
Efficient implementations of expressive
modelling languages

k

Guerric Chupin

September 2021

Thesis submitted to the University of Nottingham
for the degree of Doctor of Philosophy

Abstract

This thesis is concerned with modelling languages aimed at assisting
with modelling and simulation of systems described in terms of differ-
ential equations. These languages can be split into two classes: causal
languages, where models are expressed using directed equations; and
non-causal languages, where models are expressed using undirected
equations.

This thesis focuses on two related paradigms: Functional Reactive
Programming (frp) and Functional Hybrid Modelling (fhm). frp is
an approach to programming causal time-aware applications that has
successfully been used in causal modelling applications; while fhm
is an approach to programming non-causal modelling applications.
However, both are built on similar principles, namely, the treatment of
models as first-class entities, allowing for models to be parametrised
by other models or computed at runtime; and support for structur-
ally dynamic models, whose behaviour can change during the simula-
tion. This makes frp and fhm particularly flexible and expressive ap-
proaches to modelling, especially compared to other mainstream lan-
guages. Because of their highly expressive and flexible nature, provid-
ing efficient implementations of these languages is a challenge. This
thesis explores novel implementation techniques aimed at improving
the performance of existing implementations of frp and fhm, and
other expressive modelling languages built on similar ideas.

In the setting of frp, this thesis proposes a novel embedded frp
library that uses the implementation approach of synchronous data-
flow languages. This allows for significant performance improvement
by better handling of the reactive network’s topology, which represents
a large portion of the runtime in current implementations, especially
for applications that make heavy use of continuously varying values,
such as modelling applications.

In the setting of fhm, this thesis presents the modular compilation
of a language based on fhm. Due to inherent difficulties with the sim-
ulation of systems of undirected equations, previous implementations
of fhm and similarly expressive languages were either interpreted or
generated code on the fly using just-in-time compilation, two tech-
niques which have runtime overhead over ahead-of-time compilation.
This thesis presents a new method for generating code for equation
systems which allows for the separate compilation of fhm models.

Compared with current approaches to frp and fhm implement-
ation, there is greater commonality between the implementation ap-

i

proaches described here, suggesting a possible way forward towards
a future non-causal modelling language supporting frp-like features,
resulting in an even more expressive modelling language.

ii

Acknowledgment

I would like to thank my supervisor, Henrik Nilsson, for his help and
guidance throughout this PhD. I’m particularly grateful for his con-
stant enthusiasm and optimism, which never failed to lift my spirits
when I needed it.

Since I first came to Nottingham as an intern in 2016, the FP lab
has been an amazing environment to work in. I would like to thank all
its members for making it such a nice place.

Andy McKeown deserves special thanks for the way he helped me
through the end ofmy PhD. He has been an amazing person to be with
through 2020 and 2021 and he has made these two (not so great) years
somuch better for me. He also helpedme proofread some ofmywork,
including this thesis.

Je remercie Olivier Nicole, pour son soutien à travers nos conversa-
tions régulières pendant ces 3 années et les multiples relectures d’articles
que je lui ai fait subir, parfois jusque bien trop tard le soir.

Je remercie enfin ma famille, support sans faille à travers mon par-
cours scolaire et académique et sans qui je ne serais pas là.

iii

Contents

Abstract i

Acknowledgment iii

Contents v

List of Figures vi

Acronyms ix

1 Introduction 1
1.1 Expressive modelling languages 1
1.2 Part I: causal modelling with Functional Reactive Pro-

gramming . 4
1.3 Part II: modular compilation for Functional Hybrid

Modelling . 7
1.4 Part III: conclusions 10
1.5 Prerequisites . 10
1.6 Conventions . 10

I Scalable Functional Reactive Programming 11

2 Introduction to causal modelling 13
2.1 Modelling with differential equations 13
2.2 Numerical integration 14
2.3 Functional Reactive Programming 21
2.4 Yampa’s implementation 27
2.5 Summary . 36

3 Scalable Functional Reactive Programming 37
3.1 Signal representation 37
3.2 Signal function representation 39
3.3 Custom proc-notation implementation 45
3.4 Compiling Scalable frp 50
3.5 Evaluation . 60

4 Related works & conclusions 69
4.1 Related work . 69
4.2 Future work and conclusions 72

v

II Modular compilation forFunctionalHybridMod-
elling 75

5 Introduction to non-causal modelling 77
5.1 Limits of causal modelling 77
5.2 Differential Algebraic Equation 81
5.3 Higher-index systems 84
5.4 Initialisation . 90
5.5 Introduction to Functional Hybrid Modelling 91

6 Detailed specification of Hydra 103
6.1 Surface syntax . 103
6.2 Type system . 103
6.3 Core language . 106
6.4 A simple simulation method 109

7 Modular compilation of signal relations 115
7.1 The Intermediate Imperative Representation 116
7.2 Compiling equations 118
7.3 Compiling signal relations & the Hydra runtime . . . 132
7.4 Performance evaluation 139

8 Related works & conclusions 145
8.1 The original Hydra 145
8.2 Equation-based object-oriented languages 146
8.3 Limitations and future work 151
8.4 Conclusions . 154

III Conclusions 155

9 Conclusions 157

A Proofs of results on the structure of integer partitions 159

Bibliography 161

List of Figures

2.1 A RC-circuit . 13
2.2 Two components connected in series 13

vi

List of Figures

2.3 Illustration of the forward Euler’s method 15
2.4 Illustration of the rk4 method 16
2.5 Simulation results for equation 2.7 using Euler’s scheme . 17
2.6 Simulation results using Sundials cvode solver 19
2.7 Integration of a discontinuous functionusing Sundials cvode 19
2.8 Integration of a discontinuous functionusing Sundials cvode,

using zero-crossings and solver reset at the point of dis-
continuity. 21

2.9 Main arrow combinators 23
2.11 Block-based illustration of the definition of e x p o n e n t i a l . 24
3.1 Signal kinds . 37

3.2 Swapping two leaves in a list-shaped tree 48
3.3 Complete definition of the S F type 51
3.4 A version of the Flappy bird game running with sfrp . . . 60
3.5 ExampleYampa signal function generated for benchmarking 63
3.6 Benchmark results for arbitrarily generated networks. Av-

erage runtime and speedup over 100 000 iterations 66
3.7 Benchmark results for networks with a single switch en-

closing an otherwise switchless network. Average runtime
and speedup over 100 000 iterations 67

3.8 3-dimensional visualisation of the dependency between
size, switching frequency and speedup 68

5.1 A more complicated electrical circuit 78
5.2 A simple electrical circuit with a diode 79
5.3 Illustration of theNewton-Raphsonmethod in the one di-

mensional case . 83
5.4 A simple RC-circuit . 84
5.5 Two components connected in series 92
5.6 Two components connected in parallel 92
5.7 Simulation results for c i r c u i t under a constant voltage

source . 95
5.8 Simulation results for c i r c u i t under a sine-wave voltage

source . 95
5.9 Plot of the asin, sin and Triangle functions (with A = 1

and 𝑓 = 1
2π) . 96

5.10 Illustration of the zero-crossing of a signal 96
5.11 Simulation results for c i r c u i t under a triangle-wave voltage

source . 98
5.12 Simulation results for c o n s t r a i n e d _ c i r c u i t with a sine-

wave constraint . 100
5.13 Simulation results for c o n s t r a i n e d _ c i r c u i t with a triangle-

wave constraint . 100

6.1 Hydra abstract syntax . 104

vii

List of Figures

6.2 Hydra types syntax . 105
6.3 Definition of 𝒮 . 106
6.4 Hydra’s signals typing rules 107
6.5 Hydra’s expression typing rules 107
6.6 Hydra’s equations typing rules 108
6.7 Core language abstract syntax 110
6.8 Simulation process of a Hydra signal relation 112
6.9 Extracting a Differential Algebraic Equation (dae) auto-

mata from a signal relation 114

7.1 iir’s abstract syntax . 116
7.2 Translation of Hydra signals to order-parametric iir pro-

grams . 124
7.3 Naïve program for computing the first 𝑛-th derivative of a

function composition . 125
7.4 Program for computing the first 𝑛-th derivative of a func-

tion composition using ancestry relations 129
7.5 Program for computing the first 𝑛-th derivative of a func-

tion composition using Bell’s polynomials recurrence re-
lation . 130

7.6 Sparsity of partitions . 130
7.7 Performance of different implementation of Faà di Bruno’s

formula . 131
7.8 Relative performance of using Bell’s polynomials recur-

rence relation vs. the ancestry relation 131
7.9 Definition of the first-order differential of an Intermediate

Imperative Representation (iir) expression (part 1) 136
7.10 Definition of the first-order differential of an iir expres-

sion (part 2) . 137
7.11 Benchmarks results for the computation of the first 𝑛-th

temporal derivatives of exp(𝑥) 141
7.12 Benchmarks results for the computation of the first 𝑛-th

temporal derivatives of 𝑥 ∗ 𝑦 141
7.13 Benchmarks results for the computation of the first 𝑛-th

temporal derivatives of 𝑥
𝑦 142

7.14 Benchmarks results for the computation of the first 𝑛-th
temporal derivatives of 𝑥2 142

7.15 Benchmarks results for the computation of the first 𝑛-th
temporal derivatives of asin(𝑥) 143

viii

Acronyms

adt Algebraic data type

ast Abstract syntax tree

bdf Backward-Difference Formula

cca Causal Commutative Arrow

cse Common Subexpression Elimination

dae Differential Algebraic Equation

dsl Domain-Specific Language

edsl Embedded Domain-Specific Language

eoo Equation-based object-oriented

fhm Functional Hybrid Modelling

frp Functional Reactive Programming

gadt Generalized Algebraic Data Types

ghc Glasgow Haskell Compiler

gui Graphical User Interface

iir Intermediate Imperative Representation

ivp Initial Value Problem

jit Just-in-time

mcl Model Composition Language

mkl Modelling Kernel Language

ode Ordinary Differential Equation

ix

sfrp Scalable frp

ssa Static Single Assignment

uode Underlying Ordinary Differential Equation

x

6. Archibald et al., ‘The His-
tory of Differential Equations,
1670–1950’. 2004
104. Narasimhan, ‘Fourier’s Heat
Conduction Equation’. 1999

69. Gorban et al., ‘Three Waves
of Chemical Dynamics’. 2015

18. Black et al., ‘The Pricing of
Options and Corporate Liabilit-
ies’. 1973
73. Hindmarsh et al., Example
Programs for IDA v5.7.0. 2021

37. Cellier et al., Continuous
System Simulation. 2006

96. Mathworks, Simulation and
Model-Based Design. 2020

53. Eker et al., ‘Taming Hetero-
geneity - the Ptolemy Approach’.
2003
20. Bourke et al., ‘Zélus, a Syn-
chronous Language with ODEs’.
2013
62. Fritzson et al., ‘Modelica
— A Unified Object-Oriented
Language for System Modeling
and Simulation’. 1998
56. Elmqvist et al., ‘Object-
Oriented Modeling of Hybrid
Systems’. 1993

Introduction 1
Differential equations are a ubiquitous tool for modelling and under-
standing systems arising in many fields of science and engineering
such as mechanics [6], thermodynamics [104], chemistry [69], eco-
nomics [18], etc. Converting a set of equations into useful simulation
results is an involved task, generally requiring either writing custom
simulation code or making use of a dedicated numerical solver. Either
way, this often implies translating the equation system to low-level im-
perative code. Producing this code is tedious and error-prone [73] and
requires extensive knowledge from themodeller [37] in addition to any
domain-specific knowledge needed to produce the equation system in
the first place. The resulting code is very remote from the equation
system it was derived from, making sharing and reusability difficult.

Modelling languages aim to bridge these gaps by taking a declar-
ative approach to the problem. The modeller expresses the model in
terms of differential equations directly, thus focusing onwhat themodel
is rather than how it is simulated, which is left to the implementation.
Further, by providing abstractions to help reusability and clarity, mod-
elling languages can greatly ease themodelling process, particularly for
large systems. In this thesis, modelling languages specifically refer to
languages aimed at assisting with problems that can be formulated in
terms of differential equations. These types ofmodelling languages can
be separated into two categories. The first is that of causal languages,
in which the model is expressed in terms of directed differential equa-
tions, such as Ordinary Differential Equations (ode). The causality of
the equation, that is, which variable is known and unknown, is fixed
and known at the time the equation is written. Prominent represent-
ative of this category include Simulink [96], Ptolemy [53] or Zélus
[20]. The second category is that of non-causal languages, in which the
model is expressed in terms of undirected differential equations, such
as Differential Algebraic Equations (dae). In this approach, a differen-
tial equation is treated as a constraint on the quantities it relates. This
gives greater freedom to the modeller, both when writing an equation
and when using it, since it is left to the compiler to discover how to use
an equation to produce a solution. Modelica [62] and Dymola [56]
are the main industrial representatives of this approach.

1.1—Expressive modelling languages

Expressivity is a somewhat fuzzy concept. In general, it refers either
to a theoretical ability of a language to express a particular concept; or

1

1.1. Expressive modelling languages

a. At a given point during the
simulation, the structural config-

uration of a model is always
known. However, its future

configuration may depend on
arbitrary computations using
arbitrary inputs, such as sim-
ulation results for the current

mode or user inputs, which
can result in arbitrarily many

modes depending on the result
of the program that computes

the new structural configuration.

96. Mathworks, Simulation
and Model-Based Design. 2020

20. Bourke et al., ‘Zélus,
a Synchronous Lan-

guage with ODEs’. 2013
124. Pouzet, Lu-

cid Synchrone. 2006

103. Modelica Associ-
ation, Modelica Lan-

guage Specification. 2021

25. Broman, ‘Gradually Typed
Symbolic Expressions’. 2017 —

57. Elmqvist, ‘Systems Mod-
eling and Programming in a
Unified Environment Based
on Julia’. 2016 — 76. Höger,
‘Compiling Modelica’. 2018

24. Broman, ‘Meta-
Languages and Semantics
for Equation-Based Mod-

eling and Simulation’. 2010

154. Zimmer, ‘Equation-
Based Modeling of Variable-

Structure Systems’. 2010

to the ease with which one can express a particular concept. This thesis
provides a specific definition of expressivity in the context ofmodelling
languages which covers both of these aspects. It considers an express-
ive modelling language to be one in which (1) models are first-class
objects and (2) models can be structurally dynamic.

Models being first-class means that they are regular values of the
language. As such, they can be used as parameters to functions (and
thus parametrise other models), stored in data structures and more
generally combined programmatically, enabling a form of higher-order
modelling (by analogy with higher-order functions in a functional lan-
guage). This facilitates the modelling of large models, by allowing the
modeller to use the language to compute models; and can help with
modularity.

A model is structurally dynamic if the equation system that de-
scribes it can change at discrete points in time. Suchmodels are special
cases of hybrid models, which more generally describe models which
mix continuous dynamics (defined as solutions to differential equa-
tions) with discrete behaviours. In a language supporting first-class
models and structural dynamism, it becomes possible to compute new
parts of the model at simulation runtime based on simulation results.
This means that the number of modes of a model, that is the number
of all its possible structural configurations, can be (uncountably) in-
finite a.

Few modelling languages support first-class and structurally dy-
namicmodels, althoughmany support some aspects of one or the other.
For causal modelling languages, support for hybrid models is com-
monplace, but support for first-class models is not. Simulink [96],
themost prominent representative of causalmodelling languages, does
not support them. Zélus [20] has some support for it and its prede-
cessor, the synchronous language Lucid Synchrone [124] was in a
sense built around the goal of supporting higher-order models.

In the case of non-causal modelling languages, until relatively re-
cently, support for hybrid models was not common. This is in great
part due to difficulties inherent to simulating non-causal hybrid mod-
els that will become clear later during the thesis. It is still only suppor-
ted in a limitedway in themost prominent non-causal language,Mod-
elica [103], which also does not have support for first-class models.
However, recent academic languages, such as Modia, mcl or Mode-
lyze [25, 57, 76], are getting support for first-class models and struc-
tural dynamism. Earlier attempts were also made to patch the short-
comings of existing mainstream languages. For instance mkl [24], the
predecessor to Modelyze, investigated the possibility of non-causal
languagewith first-classmodels butwithout structural dynamism; while
Sol [154] investigated the possibility for a non-causal language sup-
porting hybrid models but did not investigate notions of first-class

2

Chapter 1. Introduction

16. Bezanson et al., ‘Julia: A
Fresh Approach to Numerical
Computing’. 2017

b. There may be good reasons
to not support these features.
Structural dynamism, under-
stood in its general sense as the
ability to compute models on
the fly means that it is not pos-
sible to give some guarantees
that may be interesting in some
contexts. For instance, Simulink
can be used to generate code that
can be used in a controller or
an embedded system. Limiting
the expressivity of the language
can be used to ensure that the
code executes in bounded time
or in bounded memory. Some
languages, such as Zélus also
aim to provide additional static
guarantees on the validity of the
model, which may not be pos-
sible in a more expressive setting.

54. Elliott et al., ‘Functional Re-
active Animation’. 1997 — 151.
Wan et al., ‘Functional Reactive
Programming from First Prin-
ciples’. 2000

112. Nilsson et al., ‘Functional
Hybrid Modeling’. 2003

models. While some of these languages are implemented using stan-
dalone interpreters or compilers, some of them like Modia are also
implemented as embedded languages in a general-purpose language
(Julia [16] in this instance). This has the advantage of simplifying
some of the aspects of the implementation by allowing the embedding
to reuse already implemented constructs seamlessly, such as function
calls, pattern-matching or function closures, if the host language sup-
ports them b.

This thesis focuses on two alternative approaches for designing ex-
pressive time-aware languages, which are built around the support for
first-class structurally dynamic models; namely Functional Reactive
Programming (frp) [54, 151] andFunctionalHybridModelling (fhm)
[112]. Both approaches rely on the embedding of a Domain-Specific
Language (dsl) (causal in the case of frp, non-causal in the case of
fhm) in a functional programming language. Entities of the dsl are
first-class values of the host language and switching constructs are pro-
vided to enable parts of a model to change its behaviour dynamically
during the simulation.

However, expressivity often comes at the cost of performance. In
the case of frp, current implementations suffer from high interpretat-
ive overhead, even formodels that are simple enough to be translatable
into less expressive, but more efficient, languages. In the case of fhm,
the difficulties associated with the implementation are different and
inherent to the difficulties of simulating a system of non-causal equa-
tions while supporting structural dynamism.

Providing efficient implementations for these paradigms would al-
lowmodellers to ‘have their cake and eat it (quickly) too’: being able to
writemodels using expressive languages, while still enjoying fast simu-
lation. This would be particularly desirable at least when writingmod-
els that can be equivalently expressed using less expressive languages.
The question this work aims to answer is whether this is possible, that
is:

Is it possible to provide efficient implementations for ex-
pressive languages that show similar performance charac-
teristics to well-known implementations existing for less ex-
pressive languages?

This thesis claims that the answer to this question is yes. To back this
claim, it explores novel interpretation and compilation approaches in
an attempt to improve the performance one can expect from the frp
and fhm paradigms. The proposed techniques share a lot of common-
ality, especially in comparison to existing implementations of frp and
fhm. This paves the way for future development at the intersection
of these approaches. For instance in the form of an frp-like dsl with
better support for modelling applications, e.g. by being better integ-

3

1.2. Part I: causal modelling with Functional Reactive Programming

a. A distinction is sometimes
made between reactive sys-

tems and interactive systems,
for example by Berry [14]. In a
reactive system, the interaction

with the environment is gov-
erned by the environment itself
while in an interactive system,
it is governed by the program.
For instance, the flight control
system in an aeroplane is a re-

active program (it must respond
as soon as possible), but a web

browser is interactive (it displays
a page when the page is ready,

which may take time). Deciding
whether a system falls into one

or the other category is possibly
subjective and depends on the
environment the program in-

teracts with. As such, while this
distinction may not be useful
in clearly defining whether a

system is reactive or interactive,
it may help build an intuition.

45. Courtney et al., ‘The Yampa
Arcade’. 2003 — 67. Giorgidze

et al., ‘Switched-On Yampa’. 2008
— 93. Mahuet et al., ‘Flappy

Haskell’. 2015 — 109. Nilsson et
al., ‘Funky Grooves: Declarative

Programming of Full-Fledged
Musical Applications’. 2017

79. Hudak et al., ‘Arrows,
Robots, and Functional Re-
active Programming’. 2003
— 143. Thaler et al., ‘Pure
Functional Epidemics: An

Agent-Based Approach’. 2018

4. Apfelmus, Reactive-Banana.
2011 — 28. Bünzli, React,

Functional Reactive Program-
ming for OCaml. 2010 —

141. Söylemez, Wires. 2017

128. Microsoft, ReactiveX. 2011
48. Czaplicki, ‘Elm: Concurrent
FRP for Functional GUIs’. 2012

110. Nilsson et al., ‘Func-
tional Reactive Program-
ming, Continued’. 2002

rated with precise differential equation solvers; or in the form of a non-
causal language with frp-like features, combining the strong points of
both modelling approaches in a unified, highly expressive and flexible
modelling language. This work relies on benchmarks to evaluate the
validity of its claims. The benchmarks are used to quantitatively com-
pare the proposed implementation techniques for frp and fhm with
existing ones.

This thesis is split into two broadly independent parts. The first
part is dedicated to the implementation of an efficient and scalable frp
library, which is more suited for modelling applications. The second
part is dedicated to the implementation of a fully modular ahead-of-
time compiler for a language based on fhm. The next sections go over
the motivation for the work done in each of these parts, as well as the
new contributions they make.

1.2—Part I: causalmodellingwithFunctionalReact-
ive Programming

In this thesis, a reactive system is understood as a program that re-
acts to time-varying inputs received from an environment by produ-
cing time-varying outputs, sometimes called reactions. These outputs
may then influence their environment and, therefore, future inputs a.
frp is a principled, declarative approach to programming reactive sys-
tems, focusing on describing interactions between time-varying val-
ues. As a dsl designed for causal reactive programming, it has been
successfully used in variety of applications, including video games and
musical applications [45, 67, 93, 109]; but also in some causal mod-
elling modelling applications [79, 143]. frp has been implemented in
many different forms across a variety of libraries and languages [4, 28,
141]. It also inspired related approaches such as ReactiveX [128] or
the original Elm [48].

This work focuses on a particular approach to frp called arrowized
frp, by way of the library Yampa: a state-of-the-art frp implementa-
tion embedded inHaskell [110]. Yampa is only used as an example of
a wider problem with the approach, which this work aims to address.

In arrowized frp, the reactive network b is structured together us-
ing arrows [80] and defines how values flow through the network (how
they are transported from their producer to their consumer). By ana-
logy with block diagrams, this structure is called routing or wiring in
this thesis. Other authors [115] have also proposed the term weav-
ing combinators or Jacquard combinator, in reference to the Jacquard
loom c, to designate the structure of a reactive network.

The efficiency of the wiring is crucial for the performance of an ar-
rowized implementation. Unfortunately, with the current implement-
ation strategies of frp library this is not the case. In fact, the perform-
ance overhead incurred by wiring grows quadratically with the size of

4

Chapter 1. Introduction

b. A reactive program often con-
sists of smaller reactive programs
interacting with each other. The
term reactive network desig-
nates that set of programs and its
structure.
80. Hughes, ‘Generalising Mon-
ads to Arrows’. 2000
115. Oeyen et al., ‘Reactive Sort-
ing Networks’. 2020
c. See h t t p s : / / e n . w i k i p e d i a .
o r g / w i k i / J a c q u a r d _ m a c h i n e

10. Benveniste et al., ‘A Type-
Based Analysis of Causality
Loops in Hybrid Systems Model-
ers’. 2017 — 20. Bourke et al.,
‘Zélus, a Synchronous Language
with ODEs’. 2013
3. Amagbégnon, Implementation
of the Data-Flow Synchronous
Language SIGNAL. 1995 — 36.
Caspi, LUSTRE: A Declarative
Language for Programming Syn-
chronous Systems. 1987 — 124.
Pouzet, Lucid Synchrone. 2006

17. Biernacki et al., ‘Clock-
Directed Modular Code Genera-
tion for Synchronous Data-flow
Languages’. 2008

a. The implementation can be
found at h t t p s : / / g i t l a b . c o m /
c h u p i n / s c a l a b l e - f r p .

93. Mahuet, Flappy Haskell. 2015

the network and, even for small networks, it already represents a sig-
nificant part of the total cost of running the network.

Current frp approaches also suffer from conceptual shortcomings.
Most notably, due to the fact that their is no distinction between differ-
ent kinds of time-varying values, such as continuously varying values
or event signals. This causes both missed optimisation opportunities
(all values are represented uniformly, regardless of how they are expec-
ted to be used) but also conceptual difficulties, especially when consid-
ering an implementation of frp tailored for simulation and modelling
applications. Indeed, such applications could benefit from using more
advanced numerical integration techniques than those currently being
used by frp implementations. As demonstrated by work on principled
hybrid simulation languages, such as Zélus [10, 20], such distinctions
are important when working with numerical solvers to obtain reliable
simulation results.

These considerations are in contrastwith other approaches at design-
ing causal reactive andmodelling languages, notably synchronous data-
flow languages [3, 36, 124], of which frp is a close relative. In such lan-
guages, the reactive network is compiled to an imperative representa-
tion where time-varying values are represented by imperative refer-
ences which are carefully updated in sequence to produce results over
time [17], thus requiring no runtime wiring. Similar techniques are
used for simulation languages such as Simulink. On the other hand,
these languages do not offer the same level of flexibility and expressiv-
ity that frp does, in favour of efficient implementation and, most im-
portantly, static performance guarantees.

The work presented in part I shows how, by using an imperative
representation very similar to that found in synchronous dataflow lan-
guages, the performance of arrowized frp can be increased manifold
by removing all wiring overhead. The implementation relies on a pre-
cise distinction, tracked at the type-level, of the kinds of signals. This
allows for different representation to be used based on the kind of sig-
nals, which allows for specific optimisations for each signal kind based
on how it is expected to behave at runtime. It also allows to impose ad-
ditional restrictions on the reactive network, addressing some of the
conceptual shortcomings mentioned before and opening the way to
the implementation of an expressive causal modelling language based
frp principles.

The resulting library is called Scalable frp (sfrp) a. It has been eval-
uated on a range of benchmarks designed to test various performance
aspects. Additionally, both to check the maturity of this new imple-
mentation, and to get an indication of what performance gains one
might expect in real applications, the new implementation was used as
a mostly drop-in replacement for Yampa in an existing game, Flappy
Birds [93]. Although it is already very capable, the library is still in

5

https://en.wikipedia.org/wiki/Jacquard_machine
https://en.wikipedia.org/wiki/Jacquard_machine
https://gitlab.com/chupin/scalable-frp
https://gitlab.com/chupin/scalable-frp

1.2. Part I: causal modelling with Functional Reactive Programming

110. Nilsson et al., ‘Func-
tional Reactive Program-
ming, Continued’. 2002

94. Mainland, ‘Why It’s
Nice to Be Quoted’. 2007

120. Paterson, ‘A New Nota-
tion for Arrows’. 2001

a prototype state and doesn’t support some of the more advances fea-
tures of Yampa, such as collection-based switching [110]. It also has
some additional limitations that are more fundamental, in particular
with regards to feedback.

1.2.1—Organisation

The first part of this thesis is organised as follows.
Chapter 2 presents the necessary background behind causal mod-

elling languages, with an overview of common integration techniques
for directed differential equations. It then introduces Functional Re-
active Programming (with a particular focus on arrowized frp) and
shows how it can be used as a simple causal modelling language. It
then presents the current implementation of Yampa as an embedding
in Haskell and its shortcomings.

Chapter 3 presents Scalable frp (sfrp), a library which addresses
the shortcomings outlined in the previous chapter. A detailed imple-
mentation is presented, complete with systematic benchmarks show-
ing important performance improvements. The library is also evalu-
ated on small programs where it shows a three-fold performance im-
provement.

Finally, chapter 4 consists of an overview of related approaches for
the design of causal modelling languages and for the implementation
of efficient frp systems. It then offers some concluding remarks on
that line of work and directions for future research.

1.2.2—Contributions

The main contributions of this part lie in the design and imple-
mentation of the sfrp library. Specifically the following:

— A precise description of frp networks which is constrained at
the type level, necessitating beingmore explicit about intent thus
allowing for efficient implementations.

— An explicit type for routers. The type allows to describe all types
of routing occurring in an frp network explicitly. This allows
later to handle routing in an efficient way (§3.2.3).

— The interpretation of sfrp network as a network of imperat-
ive references, derived from the compilation techniques used
for synchronous dataflow languages (§3.4). The main new con-
tribution here resides in the efficient handling of the switching
constructs of frp (§3.4.3).

— Anewapproach to embedding arrow-like dsl is introduced (§3.3).
This approach is implemented via quasi-quotation [94] to provide
a convenient syntax to write sfrp networks, and is based on the
existing arrow notation [120] (used by arrowized frp libraries).
A systematic method to desugar the new notation into sfrp net-
works is presented. Unlike the arrow notation, it does not re-
quire the use of higher-order function; instead making use of

6

Chapter 1. Introduction

31. Campbell et al., ‘The Index of
General Nonlinear DAEs’. 1995

explicit explicit router types. This allows for routing to remain
explicit in the resulting reactive network. This algorithm also
serves as a demonstration that the type of routers introduced in
§3.2.3 is indeed sufficient to describe any kind of routing. This
work can be used to improve the current desugaring of arrow
notation within existing Haskell compilers and potentially be-
nefit other Embedded Domain-Specific Language (edsl) based
on arrows.

Note that, while these contributions are presented in the context
of designing an frp library tailored for modelling applications, these
ideas can be easily adapted for the efficient implementation of frp lib-
raries designed for traditional reactive applications.

This work presented in this part is an extended version of the work
presented in the following peer-reviewed publication:

Guerric Chupin and Henrik Nilsson. ‘Functional React-
ive Programming, Restated’. In: Proceedings of the 21st In-
ternational Symposium on Principles and Practice of Pro-
gramming Languages 2019. PPDP ’19. New York, NY,
USA: Association for Computing Machinery, Oct. 2019,
pp. 1–14. isbn: 978-1-4503-7249-7. doi: 1 0 . 1 1 4 5 / 3 3 5 4 1 6 6 .
3 3 5 4 1 7 2

1.3—Part II:modularcompilationforFunctionalHy-
brid Modelling

FunctionalHybridModelling (fhm) is an approach aimed at design-
ing expressive non-causal modelling languages. fhm is very close in
spirit to frp; indeed it can be viewed as an extension. Being a non-
causal modelling language, fhm allows for models to be described as
sets of undirected equations, also known asDifferentialAlgebraic Equa-
tions (dae). It provides similar switching constructs to frp, leading to
a similar level of expressivity and flexibility.

Non-causal modelling languages in general allow for a much more
modular approach to modelling. Indeed, where in a causal modelling
language, an equation can only be used to solve for one variable, in
a non-causal language, the same equation can be used to solve for (in
principle) all the variables that appear in it, enabling for amuch greater
reuse of models.

However, from a compiler implementer’s perspective, non-causal
models are not modular in the slightest. The simulation of a dae in-
deed poses inherent difficulties, particularly the differentiation index
[31]. In general, a non-causal model features constraint equations that
restrict the set of possible solutions but cannot readily be used by a nu-
merical solver in computing a solution. Recovering a system suitable
for simulation can be done by differentiating some of the equations

7

https://doi.org/10.1145/3354166.3354172
https://doi.org/10.1145/3354166.3354172

1.3. Part II: modular compilation for Functional Hybrid Modelling

116. Pantelides, ‘The Consistent
Initialization of Differential-
Algebraic Systems’. 1988 —

126. Pryce, ‘A Simple Structural
Analysis Method for DAEs’. 2001

129. Reissig et al., ‘Differential–
Algebraic Equations of Index

1 May Have an Arbitrarily
High Structural Index’. 2000

24. Broman, ‘Meta-Languages
and Semantics for Equation-
Based Modeling and Simula-
tion’. 2010 — 154. Zimmer,

‘Equation-Based Modeling of
Variable-Structure Systems’. 2010

57. Elmqvist et al., ‘Systems
Modeling and Program-

ming in a Unified Environ-
ment Based on Julia’. 2016

66. Giorgidze et al., ‘Mixed-
Level Embedding and JIT
Compilation for an Iter-
atively Staged DSL’. 2011

64. Giorgidze et al., ‘Embedding
a Functional Hybrid Model-

ling Language in Haskell’. 2011

of the system. How many times a set of equations needs to be differ-
entiated is the differentiation index of the dae. The resulting latent
equations can then be used for simulation.

There exist efficient algorithms [116, 126] for determining the set
of equations to differentiate to obtain a system suitable for simulation.
However, they all require a complete view of the model being simu-
lated. Thus, before a model is completely assembled, it is not possible
to fully determine the equations that must be differentiated for simu-
lation. This is problematic for code generation: because the index of a
dae can be arbitrarily large [129], it is not possible to generate separ-
ate code ahead of time for all derivatives that may be needed. Hybrid
languages exacerbate the problem as the differentiation index may be
different across modes and therefore requires new equations to be dif-
ferentiated (and code generated) when a structural change occurs.

For the reasons above, hybrid non-causal languages have tradi-
tionally been either interpreted [24, 154] or Just-in-time (jit) com-
piled [57], including previous implementations of fhm [66]. Other
languages that support limited hybrid features such as Modelica are
compiled ahead-of-time but not in a modular way: the equation sys-
tem representing the fully assembled model is extracted (a process
known as flattening) and code is generated afterwards.

This second part of the thesis presents a new implementation of
Hydra, a dsl based on fhm principles. This new implementation is
standalone: a compiler has been written both for the modelling lan-
guage and the functional host, unlike previous implementations ofHy-
dra [64], and the work presented in the previous part where Haskell
was used as the host language.

In this part, the problem of modular compilation for Hydra is
addressed by exploring ways to generate code capable of computing
an arbitrary derivative of an expression. The technique considered is
called order-parametric differentiation: the code generated for an ex-
pression is parametrised by the order of the derivative required by the
caller and can thus be used to compute any derivative at any point
(including the undifferentiated value of the expression, or order zero
derivative). The objective is to generate modular code in the usual,
programming-language sense of the term. Compilers for program-
ming languages, like C, Java or Haskell, compile the code for a func-
tion once and then simply use a symbol to jump into the body of the
function when it is being called. This allows separately compiledmod-
ules to be joined by a linker, without further compilation as such. The
objective is for simulation code for models to be compiled into a func-
tion and use the same mechanism when one model is used in another,
allowing separately compiled models to be linked in the conventional
sense.

8

Chapter 1. Introduction

1.3.1—Organisation

The second part is independent from part I, with the exception of
chapter 5. It is organised as follows.

Chapter 5 introduces the additional background needed to simu-
late systems of undirected equations directly. It builds on the notions
introduced in chapter 5 for the simulation of directed equations. It
then introduces fhm and the non-causal modelling approach through
the new implementation of Hydra presented in this thesis.

Chapter 6 presents a detailed specification of Hydra’s surface syn-
tax and type system. It presents a simple simulation scheme based on
the translation of Hydra models in terms of flattened systems of un-
directed equations.

Chapter 7 presents a modular compilation scheme for Hydra. It
presents the mathematical background behind order-parametric dif-
ferentiation and how code for equations can be generated using it. It
then shows how this can be used to compile the rest of the Hydra lan-
guage in a modular way. Finally, this chapter presents benchmarking
results to compare code generated by order-parametric differentiation
and code generated by traditional means, such as repeated first-order
automatic differentiation.

Chapter 8 consists of an overview of related non-causal modelling
languages and related approaches to the modular compilation of these
languages. It then gives concluding remarks and suggestions for im-
provements to the approach and to the Hydra language as a whole.

1.3.2—Contributions

The contributions made in this part of the thesis are as follows:
— A new version of the Hydra language, based on fhm principles

and its compiler (chapter 6 and 7).
— Thenotion of order-parametric differentiation and shows how it

can be used to compile mathematical expressions to imperative
code able to produce the value of any derivative of the original
expression (§7.2.2).

— A scheme to compile hybrid models (made of groups of equa-
tions and submodels) to low-level code. It introduces simple
schemes to keep track of variable ordering and the state of a hy-
brid model that map naturally to compiled low-level code.

— Aperformance study of order-parametric code. Order-parametric
code is sometimemuch less efficient thanwith other approaches.
It is expected that the performance figures presented in this thesis
can be used as a guide for implementers, for optimisation pur-
poses or for using this technique alongside other existing ap-
proaches, such as jit compilation.

The work presented in this part was, in part, presented in the fol-
lowing peer reviewed publication:

9

1.4. Part III: conclusions

38. Chakravarty et al., ‘Asso-
ciated Type Synonyms’. 2005
— 39. Chakravarty et al., ‘As-

sociated Types with Class’.
2005 — 122. Peyton Jones et

al., ‘Simple Unification-Based
Type Inference for GADTs’. 2006

Guerric Chupin and Henrik Nilsson. ‘Modular Compil-
ation for a Hybrid Non-Causal Modelling Language’. en.
In: Electronics 10.7 (Jan. 2021), p. 814. doi: 1 0 . 3 3 9 0 /

e l e c t r o n i c s 1 0 0 7 0 8 1 4

1.4—Part III: conclusions

This part contains concluding remarks about the thesis and con-
siders avenues for futurework at the intersection of the two approaches
studied in this thesis.

1.5—Prerequisites

This thesis assumes some knowledge of typed functional program-
ming in general.

Part I further relies on a good understanding of the Haskell lan-
guage and some of the more advanced features supported only by the
Glasgow Haskell Compiler (ghc), such as Generalized Algebraic Data
Types (gadt) or type families [38, 39, 122].

1.6—Conventions

This thesis uses Lagrange notation for derivatives. Given a time-
varying function 𝑥, 𝑥′ denotes its first-order derivative, 𝑥″ its second-
order derivative, etc. When the number of differentiation is large or
unknown, the notation 𝑥(𝑛) is used to denote the 𝑛-th derivative. It is
extended to include the case where 𝑛 is 0 with 𝑥(0) = 𝑥. When it is
unambiguous, the point at which a time-varying function is applied is
not specified, hence 𝑥 may designate either the function itself or the
value 𝑥(𝑡), for some arbitrary time 𝑡. Partial derivatives of a multivari-
ate function are denoted using the usual notation ∂𝑓

∂𝑥𝑖
.

The norm of a vector of 𝑥 of ℝ𝑛 will be denoted using ‖𝑥‖.

10

https://doi.org/10.3390/electronics10070814
https://doi.org/10.3390/electronics10070814

Part I

Scalable Functional Reactive
Programming

11

Figure 2.1: A RC-circuit

𝑢

𝑖 𝑟𝑢𝑟

𝑖𝑟

𝑐𝑢𝑐

𝑖𝑐

Figure 2.2: Two compon-
ents connected in series

𝑢1

𝑖

𝑢2

𝑖

𝑢1 + 𝑢2

Introduction to causal modelling 2
This chapter serves as an introduction to the basic principles behind
causalmodelling. §2.1 introduces the concept of OrdinaryDifferential
Equation (ode) through a simple example and introduces some useful
terminology for the rest of the thesis. §2.2 gives a general overview of
common methods used for computing an approximated solutions to
an ode, with a particular focus on understanding some of their limits,
which have an influence on the design of the language. §2.3 introduces
Functional Reactive Programming (frp), which will be used as an ex-
ample for a simple causal modelling language. §2.4 presents the imple-
mentation of the frp library Yampa, which is used as the basis for the
work presented in this thesis. It will show some of its shortcomings,
which will be addressed in the next chapter.

2.1—Modelling with differential equations

Consider the electrical circuit depicted in figure 2.1. It consists of
3 components, a voltage source, a resistor with resistance 𝑟 and a ca-
pacitor of capacitance 𝑐; and relates 6 time-varying functions: 𝑢, 𝑖, 𝑢𝑟,
𝑖𝑟, 𝑢𝑐 and 𝑖𝑐, which are the voltages and currents flowing across each
component. These functions are related through equations derived
from the laws of electrical circuits. For instance, 𝑖𝑟 and 𝑢𝑟 are related by
Ohm’s law:

𝑢𝑟 = 𝑟𝑖𝑟

and 𝑖𝑐 and 𝑢𝑐 are related by:

𝑐𝑢′𝑐 = 𝑖𝑐

These relations are invariant: they are characteristic of the individual
component and hold regardless of the context in which the component
is used and at any point in time.

Kirchhoff ’s law gives additional equations for the circuit, that the
voltage across the source 𝑢 is equal to the sum of the voltage across the
capacitor and resistor; and that currents through all components are
equal. Assuming the voltage source produces a sine-wave yields the
following system of 6 equations:

𝑢 = 𝑢0 sin (2π𝑓 𝑡 + φ) (2.1)
𝑐𝑢′𝑐 = 𝑖𝑐 (2.2)
𝑢𝑟 = 𝑟𝑖𝑟 (2.3)

13

2.2. Numerical integration

37. Cellier et al., Continu-
ous System Simulation. 2006

59. Euler, Institutionum
Calculi Integralis. 1768

𝑖 = 𝑖𝑟 (2.4)
𝑖𝑟 = 𝑖𝑐 (2.5)
𝑢 = 𝑢𝑟 + 𝑢𝑐 (2.6)

From this system of equations, finding an explicit formula for all
6 time-varying functions it relates is difficult. While it is possible in
this case, this is very much an exception. The main difficulty naturally
comes from solving for 𝑢𝑐 which appears differentiated. By symbolic
manipulation, it is possible to extract a relation purely between 𝑢𝑐 and
𝑢′𝑐 . Indeed, in equation 2.2, one can replace 𝑖𝑐 by 𝑖𝑟 (by equation 2.5),
then 𝑖𝑟 by

1
𝑟 𝑢𝑟 (by equation 2.3) and finally 𝑢𝑟 by 𝑢−𝑢𝑐 (by equation 2.6).

This yields the following Ordinary Differential Equation (ode):

𝑢′𝑐 =
1
𝑟𝑐 (𝑢 − 𝑢𝑐) (2.7)

In general, an ode is a differential equation of the form:

𝑥′ = 𝑓 (𝑥, 𝑡)

where 𝑥 ∶ ℝ → ℝ𝑛 and 𝑓 ∶ ℝ𝑛 × ℝ → ℝ𝑛, for some 𝑛 ∈ ℕ. The
function 𝑓 is the residual function of the ode. An ode together with a
known-value of 𝑥 as a given point in time (usually 0) forms an Initial
Value Problem (ivp). Finding an explicit solution to an ode is, inmost
cases, impossible. As an alternative, numerical integration [37] allows
to approximate a solution to an ivp. The next section goes over some
common numerical integration techniques, from the most basic ones
to somemore advanced strategies able to produce very accurate results,
and integrated in industrial-strength ode solvers.

2.2—Numerical integration

When an analytic solution to a differential equation is intractable,
a numerical integration technique can be used. The general idea is to
produce successive approximations of the solution at discrete points
in time, starting from a known initial value for the solution. To do so
requires estimating the rate of change of the solution between the pre-
vious time instant and the next one. The rate of change of a function
𝑥 between two instants 𝑡 and 𝑡 + δ𝑡, with δ𝑡 > 0 is given by 𝑥(𝑡+δ𝑡)−𝑥(𝑡)

δ𝑡 .
Knowing its value and the value of 𝑥(𝑡), it is obvious how 𝑥(𝑡+δ𝑡) can be
computed. To estimate the rate of change, numerical integration tech-
niques exploit the fact that the derivative of a function corresponds to
the instantaneous rate of change of that function, therefore computing
it at different points over the interval [𝑡, 𝑡 + δ𝑡] can give an approx-
imation for the overall rate of change over that interval. The derivative
itself can be computed by exploiting its relation with the solution given
by the differential equation.

14

Chapter 2. Introduction to causal modelling

𝑡 𝑡 + δ𝑡

𝑥(𝑡)

𝑥(𝑡) + 𝑥′(𝑡)δ𝑡

𝑥(𝑡 + δ𝑡)

Exact solution 𝑥
True slope
𝑥′ at 𝑡

Figure 2.3: Illustration of the
forward Euler’s method

88. Kutta, ‘Beitrag Zur Naher-
ungsweisen Integration Totaler
Differentialgleichungen’. 1901
— 132. Runge, ‘Über Die Nu-
merische Auflösung von Differ-
entialgleichungen’. 1895

2.2.1— Simple methods
The forward Euler’s method [59] is arguably the simplest integra-

tion method. It consists of locally approximating the rate of change of
the solution between 𝑡 and 𝑡 + δ𝑡 by 𝑥′(𝑡). Given an approximation for
𝑥 at time 𝑡, the value of 𝑥 at time 𝑡 + δ𝑡 can be approximated like so:

𝑥(𝑡 + δ𝑡) = 𝑥(𝑡) + 𝑥′(𝑡)δ𝑡

Since 𝑥 is the solution to an ode, 𝑥′(𝑡) can be replaced by 𝑓 (𝑥(𝑡), 𝑡):

𝑥(𝑡 + δ𝑡) = 𝑥(𝑡) + 𝑓 (𝑥(𝑡), 𝑡)δ𝑡

The method is illustrated in figure 2.3. Euler’s method is fairly
imprecise and crude. It only gives an exact approximation when the
solution is linear (i.e., the function 𝑓 is constant). On the example fig-
ure, where the function is convex (its second-order derivative is pos-
itive), integrating with Euler’s method systematically underestimates
the solution (conversely, it would overestimate it if it had been con-
cave). The Runge-Kutta methods [88, 132] form a family of methods
(ofwhich the forwardEuler’smethod is a special case, the rk1method)
that attempt to provide a better estimate of the rate of change by com-
puting several estimates for the derivative 𝑥′, at different points on the
interval [𝑡, 𝑡 +δ𝑡]. The classic Runge-Kutta method is rk4, which splits
the interval [𝑡, 𝑡 + δ𝑡] at the midpoint 𝑡 + δ𝑡

2 . The scheme computes
4 intermediate values, which correspond to different approximations
of the derivative of 𝑥:

𝑘1 = 𝑓 (𝑥(𝑡), 𝑡)

𝑘2 = 𝑓 (𝑥(𝑡) + δ𝑡
𝑘1
2 , 𝑡 + δ𝑡

2)

15

2.2. Numerical integration

Figure 2.4: Illustration of the
rk4 method

On the graph, K designates the
averaged out rate of change:

K =
𝑘1 + 2𝑘2 + 2𝑘3 + 𝑘4

6

The function being integrated
is the same as in figure 2.3. The
guess for 𝑥(𝑡 + δ𝑡) is much better
with the rk4 method.

𝑡 𝑡 + δ𝑡
2

𝑡 + δ𝑡

𝑥(𝑡)

𝑥(𝑡 + δ𝑡) 𝑥(𝑡) + Kδ𝑡

𝑥(𝑡) + 𝑘1
δ𝑡
2

𝑥(𝑡) + 𝑘2
δ𝑡
2

𝑥(𝑡) + 𝑘3δ𝑡

Exact solution 𝑥
Approximated slope

𝑘3 = 𝑓 (𝑥(𝑡) + δ𝑡
𝑘2
2 , 𝑡 + δ𝑡

2)

𝑘4 = 𝑓 (𝑥(𝑡) + δ𝑡𝑘3, 𝑡 + δ𝑡)

𝑥(𝑡 + δ𝑡) = 𝑥(𝑡) +
𝑘1 + 2𝑘2 + 2𝑘3 + 𝑘4

6 δ𝑡

𝑘1 corresponds to 𝑥′(𝑡). It is the rate of change that would have
been computed by the forward Euler method. Instead of using 𝑘1 to
produce a solution however, it is used to estimate the solution at 𝑡 +
δ𝑡
2 . Using this approximated solution, a value for the derivative at that
point is computed 𝑘2 along with a new estimate for 𝑥 (𝑡 + δ𝑡

2), which
is used to compute a new approximation of the derivative 𝑘3. Finally,
𝑘4 is an estimation of the slope at 𝑡 + δ𝑡, computed by approximating
𝑥(𝑡 + δ𝑡) using 𝑘3. rk4 then produces a final estimate for the rate of
change between 𝑡 and 𝑡 + δ𝑡 by averaging out 𝑘1, 𝑘2, 𝑘3 and 𝑘4, giving
moreweight to the approximations corresponding to the rate of change
at the midpoint. A graphical illustration for the method is presented
in figure 2.4.

2.2.2— Implicit methods
The Runge-Kutta methods and the forward Euler method are ex-

plicit methods, in the sense that the estimate for 𝑥(𝑡 + δ𝑡) is produced
through an explicit formula in terms of 𝑥(𝑡):

𝑥(𝑡 + δ𝑡) = F(𝑥(𝑡), 𝑡)

Implicit methods on the other hand, produce an estimate of 𝑥(𝑡 + δ𝑡)
as an implicit solution of an equation of the form:

G(𝑥(𝑡 + δ𝑡), 𝑥(𝑡)) = 0

16

Chapter 2. Introduction to causal modelling

22. Brenan et al., ‘Numerical
Solution of Initial-Value Prob-
lems in Differential-Algebraic
Equations’. 1995 — 26. Brown
et al., ‘DASKR Package: DAE
Solver with Krylov Methods
and Rootfinding’. 2011 — 74.
Hindmarsh et al., ‘SUNDIALS:
Suite of Nonlinear and Differen-
tial/Algebraic Equation Solvers’.
2005
37. Cellier et al., Continuous
System Simulation. 2006

For instance, the backward Euler method produces 𝑥(𝑡 + δ𝑡) as the
solution of:

𝑥(𝑡 + δ𝑡) = 𝑥(𝑡) + 𝑓 (𝑥(𝑡 + δ𝑡), 𝑡 + δ𝑡)δ𝑡

The presentation of algorithms for finding solutions to such equations
is left for part II. Despite being harder to implement, implicit meth-
ods can turn out to be more efficient for a large category of problems
where explicit methods require very small step sizes to stay numeric-
ally stable. Numerical stability here refers to the property of the integ-
ration algorithm to not wildly diverge from the solution as integration
progresses.

A widely used family of implicit methods are Backward-Difference
Formula (bdf) methods (of which the backward Euler method is a
special case) [22, 26, 74]. Unlike the methods presented so far, the
bdf methods are multistep. While singlestep methods use only 𝑥(𝑡) to
compute 𝑥(𝑡 + δ𝑡), multistep methods use 𝑥(𝑡) along with other pre-
vious approximations 𝑥(𝑡 − δ𝑡), 𝑥(𝑡 − 2δ𝑡), etc. The bdf-𝑛 method
produces an approximation of 𝑥(𝑡 + 𝑛δ𝑡) as the solution to:

𝑛
∑
𝑘=0

𝑎𝑘𝑥(𝑡 + 𝑘δ𝑡) = δ𝑡β𝑓 (𝑡 + 𝑛δ𝑡, 𝑥(𝑡 + 𝑛δ𝑡))

The values for the coefficients 𝑎𝑘 and β can be found in [37, §4.7].

0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

⋅10−2
−10

10

20

30

0
𝑡

𝑢𝑐

Exact solution
Euler method (δ𝑡 = 0.0001)
Euler method (δ𝑡 = 0.001)
Euler method (δ𝑡 = 0.003)

Figure 2.5: Simulation res-
ults for equation 2.7 using
Euler’s scheme

The simulations used the following
numerical values: 𝑢0 = √2 ⋅ 220V,
𝑓 = 50Hz, φ = 0, 𝑟 = 50Ω,
𝑐 = 1mF. The exact solution is
given by:

𝑢𝑐 = κ (sin(ω𝑡) + τω (𝑒−
𝑡
τ − cos(ω𝑡)))

given τ = 𝑟𝑐, ω = 2π𝑓 and κ =
𝑢0

(τω)2+1 .

2.2.3—Variable-step methods
So far, all the methods considered now used a fixed step size δ𝑡.

This step size needs to be decided by the user of the method. This is

17

2.2. Numerical integration

7. Ascher et al., ‘Computer
Methods for Ordinary Differen-
tial Equations and Differential-

Algebraic Equations’. 1998
— 47. Curtiss et al., ‘Integra-
tion of Stiff Equations’. 1952

74. Hindmarsh et al., ‘SUN-
DIALS: Suite of Nonlin-

ear and Differential/Algeb-
raic Equation Solvers’. 2005

potentially problematic. If the step size is too large for the problem
at hand, the scheme will lose in precision or become unstable, the ap-
proximation widely diverging from the true solution. Conversely, if
the step size is very low, while this should give a very good approxim-
ation, it will cause suboptimal performance. This is illustrated in fig-
ure 2.5, which shows simulation results for equation 2.7 using Euler’s
method with different step sizes. When the step size is small, the sim-
ulation is indistinguishable (on the graph at least) from the exact solu-
tion but a difference is clearly noticeable with larger step sizes. Un-
fortunately, determining a good step size from a system of equations
may not be obvious. In large systems, different constituents may re-
quire different step sizes and the optimal step size may change during
integration. Variable-step methods [7, 47] aim to address this issue
by dynamically varying the step size based on the function being in-
tegrated. When the function is very stiff, the step size is reduced to
gain precision; when it is not, the step size is increased to improve the
performance.

