

Since GIN is as powerful as 1-WL [275], this theorem implies that GraphSNN is
more expressive than GIN, i.e., GraphSNN can map at least two different neighbor-
hood subgraphs that correspond to the same multiset of feature vectors to different
representations, as shown in Figure 3.2.

3.3.2 Complexity Analysis

Table 3.2 summarizes the time and memory complexities of several popular message-
passing GNNs and GraphSNN, where n and m are the numbers of vertices and edges
in a graph, respectively, k refers to the number of layers, f and d are the dimensions
of input and output feature vectors, respectively, a is the number of attention heads
used in GAT, and s is the number of neighbors sampled for each node at each layer in
GraphSAGE.

GNN Model Time Complexity Memory Complexity
GCN [122] O(km f d) O(m)
GIN [275] O(km f d) O(m)
GAT [247] O(k(an f d + amd)) O(n2)
GraphSAGE [99] O(sn f d) O(n)

GraphSNN (ours) O(km f d) O(m)

Table 3.2: Time and space complexities of message-passing GNNs and GraphSNN.

Similar to GCN and GIN, GraphSNN is computationally efficient. The time
complexity and memory complexity are linear w.r.t. the number of edges in a
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graph. Further, due to the locality of GraphSNN, the computation of aggregating
feature vectors from neighborhood subgraphs at each layer can be parallelized across
all vertices. Similarly, structural coefficients can be pre-computed with the time
complexity O(ml), where m is the number of edges and l is the maximum degree
of vertices in a graph. Similarly, the computation of structural coefficients can be
parallelized across all edges.

3.4 Experimental Setup

In this section, we present the datasets and baseline methods considered when
evaluating our GNN model on semi-supervised node classification, small graph
classification and large graph classification against the state-of-the-art baselines in
order to answer the following questions. Our experiments are performed on a Linux
server which has 12-core Intel(R) Core(TM) i7-7800X CPU @ 3.50GHz, NVIDIA RTX
A6000 with 96GB of main memory. We also discuss hyperparatemeter settings for
each classification categories.

Q1. How well can our aggregation scheme with structural coefficients to improve
representation learning for node classification tasks?

Q2. How well can GraphSNN empirically perform for small graph classification tasks
and large graph classification tasks?

Q3. How effectively can our aggregation scheme alleviate the oversmoothing issue?

Q4. How efficiently can GraphSNN compute structural coefficients?

Q5. How well can the parameter λ, and augment cycle and clique counts to node
features contribute to capture different classes of structure information on node
classification and graph classification tasks?

3.4.1 Datasets

We use five datasets for node classification, eleven datasets for small graph classifica-
tion, and five datasets for large graph classification in our experiments. The detailed
description and summary about these datasets are provided in Section 3.4.1.1, Section
3.4.1.2 and Section 3.4.1.3.

3.4.1.1 Node Classification

We use five datasets: three citation network datasets Cora, Citeseer, and Pubmed [223]
for semi-supervised document classification, one knowledge graph dataset NELL [36]
for semi-supervised entity classification, and one OGB dataset ogbn-arxiv from [108].
Table 3.3 contains the statistics for the five datasets used in our experiments for node
classification.

We also use three citation datasets: Cora, Citeseer, and Pubmed (see Table 3.3) for
oversmoothing analysis on semi-supervised document classification.
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Dataset Type #Nodes #Edges #Classes #Features
Cora Citation network 2,708 5,429 7 1,433
Citeseer Citation network 3,327 4,732 6 3,703
Pubmed Citation network 19,717 44,338 3 500
NELL Knowledge graph 65,755 266,144 210 5,414
ogbn-arxiv Citation network 169,343 1,166,243 40 128

Table 3.3: Statistics for node classification datasets.

3.4.1.2 Small Graph Classification

We use eleven datasets from two categories: (1) bioinformatics datasets: MUTAG,
PTC-MR, COX2, BZR, NCI1, PROTEINS, ENZYMES, and D&D [64, 130, 254, 226, 239,
22]; (2) social network datasets: COLLAB, IMDB-B and RDT-M5K [277]. Table 3.4
below contains the statistics for the datasets used in our experiments on small graph
classification.

Dataset #Graphs Avg #Nodes Avg #Edges #Classes
MUTAG 188 17.93 19.79 2
PTC-MR 344 14.29 14.69 2
BZR 405 35.75 38.36 2
COX2 467 41.22 43.45 2
ENZYMES 600 32.63 64.14 6
IMDB-B 1000 19.77 96.53 2
PROTEINS 1113 39.06 72.82 2
D & D 1178 284.32 715.66 2
NCI1 4110 29.87 32.30 2
RDT-M5K 5000 508.52 594.87 5
COLLAB 5000 74.49 2457.78 3

Table 3.4: Statistics for small graph classification datasets.

3.4.1.3 Large Graph Classification

We use five large graph datasets from Open Graph Benchmark (OGB) [108], including
four molecular graph datasets (ogbg-molhiv, ogbg-moltox21, ogbg-moltoxcast and
ogb-molpcba) and one protein-protein association network (ogbg-ppa). Table 3.5
contains the statistics for these five large graph datasets.

Dataset #Graphs Avg #Nodes Avg #Edges #Tasks Task Type
ogbg-molmolhiv 41,127 25.5 27.5 1 Binary classification
ogbg-moltox21 7,831 18.6 19.3 12 Binary classification
ogbg-moltoxcast 8,576 18.8 19.3 617 Binary classification
ogbg-molpcba 437,929 26.0 28.1 128 Binary classification
ogbg-ppa 158,100 243.4 2,266.1 1 Multi-class classification

Table 3.5: Statistics for large graph classification dataset (OGB graph datasets).
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3.4.2 Baseline Methods

We compare our GraphSNN model, as well as the variants of several existing GNN
models under our GMP framework (GraphSNNGCN , GraphSNNGAT, GraphSNNGIN
and GraphSNNGraphSAGE), with the state-of-the-art methods in node classification (Sec-
tion 3.4.2.1), small graph classification (Section 3.4.2.2), and large graph classification
(Section 3.4.2.3).

3.4.2.1 Node Classification

We consider the popular message-passing GNNs: GCN [122], GAT [247], GIN [275],
and GraphSAGE [99]. For each of these baselines, we construct a GraphSNNM model
by replacing its aggregation scheme with our aggregation scheme, which is detailed
in Section 3.2.2.

3.4.2.2 Small Graph Classification

We compare GraphSNN with standard and random data splittings against eleven
baselines:

(1) Graph kernel based methods: Weisfeiler-Lehman subtree kernel (WL) [226], Return
Probabilities of Random Walks Kernel (RetGK) [289], Graph Neural Tangent
Kernel (GNTK) [68], P-WL [208], Weisfeiler-Lehman Pyramid Match Kernel
(WL-PM) [182], Wasserstein Weisfeiler-Lehman Graph Kernel (WWL) [245] and
Fused-Gromov Wasserstein (FGW) [243].

(2) GNN based methods: Deep Graph Convolutional Neural Network (DGCNN) [286],
Capsule Neural Network (CapsGNN) [271], Graph Isomorphism Network
(GIN) [275], and Inductive Representation Learning with Sampling and Ag-
gregation (GraphSAGE) [99].

We also compare GraphSNN using cross-validation with inner hold-out method
in Section 3.5.2.2, including: DGCNN [286] and GIN [275].

We also compare GraphSNN with the other GNNs that are more expressive than
1-WL in Section 3.5.2.3, including: Graph Substructure Networks (GSN) [23], Identity-
Aware Graph Neural Networks (ID-GNNs) [280] and k-dimensional GNNs (k-WL
GNNs) [175].

We also compare the oversmoothing analysis against two spatial GNNs baselines:
Graph Convolutional Networks (GCN) [122] and GIN [275], and a spectral GNN
baseline: Distributed Feedback-looped Networks (DFNets) [264].

3.4.2.3 Large Graph Classification

We compare against the following methods that have reported the results on the OGB
datasets: GIN and Augmenting Graph Isomorphism Network with Virtual Nodes
(GIN+VN) [108], GSN [23], Principal Neighbourhood Aggregation for Graph Nets
(PNA) [54], ID-GNNs [280] and Deep Local Relation Pooling (Deep LRP) [48].
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3.4.3 Hyperparameter Settings

In this section, we discuss the hyperparameters of GraphSNN and the GraphSNNM
models, which are selected on the classification accuracy of the validation set by
applying the randomized search strategy [15].

3.4.3.1 Node Classification

We consider two settings of data splits for all datasets except for ogbn-arxiv: (1) the
standard splits in Kipf and Welling [122], i.e., 20 nodes from each class for training,
500 nodes for validation and 1000 nodes for testing, for which the results are presented
in Table 3.6; (2) the random splits in Pei et al. [192], i.e., randomly splitting nodes into
60%, 20% and 20% for training, validation and testing, respectively. For ogbn-arxiv,
we follow Hu et al. [108] to use a time-based data split based on publication dates.

We use the Adam optimizer [120] and set λ = 1. For ogbn-arxiv, our models are
trained for 500 epochs with the learning rate 0.01, dropout 0.5, hidden units 256, and
γ = 0.1. For the other datasets, we use 200 epochs with the learning rate 0.001, and
choose the best values for weight decay from {0.001, 0.002, ..., 0.009} and hidden units
from {64, 128, 256, 512}. For γ and dropout at each layer, the best value for each model
in each dataset is selected from {0.1, 0.2, ..., 0.6}.

GraphSNNGAT uses the attention dropout 0.6 and 8 multi-attention heads.
GraphSNNGraphSAGE uses the neighborhood sample size 25 with the mean aggregation.

We also evaluate all the GraphSNNM models on Cora, Citeseer, and Pubmed
datasets using the standard splits and same hyperparameter setup.

3.4.3.2 Small Graph Classification

Both the standard stratified splits [275] and the random splits are considered. We use
10-fold cross validation with 90% training and 10 % testing, and report the best mean
accuracy. For both settings, we use the Adam optimizer [120], batch size 64, hidden
dimension 64, weight decay of 0.009, a 2-layer MLP with batch normalization, 500
epochs and dropout of 0.6, and γ = 0.1 over all datasets. The readout function as in
[275] is used which concatenates representations of all layers to obtain a final graph
representation. For the standard stratified splits, we use the learning rate 0.009 over
all datasets. For the random splits, we use the learning rate 0.008 for MUTAG and
RDT-M5K, and 0.007 for the other datasets.

Previously, several experimental setups have been considered for evaluating graph
classification on small graphs in TUD benchmark datasets (https://chrsmrrs.github.
io/datasets/). All the baseline methods in our paper use the 10-fold cross validation
technique. However, they differ in how they split training/validation/testing data
and how they report the final results in terms of classification accuracy. Below, we
discuss the details of their experimental setups.

• CapsGNN [271] splits the datasets into 80 % for training, 10 % for validation,
and 10 % for testing. The training is stopped when the performance on the
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validation set goes to the highest. Then they obtain the test set accuracy that
corresponds to the epoch with the highest validation accuracy in each fold.
The final results are reported by computing the mean accuracy and standard
deviation over 10 folds.

• DGCNN [286] splits the datasets into 90 % for training and 10 % for testing.
They obtain the test accuracy of the last epoch in each fold. They report the
final results by computing the mean accuracy and standard deviation on the test
accuracy over 10 folds.

• GIN and GraphSAGE [275] split the datasets into 90 % for training and 10 % for
testing. They average the test accuracy on 10 folds and select the epoch with the
highest averaged accuracy. Then they report the final results by computing the
mean accuracy and standard deviation based on the selected epoch.

• FGW [243] splits the datasets into 90 % for training and 10 % for testing. Then,
they use the nested cross validation technique on the same folds, and repeat the
process 10 times. They report the final results by computing the mean accuracy
and standard deviation.

• The other baseline methods split the datasets into 90 % for training and 10 % for
testing, and repeat their experiment 10 times. Then they report the final results
by computing the mean accuracy and standard deviation.

In our work, we split the datasets into 90 % for training and 10 % for testing. We
obtain the best validation accuracy on each fold. Then we report the final results by
computing the mean accuracy and standard deviation over 10 folds.

Following the data splits and experiment setup introduced in [73], we further
evaluate our method using cross-validation with the inner hold-out method in Section
3.5.2.2. The experimental setup in [73] provides a fair performance comparison
process on GNN methods. The evaluation process has two different phases: (1) model
selection on the validation set, (2) model assessment on the test set. More specifically,
they first split the datasets into 90 % for training and 10 % for testing. Then the entire
training set is further split into 90% of training and 10% of validation. They apply the
inner hold-out method to select the best model based on validation accuracy. After
selecting the best model, they train the model three times on the entire training set
with early stopping.

We further evaluate our GraphSNN method following the data splits and exper-
imental setups introduced in [23, 280, 175]. In this setup, we evaluate GraphSNN
with GNNs that are more expressive than 1-WL. GSN and ID-GNNs use the same
experimental setup as GIN, while k-WL GNNs uses the same experimental setup as
CapsGNN.

3.4.3.3 Large Graph Classification

In addition to the original model of GraphSNN, we also consider a variant, denoted
as GraphSNN+VN, which performs the message passing over augmented graphs
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with virtual nodes in GraphSNN [108, 111].
We follow the same experimental setup as in [108]. We use the Adam opti-

mizer with learning rate 0.001, batch size 32, dropout 0.5 and 100 epochs for all
datasets. GraphSNN uses a 8-layer MLP with embedding dimension 512 for ogbg-
moltoxcast and ogbg-moltox21, while GraphSNN+VN has the embedding dimensions
300 and 256, and 8-layer and 5-layer MLPs for ogbg-moltoxcast and ogbg-moltox21,
respectively. For ogbg-molhiv, ogbg-molpcba and ogbg-ppa, both GraphSNN and
GraphSNN+VN use a 5-layer MLP and embedding dimension 200.

3.5 Results and Discussion

In this section, we discuss our experimental results to answer the aforementioned
questions in Section 3.4.

3.5.1 Comparison with Node Classification

In this section, we evaluate the performance of GraphSNNM on node classification
tasks to answer the question Q1.

Table 3.6 summarizes the results of semi-supervised node classification with
standard splits. It shows that integrating our aggregation method with the existing
GNNs, significantly improves performance on all benchmark datasets. Specifically,
GraphSNGCN improves upon GCN by a margin of 1.60%, 2.00%, 0.80%, 2.30% and
0.46% on Cora, Citeseer, Pubmed, NELL and ogbn-arxiv, respectively. GraphSNGAT
improves upon GAT by 0.80%, 0.90% and 1.10% on Cora, Citeseer and Pubmed,
respectively. Similarly, GraphSNGIN improves upon GIN by 1.60%, 2.20%, 1.80%
and 2.30% on Cora, Citeseer, Pubmed and NELL, respectively. GraphSNGraphSAGE
improves upon GraphSAGE by 1.30%, 1.10%, 1.60%, 2.60% and 0.31% on Cora,
Citeseer, Pubmed, NELL and ogbn-arxiv, respectively.

Table 3.7 shows the results of full-supervised node classification with random splits.
We cal also see that our models consistently outperform all of the baseline methods
on all benchmark datasets in this setting as well. Specifically, GraphSNGCN improves
upon GCN by a margin of 1.50%, 1.70%, 1.60% and 2.40% on Cora, Citeseer, Pubmed
and NELL, respectively. GraphSNGAT improves upon GAT by 1.30%, 1.60% and 2.00%
on Cora, Citeseer and Pubmed, respectively. GraphSNGIN improves upon GIN by
3.80%, 1.70%, 1.80% and 1.60% on Cora, Citeseer, Pubmed and NELL, respectively.
GraphSNGraphSAGE improves upon GraphSAGE by 1.30%, 1.70%, 1.10% and 2.30% on
Cora, Citeseer, Pubmed and NELL, respectively.

3.5.2 Comparison with Small Graph Classification

In this section, we evaluate the performance of GraphSNN on small graph classifica-
tion task to answer the question Q2.
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Method Cora Citeseer Pubmed NELL ogbn-arxiv
GCN 81.5 ± 0.4 70.3 ± 0.5 79.0 ± 0.5 66.0 ± 1.7 71.74 ± 0.29
GraphSNNGCN 83.1 ± 1.8 72.3 ± 1.5 79.8 ± 1.2 68.3 ± 1.6 72.20 ± 0.90
GAT 83.0 ± 0.6 72.6 ± 0.6 78.5 ± 0.3 - -
GraphSNNGAT 83.8 ± 1.2 73.5 ± 1.6 79.6 ± 1.4 - -
GIN 77.6 ± 1.1 66.1 ± 1.5 77.0 ± 1.2 61.5 ± 2.3 -
GraphSNNGIN 79.2 ± 1.7 68.3 ± 1.5 78.8 ± 1.3 63.8 ± 2.7 -
GraphSAGE 79.2 ± 3.7 71.6 ± 1.9 77.4 ± 2.2 63.7 ± 5.2 71.49 ± 0.27
GraphSNNGraphSAGE 80.5 ± 2.5 72.7 ± 3.2 79.0 ± 3.5 66.3 ± 5.6 71.80 ± 0.70

Table 3.6: Classification accuracy (%) averaged over 10 runs on node classification (standard
splits).

Method Cora Citeseer Pubmed NELL
GCN 85.7 ± 1.6 73.6 ± 1.0 88.1 ± 1.2 72.2 ± 5.6
GraphSNNGCN 87.2 ± 1.5 75.3 ± 1.3 89.7 ± 1.7 74.6 ± 6.3
GAT 86.3 ± 0.3 74.3 ± 0.3 87.6 ± 0.1 -
GraphSNNGAT 87.6 ± 0.9 75.9 ± 0.8 89.6 ± 0.6 -
GIN 82.5 ± 0.8 70.8 ± 1.9 85.0 ± 1.5 66.7 ± 3.3
GraphSNNGIN 86.3 ± 0.7 72.5 ± 1.5 86.8 ± 1.2 68.3 ± 3.7
GraphSAGE 86.8 ± 1.9 74.2 ± 1.8 88.3 ± 1.1 69.4 ± 4.3
GraphSNNGraphSAGE 88.1 ± 1.5 75.9 ± 1.3 89.4 ± 2.4 71.7 ± 4.5

Table 3.7: Classification accuracy (%) averaged over 10 random splits on node classification.

Method MUTAG PTC-MR PROTEINS D&D BZR COX2 IMDB-B RDT-M5K
WL 90.4 ± 5.7 59.9 ± 4.3 75.0 ± 3.1 79.4 ± 0.3 78.5 ± 0.6 81.7 ± 0.7 73.8 ± 3.9 52.5 ± 2.1
RetGK 90.3 ± 1.1 62.5 ± 1.6 75.8 ± 0.6 81.6 ± 0.3 - - 71.9 ± 1.0 -
GNTK 90.0 ± 8.5 67.9 ± 6.9 75.6 ± 4.2 75.6 ± 3.9 83.6 ± 2.9 - 76.9 ± 3.6 -
P-WL 90.5 ± 1.3 64.0 ± 0.8 75.2 ± 0.3 78.6 ± 0.3 - - - -
WL-PM 87.7 ± 0.8 61.4 ± 0.8 - 78.6 ± 0.2 - - - -
WWL 87.2 ± 1.5 66.3 ± 1.2 74.2 ± 0.5 79.6 ± 0.5 84.4 ± 2.0 78.2 ± 0.4 74.3 ± 0.8 -
FGW 88.4 ± 5.6 65.3 ± 7.9 74.5 ± 2.7 - 85.1 ± 4.1 77.2 ± 4.8 63.8 ± 3.4 -
DGCNN 85.8 ± 1.7 58.6 ± 2.5 75.5 ± 0.9 79.3 ± 0.9 - - 70.0 ± 0.9 48.7 ± 4.5
CapsGNN 86.6 ± 6.8 66.0 ± 1.8 76.2 ± 3.6 75.4 ± 4.1 - - 73.1 ± 4.8 52.9 ± 1.5
†GraphSAGE 85.1 ± 7.6 63.9 ± 7.7 75.9 ± 3.2 72.9 ± 2.0 - - 72.3 ± 5.3 50.0 ± 1.3
†GIN 89.4 ± 5.6 64.6 ± 7.0 75.9 ± 2.8 - - - 75.1 ± 5.1 57.5 ± 1.5
†GraphSNN (S) 91.57 ± 2.8 66.70 ± 3.7 76.83 ± 2.5 81.97 ± 2.6 88.69 ± 3.2 82.86 ± 3.1 77.86 ± 3.6 58.43 ± 2.3
†GraphSNN (R) 91.24 ± 2.5 66.96 ± 3.5 76.51 ± 2.5 82.46 ± 2.7 88.97 ± 2.9 83.13 ± 3.5 76.93 ± 3.3 58.51 ± 2.7
GraphSNN (S) 94.70 ± 1.9 70.58 ± 3.1 78.42 ± 2.7 83.92 ± 2.3 91.12 ± 3.0 86.28 ± 3.3 78.51 ± 2.8 59.86 ± 2.6
GraphSNN (R) 94.14 ± 1.2 71.01 ± 3.6 78.21 ± 2.9 84.61 ± 1.5 91.88 ± 3.2 86.72 ± 2.9 77.87 ± 3.1 60.23 ± 2.2

Table 3.8: Classification accuracy (%) averaged over 10 runs on graph classification. The
results of WL and RetGK are taken from [68], GraphSAGE from [275], DGCNN from [167]
and others from their original papers. † indicates the reporting setting used in GIN.
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3.5.2.1 Small Graph Classification with Standard and Random Data Splittings

Table 3.8 summarizes the results. In this table, †GraphSNN (S) and †GraphSNN (R)
indicate the results of cross-validation with standard stratified splits and random
splits, respectively. We can see GraphSNN consistently improves the performance over
all datasets except PTC-MR. First, we analyze the results of †GraphSNN (S). Compared
with the graph kernels, GraphSNN improves upon their best results by a margin of
1.07%, 1.03%, 0.37%, 3.59%, 1.16%, 0.96% and 5.93% on MUTAG, PROTEINS, D&D,
BZR, COX2, IMDB-B and RDT-M5k, respectively. Similarly, GraphSNN improves
upon the best results of the GNNs, by a margin of 2.17%, 0.70%, 0.63%, 2.67%, 2.76%
and 0.93% on datasets MUTAG, PTC-MR, PROTEINS, D&D, IMDB-B and RDT-M5K,
respectively.

Then, we analyze the results of †GraphSNN (R). Compared with the graph kernels,
GraphSNN improves upon their best results by a margin of 0.74%, 0.71%, 0.86%,
3.87%, 1.43%, 0.03% and 6.01% on MUTAG, PROTEINS, D&D, BZR, COX2, IMDB-B
and RDT-M5k, respectively. Similarly, GraphSNN improves upon the best results of
the GNNs, by a margin of 1.84%, 0.96%, 0.31%, 3.16%, 1.83% and 1.01% on datasets
MUTAG, PTC-MR, PROTEINS, D&D, IMDB-B and RDT-M5K, respectively.

3.5.2.2 Small Graph Classification using Inner Hold-out Method

We have also conducted additional experiments on four bioinformatics datasets (NCI1,
PROTEINS, ENZYMES and D&D) and three social network datasets (COLLAB, IMDB-
B and REDDIT-5k) with the setting of cross-validation with the inner hold-out method
[73]. The results of the baseline, DGCNN and GIN are taken from the paper [73].
Note that the final results of DGCNN and GIN from the paper [73] are reported by
computing the mean accuracy and standard deviation on the test set in these three
runs, which are different from the original papers of DGCNN and GIN.

Table 3.9 summarizes the results of small graph classification with inner hold-out
method. We can see GraphSNN improves the performance over all datasets except
PROTEINS, ENZYMES and D&D. Specifically, GraphSNN improves upon GIN by a
margin of 1.60%, 1.20%, 2.1%, 1.8%, 1.40%, 1.10% and 1.00% on NCI1, PROTEINS,
ENZYMES, D&D, COLLAB, IMDB-B and REDDIT-5k, respectively. Similarly, Graph-
SNN improves upon DGCNN by 5.20%, 1.60%, 22.8%, 0.5%, 5.8%, 3.1% and 7.9% on
NCI1, PROTEINS, ENZYMES, D&D, COLLAB, IMDB-B and REDDIT-5k, respectively.

Method NCI1 PROTEINS ENZYMES D&D COLLAB IMDB-B REDDIT-5k
Baseline 69.8±2.2 75.8 ± 3.7 65.2±6.4 78.4 ± 4.5 70.2±1.5 70.8±5.0 52.2±1.5
DGCNN 76.4±1.7 72.9±3.5 38.9±5.7 76.6±4.3 71.2±1.9 69.2±3.0 49.2±1.2
GIN 80.0±1.4 73.3±4.0 59.6±4.5 75.3±2.9 75.6±2.3 71.2±3.9 56.1±1.7
GraphSNN 81.6 ± 2.8 74.5 ± 3.5 61.7 ± 3.4 77.1 ± 3.3 77.0 ± 3.1 72.3 ± 3.6 57.1 ± 3.1

Table 3.9: Classification accuracy (%) averaged over 10 runs on graph classification.

– 22 December 2022



§3.5 Results and Discussion 51

Method MUTAG PTC-MR PROTEINS BZR IMDB-B

GSN
GSN-e 90.6 ± 7.5 68.2 ± 7.2 76.6 ± 5.0 - 77.8 ± 3.3
GSN-v 92.2 ± 7.5 67.4 ± 5.7 74.5 ± 5.0 - 76.8 ± 2.0

ID-
GNNs

ID-GNN Fast 96.5 ± 3.2 61.9 ± 5.4 78.0 ± 3.5 86.4 ± 3.0 -
ID-GNN Full 93.0 ± 5.6 62.5 ± 5.3 77.9 ± 2.4 88.1 ± 4.0 -

Ours GraphSNN 91.57 ± 2.8 66.70 ± 3.7 76.83 ± 2.5 88.69 ± 3.2 77.86 ± 3.6

k-WL
GNNs

1-GNNNT 82.7 ± 0.0 51.2 ± 0.0 - - 69.4 ± 0.0
1-GNN 82.2 ± 0.0 59.0 ± 0.0 - - 71.2 ± 0.0
1-2-3-GNNNT 84.4 ± 0.0 59.3 ± 0.0 - - 70.3 ± 0.0
1-2-3-GNN 86.1 ± 0.0 60.9 ± 0.0 - - 74.2 ± 0.0

Ours GraphSNN 87.30 ± 3.1 61.63 ± 2.8 74.01 ± 3.2 82.72 ± 3.9 74.81 ± 3.5

Table 3.10: Classification accuracy (%) averaged over 10 runs on graph classification, where
λ = 2. The results of the baselines are taken from their original papers.

3.5.2.3 Comparison with GNNs Beyond 1-WL

Table 3.10 shows the results of GraphSNN against GNNs that go beyond 1-WL. The
GSN and ID-GNNs follow the same experimental setup as in GIN [275], and k-WL
GNNs follow the experimental setup as in CapsGNN [271]. Specifically, compared
with GSN and ID-GNNs, GraphSNN improves upon their best results by a margin
of 0.59% and 0.06% on BZR and IMDB-B, respectively. Compared with k-WL GNNs,
GraphSNN improves upon their best results by a margin of 1.20%, 0.73%, and 0.61%
on MUTAG, PTC-MR and IMDB-B, respectively.

3.5.3 Comparison with Large Graph Classification

In this section, we evaluate the performance of GraphSNN on large graph classification
task to answer the question Q2.

Table 3.11 summarizes the results of large graph classification. We can see Graph-
SNN+VN consistently improves the performance over all datasets. Specifically, Graph-
SNN+VN improves upon GIN+VN by a margin of 4.52%, 0.57%, 1.50%, 1.65% and
1.47% on ogbg-molhiv, ogbg-moltox21, ogbg-moltoxcast, ogbg-ppa and ogbg-molpcba,
respectively. Similarly, GraphSNN improves upon GIN by a margin of 2.93%, 0.54%,
1.99%, 1.74% and 2.30% on ogbg-molhiv, ogbg-moltox21, ogbg-moltoxcast, ogbg-ppa
and ogbg-molpcba, respectively.

