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Abstract

Face recognition has attracted particular interest in biometric recognition with wide applications
in security, entertainment, health, marketing.

Recent years have witnessed rapid development of face recognition technique in both aca-
demic and industrial fields with the advent of (a) large amounts of available annotated training
datasets, (b) Convolutional Neural Network (CNN) based deep structures, (c) affordable, power-
ful computation resources and (d) advanced loss functions. Despite the significant improvement
and success, there are still challenges remaining to be tackled.

This thesis contributes towards in the wild face recognition from three perspectives including
network design, model compression, and model explanation. Firstly, although the facial land-
marks capture pose, expression and shape information, they are only used as the pre-processing
step in the current face recognition pipeline without considering their potential in improving
model’s representation. Thus, we propose the “FAN-Face” framework which gradually integrates
features from different layers of a facial landmark localization network into different layers
of the recognition network. This operation has broken the align-cropped data pre-possessing
routine but achieved simple orthogonal improvement to deep face recognition. We attribute this
success to the coarse to fine shape-related information stored in the alignment network helping
to establish correspondence for face matching.

Secondly, motivated by the success of knowledge distillation in model compression in the
object classification task, we have examined current knowledge distillation methods on training
lightweight face recognition models. By taking into account the classification problem at hand,
we advocate a direct feature matching approach by letting the pre-trained classifier in teacher
validate the feature representation from the student network. In addition, as the teacher network
trained on labeled dataset alone is capable of capturing rich relational information among labels
both in class space and feature space, we make first attempts to use unlabeled data to further
enhance the model’s performance under the knowledge distillation framework.

Finally, to increase the interpretability of the “black box” deep face recognition model, we
have developed a new structure with dynamic convolution which is able to provide clustering of
the faces in terms of facial attributes. In particular, we propose to cluster the routing weights
of dynamic convolution experts to learn facial attributes in an unsupervised manner without
forfeiting face recognition accuracy. Besides, we also introduce group convolution into dynamic
convolution to increase the expert granularity. We further confirm that the routing vector benefits
the feature-based face reconstruction via the deep inversion technique.
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Chapter 1

Introduction

1.1 Motivation

With the rapid development of technology, biometric recognition software plays an increasingly
significant role in modern security. Biometrics is the measurement and analysis of a human’s
distinctive physical or behavioural characteristics. Examples include but are not limited to
fingerprint, retinal scanning, voice identification and facial recognition. Among them, face
recognition has attracted particular interest because it’s very easy to deploy. Face recognition
aims at matching a given human face against a database of faces by measuring the distance of
feature embeddings. Its applications have penetrated into various areas and here we categorize
them into four broad domains: entertainment, health, marketing and security.

In security, recently released smartphones like Huawei, Xiaomi, Samsung, iPhone all
launch a recognition-based authentication system to unlock phones. Compared with fingerprint
authentication, the competitive advantage of face recognition is quick response and non-contact
measurement. Such a system is also widely installed in various public places like railway station,
airports, office buildings in China. It also assists officers in identifying and tracking criminals by
comparing the suspect’s face with the faces from surveillance camera systems.

In entertainment, face recognition is especially popular in social media. DeepFace from
a research group in Facebook creates digital profiles from users and is used to identify human
faces in digital images. Google photos employ the face recognition technique to sort pictures
and automatically tag them based on the identification. FaceApp launched in IOS and Android
systems provide the users to do some face editing works such as smile filter, hairstyle filter and
age filter. These functions have added lots of fun to our daily life.

In health, face recognition has been used to diagnose diseases especially for those causing
appearance changes. For instance, the National Human Genome Institute Research Institute
employs face recognition to detect DiGeorge syndrome. Apple has launched two open-source
frameworks ResearchKit and CareKit to assist clinical to monitor patients health remotely.
Researchers at Duke University developed an Autism Beyond app that utilizes facial recognition-
based algorithms to screen children for autism.
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In marketing, face recognition can produce personalized recommendation after linking the
browsing records and identity. This technique has been applied in shopping websites and video
watching websites. For example, Alipay and WeChat in China also support face recognition
for payment which brings much convenience in daily life as customers neither need physical
bankcards nor the payment password.

Recent years have witnessed more and more mature face recognition techniques in both
academic and industrial fields with a large amount of available annotated training datasets
[46, 13, 195], Convolutional Neural Network (CNN) based structures [144, 51] and advanced loss
functions [146, 34, 162]. Despite the significant success, there were still challenges remaining to
be tackled (this is detailed in Section 1.2). It is worth mentioning and emphasizing here that in
this thesis we seek to address and solve the following problems/cases:

1. A novel “FAN-Face” framework to improve the unaligned face recognition performance
by gradually integrating features from a pre-trained facial landmark localization network
into a recognition network to learn face embedding;

2. Advocate for a new knowledge distillation method via softmax regression representation
learning by optimizing the output feature of the penultimate layer of the student network;

3. Interpret inner face recognition model behaviours by clustering and analysing visual
attributes from a dynamically-routed CNN framework.

1.2 Problem Definition

The main focus of this thesis is to study the deep face recognition problem in the wild from three
perspectives: performance, size, interpretability.
Performance: Through the investigation of the literature in Section 2.1, we notice that most
algorithms share a conventional data pre-processing step. Align-cropping the face image based
on predicted facial landmarks from the face alignment model before feeding them into the feature
extraction model. One might be curious whether we can train a model on images without the
align-cropped step and make it work well or better than the aligned counterparts. We believe
this is a problem worth exploring as align-cropped step inevitably lose face areas, especially for
profile faces. The lost information will not be compensated by adjusting the network structure,
training strategies, and loss functions and definitely have a negative impact on recognition.
Therefore, the first step of this thesis is to answer this question. The advantage of normalized
face input has already been studied in the literature. Researchers have reached a consensus
that aligning faces to a unified distribution can remove the appearance variations from rigid
transformation and thus force the model to focus on learning identity-specific representation.
The widely applied approach is applying a 2D affine transformation to calibrate facial landmarks
to the predefined templates [34, 162, 94, 160]. So a key challenge in unaligned face recognition
is the appearance variations caused by irregular landmark locations in the face region. Face



1.3 Contributions 3

alignment aims at locating facial landmarks in face images and memorizes rich location related
knowledge throughout the network. Therefore, a solution is to compensate for the missed
location prior by borrowing knowledge from a pre-trained face alignment network. However,
direct feature combination by addition or concatenation may hinder the optimization as the
different features are captured by alignment and recognition networks. For instance, feature from
alignment task is more shape focused while the feature from recognition task is designed to be
robust to intra-class appearance variations.
Size: Three key factors (network design, training dataset, loss) contribute to superior performance
on the face recognition task. Normally, a high capacity heavy model is trained on a large annotated
dataset like MS1M [46] with an advanced classification loss like CosFace [162], ArcFace [34]
and CurricularFace [61]. The obtained model is able to achieve good performance on the
public benchmarks such as LFW [59], CPF-FP [136], AgeDB [104], IJB-B [171], IJB-C [100],
MegaFace [71]. The whole procedure is time-consuming and computation resource hungry
due to the large dataset size and parameters to be optimized. However, the face recognition
system is designed to be deployed on devices with limited resources such as mobile phones.
It is a challenge to deploy these cumbersome deep models due to their high computational
complexity and large storage requirements. Given these real-world resource constraints, model
efficiency has become increasingly important in face recognition. Also, it is hard to curve
away from the prerequisites like large datasets and advanced loss. To tackle this problem in
general object classification, a variety of model compression and acceleration methods have
been studied including network pruning [48, 80], network quantization [125, 174], knowledge
transfer/distillation [55, 204], and neural architecture search [229, 90]. The second step of this
thesis is to apply the current state-of-the-art knowledge distillation approaches to face recognition
task, systematically examine various choices, and then propose a novel approach to improve
current performance. The challenge of this problem is how to optimize the face recognition
accuracy to be optimal on the target task.
Interpretability: The last step is to answer “what is learned in the face recognition model”.
This step is to interpret networks’ inner behaviours. Despite the significant advances in the
performance of face recognition by designing network structure or advanced losses, there is
a strong demand to interpret its behaviours, in order to understand, improve, and trust its
decisions. However, so far there are few attempts to understand what is learned inside the
network parameters and most are on the general classification task. Besides, recent interpretable
CNNs observe degraded recognition accuracy after introducing interpretability. This drawback
largely limits its practical applicability. The challenge of this problem is to define and analyse
the interpretability of face recognition without deteriorating the model performance.

1.3 Contributions

In this section, we list three contributions made in this thesis.
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• “Fan-Face Network”: The first contribution is to improve unaligned deep face recognition
with shape prior information provided by a pre-trained facial landmark localization (FAN)
network. Both landmark heatmaps and features from the FAN are integrated into the
face feature extraction process to (a) provide facial pose-, expression-, and shape-related
information, and (b) help establish correspondence for improving face matching. Moreover,
we have explored various architectural design choices at a network level to identify the
best strategy for integration and, proposed a novel feature integration layer which is able
to effectively integrate the features from the two networks. We show that such a simple
approach systematically improves recognition on the public face recognition datasets,
setting a new state-of-the-art on LFW [59], YTF [173], IJB-B [171], IJB-C [100] and
MegaFace [71] datasets.

• “Softmax Regression Representation Learning”: The second contribution is to advo-
cate for a knowledge distillation method that optimizes the output feature of the penultimate
layer of the student network and hence is directly related to representation learning. The
final losses are composed of two parts: (a) L2 loss to do direct feature matching between
teacher and student’s outputs; (b) softmax regression loss to let pre-trained teacher’s
classifier evaluate students’ representation. The key novelty is from the second loss which
considers the inter-channel dependencies and links feature representation with target
accuracy. Moreover, we also extend our method to learning from unlabeled data with
pretrained teacher trained on labeled datasets only to boost the student performance and
further validate its superiority and generality in the classification task. Our method is
extremely simple to implement and straightforward to train and is shown to consistently
outperform previous state-of-the-art methods over a large set of experimental settings
including different (a) network architectures, (b) teacher-student capacities, (c) datasets,
and (d) tasks, (e) domains.

• “Unsupervised Mixtures of Experts”: The third contribution is to interpret face recog-
nition from learned visual attributes. The whole structure is a dynamically-routed CNN
trained with a supervised face recognition loss and an unsupervised clustering loss. We
observe that routing vector in dynamic convolution is capable of partitioning the data
based on representational attributes but results in a noisy and scattered distribution. Based
on these observations, we instantiate a group dynamic convolution to lengthen routing
vector’s dimension and in turn enhance its discrimination capacity. In addition, we propose
to leverage an unsupervised clustering loss to push the routing vectors be distributed
over a fixed number of clusters in the feature space without damaging the recognition
performance. Due to the lack of annotated data with desired facial properties, we annotate
three datasets with 5 facial attributes (gender, age, race, pitch and yaw) and then explore
routing vectors’ behaviour on them with clustering analysis. We demonstrate that learned
clusters are able to encode rich facial properties without requiring hand-designed attributes
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for supervision. Moreover, we present convincing results on the face inversion task that
the routing vector provides auxiliary prior beneficial to producing images faithful to input.

1.4 Outline

We organize the rest of this thesis as follows:

• Chapter2 reviews existing methods that are related to our thesis, including face detection,
face alignment, face recognition, knowledge distillation methods and explainable artificial
intelligence (AI). We introduce the representatives of each category to outline the main
trend.

• Chapter3 presents a novel architecture“FAN-Face” for unaligned face recognition via
establishing shape-semantic correspondence among faces. We have detailed the various
architectural design choices to identify the best strategy for inner feature combination and
heatmap integration. We also examine SOTA alignment networks like ResNet, HRNet to
validate the generalization ability of the proposed framework. Final experiments are done
on various benchmarks with both verification and identification measurements to prove
the effectiveness of the proposed method.

• Chapter4 introduces a novel knowledge distillation method for model compression. We
describe the two components: L2 feature matching and softmax regression representation
learning. We have explored variants of the proposed method and analysed the effectiveness
of the proposed method from different aspects such as transferability, clustering quality.
We inspect how to improve students’ performance from extra unlabeled data with the prior
provided by teacher network trained on labeled data. To this end, we have explored and
adjusted some popular tricks from semi-supervised learning into the usage of unlabeled
data. The final comparisons are conducted across different tasks after training on labeled
data alone and both labeled and unlabeled data .

• Chapter5 proposes to interpret the inner behavior of face recognition model. We describe
how to design an explainable structure with dynamic convolution and how to increase its
expert granularity. Then, we examine two popular techniques in unsupervised clustering
learning: DeepCluster [15] and Sinkhorn-Knopp [28]. Next, we investigate the training
strategy to improve the interpret-ability without deteriorating recognition performance.
Besides, we also describe how to obtain datasets with facial attributes. Finally, we
quantitatively and qualitatively compare various variants in clustering analysis and feature-
based face reconstruction.

• Chapter6 concludes this thesis and discusses the future research directions of deep face
recognition in the wild.
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Chapter 2

Literature review

2.1 Components of Face Recognition

Fig. 2.1 Overview of face recognition. It consists of face localization and face feature embedding.
The white dots are detected 5 landmarks. The red dots forms the mean face which is composed
of left eye center, right eye center, nose tip, left corner of the mouth, and right corner of the
mouth. The white landmarks are aligned to red landmarks to crop the normalized face area.

Figure 2.1 illustrates the pipeline of face recognition, mainly consisting of two components:
face localization and face feature embedding. Face localization contains face detection and facial
landmark localization. Firstly, a face detector is used to locate the faces in a given image. Then,
a facial landmark detector is to predict the semantic landmarks of the detected face. Usually, five
landmarks containing left eye center, right eye center, nose tip, left corner of the mouth, and right
corner of the mouth are collected. With the estimated landmarks, the face can be aligned and
cropped based on the normalized canonical coordinates from a mean face shape. In the literature,
the advantage of the aligned crop operation is attributed to reducing appearance variances and
making the subsequent feature embedding part more identity-focused. Finally, the align-cropped
face regions are fed into the embedding model with the aim of encouraging features from the
same identity to be close while the different ones to be far apart. In the following sections, we
will describe each component in details as below.

2.1.1 Face Detection

Face detection, aiming at locating face regions in an image, is a fundamental stage for face-
related tasks like face alignment, face recognition, facial action unit recognition et al. , and its
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performance significantly determines the efficiency of the subsequent tasks. Recently, motivated
by the rise of CNNs, the performance of face detection achieves considerable improvements
and many milestone works have been proposed [84, 210, 20, 219, 106, 35]. Based on the core
technical contributions, current face detection methods can be divided into three categories:
cascade-CNN based models, region-based CNN (R-CNN) based models and single shot detector
models. In the following part, we will introduce each category by describing its representatives.

Cascade-CNN Models

The core of cascade models is to train a sequence of small models to classify face and non-face
regions in different stages to reject non-face areas from coarse to fine.

Li et al. [84] is one of the early CNN-based face detection models under cascade framework.
In this work, the whole structure is formed by six CNNs with half of them doing face vs.
non-face regions classification and the rest for bounding box calibration. To reject non-face
regions effectively, those operations are conducted at multiple resolutions . To be specific, the
detectors quickly reject the background regions at the former fast low-resolution stages. Then,
the calibration stage improves the localization quality by reducing the number of candidate
regions to subsequent classifier. Therefore, at the later high-resolution stages, the detector can
carefully evaluate the remaining candidates. Compared with state-of-the-art methods at that time,
the final obtained face detector is efficient and well-performed with running speed 14 FPS on
CPU for typical VGA image as input and 100 FPS with GPU acceleration.

As an improved version of [84], Zhang et al. [210] have observed two drawbacks in [84]:
the extra computational expense in the calibration stage and ignored correlation between face
detection and alignment. To solve both issues, Zhang et al. have adopted and modified the
cascade framework to jointly train the face detection and alignment in a multi-task manner.
Additionally, they have introduced a new online hard sample mining strategy to automatically
improve the performance without manual sample selection.

It has been shown that deeper layers are good at discriminating difficult face vs. non-face than
shallow layers. Thus, Zhang et al. [211] have proposed “Inside Cascaded Structure” to do the
binary classification task at different layers within the same CNN. The main improvement comes
from two designs. On the one hand, a two-stream contextual CNN architecture is proposed to
explore the body part information. On the other hand, a data routing mechanism following the
“divide and conquer" idea is introduced to assign samples to various layers and thus let the deeper
layer focus on harder samples.

In conclusion, the advantage of cascade CNN models is that they have a good trade-off
between speed and accuracy as the former classifiers at earlier stages can shrink the background
while keeping the faces with low computation cost. However, the computation complexity in the
inference stage will be increased significantly when dealing with an image with lots of faces.
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R-CNN based Models

The R-CNN based detectors mainly refer to the face detection models built on the generic object
detection algorithms like Fast R-CNN [42], Faster R-CNN [127], R-FCN [29], and Mask R-CNN
[50].

Chen et al. [20] have proposed a supervised transformer network for face detection. The
whole framework is made up of two stages: multi-task region proposal network (RPN) and
R-CNN. Motivated by the effectiveness of joint optimization, the RPN part is to jointly predict
both candidate face regions and facial landmarks. The R-CNN in a later stage is to do further
verification with the warped face candidate region as input. The whole framework is trained
end-to-end to capture coarse-to-fine features. Finally, this model achieves 30 FPS running speed
on a single CPU core when fed with a VGA-resolution image.

Jiang et al. have [67] directly applied the Faster R-CNN to the face detection task. Without
considering the differences between human faces and generic object, pure Faster R-CNN is still
able to achieve impressive face detection performance after retraining the parameters on the face
detection datasets. This success is attributed to the effectiveness of the RPN module.

Another similar extension can be found in Face R-CNN [161]. Wang et al. have borrowed
Faster R-CNN into face detection task and further boosted its performance by taking the char-
acteristics that resided in the face detection task into considerations. In particular, they have
introduced the center loss to enhance the intra-class compactness in the face vs. non-face classifi-
cation. In addition, they have explored online hard example mining to search the appropriate
setting between positive and negative hard samples. They have also designed a multi-scale
training strategy. As a subsequent work [143], more techniques including feature concatena-
tion, hard negative mining, multi-scale training, model pre-training, and proper calibration of
key parameters have been analysed and explored in face detection under the Faster R-CNN
framework.

Motivated by the success of region-based CNNs in the object detection and face detection
tasks, CMS-RCNN [227] has been designed to combine both the region proposal component
and the region-of-interest detection component to enhance the model’s performance. Except for
the contribution from the network design, Zhu et al. [227] have further explored the multi-scale
information to locate the tiny face and contextual reasoning to reduce the overall false positives.

Single-shot Detector Models

The basic frameworks for single shot detector include SSD [93] and RetinaNet [88]. Different
from the two-stage detectors based on the R-CNN framework, single-shot detectors finish
face location after RPN without the subsequent R-CNN. Another advantage of the single-shot
framework is the consistent computational complexity in inference while the two-stage one is
seriously affected by the face number.

S3FD [219], full name as single-shot scale-invariant face detector, is a popular method under
the SSD framework and it works especially well on detecting small faces after introducing three
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tricks. Firstly, a scale-equitable face detection framework is presented to handle the various
scales of faces. Secondly, a scale compensation anchor matching strategy is explored to increase
the recall rate of small faces. Thirdly, a max-out background label is introduced to reduce the
false positive rate of the small faces. S3FD has effectively surpassed the anchor-based detectors
on detecting small faces.

FaceBoxes [218] is a CPU real-time face detector under an SSD framework with a lightweight
yet powerful network structure. It consists of the Rapidly Digested Convolutional Layers
(RDCL) and the Multiple Scale Convolutional Layers (MSCL). Specifically, the RDCL is to
accelerate the inference speed on the CPU device while the MSCL is to handle face scales
by enriching receptive fields and distributing anchors over different layers. In addition, a new
anchor identification strategy is designed to balance the intensity of anchors across different
layers. The empirical results have validated the effectiveness of FaceBoxes in detecting small
faces. Another lightweight face detector is proposed in EXTD [202]. Yoo et al. have presented
to iteratively reuse a shared lightweight and shallow backbone network to reduce the model size
while preserving the model’s performance.

SSH [106], as a single-stage headless face detection, is fast in speed and lightweight in model
size. On the one hand, it is headless by removing the full connected layer classification part. On
the other hand, it is scale-invariant by detecting multi-scale faces from different layers in a single
forward pass of the network. Besides, SSH has proposed to add filters on each prediction head to
enlarge the receptive field and merge the context information.

More recently, RetinaFace [35] performs pixel-wise face localisation on various scales of
faces by taking advantages of jointly training supervised face detection, extra-supervised facial
landmark regression and self-supervised face regression in a multi-task manner. During the
training period, the three tasks benefit from each other, leading to a dramatic accuracy increment
for face detection. Also, the main structure is a lightweight backbone designed based on feature
pyramids. Therefore, RetinaFace can run real-time on a single CPU core for a VGA-resolution
image.

2.1.2 Face Alignment

Face alignment aims at locating semantic facial landmarks in a given face image. It has wide
applications in computer vision tasks such as face recognition, face emotion recognition, facial
action unit recognition et al. . As a pre-acquisition step for face analysis, its performance plays
a fundamental role in the subsequent tasks. In the literature, the face alignment methods are
categorised into coordinate regression models and heatmap regression models. Recent advances
in face alignment are largely attributed to the rise of deep neural networks.

Coordinate Regression-based Models

In coordinate regression-based models, model directly predict the facial landmark coordinates
(e.g. x1,y1). Roughly, we can divide related methods into hand-craft features based cascade
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shape regression and deep feature representation based coordinate regression based on feature
extractor.

The main idea of cascade shape regression is to learn a sequence of regressors in an additive
manner to approximate the mapping function from the initial mean shape to the ground-truth
shape. At each iteration, the handcraft features like HOG, SIFT are extracted around the current
predicted landmark, and the linear mapping is learned to reduce the distance gap between the
current shape position and the target shape position. In the literature, this mapping solution can
be founded by the least square algorithm.

Based on the above description, it is easy to conclude that the shape-indexed features play a
critical role in the model performance. Thus some works focus on informative feature learning.
Xiong et al. [186] have extracted the SIFT features around each landmark to learn the regression
matrix via linear regression. Cao et al. [14] have proposed an explicit shape regression method
on feature correlation selection. Ren et al. [126] have explored a set of random forests to learn
discriminative binary features at local landmark region and finally obtain a model running at
3000 FPS.

Another key point is about the initial shape. Cascade shape regression works in a data-driven
manner. It first attempts to remember the fitting paths in the training datasets and then directly
utilizes these mapping projections in the testing phase. Therefore, when the assigned initial shape
is far away from the final prediction, it has difficulty doing correction based on the noisy shape-
index features. Therefore, Deng et al. [36] have proposed multi-view cascade shape regression in
different pose subsets. Such a “divide-and-conquer” trick has significantly improved the model’s
robustness on the profile faces. This idea is further extended in facial landmark tracking in [192].

Thanks to the development of neural network and its wide applications in the computer vision
field, the coordinate regression based on deep features have been explored and gained significant
performance improvement in face alignment benchmarks. These methods are further categorised
into local-based and global-based models. Local-based methods can be seen as an extension
of the shape-index feature on the deep feature. For instance, [155] has extracted features on
the neighbourhoods of all landmarks and then feeds local features into regression CNN to do
coordinates prediction. However, the local shape-index deep feature still meets the problem of
being sensitive to initial estimates of facial landmarks or the assigned mean shape.

In contrast, for global-based methods, an image patch enclosing the whole face region is fed
into the regression CNN to predict 2D coordinates of facial landmarks. The advantage of the
global-based methods is that it does not require the initialisation of facial landmarks.

In [145], the whole framework is composed of three-level carefully designed networks.
Motivated by the process that the entire image as input and key points as output, both the entire
input’s texture context information and implicit encoded geometric constraints are explored
and utilized to locate each key point. Finally, the obtained model is more robust to factors like
occlusions, large pose variations, and extreme lightings.

Different from designing different deep neural networks to improve the model’s performance
with fixed L2 loss, Feng et al. [41] have defined a loss function named Wing loss to increase the
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contribution from samples of small and medium-size errors in network optimization. Extensive
experiments have been conducted under several CNN architectures on popular benchmarks to
verify the effectiveness of the proposed Wing loss function.

Heatmap Regression-based Models

In addition to the coordinate regression, recent heatmap regression based on advanced neural
network designs have shown promising results. Different from coordinate regression, the
network’s prediction is an implicit confidence map of each landmark instead of the direct x,y
coordinates on the input image. The ground-truth heatmaps are generated from extra operation
in the data loader by setting a Gaussian circle around each landmark with the highest confidence
at center. [193] is the pioneering work to bring hourglass network performed on human pose
estimation to facial landmark prediction, and such direct application have achieved superior
performance over other methods at that time. At a similar time, Bulat et al. [10] have replaced
the basic block with a more advanced multi-scale block to capture more information within one
block, and have gained further performance. It is worth mentioned here that this work has been
further extended to the binary face alignment model with decent performance [8].