A consequence of the ability to vary the step-size is that solversmay
decide to evaluate the function being integrated out-of-order. Indeed,
if the solver notices that it evaluated the function too late it may decide
to reevaluate it at an earlier point. When implementing the residual
function as a computer program, it is therefore highly preferable that
the function does not depend on any state and certainly does not de-
pend on the function always being evaluated in time-ascending order.
Theuse of a varying time-stepmethod is illustrated in figure 2.6. Equa-
tion 2.7 is simulated using the Sundials cvode solver [74], which uses
a variable step bdf method to perform integration. The plot shows
both the approximated solution and all the points at which it has eval-
uated the residual function. The solver was asked for a solution every
3ms, which corresponds to step size used for the least precise approx-
imation in figure 2.5. It clearly shows how the step size varies, getting
smaller when the derivative of the solution changes the most, for in-
stance around local extrema. By nature of the ode, this is also when
the derivative of the function being integrated is largest (in absolute
value). The resulting approximation is very good, but requires consid-
erably fewer evaluations than the most precise approximation in fig-
ure 2.5.

2.2.4— Integrating across discontinuities

All numerical integration methods assume some regularity prop-
erties over the function being integrated, for instance, that it is con-
tinuous. Integrating across a discontinuity is generally notwell-defined
and can cause the solver to fail, or to take a very large number of steps
to compute a solution. This is demonstrated on figure 2.7, where the

18

Chapter 2. Introduction to causal modelling

0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

⋅10−2
−10

10

20

30

0
𝑡

𝑢𝑐

Approximated solution
Evaluated points
Exact solution

Figure 2.6: Simulation res-
ults using Sundials cvode
solver

0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

0.2

0.4

0.6

0.8

1

0
𝑡

𝑢𝑐

Approximated solution
Evaluated points
Exact solution

Figure 2.7: Integration of
a discontinuous function
using Sundials cvode

19

2.2. Numerical integration

following ivp is passed to Sundialscvode:

𝑥′ = {
0 if 𝑡 < 1
1 otherwise

𝑥(0) = 0

To avoid the problem, it is preferable to split the problem in two.
First integrate the ivp:

𝑥′ = 0
𝑥(0) = 0

until 𝑡 passes 1 and then reset the solver as 𝑡 = 1. To continue the
integration, the solver can now be passed the following ivp:

𝑥′ = 1
𝑥(1) = 𝑥(1−)

where 𝑥(1−) designates the value computed from 𝑥 at 𝑡 = 1 just before
the solver reset. This can be achieved bymaking use of the root finding
capabality of solvers. Indeed, most solvers allow the user to provide
functions that compute a signal that should stop the solver when it
crosses 0. These events are usually referred to as zero-crossings and
allow to handle complex discontinuities or state changes, even when
they depend on the computed value for the solution. The root-finding
capabilities of solvers allow to ‘pinpoint’ the point in time at which the
zero-crossing occurred.

Integrating the discontinuous problem in this way yields the graph
in figure 2.8. It shows that the function being integrated was evaluated
at far fewer points this way than in the case where the solver had to
integrate across the discontinuity.

2.2.5— Summary

This section presented an overview of some common numerical
integration techniques and some of their limits. In particular, what
will be important for what follows are the two following points:

— integrating across discontinuities requires special care, both for
performance and accuracy reasons. In general, it ismuch prefer-
able to handle discontinuities outside of the numerical solver.
This can be done by presenting the solverwith a problemwithout
discontinuity, which is stopped at the point the discontinuity oc-
curs. The solver is then reset and tasked with continuing integ-
ration after the discontinuity. Discontinuities can be precisely
located by using a root-finding technique, as provided by many
numerical solvers.

20

Chapter 2. Introduction to causal modelling

0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

0.2

0.4

0.6

0.8

1

0
𝑡

𝑢𝑐

Approximated solution
Evaluated points (residual)

Exact solution
Evaluated points (zero-crossings)

Figure 2.8: Integration of
a discontinuous function
using Sundials cvode,
using zero-crossings and
solver reset at the point of
discontinuity.

The graph depicts both the points
at which the residual function
was evaluated and where the root
finding function was evaluated.

10. Benveniste et al., ‘A Type-
Based Analysis of Causality
Loops in Hybrid Systems Model-
ers’. 2017

54. Elliott et al., ‘Functional Re-
active Animation’. 1997 — 151.
Wan et al., ‘Functional Reactive
Programming from First Prin-
ciples’. 2000

— integrating a computer program that depends on an internal
state also requires special care. This is both due to the fact that
solvers uses variable-statemethodswith backtracking, which can
cause the state to be invalidated. Discrete state jumps can also
cause discontinuities, which leads back to the problemsdescribed
above. A good rule of thumb is that any state change should
therefore be treated like a discontinuity.

Note that these considerations are not new [10].
Thenext sectiondescribes Functional Reactive Programming (frp).

frp is an approach aimed at programming causal reactive applications.
However, it has also successfully been applied for describing simula-
tions. It will be used as an example for a causal approach to modelling.
frp on its own is a fairly naïve modelling language. Its shortcomings
in that regard will be made explicit in §2.4.5 and relate, in part, to the
points made above.

2.3—Functional Reactive Programming

The idea behind causal modelling languages is to avoid the need to
resort directly to a numerical solver, by providing language constructs
to define variables as integrals of others. In other words, to define these
variables as solutions of an ode. The implementation of the language
is then in charge of integration.

In this section, Functional Reactive Programming (frp) [54, 151]
is presented. frp is a principled, declarative approach to programming
reactive systems, focusing on describing interactions between time-

21

2.3. Functional Reactive Programming

4. Apfelmus, Reactive-Banana.
2011 — 28. Bünzli, React,

Functional Reactive Program-
ming for OCaml. 2010 —

140. Söylemez, Netwire. 2011

128. Microsoft, ReactiveX. 2011
48. Czaplicki, ‘Elm: Concurrent
FRP for Functional GUIs’. 2012

79. Hudak et al., ‘Arrows,
Robots, and Functional Re-
active Programming’. 2003
— 143. Thaler et al., ‘Pure
Functional Epidemics: An

Agent-Based Approach’. 2018

45. Courtney et al., ‘The
Yampa Arcade’. 2003

92. Liu et al., ‘Plugging a Space
Leak with an Arrow’. 2007

54. Elliott et al., ‘Functional
Reactive Animation’. 1997
8. Bärenz, Rhine. 2017 —
90. Le, Auto. 2015 — 135.

Scivally, Varying. 2015 — 140.
Söylemez, Netwire. 2011 —
141. Söylemez, Wires. 2017

varying values rather than reacting to individual events, and commonly
supporting both continuous and discrete notions of time. As such, frp
addresses some of the inherent difficulties in programming reactive
systems, and, in various concrete incarnations, it has had a consider-
able uptake [4, 28, 140] as well as inspired related approaches such as
ReactiveX [128] and (the original) Elm [48]. While catering primarily
for reactive applications, frp is in fact a useful way to structure time-
aware programs more generally, including simulations [79, 143].

frp is often realized as an edsl in a functional host language like
Haskell. Yampa [45] is a prominent representative of this approach.
This section gives an introduction to frp bymeans ofYampa and shows
how it can be used as a simple causal modelling language.

2.3.1— Signals and signal functions
frp is centred around two abstractions: signals and signal func-

tions. A signal represents a time-varying value, conceptually a func-
tion from time to values:

Signal α ≈ Time → α

In Yampa, signals are not first-class objects. Indeed, it is gener-
ally preferable to restrict what can be done with a signal. For instance,
being able to sample a signal arbitrarily far back in time requires re-
taining in memory all the information about that signal, leading to
memory leaks [92]. Conversely, signals are expected to be temporally
causal: they cannot depend on a value computed in the future. The
name classic frp refers to those libraries that treat signals as first-class
entities [54]. By contrast, Yampa and a wider family of libraries [8,
90, 135, 140, 141] grouped under the name arrowized frp have first-
class signal functions. Conceptually, these are functions from signals
to signals:

SF α β ≈ Signal α → Signal β

This enables libraries to define only a few signal functions that pre-
cisely define what can be done to a signal in such a way that an efficient
implementation can be provided. For instance, in Yampa, referring to
the previous value of a signal is done through the following d e l a y sig-
nal function:

d e l a y / :: T i m e / -> a / -> S F a a

d e l a y t i is a signal function that delays its input by t seconds,
setting the output signal to i in themeantime. Using d e l a y bounds the
amount of time the previous values of a signal need to be remembered
from at the time d e l a y is applied, which lends itself to a reasonable
implementation, by contrast to allowing the amount of delay to change
with time without a bound.

22

Chapter 2. Introduction to causal modelling

80. Hughes, ‘Generalising Mon-
ads to Arrows’. 2000

Figure 2.9: Main arrow
combinators

𝑓

(a) a r r f

𝑓 𝑔

(b) f > > > g

𝑓

(c) f i r s t f

𝑓

𝑔

(d) f & & & g

𝑓

𝑔

(e) f * * * g

𝑓

(f) l o o p f

2.3.2—Arrows
Signal functions are an example of arrows [80], an abstract inter-

face unifying ‘function-like’ types. Programming in Yampa is done by
composing primitive signal functions using arrow combinators. These
combinators are regularHaskell functionswhose signatures are given
below:

a r r / :: (a / -> b) / -> S F a b

(> > >) / :: S F a b / -> S F b c / -> S F a c

f i r s t / :: S F a b / -> S F (a , c) (b , c)

(& & &) / :: S F a b / -> S F a c / -> S F a (b , c)

(* * *) / :: S F a b / -> S F c d / -> S F (a , c) (b , d)

l o o p / :: S F (a , c) (b , c) / -> S F a b

a r r lifts an ordinary function to a signal function, which applies
the function to the input signal to produce the output signal. Com-
posing signal functions is provided through the > > > serial composition
operator and the two parallel composition operators, * * * and & & & , the
latter often called ‘fan-out’. Finally the feedback combinator l o o p , that
instantly feedbacks one output of a signal function to itself. Themean-
ing of these combinators are represented graphically in figure 2.9 using
‘boxes and arrow’ diagrams, similar to the block diagrams of Simulink
for instance. frp libraries structured around arrows in this way are
usually referred to by the name arrowized frp, in contrast with classic
frp [54] which allows for the manipulation of signals directly.

To illustrate how to use them, let us define e x p o n e n t i a l , a signal
functionwhose output is the solution to the ode defining the exponen-
tial function. Indeed, the exponential can be defined as the solution to
the following ode:

𝑦 ′ = 𝑦
𝑦(0) = 1

(2.8)

Integrating this equation on both sides yields:

∫
𝑡

0
𝑦 ′(𝑢)d𝑢

⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
𝑦(𝑡)−𝑦(0)

= ∫
𝑡

0
𝑦(𝑢)d𝑢

Simplifying transforms the equation to:

𝑦(𝑡) = 1 + ∫
𝑡

0
𝑦(𝑢)d𝑢

Yampa exposes the i n t e g r a l signal function which computes the
integral of a signal between the first instant and the current time. Using
the l o o p combinator, it is possible to feedback the computed value of
the integral back to itself, much in the way the ode is defined. This
leads to the following implementation:

23

2.3. Functional Reactive Programming

e x p o n e n t i a l / :: S F a D o u b l e

e x p o n e n t i a l =

l o o p (a r r s n d > > > i n t e g r a l > > > a r r (+ 1) > > > a r r d u p)

The s n d function is the function that given a pair returns its second-
element, d u p on the other hand takes the a value and produces a pair
containing the value in both fields:

s n d / :: (a , b) / -> b

s n d (_ , y) = y

d u p / :: a / -> (a , a)

d u p x = (x , x)

Let us analyse the definition of e x p o n e n t i a l . e x p o n e n t i a l is defined
in terms of l o o p . In this instance, the argument signal function that is
passed to l o o p has type S F (a , D o u b l e) (D o u b l e , D o u b l e) . Its in-
put signal is a pair made of the input of e x p o n e n t i a l type a as the left
argument, which is unused; and the current value of the integral. The
inner signal function is then the serial composition of 4 signal func-
tions: the first one discards the input of type a using s n d . This leaves
only the current value of the integral to pass to the integral. The integ-
ral’s initial value is always 0, but problem 2.8 requires that the value at
the first-instant of e x p o n e n t i a l is 1, hence why the value produced by
i n t e g r a l is added 1. The final signal function duplicates the result so
that the l o o p produces the value of the integral and feedbacks it to be
integrated. Figure 2.11 shows a diagrammatic view of the definition of
i n t e g r a l .

Figure 2.11: Block-based illustration of the definition of e x p o n e n t i a l

s n d

l o o p

i n t e g r a l + 1 d u p

l o o p feedbacks its second output immediately as an input to the
inner signal function. Although it may seem that this would cause an
infinite loop or require solving a fix-point equation, in this case, it does
not. Indeed, while i n t e g r a l depends on its input, it doesn’t depend
instantly on it: it can produce a value at time 𝑡 without knowing the
value of its input at time 𝑡. This makes i n t e g r a l a loop-breaker, like

24

Chapter 2. Introduction to causal modelling

120. Paterson, ‘A New Notation
for Arrows’. 2001

it is in other causal modelling languages. Note that Yampa does not
check if the l o o p actually contains a loop breaker and it will accept
nonsensical programs such as:

a b s u r d / :: S F a I n t

a b s u r d = l o o p (a r r s n d > > > a r r (+ 1) > > > a r r d u p)

which defines a signal following the equation 𝑦 = 𝑦+1, which of course
has no solution.

2.3.3—proc-notation
It quickly becomes tedious to program solely using combinators.

Fortunately, arrows, such as Yampa signal functions, can be construc-
ted using Paterson’s arrow notation [120], also called proc-notation. It
allows intermediate signals to be named and explicitly give them as ar-
guments to signal functions. It is treated specially by the compiler and
desugared using the arrow combinators introduced in §2.3.2. Con-
sider the problem of calculating the trajectory of an object in free fall,
with vertical position 𝑦 and velocity 𝑣. Such a system is described by
the following pair of equations:

𝑣(𝑡) = 𝑣0 + ∫
𝑡

0
−𝑔 d𝑢

𝑦(𝑡) = 𝑦0 + ∫
𝑡

0
𝑣(𝑢) d𝑢

The equations are translated to proc-notation like so, where y 0 and
v 0 are respectively the initial position and velocity of the object:

f r e e F a l l / :: (D o u b l e , D o u b l e) / -> S F a (D o u b l e , D o u b l e)

f r e e F a l l (y 0 , v 0) = p r o c _ / -> d o

l e t g = 9 . 8 1

v / <- a r r (v 0 +) < < < i n t e g r a l < -< - g

y / <- a r r (y 0 +) < < < i n t e g r a l < -< v

r e t u r n A < -< (y , v)

The p r o c keyword introduces names for the input signal of the signal
function, like λ in lambda-abstractions. Then a list of statements in-
stantiate subordinate signal functions, with inputs to the signal func-
tions to the right of < -< , and their outputs to the left of / <- . A l e t state-
ment can be used to define additional signals as pure expressions of
existing signals. The last statement’s output is the output of the defined
signal function. Herewe use r e t u r n A , which is a synonym for the iden-
tity arrow.

The proc-notation also supports defining signalswith feedbackwith
the r e c keyword. Doing so, the e x p o n e n t i a l signal function from
§2.3.2 can be redefined as:

25

2.3. Functional Reactive Programming

e x p o n e n t i a l / :: S F a D o u b l e

e x p o n e n t i a l = p r o c _ / -> d o

r e c y / <- a r r (+ 1) < < < i n t e g r a l < -< y

r e t u r n A < -< y

r e c defines a sub-block which can span acrossmultiple statements.
This way, it’s possible to describe a larger model, for instance the one
for the circuit from §2.1.

s i m p l e C i r c u i t / :: S F a D o u b l e

s i m p l e C i r c u i t = p r o c _ / -> d o

t / <- t i m e < -< ()

u / <- a r r s o u r c e W a v e < -< t

r e c u r / <- a r r (\ (u , u c) / -> u - u c) < -< (u , u c)

i r / <- a r r (/ r) < -< u r

l e t i c = i r

u c / <- a r r (/ c) < < < i n t e g r a l < -< i c

r e t u r n A < -< u c

w h e r e s o u r c e W a v e t =

u 0 * s i n (2 * p i * f * t + p h i)

Above, t i m e is a signal function that produces a signal with the
local time. It is then used in s o u r c e W a v e to produce the source voltage
u . The next statements are mutually recursive and define the other sig-
nals u r , i r , i c and u c .

2.3.4—Discrete behaviour

Dynamic changes in the structure of the network are possible through
a switching combinator:

s w i t c h / :: S F a (b , E v e n t c) / -> (c / -> S F a b) / -> S F a b

The E v e n t type is isomorphic to anoption type and is used tomodel
discrete-time signals:

d a t a E v e n t c = N o E v e n t | E v e n t c

The output of a switch is the b output from the first signal func-
tion, until an event is produced, after which a new signal function is
computed from the second argument, using the value c carried by the
E v e n t . Then the output of the whole switch is the output from that new
signal function.

Using s w i t c h , one can use the f r e e F a l l signal function to model
a bouncing object. A bouncing object acts like a free-falling one until
it reaches the ground (at coordinate 𝑦 = 0). When it does, its position
remains the same, but its velocity is inverted (assuming bouncing is
lossless):

26

Chapter 2. Introduction to causal modelling

107. Nilsson, ‘Dynamic Optim-
ization for Functional Reactive
Programming Using Generalized
Algebraic Data Types’. 2005

b o u n c i n g / :: (D o u b l e , D o u b l e) / -> S F a (D o u b l e , D o u b l e)

b o u n c i n g (y 0 , v 0) = s w i t c h b o u n c e A u x b o u n c i n g

w h e r e b o u n c e A u x = p r o c _ / -> d o

(y , v) / <- f r e e F a l l (y 0 , v 0) < -< ()

b o u n c e / <- e d g e < -< y < <= 0

r e t u r n A < -< ((y , v) , b o u n c e ` t a g ` (y , - v))

Thecode above defines an auxiliary signal function b o u n c e A u x which
pairs the signal function f r e e F a l l with an event. The event is gener-
ated by mean of the e d g e signal function of type S F B o o l (E d g e ()) ,
which produces an event that carries the () value whenever the in-
put signal goes from F a l s e to T r u e . Note that e d g e never reports an
event at the first instant. It would be problematic if it did since after
the first switch occurs, b o u n c i n g is always called with a negative initial
position. If e d g e detected that, it would immediately trigger the next
switch, which would trigger the next switch, etc. without ever produ-
cing any result since b o u n c e A u x would never run. b o u n c e is only an
E v e n t () , but s w i t c h needs b o u n c e A u x to produce an E v e n t (D o u b l e ,

D o u b l e) in order to construct a new instance of b o u n c i n g . As the name
indicates, t a g tags an event with a new value, overwriting the one it is
carrying. Here it is used with Haskell’s infix notation, b o u n c e ` t a g `

(y , - v) is the same as t a g b o u n c e (y , - v) .
There is, strictly speaking, no structural change happening in the

definition of b o u n c i n g : the s w i t c h here is simply used for introducing
a discontinuity in the vertical velocity of the falling object. But it can
also be used to radically change the dynamic behaviour of the system.
For instance, one could model a defective capacitor, which breaks at
some point in time and behaves like an open switch afterward:

b r e a k i n g C a p a c i t o r / :: D o u b l e

/ -> D o u b l e

/ -> S F (D o u b l e , E v e n t ()) D o u b l e

b r e a k i n g C a p a c i t o r c u c 0 =

s w i t c h c a p a c i t o r o p e n S w i t c h

w h e r e

c a p a c i t o r = p r o c (i c , b r e a k) / ->

u c / <- a r r (u c 0 +) < < < a r r (1 / c) < < < i n t e g r a l < -< i c

r e t u r n A < -< (i c , b r e a k)

o p e n S w i t c h = p r o c _ / ->

r e t u r n A < -< 0

2.4—Yampa’s implementation
This section describes the implementation of a typical Yampa-like

frp library as a continuation-based embedding. Yampa’s implementa-
tion itself is slightly more complicated [107]. These details are left-out
until §2.4.4 to help simplify the discussion.

27

2.4. Yampa’s implementation

Although Yampa is meant for programming hybrid continuous-
time and discrete-time systems, its implementation is discrete. It emu-
lates hybrid features, such as integration, by very simple approxima-
tions. The definition of the type S F is:

d a t a S F a b = S F (a / -> (b , D T i m e / -> S F a b))

where D T i m e represent a time difference and is defined as a synonym
for D o u b l e . A signal function is a wrapper around a transition function
that, given an input a produces an output b along with a continuation.
The continuation is a function that when applied to some amount of
time that has passed produces a new signal function to execute at that
instant. The following sections show how to define the combinators
and primitives of Yampa that have been presented so far.

2.4.1— Implementation of the arrow combinators

The simplest arrow combinator is a r r , which lifts a pure function
to a signal function by applying the function to the input signals to
produce an output. This leads naturally to this implementation:

a r r / :: (a / -> b) / -> S F a b

a r r f = S F s f

w h e r e s f _ a = (f a , c o n s t (a r r f))

Note how the continuation of a r r f is always itself, regardless of
the time delta since its behaviour does not change with time.

Composition combinators have similarly straight-forward imple-
mentations. The fan-out operator for instance:

(& & &) / :: S F a b / -> S F a c / -> S F a (b , c)

S F t f 1 & & & S F t f 2 = S F t f 3

w h e r e t f 3 d t a = ((b , c) , t f 3 ')

w h e r e (b , t f 1 ') = t f 1 d t a

(c , t f 2 ') = t f 2 d t a

t f 3 ' d t = t f 1 ' d t & & & t f 2 ' d t

& & & simply applies the transition functions of both subordinate sig-
nal functions to the same input. The continuation function is com-
puted from the continuation of the subordinates by applying them to
the same time difference, thus maintaining synchrony, and recursively
composing them with & & & .

Along the same principles, here are the implementations of serial
composition:

(> > >) / :: S F a b / -> S F b c / -> S F a c

S F t f 1 > > > S F t f 2 = S F t f 3

w h e r e t f 3 a = (c , t f 3 ')

w h e r e (b , t f 1 ') = t f 1 a

28

Chapter 2. Introduction to causal modelling

125. Pouzet et al., ‘Modular
Static Scheduling of Synchron-
ous Data-Flow Networks’. 2010

(c , t f 2 ') = t f 2 b

t f 3 ' d t = t f 1 ' d t > > > t f 2 ' d t

Finally, l o o p is implemented by making use of Haskell’s laziness:

l o o p / :: S F (a , c) (b , c) / -> S F a b

l o o p (S F t f) = S F l t f

w h e r e l t f a = (b , l t f ')

w h e r e ((b , c) , t f ') = t f (a , c)

l t f ' d t = l o o p (t f ' d t)

Notice how the output c of the transition function is also passed
as its input. This technique is sometimes called ‘tying-the-knot’ and
relies on the fact that function calls in Haskell do not evaluate their
arguments and that the evaluation of a particular value only causes
the evaluation of exactly those values that are needed to compute the
result. Let’s look at an example on a simplistic example (modified from
[125]):

g / :: (I n t , I n t) / -> (I n t , I n t)

g (x , y) = (x + 1 , y + 1)

f / :: I n t / -> I n t

f x = z

w h e r e (y , z) = g (x , y)

When evaluating f 0 , the result forces the second element of the
pair returned by g (x , y) , which is y + 1 . To evaluate y + 1 , the first
element of the pair returned by g (x , y) must be computed, which is 0
+ 1 . y therefore evaluates to 1 and z evaluates to 2 . What laziness allows
for in this case is a form of dynamic scheduling of operations. Instead
of requiring the programmer to perform this schedulingmanually, lazy
evaluation allows for it to be discovered at runtime. Note that knot-
tying has other useful applications not relevant to the work presented
here, for instance for defining cyclic data structures. The small example
above can be lifted as is into a signal function using l o o p and a r r like
so:

s f / :: S F I n t I n t

s f = l o o p (a r r g)

2.4.2— Implementation of primitives

So far, the continuation returned by the transition function hasn’t
really showed its usefulness. In Yampa’s implementation, it has es-
sentially two use-cases. The first is to allow local state to be main-
tained across invocations. This is illustrated by the implementation
of i n t e g r a l that uses Euler’s method:

29

2.4. Yampa’s implementation

i n t e g r a l / :: S F D o u b l e D o u b l e

i n t e g r a l = S F t f

w h e r e t f v = (0 , c o n t 0 v)

c o n t i p v d t = S F t f '

w h e r e t f ' v = (n i , c o n t n i v)

w h e r e n i = i + d t * p v

i n t e g r a l is defined using two transition functions. The first one is
only applied at the first time-step, after which the second one is used.
Let us look at the latter first. In addition to the time passed since the
previous invocation d t it has two additional arguments: the value of
the integral at the previous time step and the value of the input signal at
the previous time step. Using these two extra-arguments, it computes
the new value of the integral at the current time with a forward Euler
method (see §2.2) and produces the continuation by passing the new
value of the integral and the current value of the input. The initial
transition function t f only exists to bootstrap the process, since the
value of the input value before the first instant is undefined. The value
produced by i n t e g r a l at the current time step is indeed independent
from its input at the current time, like §2.3.2 relied on.

The second use for the continuation is to handle dynamic struc-
tural changes, as the implementation for s w i t c h shows:

s w i t c h / :: S F a (b , E v e n t c) / -> (c / -> S F a b) / -> S F a b

s w i t c h (S F t f) n e x t = S F s t f

w h e r e s t f a =

c a s e e v t o f

N o E v e n t / -> (b , s t f ')

E v e n t c / -> n e x t S F a

w h e r e S F n e x t S F = n e x t c

w h e r e ((b , e v t) , s f ') = t f a

s t f ' d t = s w i t c h (s f ' d t) n e x t

The transition function for s w i t c h uses the transition function of
the first signal function until it produces an event, after which a new
signal function (and transition function) is computed and used as a
replacement.

2.4.3— Interfacing with Yampa

Running a signal function is done with the r e a c t i m a t e function,
whose (simplified) type signature is:

r e a c t i m a t e / :: I O a

/ -> I O (D T i m e , a)

/ -> (b / -> I O B o o l)

/ -> S F a b

/ -> I O ()

30

Chapter 2. Introduction to causal modelling

r e a c t i m a t e i n i t s e n s e r e a c t s f starts by running the i n i t ac-
tion to produce the initial input to the signal function. Then, it runs
the s e n s e action that produces the time difference since the previous
instant and a new input. Finally r e a c t is used to handle the result pro-
duced by the signal function at this instant and returns a boolean in-
dicating whether the signal function should keep running or stop. The
fact that both the s e n s e and r e a c t are I O actions allow the signal func-
tion to interface with the outside world. This can be used to commu-
nicate key presses events in a game for instance, or read the value of a
sensor in an embedded application.

As an example, let’s write a program that simulates s i m p l e C i r c u i t
(which models the circuit in figure 2.1). It samples the result every
1 × 10−4 s until 5 × 10−2 s.

s i m p l e C i r c u i t / :: S F a D o u b l e

m a i n / :: I O ()

m a i n = d o

t i m e R e f / <- n e w I O R e f 0

r e a c t i m a t e i n i t

(s e n s e t i m e R e f)

(r e a c t t i m e R e f)

s i m p l e C i r c u i t

w h e r e i n i t = p u r e ()

s e n s e t i m e R e f = d o

t / <- r e a d I O R e f t i m e R e f

l e t d t = 1 e - 4

w r i t e I O R e f t i m e R e f (t + d t)

p u r e (d t , ())

r e a c t t i m e R e f u c = d o

p r i n t u c

t / <- r e a d I O R e f t i m e R e f

p u r e (t < >= 5 e - 2)

To keep track of the current time, the s e n s e and r e a c t actions
make use of a mutable reference t i m e R e f to share the current time.
A mutable reference pointing to a value of type a is represented with
the type I O R e f a . It can be read and written from using the functions:

r e a d I O R e f / :: I O R e f a / -> I O a

w r i t e I O R e f / :: I O R e f a / -> a / -> I O ()

s e n s e is in charge of updating the time reference when it runs,
while r e a c t checks whether the current time is more than the time
limit, stopping the simulation when it is.

31

2.4. Yampa’s implementation

107. Nilsson, ‘Dynamic Optim-
ization for Functional Reactive
Programming Using General-

ized Algebraic Data Types’. 2005

2.4.4— Self-simplification & dynamic optimizations
There are a number of advantages to the current Yampa represent-

ation. Mainly its simplicity, flexibility and overall reasonable perform-
ance. It also has the property that frp networks are self-simplifying.
Consider the implementation of switch: once the switch has occurred,
the transition function of the switch vanishes and is completely re-
placed by the transition function the switch switched into. This prop-
erty can be further exploited by having a special representation for
some signal functions that are amenable to simplifications, thus allow-
ing dynamic optimizations over the frp network [107].

For instance, one can introduce an additional constructor to the
type S F to distinguish signal functions that are applications of a r r , like
so:

d a t a S F a = S F A r r (a / -> b)

| S F (a / -> (b , D T i m e / -> S F a b))

a r r / :: (a / -> b) / -> S F a b

a r r f = S F A r r f

Thedefinition of combinators andprimitive cannowbemade aware
that they are being applied on applications of a r r and provide optim-
ized implementations. The serial composition operator can then dy-
namically simplify the frp network by transforming compositions of
two signal functions constructed using S F A r r into a single signal func-
tion. It can also provide more efficient implementations in the case
where only one of the subordinate signal function is constructed using
S F A r r :

(> > >) / :: S F a b / -> S F b c / -> S F a c

S F A r r f > > > S F A r r g = S F A r r (g . f)

S F A r r f > > > S F t f = S F t f c

w h e r e t f c a = (c , t f c ')

w h e r e (c , t f ') = t f (f a)

t f c ' d t = S F A r r f > > > t f ' d t

S F t f > > > S F A r r g = S F t f c

w h e r e t f c a = (g b , t f c ')

w h e r e (b , t f ') = t f a

t f c ' d t = t f ' d t > > > S F A r r g

S F t f 1 > > > S F t f 2 = . . .

Furthermore, because the definition of > > > applies itself recursively
to the continuations of its subordinate signal functions, it can dynam-
ically apply the optimization if the subordinates get simplified enough.
For instance, in the following:

s g / :: S F I n t I n t

s g = s w i t c h a u x n e x t

32

Chapter 2. Introduction to causal modelling

122. Peyton Jones et al., ‘Simple
Unification-Based Type Infer-
ence for GADTs’. 2006

w h e r e a u x = p r o c n / -> d o

e v t / <- e d g e < -< n > 0

r e t u r n A < -< (n , e v t)

n e x t () = r e t u r n A

s f / :: S F I n t I n t

s f = a r r (+ 1) > > > s g

s f cannot be statically optimized since s g is defined in terms of s w i t c h .
However, once s g has switched, its representation reduces to the rep-
resentation of n e x t () , which is S F A r r i d . At this point, the repres-
entation of s f can be optimized to a single S F A r r constructor by > > > .

Representing the identity arrowwith S F A r r i d still incurs the over-
head of a function composition when it is used, which could be simpli-
fied if it was represented explicitly, like S F A r r . Unfortunately, this is not
possible with the conventional Algebraic data type (adt)machinery of
Haskell, since defining:

d a t a S F a b = S F I d

| S F A r r (a / -> b)

| S F (a / -> (b , D T i m e / -> S F a b))

defines S F I d as having type S F a b , but the identity arrow should have
type S F a a . At first glance, it would seem that it is possible to use that
constructor by simply exposing a definition with a restricted type:

r e t u r n A / :: S F a a

r e t u r n A = S F I d

However, the problem now becomes the implementation of > > > . In-
deed, we would wish for the ability to write the following definition:

(> > >) / :: S F a b / -> S F b c / -> S F a c

S F I d > > > s f = s f

Unfortunately, this is not well-typed, since s f in general has type S F b

c and the return type should be S F a c . It is then necessary, to perform
this optimization, to force the type of S F I d to always be S F a a . This is
possible using Generalized Algebraic Data Types (gadt)[122]. gadt
are a form of dependent types which allow for a lot more flexibility
when defining the constructors of a type. Defining S F in terms of a
gadt is done like so:

d a t a S F a b w h e r e

S F I d / :: S F a a

S F A r r / :: (a / -> b) / -> S F a b

S F / :: (a / -> (b , D T i m e / -> S F a b)) / -> S F a b

33

2.4. Yampa’s implementation

In a gadt definition, the return type of each constructor application
can be given its own type. This allows for defining S F I d as having type
S F a a at all time. This then enables the compiler to perform addi-
tional type unifications during pattern-matching. Thus, in the defini-
tion of > > > :

(> > >) / :: S F a b / -> S F b c / -> S F a c

S F I d > > > s f = s f

the compiler unifies a and b , making the clause well-typed, and allow-
ing for an even more efficient implementation.

2.4.5— Shortcomings

2.4.5.1— Performance shortcomings Anatural assumptionwhenwriting
arrow code is that the ‘wiring’ is essentially free. In this context, wiring
(or routing) designates the process of guiding a signal from the output
of the signal function producing it to the inputs of the consuming sig-
nal functions. After all, the way signals flow between signal functions
is mostly static, with switch being the prominent exception. But, as
can be seen from the implementation & & & for instance, routing is not
quite free: & & & has to perform a tuple allocation at each step to pack
its result, which other combinators then have to unpack or rearrange
later.

This looks like a small price to pay, especially when allocations are
cheap like in most functional language implementations. However it
turns out that this wiring code is often a large part of an frp network.
Thedefinition of e x p o n e n t i a l (at the start of §2.3.2) for instancemakes
use of two combinators that only exist for the purpose of routing sig-
nals correctly: a r r s n d and a r r d u p . Code that uses the proc-notation
is also particularly susceptible to this due to the way it is desugared.
Consider this block:

p r o c x / -> d o

y / <- s f < -< x

z / <- s g < -< y

r e t u r n A < -< (x , z)

It is desugared by ghc into a slightly more complicated version of the
following:

a r r (\ x / -> (x , x)) > > > f i r s t s f > > >

a r r (\ x / -> (x , x)) > > > f i r s t (a r r (\ (x , y) / -> y) > > > s g) > > >

a r r (\ (z , (x , y)) / -> (x , z)) > > > r e t u r n A

Most of the combinators in the above code handle routing, and all of
them allocate and deallocate tuples. In fact, §3.5 will show that the cost
associated with routing grows quadratically with the number of lines
in a proc-notation block.

34

Chapter 2. Introduction to causal modelling

17. Biernacki et al., ‘Clock-
Directed Modular Code Genera-
tion for Synchronous Data-flow
Languages’. 2008

37. Cellier et al., Continuous
System Simulation. 2006

Surely, it is possible to do better. Indeed, the intuition that the wir-
ing is, for the most part, static, is correct. For static routing, there are
well-known techniques used in e.g. the implementation of synchron-
ous dataflow languages [17] and continuous system simulation [37]
that essentially eliminate the routing overhead by representing signals
with shared imperative variables. All that is required is that the writ-
ing and reading of each variable, for each time step, is carefully co-
ordinated, which in the setting of (first-order) synchronous dataflow
languages and simulation of structurally static continuous systems can
be achieved through static scheduling of the computations; i.e., gener-
ation of a sequence of imperative assignments in a suitable order.

To adopt this method for an arrowized frp library requires two
changes. First, it becomes important to precisely identify what routing
primitives are necessary in order to be able to replace the use of a r r
by explicit routing operations that the implementation can optimise
away. This can be done in the same way as in §2.4.4, by introducing
additional constructors to the S F type that represent signal functions
that only perform routing. Then, it requires a more precise represent-
ation for signals. In particular, it becomes important to distinguish
between pairs of signals and signals of pairs, as the former can be rep-
resented using a pair of references while the first can be represented as
a single reference on a pair.

2.4.5.2—Conceptual reasons There are further advantages, both prac-
tical and conceptual, of making a more profound distinction between
different kinds of signals. Not simply between pairs, but also between
individual kinds of signals themselves. So far, only (notionally) con-
tinuously varying signals have been considered. Even events are rep-
resented as continuous signals of an option type. However, a discrete-
time signal can be expected to change relatively infrequently compared
to continuous-time signals. Exploiting this through a different imple-
mentation strategy for such signals can lead to efficiency gains.

Further, there are advantages to distinguishing between truly con-
tinuous signals and signals that exist all the time but change only at
certain points in time. For instance, while it is clear what a continuous
signal of real numbers means, it is less clear what a continuously vary-
ing signal of booleansmeans and whether sampling from such a signal
is ever meaningful. On the other hand, the meaning of a constant by
part signal of booleans is clear.

As another example of the usefulness of this separation, consider
Yampa’s timeddelay combinator d e l a y / :: T i m e / -> a / -> S F a a . This
combinator allows any signal to be delayed a specific amount of time.
In terms of implementation, it is essentially a buffer for signal samples.
However, since Yampa makes no assumptions as to the regularity of
sampling, it may happen that individual samples either need to be dis-
carded or duplicated in order tomake up for variations in the sampling

35

2.5. Summary

frequency. This is fine for signals that conceptually are continuous.
However, it is a disaster for signals carrying events, as this can mean
that events get lost or are duplicated. Therefore Yampa provides a sep-
arate delay combinator for events that works by scheduling a single
output event a fixed time into the future. However, because Yampa
does not fundamentally differentiate between continuous-time signals
and events, there is nothing that stops a user fromusing the continuous-
time delay also for events.

Finally, §2.2.5 summed up the capabilities of numerical integration
techniques. While a better approach to numerical integration would
be desirable for Yampa, it is important that the program suitably limits
what can be done with models to make sure that integration produces
sensible results in a timely manner.

2.5— Summary

This chapter provided an introduction to causalmodelling, numer-
ical integration and Functional Reactive Programming. It presented
the notion of ode and techniques to numerically approximate their
solutions. It then showed how frp, and specifically arrowized frp as
implemented in Yampa, could be used as a simple modelling language
to express models in terms of ode; and the principles behind its im-
plementations.

The next chapter is dedicated to addressing the shortcomings de-
scribed in the previous section. It relies on a more precise description
of the nature of the signals a signal function operates on. Doing so
allows for the implementation of an frp network as an efficient imper-
ative program, providing great performance benefits. While this work
was originally carried-out with a focus on efficiency, the resulting lib-
rary allows to place additional limitations on frp that are desirable in
the context of a modelling language. While this has been left as future
work, this paves the way to the implementation of an efficient causal
modelling edsl integrated with precise ode solvers.

36

110. Nilsson et al., ‘Functional
Reactive Programming, Contin-
ued’. 2002

Figure 3.1: Signal kinds

𝑡

(a) Continuous signals

𝑡

(b) Step signals

𝑡

(c) Event signals

136. Sculthorpe et al., ‘Keeping
Calm in the Face of Change:
Towards Optimisation of FRP by
Reasoning about Change’. 2011

Scalable Functional Reactive
Programming 3
Thischapter presents an implementation of the ideas sketched in §2.4.5.
The main goal of this work is to improve the performance of frp net-
works by compiling away all wiring. To do so requires a strict separ-
ation between different kinds of signals, in particular pairs of signals
and signals of pairs. Further minor improvements can be provided by
distinguishing between different kinds of individual signals. For in-
stance, between continuous signals, expected to change very frequently,
and event signals. Doing so allows for providing additional restrictions
on frp which can be used tomake writing frp networks safer, and also
paves the way to the integration of more advanced numerical integra-
tion techniques, such as the ones presented in §2.2; although this has
been left as future work.

The resulting frp library is called Scalable frp (sfrp), since it aims
at supporting very large frp networks. It supports most of the fea-
tures of Yampa with two notable exceptions: it only supports a limited
formof feedback (implemented inYampawith the arrow l o o p combin-
ator), and it does not support collection based switching as presented
in [110].

This chapter is organized as follows. §3.1 discusses how different
kinds of signals can be distinguished, using signal descriptors. §3.2
then describes how signal functions are described in sfrp. In Yampa,
signal functions were implemented by shallow-embedding. For the
purpose of this work, sfrp will be implemented as an Abstract syntax
tree (ast); i.e., as a deep-embedding. §3.3 presents work that imple-
ments a custom proc-notationdesugarer usingghcmeta-programming
capabilities. Indeed, sfrp is not able to use the standard proc-notation
from ghc. However, like was demonstrated with Yampa, special syn-
tax is essential for the usability of an arrowized frp library. The com-
pilation of the sfrp ast to an efficient imperative representation is the
subject of §3.4. Finally, performance evaluation of sfrp against Yampa
is carried out in §3.5.

3.1— Signal representation

Signals are distinguished in two categories: individual signals and
pairs of signals. Following the distinction introduced in [136], indi-
vidual signals themselves are separated in three groups, illustrated in
figure 3.1:

37

3.1. Signal representation

153. Yorgey et al., ‘Giving
Haskell a Promotion’. 2012

a. Historically, T y p e has also
been denoted by * and ghc

supports both syntax. This work
only uses the notation T y p e .

— Continuous signals (C): (notionally) continuously varying time
signals (but may exhibit discontinuities). Typically representing
a physical quantity such as time, position, etc.

— Step signals (S): piecewise constant continuous-time signals. For
instance input from a discrete controller.

— Event signals (E): signals that are present only at discrete points
in time.

This distinction is captured in a type of signal descriptors S D :

d a t a S D a w h e r e

C / :: a / -> S D a

S / :: a / -> S D a

E / :: a / -> S D a

P / :: S D a / -> S D b / -> S D (a , b)

N / :: S D V o i d

S D is not for use at the value level, but at the type level to describe
the kind of signals a signal function operates on. ghc allows to lift a
data constructor to the type level [153]. A lifted data constructor is
prefixed with a quote, thus ' C D o u b l e is the descriptor of continuous
signals carrying doubles. Much as data constructors are lifted to the
type level, type constructors are lifted to the kind (type-of-type) level.
The kind of ' C D o u b l e is S D T y p e , where T y p e is the kind of Haskell
types a. Pairs of signals have a distinct descriptor. For instance ' P (' C

D o u b l e) (' E B o o l) is a pair of a continuous signal of D o u b l e and of an
event signal carrying a B o o l . There is also a descriptor for signals that
carry no value, N . N is of type S D V o i d , where V o i d is the empty type of
Haskell.

These descriptors can now be used in gadt declarations as con-
straints on the type of data-constructors. For instance, the type of val-
ues associated to a signal descriptor can be defined as:

d a t a S D V a l a w h e r e

C V a l / :: a / -> S D V a l (' C a)

S V a l / :: (B o o l , a) / -> S D V a l (' S a)

E V a l / :: M a y b e a / -> S D V a l (' E a)

P V a l / :: S D V a l a / -> S D V a l b / -> S D V a l (' P a b)

N V a l / :: S D V a l ' N

As a minor optimization, S V a l is represented as a tuple of a Boolean
and a value, the Boolean indicating whether the signal has changed
since the previous step. This allows to avoid some computation when
a signal changes rarely, like a step signal is expected to.

In the following, for readability, { . , . } is used to denote a pair of
signal descriptors, { } denotes a signal carrying no value, and the quote
of lifted constructors are omitted. Thus ' P (' C D o u b l e) (' E B o o l)

will be written { C D o u b l e , E B o o l } .

38

Chapter 3. Scalable Functional Reactive Programming

3.2— Signal function representation
The definition of signal functions can be refined using descriptors:

d a t a S F (i / :: S D p) (o / :: S D q) w h e r e

In this definition, i and o are given an explicit kind, which must be
signal descriptors. Since the goal is to compile signal functions to an
imperative representation, they need to be represented in a way that is
easy to inspect; i.e., as a deep embedding or abstract syntax tree, ex-
cept that parts that are not expected to be compiled can be represented
shallowly. The constructors of the type S F are introduced over the next
sections. In §3.2.1, combinators mimicking arrow combinators are in-
troduced, in §3.2.2 constructors for additional primitives and for me-
diating between signals of different kinds are introduced and finally in
§3.2.3, combinators for precise routing are defined.

3.2.1—Arrow-like combinators
3.2.1.1—Composition operators Let’s begin with the composition oper-
ators, which are defined like so:

(: > > > :) / :: S F a b / -> S F b c / -> S F a c

(: & & & :) / :: S F a b / -> S F a c / -> S F a { b , c }

(: * * * :) / :: S F a c / -> S F b d / -> S F { a , b } { c , d }

As intended, the parallel composition operators : * * * : and : & & & : truly
operate on pairs of signals.
3.2.1.2— a r r a r r is a little different. Unlike the composition operat-
ors, it directly operates on the signal passing through it. Clearly, apply-
ing a pure function to a signal cannot change its kind. The type chosen
for a r r is therefore the following:

S F A r r / :: (a / -> b) / -> S F (k a) (k b)

Because a and b are types, k must have kind T y p e / -> S D T y p e , thus one
of C , S or E , but not a partially applied P . Note however that the function
passed to a r r is still between a and b , not between S D V a l a and S D V a l

b for instance. This is intentional. It prevents the creation events out of
thin air when applying a r r over event signals. As for S -kinded signals,
an optimisation becomes possible. S signals, being expected to change
rarely, carry a Boolean flag indicating if they have changed. Hence
when a r r is used on such a signal, work can be saved by not recomput-
ing the output if the input didn’t change. This restriction on a r r is very
useful, but requires a new primitive, a r r 2 that combines two signals of
the same kind together, represented by the following constructor of S F :

S F A r r 2 / :: (a / -> b / -> c) / -> S F { k a , k b } (k c)

While a r r could be expressed in terms of a r r 2 , it is preferable not to
as this would lose some optimisation opportunities.

39

3.2. Signal function representation

a. See §4.1

a. Currently, attempting to
execute a non-well foun-

ded loop in Yampa produces
either an infinite loop or, if
ghc’s runtime is able to de-

tect that it’s in a loop, the
cryptic message < << l o o p < >> fol-

lowed by program termination.

b. Speaking from per-
sonnal experience.

36. Caspi et al., ‘LUSTRE:
A Declarative Language
for Programming Syn-

chronous Systems’. 1987

10. Benveniste et al., ‘A
Type-Based Analysis of

Causality Loops in Hybrid
Systems Modelers’. 2017

3.2.1.3— Loop The final arrow combinator is l o o p . A general l o o p
has proven difficult to implement and in fact, several frp approaches
do not support it a. The reasonwhy sfrp doesn’t support it will become
clear in the next chapter when the implementation is discussed. How-
ever, some form of feedback is very important, especially in modelling
applications where it is used to define ode.

An alternative is a delayed loop combinator: instead of instant-
aneously sending the output of the inner function to the input, the
current output is fed to the signal function at the next time step (and
the input at the current time step is therefore the value of the output
at the previous time step). Disallowing well-founded instantaneous
loops without any delays, like the example at the end of §2.4.1, does
not terribly limit the expressivity. In practice, it seems that the only
time where such loops are used is to avoid having to schedule state-
ments manually when using the proc-notation, like in the following
example:

p r o c x / -> d o

r e c y / <- f < -< z

z / <- g < -< x

r e t u r n A < -< (y , z)

While this surely is convenient, it also makes it quite easy to make a
mistake. Since Yampa has no mechanism to detect these errors a, they
can be quite frustrating to debug b.

In a hybrid context, themeaning of delaying however requires some
thought. §2.3.1 presented the d e l a y signal function, which can delay
a signal by a given length of time. However Yampa also provides a p r e
signal function. Inherited from Lustre [36], it delays the input signal
by one step. The size of that step depends on the way the signal func-
tion is being run with r e a c t i m a t e . Because of Yampa’s implementa-
tion, this is not too much of a problem. At worse, this makes the p r e

signal function a bit of a leaky abstraction, since it exposes the fact that
the implementation is discrete.

However, in a truly hybrid setting, the ability to refer to the previ-
ous value of a continuous signal is problematic. Recall the properties of
numerical solvers that were discussed in §2.2. The use of variable-step
methods means that, unlike with Yampa, the user is not necessarily in
charge of the step size. Simulink for instance allows for the equivalent
of the p r e signal function, while still using variable-step solvers. It has
been shown that this can make the simulation of a model drastically
depend on the way it is used: for instance, amodel produces a different
results when it is simulated alongside another one, even though there
are no interactions between the two, but simply by virtue of the fact
that the existence of the presence of the other model forced the solver
at to use a different step size [10].

40

Chapter 3. Scalable Functional Reactive Programming

While the plan is not to use an ode solver for sfrp, it would be
desirable if its design didn’t rule it out immediately. Therefore, the l o o p
construct is limited in two ways. For step signals, a regular delayed
loop construct is provided. Defined like so:

D L o o p / :: S t e p S i g n a l c

/ => S D V a l c

/ -> S F { a , c } { b , c }

/ -> S F a b

Notice the S t e p S i g n a l constrain on the feedback type parameter
c . S t e p S i g n a l is a type-class defined on signal descriptors like so:

c l a s s S t e p S i g n a l c

Is is meant to be enforced when c is either an S -kinded signal or a
collection of step signals. This leads to the following two instances:

i n s t a n c e S t e p S i g n a l (S a)

i n s t a n c e (S t e p S i g n a l a , S t e p S i g n a l b) / => S t e p S i g n a l { a , b }

Note the extra argument of type S D V a l c to D L o o p , which contains the
value produced initially by the signal function. This function can be
used to implement p r e , but exclusively on step signals:

p r e / :: S t e p S i g n a l c / => S D V a l c / -> S F c c

p r e i n i t = D L o o p i n i t (S F R o u t e r S w a p)

For continuous signals, the choice is to not provide any way to
delay a signal, to avoid the problems described earlier. Instead, sfrp
exposes an integral-loop combinator:

I n t e g r a l L o o p / :: C o n t i n u o u s c

/ => S D V a l c

/ -> S F { a , c } { b , c }

/ -> S F a b

Instead of sending the previous value of the output of the inner sig-
nal function, I n t e g r a l L o o p feedbacks the integral of the output (which
can be initialised with the extra S D V a l c passed to I n t e g r a l L o o p , like
with D L o o p). C o n t i n u o u s serves the same role as S t e p S i g n a l , in that it
can be used to designate both a signal continuous signal or a collection
of continuous signal. Unlike S i g n a l S t e p however, C o n t i n u o u s defines
a method:

c l a s s C o n t i n u o u s c w h e r e

i n t e g r a t e / :: D T i m e / -> S D V a l c / -> S D V a l c / -> S D V a l c

41

3.2. Signal function representation

i n t e g r a t e implements an integration scheme for signal descriptors of
kind c . The first argument is the step size, the second argument is the
current value of the integral and the third argument is the computed
value of the derivative of the signal. For single continuous signals, this
enables implementing the forward Euler method like in Yampa:

i n s t a n c e C o n t i n u o u s (C D o u b l e) w h e r e

i n t e g r a t e d t (C V a l x) (C V a l x ') = C V a l (x + d t * x ')

for pairs of continuous signals, the output is simply the pair of the res-
ults of calling i n t e g r a t e on both members of the pair:

i n s t a n c e (C o n t i n u o u s a , C o n t i n u o u s b) / => C o n t i n u o u s { a , b } w h e r e

i n t e g r a t e d t (x ` P V a l ` y) (x ' ` P V a l ` y ') =

i n t e g r a t e d t x x ' ` P V a l ` i n t e g r a t e d t y y '

Note that the interface of C o n t i n u o u s could be generalised to sup-
port more advanced integration methods. For instance, i n t e g r a t e
could be given the ability to poll the result of executing the inner sig-
nal function directly. This could then be used to implement more
advanced integration technique or communicate with an ode solver.
Like for p r e , i n t e g r a l can be implemented in terms of I n t e g r a l L o o p :

i n t e g r a l / :: S F (C D o u b l e) (C D o u b l e)

i n t e g r a l = I n t e g r a l L o o p (C V a l 0) (S F R o u t e r S w a p)

Note that an alternative design is possible which provides a single
loop combinator, capable of handling both step signals and continu-
ous signal. The behaviour of the combinator is that of D L o o p when the
signal is an S -kinded signal, that of I n t e g r a l L o o p when it is C -kinded
and a mix of both when it is P -kinded. It is unclear whether provid-
ing such combinator would be a good idea. It has, for now, not been
needed and this strange mixed semantics might not do it justice.

One could summarise the approach of sfrp as ‘loopifying’ Yampa’s
loop breaker. Instead of having both l o o p and its loop-breaker i n t e g r a l ,
there is only one combinator with the two behaviours mixed together.
While this avoids having to deal with unbounded loops, and, as §3.4
will show, helps with implementation, it has one drawback: there are
many loop breakers in Yampa for example d e l a y , which cannot be im-
plemented in terms of p r e or i n t e g r a l . In order for them to be used
with feedback, one must then implement a ‘looping’ version of these
loop-breakers, instead of just the original loop-breakers (which can
then be implemented in terms of the new looping combinator).

3.2.2— Primitive signal functions

This new library needs all the primitives from Yampa, e.g. s w i t c h :

S w i t c h / :: S F a { E c , b } / -> (c / -> S F a b) / -> S F a b

42

Chapter 3. Scalable Functional Reactive Programming

a. Note that this combinator can
be used to implement a version
of T a g for step-signals.

10. Benveniste et al., ‘A Type-
Based Analysis of Causality
Loops in Hybrid Systems Model-
ers’. 2017

However it also need additional primitive in order tomediate between
signals of different kinds. In Yampa, this is done by using a r r . Since
a r r and a r r 2 are limited to operating on signals of the same kind, this
is not possible in sfrp. Here are some examples of primitives that are
defined with the goal of mediating between signals:

— Tagging the event with the value of the signal at the time it oc-
curs:
T a g / :: (a / -> b / -> c)

/ -> S F { C a , E b } (E c)

— Edge detection for continuous signals:
E d g e / :: s

/ -> (a / -> s / -> (s , M a y b e b))

/ -> S F (C a) (E b)

— Change detection for step-signals:
J u m p / :: s

/ -> (a / -> s / -> (s , M a y b e b))

/ -> S F (S a) (E b)

— Accumulation a:
A c c u m / :: s

/ -> (a / -> s / -> (s , b))

/ -> S F (E a) (S b)

— Removal of events from an event signal:
F i l t e r E / :: (a / -> M a y b e b)

/ -> S F (E a) (E b)

— Event merging:
M e r g e E / :: (a / -> a / -> a)

/ -> S F { E a , E a } (E a)

Events act as mediators between step and continuous signals, akin
to what is being done in hybrid simulation languages [10]. These com-
binators all have equivalents in Yampa.