3.5.4 Oversmoothing Analysis

In this section, we analyze the effectiveness of our method in alleviating the over-
smoothing issue to answer the question Q3. Specifically, we analyze the impact of
model depth (number of layers) on node classification performance. In addition to
GCN and GraphSNNGCN , we also compare these models with a residual connection
(i.e., GCN+residual and GraphSNNGCN+residual). GraphSNN is similar to the GIN
if we ignore the structural coefficients. Thus, it is worth to analyze how GraphSNN
performs against GIN when increasing the model depth. Moreover, we analyze how
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Method ogbg-molhiv ogbg-moltox21 ogbg-moltoxcast ogbg-ppa ogbg-molpcba
GIN 75.58±1.40 74.91±0.51 63.41±0.74 68.92±1.00 22.66±0.28
GIN+VN 75.20±1.30 76.21±0.82 66.18±0.68 70.37±1.07 27.03±0.23
GSN 77.99±1.00 - - - -
PNA 79.05±1.30 - - - 28.38±0.35
ID-GNN 78.30±2.00 - - - -
Deep LRP 77.19±1.40 - - - -
GraphSNN 78.51±1.70 75.45±1.10 65.40±0.71 70.66±1.65 24.96±1.50
GraphSNN+VN 79.72±1.83 76.78±1.27 67.68±0.92 72.02±1.48 28.50±1.68

Table 3.11: Classification accuracy (%) averaged over 10 runs on graph classification, where
λ = 2. The results of the baselines are taken from [108] and the leaderboard of the OGB
website.

GraphSNN performs against spectral methods as well. Thus, we also compare GIN
[275], DFNets [264], GraphSNNGIN and GraphSNNGCN . For a fair comparison, we
remove the dense-net architecture of DFNets and use the same hyperparameters as in
the original paper.

Table 3.12 shows the results. When increasing the model depth, GraphSNNGCN
performs consistently better than GCN at each layer. This is because structural
coefficients capture structural connectivity between a target vertex and its neighbors.
Thus, a neighbor whose structural connectivity is weak would pass little messages
to the target vertex, whereas a neighbor whose structural connectivity is strong
would pass a strong message to the target vertex. GraphSNN helps alleviate the
oversmoothing issue even in the presence of residual connections.

#Layers GCN GCN+residual GraphSNNGCN GraphSNNGCN+residual
1 79.6±0.5 80.3±0.7 80.1±0.8 81.6±1.6
2 81.5±0.4 82.8±1.2 83.1±1.8 84.1±1.7
3 80.3±0.6 82.3±0.5 82.0±0.8 83.4±0.7
4 78.2±0.9 81.5±0.9 80.1±0.7 82.9±0.9
5 74.3±1.3 81.0±1.3 79.1±1.2 82.3±0.3
6 35.6±1.5 80.6±0.5 76.5±1.3 81.5±1.2
7 31.6±0.9 79.7±0.6 76.3±1.3 80.9±0.9
8 16.2±1.2 78.4±1.1 75.7±1.2 80.3±1.3

Table 3.12: Classification accuracy (%) averaged over 10 runs on Cora dataset.

Figure 3.4 shows the results of GCN and GraphSNNGCN on the datasets Cora,
Citeseer and Pubmed, in terms of classification accuracy averaged over 10 runs in the
setting of standard splits. GCN and GraphSNNGCN performance decreases over the
number of layers when the number of layers > 2. Specifically, we can see performance
of GCN suddenly drops on Cora when the number of layers > 5. We can also observe
the similar pattern on Citeseer and Pubmed when the number of layers > 5 and
number of layers > 6, respectively. Moreover, GraphSNNGCN and GCN have the
similar trend when layers < 3, where both methods get their peak values with 2-layer
GNNs on all three datasets. Compared to GCN, performance drop of GraphSNNGCN
is very small when increasing the number of layers.
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#Layers GIN GraphSNNGIN DFNet GraphSNNGCN

1 73.3±1.5 76.1±1.6 80.5±0.6 80.1±0.8
2 77.6±1.3 79.2±1.7 81.9±0.5 83.1±1.8
3 75.2±1.7 78.5±1.3 82.6±0.3 82.0±0.8
4 48.6±2.1 77.2±2.3 80.7±0.6 80.1±0.7
5 40.3±1.9 75.9±2.1 75.6±0.3 79.1±1.2
6 36.1±2.3 73.3±1.8 65.3±1.3 76.5±1.3
7 27.5±2.1 71.9±1.5 60.9±1.5 76.3±1.3
8 20.3±1.8 69.3±2.2 53.6±1.3 75.7±1.2

Table 3.13: Oversmoothing analysis of GIN and spectral GNN (DFNet) on cora dataset.
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Figure 3.4: Oversmoothing analysis w.r.t. the model depth for node classification.

3.5.5 Runtime Analysis

In this section, we provide the runtime analysis for computing the structural coeffi-
cients of GraphSNN to answer the question Q4. The layer-wise massage-passing of
GraphSNN is linear w.r.t number of edges on graphs as previous GNNs such as GIN.
However, GraphSNN requires linear computational complexity w.r.t the number of
edges on a graph for pre-computing the structural coefficients. Thus, in Table 3.14,
we analyze the results for the running time of the prepocessing step in our method
GraphSNN for large graph datasets (averaged over 5 runs). Note that the preprocess-
ing step can be parallellized efficiently at the node level. The CPU time shows the
total preprocessing time of a dataset in which each node is preprocessed sequentially,
and the CPU time per node shows the average preprocessing time per node.

Dataset CPU time (seconds) CPU time per node (milliseconds)
ogbg-molhiv 66.97 0.06383
ogbg-moltox21 79.37 0.54565
ogbg-moltoxcast 380.84 2.36417
ogbg-ppa 820.12 4.71235

Table 3.14: Running time of the prepocessing step for large graph datasets averaged over 5
runs.
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Dataset Method λ=1 λ=2 λ=3 λ=4 λ=5

Cora

GraphSNNGCN 83.1±1.8 82.8±1.3 82.3±2.4 81.8±1.6 82.1±1.6
GraphSNNGIN 79.2±1.7 78.8±1.2 78.5±1.3 78.1±1.6 77.7±1.2
GraphSNNGraphSAGE 80.5±2.5 80.3±2.1 79.8±1.9 79.2±1.9 79.4±2.2
GraphSNNGAT 83.8±1.2 83.5±1.5 83.2±1.7 82.8±1.3 83.2±1.9

Citeseer

GraphSNNGCN 72.3±1.5 71.7±1.3 71.1±1.6 70.6±1.2 70.9±1.1
GraphSNNGIN 68.3±1.5 68.3±1.9 67.7±1.4 67.1±1.3 67.3±1.4
GraphSNNGraphSAGE 72.7±3.2 72.0±2.5 71.6±2.9 71.9±2.1 71.3±2.3
GraphSNNGAT 73.5±1.6 72.9±1.7 72.5±1.1 72.6±1.6 72.0±1.3

Table 3.15: Classification accuracy (%) averaged over 10 runs on node classification with
standard splits.

Dataset Method λ=1 λ=2 λ=3 λ=4 λ=5
MUTAG

GraphSNN

92.66±2.4 94.14±1.2 93.38±1.5 92.25±2.1 92.79±2.0
PTC-MR 70.76±5.1 71.01±3.6 70.67±2.8 69.59±2.1 69.97±3.1
PROTEINS 77.90±4.9 78.21±2.9 78.15±2.1 77.20±3.1 76.93±3.2
D&D 82.70±4.6 84.61±1.5 84.34±1.2 82.60±2.6 82.30±2.3
BZR 87.61±4.9 91.88±3.2 91.45±2.6 91.38±2.1 90.90±3.1
COX2 86.20±3.3 86.72±2.9 83.81±3.1 83.13±2.6 83.94±3.2
IMDB-B 77.07±5.2 77.87±3.1 77.60±3.6 77.32±3.2 77.10±3.3
RDT-M5K 59.53±2.6 60.23±2.2 60.10±2.3 60.00±2.1 59.90±2.6

Table 3.16: Classification accuracy (%) averaged over 10 runs on graph classification with
random splits.

3.5.6 Ablation Analysis with λ

In this section, we perform an ablation study to analyze the effect of λ values on the
performance of GraphSNNM models for node classification tasks and GraphSNN for
graph classification tasks to answer the question Q5. Tables 3.15 and 3.16 show that
λ = 1 yields the highest performance for node classification, while λ = 2 is the best
for graph classification. This reflects a critical point - different types of structural
information are needed by different graph learning tasks:

(1) λ = 1 captures local density, e.g., two overlap subgraphs may considerably vary
in the number of vertices but their local density can be very close. Our experi-
ments show that injecting such local density helps improve the performance of
node classification.

(2) λ = 2 captures local similarity, i.e., how similar two overlap subgraphs are.
Two overlap subgraphs that considerably differ in the number of vertices would
have very different structural coefficients. Since graph classification requires to
compare the similarity of two graphs, λ = 2 is thus the best.

3.5.7 Augmented Cycle and Clique Counts for Node Features

In this section, we evaluate the overall performance of GraphSNN by augmenting
node features on small graph classification task to answer the question Q5. This
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experimental setup allows us to analyze what types of local substructures our pro-
posed model can distinguish. We consider an experimental setup called BL, which
serves as the baseline for all experiments in this ablation study. In the setting of BL,
the AGGREGATEI in GraphSNN is set to 1. Then, different variants of BL consider
different local substructure counts as additional node features.

There are five variants of BL being considered in the ablation study:

(1) BLSC: Setting AGGREGATIONI of GraphSNN to 1 and keeping structural
coefficients for neighbors.

(2) BLclique
NF : Setting AGGREGATIONI of GraphSNN to 1, removing structural

coefficients for neighbors, and adding additional node features (triangle and
4-clique counts) into the original feature vectors.

(3) BLclique
SC+NF: Setting AGGREGATIONI of GraphSNN to 1, keeping structural

coefficients for neighbors, and adding additional node features (triangle and
4-clique counts) into the original feature vectors.

(4) BLcycle
NF : Setting AGGREGATIONI of GraphSNN to 1, removing structural coeffi-

cients for neighbors, and adding additional node features (cycle counts) into the
original feature vectors.

(5) BLcycle
SC+NF: Setting AGGREGATIONI of GraphSNN to 1, keeping structural

coefficients for neighbors, and adding additional node features (cycle counts)
into the original feature vectors.

We compare GraphSNN with GSN-v [23], BLclique
NF , BLSC, and BLclique

SC+NF to analyze
how our proposed model relates to the models with triangle and 4 clique counts as
additional node features. Similarly, we compare GraphSNN with ID-GNNs [280],
BLcycle

NF , BLSC, and BLcycle
SC+NF to analyze how our proposed architecture relates to the

models with cycle counts as additional node features. We concatenate the counts of
cycles with length 1 to 4 starting and ending at the given source node with its original
feature vector as in [280].

Table 3.17 and Table 3.18 show the experimental results. As AGGREGATEI is set
to 1 in the setting of BL, the performance gap between BLNF and BLSC+NF reflects
the effectiveness of structural coefficients on enhancing relational inference between a
target vertex and its neighbors. The performance gap between BLSC and GraphSNN
above shows the effectiveness of AGGREGATEI in our proposed model GraphSNN.
Furthermore, BLSC+NF consistently performs best since we incorporate both extra
node features and structural coefficients into the feature aggregation. There is a small
performance gap between BLSC+NF and GraphSNN due to augmented node features
that can capture additional structural information that cannot be captured using
structural coefficients.
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Method GSN-v BLclique
NF BLSC BLclique

SC+NF GraphSNN
MUTAG 92.20±7.5 90.21±2.3 94.06±2.4 95.16±2.5 94.70±1.9
PTC-MR 67.40±5.7 67.13±2.9 70.18±3.1 71.04±3.1 70.58±3.1
PROTEINS 74.59±5.0 76.42±2.6 78.05±2.3 78.66±2.1 78.42±2.7
BZR - 86.82±3.1 90.67±3.1 91.98±3.2 91.12±3.0
IMDB-B 76.80±2.0 77.00±3.1 77.23±2.8 78.53±2.9 78.01±2.8

Table 3.17: Analysis the effects of our structural coefficients with substructure counts, i.e,
triangle and 4-clique counts. Classification accuracy (%) averaged over 10 runs on graph
classification.

Method ID-GNN BLcycle
NF BLSC BLcycle

SC+NF GraphSNN
MUTAG 96.50±3.2 91.36±2.1 94.06±2.4 96.61±2.3 94.70±1.9
PTC-MR 61.90±5.4 67.57±3.3 70.18±3.1 71.76±3.2 70.58±3.1
PROTEINS 78.00±3.5 77.26±2.5 78.05±2.3 78.95±2.5 78.42±2.7
BZR 86.40±3.0 86.83±3.3 90.67±3.1 91.75±3.4 91.12±3.0
IMDB-B - 76.36±2.6 77.23±2.8 78.58±2.4 78.01±2.8

Table 3.18: Analysis the effects of our structural coefficients with substructure counts, i.e,
cycle counts. Classification accuracy (%) averaged over 10 runs on graph classification.

3.6 Summary

In this chapter we have proposed a new perspective on designing powerful Graph
Neural Networks (GNNs)∗. In a nutshell, this enables a general solution to inject
structural properties of graphs into a message-passing aggregation scheme of GNNs.
As a theoretical basis, we developed a new hierarchy of local isomorphism on neigh-
borhood subgraphs. Then, we theoretically characterized how message-passing GNNs
can be designed to be more expressive than the Weisfeiler Lehman test. To elabo-
rate this characterization, we proposed a novel neural model, called GraphSNN, and
proved that this model is strictly more expressive than the Weisfeiler Lehman test in
distinguishing graph structures. We empirically verified the strength of our model on
different graph learning tasks. It is shown that our model consistently improves the
state-of-the-art methods on the benchmark tasks without sacrificing computational
simplicity and efficiency.

∗GraphSNN implementation can be found at: https://github.com/wokas36/GraphSNN
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Chapter 4

Feedback-looped Filters for
Spectral Graph Neural Networks

4.1 Overview

To effectively tackle the problem of designing effective, yet efficient spectral GNNs, a
number of studies has been devoted to enhancing GNNs by developing filters over
graphs. Compared to spatial GNNs in the previous chapter, spectral GNNs use
spectral graph filters to indirectly define convolutions on graphs [28, 53, 65]. Bruna et
al. [28] proposed convolution operations on graphs via a spectral decomposition of
the graph Laplacian. To reduce learning complexity in the setting where the graph
structure is not known a priori, Henaff et al. [104] developed a smooth parameteric
spectral graph filter, where the number of filter parameters is independent from the
size of an input graph. Then, Defferrard et al. [65] introduced Chebyshev filters
to guarantee the stability of convolution operations under graph perturbation and
these filters can be exactly localized in k-hop neighborhood. Later, Kipf et al. [122]
proposed a simple layer-wise propagation model using Chebyshev filters on 1-hop
neighborhood. Over the last few years, some works attempted to develop rational
polynomial filters, such as Cayley filters [137] and ARMA [20]. From a different
perspective, Petar et al. [247] proposed a self-attention based GNN architecture for
graph filters, which extracts features by considering the importance of neighbors.

In this chapter, we study the problem of designing an effective and efficient GNN
with a spectral graph filtering. The key idea behind existing works on designing
spectral graph filters is to approximate the frequency responses of graph filters using
a polynomial function (e.g. Chebyshev filters [65]) or a rational polynomial function
(e.g. Cayley filters [137] and ARMA [20]). Polynomial filters are sensitive to changes
w.r.t the underlying graph structure. They are also very smooth and can hardly model
sharp changes. Rational polynomial filters are more powerful to model localization,
but they often have to trade off computational efficiency, resulting in higher learning
and computational complexities, as well as instability. In this chapter, we aim to
overcome the above limitations.

The main contributions of this chapter are as follows:

• We propose a new class of spectral graph filters, called feedback-looped filters, to

57
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Figure 4.1: A simplified example of illustrating feedback-looped filters, where v1 is the current
vertex and the similarity of the colours indicates the correlation between vertices, e.g., v1 and
v5 are highly correlated, but v2 and v6 are less correlated with v1: (a) an input graph, where
λi is the original frequency to vertex vi; (b) the feedforward filtering, which attenuates some
low order frequencies, e.g. λ2, and amplify other frequencies, e.g. λ5 and λ6; (c) the feedback
filtering, which reduces the error in the frequencies generated by (b), e.g. λ6.

enable better localization, as illustrated in Figure 4.1. Basically, feedback-looped
filters consist of two parts: feedforward and feedback. The feedforward filtering is
k-localized as polynomial filters, while the feedback filtering is unique which
refines k-localized features captured by the feedforward filtering to improve
approximation accuracy. We also propose two techniques: scaled-normalization
and cut-off frequency to avoid the issues of gradient vanishing/exploding and
instabilities.

• For feedback-looped filters, we avoid the matrix inversion implied by the de-
nominator through approximating the matrix inversion with a recursion. Thus,
benefited from this approximation, feedback-looped filters attain linear conver-
gence time and linear memory requirements w.r.t. the number of edges in a
graph.

• Feedback-looped filters enjoy several nice theoretical properties. Unlike other
rational polynomial filters for graphs, they have theoretically guaranteed con-
vergence w.r.t. a specified error bound. On the other hand, they still have the
universal property as other spectral graph filters [113], i.e., this graph filter
allows to approximate any desired graph frequency response without realizing
the underlying structure of a graph. The optimal coefficients of feedback-looped
filters are learnable via an optimization condition for any given graph.

• We propose a layer-wise propagation rule for our spectral GNN model with
feedback-looped filters, which densely connects layers as in DenseNet [109].
This design enables our model to diversify features from all preceding layers,
leading to a strong gradient flow. We also introduce a layer-wise regularization
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term to alleviate the overfitting issue. In doing so, we can prevent the generation
of spurious features and thus improve accuracy of the prediction.

The rest of this chapter is organized as follows. In Section 4.2, we present the
new class of spectral graph filters, formulates a coefficients optimization and a novel
spectral GNN model. In Section 4.3, we analyze the convergence and complexity of
the proposed spectral GNN model. In Section 4.4, we discuss the experimental setup.
In Section 4.5, we compare the performance of our proposed spectral GNN method
against the baseline methods. Section 4.6 summarises the chapter.

4.2 Spectral GNNs with Feedback-looped Filters

We introduce a new class of spectral graph filters, called feedback-looped filters, and
propose a spectral GNN for graphs with feedback-looped filters, namely Distributed
Feedback-Looped Networks (DFNets). We also discuss optimization techniques and
analyze theoretical properties.

4.2.1 A New Class of Spectral Graph Filters

Feedback-looped filters belong to a class of Auto Regressive Moving Average (ARMA)
filters [112, 113]. Formally, an ARMA filter is defined as:

hψ,φ(L)x =
(

I +
p

∑
j=1

ψjLj
)−1( q

∑
j=0

φjLj
)

x. (4.1)

The parameters p and q refer to the feedback and feedforward degrees, respectively.
ψ ∈ Cp and φ ∈ Cq+1 are two vectors of complex coefficients. Computing the
denominator of Eq. 4.1 however requires a matrix inversion, which is computationally
inefficient for large graphs. To circumvent this issue, feedback-looped filters use the
following approximation:

x̄(t) = −
p

∑
j=1

ψjL̃
j x̄(t−1) +

q

∑
j=0

φjL̃
jx, (4.2)

where x̄(0) = x, L̃ = L̂− ( λ̂max
2 )I, L̂ = I− D̂−1/2ÂD̂−1/2, Â = A + I, D̂ii = ∑j Âij

and λ̂max is the largest eigenvalue of L̂. Accordingly, the frequency response of
feedback-looped filters is defined as:

h(λi) =
∑

q
j=0 φjλ

j
i

1 + ∑
p
j=1 ψjλ

j
i

. (4.3)

To alleviate the issues of gradient vanishing/exploding and numerical instabilities,
we further introduce two techniques in the design of feedback-looped filters: scaled-
normalization and cut-off frequency.
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4.2.1.1 Scaled-normalization Technique

To assure the stability of feedback-looped filters, we apply the scaled-normalization
technique to increase the stability region, i.e., using the scaled-normalized Laplacian
L̃ = L̂− ( λ̂max

2 )I, rather than just L̂. This accordingly helps centralize the eigenvalues
of the Laplacian L̂ and reduce its spectral radius bound. The scaled-normalized
Laplacian L̃ consists of graph frequencies within [0, 2], in which eigenvalues are
ordered in an increasing order.

4.2.1.2 Cut-off Frequency Technique

To map graph frequencies within [0, 2] to a uniform discrete distribution, we define
a cut-off frequency λcut = (λmax

2 − η), where η ∈ [0, 1] and λmax refers to the largest
eigenvalue of L̃. The cut-off frequency is used as a threshold to control the amount of
attenuation on graph frequencies. The eigenvalues {λi}n−1

i=0 are converted to binary
values {λ̃i}n−1

i=0 such that λ̃i = 1 if λi ≥ λcut and λ̃i = 0 otherwise. This trick allows the
generation of ideal high-pass filters so as to sharpen a signal by amplifying its graph
Fourier coefficients. This technique also solves the issue of narrow frequency bands
existing in previous spectral filters (i.e., Cayley filters), including both polynomial and
rational polynomial filters [65, 137]. This is because these previous spectral filters only
accept a small band of frequencies. In contrast, our proposed feedback-looped filters
resolve this issue using a cut-off frequency technique, i.e., amplifying frequencies
higher than a certain low cut-off value while attenuating frequencies lower than that
cut-off value. Thus, our proposed filters can accept a wider range of frequencies and
capture better characteristic properties of a graph.

4.2.2 Learnable Optimal Coefficients

Given a feedback-looped filter with a desired frequency response: ĥ : {λ̃i}n−1
i=0 → R,

we aim to find the optimal coefficients ψ and φ that make the frequency response as
close as possible to the desired frequency response, i.e. to minimize the following
error:

é(λ̃i) = ĥ(λ̃i)−
∑

q
j=0 φjλ̃

j
i

1 + ∑
p
j=1 ψjλ̃

j
i

(4.4)

However, the above equation is not linear w.r.t. the coefficients ψ and φ. Thus, we
redefine the error as follows:

e(λ̃i) = ĥ(λ̃i) + ĥ(λ̃i)
p

∑
j=1

ψjλ̃
j
i −

q

∑
j=0

φjλ̃
j
i . (4.5)

Let e = [e(λ̃0), . . . , e(λ̃n−1)]
T, ĥ = [ĥ(λ̃0), . . . , ĥ(λ̃n−1)]

T, and $ ∈ Rn×p with $ij = λ̃
j
i

and κ ∈ Rn×(q+1) with κij = λ̃
j−1
i be two Vandermonde-like matrices. Then, we have

e = ĥ + diag(ĥ)$ψ − κφ. Thus, the stable coefficients ψ and φ can be learned by
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minimizing e as a convex constrained least-squares optimization problem:

minimizeψ,φ ||ĥ + diag(ĥ)$ψ− κφ||2 (4.6)

subject to ||$ψ||∞ ≤ ε and ε < 1

Here, the parameter ε controls the trade-off between convergence efficiency and
approximation accuracy. A higher value of ε can lead to slower convergence but
better accuracy. It is not recommended to have very low ε values due to potentially
unacceptable accuracy. ||$ψ||∞ ≤ ε < 1 is the stability condition, which will be further
discussed in detail in Section 4.3.

4.2.3 A New Spectral Convolutional Layer

We propose a GNN-based architecture, called DFNets, which can stack multiple spec-
tral convolutional layers with feedback-looped filters to extract features of increasing
abstraction. Let Y = −∑

p
j=1 ψjL̃

j and Q = ∑
q
j=0 φjL̃

j. The propagation rule of a
spectral convolutional layer is defined as:

X̄(t+1) = σ(Y X̄(t)θ
(t)
1 + QXθ

(t)
2 + η(θ

(t)
1 ; θ

(t)
2 ) + b), (4.7)

where σ refers to a non-linear activation function such as ReLU. X̄(0) = X ∈ Rn× f

is a graph signal matrix where f refers to the number of features. X̄(t) is a matrix
of activations at the tth layer. θ

(t)
1 ∈ Rc×h and θ

(t)
2 ∈ R f×h are two trainable weight

matrices at the tth layer. To compute X̄(t+1), a vertex needs access to its p-hop neighbors
with the output signal of the previous layer X̄(t), and its q-hop neighbors with the input
signal from X. To attenuate the overfitting issue, we add η(θ

(t)
1 ; θ

(t)
2 ), namely kernel

regularization [55], and a bias term b. We use the xavier normal initialization method
[87] to initialise the kernel and bias weights, the unit-norm constraint technique [67]
to normalise the kernel and bias weights by restricting the parameters of all layers in
a small range, and the kernel regularization technique to penalize the parameters in
each layer during the training. In doing so, we can prevent the generation of spurious
features and thus improve the accuracy of prediction.

In this model, each layer is directly connected to all subsequent layers in a feed-
forward manner, as in DenseNet [109]. Consequently, the tth layer receives all pre-
ceding feature maps F0, . . . , Ft−1 as input. We concatenate multiple preceding feature
maps column-wise into a single tensor to obtain more diversified features for boost-
ing the accuracy. This densely connected GNN architecture has several compelling
benefits: (a) reduce the vanishing-gradient issue, (b) increase feature propagation and
reuse, and (c) refine information flow between layers [109].

4.3 Theoretical Analysis

Feedback-looped filters have several nice properties, e.g., guaranteed convergence,
linear convergence time, and universal design. We discuss these properties and
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analyze computational complexities in this section.

4.3.1 Convergence analysis

Theoretically, a feedback-looped filter can achieve a desired frequency response only
when t→ ∞ [113]. However, due to the property of linear convergence preserved by
feedback-looped filters, stability can be guaranteed after a number of iterations w.r.t.
a specified small error [112]. More specifically, since the pole of rational polynomial
filters should be in the unit circle of the z-plane to guarantee the stability, we can
derive the stability condition || −∑

p
j=1 ψjLj|| < 1 by Eq. 4.1 in the vertex domain and

correspondingly obtain the stability condition ||$ψ||∞ ≤ ε ∈ (0, 1) in the frequency
domain as stipulated in Eq. 4.6 [112].

4.3.2 Universal Design

The universal design is beneficial when the underlying structure of a graph is unknown
or the topology of a graph changes over time. The corresponding filter coefficients
can be learned independently of the underlying graph and are universally applicable.
When designing feedback-looped filters, we define the desired frequency response
function ĥ over graph frequencies λ̃i in a binary format in the uniform discrete
distribution as discussed in Section 4.2.1.2. Then, we solve Eq. 4.6 in the least-squares
sense for this finite set of graph frequencies to find optimal filter coefficients.

4.3.3 Complexity Analysis

Spectral Graph Filter Type
Learning Time Memory

Complexity Complexity Complexity
Chebyshev filters [65]

Polynomial
O(k) O(km) O(m)

Lanczos filters [146] O(k) O(km2) O(m2)
Cayley filters [137]

Rational
polynomial

O((r + 1)k) O((r + 1)km) O(m)
ARMA1 filters [20] O(t) O(tm) O(m)
d parallel ARMA1 filters [20] O(t) O(tm) O(dm)
Feedback-looped filters (ours) O(tp + q) O((tp + q)m) O(m)

Table 4.1: Learning, time and memory complexities of spectral graph filters.

Table 4.1 summarizes the complexity results of existing spectral graph filters and
feedback-looped filters, where r refers to the number of Jacobi iterations in [137].
Note that, when t = 1 (i.e., one spectral convolutional layer), feedback-looped filters
have the same learning, time and memory complexities as Chebyshev filters, where
p + q = k. When computing x̄(t) as in Eq. 4.2, we need to calculate L̃j x̄(t−1) for
j = 1, . . . , p and L̃jx for j = 1, . . . , q. Nevertheless, L̃jx is computed only once because
L̃jx = L̃(L̃j−1x). Thus, we need p multiplications for each t in the first term in Eq. 4.2,
and q multiplications for the second term in Eq. 4.2.
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4.4 Experimental Setup

To empirically verify the effectiveness of our work, we have evaluated feedback-looped
filters with three different spectral GNN models: (i) DFNet: a densely connected
spectral GNN with feedback-looped filters, (ii) DFNet-ATT: a self-attention based
densely connected spectral GNN with feedback-looped filters, and (iii) DF-ATT: a
self-attention based spectral GNN model with feedback-looped filters. In this section,
we present the datasets and baseline methods considered when evaluating our DFNet
models on semi-supervised node classification task in order to answer the following
questions. We also discuss hyperparatemeter settings for each model.