Tang et al. [150] have designed stacked U-Nets to reuse features shared similar resolution
across different layers. To further enhance the performance, an order-K coupling design together
with iterative refinement and memory sharing mechanism are explored in training. Finally, the
gained model achieves state-of-the-art performance with 70% fewer parameters. A similar idea
can be found in [149].

So far, the above-introduced heatmap regression models are all driven by minimizing L2
distance loss between the prediction and ground truth. Motivated by the Wing loss’s success
on coordinate regression [41], [164] have proposed an adaptive wing loss on confidence maps
which helps to adapt current shape flexibly according to ground-truth heatmap pixels. The
experimental results have shown that the foreground pixels are penalized more when compared
with the background ones. To address the imbalance distribution among different locations,
Wang et al. have proposed a weighted loss map to guide the optimization emphasis on crucial
landmarks on the foreground and difficult background pixels.

By employing extra information from the boundary, Wu et al. [176] have proposed to use
boundary lines as the geometric structure of a human face to remove the ambiguities in the
landmark definition.

More recently, [78] has started to analyse uncertainty and visibility of predicted landmarks
and has presented a novel end-to-end trainable framework called LUVLi to simultaneously
estimate the landmark position together with the uncertainty and visibility. Benefiting from the
side information provided by the uncertainty and visibility, the final model has achieved superior
performance on several datasets. The empirical results have proved that without any supervision,
the model is still able to distinguish between clear and externally occluded landmarks. In addition,
the model has also replaced the argmax with the spatial mean of the ReLU heatmap to obtain
sub-pixel accuracy.
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2.1.3 Face Recognition

Face recognition is a fundamental task in the field of pattern recognition and machine learning.
The target of face recognition consists of face identification and face verification. Face identifica-
tion is to assign a given face to a specific identity while face verification is to determine whether
the two given faces are from same identity. Recent face recognition methods are built on deep
discriminative features with advanced loss functions. These loss functions can be divided into
pair-based loss and margin-based softmax loss.

Pair-based Loss

The contrastive loss [147, 146, 196] and the triplet loss [134, 116, 92] are the seminal examples
of loss functions for pair-based loss [184, 169] in deep metric learning.

Fig. 2.2 Contrastive loss. The goal is to pull
features from same identity together and push
features from different identities apart. Different
shapes denote different identities.

The visual representation of a gradient de-
scent step for contrastive loss is in Figure 2.2.
In practice, it takes the embedding vectors
from a face image pair and aims at pulling
them together in Euclidean distance if they
are from the same identity (positive pair) and
pushing them apart if they are from the differ-
ent identities (negative pair). The contrastive
loss is formulated as:

L =Ii jmax
(
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where Ii j = 1 indicates xi and x j are positive pair and Ii j = 0 indicates negative pair. x is the
feature embedding. ε+ and ε− represent the the margin for positive pairs and negative pairs
respectively. DeepID2 [146] has combined softmax loss and contrastive loss together to obtain
discriminative face embedding for face recognition. This work is further extended in DeepID2+
[147] and DeepID3 [144] by boosting performance with advanced network designs.

Fig. 2.3 Triplet loss. The goal is to minimize anchor’s
distance to its positive sample and maximize the dis-
tance to its negative sample. Different shapes denote
different identities.

The visual representation of a gra-
dient descent step for triplet loss is in
Figure 2.3. In practice, it learns a dis-
criminative feature embedding by min-
imizing the distance between an anchor
and a positive sample and maximizing
the distance between the anchor and a
negative sample in a triplet. The triplet
loss is formulated as:

L =
∥∥xa

i − xp
i

∥∥2
2 −

∥∥xa
i − xn

i
∥∥2

2 + ε, (2.2)



2.1 Components of Face Recognition 14

where xa
i , xp

i , xn
i denote anchor, positive sample from same identity with anchor and negative

sample from a different identity with anchor respectively. ε is a margin and x is the feature
embedding. FaceNet [134] has used triplet loss to learn feature embedding in Euclidean space
and further explored different triplet selections to boost model’s performance. Similar idea can
be found in [134, 116, 92]

Pair-based losses benefit from a large amount of sample-to-sample comparison via aggressive
tuple sampling during training. However, that tuple number increasing polynomially with
training data size causes the prohibitively high training complexity and instability. Besides, not
all tuples contribute to training and ineffective tuples even incur model degradation. Therefore,
most pair-based loss methods will explore the sampling techniques to enhance the useful pairs in
training. However, this operation will introduce extra hyperparameters and need more efforts
and experience.

Margin-based softmax Loss

Fig. 2.4 Margin-based softmax Loss. It is a vari-
ant of softmax loss by adding the margin on the
cosine distance between current sample and its
prototype assigned by label. Different shapes
denote different identities.

Face recognition task in training step can be
treated as a multi-class classification problem
including two parts: feature extractor and clas-
sifier. The difference is only in testing. For the
general classification task, a classifier is used
to predict the input’s label. However, in face
recognition, only the former part is maintained
to do feature extraction and comparison while
the latter part is deleted. Thus softmax loss
as the most classical loss in classification can
also be explored in face recognition and it is
formulated as follows:

L =− 1
N

N

∑
i=1

log
eW T

yi
xi

∑
K
k=1 eW T

j xi
=− 1

N

N

∑
i=1

log
eW T

yi
xi

∑
K
k ̸=yi

eW T
j xi + eW T

yi
xi
, (2.3)

Here, w denotes the weight of classifier, where k ∈ 1,2, ...,K denotes class number. xi is the
embedding feature of i− th sample. N is the batch size. We omit the bias here for simplicity. In
particular, in face recognition, we normalize both the weight vector in the classifier and feature
embedding. Thus the calculation between weight vector and embedding feature evolves as
measuring the cosine similarity and Eq.2.3 can be rephrased as:

L =− 1
N

N

∑
i=1

log
es∗cos(W T

yi
,xi)

∑
K
k ̸=yi

es∗cos(W T
j ,xi)+ s∗ ecos(W T

yi
,xi)

, (2.4)

Here, s is for keeping value magnitude [160]. From the similarity aspect to explain Eq.2.4, it
aims to increase the similarity between xi and positive prototype for class i and decrease the
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similarity between xi and negative prototypes. Contrary to the sample-to-sample comparison
in pair-based loss, here comparison is done between sample and prototypes. The recent five
years have witnessed the new trend of margin-based softmax loss functions to boosting the face
recognition performance. The losses are concluded in a general formulation as follows:

L =− 1
N

N

∑
i=1

log
s∗ f (W T

yi
,xi,m)

∑
K
k ̸=yi

s∗ f (W T
j ,xi)+ s∗ f (W T

yi
,xi,m)

, (2.5)

Here, f is a margin function. The pioneer work, SphereFace [94], has proposed a multi-
plicative angular margin penalty f (W T

yi
,xi,m) = cos(m∗arccos(W T

yi
,xi)) to enforce intra-class

compactness and inter-class discrepancy simultaneously, leading to a better discriminative power
of the trained model. Even though Sphereface [94] has introduced the important idea of margin
into the softmax loss, the integer-based multiplicative angular margin makes the target logit
curve very precipitous and thus hinders convergence. To this end, a hybrid loss function is further
explored to stabilise training. Inspired by SphereFace [94], CosFace [162] has introduced an
additive cosine margin f (W T

yi
,xi,m) = cos(W T

yi
,xi)−m. ArcFace [34] has introduced an additive

angular margin f (W T
yi
,xi,m) = cos(arccos(W T

yi
,xi)+m) with a well-formed geometrical inter-

pretation. m in SphereFace is set as 4, in CosFace is set as 0.35, while in ArcFace it varies on
datasets. More recently, FairLoss [89] and AdaptiveFace [91] have proposed adaptive margin
based on classes to address long-tail distribution in training dataset.

The visual representation of a gradient descent step for margin-based softmax Loss is in
Figure 2.4. Compared with paired-based loss, margin-based softmax loss is easy to train with
better performance. However, as is mentioned in [159], it is vulnerable to label noise in the
dataset. To increase the robustness, Sub-center ArcFace has [33] relaxed the intra-class constraint
of ArcFace by designing K sub-centers for each class instead of one positive center.

2.2 Knowledge Distillation

Knowledge distillation has been widely adopted to compress the model with decent performance.
In particular, it improves the performance of low-capacity, low-accuracy student network with
the guidance from high-capacity, high-accuracy teacher network. Recently, it is an active topic
especially in image classification task. The core of knowledge distillation is the definition
of knowledge. Based on this, we can broadly categorise current methods into logits-based
knowledge distillation [55, 26, 21], feature-based knowledge distillation [129, 204, 53] and
relationship-based knowledge distillation [197, 82, 115]. In the following section, we will briefly
introduce each category with individual representatives and its applications.

2.2.1 Logits-based Knowledge Distillation

In KD [55], knowledge is defined as the teacher’s logits after the final softmax layer. The main
idea is to train a student model to mimic the final prediction of a pre-trained and fixed teacher
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model. The rationale behind KD is that the teacher’s output carries richer information than
a one-hot label because it encodes extra supervision signals about the inter-class similarities.
For example, in the Mnist classification task, the teacher’s prediction can encode the similarity
between 7 and 9 while the one-hot label treats 9 the same as the other classes like 2,3 without
considering the correlation.

Fig. 2.5 The generic logits-based knowledge dis-
tillation. T, S, C denote teacher, student and
classifier respectively. LKD loss is added at the
end of classifier’s output.

A typical logits-based knowledge distilla-
tion model is illustrated in Figure 2.5. Sup-
pose teacher’s prediction as p and student’s
prediction as q, loss in [55] is defined as KL
divergence loss between p and q:

LKD = KL(q, p). (2.6)

There is a temperature parameter in the soft-
max function applied to p and q to keep the
gradient magnitude and usually set as 4.

As a subsequent work of KD, [26] has
shown experimentally that very accurate networks are “too good” to be good teachers and
therefore has proposed to tackle this issue with early stopping technique in network training.
This technique has especially improved KD’s performance on the pair ResNet34 as a teacher and
ResNet18 as a student in the ImageNet-1K datasets.

So far, the vanilla KD has a wide range of applications in the computer vision area. For
example, in [21], Chen et al. have applied logits-based knowledge distillation to object detection
under the Faster R-CNN framework. As is already described in Section 2.1, Faster R-CNN con-
sists of region proposal network and region classification network. The classifiers from different
stages are to distinguish the positive and negative anchors and specific classes respectively. It is a
natural operation to apply the KD on the above two tasks with some task-specific modifications.
Experiments have proven the effectiveness of KD when it is applied with various teacher-student
pairs in the object detection task.

More recently, Zhang et al. [208] have applied KD to human pose estimation under the
hourglass framework. Intuitively, the performance of the hourglass framework depends on the
channel number (width of network), and the number of stacked hourglasses (depth of network).
Therefore, a heavy network consisting of 8 hourglasses with 256 channel number is trained as a
teacher to distill the knowledge to a lightweight student network composed of 4 hourglasses with
128 channels. Extensive evaluations on popular benchmarks have demonstrated the advantages
brought by KD as the teacher’s prediction provides additional more accurate supervision than
annotation and helps to calibrate the mistake caused by the missing labels.
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2.2.2 Feature-based Knowledge Distillation

Instead of defining the knowledge as the final output of the network, intermediate representations
such as raw feature tensors [129] or processed attention maps [204] are also the origin of
knowledge. This knowledge has been analysed and investigated to define loss functions to
facilitate the optimization of the student by mimicking the teacher’s intermediate representations.
A typical feature-based knowledge distillation framework is illustrated in Figure 2.6.

Fig. 2.6 The generic feature-based knowledge
distillation. T, S, C denote teacher, student and
classifier respectively. LKD loss is added at dif-
ferent locations inside the backbone.

In [129], knowledge is defined as the out-
puts of a teacher’s different hidden layers.
Romero et al. have discussed the two factors
that affect the student’s performance. One is
the position to put the distillation. Intuitively,
a pre-trained network captures the coarse to
fine information of input with edge contour
information in the earlier part of the network
and abstract class-related information in the
latter. Therefore, incorrect distillation position
will incur over-regularization in training stu-
dent. To tackle this issue, Romero et al. have
chosen to put the distillation position in the
middle of the network to avoid constraining
the flexibility from the guided layers. The other is to deal with incomparable tensor size as there
is no guarantee that features from the student network and teacher network share the same shape.
Therefore, Romero et al. have proposed to use a regressor network to adjust the student feature
size. This regressor network will not add extra complexity in inference as it will be discarded
in the testing period. Finally, the MSE loss is introduced to optimize student learning. The
hint-based training has suggested that new research direction is to explore advanced training
strategies to leverage the power of deep networks.

As is analysed in FitNets [129], matching the whole feature tensor is hard and in certain
circumstances will adversely affect the performance and convergence of the student. To relax the
assumption of FitNets, Attention Transfer (AT) has been proposed in [204] where knowledge
takes the form of attention maps which are summaries of the energies of the feature tensors
over the channel dimension. Specifically, knowledge in AT is defined as a spatial attention
map in a teacher’s hidden layer. The authors have observed that the attention map contains
information about where to focus in classifying an object. The authors have defined three types
of attention across channels: (a) sum of absolute values; (b) sum of absolute values raised to the
power; (c) max of absolute values raised to the power. Finally, the loss is calculated as the MSE
distance between the teacher’s attention map and the student’s one. Also, to solve the spatial size
incompatibility issue, AT has proposed to use an adaptive pooling layer to adjust the size before
calculating the attention map. AT has claimed that it is the first work that works on ImageNet-1K
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[77] in pair of ResNet34 as teacher and ResNet18 as a student. An extension of [204] is to use
Maximum Mean Discrepancy of the network activation and has been presented in [62].

Recently, [53], as a subsequent work of [54], has proposed a new feature distillation loss after
a comprehensive investigation and measurements on fours factors: teacher transform, student
transform, distillation position, and distance function. Heo et al. have suggested putting the
position of the distillation between the first ReLU and the end of layer block and have proposed
a specifically designed distance function called partial L2 to transfer only the useful (positive)
information from the teacher to the student after margin ReLU transform.

More recently, motivated by the success of Neural Architecture Search (NAS), Li et al. [83]
have proposed to supervise the block-wise architecture search by the architecture knowledge
distilled from a teacher model. Li et al. have observed that the knowledge not only lies in the
network parameter but also lies in the network architecture. Another NAS based method has been
proposed in [45], in which a student-to-teacher loss is utilized to find the aggregation weights
that match the learning ability of the student under a two-stage framework via differentiable
aggregation search.

Passalis et al. [118] have claimed that traditional knowledge distillation methods ignore
information plasticity during the training process, which causes performance degradation in
training significant light-weight student. The authors have proposed to model the information
flow through the various layers of the teacher by introducing an auxiliary model based on
a critical learning scheme. The experiment has shown that [118] works especially well on
teacher-student pair with different architectures which is a barrier in other frameworks.

2.2.3 Relation-based Knowledge Distillation

Fig. 2.7 The generic relation-based knowledge
distillation. T, S, C denote teacher, student and
classifier respectively. LKD loss is added on the
feature embedding extracted after backbone.

So far, both the logits-based knowledge and
feature-based knowledge is a 1:1 correspond-
ing relationship. That is to say, for one input, a
student is to mimic the teacher’s behaviour on
its input. Relation-based knowledge distilla-
tion observes that such mimic behaviour fails
to consider the relationship among inputs and
have proposed to focus on exploring transfer-
ring the relationship between features rather
than the actual features themselves. A typical
relation-based Knowledge distillation frame-
work is illustrated in Figure 2.7.

In [197], knowledge is defined as feature correlations across different layers. After computing
the Gram matrix of features across layers for both teacher and student, an L2 loss is applied
on pairs of teacher-student Gram matrices. By doing so, flow between different layers among
teacher can be learned by the student. Experiments have been done on the transferring task
to validate the effectiveness of the proposed method. The limitation of this work is the high
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computational cost which has been further addressed in [82] by compressing the feature maps
via singular value decomposition.

In [115], knowledge is defined as the mutual relationship within a batch. Park et al. have
proposed a relational knowledge distillation (RKD) method. For concrete realizations of RKD,
they first computed distance-wise and angle-wise relations between each embedded feature
vectors and then enforced structural similarity for student and teacher. Similar idea is further
explored in [120] and [95]. In [120], Taylor series expansion has been used to better capture
the correlations among multiple instances. Several kernel tricks have been explored to capture
knowledge in high-dimension feature space. Besides, sampling strategies are further investigated
to better consider the inter-class and intra-class correlation. The experiments are done on object
classification, person re-identification and face recognition to validate the superior performance.
In [95], the instance feature and its relationships to others have been considered as vertexes and
edges respectively in a graph and the instance relationship graph has been optimized to model
the feature space transformation across layers.

Inspired by the observation that semantically similar inputs should have similar activation
patterns, [156] has proposed a similarity-preserving knowledge distillation method by guiding
the student to mimic the teacher’ activations. Specifically, Tung et al. have first extracted feature
after different layers for the teacher and student network and then calculated the similarity matrix
on a normalized feature map across spatial position to encode the correlation among different
positions. Finally, MSE loss is applied to enforce the similarity between teacher and student’s
feature maps to drive the optimization of the student model.

More recently, [65] has proposed to match the student’s output with the teacher’s by distilling
the knowledge through a quantized visual words space to concentrate more on important semantic
concepts and spatial correlations. To this end, Jain et al. first used k-means to obtain a dictionary
of feature representations in the training dataset and then trained the student to predict similar
code as a teacher. The rationale behind this idea is that the dictionary can encode what is stored
in feature space in the training dataset. For instance, it may capture some contour structures of a
class.

Li et al. [86] have proposed the local correlation exploration framework to represent the
relationships of local regions in the feature space which contains more details and discriminative
patterns. This work argues that current knowledge distillation methods mainly pay attention to
the sample-level feature and relationship consistency in global features while ignoring the details
and discriminative patterns that exist in local features. Therefore, they have proposed to model
the inter-class and intra-class sample correspondence in the same local position together with
inter- correspondence across different local positions. By doing so, the student can produce more
discriminative local features. Finally, a similar connection between distillation and representation
learning has been very recently made in [153] which uses contrastive learning for knowledge
distillation.



2.2 Knowledge Distillation 20

2.2.4 Self-distillation

There is a predefined teacher network trained on training datasets to guide the student in training
in the above-mentioned methods. This kind of knowledge distillation is categorised as off-line
knowledge distillation as the teacher network is pre-trained and fixed. Different from this
procedure, self-distillation is to train a student network without an explicit teacher network, in
which the deeper representation is to guide the shallow network in training. The generic overview
is in Figure 2.8.

Fig. 2.8 The generic self-knowledge distillation.
S denotes student network. LKD loss is added
between intermediate network output and final
classifier’s output.

As the pioneering work in self distilla-
tion, Zhang et al. [212] has defined the self-
distillation concept. To be specific, Zhang et
al. have proposed to improve the representa-
tion ability of feature maps extracted at dif-
ferent positions of the network. This idea is
motivated by [58], in which the authors have
found that directly adding classification loss af-
ter each layer in ResNet structure will deterio-
rate the whole network performance while this
phenomenon is relieved in DenseNet. They
have attributed it to the over-regularization in coarse layers. Therefore, [212] has focused on
improving the ResNet performance by introducing auxiliary operations in different positions
before adding classification loss. Finally, the final optimization has three sources: (a) the classifi-
cation loss across different layers guided by cross-entropy loss with ground-truth labels, (b)hints
loss across different layers guided by network output feature, (c) KL divergence loss across
different layers guided by the final prediction. These losses are optimized together to improve
the network’s performance from coarse to fine layers. This work is further extended in their
NeurIPS paper named SCAN [213] by improving auxiliary network design. In [213], the authors
have observed that the third layer performance is worse than training the network alone. After
digging into this problem, they have proposed an attention module as the auxiliary network and
experimentally this design has enhanced the performance of shallow classifiers.

A similar idea can also be found in [122]. The multi-exit architecture proposed in this work
has also shared the self-distillation framework. The knowledge in the final exit is employed to
guide the training of early exits. Also, both cross-entropy loss on the ground-truth label and
KL divergence on final output loss have been combined to optimize the network. Except that,
they have proposed the temperature annealing in KL divergence loss to keep the teacher’s output
constant and the final experiments are done on unlabeled data to show the advantage of the
proposed idea.

As an application of self-distillation and attention transfer [204], [56] has used the com-
bination of two works to improve performance in the lane detection task. The observation
is that attention maps in the pre-trained network have encoded rich contextual information.
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Motivated by this phenomena, [56] has treated the attention map at the last layer as a form of
“free” supervision to guide layer-wise attention distillation within the network.

As a special variant of self-distillation, Yang et al. [190] have treated the networks trained
at earlier epochs as a teacher and designed a cyclic learning rate policy to transfer knowledge
in earlier epochs to later epochs in the same generation within the same network. They have
discussed three principles to achieve success including (a) the quality of teacher; (b) teacher-
student difference; (c) secondary information.

Recently, [102] has first analysed theoretical support behind self-distillation Hilbert space.
Mobahi et al. have shown that self-distillation works because it modifies regularization by
progressively limiting the number of basis functions so that it can be used to represent the
solution. They also have verified experimentally that the over-fitting issue can be reduced in a
few rounds of self-distillation but the under-fitting issue alongside deteriorating performance
will be caused after further rounds.

More empirical experiments can be found in [220]. The empirical evidence has shown that
in the self-distillation framework, diversity of teacher predictions is closely related to student
networks’ performance. Inspired by both the observation and theoretical analysis, they have
interpreted the knowledge distillation with amortized MAP and further proposed more efficient
ways to obtain priors for instance-specific regularization in self-distillation.

2.3 Explainable AI

2.3.1 Network Visualization

Visualization of features from CNN is the most straightforward solution towards understanding
neural networks and it also serves as a technical tool for diagnosing CNN representations
in the literature with representative works. We can roughly category them into activation
maximization based methods [40, 206, 103, 110] and class activation mapping based methods
[135, 18, 139, 206].

Activation maximization [40] (a detailed review in [109]), as a representative visualization
technique, is to find a solution that highly activates a given neuron by operating gradient descent
optimization on the input. The rationale behind this idea is that a unit’s maximum response to a
pattern resides in its first-order representation.

Zeiler et al. [206] have taken both functions of the internal feature extractor and the operation
of the final classifier into consideration. In practice, Zeiler et al. have exploited to locate which
input pattern will cause a given activation in the feature map by mapping the stimuli back to
the input pixel space. Another contribution of this work is that it has proven that the model’s
performance is closely related to the depth of the network rather than individual sections, which
gives insights to effective network design.

Mahendran et al. [97] have explored the activation maximization idea by answering the
question: is it possible to reconstruct the input image when given a feature representation
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extracted from the network? Mahendran et al. have answered this question by inverting input
on a given feature. The final solution can be found by optimizing the input with the gradient
provided by reconstruction loss and regularization. As there is no unique solution to the inversion
problem, the regularization here is to introduce image prior such as V β norm to make generated
images satisfied with human visual perception. This solution can be easily applied to both
handcraft feature like HOG and SIFT and deep feature from CNN models. Similar ideas can be
found in [103, 110].

More recently, the image inversion idea has been applied to the dataset reconstruction task.
For example, in [198], the student network has been trained only with guidance from the teacher
network without original training datasets. In particular, Yin et al. have synthesized the training
dataset by optimizing random noise input to maximize the activation of the classifier in the
teacher. By doing so, images can be generated according to the assigned labels from the teacher
network. Besides, to improve the image quality, the information stored in batch normalization in
the teacher network has been utilized to constrain the statistics calculated on generated inputs.
In addition, Jensen-Shannon divergence between the teacher and student networks’ logits has
been introduced to improve the diversity of synthesized images. Experiments on CIFAR10 and
ImageNet-1K have verified the effectiveness of the deep inversion idea.

Another line of network visualization is called class activation mapping (CAM). The core
idea is to generate a heatmap image whose size is the same as input while the value is determined
by its contribution to the final prediction. Intuitively, the larger value represents a higher response
from the class label. The essence of CAM is to weighted sum the channel-wise representation in
the selected layer. From the perspective of the weight sources, current CAM variants can be split
into gradient-free CAM [226, 163, 105, 123] and gradient-based CAM [135, 18, 111].