3.2.3—Routers

Suppose we wish to compose two signal functions of type:

s f / :: S F k { { E a , C b } , S c }

s g / :: S F { C b , { E a , S c } } k '

Surely s f and s g should be composable, provided the output of s f
can be rearranged to match the way the signals are paired in s g . In
Yampa, this would be done by interleaving an a r r rearranging the sig-
nals:

s f > > > a r r (\ ((e a , c b) , s c) / -> (c b , (e a , s c))) > > > s g

43

3.2. Signal function representation

But using a r r , thereby not making a distinction between scaffolding
used for routing and the actual values carried by signals, is precisely
what this approach aims at avoiding! The function inside a r r is purely
rearranging the signals, but not performing any operations on them.
This fact cannot be known by an frp library, since a function is a black-
box that cannot be analysed at runtime. Therefore, regardless of the
representation of signals or signal functions, an implementation can-
not do better that execute any code written with a r r (including the
routing code above) at every iterations. For that reason, for an imple-
mentation to efficiently implement wiring, a way to represent trans-
formations between signals explicitly is needed. §3.4 will show how
this enables sfrp to handle routing with little runtime overhead com-
pared to current implementations.

Signal descriptors have the shape of binary trees: P being the nodes
and N , C , S and E being the leaves. The set of transformations needed is
therefore the set of transformations needed to match the shape of any
binary tree into any other, provided all the non-N leaves of the destina-
tion tree are present in the original tree. §3.3 shows that the sufficient
set of transformations to do so are left- and right-rotations, to modify
the shape of the tree without changing the order of the leaves; duplica-
tion and deletion of a tree, to remove unused leaves, or add extra ones;
and swapping two children of a node, to change the order of the leaves
in the tree. In addition, combinators to compose routers together and
to apply them to a specific subtree on a node are needed. This points
to a type defined in a way similar to S F :

d a t a R o u t e r i o w h e r e

I d R o u t / :: R o u t e r a a

- - T r e e r o t a t i o n s

L e f t R o t / :: R o u t e r { a , { b , c } } { { a , b } , c }

R i g h t R o t / :: R o u t e r { { a , b } , c } { a , { b , c } }

- - S u b t r e e d e l e t i o n s

D e l R o u t / :: R o u t e r i N

F s t R o u t / :: R o u t e r { a , b } a

S n d R o u t / :: R o u t e r { a , b } b

- - L e a v e s d u p l i c a t i o n s

D u p R o u t / :: R o u t e r a { a , a }

- - S w a p p i n g l e a v e s

S w a p R o u t / :: R o u t e r { a , b } { b , a }

- - C o m b i n i n g r o u t e r s

A p p L e f t / :: R o u t e r a b / -> R o u t e r { a , c } { b , c }

A p p R i g h t / :: R o u t e r c d / -> R o u t e r { a , c } { a , d }

C o m p R o u t / :: R o u t e r a b / -> R o u t e r b c / -> R o u t e r a c

Like S F , the type constructor R o u t e r operates on signal descriptors and
not on types directly. A router can then be lifted into a signal function
with a dedicated constructor:

44

Chapter 3. Scalable Functional Reactive Programming

120. Paterson, ‘A New Notation
for Arrows’. 2001

94. Mainland, ‘Why It’s Nice to
Be Quoted’. 2007

S F R o u t e r / :: R o u t e r i o / -> S F i o

To give an idea for what a router can be used for, let’s define a func-
tion r o u t e V a r which rearranges the shape of a value of type S D V a l ac-
cordingly:

r o u t e V a l / :: R o u t e r i o / -> S D V a l i / -> S D V a l o

r o u t e V a l I d R o u t a = a

r o u t e V a l L e f t R o t (a ` P V a l ` (b ` P V a l ` c)) = (a ` P V a l ` b) ` P V a l ` c

r o u t e V a l R i g h t R o t ((a ` P V a l ` b) ` P V a l ` c) = a ` P V a l ` (b ` P V a l ` c)

r o u t e V a l D e l R o u t _ = N V a l

r o u t e V a l F s t R o u t (a ` P V a l ` _) = a

r o u t e V a l S n d R o u t (_ ` P V a l ` b) = b

r o u t e V a l D u p R o u t i v = P V a l i v i v

r o u t e V a l (A p p L e f t r) (a ` P V a l ` c) = r o u t e V a l r a ` P V a l ` c

r o u t e V a l (A p p R i g h t r) (a ` P V a l ` b) = a ` P V a l ` r o u t e V a l r b

r o u t e V a l (C o m p R o u t p q) a = r o u t e V a l q (r o u t e V a l p a)

The types of R o u t e r and S D V a l are constrained in such a way that there
is only one possibility for the function in each cases.

The example between s f and s g can now be rewritten as:

s f > > > R o u t e r (C o m p R o u t (A p p L e f t S w a p R o u t) R i g h t R o t) > > > s g

Users are not expected to use routers directly, except maybe for
simple ones; much like users of Yampa don’t write code using complex
calls to a r r . However having explicit routers is crucial for implement-
ing an efficient desugaring for the proc-notation. This is the topic of
the next section.

3.3—Custom proc-notation implementation

The appeal of arrowized frp is, at least partially, the possibility
to use a convenient notation for expressing frp networks, the proc-
notation [120]. Unfortunately, the new S F type is not a standard arrow
which means that it is not possible to make use of it. While ghc sup-
ports another syntax extension, the Rebindable Syntax, which allows
to use ghc’s desugarer with custom arrow combinators instead of the
standard ones, it is not powerful enough to circumvent that problem.
Indeed, the a r r combinator exposed by S F is too restrictive to be com-
patible with the way ghc operates, since it is used for routing, while it
would need to use the routing combinator introduced in §3.2.3.

Fortunately, ghc supports extensions to its syntax through quasi-
quoting [94]. Thus it’s possible to define a custom proc-notation that
will be desugared into the constructors of S F . This custom notation is
as close as possible to the one used for arrows, in an attempt to make
porting existing Yampa programs (and users) easier. The falling object
example from §2.3.2 can be rewritten like so:

45

3.3. Custom proc-notation implementation

f r e e F a l l / :: (D o u b l e , D o u b l e)

/ -> S F a [s d | { C D o u b l e , C D o u b l e } |]

f r e e F a l l (y 0 , v 0) = [s f | p r o c i / -> d o

v / <- a r r (v 0 +) < < < i n t e g r a l < -< { | - 9 . 8 1 | }

y / <- a r r (y 0 +) < < < i n t e g r a l < -< v

r e t u r n A < -< { y , v } |]

The syntax [s f | . . . |] introduces a quasi-quote, instructing ghc
to translate the string between the brackets using a quasi-quoter named
s f . Inside the quasi-quote, most things can be read as normal proc-
notation code. Since we insist on distinguishing signal kinds, pairs of
signals are denoted using { , } . When introducing a signal name, it is
possible to also indicate its kind with the syntax x / :: C , here indicating
that x is of kind C . It can be used to improve clarity or to give informa-
tion to ghc’s typechecker. While annotations rarely if ever are needed
for ghc to infer a signal’s kind, they can at least help to generate better
error messages. Using Haskell expressions as input to signal func-
tions is supported, but they must be enclosed in { | . . . | } . They may
refer to signals but all signals being referred tomust be of the same sig-
nal kind as we do not wish to mix signals of different kinds implicitly.
Patternmatching onHaskell constructors is not supported, however.
There is also an s d quasi-quoter for typesetting signal descriptors in a
more convenient way.

Let us go back to the example from §2.4.5:

p r o c x / -> d o

y / <- s f < -< x

z / <- s g < -< y

r e t u r n A < -< (x , z)

which is desugared by ghc into:

a r r (\ x / -> (x , x)) > > > f i r s t s f > > >

a r r (\ x / -> (x , x)) > > > f i r s t (a r r (\ (x , y) / -> y) > > > s g) > > >

a r r (\ (z , (x , y)) / -> (x , z)) > > > r e t u r n A

The general form for desugaring a statement of the form y / <- s f

< -< x is:

a r r (\ x / -> (x , x)) > > > f i r s t (< g l u e > > > > s f)

First, the input signal is duplicated, as one must conserve the cur-
rent inputs so that later statements can use them. Note that the input
signals here are not only the input signals of the whole signal function,
but also the output signals of all the preceding signal functions. For
instance, x is used by both s f and r e t u r n A . Hence, in the following
block:

46

Chapter 3. Scalable Functional Reactive Programming

p r o c a / -> d o

b / <- s f < -< { a , a }

c / <- s g < -< { b , a }

d / <- s h < -< c

e / <- s i < -< { { a , b } , a }

the input signals when desugaring the statement for s i will have the
shape:

{ d , { c , { b , a } } }

Oneof the duplicated inputs is then fed into the signal functionmaking
up the body of the statement. Some ‘glue’must thenfilter and rearrange
the inputs so that signal function can use them. This glue is routing
code, which ghc implements using a r r . To desugar the new custom
proc-notation, the only thing needed is a way of computing that glue
in terms of routers.

In §3.2.3, we mentioned that routers are really transformations on
binary trees. Hence, the glue is simply the transformation between the
tree representing all the inputs at this point in the network and the
tree of inputs expected by the signal function. Below is an algorithm
to compute this transformation.

The first step consists of computing the transformation that deletes
unused leaves from the initial tree, and duplicates the leaves that ap-
pear more than once. In the example above with the input signal:

{ d , { c , { b , a } } }

since the signal function expects:

{ { b , a } , a }

this requires duplicating the a leaf and removing the c and d leaves.
This is done by using the duplicating (R o u t e r D u p) and deleting routers
(D e l R o u t , F s t R o u t and S n d R o u t). Because a signal cannot be produced
in multiple sources, it is guaranteed that every signal in the input sig-
nal appears uniquely. Performing this transformation is therefore only
a matter of counting how many times each signal appears in the de-
sired input, traversing the tree that represents the current input and
duplicating or removing a leaf based on how many are needed. There
is only one slight caveat: it is important to also make sure that there
are enough N -kinded signals in the input, as a signal function may rely
on this. For the example above, the router generated to perform this
transformation is:

C o m p R o u t D e l F s t

(C o m p R o u t D e l F s t

(A p p L e f t I d R o u t)

(A p p R i g h t D u p R o u t))

47

3.3. Custom proc-notation implementation

139. Sleator et al., ‘Rotation
Distance, Triangulations, and
Hyperbolic Geometry’. 1986

Right rotation

SwapLeft rotation

Figure 3.2: Swapping two
leaves in a list-shaped tree

which would yield the following signal, when applied to the input:

{ b , { a , a } }

This now has the correct number of leaves, but these leaves are not
in the right order and the signal is not in the right shape. The problem
of matching the shape of two binary trees using only tree rotations is
well-known (typically, in the context of binary search tree) [139]. Since
tree rotations (on the whole tree or on subtrees) can be expressed with
routers, the only thing needed is to compute a router that will sort the
leaves in the correct order, and then, using rotations, compute a router
that matches the shape the signal function expects.

Computing the sorting transformation is fairly complicated. In-
deed, it isn’t clear how a transformation that exchanges two leaves in
a binary tree can be expressed using the operations at our disposal.
There is one case where swapping is easy however: when the tree is list
shaped, i.e. when for every node, the left branch points to a leaf, and
when the leaves that need to be swapped are consecutive. In this case,
the transformation is simple: a right-rotation, followedby swapping on
the node created on the left, followed by a right transformation. This
is illustrated on figure 3.2. This corresponds to the following router:

C o m p R o u t R i g h t R o t (C o m p R o u t S w a p L e f t R o t)

To sort a whole list shaped tree, the desugarer can then simply used
bubble-sort, since bubble-sort only requires the ability to swap two ad-
jacent elements.

To sort any binary tree is then only a matter of transforming it to
a list shaped tree using tree rotations, applying the sorting method de-
vised above and then matching the shape of the tree to the desired
shape using tree rotations. In the example above, the input signal was
under the form { b , { a , a } } . This tree is already list shaped, so noth-
ing needs to be done to turn it into a list shaped tree. In the desired
input for s i , the order of signals a , b , a . To have the same order with
the current input requires applying a router to swap the first two leaves,
yielding:

{ a , { b , a } }

Then, matching the shape of to { { a , b } , a } can simply be done with a
single right-rotation.

The transformations obtained from each step are then composed
together in one router that makes the glue. For the example, the final
router is therefore given by:

C o m p R o u t r 1 (C o m p R o u t e r 2 r 3)

w h e r e r 1 =

C o m p R o u t D e l F s t (C o m p R o u t D e l F s t

48

Chapter 3. Scalable Functional Reactive Programming

(A p p L e f t I d R o u t)

(A p p R i g h t D u p R o u t))

r 2 = I d R o u t

r 3 = R i g h t R o t

This algorithm is not expected to be optimal in any way. In prac-
tice, however, one should recall that this transformation runs at compile-
time inside ghc, where one can expect programs to be fairly small. In
the case of frp networks, this is less than 100 lines (more than what
we expect to encounter). Even at around 100 lines, there is no signific-
ant difference in compilation times from equivalent Yampa programs.
In terms of the optimality of the router being generated, although the
transformation produces fairly large ones, simple simplifying pass per-
forming obvious optimisations, such as deleting composition of iden-
tity routers, is already enough to obtain amuch cleaner result. Regard-
less, §3.4 will show how routers incur small runtime overhead in sfrp.

3.3.1—Missing support for feedback at the syntax level

The handling of feedback at the proc-notation syntax level is left
as future work, purely for lack of time. Recall that there is no l o o p

in sfrp, only delayed loops, so it is unclear how r e c blocks would be
desugared.

In ghc, r e c blocks are desugared by identifying every signal that
appears both as an input and an output, and defining these signals as
the ones being fed back. For instance, recall the following example:

s i m p l e C i r c u i t / :: S F a D o u b l e

s i m p l e C i r c u i t = p r o c _ / -> d o

t / <- t i m e < -< ()

u / <- a r r s o u r c e W a v e < -< t

r e c u r / <- a r r (\ (u , u c) / -> u - u c) < -< (u , u c)

i r / <- a r r (/ r) < -< u r

l e t i c = i r

u c / <- a r r (/ c) < < < i n t e g r a l < -< i c

r e t u r n A < -< u c

w h e r e s o u r c e W a v e t =

u 0 * s i n (2 * p i * f * t + p h i)

In the r e c block defining that signal function, u c and u r appear as both
input and output. Therefore both of them are getting fed back using
l o o p . When they are used as input, ghc makes use of the fed back
value. In the example, this would lead to the following partial desug-
aring of the r e c -block in the a u x auxiliary signal function:

s i m p l e C i r c u i t / :: S F a D o u b l e

s i m p l e C i r c u i t = p r o c _ / -> d o

t / <- t i m e < -< ()

49

3.4. Compiling Scalable frp

46. Cuoq et al., ‘Modular
Causality in a Synchron-

ous Stream Language’. 2001

17. Biernacki et al., ‘Clock-
Directed Modular Code Gen-

eration for Synchronous
Data-flow Languages’. 2008

u / <- a r r s o u r c e W a v e < -< t

u c / <- l o o p a u x < -< (t , u)

r e t u r n A < -< u c

w h e r e

s o u r c e W a v e t =

u 0 * s i n (2 * p i * f * t + p h i)

a u x = p r o c ((t , u) , (f e d b a c k _ u r , f e d b a c k _ u c)) / -> d o

u r / <- a r r (\ (u , u c) / -> u - u c) < -< (u , f e d b a c k _ u c)

i r / <- a r r (/ r) < -< f e d b a c k _ u r

l e t i c = i r

u c / <- a r r (/ c) < < < i n t e g r a l < -< i c

r e t u r n A < -< (u c , (u r , u c))

As mentioned in §3.2.1.3, r e c blocks can be quite confusing and
are error-prone. Without any mechanism to help debug instantaneous
cycles, an argument can be made that the extra convenience that r e c
block offer isworth the price in debugging time. It ismyopinion that, if
such an extension to the proc-notation were to be implemented, some
mechanismwould need to exist to provide clear diagnostics to the user,
in the style of what exists for synchronous dataflow languages for in-
stance [46].

3.4—Compiling Scalable frp

Over the previous sections, a new description for signal functions
was introduced, making use of signal descriptors to more precisely de-
scribe the kind of signals they operate on. The resulting library offers
a similar level of expressivity as Yampa but with additional constraints
on signals. Great care has been taken to explicitly represent routing
and define what interactions between signals of different kinds are al-
lowed. The custom proc-notation allows for clearly and conveniently
expressing frp networks with this library.

In this section, a translation for the precise description of frp net-
works previously proposed is presented. Like the compilation meth-
ods of synchronous dataflow languages [17], it consists of represent-
ing each signal function using one (or several) input references, one
(or several) output references and a stepping action that updates the
output from the input.

The goal in doing so is to be able to compile away the wiring, now
explicitly represented by R o u t e r , by only wiring references at the point
the network is compiled. Thus avoiding the need to wire values while
the networks run. In doing so however, we will wish to retain some
of the pleasant properties of the current implementations, outlined in
§2.4.4, most specifically self- and dynamic-simplification.

50

Chapter 3. Scalable Functional Reactive Programming

d a t a S F (i / :: S D p) (o / :: S D q) w h e r e

J u m p / :: s / -> (s / -> a / -> (M a y b e b , s)) / -> S F (S a) (E b)

E d g e / :: s / -> (s / -> a / -> (M a y b e b , s)) / -> S F (C a) (E b)

A c c u m B y / :: s / -> (s / -> a / -> s) / -> S F (E a) (S s)

A r r / :: (a / -> b) / -> S F (k a) (k b)

A r r 2 / :: (a / -> b / -> c) / -> S F (k a ` P ` k b) (k c)

T a g / :: (a / -> b / -> c) / -> S F (E a ` P ` C b) (E c)

S w i t c h / :: S F a (E c ` P ` b) / -> (c / -> S F a b) / -> S F a b

D L o o p / :: S t e p S i g n a l c

/ => S D V a l c

/ -> S F (a ` P ` c) (b ` P ` c)

/ -> S F a c

I n t e g r a l L o o p / :: C o n t i n u o u s c

/ => S D V a l c

/ -> S F (a ` P ` c) (b ` P ` c)

/ -> S F a c

R o u t e r / :: R o u t e r i o / -> S F i o

(: > > > :) / :: S F a b / -> S F b c / -> S F a c

(: * * * :) / :: S F a b / -> S F c d / -> S F (a ` P ` c) (b ` P ` d)

C o n s t / :: S D V a l o / -> S F i o

Figure 3.3: Complete defini-
tion of the S F type

This section is organized as to guide the reader from a very simple
implementation, suitable for static frp, to implementations of growing
complexity as it progresses to support more complicated structures,
such as dynamic switching.

Benchmarks will be presented in §3.5 that show a significant im-
provement in performance compared to Yampa.

3.4.1— Signal references

In the same way that the type S D V a l defined was defined, it is pos-
sible to define the type of references parametrized over a signal descriptor.

d a t a S D R e f a w h e r e

C R e f / :: I O R e f a / -> S D R e f (C a)

S R e f / :: I O R e f B o o l / -> I O R e f a / -> S D R e f (S a)

E R e f / :: I O R e f (E v e n t a) / -> S D R e f (E a)

P R e f / :: S D R e f a / -> S D R e f b / -> S D R e f (P a b)

This type is indeed very similar to S D V a l . Note that, as was repeated
many times, pairs of signals are represented as two distinct references.

51

3.4. Compiling Scalable frp

Similar to how the function r o u t e V a l was used to rearrange a S D V a l

signal representation using a router, a function r o u t e R e f is defined to
rearrange references, with the following type:

r o u t e R e f / :: R o u t e r i o / -> S D R e f i / -> S D R e f o

In addition, a function n e w S D R e f for constructing an S D R e f and
two functions r e a d S D R e f and w r i t e S D R e f for reading and writing to
an S D R e f are provided, with the following types:

n e w S D R e f / :: S D V a l i / -> I O (S D R e f i)

r e a d S D R e f / :: S D R e f i / -> I O (S D V a l i)

w r i t e S D R e f / :: S D R e f i / -> S D V a l i / -> I O ()

Their definition is given below:

r e a d S D R e f / :: S D R e f i / -> I O (S D V a l i)

r e a d S D R e f (C R e f r) = d o

v / <- r e a d I O R e f r

p u r e (C V a l v)

r e a d S D R e f (S R e f r) = d o

v / <- r e a d I O R e f r

p u r e (S V a l v)

r e a d S D R e f (E R e f r) = d o

v / <- r e a d I O R e f r

p u r e (E V a l v)

r e a d S D R e f (P R e f p q) = d o

p v / <- r e a d S D R e f p

q v / <- r e a d S D R e f q

p u r e (P V a l p v q v)

Using r e a d S D R e f and w r i t e S D R e f , a function s y n c S D R e f that reads
the values in the S D R e f passed as the first argument and writes it into
the reference in the second argument is also defined:

s y n c S D R e f / :: S D R e f i / -> S D R e f i / -> I O ()

s y n c S D R e f i r o r = d o

i v / <- r e a d S D R e f i r

w r i t e S D R e f o r i v

3.4.2—Compiling static signal functions

Let’s start by considering a compilation function only for simple
static signal function. There are two sensible signatures for this func-
tion:

— either the compilation function receives both an input and an
output reference and produces the stepping action:

c o m p i l e / :: S F i o / -> S D R e f i / -> S D R e f o / -> I O (I O ())

52

Chapter 3. Scalable Functional Reactive Programming

— or the compilation function only receives the input reference
and produces both the output reference and the stepping action:

c o m p i l e / :: S F i o / -> S D R e f i / -> I O (S D R e f o , I O ())

Here, the stepping action is simply of type I O () . When executed,
it advances the state of the network by one step and updates the output
reference accordingly. Executing it many times advances the network
by that many steps.

In this simple case, the second c o m p i l e function is more interest-
ing. Indeed, passing both input and output references forces the step-
ping action to update the content of the output reference at each time
step. But precisely some signal functions, most notably routers, do not
need to perform that action, if the input reference is routed from the
output reference. Using the second formulation, it is possible to com-
pile a S F R o u t e r signal function like so:

c o m p i l e (S F R o u t e r r o u t e r) i r = p u r e (r o u t e R e f r r i r , p u r e ())

At runtime, the stepping action for this signal function has nothing
to do! By virtue of the output reference being derived from the input
reference, and thus being automatically ‘synchronized’ with the input
reference. This formulation also allows for the arrow combinators to
be quite neatly expressed, like serial composition:

c o m p i l e (s f : > > > : s g) i r = d o

(o r f , s t p r S F) / <- c o m p i l e s f i r

(o r , s t p r S G) / <- c o m p i l e s g o r f

p u r e (o r , s t p r S F < >> s t p r S G)

< >> is the sequencing operator for two I O actions. Notice how the out-
put reference of s f can be reused as the input reference of s g , as one
would expect. Note that some of the simplifications outlined in §2.4.4
can be implemented in this function, albeit not all. For instance, the
composition of two a r r defined functions can still be optimised to a
single a r r , like so:

c o m p i l e (A r r f : > > > : A r r g) = c o m p i l e (A r r (g . f))

However, when the handling of dynamismwill be discussed in the next
section, ways of simplifying dynamic networks will also be necessary.
Similarly, the parallel composition also benefits from the more precise
representation:

c o m p i l e (s f : * * * : s g) (P R e f i r 1 i r 2) = d o

(o r 1 , s t p r 1) / <- c o m p i l e s f i r 1

(o r 2 , s t p r 2) / <- c o m p i l e s g i r 2

p u r e (P R e f o r 1 o r 2 , s t p r 1 < >> s t p r 2)

53

3.4. Compiling Scalable frp

Thedispatching of the input and output references to both subordinate
signal functions can be done at the compilation step, and there is no
need to repeat the process at each iteration.

Working in an imperative context allows for some things that the
continuation-based interface allowed for, most notably maintaining
state, simply by using references. For instance, compiling the stateful
signal function A c c u m B y is done like so:

c o m p i l e (A c c u m B y i n i t a c c) (E R e f r) = d o

c r / <- n e w I O R e f T r u e

s r / <- n e w I O R e f i n i t

l e t s t e p = d o

e v t / <- r e a d I O R e f r

c a s e e v t o f

N o t h i n g / ->

w r i t e I O R e f c r F a l s e

J u s t s / -> d o

a / <- r e a d I O R e f s r

l e t a ' = a c c s a

w r i t e I O R e f c r T r u e

w r i t e I O R e f s r a '

p u r e (S R e f c r s r , s t e p)

3.4.3—Handling dynamic changes

Dynamic change is the biggest difficultywhen generalising the pro-
posed scheme. While it is possible to implement switching using the
simple c o m p i l e function, it would lead to space- and time-leaks in lots
of cases. To see this, consider the following implementation of c o m p i l e
for switch. Its principle is simple: since both the output reference and
the stepping action will change while the switch runs, what the cur-
rent output reference and what the current stepping action are can be
maintained within references of their own. The stepping action for the
whole switch then runs the stepping action for the currently active sig-
nal function by retrieving it from the reference and retrieves the output
value by retrieving first what the current output reference is, and then
getting the output value from it. This is illustrated by the following
code:

1 c o m p i l e (S w i t c h s f n e x t) i r = d o

2 (P R e f f i r s t O u t R e f (E R e f e v t R e f) , f i r s t S t e p p e r) / <-

3 c o m p i l e s f i r

4 o u t R e f / <- n e w I O R e f o r

5 s t e p p e r R e f / <- n e w I O R e f f i r s t S t e p p e r

6 s w i t c h O r / <- n e w S D R e f < < =<< r e a d S D R e f o r

7 l e t s w i t c h S t e p p e r = d o

8 s t e p p e r / <- r e a d I O R e f s t e p p e r R e f

54

Chapter 3. Scalable Functional Reactive Programming

a. Alternatively, one could make
sure that s w i t c h S t e p p e r does not
read the value of e v t R e f after a
switch occurred.

9 s t e p p e r

10 e v t / <- r e a d I O R e f e v t R e f

11 c a s e e v t o f

12 N o t h i n g / -> d o

13 c u r r e n t O u t p u t R e f / <- r e a d I O R e f s w i t c h O r

14 s y n c S D R e f c u r r e n t O u t p u t R e f s w i t c h O r

15 J u s t c / -> d o

16 (n e x t O u t R e f , n e x t S t e p p e r) / <- c o m p i l e (n e x t c) i r

17 w r i t e I O R e f o u t R e f n e x t O u t R e f

18 w r i t e I O R e f s t e p p e r R e f n e x t S t e p p e r

19 w r i t e I O R e f e v t R e f N o t h i n g

20 s w i t c h S t e p p e r

21 p u r e (s w i t c h O r , s w i t c h S t e p p e r)

On line 2 and 3, the first signal function to run is compiled. This pro-
duces an output reference f i r s t O u t R e f , an event reference e v t R e f and
a stepping f i r s t S t e p p e r . On line 4, the reference o u t R e f of type I O R e f
(S D R e f o) is allocated and contains initially f i r s t O u t R e f . Similarly,
s t e p p e r R e f of type I O R e f (I O ()) contains the firstStepper for the sig-
nal function. The output reference for the whole switch, s w i t c h O r , of
type S D R e f o is then created and contains the initial value of f i r s t O u t R e f .
With these, it’s possible to construct s w i t c h S t e p p e r , the switch’s step-
ping action. s w i t c h S t e p p e r starts by retrieving the stepping action
from the currently running signal function and runs it (line 8 and 9).
Then, it checks whether an event occurred: if not (line 12), it retrieves
the current output reference and uses its content to set the content ref-
erence for the switch’s output reference s w i t c h O r ; if an event occurred
(line 15), it then compiles the next signal function (by applying the
continuation n e x t to the value carried by the event), which gives a new
output reference and a new stepper. These are used to set the content
of the o u t R e f and s t e p p e r R e f . Since the only action ever writing to
e v t R e f is f i r s t S t e p p e r , and that actionwill never be run again, e v t R e f
must be set to contain N o t h i n g (line 19), otherwise it will forever con-
tain an event value and s w i t c h S t e p p e r will always switch a. Finally,
since switching is instantaneous, s w i t c h S t e p p e r runs itself again so
that it can run the newly computed stepper.

Unfortunately, this implementation has a subtle, but fatal, flaw. A
commonpattern inYampa is to have switches switching back on them-
selves (or generally on another switch). This is the case for instance
when defining the b o u n c i n g signal function, which models an object
in free fall bouncing on the ground. The full definition was given in
§2.3.3, but essentially boils down to the following, since the definition
of b o u n c e A u x is irrelevant here:

b o u n c i n g (y 0 , v 0) = s w i t c h b o u n c e A u x b o u n c i n g

55

3.4. Compiling Scalable frp

49. Duggan et al., ‘Explain-
ing Type Inference’. 1996

2. Aho et al., Data Struc-
tures and Algorithms. 1983

a. In practice, this extra com-
plexity shows in terms of per-

formance. Benchmarking
showed that reading from an

I O R e f is 2 times faster than read-
ing from a F i x R e f . Reading from

a V a r R e f pointing to a V a r R e f
pointing to a F i x R e f , like what

happens with a recursive switch,
is 4 times slower than reading

from an I O R e f . The machine on
which the benchmarks were run
was the same machine used for
the benchmarks in §3.5 using

the same benchmarking library.

What happens when b o u n c i n g is ran after having been compiled
with themethod above? Initially, the s w i t c h O r reference contains a ref-
erence to the output reference of b o u n c e A u x and similarly, s t e p p e r R e f
contains a reference to the stepping action for b o u n c e A u x . After the
first switch however, s w i t c h O r now contains a reference to the output
reference of the new instance of b o u n c i n g and similarly for s t e p p e r R e f .
When the s w i t c h S t e p p e r actions runs for the outermost switch, it has
to dereference its s t e p p e r R e f , runs the action it contains, which is also
the stepper for a switch, which will dereference its own s t e p p e r R e f . A
similar chain of operations also exist for setting the output reference
of the outermost switch. As b o u n c i n g keeps switching, this chain be-
comes longer: leading both to a time-leak and a space-leak (since there
are more and more references being kept alive in memory).

The two problems that need solving are therefore the problem of
having variable output references, and variable stepping actions. This
is the subject of the next two sections.

3.4.3.1—Changing output references There are two fixes to the problem
of varying the output references. The first one is to introduce a notion
of variable references. Instead of using I O R e f s directly in S D R e f , we
could use a type like so:

d a t a R e f a = F i x R e f (I O R e f a)

| V a r R e f (I O R e f B o o l) (I O R e f (R e f a))

A reference is either a fixed reference or a variable reference, point-
ing on another reference. In the latter case, there is also a reference
on a Boolean flag that, when T r u e , indicates that the variable refer-
ence will always point to the same R e f : it has become non-variable.
This means that it has become an unnecessary indirection and can be
‘skipped’: another variable reference pointing to it can simply point at
the next one. This can be implemented in the function reading or writ-
ing to the reference and is simply a formof path compression, like what
is typically done when implementing type-checkers with destructive
unification [49] or in implementations of union-find data structures
[2]. Using such a variable reference in b o u n c i n g allows for the output
(variable) reference of the outermost switch to always refer to the out-
put (variable) reference of the innermost switch, itself directly point-
ing at the output reference of b o u n c e A u x . This brings down the number
of indirections between signal references to a constant amount and, if
b o u n c i n g is used within another signal function, its variable reference
may also be skipped.

This technique has the advantage of allowing to not change the sig-
nature of the c o m p i l e function. The only downside is added indirec-
tion to access the content of references a. Another solution, which is
pursued here, is to instead keep the type of references unchanged, but
modify the c o m p i l e function. Recall in §3.4.2 that another signature

56

Chapter 3. Scalable Functional Reactive Programming

38. Chakravarty et al., ‘Associ-
ated Type Synonyms’. 2005 —
39. Chakravarty et al., ‘Associ-
ated Types with Class’. 2005

for the c o m p i l e functionwas consideredwhere both the input and out-
put reference were passed in, and the c o m p i l e function only produced
a stepping action. While it is not practical to do so in general, as it
neutralizes the benefits of making routing explicit, this is not generally
a good solution, because of routing, it is a good solution for switching.
Indeed, providing the output reference to the c o m p i l e function allows
to share it between the initial signal function that the switch runs and
the function that the switch computes after an event occurred. There
is no need for doing any synchronisation between several references
and nothing special has to happen at switching time with regard to the
output reference of the switch. The solution therefore, is to make a
compromise by optionally passing the output reference to the compil-
ation function, that will optionally produce the output reference. The
following type would suffice:

S D R e f i / -> M a y b e (S D R e f o) / -> I O (M a y b e (S D R e f o) , I O ())

However, it would be better to encode the relation that when one of
the M a y b e (S D R e f o) is N o t h i n g , then the other must be J u s t . This
constraint can be encoded in ghc’s type system, with the same tools
that were used to constrain signals. Let’s introduce a tagged-optional
type that witnesses with a type-level Boolean which constructor it is
made from:

d a t a O p t (b / :: B o o l) a w h e r e

N o n e / :: O p t F a l s e a

S o m e / :: a / -> O p t T r u e a

Type families [38, 39] are type-level functions that are treated as
synonyms by ghc’s type-checker. This allows to define a type-level
N o t function:

t y p e f a m i l y N o t (b / :: B o o l) / :: B o o l w h e r e

N o t F a l s e = T r u e

N o t T r u e = F a l s e

and use it to encode the desired invariant:

c o m p i l e / :: f o r a l l b . S D R e f i

/ -> O p t b (S D R e f o)

/ -> I O (O p t (N o t b) (S D R e f o) , I O ())

When passing no output reference to compile, with the N o n e data con-
structor, this causes b to be unified to F a l s e and N o t b to be unified to
T r u e . Hence the output of compile must be of type O p t T r u e (S D R e f

o) , which is necessarily constructed from the S o m e data constructor
and must contain an output reference. And vice-versa when an output
reference is passed to the c o m p i l e function, no output reference can be
produced by it.

57

3.4. Compiling Scalable frp

c o m p i l e must work in both cases. Consider the implementation of
the compilation of a router with this type. In the case where no output
reference is passed, then the references can be routed like they were
originally; however, in the case where an output reference is given, it
will be necessary to synchronize both references at runtime:

c o m p i l e (S F R o u t e r r r) i r N o n e =

p u r e (S o m e (r o u t e R e f r r i r) , p u r e ())

c o m p i l e (S F R o u t e r r r) i r (S o m e o r) =

p u r e (N o n e , s y n c S D R e f (r o u t e R e f r r i r) o r)

A possibly simpler solution could have been to have two c o m p i l e

functions: one where the output reference is provided and one where
it is not. However, having a single function is advantageous as inmany
cases the code for the c o m p i l e function is identical in both cases. The
present approach avoids duplicating this code. For instance, serial
composition can be compiled without knowing if it has been passed
an output reference:

c o m p i l e (s f : > > > : s g) i r o r = d o

(S o m e o r f , s t p r F) / <- c o m p i l e s f i r N o n e

(n o r , s t p r G) / <- c o m p i l e s g o r f o r

p u r e (n o r , s t p r F < >> s t p r G)

Like in the simpler setting, it is possible to reuse the output reference
of the first signal function as the input to the second.

The definition of s w i t c h in this new settingwill be given in the next
section, after the problem of representing variable stepping actions ef-
ficiently has been addressed.

3.4.3.2—Changing stepping actions So far, the type of stepping actions
has been limited to I O () . To solve the problem of variable stepping
actions, a type of steppers is introduced which allows for the existence
of variable stepping actions, which are actions that return a new step-
per to execute at the next time step:

d a t a S t e p p e r = F S t p r (I O ())

| V S t p r (I O S t e p p e r)

Some functions to execute steppers are given below, also returning
the stepper to execute at the next step:

e x e c S t e p p e r / :: S t e p p e r / -> I O S t e p p e r

e x e c S t e p p e r (F S t p r s t p r) = s t p r < >> p u r e (F S t p r s t p r)

e x e c S t e p p e r (V S t p r v s t p r) = v s t p r

and to sequence two steppers:

58

Chapter 3. Scalable Functional Reactive Programming

s e q S t e p p e r / :: S t e p p e r / -> S t e p p e r / -> S t e p p e r

s e q S t e p p e r (F S t p r s 1) (F S t p r s 2) = F S t p r (s 1 < >> s 2)

s e q S t e p p e r (V S t p r v s 1) (F S t p r s 2) = V S t p r $ d o

s 1 / <- v s 1

() / <- s 2

p u r e (s e q S t e p p e r s 1 (F S t p r s 2))

s e q S t e p p e r (F S t p r s 1) (V S t p r v s 2) = V S t p r $ d o

() / <- s 1

s 2 / <- v s 2

p u r e (s e q S t e p p e r (F S t p r s 1) s 2)

s e q S t e p p e r (V S t p r v s 1) (V S t p r v s 2) = V S t p r $ d o

s 1 / <- v s 1

s 2 / <- v s 2

p u r e (s e q S t e p p e r s 1 s 2)

Note how, in the case of a variable stepper, the recursive call to s e q S t e p p e r
allows the simplification of the stepper as parts of the network evolve
over time, exactly how the continuation-based embedding allowed for
such simplifications. In the same spirit, it would be possible to extend
the S t e p p e r type with additional constructors to represent steppers for
applications of a r r or the identity signal functions to open upmore dy-
namic optimisations opportunities. The latter can also be used also to
denote steppers that do nothing, like the ones needed for routers.

With this new machinery and the new way references are handled
from the previous section, s w i t c h can be implemented in the following
way:

c o m p i l e (S w i t c h s f m k n e x t) i r o r = d o

(S o m e (P R e f o r f (E R e f e v t R e f)) , s t p r S F) / <- c o m p i l e s f i r N o n e

l e t s w i t c h S t p r s t p r = V S t p r $ d o

s t p r / <- e x e c S t e p p e r s t p r

e v t / <- r e a d I O R e f e v t R e f

c a s e e v t o f

N o t h i n g / -> p u r e (V S t p r (s w i t c h S t p r s t p r))

J u s t c / -> d o

(N o n e , s t p r N e x t) / <- c o m p i l e (m k n e x t c) i r (S o m e o r f)

s t p r N e x t / <- e x e c S t e p p e r s t p r N e x t

p u r e s t p r N e x t

c a s e o r o f

N o n e / -> p u r e (S o m e o r f , s w i t c h S t p r s t p r S F)

S o m e o r / -> d o

l e t u p d a t e R e f = r e a d S D R e f o r f < < >>= w r i t e S D R e f o r

s t p r = s e q S t e p p e r (s w i t c h S t p r s t p r S F) (F S t p r u p d a t e R e f)

p u r e (N o n e , s t p r)

59

3.5. Evaluation

a. h t t p s : / / g i t l a b . c o m /
c h u p i n / s c a l a b l e - f r p

Figure 3.4: A version of the
Flappy bird game running
with sfrp

93. Mahuet, Flappy Haskell. 2015

b. The sfrp version can be found
at h t t p s : / / g i t l a b . c o m / c h u p i n /
f l a p p y - h a s k e l l / t r e e / s c a l a b l e

3.4.4— Loops
The absence of a generic loop combinator makes the compilation

of sfrp a lot simpler than it would have been otherwise. Let’s look at
the compilation process for the I n t e g r L o o p constructor. It assumes
an output reference is passed in, the case when it is not is not much
different but presenting just this one case avoids some distracting noise
in the code:

c o m p i l e (I n t e g r L o o p i n i t l f) i r (S o m e o r) = d o

m e m i r / <- l i f t $ n e w S D R e f i n i t

m e m o r / <- l i f t $ n e w S D R e f i n i t

(N o n e , s t p r) / <-

c o m p i l e l f (i r ` C P ` m e m i r) (S o m e (o r ` C P ` m e m o r))

l e t i n t e g r a t e S t e p = d o

x / <- r e a d S D R e f m e m i r

x ' / <- r e a d S D R e f m e m o r

d t / <- g e t D T i m e

l e t n x = i n t e g r a t e d t x x '

w r i t e S D R e f m e m i r n x

p u r e (N o n e , s t p r ` s e q S t e p p e r ` F S t p r i n t e g r a t e S t e p)

The implementation uses to auxiliary references m e m i r , which contains
the currently computed value of the integral and m e m o r which will con-
tain the value of the derivative produced by the signal function l f . The
stepper for thewhole signal function simply consists of running the in-
ner signal function’s stepper first, which will make use of the current
value for the integral stored in m e m i r ; and then update the value stored
in m e m i r using the i n t e g r a t e function (defined in §3.2.1.3).

This compilation scheme could form the basis of more involved
compilation method, for instance by allowing it to run the inner sig-
nal function at various points in time, thus enabling the use of more
advanced numerical integration technique.

3.5—Evaluation
In this section, sfrp is evaluated. Both in terms of ease of use

compared to Yampa and in terms of performance, to verify that the
scalability objective is attained. The implementation can be found on
Gitlab a.

3.5.1—Ease of writing
In order to evaluate how different sfrp and Yampa are from a user

perspective, a modified version of the game Flappy bird written using
Yampa [93] was modified to use sfrp b.

For a large part of the code, the port was as straightforward as the
port of the falling object example from §3.3, mostly a matter of sur-
rounding the code written in proc-notation by quasi-quote brackets

60

https://gitlab.com/chupin/scalable-frp
https://gitlab.com/chupin/scalable-frp
https://gitlab.com/chupin/flappy-haskell/tree/scalable
https://gitlab.com/chupin/flappy-haskell/tree/scalable

Chapter 3. Scalable Functional Reactive Programming

a. h t t p : / / h a c k a g e . h a s k e l l . o r g /
p a c k a g e / c r i t e r i o n

and modifying the few parts where the syntax is different. The only
difficult point was handling inputs to the network. The original game
used, as is common, a record of several fields, essentially containing
information coming from the Graphical User Interface (gui) such as
themouse position, mouse clicks, etc. In the new setting, this record is
a collection of heterogeneous signals: the mouse position is a continu-
ous signal while the mouse clicks are events. However the only col-
lection of signals sfrp supports is nested-pairs. The choice was then
between getting rid of the input record in favour of nested pairs of
signals, which is inelegant and tedious to write or read; or slightly ‘ly-
ing’ and keeping the input record as a continuous signal (even if its
components are not all continuous signals) and writing accessor sig-
nal functions that convert each field into the relevant signal with the
right kind. The latter solution was used in this case.

Flappy bird, being a light game, did not directly benefit from an
increase in performance from sfrp, since the gui was, by far, the bot-
tleneck. Turning off the gui, we were able to measure that, although
the Yampa version was already running at a respectable 30 000 itera-
tions per second, the sfrp version was running at 90 000 iterations per
second, thus a three-fold improvement. This particular measurement
was done on a PC with a 4-core Intel i3-7100T @ 3.40GHz with 8GB
of memory.

3.5.2— Precise performance measurements

To test the relative performance of sfrp andYampa in amoremean-
ingful and systematic way, networks with various sizes and character-
istics were auto-generated. These networks, in their Yampa and sfrp
versions, were then benchmarked using the Criterion library a.

3.5.2.1—Random network generation The networks were generated in
proc-notation from a little dedicated Haskell program. Doing so is
much easier than generating networks in ‘combinator form’ and al-
lows to measure the hidden impact of wiring resulting from the proc-
notation desugaring over the network in a clearer way.

The generated network has one input and one output, both con-
tinuous signals of doubles as are all intermediate signals in the net-
work. Using continuous signals means that their representation is not
optimized in any way, unlike step signals, meaning that any improve-
ment over Yampa can be attributed to the difference in routing. The
generator makes sure that every signal is used at least once in the com-
putation of the output, as to not have parts of the network removed.
The network is made of three basic blocks: integrals, with one input
and one output; sums and negations of two input signals in one output
and switches, with one input and one output and a subnetwork.

The network is generated with a target size. Each block counts for
1 except for switches, that count for the size of their subnetwork.

61

http://hackage.haskell.org/package/criterion
http://hackage.haskell.org/package/criterion

3.5. Evaluation

b. If a switch should switch every
𝑛 iterations on average, the noise
is chosen between ±min (10, 𝑛2)

a. This amount of memory
was not necessary to run the
benchmarks, but to compile

them, as it seems ghc is very
memory hungry when it en-
counters programs with large

literals, as is the case with
these auto-generated networks.

113. O’Sullivan, Criterion,
a New Benchmarking Lib-

rary for Haskell. 2009

The generator controls the proportion of switches as well as the
average number of iterations at which a switch should occur. It also
makes sure that not all switches switch in the same iteration by adding
some random noise to the number of iteration a switch should switch
after b. When a switch is generated, a subnetwork is generated with
a size randomly chosen between 1 and the target size of the network
it is in. The switch switches back on itself when an event occur (like
b o u n c i n g). This is both in order to model a very common pattern in
this kind of programs and to prevent switches from disappearing en-
tirely from the network, leading to dynamic simplifications. An ex-
ample for a generated network is given in figure 3.5.

Once a network has been generated, the time taken for it to run
100 000 iterations is benchmarked, with sfrp and Yampa. The meas-
urementswere done on aPCwith a 8-core Intel XeonW-2123@ 3.60GHz
and 32GB ofmemory a. Results are presented in figure 3.6. The graphs
show the average time a network of a given size has taken to execute
100 000 iterations for each library. The average is taken over 1000 tri-
als. Each trial attempts to average out measurement artifacts, such as
the computer’s clock precision, potentially by running the program to
benchmark several times [113]. The ratio of the speedup of sfrp net-
work over the Yampa network is plotted on the same graph, as the ratio
of the two average running times. The general observation is that sfrp
is significantly faster in all cases, except in one, rarely encountered in
practice, where it is on par with Yampa.

3.5.2.2— Performance of static networks Benchmarks for static networks
(with no switches) can be found in figure 3.6a. They show that net-
works are consistently faster when using sfrp, by an order of mag-
nitude for networks of size larger than 10. This confirms that wiring
is a major cost in Yampa compared to sfrp. In particular, one can ob-
serve that Yampa’s running time is quadratic in the size of the network,
while sfrp’s is linear.

This can be explained by the following observation: as the network
grows, the number of combinators introduced for the purpose of wir-
ing grows linearly, since there has to be at least one per proc-notation.
But, the work these routers perform also grows linearly, since there
is a linearly increasing number of signals to route. This observation
will be confirmed in §3.5.2.4, which will focus on the cost of switching
on sfrp and shows that it exhibits the same behaviour when it has to
switch on large networks.

3.5.2.3—Evaluation of performancewith the number of switches Figure 3.6b
and 3.6c show two of the benchmarks for networks that were gener-
ated with respectively 10% and 25% of each statement being a switch
and then run by triggering each switch every 50 iterations on average.
These benchmarks, by their very nature cannot be used to precisely
predict a trend. Indeed, only the proportion of switches in the net-

62

Chapter 3. Scalable Functional Reactive Programming

g o Y a m p a = p r o c a / -> d o

b / <- a r r (u n c u r r y (+)) < -< (a , a)

c / <- s w 1 < -< b

h / <- s w 2 < -< c

o / <- i n t e g r a l < -< b

p / <- a r r (u n c u r r y (+)) < -< (h , h)

q / <- i n t e g r a l < -< b

r / <- a r r (u n c u r r y (-)) < -< (b , c)

s / <- a r r (u n c u r r y (+)) < -< (p , p)

t / <- s w 3 < -< s

w / <- i n t e g r a l < -< h

x / <- a r r (u n c u r r y (-)) < -< (c , p)

y / <- a r r (u n c u r r y (+)) < -< (x , w)

z / <- a r r (u n c u r r y (+)) < -< (r , t)

a a / <- a r r (u n c u r r y (-)) < -< (y , z)

b b / <- a r r (u n c u r r y (-)) < -< (a a , q)

c c / <- a r r (u n c u r r y (+)) < -< (o , o)

d d / <- a r r (u n c u r r y (+)) < -< (b b , b b)

e e / <- a r r (u n c u r r y (+)) < -< (c c , d d)

r e t u r n A < -< e e

w h e r e t r i g g e r s t o p = p r o c _ / -> d o

t / <- i n t e g r a l < -< 1 . 0

e v t / <- u p < -< t - s t o p

r e t u r n A < -< e v t

s w 1 = s w i t c h (f u n 1 & & & t r i g g e r 6) (c o n s t s w 1)

f u n 1 = p r o c f f / -> d o

d / <- i n t e g r a l < -< f f

e / <- a r r (u n c u r r y (+)) < -< (d , d)

f / <- i n t e g r a l < -< f f

g / <- a r r (u n c u r r y (+)) < -< (f , e)

r e t u r n A < -< g

s w 2 = s w i t c h (f u n 2 & & & t r i g g e r 1 2) (c o n s t s w 2)

f u n 2 = p r o c g g / -> d o

i / <- a r r (u n c u r r y (-)) < -< (g g , g g)

j / <- a r r (u n c u r r y (-)) < -< (g g , i)

k / <- i n t e g r a l < -< g g

l / <- i n t e g r a l < -< i

m / <- a r r (u n c u r r y (+)) < -< (j , k)

n / <- a r r (u n c u r r y (-)) < -< (l , m)

r e t u r n A < -< n

s w 3 = s w i t c h (f u n 3 & & & t r i g g e r 7) (c o n s t s w 3)

f u n 3 = p r o c h h / -> d o

u / <- a r r (u n c u r r y (+)) < -< (h h , h h)

v / <- a r r (u n c u r r y (+)) < -< (u , h h)

r e t u r n A < -< v

Figure 3.5: Example Yampa
signal function generated for
benchmarking

This particular network was
generated with a target size of
25 statements, with a proportion
of switches of 10%, switching
on average every 10 iterations.
The t r i g g e r signal function is
in charge of triggering an event
after a certain time as elapsed by
integrating a signal of slope 1. The
network has been simplified by
hand to make it readable.

63

3.5. Evaluation

a. The example program in fig-
ure 3.5 gives another illustra-

tion of that phenomenon. Even
though it has, in total, around

30 statements, there are at most
19 signals to wire together

in the main signal function.

work is controlled, not the size, which is picked randomly between just
one statement and the target size. However, as the number of switches
increases, the gain from using sfrp consistently shrinks. Not only be-
cause sfrp becomes slower, but also because Yampa becomes faster.

The reason for this gain is quite subtle, and has to do with the fact
that, when a network contains a switch, its structure is simpler with re-
gard to routing. This is eminently beneficial to Yampa but not particu-
larly to sfrp. Consider the case of a network of size 𝑛, without switches.
To produce its output, it must wire all 𝑛 signals together. Now consider
a network of the same size, but made of two switch blocks, each of size
𝑛
2 . Since each switch is made to take one input and produce one out-
put, to produce their output, both subnetworks must wire 𝑛

2 signals,
and then the two output signals must be wired together. Since the cost
of routing is quadratic in the size of the network, it is more efficient to
do the latter that the former, as witnessed by the benchmark results a.

This is alsowhyYampa exhibits somewhat better behaviour in prac-
tice than in the first benchmarks, since most networks are made in a
modular fashion, from small networks linked together, the overall cost
of routing is reduced. However, the performance advantage of using
sfrp is always significant. It can only increase as the network grows in
size, remaining constant at worse.

3.5.2.4—Evaluation of the cost of switching To get a more meaningful
idea of the cost of switch, it is more interesting to study networks in
a different form. Instead of networks containing some switches, it is
easier to generate a purely static network and enclose it in a switch,
switching at a certain rate. By that we mean that, if the generated net-
work is n , the network we benchmark is of the form:

n ' = s w i t c h (n & & & r) (\ _ / -> n ')

where r is the signal function generating the event for the switch to
occur. Some results are shown in figure 3.7. Unlike in the previous
case, the switch is made to switch at a set time, since there is only one,
there is no point in preventing several switches from switching at the
same time.

Overall, Yampa does not suffer a lot from having to handle infre-
quent switching events. There is no significant difference in runtime
whether a switch occurs every 50 iterations (figure 3.7a), 10 iterations
(figure 3.7b) or when no switch occur at all (figure 3.6a). After all,
switches from the point of Yampa are not very different from other
signal functions. This is not the case for sfrp which significantly slows
downwhen switches getmore frequent. This is expected since its main
advantage resides in avoiding the cost incurred with routing, which
must be paid every time there is a switch. In the extreme case where a
switch occurs at every iteration (figure 3.7c), sfrp is as slow as Yampa
and clearly exhibits the same quadratic time complexity in the size of

64

Chapter 3. Scalable Functional Reactive Programming

the network. This confirms that routing is the cause of the quadratic
behaviour: since sfrp is forced to compile a new network at every it-
eration, it must route references at every iteration, much like Yampa
does normally. Fortunately, networks written this way are rarely seen
in practice and remain small.