Q1. How well can DFNets empirically perform over standard and random data
splittings on semi-supervised node classification task?

Q2. How well can different neighborhood orders influence the overall performance
on semi-supervised node classification task?

Q3. How effectively DFNets can learn the node representations to reveal the clustering
quality of classes?

Q4. How does each of the key components in DFNets (i.e., cut-off frequency technique,
scaled-normalization technique,and feedback-looped filters) contribute to the
performance of DFNets?

4.4.1 Datasets

We use three citation network datasets Cora, Citeseer, and Pubmed [223] for semi-
supervised document classification, and one dataset NELL [36] for semi-supervised
entity classification. NELL is a bipartite graph extracted from a knowledge graph [36].
Table 3.3 in Chapter 3 contains the statistics for these four datasets.

4.4.2 Baseline Methods

We compare against twelve baseline methods, including five methods using non-
spectral graph learning, i.e., Semi-supervised Embedding (SemiEmb) [263], Label
Propagation (LP) [298], skip-gram graph embedding model (DeepWalk) [196], Itera-
tive Classification Algorithm (ICA) [158], and semi-supervised learning with graph
embedding (Planetoid*) [278], and seven methods using spectral graph learning:
Chebyshev [65], Graph Convolutional Networks (GCN) [122], Lanczos Networks
(LNet) and Adaptive Lanczos Networks (AdaLNet) [146], CayleyNet [137], Graph
Attention Networks (GAT) [247], and ARMA Convolutional Networks (ARMA1) [20].

4.4.3 Hyperparameter Settings

In this section, we discuss the hyperparameters of DFNet, DFNet-ATT and DF-ATT
models, which are selected on the classification accuracy of the validation set by
applying the randomized search strategy [15].
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4.4.3.1 Semi-supervised Node Classification with Standard Data Splitting

We use the same data splitting for each dataset as in Yang et al. [278]. The hyper-
parameters of our models are initially selected by applying the orthogonalization
technique (a randomized search strategy). We also use a layerwise regularization
(L2 regularization) and bias terms to attenuate the overfitting issue. All models are
trained 200 epochs using the Adam optimizer [120] with a learning rate of 0.002.
Table 4.2 summarizes the hyperparameter settings for citation network datasets. The
same hyperparameters are applied to the NELL dataset except for L2 regularization
(i.e., 9e-2 for DFNet and DFnet-ATT, and 9e-4 for DF-ATT). For ε, we choose the
best setting for each model. For self-attention, we use 8 multi-attention heads and
0.5 attention dropout for DFNet-ATT, and 6 multi-attention heads and 0.3 attention
dropout for DF-ATT. The parameters p = 5, q = 3 and λcut = 0.5 are applied to all
three models over all datasets.

Model L2 reg. #Layers #Units Dropout [p, q] λcut

DFNet 9e-2 5 [8, 16, 32, 64, 128] 0.9 [5, 3] 0.5
DFNet-ATT 9e-4 4 [8, 16, 32, 64] 0.9 [5, 3] 0.5
DF-ATT 9e-3 2 [32, 64] [0.1, 0.9] [5, 3] 0.5

Table 4.2: Hyperparameter settings for citation network datasets.

4.4.3.2 Semi-supervised Node Classification with Random Data Splittings

We have benchmarked the performance of our DFNet model against state-of-the-art
methods over three citation network datasets Cora, Citeseer and Pubmed. We use the
same random data splittings as used in [146]. All the experiments are repeated 10
times. For our model DFNet, we use the same hyperparameter settings as discussed
in Section 4.4.3.1.

4.5 Results and Discussion

In this section, we discuss our experimental results to answer the aforementioned
questions in Section 4.4. We use four benchmark datasets to compare these three
variants against the state-of-the-art methods. We further discuss the effectiveness of
our model DFNet through the node embeddings in a 2-D space of vertices from two
datasets.

4.5.1 Comparison with Standard Data Splitting

In this section, we evaluate the performance of DFNet variants on semi-supervised
node classification tasks with standard data splits to answer the question Q1. Table 4.3
summarizes the results of classification in terms of accuracy. The results of the baseline
methods are taken from the previous works [122, 146, 247, 278]. Our models DFNet
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and DFNet-ATT outperform all the baseline methods over four datasets. Particularly,
we can see that: (1) Compared with polynomial filters, DFNet improves upon GCN
(which performs best among the models using polynomial filters) by a margin of 3.7%,
3.9%, 5.3% and 2.3% on the datasets Cora, Citeseer, Pubmed and NELL, respectively.
(2) Compared with rational polynomial filters, DFNet improves upon CayleyNet and
ARMA1 by 3.3% and 1.8% on the Cora dataset, respectively. For the other datasets,
CayleyNet does not have results available in [137]. (3) DFNet-ATT further improves
the results of DFNet due to the addition of a self-attention layer. (4) Compared with
GAT (Chebyshev filters with self-attention), DF-ATT also improves the results and
achieves 0.4%, 0.6% and 3.3% higher accuracy on the datasets Cora, Citeseer and
Pubmed, respectively.

Additionally, we compare DFNet (our feedback-looped filters + DenseBlock) with
GCN + DenseBlock and GAT + DenseBlock. The results are also presented in Table
4.3. We can see that our feedback-looped filters perform best, no matter whether or
not the dense architecture is used.

Model Cora Citeseer Pubmed NELL
SemiEmb [263] 59.0 59.6 71.1 26.7
LP [298] 68.0 45.3 63.0 26.5
DeepWalk [196] 67.2 43.2 65.3 58.1
ICA [158] 75.1 69.1 73.9 23.1
Planetoid* [278] 64.7 75.7 77.2 61.9
Chebyshev [65] 81.2 69.8 74.4 -
GCN [122] 81.5 70.3 79.0 66.0
LNet [146] 79.5 66.2 78.3 -
AdaLNet [146] 80.4 68.7 78.1 -
CayleyNet [137] 81.9∗ - - -
ARMA1 [20] 83.4 72.5 78.9 -
GAT [247] 83.0 72.5 79.0 -
GCN + DenseBlock 82.7 ± 0.5 71.3 ± 0.3 81.5 ± 0.5 66.4 ± 0.3
GAT + Dense Block 83.8 ± 0.3 73.1 ± 0.3 81.8 ± 0.3 -
DFNet (ours) 85.2 ± 0.5 74.2 ± 0.3 84.3 ± 0.4 68.3 ± 0.4
DFNet-ATT (ours) 86.0 ± 0.4 74.7 ± 0.4 85.2 ± 0.3 68.8 ± 0.3
DF-ATT (ours) 83.4 ± 0.5 73.1 ± 0.4 82.3 ± 0.3 67.6 ± 0.3

Table 4.3: Accuracy (%) averaged over 10 runs (* was obtained using a different data splitting
in [137])

.

4.5.2 Comparison with Random Data Splittings

In this section, we evaluate the performance of DFNets on semi-supervised node
classification tasks with random data splits to answer the question Q1. Tables 4.4-4.6
present the experimental results. Table 4.4 shows that DFNet performs significantly
better than all the other models over the Cora dataset, including LNet and AdaLNet
proposed in [146]. Similarly, Table 4.5 shows that DFNet performs significantly better
than all the other models over the Citeseer dataset. For the Pubmed dataset, as shown
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in Table 4.6, DFNet performs significantly better than almost all the other models,
except for only one case in which DFNet performs slightly worse than AdaLNet using
the splitting 0.03%. These results demonstrate the robustness of our model DFNet.

Training Split Chebyshev GCN GAT LNet AdaLNet DFNet
5.2% (standard) 78.0 ± 1.2 80.5 ± 0.8 82.6 ± 0.7 79.5 ± 1.8 80.4 ± 1.1 85.2 ± 0.5
3% 62.1 ± 6.7 74.0 ± 2.8 56.8 ± 7.9 76.3 ± 2.3 77.7 ± 2.4 80.5 ± 0.4
1% 44.2 ± 5.6 61.0 ± 7.2 48.6 ± 8.0 66.1 ± 8.2 67.5 ± 8.7 69.5 ± 2.3
0.5% 33.9 ± 5.0 52.9 ± 7.4 41.4 ± 6.9 58.1 ± 8.2 60.8 ± 9.0 61.3 ± 4.3

Table 4.4: Accuracy (%) averaged over 10 runs on the Cora dataset.

Training Split Chebyshev GCN GAT LNet AdaLNet DFNet
3.6% (standard) 70.1 ± 0.8 68.1 ± 1.3 72.2 ± 0.9 66.2 ± 1.9 68.7 ± 1.0 74.2 ± 0.3
1% 59.4 ± 5.4 58.3 ± 4.0 46.5 ± 9.3 61.3 ± 3.9 63.3 ± 1.8 67.4 ± 2.3
0.5% 45.3 ± 6.6 47.7 ± 4.4 38.2 ± 7.1 53.2 ± 4.0 53.8 ± 4.7 55.1 ± 3.2
0.3% 39.3 ± 4.9 39.2 ± 6.3 30.9 ± 6.9 44.4 ± 4.5 46.7 ± 5.6 48.3 ± 3.5

Table 4.5: Accuracy (%) averaged over 10 runs on the Citeseer dataset.

Training Split Chebyshev GCN GAT LNet AdaLNet DFNet
0.3% (standard) 69.8 ± 1.1 77.8 ± 0.7 76.7 ± 0.5 78.3 ± 0.3 78.1 ± 0.4 84.3 ± 0.4
0.1% 55.2 ± 6.8 73.0 ± 5.5 59.6 ± 9.5 73.4 ± 5.1 72.8 ± 4.6 75.2 ± 3.6
0.05% 48.2 ± 7.4 64.6 ± 7.5 50.4 ± 9.7 68.8 ± 5.6 66.0 ± 4.5 67.2 ± 7.3
0.03% 45.3 ± 4.5 57.9 ± 8.1 50.9 ± 8.8 60.4 ± 8.6 61.0 ± 8.7 59.3 ± 6.6

Table 4.6: Accuracy (%) averaged over 10 runs on the Pubmed dataset.

4.5.3 Comparison under Different Polynomial Orders

In this section, we test how the polynomial orders p and q influence the performance
of our model DFNet to answer the question Q2. We conduct experiments to evaluate
DFNet on three citation network datasets using different polynomial orders p =
[1, 3, 5, 7, 9] and q = [1, 3, 5, 7, 9]. Figure 4.2 presents the experimental results. In our
experiments, p = 5 and q = 3 turn out to be the best parameters for DFNet over these
datasets. In other words, this means that feedback-looped filters are more stable on
p = 5 and q = 3 than other values of p and q. This is because, when p = 5 and q = 3,
Eq. 4.6 can obtain better convergence for finding optimal coefficients than in the other
cases. Furthermore, we observe that: (1) Setting p to be too low or too high can both
lead to poor performance, as shown in Figure 4.2.(a), and (2) when q is larger than p,
the accuracy decreases rapidly as shown in Figure 4.2.(b). Thus, when choosing p and
q, we require that p > q holds.
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Figure 4.2: Accuracy (%) of DFNet under different polynomial orders p and q.

(a) GCN (b) GAT (c) Chebyshev (d) DFNet (ours)

Figure 4.3: The t-SNE visualization of the 2-D node embedding space for the Pubmed dataset.

(a) GCN (b) GAT (c) Chebyshev (d) DFNet (ours)

Figure 4.4: The t-SNE visualization of the 2-D node embedding space for the Cora dataset.

4.5.4 Node Embeddings Analysis

In this section, we evaluate the clustering quality of DFNets to answer the question Q3.
We analyze the node embeddings by DFNets over two datasets: Cora and Pubmed in a
2-D space. Figures 4.3 and 4.4 display the visualization of the learned 2-D embeddings
of GCN, GAT, Chebyshev, and DFNet (ours) on Pubmed and Cora citation networks
by applying t-SNE [162] respectively. Colors denote different classes in these datasets.
It reveals the clustering quality of theses models. These figures clearly show that our
model DFNet has better separated 3 and 7 clusters respectively in the embedding
spaces of Pubmed and Cora datasets. This is because features extracted by DFNet
yield better node representations than GCN, GAT, and Chebyshev models.

4.5.5 Ablation Analysis of Scaled-Normalization and Cut-off Frequency

In this section, we evaluate the effectiveness of scaled-normalisation and cut-off
frequency techniques to learn node representations to answer the question Q4. We
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Figure 4.5: Accuracy (%) of our models in three cases: (1) using both scaled-normalization and
cut-off frequency, (2) using only cut-off frequency, and (3) using only scaled-normalization.

compare our methods that implement these techniques with the variants of our
methods that only implement one of these techniques. The results are presented
in Figure 4.5. We can see that, the models using these two techniques outperform
the models that only use one of these techniques over all citation network datasets.
Particularly, the improvement is significant on the Cora and Citeseer datasets.

4.5.6 Ablation Analysis of the Impact of Feedback-looped Filters

In this section, we analyze the impact of feedback-looped filters to answer the question
Q4. Specifically, we compare our feedback-looped filters, i.e., the newly proposed
spectral filters in this paper, against other spectral filters such as Chebyshev filters
and Cayley filters. To conduct this ablation study, we remove the dense connections
from our model DFNet. The experimental results are presented in table 4.7. It shows
that feedback-looped filters improve localization upon Chebyshev filters by a margin
of 1.4%, 1.7% and 7.3% on the datasets Cora, Citeseer and Pubmed, respectively. It
also improves upon Cayley filters by a margin of 0.7% on the Cora dataset.

Model Cora Citeseer Pubmed
Chebyshev filters [65] 81.2 69.8 74.4
Cayley filters [137] 81.9 - -
Feedback-looped filters (ours) 82.6 ± 0.3 71.5 ± 0.4 81.7 ± 0.6

Table 4.7: Accuracy (%) averaged over 10 runs.

4.6 Summary

In this chapter we have proposed a novel spectral graph neural network (GNN) model
on graph structured data, namely Distributed Feedback-Looped Networks (DFNets)∗. This
model is incorporated with a robust class of spectral graph filters, called feedback-looped
filters, to provide better localization on vertices, while still attaining fast convergence

∗DFNets implementation can be found at: https://github.com/wokas36/DFNets
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and linear memory requirements. Theoretically, feedback-looped filters can guarantee
convergence w.r.t. a specified error bound, and be applied universally to any graph
without knowing its structure. Furthermore, the propagation rule of this model can
diversify features to produce strong gradient flows. We have evaluated our model
using two benchmark tasks: semi-supervised document classification on citation
networks and semi-supervised entity classification on a knowledge graph. The
experimental results show that our model considerably outperforms the state-of-the-
art methods in both benchmark tasks over all datasets.
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Chapter 5

Dynamic PageRank for Diffusion
Graph Neural Networks

5.1 Overview

In the past few years, several studies have explored the connection between graph
diffusion and GNNs [125, 124, 49, 291, 38, 72]. Despite their successes, existing work
still has several limitations: (1) homophily vs heterophily: Most GNNs [275] assumed that
locally connected vertices on a graph share the same class labels (homophily), thereby
relying on neighbourhood aggregation schemes. However, it is hard to generalize such
neighbourhood aggregation schemes when locally connected vertices have different
class labels (heterophily). Attempts have been made to extend nonnegativity diffusion
weights for homophilic graphs [125] to general real numbers, assuming that the
signs of diffusion weights can adapt to homophilic/heterophilic graph structure [49].
However, as discussed in [103], there is no clear evidence yet of negative weights in
reflecting heterophily and this assumption may lead to generating ill-conditioned
or oversimplified filters. (2) depth vs width: Some recent work argued that a shallow
architecture of GNNs may hinder the model performance and thus proposed deep
GNN architectures [44, 49]. Nonetheless, an increase of depth often leads to a linearly
increasing number of model parameters since aggregation schemes used by most
GNNs have learnable weight parameters in each layer which are not shared across
layers [124]. This often makes training difficult, causing undesired issues such as
overfitting and local optima.

By virtue of dynamic PageRank and its connection to dynamic systems [209], we
propose two ways of developing new GNN architectures: (a) Forward Euler solution:
a simple and fast approach that reflects spatial long-range dependencies between
a current node with its neighbours (i.e., k-hop neighbourhood), and (b) Invariable
feature solution: a flexible approach that generalizes both personalised PageRank
and heat kernel. Both solutions are capable of lifting the dynamics of PageRank to
adapt to different local structures underlying a graph. Further, we incorporate a
learnable transition matrix to improve the discriminative power of PageRank diffusion.
These designs together considerably enhance the generalization ability of our GNN
architecture on homophilic and heterophilic graph structured data. Figure 5.1 provides

71
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Figure 5.1: GNN Architecture of Dynamic PageRank Networks.

a high-level overview for the main components of this GNN architecture.
In this chapter, we present a GNN architecture, which is grounded on two obser-

vations: (1) Inspired by the modelling power of dynamic systems, can we dynamize
PageRank for GNNs so as to improve its ability to capture the rich and varying graph
structure, e.g., homophily/heterophily? (2) Instead of making a trade-off between the
depth and width of a GNN architecture, can we go deeper in each layer in a shallow
architecture to gain advantages from both sides?

The main contributions of this chapter are as follows:

• We shed light on how dynamic PageRank can be leveraged to design GNN
models that are flexible and powerful for capturing rich and varying graph
structures, including both homophilic and heterophilic structures. To this end,
two solutions are proposed.

• We design a learning technique for PageRank transition, which is able to learn
polynomial filter coefficients efficiently via a quadratic convex constrained
optimization.

• Although dynamic PageRank generally does not converge, we theoretically
prove that our GNN models are designed to achieve the guaranteed convergence
due to the design of our dynamic PageRank diffusion schemes.

• We show that our shallow GNN architectures with deeper single layers repre-
sent a promising direction for alleviating some known GNN issues such as
oversmoothing.

The rest of this chapter is organized as follows. In Section 5.2, we present a
dynamic PageRank based GNN architecture with forward euler and invariable feature
solutions. We also elaborate a new learnable PageRank transition matrix, a new GNN
with deeper single layers and model training procedure. In Section 5.3, we analyze
the convergence and complexity of the proposed diffusion GNN model. Section 5.4,
we discuss the experimental setup. In Section 5.5, we compare the performance
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of our proposed diffusion GNN method against the baseline methods. Section 5.6
summarises the chapter.

5.2 Diffusion GNNs with Dynamic PageRank

In this section, we introduce Dynamic PageRank Network (DPRN), a new class of graph
neural networks based on dynamic PageRank and spectral filtering techniques on
graphs.

5.2.1 Graph Diffusion

Standard PageRank [125] is known as the classical graph diffusion, defined as

∞

∑
i=1

θiPi (5.1)

where θ are diffusion coefficients and P ∈ Rn×n is a column-stochastic transition
matrix. As discussed in [124], a personalised PageRank vector is defined as yppr =
(1− α)(I− αP)−1x with θ

ppr
i = (1− α)αi [189], where α ∈ (0, 1) and x ∈ Rz refers to

a teleportation vector. A heat kernel vector is defined as yhk = exp{−t(I− P)}x with
θhk

i = exp{−t} ti

i! , where t > 0 [128].

5.2.2 Dynamic PageRank on Graphs

Dynamic PageRank (DPR) was originally designed for graphs with time-dependent
teleportation vectors [209]. Using the power method for the PageRank Markov
chain [135], the standard PageRank can be represented as an iterative scheme where
iterations correspond to time points such that

y(t + 1) = (1− α)x + αPy(t). (5.2)

Here, y(t) refers to a PageRank vector at a current time point t and y(t + 1) refers to
a PageRank vector at next iteration. DPR incorporates a time-dependent teleportation
vector x(t) into PageRank by treating it as a function of time t. This leads to the
continuous time differential equation:

∂y(t)
∂t

= (1− α)x(t)− (I− αP)y(t), (5.3)

where I ∈ Rn×n is an identity matrix. A dynamic PageRank vector y(t) is the solution
of Eq. 5.3 [209]:

y(t) = exp
{
− (I− αP)t

}
y(0)

+ (1− α)
∫ t

0
exp
{
− (I− αP)(t− τ)

}
x(τ)dτ.

(5.4)

– 22 December 2022



74 Dynamic PageRank for Diffusion Graph Neural Networks

In this work, we consider the teleportation vector as a graph signal associated with
each node, which may change depending on neighbours, and t refers to the range of
spatial dependencies.

5.2.3 Dynamic PageRank with Forward Euler Solution

A simple and fast method for discretizing the general solution of dynamic PageR-
ank in Eq. 5.4 is to use the forward Euler method based on the first order Taylor
approximation [209]:

∂y(t)
∂t
≈ y(t + s)− y(t)

s
, (5.5)

where s > 0 refers to a small time step. To incorporate node features into represen-
tations, we consider y(t) = x(t) for all t and x(0) = x is an initial graph signal. We
have the following when s = 1:

y(t) = (1− α)y(t− 1) + αPy(t− 1). (5.6)

Then, we treat Eq. 5.6 as a simple iterative scheme by mapping the time step t
into a t-hop localization, which captures node features at different distances. This
builds connections for dynamic PageRank with the message passing neighbourhood
aggregation. Thus, we have the following representation matrix Y(t) that captures the
dynamics of graph signals in terms of the underlying graph structure, where Y(0) = X
and α ∈ [0, 1] is fixed or learnable:

Y(t) =
(
(1− α)I + αP

)
Y(t−1). (5.7)

The scheme defined by Eq. 5.7 has a close connection with the neighbourhood
feature aggregation in message-passing GNNs. Diffusion occurs from each node to its
neighbours along edges, following the transition probabilities of P. This means that
each node receives diffusion from all its neighbours. Thus, Y(t) combines the node
feature of each node from the previous iteration with the aggregated node feature
based on the topological structure (captured via P) in the neighbourhood, where α

controls the degree of structural bias injected from P. Note that due to the dynamics
of x(t) and the condition on y(t) = x(t), the scheme has departed from the standard
PageRank and its variants.

5.2.4 Dynamic PageRank with Invariable Feature Solution

Dynamic PageRank generalizes both personalised PageRank and heat kernel [7]. This
can be easily seen when we reduce the general solution of dynamic PageRank in
Eq. 5.4 to the following equation where x(t) = x is constant w.r.t. t,

y(t) = yppr + exp
{
− t(I− αP)

}
(y(0)− yppr). (5.8)
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Here, y(t) converges to yppr when t → ∞, while y(t) equals to yhk when α = 1.
Accordingly, we have the following discrete version of Eq. 5.8 which defines a dynamic
PageRank matrix Y(t) with Yppr = (1− α)(I− αP)−1X and Y(0) = X:

Y(t) = Yppr + exp{−t(I− αP)}(Y(0) − Yppr). (5.9)

To avoid the gradient vanishing or exploding during training, we apply the
row-wise normalization to normalize (1− α)(I− αP)−1 and exp{−t(I− αP)} in the
implementation.

In the scheme defined by Eq. 5.9, (Y(0) − Yppr) indicates how a node is different
from its neighbours w.r.t. node features. When the difference is small (often occurring
in homophilic graphs), dynamic PageRank behaves similarly to personalised PageRank
which assigns random walks with shorter paths higher coefficients and decays at a
fixed rate for long paths. This leverages the homophily in graphs. If the difference
is large (often occurring in heterophilic graphs), non-linearity is added via the heat
kernel exp{−t(I− αP)} to capture longer range dependencies for heterophilic graphs.

5.2.5 Learnable PageRank Transition

A transition matrix in standard PageRank encodes landing probabilities of random
walks within 1-hop neighbors of nodes. This has several limitations. First, restricting
landing probabilities to 1-hop neighbors loses the flexibility of modelling varying
landing probabilities of random walks within different ranges of neighbours. Second,
landing probabilities are pre-determined and fixed, thereby limiting the ability to
capture the structural properties of different graphs. To overcome these limitations, we
define a transition matrix P as a learnable weighted linear combination of transition
probabilities of different lengths. Formally, this is defined as a polynomial filter with
learnable coefficients φi for i = 1, . . . , k:

P = fφ(L) =
k

∑
i=1

φiLi, (5.10)

where L is a Laplacian matrix.
For simplicity of notations, we use ZFE or ZIF to refer to the set of dynamic

PageRank diffusion schemes defined by Eq. 5.7 and Eq. 5.9, respectively, in which
each P is substituted by a learnable polynomial filter defined by Eq. 5.10.

5.2.6 A New GNN with Deeper Single Layers

Our DPRN model supports a flexible multi-layer architecture. DPRN can stack
multiple layers of dynamic PageRank diffusion. Further, each layer of DPRN contains
dynamic PageRank diffusion that dynamically adapts diffusion coefficients to the
underlying structure of graphs.

Deeper single layers. Within each single layer in our GNN architecture, we incorpo-
rate multiple shallow layers, each corresponding to a dynamic PageRank diffusion
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scheme as in Eq. 5.7 or Eq. 5.9. Our “deeper single layer" significantly reduces model
parameters, in comparison with models with deep layers. Formally, we define the
layer-wise propagation rule as:

Z(l+1) =σ
( q

∑
i=1

(
Z(l)

i W(l)
i + b(l)i

))
, (5.11)

where l ≥ 1, σ refers to a non-linear activation function such as celu [270], W(t)
i ∈ Rz×r

is a trainable weight matrix, and b(t)i ∈ Rr is a trainable bias vector at the tth layer. Each
layer incorporates a number of dynamic PageRank diffusion schemes {Z1, . . . , Zq}
with q ≥ 1 and each Zi can be flexibly chosen from ZFE or ZIF. We initialize the
weights and biases by drawing their values from a uniform distribution U (a, b) with a
and b as the lower and upper bounds of the uniform distribution.

Discussion The design here brings in two important advantages over existing work:
(1) Weight parameter sharing - By choosing {Z1, . . . , Zq}, the model can support the
sharing of weight parameters in dynamic PageRank diffusion schemes across different
layers. This enables fast training. (2) Varying graph structures - different types of
dynamic PageRank diffusion schemes correspond to different types of filters: high-
pass, low-pass, and band-pass filters. They can be combined to learn varying graph
structures. This improves model generalization across different graphs.

5.2.7 Model Training

We train the coefficients of polynomial filters through optimizing an objective function
designed to achieve desired frequency responses. The other model parameters are
trained via the label information. We use the Nystrom approximation to obtain the
original frequency response since it is efficient than the eigenvalue decomposition.
Our main goal is to learn optimal filter coefficients that minimize the error between
original and desired frequency responses.

5.2.7.1 Nystrom Approximation

We apply the Nystrom approximation method [98] to compute the eigenvalues of a
graph efficiently, which reduces the time complexity from O(n3) to O(d2n), where
d << n. For a real symmetric matrix L and a basis matrix Q ∈ Rn×l with random
initialization and orthonormal columns as input, we compute a nearly optimal rank-
d approximation UFΛFUT

F of L where UF ∈ Rn×d and ΛF ∈ Rd×d, as shown in
Algorithm 1.

5.2.7.2 Training Coefficients

For a polynomial filter fφ with coefficients φ ∈ Rk, the graph frequency response is
defined as,

fφ(λj) =
k

∑
i=1

φiλ
i
j. (5.12)
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Algorithm 1: Nystrom approximation method

1 R1 ← LQ and R2 ← QTR1
2 [BT, B]← CholeskyFactorization(R2)
3 F← TriangularSolve(R1B−1)
4 [UF, Σ, VF]← SVD(F) and ΛF ← Σ2

Given a desired frequency response: ĥ : {λi}d
i=1 → R, we compute φ = (φ1, . . . , φk)

by solving a linear system:
ĥ(λ1)

ĥ(λ2)
...

ĥ(λd)

 =


λ1 λ2

1 . . . λk
1

λ2 λ2
2 . . . λk

2
...

...
...

