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ABSTRACT 
 

MACHINE-LEARNING AND META-ANALYSIS TECHNIQUES TO QUANTIFY 

AND PREDICT SOIL ORGANIC CARBON, N2O-N AND CO2-C EMISSIONS IN 

COVER CROP SYSTEMS 

DEEPAK RAJ JOSHI 

2022 

People worldwide are challenged by multiple threats including climate change, growing 

populations, and soil degradation.  Addressing these challenges requires understanding of 

the local environment, farming systems and modern technologies.  These technologies 

include new ways to process information that include artificial intelligence, machine 

learning and meta-analysis. Models produced using these technologies may be useful for 

predicting the consequences of implementing conservation practices that reduce GHG 

emissions as well as for determining the carbon footprint of cropping systems that 

include environmentally friendly conservation technologies such as growing cover crop. 

Therefore, our objectives of this study were to: 1) provide an overview of conservation 

agriculture technology as strategy to minimize soil degradation, climate change 

challenges, and food insecurity issues in developing countries like Nepal, 2) conduct 

global meta-analysis to quantify the impact of cover crops as one of conservation 

agriculture technique, on soil organic carbon (SOC) and crop yield in a corn (Zea mays 

L.) cropping system and 3) assess different machine learning based algorithms to predict 

the daily N2O-N and CO2-C emission from a decomposing rye (scientific name of rye) 

cover crop. For the first objective, historical data analysis indicated that air temperatures 

in Nepal have been increasing since 1901 at a rate of y 0.016 oC yr-1, whereas 
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precipitation has been decreasing at a rate of -0.137 mm yr-1. Increasing air temperature, 

when combined with decreasing precipitation, are interacting to reduce crop growth and 

yield, diminishing Nepal’s food security. We proposed conservation agriculture practices 

such as planting cover crop as farmer and environment friendly approach to mitigate and 

adopt the climate change impact and enhance food security. In second objective, I used 

meta- analysis approach to measure the effect of cover crop on SOC values in corn at a 

global scale. During the meta-analysis, data from 62 globally published peer reviewed 

literature showed that cover crops in the corn production system increased SOC by an 

average of 7.8%. The SOC increased at rates of 0.46 and 0.80 Mg/ha/year at the 0-15 and 

0-30 cm soil depths respectively, due to cover crop planting. To meet the third objective, 

several different machine learning prediction models were tested, which included 

multiple linear regression (MLR), partial least square regression (PLSR), support vector 

machine (SVM), random forest (RF), and artificial neural network (ANN), on daily N2O-

N and CO2-C emission data which were measured from a decomposing cover crop in 

2019 and 2020 at Aurora, SD, USA.  Each models’ performance was accessed using 

coefficient of determination (R2) (higher values close to one were deemed ‘best’), root 

mean square error (RMSE) and mean absolute error (MAE), where lowest values were 

‘best’. Out of all models, the RF model accounted for 73% and 85% of the variability 

explained in N2O-N and CO2-C emissions, respectively. Across the three objectives, we 

found that new analysis approaches such as machine learning and meta-analysis can be 

used to determine the carbon footprint and prediction of GHG emission from 

conservation agriculture practices such as planting cover crops.  
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INTRODUCTION 

People throughout the world are facing a variety of challenges, including climate 

change, expanding populations, and the degradation of the soil resources. Understanding 

the local environment, farming methods, and modern technologies that incorporate data 

science, such as artificial intelligence, machine learning, and meta-analysis, will provide 

more insight into targeting solutions to address these difficulties. By integrating farmer 

friendly conservation practices such as growing cover crops alongside modern artificial 

intelligence technology in agriculture decision support, can help to reduce food 

insecurity, climate change impact and soil degradation. Planting cover crops is a 

technique that can be used to reverse the impacts of agriculture on climate change. 

However there have been mixed findings on how the growing cover crop effects CO2 and 

N2O emissions and crop yields. Since biogeochemistry of the soil differs between the 

green growth and degradation (termination) phases, it is vital to study them separately to 

determine the net emission of a cover crop. Moreover, it is also important to develop 

models to more accurately predict the different greenhouse gas emissions which are 

needed to better understand how different agricultural practices can best be manipulated 

to help mitigate climate change.     

Additionally, there has been many studies conducted globally about the impact of 

cover crops on soil organic carbon, but the findings are not consistent across production 

systems and climates. Thus, to obtain a comprehensive understanding of how cover crops 

affect carbon sequestration in different soil types, climate, cover crop types and tillage 

methods, and rotations a synthesis paper is needed.   

1 



xii 
 

       
 

To achieve the sustainable development goals of the United Nations requires 

innovations in agriculture and development of climate-smart and economically feasible 

approaches for smallholder farmers in developing countries like Nepal. Therefore, there 

is need to review existing literature that can provide an overview of farming practices in 

Nepal. It is important to highlight near-term, as well as long term, challenges associated 

with climate change and food security and discuss the role of conservation agriculture as 

a climate-smart strategy to minimize soil degradation and improve food security in such 

countries.   

 

2 
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Chapter 1 

Conservation Agriculture for Food Security and Climate Resilience in Nepal 

Abstract 

Achieving the sustainable development goals of the United Nations requires 

innovations in agriculture and development of climate-smart and economically feasible 

approaches for smallholder farmers in developing countries.  Historical climate data of 

Nepal, which include 116 years since 1901, has shown an increasing trend for average 

temperature by 0.016 o C yr-1 whereas precipitation has shown a decreasing trend by 

0.137 mm yr-1. Such weather trends could enhance glacier melt associated flooding, and 

delayed monsoon rainfalls negatively impacting the agricultural production. The 

Nepalese government is promoting conservation agriculture (CA) through development 

of low-cost technologies that can be used effectively in difficult terrains. Such techniques 

include crop diversification, crop rotation, cover crops and minimum tillage, all of which 

can reduce soil degradation. In addition, increasing crop residue retention can result in 

greater C sequestration and crop yield and reductions in greenhouse gas emissions.  

However, there is still lack of consensus on the merits of CA in the context of 

smallholder farming systems in Nepal. This paper reviews existing literature and provides 

an overview of farming practices in Nepal, highlights near-term challenges associated 

with climate change and food security, and discusses the role of CA as a climate-smart 

strategy to minimize soil degradation and improve food security.   
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An overview of the Nepalese farming system 

The agriculture sector of Nepal employs approximately 66% of the country’s 

labor force, representing the main driver of economic growth and food security (Cosic et 

al., 2017). A typical farm has a limited land area, with the average household owning 

0.68 ha of land (CBS, 2013). The country has three physiographic regions namely, Terai, 

Hills, and Mountains, with several agroecological niches for crop and livestock 

production (Figure 1. 1.). The farming practices in different agroecological zones (Figure 

3.2) vary based on resource availability, land-use systems, environment, farming 

activities, productivity, and access to utilities such as road and market networks.  

The Terai plains lie at the lowest altitude (<1000 m.a.s.l) and support 20% of 

agricultural land (Paudel et al., 2009). The Koppen climate zone of this region is Tropical 

Savannah (Aw) (Karki et al., 2016) and is conducive to growing up to three crops, rice 

(Oryza sativa L.) -wheat (Triticum aestivum)-rice, rice-wheat, rice-maize (Zea mays L.), 

a year if irrigation facilities are present (Table 1.1). This region receives 80% of the 

annual rainfall during summer monsoon season (June to September) whereas the winter 

season is dry. Due to fertile soils, favorable climatic conditions, easy access to irrigation 

and chemical fertilizers and pesticides, crop yields are greatest in the Terai than in any 

other region (MOAC, 2010; Shresth et al., 2013). For example, in Peri-urban areas near 

the capital city Kathmandu, use of the pesticides has increased by 30% in 2015 compared 

with 2014 especially for vegetable production, due to easy access and better 

infrastructure (Jeranyama et al., 2020). In the irrigated cropping systems in the Terai and 

lower hill valleys, rice and wheat are predominant as summer and winter cereal crops, 

respectively, whereas in the upland non-irrigated region, the main crop is maize. 
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Figure 1. 1. Terai, Hill, and Mountain Eco-Regions of Nepal. (Raw data source:  

MoALC, 2018; ESA, 2021)  

Hills and Mountain terrains represent 80% of Nepal's agricultural area (Paudel et 

al., 2009). Based on Koppen climate classification, hill region is Cwa (Temperate 

Climate with dry winter and hot summer) , Cwb (Temperate Climatewith dry winter and 

warm summer) and Dwb ( Cold Climate with Dry winter and warm summer), whereas 

the high mountain regions have ET (Polar Tundra) and EF (Polar frost) climate. Crop 

yields in the hills and mountains are often low due to the small size of fields in the 

terraced land, rainfed agriculture, and difficulty accessing input supplies due to lack of 

adequate roads and markets (Ghimire et al., 2020). In the hill region, maize is rotated 

with other cereal crops (Table 1.1). Upland rice, tea (Camellia sinensis L. Kuntze), 

cardamom (Elettaria cardamomum L. Maton), ginger (Zingiber officinale Roscoe), and 

coffee (Coffea arabica L.) are also cultivated in the areas where soil and climate are 

favorable. In the mountains, crops like buckwheat (Fagopyrum esculentum) and naked 

barley (Hordeum vulgare L. ssp. vulgare) are cultivated in some areas. In addition, the 
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pastoral system of livestock grazing is also combined with crop production in high 

mountain locations due to rough terrain and short growing season.  

Table 1. 1. Major cropping systems in different ecological zones of Nepal.  

Terai and lower mountain 

valley (<1000 m.a.s.l) Middle mountain  High mountains  

 (1000-2000 m.a.s.l) (2000-3000 m.a.s.l) 

Rice-wheat Rice-wheat  

Maize -finger millet (Eleusine 

coracana L. Gaertn). 

Rice-rice Rice-winter legumes Maize-wheat/barley 

Rice-wheat-maize Maize-wheat Maize-buckwheat 

Rice-vegetable  Maize-winter legumes Buckwheat-fallow 

Rice-wheat-vegetable Maize-vegetables 

Potato (Solanum tuberosum 

L.)-fallow 

(Source: modified from Ghimire et al., 2020) 

    

 

Figure 1. 2. Typical farming systems in Terai (a), Hill (b) and Mountain (c) regions of 

Nepal. (Source: Rajan Ghimire, Ecological Services Center, Nepal). 

The livestock sector contributes a major part to sustainable agriculture and the 

rural economy. Grain cultivation and livestock production are complementary, and for 

the most part, households combine the production of subsistence crops with small 

(b) 

(c ) 

(a) 
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numbers of livestock as mixed farming systems. Large ruminant animals such as buffalo 

(Bubalus bubalis) bulls and oxen (Bos taurus) provide farm power in most areas. Overall, 

the livestock sector contributes about 26% of the agricultural economy in the country 

(MOAD, 2017). On the other hand, using animal power for different agricultural 

operations, is time consuming and labor intensive. The introduction of mini-tillers and 

hand tractors for field operations under the Prime Minister Agricultural Modernization 

project (a 10-yr project which began in 2016) has shifted the role of livestock from a 

major source of draught animal power and manure contributor to mostly a source of 

protein (milk and meat) and manure for crop production (PMAMP, 2021). It is reported 

that planting potatoes on a katha (about 0.3 ha) of land by traditional means used to take a 

day, but using mechanized equipment takes about 20 minutes.  This may potentially 

change agricultural practices for the Nepalese farmers.  

Challenges for food security in Nepal 

The agriculture sector in Nepal faces challenges due to its unique topography and 

physiography of the country (Figure 1.2). About 60% of the farmers surveyed across the 

country reported they are not able to sustain their livelihood from agricultural production 

alone due to low crop productivity (CBS, 2011). Although the production trend has been 

increasing over the decades, it is not adequate to meet the demand of the increasing 

population (FAO, 2015). Mostly, the farmers in hill regions of western Nepal face food 

deficit conditions due to the fragile landscape, lack of access to resources, and lack of 

inputs and training on improved farming practices (such as quality seed, adequate 

fertilization, crop rotation). The food shortage situation is increasing as a result of many 

environmental effects induced by conventional agriculture practices. For example, many 
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studies report a significant amount of soil loss from conventional agricultural fields 

(Chalise et al., 2020; Kiboi et al., 2017; Koirala et al., 2019; Shao et al., 2016). The soil 

erosion rate is estimated at 1.7 mm (about 22 Mg ha-1) of topsoil each year in Nepal 

(Chalise et al., 2019). In another study using Revised Universal Soil Loss Equation 

(RUSLE) model combined with a geospatial tool reported annual soil erosion of 35, 18, 

and 0.1 Mg ha-1 in Mountain, Mid-Hills and Terai, respectively (Koirala et al., 2019). 

Such soil losses from erosion reduce the organic matter, N, P and K content of the land 

and ultimately affects the soil nutrient status and reduces the crop yield (Tiwari et al., 

2010). 