65

3.5. Evaluation

Figure 3.6: Benchmark results for arbitrarily generated networks. Average runtime and speedup over
100 000 iterations

(a) No switches

0 50 100 150 200 250 300
0
2
4
6
8
10
12
14
16

Network size

M
ea

n
tim

e
(s
)

Yampa sfrp Speedup

0
3
6
9
12
15
18
21
24

sf
rp

sp
ee

du
p
re

la
tiv

e
to

Ya
m
pa

(b) Networks where 10% of nodes are switches, switching every 100 itera-
tions

0 50 100 150 200 250 300
0
2
4
6
8
10
12
14
16

Network size

M
ea

n
tim

e
(s
)

Yampa sfrp Speedup

0
3
6
9
12
15
18
21
24

sf
rp

sp
ee

du
p
re

la
tiv

e
to

Ya
m
pa

(c) Networks where 25% of nodes are switches, switching every 100 iterations

0 50 100 150 200 250 300
0
2
4
6
8
10
12
14
16

Network size

M
ea

n
tim

e
(s
)

Yampa sfrp Speedup

0
3
6
9
12
15
18
21
24

sf
rp

sp
ee

du
p
re

la
tiv

e
to

Ya
m
pa

66

Chapter 3. Scalable Functional Reactive Programming

Figure 3.7: Benchmark results for networks with a single switch enclosing an otherwise switchless
network. Average runtime and speedup over 100 000 iterations

(a) Switching every 50 iterations

0 50 100 150 200 250 300
0
2
4
6
8
10
12
14
16

Network size

M
ea

n
tim

e
(s
)

Yampa sfrp Speedup

0
3
6
9
12
15
18
21
24

sf
rp

sp
ee

du
p
re

la
tiv

e
to

Ya
m
pa

(b) Switching every 10 iterations

0 50 100 150 200 250 300
0
2
4
6
8
10
12
14
16

Network size

M
ea

n
tim

e
(s
)

Yampa sfrp Speedup

0
3
6
9
12
15
18
21
24

sf
rp

sp
ee

du
p
re

la
tiv

e
to

Ya
m
pa

(c) Switching every iteration

0 50 100 150 200 250 300
0
2
4
6
8
10
12
14
16

Network size

M
ea

n
tim

e
(s
)

Yampa sfrp Speedup

0
3
6
9
12
15
18
21
24

sf
rp

sp
ee

du
p
re

la
tiv

e
to

Ya
m
pa

67

3.5. Evaluation

Figure 3.8: 3-dimensional visualisation of the dependency between size, switching frequency and
speedup

0

100
200

300100
101

102
103

104
105

0

10

20

30

Network size
Iterat

ions b
etween switch

Sp
ee

du
p

68

96. Mathworks, Simulation and
Model-Based Design. 2020

19. Bouissou et al., ‘An Opera-
tional Semantics for Simulink’s
Simulation Engine’. 2012

21. Bourke et al., ‘A Synchronous
Look at the Simulink Standard
Library’. 2017

133. Scaife et al., ‘Defining and
Translating a “Safe” Subset of
Simulink/Stateflow into Lustre’.
2004
20. Bourke et al., ‘Zélus, a Syn-
chronous Language with ODEs’.
2013
124. Pouzet, Lucid Synchrone.
2006
10. Benveniste et al., ‘A Type-
Based Analysis of Causality
Loops in Hybrid Systems Model-
ers’. 2017
12. Benveniste et al., ‘Non-
Standard Semantics of Hybrid
Systems Modelers’. 2012

130. Robinson, Non-Standard
Analysis. 1974

53. Eker et al., ‘Taming Hetero-
geneity - the Ptolemy Approach’.
2003

144. The Ptolemy Project, System
Design, Modeling, and Simulation
Using Ptolemy II. 2014

Related works & conclusions 4
4.1—Related work

4.1.1—Causal modelling languages

Simulink Simulink [96] is a graphical block-diagram environment
embedded within Matlab, first introduced in 1984. It is widely used
in industry, where it is a standard tool for the design of embedded con-
trol systems [19]. The numerical simulation capabilities of Simulink
are meant both as a help for designing the model, and as a tool for
checking the validity of generated code from the model. Simulink
suffers from several shortcomings. It is based on fairly weak semantics
foundations, which make it easy to write nonsensical models or whose
meaning is unclear. While some will result in runtime errors, which in
this case is the lesser evil, many will simply produce erroneous results
[21]. Simulink also uses graphical rules to determine the meaning of
otherwise ambiguous models: this means that the meaning of a model
can depend on the coordinates of a block on the diagram and not only
on the topology of the diagram [133].
Zélus Zélus [20] is a synchronous language conservatively exten-
ded with ode. It descends from Lucid Synchrone [124], from which
it inherits support for higher-order functions. Its approach as a hy-
brid language heavily influenced the design of sfrp. Zélus imposes
a strict boundary between the synchronous (discrete) world and the
continuous world, which is checked at compile-time through a type-
system [10]. It is built on strong semantics foundations [12] based
on non-standard analysis [130]. The intention of Zélus is, like Sim-
ulink, to provide a unified framework for the conception of discrete
systems (such as control systems), using the synchronous dataflowpart
of Zélus, and the simulation of these systems in their environment,
modelled with differential equations. As such, Zélus is more oriented
towards safety than expressivity, like synchronous languages in gen-
eral. For instance, it doesn’t support unbounded structural dynamism,
since it wouldmake it impossible to generate codewith strongmemory
and timing guarantees.
Ptolemy Ptolemy[53] is a modelling environment based on an
actor-oriented paradigm. In Ptolemy, a model consists of a set of act-
ors which execute concurrently and interact together through a given
set of rules called a domain. The choice of domain dictates, among
other things, the model of time used by the model, either discrete or
continuous [144]. What is interesting is that different domains, with

69

4.1. Related work

91. Lee et al., ‘Operational Se-
mantics of Hybrid Systems’. 2005

55. Elliott, ‘Push-Pull Functional
Reactive Programming’. 2009

a. In some implementations,
continuous-time signals are
called behaviours. We keep

this terminology if it is used
in the work being discussed.

different notions of time (and even different requirements for the rate
of change of time) can also bemade to interact, creating heterogeneous
models. To support this, Ptolemy uses multiform time, which allows
for the passing of time at different rate across multiple domains, while
still providing a globally coherent notion of time. Particularly relevant
to hybrid modelling languages is Ptolemy’s representation of infin-
itesimal time-steps, with the notion of superdense time. Superdense
time allows to divide an instant in time into many microsteps. Each
microstep takes an infinitesimally short time to pass but they can still
be ordered in time. This was used to propose a formal approach at
defining the semantics of hybrid modellers [91].

4.1.2— Functional Reactive Programming approaches

Push-pull frp Elliott, in his 2009 paper [55], revisits frp. He provides
a modernised monadic and applicative interface, but the main motiv-
ation is to resolve the tension between supporting continuously chan-
ging values efficiently, which calls for a pull-based implementation,
and events, which calls for a push-based implementation. Push- and
pull-base refer to the way the network runs to produce results: push-
based implementations wait for an event to be produced as an input,
andproduce a result that pushes through the network; while pull-based
wait for a result to be demanded by the user of the network and work
backward through the network to produce it. The answer is to combine
both, and the paper achieves this through an elegant derivation from
a denotational semantics. However, the basic behaviours a are repres-
ented by piece-wise constant behaviours (like the step signals of sfrp)
with overlaid known functions, accounting for the behaviour between
the points of discrete changes. For example, the time behaviour is in
essence a single step with an overlaid identity function. This means
that the basic behaviours cannot account for the case where the beha-
viour is not predictable until the next discrete change, such as is the
case with integration (in general). A separate interface is provided
for this kind of behaviour, but the paper does not give many details
and it is thus difficult to comment on the efficiency. It is also unclear
to what extent feedback is supported as the paper does not provide
the required primitives, neither for behaviours nor for events. As to
the implementation, it relies on an ‘unambiguous choice’ operator that
works by spawning threads, using u n s a f e P e r f o r m I O to provide a pure
interface, and then picking the first available result. The specific setup
is such that this indeed is safe and does not violate referential trans-
parency. The implementation is thus very different from that of sfrp,
and its ultimate efficiency hinges on how well the runtime can handle
lots of light-weight threads and how efficiently the sophisticated ma-
chinery required to keep everything pure from a user perspective can
be compiled. In contrast, the code that ultimately is executed when
sfrp programs are run is in essence just conventional, single-threaded

70

Chapter 4. Related works & conclusions

118. Patai, ‘Efficient and Com-
positional Higher-Order
Streams’. 2011 — 119. Pa-
tai, ‘Eventless Reactivity from
Scratch’. 2009

87. Krishnaswami et al., ‘Ul-
trametric Semantics of Reactive
Programs’. 2011

123. Ploeg et al., ‘Practical Prin-
cipled FRP’. 2015

imperative code. The paper does not provide any performance evalu-
ation.

Stream-based frp Patai [118, 119] proposes a representation of re-
active programs as infinite streams of values, where streams are con-
structed using stream generators in a way that make them suitable to
be represented as an stepping action in the I O monad, the elements of
the stream being produced by repeatedly performing the action. The
implementation retains a high degree of dynamicity, as streams can
be higher-order and recursively defined, to account for feedback for
instance. By nature, there is no notion of continuous time in this im-
plementation. Behind the scenes, the implementation is imperative.
A stream network is constructed, where streams may depend on oth-
ers in arbitrary ways. Carefully coordinated sampling and updating is
then carried out, with each stream being represented by an imperat-
ive variable that indicates that the stream either is being ready to be
sampled, or that it has been sampled, along with its current value, to
ensure the results of computations are shared and break cycles. The
traversal of this graph at each time step thus amounts to dynamic schedul-
ing of the computations, unlike in sfrpwhere sequential code for read-
ing and writing the imperative signal variables in an appropriate order
is constructed once and for all.

Ultrametric frp Krishnaswami and Benton [87] propose a denota-
tional semantics for reactive programs represented as programs over
streams, like in Patai’s work. Also like Patai’s work, time is discrete.
The authors propose a language abiding to this semantics and an ef-
ficient translation to a low-level imperative dataflow graph that pre-
serves the high-level semantics. The dataflow graph is a network of
imperative references containing thunks over streams. The evaluation
of these thunks is dynamically scheduled as the values of the head of
each stream is required. Upon evaluation, each references is updated
to point to a new thunk to the tail of the stream. The flexibility of
the stream representation means that dynamic higher-order recursive
frp programs can be expressed in this setting. However, unlike Patai’s
work, the well-foundedness of recursively defined streams as well as
the causality is guaranteed.

FRPNow! Ploeg and Claessen [123] propose a new monadic frp in-
terface, close to the original frp interface, that by careful construc-
tion rules out space leaks and allows monadic I O actions to be per-
formed directly from frp code. They give a denotational semantics
and derive an implementation from this, proving that the stated free-
ness from leaks indeed holds. While the interface provides both beha-
viours and events, the value of a behaviour can only change at discrete
points in time, by switching, and the only assumption regarding time
is that there is a total order between time points. Behaviours in this

71

4.2. Future work and conclusions

152. Yallop et al., ‘Causal Com-
mutative Arrows Revisited’. 2016

4. Apfelmus, Reactive-
Banana. 2011

system are thus akin to step signals: there is no direct support for con-
tinuous signals in the sfrp sense. Feedback is limited to behaviours.
The implementation is effectful, using Haskell’s I O monad. Imperative
variables are used to share the latest version of events and behaviours,
with u n s a f e P e r f o r m I O used to ensure that those variables are properly
shared even though the provided interface is pure, not mentioning the
I O context. I O actions generating primitive events are spawned using
threads, and the resulting events are batched into so called rounds to
give the illusion of I O actions not taking any time. The system keeps
track of what computations are ready to run in response to primitive
or derived events, ensuring they are run as soon as possible but at most
once. Also, computations of which results are no longer needed and
that have no observable side effects are also removed. The scheduling
of computations is thus done dynamically, and the overhead for fre-
quently changing signals is consequently substantial. Again, we note
that this is different from sfrp where the scheduling is done statically.
Causal commutative arrows CausalCommutativeArrows (cca) [152]
are a particular class of arrows that can be put into causal commutat-
ive normal form, meaning either a pure function or a single loop con-
taining one pure function and one initial state value. Use of causal
commutative arrows has been shown to lead to great improvements in
performance over the continuation-based representation presented in
§2.4, in part by using an imperative representation. In this representa-
tion, the actions modifications to the internal state are scheduled stat-
ically, however it does not tackle the problem of wiring in the way we
do, which remains fully dynamic. Note that, although feedback is sup-
ported, it always come with an implicit delay. Unlike sfrp or Yampa,
cca do not support dynamic changes to the network structure.
Reactive Banana Reactive Banana [4] is a first-class frp library, ori-
ented around programming an event network between signals, which
is then compiled into a stepping action. Although Reactive Banana
supports notionally continuous behaviours, the implementation is com-
pletely event driven, meaning the network only steps forward when
an event occurs. Reactive Banana networks can be dynamic in a way
similar to other implementations, by having events carrying new be-
haviours to switch to.

4.2—Future work and conclusions
This work showed how the performance of arrowized frp pro-

grams could be greatly improved by making use of an imperative rep-
resentation, similar to how synchronous dataflow languages are com-
piled, andhelped by a precise type-level description of a network. Quant-
itative evidence of this improvement was presented. The approach is
also mature enough to, in many cases, be used as a (mostly) drop-in
replacement for Yampa.

72

Chapter 4. Related works & conclusions

110. Nilsson et al., ‘Functional
Reactive Programming, Contin-
ued’. 2002

The current implementation of sfrp is however lacking in some
respects compared to Yampa. In particular, sfrp does not yet sup-
port collection-based switches and ‘freezing’ of running signal func-
tions [110]. Also, the arrow l o o p combinator for feedback is not fully
supported. The problem here is that l o o p calls for an instantaneous
feedback edge which makes static scheduling more difficult. In prin-
ciple this can be solved by analysing the dataflow graph: there must
be some decoupling somewhere in a feedback loop to make it well-
defined, but the decoupling neednot necessarily be along the back edge
itself. The solution used here, to have the feedback signal always de-
coupled through a delay, is quite pragmatic and also fairly common.
Indeed, many of the systems considered in the section on related work
also do not support instantaneous feedback edges for various reasons.

The new interface of sfrp makes it amenable to other implement-
ation techniques, such as compilation to lower level languages (either
ahead-of-time or just-in-time); and opens the door to use more ad-
vanced integration techniques. Since this was not the original goal of
this work, which was focused on providing better performance, this
has not yet been investigated, but would provide a very exciting re-
search avenue for future work.

Finally, to further improve the scalability, it would be interesting
to explore systematic incremental evaluation. As discussed briefly in
section 2.4.5, the sfrp implementation has an appropriate structure,
thanks to direct communication between producers and consumers
through shared variables.

73

Part II

Modular compilation for
Functional HybridModelling

75

Introduction to non-causal modelling 5
Theprevious part focused onworkdone on causalmodelling languages
and causal reactive languages. Causal modelling languages allow for
the manipulation of a limited set of differential equations: directed
equations, or Ordinary Differential Equation (ode). This approach
has many advantages: implementations are simple and there is a clear
mapping from the model to the implementation. Conceptually, it is
easier to define precise semantics for causal modelling languages as
well.

However, transforming an arbitrary set of undirected differential
equations into a causal model is a somewhat involved and tedious task.
This is particularly true in a hybrid setting or in the presence of non-
linear equations wherefrom extracting a causal equations is sometime
impossible, at least without significant symbolic manipulation. Over-
all, this approach hurtsmodularity. Since theway an equation depends
on the context in which it is used, it is difficult to write reusable model
fragments.

The alternative is then to allow for the manipulation of undirected
equations directly, which is the approach taken by non-causal mod-
elling languages. This implies the existence of simulation techniques
for systems of undirected differential equations. This chapter serves
as an introduction to these techniques, showcasing particularly some
of their limitations which have consequences for the implementation
based around them.

The chapter is organised as follows. §5.1 focuses on listing the
shortcomings of the causal modelling approach which can be solved
by directly manipulating undirected equations. §5.2 goes over the nu-
merical and symbolic methods used for the simulation of undirected
differential equations. §5.3 explains the specific difficulties associated
with higher-index systems, a class of equation system which require
additional symbolic processing before their simulation can be under-
taken. §5.4 introduces some of the problems associated with the ini-
tialisation of systems of undirected equations. Finally, §5.5 introduces
Functional Hybrid Modelling (fhm), a paradigm that allows for mod-
elling using undirected equations, and Hydra, a language based on
these ideas.

5.1—Limits of causal modelling

Chapter 2 gave an introduction to causalmodelling. It showed how
it was possible to extract directed differential equations by hand that

77

5.1. Limits of causal modelling

Figure 5.1: A more complic-
ated electrical circuit 𝑢

𝑖
𝑖1

𝑟1𝑢𝑟1

𝑖𝑟1

𝑐𝑢𝑐
𝑖𝑐

𝑖2

𝑟2𝑢𝑟2

𝑖𝑟2

ℓ𝑢ℓ

𝑖ℓ

could be translated, either by hand again or using a causal modelling
language to perform simulation.

This section discusses the limits of this approach. In particular,
it shows how supporting only directed equation leads to modularity
issues, especially in the context of hybrid models. It also demonstrates
more subtle difficulties that arise in the presence of non-linearity, when
extracting a causal model is made much harder.

The aim of this section is to motivate the need for languages able
to handle undirected equations directly.

5.1.1—Modularity
Let’s consider the electrical circuit in figure 5.1. The circuit is mod-

elled with the following 12 equations of 12 unknowns:

𝑢 = 𝑢0 sin (2π𝑓 𝑡 + φ) (5.1a)
𝑢𝑟1 = 𝑟1𝑖𝑟1 (5.1b)
𝑐𝑢′𝑐 = 𝑖𝑐 (5.1c)
𝑢𝑟2 = 𝑟2𝑖𝑟2 (5.1d)
ℓ𝑖′ℓ = 𝑢ℓ (5.1e)
𝑖 = 𝑖1 + 𝑖2 (5.1f)
𝑖1 = 𝑖𝑟1 + 𝑖𝑐 (5.1g)
𝑖𝑟1 = 𝑖𝑐 (5.1h)
𝑖2 = 𝑖𝑟2 + 𝑖ℓ (5.1i)
𝑖𝑟2 = 𝑖ℓ (5.1j)
𝑢 = 𝑢𝑟1 + 𝑢𝑐 (5.1k)

𝑢𝑟1 + 𝑢𝑐 = 𝑢𝑟2 + 𝑢ℓ (5.1l)

The circuit uses two resistors so, when implementing the circuit in a
causal modelling language, it would be desirable if a single model of a

78

Chapter 5. Introduction to non-causal modelling

Figure 5.2: A simple elec-
trical circuit with a diode

𝑢

𝑖
𝑢D

𝑖D

𝑟𝑢𝑟

𝑖𝑟

𝑐𝑢𝑐

𝑖𝑐

resistor could be written and reused. However, this is not possible in
this case. Indeed, the causal version of the system of equations above
is as follows:

𝑢 = 𝑢0 sin (2π𝑓 𝑡 + φ) (5.2a)
𝑢𝑟1 = 𝑢 − 𝑢𝑐 (5.2b)

𝑖𝑟1 =
1
𝑟 𝑢𝑟1 (5.2c)

𝑖𝑐 = 𝑖𝑟1 (5.2d)

𝑢′𝑐 =
1
𝑐 𝑖𝑐 (5.2e)

𝑖1 = 𝑖𝑟1 + 𝑖𝑐 (5.2f)
𝑖𝑟2 = 𝑖ℓ (5.2g)
𝑖2 = 𝑖𝑟2 + 𝑖ℓ (5.2h)
𝑢𝑟2 = 𝑟2𝑖𝑟2 (5.2i)
𝑢ℓ = 𝑢𝑟1 + 𝑢𝑐 − 𝑢𝑟2 (5.2j)

𝑖′ℓ =
1
ℓ 𝑢ℓ (5.2k)

𝑖 = 𝑖1 + 𝑖ℓ (5.2l)

Notice that equations 5.2c and 5.2i, both derived from Ohm’s law, are
different: the first is used to compute the current through 𝑟1 and the
second is used to compute the voltage across 𝑟2.

This is unfortunate since, in general, a differential equation ismerely
a constraint and it doesn’t prescribe an actual order of evaluation. In
Ohm’s law’s case, there is nothing in the physics stating that 𝑢 determ-
ines 𝑖 or that 𝑖 determines 𝑢. It may be the case in a particular use of the
resistor that the causality holds one way or another, but it is not true in
general. For that reason, a description of a resistor that is independent
of the context in which it is used cannot be written in a causal modelling
language.

The final limitation, arising specifically in hybrid models, is that
causality must be fixed. Consider the circuit in figure 5.2 featuring
an ideal diode. An ideal diode behaves like a wire with no resistance
when the current through it is positive and like an open switch when
the voltage through it is negative. This translates to these equations:

{
𝑢D = 0 when 𝑖D > 0
𝑖D = 0 when 𝑢D < 0

Writing amodel for the diode in a language like frp is not possible,
since the model only determines one of 𝑢D or 𝑖D at any given instant.
However, more annoyingly, whether the diode determines 𝑢D or 𝑖D
influences how other equations in the system must be used. Indeed, a

79

5.1. Limits of causal modelling

146. Trajković, The Electrical
Engineering Handbook. 2005

a. The resistance of an element
generally depends on the tem-
perature at which it is at. Since

the resistor dissipates energy into
heat, the resistor’s temperature
can change as the circuit runs,

causing changes in its resistance.
This is the case for light bulbs

or electric heaters for instance.

description as directed equation of circuit 5.2 goes as follow:

𝑢 = 𝑢0 sin (2π𝑓 𝑡 + φ) (5.3a)
𝑢D = 0 (5.3b)
𝑢𝑟 = 𝑢 − 𝑢D − 𝑢𝑐 (5.3c)

𝑖𝑟 =
1
𝑟 𝑢𝑟 (5.3d)

𝑖𝑐 = 𝑖𝑟 (5.3e)
𝑖D = 𝑖𝑟 (5.3f)
𝑖 = 𝑖D (5.3g)

𝑢′𝑐 =
1
𝑐 𝑖𝑐 (5.3h)

On the other hand, when the diode is closed (the current through it is
zero), it is:

𝑢 = 𝑢0 sin (2π𝑓 𝑡 + φ) (5.4a)
𝑖D = 0 (5.4b)
𝑖𝑟 = 𝑖D (5.4c)
𝑖𝑐 = 𝑖𝑟 (5.4d)
𝑖 = 𝑖D (5.4e)

𝑢𝑟 = 𝑟𝑖𝑟 (5.4f)

𝑢′𝑐 =
1
𝑐 𝑖𝑐 (5.4g)

𝑢D = 𝑢 − 𝑢𝑟 − 𝑢𝑐 (5.4h)

The equation derived from Ohm’s law for the resistor is used to
compute the current in one mode (equation 5.3d) and the voltage in
the other (equation 5.4f). The same is true for equations 5.3g and 5.4c;
and equations 5.3c and 5.4h.

5.1.2—Non-linearity

So far, the only system of equations that have been considered were
simple linear systems which are easy to transform to directed equation
systems by symbolic manipulation. But this is sometimes not possible
in the presence of non-linear equations. In the case of electrical cir-
cuit, relations can be foundwhenmodelling some non-linear electrical
components, such as non-linear resistors [146] in which the resistance
depends on the intensity passing through it a. Depending on how the
resistance depends on the intensity, extracting an explicit expression
for 𝑖𝑟 may not be obvious.

Furthermore, while the solution to a linear equation is unique,
there are potentially many solutions to a non-linear problem or none
at all. Take the equation stating that two variables 𝑥 and 𝑦 describe a
circle of radius ℓ in 2-dimensions: 𝑥2 + 𝑦2 = ℓ2. Using this equation

80

Chapter 5. Introduction to non-causal modelling

to compute 𝑥 in terms of 𝑦 gives two solutions: either 𝑥 = √ℓ2 − 𝑦2 or
𝑥 = −√ℓ2 − 𝑦2. In the presence of these equations, insisting on using
directed equations can therefore be problematic.

5.1.3—Algebraic loops
Consider the two equations below:

𝑥 = 2𝑦
𝑦 = 𝑥 + 1

These equations cannot be rearranged in a way that a value for either
𝑥 or 𝑦 is produced first. However, this system has an obvious solution.
Replacing 𝑥 by 2𝑦 in the second equation gives 𝑦 = 2𝑦 + 1, for which
𝑦 = −1 is an obvious solution, giving 𝑥 = −2 as solution for the first
equation.

These equations form an algebraic loop: a set of equations which
cannot be made causal. Algebraic loops are not allowed in the causal
paradigm: in frp, they correspond to unbounded loops that were dis-
cussed briefly in §2.3.2. Sometimes, these loops indeed have no solu-
tion, like the following:

𝑥 = 𝑦 + 1
𝑦 = 𝑥 + 1

which, when replacing 𝑥 in the second equation gives 𝑦 = 𝑦 +2. But in
practice, they tend to appear in the description of many physical sys-
tems. To express such systems in a causal modelling language requires
manually modifying the system so that it is without loops, like what
was done above by replacing 𝑥 by 2𝑦 in the second equation. While it
was easy in this case, doing so for large scale systems can be difficult,
simply due to the number of variables and equations that can make up
the loop. In the presence of non-linearity, it may not be possible to find
an explicit expression for a variable from the equation system.

5.2—Differential Algebraic Equation

A system of undirected differential equation is named a Differen-
tial Algebraic Equations (dae). As the name indicates, it is a mix of
differential equations and algebraic constraints. In general, a dae takes
the following form:

F(𝑥′, 𝑥, 𝑦 , 𝑡) = 0

In this context, 𝑥 represents the set of time-varying functions solved
by integrating their derivative 𝑥′, while 𝑦 refers to the set of variables
only present non-differentiated. The first set are called the state vari-
ables while the second set are the algebraic variables. Looking back on

81

5.2. Differential Algebraic Equation

37. Cellier et al., Continu-
ous System Simulation. 2006

121. Petzold, ‘A Description
of DASSL: A Differential/Al-
gebraic System Solver’. 1982

142. Tarjan, ‘Depth-
First Search and Linear

Graph Algorithms’. 1972

155. Zimmer, ‘Module-
Preserving Compilation

of Modelica Models’. 2009
a. In general, there are as
many possible causalisa-

tions as there are variables
appearing in the equation.

37. Cellier et al., Continu-
ous System Simulation. 2006

equation system 5.1, 𝑖ℓ and 𝑢𝑐 are the set of state variables while all the
other variables are algebraic. Like for an ode, the function F which
characterises the dae is called its residual function.

Simulating a dae is generally much harder than an ode, due to the
extra algebraic constraints. In general, a solver for a dae can be built
by first numerically computing the value of the algebraic variables and
of the derivatives of the state variables from the dae. Then, a numer-
ical integration method, like the ones used for ode, is used to compute
the values of the state variables from the computed values of the de-
rivatives. A more detailed discussion on the simulation of continuous
systems described by ode or dae can be found in [37]. A historical
perspective on simulation code for dae systems is given in [121].

5.2.1—Causalisation
The most conceptually straightforward solution is causalisation,

which consists of converting the equation system to an ode by sym-
bolic manipulation like was demonstrated earlier. This process can be
mechanised [142] in order to free themodeller fromhaving to perform
this transformation.

Causalisation is quite an attractive process for solving dae. Its
main advantages are that it allows to reuse all the techniques used for
solving ode while only paying a price at compile-time for causalising
the system. In contrast to implicit methods, which will be presented in
the next section, it allows for using simpler, more efficient, integration
methods.

However, it has two drawbacks. The first has to do with its main
advantage: the price at compile time to pay is potentially large for large
equation systems. It also prevents (or at leastmakesmore complicated,
see [155]) code generation for partial dae, as they could be causalised
in many ways a.

The second drawback, as was mentioned before is the issue with
non-linearity and algebraic loops. Problems with non-linearity can be
mitigated by using differentiation. Indeed, a non-linear equation of
the form:

𝑓 (𝑥1, 𝑥2, … , 𝑥𝑛) = 0

can be turned into an ode in any of the variable 𝑥1 to 𝑥𝑛 by differen-
tiation of both sides of the equation, yielding a linear equation in the
derivatives 𝑥′1 to 𝑥′𝑛 :

𝑥′1
∂𝑓
∂𝑥1

+ ⋯ + 𝑥′𝑛
∂𝑓
∂𝑥𝑛

= 0

Algebraic loops can be removed by using tearing algorithms [37,
§7.4]. Tearing is the process of choosing one variable in the algebraic
loop, and replacing that variable by its expression as given by an equa-
tion in the loop. It is the same process that was used to solve the simple

82

Chapter 5. Introduction to non-causal modelling

Figure 5.3: Illustration
of the Newton-Raphson
method in the one dimen-
sional case

𝑧0𝑧4

127. Raphson, ‘Analysis Æequa-
tionum Universalis’. 1697 — 150.
Wallis, ‘A Treatise of Algebra,
Both Historical and Practical’.
1685
a. Or a plane or hyper plane in
higher dimensions.

82. Jacobi, ‘De formatione et
proprietatibus Determinatium’.
1841

35. Casella et al., ‘On the
Choice of Initial Guesses for
the Newton-Raphson Algorithm’.
2021

loops of §5.1.3: tearing algorithms simply allow for its automation in
a tool.

5.2.2—Using algebraic solvers
The alternative to causalisation is to use a dedicated dae solver.

To simplify the discussion, a dae solver first operates by solving the
algebraic system with unknowns 𝑥′ and 𝑦 formed by the dae:

F(𝑥′, 𝑥, 𝑦 , 𝑡) = 0

and then using a numerical integration method to integrate 𝑥′.
To solve this algebraic system, the Newton-Raphson method [127,

150] is the most commonly used method. Its principle is explained
here.

Given a problemof the formG(𝑧) = 0 and an initial guess for a root
of G, 𝑧0, it is possible to compute an approximate value for a solution
to the problem by approximating G as a linear function around 𝑧0. If
G were truly linear then its graph would be a straight line a and there-
fore its root should be at the point were that straight-line intersects the
horizontal axis. This point can be computed as the slope of that line is
given by the derivative of G at 𝑧0. If G is truly linear, then that process
terminates in one step; if it is not, it repeats until the current guess 𝑧𝑛
is such that ‖G (𝑧𝑛)‖ < ϵ, where ϵ is a predefined tolerance.

In the one dimensional case (illustrated in figure 5.3), the next
guess 𝑥𝑛+1 is computed from 𝑥𝑛 using the following formula:

𝑥𝑛+1 = 𝑥𝑛 −
G (𝑥𝑛)
G′ (𝑥𝑛)

In higher-dimensions, when G ∶ ℝ𝑛 → ℝ𝑛, the notion of derivative is
generalised by the Jacobian matrix [82]:

𝑥𝑛+1 = 𝑥𝑛 − JacG (𝑥𝑛)
−1 G (𝑥𝑛)

where the Jacobian matrix is the square matrix of size 𝑛 containing all
the partial derivatives of G:

JacG = (
∂𝑔𝑖
∂𝑧𝑗

)
𝑖,𝑗∈[1,𝑛]

The Newton-Raphson method is not infallible. It is important that
the initial guess be close to the true root, which is not always easy to
guarantee [35]. When a function hasmultiple roots, it can happen that
the method computes an approximation for a root which is not the
closest one to the guess. This tends to happen when the derivative ofG
is small, giving an intersection point with the horizontal axis very far
away. The method will fail if the derivative of G is zero at the point of
the guess, which graphically translates to a horizontal line that never

83

5.3. Higher-index systems

Figure 5.4: A simple RC-
circuit

𝑢

𝑖 𝑟𝑢𝑟

𝑖𝑟

𝑐𝑢𝑐

𝑖𝑐

crosses the horizontal axis. In higher-dimensions, this occurs when
the Jacobian matrix is singular, meaning it is not invertible.

dae solvers often combine the solving of the algebraic system and
the integration step into one step. Indeed, suppose that integration of
𝑥 is performed using a forward Euler scheme. Then the value com-
puted for 𝑥′ by solving the algebraic system will be used to compute
an approximation for 𝑥 like so:

𝑥(𝑡 + δ𝑡) = 𝑥(𝑡) + δ𝑡𝑥′(𝑡)

This is equivalent to stating that:

𝑥′(𝑡) = 𝑥(𝑡 + δ𝑡) − 𝑥(𝑡)
δ𝑡

and that therefore, it is enough to solve the following algebraic system:

F (
𝑥(𝑡 + δ𝑡) − 𝑥(𝑡)

δ𝑡 , 𝑥(𝑡), 𝑦(𝑡), 𝑡) = 0

The technique generalises to other integration methods.

5.3—Higher-index systems

5.3.1—Definition
Whether solving a dae relies on causalisation (with a mix of ode

solver and algebraic solvers) or uses a dae solver directly, both schemes
rely on the system not being structurally singular. That is, it must
be possible to determine, from the equation system, the values of the
highest-order derivative of all the variables from the algebraic system.
For the state variable, this is their first-order derivative; for the algeb-
raic variable, it is the variable itself (its zeroth-order derivative).

It turns out, however, that many systems do not readily exhibit this
property. Let’s consider the simple RC-circuit in figure 5.4. The equa-
tions for this circuit were given in §2.1. In that section, the voltage
source was assumed to be known and the voltages across other com-
ponents was derived from it. Suppose now that amodeller is interested
in a different problem: they want to know what voltage source should
be used in order for the voltage across the capacitor to conform to a
known function 𝑓 (𝑡). This translates to the following equation system:

𝑢𝑐 = 𝑓 (𝑡) (5.5a)
𝑐𝑢′𝑐 = 𝑖𝑐 (5.5b)
𝑢𝑟 = 𝑟𝑖𝑟 (5.5c)
𝑢 = 𝑢𝑟 + 𝑢𝑐 (5.5d)
𝑖 = 𝑖𝑟 (5.5e)

84

Chapter 5. Introduction to non-causal modelling

97. Mattsson et al., ‘Index Re-
duction in Differential-Algebraic
Equations Using Dummy Deriv-
atives’. 1993

29. Caillaud, ‘Implicit Structural
Analysis of Multimode DAE
Systems’. 2020 — 116. Pantelides,
‘The Consistent Initialization of
Differential-Algebraic Systems’.
1988 — 126. Pryce, ‘A Simple
Structural Analysis Method for
DAEs’. 2001
116. Pantelides, ‘The Consistent
Initialization of Differential-
Algebraic Systems’. 1988

126. Pryce, ‘A Simple Structural
Analysis Method for DAEs’. 2001

𝑖 = 𝑖𝑐 (5.5f)

There are 6 equations for 6 unknowns: 𝑢′𝑐 , 𝑖𝑐, 𝑢𝑟, 𝑖𝑟, 𝑢 and 𝑖, but there
is no 1-to-1 mapping between these variables and the equations, since
no unknown appears in equation 5.5a.

Equation 5.5a is a constraint equation: an equation that can only
be assigned to solve for a lower-order derivative of an unknown, in this
case 𝑢𝑐 instead of 𝑢′𝑐 . In general, a constraint equation cannot be used
directly to compute a solution, rather it restricts the set of solutions
of the dae. For system 5.5, one can recover a solvable system using
some simple symbolic manipulation. Since equation 5.5a provides an
explicit expression for 𝑢𝑐, one can simply remove it and replace 𝑢𝑐 by
𝑓 (𝑡) in equation 5.5d.

In the presence of more complicated equations (e.g. non-linear
equations), a general approach to this problem is to eliminate con-
straint equations bymeans of differentiation. Indeed, if 𝑢𝑐 = 𝑓 (𝑡) holds
at all time, then 𝑢′𝑐 = 𝑓 ′(𝑡) holds too. Replacing equation 5.5a by this
new, latent, equation yields a dae which is not structurally singular.
If the initial conditions of the variables in the system satisfy both the
latent equations and the constraint equations, then the solution for the
new dae is the same as the one for the original dae [97].

The process of discovering the set of equations that must be differ-
entiated for a dae to be non-singular is referred to as index-reduction.
The index refers to the number of times that parts of or the whole of
the dae must be differentiated to transform it into an ode. A dae that
is not structurally singular and can be simulated with a dae solver is
index-1. It is sometime referred to by the term implicit ode since it
can be put under the form:

𝑥′ = 𝑓 (𝑥, 𝑦 , 𝑡)
0 = 𝑔(𝑥, 𝑦 , 𝑡)

where 𝑥 is the set of state variables and 𝑦 the set of algebraic variables.
Differentiating the algebraic constraints once indeed yields an index-0
ode, although this step is not necessary for simulation.

Since equation system 5.5 needed one of its equations to be differ-
entiated, it is index-2.

5.3.2— Index-reduction algorithms

Index-reduction can be performed solely from structural inform-
ation about the dae [29, 116, 126]. That is, it merely requires knowing
which variables appear in which equations but doesn’t require more
precise information about each equation.

One such method is Pryce’s signature method (or Σ-method). It is
an alternative to the more commonly used Pantelides algorithm [116].
It is presented here since it is somewhat easier to understand and is

85

5.3. Higher-index systems

15. Bertsekas, Linear Net-
work Optimization. 1991

used in the implementation work described in later chapters. For all
the details and proofs of correctness, the original paper [126] is easy
to read.

The signature method relies on the signature matrix of the dae.
The signature matrix Σ is a square matrix such that the coefficient σ𝑖𝑗
is a value of ℕ∪{−∞} and gives information on how the 𝑖-th variable of
the dae appears in its 𝑗-th equation. Specifically, if the variable doesn’t
appear in this equation, σ𝑖𝑗 = −∞; if it appears differentiated 𝑛 times
(at most), then σ𝑖𝑗 = 𝑛. The signature matrix for equation system 5.5
is given by (⋅ is used to represent −∞):

Σ =

𝑢𝑐 𝑖𝑐 𝑢𝑟 𝑖𝑟 𝑢 𝑖

⎛
⎜
⎜
⎜
⎜
⎝

⎞
⎟
⎟
⎟
⎟
⎠

0 ⋅ ⋅ ⋅ ⋅ ⋅ 5.5a
1 0 ⋅ ⋅ ⋅ ⋅ 5.5b
⋅ ⋅ 0 0 ⋅ ⋅ 5.5c
0 ⋅ 0 ⋅ 0 ⋅ 5.5d
⋅ ⋅ ⋅ 0 ⋅ 0 5.5e
⋅ 0 ⋅ ⋅ ⋅ 0 5.5f

The Σ-method then specifies index-reduction as a linear program-
ming problem known as the assignment problem [15]. The first task is
to find an assignment (if it exists) of variables to equations, such that
a variable is uniquely assigned to an equation in which it appears (and
vice-versa, an equation cannot be assigned to multiple variables). To
choose which variable is assigned to which equation, equations where
the variable appears differentiatedmore times are preferred. This prob-
lem can be understood better with a worker/task analogy, where vari-
ables are tasks that need to be performed and workers are equations
able to perform these tasks. The signature matrix then quantifies the
proficiency of a worker (equation) to perform a certain task (solve for
the variable). When a worker is unable to perform a task, their profi-
ciency is −∞. The goal is to maximise the total productivity. This can
be formulated as the following linear programming problem, where
one searches for the ξ𝑖𝑗 ∈ ℕ such that the quantity:

𝑛
∑
𝑖=1

𝑛
∑
𝑗=1

ξ𝑖𝑗σ𝑖𝑗

is maximized, with the additional constraints that:

∀𝑖 ∈ [1, 𝑛],
𝑛
∑
𝑗=1

ξ𝑖𝑗 = 1

∀𝑗 ∈ [1, 𝑛],
𝑛
∑
𝑖=1

ξ𝑖𝑗 = 1

Loosely speaking, the quantity being maximised can be viewed as the
total productivity of a given assignment of workers to tasks. The con-

86

Chapter 5. Introduction to non-causal modelling

97. Mattsson et al., ‘Index Re-
duction in Differential-Algebraic
Equations Using Dummy Deriv-
atives’. 1993
a. If an equation is differentiated
multiple times, both the original
equation and all the differenti-
ated versions of that equation are
to be used.

straints state that exactly one worker must be assigned to a task and
exactly one task must be assigned to a worker.

From the assignment given by ξ𝑖𝑗, finding the number of differenti-
ations needed to reduce the system consists of finding theminimal dif-
ference between the number of times the variable assigned to an equa-
tion appears differentiated in the equation originally and the highest-
order derivative of that equation in the final reduced dae. Since differ-
entiating an equation can make other variable appear differentiated, it
is important to not simply consider the highest-order derivative of a
variable in the original, higher-index, dae.

Fortunately, the solution to that problem is simple to compute from
the assignment. It is formulated as the dual problem of the linear pro-
gramming problem above. Given two 𝑛-tuples C and D, where C col-
lects the number of differentiation for each equation and D collects
the order of the highest-order derivative for each variable, the prob-
lem consists of minimising the following quantity:

𝑛
∑
𝑗=1

𝑑𝑗 −
𝑛
∑
𝑖=1

𝑐𝑖

with the added constraints that:

∀𝑖, 𝑗 ∈ [1, 𝑛], 𝑑𝑗 − 𝑐𝑖 ≥ σ𝑖𝑗
∀𝑖 ∈ [1, 𝑛], 𝑐𝑖 ≥ 0

When formulated as such, there are many optimal solutions to that
problem. Indeed, if C and D are solutions, then C + 1 and D + 1 are
also solutions. However, there exists a minimal (or canonical) set of
offsets that can easily be found by a simple fixed-point procedure.

5.3.3— State selection

The dae system obtained by simply replacing constraint equations
is sometime referred to as the Underlying Ordinary Differential Equa-
tion (uode). Simulating the uode directly theoretically provides a
valid solution for the original dae, provided the initial conditions used
for simulating the uode also satisfy the dae. Practically, however, the
computed solution of the uode tends to ‘drift-off ’ from the original
constraints. Indeed, the constraint equations are completely removed
from the uode and only hold implicitly. However, due to numerical
errors, the computed solution may not truly satisfy these constraints.

The solution proposed in [97] is to not only use the differentiated
equations but also the constraint equations to simulate the system a.
Consider the following index-2 dae:

𝑢𝑐 = 𝑓 (𝑡) (5.6a)
𝑢𝑟1 = 𝑟1𝑖𝑟1 (5.6b)

87

5.3. Higher-index systems

a. In the same way that the
constraint equations held

only implicitly in the uode.

𝑐𝑢′𝑐 = 𝑖𝑐 (5.6c)
𝑢𝑟2 = 𝑟2𝑖𝑟2 (5.6d)
ℓ𝑖′ℓ = 𝑢ℓ (5.6e)
𝑖 = 𝑖1 + 𝑖2 (5.6f)
𝑖1 = 𝑖𝑟1 + 𝑖𝑐 (5.6g)
𝑖𝑟1 = 𝑖𝑐 (5.6h)
𝑖2 = 𝑖𝑟2 + 𝑖ℓ (5.6i)
𝑖𝑟2 = 𝑖ℓ (5.6j)
𝑢 = 𝑢𝑟1 + 𝑢𝑐 (5.6k)

𝑢𝑟1 + 𝑢𝑐 = 𝑢𝑟2 + 𝑢ℓ (5.6l)

It is derived from figure 5.1 and equation system 5.1. However equa-
tion 5.1a has been replaced by a constraint equation over 𝑢𝑐. Differ-
entiating equation 5.6a yields an index-1 dae but simply adding it to
system 5.6 produces 13 equations and only 12 unknowns:

𝑢𝑐 = 𝑓 (𝑡) (5.7a)
𝑢′𝑐 = 𝑓 ′(𝑡) (5.7a′)
𝑢𝑟1 = 𝑟1𝑖𝑟1 (5.7b)
𝑐𝑢′𝑐 = 𝑖𝑐 (5.7c)
𝑢𝑟2 = 𝑟2𝑖𝑟2 (5.7d)
ℓ𝑖′ℓ = 𝑢ℓ (5.7e)
𝑖 = 𝑖1 + 𝑖2 (5.7f)
𝑖1 = 𝑖𝑟1 + 𝑖𝑐 (5.7g)
𝑖𝑟1 = 𝑖𝑐 (5.7h)
𝑖2 = 𝑖𝑟2 + 𝑖ℓ (5.7i)
𝑖𝑟2 = 𝑖ℓ (5.7j)
𝑢 = 𝑢𝑟1 + 𝑢𝑐 (5.7k)

𝑢𝑟1 + 𝑢𝑐 = 𝑢𝑟2 + 𝑢ℓ (5.7l)

Notice however that there is some redundancy in this overdetermined
system. between equation 5.7a and 5.7a′. For instance, the fact that 𝑢′𝑐
is the derivative of 𝑢𝑐 is implicitly present in the fact that both 𝑢𝑐 = 𝑓 (𝑡)
and 𝑢′𝑐 = 𝑓 ′(𝑡) hold. In other words, if one were to replace 𝑢′𝑐 by an
algebraic variable ̇𝑢𝑐, this information would not be lost, only hold-
ing implicitly a. Performing this transformation yields the following
index-1 dae, with 1 state variable 𝑖ℓ and 12 algebraic variables, includ-
ing 𝑢𝑐 and ̇𝑢𝑐:

𝑢𝑐 = 𝑓 (𝑡) (5.8a)
̇𝑢𝑐 = 𝑓 ′(𝑡) (5.8a′)

88

Chapter 5. Introduction to non-causal modelling

97. Mattsson et al., ‘Index Re-
duction in Differential-Algebraic
Equations Using Dummy Deriv-
atives’. 1993

99. McKenzie et al., ‘Structural
Analysis Based Dummy Deriv-
ative Selection for Differential
Algebraic Equations’. 2017

𝑢𝑟1 = 𝑟1𝑖𝑟1 (5.8b)
𝑐 ̇𝑢𝑐 = 𝑖𝑐 (5.8c)
𝑢𝑟2 = 𝑟2𝑖𝑟2 (5.8d)
ℓ𝑖′ℓ = 𝑢ℓ (5.8e)
𝑖 = 𝑖1 + 𝑖2 (5.8f)
𝑖1 = 𝑖𝑟1 + 𝑖𝑐 (5.8g)
𝑖𝑟1 = 𝑖𝑐 (5.8h)
𝑖2 = 𝑖𝑟2 + 𝑖ℓ (5.8i)
𝑖𝑟2 = 𝑖ℓ (5.8j)
𝑢 = 𝑢𝑟1 + 𝑢𝑐 (5.8k)

𝑢𝑟1 + 𝑢𝑐 = 𝑢𝑟2 + 𝑢ℓ (5.8l)

̇𝑢𝑐 is a dummy-derivative: a placeholder algebraic variable for what is
really the derivative of another variable. The dummy-derivative al-
gorithm [97] gives a systematic method to select a valid set of state
variables and dummy-derivatives. For instance in the above example,
choosing 𝑢𝑐 as a state 𝑖′ℓ as a dummy-derivative would not have helped
with solving the system.

It is sometimes necessary to change the set of dummy-derivatives
during the simulation. In the presence of non-linear equations, the
dae can become singular in the neighbourhood of particular points,
leading to solvability issues or inconsistencies such as discontinuit-
ies. The subtleties associated with selecting a ‘good’ set of dummy-
derivatives and when to change it is outside the scope of this work.
The interested reader can refer to [99], which provides a very thorough
overview of the dummy-derivative algorithm and ways to efficiently
implement dynamic state selection.

5.3.4—Concluding remarks on index-reduction

This section introduced the concept of higher-index dae and the
difficulties associatedwith their simulation. Higher-index systems arise
when adae contains constraint equations, that only constrain the solu-
tion but cannot be used directly for simulating the equation. Structural
algorithms can be used to recover an index-1 dae from a higher-index
dae by differentiating these constraint equations, potentially several
times. The resulting dae can then be simulated: either by directly sim-
ulating the uode, obtained by replacing the constraint equations with
their differentiated versions; or by keeping the constraint equations
but removing some state variables from the dae to avoid an overde-
termined system.

Let’s conclude this summary by noting that index-reduction al-
gorithms are notmodular in the sense that, in general, it is not possible
to know, from a partial dae, how many times each equation might

89

5.4. Initialisation

a. See §5.3.2

29. Caillaud et al., ‘Implicit
Structural Analysis of Mul-
timode DAE Systems’. 2020

b. See §2.3.4

126. Pryce, ‘A Simple Structural
Analysis Method for DAEs’. 2001

114. Ochel et al., ‘Symbolic Ini-
tialization of Over-Determined

Higher-Index Models’. 2014

appear differentiated when that partial dae is used as part of a lar-
ger one. In cases where parts of the dae change during simulation,
the analysis must be performed after each such change on the whole
dae, not simply on the part that was modified. This is not surprising
since index-reduction can be performed by finding a 1-to-1 assign-
ment between equations and variables a, but §5.1.1 showed how such
assignments typically did not remain valid after a structural change in
a dae and generally completely depend on the context in which a par-
ticular set of equation is used inside a larger equation system. Note that
recent work [29] has been proposed that addresses this particular issue
for fully-assembled hybrid dae with finite number of modes; however
it is not usable for partial dae nor dae with unbounded number of
modes, in the style of frp b.

5.4— Initialisation

Initialising an ode only requires the specification of the initial val-
ues of the state variables. The initial values of all other variables and the
derivatives of the state variables can trivially be determined from the
ode itself. However, initialising a dae is harder, since the initial con-
ditions for the state variables and all other variables must satisfy the
dae, thus requiring solving an algebraic system at initialisation time.

Higher-index systemspose additional difficulties, namely that some
state variables may not need an initialising equation at all. Consider
system 5.6 again. Even if 𝑢𝑐 appears differentiated, its initial value is
constrained and providing an explicit equation for it would result in an
over-determined system. The number of additional equations to cor-
rectly initialise a dae corresponds to its number of degrees of freedom
[126]. In the case of system 5.6, the system has 0 degrees of freedom
since it can be initialisedwithout the need for any additional equations.
By contrast, system 5.1 had 2 degrees of freedom since it requires an
initial value for both 𝑖ℓ and 𝑢𝑐.

The number of degrees of freedom can be computed from the out-
put of index-reduction as the following quantity:

𝑛
∑
𝑗=1

𝑑𝑗 −
𝑛
∑
𝑖=1

𝑐𝑖

This makes it particularly easy to verify that there are enough addi-
tional equations to initialise the system, although it can sometimes be
difficult for the modeller to clearly identify which are needed in com-
plex equation systems. This problem can be somewhat alleviated by
allowing the user to state an over-determined system, identifying and
eliminating redundant information and then verifying the consistency
of the computed solution with regards to these eliminated constraints
[114].

90

Chapter 5. Introduction to non-causal modelling

112. Nilsson et al., ‘Functional
Hybrid Modeling’. 2003

65. Giorgidze et al., ‘Higher-
Order Non-Causal Modelling
and Simulation of Structurally
Dynamic Systems’. 2009

63. Giorgidze, ‘First Class Mod-
els’. 2012
a. The source code for the com-
piler can be found at: h t t p s :
/ / g i t l a b . c o m / c h u p i n / h y d r a - v 2 .

5.5— Introduction to Functional HybridModelling

FunctionalHybridModelling (fhm) [112] has been proposed as an
expressive approach for designing a non-causal modelling language.
fhm is inspired by frp, in particular by Yampa. Like frp, fhm is often
realised as an embedding in a host functional language. Previous work
[65] used Haskell as the host language.

This section provides an introduction to fhm. It uses a new im-
plementation of the concept of fhm called Hydra. While the imple-
mentation reuses the name of previous implementations [63], it is en-
tirely new a. In particular, the functional host language, in which the
modelling language fhm is embedded, are implemented by the same
compiler. This section is purely meant as an introduction. A precise
definition of the language will be given in the next chapter. The goal of
the work will be to present the modelling of circuit 5.1 as a signal rela-
tion, as introduced below, and show how treating relations as first-class
enables great flexibility and modularity in the modelling process.

5.5.1— Signal relations

§2.3.1 introduced the concept of signals as time-varying values and
signal functions as functions between signals. This proves to be useful
abstraction in the context of frp and causal modelling. To capture the
semantics of differential equations as constraints, or predicates, over
signals, the notion of signal relation SR α is defined as a predicate on
signals of type α, conceptually:

SR α ≈ Signal α → Predicate

Where the idea of frp is to program with signal functions as first-class
values, Functional Hybrid Modelling (fhm) has first-class signal rela-
tions.

5.5.2— Individual equations as signal relations

The first task for modelling circuit 5.1 is to model each individual
component. In particular, one must provide the equations governing
the behaviour of the resistor, capacitor, inductance and voltage source
appearing in the circuit. Each component of the circuit can be mod-
elled as a signal relation between the voltage across it and the current
that flows through it. For instance, the behaviour of the resistor in Hy-
dra is captured by the following:

l e t r e s i s t o r r =

s i g r e l u , i {

u = r * i

}

91

https://gitlab.com/chupin/hydra-v2
https://gitlab.com/chupin/hydra-v2

5.5. Introduction to Functional Hybrid Modelling

Figure 5.5: Two compon-
ents connected in series

𝑢1

𝑖

𝑢2

𝑖

𝑢1 + 𝑢2

Figure 5.6: Two compon-
ents connected in parallel

𝑖1

𝑖1 + 𝑖2

𝑖2

𝑢

r e s i s t o r is a function parametrised by a real number r . Its type is
r e a l < -> S R (r e a l , r e a l) The keyword s i g r e l introduces a signal re-
lations between the signals u and i , called the interface variables of the
relation. Similarly to the proc-notation, these signals only exist inside
the body of the signal relation. Signal relations modelling a capacitor
and inductance can be written like so:

l e t c a p a c i t o r c =

s i g r e l u , i {

c * d e r u = i

}

l e t i n d u c t a n c e l =

s i g r e l u , i {

l * d e r i = u

}

Notice the use of the d e r keyword that allows to refer to the derivative
of a signal. Note that the argument to d e r needs not be an identifier
but can be any arbitrary signal of real type.

5.5.3—Higher-order signal relations
The voltage through two components connected either in series or

in parallel is given byKirchhoff ’s laws. Previously, these lawswere used
in ad-hoc ways when modelling in a causal setting. The non-causal
setting allows to state them once and then reuse them at will.