...
λd λ2

d . . . λk
d




φ1

φ2
...

φk

 (5.13)

We consider d > k in our work. Eq. (5.13) is overdetermined and has no exact solution.
Thus, we learn φ by minimizing the error between the frequency response fφ(λj) and
the desired frequency response ĥ(λj):

ĥ(λj)−
k

∑
i=1

φiλ
i
j (5.14)

We recast the linear system in Eq. 5.13 as a convex constrained linear least-squares
problem for learning the coefficients φ:

minimizeφ ||ĥ−Mφ||22 (5.15)

subject to ||φ||2 ≤ ε,

where ε ∈ [1, ∞) and M ∈ Rd×k is a full-rank Vandermonde matrix with entries
Mj,i = λi

j. Empirically, we observe that a lower value of ε leads to efficient convergence
and better accuracy. Thus, we set ε = 1 in our experiments.

We apply a cut-off threshold λcut = λmin + β(λmax − λmin) where β ∈ [0, 1], and
λmax and λmin refer to the largest and smallest eigenvalues of L, respectively. For ideal
high-pass filters, ĥ(λi) = 1 if λi > λcut; 0 otherwise. Conversely, for ideal low-pass
filters, ĥ(λi) = 1 if λi ≤ λcut; 0 otherwise.

5.2.8 Connection to Existing Methods

In the following, we discuss how our diffusion schemes generalize the existing GNNs
in the literature such as GCN [122], GDC [125], APPNP [124], GPRGNN [49] and
ADC [291] as the special cases.

– 22 December 2022



78 Dynamic PageRank for Diffusion Graph Neural Networks

5.2.8.1 Connection to Spectral Convolution

The connection between spectral filters and graph diffusion has been explored in [125].
When truncating Eq. 5.1 to the top-k items, there is a direct correspondence between
the top-k truncation of graph diffusion and a polynomial filter of degree k.

The following theorem shows that our forward Euler solution has a close connec-
tion with spectral convolution.

Theorem 5. The scheme of the forward Euler solution (Eq. 5.7) is equivalent to the following
spectral convolution layer with φ0 = −1 and ψi = αφi:

Y(t) =
(

I +
k

∑
i=0

ψiLi
)

Y(t−1). (5.16)

Proof. We can reformulate Eq. 5.7 by applying Eq. 5.10 as follows,

Y(t) =
(
(1− α)L0 + α

k

∑
i=1

φiLi
)

Y(t−1)

=
(

I + (−α)L0 + α
k

∑
i=1

φiLi
)

Y(t−1)

=
(

I + α
k

∑
i=0

φiLi
)

Y(t−1),

(5.17)

where φ0 = −1. Let ψi = αφi. Then we can reinterpret the above equation as follows,

Y(t) =
(

I +
k

∑
i=0

ψiLi
)

Y(t−1). (5.18)

The proof is done.

GCN [122] is a first-order approximation of the spectral convolution, which is a
special case of our method. When k = 1, α = 1 and φ1 = 1, the above equation is
equivalent to the GCN layer.

5.2.8.2 Connection to Graph Diffusion

We discuss how our invariable feature solution relates to existing diffusion-based
GNN models. Let θ

ppr
i and θhk

i be diffusion coefficients for personalised PageRank and
heat kernel (defined in Section 5.2.1) and fφ be a learnable polynomial filter (defined
in Section 5.2.5). A dynamic PageRank vector defined in Eq. 5.6 can be written as an
infinite series [7] below, where ϑi = θ

ppr
i (1−∑i

j=0 θhk
j ) + αθhk

i ,

∞

∑
i=1

ϑi f i
φ(L). (5.19)
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GDC: Klicpera et al. [125] introduced Graph Diffusion Convolution (GDC)
based on generalized graph diffusion ∑∞

i=1 θiPi. From Eq. 5.19, we see that our
work can be considered as graph diffusion with coefficients ϑi = θi and a transition
matrix fφ(L) = P that is learnable via a polynomial filter. Further, as discussed in
Section 5.2.4, our work generalizes both personalised PageRank and heat kernel.

APPNP: Klicpera et al. [124] introduced a personalised PageRank GNN method,
which uses a pre-defined kernel with fixed diffusion coefficients at its convolutional
layers. We can see from Eq. 5.19 that our work generalizes APPNP when ϑi = θ

ppr
i

and fφ(L) = P.
GPRGNN: Chien et al. [49] proposed a generalized PageRank GNN method that

adaptively learns diffusion coefficients. They truncate the infinite sum of generalized
graph diffusion ∑∞

i=1 θiPi into a finite sum and consider both positive and negative
coefficients. When i = 1 and ϑi = 1, Eq. 5.19 is reduced to their generalized PageRank.

ADC: Zhao et al. [291] proposed Adaptive Diffusion Convolution (ADC), which
extends GDC to adaptively learn the neighborhood size for feature aggregation. They
replace GNNs’ discrete feature propagation function with a continuous heat kernel
and use the neighborhood radius as a continuous substitute for the hop number in
models.

5.3 Theoretical Analysis

In this section, we first prove that a diffusion GNN with the forward Euler method
can guarantee the convergence in Section 5.3.1. Note that, we omit the convergence
analysis of a diffusion GNN with invariable feature method since its teleportation
vector is constant w.r.t time, and then, we cannot view it as a diffusion PDE. Then we
provide the complexity analysis of our diffusion GNNs in Section 5.3.2.

5.3.1 Convergence Analysis

Generally, dynamic PageRank does not guarantee the convergence [209]. However, we
theoretically show that our DPRN Forward Euler solution is guaranteed to converge
due to our design choices on PageRank and teleportation vectors as well as the way
of integrating polynomial filters.

Let M =
(
(1− α)I + αP

)
and d = D1n, where 1n is a n-dimensional vector of

ones. Since M is a real symmetric matrix, it has real eigenvalues λ1 ≥ λ2 ≥ · · · ≥ λn.
The following theorems hold for dynamic PageRank diffusion schemes in ZFE.

Theorem 6. When t→ ∞, the scheme defined by Eq. 5.7 converges to a stationary distribution
π̃ : V → Rn with π̃(u) = d(u)

∑v∈V d(v) . The convergence rate for the teleportation distribution of
a node v to jump to another node u is bounded by

||Y(t)(u)− π̃(u)|| ≤
√

d(u)
d(v)

λt
2||x||, (5.20)
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where Y(t)(u) refers to the entry of Y(t) for node u and x is the graph signal associated with
node v.

Proof. Let P be a transition matrix of a connected graph, where all eigenvalues of P

lie between 1 and -1, and M =
(
(1− α)I + αP

)
. Since M is a real symmetric matrix,

M has a set of real eigenvalues λ1 ≥ λ2 ≥ · · · ≥ λn and the corresponding set of
orthonormal eigenvectors µ1, . . . , µn. Then, we transform the scheme defined by Eq.
5.7 to the form Y(t) = MtY(0). Due to Y(0) = X where X is a graph signal matrix,
Y(t) = MtY(0) is guaranteed to converge when t→ ∞.

Below we show how to obtain the bound for the convergence rate. Let Mt =

∑n
i=0 λt

i µiµ
T
i , where λi and µi refer to the eigenvalues and orthonormal eigenvectors of

M, respectively. Let ωi =
〈

D−1/2x, µi

〉
, D−1/2x = ∑n

i=1 ωiµi, and x = ∑n
i=1 ωiD1/2µi.

We can obtain ω1 as follows,

ω1 =
〈

D−1/2x, µ1

〉
=
(

D−1/2x
)T
√

d
||
√

d||
=

xTD−1/2
√

d
||
√

d||
=

1

||
√

d||
(5.21)

Let Y(t)(u) = eT
u Y(t), where eT

u is an elementary unit vector in the direction u. We can
compute the u-th entry of Y(t)(u) as follows,

eT
u Y(t) =eT

u Mtx = eT
u Mt

n

∑
i=1

ωiD1/2µi (5.22)

Now we apply the eigenvalue decomposition for M. Since µis are an orthonormal
basis, we can reinterpret the above equation as follows,

eT
u Y(t) =eT

u

n

∑
i=1

λt
i ωiD1/2µi

=eT
u

(
ω1D1/2µ1 +

n

∑
i=2

λt
i ωiD1/2µi

)
=eT

u

(D1/2µ1

||
√

d||
+

n

∑
i=2

λt
i ωiD1/2µi

)
=eT

u

( 1

||
√

d||
D1/2

√
d

||
√

d||
+

n

∑
i=2

λt
i ωiD1/2µi

)
=eT

u

( d
||
√

d||1
+

n

∑
i=2

λt
i ωiD1/2µi

)
=eT

u π̃ + eT
u

n

∑
i=2

λt
i ωiD1/2µi.

(5.23)

Since π̃(u) = eT
u π̃, we can obtain following equation,

Y(t)(u)− π̃(u) =eT
u

n

∑
i=2

λt
i ωiD1/2µi (5.24)
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If we begin the walk at node v, then we have ||D−1/2x|| = ||x||√
d(v)

. Since µis are

orthornormal and λi ≤ λ2 for i ≥ 2, we can derive the following upper bound,

||Y(t)(u)− π̃(u)|| =||eT
u D1/2

n

∑
i=2

λt
i ωiµi||

=||
√

d(u)
n

∑
i=2

λt
i ωiµi||

≤
√

d(u)λt
2||

n

∑
i=1

ωiµi||

≤
√

d(u)
d(v)

λt
2||x||

(5.25)

In our work, t corresponds to the number of hops in each single layer. Thus,
when t→ ∞, the power of these eigenvalues will diminish and close to 0 because the
absolute value of every eigenvalue is strictly less than 1. Accordingly, when t→ ∞,
the scheme defined by Eq. 5.7 converges to a stable distribution π̃. This means that
node representations become stable when t→ ∞. As the stationary distribution π̃(u)
is proportional to node degrees, by Eq. 5.20, nodes with higher degrees converge
faster than nodes with lower degrees. The convergence rate depends on λ2. That is,
the convergence is slower when λ2 is larger.

For dynamic PageRank diffusion schemes in ZFE in which P is a learnable polyno-
mial filter, the following theorem holds. This is because polynomial filters in our work
are Finite Impulse Response (FIR) filters, which are known to be inherently stable
[152].

Theorem 7. When t→ ∞, dynamic PageRank diffusion schemes in ZFE are guaranteed to
converge.

Proof. In our work, we replace a random walk transition matrix with a learnable
polynomial filter as defined in Eq. 5.10, which is based on the normalized adjacency
matrix L. Such a polynomial filter is known to be inherently stable in the frequency
domain [152]. After replacing with such a polynomial filter, the matrix M is still a
real symmetric and has a set of real eigenvalues λ̃1 ≥ λ̃2 ≥ · · · ≥ λ̃n and orthonormal
eigenvectors µ̃1, . . . , µ̃n. Thus, we can prove that the dynamic PageRank diffusion
schemes in ZFE guarantee the convergence to a stationary distribution based on
Theorem 6.

5.3.2 Complexity Analysis

Both of our solutions are efficient because their time complexity is linear w.r.t. the
number of edges in a graph. Concretely, the time complexity of our solutions is
O(z(nr + tm) + tmk) and its memory complexity is O(tm), where n and m are the
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numbers of vertices and edges in a graph, respectively, t refers to the number of layers,
z and r are the dimensions of input and output feature vectors of deeper single layer,
respectively, and k is the dimension of coefficient vector. In our work, t and k are
very small. The Nystrom approximation has the time complexity O(d2n). As it is
performed only once to obtain the eigenvalues of the L, it does not affect the time
complexity of layer-wise propagation in Eq. 5.11. In our experiments, t = 2 for the
forward Euler, t = 1 for the invariable feature, and k ≤ 10.

The model parameters (weights and biases) are shared over graphs in a single
layer and the parameters of polynomial filters are shared across different layers. The
total number of parameters is:(

∑
q
i=1(#model params + #filter params)

)
×depth.

Note that #filter params << #model params and the number of polynomial filter
parameters is very small (less than 20). The depth of our model is set to 2 in our
experiments.

5.4 Experimental Setup

To empirically verify the effectiveness of our work, we have evaluated DPRN models
with different benchmark datasets to compare against the state-of-the-art methods. We
use DPRN-FE and DPRN-IF to refer to our GNN models, each of which has two layers
with diffusion schemes from ZFE and ZIF, respectively. We conduct experiments to
answer the following questions:

Q1. How well our models perform against the state-of-the-art baselines on semi-
supervised node classification task?

Q2. How well our models perform on graphs with varying degrees of homophily
on fully-supervised node classification task?

Q3. How robust our models are w.r.t. the model depth on semi-supervised node
classification task?

Q4. How well can teleportation parameter α impact on the mode performance?

Q5. How well can learnable polynomial filtering and dynamic PageRank techniques
affect the performance of our models?

5.4.1 Datasets

For semi-supervised node classification, we consider three benchmark datasets, which
include three citation network datasets Cora, Citeseer, and Pubmed [223]. We also use
two large graph datasets (ogbn-arxiv and ogbn-proteins) from Open Graph Benchmark
(OGB) [108] to evaluate the node classification task.

For fully-supervised node classfication, we consider eleven benchmark datasets,
including three citation graphs Cora, Citeseer, Pubmed [122, 49], two Amazon co-
purchase graphs Photo and Computers [49], three webpage graphs from the WebKB
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dataset Texas, Cornell and Wisconsin [192], an Actor co-occurrence graph [192], and
two Wikipedia graphs Squirrel and Chameleon [192].

Table 5.1 presents some statistics for all the datasets used in our experiments.

Dataset Homophily Ratio #Nodes #Edges #Classes #Features
Cora 0.83 2,708 5,429 7 1,433
Citeseer 0.71 3,327 4,732 6 3,703
Pubmed 0.79 19,717 44,338 3 500
Photo 0.45 7,650 1,19,081 8 745
Computers 0.27 13,752 2,45,861 10 767
Chameleon 0.25 2,277 36,101 5 2,325
Actor 0.24 7,600 33,544 5 931
Squirrel 0.22 5,201 217,073 5 2,089
Wisconsin 0.16 251 499 5 1,703
Cornell 0.11 183 295 5 1,703
Texas 0.06 183 309 5 1,703
ogbn-arxiv - 169,343 1,166,243 40 128
ogbn-proteins - 132,534 39,561,252 2 8

Table 5.1: Dataset statistics.

The homophily ratio η ∈ [0, 1] measures the homophily level of a graph, which is
computed following [192]:

η =
1
n ∑

u∈V

|{v ∈ N (u)|l(v) = l(u)}|
|N (u)| , (5.26)

where l(u) and N (u) refer to the label and the neighbors of a node u, respectively.
A graph is strongly homophilic when η → 1, and conversely, a graph is strongly
heterophilic when η → 0.

5.4.2 Baseline Methods

We compare our DPRN-IF and DPRN-FE models with the state-of-the-art methods in
semi-supervised node classification (Section 5.4.2.1), fully-supervised node classifica-
tion (Section 5.4.2.2), and node classification on OGB datasets (Section 5.4.2.3).

5.4.2.1 Semi-supervised Node Classification with Standard Data Splittings

In the experiments for semi-supervised node classification (Section 5.5.1), we com-
pare performance against 13 baseline methods: graph convolutional networks (GCN)
[122], graph attention networks (GAT) [247], fast learning with graph convolutional
networks (FastGCN) [43], simple graph convolution networks (SGCN) [266], ARMA
convolutional networks (ARMA) [20], higher-order graph convolutional with sparsi-
fied neighborhood networks (MixHop) [2], deep graph infomax (DGI) [248], simple
spectral graph convolution networks (SSGC) [296], graph diffusion convolution (GDC)
[125], approximate personalised propagation of neural predictions (APPNP) [124],
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adaptive universal generalized pagerank graph neural network (GPRGNN) [49],
explicit pairwise factorized graph neural network (EPFGNN) [259], graph neural
diffusion (GRAND) [38], and node classification with pairwise Markov random fields
(LCM) [256].

5.4.2.2 Fully-supervised Node Classification with Random Data Splittings

We consider two different experimental setups to evaluate DPRN for fully-supervised
node classification:

(1) We use the experimental setup as used in [49, 192]. We compare performance
against 12 baseline methods: graph convolutional networks (GCN) [122], graph
attention networks (GAT) [247], approximate personalised propagation of neural
predictions (APPNP) [124], jumping knowledge networks (JKNet) [274], geomet-
ric graph convolutional networks (Geom-GCN) [192], adaptive spectral filters
with GAT (ASGAT-Cheb and ASGAT-ARMA) [143], non-local graph neural
networks (NLMLP and NLGCN) [153], adaptive universal generalized pager-
ank graph neural network (GPRGNN) [49], graph spectral filters via bernstein
approximation (BernNet) [103], and PDE-GCN [72].

(2) We use the experimental setup as used in [297]. We also compare the perfor-
mance of our models against six baseline methods: GraphSAGE [99], MixHop
[2], H2GCN [297], GPRGNN [49], MLP+GCN [161], and GRAND [38]. The
results are presented in Tables 5.8 and 5.9.

5.4.2.3 Node Classification with OGB Datasets

In the experiments for OGB node classification, we compare the performance of
DPRN-IF and DPRN-FE against the baseline methods: GCN, GAT, GraphSAGE [108]
and GRAND [38].

5.4.3 Hyperparameter Settings

The hyperparameters of DPRN-IF and DPRN-FE are selected on the classification
accuracy of the validation set by applying the randomized search strategy.

Our experiments for semi-supervised node classification (Section 5.5.1) and model
depth (Section 5.5.4) are conducted on the standard splits following [122, 108]. For
all experiments on the standard splits, our models are trained 200 epochs using
the Adam optimizer [120]. Tables 5.2 and 5.3 provide the detailed information for
the hyperparameter settings on the standard splits for our models DPRN-IF and
DPRN-FE, respectively.

Our experiments for fully-supervised node classification (Section 5.5.3) and ab-
lation studies (Section 5.5.6) are conducted on the random splits following [49, 192].
Specifically, each dataset is randomly split into 60%, 20% and 20% for training, valida-
tion and testing, respectively. We evaluate our model over 10 random splits with 200
training epochs for Cora, Citeseer, and Pubmed datasets and 1000 training epochs for
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Model Weight Decay Learning Rate #Hidden Dim Dropout [k1, k2] βl βh α #Epochs
Cora 9e-3 0.009 16 0.9 [2, 5] 9e-1 9e-2 0.75 200
Citeseer 9e-3 0.05 16 0.9 [2, 5] 9e-1 1e-2 0.65 200
Pubmed 9e-3 0.009 16 0.9 [2, 6] 9e-1 9e-2 0.75 200
ogbn-arxiv 9e-3 0.009 64 0.9 [2, 5] 9e-1 9e-2 0.75 500
ogbn-proteins 9e-3 0.009 128 0.7 [2, 5] 9e-1 9e-2 0.65 500

Table 5.2: Hyperparameter settings for semi-supervised node classification with the standard
splits for DPRN-IF.

Model Weight Decay Learning Rate #Hidden Dim Dropout [k1, k2] βl βh α #Epochs
Cora 9e-3 0.009 16 0.9 [2, 5] 5e-1 6e-1 0.68 200
Citeseer 9e-3 0.009 16 0.7 [2, 5] 4e-1 1e-1 0.68 200
Pubmed 9e-3 0.009 64 0.9 [2, 5] 5e-1 6e-1 0.70 200
ogbn-arxiv 9e-3 0.009 64 0.9 [2, 5] 5e-1 6e-1 0.70 500
ogbn-proteins 9e-3 0.009 128 0.7 [2, 5] 5e-1 6e-1 0.75 500

Table 5.3: Hyperparameter settings for semi-supervised node classification with the standard
splits for DPRN-FE.

the other datasets, and the Adam optimizer [120]. We take the average of the results
and provide the mean accuracy with 95 % confidence interval as the evaluation metric
in the same way as used in [49]. We also evaluate the random data splits as suggested
in [297], where each dataset is split into 48%, 32%, and 20% training, validation, and
testing, respectively. For both settings, we use the same hyperparameter settings as in
Table 5.4 and Table 5.5 for our models DPRN-IF and DPRN-FE, respectively.

For our GNN models, DPRN-FE and DPRN-IF, each of them has two layers with
diffusion schemes from ZEF and ZIF, respectively. Further, we consider two diffusion
schemes for each layer of these models. In Tables 5.2-5.3 and Tables 5.4-5.5, the
parameters βl and βh refer to the cut-off thresholds for two diffusion schemes used in
each layer in these models. More specifically, βl corresponds to a low-pass diffusion
scheme that has a polynomial filter of degree k1. Similarly, βh corresponds to a
high-pass diffusion scheme that has a polynomial filter of degree k2. It is also possible
to have other types of diffusion schemes such as band-pass diffusion schemes.

5.5 Results and Discussion

In this section, we present our experimental results to answer the aforementioned
questions in Section 5.4.

5.5.1 Comparison with Semi-supervised Node Classification

In this section, we evaluate the performance of DPRN-IF and DPRN-FE on semi-
supervised node classification task to answer the question Q1. Table 5.6 summarizes
the results for Cora, Citeseer, and Pubmed datasets.

DPRN-IF outperforms all the baselines on Cora and Citeseer and performs com-
parably to GRAND on Pubmed. Generally, DPRN-FE has worse performance than
DPRN-IF, although it still outperforms the baselines on Cora. Particularly, we can
see that DPRN-IF improves upon best result by a margin of 1.1% and 0.4% on the
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Model Weight Decay Learning Rate #Hidden Dim Dropout [k1, k2] βl βh α #Epochs
Cora 9e-3 0.009 64 0.9 [2, 5] 9e-1 9e-2 0.60 200
Citeseer 9e-3 0.09 64 0.9 [5, 6] 9e-1 9e-2 0.75 200
Pubmed 9e-3 0.009 64 0.9 [2, 5] 9e-1 9e-2 0.60 200
Photo 5e-4 0.009 16 0.9 [2, 6] 9e-1 9e-2 0.60 1000
Computers 5e-4 0.009 16 0.9 [2, 6] 9e-1 9e-2 0.60 1000
Actor 5e-4 0.09 16 0.9 [2, 5] 9e-1 9e-2 0.30 1000
Wisconsin 9e-3 0.009 16 0.9 [2, 6] 9e-1 9e-2 0.15 1000
Cornell 5e-5 0.009 512 0.9 [2, 5] 4e-1 9e-2 0.05 1000
Texas 5e-4 0.009 2048 0.9 [2, 5] 9e-1 9e-2 0.19 1000
Chameleon 9e-4 0.01 64 0.9 [9, 7] 9e-1 1e-2 0.90 1000
Squirrel 9e-4 0.01 16 0.9 [2, 5] 9e-1 1e-2 0.90 1000

Table 5.4: Hyperparameter settings for semi-supervised node classification with the random
splits for DPRN-IF.

Model Weight Decay Learning Rate #Hidden Dim Dropout [k1, k2] βl βh α #Epochs
Cora 9e-3 0.009 16 0.9 [2, 5] 5e-1 6e-1 0.60 200
Citeseer 9e-3 0.009 256 0.9 [2, 5] 5e-1 6e-1 0.65 200
Pubmed 9e-3 0.009 64 0.9 [2, 5] 5e-1 6e-1 0.70 200
Photo 1e-4 0.009 16 0.9 [2, 5] 5e-1 6e-1 0.30 1000
Computers 5e-4 0.009 16 0.9 [2, 5] 5e-1 6e-1 0.30 1000
Actor 5e-4 0.009 16 0.9 [2, 5] 9e-1 9e-2 0.2 1000
Wisconsin 1e-3 0.009 512 0.9 [2, 5] 9e-1 9e-2 0.070 1000
Cornell 1e-3 0.009 512 0.9 [2, 5] 9e-1 9e-2 0.072 1000
Texas 2e-3 0.009 1024 0.9 [2, 5] 9e-1 4e-2 0.064 1000
Chameleon 1e-7 0.001 1024 0.6 [2, 5] 9e-1 2e-1 0.99 1000
Squirrel 1e-7 0.001 1024 0.6 [2, 5] 9e-1 2e-1 0.99 1000

Table 5.5: Hyperparameter settings for semi-supervised node classification with the random
splits for DPRN-FE.

datasets Cora and Citeseer, respectively. Similarly, we can see that DPRN-FE improves
upon best result by a margin of 0.3% on Cora.

5.5.2 Comparison with Node Classification on OGB Datasets

In this section, we evaluate the performance of DPRN-IF and DPRN-FE on OGB node
classification task to answer the question Q1. Table 5.7 shows the results for these
large graph datasets. Specifically, DPRN-IF improves upon GAT by a margin of 0.06%
on ogbn-arxiv. Moreover, we can see that DPRN-IF performs comparably to GAT on
ogbn-proteins. For both datasets, DPRN-FE has worse performance than DPRN-IF.

5.5.3 Comparison with Fully-supervised Node Classification

In this section, we evaluate the performance of DPRN-IF and DPRN-FE on fully-
supervised node classification task to answer the question Q2. Table 5.11 and Table
5.10 show the results for the first experimental setup of this setting (i.e., randomly
splits datasets into 60%, 20% and 20% for training, validation and testing).

From Table 5.11 and 5.10, we can also see that DPRN-FE and DPRN-IF outperform
the state-of-the-art baselines on most of homophilic and heterophilic graphs. DPRN-
FE outperforms the baseline methods over almost all datasets except Citeseer, Actor,
Chameleon and Squirrel. DPRN-IF has generally achieved comparable performance as
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Model Cora Citeseer Pubmed
GCN 81.5 70.3 79.0
GAT 83.0 ± 0.70 72.5 ± 0.70 79.0 ± 0.30
FastGCN 79.8 ± 0.30 68.8 ± 0.60 77.4 ± 0.30
ARMA 83.4 ± 0.60 72.5 ± 0.40 78.9 ± 0.30
MixHop 81.8 ± 0.62 71.4 ± 0.81 80.0 ± 1.10
DGI 82.3 ± 0.60 71.8 ± 0.70 76.8 ± 0.60
SSGC 83.5 ± 0.02 73.6 ± 0.09 80.2 ± 0.02
GDC 83.3 ± 0.20 72.2 ± 0.30 78.6 ± 0.40
APPNP 83.3 ± 0.56 71.4 ± 0.60 80.1 ± 0.24
GPRGNN 83.6 ± 0.47 71.5 ± 0.29 79.7 ± 0.27
EPFGNN 83.5 73.1 80.1
GRAND 82.9 ± 0.70 73.6 ± 0.30 81.0 ± 0.40
LCM 83.3 ± 0.70 72.2 ± 0.50 77.0 ± 1.90
DPRN-IF (ours) 84.7 ± 0.70 74.0 ± 1.90 80.8 ± 1.80
DPRN-FE (ours) 83.9 ± 1.00 73.5 ± 1.50 80.3 ± 1.98

Table 5.6: Classification accuracy (%) averaged over 10 runs for semi-supervised node classifi-
cation. Model ogbn-arxiv ogbn-proteins

GCN 71.74 ± 0.29 72.51 ± 0.35
GAT 73.65 ± 0.11 78.63 ± 1.62
GraphSAGE 71.49 ± 0.27 77.68 ± 0.20
GRAND 72.23 ± 0.20 -
DPRN-IF (ours) 73.71 ± 0.95 78.03 ± 1.96
DPRN-FE (ours) 72.37 ± 0.93 77.89 ± 1.87

Table 5.7: Classification accuracy (%) averaged over 10 runs for OGB node classification.

DPRN-FE. Particularly, for homophilc graphs in Table 5.10, we can see that DPRN-IF
improves upon best result by a margin of 1.53% and 0.87% on the datasets Cora
and Pubmed, respectively. Similarly, we can see that DPRN-FE improves upon best
result by a margin of 1.59%, 0.04%, 0.50% and 0.12% on Cora, Pubmed, Photo and
Computers, respectively. Specifically, for heterophilic graphs in Table 5.11, we can see
that DPRN-IF improves upon the best result by a margin of 0.03%, 0.65%, 1.35% and
0.27% on Actor, Cornell, Texas and Chameleon, respectively. Similarly, we can see that
DPRN-FE improves upon the best result by a margin of 1.99%, 1.31% and 0.53% on
Wisconsin, Cornell and Texas, respectively.

