
Palm Tree Detection in UAV Images:
A Hybrid Approach Based on
Multimodal Particle Swarm

Optimisation

Chen Zi Yan

Supervised by:

Dr. Iman Yi Liao (Main supervisor)
Dr. Amr Ahmed (Co-supervisor)

Thesis submitted to the University of Nottingham
for the degree of Doctor of Philosophy

April 2021

Abstract

In recent years, there has been a surge of interest in palm tree detection

using unmanned aerial vehicle (UAV) images, with implications for sus-

tainability, productivity, and profitability. Similar to other object detec-

tion problems in the field of computer vision, palm tree detection typically

involves classifying palm trees from non-palm tree objects or background

and localising every palm tree instance in an image. Palm tree detection

in large-scale high-resolution UAV images is challenging due to the large

number of pixels that need to be visited by the object detector, which is

computationally costly. In this thesis, we design a novel hybrid approach

based on multimodal particle swarm optimisation (MPSO) algorithm that

can speed up the localisation process whilst maintaining optimal accu-

racy for palm tree detection in UAV images. The proposed method uses

a feature-extraction-based classifier as the MPSO’s objective function to

seek multiple positions and scales in an image that maximise the detection

score. The feature-extraction-based classifier was carefully selected through

empirical study and was proven seven times faster than the state-of-the-

art convolutional neural network (CNN) with comparable accuracy. The

research goes on with the development of a new k-d tree-structured MPSO

algorithm, which is called KDT-SPSO that significantly speeds up MPSO’s

nearest neighbour search by only exploring the subspaces that most likely

contain the query point’s neighbours. KDT-SPSO was demonstrated effec-

i

tive in solving multimodal benchmark functions and outperformed other

competitors when applied on UAV images. Finally, we devise a new ap-

proach that utilises a 3D digital surface model (DSM) to generate high

confidence proposals for KDT-SPSO and existing region-based CNN (R-

CNN) for palm tree detection. The use of DSM as prior information about

the number and location of palm trees reduces the search space within im-

ages and decreases overall computation time. Our hybrid approach can be

executed in non-specialised hardware without long training hours, achiev-

ing similar accuracy as the state-of-the-art R-CNN.

ii

List of Publications

The research presented in this thesis has been published in the following

conference and journals:

Conference

1. Chen, Z. Y. and Liao, I. Y. (2019). Evaluation of feature extraction

methods for classification of palm trees in uav images. In 2019 Inter-

national Conference on Computer and Drone Applications (IConDA),

pages 13-18. IEEE. (Best Paper)

Journals

1. Chen, Z. Y. and Liao, I. Y. (2020). Improved fast r-cnn with fusion

of optical and 3d data for robust palm tree detection in high reso-

lution uav images. International Journal of Machine Learning and

Computing, 10(1):122-127.

2. Chen, Z. Y., Liao, I. Y., and Ahmed, A. (2021). Kdt-spso: A multi-

modal particle swarm optimisation algorithm based on k-d trees for

palm tree detection. Applied Soft Computing, 103:107156.

iii

Acknowledgements

My heartfelt gratitude goes to my main supervisor, Dr. Iman Yi Liao,

for her kind advices, suggestions and support during my PhD journey. I

am proud to be under her guidance. I would also like to thank my co-

supervisor, Dr. Amr Ahmed, for his insightful comments and suggestions.

Many thanks go to Dr. Tomas Henrique Maul and my friends in the School

of Computer Science for their motivations and feedback on my research.

I would like to express my sincere appreciation and thanks to my wife,

Ru Chien, for her patience, support, love, and understanding that enabled

me to complete this work. It has been a long journey, we got through

it together, which was spiced up with many extraordinary and exciting

moments. First, we got married at the beginning of the study. Then,

our first baby, Chen Xin, was born prior to my final year review. Next, I

started writing up this thesis during the COVID-19 pandemic, and finally,

our second baby, Chen Tsen, was born just two weeks before my viva.

I am especially indebted to Mr. Goh Kah Joo and Mr. Tey Seng Heng, the

former and current Director of Research of AAR, respectively, for allowing

me the opportunity and time to complete this study. Appreciation to Mr.