Connecting two components 1 and 2 in series (illustrated in fig-
ure 5.5) results in a component where the voltage across and current
through follows:

𝑢 = 𝑢1 + 𝑢2
𝑖 = 𝑖1
𝑖1 = 𝑖2

while connecting two components in parallel (illustrated in figure 5.6)
results in the following:

𝑢 = 𝑢1
𝑢1 = 𝑢2
𝑖 = 𝑖1 + 𝑖2

Since these laws are independent of the components being connec-
ted together, it is possible to implement them in Hydra by paramet-
rising over the signal relations describing each component, like so:

l e t s e r i a l c 1 c 2 =

s i g r e l u , i {

92

Chapter 5. Introduction to non-causal modelling

l e t u 1 , i 1 , u 2 , i 2 {

c 1 < <> u 1 , i 1 ;

c 2 < <> u 2 , i 2 ;

u = u 1 + u 2 ;

i = i 1 ;

i 1 = i 2

}

}

s e r i a l has type:

S R (r e a l , r e a l) < -> S R (r e a l , r e a l) < -> S R (r e a l , r e a l)

c 1 and c 2 are the signal relations describing the components. The < <>

symbol is a signal relation application: the equation c 1 < <> u 1 , i 1

states that u 1 and i 1 are related through signal relation c 1 . The signals
u 1 , i 1 , u 2 and i 2 are local signals declared with the l e t keyword.

The p a r a l l e l signal relation, modelling two components connec-
ted in parallel can be implemented in the same way:

l e t p a r a l l e l c 1 c 2 =

s i g r e l u , i {

l e t u 1 , i 1 , u 2 , i 2 {

c 1 < <> u 1 , i 1 ;

c 2 < <> u 2 , i 2 ;

u = u 1 ;

u 1 = u 2 ;

i = i 1 + i 2 ;

}

}

Using these two relations, it is possible to construct, by function ap-
plication, a signal relationwhich represents the right part of circuit 5.1,
containing the resistors, capacitor and inductance:

l e t r l c =

p a r a l l e l (s e r i a l (r e s i s t o r r 1)

(i n i t i a l i s e d _ c a p a c i t o r u c 0 c))

(s e r i a l (r e s i s t o r r 2)

(i n i t i a l i s e d _ i n d u c t a n c e i l 0 l))

In the above, i n i t i a l i s e d _ c a p a c i t o r and i n i t i a l i s e d _ i n d u c t a n c e

are used instead of c a p a c i t o r and i n d u c t a n c e . These relations are
defined as:

l e t i n i t i a l i s e d _ c a p a c i t o r u c 0 c = s i g r e l u , i {

c a p a c i t o r c < <> u , i ;

i n i t u = u c 0 ;

}

93

5.5. Introduction to Functional Hybrid Modelling

63. Giorgidze, ‘First
Class Models’. 2012

l e t i n i t i a l i s e d _ c a p a c i t o r i l 0 l = s i g r e l u , i {

i n d u c t a n c e l < <> u , i ;

i n i t i = i l 0

}

An i n i t equation is an equation that only holds at the very first in-
stant the signal relation starts to hold. Such equations are necessary to
set the initial values of state variables in the system. Hydra supports
arbitrary initialisation equations, although simple equations like the
ones above are given special treatment by the implementation and are
not solved by using a numerical solver but simply by translating them
to assignments.

To complete the circuit, a last signal relation is needed tomodel the
closed circuit formed by the voltage source and the rest of the compon-
ents. Again, this can be implemented as a higher-order signal relation:

l e t c l o s e c 1 c 2 = s i g r e l () {

l e t u 1 , i 1 , u 2 , i 2 {

c 1 < <> u 1 , i 1 ;

c 2 < <> u 2 , i 2 ;

u 1 = u 2 ;

i 1 = i 2 ;

}

}

c l o s e has no interface signal, since it is intended to represent a com-
plete and fully-determined circuit. The final circuit can now be as-
sembled. This final signal relation can be parametrised with a voltage
source, thus allowing its simulation with many different sources:

l e t c i r c u i t s o u r c e = c l o s e s o u r c e r l c

Results of the simulation of c i r c u i t with a constant voltage source and
a sine-wave voltage source are shown in figure 5.7 and 5.8.

5.5.4—Hybrid signal relations
Hydra possesses a switch construct, similar to the one introduced

for frp. In this version of Hydra, the switch is however more lim-
ited that what exists in Yampa or in previous versions of Hydra [63].
Suppose one wanted to simulate the behaviour of c i r c u i t with more
interesting voltage sources. For instance, a triangle wave function. A
trianglewave function could be implemented as the composition of the
asin and sin function. Indeed, since asin is the inverse of sin on [−1, 1],
a triangle wave function of amplitude A and frequency 𝑓 is given by:

Triangle(𝑡) = 2A
π arcsin (sin (2π𝑓 𝑡))

94

Chapter 5. Introduction to non-causal modelling

Figure 5.7: Simulation results for c i r c u i t under a constant voltage source

0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

0.1

0.2

0.3

0.4

0.5

0
𝑡

𝑢
𝑢𝑐

Figure 5.8: Simulation results for c i r c u i t under a sine-wave voltage source

0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

−1

−0.5

0.5

1

0
𝑡

𝑢
𝑢𝑐

95

5.5. Introduction to Functional Hybrid Modelling

Figure 5.9: Plot of the asin,
sin and Triangle functions
(with A = 1 and 𝑓 = 1

2π)

2 4 6

−1

1

sin
asin

Triangle

a. The functions grows by ±2A
over half a period length T

2 .
Hence the rate of change is given
by ± 2A

T
2
, which simplifies to ±A𝑓.

Figure 5.10: Illustration of
the zero-crossing of a signal
▲ represents the time at
which events are reported
by applying u p to the given
signal, while▲ represents
the events reported by
applying d o w n . Both are
reported with u p d o w n .

However, although it is correct, this definition has several prob-
lems:

— if evaluated with floating-point, the precision of the result can
decrease as time passes,

— the resulting function has a discontinuous derivative, which is
problematic if the derivative is needed, e.g. in the context of a
higher-index system,

— regardless of the previous points, the technique usedhere doesn’t
generalise well to other discontinuous or otherwise piecewise-
defined functions.

A better solution is to define the triangle function as a piecewise
function made of two alternating affine functions with slope ±A𝑓 a.
This can easily be encoded using a s w i t c h relation, in the following
way:

l e t t r i a n g l e _ w a v e a f =

s i g r e l w {

i n i t w = 0 . 0 ;

s w i t c h i n i t U p

m o d e U p < -> d e r w = a * f

w h e n u p (w - a) < -> D o w n

m o d e D o w n < -> d e r w = - a * f

w h e n d o w n (w - a) < -> U p

}

A switch relation consists of several modes whose names start with
a capital letter. At any given point in time only one mode is active,
meaning that the relations it specifies hold. By default, the first mode
is active when the relation is first activated. Optionally, however, the
initial mode can be specified with i n i t , like it is in the example. This
switch relation is made of two modes: U p , during which the equation:

d e r w = a * f

is active and D o w n , during which the equation:

d e r w = - a * f

is active. The transitions between modes occurs at events specified by
w h e n clauses. A w h e n clause specifies an event and the mode that the
switch will switch into when the event occurs. The events are specified
by means of three combinators: u p , d o w n and u p d o w n . These combinat-
ors take a real valued signal as argument and produce an event when
that signal crosses zero. The u p (resp. d o w n) combinator produces an
event only when the signal crosses zero from a negative to a positive
value (resp. from a positive to a negative value), while u p d o w n produces
an event anytime the signal crosses zero. In the case of t r i a n g l e _ w a v e ,

96

Chapter 5. Introduction to non-causal modelling

the transition occurs when the interface variable w reaches a (w - a

crosses 0 going up) or - a (w - a crosses 0 going down).
Modes can be given arguments. As bothmodes in the abovemodel

are very similar, this allows merging them into a single one:

l e t t r i a n g l e _ w a v e a f =

s i g r e l w {

i n i t w = 0 . 0 ;

s w i t c h i n i t T r i a n g l e (1)

m o d e T r i a n g l e (c) < -> d e r w = c * a * f

w h e n u p (w - a) < -> T r i a n g l e (- 1)

w h e n d o w n (w - a) < -> T r i a n g l e (1)

}

The new T r i a n g l e uses its argument to encode the direction of the
derivative of w : alternating going up and down using the zero-crossing
signals.

More interestingly, models such as the diode can also be expressed
in a modular fashion, something not possible in a causal language, as
explained in §5.1.1. The following is a model for an diode which is,
initially, closed:

l e t i c _ d i o d e =

s i g r e l u , i {

s w i t c h i n i t C l o s e d

m o d e C l o s e d < -> u = 0

w h e n d o w n (i) < -> O p e n

m o d e O p e n < -> i = 0

w h e n u p (u) < -> C l o s e d

}

Note that there is no way currently to specify programmatically what
the first mode of a switch should be. For the diode, this would allow to
specify the initial mode of the diode depending on the values of i and
u at the initial instant. While it would be extremely useful, this feature
is currently left as future work and will be discussed in chapter 9.

The simulation of signal relation c i r c u i t with a triangle wave sig-
nal source is given in figure 5.11.

In t r i a n g l e , the signal w is continuous through the mode change.
In general, Hydra assumes that any state variable is continuous through
a mode change. The definition of a state for that matter is any signal
which appears differentiated at least once in the signal relation, mean-
ing that whether or not it has been selected to be an actual state during
simulation is not relevant. Note further that this property is non local:
an interface variable may not appear differentiated in a particular sig-
nal relation, but can appear differentiated when used outside of that
particular signal relation. This property may also change depending

97

5.5. Introduction to Functional Hybrid Modelling

Figure 5.11: Simulation results for c i r c u i t under a triangle-wave voltage source

0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

−0.4

−0.2

0.2

0.4

0
𝑡

𝑢
𝑢𝑐

on the mode a signal relation is in, since a variable may appear differ-
entiated in one mode and not in another.

Considering all state variables to be continuous is sometime prob-
lematic. Recall the bouncing ball example from §2.3.4. One would
want to implement it like so in Hydra:

l e t f a l l i n g y 0 v y 0 = s i g r e l y , v y {

d e r y = v y ;

d e r v y = - 9 . 8 1 ;

i n i t (y , v y) = (y 0 , v y 0) ;

}

l e t b o u n c i n g y 0 v y 0 = s i g r e l y , v y {

s w i t c h i n i t B o u n c e (y 0 , v y 0)

m o d e B o u n c e (y 0 , v y 0) < ->

f a l l i n g y 0 v y 0 < <> y , v y ;

w h e n d o w n (y) < -> B o u n c e (y , - v y)

}

Both y and v y are states in these relations. However, although y can be
considered continuous, d y explicitly is not: it needs to be reinitialised.
Hydra can be made to consider a signal as reinitialised by marking it
with the r e i n i t keyword:

l e t b o u n c i n g y 0 v y 0 = s i g r e l y , v y {

s w i t c h i n i t B o u n c e (y 0 , v y 0)

m o d e B o u n c e (y 0 , v y 0) r e i n i t y , v y < ->

f a l l i n g y 0 v y 0 < <> y , v y ;

98

Chapter 5. Introduction to non-causal modelling

w h e n d o w n (y) < -> B o u n c e (y , - v y)

}

Marking y and v y as reinitialised informs Hydra that it should expect
i n i t equations for these two variables, and must assume that all their
derivatives are unknown at the time of switching.

5.5.5—Modelling by constraints

Hydra permits simulatingmodels expressed with constraints. For
instance, one can model the same electrical circuit, this time forcing
the voltage through the capacitor to follow a set function. Such a ‘con-
strained capacitor’ model can be implemented like so:

l e t c o n s t r a i n e d _ c a p a c i t o r c o n s t r a i n t c =

s i g r e l u , i {

c a p a c i t o r c < <> u , i ;

c o n s t r a i n t < <> u ;

}

It can then replace the i n i t i a l i s e d _ c a p a c i t o r relation in the r l c sig-
nal relation:

l e t c o n s t r a i n e d _ r l c c o n s t r a i n t =

p a r a l l e l (s e r i a l (r e s i s t o r r 1)

(c o n s t r a i n e d _ c a p a c i t o r c o n s t r a i n t c))

(s e r i a l (r e s i s t o r r 2)

(i n i t i a l i s e d _ i n d u c t a n c e i l 0 l))

Note how in this signal relation there is no initialisation equation for
the voltage across the capacitor, since it is expected that the constraint
determines its value at every instant (including the initial instant). The
full circuit can then assembledwith the voltage source leftunconstrained
using the empty signal relation n o o p :

l e t n o o p = s i g r e l x { }

l e t c o n s t r a i n e d _ c i r c u i t c o n s t r a i n t =

c l o s e n o o p (c o n s t r a i n e d _ c i r c u i t c o n s t r a i n t)

Results for simulating this circuit with different forcing functions
are given in figure 5.12 and 5.13.

5.5.6—Delimitations

The goal of this section is to give a clear account of what kinds
of model the current implementation of Hydra can effectively sim-
ulate. The limitations to the capabilities of Hydra are in part due to
limitations of the techniques Hydra implements (such as the way it
performs state selection or initialisation) and partly due to the lack of

99

5.5. Introduction to Functional Hybrid Modelling

Figure 5.12: Simulation results for c o n s t r a i n e d _ c i r c u i t with a sine-wave constraint

0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

−0.4

−0.2

0.2

0.4

0
𝑡

𝑢
𝑢𝑐

Figure 5.13: Simulation results for c o n s t r a i n e d _ c i r c u i t with a triangle-wave constraint

0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

−1

−0.5

0.5

1

0
𝑡

𝑢
𝑢𝑐

100

Chapter 5. Introduction to non-causal modelling

a. For which one iteration of
Newton’s method is always suf-
ficient to find a solution, see
§5.2.2.

b. That is, states are selected once
at the start of the simulation of a
given mode.

56. Elmqvist, Object-Oriented
Modeling of Hybrid Systems.
1993 — 103. Modelica Associ-
ation, Modelica Language Spe-
cification. 2021

some features that Hydrawould need to implement to allow themod-
eller to assist the implementation during the simulation. Note however
that these limitations are not inherent to the Hydra or fhm as an ap-
proach to implementing modelling languages, rather they stem from
the need to prioritise some features over other, given the limited re-
sources available for its development.

Currently, Hydra is perfectly capable of simulating higher-index
systems consisting only of linear equations. It is able to handle some
hybrid systems with varying index between modes, although this can
require substantial extra work from the modeller, for instance in the
formof additional reinitialisation equations to avoid underdetermined
or overdetermined systems. Hydra has support for non-linear equa-
tions although it may have some difficulties initialising and simulating
systems with non-linear equations. The difficulty with initialising a
system with non-linear equation is, in part, due to the need to find a
good initial guess to initialise a system of algebraic equations. While
it is not a problem for a linear system of algebraic equations a, it is
for non-linear systems. Finding a guess is often considered domain-
specific knowledge and therefore it is the responsibility of themodeller
to provide such a guess. Hydra does not currently have a way to let
the user specify a guess and instead chooses the same initial guess for
every signal, with the exception of signals for which there is a trivial
initial equation of the form:

i n i t x = c

where c is some constant; or, in the case of a mode change, signals
whose value was known in the previous mode. These limitations may
make Hydra fail to initialise a system, particularly ones with non-
linear equations, if the true initial value of a signal is not close to 0 ,
the value it uses by default. To avoid the problem, the easiest method
would be to allow for annotations either on variable declaration or at
mode change to allow to specify a guess for that variable.

The difficulty with simulating a system with non-linear equations
with Hydra is due to its state selectionmethod. As hinted to in §5.3.3,
the choice of dummy-derivative is crucial to perform the simulation
of a higher-index system. Hydra’s implementations however is quite
crude: it implements a static dummy-derivative algorithm b and se-
lects states based on a ‘first comes, first served’ basis: if a state variable
can be a dummy-derivative in such a way that this forms a valid set
of states, then it is selected, but that may not lead to a system that can
be effectively simulated. This can be alleviated by implementing better
state selections algorithms that take into account the values of signals
at mode change to perform state selection and by allowing the model-
ler to suggest or impose that a variable be used as a state. This can be
done by using special purpose annotations, like what is done in Mod-
elica or Dymola [56, 103].

101

Detailed specification of Hydra 6
This chapter provides a detailed specification of Hydra at the surface
level. It introduces both the functional host language and modelling
language embedded within it, with a specific focus on the latter. The
implementation is left for the next chapter.

§6.1 presents the abstract syntax ofHydra. §6.2 introduces its type
system, which presents similarities with the type system presented in
part I for sfrp. §6.3 introduces a small core language, which is a simpli-
fied version of the surface language and is easier to use for compilation.
It is this core language that will be used later to discuss the implement-
ation. Finally, §6.4 shows an interpretation of Hydra’s signal relations
in terms of dae and shows a simple simulation method for based on
this interpretation. The difficulties with mapping this interpretation
to a concrete implementations are then discussed to serve as a base for
the contributions of the next chapter.

6.1— Surface syntax

The surface syntax of the language is given in figure 6.1 in Backus-
Naur form. The language is a two-staged language, it consists of a func-
tional part, similar to ML-style language and a language for signal re-
lations. Most features have already been introduced with the previous
examples, with the exceptions of patterns and anonymous functions.

The functional host language for Hydra is arguably very prim-
itive, in comparison to mainstream functional languages. This work
was not an exercise in the compilation of efficient and expressive func-
tional languages. The choice of using a custom language for this work
was made in an attempt to give greater flexibility for experimenting
with new ideas, without being limited by the capabilities of the host
language. This has been instrumental in the development of the ideas
that will be presented in chapter 7.

A Hydra program consists of a series of declarations. A declara-
tion may either be a value declaration, which declares a name associ-
ated with an expression; or a type declaration. Currently, Hydra only
supports declarations of type aliases or records. In particular, support
for sum types is left as future work.

6.2—Type system

Hydra is statically typed and supports polymorphism. Types are
inferred at compile-time automatically, although binders and expres-

103

6.2. Type system

Figure 6.1: Hydra abstract syntax

‹⊕› ∶∶= ‘+ ’ | ‘- ’ | ‘* ’ | ‘/ ’ | ‘^ ’ (Binary operators)

‹unop› ∶∶= ‘s i n ’ | ‘c o s ’ | ‘t a n ’ | ‘s i n h ’ | ‘c o s h ’ | ‘t a n h ’ (Unary operators)
| ‘a s i n ’ | ‘a c o s ’ | ‘a t a n ’ | ‘a s i n h ’ | ‘a c o s h ’ | ‘a t a n h ’
| ‘s q r t ’ | ‘e x p ’ | ‘l o g ’

‹signal› ∶∶= ‹expr› (Constants)
| identifier
| ‘d e r ’ ‹signal›
| ‹signal› ‹⊕› ‹signal›
| ‹unop› ‹signal›
| ‹signal› ‘. ’ label (Field selection)
| ‘(’‹signal›‘) ’
| ‹signal› ‘, ’ ‹signal›

‹initMode› ∶∶= Identifier ‘(’ ‹expr› ‘) ’
‹targetMode› ∶∶= Identifier ‘(’ ‹signal› ‘) ’

‹patternMode› ∶∶= Identifier ‘(’ ‹pattern› ‘) ’

‹equation› ∶∶= ‹signal› ‘= ’ ‹signal›
| ‘i n i t ’ ‹signal› ‘= ’ ‹signal›
| ‹expr› ‘/ <> ’ ‹signal› (Signal relation application)
| ‘l e t ’ ‹pattern› ‘{ ’ ‹equation› ‘} ’
| ‹equation› ‘; ’ ‹equation›
| ‘s w i t c h ’ ‘i n i t ’ ‹initMode› ‹branch∗›

‹branch› ∶∶= ‘m o d e ’ ‹modePattern› ‘/ -> ’ ‘r e i n i t ’ identifier ∗ ‹equation› ‹condition›∗

‹condition› ∶∶= ‘w h e n ’ ‹event› ‘/ -> ’ ‹targetMode›

‹event› ∶∶= ‘u p ’ ‹signal›
| ‘d o w n ’ ‹signal›
| ‘u p d o w n ’ ‹signal›

‹pattern› ∶∶= ‘_ ’ (Wildcard pattern)
| identifier
| ‘(’‹pattern›‘) ’
| identifier ‘@ ’ ‹pattern› (Alias pattern)
| ‹pattern› ‘, ’ ‹pattern› (Product pattern)
| ‘{ ’ label ‘: ’ ‹pattern› ‘} ’ (Record pattern)

‹expr› ∶∶= constant
| identifier
| ‹expr› ‹expr› (Function application)
| ‘f u n ’ ‹pattern› ‘/ -> ’ ‹expr› (Anonymous functions)
| ‘s i g r e l ’ ‹pattern› ‘{ ’ ‹relation› ‘} ’
| ‹signal› ‹⊕› ‹expr›
| ‹unop› ‹expr›
| ‹expr› ‘. ’ label (Field selection)
| ‘(’‹expr›‘) ’

‹type› ∶∶= ‘r e a l ’ (Real type)
| identifier (Expression type variable)
| ‘∼’ identifier (Signal type variables)
| Identifier (Type constructor)
| ‹type› ‹type› (Type application)
| ‹type› ‘, ’ ‹type› (Product type)

‹typeDecl› ∶∶= ‹type› (Type synonym)
| ‘{ ’ label ‘: ’ ‹type› ‘} ’ (Record declaration)

‹declaration› ∶∶= ‘l e t ’ 𝑖 ‹pattern› ‘= ’ ‹expr› (Value declaration)
| ‘t y p e ’ 𝑖 ‘= ’ ‹typeDecl› (Type declaration)

104

Chapter 6. Detailed specification of Hydra

Figure 6.2: Hydra types syntax

‹τs› ∶∶= α𝑠
| ‘r e a l ’
| ‘(’ ‹τs› ∗ ‘) ’
| ‘{ ’ ℓ ‘: ’ ‹τs› ‘} ’

‹τe› ∶∶= α𝑒
| ‹τs›
| ‘(’ ‹τe› ∗ ‘) ’
| ‘{ ’ ℓ ‘: ’ ‹τe› ‘} ’
| ‹τe› ‘/ -> ’ ‹τe›
| ‘S R ’ ‹τs›

a. See §2.4.5

sions can be annotated with a type for clarity or to restrict the use of a
particular function or value.

The syntax of types is given in figure 6.2. Like the language itself,
types have two levels. There are types for signals, denoted τ𝑠 in fig-
ure 6.2 and types for expressions, denoted τ𝑒. This distinction stems
from the need to limit the type of signals to types which can be given
a representation as a continuously varying value, as touched upon in
the previous part a. In the case of Hydra, a signal type may only be a
real or a product (tuple or record) of signal types.

Likewise, there are two kinds of type variables, expression type
variables α𝑒 and signal type variables α𝑠, where signal type variables
may only unify to signal types. In type annotations, a signal variable is
denoted with ~ a whereas an expression type variable is denoted with a .
This distinction allows for safe polymorphic signal relations. Consider
the following signal relation:

l e t e q u a l _ c o n s t a n t c =

s i g r e l x {

x = c

}

Naïve type inference would infer the following type:

e q u a l _ c o n s t a n t : a < -> S R a

This function could then be applied to any expression, including ex-
pressions which do not have signal types, such as the identity function
i d . This would result in a signal relation which relates a signal of type
b < -> b which, arguably, wouldn’t make much sense. The two kinds of
type variables allows to instead infer the type:

e q u a l _ c o n s t a n t : ~ a < -> S R ~ a

105

6.3. Core language

Figure 6.3: Definition of 𝒮

Real

𝒮(real)

Signal variable

𝒮 (α𝑠)

Tuple
𝒮 (τ1) ⋯ 𝒮 (τ𝑛)

𝒮 ((τ1, … , τ𝑛))

Record
𝒮 (τ1) ⋯ 𝒮 (τ𝑛)
𝒮 ({ℓ1 ∶ τ1, … , ℓ𝑛 ∶ τ𝑛})

101. Milner et al., The Defin-
ition of Standard ML. 1997

149. Wadler et al., ‘How to
Make Ad-Hoc Polymorph-

ism Less Ad Hoc’. 1989
a. Type classes were pre-

cisely introduced as an ap-
proach to generalising ad-hoc

rules like the equality type
variables of Standard ML.

When applied to i d , the program is rejected since the type b < -> b can-
not unify to a signal type variable.

This method is directly adapted from Standard ML’s handling of
equality type variables [101] which solves a similar problem, namely
having a polymorphic equality function that only works for types for
which equality iswell-defined (excluding functions,most notably). Equal-
ity type variables are a special kind of type variables which can only
unify to types which have a well-defined equality, in the same way that
signal type variables in Hydra can only unify to types for which it
makes sense to consider as continuously varying values. An alternat-
ive would have been to implement a constraint system in the style of
Haskell’s type classes [149]. While being more general a, it is more
complicated to implement and the current approach happens to fit the
problem at hand particularly well.

The typing rules of the language are given as sets of inference rules
for each syntactical construct. These rules make use of environments
denoted Γ𝑒 and Γ𝑠 which map variables to types. Γ𝑒 is the environ-
ment of expression variables and Γ𝑠 is the environment of signal vari-
ables; ϵ denotes an empty environment. Figure 6.4 defines the relation
Γ𝑒, Γ𝑠 ⊢ 𝑠 ∶ τ which states that signal 𝑠 has type τ under environment
Γ𝑒 and Γ𝑠. Figure 6.5 defines the relation Γ𝑒 ⊢𝑒 𝑒 ∶ τ which states
that expression 𝑒 has type τ under environment Γ𝑒. Finally figure 6.6
defines the relation Γ𝑒, Γ𝑠 ⊢E E which states that equation E is well-
typed. This relation is overloaded to type branches (see the Branch
rule) and conditions (see the Condition rule). These relations make
use of additional relations: 𝒮(τ) (figure 6.3) which states that type τ is
a signal type; P(Γ, 𝑝, τ)which extends an environment Γwith variables
bound in pattern 𝑝 where pattern 𝑝 has type τ (its definition is omit-
ted) and ℒ(Γ𝑒, Γ𝑠, B,M, τ) which, given the label M of a mode, states
thatM is a mode defined by the set of branches B and that τ is the type
of the argument of mode M under environments Γ𝑒 and Γ𝑠.

6.3—Core language

After type-checking, the surface language is transformed into a
core language, which is a simplified version of the surface language.
Note that this transformation essentially concerns the language of sig-
nal relation, the functional part of the language is mostly unchanged,

106

Chapter 6. Detailed specification of Hydra

Figure 6.4: Hydra’s signals typing rules

Expr
Γ𝑒 ⊢ 𝑒 ∶ τ𝑒 𝒮 (τ𝑒)

Γ𝑒, Γ𝑠 ⊢ 𝑒 ∶ τ𝑒

Variable

Γ𝑒, Γ𝑠 ⊢ 𝑣 ∶ Γ𝑠[𝑣]

Der
Γ𝑒, Γ𝑠 ⊢ 𝑠 ∶ real

Γ𝑒, Γ𝑠 ⊢ der 𝑠 ∶ real

BinOp
Γ𝑒, Γ𝑠 ⊢ 𝑒1 ∶ real Γ𝑒, Γ𝑠 ⊢ 𝑒2 ∶ real

Γ𝑒, Γ𝑠 ⊢ 𝑒1 ⊕ 𝑒2 ∶ real

UnOp
Γ𝑒, Γ𝑠 ⊢ 𝑒 ∶ real

Γ𝑒, Γ𝑠 ⊢ unop 𝑒 ∶ real

FieldSel
Γ𝑒, Γ𝑠 ⊢ 𝑒 ∶ {ℓ1 ∶ τ1, … , ℓ𝑖 ∶ τ𝑖, … , ℓ𝑛 ∶ τ𝑛}

Γ𝑒, Γ𝑠 ⊢ 𝑒.ℓ𝑖 ∶ τ𝑖

Tuple
Γ𝑒, Γ𝑠 ⊢ 𝑒1 ∶ τ1 ⋯ Γ𝑒, Γ𝑠 ⊢ 𝑒𝑛 ∶ τ𝑛

Γ𝑒, Γ𝑠 ⊢ (𝑒1, … , 𝑒𝑛) ∶ (τ1, … , τ𝑛)

Figure 6.5: Hydra’s expression typing rules

Constant

Γ𝑒 ⊢ 𝑐 ∶ real

Variable

Γ𝑒 ⊢ 𝑣 ∶ Γ𝑒[𝑣]

BinOp
Γ𝑒 ⊢ 𝑒1 ∶ real Γ𝑒 ⊢ 𝑒2 ∶ real

Γ𝑒 ⊢ 𝑒1 ⊕ 𝑒2 ∶ real

UnOp
Γ𝑒 ⊢ 𝑒 ∶ real

Γ𝑒 ⊢ unop 𝑒 ∶ real

App
Γ𝑒 ⊢ 𝑓 ∶ τ → τ′ Γ𝑒 ⊢ 𝑠 ∶ τ

Γ𝑒 ⊢ 𝑓 𝑠 ∶ τ′

Lambda
P (Γ𝑒, 𝑝, τ) ⊢ 𝑒 ∶ τ′

Γ𝑒 ⊢ fun 𝑝 → 𝑒 ∶ τ → τ′

SigRel
Γ𝑒, P (ϵ, 𝑝, τ) ⊢E E 𝒮 (τ)
Γ𝑒 ⊢ sigrel 𝑝 { E } ∶ SR τ

a. This is always possible since,
after monomorphisation, sig-
nal types can only be nested
products types of real.

with the exception that all polymorphic functions are made mono-
morphic. That is, when a polymorphic expression is used and instan-
tiated with a type in which no type variable (signal or expression) ap-
pears, the expression is duplicated and replaces the original expression
at the use site. Naturally, when an expression is instantiated several
time with the same type, a single shared duplicate is created.

At the signal level, all signals are flattened in such a way that every
signal identifier has type real. Complex patterns are flattened to lists of
identifiers a. Equations between product types of signals are converted
into list of equations between the constituent. Finally, the derivative of
signals on which d e r is applied is computed, such that d e r is only ap-
plied to variables. This can lead to a variable being differentiated mul-
tiple times, so the core language supports a notion of 𝑛 differentiated
identifiers. The identifier itself is then represented as its 0-th derivative.
When the derivative of a signal appears in an event, a dummy-variable
equal to said derivative is introduced and replaces the derivative in the
event. This is to avoid cases like the following:

l e t b a r = s i g r e l x {

107

6.3. Core language

Figure 6.6: Hydra’s equations typing rules

Equation
Γ𝑒, Γ𝑠 ⊢ 𝑠1 ∶ τ Γ𝑒, Γ𝑠 ⊢ 𝑠2 ∶ τ

Γ𝑒, Γ𝑠 ⊢E 𝑠1 = 𝑠2

InitEquation
Γ𝑒, Γ𝑠 ⊢ 𝑠1 ∶ τ Γ𝑒, Γ𝑠 ⊢ 𝑠2 ∶ τ

Γ𝑒, Γ𝑠 ⊢E init 𝑠1 = 𝑠2

Local
Γ𝑒, P(Γ𝑠, 𝑝, τ) ⊢E E
Γ𝑒, Γ𝑠 ⊢E let 𝑝 { E }

Sequence
Γ𝑒, Γ𝑠 ⊢E E1 Γ𝑒, Γ𝑠 ⊢E E2

Γ𝑒, Γ𝑠 ⊢E E1; E2

App
Γ𝑒 ⊢ 𝑒 ∶ SR τ Γ𝑒, Γ𝑠 ⊢ 𝑠 ∶ τ

Γ𝑒, Γ𝑠 ⊢E 𝑒 < <> 𝑠

Switch
ℒ(Γ𝑒, Γ𝑠, M, B, τ) Γ𝑒 ⊢ 𝑒 ∶ τ Γ𝑒, Γ𝑠 ⊢E B

Γ𝑒, Γ𝑠 ⊢E switch initM(𝑒) B

Branch
ℒ(Γ𝑒, Γ𝑠, M, B, τ) P (Γ𝑒, 𝑝, τ) , Γ𝑠 ⊢E E P (Γ𝑒, 𝑝, τ) , Γ𝑠, B ⊢E C

Γ𝑒, Γ𝑠, B ⊢E modeM(𝑝) → E C

Condition
Γ𝑒, Γ𝑠 ⊢ 𝑒 ∶ real ℒ(Γ𝑒, Γ𝑠, M, B, τ) Γ𝑒, Γ𝑠 ⊢ 𝑒′ ∶ τ

Γ𝑒, Γ𝑠, B ⊢E when up(𝑒) → M(𝑒′)

s w i t c h i n i t F o o (0)

m o d e F o o (y) < -> x = y

w h e n u p (d e r x) < -> F o o (x)

}

In b a r , the derivative of x is not necessarily defined, since x might be an
algebraic variable. During the translation to core, a dummy-variable
is introduced as follows:

l e t b a r = s i g r e l x {

l e t d x {

d x = d e r x ;

s w i t c h i n i t F o o (0)

m o d e F o o (y) < -> x = y

w h e n u p (d x) < -> F o o (x)

}

}

The added equation and variable force the existence of d e r x in the
signal relation and avoid any unpleasant surprises later on, such as the
the derivative of x being required for detecting an event but never being
properly computed by the numerical solver.

108

Chapter 6. Detailed specification of Hydra

The only extension to the functional layer of the language is the
ability to select tuple fields, with a syntax similar to record label select-
ors. This is useful when flattening signal relations of that form:

l e t e x (c : (r e a l , r e a l)) =

s i g r e l x , y {

(x , y) = c

}

which can translate to the following:

l e t e x (c : (r e a l , r e a l)) =

s i g r e l x , y {

x = c . 0 ;

y = c . 1 ;

}

without the need to flatten c .
Figure 6.7 shows the abstract syntax of equations and signals in the

core language.
In the following discussions, in particular chapter 7, the core lan-

guage will be used rather than the surface language.

6.4—A simple simulation method

In this section, a simple translation from the core language to a
hybrid dae is presented. Here a hybrid dae is defined as a dae paired
with a set of events to monitor and a transition function, which pro-
duces a new hybrid dae when an event is triggered. A simple sim-
ulation method is then presented for such a hybrid dae. Finally, the
feasibility and shortcomings of this representation are discussed. In
particular, the difficulties associated with the translation being highly
non-modular are discussed; their origin is analysed and will lead to
the modular compilation scheme for Hydra which will be presented
in the next chapter.

6.4.1—Extracting dae from signal relations

Given a signal relation and the modes in which each switch cur-
rently is, it is possible to extract a dae, that is, a set of variables and
undirected equations. It is in general only partial: the modular ap-
proach promoted by Hydra makes it so that most signal relations do
not fully specify the value of all signals in the system.

In addition, it is possible to extract a set of additional equations
that hold at the very first time instant and the set of variables to be
reinitialised. For this step, it is important to know whether a given
switch has just been activated through a transition. This is necessary
for deciding whether a given initialisation equation is active.

109

6.4. A simple simulation method

Figure 6.7: Core language abstract syntax

‹signal› ∶∶= ‹expr›
| ‘d e r 𝑛’ identifier (𝑛-th derivative, 𝑛 statically known)
| ‹signal› ‹⊕› ‹signal› (⊕ ∈ ‘+ ’, ‘- ’, ‘* ’, ‘/ ’, ‘� ’)
| ‹unop› ‹signal› (‹unop› ∈ ‘s i n ’, ‘c o s ’, ‘s q r t ’, …)
| ‘(’‹signal›‘) ’
| ‹signal› ‘, ’ ‹signal›

‹condition› ∶∶= ‘w h e n ’ ‹event› ‘/ -> ’ identifier‘(’𝑖𝑑𝑒𝑛𝑡𝑖𝑓 𝑖𝑒𝑟 ∗ ‘) ’

‹relation› ∶∶= ‹signal› ‘= ’ ‹signal›
| ‘i n i t ’ ‹signal› ‘= ’ ‹signal›
| ‹expr› ‘/ <> ’ ‹signal›
| ‘l e t ’ ‹pattern› ‘{ ’ ‹relation› ‘} ’
| ‹relation› ‘; ’ ‹relation›
| ‘s w i t c h ’ ‘i n i t ’ ‹initMode› ‹branch∗›

‹branch› ∶∶= ‘m o d e ’ Identifier‘(’identifier ∗ ‘) ’ ‘/ -> ’
‘r e i n i t ’ identifier ∗ ‹equation› ‹condition›∗

‹condition› ∶∶= ‘w h e n ’ ‹event› ‘/ -> ’ Identifier‘(’identifier ∗ ‘) ’

‹event› ∶∶= ‘u p ’ identifier
| ‘d o w n ’ identifier
| ‘u p d o w n ’ identifier

‹pattern› ∶∶= 𝑖
| ‘(’‹pattern›‘) ’

‹expr› ∶∶= 𝑖
| 𝑐
| ‹expr› ‹expr›
| ‘f u n ’ ‹pattern› ‘→ ’ ‹expr›
| ‘s i g r e l ’ ‹pattern› ‘{ ’ ‹relation› ‘} ’

110

Chapter 6. Detailed specification of Hydra

a. When a transition is taken
that doesn’t change the mode a
switch is in, e.g. in the definition
of t r i a n g l e _ w a v e , the switch
is still considered to have been
newly entered.

103. Modelica Association, Mod-
elica Language Specification.
2021
32. Capper, ‘Semantics Methods
for Functional Hybrid Model-
ling’. 2014

Assuming all initialisation equations are active whenever a switch
occurs would be problematic. For instance, in the example circuit
that was used in this chapter, it is clear that the initialisation equation
which sets the voltage through the capacitor to 0 at the first time in-
stant should not be used if a structural change somewhere else in the
circuit occurs (e.g. in the definition of the voltage source). A similar
rule is in place for reinitialisation statements in branches: they only
hold when the branch has just been entered through a transition, or
if the branch is the first branch of the switch and the switch has just
become active a.

These informations can be encoded in a state type, which gives the
state a given switch is in (containing the label of the activemode, along
with the values of the mode’s arguments), whether it is the first time it
is active, and the state of any switch appearing inside the active branch.
No other state is needed for other constructs of Hydra, in the absence
of signal relation applications after inlining. The state of a list of equa-
tions can simply be represented as the list of the states of each equa-
tions.

An alternative would be to use a similar combinator as the one
used in frp: switching then amounts to applying a function, which
can generate initialisation equations and reinitialisation information
at the point of application and then the rest of the dae. The difficulties
with efficiently representing such switches have already been discussed
in part I. Currently Hydra does not use this representation to avoid
some complexity in the code generation, preferring the representation
with explicit labels, which essentially amount to the representation dis-
cussed at the start of §3.4.3. The implementation of a general switch
combinator like the one in frp is left as future work, but I would ex-
pect the work presented in part I to adapt well to the compiled setting
of fhm.

Extraction functions can then be implemented that produce the
list of equations, initialisation equation, reinitialisation information,
etc. The advantage of explicitly representing the state outside of the
equation system is that this allows a transition function to be defined
simply as producing a new state, and not a whole equation system,
which maps better to an implementation. Figure 6.9 gives 3 examples
of such functions: R, which extracts the list of active equations from
a signal relation, I, which produces the list of additional initialisation
equations and Reinit, which extracts a list of reinitialised signals from
the signal relation.

This translation of Hydra to systems of differential equations can
be seen as an informal semantics for signal relations. This method is
used by other non-causal languages, for instance Modelica, which
gives meaning to models by specifying their translation to systems of
equations [103]. A similar approach was used in [32] to propose a

111

6.4. A simple simulation method

Figure 6.8: Simulation process of a Hydra signal relation

Index re-
duction &

State selection

Algebraic
solver

dae
solver

Transition
function

SolutionInitial
state

Initial
equations

Index-1 equations

Initial
conditions

Eve
nts

Continuity in-
formationsNew state

63. Giorgidze, ‘First
Class Models’. 2012

semantics for fhm models. In [63], the author instead proposed an
ideal semantics based on viewing signal relations as second-order lo-
gic predicates: signal relationswere then viewed through the lens of the
ideal definition of functions from time-varying value to logic proper-
ties given in §5.5.

6.4.2— Simulation

After the equations have been extracted, the resulting dae, exten-
dedwith its initial conditions, can be solvedwith the techniques presen-
ted in chapter 5. Index-reduction is performed, in order to produce a
dae of index-1, eventually differentiating some equations in the sys-
tem. Initialisation can then be performed using an algebraic solver
and the dynamic simulation proceeds using a dae solver. Events are
monitored by the solver and when one occurs, the transition function
produces a new state, which is used to construct a new hybrid dae, and
the process repeats.

The simulation loop is summarized with the diagram in figure 6.8.

6.4.3— Interpretation or compilation strategies

From the list of equations representing an index-1 dae, it is pos-
sible to extract a residual function to provide to a numerical solver.
This can be done either by providing an interpreter or by generating
machine code from the list of equations.

When generating code, there are some advantages to this whole-
program compilation approach, particularly for optimisations; both
of the original equation systems (e.g. equalities and otherwise trivial
equations can easily be eliminated) and of its representation in code:

112

Chapter 6. Detailed specification of Hydra

34. Casella, Simulation of Large-
Scale Models in Modelica. 2015
77. Höger, ‘Operational Se-
mantics for a Modular Equation
Language’. 2013

154. Zimmer, ‘Equation-Based
Modeling of Variable-Structure
Systems’. 2010

57. Elmqvist et al., ‘Systems
Modeling and Programming in
a Unified Environment Based
on Julia’. 2016 — 65. Giorgidze
et al., ‘Higher-Order Non-Causal
Modelling and Simulation of
Structurally Dynamic Systems’.
2009

29. Caillaud et al., ‘Implicit
Structural Analysis of Mul-
timode DAE Systems’. 2020

there is usually no conditionals or jumps in the code nor function
calls (apart to elementary mathematical functions), which gives the
backend a lot of room to optimise.

However, it also has obvious disadvantages. As models become
large, many equations appear multiple times and get duplicated un-
necessarily [34, §2.6]. This causes long compilation time, which can-
not be shortened by partially compiling code. [77] also cites legal and
economic concerns, since it is impossible to distribute a library for a
non-causal language as a compiled artifact. In the context of hybrid
models, the problem is made worse, since a new dae is generated at
each mode change. For that reason, implementations of hybrid non-
causal languages have usually been either interpreted [154] or made
use of a jit compiler [57, 65].

It would be much better if partial models (partial signal relations
in Hydra’s case) could be compiled independently. That is, if code
would be generated for the residual function corresponding to the list
of equations that form a signal relation once and reused wherever the
signal relation is applied.

While it is possible in the context of causal modelling, it is not so
with non-causal models due to higher-index systems. In such cases,
additional equations must be provided that correspond to differenti-
ated versions of existing ones. Existing index-reduction algorithms are
not modular, in the sense that it is not possible to determine which
equation must be differentiated without having a complete view of the
system. This is also a problem for hybrid systems since the dae of one
mode may have a different index from the dae in the other mode or
require different equations to be differentiated. Determining the com-
plete set of equations that needs to be differentiated requires enumer-
ating every possible mode, which is not generally possible in the pres-
ence of unbounded structural dynamism. Although recent work [29]
has been proposed to compute the set of latent equations for a dynamic
model, the model still has to be complete at the moment the algorithm
is applied.

The solution to this problem would be to generate code that can
compute an arbitrary derivative of a Hydra signal. When a differen-
tiated version of an equation is needed, there would then be no need
to generate new code. However, commonly used techniques for per-
forming differentiation of equations do not usually allow for this. The
next chapter will then explore an alternative approach, called order-
parametric differentiation, which allows for the generation of code able
to compute any derivative of the expression it represents efficiently.
This allows to compile Hydra ahead-of-time and in a modular fash-
ion.

113

6.4. A simple simulation method

Figure 6.9: Extracting a dae automata from a signal relation

State ∶∶= ϵ
| State ∶∶ State
| Bool ×Mode × State

R(_, 𝑥 = 𝑦) = [𝑥 − 𝑦]
R(_, init 𝑥 = 𝑦) = []
R(S, let 𝑝 in 𝑒) = R(S, 𝑒)

R((_, ℓ(𝑒), S), switch B) = R(S, B!ℓ(𝑒))
R (S1 ∶∶ S2, 𝑒1; 𝑒2) = R(S1, 𝑒1) ++ R(S2, 𝑒2)

I(_, _, 𝑥 = 𝑦) = [𝑥 − 𝑦]
I(_, true, init 𝑥 = 𝑦) = [𝑥 − 𝑦]
I(_, false, init 𝑥 = 𝑦) = []
I(S, new, let 𝑝 in 𝑒) = I(S, new, 𝑒)

I((new, ℓ(𝑒), S), switch B) = I(S, new, B!ℓ(𝑒))
I (S1 ∶∶ S2, new, 𝑒1; 𝑒2) = I(S1, new, 𝑒1) ++ I(S2, new, 𝑒2)

V(_, 𝑥 = 𝑦) = []
V(_, init 𝑥 = 𝑦) = []
V(S, let 𝑝 in 𝑒) = 𝑝V ∶∶ (S, 𝑒)

V((_, ℓ(𝑒), S), switch B) = V(S, new, B!ℓ(𝑒))
V (S1 ∶∶ S2, 𝑒1; 𝑒2) = V(S1, 𝑒1) ++ V(S2, 𝑒2)

R𝑒(_, _, 𝑥 = 𝑦) = []
R𝑒(_, true, init 𝑥 = 𝑦) = []
R𝑒(_, false, init 𝑥 = 𝑦) = []
R𝑒(S, new, let 𝑝 in 𝑒) = I(S, new, 𝑒)

R𝑒((true, ℓ(𝑒), S), switch B) = Reinit (B!ℓ(𝑒)) ++ R𝑒(S, new, B!ℓ(𝑒))
R𝑒 (S1 ∶∶ S2, new, 𝑒1; 𝑒2) = R𝑒(S1, new, 𝑒1) ++ I(S2, new, 𝑒2)

114

84. Karczmarczuk, ‘Functional
Differentiation of Computer
Programs’. 2001

Modular compilation of signal
relations 7
In the previous chapter, the Hydra language was introduced. At the
end of the chapter, the interpretation of of signal relations as Differ-
ential Algebraic Equation (dae) was presented and implementation
strategieswere discussed. In particular, the fact that, because of higher-
index systems, which potentially requires arbitrary differentiation of
part of the equation system, non-causal languages are typically not
compiled modularly. The drawbacks of this whole-program approach
was also touched upon.

In this chapter, to address these problems, we explore the possibil-
ity of generating code capable of computing an arbitrary derivative of
a formula. Computation of arbitrary derivatives of an expression has
been explored in the automatic differentiation literature. For instance,
Karczmarczuk [84] showed how, exploiting lazy evaluation, derivat-
ives of arbitrary order can be computed on demand. However, ques-
tions of efficiency aside, the runtime support needed for lazy evalu-
ation is considerable and not a particularly natural fit with the dae
solvers and other components typically used for implementing this
class of languages. Instead, this chapter presents an approach called
order-parametric differentiation where the code generated for an ex-
pression is parametrised on the order of the derivative. It can thus be
used to compute any derivative at any point (including the undiffer-
entiated value of the expression for order 0). The objective is to gen-
erate modular code in the usual, programming-language sense of the
term. Compilers for programming languages, likeC, Java orHaskell,
compile the code for a function once and then simply use a symbol to
jump into the body of the function when it is being called. This allows
separately compiled modules to be joined by a linker, without further
compilation as such. Simulation code for models should also be com-
piled into a function and use the same mechanism when one model is
used in another, allowing separately compiled models to be linked in
the conventional sense. The ideas presented here are applicable gener-
ally and not limited to Hydra or fhm. Further, there are pros and
cons of the proposed approach, and as such it should be viewed as
a complement to existing implementation techniques for cases where
true modular compilation is particularly important, not necessarily as
a complete replacement for existing techniques.

This chapter is organised as follows. In §7.1, an intermediate form

115

7.1. The Intermediate Imperative Representation

Figure 7.1: iir’s abstract syntax

‹program› ∶∶= ‘p r o g r a m ’ ‹input› ‹expr›

‹input› ∶∶= identifier ‘: ’ ‹τ›
| ‹input› ‘, ’ ‹input›

‹expr› ∶∶= ‹atom›
| ‹atom›‘[’‹atom›‘] ’ (Pointer offset)
| ‹atom›‘� ’‹atom›
| ‘u n o p ’ ‹atom›
| ‹atom› ‘= ’ ‹atom› (Integer equality)
| ‹atom› ‘m o d ’ ‹atom› (Integer modulo)
| ‹expr› ‘; ’ ‹expr›
| ‘l e t ’ identifier ‘: = ’ ‹expr› ‘i n ’ ‹expr›
| ‘a l l o c a t e ’ ‹τ› ‘[’‹atom›‘] ’ (Uninitialised memory allocation)
| ‘! ’ ‹atom› (Pointer derefencing)
| identifier ‘← ’ ‹atom› (Set pointer value)
| ‘i f ’ ‹atom› ‘t h e n ’ ‹expr› ‘e l s e ’ ‹expr›
| ‘s u m ’identifier‘f r o m ’‹atom›‘t o ’‹atom› ‹expr› ‘e n d ’
| ‘p r o d ’identifier‘f r o m ’‹atom›‘t o ’‹atom› ‹expr› ‘e n d ’
| ‘i t e r ’identifier‘f r o m ’‹atom›‘t o ’‹atom› ‹expr› ‘e n d ’

‹atom› ∶∶= constant (Real and integer constants)
| identifier (Intermediate identifier)
| ‘D i f f ’ ‘(’ signal ‘, ’ ‹atom› ‘) ’ (Differentiated signal)

‹τ› ∶∶= ⊤ (Unit type)
| ℝ
| ℤ
| Pointer ‹τ›

89. Lattner et al., ‘LLVM: A
Compilation Framework for
Lifelong Program Analysis
and Transformation’. 2004

(the Intermediate Imperative Representation (iir)) is introduced that
represents mathematical expressions as imperative programs. In §7.2,
the idea of order-parametric differentiation is then introduced and the
compilation ofHydra equations to order-parametric iir code is presen-
ted. In §7.3, the compilation of signal relations as a whole is then dis-
cussed. §7.4 consists of performance benchmarks of order-parametric
code against more traditional approaches to the generation of simula-
tion code.

7.1—The Intermediate Imperative Representation

Hydra ultimately compiles to llvm [89], which is a low-level lan-

116

Chapter 7. Modular compilation of signal relations

131. Rosen et al., ‘Global Value
Numbers and Redundant Com-
putations’. 1988

guage using Static Single Assignment (ssa) form [131]. It is specific-
ally designed to be used by compilers as an intermediate representation
between the original language and machine-code. The llvm project is
a large effort that provides infrastructure for compiler implementers
based on the llvm intermediate representation. It provides compilers
(ahead-of-time or just-in-time), optimisers, debuggers, etc. for a wide
variety of architectures. For a language like Hydra, where execution
speed is of prime importance but with little programmer time available
to implement the compiler, llvm is a particularly good fit, as it enables
the compilation of Hydra to efficient code with minimum effort.

While it is possible to compile Hydra signals and equations dir-
ectly to llvm, itwouldmake the discussion in this chaptermuchharder
to follow: llvm is not intended to be written or read by humans and
is a fairly large language of which Hydra uses a significant portion of.
Having a custom intermediate language which contains exactly what
is needed for compilation is therefore a better solution for the clarity
of the exposition. In later section, it will also prove useful for some
parts of the code generator. In particular §7.3.3 will demonstrate how
some operations are in fact easier to perform over this intermediate
form than over the original representation of signals.

This new language is called Intermediate Imperative Representa-
tion (iir). As its name suggests, it is a small imperative language with
just the necessary constructs to compile Hydra signals to efficientma-
chine code. Its abstract syntax is given in figure 7.1. The reader might
find it helpful to pay attention to the following points. Firstly, note that
signals, represented by a pair of an identifier and differentiation index
are separate from mere identifiers, which contain the results of inter-
mediate computations. Note that the differentiation index need not be
a constant. Then, operators (unary or binary) can only be applied to
atomic expressions. When writing example programs, this constraint
will sometimes be relaxed for the sake of clarity. Finally the language
supports pointers and explicit memory allocation, the latter being in-
troduced with the keyword ‘a l l o c a t e ’. The way memory allocation is
dealt with efficiently will be discussed in §7.3.2. Note that offsets of
pointers are computed with the 𝑥[𝑖] syntax, which represents a pointer
offset by 𝑖 from 𝑥. Unlike in C, the pointer is not automatically derefer-
enced, this is done using ‘! ’. Storing a value in memory location is
done with the syntax 𝑝 ← 𝑥, which stores the value 𝑥 at pointer 𝑝. The
language is typed, with the type system supporting integers, reals and
pointers over types. The unit type ⊤ is used to give a type to the result
of expression constructed with ← or ‘i t e r ’.

There is no notion of program application in the syntax. However
for the purpose of clarity, the application of a program 𝑝 with 𝑛 ar-
guments to 𝑛 atomic expression is defined as expanding to the body of
the programwhere the named arguments have been substituted by the

117

7.2. Compiling equations

27. Buden et al., Nu-
merical Analysis. 2011

arguments. This application is denoted by 𝑝 (𝑥1, 𝑥2, … , 𝑥𝑛).

7.2—Compiling equations

7.2.1— Introduction to automatic differentiation
Numerical differentiation [27] approximates the value of a deriv-

ative in a point from the original function (or program), typically by
approximating the derivative with the growth rate between two points
next to the point of evaluation of the derivative. It is, in essence, the
opposite of numerical integration. Its main disadvantage is the impre-
cision it suffers from. In a general purpose modelling language, this
can be problematic since the compiler is expected to handle a wide
variety of system equally well. An alternative is symbolic differenti-
ation, which operates on the analytic representation of the function to
produce a representation of the derivative. Although it produces exact
results, the size of the representation grows quickly and can lead to in-
efficiencies if naively translated to machine code, as a lot of subterms
appear multiple times.