Table 5.8 and Table 5.9 show the results for the second experimental setup (i.e.,
randomly splits datasets into 48%, 32% and 20% for training, validation and testing).
For homophilic graphs in Table 5.8, DPRN-FE outperforms all the baselines on Cora
and Citeseer and performs comparably to MLP+GCN on Pubmed. Most of the
datasets, DPRN-IF has worse performance than DPRN-FE except Pubmed, although
it still outperforms the baselines on Citeseer. Particularly, we can see that DPRN-IF
improves upon best result by a margin of 0.66% on Citeseer. We can also see that
DPRN-FE improves upon the best result by a margin of 0.05% and 1.92% on Cora and
Citeseer, respectively. For heterophilic graphs in Table 5.9, DPRN-IF and DPRN-FE
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Model Cora Citeseer Pubmed
GraphSAGE 86.90 ± 1.04 76.04 ± 1.30 88.45 ± 0.50
MixHop 87.61 ± 0.85 76.26 ± 1.33 85.31 ± 0.61
H2GCN 86.92 ± 1.37 77.07 ± 1.64 89.40 ± 0.34
GPRGNN 87.95 ± 1.18 77.13 ± 1.67 87.54 ± 0.38
MLP+GCN 87.01 ± 1.35 76.35 ± 1.85 89.77 ± 0.39
GRAND 87.36 ± 0.96 76.46 ± 1.77 89.02 ± 0.51
DPRN-IF (ours) 87.38 ± 0.56 77.79 ± 0.86 89.70 ± 1.27
DPRN-FE (ours) 88.00 ± 0.37 79.05 ± 0.59 88.71 ± 1.81

Table 5.8: Classification accuracy (%) averaged over 10 runs for fully-supervised node classifi-
cation on homophilic datasets.

Model Actor Wisconsin Cornell Texas Chameleon Squirrel
GraphSAGE 34.23 ± 0.99 81.18 ± 5.56 75.95 ± 5.01 82.43 ± 6.14 58.73 ± 1.68 41.61 ± 0.74
MixHop 32.22 ± 2.34 75.88 ± 4.90 73.51 ± 6.34 77.84 ± 7.73 60.50 ± 2.53 43.80 ± 1.48
H2GCN 35.86 ± 1.03 86.67 ± 4.69 82.16 ± 4.80 84.86 ± 6.77 57.11 ± 1.58 36.42 ± 1.89
GPRGNN 34.63 ± 1.22 82.94 ± 4.21 80.27 ± 8.11 78.38 ± 4.36 46.58 ± 1.71 31.61 ± 1.24
MLP+GCN 36.24 ± 1.09 86.43 ± 4.00 84.82 ± 4.87 83.60 ± 6.04 68.04 ± 1.86 54.48 ± 1.11
GRAND 35.62 ± 1.01 79.41 ± 3.64 82.16 ± 7.09 75.68 ± 7.25 54.67 ± 2.54 40.05 ± 1.50
DPRN-IF (ours) 40.64 ± 0.54 86.88 ± 1.53 91.52 ± 0.89 90.98 ± 1.79 65.51 ± 1.68 45.93 ± 1.91
DPRN-FE (ours) 38.65 ± 0.43 86.91 ± 0.64 91.76 ± 1.70 90.39 ± 1.05 63.31 ± 2.51 43.54 ± 2.21

Table 5.9: Classification accuracy (%) averaged over 10 runs for fully-supervised node classifi-
cation on heterophilic datasets.

outperforms the baseline methods over on most of datasets except Chameleon and
Squirrel. Specifically, DPRN-IF outperforms the best result by a margin of 4.40%,
0.21%, 6.70% and 6.12% on Actor, Wisconsin, Cornell and Texas, respectively. Similarly,
DPRN-FE outperforms the best result by a margin of 2.41%, 0.24%, 6.94% and 5.53%
on Actor, Wisconsin, Cornell and Texas, respectively.
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Model Cora Citeseer Pubmed Photo Computers

H
om

op
hi

ly
GCN 86.87 ± 0.26 79.28 ± 0.25 86.97 ± 0.12 88.26 ± 0.73 83.32 ± 0.33
GAT 87.52 ± 0.24 80.56 ± 0.31 86.64 ± 0.11 90.94 ± 0.68 83.32 ± 0.39
APPNP 88.10 ± 0.23 80.50 ± 0.26 89.15 ± 0.13 88.51 ± 0.31 85.32 ± 0.37
JKNet 86.97 ± 0.27 77.69 ± 0.35 87.38 ± 0.13 87.70 ± 0.70 77.80 ± 0.97
Geom-GCN 85.40 ± 0.26 76.42 ± 0.37 88.51 ± 0.08 - -
ASGAT-Cheb 87.50 ± 0.50 79.30 ± 0.60 89.90 ± 0.90 - -
ASGAT-ARMA 87.40 ± 1.10 79.20 ± 1.40 88.30 ± 1.00 - -
NLMLP 76.90 ± 1.80 73.40 ± 1.90 88.20 ± 0.50 - -
NLGCN 88.10 ± 1.00 75.20 ± 1.40 89.00 ± 0.50 - -
GPRGNN 88.65 ± 0.28 80.01 ± 0.28 89.18 ± 0.15 93.85 ± 0.28 86.85 ± 0.25
BernNet 88.52 ± 0.95 80.09 ± 0.79 88.48 ± 0.41 93.63 ± 0.35 87.64 ± 0.44
PDE-GCN 88.60 78.48 89.93 - -

DPRN-IF (ours) 90.18 ± 0.36 80.39 ± 0.73 90.80 ± 1.96 93.40 ± 0.41 86.11 ± 0.21
DPRN-FE (ours) 90.24 ± 0.42 79.84 ± 0.48 89.97 ± 1.53 94.35 ± 0.11 87.76 ± 1.77

Table 5.10: Classification accuracy (%) averaged over 10 runs for fully-supervised node
classification on homophilic datasets. The results of GCN, GAT, APPNP, JKNet, Geom-GCN
and GPRGNN are taken from [49] and the others are from their original papers.

Model Actor Wisconsin Cornell Texas Chameleon Squirrel

H
et

er
op

hi
ly

GCN 30.59 ± 0.23 - 66.72 ± 1.37 75.16 ± 0.96 60.96 ± 0.78 45.66 ± 0.39
GAT 35.98 ± 0.23 - 76.00 ± 1.01 78.87 ± 0.86 63.90 ± 0.46 42.72 ± 0.33
APPNP 38.86 ± 0.24 - 91.80 ± 0.63 91.18 ± 0.70 51.91 ± 0.56 34.77 ± 0.34
JKNet 33.41 ± 0.25 - 66.73 ± 1.73 75.53 ± 1.16 62.92 ± 0.49 44.72 ± 0.48
Geom-GCN 31.81 ± 0.24 - 55.59 ± 1.59 58.56 ± 1.77 61.06 ± 0.49 38.28 ± 0.27
ASGAT-Cheb - 86.30 ± 3.70 82.70 ± 8.30 85.10 ± 5.70 66.50 ± 2.80 55.80 ± 3.20
ASGAT-ARMA - 84.70 ± 4.40 83.20 ± 5.50 79.50 ± 7.70 65.80 ± 2.20 51.40 ± 3.20
NLMLP 37.90 ± 1.30 87.30 ± 4.30 84.90 ± 5.70 85.40 ± 3.80 50.70 ± 2.20 33.70 ± 1.50
GPRGNN 39.30 ± 0.27 - 91.36 ± 0.70 92.92 ± 0.61 67.48 ± 0.40 49.93 ± 0.53
BernNet 41.79 ± 1.01 - 92.13 ± 1.64 93.12 ± 0.65 68.29 ± 1.58 51.35 ± 0.73
PDE-GCN - 91.76 89.73 93.24 66.01 -
DPRN-IF (ours) 41.82 ± 0.78 88.37 ± 2.09 92.78 ± 1.67 94.59 ± 0.85 68.56 ± 1.92 50.69 ± 1.75
DPRN-FE (ours) 40.03 ± 0.54 93.75 ± 0.79 93.44 ± 1.26 93.77 ± 1.42 65.00 ± 2.31 47.31 ± 2.01

Table 5.11: Classification accuracy (%) averaged over 10 runs for fully-supervised node
classification on heterophilic datasets. The results of GCN, GAT, APPNP, JKNet, Geom-GCN
and GPRGNN are taken from [49] and the others are from their original papers.

5.5.4 Comparison with Model Depth

In this section, we benchmark the performance of our models by increasing the number
of convolutional layers to answer the question Q3. Table 5.12 summarizes the results
of semi-supervised node classification with the standard splits on the datasets Cora,
Citeseer and Pubmed, and the same hyperparameter setting as in Section 5.5.1. When
increasing the model depth, our models achieve the best performance with a two-layer
architecture, while the other models either suffer from the oversmoothing issues (e.g.,
GCN and SGCN) or achieve their best performance with a much deeper architecture
(e.g., JKNet, SSGC, and PDE-GCN). This is because our models incorporate dynamics
of PageRank and learnable polynomial filters, which associate only a small number of
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parameters in comparison with weights and biases in each layer and such parameters
are also shared across layers.

Dataset #Layers GCN JKNet SGCN SSGC PDE-GCN DPRN-IF (ours) DPRN-FE (ours)

Cora

2 81.1 - 80.8 76.2 82.0 84.7 83.9
4 80.4 80.2 81.5 79.8 83.6 83.5 83.3
8 69.5 80.7 80.7 82.2 84.0 83.0 82.5
16 64.9 80.2 79.0 83.5 84.2 82.9 82.1
32 60.3 81.1 75.9 82.6 84.3 82.5 81.5
64 28.7 71.5 66.8 82.0 84.3 82.0 81.1

Citeseer

2 70.8 - 71.9 70.7 74.6 74.0 73.5
4 67.6 68.7 72.6 72.6 75.0 73.5 72.8
8 30.2 67.7 73.1 72.7 75.2 73.1 72.4
16 18.3 69.8 72.2 73.6 75.5 72.8 72.0
32 25.0 68.2 70.6 74.0 75.6 72.3 71.5
64 20.0 63.4 69.2 73.4 75.5 72.0 71.1

Pubmed

2 79.0 - 79.2 78.5 79.3 80.8 80.3
4 76.5 78.0 79.7 79.2 80.6 80.2 79.3
8 61.2 78.1 78.4 79.7 80.1 79.7 78.9
16 40.9 72.6 76.4 80.2 80.4 79.1 78.2
32 22.4 72.4 71.6 79.1 80.2 78.5 77.8
64 35.3 74.5 68.6 78.1 80.3 77.7 77.1

Table 5.12: Classification accuracy (%) averaged over 10 runs for semi-supervised node
classification w.r.t model depth.

5.5.5 Comparison with Varying Teleportation Parameter

In this section, we analyze the impact of teleportation parameter α on the model per-
formance by varying α values to answer the question Q4. The results are summarized
in Tables 5.13 and 5.14.

For highly homophilic graphs such as Cora, Citeseer and Pubmed, higher α values
such as 0.6-0.7 provide better performance; whereas for highly heterophilic graphs
such as Texas, Cornell and Wisconsin, lower α values such as 0.1-0.2 yield better
performance. For the graphs in the middle, there is no clear trend for choosing
α values in relating to their homophily ratios. However, we notice that, generally,
heterophilic graph datasets can be divided into two categories:

(1) datasets in which nodes within a local neighborhood provide more noise than
useful information (Wisconsin, Cornell, Texas and Actor) - these datasets often
achieve good performance with a lower α value.

(2) datasets in which informative nodes may locate in both a local neighborhood
and distant locations (Chameleon and Squirrel) - these datasets often achieve
good performance with a very high α value such as 0.9 in our experiments.
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Dataset 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
Cora 79.65 ± 0.29 83.46 ± 0.44 86.84 ± 0.41 88.21 ± 0.37 89.65 ± 0.39 90.29 ± 0.37 89.88 ± 0.45 89.16 ± 0.57 88.40 ± 0.33
Citeseer 74.37 ± 0.58 75.60 ± 0.76 77.05 ± 0.39 78.13 ± 0.48 79.15 ± 0.47 79.61 ± 0.48 79.39 ± 0.23 79.24 ± 0.32 79.08 ± 0.40
Pubmed 82.66 ± 1.58 84.37 ± 0.98 86.98 ± 1.26 88.01 ± 0.71 88.61 ± 0.98 89.32 ± 1.63 89.97 ± 1.53 89.00 ± 1.66 88.31 ± 1.57
Photo 91.98 ± 0.21 93.25 ± 0.25 93.82 ± 0.23 93.84 ± 0.23 93.81 ± 0.12 93.46 ± 0.36 92.68 ± 0.49 92.14 ± 0.34 91.43 ± 0.19
Computers 84.56 ± 0.44 84.86 ± 0.59 85.32 ± 0.68 85.76 ± 0.17 85.61 ± 0.38 85.28 ± 0.61 84.96 ± 0.32 84.75 ± 0.76 84.31 ± 0.93
Chameleon 48.32 ± 1.34 50.67 ± 0.81 52.39 ± 1.66 54.63 ± 0.92 58.35 ± 1.50 60.23 ± 1.67 62.32 ± 0.98 63.67 ± 0.88 64.91 ± 0.91
Actor 39.91 ± 0.63 40.03 ± 0.54 39.63 ± 1.50 39.26 ± 1.63 39.01 ± 0.59 38.67 ± 1.58 38.32 ± 1.69 37.32 ± 1.50 36.86 ± 1.81
Squirrel 41.71 ± 0.96 42.15 ± 0.56 42.96 ± 0.96 43.41 ± 0.81 44.11 ± 1.29 45.12 ± 1.60 46.05 ± 1.50 46.32 ± 1.23 47.01 ± 1.96
Wisconsin 93.62 ± 1.30 92.00 ± 1.78 90.25 ± 2.48 87.62 ± 2.33 83.00 ± 2.36 78.37 ± 2.44 72.87 ± 2.66 70.56 ± 2.65 68.37 ± 2.53
Cornell 93.77 ± 1.22 93.77 ± 1.42 93.60 ± 1.36 92.73 ± 1.53 91.14 ± 0.80 89.36 ± 1.30 88.43 ± 1.26 86.26 ± 1.58 84.09 ± 1.47
Texas 94.26 ± 0.81 93.27 ± 1.71 92.45 ± 1.31 90.67 ± 1.36 89.50 ± 2.34 87.04 ± 1.36 84.23 ± 1.53 81.47 ± 1.47 79.67 ± 1.08

Table 5.13: Classification accuracy (%) averaged over 10 runs with DPRN-FE, where the
teleportation parameter α ∈ {0.1, 0.2, . . . , 0.9}.

Dataset 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
Cora 78.50 ± 0.88 83.76 ± 0.79 86.64 ± 0.86 88.34 ± 0.69 89.87 ± 0.53 90.18 ± 0.36 89.35 ± 0.80 89.01 ± 0.48 88.54 ± 0.42
Citeseer 75.34 ± 0.72 76.53 ± 0.92 76.69 ± 1.01 76.99 ± 1.09 78.31 ± 0.96 79.84 ± 0.86 77.36 ± 0.67 76.93 ± 0.88 76.57 ± 0.60
Pubmed 83.28 ± 0.83 84.69 ± 0.91 86.92 ± 0.68 88.32 ± 1.50 89.68 ± 1.26 90.80 ± 1.96 90.26 ± 1.30 89.68 ± 1.60 89.02 ± 1.63
Photo 91.96 ± 0.23 92.36 ± 1.23 92.86 ± 1.50 93.01 ± 1.30 92.23 ± 0.88 93.40 ± 0.41 92.21 ± 0.56 92.00 ± 1.32 91.67 ± 1.56
Computers 84.66 ± 0.96 84.97 ± 1.28 85.01 ± 1.63 85.68 ± 1.32 86.01 ± 1.67 86.11 ± 0.21 85.32 ± 0.12 85.03 ± 0.68 84.26 ± 0.96
Chameleon 50.67 ± 1.50 52.36 ± 1.67 52.67 ± 1.23 55.93 ± 0.96 59.63 ± 0.87 61.49 ± 1.26 64.12 ± 0.67 66.36 ± 1.50 68.56 ± 1.92
Actor 37.81 ± 1.15 39.31 ± 1.67 41.82 ± 0.78 40.83 ± 1.50 40.23 ± 1.50 39.58 ± 1.30 39.11 ± 1.60 38.51 ± 1.26 37.51 ± 1.26
Squirrel 43.62 ± 1.56 43.93 ± 1.11 44.02 ± 0.91 44.56 ± 0.76 45.32 ± 0.61 46.11 ± 0.82 46.88 ± 0.93 48.56 ± 1.66 50.69 ± 1.75
Wisconsin 88.01 ± 1.67 87.93 ± 1.23 87.82 ± 1.66 87.51 ± 0.93 86.91 ± 0.63 86.51 ± 0.58 86.45 ± 0.65 86.21 ± 0.63 85.02 ± 1.60
Cornell 92.41 ± 1.67 92.01 ± 1.50 91.68 ± 0.96 91.36 ± 0.62 90.66 ± 0.59 89.21 ± 1.23 88.32 ± 0.96 86.02 ± 1.32 85.31 ± 1.50
Texas 94.16 ± 0.96 94.45 ± 0.88 93.59 ± 1.53 92.61 ± 1.60 91.32 ± 0.75 89.23 ± 0.66 87.32 ± 0.45 83.21 ± 0.98 80.48 ± 0.65

Table 5.14: Classification accuracy (%) averaged over 10 runs with DPRN-IF, where the
teleportation parameter α ∈ {0.1, 0.2, . . . , 0.9}.

5.5.6 Ablation Analysis

In this section, we evaluate the impact of learnable polynomial filtering and dy-
namic PageRank techniques for the performance of DPRN-IF and DPRN-FE on
fully-supervised node classification task to answer the question Q5.

Let M(P), where M ∈ {PPR, HK, DPRN-FE, DPRN-IF} denote a GNN model
with the following variants for a diffusion scheme and P ∈ {PRW , PFilter} for a
transition matrix. Here, PPR and HK refer to the personalised PageRank and heat
kernel, respectively; PRW and PFilter refer to a random walk transition matrix AD−1

and learnable polynomial filter defined in Eq. 5.10, respectively. Note that,

(1) PPR (PRW) and HK (PRW) are the same as in the standard PageRank with a
random walk transition matrix.

(2) DPRN-FE (PFilter) and DPRN-IF (PFilter) are the same as DPRN-FE and DPRN-IF
in our previous experiments with learnable polynomial filters.

The results on eleven datasets can be found in Tables 5.15 and 5.16. For all diffusion
schemes, using PFilter consistently improves the performance on all datasets in com-
parison with using PRW . This shows that learnable polynomial filters can enhance the
model learning ability effectively. The diffusion schemes built upon dynamic PageR-
ank (i.e. DPRN-FE and DPRN-IF) further improve the performance in comparison
with using the standard PageRank.
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Variants Cora Citeseer Pubmed Photo Computers
PPR (PRW) 87.93 ± 0.66 78.96 ± 1.25 88.56 ± 1.30 90.23 ± 0.96 81.63 ± 0.68
PPR (PFilter) 89.12 ± 1.63 80.00 ± 0.96 89.73 ± 1.83 91.90 ± 0.91 83.57 ± 0.88
HK (PRW) 86.13 ± 0.66 76.93 ± 0.86 86.38 ± 1.56 87.89 ± 1.20 80.61 ± 1.65
HK (PFilter) 87.31 ± 1.32 77.42 ± 0.96 87.21 ± 0.83 88.93 ± 1.34 81.31 ± 1.50
DPRN-FE (PRW) 88.76 ± 0.93 78.27 ± 0.63 88.68 ± 1.67 90.26 ± 0.86 84.21 ± 0.73
DPRN-FE (PFilter) 90.24 ± 0.42 79.84 ± 0.48 89.97 ± 1.53 93.82 ± 0.23 85.76 ± 0.17
DPRN-IF (PRW) 88.32 ± 0.68 79.36 ± 0.78 88.51 ± 1.23 90.81 ± 0.71 84.49 ± 0.57
DPRN-IF (PFilter) 90.18 ± 0.36 80.39 ± 0.73 90.80 ± 1.96 93.40 ± 0.41 86.11 ± 0.21

Table 5.15: Classification accuracy (%) averaged over 10 runs on homophilic datasets.

Variants Actor Wisconsin Cornell Texas Chameleon Squirrel
PPR (PRW) 37.33 ± 0.32 85.67 ± 1.36 90.96 ± 1.60 90.01 ± 1.45 55.36 ± 0.93 34.66 ± 1.25
PPR (PFilter) 39.07 ± 1.66 86.88 ± 1.87 92.21 ± 0.86 91.30 ± 1.51 57.21 ± 0.76 36.23 ± 0.93
HK (PRW) 35.96 ± 1.30 84.93 ± 1.72 88.62 ± 0.81 86.15 ± 1.36 51.23 ± 1.68 33.69 ± 1.60
HK (PFilter) 36.71 ± 1.50 86.01 ± 1.50 89.68 ± 0.96 87.16 ± 1.60 53.66 ± 1.98 34.61 ± 1.96
DPRN-FE (PRW) 38.67 ± 1.36 90.66 ± 0.91 91.31 ± 1.60 92.67 ± 1.56 63.16 ± 1.60 44.01 ± 1.93
DPRN-FE (PFilter) 40.03 ± 0.54 93.75 ± 0.79 93.44 ± 1.26 94.75 ± 0.65 65.00 ± 2.31 47.31 ± 2.01
DPRN-IF (PRW) 39.51 ± 0.98 86.11 ± 1.66 90.27 ± 1.56 91.41 ± 0.83 66.21 ± 1.46 47.21 ± 1.87
DPRN-IF (PFilter) 41.82 ± 0.78 88.37 ± 2.09 92.78 ± 1.67 94.59 ± 0.85 68.56 ± 1.92 50.69 ± 1.75

Table 5.16: Classification accuracy (%) averaged over 10 runs on heterophilic datasets.

5.6 Summary

In this section, we have proposed a novel Graph Neural Network (GNN) architecture,
namely Dynamic PageRank Networks (DPRNs). Our architecture leverages dynamics of
PageRank to capture rich and varying graph structures. To enhance the discriminative
power of PageRank diffusion on graphs, we encoded local topological information
into a learnable PageRank transition matrix via learning polynomial filter coefficients
efficiently by formulating a quadratic convex constrained optimization problem as
a convex function. Although dynamic PageRank generally does not converge, we
theoretically proved how our GNN architecture is designed to achieve the guaranteed
convergence. We showed that shallow GNN architectures with deeper single layers
represent a promising direction for adapting the different graph structured data (i.e.,
homophilic and heterophilic). We evaluated our models on benchmark tasks.
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Chapter 6

A Regularized Optimal Transport
Framework for Graph Kernels

6.1 Overview

Recently, several studies have considered optimal transport learning on graphs [182,
245, 164], which amounts to two kinds of graph aligning problems: (1) aligning
graphs in the same ground space and (2) aligning graphs across different ground
spaces. A ground space is an Euclidean space with some fixed dimension. Recent
work has considered methods to jointly deal with these aligning problems based on
the similarity of node features and pairwise distances [243]. However, this is still
inadequate due to several reasons. Firstly, these methods did not explicitly capture
the connection between node features and structures into transport costs, which
limits the learning ability. Secondly, these methods ignored local clustering structures.
Lastly, these methods did not exploit degree distributions when learning on pairwise
distances of vertices.

In this chapter, we propose to capture feature local variations which quantify how
features change upon the underlying structures of a graph. We explicitly incorporate
feature local variations into feature similarity matrices and accordingly into a cost
function to enhance optimal transport learning. Further, we propose a new optimal
transport distance metric on graphs, called Regularized Wasserstein (RW) discrepancy.
This RW discrepancy regularizes optimal transport learning to compute a distance
between graphs via two strongly convex regularization terms. One is to regularize a
Wasserstein distance between graphs in the same ground space. This regularization
relaxes an optimal alignment between graphs to be a cluster-to-cluster mapping
between their locally connected vertices, thereby preserving the local clustering
structures of vertices across graphs. The other is to regularize a Gromov-Wasserstein
distance between graphs across different ground spaces using a degree-entropy KL
divergence term. This regularization considers node degree distributions in order
to increase the matching robustness of an optimal alignment, allowing to distribute
probability masses smoothly in overlapping regions of the geometric spaces of graphs.
Together with feature similarity matrices that capture features and their local variations
in cost functions, our regularized optimal transport learning can preserve both local

95

– 22 December 2022



96 A Regularized Optimal Transport Framework for Graph Kernels

and global structures of graphs during the transport, in addition to features.
Although our framework provides a powerful optimal transport learning for graph

kernels, the corresponding optimization problem is NP-hard and thus computationally
difficult in the general case [197, 4], due to its non-convexity and combinatorial
nature. To circumvent this problem, we design an efficient algorithm, namely Sinkhorn
Conditional Gradient (SCG), which reaps the computational benefits of the proposed
strongly convex regularization terms and extends the conditional gradient with
Sinkhorn-knopp matrix scaling [126] to enable a fast approximation for solving the
optimization problem. We theoretically analyze the convergence properties of SCG
and prove the upper bound of its minimal suboptimality gap.

G1 G2

Feature Embedding  ξf

Structure Embedding ξs  

Feature Embedding  ξf

Structure Embedding ξs

Regularized Wasserstein
 Framework

Featue Local Variation
Wasserstein 

Local Barycentric 
Wasserstein

Global Connectivity
Wasserstein

Figure 6.1: An overview of the proposed framework for regularized Wasserstein kernels
(RWKs), which unifies feature local variation, local barycentric and global connectivity Wasser-
stein distances based on feature and structure embeddings.

The main contributions of this chapter are as follows:
• We propose a theoretically robust class of graph kernels (i.e., RWKs) based on a

new optimal transport distance metric which optimizes graph aligning problems
in the same or across different ground spaces by exploiting strongly convex
regularisation.

• We improve the geometric representation of graphs by incorporating feature local
variations into similarity matrices, which can explicitly preserve the connection
between features and structures of a graph.

• We devise a fast and numerically stable algorithm to solve the optimization
problem and theoretically prove the suboptimal gap of our algorithm converges
at the rate of O( 1√

k
) where k is the number of iterations.

The rest of this chapter is organized as follows. In Section 6.2, we present the
graph similarity matrices. In Section 6.3, we discuss the regularized Wasserstein
framework. In Section ??, we analyze the convergence and complexity of the proposed
regularized Wasserstein kernel method. In Section 6.5, we discuss the experimental
setup. In Section 6.6, we compare the performance of our proposed regularized
Wasserstein kernel method against the baseline methods. Section 6.7 summarises the
chapter.

– 22 December 2022



§6.2 Graph Similarity Matrices 97

6.2 Graph Similarity Matrices

In this section we discuss the feature and structural representations of graphs and
several cost functions for optimal transport learning on graphs.

6.2.1 Feature Similarity

Following the previous work [164], we consider features residing on vertices as graph
signals. For a graph G = (V, E), a graph signal is a mapping V → R that associates
a feature to a vertex. Thus, each graph has a graph signal matrix X ∈ Rn×m, where
n = |V| is the number of vertices in the graph and each vertex vi is associated with
graph signals xi ∈ Rm.

To quantify how graph signals change from a vertex to its neighboring vertices,
we formulate the notion of feature local variation. Let L = I−D−1/2AD−1/2 be the
normalised graph Laplacian of G, where D is the diagonal matrix, A is the adjacency
matrix and I is the identity matrix. Then the local variation matrix of G is defined as:

∆(X) =
∣∣∣∣X− LjX

λmax(L)

∣∣∣∣ . (6.1)

LjX refers to aggregated graph signals of all vertices in G within the j-hop neigh-
borhood. λmax(L) is the maximum eigenvalue of L, which normalises LjX to ensure
the numerical stability. ∆(X) represents the local variations of features computed by
taking the difference between the original graph signal matrix X and the aggregated
graph signal matrix LjX.