Climate change exhibits an additional threat to food security in Nepal. Warmer 

temperatures and lower rainfall results in less water in dams for irrigation which then 

reduces the potential to maintain food production and crop yields. From 1977 to 2009, 

there was a record average 0.06 oC increase in average annual temperature, which shows 

a warming trend over the years (Shrestha et al., 2011). The models developed to assess 

temperature rise over time in Nepal predict an increase of 1.2 OC by 2030 (WWF, 2005). 

The global circulation models (GCM) predict that the number of extremely hot days per 

annum will increase by 55% by the 2060s and by 70% in the 2090s (NCVST, 2009). 

Similarly, using the 116 years of historical data for Nepal, temperature anomalies 

revealed inter-annual fluctuations and temperature change patterns have increased over 

the long-term. The rate of change was determined from the slope of the linear regression 

model, which was 0.016 oC year-1 (Figure 3.3.a). This increasing trend was even faster 

after 1975, with an annual increase rate of 0.035 o C year-1.  In the case of precipitation, 

however, historical data showed a declining trend at the rate of -0.137 mm year-1 (Figure 
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1.3.b). After 1975, the precipitation decline rate was -0.255 mm year-1. These results 

indicate the climate change impacts have been more severe during the last 41 years from 

1975 to 2016.  

 The issue of food security has become a greater problem with the severe climate 

change impacts over the last few decades. According to the IPCC fifth assessment, 

climate change has negatively impacted crop production in many regions of the world 

(IPCC, 2014). Several studies have reported decreased yield with increased temperature 

in most crops (Challinor et al., 2014; Lobell and Field, 2007; Sarker et al., 2014; Jiang et 

al., 2020).  The resultant risk of crop failure and volatility of food supply is much higher 

for subsistence farmers due to sole dependence on agriculture, poor production 

environment, and lack of knowledge and innovation for adaptive techniques to cope with 

extreme environmental conditions (Aryal et al., 2019, Islam et al., 2016, Hussain et al., 

2016). Studies on the Hindukush Himalayan region, including Nepal and south Asian 

countries, have reported unprecedented trends in precipitation patterns and hydrological 

imbalances, increases in temperature and recurring floods, and the deterioration of 

forests, rangelands, and agricultural lands (Gentle & Maraseni 2012; Gawith et al., 2015; 

Hussain et al., 2016). In a country where almost two-thirds of agricultural land is rainfed, 

crop production is more vulnerable to high temperatures and seasonal rainfall (Gentle & 

Maraseni 2012). 
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Figure 1. 3.Temperature (a) and precipitation (b) change in Nepal from 1901 to 2016. 

Over the 116-year period, while highly fluctuating, there are trends for higher annual 

temperature and lower precipitation. Graph area above zero indicate increases whereas 

areas below zero indicate decreasing trend. The average from 1901 to 2016 was used as a 

benchmark for representing change in this graph. (Raw data source: World Bank Climate 

Change Knowledge Portal, 2021) 

The climate change impact in Nepalese agriculture has resulted in severe natural 

calamities such as frequent drought and floods, landslides, and diminishing productivity 

of agricultural crops (Malla, 2008). The effect of temperature rise is directly related to 

productivity loss as heat waves affect the physiology of plants (Rasul et al., 2011). 

Increased variability in temperature and more frequent occurrence of extreme weather 

events has increased the vulnerability of crops to biotic and abiotic stresses (Hansen et 

al., 2013) and altered the timing of agricultural operations, affecting crop production 
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(Paudel et al., 2014a).  Increasing trend of temperature is expected to reduce the wheat 

and maize yields (Bhatt et al., 2014). Specifically, frequent droughts during winter are 

expected to reduce winter crop production. This leads to further depletion of water 

resources like rivers and dams which leads to immense challenges in irrigated agriculture 

production potential across the country.  

Conservation agriculture is a climate-smart solution for food security 

Conservation Agriculture (CA) practices (Figure 1.4.) can improve food security, 

prevent land degradation, and improve the resilience of cropping systems against climate 

change in Nepal, irrespective of climatic zones and physiographic differences. Food 

production on degraded soils without adopting proper management practices does not 

necessarily decrease food security; instead, it increases environmental problems (Clay et 

al., 2014 ; Joshi et al., 2019). Nepalese agriculture consists of predominantly Mountain 

agriculture, with 56.8% agricultural land (Paudel et al., 2017) in sloping or terrace 

landscapes which have low fertility, coarse-textured soil, heavy cracking clays, or other 

problems (Shahid & Al-Shankiti, 2013). Sustainable food production in such land under 

the new realities of climate change can only be successful with holistic approaches that 

include all possible aspects of soil, water, and crop management. Sustainable agriculture 

and environment can be ensured in the mountainous landscapes by following the main 

principles of CA such as 1) ensure adequate living and residual biomass to improve soil 

and water conservation and control soil erosion, the preservation of permanent soil cover, 

and the promotion of minimal mechanical disruption of soil through no-tillage systems, 

2) support good, living soil by rotating crops, cover crops and using integrated 

technologies for the management of pests, and 3) promote legume crops, agroforestry, 
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and diversified cropping systems (Dumanski et al., 2006). Adoption of these principles in 

mountain farming could provide climate-smart solutions to improve food security 

through their positive effects on soil carbon sequestration, greenhouse gas mitigation, 

improved nutrient cycling, and agrobiodiversity (Figure 1.4.).   

 

Figure 1. 4. A conceptual model for increasing food security and climate resilience in 

agriculture through conservation agriculture.  

Conservation Agriculture minimizes soil disturbance, provides crop residue 

coverage, and diversifies and intensifies cropping systems, and minimizes soil 

degradation due to excessive chemical fertilizer application, low organic matter input, 

monoculture, and conventional tillage (García-Torres et al., 2001). In fragile sloping 

lands of hills and mountains, vegetation on field boundaries is practiced to reduce soil 

erosion (Brown and Shrestha, 2000; Dougill et al., 2001; Matthews and Pilbeam, 2005).  
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The benefits of CA practices have been documented in the Terai rice-wheat systems and 

integrated farming in Mid Hill region of Nepal (Table 1.2.). For example, no-tillage alone 

could sequester 140 kg soil organic carbon (SOC) ha-1 y-1, while no-tillage with residue 

addition could increase SOC by up to 480 kg ha-1 y-1 (Ghimire et al., 2012). No-till 

management has increased crop production in an environmentally and socially 

sustainable manner, and cover crops can reduce greenhouse gas emissions (Reicks et al., 

2021) and increase the carbon sequestration on agricultural land (Schwab et al., 2015; Jat 

et al., 2020). In a meta-analysis of CA practices in South Asia, no-tillage with residue 

retention increased crop yields by 5.8%, water use efficiency by 12.6%, net economic 

return by 25.9%, and reduced greenhouse gas emissions by 12–33%, with more-favorable 

responses on loamy soils and in maize–wheat systems (Jat et al., 2020).  
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Table 1. 2. Effects of alternative management on soil organic carbon under various crops 

and cropping systems in Terai and Mid Hill region of Nepal. 
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The CA techniques of no-till and use of mulch and cover cropping can reduce soil 

erosion (Clay et al., 2014; Seitz et al., 2018), improve soil aggregate structure, support 

microbial growth, increase soil organic matter, and reduce soil erosion (Ghabbour et al., 

2017; Mikha and Rice, 2004; Six et al., 2000). Through the integrated management of 

soil, water, and biological resources, CA reduces external inputs and improves farmers' 

independence (Figure 1.4.). Maintaining a permanent or semi-permanent soil cover, 

whether a live crop or dead litter, which protects the soil from the sun, rain, and wind, 

and supports biological activities (Joshi et al., 2020), is the primary and, indeed, the 

central tenet of CA. Adopting conservation buffer systems in the mountains and hills of 

Nepal has reduced soil erosion and improved overall farming system performance 

(Schwab et al., 2015). Studies find higher microbial biomass with residue retention than 

with removal (Palm et al., 2014), with no-tillage rather than conventional tillage, and 

with crop rotation compared to monocropping (Clay et al., 2014).  

            Despite all the benefits of CA on the environment and sustainability, yield 

benefits are not universal. Laborde et al. (2019), Pittelkow et al. (2015), and 

Rusinamhodzi et al. (2011) reported that CA had less yield benefit as compared to the 

conventional system. Some studies report no change or little change in the yields, 

especially in the early years of the CA system’s implementation (Ghimire & Bista, 2016; 

Laborde et al., 2019), while many other studies show considerably higher yields with CA 

than the conventional system (Kodzwa et al., 2020; TerAvest et al., 2019). More studies 

in the hills and mountains of Nepal will reveal the benefits of CA on region-specific 

farming systems, but overall positive effects of CA have been documented for South 

Asia.  In a meta-analysis evaluating various combinations of CA practices in South Asia, 
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Jat et al. (2020) reported significant positive effects of no-tillage and residue retention on 

crop yields and economic return. Their findings of 20- 41% higher economic return and 

12–33% reduction in global warming potential with the adoption of CA practices show 

significant positive effects of CA on food security and climate change mitigation.  

Policy recommendations  

         Despite the country’s effort on agricultural modernization by implementing various 

agricultural plans and policies such as Agriculture Perspective Plan (1995), the National 

Agriculture Policy (2004) and Three-Year Interim Plan (2007/08–2009/10), agricultural 

transformation, and food security status in Nepal has lagged behind many other countries. 

Sustainable intensification is a major challenge in mountain agriculture across the world 

since mountain ecosystems are largely associated with lower soil fertility, increased soil 

erosion and reduced biodiversity (Schwab et al., 2015). Different policies and programs 

are required to encourage the use of CA-methods. For example, more investment on rural 

road building, specifically in hills and mountain, may assist farmers in moving machinery 

and equipment. Also, by improving farmers' mechanization capacity, and providing 

irrigation facilities to rainfed areas, adoption of CA could be increased. Furthermore, 

there is a lack of farm-level access to technology and information in rural areas. As a 

result, strong extension and research ties through government agencies may assist farmers 

become more aware of the benefits of CA. More investment in research, outreach and 

technology development in hills and mountain regions could boost agricultural 

production in these areas and enhance food security status of the country. The 

government sector has recently taken a number of steps. For instance, in 2016 10-yr 

initiative, the Prime Minister Agricultural Modernization Project of the federal 
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government, the Climate-Smart Village program of the Provincial governments and other 

sustainable agriculture programs have begun to address climate change and other 

challenges in agriculture through integrated approaches in crop and livestock 

management. Agricultural mechanization, region-specific commodity crop production, 

cooperative farming, and identification of niche markets are prioritized under this 

program to increase agricultural production and support the smallholder-farm economy 

(PMAMP, 2021). 

Conclusions  

The CA involves a combination of production technologies to attain high yield on 

existing land to meet the domestic and global food demands with minimal environmental 

impacts. Evaluation of various aspects of CA revealed benefits by minimizing soil 

disturbance, soil erosion, and pest pressure, and by increasing SOM and aggregate 

stability. These effects are more pronounced in degraded soils. The benefits of CA 

documented from Nepal has shown promise especially in the mountain agroecosystem 

which faces sustainability challenges due to steep and fragile topography and rapid 

climate change. Implementing region-specific CA adaptation strategies and working 

closely with farmers to identify a suitable conservation tool will minimize climate 

change-associated risk and uncertainties in food production. Some model assessment 

suggests an increased yield of selected crops with a moderate rise in temperature and 

increased precipitation. Identifying those crops and developing a conservation 

management strategy will address both challenges, food security and climate change.  

Even with all the advantages, there are still many challenges to CA adoption in 

Nepal, where the majority of farmers lack financial capital, and continue to practice 
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traditional subsistence farming on small field parcels. Resource-poor farmers cannot 

easily cope with associated yield loss during the early years of transition to CA practice 

(Rapsomanikis, 2015). Thus, governmental policies are needed to support farmers and 

provide economic incentives through crop insurance or subsidies in the agricultural 

inputs, at least during the initial years of the CA practicing.  The government needs to 

prioritize and promote low-cost technologies that can be used effectively in difficult 

terrains.  
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Chapter 2 
A Global Meta-analysis of Cover Crop Response on Soil Carbon Storage Within a 

Corn Production System. 

Abstract 

In agriculture, photosynthesis converts atmospheric CO2 to organic carbon in plants 

(fixation), which is eventually oxidized to CO2 through respiration.  If carbon fixation is 

greater than respiration, then soil organic C (SOC) levels can increase.  This meta-

analysis evaluated the effect of cover crop in rotations that include corn (Zea mays) on 

SOC.  Information on climatic conditions, soil characteristics, and management was 

extracted from 315 paired comparisons contained in 62 peer- reviewed cover crop 

studies. Overall, cover crops grown in corn rotations increased SOC by 7.8% (ranged 

from 5.4 to 10.8%). The SOC increase was attributed to CO2 fixation by the cover crop 

being greater than the amount of SOC lost through respiration. Our findings showed that 

SOC storage in no-tillage systems was increased by 8.5% (ranged from 5.9 to 11.9%) 

whereas SOC stored in tilled systems was increased by 6.6% (ranged from 3.6 to 10.2%).  