Automatic differentiation is an alternative approach that does not
suffer from either problem. It doesn’t have to be applied to a math-
ematical expression but can even be applied directly to the represent-
ation of a computer program. The idea of automatic differentiation is
to consider that the derivative of every subterm in a program can be
computed independently. If that subterm is named, then its derivative
can be computed once and reused at will when it is required again.

Consider for instance the following function:

𝑓 (𝑡) = sin(2𝑡⏟
𝑥1
)

⏟⏟⏟⏟⏟⏟⏟
𝑥2

+ 𝑡3⏟
𝑥3

It can be compiled as an iir program with one input, the real 𝑡:
Program 𝑡 ∶ ℝ

let 𝑥1 ∶= 2 ∗ 𝑡 in
let 𝑥2 ∶= sin (𝑥1) in
let 𝑥3 ∶= 𝑡3 in
𝑥2 + 𝑥3

Suppose one wished to emit a program that could compute 𝑓 ′,
given the value of 𝑡. By symbolic differentiation, the expression for
𝑓 ′ would be:

𝑓 ′(𝑡) = 2 cos(2𝑡) + 3𝑡2

The idea of automatic differentiation is that the program that im-
plements this function, reduces to a composition of elementary oper-
ations and functions. This is particularly visible in iir where operators

118

Chapter 7. Modular compilation of signal relations

are only applied to atomic expressions. Consider the program repres-
enting 𝑓. Thefinal expression in the program 𝑥2+𝑥3 can be easily differ-
entiated knowing the derivative of 𝑥2 and 𝑥3. These derivatives can be
computed easily from their definition, whichmight require further dif-
ferentiation of other definitions or other definitions to be introduced
if the derivative cannot be computed with just one operation, for in-
stance the derivative of the product requires two multiplications and
an addition. This procedure describes forward mode automatic differ-
entiation and, applied to the code for 𝑓, it yields the following program
for 𝑓 ′:

Program 𝑡 ∶ ℝ
let 𝑥1 ∶= 2 ∗ 𝑡 in
let 𝑥′1 ∶= 2 in
let 𝑥2 ∶= sin (𝑥1) in
let 𝑦1 ∶= cos (𝑥1) in
let 𝑥′2 ∶= 𝑥′1 ∗ 𝑦1 in
let 𝑥3 ∶= 𝑡3 in
let 𝑦2 ∶= 𝑡2 in
let 𝑥′3 ∶= 3 ∗ 𝑦2 in
𝑥′2 + 𝑥′3

One can then repeat the operation to compute higher-order deriv-
ative, like the second order derivative of 𝑓 below. Note that it is benefi-
cial in this case to remember whether an identifier binds the derivative
of a previous identifier or not, e.g. it is important to remember that 𝑥′1
is the first-order derivative of 𝑥1:

Program 𝑡 ∶ ℝ
let 𝑥1 ∶= 2 ∗ 𝑡 in
let 𝑥′1 ∶= 2 in
let 𝑥″1 ∶= 0 in
let 𝑥2 ∶= sin (𝑥1) in
let 𝑦1 ∶= cos (𝑥1) in
let 𝑦 ′1 ∶= 𝑥′1 ∗ 𝑥2 in
let 𝑥′2 ∶= 𝑥′1 ∗ 𝑦1 in
let 𝑦3 ∶= 𝑥″1 ∗ 𝑦1 in
let 𝑦4 ∶= 𝑥′1 ∗ 𝑦

′
1 in

let 𝑥″2 ∶= 𝑦3 + 𝑦4 in
let 𝑥3 ∶= 𝑡3 in
let 𝑦2 ∶= 𝑡2 in
let 𝑦 ′2 ∶= 2 ∗ 𝑡 in
let 𝑥′3 ∶= 3 ∗ 𝑦2 in
let 𝑥″3 ∶= 6 ∗ 𝑦 ′2 in
𝑥″2 + 𝑥″3

In contrast with symbolic differentiation, automatic differentiation

119

7.2. Compiling equations

70. Griewank et al., Eval-
uating Derivatives. 2008

a. Note that, when 𝑘 is a nat-
ural number, this formula

also gives 𝑓 (𝑛)(𝑡) = 0, when
𝑛 > 𝑘, since one of the

factors in the product is 𝑘 − 𝑘.

81. ISO, ISO C Stand-
ard 1999. 1999

allows previously computed values of the derivatives of subexpressions
to be reused and, in general, only yields code that is a constant factor
larger than the original code [70].

7.2.2—Order-parametric differentiation
Automatic differentiation is thus an efficient technique to compute

the derivative of a function represented by a program. While applying
it repeatedly allows for higher-order derivatives to be computed, the
requirement to generate modular code is that a single program can
compute any derivative of an expression. This clearly cannot be done
with the first-order scheme that was presented earlier without resort-
ing to recompilation or symbolic manipulation.

The idea of this work is instead to consider other rules of differen-
tiation, that are parametric in the order of differentiation. The math-
ematical background is established in this section, which shows out to
obtain symbolic formulations for the 𝑛-th derivative of mathematical
expressions. A generalisation of the automatic differentiation strategy
presented earlier is then established; and the full translation of Hydra
signals into iir programs able to compute an arbitrary derivative of a
signal is shown.
7.2.2.1—Mathematical background Let’s consider this simple function,
defined for some constant 𝑘 ∈ ℝ:

𝑓 (𝑡) = 𝑡𝑘

The successive derivatives of 𝑓 are:

𝑓 ′(𝑡) = 𝑘𝑡𝑘−1

𝑓 ″(𝑡) = 𝑘(𝑘 − 1)𝑡𝑘−2

𝑓 (3)(𝑡) = 𝑘(𝑘 − 1)(𝑘 − 2)𝑡𝑘−3

⋮

𝑓 (10)(𝑡) = 𝑘(𝑘 − 1)⋯ (𝑘 − 9)𝑡𝑘−10

⋮

A pattern quickly becomes apparent and one can see that 𝑓 (𝑛) is
given by the following formula a:

𝑓 (𝑛)(𝑡) = 𝑡𝑘−𝑛
𝑛−1
∏
𝑖=0

(𝑘 − 𝑖)

Many common functions admit such formulas for their 𝑛-th deriv-
atives. In particular this holds for all the functions supported by Hy-
dra and by theCmath header library [81], which are given in table 7.1.
This table also gives the formulas for multiplication and division by
treating it as a product and an exponentiation with exponent −1.

120

Chapter 7. Modular compilation of signal relations

Table 7.1: 𝑛-th derivative of unary functions

Expression 𝑛-th derivative Comment
exp(𝑡) exp(𝑡)

ln(𝑡)
ln(𝑡) if 𝑛 = 0

(1𝑡)
(𝑛−1) otherwise

𝑡𝑘 𝑡𝑘−𝑛
𝑛−1
∏
𝑖=0

(𝑘 − 𝑖) For any constant 𝑘 ∈ ℝ

𝑘 𝑡 ln(𝑘)𝑛𝑘 𝑡 For any strictly positive real constant 𝑘
𝑝(𝑡)𝑞(𝑡) (exp(𝑞(𝑡) ln(𝑝(𝑡))))(𝑛)

sin(𝑡)

sin(𝑡) if 𝑛 = 4𝑘
cos(𝑡) if 𝑛 = 4𝑘 + 1
− sin(𝑡) if 𝑛 = 4𝑘 + 2
− cos(𝑡) if 𝑛 = 4𝑘 + 3

cos(𝑡) sin(𝑛+1)(𝑡)

tan(𝑡) (sin(𝑡)
cos(𝑡))

(𝑛)

sinh(𝑡) sinh(𝑡) if 𝑛 is even
cosh(𝑡) if 𝑛 is odd

cosh(𝑡) sinh(𝑛+1)(𝑡)

tanh(𝑡) (sinh(𝑡)
cosh(𝑡))

(𝑛)

asin(𝑡)
asin(𝑡) if 𝑛 = 0

(1
√1−𝑡2

)
(𝑛−1)

if 𝑛 > 0

acos(𝑡)
acos(𝑡) if 𝑛 = 0

(− 1
√1−𝑡2

)
(𝑛−1)

if 𝑛 > 0

atan(𝑡)
atan(𝑡) if 𝑛 = 0

(1
1+𝑡2)

(𝑛−1)
if 𝑛 > 0

asinh(𝑡)
asinh(𝑡) if 𝑛 = 0

(1
1+𝑡2)

(𝑛−1)
if 𝑛 > 0

acosh(𝑡)
acosh(𝑡) if 𝑛 = 0

(− 1
√𝑡2−1

)
(𝑛−1)

if 𝑛 > 0

atanh(𝑡)
atanh(𝑡) if 𝑛 = 0

(1
1−𝑡2)

(𝑛−1)
if 𝑛 > 0

Γ(𝑡)
Γ(𝑡)D𝑛(𝑡)

where {
D1(𝑡) = ψ(𝑡)
D𝑘(𝑡) = D′

𝑘−1(𝑡) + ψ(𝑡)D𝑘−1(𝑡)

ψ is the digamma function. Programs for com-
puting its value can be found in [85].

𝑝(𝑡)𝑞(𝑡)
𝑛
∑
𝑖=0

(
𝑛
𝑖)𝑝

(𝑖)(𝑡)𝑞(𝑛−𝑖)(𝑡)

𝑝(𝑡)
𝑞(𝑡) (𝑝(𝑡)𝑞(𝑡)−1)

(𝑛)

121

7.2. Compiling equations

71. Hardy et al., An Introduction
to the Theory of Numbers. 2008

5. Arbogast, ‘Du calcul des
dérivations’. 1800 — 60. Faà

Di Bruno, ‘Note sur une nouvelle
formule de calcul différentiel’.

1857 — 61. Faà di Bruno, ‘Sullo
sviluppo delle funzioni’. 1855

Some of these functions do not have a direct formula for their de-
rivatives, but can be expressed in terms of combinations of other func-
tions. This is the case for tan and tanh, which can be expressed as
respectively sin

cos and sinh
cosh . The derivatives of some functions, such as

the inverse trigonometric and hyperbolic functions, can be computed
from their (𝑛 − 1)-th derivative. Some of the formulations given here
are not optimal, this will be discussed in section 8.3.1.

A crucial rule is missing from table 7.1: the one for composition.
Computing the 𝑛-th derivative of a composition of two functions can
be done using Faà di Bruno’s formula. It is a generalisation of the chain
rule, which states that (𝑓 ∘ 𝑔)′(𝑡) = 𝑔′(𝑡)𝑓 ′(𝑔(𝑡)). The formula makes
use of the notion of partitions of a natural number, which is defined
as:
Definition 7.2.1 (Partitions of natural numbers). The partitions of a
natural number 𝑛 is the set of 𝑛-tuple of natural numbers (𝑚1, … , 𝑚𝑛)
such that:

1 ⋅ 𝑚1 + 2 ⋅ 𝑚2 + ⋯ + 𝑛 ⋅ 𝑚𝑛 = 𝑛

A partition of 𝑛 corresponds to a way 𝑛 can be split into smal-
ler numbers. For instance, 4 has 4 partitions (0, 0, 0, 1) (4 = 1 × 4),
(1, 0, 1, 0) (4 = 1 × 1 + 2 × 1), (2, 1, 0, 0) (4 = 2 × 1 + 1 × 2), (0, 2, 0, 0)
(4 = 2 × 2) and (4, 0, 0, 0) (4 = 4 × 1). In the following, P𝑛 denotes
the set of partitions of 𝑛 and |P𝑛| the number of partitions of 𝑛, simply
called the partition number [71]. From that definition, it is possible to
define the 𝑛-th derivative of the composition of two functions.
Theorem 7.2.1 (Faà di Bruno’s formula). The 𝑛-th derivative of the
composition of two 𝒞𝑛(ℝ) functions 𝑓 and 𝑔 is a 𝒞𝑛(ℝ) function given
by the following formula [5, 60, 61]:

(𝑓 ∘ 𝑔)(𝑛) (𝑡) =

∑
(𝑚1,…,𝑚𝑛)∈P𝑛

𝑛!
𝑚1!1!𝑚1𝑚2!2!𝑚2 ⋯𝑚𝑛!𝑛!𝑚𝑛

⋅𝑓 (𝑚1+⋯+𝑚𝑛)(𝑔(𝑡))⋅
𝑛

∏
𝑗=1

(𝑔(𝑗))
𝑚𝑗

(Faà di Bruno’s formula)

The formula is quite daunting, however one can get a better sense
of what it means by defining the following quantities associated with a
partition 𝑝 = (𝑚1, … , 𝑚𝑛) ∈ P𝑛:

η(𝑝) = 𝑛!
𝑚1!1!𝑚1𝑚2!2!𝑚2 ⋯𝑚𝑛!𝑛!𝑚𝑛

σ(𝑝) = 𝑚1 + 𝑚2 + ⋯ + 𝑚𝑛

Then the formula becomes:

(𝑓 ∘ 𝑔)(𝑛) (𝑡) = ∑
𝑝∈P𝑛

η(𝑝) ⋅ 𝑓 (σ(𝑝))(𝑔(𝑡)) ⋅
𝑛−σ(𝑝)+1
∏
𝑗=1

(𝑔(𝑗))
𝑚𝑗

122

Chapter 7. Modular compilation of signal relations

9. Bell, ‘Partition Polynomials’.
1927

It is simply a sumof terms of the formof a derivative of 𝑓multiplied
by some derivatives of 𝑔. Note that in the formula above, the bound
on the inner product has been shortened to 𝑛 − σ(𝑝) + 1. Indeed, it
is easy to show that 𝑚𝑗 = 0 if 𝑗 > 𝑛 − σ(𝑝) + 1. Another formulation,
which will prove useful, consists of factoring the terms of the form
𝑓 (σ(𝑝)). σ(𝑝) must be between 0 and 𝑛, but there are typically many
more partitions in P𝑛. The corresponding factors can be expressed in
terms of the partial Bell polynomials [9], which are defined for a given
𝑛 and 𝑘 as:

B𝑛,𝑘 (𝑥1, … , 𝑥𝑛−𝑘+1) = ∑
𝑝∈P

σ(𝑝)=𝑘

η(𝑝) ⋅
𝑛−𝑘+1
∏
𝑗=1

(𝑥𝑗)
𝑚𝑖

Note that the sum spans on those partitions whose coefficients sum to
𝑘. It follows that Faà di Bruno’s formula can then be rewritten as:

(𝑓 ∘ 𝑔)(𝑛) =
𝑛
∑
𝑖=1

𝑓 (𝑘)(𝑔(𝑡)) ⋅ B𝑛,𝑘 (𝑔
′(𝑡), 𝑔″(𝑡), … , 𝑔(𝑛−𝑘+1)(𝑡))

7.2.2.2—A generalised automatic differentiation scheme The efficiency of
the proposed scheme will be discussed in greater details in later sec-
tions, in particular the efficiency of Faà di Bruno’ formula. However
it is enough for now to recognise that the formulas we’ve discussed in
section 7.2.2.1 can be used to express Hydra signals as iir programs.
However, like in the first-order case, the translation of symbolic ex-
pressions to programs must make use of memoisation as much as pos-
sible. In the first-order case, this was done by associating to every iden-
tifier in the original iir program, an identifier in the differentiated iir
program. In the present case, as there is an unknown number of deriv-
atives being computed, one must then associated an array containing
the 𝑛 derivatives of the identifier. The rules of differentiation or order-
parametric differentiation can then be applied in exactly the same way.

The translation from Hydra to order-parametric iir programs is
now presented in the form of the function T, which given an Hydra
signal produces a program that takes as input the order of differenti-
ation 𝑛 and a real pointer pointing to a block of reals of size 𝑛 that will
contain the values of the first 𝑛 derivatives of the compiled signal after
the execution of the program. This translation makes use of an inter-
mediate function C, defined in figure 7.3, which produces a program
that, given an array containing the 𝑛 values of 𝑓 (𝑖)(𝑔(𝑡)) and an array
containing the values of 𝑔(𝑗)(𝑡), computes the first 𝑛-th derivative of
𝑓 ∘ 𝑔 using Faà di Bruno’s formula.

7.2.3—Computing with Faà di Bruno’s formula
Let’s consider the program in figure 7.3 and expand the computa-

tion of 𝑓 ∘ 𝑔𝑛 for 𝑛 = 4 and 𝑛 = 5. Assuming the needed information

123

7.2. Compiling equations

Figure 7.2: Translation of
Hydra signals to order-
parametric iir programs

Only the + is used to illustrate the
translation for binary operators
and only sin is used to illustrate
the translation for unary operat-
ors.

T (D𝑘(𝑣)) =

|
|
|
|
|
|
|
|
|

Program N ∶ ℤ, 𝑟 ∶ Pointer ℝ
iter 𝑛 from 0 to N

let 𝑟𝑛 ∶= 𝑟[𝑛] in
let 𝑛𝑝𝑘 ∶= 𝑛 + 𝑘 in
𝑟𝑛 ← Diff (𝑣 , 𝑛𝑝𝑘)

end

T (𝑒) =

|
|
|
|
|
|
|
|
|

Program N ∶ ℤ, 𝑟 ∶ Pointer ℝ
𝑟 ← 𝑒
iter 𝑛 from 1 to N

let 𝑟𝑛 ∶= 𝑟[𝑛] in
𝑟𝑛 ← 0

end

T (𝑒1 + 𝑒2) =

|
|
|
|
|
|
|
|
|
|
|

Program N ∶ ℤ, 𝑟 ∶ Pointer ℝ
let 𝑎1 ∶= allocate ℝ [N] in
T (𝑒1) (N, 𝑎1) ;
let 𝑎2 ∶= allocate ℝ [N] in
T (𝑒2) (N, 𝑎2) ;
iter 𝑛 from 0 to N

𝑟[𝑛] ←!𝑎1[𝑛]+!𝑎2[𝑛]
end

T (sin(𝑒)) =

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

Program N ∶ ℤ, 𝑟 ∶ Pointer ℝ
let 𝑔 ∶= allocate ℝ [N] in
T (𝑒) (N, 𝑔)
let ℎ ∶= allocate ℝ [N] in
iter 𝑛 from 0 to N

let ℎ𝑛 ∶= ℎ[𝑛] in
let 𝑔0 ∶= 𝑔[0] in
let 𝑓𝑛 ∶=

let Sign ∶=
if 𝑛/2mod 2 = 0 then

1
else

−1
in
let SinCos ∶=

if 𝑛mod 2 = 0 then
sin(𝑔0)

else
cos(𝑔0)

in
Sign ∗ SinCos

in
ℎ𝑛 ← 𝑓𝑛

end
C(ℎ, 𝑔, 𝑟)

124

Chapter 7. Modular compilation of signal relations

Program N ∶ ℤ, 𝑓 ∶ Pointer ℝ, 𝑔 ∶ Pointer ℝ, 𝑟 ∶ Pointer ℝ
iter 𝑛 from 0 to N

let 𝑝𝑛 ∶= !𝑝[𝑛] in
let η𝑛 ∶= !η[𝑛] in
let σ𝑛 ∶= !σ[𝑛] in
let P𝑛 ∶= !P[𝑛] in
let f ∘ g𝑛 ∶=

sum 𝑖 from 0 to 𝑝𝑛
let η𝑖 ∶= !η𝑛[𝑖] in
let σ𝑖 ∶= !σ𝑛[𝑖] in
let P𝑖 ∶= !P𝑛[𝑖] in
let Π𝑖 ∶=

prod 𝑗 from 1 to 𝑛 − σ𝑖 + 1
let 𝑚𝑗 ∶= !P𝑖[𝑗] in
𝑔[𝑗]𝑚𝑗

end
in
η𝑖∗!𝑓 [σ𝑖] ∗ Π𝑖

end
in
𝑟[𝑛] ← f ∘ g𝑛

end

Figure 7.3: Naïve program
for computing the first 𝑛-th
derivative of a function com-
position

This function assumes the exist-
ence of three global values: 𝑝, η,
σ and P. 𝑝 is an integer pointer
pointing to an arbitrarily large
block of memory, such that 𝑝[𝑛]
points to the partition number of
𝑛. η and σ are pointer to pointers
of integers. η[𝑛] (resp. σ[𝑛]) points
to a block of memory of size the
partition number of 𝑛 and con-
tains the values for η (resp. σ) for
a given partition.

a. llvm implements exponenti-
ation of floating point number
by exponentiation by squaring,
which performs O(log(𝑛)) multi-
plications.

from the partitions of 4 and 5 has already been computed, and after
flattening every loop, one gets:

𝑓 ∘ 𝑔4 ← 1∗!𝑦1[1]∗!𝑥1[4] 𝑓 ∘ 𝑔5 ← 1∗!𝑦1[1]∗!𝑥1[1]
+ 4∗!𝑦1[2]∗!𝑥1[1]∗!𝑥1[3] + 10∗!𝑦1[2]∗!𝑥1[2]∗!𝑥1[3]
+ 3∗!𝑦1[2]∗!𝑥1[2]

2 + 5∗!𝑦1[2]∗!𝑥1[1]∗!𝑥1[4]
+ 6∗!𝑦1[3]∗!𝑥1[1]

2∗!𝑥1[2] + 15∗!𝑦1[3]∗!𝑥1[1]∗!𝑥1[2]
2

+ 1∗!𝑦1[4]∗!𝑥1[1]
4 + 10∗!𝑦1[3]∗!𝑥1[1]

2∗!𝑥1[3]
+ 10∗!𝑦1[4]∗!𝑥1[3]∗!𝑥1[2]
+ 1∗!𝑦1[5] ∗ 𝑥1[1]

5

Consider further that the exponentiation is implemented as re-
peatedmultiplication a. It is clear that there are a lot of redundant oper-
ations between the two computations. By comparison, repeated first-
order differentiation can exploit these redundancies either by simple
memoisation or by performing Common Subexpression Elimination
(cse) after the construction of the expression. However, in our case,
one cannot perform such elimination easily, as the actual values of the
exponents are hidden inside data structures and a clear relationship
between them is non-trivial.

125

7.2. Compiling equations

a. To avoid distracting from the
discussion, proofs of the lem-

mas and theorems given in this
section are given in appendix A.

By implementing Faà di Bruno’s formula directly, one can see that,
indeed, most of the time is spent computing the products of the deriv-
atives of 𝑔 for all the partitions. This is therefore where progress must
be made. In this section, two reformulations of Faà di Bruno’s formula
are presented that makes the computation of the first 𝑛-th derivatives
much more efficient. One relies on the structure of partitions, in par-
ticular the relationship between a partition of 𝑛 and its successors. The
other relies on a recurrence relation on the partial Bell polynomials.

7.2.3.1—Exploiting the structure of partitions In the following, γ𝑝 de-
notes the following function associated with a partition 𝑝 of 𝑛:

γ𝑝 (𝑥1, … , 𝑥𝑛) =
𝑛−σ(𝑝)+1
∏
𝑗=1

𝑥
𝑚𝑗
𝑗

One could then rewrite Faà di Bruno formula (or the Bell’s poly-
nomials) in terms of γ𝑝. As mentioned in the previous section there is
a need to optimise the computation of this function in Faà di Bruno’s
formula. To do so, let’s consider the following lemma a.
Lemma 7.2.1 (Child partition). Let 𝑝 = (𝑚1, … , 𝑚𝑛) be a partition of 𝑛.
Then for all 𝑗 ∈ [1, 𝑛], 𝑝𝑗 = (𝑚1, … , 𝑚𝑗 + 1,… , 𝑚𝑛, 0, … , 0) is a partition
of 𝑛 + 𝑗.

The partition 𝑝𝑗 is the 𝑗-child of 𝑝. Respectively, 𝑝 is called the 𝑗-
ancestor of 𝑝𝑗.

A partition therefore has many children, which differ from it by
only one coefficient. More importantly, this means that γ𝑝 is related
with γ𝑝𝑗 through the following relation:

γ𝑝𝑗 (𝑥1, … , 𝑥𝑛+𝑗) = 𝑥𝑗γ𝑝 (𝑥1, … , 𝑥𝑛)

Hence if one knows, when computing a term in (𝑓 ∘ 𝑔)(𝑛), an an-
cestor to a partition of 𝑛 and the value of γ for that partition, then one
can avoid having to compute many multiplications.
Lemma 7.2.2 (Existence of an ancestor). All partitions of 𝑛 except the
partition (0, … , 0, 1) have at least one ancestor.

Naïvely, one could then look at these results and suggest the fol-
lowing scheme to compute the partitions of 𝑛 from the partitions of
its predecessor: simply take the 𝑗-child of each partitions of 𝑛 − 𝑗, for 𝑗
running from 1 to 𝑛 − 1. While indeed one would get all the partitions
of 𝑛 this way, except the trivial partition that doesn’t have an ancestor,
one would also get duplicates since an ancestor isn’t unique in general.
To use this method, it would be better to have a technique that would
consider only some children of the partitions of 𝑛−𝑗, in such a way that
one gets every partition of 𝑛 exactly ones. The set of ancestors selected
is then a set of canonical ancestors for the partitions of 𝑛: this set can

126

Chapter 7. Modular compilation of signal relations

a. The partitions with the largest
first coefficient appear first, then
the partitions with a first coef-
ficient of zero and the largest
second coefficient, etc.

be used safely to compute the value of γ from the previously computed
values of γ for these ancestor partitions.

A very good canonical ancestor is the closest ancestor. By defini-
tion, there can be at most one 𝑗-child or 𝑗-ancestor for any partition. It
follows that there exist, for every partition with at least one ancestor, a
closest ancestor, a 𝑗-ancestor such that the partition has no 𝑘-ancestor
with 𝑘 < 𝑗. The closest ancestor can be determined like so:
Lemma 7.2.3 (Closest ancestor). If 𝑝 = (𝑚1, … , 𝑚𝑛) is a partition of
𝑛 whose first non-zero coefficient is 𝑚𝑗, where 𝑗 < 𝑛, then the closest
ancestor of 𝑝 is its 𝑗-ancestor.

which entails:
Theorem 7.2.2 (Closest children). If 𝑝 is a partition of 𝑛 whose first 𝑗
coefficients are zero, then it is the closest ancestor of its first 𝑗 +1 children.

In the following, the closest child of a partition𝑝 is a child forwhich
𝑝 is the closest ancestor. It is now possible to compute the set of parti-
tions of 𝑛 from the partitions of the predecessors of 𝑛.
Theorem 7.2.3 (Recursive constructions of the partitions). The parti-
tions of 𝑛 aremade of the partition (0, … , 0, 1) and of the 𝑗 closest children
of the partitions of 𝑛 − 𝑗, for all 𝑗 ∈ [1, 𝑛[. This construction results in no
duplicate partition.

By ordering the partitions of 𝑛 in anti-lexicographic order a, the
partitions are also ordered in such a way that the partitions that have
a closest 1-child appear first, then the partitions that have a closest 2-
child, etc. If the data on partitions is stored in such order, it is possible
to store an array of 𝑛 indices, such that the entry at index 𝑗 points to the
the first partitionwhose 𝑗-th coefficient is 0, meaning that this partition
and all the following are the closest ancestor of their children.
Example. Let’s try reconstructing the partitions of 6 using ancestry re-
lations with the partitions of previous numbers. Below are the partitions
of numbers from 1 to 5, organised in anti-lexicographic order.

1 2 3 4 5

(1) (2,0)
(0,1)

(3, 0, 0)
(1, 1, 0)
(0, 0, 1)

(4, 0, 0, 0)
(2, 1, 0, 0)
(1, 0, 1, 0)
(0, 2, 0, 0)
(0, 0, 0, 1)

(5, 0, 0, 0, 0)
(3, 1, 0, 0, 0)
(2, 0, 1, 0, 0)
(1, 2, 0, 0, 0)
(1, 0, 0, 0, 1)
(0, 1, 0, 1, 0)

(0, 0, 0, 0, 1)
The lines are used to indicate the number of zero coefficients at the

start of the partition (partitions below the first line have their first coef-
ficient equal to 0, partitions below the second line have their first and
second coefficients equal to 0, etc.). If a partition is below a total of 𝑘
lines, it has therefore a 1-closest child, a 2-closest child, etc. and a 𝑘 + 1-

127

7.2. Compiling equations

43. Comtet, Advanced
Combinatorics. 2012

closest child. For instance, the partition (0, 0, 0, 1) of 4 is below 3 lines in
total, indicating that its first 3 coefficients are 0.

To construct the partitions of 6 using these informations, we must
first take the 1 closest children of the partitions of 5. All the partitions of
5 have a 1-closest child, giving:

(6, 0, 0, 0, 0, 0)
(4, 1, 0, 0, 0, 0)
(3, 0, 1, 0, 0, 0)
(2, 2, 0, 0, 0, 0)
(2, 0, 0, 0, 1, 0)
(1, 1, 0, 1, 0, 0)
(1, 0, 0, 0, 1, 0)

Then, the 2-closest children of the partitions of 4, these corresponds
to the partitions of 4 below the first horizontal line (and whose first coef-
ficient is 0), giving:

(0, 3, 0, 0, 0)
(0, 1, 0, 1, 0)

Then, the 3-closest children of the partitions of 3, of which there are
only one:

(0, 0, 2, 0, 0, 0)
There are no valid ancestors in the partitions of 2 and 1, since those

only have 2 and 1-children respectively. Adding the trivial partition:
(0, 0, 0, 0, 0, 1)
gives the 11 partitions of 6.
An implementation of Faà di Bruno’s formula using ancestry rela-

tions is given as an iir program in figure 7.4.
7.2.3.2—Exploiting Bell polynomials Another strategy relies on the fol-
lowing recurrence relation on Bell polynomials [43]:

B0,0 = 1
∀𝑛 ≥ 1, B𝑛,0 = 0
∀𝑘 ≥ 1, B0,𝑘 = 0

B𝑛,𝑘 (𝑥1, … , 𝑥𝑛−𝑘+1) =
𝑛−𝑘+1
∑
𝑖=1

(
𝑛 − 1
𝑘 − 1) ⋅ 𝑥𝑖 ⋅ B𝑛−𝑖,𝑘−1 (𝑥1, … , 𝑥𝑛−𝑖−𝑘)

Recall that Faà di Bruno’s formula can be expressed using Bell’s
polynomials as follows:

(𝑓 ∘ 𝑔)(𝑛)(𝑡) =
𝑛
∑
𝑖=1

𝑓 (𝑘)(𝑔(𝑡)) ⋅ B𝑛,𝑘 (𝑔
′(𝑡), 𝑔″(𝑡), … , 𝑔(𝑛−𝑘+1)(𝑡))

Knowing the values of the Bell polynomials applied to 𝑔 for previ-
ous values of 𝑛, one can then compute (𝑓 ∘ 𝑔)(𝑛) like so:

(𝑓 ∘𝑔)(𝑛) =
𝑛
∑
𝑘=1

𝑓 (𝑘)(𝑔(𝑡))
𝑛−𝑘+1
∑
𝑖=1

(
𝑛 − 1
𝑖 − 1)𝑔

(𝑖)(𝑡)B𝑛−𝑖,𝑘−1 (𝑔
′(𝑡), … , 𝑔(𝑛−𝑖−𝑘)(𝑡))

128

Chapter 7. Modular compilation of signal relations

Program N ∶ ℤ, 𝑓 ∶ Pointer ℝ, 𝑔 ∶ Pointer ℝ, 𝑟 ∶ Pointer ℝ
let G ∶= allocate Pointer ℝ [N + 1] in
𝑟[0] ←!𝑓 [0]
iter 𝑛 from 1 to N

let P𝑛 ∶= !P[𝑛] in
let G𝑛 ∶= allocate ℝ [P𝑛] in
G[𝑛] ← G𝑛
let η𝑛 ∶= !η[𝑛] in
let σ𝑛 ∶= !σ[𝑛] in
let 𝑟1 ∶=

sum 𝑘 from 1 to 𝑛
let G𝑛−𝑘 ∶= !G[𝑛 − 𝑘] in
let A𝑛−𝑘 ∶= !A[𝑛 − 𝑘] in
let 𝑠 ∶= !A𝑛−𝑘[𝑘 − 1] in
let P𝑛−𝑘 ∶= !P[𝑛 − 𝑘] in
sum 𝑗 from 𝑠 to P𝑛−𝑘

let G𝑛−𝑘,𝑗 ∶= !G𝑛−𝑘[𝑗] in
G𝑛[𝑗] ←!𝑔[𝑘] ∗ G𝑛−𝑘,𝑗
let η𝑗 ∶= !η𝑛[𝑗] in
let σ𝑗 ∶= !σ𝑛[𝑗] in
!η𝑗∗!𝑓 [σ𝑗]∗!G[𝑗]

end
end

in
G𝑛[P𝑛 − 1] ←!𝑔[𝑛]
𝑟[𝑛] ← 𝑟1+!𝑓 [1]∗!𝑔[𝑛]

end

Figure 7.4: Program for
computing the first 𝑛-th
derivative of a function
composition using ancestry
relations

This program assumes the exist-
ence of the same global variables
as the program in figure 7.3. In
addition, it requires the existence
of an array A, where A[𝑛][𝑘]
returns the index of the first
partition of 𝑛 whose first 𝑘 coef-
ficients are 0. Unlike the naïve
implementation, this one relies
on the information on partitions
being ordered in the specific way
outlined in §7.2.3.1.
In the program, G is an array
which contains the memoised
values of all the values of γ𝑝 com-
puted so far. It is populated when
computing 𝑟1, which corresponds
to the value of (𝑓 ∘ 𝑔)(𝑛) minus the
value contributed by the trivial
partition, which is added on at the
end.

a. The code can be found at
h t t p s : / / g i t l a b . c o m / c h u p i n /

f d b _ b e n c h .
68. Google, Benchmark. 2021

To compute the first 𝑛 derivatives of 𝑓 ∘ 𝑔, this scheme requires
exactly (𝑛+1)(𝑛+2)

2 storage space. This is demonstrated on the program
in figure 7.5.
7.2.3.3—Measuring performance To measure the performance of Faà
di Bruno’s formula, the programs in figure 7.3, 7.4 and 7.5 have been
translated toC code a and benchmarkedusingGoogle’s benchmark lib-
rary [68]. The code was compiled with Clang 12 on a PC running
ArchLinux with kernel 5.12.9 with a 4-core Intel i3-7100T@ 3.40GHz
processor. The results are presented in figure 7.7.

An additional benchmark is included, which uses the naïve for-
mulation but exploits the fact that partitions are sparse, the larger the
number, the more 0 will appear as a coefficient in its partitions. This is
illustrated in figure 7.6. While it shows an improvement on the bench-
marks, the benefits are not sufficient to compete with the cleverer for-
mulation fleshed-out in the earlier sections.

129

https://gitlab.com/chupin/fdb_bench
https://gitlab.com/chupin/fdb_bench

7.2. Compiling equations

Figure 7.5: Program for
computing the first 𝑛-th
derivative of a function
composition using Bell’s
polynomials recurrence
relation

Program N ∶ ℤ, 𝑓 ∶ Pointer ℝ, 𝑔 ∶ Pointer ℝ, 𝑟 ∶ Pointer ℝ
let B ∶= allocate Pointer ℝ [N + 1] in
𝑟[0] ←!𝑓 [0]
let B0 ∶= allocate ℝ [1] in
B[0] ← B0
B0[0] ← 1
iter 𝑛 from 1 to N

let B𝑛 ∶= allocate ℝ [𝑛] in
B[𝑛] ← B𝑛
let 𝑓 ∘ 𝑔𝑛 ∶=

sum 𝑘 from 1 to 𝑛
let B𝑛,𝑘 ∶=

sum 𝑖 from 1 to 𝑛 − 𝑘 + 1
binom(𝑛 − 1, 𝑖 − 1)∗!𝑔[𝑖]∗!(!B[𝑛 − 𝑖])[𝑘 − 1]

end
in
B[𝑛][𝑘] ← B𝑛,𝑘
!𝑓 [𝑘] ∗ B𝑛,𝑘

end
in
𝑟[𝑛] ← 𝑓 ∘ 𝑔𝑛

end

Figure 7.6: Sparsity of parti-
tions. The graph shows the
proportion of coefficients
that are 0 in the partitions of
𝑛.

4 8 12 16 20 24

0.2

0.4

0.6

0.8

1

𝑛

117. Pascal, Traité du tri-
angle arithmétique. 1654

The benchmark clearly shows that using either the ancestry rela-
tions derived in section 7.2.3.1 or the recurrence relations on Bell’s
polynomial from section 7.2.3.2 provides a much better way to com-
pute the first 𝑛 derivatives of composition. Choosing between the two
simply by virtue of these benchmarks doesn’t seem very easy. Fig-
ure 7.8 especially focuses on comparing the two formulations by plot-
ting the ratio of the time taken to compute using Bell’s polynomials
recurrence relation over the time taken to compute using ancestry re-
lations. While it seems that the recurrence relation gives overall better
results, especially for lower number of differentiations (that one except
to encounter more often) and high numbers of differentiation, the dif-
ference is still small. Other characteristics of each approach, besides
performance, can help guide the decision on which one to prefer for
an implementation.

Using Bell’s recurrence relation has the particular advantage that it
never uses any informations on the partitions of the integers. Indeed,
it only requires to know about the binomial coefficients, which are
needed anyway to compute the 𝑛-th derivative of the product. These
coefficients are much easier to compute, using Pascal’s triangle [117],
than the coefficients over partitions and there are a lot fewer of them:
for a given 𝑛, there are 𝑛+1 non-zero binomial coefficients of the form

130

Chapter 7. Modular compilation of signal relations

2 4 6 8 10 12 14 16 18 20

101

102

103

104

105

Number of differentiations

Mean time (ns)

Naive
Sparse

Ancestor
Bell

Figure 7.7: Performance of
different implementation of
Faà di Bruno’s formula

2 4 6 8 10 12 14 16 18 20

0.2

0.4

0.6

0.8

1

1.2

Number of differentiations

Mean time ratio

Bell
Ancestor

Figure 7.8: Relative per-
formance of using Bell’s
polynomials recurrence rela-
tion vs. the ancestry relation

131

7.3. Compiling signal relations & the Hydra runtime

44. Constantine, ‘A Multivariate
Faà Di Bruno Formula With Ap-
plications’. 1996 — 58. Encinas,

‘A Short Proof of the Generalized
Faà Di Bruno’s Formula’. 2003
— 102. Mishkov, ‘Generaliza-
tion of the Formula of Faa Di

Bruno for a Composite Function
with a Vector Argument’. 2000

74. Hindmarsh et al., ‘SUN-
DIALS: Suite of Nonlin-

ear and Differential/Algeb-
raic Equation Solvers’. 2005

(𝑛𝑘); by contrast, the partition number grows with 2√𝑛. Overall this
means that this asymptotic complexity of computing the first 𝑛 deriv-
atives of function composition is cubic when using Bell’s polynomial
and O(2√𝑛) when using ancestry relations. Finally, the procedure us-
ing Bell’s polynomial is simpler. For all these reasons, Hydra imple-
ments the computation of the 𝑛-th derivative of a function composition
via the computation of Bell’s polynomials.

The drawback of using Bell’s recurrence relation is that it is only
valid for monovariate functions, as is Faà di Bruno’s formula in gen-
eral. Currently, Hydra has no built-in signal functions that are mul-
tivariate, apart from the usual binary operators for which other for-
mulas exist. Furthermore, as signal functions are not first-class in Hy-
dra, the lack of a multivariate composition is not a pressing problem.
However, it would be very desirable for them to be in the future, as it
would open the way to integratingmore aspects of frp into fhm, and it
would be frustrating if themodular compilation technique broke down
because of the absence of support for the composition of multivariate
functions. Fortunately, some multivariate extensions to Faà di Bruno’s
formula have been proposed [44, 58, 102] which, given that these are
also formulated using informations on partitions, could make use of
ancestry relations in an efficient implementation.

7.3—Compiling signal relations& theHydraruntime

Now that equations compile to order-parametric code, the main
obstacle for the modular compilation of Hydra is out of the way. In
this section, the compilation of the rest of what makes up Hydra’s sig-
nal relations is presented. Recall that signal relations are first-class ob-
jects in Hydra, therefore it only makes sense that their representation
in the target language be first-class objects. This allows for the func-
tional level of the language to be implemented as a regular functional
language.

Theway a signal relation is used for simulation, and by all the parts
of the simulator, dictates how it is should be represented. §6.4 (fig-
ure 6.8 in particular) showed exactly what steps a simulator took to
simulate a dae.

The simulator Hydra uses is implemented by the Hydra runtime.
It is in charge of structural analysis, such as index-reduction and state
selection, memory management, handling of mode changes and the
communication between the solver and the user. The runtime con-
sists of a small C program which is linked to a compiled Hydra sig-
nal relation. Some of its limitations have been described in §5.5.6.
The solvers are provided by the Sundials solver suite [74]. Sundials
is an industrial-strength suite of solvers for numerous types of prob-
lems. Hydra makes use of kinsol, which is an algebraic solver and

132

Chapter 7. Modular compilation of signal relations

ida which is a dae solver. The former is used for the computation of
initial conditions and the latter for the simulation of the dae.

The organisation in steps of the simulation lends itself well for rep-
resenting Hydra signal relations as a record of functions: each func-
tion encodes the behaviour needed for one step of the simulation pro-
cess. Thus, there is one function that compute the initial state of the
signal relation, one which computes the signature matrix (based on
the current state), one which computes the residual of the equations
appearing in the signal function (based on the state and the informa-
tions from index-reduction), etc. In addition, signal relations capture
any of the external expressions that appear in their body, similar to
how closures are represented in functional languages.

The state of a signal relation is represented in the way outlined in
§6.4. That is, the state of a switch is a triple indicating the currentmode
(including the value of the mode arguments), whether the switch has
just become active and the state of the signal relations in the active
branch. Because signal relation applications are not inlined, a signal
relation application also has a state associated with it in the state of the
user of that relation. Note that the state is external to the signal relation,
making signal relations immutable objects (even after the simulation
starts). An alternative could have been to treat signal relations as ob-
jects and have their state be a mutable attribute. Treating the state as
separate makes compilation easier and makes the compilation of the
functional host a little bit simpler, since signal relations do not require
any special treatment, such as instantiation.

The following few sections discuss other problems that arise due
to the modular compilation used for Hydra. §7.3.1 will look into the
way Hydra variables are represented in compiled code, in such a way
that all functions of a signal relation and the runtime agree on where
to find informations about a given variable. Next, §7.3.2 deals with the
waymemory required for order-parametric differentiation ismanaged
during the simulation. Finally, §7.3.3 shows how code can be gener-
ated to compute the Jacobian matrix associated with the equation sys-
tem from order-parametric code directly.

7.3.1—Mapping Hydra variables to solver variables

This section discusses theway inwhich variables are represented in
the compiled code (and handled by the runtime system). The number
of variables manipulated by a signal relation is not fixed due to switch-
ing. Furthermore, while in a more traditional programming language,
local variables are truly local, in the sense that they exist only within
the scope in which they’re declared; in Hydra the numerical solver
must be aware of all the signals present in a signal relation, especially
since it is the very thing that computes their value. In non-modular im-
plementations, this is not a problem: all the variables can be gathered
while the dae is being assembled and given a specific index. But in

133

7.3. Compiling signal relations & the Hydra runtime

this implementation, there must be a way to know, from the compiled
code within a signal relation, where to find the value of a given signal
(local or not).

The solver passes, to the residual function, an array with the val-
ues it guessed for each signal at a given point in time. Let’s ignore for
now the case of differentiated variables and index-reduction and as-
sume that signals are only represented by their zero-order derivative.
The problem is therefore to map a Hydra name to an index in the in-
put array. The solution used inHydra is reminiscent of the stack, used
in traditional languages to store local variables. When a new variable
is introduced, its location is at the top of the stack and it stays there
(with eventually more variables being pushed over) until the scope is
exited, at which point it is removed from the stack. This works per-
fectly thanks to scopes being nested: variables being pushed over a
given variable are guaranteed to have been popped before this vari-
able needs to be popped. Hydra signal relations share this structure
and therefore a similar idea can be used except that the index used for
a variable can never be reused: once the index has been chosen, all
variables introduced after it must have a larger index than it, including
after the scope of the variable has been left. Let’s illustrate this on the
following piece of Hydra core:

l e t a , b {

l e t c {

a + b + c = 0

} ;

l e t d {

d = 1 ;

b + d = 0

} ;

a , b < <> r ;

}

Suppose the next free index when entering this signal relation is
index 𝑘. Then index 𝑘 can be attributed to a and index 𝑘 + 1 to b . Then
when the next l e t -block is encountered, c gets index 𝑘+2. Unlike with
a stack-based approach, the next free index doesn’t come back to 𝑘 + 1
when c goes out of scope, therefore d gets index 𝑘 + 3. That scheme
works completely straightforwardly with signal relations applications:
the indices for the interface variables a and b , as well as the current
value of the next index 𝑘 + 4 are passed in to the relevant method of r ,
which returns after it has executed the new value of the next available
index.

This scheme is easy and cheap to maintain at runtime: it allows
for a common scheme to be shared between all the methods a signal
relation compiles to, one simply has to maintain this index. Because

134

Chapter 7. Modular compilation of signal relations

the index is maintained at runtime, the index of a variable may be de-
pendant on the mode the system is in. However once a mode has been
chosen, the index stays the same. The presence of differentiated vari-
ables makes the situation a little more complicated. The variable num-
ber is still computed in the same way, however to retrieve the value
of its position in the array of guesses provided by the solver is a little
more complicated. Assuming the array contains the variables in the
same order as the one that was decided on and with their derivatives
next to each other. If 𝑥 is the 𝑛-th variable, then the value of 𝑥(0) will
be after all the derivatives of the first variable (included the 0-order
derivative), then all the derivatives of the second, etc. and after all the
derivatives of variable 𝑛 − 1. Its index in the array will therefore be
at index D[0] + 1 + D[1] + 1 + ⋯ + D[𝑛 − 1] + 1 and its 𝑘-th deriv-
ative will be 𝑘 slots after that. Naturally, having to compute this sum
every time one wants to reference to a value of a derivative of 𝑥 is in-
efficient, so that index can be tracked in exactly the same way as the
variable number for 𝑥, only taking into account the number of differ-
entiations required. Note that not all methods require to compute this
index, most notably the method which computes structural informa-
tion on the signal relation, used for index-reduction and for which D
is undefined. An alternative technique, which doesn’t require keeping
track of these informations, is to have the runtime transform the input
from an array of reals, where all the derivatives are next to each other,
to an array of pointers, the pointer at index 𝑖 pointing to a block of
memory of size D[𝑖] + 1 containing the derivatives of variable 𝑖. This
doesn’t require copying any values: the pointers can be made to point
into the original input array. Still, it requires a fair amount of extra
work and simply keeping track of the index dynamically is likely to be
a lot cheaper.

7.3.2—Memory management during simulation

Order-parametric differentiation relies on memory allocation in
order to memoise intermediate result. Unlike with first-order auto-
matic differentiation, the size of the allocation is not constant and de-
pends on the number of differentiations required. Since this is not
knownuntil runtime, thismemorymust be dynamically allocated. How-
ever dynamically allocating memory on the heap during simulation is
not ideal for performance. Of course, when the index is small, the
memory could be allocated on the stack which is fast enough although
very large systems with high-index could cause issues. There is how-
ever a better alternative.

The required space only depends on the number of differentiations
needed to compute the first 𝑛derivatives of an expression. This number
is known as soon as index-reduction has been performed and thus the
memory needed can be computed (and allocated) by the runtime just
after index-reduction. To compute the required memory, it is easy to

135

7.3. Compiling signal relations & the Hydra runtime

Figure 7.9: Definition of the first-order differential of an iir expression (part 1)

D𝑥,𝑘 (Γ,Diff (𝑥, 𝑝)) =
|
|
|
|
|

if 𝑘 = 𝑝 then
1

else
0

D𝑥,𝑘 (Γ,Diff (𝑦 , 𝑝)) = | 0
D𝑥,𝑘 (Γ, 𝑖 ∶ τ) = | Γ[𝑖]

D𝑥,𝑘 (Γ, 𝑐) = | 0
D𝑥,𝑘 (Γ, 𝑝 = 𝑞) = | 0

D𝑥,𝑘 (Γ, 𝑝mod 𝑞) = | 0

D𝑥,𝑘 (Γ, 𝑝 + 𝑞) = |
let 𝑝′ ∶= D𝑥,𝑘(Γ, 𝑝) in
let 𝑞′ ∶= D𝑥,𝑘(Γ, 𝑞) in
𝑝′ + 𝑞′

D𝑥,𝑘 (Γ, sin(𝑝)) = | let 𝑝′ ∶= D𝑥,𝑘(Γ, 𝑝) in
−𝑝′ ∗ cos(𝑝)

D𝑥,𝑘 (Γ, 𝑧[𝑝]) = | let 𝑧′ ∶= D𝑥,𝑘(Γ, 𝑧) in
𝑧′[𝑝]

D𝑥,𝑘 (Γ, !𝑦) = | let 𝑦 ′ ∶= D𝑥,𝑘(Γ, 𝑦) in
!𝑦 ′

D𝑥,𝑘 (Γ, 𝑝 ; 𝑞) = |
D𝑥,𝑘(Γ)(𝑝)
D𝑥,𝑘(Γ)(𝑞)

D𝑥,𝑘 (Γ, let 𝑖 ∶= 𝑝 in 𝑞) = |
let 𝑖 ∶= 𝑝 in
let 𝑖′ ∶= D𝑥,𝑘(Γ, 𝑝) in
D𝑥,𝑘(Γ[𝑖 ↦ 𝑖′])(𝑞)

74. Hindmarsh et al., ‘SUN-
DIALS: Suite of Nonlin-

ear and Differential/Algeb-
raic Equation Solvers’. 2005

extract, from an iir program, another iir program that computes how
much memory that program needs. This is what the Hydra compiler
does after generating the iir code for an equation. At runtime, the
runtime system then allocates a block of memory large enough and
passes it to the generated code. Allocations in iir are then transformed
into offsets in that memory buffer. This should be as fast as stack al-
location, only amounting to a pointer bump when the code for a given
equation runs, but without any risk of overflow since the memory is
allocated on the heap.

Note that there is no need to allocate memory for every equation:
since equations are not executed in parallel, enough memory to satisfy
the largest memory request is enough and the buffer is ‘reset’ as soon
as the code for one equation has finished executing.

7.3.3—Computing Jacobians: automatic differentiation for iir

§5.2.2 showed how the Jacobian matrix was used by the dae solver
to compute a solution, but providing a Jacobian to the numerical solver
is not strictly an obligation. For instance, Sundials [74] can approx-
imate the Jacobian around a point using numerical differentiation on
the residual. However, doing so may lead to poor performance, since
the solver simply uses repeated evaluations of the residual and doesn’t

136

Chapter 7. Modular compilation of signal relations

Figure 7.10: Definition of the first-order differential of an iir expression (part 2)

D𝑥,𝑘 (Γ, allocate τ[𝑛]) = | allocate τ [𝑛]

D𝑥,𝑘 (Γ, !𝑦) = | let 𝑦 ′ ∶= D𝑥,𝑘(Γ, 𝑦) in
!𝑦 ′

D𝑥,𝑘 (Γ, 𝑖 ← 𝑝) = |
let 𝑝′ ∶= D𝑥,𝑘(Γ, 𝑝) in
𝑖 ← 𝑝
𝑖′ ← 𝑝′

D𝑥,𝑘 (Γ, if 𝑐 then 𝑝 else 𝑞) =

|
|
|
|
|

if c then
D𝑥,𝑘(Γ, 𝑝)

else
D𝑥,𝑘(Γ, 𝑞)

D𝑥,𝑘 (Γ, sum 𝑖 from 𝑚 to 𝑛 𝑝) = |
sum 𝑖 from 𝑚 to 𝑛

D𝑥,𝑘(Γ[𝑖 ↦ 0])(𝑝)
end

D𝑥,𝑘 (Γ,prod 𝑖 from 𝑚 to 𝑛 {𝑝}) =

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

let 𝑝𝑠 ∶= allocate ℝ [𝑚 − 𝑛] in
let 𝑝𝑠′ ∶= allocate ℝ [𝑚 − 𝑛] in
iter 𝑖 from 𝑚 to 𝑛

𝑝𝑠[𝑖] ← 𝑝
𝑝𝑠′[𝑖] ← D𝑥,𝑘(Γ[𝑖 ↦ 0], 𝑝)

end
sum 𝑖 from 𝑚 to 𝑛

prod 𝑗 from 𝑚 to 𝑛
if 𝑖 = 𝑗 then

!𝑝𝑠′[𝑖]
else

!𝑝𝑠[𝑖]
𝑝

end
end

D𝑥,𝑘 (Γ, iter 𝑖 from 𝑚 to 𝑛 {𝑝}) = |
iter 𝑖 from 𝑚 to 𝑛

D𝑥,𝑘(Γ[𝑖 ↦ 0])(𝑝)
end

exploit the sparse structure of the Jacobian. Indeed, since few variables
appear in any given equation, the Jacobian mostly consists of zeroes
but, without structural information at its disposal, the solver will waste
lots of time and space rediscovering that fact.

Note that not providing a Jacobian is mainly a problem for per-
formance and not so much correctness of the simulation. Indeed, the
Jacobian is only used as a means to compute the solution; if it is im-
precise, then it might make finding a solution more difficult but if a
solution is found, it will be correct.