Let ξ f : V → Rm and ξs : V → Rk refer to the feature embedding function that
associates with feature representation on each vertex in a metric space (Rm, d f ) and
the structure embedding function that associates with structural representation on each
vertex in a metric space (Rk, ds), respectively. Let xi ∈ Rm and ∆(xi) ∈ Rm refer to
the graph signals of a vertex vi and its local variation in G, respectively. Then, each
vertex vi corresponds to a feature embedding vector ai = ξ f (vi) ∈ R2m such that
ai = xi ⊕ ∆(xi), where ⊕ refers to the concatenation. Given two graphs G1 and G2, a
feature similarity matrix between G1 and G2 is defined upon the concatenation of their
graph signals and local variations, i.e., CV(i, j) = (d f (ai, aj))i,j ∈ Rn1×n2 , where ai and
aj are the feature embedding vectors of the i-th vertex of G1 and j-th vertex of G2,
respectively.

6.2.2 Structure Similarity

For each vertex vi ∈ V in a graph, we associate it with a node embedding vector
ei = ξs(vi) ∈ Rk. Node embedding methods with random-walk follow two steps: (1)
compute node sequences by random-walk simulation and (2) feed those sequences
into word2vec algorithm [138] to learn node embeddings. Abu-El-Haija et al. [1]
have been proposed a method that allows to learn parameters used in random-
walk simulation (i.e., context window length c, which is sampled from a uniform
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G1 G2

Local Barycentric
 Wasserstein LW(μ,ν)

Global Connectivity
Wasserstein GW(μ,ν)

μ ν μ ν

(a) (b)

Figure 6.2: (a) shows the local barycentric Wasserstein distance that transports each vertex
in µ to a spatially localized barycenter of its corresponding neighbors in ν and vice versa;
(b) shows the global connectivity Wasserstein distance that captures the pairwise similarity
between vertices under the preservation of degree distributions.

distribution c ∈ U{1, C}) and learn context sampling in word2vec (i.e., learn context
distribution S, which is used by word2vec when select the context node). In particular,
Abu-El-Haija et al. [1] compute a pair-wise node-to-node co-occurrence matrix B
from random-walk simulations to measure how many times that each node u ∈ V
is sampled as part of the context node v ∈ N (u). Then, we can compute node
embeddings by factorization the matrix B [194]. There are many different ways to
factorizing a matrix such as singular value decomposition (SVD) [123] and probabilistic
objectives. Abu-El-Haija et al. [1] consider a probabilistic objective called, Negative
Log Graph Likelihood for matrix factorization, which is defined as follows:

min
Y

∣∣∣∣− B� log(σ(g(Y)))− 1� [A = 0]log(1− σ(g(Y)))
∣∣∣∣

1, (6.2)

where g(Y) refers to the model, Y is a node embedding dictionary, σ is the logistic
activation function, � is a hadamard product and 1 is an indicator function. The
model g(Y) = g([L|R]) = L × RT is defined as an outer product of two matrices.
Then, Eq. 6.2 minimize the expression w.r.t matrices L and R to factorizing the matrix
B.

Let S be a context distribution with c-dimensional vector S = (S1, S2, . . . , Sc),
where St ≥ 0, t ≤ c and ∑t St = 1. Then, we can assign t-th coefficient St to random-
walk probability transition matrix Mt. We can use expectation on B (i.e., E[B]), instead
of using B itself [1]. Formally, we can formulate the E[B] by parameterisation with S
as follows:

E[B; S1, · · · , Sc] = P̃(0)
C

∑
t=1

St(M)t = P̃(0)
E

t∼S
[(M)t], (6.3)

where P̃(0) is a diagonal matrix with initial positions that corresponds to the number
of walks starting at each node. In this way, authors of [1] show that embeddngs
learning with random-walk sequences using Glove or word2vec can be considered
as a special case of Eq. 6.3. In the final objective, they learn a context distribution S,
which is expressed as a softmax attention model with the power-series of the random-
walk probability transition matrix M. More specifically, we construct a probability
transition matrix M using heat kernel random walks, where Mt = e−tL, where t
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is the length of random walks and L is the graph Laplacian. This graph attention
mechanism guides the sampling process of random walks to optimize an objective
Negative Log Graph Likelihood [1].

Based on the node embeddings, we consider the following two kinds of structure
similarity:

(1) Neighbourhood similarity. For two graphs G1 and G2, we define a neighbourhood
similarity matrix as CN(i, j) = (ds(ei, ej))i,j ∈ Rn1×n2 where ei and ej represent the
node embeddings of the i-th vertex of G1 and the j-th vertex of G2, respectively.

(2) Pairwise similarity. For a graph G, we construct a pairwise similarity matrix by
CP(i, j) = (ds(ei, ej))i,j ∈ Rn×n, where ei and ej represent the node embeddings
of the i-th vertex and and the j-th vertex of G. Let CP

1 ∈ Rn1×n1 and CP
2 ∈ Rn2×n2

represent the pairwise similarity matrices of two graphs G1 and G2, respectively.
Then, the pairwise similarity between G1 and G2 is defined as a 4-dimensional
tensor:

L2(CP
1 (i, j), CP

2 (k, l)) =
1
2
|CP

1 (i, j)− CP
2 (k, l)|2.

6.3 Regularized Wasserstein Framework

In this section, we introduce a novel optimal transport framework for graphs. This
framework can preserve local and global graph structures by jointly optimizing two
regularized optimal transports on graphs: (1) local barycentric Wasserstein distance;
(2) global connectivity Wasserstein distance. We discuss these two kinds of Wasserstein
distances in turn.

6.3.1 Local Barycentric Wasserstein Distance

We first propose a local-structure-preserving optimal transport based on Laplacian
regularization [76, 79]. To preserve the local structure of graphs, we observe that
a relaxed mapping (i.e., cluster-to-cluster) between locally connected vertices of
two graphs is often more desirable than a strict one-to-one correspondence between
vertices of two graphs. Thus, we design a regularization term Θw(γ) under a relaxation
of transport mass conservation [80] to regularize a Wasserstein distance defined on
the neighbourhood similarity matrix CN :

LW(µ, ν) = min
γ∈π(µ,ν)

〈
γ, CN〉

F + Θw(γ), (6.4)

where
〈
., .
〉

F denotes the Frobenius dot product.
In the following, we discuss how Θw(γ) is designed. Essentially, γ(i, j) indicates

how much the probability mass of the i-th vertex in one graph µ is transported to the
j-th vertex in the other graph ν. Thus, we define a transport map T from µ to ν by
mapping the node embedding of each vertex eµ

i in µ to a weighted average êµ
i of the
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node embeddings of vertices in ν:

êµ
i = T(eµ

i ) =
∑n2

j=1 γ(i, j)eν
j

∑n2
j=1 γ(i, j)

. (6.5)

Let Eµ ∈ Rn1×k (resp. Eν ∈ Rn2×k) be a node embedding matrix of µ (resp. ν). We
thus have the following matrix of local barycentric embeddings:

Êµ = T(Eµ) = (diag(γ1n2))
−1γEν, (6.6)

where diag(.) is a diagonal matrix in Rn1×n1 . To preserve the local structure of
vertices in µ under T, we define a spatially localized barycentric term as the source
regularization:

Ωµ(γ) =
1
n2

1
∑
i,j

ai,j||êµ
i − êµ

j ||22

=
1
n2

1
tr(ÊT

µ LµÊµ).
(6.7)

Lµ is the graph Laplacian and Aµ = (ai.j)
n1
i,j=1 is the adjacency matrix of µ. When µ

and ν are uniform distributions, Êµ = n1γEν and thus

Ωµ(γ) = tr(ET
ν γTLµγEν). (6.8)

Similarly, we define a spatially localized barycentric term Ων(γ) as the target regular-
ization to preserve the local structure of vertices in ν under the transport map T−1.
By Ωµ(γ) and Ων(γ), we obtain the following regularization term to constrain local
barycentric Wasserstein distance, where 0 ≤ λµ, λν ≤ 1:

Θw(γ) = λµΩµ(γ) + λνΩν(γ) +
ρ

2
||γ||2F. (6.9)

This regularization term enables us to avoid the strict mass conservation (i.e, a
bijective mapping between µ and ν) because each vertex in µ is transported to a
spatially localized barycenter of its corresponding neighbors in ν and vice versa. A
penalty term ||γ||2F is introduced to smooth the transport mass conservation. The
parameter ρ ∈ (0, 1] controls the degree of smoothness.

Lemma 3. LW(µ, ν) is strongly convex and smooth w.r.t. γ.

Proof. Let f1(γ) = λµΩµ(γ) + λνΩν(γ) and f2(γ) =
ρ
2 ||γ||2F. The Hessian of Ωµ(γ)

is,
∇2Ωµ(γ) = Lµ ⊗ EνET

ν + LT
µ ⊗ EνET

ν , (6.10)

where ⊗ denotes the Kronecker product. Lµ is positive semi-definite since its eigen-
values are non-negative. We also have zT(EνET

ν )z = ||ET
ν z||22 ≥ 0 for every z 6= 0

and z ∈ Rn2×1, which is positive semi-definite. Thus, Lµ ⊗ EνET
ν is positive semi-
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definite since the Kronecker product of two positive semi-definite matrices is positive
semi-definite [219]. Therefore, Ωµ(γ) is convex, and similarly, we can show Ων(γ)
is convex. Hence, f1(γ) is convex w.r.t γ. Since the function ||γ||2F is quadratic w.r.t
γ, the Hessian of f2(γ) is positive definite. Hence, f2(γ) is strongly convex. Then,
the sum of f1(γ) + f2(γ) (i.e., Θw(γ)) is ρ-strongly convex. Since f1(γ) is positive
semi-definite and f2(γ) is positive definite, Θw(γ) is positive definite. Hence, Θw(γ)
is L-smooth for some constant L > 0.

Since
〈
γ, CN〉

F is convex and Θw(γ) is strongly convex and smooth, LW(µ, ν) is
strongly convex and smooth.

6.3.2 Global Connectivity Wasserstein Distance

To preserve the global structure of graphs during the transport, such as structure
connectivity, a straightforward approach is to use a Gromov-Wasserstein discrepancy
based on pairwise similarity between vertices. However, solving such an unregularized
Gromov-Wasserstein optimization problem on

〈
γ, L2(CP

µ , CP
ν )⊗ γ

〉
F may lead to a

sparse coupling matrix γ, i.e. the entries of γ become mostly zero. As a result, only
few vertices between two graphs can be matched. Further, the degree distributions
between graphs need to be considered for preserving structure connectivity, Thus, we
design a degree-entropy regularization term Θg(γ) to regularize a Gromov-Wasserstein
distance on the pairwise similarity matrix CP:

GW(µ, ν) = min
γ∈π(µ,ν)

〈
γ, L2(CP

µ , CP
ν )⊗ γ

〉
F − λgΘg(γ),

where λg ∈ (0, 1] and
〈
γ, L2(CP

µ , CP
ν )⊗ γ

〉
F = ∑i,j,k,l L2(CP

µ(i, j), CP
ν (k, l))γ(i, k)γ(j, l).

Specifically, we define Θg(γ) as a KL divergence between γ and a prior node degree
distribution γ′:

Θg(γ) = KL(γ‖γ′) = ∑
i,j

γ(i, j)log
( γ(i, j)

γ′(i, j)

)
. (6.11)

Let Dµ ∈ Rn1 and Dν ∈ Rn2 represent the node degree vectors of graphs G1 and G2,
respectively. We have:

γ′(i, j) =
γ̃(i, j)

||∑j γ̃(i, j)||1

γ̃(i, j) = 1−
|Di

µ − Dj
ν|

max{Di
µ, Dj

ν}

(6.12)

Note that, depending on how pairwise similarity matrices are defined, different
kinds of global structures can be preserved. When CP

µ and CP
ν are shortest path

distance matrices, we preserve the connectivity structure of graphs. Other options
include adjacency matrices and graph Laplacians [220].

Lemma 4. KL(γ||γ′) is strongly convex w.r.t γ.
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Proof. We can compute the Hessian of KL(γ||γ′) as follows,

∇2KL(γ||γ′) = diag
( 1

γ(i, j)

)
, (6.13)

where γ(i, j) ∈ [0, 1]. Since a function f is σ-strongly convex iff there exists a constant
σ > 0 s.t. its Hessian satisfies ∇2 f (γ) � σI, ∀γ ∈ dom f, where I refers to an
identity matrix, KL(γ||γ′) is 1-strongly convex because zT(∇2KL(γ||γ′))z ≥ σ||z||2
and σ = 1.

Although GW(µ, ν) remains non-convex, the strong convexity of KL(γ||γ′) enables
better optimization convergence (will be discussed further in Section 6.4).

6.3.3 A New Optimal Transport Distance Metric on Graphs

In the following, we present the Regularized Wasserstein (RW) discrepancy to preserve
both features and structure of graphs. The main idea is to consider local barycentric
and global connectivity Wasserstein distances, as well as Wasserstein distance for
features and their local variations, in a unified framework. We also discuss our
optimization technique and analyze the theoretical properties.

Let β1, β2 ∈ (0, 1] and CV be a feature similarity matrix containing the information
of features and their local variations. Formally, the RW discrepancy is defined as
follows:

RW(µ, ν) = min
γ∈π(µ,ν)

〈
γ, CV〉

F

+ β1LW(µ, ν) + β2GW(µ, ν).
(6.14)

In a nutshell, the RW discrepancy derives an optimal coupling γ by minimizing a
linear combination of costs of transporting graph features and their local variations,
transporting vertices and transporting edges across two graphs.

Solving an unregularized Gromov-Wasserstein optimization problem in its full
generality is known to be NP-hard [4, 244]. The optimization problem for Eq. 6.14 is
thus also NP-hard. Therefore, the convergence to the optimality of RW is a non-trivial
and difficult problem. Below, we present a solution to tackle this difficult problem.

Firstly, we transform the optimization problem for Eq. 6.14 into an equivalent
problem with the following form of objective:

min
γ∈π(µ,ν)

H(γ) = min
γ∈π(µ,ν)

f (γ) + g(γ)−h(γ), (6.15)

where we have:

f (γ) =
〈
γ, CV〉

F + β1LW(µ, ν);

g(γ) =
〈
γ, β2(L2(CP

µ , CP
ν )⊗ γ)

〉
F;

h(γ) =β2(λgΘg(γ)).
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Algorithm 2: Training for RW Discrepancy

1 initialize i=0, γ0 ← µνT, and c0 ← H(γ0)
2 while i ≤ t do
3 i← i + 1
4 ∇H(γ)← Gradient of H(γ) w.r.t γ(i−1)

5 γ̂(i−1) ← Sinkhorn-knopp (µ, ν, ∇H(γ), λ, b)
6 ∆γ← γ̂(i−1)-γ(i−1)

7 α(i), c(i) ← Line-search (γ(i−1), ∆γ, ∇H(γ), c(i−1)) w.r.t. Eq. 6.15
8 γ(i) ← γ(i−1) + α(i)∆γ

9 δ(i−1) ←
〈

∆γ,−∇H(γ)
〉

F
10 if δ(i−1) ≤ ε̃ then
11 stop
12 end
13 end

Then, we design a training algorithm for RW discrepancy, namely Sinkhorn Con-
ditional Gradient (SCG), based on Conditional Gradient [114], which is described in
Algorithm 2. The main idea is to linearize the composite objective function in Eq. 6.15,
where t is the maximum number of iterations for SCG and b is the maximal number of
Sinkhorn iterations. In each iteration, we compute an optimal coupling matrix γ̂(i−1)

based on the gradient of H(γ) by Sinkhorn-knopp, where λ ∈ [0, ∞] and obtain the
descent direction ∆γ. Then, we use Line-search to determine the step size α(i) based
on the gradient of H(γ) along the descent direction ∆γ. The algorithm terminates if
the suboptimality gap converges under a threshold ε̃, i.e., δ(i−1) ≤ ε̃.

The gradients of f (γ) and g(γ) are calculated as follows:

∇ f (γ) =CV + β1(CN)+

β1(λµ∇Ωµ(γ) + λν∇Ων(γ) + ργ);

∇g(γ) =2β2(L2(CP
µ , CP

ν )⊗ γ);

∇h(γ) =β2(λg(1 + log(γ)− log(γ′))),

where

∇Ωµ(γ) =
∂(Ωµ(γ))

∂γ
= LT

µ γEνET
ν + LµγEνET

ν ;

∇Ων(γ) =
∂(Ων(γ))

∂γ
= EµET

µ γLT
ν + EµET

µ γLν.

SCG has nice convergence properties. It is guaranteed to converge to a stationary
point. We define suboptimality gap [114] for SCG and present the theoretical results
in Section 6.4.
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6.3.4 A Regularized Wasserstein Kernel (RWK)

We introduce a new graph kernel, namely Regularized Wasserstein Kernel (RWK), based
on our RW discrepancy presented in Section 6.3.3. Given a set of graphs G, RWK has
a kernel matrix K ∈ R|G|×|G| defined as

Kµν = e−ηRW(µ,ν),

where η > 0 is a parameter, µ and ν correspond to any two graphs in G, and RW(µ, ν)
is the RW discrepancy between µ and ν as defined in Eq. 6.14.

Here, K is an indefinite kernel matrix. Following SVM with indefinite kernels
introduced by Luss and d’Aspremont [159], we treat K as the noisy observation of a
true positive semi-definite kernel (i.e., a proxy kernel). Thus, our graph classification
problem with an indefinite RWK can be expressed as a robust classification problem
under a perturbation of the true positive semidefinite kernel. This formulation allows
us to learn support vector weights and a proxy kernel simultaneously, while penalizing
the distance between the indefinite RWK and the proxy kernel in the same way as
studied in [159].

6.4 Theoretical Analysis

In this section, we prove that our training algorithm (SCG) can guarantee the con-
vergence. We also provide the complexity analysis of our RWK method in Section
6.4.2.

6.4.1 Convergence Analysis

Definition 4 (L-smooth function). A function f : Rn1×n2 → R is L-smooth if it is
differentiable and gradient is L-Lipschitz continuous for some Lipschitz constant L > 0, i.e.,

||∇ f (γ)−∇ f (γ̄)||F ≤ L||γ− γ̄||F (6.16)

where γ and γ̄ are any two points in the domain f .

Lemma 5. Assuming f (·) and g(·) in Eq.6.15 are L-smooth for some constants L f > 0 and
Lg > 0, respectively. Then, the sum f (·) + g(·) : Rn1×n2 → R is L-smooth for a constant
L = L f + Lg, i.e.,

||∇( f + g)(γ)−∇( f + g)(γ̄)||F ≤ L||γ− γ̄||F. (6.17)

Proof. We can prove this lemma by applying subadditivity of norms and additivity of
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gradients:

||∇( f + g)(γ)−∇( f + g)(γ̄)||F
=||∇ f (γ) +∇g(γ)−∇ f (γ̄)−∇g(γ̄)||F
=||∇ f (γ)−∇ f (γ̄) +∇g(γ)−∇g(γ̄)||F
≤||∇ f (γ)−∇ f (γ̄)||F + ||∇g(γ)−∇g(γ̄)||F
≤L f ||γ− γ̄||F + Lg||γ− γ̄||F
≤(L f + Lg)||γ− γ̄||F

where γ and γ̄ are any two points in the domain of f (·) + g(·). Thus, f (·) + g(·) is
L-smooth where L = (L f + Lg) is the Lipschitz constant.

Lemma 6. By the definition of L-smooth function, ( f + g)(γ) in Eq. 6.15 satisfies the
following inequality [178]:

( f + g)(γ̄)− ( f + g)(γ)−
〈
(γ̄− γ),∇( f + g)(γ)

〉
F
≤ L

2
||γ̄− γ||2F. (6.18)

Lemma 7. By the definition of strongly convexity, h(γ) in Eq. 6.15 satisfies the following
inequality [178]:

h(γ̄)− h(γ)−
〈
(γ̄− γ),∇h(γ)

〉
F
≥ σ

2
||γ̄− γ||2F. (6.19)

Lemma 8. H(γ) in Eq. 6.15 satisfies the following inequality:

H(γ̄)− H(γ)−
〈
(γ̄− γ),∇H(γ)

〉
F
≤ (L− σ)

2
||γ̄− γ||2F. (6.20)

Proof. By Lemma 6 and Lemma 7, we know ( f + g)(γ) is L-smooth for a constant L
and h(γ) is σ-strongly convex for a constant σ (0 < σ < L), respectively. Thus, we can
reformulate Eq. 6.20 as follows:

H(γ̄)− H(γ)−
〈
(γ̄− γ),∇H(γ)

〉
F

=
(
( f + g)(γ̄)− h(γ̄)

)
−
(
( f + g)(γ)− h(γ)

)
−
〈
(γ̄− γ),∇( f + g)(γ)−∇h(γ)

〉
F

=( f + g)(γ̄)− ( f + g)(γ)−
〈
(γ̄− γ),∇( f + g)(γ)

〉
F

−
(

h(γ̄)− h(γ)−
〈
(γ̄− γ),∇h(γ)

〉
F

)
≤L

2
||γ̄− γ||2F −

σ

2
||γ̄− γ||2F

≤ (L− σ)

2
||γ̄− γ||2F.
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In the following, we consider γ := γi, γ̂ := γ̂i and γ̄ := γi+1 = γ+ α(γ̂− γ) where
γi, γ̂i and γi+1 refer to the ones being computed at each i-th iteration in Algorithm 2.
Specifically, at each i-th iteration, our algorithm SCG moves from the current point γi

along the descent direction for the length α(γ̂− γ) (i.e., determined by the step size α

and the difference between the linear minimizer γ̂i and the current point γi) to obtain
the next iterate point γi+1.

As H(·) is non-convex, we define a generalized curvature constant C f+g−h to
measure the non-linearity of H(·) over a convex and compact feasible set π(µ, ν). If
C f+g−h is small, then H(·) is close to being linear; conversely, if C f+g−h is getting
larger, then H(·) gets more curvature. C f+g−h = 0 when H(·) is linear.

Lemma 9. Let C f+g−h be a generalized curvature constant for H(γ) defined as:

sup
γ,γ̂∈π(µ,ν)

2
α2

(
H(γ̄)− H(γ)−

〈
(γ̄− γ),∇H(γ)

〉
F

)
,

where α ∈ [0, 1] and γ̄ = γ + α(γ̂− γ). Then, we have

C f+g−h ≤ (L− σ) · diam||.||(π(µ, ν))2, (6.21)

where diam||.||(π(µ, ν))2 is the ||.||F-diameter of π(µ, ν).

Proof. We can obtain the upper bound of C f+g−h by applying Eq. 6.20 in Lemma 8 to
the definition of C f+g−h, i.e.,

C f+g−h ≤ sup
γ,γ̂,γ̄∈π(µ,ν)

2
α2 ·

(L− σ)

2
· ||γ̄− γ||2F

= sup
γ,γ̂∈π(µ,ν)

(L− σ) · ||γ̂− γ||2F

≤(L− σ) · diam||.||(π(µ, ν))2.

(6.22)

Suboptimality gap is a good criterion to measure the distance to a stationary point
at each iteration [114]. Below, we define the suboptimality gap for SCG.

Definition 5 (Suboptimality gap). For each i-th iteration of SCG, the suboptimality gap δi
is defined by

δi = max
γ̂∈π(µ,ν)

〈
(γ− γ̂),∇H(γ)

〉
F
. (6.23)

We know that, by Lemma 3 f (γ) is L-smooth, and by the results of [40] g(γ)
is also L-smooth. Thus, f (γ) + g(γ) is L-smooth. Further, by Lemma 4, h(γ) is
strongly convex. Thus, we obtain a generalized curvature constant C f+g−h ≤ (L−
σ) · diam||.||(π(µ, ν))2 where 0 < σ < L. By the results of Frank-Wolfe algorithm for

non-convex functions [134], we have min
0≤i≤k

δi ≤ max{2h0,C f+g−h}√
k+1

, for k ≥ 0. Hence, we

obtain the following theorem.
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Theorem 8 (Convergence). SCG has the minimal suboptimality gap δi that satisfies the
following condition:

min
0≤i≤k

δi ≤
max{2h0, (L− σ) · diam||.||(π(µ, ν))2}√

k + 1
(6.24)

where σ = 1, h0 = H(γ0)− min
γ∈π(µ,ν)

H(γ) is the initial suboptimality gap, L is a Lipschitz

constant of ∇( f + g)(γ), and diam||.||(π(µ, ν))2 denotes the ||.||F-diameter of the π(µ, ν).

To simplify the notation, let C = (L− σ) · diam||.||(π(µ, ν))2 be the upper bound
of C f+g−h as in Lemma 9. Then, we can prove the aforementioned theorem for the
convergence of SCG.

Proof. Our proof follows the steps of the conditional gradient method [114] and Frank-
Wolfe algorithm for non-convex functions [134]. Our SCG algorithm is based on the
Armijo rule in line searches for selecting the step size α into the descent direction.
According to [18], we know that, if α is selected by the Armijo rule, then every limit
point of {γi} is a stationary point. Further, by Lemma 9, there exists a finite curvature
constant C f+g−h ≤ C over the feasible set π(µ, ν). Thus, we have the following
formula by applying γ̄ := γ + α(γ̂− γ) on Eq. 6.20 in Lemma 8

H(γ̄) ≤ H(γ) + α
〈
(γ̂− γ),∇H(γ)

〉
F
+

α2

2
C, (6.25)

where α ∈ [0, 1]. Then, according to Definition 5, we can rewrite Eq. 6.25 as

H(γ̄)− H(γ) ≤ −αδi +
α2

2
C. (6.26)

Based on this, we derive the optimality condition of the step-size α by minimizing the
RHS of the above inequality,

min
α∈[0,1]

− αδi +
α2

2
C. (6.27)

By derivating Eq. 6.27 w.r.t. the step-size α, we have the minimizer at α∗ s.t.

α∗ = min
{δi

C
, 1
}

. (6.28)

Now we consider two different cases w.r.t. α ∈ [0, 1] to examine the upper bounds for
the RHS of Eq. 6.26.

Case 1: If α∗ < 1, this case implies δi < C. Thus, we have α∗ = δi
C and

H(γ̄)− H(γ) ≤ − δ2
i

2C
. (6.29)
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Case 2: If α∗ = 1, this case implies C ≤ δi. Thus, we have

H(γ̄)− H(γ) ≤ −δi +
C
2
≤ −δi

2
. (6.30)

We can combine these two cases into the following inequality which is valid for i ≤ k,

H(γi+1)− H(γi) ≤ −δi

2
min

{δi

C
, 1
}

I, (6.31)

where γi+1 := γ̄ and γi := γ. The I denotes the indicator function which refers to
considering both cases of α∗ = min

{
δi
C , 1
}

.
By recursively applying Eq. 6.31 from i = 0 to k and rearranging the terms, we

have

H(γ0)− H(γk+1) ≥
k

∑
i=0

δi

2
min

{δi

C
, 1
}

I. (6.32)

Below, we derive the explicit convergence rate for SCG when converging to a
stationary point. Let δ̃k := min

0≤i≤k
δi. Then, from Eq. 6.32, we have

H(γ0)− H(γk+1) ≥
k

∑
i=0

δ̃k

2
min

{ δ̃k

C
, 1
}

I

=(k + 1)
δ̃k

2
min

{ δ̃k

C
, 1
}

.

(6.33)

We consider each case in min{·, ·} separately below:

• If δ̃k ≤ C, then Eq. 6.33 gives H(γ0)− H(γk+1) ≥ (k+1)δ̃k
2

2C , and we can reorder it
as

δ̃k ≤
√

2C(H(γ0)− H(γk+1))

k + 1
≤
√

2Ch0

k + 1

≤ 2h0 + C
2
√

k + 1
≤ max{2h0, C}√

k + 1
,

(6.34)

where
√

2Ch0
k+1 ≤ 2h0+C

2
√

k+1
, we use the inequality

√
ab ≤ a+b

2 with a = 2h0 and b = C.

By the definition of the initial suboptimality h0, we have H(γ0)− H(γk+1) ≤
H(γ0)− min

γ∈π(µ,ν)
H(γ) = h0.