In a corn following corn rotation, SOC storage was increased by 8.6% (ranged from 5.1 

to 12.9%), whereas in a corn following soybean (Glycine max) rotation SOC storage 

increased by 5.1% (ranged from 1.1 to 9.5%).  These data suggest that current cover 

crops/corn production systems are sequestering 5.0 million Mg of SOC-C year-1 in the 

United States and has potential to sequester 160 million Mg SOC year-1 globally. Along 

with increasing SOC, adopting cover crops increased corn yield by 23.0% (ranged from 

4.8 to 52.7%). These findings can be used to improve carbon footprint calculations and 

develop science-based policy recommendations. 
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Introduction 

In 2020, 1162 million metric tons of corn grain were produced globally on 202 

million hectares of land (FAOSTAT., 2022). Corn grain is used to produce many 

products including human food, animal feed, energy products, plastics, cosmetics, 

diapers, and baby powder (Erenstein et al., 2021; Grote et al., 2021). Because the 

production of these products may increase greenhouse gas emissions (GHG), it is 

important to reduce the corn carbon footprint (Lee et al., 2021).  It has been hypothesized 

that the carbon footprint can be reduced by growing cover crops within the corn 

production system. 

Cover crops are plants that are not intended to be harvested and are used to reduce 

erosion by covering the soil between two cash crops. Farmers have many management 

options when growing cover crops including what, when, and where to plant (Reese et 

al., 2014). Interactions among management, climate, and soil conditions can result in 

cover crops having a mixed impact on cash crop yield and the carbon dioxide equivalence 

(CO2e) (Abdalla et al., 2019; Jian et al., 2020; McClelland et al., 2021; Poeplau and Don, 

2015; Joshi et al., 2022).  For example, in arid and semi-arid climates, water used by the 

cover crop can reduce cash crop yields, whereas in temperate environments cover crops 

can improve soil and plant health (Reese et al., 2014).   

The CO2e is used to reduce the complexity of greenhouse gas (GHG) emissions 

from multiple gases into a single value (Joshi et al., 2022).  In crop production, the 

dominant GHG considered in CO2e calculations are N2O, CO2, and CH4.  This paper 

considers only one of those gases, CO2. Carbon dioxide emissions can be assessed by 

several approaches including direct emission measurement, or by quantifying SOC 
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spatial and temporal changes in the soil, or by some combination of both (Joshi et al., 

2022).   This meta-analysis is based on the reported temporal SOC changes in field 

experiments that contained cover crop and no cover crop treatments.   

Cover crops can have a mixed impact on the amount of carbon sequestered in the 

soil (Blanco-Canqui, 2022).  Blanco-Canqui (2022) assessment of U.S. studies 

considered location, annual precipitation, annual temperature, soil texture, initial SOC, 

tillage, cover crop species, experiment duration, cover crop biomass produced, sampling 

depth, and SOC stocks. In their data set, cover crops did not increase SOC in 71% of the 

studies.  Blanco-Canqui (2022) attributed the lack of SOC increase to many factors 

including tillage, species, fertilization, irrigation, initial SOC, soil texture, and climate.   

Blanco-Canqui (2022) analysis did not provide details on how the interactions among 

these factors resulted in nonsignificant SOC grains in 71% of the comparisons.  The lack 

of differences also could not be answered by Abdalla et al. (2019), Jian et al., (2020), 

McClelland et al. (2021), and Poeplau and Don (2015) because they failed to consider 

specific crops or rotations.   In comparison to Blanco-Canqui (2022), our analysis 

narrowed the question from a wide range of crop rotations to rotations that included corn 

and expanded the analysis from only US studies to a worldwide analysis. Until now, there 

has been no such synthetic study carried out, particularly one that focuses on the corn 

cropping system. Thus, to provide needed information for one of world’s most widely 

grown crop, a synthesis paper on influence of cover crops on SOC in corn cropping 

system is needed. Therefore, the objectives of this paper were to conduct a global 

comprehensive assessment of published existing peer-reviewed literature, quantify the 

impact of cover crops on SOC having corn in rotation as primary focus, and to determine 
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effect of tillage, crop rotation, cover crop types, soil texture, climate and geographic 

location on SOC change due to cover crops.    

Materials and Methods 

Literature search  

This meta-analysis was conducted by searching for digital on-line peer-reviewed 

articles that were published until May 2022 (Figure 1).  In a search of the Web of Science 

and google scholar, relevant articles were collected then data was extracted followed by 

data quality assessment and statistical analysis and interpretation (Charles et al., 2017).  

The key words used in the Web of Science and google scholar search were soil organic 

matter, soil organic carbon, soil carbon, soil C, corn, maize, Zea mays, cover crop, green 

manure, rye, oat, vetch, and catch crop.  This search resulted into 3856 published articles, 

of which only papers published between 1990 and 2022 were considered.  In addition to 

publication date, the articles had to  meet the following criteria that included: 1) corn had 

to be included in the rotation; 2) changes in soil organic carbon (SOC) had to be reported; 

3) the study had to contain cover crop and no cover crop treatments; 4) the cover crop 

was not harvested, but  was terminated or incorporated, and 5) the replicated field 

experiment had to be completed for at least two years.   Because many studies were 

missing critical information that could not be obtained elsewhere, only 62 were selected 

for data extraction (supplemental Table 1).  Information on crop rotation, tillage type, 

cover crop type and biomass produced, method and timing of cover crop termination, 

fertilizer application, crop yield, location (latitude and longitude), annual temperature and 

precipitation, soil organic carbon (SOC) and depth of sampling, soil pH, texture, bulk 

density (bd), when the study was initiated and completed, number of replications, and 
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irrigation was extracted. Whenever total carbon in soil was reported as soil organic matter 

(SOM), it was converted to soil organic carbon by assuming that organic matter 

contained 58% carbon.   

Bulk density (bd) was used in the correlation and model building, as well as to 

convert gravimetric values to volumetric amounts using the following equations,    

  SOC (Mg ha-1) = SOC (%) × soil increment (cm) × bd (g cm-3)  (1) 

SOC (Mg ha-1) = SOC (g kg-1) × soil increment (cm) × bd (g cm-3) × 0.1 (2) 

Questions and gaps in the data bases were filled by contacting the authors, extracting 

soils information from the Web Soil Survey for U.S. studies and ISRIC SoilGrids for 

non-U.S.  studies.  Missing climate information was obtained from NOAA (NOAA, 

2022). Where possible, soils information was standardized to 4 soil depths (0 -15, 0 – 30 

and 0 – 60 cm).  

Unless stated, it was assumed that that initial SOC values for the cover crop and 

no cover treatments were identical. Whenever there was difference in the initial SOC 

values between treatments, we either added or subtracted the difference in the final SOC 

as explained by Xu et al. (2019). Moreover, the soil depths were standardized to the 0 -

15, 0 - 30, and 0 - 60 cm depths.  If the studies depths did not align with these categories, 

the method suggested by Xu et al. (2019) was followed.  Using this method, adjustment 

was based on tillage and soil depth. For example, to convert sampling that was conducted 

for the 0 - 20 cm to 0 - 30 cm, the method used by Puget and Lal, (2005),  Xu et al. 

(2019) and Yang and Wander (1999) was followed. This method was based on the 

vertical distribution of SOC in the soil with the assumption that SOC distribution is same 

throughout 0-30cm soil depth due to mixing of soil during tillage. When study used no 
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tillage system, SOC at0-20cm depth was converted to 0-30 cm using the conversion 

factor of 1.35 based on vertical distribution of SOC (Puget and Lal., 2005; Xu et al., & 

Yang and Wander, 1999).  

  

 

Figure 2. 1. Workflow diagram for peer-reviewed papers selection during meta-analysis. 

Statistical analysis 

The statistical analysis was separated into multiple categories that included 

exploratory data analysis, cumulative meta-analysis and sensitivity/publication bias 

analysis, and correlation and model building.  In exploratory data analysis, the 

distribution of the study sites was explored using an appropriate geographic information 
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system (GIS).  In addition, the type and amount of information collected was determined 

using frequency plots.   

Cumulative meta-analysis 

 The cumulative meta-analysis determined the effect of the treatments (effect size) 

on the measured parameters. In this analysis, the response ratio was calculated using the 

equation,   

ln(R) = ln(𝑋CC /𝑋NCC) =  ln(𝑋CC) – ln(𝑋NCC)                   

 (3)  

where, ln(R) was the natural log of response rations, 𝑋CC was the mean SOC or yield 

values for the cover crop treatment, and 𝑋NCC was the mean SOC or yield value for the no 

cover crop treatment (Hedges et al., 1999). A multilevel mixed effects meta-analytic 

model utilizing the "nlme" package in R (R Core Team 2017) was developed to account 

for multiple types of dependency between effect sizes within and across studies. 

Dependency was considered when the same control was used to compare several cover 

crop treatments within a study, as well as when multiple experiments were done at the 

same experimental location (Thapa et al., 2018b; Pinheiro et al., 2017; Van den 

Noortgate et al.,2013).  

Individual impact estimates are generally weighted by the inverse of sample 

variances to increase the weights of studies with lower variances (Philibert et al., 2012). 

However, many studies did not report the standard deviation, standard errors, or 

coefficient of variability of the measured values.  Therefore, weighting factors for the ith 

observation (wi) were determined based on Adams et al. (1997).  The weighting factor 

was determined with the equation,  
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            wi = (NCC NNCC)/ (NCC + NNCC)                (4)  

where NCC and NNCC were the number of replications for the cover crop and no cover 

crop treatments, respectively. In the end, we estimated the robust standard error for the 

mean effect size by utilizing the “clubSandwich” package which is cluster-based 

technique for robust variance estimation (Pustejovsy  et al., 2022; Thapa et al., 2018a).  

The 95 percent confidence interval (CI) was calculated for the weighted natural log 

means [ln(R)]. The change in the response was determined using the equation,   

% change in response = [ eln(R) – 1] x 100 %      (5) 

where ln(R) was defined in equation 3. If the 95 percent confidence interval did not 

contain zero, the response variable was statistically different from the controls (p< 0.05).  

The rate of change in SOC-C [Mg SOC-C (ha × year)-1] was determined with the 

equation,  

            SOC-Crate = (SOCcc, T1 – SOCcc, T0)/ T                                                             (6) 

where SOCcc, T1 and SOCcc, T0 refer to the final (T1) and initial (TO) SOC values for the 

cover crop treatment and T is duration of study in years.  

To study the effect of the different moderators on the cover crop SOC responses, 

the meta data was grouped into the following categories: 

1. The amount of cover crop produced (≤ 3, 3-7 and ≥ 7 Mg biomass ha-1), 

2. The tillage type (cultivated [CT] and no-tillage [NT]), 

3.  Crop rotation types [corn-corn, corn-soybean, and corn- other]. Here corn-

other includes corn rotation with any other crops such as rice (Oryza sativa), 

sunflower (Helianthus annuus L.), groundnut (Arachis hypogaea), tomato 

(Solanum lycopersicum) etc.  
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4. The cover crop type (legume, non-legume, and mixed). The most common 

legume cover crops were: Hairy vetch [Vicia villosa], lupin [Lupinus 

polyphyllus], Mucuna [Mucuna pruriens], Sesbania [Sesbania sesban] and 

mungbean [Vigna radiata].  The most common non-legumes were cereal rye 

[Secale cereale], canola [Brassica napus], radish [Raphanus sativus], oat 

[Avena sativa]. Cover crop mixtures of two or more species for example cereal 

rye + hairy vetch, winter lentil [Lens culinaris] + wheatgrass [Triticum], oat + 

hairy vetch. 

5. The soil textures at the study site.  These textures were fine (clay, silty clay 

loam, clay loam), medium (silt loam and loam), and coarse (sandy loam and 

sandy clay). 

6. The Köppen climate zone of the study sites were considered and classified 

into tropical, temperate, and cold categories. The tropical region included: Af 

[tropical rainforest climate], Aw [tropical wet and dry climate], BSh [hot 

semi-arid climate], BSk [cold semi-arid climate] and BWh [hot desert climate] 

Koppen climate zones. The temperate region included Cfa [humid subtropical 

climate], Csa [hot summer Mediterranean climate], Cfb [temperate oceanic 

climate], Csb [warm summer Mediterranean climate], Cwa [monsoon 

subtropical climate] and Cwb [subtropical highland climate] and lastly the 

cold climatic region included Dfa [hot summer humid continental climate], 

Dfb [warm summer humid continental climate] and Dwa [monsoon influenced 

hot summer humid continental climate] Köppen climate zones. Most of the 

U.S. studies were grouped into the temperate and cold zones.  
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2.2.2 Publication and sensitivity analysis 

The publication bias and sensitivity analysis are classically conducted using a funnel 

plot analysis, but many studies did not provide sample variance information, so this 

analysis was not conducted.  To check the distribution of the dataset, a histogram was 

used. The histogram showed that the observations were slightly skewed (Figure 2a), and 

that the meta-analysis was not subject to publication bias (Basche and DeLonge, 2017; 

Gurevitch et al., 2001; Thapa et al., 2018a).  This analysis was expanded by conducting a 

Jacknife sensitivity analysis (Philibert et al., 2012; Thapa et al., 2018a). During Jacknife 

analysis, each study was assigned a unique ID and data from one of the studies was 

excluded from database in each calculation. This analysis showed that no one study 

appeared to have a disproportionate impact on the results and that the meta-analysis was 

robust (Figure 2b).  