Cheah Li Wen and Dr. Goh You Keng for proofreading and editing my jour-

nal articles before publishing. I would also like to thank my AAR colleague,

Yit Kheng, for providing me coffee and cookies while I was carrying out the

iv

research at the office. Finally, a special thank to Advanced Agriecological

Research Sdn. Bhd., Boustead Plantations Berhad, and Kuala Lumpur

Kepong Berhad for the financial sponsorship throughout this study.

v

Contents

Abstract i

List of Publications iii

Acknowledgements iv

List of Tables x

List of Figures xi

List of Abbreviations xvi

Chapter 1 Introduction 1

1.1 Background . 1

1.2 Main challenges in palm tree detection 3

1.3 Objectives of the research 6

1.4 Overview of the methodology 7

1.5 Contributions . 8

1.6 Thesis Structure . 10

Chapter 2 Overview of Palm Tree Detection 13

2.1 Bottom-up approach . 13

2.2 Top-down approach . 15

2.3 Region-based CNN Approach 21

Chapter 3 Evaluation of Feature Extraction Methods

for Classification of Palm Trees 24

3.1 Introduction . 24

3.2 Methods . 25

3.3 Results and Discussion . 39

3.4 Dimensionality reduction of LBP features 44

vi

3.5 Summary . 47

Chapter 4 Improved Multimodal Particle Swarm Opti-

misation Algorithm 50

4.1 Introduction . 50

4.2 Background . 51

4.3 Optimising SPSO using k-d tree structure 55

4.4 Benchmark functions and experiment settings 64

4.5 Summary . 71

Chapter 5 Application of KDT-SPSO for Palm Tree De-

tection 73

5.1 Introduction . 73

5.2 Methods . 74

5.3 Optimising KDT-SPSO’s parameters for palm tree detection 79

5.4 Evaluation of KDT-SPSO’s performance on test images . . . 81

5.5 Results and discussion . 86

5.6 Summary . 96

Chapter 6 Integration of Digital Surface Model (DSM)