To generate a Jacobian, one could try to find symbolic expressions
for the partial derivatives of the 𝑛-th temporal derivative of an expres-
sion and translate it to imperative code in a way similar to what was
done with residual. A much simpler alternative however is to define a

137

7.3. Compiling signal relations & the Hydra runtime

1. Abadi et al., ‘A Simple
Differentiable Program-

ming Language’. 2019

first-order automatic differentiation scheme on the generated iir code.
Figure 7.9 and 7.10 define a function D𝑥,𝑘 which, given a mapping

from identifiers to iir expressions and an iir expression of type τ, out-
puts an iir expression of type τ which corresponds to the partial de-
rivative of the expression with respect to 𝑥(𝑘). Note that 𝑘 in this case
may be an arbitrary iir atom, not necessarily a constant. This is ne-
cessary since the iir code refers to arbitrary derivatives of signals. The
environment Γ passed toD𝑥,𝑘 maps an identifier bound in the original
iir expression to an iir atom (either a constant or another identifier)
representing its derivative with respect to 𝑥(𝑘).

Note that it is never possible for a conditional or the bound of a
loop to depend on the value of a signal. If it were possible, then de-
fining the derivative of the following expression with respect to 𝑥(0)

would be difficult:
ifDiff(𝑥, 0) = 0 then

0
else

𝑥
This expression is equivalent to the expression that returns 𝑥unchanged.
However, applying the definition ofD𝑥,0 would give 0when 𝑥 = 0 and 1
everywhere else. This problem is discussed at great length in the auto-
matic differentiation and differentiable programming literature [1] but
fortunately doesn’t apply to iir programs, since it only exists when the
condition depends in some way on the variable being differentiated
against.

The scheme used here is somewhat simplistic and will perform
some redundant work in cases. For instance, differentiating the fol-
lowing program:

let 𝑥 ∶=
sum 𝑖 from 0 to 𝑛

𝑦
end

in
𝑧

will yield:
let 𝑥 ∶=

sum 𝑖 from 0 to 𝑛
𝑦

end
in
let 𝑥′ ∶=

sum 𝑖 from 0 to 𝑛
𝑦 ′

end

138

Chapter 7. Modular compilation of signal relations

137. Shaikhha et al., ‘Efficient
Differentiable Programming in
a Functional Array-Processing
Language’. 2019

148. Vassilev et al., ‘Clad – Auto-
matic Differentiation Using
Clang and LLVM’. 2016

72. Hascoet et al., ‘The Tapenade
Automatic Differentiation Tool’.
2013

89. Lattner et al., ‘LLVM: A
Compilation Framework for
Lifelong Program Analysis and
Transformation’. 2004
a. The resulting LLVM code
as well as the benchmarking
code can be found at h t t p s :
/ / g i t l a b . c o m / c h u p i n / h y d r a - v 2 /

- / t r e e / s e p a r a t e _ c o m p i l a t i o n /

e x a m p l e s / b e n c h m a r k

68. Google, Benchmark. 2021

in
𝑧′

which performs two loops while it should be possible for it to perform
one. Furthermore, if 𝑦 performs assignments, these assignments will
be performed again in 𝑦 ′ without, however, changing the meaning of
the program. Finally, it differentiates the program many time, once
for each signal appearing in the equation. A better implementation
could directly generate a matrix for all the variables appearing in the
equation. This could be done by following the work presented in [137]
for instance, which defines a differentiable array based programming
language. Another solutionwould be to rely on an external system that
could perform automatic differentiation at a lower level, such as Clad
[148], which performs automatic differentiation of llvm programs or
Tapenade [72], which works on Fortran or C programs.

7.4—Performance evaluation

In this section, benchmarks are presented that compare the runtime
of computing the residual of various equations and their derivatives,
either using an explicit representation (obtained by applying first-order
automatic differentiation repeatedly) or an implicit representation, as
presented in section 7.2. Overall, the benchmarks show that using
an implicit representation results in performance ranging from on-par
with the explicit form to considerably worse. However, some leads on
improving the situation in themost problematic caseswill be presented
in §8.3.1. Also, recall that this scheme may trade some performance
during the simulation, but enables modular compilation, making it at-
tractive as an alternative to jit compilation. Further, nothing rules out
using a combination of approaches, leveraging their respective advant-
ages: this approach should thus be seen as complementary to existing
approaches, with its own distinct characteristics profile, not necessar-
ily as an alternative.

The benchmarks were obtained by generating llvm [89] code from
the Hydra compiler a. The resulting code was then compiled with
clang on the O3 optimisation level and benchmarked using Google’s
benchmark library [68]. The benchmarks were run on a PC with a 4-
core Intel i3-7100T@ 3.4GHz and 8GB of RAM.Results are presented
in figures 7.11, 7.12, 7.13, 7.14 and 7.15. On the graph, labelled ‘Impli-
cit’ is the curve giving the runtime for the code generated in implicit
form, meaning it can compute any 𝑛 derivatives. The curve labelled
‘Explicit’ corresponds to the runtime for code that has been specific-
ally generated by using repeated application of first-order automatic
differentiation, as presented in section 7.2.1. The ‘Slowdown’ curve
corresponds to the ratio of the time taken by the implicit form over
the time taken by the explicit form, it should be read on the second
𝑦-axis.

139

https://gitlab.com/chupin/hydra-v2/-/tree/separate_compilation/examples/benchmark
https://gitlab.com/chupin/hydra-v2/-/tree/separate_compilation/examples/benchmark
https://gitlab.com/chupin/hydra-v2/-/tree/separate_compilation/examples/benchmark
https://gitlab.com/chupin/hydra-v2/-/tree/separate_compilation/examples/benchmark

7.4. Performance evaluation

138. Shieh et al., ‘A Gen-
eral Formula for the Nth

Derivative of 1/f(x)’. 1967

The derivative of a product (figure 7.12), when expressed using
Leibniz’s rule offers performance characteristics that are very close to
the explicit code. For high-order differentiation, it even runs faster.
The reason for that behaviour is unclear to us: one possibility is that
the code becomes so large that it is detrimental to performance, due to
cache effects; another possibility is that the compiler fails to perform
some optimisation (possibly due to the strange arithmetic of floating-
point numbers) which results in more operations overall.

The implementation of Faà di Bruno’s formula doesn’t seem to be-
nefit from such an effect. This can viewed on the benchmarks in fig-
ure 7.11, for exp(𝑥) and figure 7.14 for 𝑥2. The case of exponential is
a particularly good example of one problem with our approach. Since
exponential is its own derivative, when the explicit code is generated,
it creates many opportunities to use already computed results. These
opportunities can easily be identified and exploited by the backend.
Exploiting these opportunities in implicit form is much harder for the
backend and that is the reason of this large gap in performance on that
particular benchmark. By contrast, the benchmark for 𝑥2 shows that,
although the implicit form is slightly slower, the gap remains toler-
able, especially as the number of differentiations rise. For 𝑥2, whose
derivatives do not repeat in the same way, there are indeed a lot less
opportunities for the backend to generate better quality code.

The benchmarks in figure 7.13 and 7.15 show that the computa-
tion of the successive derivatives of division is much slower in implicit
form compared to the explicit form. This is due to the fact that in the
implicit, form, the 𝑛-th derivative of 𝑥

𝑦 is computed as the 𝑛-th deriv-

ative of 𝑥𝑦−1. In the explicit form, the usual formula 𝑥′𝑦−𝑥𝑦 ′

𝑥2 is used
instead. Although the two formulation are equivalent mathematically,
from a computer’s perspective they are not, as one generates calls to an
exponentiation function while the other simply uses divisions. Ana-
lysis of the benchmarks using Linux’s perf tool show that, indeed, calls
to exponentiation is a significant part of the time spent computing the
successive derivatives of the quotient. Note however, that the absolute
runtime is not much worse than the runtime for computing the deriv-
atives of 𝑥2 (figure 7.14), which is computed in a very similar way. This
seems to confirmour interpretation that the difference in runtimes can
be explained by the fact that the explicit case simply uses a better for-
mula. This is of course problematic, not only for expressions in which
divisions appear, but also expressions involving functions whose first-
order derivative involves a division, like the inverse trigonometric and
hyperbolic functions (such as asin, see figure 7.15). However, altern-
ative ways of computing the 𝑛-th derivative of the division that do not
rely on exponentiation could provide a way to improve this situation
[138].

On some benchmarks, for instance in the benchmark for 𝑥2 (fig-

140

Chapter 7. Modular compilation of signal relations

ure 7.14), the performance gap between the implicit and explicit forms
is larger for a smaller number of differentiations. This could be mit-
igated by using a hybrid approach, where code is generated in explicit
form for a small number of differentiations and then falls back to using
order-parametric differentiation for larger numbers, where the gap is
smaller.

0

200

400

600

800

1,000

1,200

1,400

1,600

0 5 10 15 20
0

1

2

3

4

5

6

M
ea

n
tim

e
(n

s)

Sl
ow

do
w
n
(Im

pl
ic
it

Ex
pl

ic
it
)

Number of differentiations

Implicit
Explicit

Slowdown

Figure 7.11: Benchmarks
results for the computation
of the first 𝑛-th temporal
derivatives of exp(𝑥)

0

50

100

150

200

250

300

0 5 10 15 20
0

0.5

1

1.5

2

2.5

M
ea

n
tim

e
(n

s)

Sl
ow

do
w
n
(Im

pl
ic
it

Ex
pl

ic
it
)

Number of differentiations

Implicit
Explicit

Slowdown

Figure 7.12: Benchmarks
results for the computation
of the first 𝑛-th temporal
derivatives of 𝑥 ∗ 𝑦

141

7.4. Performance evaluation

Figure 7.13: Benchmarks
results for the computation
of the first 𝑛-th temporal
derivatives of 𝑥

𝑦

0

1,000

2,000

3,000

4,000

5,000

6,000

7,000

8,000

0 5 10 15 20
0

5

10

15

20

25

30

35

40

45

M
ea

n
tim

e
(n

s)

Sl
ow

do
w
n
(Im

pl
ic
it

Ex
pl

ic
it
)

Number of differentiations

Implicit
Explicit

Slowdown

Figure 7.14: Benchmarks
results for the computation
of the first 𝑛-th temporal
derivatives of 𝑥2

0

1,000

2,000

3,000

4,000

5,000

6,000

7,000

8,000

0 5 10 15 20
0

2

4

6

8

10

12

14

M
ea

n
tim

e
(n

s)

Sl
ow

do
w
n
(Im

pl
ic
it

Ex
pl

ic
it
)

Number of differentiations

Implicit
Explicit

Slowdown

142

Chapter 7. Modular compilation of signal relations

0

50,000

100,000

150,000

200,000

250,000

300,000

0 5 10 15 20
0

10

20

30

40

50

60

M
ea

n
tim

e
(n

s)

Sl
ow

do
w
n
(Im

pl
ic
it

Ex
pl

ic
it
)

Number of differentiations

Implicit
Explicit

Slowdown

Figure 7.15: Benchmarks
results for the computation
of the first 𝑛-th temporal
derivatives of asin(𝑥)

143

63. Giorgidze, ‘First Class Mod-
els’. 2012

112. Nilsson et al., ‘Functional
Hybrid Modeling’. 2003

66. Giorgidze et al., ‘Mixed-Level
Embedding and JIT Compilation
for an Iteratively Staged DSL’.
2011

a. See §8.3.4 for a discussion on
this particular subject.

b. See §8.3.5 for a discussion on
that specific subject.

Related works & conclusions 8
8.1—The original Hydra

The work presented in this thesis builds on the research done for
the previous implementation of Hydra [63], to which the term ‘ori-
ginal Hydra’ refers to. Even though Hydra as a language was first
proposed in [112], it did not have an implementation at the time, mak-
ing a comparison less interesting.

The original Hydra was implemented as an edsl in Haskell in
a way very similar to the embedding of sfrp described in part I. Sig-
nal relations were represented using a deep-embedding as a gadt and
a quasi-quoter was provided for expressing signal relations in a con-
venient syntax. To perform simulation, efficient code was extracted
using jit compilation to llvm and then to machine code [66].

The main difference between the new Hydra and the original one
is the choice of embedding, which had important consequences on
the implementation. Embedding in an existing language like the ori-
ginal Hydra (or sfrp) saves a considerable amount of effort to the
implementor: implementing a modelling language is difficult enough
without having to also implement an efficient general purpose lan-
guage. It is alsomore appealing for users who can reuse existing librar-
ies of the host language and include the program written in the dsl as
part of a larger program more easily. This additional implementation
difficulty is the reason for some missing features of this new Hydra,
such as the lack of support for unbounded structural dynamismwhich
become more complicated to implement a. This also makes the eval-
uation of the performance of the implementation more difficult, since
it becomes important to avoid benchmarking the performance of the
host language.

However, controlling the functional host does open much more
freedom in the implementation of novel compilation techniques and
static analysis. While the original Hydra used jit compilation, this
new version features a fully modular compilation scheme which for-
goes the need to incorporate a jit compiler into the runtime andmoves
that runtime cost to compile time. Although it would be possible to
implement modular compilation in a language like the original Hy-
dra b, it would have been a lot harder to conceptualize and develop it
without having full control over the host language. While this work
did not discuss possible static analysis on models, it would be a very
interesting avenue for futurework. Here again, it would be easier to de-
velop such analysis, in particular modular analysis, while having con-

145

8.2. Equation-based object-oriented languages

11. Benveniste et al., ‘Multi-
Mode DAE Models - Challenges,

Theory and Implementation’.
2019 — 13. Benveniste et al.,
‘Structural Analysis of Multi-

Mode DAE Systems’. 2017

62. Fritzson et al., ‘Modelica
— A Unified Object-Oriented

Language for System Mod-
eling and Simulation’. 1998

62. Fritzson et al., ‘Modelica
— A Unified Object-Oriented

Language for System Mod-
eling and Simulation’. 1998

40. Chrisofakis, ‘Simulation-
Based Development of Auto-
motive Control Software with

Modelica’. 2011 — 86. Kon-
stantinopoulos, ‘Dynamic

System Modeling and Stabil-
ity Assessment of an Aircraft

Distribution Power System Us-
ing Modelica and FMI’. 2020

— 95. Matejak, ‘Free Modelica
Library for Chemical and Elec-
trochemical Processes’. 2015 —
134. Schmidt, ‘Magnetic Force

from Experiment, Equation- and
Geometry-Based Calculation Us-

ing the Example of a Switching
Magnet’. 2019 — 156. Zim-

mer, ‘Robust Object-Oriented
Formulation of Directed Ther-

mofluid Stream Networks’. 2020

trol over the host language. While Haskell’s type system can be used
to enforce some interesting invariants (as was demonstrated in part I),
it could become limiting or unergonomic to implement more complex
analysis that would be better implemented as part of a separate dedic-
ated compiler. This choice was made in [11, 13] for example.

To a user, if one omits the differences in host languages and the
missing features mentioned earlier, the differences between the ori-
ginal Hydra and the new Hydra lie only ‘at the surface’. That is in the
syntax and in differences in implementations but the semantics and
the general philosophy of the languages remain the same.

8.2—Equation-based object-oriented languages

Many non-causal simulation languages are designated by the term
Equation-based object-oriented (eoo) languages. These languages take
another approach to combiningmodels than that of fhm. In these lan-
guages, models are objects, in many ways similar to objects in object-
oriented languages. While an object is usually a collection of attributes
andmethods, objects in eoo languages are collections of attributes and
equations, which relate the values of the attributes together. Mechan-
isms inherited fromobject-oriented languages, such as inheritance, are
used to extend models. eoo languages also feature connection equa-
tions, which are used to specify equality relations between different
components of a model. By contrast, fhm makes use of higher-order
relations and signal relation applications both for model extensibility
and specifying connections.

The eoo paradigm is largely dominant in the field of non-causal
modelling languages. This section gives a few examples of languages
designed following these principles, aswell aswork done on theirmod-
ular compilation. This has been mainly the case in the context of the
Modelica language [62].

8.2.1—Modelica

Modelica [62] is a standardised non-causal modelling language
and the main representative of eoo languages. It has been used indus-
trially in a large range of applications [40, 86, 95, 134, 156].

In Modelica, a model is specified as a class with attributes and
equations (instead of methods). Below is a simple model, that relates
two time-varying quantities a and b and makes use of two constants, c
and d . c is a parameter, it is constant during the simulation but can be
set to different values when the model is instantiated; while d ’s value is
set at the time the model is written.

m o d e l F o o

R e a l a ;

R e a l b ;

146

Chapter 8. Related works & conclusions

a. Taken from the documenta-
tion for OpenModelica, see:
h t t p s : / / b u i l d . o p e n m o d e l i c a .

o r g / D o c u m e n t a t i o n /

M o d e l i c a R e f e r e n c e . ' f l o w ' .

h t m l .

p a r a m e t e r R e a l c ;

c o n s t a n t R e a l d = 1 0 . 0 ;

e q u a t i o n

a * c = d e r (b) ;

c * d = b * d e r (a) ;

e n d F o o ;

To use this model as part of a larger model, it is possible to add in-
stances of it as attributes to other models, like so:

m o d e l B a r

F o o f 1 (c = 1 . 0) ;

F o o f 2 (c = 2 . 0) ;

e q u a t i o n

f 1 . a = f 2 . b ;

f 1 . b + f 2 . a = 0 ;

e n d B a r ;

It is also possible for a model to extend another model through in-
heritance, much like a class can inherit from another in a traditional
object-oriented language. For instance, here:

m o d e l B a z

e x t e n d s F o o ;

R e a l e ;

e q u a t i o n

e = a ;

e n d B a z ;

B a z extends F o o : all the attributes of the parent model F o o are available
to B a z and all its equations also hold. Hydra has none of these fea-
tures but instead makes extensive use of signal relation application to
produce similar models.

With Hydra, connecting several components together was done
by using higher-order signal relations and equality constraints, such
as s e r i a l or p a r a l l e l from §5.5.3. Instead, Modelica provides con-
nect equations and connectors. A connector is a record containing
variables for which the notion of connection can be made precise. For
instance, the following example a defines an electrical connector as a
pair of an electric potential v and an electrical current i :

c o n n e c t o r P i n

R e a l v ;

f l o w R e a l i ;

e n d P i n ;

Note that i is annotated with f l o w . Indeed, according to Kirchhoff ’s
laws, connecting two pins physically means that their potentials are

147

https://build.openmodelica.org/Documentation/ModelicaReference.'flow'.html
https://build.openmodelica.org/Documentation/ModelicaReference.'flow'.html
https://build.openmodelica.org/Documentation/ModelicaReference.'flow'.html
https://build.openmodelica.org/Documentation/ModelicaReference.'flow'.html

8.2. Equation-based object-oriented languages

112. Nilsson et al., ‘Func-
tional Hybrid Modeling’. 2003

145. Tinnerholm et al., ‘To-
wards Introducing Just-

in-Time Compilation in a
Modelica Compiler’. 2019

155. Zimmer, ‘Module-
Preserving Compilation

of Modelica Models’. 2009

equal but that the current that flow through them sum to zero. This
can be formulated in Modelica like so:

m o d e l O n e P i n

P i n p ;

e n d O n e P i n ;

m o d e l C o n n e c t

O n e P i n p 1 ;

O n e P i n p 2 ;

e q u a t i o n

c o n n e c t (p 1 . p , p 2 . p) ;

e n d C o n n e c t ;

The connect equation will translate to the following pair of equations:

p 1 . p . v = p 2 . p . v ;

p 2 . p . i + p 1 . p . i = 0 . 0 ;

Similar laws exists in other fields of physics for other physical quantit-
ies. While Hydra doesn’t strictly need connect equations, it would be
interesting to add some support for them, as having to manually state
these connections laws can be error-prone. The original design for
fhm [112] had plans for supporting connect equations but they were
never supported in concrete implementations, and the one developed
for this thesis is no exception. Integrating them in is not entirely obvi-
ous however due to the need to distinguish between potential and flow
variables, which Hydra does not make at all.

Modelica currently has limited support for hybrid and structur-
ally dynamic models. Current implementations rely on the assump-
tion that all symbolic processing (such as index-reduction or causal-
isation) happens prior to the simulation. Earlier sections showed how
this was generally impossible in the presence of structurally dynamic
models, in practice this results in models which are accepted by the
compiler but fail to simulate.

Several Modelica-like languages have been proposed that offer
more expressivity, for instance Sol (discussed in §8.2.5) orModelCom-
position Language (mcl) (discussed in §8.2.3), with the intent to later
integrate the resulting techniques intoModelica implementations. A
recent proposal to integrate jit compilation in an implementation of
Modelica [145] to allow for more flexibility at runtime but also to
help with compilation times by allowing to delay some code

In [155], Zimmer presents theoretical work towards module-pre-
serving compilation of Modelica models. The goal of the author is,
when compiling a large complete model, to find ways to reuse previ-
ously generated code segments. The author focuses particularly on the
issue of causalisation, which has not been considered in this thesis.

148

Chapter 8. Related works & conclusions

24. Broman, ‘Meta-Languages
and Semantics for Equation-
Based Modeling and Simulation’.
2010

23. Broman, Flow Lambda Cal-
culus for Declarative Physical
Connection Semantics. 2007

25. Broman et al., ‘Gradually
Typed Symbolic Expressions’.
2017

76. Höger, ‘Compiling Modelica’.
2018
111. Nilsson et al., ‘Exploiting
Structural Dynamism in Func-
tional Hybrid Modelling for
Simulation of Ideal Diodes’. 2010

Central to his idea for reusing code is the notion of a causal entity,
which corresponds to a particular use of a submodel with a given caus-
ality. If the same causal entity appears several time throughout a larger
model, code only needs to be generated once and can then be reused
by all entities. This work also contains reflections on how to decide
whether to reuse the code for an entity or to regenerate it. The diffi-
culties caused by index-reduction are mentioned but the precise way
in which the author’s approach is reconciled with these difficulties is
left as future work. Although the goal of the author is not ahead of
time compilation of partial models, the possibility that this technique
could be used to distribute pre-compiled code ismentioned but the de-
tails are left for future work. It would be interesting to explore whether
one could use this work in conjunction with our approach for hand-
ling latent equations to obtain a modular compiler for code in causal
form.

8.2.2—mkl

TheModelling Kernel Language (mkl) [24] was proposed as a ker-
nel language for non-causal modelling language. It consists of a simple
functional language, similar to the functional host used for Hydra in
this part. The specification of models is handled by an effectful exten-
sion to the language, similar to how side-effects are stated in ml-style
languages. Models are first-class entities, enabling a similar style of
modelling to the one promoted by Hydra.

mkl however also has connect statements in the style of Model-
ica, with a distinction between potential and flow variables. Early re-
search of mkl precisely defined a connection semantics for mkl [23]
in terms of the flow λ-calculus, which is used to produce correct equa-
tions from connection statements. If Hydra were to be extended with
connect statements, it would be natural to base this extension on this
work, given the similarities between mkl and Hydra.

Modelyze [25] is an extension of mklwith the aim to allow for the
implementation of extensible dsl. The language uses a gradual typing
scheme to allow for expressive manipulation of symbolic expressions
at runtime, while retaining static typing guarantees when desired. This
approach allowsModelyze to define hybrid dae as an extension to the
language, and not a built-in feature.

Both mkl and Modelyze are implemented through interpreters
written in OCaml.

8.2.3—mcl

The Model Composition Language (mcl) [76] is similar in spirit
to mkl, as it is intended as a core non-causal language. It is as express-
ive as the original Hydra [111], supporting unbounded structural dy-
namism and higher-order models.

149

8.2. Equation-based object-oriented languages

33. Carette et al., ‘Finally Tag-
less, Partially Evaluated’. 2009

84. Karczmarczuk, ‘Func-
tional Differentiation of

Computer Programs’. 2001

77. Höger et al., ‘Operational Se-
mantics for a Modular Equation

Language’. 2013 — 78. Höger
et al., ‘Notes on the Separate

Compilation of Modelica’. 2010

83. Kalman, ‘Doubly Re-
cursive Multivariate Auto-
matic Differentiation’. 2002

57. Elmqvist et al., ‘Systems
Modeling and Program-

ming in a Unified Environ-
ment Based on Julia’. 2016
16. Bezanson et al., ‘Julia:
A Fresh Approach to Nu-
merical Computing’. 2017

mclwas designed as a tool to investigate the separate translation of
Modelicamodels. The goal is to define a semantics for anymodel, in-
cluding partial models, which is independent of the context in which
they are used. Models are compiled separately as OCaml files. The
approach to the representation of equations is however fairly different
from the one pursued in this work. In compiled mcl, signals are rep-
resented with OCaml records, the record contains (in addition to the
value of the signal), a few functions that define the result of basic oper-
ations (addition, multiplication, differentiation, etc.) over the signal.
The approach is inspired by [33] and, with regards to differentiation, is
equivalent to the one presented by Karczmarczuk [84] that was already
briefly discussed.

Earlier work from the author of mcl was however more relevant
to the work presented in this thesis [77, 78]. In particular, in [77], the
author explores the modular semantics of a non-causal language using
automatic higher-order differentiation. The technique for performing
automatic differentiation in this work is derived from [83]. The pro-
posed target language is able to compute an arbitrary order time deriv-
ative of equations, like with order-parametric differentiation, although
the approach also allows for the computation of the partial derivat-
ives of expressions, which are useful in computing the Jacobian matrix
used for simulation. A proof of the correction of the translation of
arbitrary expression to terms in the target language is provided and
the author also provides an implementation of the target language as a
Java library. The work differs from ours in our focus to generate ma-
chine code from the partial models. The target language in [77] sits at
a higher-level, with terms of the language being evaluated in the host
language. Regardless, it would be interesting to study whether some
of the shortcomings of the current implementation of Hydra can be
solved by the approach proposed in this work. Performance is unlikely
to be improved however, as the computation of composition and mul-
tiplication takes exponential time in the number of differentiations. To
mitigate that problem, the author proposes to fallback onto more ef-
ficient formulations when they apply, like Faà di Bruno’s formula or
Leibniz’s formula when they apply, which are already at the center of
order-parametric differentiation.

8.2.4—Modia

Modia [57] is a non-causal modelling language embedded in Ju-
lia [16]. It inherits some features of Modelica, the use of connectors
and inheritance through a merging operator.

Modia supports structurally dynamic models in a way similar to
Hydra, although they are referred to as multi-mode dae in this con-
text. Models dynamically change by reacting to events. Significant
work has been done with Modia with regards to the computation of
sensible reset values at mode change. In Hydra, every state variable

150

Chapter 8. Related works & conclusions

11. Benveniste et al., ‘Multi-
Mode DAE Models - Challenges,
Theory and Implementation’.
2019 — 13. Benveniste et al.,
‘Structural Analysis of Multi-
Mode DAE Systems’. 2017

154. Zimmer, ‘Equation-Based
Modeling of Variable-Structure
Systems’. 2010

30. Campbell et al., Modeling and
Simulation in Scilab/Scicos with
ScicosLab 4.4. 2006
105. Nikoukhah et al., ‘Exten-
sions to Modelica for Efficient
Code Generation and Separ-
ate Compilation’. 2007 — 106.
Nikoukhah et al., ‘Towards a Full
Integration of Modelica Models
in the Scicos Environment’. 2009

138. Shieh et al., ‘A General
Formula for the Nth Derivative
of 1/f(x)’. 1967
75. Hoffman, ‘Derivative Poly-
nomials for Tangent and Secant’.
1995
100. McKiernan, ‘On the Nth
Derivative of Composite Func-
tions’. 1956

is assumed to be continuous unless it is explicitly reinitialised. When
it is, then an explicit equation must be provided to compute the reset
value, which can be somewhat inconvenient. InModia, this is handled
automatically by using an approach based on non-standard analysis
[11, 13]. The authors argue that, at least when confronted with linear
equations, the solution computed by their scheme is the only correct
solution. It is not true in the presence of non-linearity, nor is it clear,
according to the authors, how correct the computed solution is.

Julia is a jit compiled language: all functions, before being called,
are compiled to llvm. This means that any edsl implemented with
Julia gets jit compilation for free, including Modia.

8.2.5— Sol
Sol[154] is a language similar to Modelica, intended to explore

modelling variable-structure systems in a non-causal setting. Although
Sol was interpreted, its implementation featured novel work on some
of the algorithms needed for the symbolic processing of the equation
systems (e.g. index-reduction)whichwere optimised for dynamicmod-
els, where only some parts of the system changes. It would be interest-
ing to implement these algorithms in the Hydra runtime, instead of
the current implementation of the Σ-method, which is not aware of
any work realised in previous modes.

8.2.6— Scicos
Scicos is a graphical causal programming environment [30] sim-

ilar to Simulink. It is only mentioned here for the work in [105, 106],
where the authors explored the possibility to integrate pre-compiled
partial Modelica models as black-boxes into Scicos causal models.
Themodels the authors considered to be compiled in this way are com-
plete, except for the definition of some signals that are considered in-
puts to the model and whose value will be provided by the environ-
ment in which the model is integrated. Although their work is not
concerned with the separate compilation of arbitrary models, the au-
thors note that the technique allows for a form of modular compila-
tion, since two models compiled as black-boxes can be composed in
the host environment without the need for recompilation.

8.3—Limitations and future work

8.3.1— Performance improvements
There are cases where the performance of the code using order-

parametric differentiation could be improved. For instancewhen com-
puting the 𝑛-th derivative of the quotient. Using a specialised formula-
tion that doesn’t rely on exponentiation [138] was already mentioned.
Other functions could benefit from similar formulas, like tangent [75],
exponential or the power functions [100]. Using these special rules has

151

8.3. Limitations and future work

56. Elmqvist et al., ‘Object-
Oriented Modeling of
Hybrid Systems’. 1993

44. Constantine et al., ‘A Mul-
tivariate Faà Di Bruno For-

mula With Applications’. 1996

83. Kalman, ‘Doubly Re-
cursive Multivariate Auto-
matic Differentiation’. 2002

77. Höger, ‘Operational
Semantics for a Modular
Equation Language’. 2013

the downside of requiring more work from the compiler implementer,
instead of relying on the rule for composition.

In cases where the performance gap between the code using re-
peated first-order differentiation and the code order-parametric dif-
ferentiation is larger for a small number of differentiations, one solu-
tion could be to generate specialised code for the low-order derivatives
using repeated first-order differentiation, and fall back to the impli-
cit formula if higher-order derivatives are required. Deciding when,
and up to how many derivatives, to generate code could be done via
some heuristic (e.g. by considering the size of the code that would res-
ult from generating the code, or by considering whether the implicit
form is known to have poor performance) or by user annotations. One
should, in general, be careful not to generate too much code, to avoid
adverse effects on caching, especially if the code is not necessarily be-
ing used.

8.3.2—External functions

User-defined signal functions are not supported by the current im-
plementation. Currently, all functions that operate on signals (s i n ,
e x p , etc.) are built-in operators. This restriction is not due to dif-
ficulties that would occur with having to compute the 𝑛-th derivat-
ive of a user-defined function: a simple language mechanism could
be provided to allow the user to specify them (e.g. by means of an-
notations, like in Dymola [56]). If the definitions are simple enough,
automatic differentiation could also be used.

However, if user-defined were allowed to be multivariate, a suit-
able way to compose these multivariate functions would have to be
found. This would either require the implementation of multivariate
variants of Faà di Bruno’s formula [44], or using approaches to higher-
order automatic differentiation that readily support composition of
multivariate functions (e.g. [83], used in [77]).

8.3.3—Modular causalisation

The code generated by the compiler is suitable for simulation with
a dae solver. Non-causal modelling languages typically also perform
causalisation, so that the resultingmodel can be simulatedwith an ode
solver (eventually with the assistance of a non-linear algebraic solver,
in the presence of non-linear algebraic loops). This involves symbolic-
ally manipulating the set of undirected equations, so that they appear
directed and scheduled.

A partial dae can be made causal in many ways, depending on the
context in which it used. In the presence of structural changes, the
causality can even change during the simulation. For these reasons,
modular causality, at least in the general case, seems very difficult. A
simpler goal could be to generate causal versions of only some models,
e.g. models that have only a few ways of being made causal or whose

152

Chapter 8. Related works & conclusions

98. Mazzoli, Inline-c. 2015 —
147. Tweag I/O, Inline-Java. 2021

50. Eisenberg et al., Dependent
Types in Haskell. 2016 — 51. Eis-
enberg et al., Design for Depend-
ent Types. 2021 — 52. Eisenberg
et al., Dependent Haskell. 2021

causality does not change during simulation. Thesemodelswould then
be simulatedwith an ode solver and all othermodels with a dae solver.
Scheduling between these models would then have to be dynamic, in
case of structural changes.

8.3.4—Unbounded number of modes

frp supports unbounded number ofmodes, as did previous imple-
mentations of Hydra. The switch construct present in the language
also, technically, supports it, albeit inefficiently, by means of higher-
order functions. The reasons for this inefficiency is the same as the
one explored in §3.4.3 and a similar solution can likely be used.

8.3.5—Re-embedding Hydra

While the fully standalone version of Hydra has its advantages,
particularly for exploring alternative compilationmethods like the one
presented in this work, it also has major disadvantages. The amount
of work required to have an advanced functional language compiler
is substantial. As a result, the functional language in which Hydra is
embedded is by no means state-of-the-art and lacks in expressivity in
some key areas. Furthermore, its compilation is somewhat naïve. This
makes doing performance evaluations difficult, since bad performance
may be attributed to the functional host. Finally, because the ecosys-
tem of the language is inexistent, it mechanically limits adoption of the
language by other modellers.

The scheme presented in this work could be implemented by an
embedded version ofHydra, in a fashion similar to that of the original
implementation. ghc’s meta-programming capabilities are powerful
enough to support compile time code generation for another language,
as demonstrated by libraries such as inline-C or inline-Java [98, 147].

Re-embedding Hydra into Haskell would be a positive step: it
would considerably ease the development process of Hydra, would
allow for some level of adoption. It is my opinion that this would
compensate the added conceptual difficulty for exploring new com-
pilation techniques and compile-time analysis for hybrid non-causal
languages. This last point becoming less and less relevant as ghc gets
new type-level features, hopefully even some form of dependent types
in the near future [50–52].

8.3.6—Optimisations in the context of modularly compiled signal rela-
tions

No study has been done on how compiling models modularly af-
fects the simulation of the resulted code. In general purpose language,
not inlining a function affects optimisation, as the function is essen-
tially a black-box. The same applies in a non-causal language. For in-
stance, not inlining amodel can prevent propagating equalities between
variables. This can cause more variables and equations to be present

153

8.4. Conclusions

111. Nilsson et al., ‘Exploiting
Structural Dynamism in Func-

tional Hybrid Modelling for
Simulation of Ideal Diodes’. 2010

during the simulation than necessary. The number of equality con-
straints between interface variables and local variables is already a heur-
istic used by the Hydra compiler to inline some signal relations.

A simple solution to this problemwould be to have a signal relation
produce additional metadata about the equation it is made from. This
could for instance be done when emitting the signature matrix. This
could allow the runtime to dynamically propagate equalities between
variables and constants and deactivate these simple equations when
possible. Work is currently being done in the runtime and compiler
to allow for the detection of such equalities. In addition to optimisa-
tions, this would allow for the simulation of systems that rely on such
dynamic simplification, like the full-wave rectifier model presented in
[111].

8.4—Conclusions

This part presented the implementation of a compiler for a hybrid
non-causal modelling language based on the principles of Functional
Hybrid Modelling. The implementation generates machine code us-
ing llvm in a modular fashion, even for partial models, alleviating the
problem caused by latent equations by using order-parametric differ-
entiation. This allows generating code capable of computing the value
of an arbitrary derivative of an equation. The performance of the pro-
posed scheme has been evaluated and compared with that of a more
common scheme that generates code for derivatives on demand. Al-
though the evaluation showsmixed results, the core idea is sound. The
cost in additional simulation time is balanced by shorter compilation
times, which could yield an overall simulation performance gain in
the setting of hybrid languages where jit compilation otherwise would
have to be carried out during simulation. Further, order-parametric
differentiation could be integrated with other methods, such as con-
ventional automatic differentiation or just-in-time compilation, allow-
ing different techniques to be used in different parts of a model de-
pending on their specific performance characteristics. In other words,
order-parametric differentiation is at least an interesting complement
to existing implementation techniques for cases where modular com-
pilation is a key concern.

154

Part III

Conclusions

155

Conclusions 9
This thesis explored new design and implementation ideas for express-
ive modelling languages. In the first part, it showed how using ideas
from the compilation of synchronous dataflow languages could greatly
speed-up the implementation of a Functional Reactive Programming
(frp) library, while retaining the characteristic expressivity of the ap-
proach. The resulting library sfrp also allowed for additional con-
straints, which limit the kinds of models that can be written in mean-
ingful ways: rejecting inconsistent models or for which it is not pos-
sible to give a reasonable interpretation. The library lost little in ways
of convenience, thanks to the implementation of custom syntax inside
ghc by use of quasi-quotation. While sfrp was presented as being
focused on modelling applications, its design principles are applicable
to other reactive libraries intended for traditional reactive applications.
Fundamentally, the efficiency of sfrp resides in the distinction itmakes
between single signals and collections of signals. Other aspects, such
as the distinction between different single signal kinds could be modi-
fied (or even removed)withoutmuch consequences, as far as efficiency
is concerned.

In the second part, the thesis explored possibilities for themodular
compilation of a language based on fhm. This enables ahead-of-time
compilation, previously only available to less expressive non-causal
languages. To achieve this, a new techniquewas developed called order-
parametric differentiation, which allows to generate code able to com-
pute an arbitrary derivative of an expression, thus alleviating prob-
lems caused by latent equations for the simulation of systems of un-
directed equations. The performance characteristics of this technique
were studied and compared to that of code generated using traditional
first-order automatic differentiation techniques. While the evaluation
shows mixed results, there are possible ways to improve the situation.
If performance is an issue, this technique can also be used alongside
other techniques that produce better code at the cost of some modu-
larity, such as jit compilation.

Ideas for future research have already been stated at the end of each
part separately for frp implementations and fhm implementations.
Let us therefore conclude this work by discussing avenues for pos-
sible development at the intersection of frp and fhm. Indeed, while
very close, each language is distinctly in a class of its own. Still, the
work presented in this thesis already showed that features common to
both approaches, most notably switching and type-level restrictions

157

110. Nilsson et al., ‘Func-
tional Reactive Program-
ming, Continued’. 2002

108. Nilsson, ‘Functional
Automatic Differentiation
with Dirac Impulses’. 2003

on models, could be implemented and treated in a similar manner
between frp and fhm. It would be interesting to see if some exten-
sions to frp could also be implemented in the non-causal setting of
fhm. For instance, support for richer classes of switching constructs,
such as collection-based switches [110]; or for impulses [108], to allow
modellers to state discontinuities without structural changes.

However, the commonalities between the implementations of frp
and fhm presented in this thesis suggest a more ambitious way for-
ward, in the form of a language unifying these two paradigms. A uni-
fied language would have some significant advantages over both indi-
vidual approaches. Indeed, although formodelling applications fhm is
generally a more pleasant setting to work in (simply by virtue of it sup-
porting non-causal models), it can be awkward to express some mod-
els, for example, those making use of stateful signal functions which,
in contrast, are very easily expressed with frp. A language based on
fhm but with frp-like aspects would result in an even more expressive
and flexible modelling language, offering the best of both causal and
non-causal worlds to the modeller.

158

Proofs of results on the structure of
integer partitions A
This appendix contains the proofs of the various results presented in
section 7.2.3.1. It is unlikely that these results are new or significant
outside of the work of this thesis and they are, for the most part, very
easy to prove. However, not being able to find these results in the lit-
erature, I present their proofs here.

Proof of lemma 7.2.1. Let 𝑝 = (𝑚1, … , 𝑚𝑛) be a partition of 𝑛. For
(𝑚1, … , 𝑚𝑗 + 1,… , 𝑚𝑛) to be a partition of 𝑛 + 𝑗, the following quantity
must equal 𝑛 + 𝑗:

1 ⋅ 𝑚1 +⋯+ 𝑗 ⋅ (𝑚𝑗 + 1) + ⋯ + 𝑛 ⋅ 𝑚𝑛 + (𝑛 + 1) ⋅ 0 + ⋯ + (𝑛 + 𝑗) ⋅ 0

The above can be rearranged as:

(1 + 𝑚1 + ⋯ + 𝑗 ⋅ 𝑚𝑗 + ⋯ + 𝑛 ⋅ 𝑚𝑛) + 𝑗

which is indeed equal to 𝑛 + 𝑗, given that 𝑝 is a partition of 𝑛.

Proof of lemma 7.2.2 and lemma 7.2.3. Let 𝑝 = (𝑚1, … , 𝑚𝑛) be a parti-
tion of 𝑛 which is not the partition (0, … , 0, 1).

Since𝑚𝑛 = 0, there exist two indices 𝑢, 𝑣 ∈ [1, 𝑛[and such that𝑚𝑢 is
the first non-zero coefficient of 𝑝 and𝑚𝑣 is the last non-zero coefficient
of 𝑝 That is:

𝑚𝑢 ≠ 0
𝑚𝑣 ≠ 0

∀𝑘 ∉ [𝑢, 𝑣], 𝑚𝑘 = 0

𝑝 can thus be rewritten as (0, … , 𝑚𝑢, … , 𝑚𝑣, … , 0) and thus the follow-
ing holds:

𝑢 ⋅ 𝑚𝑢 + ⋯ + 𝑣 ⋅ 𝑚𝑣 = 𝑛 (A.1)

Using this equation one can prove that 𝑣 ≤ 𝑛 − 𝑢, which will be
useful below. By simple rearranging, one gets:

𝑣 ⋅ 𝑚𝑣 = 𝑛 − 𝑢 ⋅ 𝑚𝑢 − (𝑢 + 1) ⋅ 𝑚𝑢+1 − ⋯ − (𝑣 − 1) ⋅ 𝑚𝑣−1

159

Since 𝑚𝑢 > 0, 𝑢 ≤ 𝑢 ⋅ 𝑚𝑢 and since all coefficients 𝑚𝑢+1, …, 𝑚𝑣−1 are
positive, the term on the right of the equation is bounded by 𝑛 − 𝑢,
giving:

𝑣 ⋅ 𝑚𝑣 ≤ 𝑛 − 𝑢

Since 𝑚𝑣 > 0, it follows that 𝑣 ≤ 𝑣 ⋅ 𝑚𝑣 and thus 𝑣 ≤ 𝑛 − 𝑢.
By subtracting 𝑢 on both sides of equation A.1, one gets:

𝑢 ⋅ (𝑚𝑢 − 1) + ⋯ + 𝑣 ⋅ 𝑚𝑣 = 𝑛 − 𝑢

Since 𝑣 ≤ 𝑛−𝑢, this shows that (0, … , 𝑚𝑢 − 1,… , 𝑚𝑣, … , 0) is a valid
partition of 𝑛 − 𝑢 and therefore the 𝑢-ancestor of 𝑝. It is the closest
ancestor of 𝑝, since all coefficients of 𝑝 before 𝑚𝑢 are 0, which proves
lemma 7.2.3.

Proof of theorem 7.2.2. Let 𝑝 be a partition of 𝑛 of the form whose first
𝑗 coefficients are 0, with 𝑗 ≥ 0, thus 𝑝 = (0,… , 0, 𝑚𝑗+1, … , 𝑚𝑛).

Let’s consider 𝑝𝑘, the 𝑘-child of 𝑝, with 1 ≤ 𝑘 ≤ 𝑗 + 1. By definition
of the 𝑘-child, the first non-zero coefficient of 𝑝𝑘 is its 𝑘-th coefficient:
either 1 if 𝑘 ≤ 𝑗 or 𝑚𝑗+1 + 1 if 𝑘 = 𝑗 + 1. From lemma 7.2.3, it follows
that 𝑝 is its closest ancestor.

Proof of theorem 7.2.3. From lemma 7.2.2, we know that every parti-
tion of 𝑛 (save for (0, … , 0, 1)) is the closest child of partition of a pre-
decessor of 𝑛. Therefore the construction indeed produces every par-
tition of 𝑛. Furthermore, no partition can be the closest child of two
partitions, since it wouldmean it has two closest ancestors which is im-
possible. Therefore, the construction produce every partition exactly
once without duplicates.

160

Bibliography

[1] Martín Abadi and Gordon D. Plotkin. ‘A Simple Differentiable Programming Language’. In:
Proceedings of the ACM on Programming Languages 4.POPL (Dec. 2019), 38:1–38:28. doi:
1 0 . 1 1 4 5 / 3 3 7 1 1 0 6 (cit. on p. 138).

[2] Alfred V. Aho, John E. Hopcroft and Jeffrey Ullman.Data Structures and Algorithms. 1st. USA:
Addison-Wesley Longman Publishing Co., Inc., 1983. isbn: 978-0-201-00023-8 (cit. on p. 56).

[3] Pascalin Amagbégnon, Loïc Besnard and Paul Le Guernic. ‘Implementation of the Data-Flow
Synchronous Language SIGNAL’. In: Proceedings of the ACM SIGPLAN 1995 Conference on
Programming Language Design and Implementation. PLDI ’95. New York, NY, USA: Asso-
ciation for Computing Machinery, June 1995, pp. 163–173. isbn: 978-0-89791-697-4. doi:
1 0 . 1 1 4 5 / 2 0 7 1 1 0 . 2 0 7 1 3 4 (cit. on p. 5).

[4] HeinrichApfelmus.Reactive-Banana: Library for Functional Reactive Programming (FRP). h t t p :
/ / h a c k a g e . h a s k e l l . o r g / p a c k a g e / r e a c t i v e - b a n a n a . 2011 (cit. on pp. 4, 22, 72).

[5] Louis François Antoine Arbogast. Du calcul des dérivations. fr. Strasbourg, France: Levrault
frères, 1800 (cit. on p. 122).

[6] T. Archibald, Craig Fraser and Ivor Grattan-Guinness. ‘The History of Differential Equations,
1670–1950’. In: Oberwolfach Reports (Jan. 2004), pp. 2729–2794. doi: 1 0 . 4 1 7 1 / O W R / 2 0 0 4 / 5 1
(cit. on p. 1).

[7] Uri M. Ascher and Linda R. Petzold. Computer Methods for Ordinary Differential Equations
and Differential-Algebraic Equations. 1st. USA: Society for Industrial and Applied Mathemat-
ics, 1998. isbn: 978-0-89871-412-8 (cit. on p. 18).

[8] Manuel Bärenz. Rhine: Functional Reactive Programming with Type-Level Clocks. h t t p : / /
h a c k a g e . h a s k e l l . o r g / p a c k a g e / r h i n e . 2017 (cit. on p. 22).

[9] E. T. Bell. ‘Partition Polynomials’. In: Annals of Mathematics 29.1/4 (1927), pp. 38–46. issn:
0003-486X. doi: 1 0 . 2 3 0 7 / 1 9 6 7 9 7 9 (cit. on p. 123).

[10] Albert Benveniste et al. ‘A Type-Based Analysis of Causality Loops in Hybrid Systems Model-
ers’. In: Journal of Nonlinear Analysis Hybrid Systems (2017) (cit. on pp. 5, 21, 40, 43, 69).

[11] Albert Benveniste et al. ‘Multi-Mode DAE Models - Challenges, Theory and Implementation’.
en. In: Computing and Software Science: State of the Art and Perspectives. Ed. by Bernhard
Steffen and Gerhard Woeginger. Lecture Notes in Computer Science. Cham: Springer Inter-
national Publishing, 2019, pp. 283–310. isbn: 978-3-319-91908-9. doi: 1 0 . 1 0 0 7 / 9 7 8 - 3 - 3 1 9 -
9 1 9 0 8 - 9 _ 1 6 (cit. on pp. 146, 151).

[12] Albert Benveniste et al. ‘Non-Standard Semantics of Hybrid Systems Modelers’. In: Journal of
Computer and System Sciences. In Commemoration of Amir Pnueli 78.3 (May 2012), pp. 877–
910. issn: 0022-0000. doi: 1 0 . 1 0 1 6 / j . j c s s . 2 0 1 1 . 0 8 . 0 0 9 (cit. on p. 69).

161

https://doi.org/10.1145/3371106
https://doi.org/10.1145/207110.207134
http://hackage.haskell.org/package/reactive-banana
http://hackage.haskell.org/package/reactive-banana
https://doi.org/10.4171/OWR/2004/51
http://hackage.haskell.org/package/rhine
http://hackage.haskell.org/package/rhine
https://doi.org/10.2307/1967979
https://doi.org/10.1007/978-3-319-91908-9_16
https://doi.org/10.1007/978-3-319-91908-9_16
https://doi.org/10.1016/j.jcss.2011.08.009

Bibliography

[13] Albert Benveniste et al. ‘Structural Analysis ofMulti-ModeDAESystems’. In:Proceedings of the
20th International Conference on Hybrid Systems: Computation and Control. HSCC ’17. New
York, NY, USA: ACM, 2017, pp. 253–263. isbn: 978-1-4503-4590-3. doi: 1 0 . 1 1 4 5 / 3 0 4 9 7 9 7 .
3 0 4 9 8 0 6 (cit. on pp. 146, 151).

[14] Gérard Berry. ‘Systèmes réactifs logiciels, le design du langage synchrone Esterel v5’ (Amphi-
théâtre Maurice Halbwachs, Collège de France, Paris, France). 16th Apr. 2013. url: h t t p s :
/ / w w w . c o l l e g e - d e - f r a n c e . f r / s i t e / g e r a r d - b e r r y / c o u r s e - 2 0 1 3 - 0 4 - 1 6 - 1 0 h 0 0 . h t m (visited
on 18/04/2022) (cit. on p. 4).

[15] Dimitri P. Bertsekas. Linear Network Optimization: Algorithms and Codes. Cambridge, MA,
USA: MIT Press, 1991. isbn: 978-0-262-02334-4 (cit. on p. 86).

[16] Jeff Bezanson et al. ‘Julia: A Fresh Approach to Numerical Computing’. In: SIAM Review 59.1
(2017), pp. 65–98. doi: 1 0 . 1 1 3 7 / 1 4 1 0 0 0 6 7 1 (cit. on pp. 3, 150).

[17] Dariusz Biernacki et al. ‘Clock-Directed Modular Code Generation for Synchronous Data-
flow Languages’. en. In: ACM International Conference on Languages, Compilers, and Tools for
Embedded Systems (LCTES). Tucson, Arizona, June 2008, p. 10 (cit. on pp. 5, 35, 50).

[18] Fischer Black andMyron Scholes. ‘ThePricing ofOptions andCorporate Liabilities’. In: Journal
of Political Economy 81.3 (1973), pp. 637–654. issn: 0022-3808 (cit. on p. 1).

[19] Olivier Bouissou and Alexandre Chapoutot. ‘An Operational Semantics for Simulink’s Sim-
ulation Engine’. In: Proceedings of the 13th ACM SIGPLAN/SIGBED International Conference
on Languages, Compilers, Tools and Theory for Embedded Systems. LCTES ’12. New York, NY,
USA: Association for ComputingMachinery, June 2012, pp. 129–138. isbn: 978-1-4503-1212-
7. doi: 1 0 . 1 1 4 5 / 2 2 4 8 4 1 8 . 2 2 4 8 4 3 7 (cit. on p. 69).

[20] Timothy Bourke and Marc Pouzet. ‘Zélus, a Synchronous Language with ODEs’. In: Interna-
tional Conference on Hybrid Systems: Computation and Control (HSCC 2013). Philadelphia,
USA: ACM, 2013 (cit. on pp. 1, 2, 5, 69).

[21] Timothy Bourke et al. ‘A Synchronous Look at the Simulink Standard Library’. In:ACM Trans-
actions on Embedded Computing Systems 16.5s (Sept. 2017), 176:1–176:24. issn: 1539-9087.
doi: 1 0 . 1 1 4 5 / 3 1 2 6 5 1 6 (cit. on p. 69).

[22] K. E. Brenan, S. L. Campbell and L. R. Petzold. Numerical Solution of Initial-Value Problems in
Differential-Algebraic Equations. Classics in Applied Mathematics. Society for Industrial and
AppliedMathematics, 1995. isbn: 978-0-89871-353-4. doi: 1 0 . 1 1 3 7 / 1 . 9 7 8 1 6 1 1 9 7 1 2 2 4 (cit. on
p. 17).

[23] David Broman. Flow Lambda Calculus for Declarative Physical Connection Semantics. en. Tech.
rep. 1. Linköping, Sweden: Deparment of Computer and Information Science, LinköpingUni-
versity, Dec. 2007, p. 19 (cit. on p. 149).

[24] David Broman. ‘Meta-Languages and Semantics for Equation-Based Modeling and Simula-
tion’. en. PhD Thesis. Linköping, Sweden: Linköpings universitet, 2010 (cit. on pp. 2, 8, 149).

[25] David Broman and Jeremy G. Siek. ‘Gradually Typed Symbolic Expressions’. In: Proceedings
of the ACM SIGPLAN Workshop on Partial Evaluation and Program Manipulation. PEPM ’18.
New York, NY, USA: Association for Computing Machinery, Dec. 2017, pp. 15–29. isbn: 978-
1-4503-5587-2. doi: 1 0 . 1 1 4 5 / 3 1 6 2 0 6 8 (cit. on pp. 2, 149).

162

https://doi.org/10.1145/3049797.3049806
https://doi.org/10.1145/3049797.3049806
https://www.college-de-france.fr/site/gerard-berry/course-2013-04-16-10h00.htm
https://www.college-de-france.fr/site/gerard-berry/course-2013-04-16-10h00.htm
https://doi.org/10.1137/141000671
https://doi.org/10.1145/2248418.2248437
https://doi.org/10.1145/3126516
https://doi.org/10.1137/1.9781611971224
https://doi.org/10.1145/3162068

Bibliography

[26] Peter N. Brown, AlanCHindmarsh and Linda Ruth Petzold.DASKRPackage: DAE Solver with
Krylov Methods and Rootfinding. June 2011 (cit. on p. 17).