  

Figure 2. 2. Histogram (a) of the individual effect sizes for SOC across 315 observations. 

The result suggest that the individual effect sizes were normally distributed.  The analysis 

showed that there was an absence of publication bias.  Sensitivity analysis (b) was 

conducting using the Jacknife technique. The overall percent change in SOC is shown by 

the dashed black line. The removal of any single study had no effect on the results.  This 

analysis showed that the meta-overall analyses were robust. 



34 
 

 
 

Stepwise multiple linear regression 

Stepwise regression involves recursively adding and removing predictors in the 

predictive model to find a subset of variables that provides the best precision and 

accuracy.  A combination of forward and backward regression models was constructed 

by using bulk density, clay percent, sand percent, silt percent, years of cover crop 

planting, annual temperature, annual rainfall, initial SOC stock, N fertilizer application 

rate, and cover crop biomass to predict the response ratio (equation 3). However, only 

studies that provided both cover crop biomass and initial SOC stock were included in the 

regression modeling.  The “stepAIC” function, from the “MASS” package in R studio 

was used that had combination of both forward and backward regression during model 

building.    

Results and Discussion  

Sixty-two articles met the criteria for inclusion in the meta-analysis. These studies 

resulted in 315 pairs from 70 sites located on 5 different continents (Figure 3).  North 

America (62.8%) had the highest number of sites followed by Asia (11.4%), Africa 

(10%), South America (8.5%) and Europe (7.14%). Sixteen different countries included 

in the analysis were United States of America (USA), Brazil, China, India, Argentina, 

Bangladesh, Benin, Italy, Kenya, Mexico, Pakistan, Poland, South Africa, Spain, 

Sweden, and Ethiopia (Figure 3). In the USA, most of the studies were in the Cfa, Dfa, 

and DFb Köppen climate zones.  These climate zones are partially aligned with what is 

referred to as the Corn Belt.  Among all studies, 9 were published between 2021 and 

2022, 39 were published between 2011 and 2020, 11 were published between 2001 and 

2010, and 3 were published between 1990 and 2000. (Figure 4a). 
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The length of the studies varied with 41, 14, 9, and 6 studies had durations of 

between 2 and 5, 6 and 10, 11 and 15, and 16 and 20 years, respectively (Figure 4b). The 

most common soil texture was medium (44.3%) followed by coarse (30 %) (Figure 4c). 

The studies were conducted in tropical, temperate, and cold climate zones.  Of these, 

most studies were conducted in the temperate (38.5 percent) and cold (45.7 percent) 

zones (Figure 4d). 

 

Figure 2. 3. Location of all study sites (green dots) in the world map.  
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Figure 2. 4. Different categories and their distribution of studies based on a) publication 

year, b) duration of study, c) soil texture, and d) Köppen climate zone. 

Soil organic carbon responses to cover crops   

The analysis showed that over all cover crops when compared with the no-cover 

crop treatment increased SOC by 7.8% (ranged from 5.3 to 10.8%).  These findings were 

consistent with other studies (Abdalla et al., 2019; Jian et al., 2020; McClelland et al., 

2021; Poeplau and Don, 2015). The SOC increases were influenced by the amount of 

above ground cover crop biomass produced, which were affected by climate zone.   Most 

of the study sites in the >7 Mg ha-1category were in the temperate climate region (Ansari 

et al., 2022; Dube et al., 2012; Tao et al., 2017), whereas most of the study sites in the <3 

Mg ha-1category were in the cold climate zone (Bawa et al,2021; Dozier et al., 2017; 

Moore et al., 2014). In the reported studies, increasing the amount of cover crop biomass 

produced generally increased SOC storage. For example, in the >7 Mg ha-1 biomass 

category there were 59 pair comparisons, and the SOC increase was 14.7% (ranged from 

7.7 to 22.8%).  In the 3 to 7 Mg ha-1 and < 3 Mg ha-1 cover crop biomass categories the 

average SOC increases were 9.0% (ranged 4.8 to 14.4%) and 4.6% (ranged from 0.6 to 

9.0%), respectively (Figure 5). McClelland et al. (2021) also found that carbon storage 

increased with cover crop biomass production.  Though higher biomass category had 

greater increases, it is important to note that all biomass levels increased SOC. The 
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increase in SOC is important because the data suggest that a portion of CO2 fixed by the 

cover crop was stored in the soil. Higher SOC values also suggest that the soils yield 

potential increased (Clay et al., 2010; Clay et al., 2005; Cotrufo et al., 2013; Joshi et al., 

2020).  

In the 0 - 15 cm depth, SOC increase by 8.9% (ranged from 6.4 to 12.3%). When 

averaged over 0- 30 cm zone, SOC increased by 7.0% (ranged from 4.3 to 10.3%) 

(Figure 5), and when averaged over the 0- 60 cm zone, SOC increased 6.2% (ranged from 

2.8 to 10.0%).  

The different crop rotations had different amounts of SOC stored (Arif et al., 

2021; Balkcom et al., 2013; Sainju et al., 2002; Tautges et al., 2019).  In corn followed by 

corn rotation, cover crops increased SOC 8.6% (ranged from 5.1 to 12.9 %), whereas in 

the corn followed by soybean rotation, cover crops increased SOC storage 5.1% (ranged 

from 2.1 to 9.6%) (Figure 5). This apparent crop rotation effect might be due to changes 

in soil health, differences in the combined amount of cover crop and non-harvested crop 

biomass produced in the different crop rotations, or the cover crop impact on cash crop 

yields (Sainju et. al, 2006).  

The type of cover crop also influenced SOC. Legume cover crops increased SOC 

by 9.5% (ranged from 6.7 to 13.4%), whereas a mixed cover crop (multiple species) 

increased SOC by 8.3% (ranged from 4.5 to 12.9%).  A non-legume cover crop only 

increased SOC by 6.6% (ranged from 4.0 to 9.8%) (Figure 5). These cover crop species 

differences might be due to variation in total biomass production as well as differences in 

the C:N ratios. Typically, legume cover crops have lower C: N rations and lower biomass 

production than non-legume cover crops.   
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 Sites with coarse, medium, and fine soil textures increased SOC by 8.5 (ranged 

from 3.8 to 14.1%), 6.5 % (ranged from 1.6 to 12.1%) and 8.1% (ranged from 4.6 to 

12.4%) respectively (Figure 5). Out of total paired comparisons, 91 had coarse, 108 had 

fine and 120 had medium textured soils. The increases in SOC with increasing soil 

coarseness may be attributed soils with coarse soil textures having low initial SOC values 

(Augustin and Cihacek, 2016).  Soils with low initial SOC may have a higher percent 

increase because the calculation [ %𝑖𝑛𝑐𝑟𝑒𝑎𝑠𝑒 = 100 ×

[𝑆𝑂𝐶𝑐𝑐,𝑇1 − 𝑆𝑂𝐶𝑐𝑐,𝑡0]

[𝑆𝑂𝐶𝑐𝑐,𝑡0]
⁄ ] is very sensitive to SOCcc,T0. This interpretation is 

consistent with Blanco‐Canqui (2022).  

SOC storage amount was also influenced by climate zone and tillage. The SOC 

percent increases in tropical climates were 10.9% (ranged from 4.0 to 19.4%) and SOC 

increases in cold climates was 6.7% (ranged from 2.9 to 11.1%) (Figure 5). Again, these 

apparent differences may be related to the initial SOCcc,T0 values and that the tropical 

climates had higher cover crop biomass production  (McClelland et al. 2021).  SOC 

storage in no-tillage was 8.5% (ranged from 5.9 to 11.9 %) and SOC storage in tilled 

systems was 6.6% (ranged from 3.6 to 10.2%) (Figure 5).  In U.S. studies, SOC storage 

in no-tilled soils was 6.9 % (ranged from 3.6 to 10.7 %) and SOC storage in tilled soils 

was 2.5% (ranged from -0.8 to 5.9%). However, because the confidence interval included 

0, the impact of cover crops on SOC storage in U.S tilled soils was not significant. The 

effect of tillage on SOC storage has been reported by others (Clay et al., 2015). Lower 

SOC storage in tilled system may be due to the incorporation of the cover crop residue 

into the soil, and the exposure of protected SOC pools to microbial degradation (Clay et 

al., 2015; Six et al. 2002).  
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Figure 2. 5. Percent change in SOC due to cover crops compared with no cover crop due 

to different management and climate factors: cover crop biomass, soil depth, crop 

rotation, cover crop type, soil texture, tillage, and climate zones. Total number of 

pairwise comparison are represented by “n”. Error bars are 95% confidence intervals 

(CIs) and percent SOC change were considered significant only when 95% CIs did not 

overlap with zero.  

Carbon Sequestration potential  

The SOC rate of change for the 0 -15 and 0- 30 cm zones were 0.46 (ranged from 

0.31 to 0.62), and 0.80 (ranged from 0.56 to 1.05) Mg SOC (ha × year)-1, respectively. By 

subtracting these two depths from each other, carbon storage in the 15 -30 cm zone was 

determined.  This calculation suggests that more carbon was stored in the 0 - 15 cm zone 

(0.46 Mg SOC (ha × year)-1) than the 15 - 30 cm (0.34 Mg SOC (ha × year)-1). This 

analysis is consistent with Clay et al. (2015).   A meta-analysis conducted by Poeplau and 
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Don (2015) reported that for the 0 - 22 cm soil zone, SOC was sequestration at a rate of 

0.32 Mg (ha × year)-1 in croplands with cover crops.  Blanco‐Canqui (2022) in an 

assessment of U.S. studies reported that SOC sequestration rates ranged from 0.2 to 0.9 

Mg (ha × year)-1 for the 0 - 30 cm soil increment.   

Based on the global analysis and the amount of U.S. cover crop cultivated land 

(6.2 million ha) (Cruthfield, 2016), U.S. corn cropping systems are sequestering 

approximately 5.0 (ranged from 3.5 to 6.5) million Mg of SOC-C year-1 annually.  When 

extended over the globe, the 200 million ha of soil seeded to corn has the potential to 

sequester approximately 160 (ranged from 112 to 210) million Mg SOC year-1 

(Wallander et al. 2021; Jian et. al., 2020).  However, these estimates are based on the 

calculated values and have the limitations associated with the published findings.  In 

addition, the actual amount of sequestered C will vary with changes in management, soil, 

and climatic conditions. 

Factors affecting cover crop SOC response 

The initial SOC benchmarks, soil clay amount, and annual rainfall were 

negatively correlated to % carbon increases, whereas cover crop biomass, annual 

temperature, and N fertilizer rate were positively correlated to [ln(R)](Table 2).  The 

negative relationship between initial SOC and cover crop induced increases in % SOC 

storage is predicted by first order kinetics (Clay et al., 2006; Joshi et al., 2020).   

Out of 11 different variables that were used in the stepwise multiple linear 

regression, change in SOC [ln(R)] was best predicted by clay percent, cover crop biomass 

(CCB), initial SOC at cover crop adoption (SOCi), annual temperature (t), annual rainfall 

(r) and N fertilizer application rate.  The resulting equation was,   
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ln(R)= -0.17-0.0025×Clay + 0.0021×CCB -0.0013× SOCi+0.03×t–0.0001×r+ 

0.0003×N rate, R2= 0.63, n= 89, p-value = <0.001         

 (6) 

where, clay was in percent, CCB was in Mg (ha x year)-1, SOCi was in Mg SOC-C ha-1 , t 

was in oC, r was in mm. 

 

USA versus the world  

Overall, the U.S. cover crops in corn cropping system increased SOC by 5.4 % 

(ranged from 1.5 to 9.8%) whereas percent increase outside the US was 11.3% (ranged 

from 7.4 to 16.4%). The sequestration rate of SOC for the 0 - 15 and 0 -30 cm depths 

were 0.4 (range from 0.3 to 0.6) and 0.8 Mg SOC-C (ha × year)-1 (ranged from 0.4 to 

1.2), respectively. Outside of the U.S., the rate of increase was 0.5 Mg SOC-C (ha × 

year)-1 (ranged from 0.3 to 0.8) for the 0-15 cm soil depth and 0.8 Mg SOC-C (ha × year)-

1 (ranged from 0.5 to 1.3) for the 0-30 cm soil depth. These finding shows that carbon 

was being sequestered in both the 0 -15 and 15 -30 cm soil depths.   