into Palm Tree Detection Framework 97

6.1 Introduction . 97

6.2 Background . 98

6.3 Integration of Digital Surface Model (DSM) into KDT-SPSO 100

6.4 Integration of DSM into region-based CNN (R-CNN) 108

6.5 Summary . 118

Chapter 7 Summary and Future Work 120

7.1 Evaluation of feature extraction methods for classification of

palm trees . 120

7.2 Improved multimodal particle swarm optimisation algorithm 122

7.3 Application of KDT-SPSO for palm tree detection 123

vii

7.4 Integration of digital surface model (DSM) into palm tree

detection framework . 124

Bibliography 126

viii

List of Tables

3.1 Details of the AlexNet architecture 30

3.2 Details of the feature extractors and classifiers tested in the

study . 32

3.3 Sources of the library used for feature extraction 37

3.4 The quantitative accuracy assessment results of different palm

tree extraction approaches 40

3.5 Comparison of accuracy and computation runtime of LBP

features before and after dimensionality reduction. 47

4.1 Test functions. 65

4.2 Parameters and criteria for test functions. 66

4.3 Comparison of average number of evaluations (ANE). . . . 68

4.4 Comparison of computation time (CT) in seconds. 69

4.5 Comparison of success rate (SR). 71

4.6 Comparison of peak ratio (PR). 71

5.1 Experimental results with respect to the performance of KDT-

SPSO with different levels of POPsize and POPmax on the

test image based on 50 independent runs. 81

5.2 Description of the methods tested in our palm tree detection

experiment. 86

5.3 Comparison of recall rate obtained by different methods on

UAV images (%). 87

5.4 Comparison of precision rate obtained by different methods

on UAV images (%). 89

ix

5.5 Comparison of F1-Score obtained by different methods on

UAV images (%). 90

5.6 Comparison of runtime (s) 92

6.1 Comparison of performance between KDT-SPSO and KDT-

SPSO+D on the first 3 set of large-scale images 105

6.2 Comparison of performance between KDT-SPSO and KDT-

SPSO+D on additional 25 images of 500 × 500 pixels. . . . 107

6.3 Comparative results between Faster R-CNN, our approach,

and Yolo in respective to recall ,precision, F1-score, and de-

tection time in three study areas 114

6.4 Comparative results between Faster R-CNN and our ap-

proach based on AlexNet backbone. 115

x

List of Figures

1.1 This figure shows the overview of our methodology in design-

ing an efficient method for palm tree detection. The yellow

boxes indicate the components that are integrated into our

hybrid approach. The k-d tree structure is implemented to

improve the overall performance of the multimodal PSO al-

gorithm. 9

2.1 The SIFT key points extracted from a mature palm area

where the canopies are heavily overlapped following the method

proposed by Malek et al. (2014). The grouping of points

with similar properties into different clusters representing

individual palms is difficult using the bottom-up approach. . 15

3.1 Transformation of pixel values into gradient information us-

ing HOG feature extractor 26

3.2 Transformation of pixel values into binary digit using LBP

feature extractor . 27

3.3 The sample of 128 feature descriptors computed by SIFT

operator in the region of one point 28

3.4 Architecture of AlexNet used in this study 31

3.5 Examples of the Haar-like features used in the experiment . 35

3.6 Training accuracy of the proposed AlexNet model 36

3.7 Training samples used in the study. 37

3.8 Comparison of performance between feature extractors, av-

eraging over different classifiers 42

xi

3.9 Comparison of performance between classifiers, averaging

over different feature extractors 43

3.10 Comparison of computation time between feature extractors,

averaging over different classifiers 44

3.11 Comparison of computation time between classifiers, aver-

aging over different feature extractors 45

3.12 Cross-validation performance against the number of LBP

features used for classification 46

4.1 The chart on top (a) and the tree graph at the bottom (b)

show how a two-dimensional space is structured using the

k-d tree. The blue dots in the chart represent data points

and also correspond to the tree nodes subdividing the space

into two regions. The black vertical lines correspond to the

splits in the x-axis while the red horizontal lines correspond

to the splits in the y-axis. The space is split along a different

dimension at each level of the tree. The points with lower

values than the split node in the corresponding axis are par-

titioned into the left/bottom subspace, while the points with

higher values will be partitioned into the right/upper sub-

space. The deeper the level of the splits, the thinner the line.