In gradient-free CAM, [226] is the pioneer of CAM. The later part in the network of [226]
consists of (a) global average pooling on 4-D feature maps to get a feature vector and (b) a fully
connected layer to assign labels. The procedure of calculating the class activation map can be
divided into 3 steps:

1. Extract the class weights from fully connected layer based on the assigned label;

2. Expand the class weights to share the same size as 4-D feature map to operate weighted
sum on the feature map with class weights to get a heatmap;

3. Operate the ReLU activation on the heatmap to get the final normalized heatmap.

The obtained heatmap known as class activation maps allows us to locate the discriminative
object parts detected by the CNN after drawing the predicted score on the input image.

Score-CAM [163] is an improved version of Grad-CAM [135]. Score-CAM has abandoned
using the gradient from target class to compute weights. The authors have observed nuisances
caused by gradients and mistakes from high confident samples. Instead, [163] has defined
“increase of confidence” as the final visualization map which is achieved by subtracting the
baseline score map from the gained class score map.
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Another solution to cope with noise from gradients is proposed in SS-CAM [105]. The
smoothGrad technique has been utilized to smooth the output noise. In this work, the authors
have proposed two variants: (a) adding noise on the feature map (b) adding noise on the input.
There is no clear conclusion about which one is better as the performance varies on the datasets.

Ablation-CAM [123] has conducted a thorough analysis on the importance of units in the
feature map. By sequentially erasing the channel in the feature map and then comparing it with
the uncontaminated one, it allows us to find the essential component in the model’s performance.
Finally, the gap in class score has functioned as the combination weights on the feature map.

For gradient-based CAM, in Grad-CAM [135], Selvaraju et al. have proposed a class-
discriminative localization technique to interpret CNN based on visual explanations. Specifically,
for a given target concept, for example, the “dog” category in the classification network, the
gradient of this target would flow into any layer in the network to produce a coarse localization
map. Compared with the previous CAM applied to specific structure design, this method is more
general and can be applied to any layer.

Grad-CAM++ [18] is an extension of Grad-CAM by considering the contribution of different
elements in gradient map. The extra weight can help to produce more precise localization and
make it appliable to scenes with multi-class objects. Another work named smooth Grad-CAM++
[111] has introduced smoothGrad in gradient to alleviate the noise on saliency maps by averaging
the gradients from multiple noisy inputs.

In addition, [139] has proposed to visualize image classification models by generating an
image to maximize a class score and computing a class salience map to a given class, based
on the gradient of the class score. [206] has introduced a multi-layer deconvolutional network
to reveal the input stimuli that excites individual feature maps at any layer of the model. [38]
has learned an up-convolutional network to predict input image from its feature vector and the
obtained model is applicable directly in testing.

2.3.2 Pattern Detector

Pattern detector-related works attempt to connect the annotated visual patterns with inner filters
in deep network to increase its interpretability. Some works focus on analysing the pretrained
networks [225, 226] while the others resort to changing the network structure [5, 138, 19] or
adding auxiliary loss [43, 216] to make the network more explainable.

Zhou et al. [225] have observed that units in inner layers function as visual concept detectors
in the scene classification task. More specifically, the early layers in the network are responsive
to low-level concepts like colours or textures while later layers tend to capture more high-level
semantics like objects or scenes. Therefore, they have demonstrated that scene recognition task
and object localization task can be done in a single forward-pass without being explicitly taught
the notion of objects. This work is further extended in [226]. After an in-depth analysis on
global average pooling and classification layer, Zhou et al. have observed that scene classification
task works as a combination of object-specific units which are indeed stored in global average
pooling.
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Bau et al. [5] have proposed a network dissection framework to quantify the interpretability
of inner representations by evaluating the correspondence between individual hidden units and
selected semantic concepts. The experiments have validated that feature extracted at different
positions can encode different categories of meanings and also training techniques will affect the
interpretability of the representation.

Part detector discovery [138] has been proposed to locate semantic part-related activation
centers based on computing and analysing gradient maps. This idea is further explored in [137],
Simon et al. have treated the channels of a CNN as a part detector and then they have learned a
part model in a completely unsupervised manner by selecting part detectors that fire at similar
relative locations.

A similar idea is also taken in [43, 216], Gonzalez et al. have gone a step further by assisting
each filter with a bounding-box regression loss. The auxiliary loss will help to refine the stimulus
detection for each part class. Therefore, the conclusion can be made based on the phenomenon
that whether the network’s convolutional filters fire on semantic parts. Similarly, Zhang et
al. [216] have designed a new loss to push filters in high Conv-layers to represent single parts of
an object without additional annotations for supervision.

In [215], Zhang et al. have built a semantic And-or Graph on the pre-trained convolution
neural network by associating certain inner units with the semantic part. By mapping the
high-dimensional activations to low-dimensional representation concerning parts/sub-parts, the
proposed framework is more robust and efficient in multi-shot learning. This idea is further
extended in [214] to disentangle part patterns captured in each filter after considering the mixture
of object parts existing in the conv layer. Zhang et al. [217] have learned a decision tree to
analyse the decision made at the semantic level. Specifically, they have proposed to first use a
decision tree to break down high-level feature into elementary concepts about object parts and
then to analyse how the object parts fire filter and contribute to the final prediction.

2.3.3 Learning Interpretable Representations

CNN-based models often suffer from a lack of interpretability due to their non-linear nature.
Optimizing with supervision loss from annotated labels only makes the models function as a
“black box” in which only input and output are considered. To address this issue, some works
focus on learning interpretable representation by adjusting or proposing a new network structure
[85, 19, 166, 131].

Li et al. [85] have proposed an explainable image classification architecture consisting of an
auto-encoder and a prototype classifier. Specifically, The encoder part maps the high dimension
input to low dimension latent space and the decoder part transforms back to the input space.
The prototypes are learned on the encoded input with cross-entropy loss. Except that, another
two auxiliary losses constraining the correspondence between encoded inputs and assigned
prototypes are trained together with supervised classification loss. In addition, the decoder part is
guided by reconstruction loss from the input. Finally, the trained model is more interpretable as
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prototypes provide useful cues to understand the inner workings within the classification network
and can be visualized in a decoder network.

Unlike [85] where the prototypes are learned from the entire image, [19] has introduced
a Prototypical Part Network to focus on the patch-based local representations. The rationale
behind this work is that the network first understands the input with cues from prototypical parts,
and then the final decision is made based on combined evidence from all local parts. This is quite
similar to the human thinking mode. In addition to the supervision loss from the classification
task, an extra constraint is added to enforce each convolutional filter to be identical to some
latent training patch to make the filters interpretable in visualization. Both [85] and [19] are
trained from scratch and thus faithful to input images.

Wang et al. [166] have developed a distillation guided routing method to effectively discover
the critical routing paths for the input sample. Intuitively, the model’s performance is determined
by important channels’ activation. If the important channels were suppressed in the routing
paths, its performance would deteriorate severely. To this end, Wang et al. have introduced
the knowledge distillation idea to off-line dissect the critical channels without damaging its
performance. They have observed that the discriminative ability of routing nodes increases as
the network goes deeper and the routing paths can reflect layer patterns within the class. Based
on these findings, they have proposed a method to boost the robustness of the neural network.

Chen et al. [22] have proposed to distill knowledge from the pre-trained CNN, termed as a
performer, into an explainable additive model, termed as explainer, without hurting the perfor-
mance of the performer. In this case, the explainer is to paraphrase the feature representation
inside of the performer by finding specific visual concepts and finally helps to understand the
logic of the performer’s prediction. To overcome the bias-interpreting problem, extra losses
about prior weights of visual concepts have been incorporated in training.

Different from the above-mentioned methods which mainly focus on adjusting network
structures, Sabour et al. [131] have proposed a new network named capsule nets to analyse the
processing procedure. A capsule is an activity vector whose norm and orientation represent the
probability and attributes respectively. To be specific, a capsule denotes a set of neurons and its
activation represents a specific entity such as an object or an object part. Finally, with a dynamic
routing mechanism, capsule net can decompose the entire object into a parsing tree of capsules.



Chapter 3

FAN-Face: a Simple Orthogonal
Improvement to Deep Face Recognition

This chapter proposes a simple orthogonal improvement to deep face recognition. It is known that
facial landmarks provide pose, expression and shape information. In addition, when matching,
for example, a profile and/or expressive face to a frontal one, knowledge of these landmarks is
useful for establishing correspondence which can help improve recognition. However, in prior
work on face recognition, facial landmarks are only used for face cropping in order to remove
scale, rotation and translation variations. We propose a simple approach to face recognition
which gradually integrates features from different layers of a facial landmark localization
network into different layers of the recognition network. To this end, we propose an appropriate
feature integration layer which makes the features compatible before integration. We show
that such a simple approach systematically improves recognition on the public face recognition
datasets, setting a new state-of-the-art on LFW [59], YTF [173], IJB-B [171], IJB-C [100] and
MegaFace [71] datasets under both identification and verification measurements.

The contributions of this Chapter have been published at AAAI 2020 in [191].

3.1 Introduction

Face recognition is the process of recognizing or verifying a person’s identity from a given facial
image or video. It is an important problem in computer vision research with many applications
like access control, identity recognition in social media, and surveillance systems. With the
advent of deep learning, there has been a tremendous progress in designing effective face
recognition systems, yet, many applications (e.g. border control) require super-human accuracy
and, as such, improving existing systems is still an active research topic. Our main contribution
is a simple approach to improving deep face recognition accuracy via incorporating face-related
information (e.g. pose, expression and landmark correspondence) provided by a network for
facial landmark localization in order to facilitate face matching. Besides improving accuracy, our
approach can be readily incorporated into all existing state-of-the-art face recognition methods.
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Fig. 3.1 Feature embeddings produced by our method (bottom) and our strong baseline Arc-
Face [34] (top). Different colours represent different identities in t-SNE space. The faces are
from the CFP-FP dataset which contains frontal and profile faces. ArcFace embeddings for faces
A and B are much closer to D which is from a different identity but similar pose. Overall, for all
4 identities shown the feature embeddings produced by our method are much more concentrated
and separated than those of [34]. See also section 3.6.3 for a quantitative comparison between
the two methods on the whole dataset where we show large improvement over [34].

The ultimate goal of face recognition is to learn a feature embedding for each face with small
within-class and large between-class distances. Traditionally, this has been considered a difficult
problem due to large facial appearance variations mostly caused by pose, facial expression,
occlusion, illumination and age. When matching, for example, a profile Ap to a frontal A f face
of the same identity A, this distance must be smaller than the distance between A f with another
frontal face B f of identity B. Recently, CNNs have been shown that they can learn to some extent
such an embedding from large annotated face recognition datasets. Specifically, a few recent
works [170, 94, 162, 34] have proposed more effective loss functions so that the learned feature
embeddings for each face are both separable and discriminative.

Our work has a similar objective but departs from all the aforementioned works in that it
does not propose a new loss function. In contrast, for any given loss function, in this work, we
propose to learn a better feature representation for face matching and recognition by integrating,
during training, features from a pre-trained network for localizing facial landmarks. A network
for detecting facial landmarks is trained to learn by construction to establish correspondences be-
tween faces in any pose and facial expression independently of nuisance factors like illumination,
blur, poor resolution, occlusion etc. Although it seems natural to incorporate such features in a
face recognition pipeline in order to facilitate matching, to our knowledge, there is no prior work
that proposes to do so. Some visual examples illustrating the enhanced discriminative properties
of our method over our strong baseline [34] for the case of frontal to profile face matching are
shown in Figure 3.1, while an overview of the proposed system is shown in Figure 3.2.

In summary, our contributions are:
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• We are the first to explore how features from a pre-trained facial landmark localization
network can be used to enhance face recognition accuracy. Contrary to prior pipelines for
face recognition, facial landmarks are not just used for face cropping and normalization.
Instead, both landmark heatmaps and features from the facial landmark network are
integrated into the face recognition feature extraction process to (a) provide facial pose-,
expression-, and shape-related information, and (b) help establish correspondence for
improving face matching.

• We explore various architectural design choices at a network level to identify the best
strategy for integration. Importantly, we propose a novel feature integration layer that is
able to effectively integrate the features from the two networks although they are trained
with very different objectives and loss functions.

• We conducted extensive experiments illustrating how the proposed approach, when inte-
grated with existing state-of-the-art methods, systematically improves face recognition
accuracy for a wide variety of experimental settings. Our approach sets a new state-of-
the-art on the challenging LFW [59], YTF, IJB-B [171], IJB-C [100] and MegaFace [71]
datasets.

The rest of this chapter is organized as follows. Section 3.2 demonstrates the overview
and components of Fan-Face including heatmap integration, feature integration, the design
intuitions of integration layers. Section 3.3 introduces the closely related work of the proposed
method. Section 3.4 describes the implementation details, and training and evaluation datasets
in experiments. Section 3.5 explores and analyses the variants under the proposed framework.
Section 3.6 compares FAN-Face network with several state-of-the-art methods on 6 popular
datasets. Finally, a conclusion is brought forth in Section 3.7.

3.2 Method

3.2.1 Overview

Our method is based on integration of features from two networks: a facial landmark localization
network and a face recognition network. The facial landmark localization network is a pre-
trained FAN [9] which has been shown to robustly detect facial landmarks (we used the 51
internal landmarks, ignoring the ones on the face boundary which are noisy due to tight cropping)
across large poses, facial expressions, occlusions, illumination changes, low resolution etc., and
currently represents the state-of-the-art. FAN is a stacked hourglass network [107] built using the
residual block of [8]. We used two stacks as they suffice for good accuracy. The face recognition
network, denoted as FRN, is a modification of ResNet [34, 51] which is the method of choice for
various classification tasks (including face recognition).

The basic idea behind our method is simple: integrate features from the pre-trained FAN
into FRN while training FRN. Other than that, the FRN is trained in standard ways on face
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Fig. 3.2 Overview of our method: We use a pre-trained Face Alignment Network (FAN) to extract
features and landmark heatmaps from the input image. The heatmaps are firstly stacked along
with the image and then passed as input to a Face Recognition Network (FRN). The features
(here taken from the high-to-low part of the 2-nd hourglass of FAN) are gradually integrated
with features computed by FRN. Figure 3.4 shows an example of possible connectivity between
the two networks. As the features from the two networks are not directly compatible, we also
propose a novel feature integration layer shown in Figure 3.6.

recognition datasets. We integrate two types of features from FAN: (a) its output in the form of
facial landmark heatmaps, and (b) features from different layers extracted in different resolutions.
These two types of integration are detailed in the subsequent sections. An overview of our
method is illustrated in Figure 3.2.

3.2.2 Heatmap Integration

Facial landmarks in FAN are localized through heatmap regression: each landmark is represented
by an output channel Hi ∈ RMH×MH , i = 1, . . . ,N where a 2D Gaussian is placed at the landmark’s
location, and then the network is trained to regress these Gaussians (known as heatmaps).

The heatmap tensor H ∈ RN×MH×MH has a number of interesting properties:

(a) it can be used to establish landmark correspondence across different face images;

(b) it captures the spatial configuration of all landmarks, and hence it captures pose, expression
and shape information;

(c) as each heatmap is a confidence map, a number of works have shown that it also provides
spatial context and part relationships [168].

Hence, we argue that it is natural to incorporate this tensor into FRN to facilitate face matching.
This is done as follows: each training face image I ∈ RC×MI×MI is processed by FAN which

produces heatmap tensor H. The heatmaps are re-sampled to resolution MI ×MI and then, a
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Fig. 3.3 Heatmap integration. We concat the face image with the heatmaps predicted by FAN as
final input to the FRN.

stacked image-heatmap representation:

IH ∈ R(C+N)×MI×MI , (3.1)

is used as input to train the FRN. See also Figure 3.3. Since the heatmaps capture spatial
information (the x,y coordinates for each landmark can be directly obtained from argmax{Hi}),
it is natural to directly stack them with the image. However, in Section 3.5, we also investigate
whether H can be incorporated in other than the input layer of FRN. We note that image-landmark
heatmap stacking as a way to guide the subsequent task has been used in a number of low- and
middle-level tasks like facial part segmentation and 3D reconstruction [64]. However, to our
knowledge, we are the first to investigate its usefulness for the high-level task of face recognition.

3.2.3 Feature Integration

The success of heatmap integration motivated us to explore whether deeper integration between
FAN and FRN is possible with the goal always being to increase face recognition accuracy
without significantly changing the number of the parameters of FRN. In particular, let xl ∈
RCl×Hl×Wl and yk ∈ RCk×Hk×Wk be features from the l−th and k− th layers of FAN and FRN
respectively. We choose layers l and k so that the corresponding spatial resolutions approximately
match and then pass xl through an interpolation layer so that they match completely. Following
this, we compute new features ỹk ∈ RCk×Hk×Wk from:

ỹk = yk + γ f (xl,yk), (3.2)

where f is an integration layer computing a feature combination function (to be defined below).
The newly generated features ỹk are then passed to the next layer of FRN for further processing.
Note that this process is applied for several layers of FRN allowing a deep integration of features
from FAN to FRN. Given that the FRN is a ResNet, there is a lot of flexibility in choosing which
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Fig. 3.4 Proposed 1:1 connectivity between FAN and FRN: at each spatial resolution, a feature
tensor from the high-to-low part of the hourglass (shown in top) is combined with a feature
tensor from FRN (a ResNet34 in this example shown in the bottom). The features are combined
with the integration layer of Figure 3.6 and used as input to the next layer of FRN.

layers the features to be combined should be taken from, and as mentioned above, in practice,
the only constraint that we apply is that the features combined have similar spatial resolutions.
For examples, when the face recognition network is a ResNet-34 which has 4 stages/modules
(each of them corresponding to a different spatial resolution), we always select the feature tensor
at the end of each stage before down-sampling. Two instantiations of this idea are as follows.

1-1 Connectivity

In this integration scheme, we combine one feature tensor from FAN with one feature tensor
from FRN for each distinct spatial resolution. Note that FAN has one top-down (high-to-low)
and one bottom-up (low-to-high) part and hence for each resolution we have two parts to pick
the feature tensors from. We found experimentally (see also Section 3.5) that the high-to-low
part provides better features for face recognition. Figure 3.4 shows how the two networks are
integrated under this scheme when FRN is a ResNet-34.

1-Many Connectivity

In this integration scheme, we combine one feature tensor from FAN with all feature tensors
from FRN for each distinct spatial resolution. Also, we use learnable parameters γk to control the
contribution of each mixing layer f , i.e. ỹk = yk + γk f (xl,yk) thus allowing FRN to learn where
to integrate the features from FAN. The 1-M scheme is illustrated in Figure 3.5.

3.2.4 Integration Layer

This section describes possible instantiations of the integration layer computing function f . We
note that the proposed layer is able to integrate features from networks trained with very different
objectives and loss functions, and hence it is one of the main contributions of this work. Our
Basic Layer (denoted as BL) is depicted in Figure 3.6 and has the following main features:
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Fig. 3.5 Proposed 1:many connectivity between FAN and FRN: at each spatial resolution, a
feature tensor from the high-to-low part of the hourglass (shown in top) is combined with a group
of feature tensors with similar size from FRN (a ResNet34 in this example shown in bottom).
The features are combined with the integration layer of Figure 3.6 and used as input to the next
layer of FRN.

(a) FAN feature tensor xl is firstly processed by a batch normalization layer that adjusts its
scale (contrast). This is followed by a 1×1 convolutional layer that further aligns xl with
the FRN feature tensor yk and makes xl have the same number of channels as yk.

(b) An Adaptive Instance Norm layer that makes the distribution of xl to be similar to that of
yk. This is needed because the two feature maps are derived from different tasks: xl pays
more attention to the spatial structure of the face, while yk focuses on identity information.

(c) Following this, the two feature tensors are combined via concatenation. Then, there is
another 1×1 convolutional layer followed by batch normalization, so that the combined
feature ỹk has the same number of channels as yk so that they can be added together. The
very last layer is a non-linearity in the form of PReLU.

Fig. 3.6 The proposed integration layer. FAN features are processed by a batch normalization
layer that adjusts their scale followed by a 1×1 conv. layer that further aligns them with FRN
features. Then, An Adaptive Instance Norm makes the distribution of the two features similar.
The two features are combined via concatenation. Next, there is a 1×1 conv. layer followed
by a batch normalization layer so that the combined feature can be added with the input FRN
feature. The very last layer is a non-linearity in the form of PReLU.

We also propose two other variants of the proposed integration layer. The Simple Layer (SL)
simply adds the two feature tensors after the adaptive Instance Norm layer. The Advanced Layer
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(AL) replaces the second 1×1 convolutional layer with a bottleneck layer (1×1 followed by
3×3 followed by 1×1). In Section 3.5, we compare all 3 layers, namely BL, SL, and AL.

3.3 Relationship to Previous Work

Our method is related to new loss functions brought to face recognition task. The first line of
work includes a number of papers [134, 170, 94, 162, 34] which emphasize the importance of
learning features that are both separable and discriminative, through the choice of a suitable loss
function. Learning discriminative features is not only important for open-set recognition [94]
but also for robustness across pose as naturally one of the main reasons for large within-class
distances is pose variation. While the requirement for separability can be achieved with the
softmax loss, learning discriminative features is more difficult as, naturally, mini-batch based
training cannot capture the global feature distribution very well [170]. To this end, FaceNet [134]
directly learns a mapping from face images to a compact Euclidean space in which the distance
between two feature embeddings indicates the similarity of the corresponding faces such that
features extracted from the same identity are as close as possible while features extracted from
different identities are as far as possible. However, especially for large datasets, the number of
training triplets can be prohibitively large while triplet selection also poses difficulties.

To alleviate this, more recently, the method of [170] (called Center loss) firstly realizes the
importance of “center” and penalizes the Euclidean distance between the learned deep features
for each face and their corresponding class centres in order to achieve intra-class concentration.
The work of [94], coined SphereFace, firstly proposes to learn discriminative features in the
angular domain and, to this end, it proposes to employ a multiplicative angular margin which
ensures that intra-class are smaller than inter-class distances. Following the idea of working in
the angular domain, the more recent works of CosFace [162] and ArcFace [34] further define
concepts of “center” and “margin” to obtain highly discriminative features for face recognition.

We also notice the connection between face normalization and pose augmentation which has
been shown to improve deep face recognition is through the use of models for face normalization
and data augmentation. Early on, the importance of face frontalization was shown in [148].
However, frontalization for the case of large poses is a difficult problem. To handle large pose
variations, the work of [99] proposes training pose-aware CNNs with data rendered by a 3D
model and pose-specific frontalization. Face synthesis across pose, shape and expression for data
augmentation and its effect on improving deep face recognition is systematically evaluated in
[99]. Using 3DMMs for conditioning GANs for large pose frontalization is proposed in [201].
Simultaneously learning pose-invariant identity features and synthesizing faces in arbitrary poses
is proposed in [154]. [32] proposes a framework for training Deep Convolutional Neural Network
(DCNN) to complete the facial UV map extracted from in-the-wild images for Pose-Invariant
Face Recognition. Our work also aims to extract more discriminative features, however, not via
proposing a new loss function but via learning a better feature representation for recognition
by integrating, features from a pre-trained facial landmark localization network. Moreover, our
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approach inherently copes with large pose, not via normalization or pose augmentation but via
establishing face correspondence, and typically is much more efficient than such methods for
both training and testing.

3.4 Training and Implementation Details

Loss functions. To train our networks, we mostly used the ArcFace loss [34] which has been
shown to outperform all other recently proposed methods like [170, 94, 162]. This is important
because we show systematic improvements on top of [34] which is state-of-the-art.
Training datasets. We trained our models on 3 popular training datasets: for most of our
experiments we used VGGFace2 [13] (an improved version of VGGFace [116]), containing
3.31M images of 9,131 subjects with large variations in pose, age, illumination, ethnicity and
profession. This model was evaluated on IJB-B [171] and IJB-C [100] datasets. We also
trained our model on MS1MV2 [34], a semi-automatically refined version of MS-Celeb-1M
dataset [47] which is one of the largest wild dataset containing 98,685 celebrities and 10 million
images. As an amount of noise exists in the MS-Celeb-1M dataset, the data is cleaned by [177].
There are 79,077 identities and 5 million images remaining. We also trained our model on
CASIA-Webface [195] which contains 0.49M face images from 10,575 subjects. This model
was evaluated on LFW [59], YTF [173], CFP-FP [136] and MegaFace [71]. In our experiments,
we removed the images that belong to identities from the testing datasets.
Other hyperparameters. We followed the publicly available code of [34] for implementing
and training our models. For a fair comparison, we used the same ResNet as ArcFace [34]. The
block is shown in Figure 3.7, which is different from Vanilla-ResNet, and has proven to be more
advanced in face recognition task in [34]. FRN and the integration layers were trained from
scratch with SGD with a batch size of 512. The weight decay was set to 5e−4 and the momentum
to 0.9. FAN remained fixed for the whole training procedure. All models were implemented in
PyTorch [119].
Face pre-processing. We followed standard practices in face recognition [170, 94, 162, 34] to
crop a face image of 112×112 (without using landmarks for alignment) which was normalized
to [-1, 1]. The training faces were randomly flipped for data augmentation. The input to FAN
model is up-sampled face images from 112×112 to 256×256.