Difference between U.S. and non-U.S. studies may be related to the initial SOC 

benchmarks, which are often higher in the U.S. than non-U.S. studies (Blanco‐Canqui, 

2022; Xu et al., 2019). Moreover, most of the U.S. studies are in the temperate climate 

region whereas out of U.S. studies are in the tropical climate regions. 
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Figure 2. 6. Percent change in SOC due to cover crops compared with no cover crop in 

USA and rest of world. Total number of pairwise comparison are represented by “n”. 

Error bars are 95% confidence intervals (CIs) and percent SOC change were considered 

significant only when 95% Cis did not overlap with zero.  

Cover crop impact on corn yield  

Contrasting results have been recorded globally about the impact of cover crop on 

the yield of the main crop. For example, cover crop can reduce corn yields (Eckert, 1991; 

Olson et al., 2014; Ruis et al., 2017), not influence yields (Bich et al., 2014), and increase 

crop yields (Calegari et al., 2008; Reese et al., 2014; Fronning et al., 2008; Astier et al., 

2006).  Mixed findings for cover crops impact on corn yields may be attributed to cover 

crops and main crops competing for water, nutrients, and light (Munawar et al. 1990) and 

improving nutrient and water use efficiency (Thapa et al., 2018; Thorup-Kristensen et al., 

2003). Uncertainties in the yield impacts of cover crops most likely has slowed farmer 

adoption of cover crops.   

In the meta-analysis 158 paired wise comparison from 27 studies were used in this 

analysis.  Analysis showed that the legume cover crops increased corn yields 29% 

(ranged from 11.6 to 61.5%), that the mixed cover crop increased yields 20% (ranged 

from 0.7 to 48.2%), and that the non-legume cover crop increased yield 20.7% (ranged 
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from 2.4 to 47.7%) (Figure 7).  These results were consistent with Miguez and 

Bollero(2005) and Marcillo and Miguez (2017). The large corn yield response to the 

legume cover crops might be due to nitrogen fixation that reduced yield losses due to N 

stress (Daryanto et al., 2018; Marcillo and Miguez, 2017; Thorup-Kristensen et al., 

2003).  

     

Figure 2. 7. Percent change in corn yield due to different cover crop types compared with 

no cover crop. Total number of pairwise comparison are represented by “n”. Error bars 

are 95% confidence intervals (CIs) and percent yield change were considered significant 

only when 95% CIs did not overlap with zero. 

Limitation and future study 

Many of the papers failed to report important information used in the meta-

analysis. For example, changes in SOC over the entire rooting zone, cover crop biomass 

produced, cash crop yields, pH, bulk densities, soil texture and nutrient concentrations 

were often not reported.  Not reporting important information, such as yields of the cash 

crop, or the amount of cover crop biomass reduces the ability to evaluate important 

interactions. Others have reported similar gaps in what is reported (Abdalla et al. 2019; 

Jian et al. 2020; Poeplau and Don 2015). To improve global predictive models, these data 

base gaps need to be minimized. 
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Conclusions  

In this analysis, data from 62 publications were used to determine the effects of cover 

crops on SOC within a corn cropping system. A data base was created by extracting 

information provided by the individual studies along with global soils and climate 

information.  Based on this information, the effect of cover crops on SOC response ratio 

and relationship among the SOC response ratio and the soil chemical and physical 

properties were determined.   Globally, using a cover crop in a corn production system 

increased SOC 7.8% (ranged from 5.39 to 10.82%).  SOC storage was positively 

correlated with cover crop biomass and temperature and negatively correlated with SOCi.  

The negative correlation between initial SOC and carbon storage is consistent with first 

order kinetics (Joshi et al., 2020).  In this analysis, percent carbon increases were highest 

in systems that used legume cover crops and no-tillage. Current corn fields with cover 

crops that have a SOC sequestration rate of 0.8 Mg (ha × year)-1 are potentially 

sequestering 5.0 million Mg of SOC-C year-1 in the U.S. and 160 million Mg SOC year-1 

globally.  If all U.S. corn fields used cover crops, 29.1 million Mg SOC year-1 could be 

sequestered annually in the U.S., which would result in a CO2e value of 107 million 

metric tons.     

These findings imply that cover crop induced increases in SOC can improve soil health 

and the soils yield potential.  Higher yield potential may be responsible for the cover crop 

induced yield increases. Findings from this study can be used to identify areas that may 

have the greatest potential to sequester carbon.  However, these models may be limited in 

scope because many studies do not report important information.  After conducting 

worldwide meta-analysis, we found that growing cover crops on cropland rather than 
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leaving it in a fallow phase improves SOC stock and serves as an effective approach to 

mitigate for anthropogenic greenhouse gas emissions. 
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Table 2. 1 Summary of the studies included in the meta-analysis. 
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Chapter 3 

Quantification and Machine Learning Based N2O-N and CO2-C Emissions 

Predictions from a Decomposing Rye Cover Crop 

Abstract 

Cover crops improve soil health and reduce the risk of soil erosion.  However, their 

impact on the carbon dioxide equivalence (CO2e) is unknown.  Therefore, objective of 

this two-year study was to quantify the effect of cover crop-induced differences in soil 

moisture, temperature, organic C, and microorganisms on CO2e and to develop machine 

learning algorithms that predict daily N2O-N and CO2-C emissions. The prediction 

models tested were multiple linear regression (MLR), partial least square regression 

(PLSR), support vector machine (SVM), random forest (RF), and artificial neural 

network (ANN).  Models’ performance was assessed using R2, RMSE and MAE.  Rye 

(secale cereale) was dormant seeded in mid-October and in the following spring it was 

terminated at corn’s (Zea mays) V4 growth stage. Soil temperature, moisture, and N2O-N 

and CO2-C emissions were measured near continuously from soil thaw to harvest in 2019 

and 2020.  Prior to termination, the cover crop decreased N2O-N emissions by 34% 

(p=0.05) and over the entire season, N2O-N emissions from cover crop and no cover crop 

treatments were similar (p=0.71). Based on N2O-N and CO2-C emissions over the entire 

season and the estimated fixed cover crop carbon remaining in the soil, the partial CO2e 

were -1,061 and 496 kg CO2e ha-1 in the cover crop and no cover crop treatments, 

respectively.  The RF algorithm explained more of the daily N2O-N (73%) and CO2-C 

(85%) emissions variability during validation than the other models.  Across models, the 
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most important variables were temperature and the amount of cover crop-C added to the 

soil.   

Introduction  

 Techniques to reduce agricultural greenhouse gas (GHG) emissions are needed to 

lower unknown future climate risks (Joshi et al., 2021; Shrestha et.al., 2019; Skinner et 

al., 2019). Of the numerous techniques proposed, planting a cover crop is a technique that 

can be rapidly adopted by many farmers (McClelland et al., 2021).  Despite many studies, 

there is no conclusive evidence that cover crops reduce the CO2e (Basche et al., 2014; 

Behnke and Villamil, 2019; Thies et al., 2020;  Reicks et al., 2021). 

 A growing cover crop can reduce soil moisture, inorganic N, and temperatures 

which in turn can reduce N2O emissions (Cayuela et al., 2009; Thapa et al., 2018; Reicks 

et al., 2021).  However, after cover crop termination the effect of the decomposing cover 

crops on GHG emissions is unclear (Antosh et al., 2020; Basche et al., 2016; Basche et 

al., 2014; Çerçioğlu et al., 2019).  During cover crop decomposition, the release of  

inorganic N and organic substrates may increase and N2O-N and CO2--C emissions. To 

quantify the effect of cover crops on the carbon footprint, the CO2e for the entire season 

must be determined. The CO2e equivalence combines all GHG into a single value.  

However, due to the high cost of intensive trace gas measurements few studies measure 

emissions for the entire life cycle of both the cover and cash crops.   

            Aside from the difficulty of measuring N2O-N and CO2-C emissions, accurate and 

precise models are needed to provide guidance on how climate and management changes 

impact sustainability and GHG emissions. However, many process-based models are 

difficult to use, may not provide the desired accuracy (Sozanska et al., 2002; Roelandt et 
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al., 2005; Zhang et al., 2016; Necpálová et al., 2015; Jiang et al., 2018), may require 

long-term field histories, and may not accurately predict management responses in real 

systems (Hamrani et al., 2020; Del Grosso et al., 2000, 2001; Jiang et al., 2018). In 

addition, following calibration process-based models often have a mixed ability to predict 

N2O emissions.  For example, McClelland et al. (2021) used the DAYCENT model to 

predict the effect of cover crops on N2O emissions. This work showed that the predicted 

and observed N2O emissions were not correlated.  In Colorado, Del Grosso et al. (2008) 

reported that DAYCENT overestimated N2O emissions, whereas in Iowa, Jarecki et al. 

(2006) reported that DAYCENT over predicted emissions when the actual emissions 

were low and underestimated emissions when emissions were high.  The mixed results of 

the model’s ability to predict N2O-N emissions may be attributed to many factors 

including field experiments that do not accurately measure N2O-N emissions, process-

based models that were not accurately parametrized, and/or mathematics that do not 

accurately describe the complexity of the system.   

 An alternative approach is to use the machine learning (ML) algorithms to predict 

GHG emissions.  These models may be easier to use because they can be based on easy 

to measure values, may require fewer input variables than process-based models, and can 

be modified to account for different spatial and temporal resolutions. Therefore, the 

objectives were to quantify the effect of cover crop-induced differences in soil moisture, 

temperature, organic C, and microorganisms on CO2e and to develop machine learning 

algorithms that can predict daily N2O-N and CO2-C emission. 
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Materials and Methods  

Study Site, Experimental design, and treatments 

 The two-year study was conducted at the South Dakota State University Aurora 

Research Farm located at 44o18′20.57′′N and 96o40′14.04′′W in 2019 and 2020. The site 

was in the Dfb (warm humid continental climate) Köppen climatic subtype. The soil at 

the experimental site was a Brandt silty clay loam (fine-silty, mixed, superactive cold 

Calcic Hapludoll). The soil organic carbon content was 36 Mg ha-1 (1.8% SOC), and the 

surface 15 cm contained 28 g clay kg-1 and 650 g silt kg-1 (Reicks et. al., 2021). The 

production practices were a corn- corn rotation, no tillage, and N fertilizer was not 

applied.    

 The experimental design was completely randomized with two treatments: cover 

crop and no-cover crop. Each treatment was replicated 4 times. The dimensions for each 

experimental unit was 9.1 × 3.1 m. Winter cereal rye (Secale cereale) was drilled in two 

rows at a rate of 56 kg ha-1 at a depth of 2.5 cm in October in the fall of 2018 and 2019. 

The two cover crop rows were separated by 17.5 cm, and they were positioned in the 

center between 2 corn rows.  The cover crop occupied about 25% of the area between the 

corn rows.  

 In the following spring, a 97-day relative maturity corn (Zea mays) cultivar was 

planted at the rate of 79,000 seeds ha-1 at a depth of 5 cm close to the rows of the 

previous corn crop. The row spacing was 76 cm. At V4 growth stage of corn and boot 

stage of rye, rye was terminated using glyphosate [N-(phosphonomethyl) glycine); 

Roundup Power Max] at the rate of 2.34-liter ha-1. A non-ionic surfactant was added at 

0.25% of the spray solution.  Ammonium sulfate was also added to the spray solution at 
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10.2 g L-1. Corn was harvested on 26 September 2019 and 8 October 2020. More details 

about field activities are provided in Table 1.1.  

 

Table 3. 1 Summary of activities and dates of operations performed during the two-year 

experiment.  

 

     Field activities and operations 2019 2020 

Rye cover crop dormant seeded  16-Oct-18 23-Oct-19 

GHG measured in growing cover crop  
April 26 to 

June 24 

April 8 to 

June 24  

Corn planted  16-May 14-May 

Rye cover crop termination at boot stage (corn V4). 

Soil samples and rye tissue samples collected.   
24-Jun 24-Jun 

GHG measurements started at rye cover crop 

termination.  
24-Jun 24-Jun 

Corn harvest 26-Sep 8-Oct 

Termination of GHG measurements.  Soil samples 

collected.   
21-Oct 21-Oct 

 

GHG emission measurements 

 Nitrous oxide-N and CO2-C emissions were measured from cover crop 

termination to harvest using techniques described in Reicks et al. (2021). Glyphosate was 

used to kill the cover crops, but because the rye at termination was taller (approximately 

45 cm) than the rings (6cm above soil surface), the plants were bent and twisted such that 

the cover crop fit inside the rings. At the corn V4 growth stage, PVC pipe rings 12-cm 

tall having a diameter of 20-cm and a surface area of 317 cm2 were randomly placed in 

the production plots with and without cover crops. In plots with cover crops, the PVC 

rings were centered on the cover crop rows, whereas in plots without cover crops, the 

rings were centered between the corn rows.  For GHG measurement, eight PVC rings (4 

per treatment) were pushed 6 cm into the soil with 6 cm remaining above the soil surface. 