[27] Richard L. Buden and J. Douglas Faires. Numerical Analysis. Ninth. Boston,MA: Brooks/Cole,
2011. isbn: 978-0-538-73351-9 (cit. on p. 118).

[28] Daniel Bünzli. React, Functional Reactive Programming for OCaml. h t t p s : / / e r r a t i q u e . c h /
t a l k s / r e a c t - o c a m l u m - 2 0 1 0 . p d f . Accessed: 2019-05-09. 2010 (cit. on pp. 4, 22).

[29] Benoît Caillaud, Mathias Malandain and Joan Thibault. ‘Implicit Structural Analysis of Mul-
timode DAE Systems’. In: Proceedings of the 23rd International Conference on Hybrid Systems:
Computation and Control. HSCC ’20. New York, NY, USA: Association for Computing Ma-
chinery, Apr. 2020, pp. 1–11. isbn: 978-1-4503-7018-9. doi: 1 0 . 1 1 4 5 / 3 3 6 5 3 6 5 . 3 3 8 2 2 0 1 (cit.
on pp. 85, 90, 113).

[30] Stephen L. Campbell, Jean-Philippe Chancelier and Ramine Nikoukhah. Modeling and Sim-
ulation in Scilab/Scicos with ScicosLab 4.4. en. New York: Springer-Verlag, 2006. isbn: 978-0-
387-30486-1. doi: 1 0 . 1 0 0 7 / 0 - 3 8 7 - 3 0 4 8 6 - X (cit. on p. 151).

[31] Stephen L. Campbell and C. William Gear. ‘The Index of General Nonlinear DAEs’. en. In: Nu-
merischeMathematik 72.2 (Dec. 1995), pp. 173–196. issn: 0945-3245. doi: 1 0 . 1 0 0 7 / s 0 0 2 1 1 0 0 5 0 1 6 5
(cit. on p. 7).

[32] John Capper. ‘Semantics Methods for Functional Hybrid Modelling’. en. PhD Thesis. Notting-
ham, United Kingdom: University of Nottingham, Nov. 2014 (cit. on p. 111).

[33] Jacques Carette, Oleg Kiselyov and Chung-chieh Shan. ‘Finally Tagless, Partially Evaluated:
Tagless Staged Interpreters for Simpler Typed Languages’. In: Journal of Functional Program-
ming 19.5 (Sept. 2009), pp. 509–543. issn: 0956-7968. doi: 1 0 . 1 0 1 7 / S 0 9 5 6 7 9 6 8 0 9 0 0 7 2 0 5 (cit.
on p. 150).

[34] Francesco Casella. Simulation of Large-Scale Models in Modelica: State of the Art and Future
Perspectives. Sept. 2015, p. 468. doi: 1 0 . 3 3 8 4 / e c p 1 5 1 1 8 4 5 9 (cit. on p. 113).

[35] Francesco Casella and Bernhard Bachmann. ‘On the Choice of Initial Guesses for theNewton-
RaphsonAlgorithm’. en. In:AppliedMathematics andComputation 398 (June 2021), p. 125991.
issn: 0096-3003. doi: 1 0 . 1 0 1 6 / j . a m c . 2 0 2 1 . 1 2 5 9 9 1 (cit. on p. 83).

[36] Paul Caspi et al. ‘LUSTRE: A Declarative Language for Programming Synchronous Systems’.
In: Proceedings of the 14th Annual ACM Symposium on Principles of Programming Languages
(14th POPL 1987). ACM, New York, NY. Vol. 178. 1987, p. 188 (cit. on pp. 5, 40).

[37] Francois E. Cellier and Ernesto Kofman. Continuous System Simulation. Berlin, Heidelberg:
Springer-Verlag, 2006. isbn: 0-387-26102-8 (cit. on pp. 1, 14, 17, 35, 82).

[38] Manuel M. T. Chakravarty, Gabriele Keller and Simon Peyton Jones. ‘Associated Type Syn-
onyms’. In: Proceedings of the Tenth ACM SIGPLAN International Conference on Functional
Programming. ICFP ’05. New York, NY, USA: ACM, 2005, pp. 241–253. isbn: 978-1-59593-
064-4. doi: 1 0 . 1 1 4 5 / 1 0 8 6 3 6 5 . 1 0 8 6 3 9 7 (cit. on pp. 10, 57).

[39] ManuelM. T. Chakravarty et al. ‘Associated Types with Class’. In: Proceedings of the 32NdACM
SIGPLAN-SIGACT Symposium on Principles of Programming Languages. POPL ’05. New York,
NY, USA: ACM, 2005, pp. 1–13. isbn: 978-1-58113-830-6. doi: 1 0 . 1 1 4 5 / 1 0 4 0 3 0 5 . 1 0 4 0 3 0 6
(cit. on pp. 10, 57).

163

https://erratique.ch/talks/react-ocamlum-2010.pdf
https://erratique.ch/talks/react-ocamlum-2010.pdf
https://doi.org/10.1145/3365365.3382201
https://doi.org/10.1007/0-387-30486-X
https://doi.org/10.1007/s002110050165
https://doi.org/10.1017/S0956796809007205
https://doi.org/10.3384/ecp15118459
https://doi.org/10.1016/j.amc.2021.125991
https://doi.org/10.1145/1086365.1086397
https://doi.org/10.1145/1040305.1040306

Bibliography

[40] Emmanuel Chrisofakis et al. ‘Simulation-BasedDevelopment of Automotive Control Software
with Modelica’. In: Proceedings of the 8th Modelica Conference. Dresden, Germany: Linköping
University Electronic Press, 2011. doi: 1 0 . 3 3 8 4 / E C P 1 1 0 6 3 1 (cit. on p. 146).

[41] Guerric Chupin and Henrik Nilsson. ‘Functional Reactive Programming, Restated’. In: Pro-
ceedings of the 21st International Symposium on Principles and Practice of Programming Lan-
guages 2019. PPDP ’19.NewYork,NY,USA:Association forComputingMachinery,Oct. 2019,
pp. 1–14. isbn: 978-1-4503-7249-7. doi: 1 0 . 1 1 4 5 / 3 3 5 4 1 6 6 . 3 3 5 4 1 7 2 (cit. on p. 7).

[42] Guerric Chupin and Henrik Nilsson. ‘Modular Compilation for a Hybrid Non-Causal Model-
ling Language’. en. In: Electronics 10.7 (Jan. 2021), p. 814. doi: 1 0 . 3 3 9 0 / e l e c t r o n i c s 1 0 0 7 0 8 1 4
(cit. on p. 10).

[43] Louis Comtet. Advanced Combinatorics: The Art of Finite and Infinite Expansions. en. Springer
Science & Business Media, Dec. 2012. isbn: 978-94-010-2196-8 (cit. on p. 128).

[44] G. M. Constantine and T. H. Savits. ‘A Multivariate Faà Di Bruno Formula With Applications’.
In: Transactions of the American Mathematical Society 348.2 (1996), pp. 503–520. issn: 0002-
9947 (cit. on pp. 132, 152).

[45] Antony Courtney, Henrik Nilsson and John Peterson. ‘The Yampa Arcade’. In: Proceedings of
the 2003 ACM SIGPLAN Workshop on Haskell. Haskell ’03. Uppsala, Sweden: ACM, 2003,
pp. 7–18. isbn: 1-58113-758-3. doi: 1 0 . 1 1 4 5 / 8 7 1 8 9 5 . 8 7 1 8 9 7 (cit. on pp. 4, 22).

[46] Pascal Cuoq and Marc Pouzet. ‘Modular Causality in a Synchronous Stream Language’. In:
10th European Symposium on Programming (ESOP’01). Vol. 2028. Lecture Notes in Computer
Science. Genova, Italy: Springer, Apr. 2001, pp. 237–251. doi: 1 0 . 1 0 0 7 / 3 - 5 4 0 - 4 5 3 0 9 - 1 _ 1 6
(cit. on p. 50).

[47] C. F. Curtiss and J. O. Hirschfelder. ‘Integration of Stiff Equations’. In: Proceedings of the Na-
tional Academy of Sciences of the United States of America 38.3 (1952), pp. 235–243. issn: 0027-
8424 (cit. on p. 18).

[48] Evan Czaplicki. ‘Elm: Concurrent FRP for Functional GUIs’. Undergraduate Thesis. Harward
University, 2012 (cit. on pp. 4, 22).

[49] Dominic Duggan and Frederick Bent. ‘Explaining Type Inference’. en. In: Science of Computer
Programming 27.1 (July 1996), pp. 37–83. issn: 0167-6423. doi: 1 0 . 1 0 1 6 / 0 1 6 7 - 6 4 2 3 (9 5)
0 0 0 0 7 - 0 (cit. on p. 56).

[50] Richard A. Eisenberg. ‘Dependent Types in Haskell:Theory and Practice’. PhDThesis. Univer-
sity of Pennsylvania, 2016 (cit. on p. 153).

[51] Richard A. Eisenberg. Design for Dependent Types. Jan. 2021. url: % 5 C u r l % 7 B h t t p s : / / g i t h u b .
c o m / g h c - p r o p o s a l s / g h c - p r o p o s a l s / b l o b / m a s t e r / p r o p o s a l s / 0 3 7 8 - d e p e n d e n t - t y p e -

d e s i g n . r s t % 7 D (cit. on p. 153).
[52] RichardA. Eisenberg andGHCContributors.DependentHaskell. en. h t t p s : / / g i t l a b . h a s k e l l .

o r g / g h c / g h c / - / w i k i s / d e p e n d e n t - h a s k e l l . 2021 (cit. on p. 153).
[53] J. Eker et al. ‘Taming Heterogeneity - the Ptolemy Approach’. In: Proceedings of the IEEE 91.1

(Jan. 2003), pp. 127–144. issn: 1558-2256. doi: 1 0 . 1 1 0 9 / J P R O C . 2 0 0 2 . 8 0 5 8 2 9 (cit. on pp. 1,
69).

[54] Conal Elliott and Paul Hudak. ‘Functional Reactive Animation’. In: International Conference
on Functional Programming. Amsterdam, The Netherlands, June 1997 (cit. on pp. 3, 21–23).

164

https://doi.org/10.3384/ECP110631
https://doi.org/10.1145/3354166.3354172
https://doi.org/10.3390/electronics10070814
https://doi.org/10.1145/871895.871897
https://doi.org/10.1007/3-540-45309-1_16
https://doi.org/10.1016/0167-6423(95)00007-0
https://doi.org/10.1016/0167-6423(95)00007-0
%5Curl%7Bhttps://github.com/ghc-proposals/ghc-proposals/blob/master/proposals/0378-dependent-type-design.rst%7D
%5Curl%7Bhttps://github.com/ghc-proposals/ghc-proposals/blob/master/proposals/0378-dependent-type-design.rst%7D
%5Curl%7Bhttps://github.com/ghc-proposals/ghc-proposals/blob/master/proposals/0378-dependent-type-design.rst%7D
https://gitlab.haskell.org/ghc/ghc/-/wikis/dependent-haskell
https://gitlab.haskell.org/ghc/ghc/-/wikis/dependent-haskell
https://doi.org/10.1109/JPROC.2002.805829

Bibliography

[55] Conal M. Elliott. ‘Push-Pull Functional Reactive Programming’. en. In: Proceedings of the 2nd
ACM SIGPLAN Symposium on Haskell - Haskell ’09. Edinburgh, Scotland: ACM Press, 2009,
p. 25. isbn: 978-1-60558-508-6. doi: 1 0 . 1 1 4 5 / 1 5 9 6 6 3 8 . 1 5 9 6 6 4 3 (cit. on p. 70).

[56] Hilding Elmqvist, François E. Cellier and Martin Otter. ‘Object-Oriented Modeling of Hybrid
Systems’. en. In: Proceedings of the European Simulation Symposium. Delft, The Netherlands,
1993, pp. 31–43 (cit. on pp. 1, 101, 152).

[57] Hilding Elmqvist, ToivoHenningsson andMartinOtter. ‘SystemsModeling andProgramming
in a Unified Environment Based on Julia’. en. In: Leveraging Applications of Formal Methods,
Verification and Validation: Discussion, Dissemination, Applications. Ed. by Tiziana Margaria
and Bernhard Steffen. Lecture Notes in Computer Science. Cham: Springer International Pub-
lishing, 2016, pp. 198–217. isbn: 978-3-319-47169-3. doi: 1 0 . 1 0 0 7 / 9 7 8 - 3 - 3 1 9 - 4 7 1 6 9 - 3 _ 1 5
(cit. on pp. 2, 8, 113, 150).

[58] L. Hernández Encinas and J. MuñozMasqué. ‘A Short Proof of the Generalized Faà Di Bruno’s
Formula’. en. In: Applied Mathematics Letters 16.6 (Aug. 2003), pp. 975–979. issn: 0893-9659.
doi: 1 0 . 1 0 1 6 / S 0 8 9 3 - 9 6 5 9 (0 3) 9 0 0 2 6 - 7 (cit. on p. 132).

[59] Leonhard Euler. InstitutionumCalculi Integralis. Latin. Saint Petersburg, Russia: Impensis Aca-
demiae Imperialis Scientiarum, 1768.The curious reader can find anEnglish translation of this
work at h t t p : / / w w w . 1 7 c e n t u r y m a t h s . c o m / c o n t e n t s / i n t e g r a l c a l c u l u s . h t m l . (Cit. on p. 15).

[60] Francesco Faà Di Bruno. ‘Note sur une nouvelle formule de calcul différentiel’. fr. In: The
Quaterly Journal of Pure and Applied Mathematics 1 (1857), pp. 359–360. An English trans-
lation of this work can be found at h t t p s : / / w w w . m n . u i o . n o / m a t h / e n g l i s h / p e o p l e / a c a /
m i c h a e l f / t r a n s l a t i o n s / f a a d i b r u n o _ e n g l i s h . p d f . (Cit. on pp. 122, 165).

[61] Francesco Faà di Bruno. ‘Sullo sviluppo delle funzioni’. it. In: Annali di scienze matematiche e
fisiche 6 (1855). This work is the Italian translation of [60]. Refer to this entry for an English
translation., pp. 479–480 (cit. on p. 122).

[62] Peter Fritzson and Vadim Engelson. ‘Modelica — A Unified Object-Oriented Language for
SystemModeling and Simulation’. In: ECOOP’98 — Object-Oriented Programming. Ed. by Eric
Jul. Berlin, Heidelberg: Springer Berlin Heidelberg, 1998, pp. 67–90. isbn: 978-3-540-69064-1
(cit. on pp. 1, 146).

[63] George Giorgidze. ‘First Class Models: On a Non-Causal Language for Higher-Order and
Structurally Dynamic Modelling and Simulation’. en. PhD Thesis. Nottingham, United King-
dom: University of Nottingham, 2012 (cit. on pp. 91, 94, 112, 145).

[64] George Giorgidze and Henrik Nilsson. ‘Embedding a Functional Hybrid Modelling Language
in Haskell’. In: Implementation and Application of Functional Languages: 20th International
Symposium, IFL 2008, Revised Selected Papers. Ed. by Sven-Bodo Scholz andOlafChitil. Vol. 5836.
Lecture Notes in Computer Science. Springer-Verlag, 2011, pp. 138–155. isbn: 978-3-642-
24451-3. doi: 9 7 8 - 3 - 6 4 2 - 2 4 4 5 1 - 3 (cit. on p. 8).

[65] George Giorgidze and Henrik Nilsson. ‘Higher-Order Non-Causal Modelling and Simulation
of Structurally Dynamic Systems’. en. In: The 7 International Modelica Conference, Como, Italy.
Oct. 2009, pp. 208–218. doi: 1 0 . 3 3 8 4 / e c p 0 9 4 3 0 1 3 7 (cit. on pp. 91, 113).

165

https://doi.org/10.1145/1596638.1596643
https://doi.org/10.1007/978-3-319-47169-3_15
https://doi.org/10.1016/S0893-9659(03)90026-7
http://www.17centurymaths.com/contents/integralcalculus.html
https://www.mn.uio.no/math/english/people/aca/michaelf/translations/faadibruno_english.pdf
https://www.mn.uio.no/math/english/people/aca/michaelf/translations/faadibruno_english.pdf
https://doi.org/978-3-642-24451-3
https://doi.org/10.3384/ecp09430137

Bibliography

[66] George Giorgidze and Henrik Nilsson. ‘Mixed-Level Embedding and JIT Compilation for an
Iteratively Staged DSL’. In: Proceedings of the 19th Workshop on Functional and (Constraint)
Logic Programming (WFLP 2010). Ed. by Julio Mariño. Vol. 6559. Lecture Notes in Computer
Science. Springer-Verlag, 2011, pp. 48–65 (cit. on pp. 8, 145).

[67] George Giorgidze and Henrik Nilsson. ‘Switched-On Yampa’. en. In: Practical Aspects of De-
clarative Languages. Ed. by Paul Hudak and David S. Warren. Vol. 4902. Berlin, Heidelberg:
Springer Berlin Heidelberg, 2008, pp. 282–298. isbn: 978-3-540-77441-9. doi: 1 0 . 1 0 0 7 / 9 7 8 -
3 - 5 4 0 - 7 7 4 4 2 - 6 _ 1 9 (cit. on p. 4).

[68] Google. Benchmark. Google. Aug. 2021 (cit. on pp. 129, 139).
[69] Alexander Gorban andGregory Yablonsky. ‘ThreeWaves of Chemical Dynamics’. In:Mathem-

atical Modelling of Natural Phenomena 10 (Aug. 2015), pp. 1–5. doi: 1 0 . 1 0 5 1 / m m n p / 2 0 1 5 1 0 5 0 1
(cit. on p. 1).

[70] Andreas Griewank and Andrea Walther. Evaluating Derivatives: Principles and Techniques of
Algorithmic Differentiation. Vol. 105. Siam, 2008 (cit. on p. 120).

[71] Godrey H. Hardy and Edward M. Wright. An Introduction to the Theory of Numbers. Ed. by
Roger Heath-Brown, Joseph Silverman and Andrew Wiles. Sixth Edition. Oxford, New York:
Oxford University Press, July 2008. isbn: 978-0-19-921986-5 (cit. on p. 122).

[72] Laurent Hascoet and Valérie Pascual. ‘The Tapenade Automatic Differentiation Tool: Prin-
ciples, Model, and Specification’. In: ACM Transactions on Mathematical Software 39.3 (May
2013), 20:1–20:43. issn: 0098-3500. doi: 1 0 . 1 1 4 5 / 2 4 5 0 1 5 3 . 2 4 5 0 1 5 8 (cit. on p. 139).

[73] Alan C. Hindmarsh, Radu Serban and Aaron M. Collier. Example Programs for IDA v5.7.0.
en. Tech. rep. UCRL-SM-208112. Lawrence Livermore National Laboratory, Feb. 2021, p. 32
(cit. on p. 1).

[74] Alan C. Hindmarsh et al. ‘SUNDIALS: Suite of Nonlinear and Differential/Algebraic Equation
Solvers’. In: ACM Trans. Math. Softw. 31.3 (Sept. 2005), pp. 363–396. issn: 0098-3500. doi:
1 0 . 1 1 4 5 / 1 0 8 9 0 1 4 . 1 0 8 9 0 2 0 (cit. on pp. 17, 18, 132, 136).

[75] Michael E. Hoffman. ‘Derivative Polynomials for Tangent and Secant’. In: The American Math-
ematical Monthly 102.1 (1995), pp. 23–30. issn: 0002-9890. doi: 1 0 . 2 3 0 7 / 2 9 7 4 8 5 3 (cit. on
p. 151).

[76] ChristophHöger. ‘CompilingModelica : About the Separate Translation ofModels fromMod-
elica to OCaml and Its Impact on Variable-Structure Modeling’. en. PhD thesis. Berlin, Ger-
many: Technische Universität Berlin, May 2018 (cit. on pp. 2, 149).

[77] Christoph Höger. ‘Operational Semantics for a Modular Equation Language’. en. In: Proceed-
ings of the 4th Analytic Virtual Integration of Cyber-Physical Systems Workshop. Vancouver,
Canada, Dec. 2013, p. 5. doi: 1 0 . 3 3 8 4 / e c p 1 3 0 9 0 0 0 2 (cit. on pp. 113, 150, 152).

[78] Christoph Höger, Florian Lorenzen and Peter Pepper. ‘Notes on the Separate Compilation
of Modelica’. en. In: 3rd International Workshop on Equation-Based Object-Oriented Modeling
Languages and Tools. Oslo, Norway: Linköping University Electronic Press, Sept. 2010. isbn:
978-91-7519-824-8 (cit. on p. 150).

[79] Paul Hudak et al. ‘Arrows, Robots, and Functional Reactive Programming’. In: Summer School
on Advanced Functional Programming 2002, Oxford University. Vol. 2638. Lecture Notes in
Computer Science. Springer-Verlag, 2003, pp. 159–187 (cit. on pp. 4, 22).

166

https://doi.org/10.1007/978-3-540-77442-6_19
https://doi.org/10.1007/978-3-540-77442-6_19
https://doi.org/10.1051/mmnp/201510501
https://doi.org/10.1145/2450153.2450158
https://doi.org/10.1145/1089014.1089020
https://doi.org/10.2307/2974853
https://doi.org/10.3384/ecp13090002

Bibliography

[80] John Hughes. ‘Generalising Monads to Arrows’. In: Science of computer programming 37.1-3
(2000), pp. 67–111 (cit. on pp. 4, 23).

[81] ISO. ISO C Standard 1999. Tech. rep. 1999 (cit. on p. 120).
[82] Carl Gustav Jacob Jacobi. ‘De formatione et proprietatibus Determinatium’. Latin. In: Journal

für die reine und angewandte Mathematik 22 (1841), pp. 285–318. doi: 1 0 . 1 5 1 5 / c r l l . 1 8 4 1 .
2 2 . 2 8 5 (cit. on p. 83).

[83] DanKalman. ‘DoublyRecursiveMultivariateAutomaticDifferentiation’. In:MathematicsMagazine
75.3 (2002), pp. 187–202. issn: 0025-570X. doi: 1 0 . 2 3 0 7 / 3 2 1 9 2 4 1 (cit. on pp. 150, 152).

[84] Jerzy Karczmarczuk. ‘Functional Differentiation of Computer Programs’. en. In: Higher-Order
and Symbolic Computation 14.1 (Mar. 2001), pp. 35–57. issn: 1573-0557. doi: 1 0 . 1 0 2 3 / A :
1 0 1 1 5 0 1 2 3 2 1 9 7 (cit. on pp. 115, 150).

[85] K. S. Kölbig. ‘Programs for Computing the Logarithm of the Gamma Function, and the Di-
gamma Function, for ComplexArgument’. en. In:Computer Physics Communications 4.2 (Nov.
1972), pp. 221–226. issn: 0010-4655. doi: 1 0 . 1 0 1 6 / 0 0 1 0 - 4 6 5 5 (7 2) 9 0 0 1 2 - 4 (cit. on p. 121).

[86] Stavros Konstantinopoulos, Hamed Nademi and Luigi Vanfretti. ‘Dynamic System Modeling
and Stability Assessment of an Aircraft Distribution Power System Using Modelica and FMI’.
In: 2020 AIAA/IEEE Electric Aircraft Technologies Symposium (EATS). Aug. 2020, pp. 1–12 (cit.
on p. 146).

[87] NeelakantanR.Krishnaswami andNickBenton. ‘Ultrametric Semantics of Reactive Programs’.
en. In: 2011 IEEE 26th Annual Symposium on Logic in Computer Science. Toronto, ON, Canada:
IEEE, June 2011, pp. 257–266. isbn: 978-1-4577-0451-2. doi: 1 0 . 1 1 0 9 / L I C S . 2 0 1 1 . 3 8 (cit. on
p. 71).

[88] WilhelmKutta. ‘Beitrag ZurNaherungsweisen Integration TotalerDifferentialgleichungen’. In:
Zeitschrift für Mathematik und Physik 46 (1901), pp. 435–453 (cit. on p. 15).

[89] Chris Lattner and Vikram Adve. ‘LLVM: A Compilation Framework for Lifelong Program
Analysis and Transformation’. In: CGO. San Jose, CA, USA, Mar. 2004, pp. 75–88 (cit. on
pp. 116, 139).

[90] Justin Le. Auto: Denotative, Locally Stateful Programming DSL & Platform. h t t p : / / h a c k a g e .
h a s k e l l . o r g / p a c k a g e / a u t o . 2015 (cit. on p. 22).

[91] Edward A. Lee and Haiyang Zheng. ‘Operational Semantics of Hybrid Systems’. en. In: Hybrid
Systems: Computation and Control. Ed. by Manfred Morari and Lothar Thiele. Lecture Notes
in Computer Science. Berlin, Heidelberg: Springer, 2005, pp. 25–53. isbn: 978-3-540-31954-2.
doi: 1 0 . 1 0 0 7 / 9 7 8 - 3 - 5 4 0 - 3 1 9 5 4 - 2 _ 2 (cit. on p. 70).

[92] Hai Liu and Paul Hudak. ‘Plugging a Space Leak with an Arrow’. en. In: Electronic Notes in
Theoretical Computer Science. Festschrift Honoring Gary Lindstrom on His Retirement from
the University of Utah after 30 Years of Service 193 (Nov. 2007), pp. 29–45. issn: 1571-0661.
doi: 1 0 . 1 0 1 6 / j . e n t c s . 2 0 0 7 . 1 0 . 0 0 6 (cit. on p. 22).

[93] Jérôme Mahuet. Flappy Haskell. h t t p s : / / g i t h u b . c o m / R y d g e l / f l a p p y - h a s k e l l . 2015 (cit. on
pp. 4, 5, 60).

[94] Geoffrey Mainland. ‘Why It’s Nice to Be Quoted: Quasiquoting for Haskell’. en. In: Proceedings
of the ACM SIGPLAN Workshop on Haskell Workshop - Haskell ’07. Freiburg, Germany: ACM
Press, 2007, p. 73. isbn: 978-1-59593-674-5. doi: 1 0 . 1 1 4 5 / 1 2 9 1 2 0 1 . 1 2 9 1 2 1 1 (cit. on pp. 6, 45).

167

https://doi.org/10.1515/crll.1841.22.285
https://doi.org/10.1515/crll.1841.22.285
https://doi.org/10.2307/3219241
https://doi.org/10.1023/A:1011501232197
https://doi.org/10.1023/A:1011501232197
https://doi.org/10.1016/0010-4655(72)90012-4
https://doi.org/10.1109/LICS.2011.38
http://hackage.haskell.org/package/auto
http://hackage.haskell.org/package/auto
https://doi.org/10.1007/978-3-540-31954-2_2
https://doi.org/10.1016/j.entcs.2007.10.006
https://github.com/Rydgel/flappy-haskell
https://doi.org/10.1145/1291201.1291211

Bibliography

[95] M. Matejak et al. ‘Free Modelica Library for Chemical and Electrochemical Processes’. en. In:
Proceedings of the 11th Modelica Conference. Versailles, France: Linköping University Elec-
tronic Press, 2015. doi: 1 0 . 3 3 8 4 / E C P 1 5 1 1 8 3 5 9 (cit. on p. 146).

[96] Mathworks. Simulation and Model-Based Design. 2020 (cit. on pp. 1, 2, 69).
[97] Sven Erik Mattsson and Gustaf Söderlind. ‘Index Reduction in Differential-Algebraic Equa-

tions Using Dummy Derivatives’. In: SIAM Journal on Scientific Computing 14.3 (May 1993),
pp. 677–692. issn: 1064-8275. doi: 1 0 . 1 1 3 7 / 0 9 1 4 0 4 3 (cit. on pp. 85, 87, 89).

[98] FrancescoMazzoli andMathieuBoespflug. Inline-c:WriteHaskell Source Files IncludingCCode
Inline. No FFI Required. en. https://hackage.haskell.org/package/inline-c. 2015 (cit. on p. 153).

[99] Ross McKenzie and John Pryce. ‘Structural Analysis Based Dummy Derivative Selection for
DifferentialAlgebraic Equations’. en. In:BITNumericalMathematics 57.2 (June 2017), pp. 433–
462. issn: 1572-9125. doi: 1 0 . 1 0 0 7 / s 1 0 5 4 3 - 0 1 6 - 0 6 4 2 - 9 (cit. on p. 89).

[100] Michel McKiernan. ‘On the Nth Derivative of Composite Functions’. In: The American Math-
ematical Monthly 63.5 (1956), pp. 331–333. issn: 0002-9890. doi: 1 0 . 2 3 0 7 / 2 3 1 0 5 1 8 (cit. on
p. 151).

[101] Robin Milner, Mads Tofte and David Macqueen. The Definition of Standard ML. Cambridge,
MA, USA: MIT Press, 1997. isbn: 978-0-262-63181-5 (cit. on p. 106).

[102] Rumen L. Mishkov. ‘Generalization of the Formula of Faa Di Bruno for a Composite Func-
tion with a Vector Argument’. en. In: International Journal of Mathematics and Mathematical
Sciences 24.7 (2000), pp. 481–491. issn: 0161-1712. doi: 1 0 . 1 1 5 5 / S 0 1 6 1 1 7 1 2 0 0 0 0 2 9 7 0 (cit. on
p. 132).

[103] Modelica Association. Modelica ® – A Unified Object-Oriented Language for Systems Modeling.
en. Feb. 2021 (cit. on pp. 2, 101, 111).

[104] T. N. Narasimhan. ‘Fourier’s Heat Conduction Equation: History, Influence, and Connections’.
en. In: Proceedings of the Indian Academy of Sciences - Earth and Planetary Sciences 108.3 (Sept.
1999), pp. 117–148. issn: 0973-774X. doi: 1 0 . 1 0 0 7 / B F 0 2 8 4 2 3 2 7 (cit. on p. 1).

[105] RamineNikoukhah. ‘Extensions toModelica for EfficientCodeGeneration and SeparateCom-
pilation’. In: Proceedings of the 1st International Workshop on Equation-Based Object-Oriented
Modeling Languages and Tools. Berlin, Germany: Linköping University Electronic Press, Jan.
2007 (cit. on p. 151).

[106] Ramine Nikoukhah and Sébastien Furic. ‘Towards a Full Integration of Modelica Models in
the Scicos Environment’. In: Proceedings of the 7th International Modelica Conference. Como,
Italy, Oct. 2009. doi: 1 0 . 3 3 8 4 / e c p 0 9 4 3 0 0 2 4 (cit. on p. 151).

[107] Henrik Nilsson. ‘Dynamic Optimization for Functional Reactive Programming Using Gener-
alized Algebraic Data Types’. In: Proceedings of the Tenth ACM SIGPLAN International Confer-
ence on Functional Programming. ICFP ’05. New York, NY, USA: ACM, 2005, pp. 54–65. isbn:
978-1-59593-064-4. doi: 1 0 . 1 1 4 5 / 1 0 8 6 3 6 5 . 1 0 8 6 3 7 4 (cit. on pp. 27, 32).

[108] Henrik Nilsson. ‘Functional Automatic Differentiation with Dirac Impulses’. In: Proceedings of
the Eighth ACM SIGPLAN International Conference on Functional Programming. ICFP ’03.
New York, NY, USA: ACM, 2003, pp. 153–164. isbn: 978-1-58113-756-9. doi: 1 0 . 1 1 4 5 /
9 4 4 7 0 5 . 9 4 4 7 2 0 (cit. on p. 158).

168

https://doi.org/10.3384/ECP15118359
https://doi.org/10.1137/0914043
https://doi.org/10.1007/s10543-016-0642-9
https://doi.org/10.2307/2310518
https://doi.org/10.1155/S0161171200002970
https://doi.org/10.1007/BF02842327
https://doi.org/10.3384/ecp09430024
https://doi.org/10.1145/1086365.1086374
https://doi.org/10.1145/944705.944720
https://doi.org/10.1145/944705.944720

Bibliography

[109] HenrikNilsson andGuerricChupin. ‘FunkyGrooves:Declarative Programmingof Full-Fledged
MusicalApplications’. In: 19th International SymposiumonPractical Aspects ofDeclarative Lan-
guages (PADL 2017). Ed. by Yuliya Lierler and Walid Taha. Vol. 10137. Lecture Notes in Com-
puter Science. Paris: Springer, Jan. 2017, pp. 163–172. isbn: ISBN 978-3-319-51675-2. doi:
1 0 . 1 0 0 7 / 9 7 8 - 3 - 3 1 9 - 5 1 6 7 6 - 9 _ 1 1 (cit. on p. 4).

[110] Henrik Nilsson, Antony Courtney and John Peterson. ‘Functional Reactive Programming,
Continued’. In: Proceedings of the 2002 ACM SIGPLAN Haskell Workshop (Haskell’02). Pitt-
sburgh, Pennsylvania, USA: ACM, Oct. 2002, pp. 51–64 (cit. on pp. 4, 6, 37, 73, 158).

[111] Henrik Nilsson and George Giorgidze. ‘Exploiting Structural Dynamism in Functional Hy-
brid Modelling for Simulation of Ideal Diodes’. In: Proceedings of the 7th EUROSIM Congress
on Modelling and Simulation. Prague, Czech Republic: Czech Technical University Publishing
House, Sept. 2010. isbn: 978-80-01-04589-3 (cit. on pp. 149, 154).

[112] HenrikNilsson, John Peterson and PaulHudak. ‘FunctionalHybridModeling’. en. In:Practical
Aspects of Declarative Languages. Ed. by Veronica Dahl and Philip Wadler. Lecture Notes in
Computer Science. Berlin, Heidelberg: Springer, 2003, pp. 376–390. isbn: 978-3-540-36388-0.
doi: 1 0 . 1 0 0 7 / 3 - 5 4 0 - 3 6 3 8 8 - 2 _ 2 5 (cit. on pp. 3, 91, 145, 148).

[113] Brian O’Sullivan. Criterion, a New Benchmarking Library for Haskell. en-US. h t t p : / / w w w .
s e r p e n t i n e . c o m / b l o g / 2 0 0 9 / 0 9 / 2 9 / c r i t e r i o n - a - n e w - b e n c h m a r k i n g - l i b r a r y - f o r - h a s k e l l / .
Sept. 2009 (cit. on p. 62).

[114] Lennart Ochel, Bernhard Bachmann and Francesco Casella. ‘Symbolic Initialization of Over-
Determined Higher-Index Models’. en. In: Proceedings of the 10th International Modelica Con-
ference. Lund, Sweden, Mar. 2014, pp. 1179–1187. doi: 1 0 . 3 3 8 4 / e c p 1 4 0 9 6 1 1 7 9 (cit. on p. 90).

[115] Bjarno Oeyen, Sam Van den Vonder and Wolfgang De Meuter. ‘Reactive Sorting Networks’.
In: Proceedings of the 7th ACM SIGPLAN International Workshop on Reactive and Event-Based
Languages and Systems. REBLS 2020. Virtual, USA: Association for Computing Machinery,
2020, pp. 38–50. isbn: 9781450381888. doi: 1 0 . 1 1 4 5 / 3 4 2 7 7 6 3 . 3 4 2 8 3 1 6 . url: h t t p s : / / d o i .
o r g / 1 0 . 1 1 4 5 / 3 4 2 7 7 6 3 . 3 4 2 8 3 1 6 (cit. on p. 4).

[116] Constantinos C. Pantelides. ‘The Consistent Initialization of Differential-Algebraic Systems’.
In: SIAM Journal on Scientific and Statistical Computing 9.2 (1988), pp. 213–231 (cit. on pp. 8,
85).

[117] Blaise Pascal. Traité du triangle artithmétique: avec quelques autres petits traités sur la même
matière. fr. An English translation of this (short) treaty by Richard Pulskamp can be found at
h t t p : / / c i t e s e e r x . i s t . p s u . e d u / v i e w d o c / s u m m a r y ? d o i = 1 0 . 1 . 1 . 4 2 2 . 8 5 0 4 . Paris: Guillaume
Desprez, 1654 (cit. on p. 130).

[118] Gergely Patai. ‘Efficient andCompositionalHigher-Order Streams’. en. In:Functional andCon-
straint Logic Programming. Ed. by Julio Mariño. Vol. 6559. Berlin, Heidelberg: Springer Berlin
Heidelberg, 2011, pp. 137–154. isbn: 978-3-642-20774-7. doi: 1 0 . 1 0 0 7 / 9 7 8 - 3 - 6 4 2 - 2 0 7 7 5 - 4 _ 8
(cit. on p. 71).

[119] Gergely Patai. ‘Eventless Reactivity from Scratch’. en. In: Implementation and Application of
Functional Languages. 2009, pp. 126–140 (cit. on p. 71).

[120] Ross Paterson. ‘A New Notation for Arrows’. In: International Conference on Functional Pro-
gramming. Firenze, Italy: ACM Press, Sept. 2001, pp. 229–240. url: h t t p : / / w w w . s o i . c i t y .
a c . u k / % 2 0 r o s s / p a p e r s / n o t a t i o n . h t m l (cit. on pp. 6, 25, 45).

169

https://doi.org/10.1007/978-3-319-51676-9_11
https://doi.org/10.1007/3-540-36388-2_25
http://www.serpentine.com/blog/2009/09/29/criterion-a-new-benchmarking-library-for-haskell/
http://www.serpentine.com/blog/2009/09/29/criterion-a-new-benchmarking-library-for-haskell/
https://doi.org/10.3384/ecp140961179
https://doi.org/10.1145/3427763.3428316
https://doi.org/10.1145/3427763.3428316
https://doi.org/10.1145/3427763.3428316
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.422.8504
https://doi.org/10.1007/978-3-642-20775-4_8
http://www.soi.city.ac.uk/%20ross/papers/notation.html
http://www.soi.city.ac.uk/%20ross/papers/notation.html

Bibliography

[121] Linda R. Petzold. ‘A Description of DASSL: A Differential/Algebraic System Solver’. en. In:
IMACS World Congress. Montreal, Canada, Aug. 1982 (cit. on p. 82).

[122] Simon Peyton Jones et al. ‘Simple Unification-Based Type Inference for GADTs’. In: Proceed-
ings of the EleventhACMSIGPLAN International Conference on Functional Programming. ICFP
’06. New York, NY, USA: ACM, 2006, pp. 50–61. isbn: 978-1-59593-309-6. doi: 1 0 . 1 1 4 5 /
1 1 5 9 8 0 3 . 1 1 5 9 8 1 1 (cit. on pp. 10, 33).

[123] Atze van der Ploeg and Koen Claessen. ‘Practical Principled FRP: Forget the Past, Change
the Future, FRPNow!’ In: Proceedings of the 20th ACM SIGPLAN International Conference on
Functional Programming. ICFP 2015. New York, NY, USA: ACM, 2015, pp. 302–314. isbn:
978-1-4503-3669-7. doi: 1 0 . 1 1 4 5 / 2 7 8 4 7 3 1 . 2 7 8 4 7 5 2 (cit. on p. 71).

[124] Marc Pouzet. Lucid Synchrone – Tutorial and Reference Manual. en. Apr. 2006. url: h t t p s :
/ / w w w . d i . e n s . f r / ~ p o u z e t / l u c i d - s y n c h r o n e / m a n u a l _ h t m l / i n d e x . h t m l (cit. on pp. 2, 5, 69).

[125] Marc Pouzet andPascal Raymond. ‘Modular Static Scheduling of SynchronousData-FlowNet-
works’. en. In: Design Automation for Embedded Systems 14.3 (Sept. 2010), pp. 165–192. issn:
1572-8080. doi: 1 0 . 1 0 0 7 / s 1 0 6 1 7 - 0 1 0 - 9 0 5 3 - 3 (cit. on p. 29).

[126] J. D. Pryce. ‘A Simple Structural Analysis Method for DAEs’. en. In: BIT Numerical Mathem-
atics 41.2 (Mar. 2001), pp. 364–394. issn: 1572-9125. doi: 1 0 . 1 0 2 3 / A : 1 0 2 1 9 9 8 6 2 4 7 9 9 (cit. on
pp. 8, 85, 86, 90).

[127] Joseph Raphson. Analysis Æequationum Universalis. Latin. Second. London: Thomas Brandy,
1697 (cit. on p. 83).

[128] Microsoft. ReactiveX. h t t p : / / r e a c t i v e x . i o / . Accessed: 2019-05-09. 2011 (cit. on pp. 4, 22).
[129] Gunther Reissig, Wade S. Martinson and Paul I. Barton. ‘Differential–Algebraic Equations of

Index 1 May Have an Arbitrarily High Structural Index’. In: SIAM Journal on Scientific Com-
puting 21.6 (Jan. 2000), pp. 1987–1990. issn: 1064-8275. doi: 1 0 . 1 1 3 7 / S 1 0 6 4 8 2 7 5 9 9 3 5 3 8 5 3
(cit. on p. 8).

[130] Abraham Robinson. Non-Standard Analysis. Second. Princeton University Press, 1974 (cit. on
p. 69).

[131] B. K. Rosen, M. N. Wegman and F. K. Zadeck. ‘Global Value Numbers and Redundant Com-
putations’. In: Proceedings of the 15th ACM SIGPLAN-SIGACT Symposium on Principles of Pro-
gramming Languages. POPL ’88. New York, NY, USA: Association for Computing Machinery,
Jan. 1988, pp. 12–27. isbn: 978-0-89791-252-5. doi: 1 0 . 1 1 4 5 / 7 3 5 6 0 . 7 3 5 6 2 (cit. on p. 117).

[132] Carl Runge. ‘Über Die Numerische Auflösung vonDifferentialgleichungen’. In:Mathematische
Annalen 46.2 (1895), pp. 167–178 (cit. on p. 15).

[133] N. Scaife et al. ‘Defining and Translating a “Safe” Subset of Simulink/Stateflow into Lustre’.
In: Proceedings of the 4th ACM International Conference on Embedded Software. EMSOFT ’04.
New York, NY, USA: Association for Computing Machinery, Sept. 2004, pp. 259–268. isbn:
978-1-58113-860-3. doi: 1 0 . 1 1 4 5 / 1 0 1 7 7 5 3 . 1 0 1 7 7 9 5 (cit. on p. 69).

[134] Herbert Schmidt and SilviaHacia. ‘Magnetic Force fromExperiment, Equation- andGeometry-
Based Calculation Using the Example of a Switching Magnet’. In: Proceedings of the 9th Inter-
nationalWorkshop on Equation-BasedObject-OrientedModeling Languages and Tools. EOOLT
’19. New York, NY, USA: Association for Computing Machinery, Nov. 2019, pp. 67–76. isbn:
978-1-4503-7713-3. doi: 1 0 . 1 1 4 5 / 3 3 6 5 9 8 4 . 3 3 6 5 9 9 2 (cit. on p. 146).

170

https://doi.org/10.1145/1159803.1159811
https://doi.org/10.1145/1159803.1159811
https://doi.org/10.1145/2784731.2784752
https://www.di.ens.fr/~pouzet/lucid-synchrone/manual_html/index.html
https://www.di.ens.fr/~pouzet/lucid-synchrone/manual_html/index.html
https://doi.org/10.1007/s10617-010-9053-3
https://doi.org/10.1023/A:1021998624799
http://reactivex.io/
https://doi.org/10.1137/S1064827599353853
https://doi.org/10.1145/73560.73562
https://doi.org/10.1145/1017753.1017795
https://doi.org/10.1145/3365984.3365992

Bibliography

[135] Schell Scivally. Varying: FRP through Value Streams and Monadic Splines. h t t p / / h a c k a g e .
h a s k e l l . o r g / p a c k a g e / v a r y i n g . 2015 (cit. on p. 22).

[136] Neil Sculthorpe and Henrik Nilsson. ‘Keeping Calm in the Face of Change: Towards Optim-
isation of FRP by Reasoning about Change’. In: Journal of Higher-Order and Symbolic Compu-
tation 23.2 (2011), pp. 227–271. issn: Print: 1388-3690; Electronic:1573-0557. doi: 1 0 . 1 0 0 7 /
s 1 0 9 9 0 - 0 1 1 - 9 0 6 8 - x (cit. on p. 37).

[137] Amir Shaikhha et al. ‘Efficient Differentiable Programming in a Functional Array-Processing
Language’. In: Proceedings of the ACM on Programming Languages 3.ICFP (July 2019), 97:1–
97:30. doi: 1 0 . 1 1 4 5 / 3 3 4 1 7 0 1 (cit. on p. 139).

[138] P. Shieh andK.Verghese. ‘AGeneral Formula for theNthDerivative of 1/f(x)’. In:TheAmerican
Mathematical Monthly 74.10 (1967), pp. 1239–1240. issn: 0002-9890. doi: 1 0 . 2 3 0 7 / 2 3 1 5 6 8 8
(cit. on pp. 140, 151).

[139] DD Sleator, R E Tarjan andWPThurston. ‘RotationDistance, Triangulations, andHyperbolic
Geometry’. In: Proceedings of the Eighteenth Annual ACM Symposium on Theory of Computing.
STOC ’86. New York, NY, USA: ACM, 1986, pp. 122–135. isbn: 978-0-89791-193-1. doi: 1 0 .
1 1 4 5 / 1 2 1 3 0 . 1 2 1 4 3 (cit. on p. 48).

[140] Ertugrul Söylemez. Netwire: Functional Reactive Programming Library. h t t p : / / h a c k a g e .
h a s k e l l . o r g / p a c k a g e / n e t w i r e . 2011 (cit. on p. 22).

[141] Ertugrul Söylemez.Wires: Functional Reactive Programming Library. h t t p : / / h a c k a g e . h a s k e l l .
o r g / p a c k a g e / w i r e s . 2017 (cit. on pp. 4, 22).

[142] Robert Tarjan. ‘Depth-First Search and Linear Graph Algorithms’. In: SIAM Journal on Com-
puting 1.2 (June 1972), pp. 146–160. issn: 0097-5397. doi: 1 0 . 1 1 3 7 / 0 2 0 1 0 1 0 (cit. on p. 82).

[143] Jonathan Thaler, Thorsten Altenkirch and Peer-Olaf Siebers. ‘Pure Functional Epidemics: An
Agent-Based Approach’. In: IFL 2018: The 30th symposium on Implementation and Application
of Functional Languages. ACM, 2018, pp. 1–12 (cit. on pp. 4, 22).

[144] The Ptolemy Project. System Design, Modeling, and Simulation Using Ptolemy II. Claudius
Ptolemaeus, 2014 (cit. on p. 69).

[145] John Tinnerholm, Martin Sjölund and Adrian Pop. ‘Towards Introducing Just-in-Time Com-
pilation in aModelicaCompiler’. In:Proceedings of the 9th InternationalWorkshop onEquation-
Based Object-Oriented Modeling Languages and Tools. EOOLT ’19. New York, NY, USA: As-
sociation for Computing Machinery, Nov. 2019, pp. 11–19. isbn: 978-1-4503-7713-3. doi:
1 0 . 1 1 4 5 / 3 3 6 5 9 8 4 . 3 3 6 5 9 9 0 (cit. on p. 148).

[146] Ljiljana Trajković. The Electrical Engineering Handbook. en. Ed. by WAI-KAI Chen. Burling-
ton:Academic Press, 2005. isbn: 978-0-12-170960-0. doi: 1 0 . 1 0 1 6 / B 9 7 8 - 0 1 2 1 7 0 9 6 0 - 0 / 5 0 0 0 8 -
6 (cit. on p. 80).

[147] Tweag I/O. Inline-Java: Call Any JVM Function from Haskell. Tweag. Aug. 2021 (cit. on p. 153).
[148] V. Vassilev et al. ‘Clad – Automatic Differentiation Using Clang and LLVM’. en. In: Journal of

Physics: Conference Series. Vol. 608. 1. IOP Publishing, May 2016, p. 012055. doi: 1 0 . 1 0 8 8 /
1 7 4 2 - 6 5 9 6 / 6 0 8 / 1 / 0 1 2 0 5 5 (cit. on p. 139).

171

http//hackage.haskell.org/package/varying
http//hackage.haskell.org/package/varying
https://doi.org/10.1007/s10990-011-9068-x
https://doi.org/10.1007/s10990-011-9068-x
https://doi.org/10.1145/3341701
https://doi.org/10.2307/2315688
https://doi.org/10.1145/12130.12143
https://doi.org/10.1145/12130.12143
http://hackage.haskell.org/package/netwire
http://hackage.haskell.org/package/netwire
http://hackage.haskell.org/package/wires
http://hackage.haskell.org/package/wires
https://doi.org/10.1137/0201010
https://doi.org/10.1145/3365984.3365990
https://doi.org/10.1016/B978-012170960-0/50008-6
https://doi.org/10.1016/B978-012170960-0/50008-6
https://doi.org/10.1088/1742-6596/608/1/012055
https://doi.org/10.1088/1742-6596/608/1/012055

Bibliography

[149] P. Wadler and S. Blott. ‘How to Make Ad-Hoc Polymorphism Less Ad Hoc’. In: Proceedings of
the 16th ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages. POPL
’89. New York, NY, USA: Association for Computing Machinery, Jan. 1989, pp. 60–76. isbn:
978-0-89791-294-5. doi: 1 0 . 1 1 4 5 / 7 5 2 7 7 . 7 5 2 8 3 (cit. on p. 106).

[150] John Wallis. ‘A Treatise of Algebra, Both Historical and Practical’. In: Philosophical Transac-
tions of the Royal Society of London 15.173 (1685), pp. 1095–1106. doi: 1 0 . 1 0 9 8 / r s t l . 1 6 8 5 .
0 0 5 3 (cit. on p. 83).

[151] Zhanyong Wan and Paul Hudak. ‘Functional Reactive Programming from First Principles’. In:
SIGPLAN Not. 35.5 (May 2000), pp. 242–252. issn: 0362-1340. doi: 1 0 . 1 1 4 5 / 3 5 8 4 3 8 . 3 4 9 3 3 1
(cit. on pp. 3, 21).

[152] Jeremy Yallop and Hai Liu. ‘Causal Commutative Arrows Revisited’. In: Proceedings of the 9th
International Symposium on Haskell. Haskell 2016. New York, NY, USA: ACM, 2016, pp. 21–
32. isbn: 978-1-4503-4434-0. doi: 1 0 . 1 1 4 5 / 2 9 7 6 0 0 2 . 2 9 7 6 0 1 9 (cit. on p. 72).

[153] Brent A. Yorgey et al. ‘Giving Haskell a Promotion’. en. In: Proceedings of the 8th ACM SIG-
PLAN Workshop on Types in Language Design and Implementation - TLDI ’12. Philadelphia,
Pennsylvania, USA: ACMPress, 2012, p. 53. isbn: 978-1-4503-1120-5. doi: 1 0 . 1 1 4 5 / 2 1 0 3 7 8 6 .
2 1 0 3 7 9 5 (cit. on p. 38).

[154] Dirk Zimmer. ‘Equation-Based Modeling of Variable-Structure Systems’. PhD Thesis. Zurich,
Switzerland: ETH Zurich, 2010 (cit. on pp. 2, 8, 113, 151).

[155] Dirk Zimmer. ‘Module-Preserving Compilation ofModelicaModels’. In: Proceedings of the 7th
International Modelica Conference. Como, Italy: Linköping University Electronic Press, Oct.
2009, pp. 880–889. isbn: 978-91-7393-513-5. doi: 1 0 . 3 3 8 4 / e c p 0 9 4 3 0 0 2 8 (cit. on pp. 82, 148).

[156] Dirk Zimmer. ‘Robust Object-Oriented Formulation of Directed Thermofluid Stream Net-
works’. In: Mathematical and Computer Modelling of Dynamical Systems 26.3 (May 2020),
pp. 204–233. issn: 1387-3954. doi: 1 0 . 1 0 8 0 / 1 3 8 7 3 9 5 4 . 2 0 2 0 . 1 7 5 7 7 2 6 (cit. on p. 146).

172

https://doi.org/10.1145/75277.75283
https://doi.org/10.1098/rstl.1685.0053
https://doi.org/10.1098/rstl.1685.0053
https://doi.org/10.1145/358438.349331
https://doi.org/10.1145/2976002.2976019
https://doi.org/10.1145/2103786.2103795
https://doi.org/10.1145/2103786.2103795
https://doi.org/10.3384/ecp09430028
https://doi.org/10.1080/13873954.2020.1757726

	Abstract
	Acknowledgment
	Contents
	List of Figures
	Acronyms
	Introduction
	Expressive modelling languages
	Part I: causal modelling with Functional Reactive Programming
	Part II: modular compilation for Functional Hybrid Modelling
	Part III: conclusions
	Prerequisites
	Conventions

	Scalable Functional Reactive Programming
	Introduction to causal modelling
	Modelling with differential equations
	Numerical integration
	Functional Reactive Programming
	Yampa's implementation
	Summary

	Scalable Functional Reactive Programming
	Signal representation
	Signal function representation
	Custom proc-notation implementation
	Compiling Scalable frp
	Evaluation

	Related works & conclusions
	Related work
	Future work and conclusions

	Modular compilation for Functional Hybrid Modelling
	Introduction to non-causal modelling
	Limits of causal modelling
	Differential Algebraic Equation
	Higher-index systems
	Initialisation
	Introduction to Functional Hybrid Modelling

	Detailed specification of Hydra
	Surface syntax
	Type system
	Core language
	A simple simulation method

	Modular compilation of signal relations
	The Intermediate Imperative Representation
	Compiling equations
	Compiling signal relations & the Hydra runtime
	Performance evaluation

	Related works & conclusions
	The original Hydra
	Equation-based object-oriented languages
	Limitations and future work
	Conclusions

	Conclusions
	Conclusions
	Proofs of results on the structure of integer partitions
	Bibliography