3.5 Ablation Studies

In this section, we evaluate the accuracy of interesting variants and training procedures of the
proposed method. The experiments are done by training the models on a randomly selected
subset of 1M images from VGGFace2 dataset and evaluating them on the IJB-B dataset. FRN in
all cases is a ResNet34, and unless otherwise stated all methods are trained with the ArcFace
loss. All results are shown in Table 3.1. We provide results for True Acceptance Rate (TAR)
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Fig. 3.7 Illustration of Residual unit in ArcFace [34]: BN-Conv-BN-PReLu-Conv-BN.

at a wide range of False Acceptance Rates (FARs), however, when we compare methods in the
sections below, we primarily base our evaluations on TAR at FAR=10−4 as in [34].

We consider the following cases:
AS1: Heatmap integration. For all of our experiments, we used the heatmaps from the 2-nd
hourglass (using the heatmaps from the 1-st hourglass gave slightly worse result due to inferior
accuray in heatmap prediction). We call FAN-Face(H2), the variant of our model, obtained by
simple stacking these heatmaps with FRN (see Section 3.2.2). As Table 3.1 shows, this gives
some decent improvement over the baseline ArcFace with improvement from 0.859 to 0.864
at 10−4. We also investigated whether stacking heatmaps with features from various layers
of FRN is also beneficial. To this end, we stacked the heatmaps from second hourglass (after
appropriately resizing them) along with the features produced by the last layer of FRN before
each resolution drop (features from 4 different places in total, one for each spatial resolution).
The performance of this variant, called FAN-Face(H2+), is shown in Table 3.1. We observe that
this kind of deeper guidance using heatmaps offers good improvement for FAR=10−5 but no
obvious improvement for FAR=10−4. For FAR=10−5, it increases from 0.750 to 0.771 while for
FAR=10−4, it only increases by 0.2%. Considering the added computation cost (in Table 3.2),
we chose H2 as the better choice for the remaining setting.
AS2: Different FAN subnetworks. We are now moving to joint heatmap and feature integration.
To perform feature integration, we started with 1-1 connectivity (see Section 3.2.3) and the Basic
Layer (see Section 3.2.4). We call this variant FAN-Face(H2, 1-1, BL). We wanted to quantify
which of the high-to-low or low-to-high subnetworks is superior. To this end, we chose the
high-to-low and low-to-high subnetworks from hourglass 2. We call these variants FAN-Face(H2,
1-1, BL, h2l-2), and FAN-Face(H2, 1-1, BL, l2h-2). Table 3.1 shows the results: the high-to-low
subnetwork clearly provides much better features for integration than those of low-to-high. For
FAR=10−5, it increases from 0.752 to 0.772 while for FAR=10−4, it also gains by 0.5%. This is
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Method 10−5 10−4 10−3 10−2

Baseline ArcFace (ResNet34) 0.747 0.859 0.929 0.966

AS1 H2 0.750 0.864 0.928 0.966

AS1 H2+ 0.771 0.866 0.932 0.968

AS2 H2,1-1,BL,l2h-2 0.752 0.871 0.933 0.970
AS2 H2,1-1,BL,h2l-2 0.772 0.876 0.933 0.969

AS3 H2,1-1,AL,h2l-2 0.766 0.873 0.933 0.968

AS3 H2,1-1,SL,h2l-2 0.739 0.857 0.924 0.966

AS4 H2,1-M,BL,h2l-2 0.761 0.874 0.934 0.968

AS5 ResNet34-Softmax 0.619 0.786 0.898 0.964

AS5 H2,1-1,BL,h2l-2-Softmax 0.657 0.796 0.903 0.964

AS6 H2, 1-1, BL, Wing 0.769 0.870 0.932 0.966

AS6 H2, 1-1, BL, Simple 0.770 0.874 0.933 0.968

AS6 H2, 1-1, BL, HRNet 0.771 0.877 0.933 0.969

AS7 Multi-task[200] 0.583 0.731 0.843 0.927

Table 3.1 Verification results (%) for different variants of our method on IJB-B dataset. All
models were trained on a randomly selected subset of 1M images from VGGFace2. The variants
and other details are presented in Section 3.5. h2l denotes the high-to-low part in hourglass
structure while l2h represents the low-to-high part in hourglass structure.

expected as low-to-high features resemble heatmaps due to appended heatmap regression loss,
and we are already using heatmap information directly by stacking with the input image.
AS3: Different integration layers: Herein, we choose our best performing version so far FAN-
Face(H2, 1-1, BL, h2l-2) and replace BL with the Simple and Advanced Layers, denoted as SL
and AL respectively (described in Section 3.2.4). The results are shown in Table 3.1. We observe
that SL performs worse because the features from FAN and from FRN are from different tasks,
and directly adding them together destroys the feature semantic information. Also, there is little
improvement if AL is used with more added computation cost (in Table 3.2), so we chose BL for
the remaining of our experiments.
AS4: Different FAN-FRN connectivities. We compare the 1-1 with the 1-many (denoted as
1-M) connectivities (see Section 3.2.3). The results are shown in Table 3.1. Experimentally, we
observe that 1-M offers no improvement over 1-1. We argue that the incurring abundant shape
information on all feature maps in same stage will interfere feature learning for recognition task.
AS5: Using softmax loss. Using FAN-Face(H2, 1-1, BL, h2l-2), we also verified the improve-
ments obtained by our method using a different loss, namely the standard softmax. See Table 3.1.
For FAR=10−4, FAN-Face increases the softmax baseline from 0.786 to 0.796 with 1% absolute
improvement. We observe that with ArcFace loss, our method improves upon the baseline even
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Fig. 3.8 Visualization of feature maps from ArcFace (shown in top) and our model (shown in
bottom). By using FAN features to guide FRN learning, facial landmark related attention is
added to the learned features.

more (∼ 2% vs 1%). This emphasizes the importance of having an advanced loss, and the
complementarity of our approach with state-of-the-art losses.
AS6: Other face alignment methods. Using FAN-Face(H2, 1-1, BL), we also verified the
improvements obtained by our method using different face alignment methods. AS7 shows
results by replacing FAN with: a ResNet34 trained in-house to regress x,y coordinates as in
[41], a ResNet34 trained in-house to regress heatmaps as in [180] and the pre-trained state-of-
the-art HRNet of [142]. Results vary a bit because these networks are not equally accurate
in heatmap prediction. The performance gains for Wing, Simple, HRNet are 1.1%, 1.5% and
1.8% respectively. However, overall, it is clear that the proposed feature integration strategy and
integration layer are effective for all these networks, too. The above face alignment networks all
have an encoder similar to h2l part in hourglass, so they can be integrated within our framework.
AS7: Multi-task [200]. A natural comparison that comes to mind is between our method and a
FRN that has a second head to also predict the landmarks in a multi-task fashion, see for example
[200]. For the sake of a fair comparison, we preserved the ResNet34 structure for this method
and added a heatmap prediction head after layer 4 (of ResNet34). For training, the ground
truth for each face is provided by the FAN network. We used L2 loss for face alignment and
ArcFace loss for face recognition. The ratio between the two losses was 0.1. Table 3.1 shows the
obtained results. We observe that multi-task learning does not offer competitive performance.
This is mainly because of the information gap between the two tasks. The alignment task is
more geometric related to low-level information while the recognition benefits from high-level
semantic information.
Visualizations. Some examples of feature maps extracted in early layers produced by our model
and by ArcFace are shown in Figure 3.8. While some feature maps are similar there are also a
few that focus on facial landmarks. For example, the obvious landmark-related attention in the
last image in the second row.
Model size and flops. The integration layers add only a very small number of extra parameters
to FRN. The detailed comparison is shown in Table 3.2. Our final model adds 0.4M parameters
and 0.5G flops with significant improvement in performance.
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Network Parameters(M) Flops(G)

ArcFace [34]
ResNet34 31.8 3.71

ResNet50 41.3 5.56

Our models with ResNet34

H2, 1-1, BL 32.2 4.25

H2, 1-M, BL 32.7 4.75

H2, 1-1, SL 31.9 4.17

H2, 1-1, AL 32.9 4.87

Our models with ResNet50

H2, 1-1, BL 41.7 6.10

H2, 1-M, BL 42.7 6.95

H2, 1-1, SL 41.4 6.02

H2, 1-1, AL 42.4 6.70
Table 3.2 Number of parameters and flops of different variants of our model. We compare with
both ResNet34 and ResNet50 structure.

3.6 Comparison with State-of-the-Art

In this section, we compare our approach with several state-of-the-art methods on the most
widely-used benchmarks for face recognition including IJB-B [171], IJB-C [100], MegaFace
[71], CFP-FP [136], LFW [59], YTF [173].
Our models used: We provide the results provided by our best model FAN-Face(H2, 1-1,
BL, h2l-2) which uses heatmaps from second hourglass in FAN, integrates features with 1-1
connectivity from the high-to-low subnetwork of the second hourglass, and uses as integration
layer the Basic Layer of Section 3.2.4. We provide results using both ResNet34 and ResNet50
structures for FRN.
Our in-house baselines: As a very strong baseline, for all experiments, we used our implemen-
tation of ArcFace, using both ResNet34 and ResNet50. Our implementation (based on the code
provided in [34]) gives slightly better results than the ones reported in the original paper. Besides,
our implementation of CosFace [162] with ResNet50 was also compared because it was a strong
baseline in [34].
Other methods reported: For each experiment, we also report the performance of a number of
previously published methods with the results taken directly from the corresponding papers. For
each method, we include, where possible, the network used (e.g. ResNet50, ResNet34, VGG)
and the training set used.

3.6.1 IJB-B and IJB-C Datasets

The IJB-B dataset [171] contains 1,845 subjects (21.8K still images and 55K video frames). In
total, there are 12,115 templates with 10,270 genuine matches and 8M impostor matches. The
IJB-C dataset [100] is an extension of IJB-B, having 3,531 subjects (31.3K still images and
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117.5K video frames). In total, there are 23,124 templates with 19,557 genuine and 15,639K
impostor matches.

From the results in Tables 3.3 and 3.4, we can observe that, for both datasets, our methods
provide consistently the best performance at FAR=10−4, outperforming both previously proposed
methods and in-house baselines, by a large margin. Specifically, on IJB-B dataset, FAN-Face(H2,
1-1, BL, h2l-2) increases ∼ 1% on both ResNet34 and ResNet50 at FAR=10−4. On IJBC dataset,
FAN-Face(H2, 1-1, BL, h2l-2) increases ∼ 1.4% and ∼ 1% on ResNet34 and ResNet50 at
FAR=10−4 respectively. Notably, our ResNet34 model provides performance which is better or in
par with previously state-of-the-art ResNet50-based models with roughly 10M fewer parameters
and 1.2G fewer flops.

The ROC curves are in Figure 3.9 and Figure 3.10.

Method 10−5 10−4 10−3 10−2

ResNet50 [13] 0.647 0.784 0.878 0.938

SENet50 [13] 0.671 0.800 0.888 0.949

ResNet50+SENet50 [182] - 0.800 0.887 0.946

MNv (ResNet50) [183] 0.683 0.818 0.902 0.955

MNvc (ResNet50) [183] 0.708 0.831 0.909 0.958

ResNet50+DCN(Kpts) [182] - 0.850 0.927 0.970

ResNet50+DCN(Divs) [182] - 0.841 0.930 0.972

SENet50+DCN(Kpts) [182] - 0.846 0.935 0.974

SENet50+DCN(Divs) [182] - 0.849 0.937 0.975

ArcFace (ResNet50) [34] 0.812 0.898 0.944 0.976
ArcFace (ResNet34, in-house) 0.775 0.885 0.940 0.973

Ours (ResNet34) 0.817 0.900 0.945 0.974

CosFace (ResNet50, in-house) 0.806 0.895 0.945 0.972

ArcFace (ResNet50, in-house) 0.814 0.902 0.946 0.974

Ours (ResNet50) 0.835 0.911 0.947 0.975

Table 3.3 Evaluation of different methods for 1:1 verification on IJB-B dataset. All methods
were trained on VGGFace2 dataset.

We also experiment on conducted the MS1MV2 [34] using ResNet100. Models are trained
from scratch with an SGD optimizer, momentum of 0.9, weight decay of 5e−4 and batch size of
512. The initial learning rate is 0.1 and reduced by a factor of 10 at epoch 10, 18, 22 with total
24 epochs. Results are shown in Table 3.5. We observe that our proposed method outperforms
ArcFace on verification by ∼ 1%, rank 1 identification by ∼ 1%. We attribute this to the facial
structure prior from alignment networks.
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Method 10−5 10−4 10−3 10−2

ResNet50 [13] 0.734 0.825 0.900 0.950

SENet50 [13] 0.747 0.840 0.910 0.960

ResNet50+SENet50 [182] - 0.841 0.909 0.957

MNv (ResNet50) [183] 0.755 0.852 0.920 0.965

MNvc (ResNet50) [183] 0.771 0.862 0.927 0.968

ResNet50+DCN(Kpts) [182] - 0.867 0.940 0.979

ResNet50+DCN(Divs) [182] - 0.880 0.944 0.981

SENet50+DCN(Kpts) [182] - 0.874 0.944 0.981

SENet50+DCN(Divs) [182] - 0.885 0.947 0.983
ArcFace(ResNet50) [34] 0.861 0.921 0.959 0.982

ArcFace (ResNet34, in-house) 0.851 0.912 0.955 0.981

Ours(ResNet34) 0.873 0.926 0.960 0.981

CosFace (ResNet50, in-house) 0.864 0.918 0.952 0.980

ArcFace (ResNet50, in-house) 0.872 0.924 0.959 0.982

Ours(ResNet50) 0.874 0.935 0.959 0.982

Table 3.4 Evaluation of different methods for 1:1 verification on IJB-C dataset. All methods
were trained on VGGFace2 dataset.

Methods/Datasets
IJB-B IJB-C

Ver (%) Id (%) Ver (%) Id (%)

10−4 rank=1 rank=5 10−4 rank=1 rank=5

ArcFace (R100, in-house) 94.5 93.2 95.8 95.9 94.4 96.5

Ours(R100) 95.4 93.7 96.1 96.8 94.8 97.0

Table 3.5 Results (%) of our method and ArcFace (in-house) on MS1MV2 using ResNet-100.
Verification (Ver) is at FAR=10−4. Identification (Id) is using gallery 2.
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Fig. 3.9 ROC curves of 1:1 verification proto-
col on the IJB-B

Fig. 3.10 ROC curves of 1:1 verification pro-
tocol on the IJB-C

3.6.2 MegaFace Dataset

MegaFace [71] is a dataset for evaluating the performance of face recognition at million-level
distractors. It includes 1M images of 690K different individuals as the gallery set and 100K
photos of 530 unique individuals from FaceScrub [108] as the probe set. In MegaFace, there are
two testing scenarios, identification and verification. Here, and for the sake of fair comparison
with prior work, all the proposed and in-house models were trained on the CASIA dataset [195].
Models are trained from scratch with an SGD optimizer, momentum of 0.9, weight decay of
5e− 4 and batch size of 512. The initial learning rate is 0.1 and reduced by a factor of 10 at
epoch 20, 29, 37, 46 with total 50 epochs.

Method Network Identification (%) Verification (%)

Softmax [94] ResNet64 54.86 65.93

Center Loss [170] modified ResNet 65.49 80.14

SphereFace [94] ResNet64 72.73 85.56

CosFace [162] ResNet64 77.11 89.88

ArcFace [34] ResNet50 77.50 92.34

ArcFace (in-house) ResNet34 75.52 89.53

Ours ResNet-34 77.54 92.06

CosFace (in-house) ResNet50 75.93 91.02

ArcFace (in-house) ResNet50 76.44 91.44

Ours ResNet-50 78.32 92.83

Table 3.6 Identification and verification results on MegaFace Challenge 1. Identification refers
to rank-1 face identification accuracy and Verification refers to face verification TAR (True
Acceptance Rate) at 10−6 FAR (False Acceptance Rate). All methods were trained on CASIA
dataset.
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Table 3.6 shows the obtained results. We observe that our ResNet50 model outperforms all
previous methods and in-house baselines, significantly. Again, our ResNet34 model is the second
best performing model, slightly outperforming the original implementation of ArcFace [34] for
identification which however used a ResNet50 model. To be specific, our proposed method
outperforms Arcface (in-house) with ∼ 2% on identification task, and ∼ 1.5% on verification
task with ResNet34 network structure. Besides, our proposed method outperforms. Similar
finding can be seen in ResNet50 structure. Although the in-house models are inferior to the
public results due to the unaligned-cropped input, our proposed methods narrow the gap and
even achieve better performance. The superior performance of proposed methods verifies the
effectiveness and efficiency of using information from alignment model.

3.6.3 CFP-FP Dataset

As in Figure 3.1 provided only a few examples illustrating that our method is more effective than
our strong baseline (ArcFace) for computing features that are more discriminative across large
poses, herein, we evaluate both models quantitatively on the whole Celebrities in Frontal-Profile
(CFP) [136] dataset. CFP is a challenging dataset to evaluate the performance of models for
frontal to profile face verification in-the-wild. It has 500 celebrities, with 10 frontal and 4 profile
face images. We evaluated our models on the Frontal-Profile setting(CFP-FP) and report the
results in Table 3.7. As we may observe, our model provides obvious improvement over our
implementation of ArcFace for both ResNet34 and ResNet50.

Method CFP-FP(%)

ArcFace(CASIA,R50) [34] 95.56

ArcFace (ResNet34,in-house) 94.63

ArcFace (ResNet50,in-house) 95.49

Ours (ResNet34) 95.46

Ours (ResNet50) 95.87

Table 3.7 Verification Results(%) on CFP-FP. All models were trained on CASIA.

3.6.4 LFW and YTF Datasets

We also report results on LFW [59] (13,233 web-collected images from 5,749 individuals) and
YTF [173] (3,425 videos from 1,595 different identities). As typical in literature, our models and
in-house baselines, were trained on CASIA dataset [195]. Following the unrestricted protocol
with labelled outside data [59], we report the performance our models on 6,000 face pairs from
LFW and 5,000 videos pairs from YTF in Table 3.8. As in our previous experiments, our
ResNet50 model performs the best while our ResNet34 is the second best along with the ArcFace
ResNet50-based model of [34].
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Method Network LFW (%) YTF (%)

Softmax [94] ResNet64 97.88 93.1

HiReST-9 [175] AlexNet [77] 99.03 95.4

SphereFace [94] ResNet64 99.42 95.0

CosFace [162] ResNet64 99.33 96.1

ArcFace [34] ResNet50 99.53 -

ArcFace (in-house) ResNet34 99.40 95.42

Ours ResNet-34 99.52 96.34

CosFace (in-house) ResNet50 99.30 95.78

ArcFace (in-house) ResNet50 99.47 96.13

Ours ResNet50 99.56 96.72

Table 3.8 Verification performance (%) on LFW and YTF datasets.

3.7 Conclusion

We proposed a system that uses features from a pre-trained facial landmark localization network
to enhance face recognition accuracy. In our system, both landmark heatmaps and features from
the facial landmark network are integrated into the face recognition feature extraction process
to provide face-related information and establish correspondence for face matching because
landmarks produced by landmark detection methods can be used to access the same semantic
features (like the tip of the nose) between different faces. We explored various architectural
design choices at a network level to identify the best strategy for integration and, we proposed
a novel feature integration layer that is able to effectively integrate the features from the two
networks. We conducted extensive experiments illustrating how the proposed approach, when
integrated with existing state-of-the-art methods, systematically improves face recognition
accuracy for a wide variety of experimental settings. Our approach is also shown to produce
state-of-the-art results on the challenging IJB-B, IJB-C and MegaFace datasets.



Chapter 4

Knowledge distillation via softmax
regression representation learning

This chapter addresses the problem of model compression via knowledge distillation. Generally,
knowledge distillation tries to learn a low-capacity student to mimic the behaviour of high-
capacity teacher and finally improve the student network’s performance. Normally, the current
knowledge distillation methods can be categorized into knowledge transfer-based methods and
feature relationship transfer-based methods. Here, we advocate for a method that optimizes the
output feature of the penultimate layer of the student network and hence is directly related to
representation learning. To this end, we firstly propose a direct feature matching approach which
focuses on optimizing the student’s penultimate layer only. Secondly and more importantly,
because feature matching does not take into account the classification problem at hand, we
propose a second approach that decouples representation learning and classification. We present
a method to utilize the teacher’s pre-trained classifier to train the student’s penultimate layer
feature. In particular, for the same input image, we wish the teacher’s and student’s feature to
produce the same output when passed through the teacher’s classifier, which is achieved with
a simple L2 loss. Our method is extremely simple to implement and straightforward to train
and is shown to consistently outperform previous state-of-the-art methods over a large set of
experimental settings including different (a) network architectures, (b) teacher-student capacities,
(c) datasets, and (d) tasks (object classification, face alignment and face recognition), (e) domains.
Besides, we also extend our method to learning from extra unlabeled data with teacher trained
on labeled datasets only. For instance, we use VGGFace2 as unlabeled dataset to improve the
student’s performance trained on UMDFace. The experimental results show that extra introduced
data can further boost the student’s performance. These results validate the newly proposed
method’s superiority and generality in both object classification and face recognition tasks.

The contributions of this Chapter have been published at ICLR2021 [194].
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Fig. 4.1 Our method performs knowledge distillation by minimizing the discrepancy between
the penultimate feature representations hT and hS of the teacher and the student, respectively. To
this end, we propose to use two losses: (a) the Feature Matching loss LFM, and (b) the so-called
Softmax Regression loss LSR. In contrary to LFM, our main contribution, LSR, is designed to take
into account the classification task at hand. To this end, LSR imposes that for the same input
image, the teacher’s and student’s feature produce the same output when passed through the
teacher’s pre-trained and frozen classifier. Note that, for simplicity, the function for making the
feature dimensionality of hT and hS the same is not shown.

4.1 Introduction

Recently, there has been a great amount of research effort to make deep model lightweight so
that they can be deployed in devices with limited resources. To this end, several approaches for
model compression have been proposed, including network pruning [48, 80], network quantiza-
tion [125, 174], knowledge transfer/distillation [55, 204], and neural architecture search [229, 90].
Knowledge distillation [7, 55] aims to transfer knowledge from one network (the so-called
“teacher”) to another (the so-called “student”). Typically, the teacher is a high-capacity model
capable of achieving high accuracy, while the student is a compact model with many fewer
parameters, thus also requiring much less computation. The goal of knowledge distillation is to
use the teacher to improve the training of the student and push its accuracy closer to that of the
teacher.

The rationale behind knowledge distillation can be explained from an optimization perspec-
tive: there is evidence that high capacity models (i.e. the teacher) can find good local minima due
to over-parameterization [39, 140]. In knowledge distillation, such models are used to facilitate
the optimization of lower capacity models (i.e. the student) during training. For example, in
the seminal work of [55], the softmax outputs of the teacher provide extra supervisory signals
of inter-class similarities which facilitate the training of the student. In other influential works,
intermediate representations extracted from the teacher such as feature tensors [129] or attention
maps [204] have been used to define auxiliary loss functions used in the optimization of the
student. Training a network whose output feature representation is rich and powerful has been
shown crucial for achieving high accuracy for the subsequent classification task in recent works
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in both unsupervised and supervised learning, see for example [24, 49] and [69]. Hence, in this
thesis, we are advocating for representation learning-based knowledge distillation by optimizing
the student’s penultimate layer output feature. If we are able to do this effectively, we expect
(and show experimentally) to end up with a student network which can generalize better than one
trained with logit matching as in the vanilla KD paper of [55]. However, accomplishing this task
with direct feature matching (between the student and the teacher) as in [129, 204] is difficult
due to the lower representation capacity of the student and often leads to sub-optimal results
compared to KD. Furthermore, this approach imposes a strict bit-by-bit match which does not
take into account the classification problem at hand.