Directly before termination, similar rings were placed adjacent to the GHG microplots in 
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the cover crop treatment.  The cover crop within the ring was clipped near the soil 

surface, dried, weighed and analyzed for C and N in the laboratory.   

 To collect GHG from the microplots, the PVC rings were covered with LI-COR 

long-term opaque chambers (8100-104 LI-COR) six times daily for 15 minutes at four-

hour intervals (between 0000 and 0230 h, 0400 and 0630 h, 0800 and 1030 h, 1200 and 

1430 h, 1600 and 1830 h, and 2000 and 2230 h) (Reicks et al. 2021). Using a Picarro 

Cavity Ringdown Spectrometer (model G2508, Picarro Inc, Santa Clara, CA), gases 

extracted from the chambers were analyzed for N2O-N and CO2–C concentrations. 

Emissions were calculated using the LI-COR SoilFluxPro 4.01 software (v. 4.01; LI-

COR). Standard N2O, and CO2 gases were used at the beginning and end of the 

experiment to ensure Picarro gas analyzer accuracy.  Soil moisture and temperatures for 

the surface 0 to 5 cm were measured using LI-COR LI-8150-205 Soil Moisture Probes 

and LI-COR LI-8150-203 Soil Temperature Probes (LI-COR), respectively. 

Soil sampling  

 Soil samples were collected from the 0 to 15 and 15 to 30 cm depth at cover crop 

termination in area adjacent to the PVC rings to avoid soil disturbance within the ring on 

June 24 (cover crop termination) and from inside the ring at the termination of the 

experiment on October 21 (each year) following corn harvest. Soil samples from the 0 to 

15 cm depth was analyzed for bulk density, gravimetric soil moisture, inorganic N, soil 

organic carbon and the soil microbial community (Table 1.1). Samples from the 15 to 30 

cm depth were analyzed for bulk density, gravimetric soil water, inorganic N, and soil 

organic carbon. Gravimetric soil moisture content and bulk densities were determined by 
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drying the soil at 105 oC for 24 hours.  Air dried subsamples were ground and analyzed 

for total C and N, NH4 
+–N and NO3

-–N (Clay et al., 2015).  

Soil microbial biomass and composition  

 Soil samples were collected from 0 to 15 cm soil depth at the same timings as 

above for microbial biomass and composition following procedures outlined in Veum et 

al. (2019). Microbial community composition was determined using PLFA (Phospholipid 

Fatty Acid) protocols described by Buyer and Sasser (2012), Thies et al. (2019), and 

Fiedler et al. (2021). In this analysis, 19:0 phosphatidylcholine was used as an internal 

standard for PLFA and a 19:0 trinonadecanoin glyceride was used as an internal standard 

for NLFA (neutral lipid fatty acids).   

 A Shimadzu GC-2010 Plus gas chromatograph (Shimadzu Corporation, Japan) 

with a flame ionization detector was used to analyze the extracts. The PLFAD2 method 

was used to calibrate the gas chromatograph using a standard provided by MIDI Sherlock 

(No. 1208, MIDI, Inc., Newark, DE). Using the MICSOILV2 approach from the MIDI 

Sherlock Software system (MIDI, Inc., Newark, DE) fatty acids were assigned to distinct 

functional groups associated with each community type to determine the number and 

types of microorganisms within the microbial population (Veum et al., 2019). Terminally 

branched chain fatty acids were used to identify gram-positive bacteria, while 

monounsaturated and hydroxy substituted fatty acids were used to identify gram-negative 

bacteria. Methyl branched chain fatty acids were used to identify actinomycetes (Zhang 

et al., 2016). Total microbial biomass was the summation of all fatty acids (Quideau et 

al., 2016). 
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Statistical Analysis  

Carbon dioxide equivalence (CO2e) 

 The experiment used a completely randomized design where each treatment was 

replicated 4 times per treatment. Total N2O-N and CO2-C emissions were determined by 

integrating the emissions over the study period.  The experiment was repeated in 2019 

and 2020. The analysis of variance was conducted to compare the total N2O-N and CO2-

C emissions, inorganic nitrogen, total carbon, and microbial population from each 

treatment using “agricolae” package in Rstudio (R core Team 2019). Tukey HSD test was 

conducted after ANOVA analysis to determine significant differences between treatment 

means at p-value 0.05.  

             Based on the cover crop occupying 25% of the area between the corn rows the 

N2O-N and CO2-C emission data were area corrected. For this correction, the emissions 

from the cover crop were multiplied by 0.25 which was added to product of 0.75 times 

the emissions from the no-cover crop.  The CO2e was determined by converting N2O-N 

kg ha-1 values to N2O kg ha-1 and CO2-C kg ha-1 to CO2 kg ha-1. The N2O was then 

converted to CO2e determined by multiplying N2O by 298. The partial CO2e value was 

the summation of CO2e N2O and CO2 which was then subtracted from the amount of CO2 

that was fixed by the cover crop during the growth phase.  This analysis did not consider 

the effect of the cover crop on methane emissions or any factors other than those directly 

involved in the production of N2O-N and CO2-C during the cover and cash crop growing 

seasons. 

Machine learning models  

“Hmisc” package and “rcorr” function in Rstudio was used to determine the 

Pearson’s correlation (r) between all the variables. Following correlation analysis of all 
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the variables, CO2-C and N2O-N emissions were predicted using five models. Those five 

models tested were multiple linear regression (MLR), partial least square regression 

(PLSR), support vector machine (SVM), random forest (RF) and artificial neural network 

(ANN). MLR model was considered the traditional linear regression model whereas rest 

of the models were machine learning models.  The PLSR method is well-known for its 

ease of use when dealing with highly correlated variables. It was selected because it 

generalizes and combines features from principal component analysis and multiple linear 

regression (Abdi, 2003). The SVM algorithm creates a line or a hyperplane which 

separates the data into different classes. The line or hyperplanes are considered as the 

decision boundary, and they are utilized to predict continuous outputs. It was selected due 

to its ability to solve non-linear regression prediction problem (Ahmad et al. 2014). The 

non-linear "svmRadial" algorithm from the R “caret” package was utilized to implement 

SVM in our analysis. The RF is a machine learning (ML) algorithm for classification and 

regression which is based on the recursive partitioning principle, and specific information 

about the relationships between the response and predictor variables is not required 

(Breiman, 2001; Hamrani et al., 2020; Sharma et al., 2022). It creates a forest with 

several decision trees.  With the RF approach, the accuracy and robustness of model is 

directly correlated with the number of trees in the forest (Breiman, 2001). The ANN 

adapts to the computing environment by adjusting neuron weights and thresholds 

repeatedly. When the network's output error approaches the expected value, the network 

training is complete. This model is gaining in popularity because of its ability to develop 

predictive relationships even when there is not a coherent theoretical framework (Maind 

and Wankar, 2014). The model predicted daily emissions, that were calculated by 
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integrating the hourly measurements (every 4 hours = 6 samples/ day). The whole dataset 

was randomly divided into training (75%) and validation (25%) datasets.  On the training 

data set, k-fold cross-validation (CV) was carried out for resampling procedures using 

“caret” package. The CV technique splits the data into different folds, estimates the error 

rate based on machine learnings algorithms, and then generates the final model with the 

lowest error rate (Yank et al., 2011). In this work, 10 folds with three replications of the 

repeated k-fold CV were used. The model performance was assessed by comparing the 

coefficients of determination (R2), root mean square errors (RMSE), and mean of 

absolute value of error (MAE) that were determined with the equations,  

 R2 = 1 -   

∑ (yi−yp)
2n

i=1

∑ (yi−y̅i)
2n

i=1

                                 [Eq 1] 

RMSE =  √
1

n
∑ (yi − yp)

2n

i=1
                                                      [Eq 2]  

MAE =  
|(yi−yp)|

n
                                                                  [Eq 3] 

where  yi and ypwere measured and predicted values (N2O-N or CO2-C) respectively, 

and yi̅ was the mean of all measured values and n was the number of samples. All the 

models were built using “caret” package (Version 6.0-88) in Rstudio. In the model, N2O-

N and CO2-C were used as dependent variables whereas soil temperature, air 

temperature, soil moisture, amount of cover crop-C remaining, and rainfall were used as 

predictor variables. The best performing models has high R2 (closer to 1) and low RMSE 

and MAE values.   
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The total daily cover crop-C was calculated using equations 4 and 5 as shown 

below,   

 CO2-CCC emitted = [CO2-CCC+soil emitted] – [CO2-Csoil emitted]      [Eq 4] 

where CO2-CCC emitted was the daily amount of CO2-C that was mineralized from the cover 

crop over a 24-hour period, CO2-CCC + soil emitted was the total amount of CO2-C that was 

emitted over a 24-hour period in cover crop treatment, and CO2-CSoil emitted was the total 

amount of CO2-C that was emitted over a 24-hour period in the no-cover crop treatment.  

The amount of cover crop-C remaining in the soil was calculated with the equation,   

 Cover crop-Cremaining = [Cover crop-Cinitial] – [CO2-CCC emitted] [Eq 5] 

where, Cover crop-Cremaining was the amount of cover crop-C remaining in the chambers, 

[Cover crop-Cinitial] was the amount of cover crop-C in the soil when the cover crops were 

termination, and CO2-CCC emitted was defined in equation 4. 

The importance of the variables was determined following validation. Variable 

importance was determined using the "varImp" function from the “caret” package. The 

function used scaled important score between 0 to 100. The higher the score the more 

important.   

Results and Discussion 

Weather and climatic conditions  

 At the study area, the 30-year (1989 to 2019) average annual rainfall was 640 

mm, the average growing season rainfall (May to September) was 452 mm, the average 

growing degree days (10 oC base and 30 oC maximum temperature) from April to 

October was 1256 GDD’s, the average annual temperature was 6.3 oC, and the growing 

season average temperature was 17.9 oC (NOAA, 2022). At the study site, the average 
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annual and growing season temperature in 2019 were 5.37 and 17.9 oC, whereas in 2020 

it was 7.15 and 18.9 oC respectively (Figure 3.1). Total annual rainfall in 2019 was 825 

mm of which 607 mm occurred during the growing season. In 2020, total rainfall was 

441 mm of which 324 mm occurred during the growing season. In 2019 and 2020 the 

numbers of accumulated growing degree days based on corn were 1266 and 1436, 

respectively. Additionally, from 1 October 2018 to 31 March 2019 and from 1 October 

2019 to 31 March 2020 the average snow depth was 8.7 cm and 12 cm, respectively. The 

temperature of the snow-covered soil at 0 to 5 cm depth, ranged from -5.12 to 13.17 oC in 

2019 and from -0.93 to 13.99 oC in 2020. Between cover crop termination and harvest, 

the soil moisture content of the cover crop treatment in the 0 to 5-cm soil depth was 

greater (0.32 cm3 cm-3) than the no-cover crop treatment (0.26 cm3 cm-3) (Table 3.2). On 

average across years, the average soil temperature for the surface 0 to 5cm was 3.1 oC 

cooler in the cover crop (14.2 OC) than the no-cover crop (17.3 oC) treatment.   
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Figure 3. 1. Daily distribution of snow depth, rainfall, air temperature, soil moisture, and 

soil temperature during first (Oct 2018- Oct 2019) (a) and second (Oct 2019- Oct 2020) 

(b) year of experiment. Data source: South Dakota Mesonet (2022). 

 
Cover crop biomass and corn grain yield  

 The amount of dried above-ground rye biomass contained within the microplot 

was 4156±576 and 3166±353 kg biomass ha-1 in 2019 and 2020, respectively. Based on 

previously reported value of 0.497 g root (g shoot)-1 for the root to shoot ratio (Sawyer et 

al., 2017), the amount of rye roots was calculated.  Rye roots were then multiplied by 2 to 

estimate the root exudates (Kuzyakov and Domanski, 2000; Kuzyakov and Larionova, 

2006). Finally, to determine total rye biomass the shoot + root + root exudates were 

summed which was then multiplied by the amount of carbon in the above ground biomass 
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samples [0.42 g carbon (g biomass)-1]. The amount of cover crop-C added to each 

chamber was 4,349 and 3,312 kg C ha-1 in 2019 and 2020, respectively. The measured C 

to N ratio of the above ground cover crop biomass was 31:1 and 25:1 in 2019 and 2020, 

respectively. Based on these values, the amount of N contained in the above ground cover 

crop biomass was 56 and 43 kg N ha-1 in 2019 and 2020, respectively. This calculation 

does not consider N contained in root biomass.  

 The above cover crop C and N values represent the additions to area between the 

corn rows that were seeded with cover crops.  The area seeded with cover crops 

represented about 25% of the area between corn rows.  Based on this percentage, the 

amount of cover crop biomass in the production plot was 1120 and 702 kg biomass ha-1 

in 2019 and 2020, respectively. 