• If δ̃k > C, we can obtain a better 1
k rate, which is trivially bounded by 1√

k
,

δ̃k ≤
2h0

k + 1
≤ 2h0√

k + 1
≤ max{2h0, C}√

k + 1
. (6.35)

Since we obtain the same upper bound in the above cases, Theorem 8 is proven,
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i.e.,

min
0≤i≤k

δi ≤
max{2h0, C}√

k + 1
. (6.36)

Following Theorem 8, we have the corollary below.

Corollary 1. For SCG, the minimal suboptimality gap is O( 1√
k
) after the number k of

iterations. It takes at most O( 1
ε2 ) iterations to find an approximate stationary point with a

suboptimality gap smaller than ε.

6.4.2 Complexity Analysis

A naive implementation of ∇ f (γ) has the time complexity O(N4) due to the tensor-
matrix multiplication in GW(µ, ν), where N = max{n1, n2}. Nevertheless, as dis-
cussed in [197], for a general class of loss functions, the tensor-matrix multiplication
can be decomposed into matrix-matrix multiplications and the time complexity of
∇ f (γ) can thus be reduced to O(N3). ∇g(γ) has the time complexity O(N3). The
time complexity of the line search algorithm depends on the computation of H(γ) in
Eq. 6.15. Since it has the time complexity O(N3 + N2k2), the total time complexity of
our algorithm is O(t(N3 + N2k2)), where t refers to the total number of iterations and
k is the dimension of the node embedding. The memory complexity of our algorithm
is O(N2).

Table 6.1 summarizes the time and memeory complexity of several optimal trans-
port based graph kernels. Note that t is much smaller than N in practice.

Optimal Transport Based Time Memory
Graph Kernel Complexity Complexity
WL-PM [182] O(N3log(N)) O(N2)
WWL [245] O(N3log(N)) O(N2)
FGW [243] O(t(N3)) O(N2)

RWK (ours) O(t(N3 + N2k2)) O(N2)

Table 6.1: A summary of time and memory complexities.

6.5 Experimental Setup

Our experiments are performed on a Linux server which has 12-core Intel(R) Core(TM)
i7-7800X CPU @ 3.50GHz, NVIDIA GeForce GTX Titan Xp with 96GB of main memory.
We evaluate regularized wasserstein kernels (RWKs) on graph classification benchmark
tasks against the state-of-the-art baselines in order to answer the following questions:

Q1. How well can RWK empirically perform for graph classification tasks?

Q2. What impact do feature local variations have on the performance of RWK?
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Q3. How efficiently can RWK perform in comparison with the existing optimal-
transport based graph kernels?

Q4. How does each of the key components in RWK (i.e., different distance metrics
and regularization terms) contribute to the overall performance of RWK?

Below, we will present our experimental environment. Then, we will discuss the
experimental results and answer these questions in Section 6.6.

6.5.1 Datasets

In our experiments, we consider 12 benchmark datasets, which generally fall into two
categories:

(1) Graphs with discrete attributes: MUTAG, PTC-MR, NCI1, NCI109 and D&D
are bioinformatics datasets [64, 275, 130, 226], and COLLAB is a social network
[277] for which we use the same one-hot encoding setup as in [275]. These all
datasets are equipped only discrete nodes attributes.

(2) Graphs with continuous attributes: COX2, COX2-MD, BZR, BZR-MD, PRO-
TEINS and ENZYMES are bioinformatics datasets [239, 22, 245]. Specifically,
COX2, BZR, PROTEINS and ENZYMES have both continuous nodes and edge
attributes; COX2-MD and BZR-MD only contain continuous node attributes.

Table 6.2 provides further details about these datasets, including the availability of
node and edge attributes, the number of graphs, and the number of classes.

Dataset
Node Edge

#Classes #Graphs
Attributes Attributes

MUTAG X - 2 188
PTC-MR X - 2 344
NCI1 X - 2 4110
D & D X - 2 1178
NCI109 X - 2 4127
COLLAB X - 3 5000
ENZYMES X X 6 600
PROTEINS X X 2 1113
COX2 X X 2 467
BZR X X 2 405
COX2-MD X - 2 303
BZR-MD X - 2 306

Table 6.2: Dataset statistics.
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6.5.2 Baseline Methods

We evaluate the performance of RWK against the following 16 state-of-the-art baselines,
divided into three groups:

– Non-Optimal-Transport (Non-OT) graph kernels: We compare RWK with sev-
eral state-of-the-art traditional graph kernel methods. This baseline comparison
includes WL subtree kernel (WL) [226], WL Optimal Assignment Kernel (WL-
OA) [130], Graph Hopper Kernel (GHK) [75], Propagation Kernel (PK) [179],
Hash Graph Kernel (HGK-WL; HGK-SP) [173], Return Probabilities of Random
Walks Kernel (RetGK) [289], Graph Neural Tangent Kernel (GNTK) [68], and
Persistent WL Kernel (P-WL) [208].

– Optimal-Transport-based (OT-based) graph kernels: We compare RWK with
three state-of-the-art OT-based graph kernel methods such as WL Pyramid
Match Kernel (WL-PM) [182], Wasserstein WL Graph Kernel (WWL) [245] and
Fused-Gromov Wasserstein (FGW) [243].

– Graph Neural Network (GNN-based) methods: We compare RWK with four
state-of-the-art GNNs methods. GNN-based baseline comparison includes
PATCHY-SAN [181], Deep Graph Convolutional Neural Network (DGCNN)
[286], Capsule Neural Network (CapsGNN) [271], and Graph Isomorphism
Network (GIN) [275].

6.5.3 Hyperparameter Settings

To benchmark the baseline methods, we follow the work of Titouan et al. [243] and
use the same setup and data splits. The hyperparameters of our method are selected
using the nested cross validation [243]. C-SVM classifier is used with C ∈ {10−5, 10−4,
. . . , 105}. We choose the following parameter ranges: η ∈ {2−5, 2−4, . . . , 25}, β1, β2 ∈
{0.1, 0.2, . . . , 1}, λµ, λν, λg, ρ ∈ {10−1, 10−2, . . . , 10−5}, t ∈ {5, 10}, b ∈ {10, 20, . . . , 50},
λ ∈ {0.1, 0.2, . . . , 0.9}, ε ∈ {10−3, 10−4, . . . , 10−9}, and set α(0) = 0.99 as the initial
value of step size. For graphs with discrete attributes, we define feature similarity
matrices on the Weisfeiler-Lehman sequence of graphs [262]. For BZR-MD and COX2-
MD, we follow the same approach in [245] to obtain node attributes. We consider the
number of Weisfeiler-Lehman iterations h ∈ {1, 2}.

We choose the l2 distance for d f and hamming distance for ds. For the dimension of
node embeddings, we set k = 64. For feature local variation, we set j = 2 (2-hop) as the
default setting for RWK. The number and length of random walks are selected from
{10, 20, 30} and {2, 3, 4, 5, 6, 7, 8}, respectively. We train the model of node embeddings
using 200 epochs and select the best learning rate from {10−4, 10−3, 10−2, 10−1}.

6.6 Results and Discussion

In this section, we discuss the experimental results to answer the aforementioned
four questions. The results demonstrate the effectiveness of our method on real-
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Method MUTAG PTC-MR NCI1 D&D NCI109 COLLAB

Non-OT
graph kernels

WL 90.4 ± 5.7 59.9 ± 4.3 86.0 ± 1.8 79.4 ± 0.3 85.9 ± 1.5 78.9 ± 1.9
WL-OA 84.5 ± 1.7 63.6 ± 1.5 86.1 ± 0.2 79.2 ± 0.4 86.3 ± 0.2 80.7 ± 0.1
RetGK 90.3 ± 1.1 62.5 ± 1.6 84.5 ± 0.2 - - 81.0 ± 0.3
GNTK 90.0 ± 8.5 67.9 ± 6.9 84.2 ± 1.5 75.6 ± 3.9 - 83.6 ± 1.0
P-WL 90.5 ± 1.3 64.0 ± 0.8 85.4 ± 0.1 78.6 ± 0.3 84.9 ± 0.3 -

OT-based
graph kernels

WL-PM 87.7 ± 0.8 61.4 ± 0.8 86.4 ± 0.2 78.6 ± 0.2 85.3 ± 0.2 81.5 ± 0.5
WWL 87.2 ± 1.5 66.3 ± 1.2 85.7 ± 0.2 79.6 ± 0.5 - -
FGW 88.4 ± 5.6 65.3 ± 7.9 86.4 ± 1.6 - - -

GNN-based
methods

PATCHY-SAN 92.6 ± 4.2 60.0 ± 4.8 78.6 ± 1.9 77.1 ± 2.4 - 72.6 ± 2.2
DGCNN 85.8 ± 0.0 58.6 ± 0.0 74.4 ± 0.0 76.6 ± 0.0 75.0 ± 0.0 73.7 ± 0.0
CapsGNN 86.6 ± 1.5 66.0 ± 1.8 78.3 ± 1.3 75.3 ± 2.3 81.1 ± 3.1 79.6 ± 2.9
GIN 89.4 ± 5.6 64.6 ± 7.0 82.7 ± 1.7 75.3 ± 3.5 86.5 ± 1.5 80.2 ± 1.9

Our work
RWK 93.6 ± 3.7 69.5 ± 6.1 88.0 ± 4.5 81.6 ± 3.5 87.3 ± 6.1 83.8 ± 4.6
RWK-1 92.5 ± 3.1 68.9 ± 5.1 87.7 ± 6.1 81.0 ± 4.3 86.9 ± 5.2 83.2 ± 3.1
RWK-0 90.7 ± 4.2 67.8 ± 3.6 87.0 ± 5.1 79.6 ± 3.1 86.4 ± 4.6 81.5 ± 3.9

Table 6.3: Classification accuracy (%) averaged over 10 runs on graphs with discrete attributes.
The results of WL and RetGK are taken from [68] and the results of the other baselines are
from their original papers.

world graphs, i.e., considerably and consistently outperforming all the state-of-the-art
methods on all benchmark datasets.

6.6.1 Graph Classification

We first benchmark the performance of our RWK method against the baselines on
graph classification tasks to answer the question Q1. The results are reported in
Tables 6.3-6.4. Table 6.3 and Table 6.4 present the classification accuracy with discrete
attributes and continuous attributes, respectively. We ignore the GNN-based methods
in Table 6.4 since GNNs are not performed well on graphs with continuous attributes.

We see that, in Table 6.3, compared with the non-OT graph kernels, RWK improves
upon their best results by a margin ranging from 0.2% to 3.1% on all datasets. Similarly,
RWK improves upon the best results of the OT-based graph kernels by a margin
ranging from 1.6% to 5.2% on all datasets, and upon the best results of the GNN-based
baselines by a margin ranging from 0.8% to 5.3%.

In Table 6.4, RWK also consistently performs better than all the baselines on all
graphs with continuous attributes. Specifically, RWK improves upon the best results
of the non-OT graph kernels by a margin ranging from 2.8% to 6.7% and the best
results of the OT-based graph kernels by a margin ranging from 1.1% to 5.1% across
the datasets.

It is worthy to mention that none of the baselines have achieved the best perfor-
mance on all datasets, in comparison with the other baselines. However, in contrast,
RWK consistently performs best on all datasets. Specifically, RWK improves upon
the best results of the baselines by a margin of 1.0% (PATCHY-SAN), 1.6% (GNTK),
1.6% (FGW), 2.0% (WWL), 0.8% (GIN), and 0.2% (GNTK) on the datasets MUTAG,
PTC-MR, NCI1, D&D, NCI109 and COLLAB, respectively. A similar situation exists
for graphs with continuous attributes.
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Method COX2 ENZYMES PROTEINS BZR COX2-MD BZR-MD

Non-OT graph
kernels

GHK 76.4 ± 1.3 65.6 ± 0.8 74.7 ± 0.2 76.4 ± 0.9 66.2 ± 1.0 69.1 ± 2.0
PK 77.6 ± 0.6 71.6 ± 0.5 61.3 ± 0.8 79.5 ± 0.4 - -
HGK-WL 78.1 ± 0.4 63.0 ± 0.6 75.9 ± 0.1 78.5 ± 0.6 74.6 ± 1.7 68.9 ± 0.6
HGK-SP 72.5 ± 1.1 66.3 ± 0.3 75.7 ± 0.1 76.4 ± 0.7 68.5 ± 1.0 66.1 ± 1.0

OT-based graph
kernels

WWL 78.2 ± 0.4 73.2 ± 0.8 77.9 ± 0.8 84.4 ± 2.0 76.3 ± 1.0 69.7 ± 0.9
FGW 77.2 ± 4.8 71.0 ± 6.7 74.5 ± 2.7 85.1 ± 4.1 - -

Our work
RWK 81.2 ± 5.3 78.3 ± 4.1 79.3 ± 6.1 86.2 ± 5.6 78.1 ± 4.3 71.9 ± 4.6
RWK-1 80.7 ± 4.6 77.5 ± 5.3 78.9 ± 4.5 85.8 ± 5.5 77.4 ± 3.7 71.3 ± 4.3
RWK-0 79.6 ± 3.1 76.4 ± 4.5 78.2 ± 5.6 85.2 ± 4.3 76.7 ± 5.5 70.5 ± 3.7

Table 6.4: Classification accuracy (%) averaged over 10 runs on graphs with continuous
attributes. The results of GHK, HGK-WL and HGK-SP are taken from [245] and the results of
the other baselines are from their original papers.

6.6.2 Impact of Local Variations

In our experiments, we also notice that performance increases with 2-hops rather
than the 1-hop, however when we increase the number of hops (hops > 2) does not
necessarily lead to improved performance due to the issue of oversmoothing. We thus
restrict feature local variations within 2 hops. To analyze the impact of feature local
variations to answer the question Q2, we compare the performance of RWK that uses
2-hop feature local variations against the following two additional settings:

– RWK-0: without using any feature local variations;

– RWK-1: with using 1-hop feature local variations.

The results for this experiment are presented in Tables 6.3-6.4. We can see the
following. First, feature local variations help to improve the performance considerably
and consistently on all datasets, including both graphs with discrete attributes and
graphs with continuous attributes. Second, on all these datasets, RWK consistently
performs better than RWK-1, and RWK-1 consistently performs better than RWK-0.

6.6.3 Runtime Analysis

We evaluate the running time of RWK against the other OT-based graph kernel
methods, i.e., FGW [243] and WWL [245] to answer the question Q3. All these
methods and our method were implemented in python. For a fair comparison, we do
not consider WL-PM [182] because its implementation was done using MATLAB. The
runtime results are averaged over 10 runs.

Figure 6.3 shows the results. We see that: (1) FGW is the fastest one, compared
with WWL and RWK, over all benchmark datasets; (2) RWK is slower than WWL
on the 4 small datasets but faster than WWL on the other 7 larger datasets. This
demonstrates the good scalability of RWK for large datasets. The reason why RWK is
more scalable than WWL is as follows. WWL considers an unregularized Wasserstein
optimization problem, which is usually cast as a linear programming problem and
costly to solve [58]. In its algorithm implementation, WWL uses the EMD solver
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MUTAG PTC-MR COX2-MD BZR-MD
Datasets

0

200

400

600

800

1000

Ru
nt

im
e 

(s
)

(a)
FGW
RWK
WWL

BZR COX2 ENZYMES
Datasets

0

500

1000

1500

2000

Ru
nt

im
e 

(s
)

(b)
FGW
RWK
WWL

PROTEINS NCI1 NCI109 D&D
Datasets

0
2
4
6
8

10
12
14
16

Ru
nt

im
e 

(h
rs

)

(c)
FGW
RWK
WWL

Figure 6.3: Running time averaged over 10 runs on graphs with discrete and continuous
attributes. There are no result for the COLLAB dataset because all methods take more than 24
hours to obtain the results

[58]. Different from WWL, RWK considers a regularized optimal transport problem,
which is solved by our SCG algorithm being designed upon the Sinkhorn-knopp matrix
scaling for speeding up the computation.

6.6.4 Ablation Analysis

To demonstrate the effectiveness of each component in the proposed method RWK,
we conduct an ablation study on the following variants to answer the question Q4:

• NoLaplacianReg: This variant removes only the Laplacian regularization term
Θw(γ) from RWK;

• NoEntropyReg: This variant removes only the degree-entropy regularization
term Θg(γ) from RWK;

• NoRegs: This variant removes both regularization terms Θw(γ) and Θg(γ) from
RWK;

• RWK-LW: This variant removes only the global connectivity Wasserstein dis-
tance GW(µ, ν) from RWK;

• RWK-GW: This variant removes only the local barycentric Wasserstein distance
LW(µ, ν) from RWK.

The results are presented in Tables 6.5-6.6. We observe that both local barycentric
Wasserstein distance and global connectivity Wasserstein distance are crucial to the
performance. The regularization terms Θg(γ) and Θw(γ) help reduce the perfor-
mance variance while boosting the performance. Specifically, on graphs with discrete
attributes, compared with RWK, the performance decreases by a margin ranging from
1.5% to 3.5% in NoLaplacianReg, from 0.7% to 1.4% in NoEntropyReg, and from 2.6%
to 4.7% in NoRegs. A similar trend exists on graphs with continuous attributes, where
the performance decreases by a margin ranging from 1.4% to 3.2% in NoLaplacianReg,
from 0.5% to 2.1% in NoEntropyReg, and from 2.2% to 4.0% in NoRegs. For RWK-LW,
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compared with RWK, the performance decreases by a margin ranging from 3.1%
to 6.2% on graphs with discrete attributes and from 3.4% to 5.1% on graphs with
continuous attributes. Similarly, for RWK-GW, the performance decreases by a margin
ranging from 6.1% to 10.8% on graphs with discrete attributes and from 5.7% to 7.8%
on graphs with continuous attributes.

Variants MUTAG PTC-MR NCI1 D&D NCI109 COLLAB
NoLaplacianReg 90.1 ± 3.5 67.0 ± 3.7 86.2 ± 5.3 79.4 ± 4.5 85.8 ± 5.2 81.5 ± 3.9
NoEntropyReg 92.2 ± 3.5 68.3 ± 6.5 87.3 ± 6.1 80.4 ± 3.6 86.5 ± 4.7 82.4 ± 3.8
NoRegs 88.9 ± 3.5 66.2 ± 4.6 85.3 ± 5.8 78.2 ± 3.9 84.7 ± 5.1 80.8 ± 4.1
RWK-LW 87.4 ± 4.2 64.8 ± 6.5 84.9 ± 3.6 77.8 ± 3.8 83.8 ± 5.7 79.5 ± 3.6
RWK-GW 82.8 ± 5.4 61.2 ± 5.8 81.9 ± 4.3 75.3 ± 4.8 80.7 ± 5.5 75.1 ± 3.9

Table 6.5: Classification accuracy (%) averaged over 10 runs on graphs with discrete attributes.
Variants COX2 BZR ENZYMES PROTEINS COX2-MD BZR-MD
NoLaplacianReg 79.1 ± 3.9 84.8 ± 4.2 76.2 ± 3.8 77.5 ± 5.5 76.1 ± 4.6 68.7 ± 3.9
NoEntropyReg 80.5 ± 5.4 85.7 ± 6.3 77.2 ± 3.7 78.5 ± 5.1 77.2 ± 4.1 69.8 ± 4.9
NoRegs 78.2 ± 4.6 83.7 ± 5.6 75.4 ± 3.6 76.6 ± 4.8 75.9 ± 3.6 67.9 ± 4.5
RWK-LW 77.1 ± 4.1 82.8 ± 3.8 74.5 ± 5.2 75.5 ± 4.4 74.7 ± 4.3 66.8 ± 5.1
RWK-GW 75.3 ± 5.4 79.6 ± 6.0 72.6 ± 3.3 73.2 ± 5.6 71.3 ± 4.1 64.1 ± 3.6

Table 6.6: Classification accuracy (%) averaged over 10 runs on graphs with continuous
attributes.

6.7 Summary

In this chapter, we have proposed a learning framework for graph kernels, which
is theoretically grounded on regularizing optimal transport∗. This framework pro-
vides a novel optimal transport distance metric, namely Regularized Wasserstein (RW)
discrepancy, which can preserve both features and structure of graphs via Wasser-
stein distances on features and their local variations, local barycenters and global
connectivity. Two strongly convex regularization terms are introduced to improve
the learning ability. One is to relax an optimal alignment between graphs to be a
cluster-to-cluster mapping between their locally connected vertices, thereby preserv-
ing the local clustering structure of graphs. The other is to take into account node
degree distributions in order to better preserve the global structure of graphs. We
also designed an efficient algorithm to enable a fast approximation for solving the
optimization problem. Theoretically, our framework is robust and can guarantee the
convergence and numerical stability in optimization. We have empirically validated
our method using 12 datasets against 16 state-of-the-art baselines. The experimental
results showed that our method consistently outperforms all state-of-the-art methods
on all benchmark databases for both graphs with discrete attributes and graphs with
continuous attributes.

∗RWK implementation can be found at: https://github.com/wokas36/RWK
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Chapter 7

Conclusions and Future Work

In this thesis, we have studied two fundamental paradigms in graph learning: (1)
graph representation learning and (2) graph similarity learning. We first explored
three different approaches to develop expressive, yet simple and efficient GNNs for
graph representation learning. Then, we introduced a graph kernel function that can
incorporate intrinsic graph properties into a learning framework with guaranteed
convergence and numerical stability. In summary, we have presented the following
main results in Chapters 3-6:

• In Chapter 3, we have introduced a new perspective of designing powerful
spatial GNNs that can go beyond the 1-WL test with a theoretically provable
guarantee. In particular, we have developed a generalized message-passing
framework, which allows to incorporate structural properties of graphs into
a message-passing aggregation scheme. Theoretically, we have developed a
new local isomorphism hierarchy based on neighborhood subgraphs. Then,
we have proposed a novel neural network model, namely GraphSNN, and
proved that this message-passing GNN is strictly more expressive than the
1-WL test in distinguishing graph structures. We have empirically evaluated our
model on different benchmark tasks. The experimental results show that our
model improves the baseline methods on different graph learning tasks without
sacrificing the simplicity and efficiency.

• In Chapter 4, we have proposed a powerful, yet efficient spectral GNN model
on graphs, called Distributed Feedback-looped Networks (DFNets). This model is
equipped with a new class of spectral graph filters, namely called feedback-looped
filters, which provides a better localization on vertices. We have also formulated
a convex constrained least square problem to learn optimal coefficients of the
proposed filters. This model can theoretically guarantee the convergence with
linear memory requirements. Furthermore, DFNets can provide strong gradient
flows since the propagation rule of this model can diversify the features. We have
empirically evaluated our model with two benchmark tasks: semi-supervised
document classification with citation networks and semi-supervised entity-
classification on knowledge graph. It is shown that our model considerably
outperforms the baseline methods over all benchmark tasks.
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• In Chapter 5, we have introduced a diffusion GNN architecture, called Dynamic
PageRank Networks (DPRNs). We have further developed two variants of this
GNN architecture: forward-euler solution and invariable feature solution. These two
variants incorporate dynamic PageRank techniques to capture rich and varying
graph structures. In order to improve the discriminative power of PageRank
diffusion on graphs, we have also encoded local topological information into a
learnable PageRank transition matrix through a quadratic convex constrained
optimization problem to learn polynomial filter coefficients. Despite the fact
that dynamic PageRank does not converge, we have theoretically proved that
our GNN architecture with forward-euler solution is guaranteed to converge to
a stationary distribution. We have also showed that a shallow GNN architecture
with deeper single layers is a promising direction to capture different graph
structures, i.e., homophilic and heterophilic graphs.

• In Chapter 6, we have proposed a regularized optimal transport-based frame-
work for graph kernels. This framework introduces a new optimal transport
distance metric, called Regularized Wasserstein (RW) discrepancy, which can pre-
serve both local and global structural information, and feature local variations
between graphs during the transportation. Furthermore, to find an optimal
assignment between two graphs, we have proposed two strongly convex regular-
ization terms to theoretically guarantee the convergence and numerical stability.
One regularization term is used to relax the optimal assignment between graphs
to preserve local clustering structures between locally connected vertices. The
other one is to consider node degree distributions to preserve global structures
of graphs. We have designed an efficient and a numerically stable algorithm for
solving the optimization problem. We have empirically evaluated our method
over two benchmark tasks: graph classification with discrete attributed graphs
and graph classification with continuous attributed graphs. It is shown that this
method outperforms all baseline methods on all benchmark tasks.

To conclude, we have developed powerful GNN models for graph representation
learning from three different perspectives and a graph kernel approach for graph
similarity learning, which allow us to take the advantage of rich structure of graphs
for better prediction. Nonetheless, our work still has limitations and further work can
be extended to address these limitations in several directions.

One limitation of our message-passing GNN model presented in Chapter 3 is that
structural coefficients are pre-computed. In the literature, attention-based GNNs [284,
25] are typically considered as a promising direction to learn weights adaptively so as
to exploit rich structural information. Following this direction, we can further develop
a message-passing aggregation scheme for spatial GNN models with adaptively
learnable structural coefficients to alleviate this limitation.

Similarly, desired frequency responses of DFNets in Chapter 4 and DPRNs in
Chapter 5 are also restricted to predefined conditions, for which we need to select cut-
off thresholds based on trial-and-error. In future, we plan to learn cut-off thresholds
adaptively. Another limitation in DPRNs is that our current filter design is homoge-
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neous isotropic, which restricts the expressive power of diffusion GNNs. Thus, we
plan to incorporate anisotropic diffusion filters to enhance the expressive power of
GNNs. In addition to these, we also plan to extend our spectral GNNs to time-varying
graph structures. As discussed in [113], feedback-looped graph filters are practically
appealing for time-varying settings, and similar to static graphs, some nice properties
would likely hold for graphs that are a function of time.