Main contributions: To accomplish the aforementioned goal we propose two loss functions:
The first loss function, akin to [129, 204], is based on direct feature matching but focuses on
optimizing the student’s penultimate layer feature only. Because direct feature matching might be
difficult due to the lower representation capacity of the student and, more importantly, is detached
from the classification task at hand, we also propose a second loss function: we propose to
decouple representation learning and classification and utilize the teacher’s pre-trained classifier
to train the student’s penultimate layer feature. In particular, for the same input image, we
wish the teacher’s and student’s feature to produce the same output when passed through the
teacher’s classifier, which is achieved with a simple L2 loss (see Figure 4.1). This softmax
regression projection is used to retain from the student’s feature the information that is relevant to
classification, but since the projection matrix is pre-trained (learned during the teacher’s training
phase) this does not compromise the representational power of the student’s feature. Besides, our
proposed method is easy to incorporate to the distillation on unlabeled data, in which teacher’s
predictions on both labeled and unlabeled dataset are taken to improve student’s performance,
and experimentally verifies that our proposed method is able to maintain its superior performance
to others.

Main results: Our method has two advantages: (1) It is simple and straightforward to imple-
ment. (2) It consistently outperforms state-of-the-art methods over a large set of experimental
settings including different (a) network architectures (WideResNets, ResNets, MobileNets), (b)
teacher-student capacities, (c) datasets (CIFAR10/100, ImageNet, MegaFace), (d) tasks (image
classification, face recognition, face alignment) (e) domains (real-to-binary).

The rest of this chapter is organized as follows. Section 4.2.1 describes the proposed
knowledge distillation method called Softmax Regression Representation Learning and also its
extension to unlabeled data. Section 4.3 introduces the closely related work and our differences
from them. Section 4.4 investigates and explores the variants under the proposed framework,
and then compare with state-of-the-art methods across different datasets and tasks. Section
4.5 studies how to improve current performance on general object classification (CIFAR100,
ImageNet-1K) and Face recognition with extra unlabeled data. Finally, a conclusion is brought
forth in Section 4.6.
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4.2 Method

4.2.1 Softmax Regression Representation Learning

We denote by T and S the teacher and student networks respectively. We split these networks
into two parts:

1. A convolutional feature extractor fNet ,Net = {T,S}, the output of which at the i-th layer is
a feature tensor F i

Net ∈ RCi
Net×H i×W i

, where Ci
Net is the output feature dimensionality, and

H i,W i represent the output spatial dimensions. We also denote by hNet =∑
HL

h=1 ∑
W L

w=1 FL
Net ∈

RCL
Net the last layer feature representation learned by fNet .

2. A projection matrix WNet ∈ RCL
Net×K which projects the feature representation hNet into K

class logits zi
Net , i = 1, . . . ,K, followed by the softmax function s(zi

Net) =
exp(zi

Net/τ)

∑ j exp(z j
Net/τ)

with

temperature τ (τ = 1 for Cross Entropy loss) which put together form a softmax regression
classifier into K classes.

Traditional Knowledge Distillation (KD) [55] trains the student with the following loss:

LKD =−
K

∑
k=1

s(zk
T ) logs(zk

S), (4.1)

so that the discrepancy between the teacher’s and student’s classifiers is directly minimized.
FitNet [129] matches intermediate feature representations. For the i-th layer, the following

loss is defined:
LFit =

∥∥∥F i
T − r(F i

S)
∥∥∥2

, (4.2)

where r(.) is a function for matching the feature tensor dimensions.
In our work, we propose to minimize the discrepancy between the representations hT and hS.

To accomplish this goal, we propose to use two losses. The first one is an L2 feature matching
loss:

LFM = ∥hT −hS∥2 , (4.3)

where for notational simplicity we dropped the dependency on r(.). Hence, LFM loss is a
simplified FitNet loss which focuses only on the final representation learned. The intuition for this
is that this feature is directly connected to the classifier and hence imposing the student’s feature
to be similar to that of the teacher could have more impact on classification accuracy. Moreover, it
might be questionable why one should optimize for other intermediate representations as in [129]
especially when the student is a network of lower representational capacity. In Section 4.4.1:
Where should the losses be applied?, we confirm that LFM alone has a positive impact but feature
matching in other layers is not helpful.

We found LFM to be effective but only to limited extent. One disadvantage of LFM and, in
general, of all feature matching losses e.g. [129, 204], is that it treats each channel dimension
in the feature space independently, and ignores the inter-channel dependencies of the feature
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representations hS and hT for the final classification. This is in contrast to the original logit
matching loss proposed by Hinton et al. in [55] which directly targets classification accuracy.
To alleviate the aforementioned problem, in this work, we propose a second loss for optimizing
hS which is directly linked with classification accuracy. To this end, we will use the teacher’s
pre-trained Softmax Regression (SR) classifier.

Let us denote by p the output of the teacher network when fed with some input image x. Let
us also feed the same image through the student network to obtain feature hS(x). Finally, let us
pass hS(x) through the teacher’s SR classifier to obtain output q. See also Fig. 4.1. Our loss is
defined as:

LSR =−p logq. (4.4)

At this point, we make the following two observations: (1) If p = q (and since the teacher’s
classifier is frozen), then this implies that hS(x) = hT (x) which shows that indeed Eq. (4.4)
optimizes the student’s feature representation hS (hT is also frozen). (2) The loss of Eq.(4.4) can
be written as:

LSR =−s(W ′
T hT ) logs(W ′

T hS). (4.5)

Now let us now write KD loss in a similar way:

LKD =−s(W ′
T hT ) logs(W ′

s hS). (4.6)

By comparing Eq. (4.5) with Eq. (4.6), we see that the only difference in our method is that the
frozen, pre-trained teacher’s classifier is used for both teacher and the student. On the contrary,
in KD, WS is also optimized. This gives more degrees of freedom to the optimization algorithm,
in particular, to adjust the weights of both the student’s feature extractor fS and the student’s
classifier WS in order to minimize the loss. This has an impact on the learning of the student’s
feature representation hS which, in turn, hinders the generalization capability of the student on
the test set. We confirm this hypothesis with the experiment of Section 4.4.1: Transferability of
representations.

Finally, we note that we found that, in practice, an L2 loss between the logits:

LSR =
∥∥W ′

T hT −W ′
T hS

∥∥2
= ∥hT −hS∥2

WT
(4.7)

works slightly better than the cross-entropy loss. The comparison between different types of
losses for LSR is given in the experiment section.

Overall, in our method, we train the student network using three losses:

L = LCE +αLFM +βLSR, (4.8)

where α and β are the weights used to scale the losses. The teacher network is pretrained and
fixed during training the student. LCE is the standard loss based on ground truth labels for the
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task in hand (e.g. cross-entropy loss for image classification). Note that this results in a very
simple algorithm for training the student summarized in Algorithm 1.

Algorithm 1 Knowledge distillation via Softmax Regression Representation Learning
Input: Teacher network T , Student network S, input image x, ground truth label y, weights α ,
β .

1. Input x to S to obtain feature hS and class prediction ŷ. Calculate cross entropy loss
LCE(ŷ,y);

2. Input x to T to obtain feature hT . Calculate distillation losses from Eqs. (4.3) and
Eqs. (4.7);

3. Update S by optimizing Eq. (4.8)

Output: the updated S.

4.2.2 Extension to Unlabeled Data

Conventional knowledge distillation typically considers a setting in which teacher and student
are trained on the same labeled datasets. On the contrary, the typical setting in semi-supervised
learning is to consider a large amount of unlabeled data together with the labeled training set.
The unlabeled data is then exploited together with the labeled data to improve the performance on
the original supervised task. Motivated by the success of semi-supervised learning, we propose
to investigate out-of-distribution unlabeled data to further boost the effectiveness of the transfer
from the teacher to student network. In this section, we formally describe the problem setting.
We further introduce two common techniques commonly used in semi-supervised learning with
the aim of validating whether their effectiveness is also translated into our setting.

Given training data consisting of (1) labeled training images D= {(xi,yi)}Nl
i=1 and (2) unla-

beled images U= {xi}Nu
i=1, our goal is to improve student’s performance on the same test dataset

by training it on D∪U. The general loss function for learning the student is expressed as:

Ltotal = LCE(D)+ γLKD(D)+λLKD(U) (4.9)

where LCE is a standard cross-entropy classification loss from D, LKD is a knowledge distillation
loss (we discuss its particular implementations like KD [55], AT [204] in experiment), γ and λ

are non-negative scalar weights to balance losses from the labeled and unlabeled datasets.
The rationale behind the knowledge distillation loss on unlabeled data is that the teacher

network trained on labeled datasets is capable of capturing rich relational information among
labels both in class space and feature space. For instance, in face recognition task, the training
set and testing set have no overlap in categories but the model trained on the training set with
classification loss is able to do verification on unseen verification set with extracted feature
embedding. Thus, we argue that for an input which belongs to the same modality as the labeled
dataset or drawn from a related, but not necessarily the same distribution, the teacher network is
able to model its multi-modal distribution of visual concepts within the labeled dataset space
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and finally guide the student to learn a better visual representation and classifier. We extend
this hypothesis in both class and feature space by instantiating this idea with state-of-the-art
knowledge distillation methods and then verify its effectiveness by conducting experiments on
both object classification and face recognition tasks.

For KD [55] and AT [204], we only need to instantiate LKD with KL divergence loss at
teacher’s output and L2 loss on inner feature tensors. In particular, For KD on unlabeled datasets
D, it works like pseudo labeling, teacher network provides pseudo labels ŷ for x ∈ U and thus
student will learn from U= (xi, ŷi)

Nu
i=1. However, this idea is not so straightforward to be applied

to [153], where the knowledge is defined as normalized feature embedding, and the contrastive
loss is to capture correlations and higher-order output dependencies. In practice, for features
extracted prior to the classifier CT and CS, a linear projection is introduced to transform them to
same dimension as FT (x) and FS(x).

LKD =−log[h(FT (x),FS(x))]− Σ
x̄∈DN

log[1− (h(FT (x),FS(x̄))] (4.10)

For the labeled data, DN is a set of negative samples that are drawn at random from D except
images with the same label as x. The extension of [153] to unlabeled data is different from
labeled data as there is no label provided in negative sample selection. To solve this issue,
we follow self-supervised learning [179] to randomly select other images as negative samples.
To this end, the whole contrastive representation distillation loss is made up of the supervised
contrastive loss trained on D and the self-supervised contrastive loss trained on U.

MixUp Labeled and Unlabeled Data

We follow mixup [209] to “mix" the data where each labeled sample is interpolated with another
sample chosen from the mini-batch of unlabeled datasets. Specifically, for a pair of samples
(xl ∈D, xu ∈U) and their predictions from teacher network (pl, pu), the mixed (x′,y′) is computed
by:

λ ∼ Beta(α,α)

λ
′ = max(λ ,1−λ )

x′ = λ
′xl +(1−λ

′)xu

y′ = λ
′pl +(1−λ

′)pu

(4.11)

Finally, the student network with input x′ is trained to minimize the KL divergence with y′:

Lmixup = τ
2KL(S(x′)/τ||y′/τ) (4.12)

Hence, the student network is expected to generalize well to the evaluation data by enforcing it
to imitate the teacher model on the mixup images.

The algorithms for vanilla knowledge distillation on both labeled and unlabeled datasets are
summarized in Algorithm 2.
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Algorithm 2 Pseudocode of KD extension to unlabeled data in a PyTorch-like style.
# T: teacher network, S: student network
# L_loader: labeled dataloader, U_loader: unlabeled dataloader
T.eval()
S.train()
for i, (x_l,y_l,x_u) in zip(L_loader,U_loader):# load a minibatch x with N samples

# KD loss on labeled data
pred_t_l = T(x_l)
pred_s_l = S(x_l)
loss_l = L_KD(pred_s_l, pred_t_l.detach())
# cross-entropy loss on labeled data
loss_ce = CrossEntropyLoss(pred_s_l, y_l)
# KD loss on labeled data
pred_t_u = T(x_u)
pred_s_u = S(x_u)
loss_u = L_KD(pred_s_u, pred_t_u.detach())
# mix up labeled and unlabled data
lam = numpy.random.beta(alpha, alpha)
index = torch.randperm(x_l.size(0))
x_mix = lam * x_l + (1. - lam) * x_u[index]
y_mix = lam * pred_s_l + (1. - lam) * pred_t_u[index]
pred_s_mix = S(x_mix)
loss_mixup = L_KD(pred_s_mix, y_mix.detach())
optimizer.zero_grad()
{loss_ce,loss_l,loss_u,loss_mixup}.backward()
optimizer.step()

4.3 Relationship to Previous Work

Our method is related to metric learning for learning discriminative feature embedding. The
core of metric learning [184, 169] is to project data into a feature embedding space where
samples from the same class are close together while samples from the different classes are
far apart. Successful metric learning has achieved competitive performance in computer vision
tasks like face recognition [134], person re-identification [181], and fine-grained retrieval. In
these tasks, feature representation is used to determine the similarity of given input pairs, while
the subsequent linear classifier is discarded. Feature learning in knowledge distillation can be
viewed as a certain type of metric learning, which targets at driving student learning with prior
distribution in embedding space provided by the teacher network that has superior ability over
student in capturing discriminative feature. This characteristic is especially shared in feature
relationship transferring knowledge distillation. These works always select the distillation
position at the later part of the network because early layers capture features of fine-scale while
later layers focus more on coarse-scale abstract feature. Our method decouples student learning
into feature representation learning and classification. The feature representation learning parts
takes a different view by using teacher’s linear classifier as a guidance enforcing student to
directly mimic teacher’s discriminative properties.

We also notice the connection between our approach and Semi-supervised learning (SSL).
SSL is designed to use a large amount of unlabeled data to help supervised learning on small
amount of labeled data. Self-training (also called pseudo-labeling [81]) [128, 68, 2] is a popular
solution in SSL. The conventional steps of self-training are unfolded as follows: Firstly, it
trains a good teacher model on labeled data. Then, it uses the teacher to provide pseudo labels
for unlabeled data. Finally, it combines teacher’s predictions on unlabeled data together with
annotations on labeled data to train the student network. Another line of SSL is based on
consistency regularization. The key point is to encourage the model to produce the same output
distribution when its inputs are perturbed [132, 79, 101]. In practice, consistency regularization
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is to enforce a classifier to output the same class distribution when fed into augmentations of the
same input sample. The rationale behind this idea is the smoothness assumption in classification
boundary. Knowledge distillation on unlabeled data shares some similarities with SSL because
both tasks are provided with labeled and unlabeled samples in experiment setting. The difference
comes from the data distribution. In SSL, both labeled and unlabeled datasets share the same
class set. For example, SSL often splits the whole annotated dataset into two splits: data with
ground-truth labels in training and data without ground-truth labels in training. However, in our
unlabeled knowledge distillation setting, the unlabeled data is from another distribution with
different classes, and even with the same label, unlabeled datasets have a clear domain gap with
the labeled one.

Our approach shares the same idea with mixup [209], a regularisation technique which
encourages deep neural networks to behave linearly between pairs of data points and has been
utilized successfully in supervised learning [209, 157] and semi-supervised learning [158, 6].
Unlike current mixup-based methods, we apply mixup to effectively leverage labeled data of
known classes for unlabeled classes. Note that, existing mixup-based methods assume that every
class of interest has clean label. However, in our setting, the pseudo label for unlabeled data is
from teacher’s prediction and may not belong to defined classes.

4.4 Experiments on Labeled Datasets

In this section, we first investigate the components of our method by analysing variants. Then
we compare the proposed method with existing knowledge distillation methods across different
tasks, network structures, and domains.

Group

Name

Output

size
WRN-D-k WRN-16-4

conv1 32x32 3x3,16

conv2 32x32

[
3∗3,16k
3∗3,16k

]
xd

[
3∗3,64
3∗3,64

]
x2

conv3 16x16

[
3∗3,32k
3∗3,32k

]
xd

[
3∗3,128
3∗3,128

]
x2

conv4 8x8

[
3∗3,64k
3∗3,64k

]
xd

[
3∗3,256
3∗3,256

]
x2

1x1 average pool, 100-c fc, softmax

Table 4.1 Structure of the Wide ResNet (WRN) networks used in our experiments. c denotes
number of classes. For CIFAR10, c = 10. For CIFAR100, c = 100. d = (D−4)/6.
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4.4.1 Ablation Studies

We conducted a set of ablation studies on CIFAR100 (see Section 4.4.2) using a Wide ResNet
(WRN) for both teacher (WRN-40-4) and student (WRN-16-4). The architecture is described in
Table 4.1.
Are both LFM and LSR useful? To answer this question, we ran three experiments: using LFM

alone, LSR alone, and combining them together LFM +LSR. The results of Table 4.2 (first 3 rows)
clearly show that all proposed variants offer significant gains: when using LFM and LSR alone,
∼ 1% and ∼ 2% improvements in Top-1 accuracy were obtained. Moreover, when combining
them together, an additional ∼ 0.4% improvement was gained. Importantly, the results show that
LSR is significantly more effective than LFM. We further note at this point that we found that
LFM offers diminishing gains on ImageNet-1K experiments.

Method Layer Top-1 (%) Top-5 (%)

Student (WRN-16-4) 76.97 93.89

Teacher (WRN-40-4) 79.50 94.57

LFM conv4 78.05 94.45

LSR conv4 79.10 94.99

LFM+LSR conv4 79.58 95.21
LFM+LSR conv2 77.03 93.94

LFM+LSR conv3 77.34 94.22

LFM+LSR conv2+3+4 79.43 94.80

Table 4.2 Effect of proposed losses (LFM and LSR) and position of distillation on the test set of
CIFAR100.

Where should the losses be applied? The proposed losses can be applied at other layers of
the networks too. This is straightforward for LFM. We can also extend LSR to more layers,
by transferring the mean feature of the student at each layer to the corresponding layer of the
teacher using an AdaIN layer [60]. On one hand, applying the losses early in the network could
ensure that the subsequent layers receive “better” features. On the other hand, features produced
by early layers are not specialised to a particular class. Thus, applying the distillation losses
towards the end of the network, where the activations encode discriminative, task-related features
should lead to potentially stronger models. The results from Table 4.2 (last 3 rows) confirm our
hypothesis: By applying the loss at multiple points in the network actually rather hurts accuracy.
Different losses for LSR: Here, we evaluate different losses for LSR. The following loss functions
are compared:

1. L2 loss: LSR−L2(p,q) = ∥p−q∥2.

2. Cross Entropy loss (CE) with label y: LSR−CE(q,y) = H (q,y).
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Method
KL div.

with teacher

Cross-entropy

with label
Top-1 (%)

Student 0.5964 0.9383 76.97

KD 0.5818 0.9492 78.35

AT 0.5406 0.9049 78.06

LFM 0.5701 0.8980 78.05

LSR 0.4828 0.8418 79.10

LFM+LSR 0.4597 0.8247 79.58

Table 4.3 KL divergence between teacher and student, and cross-entropy between student and
ground truth on the test set of CIFAR100. Teacher’s top-1 accuracy is 79.50%.

3. KL loss with temperature τ [55]: LSR−KL(p,q) = KL(q/τ, p/τ).

The results, presented in Table 4.4, show that all loss functions offer significant improvement
gains while LFM+LSR−L2 achieves the best accuracy. Therefore, in our paper, LSR−L2 is used in
all cases.

Method Top-1(%) Top-5(%)

Student: WRN-16-4 76.97 93.89

Teacher: WRN-40-4 79.50 94.57

LFM+LSR−L2 79.58 95.21
LFM+LSR−CE 78.80 95.13

LFM+LSR−KL 79.04 95.12

Table 4.4 Evaluation of different loss functions for LSR in terms of Top-1 accuracy on CIFAR100.

Teacher-student similarity: The overall aim of knowledge distillation is to make the student
mimic the teacher’s output, so that the student is able to obtain similar performance to that of the
teacher. Therefore, to see how well the student mimics the teacher, we measured the similarity
between the teacher’s and student’s outputs using (a) the KL divergence between the teacher’s
and student’s outputs, and (b) the cross-entropy loss between the student’s predictions and the
ground truth labels.

From Table 4.3, it can be observed that KD [55] reduces the KL divergence with the teacher’s
output offering ∼ 1.5% accuracy gain. AT [204] also decreases the KL divergence with the
teacher’s output offering a smaller accuracy gain of ∼ 1.0%. Moreover, both proposed losses
LFM and LSR and their combination LFM+LSR show considerably high similarity compared to
the KD and AT. This similarity is one of the main reasons for the improved student’s accuracy
offered by our method.
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(a) Student (b) LFM (c) LSR (d) LFM+LSR (e) Teacher

Fig. 4.2 Visualization of hS and hT on the test set of CIFAR100. Better viewed in color.

Method Student LFM LSR LFM+LSR

L2 Distance 1.48 1.33 1.07 1.01
NMI (%). 77.20 78.31 79.35 79.85
Top-1(%). 76.97 78.05 79.10 79.58

Table 4.5 L2 Distance ∥hT −hs∥2 , and NMI calculated on the test set of CIFAR100.

Representations distance: Table 4.5 shows the calculated L2 distance between the teacher and
student representations hT and hS. The results, presented in Table 4.5, clearly show that both
LFM and LSR narrow the distance, with their combination being the closest to the teacher.
Normalized Mutual Information (NMI): Moreover, we calculated the NMI [98] which is a
balanced metric that can be used to determine the quality of feature clustering. The results,
presented in Table 4.5, show that LFM +LSR has the highest NMI score meaning that the features
are better clustered. Qualitative results are shown in Figure 4.2 which visualizes the features hS

and hT . It can be observed that LFM+LSR is able to learn more discriminative features, which
also correlates with quantitative accuracy gains.
Transferability of representations: Following [153], this section aims to compare the repre-
sentational power of the learned student’s representation hs. To this end, we trained the student
on CIFAR100, and then used it as a frozen feature extractor on top of which we train a linear
classifier for two datasets: STL10 [27] and CIFAR100. We compare the transferability of KD,
CRD, LFM, LSR, and LFM+LSR. The superiority of the proposed losses over KD on STL is
evident. Importantly, LSR largely outperforms KD which confirms our analysis of Eqs. (4.5)
and (4.6). The best results on STL are obtained by CRD. However, on CIFAR100, which is the
target distillation dataset our method outperforms CRD.

Student Dataset KD CRD LFM LSR LFM+LSR

WRN16-4 STL10 68.75 72.45 69.3 71.44 72.17

WRN16-4 CIFAR100 78.28 78.46 77.95 79.03 79.34
MobileNetV2 STL10 62.17 69.74 66.12 68.23 68.95

MobileNetV2 CIFAR100 69.17 70.68 70.66 71.00 71.63

Table 4.6 Transferability of representations from CIFAR100 to STL10 and CIFAR100 by freezing
f S and training a linear classifier on top. Top-1 (%) accuracy is provided.
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4.4.2 Comparison with State-of-the-Art

We thoroughly evaluated the effectiveness of our method across multiple (a) network architectures
(ResNet [52], Wide ResNet [203], MobileNetV2 [133], MobileNet [57]) with different teacher-
student capacities, (b) datasets (CIFAR10/100, ImageNet, MegaFace), and (c) domains (real-
valued and binary networks). We denote with ResNetN a Residual Network with N convolutional
layers [52]. We denote with WRN-D-k a WRN architecture with D layers and an expansion rate
of k [204].

For the above mentioned settings, we compare our method with KD [55] and AT [204], and
the more recent methods of OFD [53], RKD [115], CRD [153]. For traditional KD [55], we set
α = 0.9 and T = 4. For AT [204], as in [204, 156], we set the weight of distillation loss to 1000.
We note, that for our experiments, the AT loss is added after each layer group for WRN and the
last two groups for ResNet as in [204]. Following OFD [53], we set the weight of distillation
loss to 10−3. For RKD [115], we set β1 = 25 for distance, and β2 = 50 for angle, as described
in [115, 153].
Overview of results: From our experiments, we conclude that our approach offers consistent
gains across all of the above scenarios, outperforming all methods considered for all settings.
Notably, our method is particularly effective for the most difficult datasets (i.e. CIFAR100,
ImageNet-1K and MegaFace).