The effects of the cover crop on corn growth and yield have been reported by 

Miller et al. (2021). Across years, corn grain yields at 15.5% moisture ranged from 7.7 to 

12.8 Mg ha-1.  The no cover crop treatment had 40% greater yield than treatment with 

cover crop that was terminated at corn’s V4 growth stage.     

N2O and CO2 emissions 

 N2O-N and CO2-C emissions in 2019 and 2020 were separated into two periods 

when the cover crops were growing and when they were decomposing. Reicks et al. 

(2021) reported on emissions between soil thaw and cover crop termination at V4. To 

summarize, this growth period N2O-N emissions were 90 and 192 g ha-1 in the cover crop 

and no-cover crop treatments in 2019, respectively. In 2020, similar results were 

observed, and N2O-N emissions were 168 and 209 g N2O-N ha-1 in the cover crop and 

no-cover treatments, respectively.  Lower N2O-N emissions in the cover crop compared 
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with the no-cover crop treatment was attributed to the cover crop reducing soil moisture 

and inorganic N (Reicks et al. 2021). Due to higher soil temperatures, N2O-N was 

slightly higher in 2020 than 2019. Based on these values, the cover crop-induced 

decrease (cover crop - no-cover crop) in N2O-N emissions was 0.11 in 2019 and 0.04 kg 

ha-1 in 2020.  These decreases were equivalent to 0.42 and 0.78% of the N contained in 

the above ground cover crop biomass.  Higher emissions in 2020 than 2019, were 

attributed to higher temperatures and nitrous oxide being produced during nitrification 

and denitrification.    

 Greater N2O-N emissions were observed during cover crop decomposition than 

the growth phase.  In 2019, N2O-N emissions in the cover crop and no-cover crop 

treatments were 537 and 301 g N2O-N ha-1 and in 2020 N2O-N emissions in the cover 

crop and no-cover crop treatments were 953 and 537 g N2O ha-1, respectively (Figure 3.2, 

Table 3.2). Differences in N2O-N emissions during the growth and decomposition cover 

crop phases were attributed to the decomposing cover crop biomass releasing NH4
+ into 

the soil.  The NH4
+ was subsequently nitrified of which 0.03 to 1% of the N can be 

emitted as N2O-N (Farquharson, 2016).   
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Figure 3. 2. The impact of the rye cover crop on daily average N2O-N (a and b) and CO2-

C (c and d) emissions in 2019 and 2020. Error bars represent standard error (SE) (n=4).  

 The amounts of CO2-C that was emitted in 2019 prior to corn’s V4 growth stage 

were 1379 and 882 kg CO2-C ha-1 in the cover crop and no-cover crop treatment, 

respectively (Reicks et al. 2021). During decomposition, CO2-C emissions within the 

chambers were 5093 and 3935 kg CO2-C ha_1 in the cover crop and no-cover crop 

treatment, respectively. The cover-crop induced increase in CO2-C emissions represented 

27% of the estimated amount of carbon contained within the above and below ground 

cover crop biomass. 

 

Table 3. 2. Cumulative N2O-N and CO2-C emissions, soil temperature and moisture in 

2019 and 2020 during cover crop decomposition.  

Cover crop Year N2O-N  CO2-C  Soil Temp  Soil Moist  

  g ha-1 kg ha-1 oC cm3 cm-3 

No-cover crop 2019 301 3935 17.19 0.32 

Cover crop 2019 537 5093 13.02 0.33 

No-cover crop 2020 359 5691 17.93 0.22 

Cover crop 2020 955 7969 15.89 0.3 

p-value  0.1 0.41 0.41 0.07 

2019  419 4518 12.4 0.34 

2020  657 6829 16.95 0.27 

p-value  0.003 0.001 0.03 <0.001 

No-cover crop  330 4813 17.32 0.26 

Cover crop  746 6531 14.21 0.32 

p-value   <0.001 0.004 0.05 <0.001 
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 In 2020, CO2-C emissions during the growth phase were similar in the cover crop 

and no cover crop treatments and averaged 1500 kg CO2-C ha-1 (Reicks et al. 2021). 

However, during decomposition, CO2-C emissions in the cover crop and no-cover crop 

treatments were 7970 and 5690 kg CO2-C ha-1. The difference between CO2-C emitted in 

the cover crop and no-cover crop treatment was equivalent to 69% of the estimated 

amount of above and below ground cover crop biomass-C. The increased CO2-C 

emissions were attributed to the cover crop providing organic C to the soil which was 

subsequently mineralized (Poeplau and Don, 2015; Rosecrance et al., 2000; Aulakh et al., 

2001; Smith et al., 2011). Lower emissions in 2019 than 2020 were attributed to cooler 

temperatures.   

 In 2019, CO2-C emissions tended to decrease as the season progressed, whereas in 

2020 CO2-C increased or remained relatively constant and then decreased after 

September 15 (Figure 3.2). In both years, the ratio between CO2-C and N2O-N varied 

across the seasons. Since the CO2-C is a function of the aerobic respiration and N2O-N 

emission is a function of both nitrification and anaerobic respiration, a higher CO2-C/ 

N2O-N ratio suggests that there was an increased importance of aerobic respiration or a 

change in the soil microbial community structure. For example, from June 24 to 

September 10, 2019, the ratio between CO2-C and N2O-N in the cover crop and no-cover 

crop treatments were 10,500 and 16,500 (kg CO2-C h-1) (kg N2O-C ha-1)-1, respectively 

(p=0.006). This apparent cover-crop induced decrease in the CO2-C and N2O-N ratio 

suggests that the biota in cover-crop treatment has a higher reliance on anerobic 

respiration than the no-cover crop treatment.  This apparent increased reliance on 
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anaerobic respiration was associated with increased CO2 emissions, which most likely 

reduced soil O2 concentrations.  

 Between September 11 and October 20, 2019, similar results were observed and 

the CO2-C to N2O-N ratios in the cover crop and no-cover crop were 3940 and 5905 (kg 

CO2-C h-1) (kg N2O-C ha-1)-1 (p=0.08), respectively. Again, these results suggest that the 

cover crop treatment had a higher reliance on anaerobic respiration than the no-cover 

crop treatment.  

 In 2020, between June 24 and September 10 the CO2-C to N2O-N ratio in the 

cover crop and no-cover crop treatment were 7,720 and 15,970 kg CO2-C h-1) (kg N2O-C 

ha-1)-1, respectively (p=0.004). Later in the season (September 11 to October 20) the CO2-

C to N2O-N emissions ratios were similar in the cover crop and no-cover crop treatment 

and had a ratio of 14,980 (kg CO2-C h-1) (kg N2O-C ha-1)-1. Temporal changes in the 

CO2-C to N2O-N ratio for this same soil were also observed by Thies et al. (2020), where 

the impact of different fertilizer application dates on N2O-N and CO2-C emissions were 

investigated. It was observed that fertilizer applied on 20 September 2017 had a CO2-C to 

N2O-N ratio of 1360 whereas fertilizer applied on 1 October 2017 had a ratio of 24,000. 

These values suggest that the relative amount of N2O-N that is emitted per unit or 

respired CO2-C can vary widely. 

Change in soil total inorganic nitrogen and carbon during decomposition 

 In the linked experiment, Reicks et al. (2021) reported that the cover crop reduced 

soil inorganic N and soil moisture during the cover crop growth phase compared to no 

cover crop treatment. However, when the chambers were moved to a new location 

slightly different results were observed. At the new location, the amount of NO3 + NH4-N 
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contained in the surface 30 cm at cover crop termination was not affected by the cover 

crop. However, at harvest the cover crop increased the amount of inorganic N in the soil 

(Table 3.3). These results suggest that N mineralization of the cover crop biomass may 

provide N to corn. However, the timing of the mineralization is critical to assess if it will 

reduce the N requirement in the current or future crop. In this example, an increase of 14 

kg N ha-1 was observed following harvest.   

 An increase in N at harvest would not reduce the N requirement in the harvested 

crop, however it might influence the N requirement in the upcoming crop if the N 

remains in the soil profile. In the past, fertilizer replacement values for cover crops in 

corn have been mixed. According to Mahama et al. (2016), the N fertilizer requirement in 

the cash crop can be reduced by introducing legume cover crops. However, different 

results have been reported for non-legume cover crops. Sawyer et al. (2017) reported that 

the rye cover crop reduced corn yield by 5% in Iowa and that the economic optimum N 

rate for corn were similar in the rye cover crop and no-cover crop treatments. Pantoja et 

al. (2016) extended this discussion and reported that the rye cover crop does not provide a 

meaningful amount of N to the growing corn plant in the year of termination. However, 

neither study considers what happens in following years.   

 The amount of soil organic C contained in the surface 30 cm at V4 growth stage 

of corn (cover crop termination) was not affected by cover crop in either 2019 or 2020. 

However, when the experiment was terminated in October the cover crop increased the 

amount of soil organic carbon 3,031 kg SOC-C ha-1. This increase in SOC indicates that a 

relatively large portion of the cover crop biomass remained in the soil after 117 to 119 

days of decomposition.   
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Table 3. 3. Cover crop impact on soil inorganic nitrogen (NO3 + NH4) and organic C 

contained in the surfaced 30 cm at cover crop termination and following harvest in 2019 

and 2020. Difference in lowercase letters indicate significant different in mean at p = 

0.05. 

  Total inorganic N Total organic C 

Treatment Year 
Cover Crop 

Termination 

Following 

Harvest 

Cover Crop 

Termination 

Following 

Harvest 
  -------------------kg ha-1--------------- 

No-cover crop 2019 48 36 a 79,910 81,290 

Cover crop 2019 42 42 a 81,280 84,870 

No-cover crop 2020 38 50 a 74,790 75,280 

Cover crop 2020 48 73 b 71,340 77,760 

p-value  0.1 0.05 0.24  0.58  

2019  45 39 80,600 83,080 

2020  40 46 73,060 76,520 

p-value  0.9 <0.001  0.01 0.001  

No-cover crop  43 43 77,350 78,290 

Cover crop  45 58 77,810 81,320 

p-value   0.7 0.004  0.8 0.05  

 

Change in the soil microbial biomass due to cover crop decomposition  

 Microbial biomass was higher when the cover crop was termination than 

following harvest and it was higher in the cover crop than the no-cover crop (Table 3.4). 

These temporal differences were consistent with Kaiser et al. (1995) where it was 

reported that microbial biomass was generally lowest during the winter and highest in the 

summer. Across years, the fungi concentration was lower than the bacteria concentration. 

In 2019, the fungi to bacteria ratio was higher in the cover crop than the no-cover crop 

treatment at both sampling dates. For example, at cover crop termination the ratio was 

0.44 in the cover crop and 0.24 in no cover (p=0.01). Similarly, following harvest the 

fungi to bacteria ratio was 0.29 for the cover crop treatment and 0.18 for the no-cover 

crop treatments (p=0.06). Apparent relative cover crop induced increases in fungi may be 
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associated with the composition of the cover crop biomass, cooler soil temperatures, and 

higher soil moisture contents. Our observations were consistent with Malik et al. (2016), 

where it was reported that following litter addition there was an increase in fungal phyla. 

Table 3. 4. The impact of the cover crop on total biomass, bacteria, and fungi at cover 

crop termination and following harvest in 2019 and 2020. Difference in lowercase letters 

indicate significant different at p = 0.05. 

    Total biomass Total Bacteria Total Fungi 

Treatment Year 
Cover Crop 

Termination 

Following 

Harvest 

Cover Crop 

Termination 

Following 

Harvest 

Cover 

Crop 

Terminatio

n 

Following 

Harvest 

  -------------------------------mg C (kg soil)-1 ---------------------------------- 

No-cover 

crop 
2019 4.7 a 1.4 2.3 0.8 

0.5 a 0.1 

Cover crop 2019 8.5 b 2.5 2.9 1.2 1.3 b 0.4 

No-cover 

crop 
2020 3.2 a 1.7 1.4 1.0 

0.3 a 0.2 

Cover crop 2020 4.6 a 2.7 2.1 1.3 0.4 a 0.4 

p-value 
 

0.03 0.9 0.98 0.56 0.01 0.8 

2019  6.5 1.95 2.6 1.05 0.9 0.25 

2020  3.9 2.2 1.75 1.15 0.35 0.3 

p-value 
 

<0.001 0.25 0.001 0.09 <0.001 0.4 

No-cover 

crop  
3.95 1.55 1.85 0.9 0.4 0.15 

Cover crop  6.55 2.6 2.5 1.25 0.85 0.4 

p-value   <0.001 0.004 0.005 0.001 0.001 0.030 

 

 Associated with the higher fungus to bacteria ratio in the cover crop than the no-

cover crop treatment was higher CO2-C to N2O-N emission ratios. Changes in the 

microbial community structure are important because there are fundamental differences 

between fungi and bacteria.  These differences include that: 1) fungi decompose more 

complex organic molecules than bacteria, 2) fungi have slower growth rates than bacteria, 

and 3) fungi may store more carbon in the soil than bacteria (Helfrich et al., 2015).   