The splitting procedure is repeated until each data point is

transformed into a node. 60

xii

4.2 The chart on top (a) and the tree graph at the bottom(b)

show how nearest neighbour search is performed using the

k-d tree. The blue dots in the chart represent data points,

which also correspond to tree nodes subdividing the space

into two regions. The black vertical lines correspond to splits

in the x-axis while the red horizontal lines correspond to

splits in the y-axis. To find the neighbours of P7 (red dot),

the algorithm only needs to evaluate P16, P19, P7, P6, P8,

and P9 (yellow dots). The yellow nodes in the tree graph in-

dicate visited nodes while the grey nodes indicate eliminated

nodes that are not visited. 61

4.3 Comparison of computation time of three different algorithms. 70

5.1 Pictorial description of the KDT-SPSO algorithm for palm

tree detection. 77

5.2 Flowchart of the proposed KDT-SPSO algorithm for palm

tree detection. 78

5.3 Effect of POPsize and POPmax on SR and ANE. 82

5.4 F1-score results against different levels of NMS’s overlap ra-

tio. 83

5.5 F1-score results against different levels of QUBO’s overlap

ratio. 85

5.6 Test images showing results of KDT-SPSO detection. The

blue circles indicate detected palm trees. The red circles

indicate false positives while the yellow circles indicate false

negatives. The images are best viewed in colour. 94

xiii

5.7 Snapshots of the KDT-SPSO’s searching process at 1st, 5th

and 20th iteration, respectively in Image 1 (a-c), Image 2(d-

f), Image 3 (g-i), and Image 4 (j-l). The red asterisks indi-

cate particles, the blue asterisks indicate species seeds while

the blue circles indicate detected canopy sizes. The canopy

diameter corresponds to the width of the image patch. The

red circles in Image 4 indicate false positives. The images

are best viewed in colour. 95

6.1 3D representation of palm trees 98

6.2 The deliverables of the SfM photogrammetric process from

sequences of overlapping UAV images. The blue colour in

the resultant DSM represents a lower elevation value 100

6.3 The 4-connected regional maxima operator that is used to

identify potential palm tree proposals in the experiment . . . 101

6.4 The three large-scale UAV images used in testing the effect

of integrating DSM into palm tree detection pipeline. 102

6.5 The 25 additional small-scale UAV images of 500 × 500 pix-

els each used in testing the effect of integrating DSM into

palm tree detection pipeline 104

6.6 Test images showing results of KDT-SPSO (left column) and

KDT-SPSO+DSM (right column) detections. The blue cir-

cles indicate detected palm trees. The red circles indicate

false positives while the yellow circles indicate false nega-

tives. The images are best viewed in colour. 106

6.7 Comparison of the initial proposals (red asterisk) generated

by KDT-SPSO(a) and KDT-SPSO+D(b). 106

6.8 Architecture of the proposed method used in this experiment.112

xiv

6.9 Test images showing results of Faster R-CNN (first column),

our approach (second column) and YOLO (third column).

The blue circles indicate detected palm trees. The red circles

indicate false positives while the yellow circles indicate false

negatives. The images are best viewed in colour. 114

6.10 Comparison of palm detection F1 score with respect to dif-

ferent image dimensions. 116

6.11 Comparison of palm detection speed with respect to different

image dimensions. 117

xv

List of Abbreviations

ACO Ant colony optimisation
ALS Airborne laser scanning
ANE Average number of evaluations
CHM Canopy height model
CNN Convolutional neural network
Conv Convolutional layers
CT Computation time
DE Differential evolution
DOG Difference of Gaussians
DSM Digital surface model
DTM Digital terrain model
ELM Extreme learning machine
FC Fully-connected layers
FN False negative
FP False positive
GA Genetic algorithm
HOG Histogram of oriented gradients
ILSVRC ImageNet Large-Scale Visual Recognition Challenge
IoU Intersection over Union
KDT-SPSO Improved SPSO based on k-d trees
KDT-SPSO+D Improved KDT-SPSO with DSM
LBP Local binary patterns
LBP(SVMRBF) LBP features trained with SVMRBF
LBP(SVMRBF)-R Selected LBP features trained with SVMRBF
LM Local maximum
MMO Multimodal optimisation
MNE Maximum number of evaluation
NIR Near-infrared
NMS Non-maximal suppression

xvi

NNS Nearest neighbour search
PR Peak ratio
PSO Particle swarm optimisation
QUBO Quadratic unconstrained binary optimisation
r3PSO PSO based on ring topology
RBF Radial basis function
R-CNN Region-based convolutional neural network
RF Random forest
RGB Red, green, Blue
RoIs Region of interests
RPN Region proposal network
SA Simulated annealing
SfM Structure-from-motion
SGD Stochastic gradient descent
SIFT Scale-invariant feature transform
S-NMS Sampling approch and final selection using NMS
SPSO Species-based particle swarm optimisation
S-QUBO Sampling approach and final selection using QUBO
SR Success rate
SS Selective search
SSD Single Shot Multibox Detector
SVM Support vector machine
SVML Support vector machine with linear kernel
SVMRBF Support vector machine with radial basis function kernel
SW Sliding window approach
TP True positive
UAV Unmanned aerial vehicle
VJ Viola-Jones algorithm
YOLO You Only Look Once

xvii

Chapter 1

Introduction

1.1 Background

Oil palm (Elaeis guineensis) is widely grown in the tropics especially in

Malaysia and Indonesia due to its economic importance as the highest

yielding oil crop and most consumed vegetable oil in the world (USDA-FAS,

2020). Accurate palm density records are crucial for estate managers to

project yields and estimate the number of resources required, particularly

fertiliser cost estimation, which accounts for approximately 24% of the

total production cost (Goh et al., 1999). It is common practice to obtain

palm tree records by manual inspection on the ground, which is laborious,

costly, and error-prone. The results obtained from the manual counting is

also difficult to be verified.