Inspired by the success of deep generative models such as variational autoencoders
(VAEs) [121] and generative adversarial networks (GANs) [89], graph generative mod-
els have been widely studied in the past several years [230, 88, 185, 222, 133, 62, 279].
Despite the considerable progress made by existing graph generative models, they
cannot jointly leverage local clustering structures and global connectivity structures
into a generative model. Therefore, in future works, we can extend our graph ker-
nel framework developed in Chapter 6 to optimal transport-based graph generative
models for preserving both global and local structures of generated graphs. Another
limitation in RWK is that our current graph kernel design is required a higher running
time for large graphs. Thus, we plan to scale-up our kernel method for large graphs.
In addition to these, we also plan to extend our graph kernel on different graph
structured data such as heterophilic graphs.
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bourhood aggregation for graph nets. Advances in Neural Information Processing
Systems (NeurIPS), 2020. (cited on page 45)

55. C. Cortes, M. Mohri, and A. Rostamizadeh. L2 regularization for learning kernels.
In Conference on Uncertainty in Artificial Intelligence (UAI), pages 109–116, 2009.
(cited on page 61)

56. M. Cranmer, S. Greydanus, S. Hoyer, P. Battaglia, D. Spergel, and S. Ho. La-
grangian neural networks. arXiv preprint arXiv:2003.04630, 2020. (cited on page
20)

57. P. Cui, X. Wang, J. Pei, and W. Zhu. A survey on network embedding. IEEE
Transactions on Knowledge and Data Engineering, pages 833–852, 2018. (cited on
pages 2 and 4)

58. M. Cuturi. Sinkhorn distances: Lightspeed computation of optimal transport. In
Advances in neural information processing systems (NeurIPS), pages 2292–2300, 2013.
(cited on pages 27, 113, and 114)

59. G. Da San Martino, N. Navarin, and A. Sperduti. A tree-based kernel for graphs.
In Proceedings of the 2012 SIAM International Conference on Data Mining, pages
975–986. SIAM, 2012. (cited on page 24)

60. H. Dai, B. Dai, and L. Song. Discriminative embeddings of latent variable models
for structured data. In International Conference on Machine Learning (ICML), pages
2702–2711. PMLR, 2016. (cited on page 5)

– 22 December 2022



126 BIBLIOGRAPHY

61. V. S. Dave, M. A. Hasan, B. Zhang, and C. K. Reddy. Predicting interval time
for reciprocal link creation using survival analysis. Social Network Analysis and
Mining, pages 1–20, 2018. (cited on page 2)

62. N. De Cao and T. Kipf. Molgan: An implicit generative model for small molecular
graphs. arXiv preprint arXiv:1805.11973, 2018. (cited on page 119)

63. P. de Haan, T. Cohen, and M. Welling. Natural graph networks. arXiv preprint
arXiv:2007.08349, 2020. (cited on pages 4 and 14)

64. A. K. Debnath, R. L. Lopez de Compadre, G. Debnath, A. J. Shusterman, and
C. Hansch. Structure-activity relationship of mutagenic aromatic and heteroaro-
matic nitro compounds. correlation with molecular orbital energies and hy-
drophobicity. Journal of medicinal chemistry, 34(2):786–797, 1991. (cited on pages
44 and 110)

65. M. Defferrard, X. Bresson, and P. Vandergheynst. Convolutional neural networks
on graphs with fast localized spectral filtering. In Advances in neural information
processing systems (NeurIPS), pages 3844–3852, 2016. (cited on pages 5, 8, 17, 18,
57, 60, 62, 63, 65, and 68)

66. R. Dijkman, M. Dumas, and L. García-Bañuelos. Graph matching algorithms for
business process model similarity search. In International Conference on Business
Process Management, pages 48–63. Springer, 2009. (cited on page 6)

67. S. C. Douglas, S.-i. Amari, and S.-Y. Kung. On gradient adaptation with unit-
norm constraints. IEEE Transactions on Signal processing, 48(6):1843–1847, 2000.
(cited on page 61)

68. S. S. Du, K. Hou, B. Póczos, R. Salakhutdinov, R. Wang, and K. Xu. Graph neural
tangent kernel: Fusing graph neural networks with graph kernels. arXiv preprint
arXiv:1905.13192, 2019. (cited on pages xxi, xxiii, 45, 49, 111, and 112)

69. E. Dupont, A. Doucet, and Y. W. Teh. Augmented neural odes. Advances in Neural
Information Processing Systems (NeurIPS), 32, 2019. (cited on page 20)

70. F. Durand and J. Dorsey. Fast bilateral filtering for the display of high-dynamic-
range images. In Annual Conference on Computer Graphics and Interactive Techniques,
pages 257–266, 2002. (cited on page 20)

71. D. K. Duvenaud, D. Maclaurin, J. Iparraguirre, R. Bombarell, T. Hirzel, A. Aspuru-
Guzik, and R. P. Adams. Convolutional networks on graphs for learning molec-
ular fingerprints. In Advances in neural information processing systems (NeurIPS),
pages 2224–2232, 2015. (cited on page 5)

72. M. Eliasof, E. Haber, and E. Treister. Pde-gcn: Novel architectures for graph
neural networks motivated by partial differential equations. Advances in Neural
Information Processing Systems (NeurIPS), 34, 2021. (cited on pages 5, 20, 71,
and 84)

– 22 December 2022



BIBLIOGRAPHY 127

73. F. Errica, M. Podda, D. Bacciu, and A. Micheli. A fair comparison of graph neural
networks for graph classification. 2020. (cited on pages 47 and 50)

74. W. Fan, Y. Ma, Q. Li, Y. He, E. Zhao, J. Tang, and D. Yin. Graph neural networks
for social recommendation. In The World Wide Web Conference (WWW), pages
417–426, 2019. (cited on page 1)

75. A. Feragen, N. Kasenburg, J. Petersen, M. de Bruijne, and K. Borgwardt. Scalable
kernels for graphs with continuous attributes. In Advances in Neural Information
Processing Systems (NeurIPS), 2013. (cited on pages 24 and 111)

76. S. Ferradans, N. Papadakis, J. Rabin, G. Peyré, and J.-F. Aujol. Regularized
discrete optimal transport. In International Conference on Scale Space and Variational
Methods in Computer Vision (SSVM), 2013. (cited on page 99)

77. S. Ferradans, N. Papadakis, G. Peyré, and J.-F. Aujol. Regularized discrete
optimal transport. SIAM Journal on Imaging Sciences, pages 1853–1882, 2014.
(cited on page 6)

78. J. H. Fitschen, F. Laus, and B. Schmitzer. Optimal transport for manifold-valued
images. In International Conference on Scale Space and Variational Methods in
Computer Vision, pages 460–472. Springer, 2017. (cited on page 6)

79. R. Flamary, N. Courty, A. Rakotomamonjy, and D. Tuia. Optimal transport with
laplacian regularization. 2014. (cited on page 99)

80. N. Fournier and A. Guillin. On the rate of convergence in wasserstein distance
of the empirical measure. Probability Theory and Related Fields, 162(3-4):707–738,
2015. (cited on page 99)

81. H. Fröhlich, J. K. Wegner, F. Sieker, and A. Zell. Optimal assignment kernels
for attributed molecular graphs. In International Conference on Machine Learning
(ICML), pages 225–232, 2005. (cited on page 24)

82. C. Gallicchio and A. Micheli. Graph echo state networks. In IEEE International
Joint Conference on Neural Networks (IJCNN), pages 1–8. IEEE, 2010. (cited on
pages 4 and 13)

83. V. Garg, S. Jegelka, and T. Jaakkola. Generalization and representational limits
of graph neural networks. In International Conference on Machine Learning (ICML),
pages 3419–3430, 2020. (cited on page 15)

84. T. Gärtner, P. Flach, and S. Wrobel. On graph kernels: Hardness results and
efficient alternatives. In Learning theory and kernel machines, pages 129–143. 2003.
(cited on page 24)

85. J. Gilmer, S. S. Schoenholz, P. F. Riley, O. Vinyals, and G. E. Dahl. Neural message
passing for quantum chemistry. In International Conference on Machine Learning
(ICML), pages 1263–1272, 2017. (cited on page 13)

– 22 December 2022



128 BIBLIOGRAPHY

86. D. F. Gleich. Pagerank beyond the web. Siam Review, pages 321–363, 2015. (cited
on page 20)

87. X. Glorot and Y. Bengio. Understanding the difficulty of training deep feed-
forward neural networks. In International Conference on Artificial Intelligence and
Statistics (AIStats), pages 249–256, 2010. (cited on page 61)

88. R. Gómez-Bombarelli, J. N. Wei, D. Duvenaud, J. M. Hernández-Lobato,
B. Sánchez-Lengeling, D. Sheberla, J. Aguilera-Iparraguirre, T. D. Hirzel, R. P.
Adams, and A. Aspuru-Guzik. Automatic chemical design using a data-driven
continuous representation of molecules. ACS Central Science, pages 268–276, 2018.
(cited on page 119)

89. I. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley, S. Ozair,
A. Courville, and Y. Bengio. Generative adversarial nets. Advances in Neural
Information Processing Systems (NeurIPS), 2014. (cited on page 119)

90. M. Gori, G. Monfardini, and F. Scarselli. A new model for learning in graph
domains. In IEEE International Joint Conference on Neural Networks (IJCNN),
volume 2, pages 729–734, 2005. (cited on pages 4 and 13)

91. P. Goyal and E. Ferrara. Graph embedding techniques, applications, and perfor-
mance: A survey. Knowledge-Based Systems, pages 78–94, 2018. (cited on pages 1
and 4)

92. D. Greene and P. Cunningham. A matrix factorization approach for integrating
multiple data views. In Joint European conference on Machine Learning and Knowledge
Discovery in Databases, pages 423–438. Springer, 2009. (cited on page 3)

93. M. Grohe. Descriptive complexity, canonisation, and definable graph structure theory,
volume 47. Cambridge University Press, 2017. (cited on pages 15 and 16)

94. J. L. Gross, J. Yellen, and M. Anderson. Graph theory and its applications. Chapman
and Hall/CRC, 2018. (cited on page 1)

95. A. Grover and J. Leskovec. node2vec: Scalable feature learning for networks.
In ACM SIGKDD International Conference on Knowledge Discovery & Data Mining,
pages 855–864, 2016. (cited on page 3)

96. S. Gu and Y. Guo. Learning svm classifiers with indefinite kernels. In AAAI
Conference on Artificial Intelligence (AAAI), volume 26, 2012. (cited on page 23)

97. M. Guillaumin, J. Verbeek, and C. Schmid. Is that you? metric learning ap-
proaches for face identification. In International Conference on Computer Vision
(ICCV), pages 498–505. IEEE, 2009. (cited on page 5)

98. N. Halko, P.-G. Martinsson, and J. A. Tropp. Finding structure with randomness:
Probabilistic algorithms for constructing approximate matrix decompositions.
SIAM review, pages 217–288, 2011. (cited on page 76)

– 22 December 2022



BIBLIOGRAPHY 129

99. W. Hamilton, Z. Ying, and J. Leskovec. Inductive representation learning on large
graphs. In Advances in Neural Information Processing Systems (NeurIPS), pages
1024–1034, 2017. (cited on pages 4, 5, 14, 15, 16, 37, 38, 42, 45, and 84)

100. W. L. Hamilton. Graph representation learning. Synthesis Lectures on Artifical
Intelligence and Machine Learning, 14(3):1–159, 2020. (cited on page 8)

101. D. K. Hammond, P. Vandergheynst, and R. Gribonval. Wavelets on graphs via
spectral graph theory. Applied and Computational Harmonic Analysis, 30(2):129–150,
2011. (cited on pages 17 and 18)

102. D. Haussler. Convolution kernels on discrete structures. Technical report,
Technical report, Department of Computer Science, University of California . . . ,
1999. (cited on pages 22 and 23)

103. M. He, Z. Wei, H. Xu, et al. Bernnet: Learning arbitrary graph spectral filters
via bernstein approximation. Advances in Neural Information Processing Systems
(NeurIPS), 34, 2021. (cited on pages 71 and 84)

104. M. Henaff, J. Bruna, and Y. LeCun. Deep convolutional networks on graph-
structured data. arXiv preprint arXiv:1506.05163, 2015. (cited on pages 17 and 57)

105. S. Hido and H. Kashima. A linear-time graph kernel. In 2009 Ninth IEEE
International Conference on Data Mining, pages 179–188. IEEE, 2009. (cited on
page 24)

106. T. Hofmann, B. Schölkopf, and A. J. Smola. Kernel methods in machine learning.
The Annals of Statistics, 36(3):1171–1220, 2008. (cited on page 22)

107. T. Horváth, T. Gärtner, and S. Wrobel. Cyclic pattern kernels for predictive graph
mining. In ACM SIGKDD International Conference on Knowledge Discovery & Data
Mining (SIGKDD), 2004. (cited on pages 5, 6, 22, and 24)

108. W. Hu, M. Fey, M. Zitnik, Y. Dong, H. Ren, B. Liu, M. Catasta, and J. Leskovec.
Open graph benchmark: Datasets for machine learning on graphs. Advances in
Neural Information Processing Systems (NeurIPS), 2020. (cited on pages xxi, 32, 43,
44, 45, 46, 48, 52, 82, and 84)

109. G. Huang, Z. Liu, L. Van Der Maaten, and K. Q. Weinberger. Densely con-
nected convolutional networks. In IEEE conference on computer vision and pattern
recognition (CVPR), pages 4700–4708, 2017. (cited on pages 58 and 61)

110. N. T. Huang and S. Villar. A short tutorial on the weisfeiler-lehman test and its
variants. In IEEE International Conference on Acoustics, Speech and Signal Processing
(ICASSP), pages 8533–8537. IEEE, 2021. (cited on page 16)

111. K. Ishiguro, S.-i. Maeda, and M. Koyama. Graph warp module: an auxiliary
module for boosting the power of graph neural networks in molecular graph
analysis. arXiv preprint arXiv:1902.01020, 2019. (cited on page 48)

– 22 December 2022



130 BIBLIOGRAPHY

112. E. Isufi, A. Loukas, and G. Leus. Autoregressive moving average graph filters:
a stable distributed implementation. In 2017 IEEE International Conference on
Acoustics, Speech and Signal Processing (ICASSP), pages 4119–4123, 2017. (cited on
pages 59 and 62)

113. E. Isufi, A. Loukas, A. Simonetto, and G. Leus. Autoregressive moving average
graph filtering. IEEE Transactions on Signal Processing, 65(2):274–288, 2017. (cited
on pages 19, 58, 59, 62, and 119)

114. M. Jaggi. Revisiting frank-wolfe: Projection-free sparse convex optimization. In
International Conference on Machine Learning (ICML), 2013. (cited on pages 103,
106, and 107)

115. N. Jiang, W. Liu, and Y. Wu. Order determination and sparsity-regularized
metric learning adaptive visual tracking. In IEEE Conference on Computer Vision
and Pattern Recognition (CVPR), pages 1956–1963. IEEE, 2012. (cited on page 5)

116. F. D. Johansson and D. Dubhashi. Learning with similarity functions on graphs
using matchings of geometric embeddings. In ACM SIGKDD International Con-
ference on Knowledge Discovery and Data Mining (SIGKDD), pages 467–476, 2015.
(cited on page 25)

117. L. Kantorovich. On the transfer of masses (in russian). In Doklady Akademii Nauk,
volume 37, pages 227–229, 1942. (cited on page 25)

118. S. M. Kay and A. K. Shaw. Frequency estimation by principal component ar
spectral estimation method without eigendecomposition. IEEE Transactions on
Acoustics, Speech, and Signal Processing, 36(1):95–101, 1988. (cited on page 8)

119. N. Keriven and G. Peyré. Universal invariant and equivariant graph neural
networks. In Advances in Neural Information Processing Systems (NeurIPS), 2019.
(cited on page 15)

120. D. P. Kingma and J. Ba. Adam: A method for stochastic optimization. In
International Conference on Learning Representations (ICLR), 2015. (cited on pages
46, 64, 84, and 85)

121. D. P. Kingma and M. Welling. Auto-encoding variational bayes. 2014. (cited on
page 119)

122. T. N. Kipf and M. Welling. Semi-supervised classification with graph convolu-
tional networks. In International Conference on Learning Representations (ICLR),
2017. (cited on pages 5, 13, 15, 17, 18, 20, 22, 31, 37, 38, 42, 45, 46, 57, 63, 64, 65,
77, 78, 82, 83, and 84)

123. V. Klema and A. Laub. The singular value decomposition: Its computation and
some applications. IEEE Transactions on Automatic Control, 25(2):164–176, 1980.
(cited on page 98)

– 22 December 2022



BIBLIOGRAPHY 131

124. J. Klicpera, A. Bojchevski, and S. Günnemann. Predict then propagate: Graph
neural networks meet personalized pagerank. In International Conference on
Learning Representations (ICLR), 2019. (cited on pages 20, 71, 73, 77, 79, 83,
and 84)

125. J. Klicpera, S. Weißenberger, and S. Günnemann. Diffusion improves graph
learning. Advances in Neural Information Processing Systems (NeurIPS), pages
13354–13366, 2019. (cited on pages 5, 20, 71, 73, 77, 78, 79, and 83)

126. P. A. Knight. The sinkhorn–knopp algorithm: convergence and applications.
SIAM Journal on Matrix Analysis and Applications (SIMAX), 30(1):261–275, 2008.
(cited on page 96)

127. M. Koda, A. H. Dogru, and J. H. Seinfeld. Sensitivity analysis of partial differ-
ential equations with application to reaction and diffusion processes. Journal of
Computational Physics, pages 259–282, 1979. (cited on page 20)

128. R. I. Kondor and J. Lafferty. Diffusion kernels on graphs and other discrete
structures. In International Conference on Machine Learning (ICML), pages 315–322,
2002. (cited on pages 5 and 73)

129. N. Kriege and P. Mutzel. Subgraph matching kernels for attributed graphs. In
International Conference on Machine Learning (ICML), pages 291–298, 2012. (cited
on page 24)

130. N. M. Kriege, P.-L. Giscard, and R. Wilson. On valid optimal assignment kernels
and applications to graph classification. In Advances in Neural Information Pro-
cessing Systems (NeurIPS), pages 1623–1631, 2016. (cited on pages 23, 25, 44, 110,
and 111)

131. N. M. Kriege, F. D. Johansson, and C. Morris. A survey on graph kernels. Applied
Network Science, 5(1):1–42, 2020. (cited on pages 1, 22, 23, and 27)

132. A. Kumar, P. Rai, and H. Daume. Co-regularized multi-view spectral clustering.
Advances in Neural Information Processing Systems (NeurIPS), 24, 2011. (cited on
page 2)

133. M. J. Kusner, B. Paige, and J. M. Hernández-Lobato. Grammar variational
autoencoder. In International Conference on Machine Learning, pages 1945–1954.
PMLR, 2017. (cited on page 119)

134. S. Lacoste-Julien. Convergence rate of frank-wolfe for non-convex objectives.
arXiv preprint arXiv:1607.00345, 2016. (cited on pages 106 and 107)

135. A. N. Langville and C. D. Meyer. Google’s pagerank and beyond: The science of
search engine rankings, 2006. (cited on page 73)

– 22 December 2022



132 BIBLIOGRAPHY

136. J.-E. Lee, R. Jin, and A. K. Jain. Rank-based distance metric learning: An
application to image retrieval. In IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), pages 1–8. IEEE, 2008. (cited on page 5)

137. R. Levie, F. Monti, X. Bresson, and M. M. Bronstein. Cayleynets: Graph convolu-
tional neural networks with complex rational spectral filters. IEEE Transactions
on Signal Processing, 67(1):97–109, 2017. (cited on pages xxii, 5, 8, 9, 17, 18, 19, 57,
60, 62, 63, 65, and 68)

138. O. Levy, Y. Goldberg, and I. Dagan. Improving distributional similarity with
lessons learned from word embeddings. Transactions of the Association for Compu-
tational Linguistics (ACL), 3:211–225, 2015. (cited on page 97)

139. J. Li, R. Zhao, H. Hu, and Y. Gong. Improving rnn transducer modeling for end-
to-end speech recognition. In IEEE Automatic Speech Recognition and Understanding
Workshop (ASRU), pages 114–121. IEEE, 2019. (cited on page 2)

140. P. Li, I. Chien, and O. Milenkovic. Optimizing generalized pagerank methods for
seed-expansion community detection. Advances in Neural Information Processing
Systems (NeurIPS), pages 11710–11721, 2019. (cited on page 20)

141. Q. Li, Z. Han, and X.-M. Wu. Deeper insights into graph convolutional networks
for semi-supervised learning. In AAAI Conference on Artificial Intelligence (AAAI),
2018. (cited on page 32)

142. R. Li, T. Zeng, H. Peng, and S. Ji. Deep learning segmentation of optical
microscopy images improves 3-d neuron reconstruction. IEEE Transactions on
Medical Imaging, pages 1533–1541, 2017. (cited on page 2)

143. S. Li, D. Kim, and Q. Wang. Beyond low-pass filters: Adaptive feature propa-
gation on graphs. In European Conference on Machine Learning and Principles and
Practice of Knowledge Discovery in Databases (ECML-PKDD), 2021. (cited on page
84)

144. Y. Li, D. Tarlow, M. Brockschmidt, and R. Zemel. Gated graph sequence neural
networks. International Conference on Learning Representations (ICLR), 2015. (cited
on pages 4 and 13)

145. Z. Li, N. Kovachki, K. Azizzadenesheli, B. Liu, K. Bhattacharya, A. Stuart, and
A. Anandkumar. Fourier neural operator for parametric partial differential
equations. arXiv preprint arXiv:2010.08895, 2020. (cited on page 20)

146. R. Liao, Z. Zhao, R. Urtasun, and R. S. Zemel. LanczosNet: Multi-scale deep
graph convolutional networks. In Proceedings of the seventh International Conference
on Learning Representation (ICLR), 2019. (cited on pages 17, 18, 19, 62, 63, 64,
and 65)

– 22 December 2022



BIBLIOGRAPHY 133

147. D. Liben-Nowell and J. Kleinberg. The link-prediction problem for social net-
works. Journal of the American Society for Information Science and Technology, pages
1019–1031, 2007. (cited on page 2)

148. D. Lim, G. Lanckriet, and B. McFee. Robust structural metric learning. In
International Conference on Machine Learning (ICML), pages 615–623. PMLR, 2013.
(cited on page 5)

149. Z. Lin and Z. Kang. Graph filter-based multi-view attributed graph clustering.
In International Joint Conference on Artificial Intelligence (IJCAI), pages 2723–2729,
2021. (cited on page 3)

150. Z. Lin, Z. Kang, L. Zhang, and L. Tian. Multi-view attributed graph clustering.
IEEE Transactions on Knowledge and Data Engineering, 2021. (cited on page 3)

151. R. Litman and A. M. Bronstein. Learning spectral descriptors for deformable
shape correspondence. IEEE Transactions on Pattern Analysis and Machine Intelli-
gence, pages 171–180, 2013. (cited on page 20)

152. L. Litwin. Fir and iir digital filters. IEEE potentials, pages 28–31, 2000. (cited on
page 81)

153. M. Liu, Z. Wang, and S. Ji. Non-local graph neural networks. IEEE Transactions
on Pattern Analysis and Machine Intelligence, 2021. (cited on page 84)

154. W. Liu, Z. Liu, F. Yu, P.-Y. Chen, T. Suzumura, and G. Hu. A scalable attribute-
aware network embedding system. Neurocomputing, 339:279–291, 2019. (cited on
page 3)

155. X. Liu, H. Pan, M. He, Y. Song, X. Jiang, and L. Shang. Neural subgraph
isomorphism counting. In ACM SIGKDD International Conference on Knowledge
Discovery & Data Mining (SIGKDD), pages 1959–1969, 2020. (cited on page 16)

156. G. Loosli, S. Canu, and C. S. Ong. Learning svm in krein spaces. IEEE Transactions
on Pattern Analysis and Machine Intelligence (TPAMI), 38(6):1204–1216, 2015. (cited
on page 23)

157. A. Loukas. What graph neural networks cannot learn: depth vs width. In
International Conference on Learning Representations (ICLR), 2020. (cited on pages
4 and 14)

158. Q. Lu and L. Getoor. Link-based classification. In International Conference on
Machine Learning (ICML), pages 496–503, 2003. (cited on pages 63 and 65)

159. R. Luss and A. d’Aspremont. Support vector machine classification with indefi-
nite kernels. In Advances in Neural Information Processing Systems (NeurIPS), 2008.
(cited on page 104)

– 22 December 2022



134 BIBLIOGRAPHY

160. G. Ma, N. K. Ahmed, T. L. Willke, and P. S. Yu. Deep graph similarity learning:
A survey. Data Mining and Knowledge Discovery, pages 688–725, 2021. (cited on
page 5)

161. Y. Ma, X. Liu, N. Shah, and J. Tang. Is homophily a necessity for graph neural
networks? In International Conference on Learning Representation (ICLR), 2022.
(cited on page 84)

162. L. v. d. Maaten and G. Hinton. Visualizing data using t-sne. Journal of machine
learning research, 9(Nov):2579–2605, 2008. (cited on page 67)

163. P. Mahé, N. Ueda, T. Akutsu, J.-L. Perret, and J.-P. Vert. Extensions of marginal-
ized graph kernels. In International Conference on Machine Learning (ICML), page 70,
2004. (cited on page 23)

164. H. P. Maretic, M. El Gheche, G. Chierchia, and P. Frossard. GOT: an optimal
transport framework for graph comparison. In Advances in Neural Information
Processing Systems (NeurIPS), 2019. (cited on pages 6, 26, 95, and 97)

165. H. P. Maretic, M. E. Gheche, M. Minder, G. Chierchia, and P. Frossard.
Wasserstein-based graph alignment. arXiv preprint arXiv:2003.06048, 2020. (cited
on page 27)

166. H. Maron, H. Ben-Hamu, N. Shamir, and Y. Lipman. Invariant and equivariant
graph networks. In International Conference on Learning Representations (ICLR),
2018. (cited on page 15)

167. H. Maron, H. Ben-Hamu, H. Serviansky, and Y. Lipman. Provably powerful
graph networks. Advances in Neural Information Processing Systems (NeurIPS), 2019.
(cited on pages xxi, 4, 16, and 49)

168. F. Mémoli. Gromov–wasserstein distances and the metric approach to object
matching. Foundations of computational mathematics, 11(4):417–487, 2011. (cited
on pages 25 and 26)

169. T. Mensink, J. Verbeek, F. Perronnin, and G. Csurka. Metric learning for large
scale image classification: Generalizing to new classes at near-zero cost. In
European Conference on Computer Vision (ECCV), pages 488–501. Springer, 2012.
(cited on page 5)

170. G. Monge. Mémoire sur la théorie des déblais et des remblais. Histoire de
l’Académie Royale des Sciences de Paris, 1781. (cited on page 25)

171. F. Monti, D. Boscaini, J. Masci, E. Rodola, J. Svoboda, and M. M. Bronstein.
Geometric deep learning on graphs and manifolds using mixture model cnns.
In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition,
pages 5115–5124, 2017. (cited on pages 5 and 8)

– 22 December 2022



BIBLIOGRAPHY 135

172. F. Monti, K. Otness, and M. M. Bronstein. Motifnet: a motif-based graph
convolutional network for directed graphs. In 2018 IEEE Data Science Workshop
(DSW), pages 225–228, 2018. (cited on page 16)

173. C. Morris, N. M. Kriege, K. Kersting, and P. Mutzel. Faster kernels for graphs
with continuous attributes via hashing. In ICDM, pages 1095–1100, 2016. (cited
on page 111)

174. C. Morris, K. Kersting, and P. Mutzel. Glocalized weisfeiler-lehman graph kernels:
Global-local feature maps of graphs. In 2017 IEEE International Conference on Data
Mining (ICDM), pages 327–336. IEEE, 2017. (cited on page 24)

175. C. Morris, M. Ritzert, M. Fey, W. L. Hamilton, J. E. Lenssen, G. Rattan, and
M. Grohe. Weisfeiler and leman go neural: Higher-order graph neural networks.
In AAAI Conference on Artificial Intelligence (AAAI), pages 4602–4609, 2019. (cited
on pages 4, 16, 31, 45, and 47)

176. C. Morris, G. Rattan, and P. Mutzel. Weisfeiler and leman go sparse: Towards
scalable higher-order graph embeddings. Advances in Neural Information Processing
Systems (NeurIPS), 2020. (cited on pages 4 and 16)

177. R. Murphy, B. Srinivasan, V. Rao, and B. Ribeiro. Relational pooling for graph
representations. In International Conference on Machine Learning (ICML), pages
4663–4673, 2019. (cited on page 17)

178. Y. Nesterov. Introductory lectures on convex optimization: A basic course, volume 87.
Springer Science & Business Media, 2003. (cited on page 105)

179. M. Neumann, R. Garnett, C. Bauckhage, and K. Kersting. Propagation kernels:
efficient graph kernels from propagated information. Machine Learning, 102(2):
209–245, 2016. (cited on pages 24 and 111)

180. T. Nguyen, H. Le, T. P. Quinn, T. Nguyen, T. D. Le, and S. Venkatesh. Graphdta:
Predicting drug–target binding affinity with graph neural networks. Bioinformat-
ics, 37(8):1140–1147, 2021. (cited on page 1)

181. M. Niepert, M. Ahmed, and K. Kutzkov. Learning convolutional neural networks
for graphs. In International conference on machine learning (ICML), pages 2014–2023,
2016. (cited on page 111)

182. G. Nikolentzos, P. Meladianos, and M. Vazirgiannis. Matching node embeddings
for graph similarity. In AAAI Conference on Artificial Intelligence (AAAI), 2017.
(cited on pages 6, 23, 27, 45, 95, 109, 111, and 113)

183. H. S. K.-i. Noma and K. Shimodaira. Dynamic time-alignment kernel in support
vector machine. Advances in Neural Information Processing Systems (NeurIPS), 2002.
(cited on page 23)

– 22 December 2022



136 BIBLIOGRAPHY

184. D. Oglic and T. Gärtner. Learning in reproducing kernel kreın spaces. In
International Conference on Machine Learning (ICML), 2018. (cited on page 23)

185. M. Olivecrona, T. Blaschke, O. Engkvist, and H. Chen. Molecular de-novo design
through deep reinforcement learning. Journal of Cheminformatics, pages 1–14,
2017. (cited on page 119)

186. F. Orsini, P. Frasconi, and L. De Raedt. Graph invariant kernels. In International
Joint Conference on Artificial Intelligence (IJCAI), 2015. (cited on page 24)
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