Image Classification on CIFAR10 Dataset

Implementation details: CIFAR10 is a popular image classification dataset consisting of
50,000 training and 10,000 testing images equally distributed across 10 classes. All images are
of resolution 32×32px. Following [204], during training, we randomly cropped and horizontally
flipped the images. The ResNet models were trained for 350 epochs using SGD. The initial
learning rate was set to 0.1, and then it was reduced by a factor of 10 at epochs 150, 250 and
320. Similarly, the WRN models were trained for 200 epochs with a learning rate of 0.1 that was
subsequently reduced by 5 at epochs 60, 120 and 160. In all experiments, we set the dropout
rate to 0. We did not compare with CRD [153] on CIFAR10 because, in our experiments, we
found that their parameter setting (used in their paper for CIFAR100 and ImageNet-1K) does not
obtain good performance on CIFAR10.
Results: Top-1 performance of our method on CIFAR10 is shown in Table 4.7. We tested three
cases representing different network architectures for student and teacher networks: the first two
experiments are with WRNs. The following three experiments are with ResNets. In the last
experiment, teacher and student have different network architectures. Specifically, our method
improves student network’s top-1 performance from 91.04% to 92.95% on pair WRN-16-1 as
student, WRN-16-2 as teacher, from 93.98% to 94.66% on pair WRN-16-2 as student, WRN-
40-2 as teacher, from 87.78% to 89.02% on pair ResNet8 as student, ResNet26 as teacher, from
91.59% to 92.70% on pair ResNet14 as student, ResNet26 as teacher, from 93.35% to 93.92%
on pair ResNet-18 as student, ResNet34 as teacher, from 91.04% to 92.94% on pair WRN-16-1
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Student(Params) Teacher(Params) Student KD [55] AT [204] OFD [53] RKD [115] Ours Teacher

WRN-16-1 (0.18M) WRN-16-2 (0.69M) 91.04 92.57 92.15 92.28 92.51 92.95 93.98

WRN-16-2 (0.69M) WRN-40-2 (2.2M) 93.98 94.46 94.39 94.30 94.41 94.66 95.07

ResNet8 (0.08M) ResNet26 (0.37M) 87.78 88.75 88.15 87.49 88.50 89.02 93.58

ResNet14 (0.17M) ResNet26 (0.37M) 91.59 92.57 92.11 92.51 92.36 92.70 93.58

ResNet18 (0.7M) ResNet34 (1.4M) 93.35 93.74 93.52 93.80 92.95 93.92 94.11

WRN-16-1 (0.18M) ResNet26 (0.37M) 91.04 92.42 91.32 92.47 92.08 92.94 93.58

Table 4.7 Top-1 accuracy (%) of various knowledge distillation methods on CIFAR10.

as student, ResNet26 as teacher. Overall, our method achieves the best results for all cases, with
KD [55] closely following.

Image Classification on CIFAR100 Dataset

Implementation details: CIFAR100 [76] is a popular image classification dataset consisting of
50,000 training and 10,000 testing images equally distributed across 100 classes. Here, we used
a standard data augmentation scheme [204] including padding 4 pixels prior to random cropping
and horizontal flipping. We used SGD with weight decay 5e-4 and momentum 0.9. The batch
size was set to 128. The learning rate was set to 0.1; then decayed by 0.1 at epochs 100, 150, until
training reached 200 epochs [53]. We experimented with several student-teacher network pairs
using different structures. Experiments are grouped in three sets. The first shows performance for
different teacher and student capacities using WRNs: poor student - good teacher (WRN-16-2;
WRN-40-4), descent student - good teacher (WRN-10-10; WRN-16-10); good student - good
teacher (WRN-16-4; WRN-40-4). In the second set, we show that these results hold when using
a different architecture, ResNet in this case. The final set is designed to show performance when
teacher and student have different architectures (MobileNetV2, ResNet and WRN).
Results: Top-1 performance of our method is shown in Table 4.8. We observe that for almost all
configurations, our method achieves consistent and significant accuracy gains over prior work.
Furthermore, it is hard to tell which is the second best method as the remaining methods have
their own advantages for different configurations. For WRN experiments, OFD ranks second.
For ResNet and mixed structure experiments, CRD ranks second. We also provide the results by
combining our method with KD and AT. Based on the order in 4.8 KD+Ours:74.97%, 79.00%,
78.84%, 70.41%, 73.46%, 77.64%, 74.90%, 71.08%, 70.85%. AT+Ours: 75.01%, 79.09%,
77.79%, 69.41%, 73.17%, 77.48%, 74.71%, 70.70%, 70.63%. Further improvements could be
obtained by combining our method with others but this requires a comprehensive investigation
which goes beyond the scope of this thesis.

Image Classification on ImageNet-1K Dataset

Implementation details: ImageNet-1K [130] considered one of the most heavily benchmarked
datasets in computer vision consists of 1.2M training images and 50K validation images with
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Student (Params) Teacher (Params) Student KD [55] AT [204] OFD [53] RKD [115] CRD [153] Ours Teacher

WRN-16-2 (0.70M) WRN-40-4 (8.97M) 72.70 74.52 74.33 75.57 74.23 75.27 75.96 79.50

WRN-16-4 (2.77M) WRN-40-4 (8.97M) 76.97 78.35 78.06 79.29 78.38 78.83 79.58 79.50

WRN-10-10 (7.49M) WRN-16-10 (17.2M) 76.27 78.20 76.44 78.72 77.84 78.35 79.17 79.77

ResNet10 (0.34M) ResNet34 (1.39M) 68.42 69.18 68.49 68.94 68.70 70.24 69.91 72.05

ResNet18 (0.75M) ResNet50 (1.99M) 71.07 73.41 71.90 72.79 70.93 73.23 73.47 73.31

ResNet10 (4.95M) ResNet34 (21.33M) 75.01 77.35 76.87 77.35 77.46 77.37 77.90 78.44

WRN-16-2 (0.70M) ResNet34 (21.33M) 72.70 73.95 72.32 74.78 73.91 74.88 75.38 78.44

MobileNetV2 (2.37M) ResNet34 (21.33M) 68.42 69.36 68.60 69.45 68.75 71.36 71.58 78.44

MobileNetV2 (2.37M) WRN-40-4 (8.97M) 68.42 69.15 68.95 70.08 68.19 71.46 71.82 79.50

Table 4.8 Top-1 accuracy (%) of various knowledge distillation methods on CIFAR100.

Student (Params) Teacher (Params) Student KD [55] AT [204] OFD [53] RKD [115] CRD [153] Ours Teacher

ResNet18 (11.69M) ResNet34 (21.80M)
Top-1

Top-5

70.04

89.48

70.68

90.16

70.59

89.73

71.08

90.07

71.34

90.37

71.17

90.13

71.73
90.60

73.31

91.42

MobileNet (4.23M) ) ResNet50 (25.56M)
Top-1

Top-5

70.13

89.49

70.68

90.30

70.72

90.03

71.25

90.34

71.32

90.62

71.40

90.42

72.49
90.92

76.16

92.86

Table 4.9 Comparison with state-of-the-art on ImageNet.

1K classes. Images are cropped to 224×224 pixels for both training and evaluation. We used
SGD with Nesterov momentum 0.9, weight decay 1e−4, initial learning rate 0.2 which was then
dropped by a factor of 10 every 30 epochs, training in total for 100 epochs (for CRD we trained
with 10 more epochs as suggested by the authors). The batch size was set to 512. For simplicity
and to enable a fair comparison, we used pretrained PyTorch models [119] as teacher networks
[53, 153].

Our experiments include two pairs of networks which are popular settings for ImageNet [130].
The first is distillation from ResNet34 to ResNet18 and the second one is distillation from
ResNet50 to MobileNet [57]. Note that, following [153] on ImageNet, for KD, we set the weight
for KL loss to 0.9, the weight for cross-entropy loss to 0.5 which helps to obtain better accuracy.
Results: Our results are presented in Table 4.9. Again, we observe that our method achieves
significant improvements over all methods. To be specific, our method improves the ResNet18
network performance from 70.04% to 71.73% on top-1 accuracy, from 89.48% to 90.60% on
top-5 accuracy with ResNet34 as teacher. Also, it improves MobileNet performance from 70.13%
to 72.49% on top-1 accuracy, from 89.49% to 90.92% on top-5 accuracy with ResNet50 as
teacher. Moreover, there is no method which is consistently second: for ResNet34 to ResNet18
experiment, RKD is the second best, with top-1 71.34% and top-5 90.13%, while for ResNet50
to MobileNet, CRD is the second best, with top-1 71.40% and top-5 90.42%. Notably, for the
latter experiment, CRD reduces the gap between the teacher and the student by 1.27%, while
our method narrows it by 2.36%. Overall, our results on ImageNet validate the scalability of
our method, and show that, when applied to a large-scale dataset, we achieve an even more
favourable performance compared against competing methods.
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Image Classification with Binary Networks Distillation

Implementation details: Training highly accurate binary neural networks (i.e. the most extreme
case of quantization) is a very challenging task [125, 11], and to this end, knowledge distillation
appears to be a promising direction. In this section, we present results by applying distillation for
the task of training binary student networks guided by real-valued teacher networks. The network
architecture is kept the same for both the student and the teacher in this case: specifically, we
used a ResNet using the modifications described in [11]. For training, we used Adam as the
optimizer with initial learning 0.001 which is reduced by a factor of 10 at epochs 150, 250,
and 320, training in total for 350 epochs on CIFAR100 and with initial learning 0.002 which is
reduced by a factor at epochs 30, 60, and 90, training in total for 100 epochs on ImageNet-1K.
Results: Table 4.10 presents our results. Again, we observe that our method outperforms all
methods considerably, showing that it can effectively transfer knowledge between different
domains. Note that, it was not clear to us where to place the distillation position for OFD,
so although we included our result for this method, we emphasize that this result might be
suboptimal.

Dataset Method Binary KD [55] AT [204] OFD [53] RKD [115] CRD [153] Ours Real

CIFAR100 ResNet34 65.34 68.65 68.54 66.84 68.61 68.78 70.50 75.08

ImageNet-1K ResNet18 56.70 57.39 58.45 55.74 58.84 58.25 59.57 70.20

Table 4.10 Real-to-binary distillation results on CIFAR100: a real-valued teacher ResNet34 is
used to distill a binary student. Real-to-binary distillation results on ImageNet-1K: a real-valued
ResNet18 is used to distill a binary student. OFD result might be sub-optimal.

Face Recognition on MegaFace Dataset

Implementation details: We conducted the large scale MS1MV2 experiment reported in [34].
For training, we used MS1MV2, a refined (cleaned) version of MS-Celeb-1M [47, 177]. For
testing, we used the refined MegaFace [34, 47, 72] for evaluating the performance of face
recognition at million-level distractors. The gallery set of MegaFace consists of 1M images
from 690K subjects, and the probe set consists of 100K photos from 530 unique individuals
from FaceScrub. We used ResNet101 as the teacher network, and MobileFaceNet as the student
network. The network settings are the same as in [34, 23]. The MobileFaceNet structure is in
Table 4.11. For training, we set the initial learning rate to 0.1, and multiplied it by 0.1 at 100K,
and 160K iterations, training in total for 180K iterations. We used SGD as optimizer and set
momentum to 0.9, and weight decay to 5e−4. The batch size was set to 512.
Results: Rank-1 identification rate at different number of distractors is used as metric for
evaluation. Our results are shown in Table 4.12 and Figure 4.3. It can be seen that, on this
challenging face recognition task, our method improves about 0.7% in 1:1 verification and 1% at
rank-1 identification rate with 1M distractors.
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Input Output operator in_channel groups out_channel number stride

112x112 56x56 conv_block 3 1 64 1 2

56x56 56x56 conv_block 64 64 64 1 1

56x56 28x28 bottleneck 64 128 64 1 2

28x28 28x28 bottleneck 64 128 64 4 1

28x28 14x14 bottleneck 64 256 128 1 2

14x14 14x14 bottleneck 128 256 128 6 1

14x14 7x7 bottleneck 128 512 128 1 2

7x7 7x7 bottleneck 128 256 128 2 1

7x7 7x7 conv_block 128 1 512 1 1

7x7 1x1 conv_block 512 512 512 1 1

1x1 512 Linear 512 1 512 1 1
Table 4.11 MobileFaceNet architecture [23]. Each line describes a sequence of operations.
Convolutions in the conv_blocks use 3×3 kernels except the last conv_block using 7×7. Each
line denotes input feature’s spatial size (width ×height), output feature map’s spatial size, input
feature map’s channel, output feature map’s channel, repeated number of this operation and
stride size in convolutional layer. Groups represents the extension channel number and also the
group number in 3×3 convolution in bottleneck.

Student (Params) Teacher (Params) Student KD [55] AT [204] RKD [115] PKT [117] Ours Teacher

MobileFaceNet (1.2M) ResNet101 (65.12M)
Ver %

Id %

93.44

92.28

92.86

90.91

93.55

92.46

93.37

92.34

93.25

92.38

94.17
93.26

98.56

98.82

Table 4.12 Face identification and verification evaluation of different methods on MegaFace
Challenge1 using FaceScrub as the probe set. “Ver" refers to the face verification TAR (True
Acceptance Rate) at 10−6 FAR (False Acceptance Rate) and “Id" refers to the rank-1 face
identification accuracy with 1M distractors.

More comparisons on LFW, AgeDB, CPLFW and CALFW are shown in Table 4.13. Our
proposed method consistently outperforms other distillation methods on these face verification
benchmarks.

Facial Landmark Detection on WFLW

Given a face image, the task is to localise a set of facial landmarks in terms of their (x,y)
coordinates. This is often solved by using a CNN to directly regress the (x,y) coordinates of
the facial landmarks. In order to show the suitability of our method for this problem, we use
the WFLW [176] dataset, which is one of the hardest benchmarks for this task. Performance is
measured in terms of the Normalised Mean Error (lower is better), which is the standard metric
for the problem. In our experiment, we use a ResNet10 as the teacher and a ResNet10 as the
student. The results, shown in Table 4.14, confirm the superior performance of our method when
compared to other state-of-the-art methods.
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Fig. 4.3 Verification ROC and identification CMC curves of all distillation methods. Results are
evaluated on refined MegaFace dataset.

Method
Verification Evaluation (%)

LFW AgeDB CPLFW CALFW

Student 99.27 96.21 89.75 95.21

Teacher 99.83 98.40 93.30 96.11

KD [55] 99.61 96.21 90.19 95.11

AT [204] 99.60 96.45 89.38 95.16

RKD [115] 99.41 96.06 89.43 95.28

PKT [117] 99.55 96.33 89.93 95.21

Ours 99.61 96.78 90.20 95.46

Table 4.13 Verification results on LFW, AgeDB, CPLFW, CALFW

Student(Params) Teacher(Params) - Student KD [55] RKD [115] PKT [117] LFM AT [204] Ours Teacher

ResNet10(7.25M) ResNet50(26.25M) NME 7.43 7.32 6.94 7.09 7.14 6.96 6.81 6.38

Table 4.14 Facial landmark detection with ResNet50 as teacher and ResNet10 as student. KD is
adapted by using an L2 loss instead of a KL loss to measure the discrepancy between the teach
and student predictions. We use ResNet10 as student because ResNet18 performance is close to
ResNet50.

4.5 Experiments on Unlabeled Datasets

4.5.1 Image Classification on CIFAR100 Dataset

In this section, we investigate how to use unlabeled data from TinyImageNet 1 to boost current
student’s performance on CIFAR100 [76] under current knowledge distillation frameworks. In
the remaining part of this section, we will first introduce the experiment setting, then investigate
various factors affecting the overall performance, and finally provide more comparisons under
different teacher-student pairs.

1https://tiny-imagenet.herokuapp.com/

https://tiny-imagenet.herokuapp.com/
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Implementations: The CIFAR100 dataset, as the labeled dataset, is one of the most commonly
used dataset for evaluating knowledge distillation methods. It consists of 100 semantic classes
with a resolution of 32x32. In total, it has 50K images for the training set (named as CIFAR100-
Train) with 500 images per class and 10K for the test set (named as CIFAR100-Test) with 100
images per class. TinyImageNet, serving as the unlabeled dataset here, is a subset of ImageNet-
1K [130], consisting of 200 classes and each class has 500 training images, 50 validation images,
and 50 test images with size 64x64 pixels. In our case, we use its 100K training set as the
unlabeled dataset, and name it as Tiny-Train for simplicity.

Generally, our experiments build on open source code from [153]2 to allow a direct com-
parison with several works from the literature. For the training setting, we use synchronous
stochastic gradient descent as an optimizer with momentum 0.9, weight decay 5e-4. Except
ShuffleNetV1/V2 and MobileNetV2 using 0.01 as starting learning rate, other models usually
train from 0.05, then decays by 0.1 at epochs 150, 180, 210 until 240 epochs.

Teacher ResNet32x4 79.42 WRN40-2 75.61 ResNet32x4 79.42

Student ResNet8x4 72.50 WRN40-1 71.98 ShuffleNetV1 70.50

D D+U D D+U D D+U

KD [55] 73.33 74.68↑ 73.54 75.08↑ 74.07 76.52↑
FitNet [129] 73.44 73.30↓ 72.24 71.43↓ 73.59 72.83↓

AT [204] 73.44 71.75↓ 72.77 73.11↑ 71.73 72.82↑
SP [156] 72.94 72.10↓ 72.43 73.02↑ 73.48 76.01↑
CC [120] 72.97 71.96↓ 72.21 70.64↓ 71.14 70.85↓
VID [1] 73.09 73.48↑ 72.30 73.06↑ 73.38 75.80↑

RKD [115] 71.90 72.50↑ 72.22 72.99↑ 72.28 73.38↑
PKT [117] 73.64 75.24↑ 73.45 74.29↑ 74.10 76.50↑
AB [54] 73.17 72.34↓ 72.38 72.88↑ 73.55 73.33↓
FT [73] 72.86 71.57↓ 71.59 71.47↓ 71.75 72.81↑

NSP [62] 73.30 72.06↓ 72.24 72.11↓ 74.12 -

CRD [153] 75.51 75.99↑ 74.14 75.15↑ 75.11 77.00↑
Ours 75.92 76.24↑ 74.75 75.32↑ 76.40 77.70↑

D+U+CS D+U+MP D+U+CS D+U+MP D+U+CS D+U+MP

KD 72.82↓ 76.07↑ 74.34↓ 75.34↑ 75.64↓ 77.45↑
CRD 74.71↓ 76.80↑ 73.62↓ 75.48↑ 75.79↓ 77.72↑
Ours 75.66↓ 77.07↑ 73.70↓ 75.66↑ 76.34↓ 78.32↑

Table 4.15 Classification performance (%) of student models on CIFAR100. D means training
on CIFAR100-Train. D+U means training on CIFAR100-Train and Tiny-Train. CS denotes
consistency loss and MP denotes training with 4.2.2. Average over 5 independent runs.

2https://github.com/HobbitLong/RepDistiller

https://github.com/HobbitLong/RepDistiller
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Comparison under different knowledge distillation frameworks: We totally train 13 state-of-
the-art methods (eg. KD [55], FitNet [129], AT [204], SP [156], CC [120], VID [1], RKD [115],
PKT [117], AB [54], FT [73], NSP [62], CRD [153], Ours) following Eq. 4.9 with different
teacher and student pairs (ResNet32x4 as teacher, ResNet8x4 as student; WRN40-2 as teacher,
WRN40-1 as student; ResNet32x4 as teacher, ShuffleNetV1 as student).

The results are shown in Table 4.15. Specifically, D represents results from distillation loss
on labeled data and D+U represents methods distillation loss from both on labeled dataset and
unlabeled dataset). We can see that KD, VID, RKD, PKD, CRD and Ours consistently gain
performance from extra Tiny-Train while FitNet, CC degrade in all settings. In addition, AT,
SP, AB and FT vary among different student-teacher pairs. Overall, KD, CRD and Ours are
still superior to others among all settings which is consistent with their performance trained on
labeled dataset alone. It is worth mentioned that KD is the biggest beneficiary from unlabeled
data with top-1 accuracy increasing by ∼ 1.3%, ∼ 1.5%, ∼ 2.5%. To some extent, it explains
the effectiveness of pseudo labelling in semi-supervised learning with previous predictions as
labels to train the subsequent model. However, for the final performance comparison, CRD and
Ours still preserve their superiority to KD. In conclusion, the above experiments suggest that the
improvement with unlabeled datasets depends on the relative performance of student and teacher
models trained on the original supervised task (i.e., training only on the labeled datasets) and
knowledge formation defined in distillation.
Amount of unlabeled datasets: So far, we use the entire Tiny-Train in student learning. To
investigate the effect from the dataset size, we perform experiments with varying amount of
Tiny-Train on two choices: one way is to randomly select 25%, 50%, 75% of Tiny-Train, and
the other way is to select 25%, 50%, 75% of Tiny-Train based on highest confidence provided
teacher network. For this purpose, we use softmax to normalize 100-dim prediction from the
teacher network. Then its largest response indicating the prediction confidence is used to do
sample selection.

The result is shown in Figure 4.4. Overall, we find that the more unlabeled data used, the
more gains the student network will achieve. Also, small percentage of unlabeled data will also
benefit the student’s performance, and randomly selected images at low portion are better than
score-based selection. We argue this is caused by class bias from the score-based selection. We
agree that here using all images from unlabeled data is sub-optimal. We emphasize that these
results only apply to our specific labeled (CIFAR100-Train) and unlabeled dataset (Tiny-Train)
selection and may not provide general insight that any unlabeled dataset will improve student
learning. Also we know by manual inspection that images from Tiny-Train are closely related
to CIFAR100 and the improvement shows that Tiny-Train is high-quality compensation for
CIFAR100-Train. For instance, they share same categories like “n02481823”:21 (chimpanzee),
“n02129165”:43 (lion), “n04465501”:89 (tractor), “n07747607”:53 (orange), “n03649909”:41
(lawn_mower0), “n02206856”:6 (bee). However, as the class definition for CIFAR100 and
TinyImagenet are different, it is hard to find all same classes.
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Fig. 4.4 Top-1 accuracy of KD, CRD, and Ours on CIFAR100 with 25%, 50%, 75%, and 100%
of Tiny-Train. The left hand result is from randomly selection and the right hand result is from
confidence-based selection.

Fig. 4.5 Teacher network is not robust on the unlabeled data after augmentation. Each column
represents a couple of augmented inputs. For left column, teacher’s predictions are“table” and
“beetle” respectively. For right column, teacher’s predictions are “train” and “bus”, respectively.

Effect of consistency loss: Here, We try to explore consistency loss on usage of the unlabeled
data. In practice, the stochastic data augmentation made up of randomly 4 pixels shifting and
randomly horizon flipping is applied to x ∈ U to produce two augmented versions xu1 and xu2.
xu1 is fed to teacher network to get prediction yT

u1. Predictions from student network for xu1 and
xu2 are yS

u1 and yS
u2 respectively. The consistency loss is added to enforce similarity on yS

u1 and
yS

u2.
As a result, we find that consistency loss degrades the model performance (see in Table 4.15)

in all cases. Similar observations can be found in [81, 63]. These works suffer the same problem
since they depend on a fixed pre-trained model instead of a converged model with high accuracy
to generate pseudo labels. In essence, in the unlabeled dataset, the teacher network is not trained
to satisfy the data augmentation consistency constraint on unseen label data. The more intuitive
analysis is illustrated in Figure 4.5. For two augmentation versions xu1 and xu2, the teacher’s
prediction yT

u1 and yT
u2 are not consistent. After doing a statistic analysis, we have found that

there are roughly 64% images with inconsistent predictions from teacher.
Effect of MixUp: We explore the effect of mixup in Section 4.2.2 for knowledge distillation.
As is shown in Table 4.15, this trick further improves the student network’s performance in all
settings. KD, CRD and ours roughly gain 2% after doing mixup.
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Teacher vgg13 74.64 ResNet50 79.34 WRN40-2 75.61 ResNet32x4 79.42

Student vgg8 70.36 MobileNetV2 64.60 ShuffleV1 70.50 ShuffleNetV2 71.82

D D+U+MP D D+U+MP D D+U+MP D D+U+MP

KD [55] 72.98 74.71 67.35 70.55 74.83 77.40 74.45 78.05

CRD [153] 73.94 74.93 69.11 71.44 76.05 77.78 75.65 78.25

Ours 74.40 75.03 69.45 71.46 76.56 77.77 76.40 78.53

Table 4.16 Classification performance (%) of student models on CIFAR-100-test. Baseline is
trained on D. D+U+MP is trained on whole dataset with individual knowledge distillation loss
and mix up in Section 4.2.2. Average over 5 independent runs.

More comparisons are in Table 4.16. In all teacher-student pairs (vgg13 as teacher vgg8 as
student, ResNet50 as teacher MobileNetV2 as student, ResNet32x4 as teacher ShuffleNetV2 as
student), it is shown that by introducing unlabeled data in knowledge distillation, the gap between
student and teacher is further narrowed. Besides, in baseline setting in which ResNet34x4 as
teacher and ShuffleNetV2 as student, Ours is nearly 1% better than CRD. After introducing
unlabeled data in training, both of them are improved and in addition, CRD is closer to Ours.
It verifies that self-supervised training together with supervised contrastive learning is good at
increasing network’s feature representation ability.