Due to the technological advancements, the use of remote sensing images

provides a practical means for large-scale plantation management and veg-

etation monitoring. Palm counting is one of the estate operations that

benefits from the use of remote sensing technologies. The detection of

palm trees and other features on the ground can be automated through

1

1.1. BACKGROUND

the application of image processing and machine learning techniques on

the imageries. The need for physical counting on the ground can be par-

tially or completely eliminated while the speed of counting can also be

accelerated with the help of remote sensing images. Space-borne remote

sensing data captured from IKONOS, Landsat, SPOT, and RapidEye are

commonly used in the agricultural sector as they have high discrimination

power to differentiate various objects on the ground due to the multispec-

tral sensors mounted on the satellites. However, the images taken with

satellite-borne sensors are often interrupted by clouds, which is the ma-

jor problem encountered in the tropics. The usage of small and low-cost

unmanned aerial vehicles (UAVs) has received wide attention as an alter-

native to satellite-borne sensors to monitor large scale oil palm plantations

(Rokhmana, 2015). Hence, this research focuses on palm tree detection in

UAV images.

The task of palm tree detection in UAV images has been performed sim-

ilarly to other object detection problems in the field of computer vision,

such as face detection, human detection, or vehicle counting, by scanning

a multi-scale rectangular detector across the input image to exhaustively

search for the locations and scales that likely contain instances of specific

object. Though it is technically simple, its application in large-scale UAV

images for palm tree detection remains the biggest challenge. It is com-

putationally expensive to evaluate a large number of image pixels without

prior knowledge of the size and location of objects. For example, a UAV

image that covers a medium-sized plantation of about 1,000 ha can be made

up of 100,000,000×100,000,000 pixels, which is much larger than the size

of a high-resolution photo captured using an ordinary camera.

2

1.2. MAIN CHALLENGES IN PALM TREE DETECTION

1.2 Main challenges in palm tree detection

Various heuristics have been devoted to improving the efficiency of the ex-

haustive searching process, i.e., reducing the computation required for each

extracted region and/or the number of regions Nguyen et al. (2016). The

first method aims at filtering out non-object regions as early as possible.

For example, Li et al. (2019) proposed multiscale CNN models where the

first CNN model was used to extract potential palm tree regions at coarse

resolution. The second CNN model was used to search for individual palm

trees at finer resolution. Despite the filtering process, its efficiency degrades

significantly for palm tree detection, where the area of interest usually oc-

cupies a large image ratio. On the other hand, the second method aims to

reduce the number of function evaluations required in an image, which is

performed by searching an image over a coarse grid or oversampling many

proposals on the image, and selecting the best subset of them. As palm

trees are densely planted in plantation, this will inevitably increase the

risk of completely missing the objects. Given the limitations of exhaustive

searching and subsampling strategies, the multimodal optimisation (MMO)

approach that utilises bioinspired optimisation algorithms seems to be the

best solution to locate objects in an image with speeded up localisation pro-

cess without compromising the accuracy. Despite the success achieved by

MMO algorithms with species-based particle swarm optimisation (SPSO)

(Parrott and Xiaodong Li, 2004) as one of the most outstanding and influ-

ential methods, they were still inefficient due to the repetitive Euclidean

distance calculations needed in their integrated nearest neighbour search.

Recently, state-of-the-art object detection methods that predict bounding

boxes’ locations using region proposal network (RPN) have also widely

been applied, such as Faster R-CNN (Ren et al., 2015), YOLO (Redmon

et al., 2015), SSD (Liu et al., 2015), and their variants. These region-

3

1.2. MAIN CHALLENGES IN PALM TREE DETECTION

based convolutional neural networks (R-CNN) take an input image, scale

it down to a predefined size, and divide it into multiple non overlapping

regions. Then, they classify the presence of an object in each region and

regress the location and size of the object’s bounding box in the region

simultaneously without the need for a greedy search. However, it is well

known that the training phase of the deep learning model is the most

resource-intensive task, which requires high performance computing infras-

tructure to efficiently learn models (Zhang et al., 2019; Chen et al., 2019).