 In 2020 slightly different results were observed and the fungi to bacteria ratios 

were similar in cover crop and no cover crop treatment. In addition, the fungi to bacteria 

ratios were similar (p=0.18) at both sampling dates (Table 3.4). These finding suggest 
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that cover crops in addition to reducing soil temperature and increasing soil moistures, 

have the potential to change the microbial community structure, which in turn can affect 

the relative amount of N2O-N and CO2-C that is emitted.  

Partial Carbon Dioxide Equivalence (CO2e)  

 Rye cover crops have mixed results on N2O-N and CO2-C emission over the 

entire year. Our investigation found that during the cover crop growing phase, rye 

lowered soil moisture and inorganic nitrogen, and reduced N2O-N emissions by 66% 

relative to no-cover crop.  Different results were observed during the decomposition 

phase, when the cover crop increased N2O-N and CO2-C emissions.  The increase in 

emissions during decomposition may be related to the cover crop providing organic 

carbon as well as lowering the soil temperature and increasing the soil moisture. When 

combing both phases, the rye cover crop did not influence (p=0.71) N2O-N emissions and 

were 565 g N2O-N ha-1 in the rye cover crop and 530 g N2O-N ha-1 in the no-cover crop 

treatment. This finding suggests that reduced N2O-N emission during cover crop growing 

phase offsets the increased emission during decomposition. However, the cover crop had 

greater (p-value= 0.001) CO2-C emission (6750 kg CO2-C ha-1) than the no cover crop 

treatment (5951 kg CO2-C ha-1).  This increase does not account for the large amount of 

CO2 removed from the atmosphere by the cover crop. The partial CO2e was determined 

by considering CO2-C and N2O-N emissions and the amount of CO2-C that was removed 

from the atmosphere during photosynthesis.   In the cover crop and no cover crop 

treatment the average CO2e across years and the entire cover and cash crop growth cycles 

were -1,061 and 496 kg CO2e ha-1, respectively.  These values suggest that cover crops 

have the potential to reduce the agricultural carbon footprint.    
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N2O-N and CO2-C emission prediction using a machine learning algorithm  

 Correlation analysis across years and treatments showed that the daily N2O-N 

emissions were positively correlated to CO2-C, air temperature, soil moisture, soil 

temperature, cover crop-C remaining in the soil, and rainfall (Figure 3.3). Similarity, 

analysis showed that daily CO2-C emissions were positively correlated to N2O, air 

temperature, soil moisture, soil temperature and cover crop-C remaining in the soil.  

However, CO2-C emissions and rainfall were not correlated.   

 After determining which input parameters were statistically related to the N2O-N 

and CO2-C emissions, models based on soil temperature, air temperature, soil moisture, 

amount of cover crop-C remaining, and rainfall were developed.  The RF model that 

predicted daily N2O-N and CO2-C emissions over two years outperformed all models and 

had with highest R2, lowest RMSE and MAE during training and validation (Table 3. 5). 

These findings were consistent with Philibert et al. (2013), Hamrani et al. (2020), and 

Saha et al. (2021).   
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 Figure 3. 3. Correlation matrix between the different daily measurements in 2019 and 

2020 (n=480). All correlation values (either negative or positive) equal or above 0.25 are 

statistically significant at p<0.001, between 0.13 to 0.17 are statistically significant at 

p=0.05 and values below 0.13 are not statistically significant. Positive values indicate 

positive relation whereas negative is just reverse.  

 

Table 3. 5 Performance comparisons during training and validation for a traditional 

regression-based model (MLR) and machine learning (PLSR, SVM, RF and ANN) 

models for predictingN2O-N and CO2-C emission.   

N2O-N  Training dataset  Validation dataset 

Models R2 RMSE MAE  R2 RMSE MAE 

MLR 0.26 6.41 3.61 
 

0.30 5.94 3.72 

PLSR 0.23 6.52 3.78 
 

0.28 6.03 3.97 

SVM 0.69 4.61 0.95 
 

0.60 4.69 2.24 

RF 0.95 1.85 0.92 
 

0.73 3.71 2.08 

ANN 0.56 5.56 2.87 
 

0.61 4.67 2.27 

CO2-C         
Training dataset  Validation dataset 

Models R2 RMSE MAE  R2 RMSE MAE 

MLR 0.60 17.86 13.96 
 

0.57 19.28 14.67 

PLSR 0.56 18.8 14.68 
 

0.55 19.91 15.06 

SVM 0.81 12.6 8.51 
 

0.73 15.47 10.05 

RF 0.96 5.71 4.05 
 

0.85 11.92 8.55 

ANN 0.69 16.07 12.44 
 

0.68 16.18 10.65 
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Figure 3. 4. Validation of the actual vs. predicted N2O-N and CO2-C emissions using 

MLR, PLSR, SVM, RF and ANN models.  
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 During training, the RF model explained 95% of the N2O-N emissions variability 

in the cover crop and no-cover crop treatments over two years. The RMSE and MAE for 

this model was 1.85 g N2O-N ha-1 and 0.92 g N2O-N ha-1. For the validation data set, the 

R2, RMSE and MAE values were 0.73, 3.7 g N2O-N ha-1 and 2.1 g N2O-N ha-1 

respectively.  The MLR, PLSR, SVM, and ANN models did not perform as well as the 

RF model (Figure 1.4.).    

 The importance of the variables was determined for each model (Figure 3.5). In 

this analysis, variables were assigned scaled score between 0 to 100, with 100 being most 

important and 0 being least important.  Variable importance differed among models and 

between the two emission gasses. For the N2O-N RF model, cover crop carbon was most 

important variable followed by air temperature, soil temperature, soil moisture and lastly 

rainfall. For the CO2-C RF model, soil temperature was the most important variable, and 

rainfall was the least important.   

 Models such as these can be used to improve our understanding of the factors 

affecting emissions and provide insights into how to minimize CO2-C and N2O-N 

emissions.  For example, decreasing the soil temperature 1o C reduced RF N2O emissions 

predictions by 0.52%.  Similar analysis can be conducted to predict how changes in soil 

moisture or cover crop biomass would affect emissions. This analysis suggests that 

additional research is needed to extend the use of the N2O-N and CO2-C machine 

learning algorithms to assess different climate and management scenarios (McLennon et 

al., 2021). 
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Figure 3. 5. Relative importance of each variable used to model N2O-N (a) and CO2-C (b) 

emissions. Scaled importance score (0 to 100) was generated and higher scores indicate 

that the variable is of greater importance in the model.   

Conclusions 

 The decomposing rye cover crop stimulated microbial activity and changed the 

microbial community structure, which in turn increased N2O-N and CO2-C emissions. 

During cover crop decomposition, the amount of N2O-N that that was emitted was 

equivalent to 0.24 and 0.42% of the N contained in the above ground cover crop biomass 

in 2019 and 2020 and an amount that was equivalent to 39% and 76 % of cover crop-C 

was released as CO2-C in 2019 and 2020, respectively.  Furthermore, the cover crop 

increased soil total carbon, total inorganic nitrogen, and moisture, all of which promote 

soil metabolic activity and respiration. During the rye cover crop growing phase, it 

reduced the N2O-N emission which was attributed to nutrient and moisture uptake by the 

rye. This means that the cover crops had opposite effects on GHG emissions during 
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growth and decomposition. For this reason, measuring cover crop emissions over the 

whole growing season is essential to fully understand their emission pattern.  

 Analysis suggests that only a relatively small portion of the N contained in the 

cover crop was contained in the soil at harvest or emitted into the atmosphere as N2O-N. 

Although the cover crop increased N2O-N and CO2-C emissions, it also released 

inorganic nitrogen into the soil. This increased N contained in the soil at harvest has the 

potential to reduce the crop plants nutrient requirement in subsequent years. These results 

suggest that the mineralization of N from the rye biomass and N uptake by the growing 

corn plant were not synchronized. This question will be considered in subsequent papers.  

In the cover crop and no cover crop treatments the average CO2e across years was -1,061 

and 496 kg CO2e ha-1, respectively.  These values suggest that cover crops have the 

potential to reduce the agricultural carbon footprint. 

 Additionally, our results demonstrate that ML based algorithm may can be useful 

for predicting N2O-N and CO2-C emission.  Of the models tested, the Random Forest 

explained the most amount of variability over two seasons.  Additionally, our results 

suggest that we may be able to improve GHG predictions by merging machine learning 

and process-based models into a common analysis.  Models such as these, can be used to 

predict the effects of different management systems and climatic conditions on N2O and 

CO2 emissions.   
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Dissertation Conclusions  
 

Our results demonstrate that ML based algorithm may can be useful for predicting N2O-

N and CO2-C emission.  Of the models tested, the Random Forest explained the most 

amount of variability over two seasons. Similarly decomposing rye cover crop stimulated 

microbial activity and changed the microbial community structure, which in turn 

increased N2O-N and CO2-C emissions. During cover crop decomposition, the amount of 

N2O-N that that was emitted was equivalent to 0.24 and 0.42% of the N contained in the 

above ground cover crop biomass in 2019 and 2020 and an amount that was equivalent to 

39% and 76 % of cover crop-C was released as CO2-C in 2019 and 2020, respectively.  

Furthermore, the cover crop increased soil total carbon, total inorganic nitrogen, and 

moisture, all of which promote soil metabolic activity and respiration. During the rye 

cover crop growing phase, it reduced the N2O-N emission which was attributed to 

nutrient and moisture uptake by the rye. This means that the cover crops had opposite 

effects on GHG emissions during growth and decomposition. For this reason, measuring 

cover crop emissions over the whole growing season is essential to fully understand their 

emission pattern.   

Our second study using meta-analysis suggest that globally, using a cover crop in a corn 

production system increased SOC by 7.8%.  SOC storage was positively correlated with 

cover crop biomass and temperature and negatively correlated with SOCi.  The negative 

correlation between initial SOC (SOCi) and carbon storage is consistent with first order 

kinetics (Joshi et al., 2020).  In this analysis, percent carbon increases were highest in 

systems that used legume cover crops and no-tillage. Current corn fields with cover crops 

that have a SOC sequestration rate of 0.8 Mg (ha × year)-1 are sequestering 4.98 Mg of 
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SOC-C year-1 in the United States and 159.2 million Mg SOC year-1 globally.  If all US 

corn fields used cover crops, 29.12 million Mg SOC year-1 could be sequestered annually, 

which would result in a CO2e value of 107 million metric tons of carbon dioxide. These 

findings imply that in cover crops induced increases in SOC can improve soil health and 

the soils yield potential.  Higher yield potential may be responsible for the cover crop 

induced yield increases. Finding from this study can be used to create regression models 

with the greatest potential to sequester carbon.  However, these models may be limited in 

scope because many studies do not report important information.  After conducting 

worldwide meta-analysis, we found that growing cover crops on cropland rather than 

leaving it in a fallow phase improves SOC stock and serves as an effective approach to 

mitigate for anthropogenic greenhouse gas emissions. 

Lastly based on historical climate data of Nepal, which include 116 years since 

1901, has shown an increasing trend for average temperature by 0.016 o C yr-1 whereas 

precipitation has shown a decreasing trend by 0.137 mm yr-1. Such weather trends could 

enhance glacier melt associated flooding, and delayed monsoon rainfalls negatively 

impacting the agricultural production. In this context of changing climate CA can play 

important role to resilience to the impact of climate change. The CA involves a 

combination of production technologies to attain high yield on existing land to meet the 

domestic and global food demands with minimal environmental impacts. Evaluation of 

various aspects of CA revealed benefits by minimizing soil disturbance, soil erosion, and 

pest pressure, and by increasing SOM and aggregate stability. These effects are more 

pronounced in degraded soils. The benefits of CA documented from Nepal has shown 

promise especially in the mountain agroecosystem which faces sustainability challenges 
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due to steep and fragile topography and rapid climate change. Implementing region-

specific CA adaptation strategies and working closely with farmers to identify a suitable 

conservation tool will minimize climate change-associated risk and uncertainties in food 

production. Some model assessment suggests an increased yield of selected crops with a 

moderate rise in temperature and increased precipitation. Identifying those crops and 

developing a conservation management strategy will address both challenges, food 

security and climate change.  

Future Recommendations 
 

Our results suggest that we may be able to improve GHG predictions by merging 

machine learning and process-based models into a common analysis.  Models such as 

these, can be used to predict the effects of different management systems and climatic 

conditions on N2O and CO2 emissions.     

Moreover, this dissertation study found that even with all the advantages, there are still 

many challenges to CA adoption in developing countries like Nepal, where most farmers 

lack financial capital, and continue to practice traditional subsistence farming on small 

field parcels. Resource-poor farmers cannot easily cope with associated yield loss during 

the early years of transition to CA practice. Thus, governmental policies are needed to 

support farmers and provide economic incentives through crop insurance or subsidies in 

the agricultural inputs, at least during the initial years of the CA practicing.  The 

government needs to prioritize and promote low-cost technologies that can be used 

effectively in difficult terrains.  
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