4.5.2 Image Classification on ImageNet-1K-Sub Dataset

In this section, we investigate how to use unlabeled data from Yahoo Flickr Creative Commons
100 Million (YFCC-100M) [152] [152] to boost the student’ performance on ImageNet-1K-Sub
which is a subset of ImageNet-1K [130].
Implementations: ImageNet-1K [130] considered as one of the most heavily benchmark
datasets in computer vision consists of 1.2M training images and 50K validation images with 1K
classes. Images are cropped to 224x224 pixels for both training and evaluation. YFCC-100M is a
public dataset of about 100 million images from Flickr website. It provides a rich resource over a
large amount of visual concepts, and reflects well the user preferences on the Flickr platform. On
the contrary to ImageNet-1K, YFCC-100M misses clean annotations. However, due to the large
scale visual entities, it is popular to use it as extra compensation for ImageNet-1K [188, 121]).

We study factors like data filtering, balancing, ratios and training procedure in this section to
find the best setting. In practice, we create a subset of ImageNet-1K named ImageNet-500-500-
train by randomly selecting 500 classes and 500 images per class. The evaluation is done on
ImageNet-500-50-eval with same 500 classes and 50 images per class from original evaluation
dataset. The models are trained with SGD as optimizer, weight decay 1e− 3 and a standard
learning rate of 0.1, and decayed by 0.1 every 30 epochs for total 100 epochs. The batch size is
set to 256.
Results We conduct ablation studies on the teacher-student pair: ResNet50 as teacher, ResNet18
as student. Teacher network trained on ImageNet-500-500-train achieves Top1 accuracy 69.10%
on ImageNet-529-50-eval. The student network performance trained with our proposed method
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achieves Top1 accuracy 66.47% on ImageNet-529-50-eval. The main framework is inherited
from Section 4.5.1. It is composed of labeled loss (cross-entropy loss with labels, knowledge
distillation loss with teacher’s prediction), unlabeled loss (knowledge distillation loss with
teacher’s prediction) and mixup loss (KL divergence loss on mixed labeled and unlabeled
dataset).

We consider the following cases for unlabeled data from YFCC-100M:

• AS1: Randomly select 500x500 images from YFCC-100M dataset as unlabeled dataset.
The rate between labeled data and unlabeled data is 1:1. In this case, unlabeled dataset
inevitably contains a large fraction of images not belonging to 500 classes. Finally, the
student gains 0.55% in total which indicates randomly selected samples is still beneficial
in model performance.

• AS2: Filter the YFCC-100M dataset with teacher’s confidence 0.3 and randomly select
500x500 images (without considering the classes) from the filtered YFCC-100M. The rate
between labeled data and unlabeled data maintains 1:1. The model gains another 0.65% in
total which indicates that score-based selection in this case is superior to random selection.
This is not contrastive to the finding in 4.5.1 as YFCC-100M is far from ImageNet in data
distribution.

• AS3: Filter the YFCC-100M dataset with teacher confidence 0.3 and randomly select
500 images per class from the filtered YFCC-100M. The rate between labeled data and
unlabeled data is 1:1. It gains another 0.58% which verifies the effectiveness of filtering
and balancing in extra data selection.

• AS4: Randomly select 500 images per class from the rest ImageNet-1K training set as
unlabeled data. The rate between labeled data and unlabeled data maitains 1:1. In this case,
unlabeled data shares the same distribution as labeled data. The performance is 68.78%
and it is treated as the upper bound of variants AS1-AS4.

• AS5: Filter the YFCC-100M dataset with teacher confidence 0.3 and randomly select
1500 images per class from the filtered YFCC-100M. The rate between labeled data and
unlabeled data is 1:3. The final performance is close to AS3. We assume it is caused by
incomplete training in the current defined 100 epochs.

• AS6: Use the unlabeled from AS5 but increase the whole training epochs to 300. It
increases by over 1% compared to AS5. It shows that more training time is necessary
when large unlabeled data are used.

• AS7: Use full training set for 500 classes to train a supervised student model. Inevitably,
Using unlabeled data will be sub-optimal, compared to using full clean dataset with
annotations. The performance of the supervised training can be seen as an upper bound of
the learning with unlabeled data.
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Methods D:U Epochs Filtered Balanced Accuracy

AS1 1:1 100 No No 67.02

AS2 1:1 100 Yes No 67.67

AS3 1:1 100 Yes Yes 68.25

AS4 1:1* 100 - Yes 68.78

AS5 1:3 100 Yes Yes 68.34

AS6 1:3 300 Yes Yes 69.51

AS7 x 100 No No 71.42
Table 4.17 Ablation studies on various design choices: labeled and unlabeled data rate, training
epochs, data filtering, class balancing. “*” denotes that unlabeled data come from rest of training
set.

The comparison is in Table 4.17.
Therefore, we use the best setting found in Table 4.17 to do more comparison with state-of-

the-art methods in Table 4.18. Specifically, we use ResNet50 as teacher to guide two students
with different structures: ResNet18 and MobileNet.

D D+U+MP

Teacher Student Teacher Student KD [55] CRD [153] Ours KD [55] CRD [153] Ours

ResNet50 ResNet18 69.10 63.49 64.4 65.67 66.47 68.23 69.00 69.51
ResNet50 MobileNet 69.10 65.10 65.73 66.93 67.96 70.25 71.05 71.32

Table 4.18 Top-1 accuracy (%) of various knowledge distillation methods on ImageNet-529.
ResNet50 as teacher and ResNet18 as student.

4.5.3 Face Recognition on UmdFace Dataset

Implementation details: In this section, we try to improve the face recognition models’ perfor-
mance trained on UmdFace [4] dataset with the extra dataset from VGGFace2[13]. UMDFace
datset has 8.2K identities with in total 0.4M images. VGGFace2 [13] (an improved version of
VGGFace [116]), containing 3.31M images of 9,131 subjects with large variations in pose, age,
illumination, ethnicity and profession. VGGFace2 serves as unlabeled dataset in our setting.
We followed standard practices in face recognition [170, 94, 162, 34] to crop a face image of
112× 112 which was normalized to [-1, 1]. The training faces are randomly flipped for data
augmentation.

We used ResNet101 as the teacher network, and ResNet18 as the student network. The
network settings are the same as in [34, 23]. For training, we set the initial learning rate to 0.1,
and multiplied it by 0.1 at epoch 16, 20, 24, 28, training in total for 32 epochs. We used SGD as
optimizer and set momentum to 0.9, and weight decay to 5e−4. The batch size is set to 512. We
only evaluate our proposed softmax regression representation learning method here as above
sections have verified its superiority over others.
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Results: We report the verification accuracy on the LFW [59], CFP-FP[136], AgeDB [104],
CPLFW [222], CALFW [223]. CPLFW and CALFW are variants of LFW. In Table 4.19, we
can conclude that usage of unlabeled data consistently improves the student performance from a
large margin.

Method
Verification Evaluation (%)

LFW CFP-FP AgeDB CPLFW CALFW

Student 98.88 89.69 92.63 85.46 93.05

Teacher 99.30 94.25 94.11 88.73 94.28

Ours (trained on D) 98.93 91.34 93.68 86.46 93.28

Ours (trained on D+U) 99.28 92.91 93.91 88.25 93.56

Table 4.19 ResNet101 as teacher and ResNet18 as student. Labeled data D is UMDFace and
unlabeled data U is VGGFace2. Verification results are on LFW, CFP-FP, AgeDB, CPLFW,
CALFW.

4.6 Conclusion

We presented a method for knowledge distillation that optimizes the output feature of the
penultimate layer of the student network and hence is directly related to representation learning.
A key to our method is the newly proposed Softmax Regression Loss which was found necessary
for effective representation learning. We showed that our method consistently outperforms
other state-of-the-art distillation methods for a wide range of experimental settings including
multiple network architectures (ResNet, Wide ResNet, MobileNet) with different teacher-student
capacities, datasets (CIFAR10/100, ImageNet, MegaFace), and domains (real-valued and binary
networks).

The proposed method can be integrated to FAN-Face in chapter 3 to further improve small
network’s performance on unaligned face images. Also, it is a topic worth exploring that whether
we can train student without FAN. That is to say, the teacher is trained with prior from FAN
while the student is trained without it but with the shape correspondence knowledge in teacher’s
feature. We suppose this solution will work as the teacher can enable student to learn which
feature to focus. Besides, the proposed knowledge distillation method can enhance the network
performance after improving interpretability. In this case, we will obtain a explainable face
recognition model with decent performance.



Chapter 5

Interpretable Face Recognition via
Unsupervised Mixtures of Experts

This chapter is to learn visual attributes using dynamically-routed CNN with a supervised face
recognition loss and an unsupervised clustering loss. The former loss is on the face embedding
and the latter one is on the intermediate representation, specifically the routing vector in dynamic
convolution. We observe that the routing vector in dynamic convolution is capable of partitioning
data based on representational attributes but results in a noisy and scattered distribution. Based
on these discoveries, we instantiate a group dynamic convolution to enhance the routing vector’s
discrimination capacity. Besides, we propose to leverage an unsupervised clustering loss to
push the routing vectors to a fixed number of clusters in the feature space without damaging
the recognition performance. In addition, due to the lack of labeled data, we annotate three
datasets with 5 facial attributes (gender, age, race, pitch and yaw) and then explore routing
vectors’ behaviour on them with clustering analysis. We demonstrate that learned clusters are
able to encode rich facial properties without requiring hand-designed attributes for supervision.
Moreover, we present convincing results on the face inversion task that the routing vector
provides auxiliary prior beneficial to producing images faithful to input.

5.1 Introduction

Facial attributes such as pose, age and demographics, provide valuable cues for understanding
face images and in turn, also affect the performance of face analysis. Generally, the face recogni-
tion model improves performance when trained together with attribute prediction tasks [167, 124].
This observation confirms that there is a high correlation in both tasks in the shared space. With
the help of auxiliary information provided by head pose estimation, [12] has bridged the dis-
crepancy between the profile and frontal faces in the feature space and obtained a pose-robust
recognition model. These beneficial insights have drawn researchers’ attention and recent works
are beginning to examine and explain these behaviours.
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Fig. 5.1 2D feature space on routing vectors extracted from CNNs with dynamic convolution
(DC:C=300 in Section 5.4 on Sub200 dataset in Section 5.4.1). Each color denotes a couple of
faces with shared attributes. For example, the red color represents young black women with left
profile face. It shows that routing vectors convey attribute information.

One line of research addresses the question of what is stored in the face embedding. These
works [113, 114, 112, 151] first pre-define some characteristics like head position, social traits
and train an estimation model on face representation to predict attributes and finally examine its
performance to determine whether these attributes exist. As an alternative, [37] has leveraged
another network to check features’ expressive ability to inform us of the facial attributes. Another
line of work is modifying or designing a new network structure where the internal representation
works as a pattern detector, and then investigating the network’s operation process [185, 74].
Chao et al. [185] have discovered that nodes in a tree-like network are sparsely activated by
the sample’s characteristics such as occlusion or viewpoints. Recently, after learning a final
face representation by combining instance-based representation and group-aware representation,
GroupFace [74] has revealed that some visual properties reside in groups.

In this work, we interpret the face recognition model by designing a new framework called
CondFace with dynamic convolutions [25] and then dive into an in-depth analysis of the inter-
mediate representations. Contrary to standard convolution in which all samples share the same
weights, in dynamic convolution [25], each kernel’s parameters are a mixture of experts and
an ensembling weight is calculated from the global view of the current input. For clarity, we
describe the ensemble weight for each dynamic convolution as the routing weight and a set of
routing weights from different positions as a routing vector. Empirically, we observe that the
distribution of routing vectors captures facial appearance properties (Figure 5.1). However, this
distribution is scattered and noisy. Based on these discoveries, we propose to improve from two
aspects: (1) incorporating a clustering loss in training, (2) enhancing the representation ability of
the routing vector. The introduced clustering loss will assign sample-dependent routing vectors
into a fixed number of clusters. We can further analyse and interpret face recognition through
facial attributes captured in the assigned clusters. To enhance routing vectors’ representation
and discrimination ability, we expand them with dynamic group convolution by incorporating
a dynamic mechanism into group convolution. Thus each group convolution is equipped with
individual experts. The dynamic group convolution is able to consider the split input.
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Fig. 5.2 Overview of the proposed framework. It combines a face recognition loss on the final
feature representation with a clustering loss applied on intermediate routing weights extracted
from several positions of the network. DGConv is short for Dynamic group convolution.

Our work is closely related to [185, 25] with the following distinctions. [185] is based on a
random projection tree [31] and the leaf node is split based on the intermediate representation.
However, our method replaces standard convolution with dynamic (conditional) convolution
[25, 189] leading to a static network structure but with sample-specific continuous weights. Apart
from this, in order to learn a tree-like network structure, an unsupervised constraint is imposed
in [185]. The constraint is to partition data at the node by maximizing the distance between the
centroids of two sub-clusters. As opposed to this, our method uses the unsupervised constraint
to restrict the routing vectors’ flexibility. For this purpose, we introduce a clustering loss to
group the routing vectors of the entire dataset to a limited number of clusters. As a consequence,
the routing vectors are now attribute-specific instead of merely being sample-specific. Beyond
this, [74] qualitatively shows some group members without further investigation. We annotate 3
datasets with attributes like pose, gender, race, and age, and then carry out evaluation utilizing
quantitative metrics from cluster analysis. The experimental results conspicuously show that
clustering loss improves and concentrates routing vectors’ distribution. We also offer adequate
ablation studies on variants under the proposed framework. Moreover, we find an application,
face inversion from the pre-trained network, and demonstrate that the routing vector contributes
to faithful face reconstruction from its feature embedding.

The rest of this chapter is organized as follows. Section 5.2 describes the proposed method
including two components: dynamic group convolution and unsupervised mixture of experts.
Section 5.3 introduces the closely related work. Section 5.4 describes how to annotate faces with
attributes, the metrics for evaluation, variants of the proposed method. Section 5.5 concludes this
work.
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Fig. 5.3 Comparisons among three convolutions: (a) standard convolution, (b) dynamic convolu-
tion with expert number n = 3, (c) dynamic group convolution with groups m = 2 and expert
number n = 3.

5.2 Method

Our goal is to learn visual concepts from training data without providing annotated attribute labels
as supervision. The overview of the proposed method is in Figure 5.2. It consists of two losses:
Lcls is the clustering loss on the routing vectors extracted from dynamic group convolutions at
the mid-networks, and L f r is the recognition loss on face representation from the network end.
Unlike L f r with supervision from the annotated label, Lcls is between the classifier’s prediction
and pseudo labels generated by clustering techniques. These two losses are trained together to
constrain the routing vectors into limited clusters and also maintain the recognition performance.
Therefore, we are able to interpret the model by analysing these assigned clusters. In Section
5.2.1, we introduce dynamic group convolution, and compare it with standard convolution and
dynamic convolution. In Section 5.2.2, we describe the two clustering techniques to provide
pseudo label for constraining the routing vectors. Finally, in Section 5.2.3, we integrate the
clustering loss into the existing face recognition framework.

5.2.1 Dynamic Group Convolution

We first briefly formulate standard convolution and dynamic convolution, then move on to
dynamic group convolution. For a regular convolution kernel weight W , the convolution operation
(⊗) with input x is formulated as:

O(x) =W ⊗ x, (5.1)

here W is shared by all training samples and optimized with the gradient from the task-based
loss. O(x) denotes x’s output.

Unlike standard convolution, W in dynamic convolution [25] is sample-dependent. Given a
filter basis pool with n experts {W1,W2, ...,Wn}, W is a mixture of the n experts with the routing
weights (ααα = {α1, ...αn}) calculated on input x. The formulation is expressed as:

O(x) = (α1 ∗W1 + ..+αn ∗Wn)⊗ x

ααα = f (x),
(5.2)
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where f represents the voted weight generator composed of a sequence of operations AV G+LN+

BN +ReLU +LN +So f tmax. Dynamic convolution [25] improves the flexibility and efficiency
of the network without adding heavy computations in inference and shows superior performance
on several tasks like image classification and keypoints detection. Thus, we apply this idea to
face recognition task and empirically observe that the routing weights convey facial attributes
like pose or gender. Encouraged by this behaviour, we go further to enhance its representation
capacity by lengthening its dimension.

For this purpose, we instantiate dynamic group convolution. Basically, we divide W into m
groups ({W 1, ...,W k, ...W m}) across input channel axis and then assign n experts ({W k

1 , ...,W
k
n })

to each group. We obtain single routing weight with dimension m× n. The dynamic group
convolution with input x is formulated as:

O(x) = concat[W 1 ⊗ x1,W k ⊗ xk, ...,W m ⊗ xm]

W k = α
k
1 ∗W k

1 + ...+α
k
n ∗W k

n

α
k = f (x),

(5.3)

where the input x is split into m groups x ∈ {x1,x2, ...,xm} on input channel axis. f generates the
m group expert weights, each of which is a n dimensional vector. After that, each convolution
weight W k is assigned to a part of the input. Finally, the output of convolution layer is a
combination of m segments. The visualization comparison among the three convolution is given
in Figure 5.3.

5.2.2 Unsupervised Mixture of Experts

We define a cluster as a set of samples that share similar facial attributes. The cluster is determined
by deploying online clustering techniques. We sequentially concatenate routing weights from K
positions of the network to obtain the final routing vector βββ (β = [α1,α2, ...,αK]) and input to the
clustering algorithms. Current methods [15, 207, 3, 16] combine clustering and representation
learning together to capture class-level information. We introduce clustering techniques on
the routing vectors and finally measure their capability to capture attribute-level information
by analyzing the assigned clusters. The core idea of online deep clustering is to minimize the
distance between the predicted label and the pseudo label generated from clustering techniques.
The main difference among them is how to perform label assignment. Here, we choose two
popular techniques: one is based on k-means on the whole dataset, and the other is based on
Sinkhorn-Knopp [28] on the current batch.
k-means clustering: We follow DeepCluster [15] to do k-means clustering on the routing
vectors. After each epoch, Ei, we perform k-means clustering on the extracted routing vectors on
the training dataset. By fixing the cluster number as C, it divides the whole dataset into C groups
and assigns a label to each sample. After adding a classifier, the goal of the next epoch, Ei+1, is
to minimize the cross-entropy loss between the current prediction and the assigned pseudo label.
Note that the k-means centroids will serve as the weight of the classifier.
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Sinkhorn-Knopp: [16, 3] have replaced k-means in DeepCluster [15] with Sinkhorn-Knopp
[28]. They firstly impose the constraints that all examples from each batch should be equally
partitioned and pseudo labels for different images should be distinct. Label assignment is then
equivalent to optimal transport solution which is solved efficiently by the iterative Sinhorn-Knopp
algorithm [28]. Label assignment here is performed batch-wise for each iteration. Similarly, the
network is trained to minimize the cross-entropy loss between current prediction from predictor
and assigned label from Sinhorn-Knopp algorithm [28]. The prototypes in the classifier are
optimized using clustering loss.

5.2.3 Learning

The interpretable face recognition model is trained simultaneously with a recognition loss
and unsupervised clustering loss. The former is a margin-based softmax loss on the final
representation to differentiate identities and the latter is a cross-entropy loss on the routing
vectors to retrieve potential clusters.
Loss functions: The CosFace loss [162] L f r to train face recognition task is described as:

L f r =− 1
N

N

∑
i=1

log
es(cos(θyi)−m)

es(cos(θyi)−m)+∑
M
j=1, j ̸=yi

es(cos(θ j))
, (5.4)

where N denotes the batch size, and M is number of identities. θ j is the angle between i feature
embedding and class center j while yi is i’s associated class label. s is a scale factor, and m is a
marginal factor. Arcface [34] can be also used here. We choose CosFace because Zhu et al. [228]
have proved that when the margin in CosFace is increased to 0.48, its performance is comparable
and some times even better than ArcFace [34].

Clustering loss reduces the cross entropy loss between current classifier’s prediction p(βββ i)

and assigned pseudo label P∗(βββ i) in Section 5.2.2. The formulation is defined as:

Lcls =− 1
N

N

∑
i=1

P∗(βββ i) log(p(βββ i)). (5.5)

Training: The whole network is optimized simultaneously with the above losses with parameter
λ to balance the weight:

L = L f r +λLcls. (5.6)

5.3 Relationship to Previous Work

Dynamic deep neural networks. Unlike standard convolutional neural networks (CNNs) with
fixed structure and weights for any input, dynamic CNNs [75, 66, 141, 30, 87, 165, 178, 221,
189, 25] produce different kernels, widths, or depths adapted to a given input. [75, 66, 141] have
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fed sample’s features into a function to learn individual kernels. Dai et al. [30] have learned
convolutional offset for each example. [87, 165, 178] have learned sample-specific structures by
skipping layers of an existing model. More recently, dynamic convolution with static network
structure but sample-specific weights has gained much attention [221, 189, 25]. Yang et al. [189]
have proposed conditional convolution by mixing the basis filters with sigmoid activated weights
voted by input features. Concurrent work [25] has proposed key optimization tricks to ease the
training difficulty using softmax with large temperature for kernel attention. Our work is inspired
by [25] but we go further to enhance routing vectors’ capacity by proposing dynamic group
convolution. By operating on input segments, the final weight is composed of more basis filters.
We introduce a clustering loss to guide the distribution of routing vectors and experimentally
find that it is attribute related.
Unsupervised clustering: Recently, clustering-based unsupervised representation via jointly
optimizing feature learning and image clustering has gained particular interest[15, 207, 3, 16].
The goal is to construct well-distinguished categories by preventing the assignment of most
images to one or a few clusters. DeepCluster [15] suggests that k-means, considering relative
metrics such as cosine similarity or Euclidean distance, effectively serves as label assignment to
learn category-specific visual representations. Upon observing the phenomenon that DeepCluster
leads to a degenerate solution where all data points mapped to the same cluster, Asano et al. [3]
have added the equipartition label constraint with an optimal transport optimization. These ideas
are further explored in [16], Caron et al. have mapped representations to prototypes and obtain
simultaneous clustering and network update. Our work is closely related to the above. However,
our input to clustering is the sample-specific weights, instead of the final representation itself.
We learn the prototypes (centroids) as an intermediary to assign clusters, through which we
explain the shared facial attributes residing in the networks.
Interpretable face recognition: There has been emerging research on the interpretation of face
recognition models. Visualization of features from CNNs is the most straightforward solution
and serves as a technical tool for diagnosing CNNs representations [187, 17, 205, 224, 172]. For
example, [187] has visualized shape and texture determining the subject identity after training on
a controlled dataset. [172] has generated a network attention map that best explains which regions
in a probe image match a mated image.Other works attempt to explain what resides in the face
template or an intermediate representation. Particularly, they use the performance of predicting
facial attributes with features extracted from hidden layers to indicate how well the attribute is
implicitly learned [113, 114, 112, 151, 37]. Our work seeks to explain the attribute information
residing within the intermediate representation. However, we train our model without introducing
explicit attribute labels. Further, we visualize the learned attributes by examining whether it will
faithfully invert the input image via DeepInversion [199].
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Fig. 5.4 Examples with annotated label ‘01111’, ‘10410’, ‘11122’, ‘00222’ respectively by each
row. For example, ‘10410’ denotes faces with attributes: age in 20-49, female, white, small pitch
angle, and yaw angle ‘> 30’.

5.4 Experiments

5.4.1 Datasets and Pre-processing

Training set: VGGFace2 [13] comprises 3.31M images of 9,131 subjects with large variations
in pose, age, illumination, ethnicity and profession. We randomly selected 0.7M (roughly 80
images per identity) images as our training set. Note that we use the pre-processed version from
ArcFace [34].
Evaluation set: We evaluate the models with two experiments: face recognition performance
on the feature embedding and the clustering analysis on the intermediate representations, feature
vectors and routing vectors. For the face verification experiments, we conduct evaluations on 5
benchmarks following the standard evaluation protocols.

• LFW [59] contains 13,233 images from 5,749 identities. It can be viewed as a milestone
dataset in which images are crawled from the Internet containing variations in pose,
illumination, expression, resolution, etc.

• CFPFP [136] contains 500 subjects, each has 10 frontal and 4 profile images.
• AgeDB [104] contains 12,240 images of 440 identities with age ranges in [1,101].
• IJB-B [171] contains 1,845 subjects (21.8K still images and 55K video frames). In total,

there are 12,115 templates with 10,270 genuine matches and 8M impostor matches.
• IJB-C [100] is an extension of IJB-B [171], containing 3,531 subjects (31.3K still images

and 117.5K video frames). In total, there are 23,124 templates with 19,557 genuine and
15,639K impostor matches.

To perform clustering analysis, we annotate each face image with 5 attributes (gender, age,
race, yaw angle, pitch angle) with the pretrained models provided by FairFace 1 [70] and
RetinaFace [35]. Then, each face is described as a 5 dimensional vector with sequential elements
representing age (‘0-19’:0, ‘20-49’:1, ‘50+’:2), gender (‘female’:0, ‘male’:1), race (’Black’:0,
‘East Asian, Southeast Asian’:1, ‘Indian’:2, ‘Latino Hispanic’:3, ‘Middle Eastern, White’:4),
pitch (‘<−30’:0, ‘> 30’:1, ‘others’:2), yaw (‘<−30’:0, ‘> 30’:1, ‘others’:2). There are 270
cohorts in total but not all individuals are active (see Figure 5.5). We refer to Figure 5.4 with

1https://github.com/dchen236/FairFace
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(a) FairFace (b) CelebA (c) IJBC

Fig. 5.5 Histogram distribution on defined labels across FairFace, CelebA and IJB-C. The label
number simply denotes the ith class of the given dataset. Notice that not all labels have faces
associated with in the current dataset, as the 5-D vector, defining a class, may represent a
combination of properties that doesn’t exist in the current data.

some examples. Further, we perform clustering analysis on the following 4 datasets FairFace[70],
CelebA [96], IJB-C [100] and Sub200. Note that Sub200 is a combination dataset composed of
86 classes with 200 images per class after selecting images from the above 3 datasets. These
3 datasets in total has 86 classes with over 200 images. As is shown in Figure 5.5, all data
distributions of FairFace, CelebA and IJBC are significantly imbalanced across defined labels
(cohorts), thus we collect a balanced dataset.

• FairFace[70] contains 108,501 images labeled with race, gender, and age groups. We
leverage RetinaFace [35] to predict pose (pitch and yaw).

• CelebA [96] is a large-scale face attributes (defined annotations like black hair, sunglasses,
smiling) dataset with over 200,000 celebrity images. The data covers large pose variations
and background clutter. We select images with confidence over 0.5 via FairFace [70] and
then annotate this subset with RetinaFace [35]. In total, we collect 144,875 images.

• IJBC [100] is a popular evaluation dataset for face recognition task. We follow the
procedures as in CelebA and in total collect 224,171 images.

• Sub200 is a combination dataset composed of 86 classes with 200 images per class after
selecting images from the above 3 datasets. Note that these 3 datasets in total have 86
classes with over 200 images. As is shown in Figure 5.5, all data distributions of FairFace,
CelebA and IJBC are significantly imbalanced across defined labels (cohorts), thus we
collect a balanced dataset.

5.4.2 Evaluation Metrics

For verification: We compare the verification-accuracy for identity-pairs on LFW [59], CFP-
FP [136], AgeDB [104]. We also compare a True Accept Rate (TAR) and False Accept Rate
(FAR) 1e−4 on IJB-B [171] and IJB-C [100] following the evaluation setting in ArcFace [34].
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For clustering: We interpret the network by describing, analyzing and discovering implicit
patterns in clusters. To validate clustering consistency with annotated labels, we measure the
performance with the following two metrics:

– Purity evaluates inter-judge agreement in each cluster by calculating the rate between
correctly assigned samples and cluster size. We define a majority class based on 4-5
attributes. A value close to 1.0 indicates a better match.

– AMI (Adjusted Mutual Information) is an improved version of NMI (Normalized Mutual
Information) which is a balanced metric that can be used to determine the quality of
clustering. Note that the limitation of NMI is that it does not have a constant 0 baseline
value for two independent variables. A value close to 1.0 indicates a better match.

5.4.3 Implementation

We follow the publicly available code 2 for implementing and training our models. The baseline
structure is IR-18 described in ArcFace [34]. Models are trained from scratch with an SGD
optimizer, momentum of 0.9, weight decay of 5e−4 and batch size of 512. The initial learning
rate is 0.1 and reduced by a factor of 10 at epoch 16, 20, 24, 28 with total 32 epochs. The input
face size is 112×112. The implementation of clustering methods is modified from public code
3. The model with clustering loss is initialized from the pre-trained model to stabilize its training.
The weight λ is set as 1.0. All models are implemented with PyTorch [119].

5.4.4 Variants and Analysis

For all experiments, we follow the training schedule and hyper-parameters mentioned earlier.
To investigate the effects of individual components of proposed methods, we compare with two
baseline models (BL, DC) and perform ablation studies on its variants (AS1-AS5).
BL is the baseline IR-18 network. In total, it has 4 layers with 2 blocks per layer and two
convolutions per block.
DC denotes DC-IR-18 by replacing standard convolution with dynamic convolution with the
expert number n = 4 in the last three layers of IR-18. It consists of 6 group routing weights
in total after sharing the routing weight in a block. This specific setting of expert number
and position is directly borrowed from [25] and we do not further investigate this as it already
achieves superior performance (see Table 5.2).
AS1:number of prototypes. We train DC with clustering technique Sinkhorn-Knopp by setting
prototype number as 30, 300, 1000 respectively and we get variants AS1:P=30, AS1:P=300,
AS1:P=1000.
AS2:temperature in Softmax. Empirically, as temperature decreases, the output becomes more
sparse. Following AS1, we set the prototype number as 300 with temperature as 0.1 and 15
respectively to get variants AS2:T=0.1, AS2:T=15.

2https://github.com/HuangYG123/CurricularFace
3https://github.com/facebookresearch/swav
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Method
FairFace CelebA IJB-C Sub200

Purity AMI Purity AMI Purity AMI Purity AMI

BL:C=30 25.14 6.50 69.98 15.00 55.57 16.05 21.62 16.95

BL:C=300 34.27 11.71 77.19 18.11 70.52 24.21 44.34 24.37

BL:C=1000 39.75 13.04 70.00 18.28 78.71 29.62 56.88 21.57

DC:C=30 44.68 30.36 74.41 35.32 72.10 39.33 45.10 39.89

DC:C=300 52.11 27.25 77.21 29.48 79.42 37.33 54.47 38.09

DC:C=1000 55.25 23.42 86.71 25.96 82.81 35.88 62.64 28.82

AS1:P=30 49.62 28.89 77.04 36.49 73.24 40.02 46.31 40.87

AS1:P=300 59.49 29.82 84.57 33.02 79.81 39.03 55.31 39.11

AS1:P=1000 60.40 23.85 86.78 28.73 82.40 35.01 63.50 29.35

AS2:T=0.1 18.0 1.0 66.24 2.58 45.15 2.0 6.2 2.2

AS2:T=15 58.71 27.86 83.53 31.14 79.76 37.51 53.92 37.60

AS3:I. 63.60 31.08 87.0 40.0 82.91 41.18 62.40 39.21

AS3:L. 61.20 31.42 85.78 33.71 78.88 36.09 58.57 38.55

AS4 65.53 32.92 87.85 37.35 85.91 43.22 65.16 42.19

AS5 62.84 34.59 88.65 38.08 84.55 42.48 61.95 44.46

Table 5.1 Purity and AMI on FairFace, CelebA, IJB-C and Sub200. BL and DC are clustered
with k-means. AS1-AS5 are clustered with trained classifier.

AS3:projection heads. With clustering loss on the routing vectors, we added a projection head
to map routing vector and then appended a linear classifier with normalized weight to predict
the label. As is mentioned in [44], the projection heads matter the final performance. Here, we
mainly study 3 projection heads including (a) Identity mapping (I), (b) one Linear layer (L),
and (c) multi-layer perceptron (MLP). We get variants AS1:P=300, AS3:I, AS3:L. Note that
AS1:P=300 is trained with MLP by default. The prototype number in AS3 is 300.
AS4:dynamic group convolution. The description is in Section 5.2.1. Specifically, we set
the group number m = 4, the expert number n = 4, double the output channel number, and
then squeeze the channel number back with a 1× 1 convolution. This setting maintains the
performance with similar parameters and flops with DC.
AS5:Different clustering techniques. Note that AS2-AS4 adopt Sinkhorn-Knopp to assign
labels. In AS5, we replace Sinkhorn-Knopp with k-means on AS4.

Table 5.1 and Table 5.2 report clustering performance and face verification performance,
respectively. Note that, in Table 5.1, the results for BL and DC are from offline k-means, and the
rest are from trained classifier on routing vectors. Generally, a larger cluster (prototype) number
consistently increases the purity. After balancing between purity and AMI, we choose cluster
number as 300 and it is also the closest number to cohorts defined by attributes. Therefore, for
AS2-AS5, the cluster (prototype) number is set as 300. The projection layer also matters but
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Method
Verification Evaluation (%)

LFW CFP-FP Age-DB IJB-B IJB-C

BL 99.15 96.07 92.47 87.15 89.99

DC 99.23 96.62 93.45 88.27 90.73

AS1:P=30 99.32 96.61 93.32 88.33 90.92

AS1:P=300 99.32 96.81 93.57 88.20 90.85

AS1:P=1000 99.35 96.77 93.47 88.38 90.84

AS2:T=0.1 99.33 95.52 92.38 87.15 89.96

AS2:T=15 99.23 96.83 93.46 88.46 91.05

AS3:I 99.36 96.40 93.65 88.57 90.81

AS3:L 99.28 96.60 93.06 88.48 90.83

AS4 99.21 96.63 93.20 88.50 91.17

AS5 99.30 96.77 93.75 88.80 91.55

Table 5.2 Verification results on LFW, CFP-FP, AgeDB. 1:1 verification TAR (@FAR=1e-4) on
the IJB-B and IJB-C.

(a) BL:C=300 (b) DC:C=300 (c) AS3:I (d) AS4 (e) AS5

Fig. 5.6 Feature visualization using t-SNE. The features are extracted by two baseline meth-
ods (BL:C=300,DC:C=300) and three proposed variants (AS3:I,AS4,AS5) respectively. For
BL:C=300, features are extracted after last 3 layers. For the rest, features are the routing vectors.
The images are from Sub200 dataset and different colors denote different labels.

the finding deviates from [16], here, the identity mapping alone achieves the best performance.
Besides, we have the following findings:
Dynamic convolution boots recognition performance. As is shown in Table 5.2, DC outper-
forms BL by increasing ∼ 0.1% on LFW, ∼ 0.6% on CFPFP, ∼ 1% on AgeDB, IJB-B, and
IJB-C datasets. Besides, newly introduced clustering loss maintains its superior performance
(see AS1 and AS3 in Table 5.2).
Routing vector reflects the facial attributes. We apply k-means with cluster number 30, 300,
1000 on layers’ output from BL and routing vectors from DC respectively. To be specific, for BL,
we first use the average pooling layer to transform the feature map from the last 3 layers to vector
since their sizes vary from layer to layer and then concatenate them as 128+256+512 = 896
vector as input to K-means. Table 5.1 summarizes the results. DC surpasses BL in all settings,
which indicates routing weights’ ability to capture the facial attributes significantly surpasses
that of network activations (see Figure 5.6(a) and Figure 5.6(b)).
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Fig. 5.7 Unsupervised discovery of facial attribute clustering from routing vectors. The dashed
rectangle is the mean face of each the clusters and the right ones are examples belonging to each
of them. The clusters are assigned by a trained classifier in AS5.

Fig. 5.8 Cosine distance distribution among the k-means centroids calculated from model
DC:C=300 and AS3:I.

Clustering loss increases centroids’ dissimilarity. Intuitively, the distance between centroids
computed by k-means, not only serves as an inter-class similarity but also an indicator of the
feature’s discriminative capacity. Therefore, we follow the given steps to compare routing
vectors from DC and AS1:I. Firstly, we calculate the routing vectors on Sub200 based on DC and
AS1:I respectively. Then, we choose cluster number 300 for k-means on the individual routing
features, assigning samples into 300 disjoint clusters. After obtaining the cluster centroids, we
compute the cosine distance between each pair, and then plot histograms distribution by putting
the similarity list into 100 bins. As we can see from Figure 5.8, the cluster centroids’ similarity
is significantly reduced when we introduce clustering loss in training, which intuitively indicates
the effectiveness of the proposed training paradigm. Moreover, under this setting, the AMI for
AS1 based on annotated labels is 39.59% which is 1.5% higher than DC with 38.09%.
Higher temperature will decrease the discrimination of routing vectors. For AS2, in Table
5.2, we find that too small temperature (0.1 in our case) value will damage the model performance
as it will degrade into training with fewer routes. Besides, the higher temperature will not affect
much on face recognition performance but it will cause the routing vector to soften and in turn
affect its discriminative capacity.
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Longer routing feature increase intra-class similarity. As is shown in Table 5.1, AS4 and
AS5 with a 96-dimensional routing vector consistently increase purity and AMI across 4 datasets
compared with AS1-AS3 with 24 dimensions. It is hard to decide the best candidate between
AS4 and AS5 as in terms of purity, AS4 performs better while in terms of AMI, AS5 is better.
However, it provides the evidence that popular clustering losses generalize well on this task. As
shown in Figure 5.6, the added clustering loss helps increase the intra-class compactness (see
Figure 5.6(b) and Figure 5.6(c)) and the longer routing weights increase inter-class discrimination
(see Figure 5.6(c) and Figure 5.6(d)).

Figure 5.7 presents some examples of centroids of AS5 on Sub200 and assigned images in
each cluster. Note that the learned clusters are highly associated with semantic concepts without
attributes-related supervision. For example, the upper left centroid is white old men with profile
faces.

We term AS5 as CondFace, which is a dynamic group convolution based structure trained
with k-means clustering on its routing weights.

5.4.5 Face Inversion

This section demonstrates the capability of CondFace to effectively synthesize an input image in
terms of attribute preservation and identity preservation. We adopt the network setting from AS5
and BL trained on MS1MV3 [46] to conduct the inversion experiments as experimentally we
found that models trained on smaller dataset like VGGFace2 [13] generates unrealistic faces due
to limited representation ability constrained by training dataset size. Models are trained from
scratch with an SGD optimizer, momentum of 0.9, weight decay of 5e− 4 and batch size of
512. The initial learning rate is 0.1 and reduced by a factor of 10 at epoch 10, 18, 22 with total
24 epochs. The training dataset is MS1MV3 [46]. The weight λ is set as 0.1. All models are
implemented with PyTorch [119].

We follow public code 4 of DeepInversion [199]. We synthesize 112× 112 face images
with batch size 192 using one NVIDIA V100 GPU. All models are optimized using Adam
optimizer with cosine learning rate decay at an initial learning rate 0.25 and optimized 20K steps
in total. Regularization parameters for total variance and ℓ2 norm loss are set as 1e− 3 and
1e−4, respectively. Both identity preservation and routing vector preservation are constrained
by a ℓ2 loss with weights 1.0 and 10.0, respectively.

To quantitatively validate the quality of the inverted images, three metrics are adopted: (1)
structural similarity (SSIM);(2) cosine similarity from ResNet101 trained on MS1MV3; and
(3) face verification accuracy on LFW with ResNet101 trained on MS1MV3). Comparison is
reported in Table 5.3. We observe that CondFace improves performance considerably compared
to BL. It is worth mentioning that the performance of ResNet101 drops 9% on LFW inverted from
BL while only decreases by 2% on that from CondFace. It confirms the effectiveness of CondFace
in image reconstruction. Considering the image value is constrained by batch normalization

4https://github.com/NVlabs/DeepInversion
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Method SSIM Cosine Sim LFW Acc (%)

BL 0.21 0.57 90.09

CondFace 0.30 0.72 97.79

Table 5.3 Structural similarity, cosine similarity and verification accuracy on LFW of baseline
model and CondFace. The cosine similarity and the verification accuracy are evaluated with
ResNet101 trained on MS1MV3. Acc for BL, CondFace, ResNet101 on original LFW are
99.62%, 99.73%, 99.82% respectively.

Fig. 5.9 Face inversion results. The first row is the input image. The second row shows inversion
results from BL and the third row shows inversion results from CondFace. The left 6 columns
are male faces across different ages, faces, and poses while the rest 6 columns are for female.

priors, it is quite understandable that SSIM is not high but CondFace still surpass BL by 0.1%.
Also, the cosine similarity obviously increases from 0.57 to 0.72. Visualization examples are
illustrated in Figure 5.9. We argue routing vectors reduce the ambiguity in generating faces
affected by attributes, especially the pose prior, and therefore produce faithful images. For
instance, the poses are maintained quite well for CondFace while missed in BL in Figure 5.9.

5.5 Conclusion

The main idea of this work is to learn visual attributes with a supervised face recognition loss
and an unsupervised clustering loss. We are the first to analyse and interpret face recognition
through routing vectors in dynamic convolution. This is motivated by the dynamic convolution’s
behaviour in attribute learning. However, we observed the gained distribution is noisy and
scattered. Therefore, we propose to leverage an unsupervised clustering loss to push the routing
vectors to a fixed number of clusters in the feature space without damaging the recognition
performance. Also, we incorporate dynamic convolution into group convolution by considering
the piece-by-piece input prior to enhance routing vectors’ representative ability. In addition,
due to the lack of annotated datasets with desired facial properties, we annotate 3 datasets with
attributes and compare baseline methods and variants both quantitatively and qualitatively on
clustering quality. The experiments verify the effectiveness and efficiency of the proposed
framework. Finally, we also confirm that the routing vector benefits the feature-based face
reconstruction via DeepInversion both visually and quantitatively. The comparison have shown
that image quality with routing vectors is more faithful to the original input. The proposed method
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can be integrated in the “FAN-Face" to interpret its behavior. We argue similar conclusion can
be reached as the inner weights are focusing on facial attributes while the final face embedding
encodes the identification. Besides, once the knowledge distillation in Chapter 4 is explored, we
assume the size of CondFace can be reduced without sacrificing its interpretability.



Chapter 6

Conclusions

6.1 Summary of Thesis Achievements

In this thesis, we have studied the face recognition problem from three aspects including
using face alignment prior to improve face recognition performance by establishing shape
correspondence, improving low capacity student network’s performance with the high-capacity
teacher network by enforcing the similarity of penultimate layer, further boosting student’s
performance with extra unlabeled data, and interpreting the behaviour of face recognition model
by conducting clustering analysis on inner network parameters.

In Chapter3, we have proposed “FAN-Face" which uses features from a pretrained facial
landmark localization network as a location prior to enhance unaligned face recognition per-
formance. Motivated by the situation that facial landmarks provide pose, expression and shape
information, therefore, we investigate to use knowledge of these landmarks for establishing
correspondence among faces by establishing the shape correspondence. Contrary to most current
algorithms which use facial landmarks to do face cropping in order to remove scale, rotation
and translation variations, we propose a simple approach to face recognition which gradually
integrates features from different layers of a facial landmark localization network into different
layers of the recognition network. To the best of our knowledge, we are the first to explore
features from a pretrained facial landmark localization model to enhance face recognition ac-
curacy. In particular, both landmark heatmaps and features from the facial landmark network
are integrated into the face recognition feature extraction process to (a) provide facial pose-,
expression-, and shape-related information, and (b) help establish correspondence for improving
face matching. Besides, we explore various architectural design choices at the network level
to identify the best strategy for integration. The key design is a novel feature integration layer
that is able to effectively integrate the features from the two networks although they are trained
with very different objectives and loss functions. Through extensive experiments on several
face recognition benchmarks including LFW [59], YTF [173], IJB-B [171], IJB-C [100] and
MegaFace [71], we have illustrated how the proposed approach, when integrated with existing
state-of-the-art methods, systematically improves face recognition accuracy for a wide variety of
experimental settings and set a new state-of-the-art on these challenging datasets.
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In Chapter4, we address the problem of model compression via knowledge distillation by
advocating for a method that optimizes the output feature of the penultimate layer of the student
network. The advantage is to directly optimize representation learning. Motivated by the success
of FitNet [129], we firstly propose a direct feature matching approach that focuses on optimizing
the student’s penultimate layer only. However, as feature matching does not take into account
the classification problem at hand by treating all channels in the feature vector equally, we
propose to further decouple representation learning and classification. Specifically, we utilize the
teacher’s pre-trained classifier to train the student’s penultimate layer feature to weight channel
representation. In particular, for the same input image, we wish the teacher’s and student’s
feature to produce the same output when passed through the teacher’s classifier, which is achieved
with a simple L2 loss. The ablation studies on the variants of proposed representation learning
have validated the effectiveness of our method in enforcing teacher-student similarity, reducing
representation distance, improving the quality of feature clustering and boosting transferability
of representation. Another contribution is that we expand the connection of our method with
representation learning and show that it is possible to exploit unlabeled, incurred data to expand
the support used to transfer from the teacher to the student, further boosting the student’s
performance. The rationale behind the knowledge distillation loss on unlabeled data is that the
teacher network trained on labeled datasets is capable of capturing rich relational information
among labels both in class space and feature space. Our method is extremely simple to implement
and straightforward to train and is shown to consistently outperform previous state-of-the-art
methods over a large set of experimental settings including different (a) network architectures,
(b) teacher-student capacities, (c) datasets, (d) domains, (e) tasks. We argue the proposed method
can be employed to enhance low capacity models’ performance in “FAN-Face" by two intuitive
ways. One is to train a high capacity teacher to guide the training of low capacity student and
both the networks are equipped with FAN model. This is a simple instantiation of teacher-present
knowledge distillation. The other is to only assist teacher with FAN model in training while
the student without FAN knowledge is to mimic teacher’s feature representation. By doing so,
student is supposed to learn the shape correspondence from “FAN-Face" based teacher and we
can get a light weight student without FAN model with descent performance.

In Chapter5, we propose to learn visual attributes with a supervised face recognition loss at
the end of the feature extraction network and an unsupervised clustering loss at the middle of
inner parameters. This is motivated by the dynamic convolution’s behaviour in attribute learning.
To the best of our knowledge, we are the first to analyse and interpret face recognition through
routing vectors in dynamic convolution. Also, to enhance routing vectors’ representative ability,
we propose to incorporate dynamic convolution into group convolution in order to consider the
piece-by-piece input prior. However, we observed that the routing vector in dynamic convolution
is capable of partitioning data based on representational attributes but results in a noisy and
scattered distribution. Therefore, we propose to leverage an unsupervised clustering loss to
push the routing vectors to a fixed number of clusters in the feature space without damaging the
recognition performance. Due to the lack of annotated datasets with desired facial properties, we
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annotate three datasets with attributes like gender, age, race, pose. We further compare baseline
methods and variants both quantitatively and qualitatively on clustering quality. The experiments
have validated the effectiveness and efficiency of the proposed framework. Finally, we also
confirm that the routing vector benefits the feature-based face reconstruction via DeepInversion
and both visually and quantitatively comparison have shown that image quality with routing
vectors is more faithful to the original input. This paradigm can also be extended to “FAN-Face"
structure under the unaligned setting. Same conclusion of what is resided in inner weight may be
achieved. Also, the knowledge distillation proposed in Chapter 4 can be used to reduce the model
size by decreasing the channel number per convolution layers but maintaining the interpretability.

6.2 Future Directions

There are plenty of possible directions to explore to extend the research in this thesis.
Data-free face recognition. The success of deep face recognition heavily relies on a large
amount of annotated data. However, it is privacy-sensitive to release these datasets online and
some large datasets like MegaFace have already been withdrawn from the website. Also, some
social media companies have internal datasets to gain high performance but they will not release
them due to lots of concerns. Therefore, it is a problem worth exploring to invert the model
feature to its corresponding face image on the public model. This technique called deep inversion
has been studied in general object classification task but has not been explored in face recognition
task due to its time-consuming optimization. For instance, it takes me around 2 days on 4 V100
GPUS to invert the LFW datasets on the ResNet18 model. It would take several months to invert
whole MS1M datasets. As is found in Chapter 5, the attributes help to improve image quality.
It also accelerates the inversion as the provided attributes reduce the ambiguity in generating a
face. If this problem can be solved, we are able to dissect the datasets from the pre-trained model
then use it to train our model. Therefore, face inversion is a promising topic to link industry and
academy in the face recognition field.
Self-supervised face recognition. Recently, self-supervised learning under contrastive learning
framework gains much attention and has boosted accuracy on ImageNet after improving the
feature representation ability. The proxy task is data augmentation related and targets to narrow
the distance of input after different augmentations. However, so far, few works have explored
this idea in face recognition. The face recognition datasets are align cropped, and only randomly
flipped augmentation is utilized. Although in our “FAN-Face" work, unaligned face is used
instead of aligned version but it is still tightly cropped with less flexibility. Therefore, improving
unaligned loose cropped face recognition performance is a promising topic and self-supervised
learning is beneficial to obtaining augmentation robust face embedding.
Face recognition model training on Long-tail, Noisy and Biased Data. Most currently widely
used training datasets like MS1M, VGGFace2, CASIA, are both breath (large ID numbers) and
depth abundant (sufficient number per ID). To further improve the performance, downloading the
face images based on a pre-defined celebrity list to create a massive dataset is a direct approach.
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However, the final obtained dataset is always limited in depth. For example, there only two
face images for some IDs. This situation is defined as shallow face learning and current face
recognition losses struggle to train well due to lack of intra-class diversity in these IDs. Therefore,
how to select adaptive margin in margin-based softmax loss on shallow training datasets is an
interesting direction.
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