Specialised hardware with high computing power may not be feasible for

the small plantation holders on a restricted budget. For example, a high-

performance computer equipped with Intel i9 CPU, Geforce RTX 24GB

GPU, 2TB SATA HDD, and 64GB memory will cost about RM 17,000. Al-

though R-CNNs can achieve high detection accuracy, extraordinarily large

amounts of labelled images are needed, with each manually annotated by

humans, which requires a significant amount of time, energy and money.

Since each sub-region of a plantation has its environmental features, a site-

specific model has to be developed for different sub-regions, which involves

repetitive works. Otherwise, the model performance will deteriorate if the

same model is applied across different areas (Zheng et al., 2021). Further-

more, directly applying the R-CNN method to detect small objects like

palm trees in remote sensing images usually renders unsatisfactory perfor-

mance mainly due to the coarseness of its feature maps (Kong et al., 2016;

Ren et al., 2018).

Accurate and timely palm tree records are important for estate managers

to make a decision particularly on fertiliser procurement. Under normal

circumstances, the managers are given a year’s time to update the palm

records of their estates before fiscal year-end. However, in extreme cases,

they are only given a few weeks’ time to confirm the updated palm records

to secure a fertiliser contract with the best price (personal communication,

4

1.2. MAIN CHALLENGES IN PALM TREE DETECTION

2021). As such, there is a need to improve the efficiency and accuracy of the

existing object detection algorithms to cater to the palm tree detection task

in large-scale high-resolution UAV images. The computation cost scales up

exponentially with image size. More specifically, the challenges of palm

tree detection in UAV images can be characterised by the following:

1. The existing feature extractors were not designed specifically for palm

tree detection. This may cause potential performance deterioration

if applied to the data that was not encompassed in the initial design.

Also, the more complex extractors will usually yield higher accuracy,

but take more computation time than the less complex ones.

2. Objection localisation in the object detection pipeline is the most

time consuming process as the detector has to scan through the en-

tire image to locate all objects and at multiple scales. The typical

exhaustive sliding window approach requires high computation cost,

while the subsampling method will result in a high missing rate. On

the other hand, the multimodal optimisation approach, which is the

middle way of both approaches, is inefficient due to its exhaustive

nearest neighbour search mechanism.

3. The parameters defined in bioinspired algorithms are problem depen-

dent, the same set of parameters may not be suitable for another set

of problems. Using the parameters blindly for palm tree detection

may result in low accuracy. In addition, the efficiency of bioinspired

algorithms is largely affected by the number of population/possible

solutions that need to be evaluated. Finding the optimum population

for specific problems is a non-trivial task as too many of them will

increase computer burden, too few of them will increase the missing

rate.

5

1.3. OBJECTIVES OF THE RESEARCH

4. The modern CNN models achieve state-of-the-art performance at the

expense of extensive collection of labelled data and high-performance

computers. These data need to be prepared and checked by one

or more experts, which is costly and time-consuming. The high-

performance computer is normally not available in plantations, espe-

cially for smallholders.

1.3 Objectives of the research

The general objective of this thesis is to design an approach that can speed

up the localisation process whilst maintaining optimal accuracy for palm

tree detection in UAV images. The following specific objectives were set to

address the challenges articulated in Section 1.2:

1. To select the best performing feature extraction and classification

methods in terms of speed and accuracy for palm tree classification.

2. To improve the efficiency of the existing multimodal species-based

PSO (SPSO) algorithm’s nearest neighbour search mechanism.

3. To optimise the model parameters of the improved SPSO for palm

tree detection.

4. To enhance the computation speed and detection accuracy of the

developed method.

5. To improve the performance of the existing R-CNN models for palm

tree detection.

6

1.4. OVERVIEW OF THE METHODOLOGY

1.4 Overview of the methodology

In order to accomplish the research objectives stated in Section 1.3, the

methodology illustrated in Figure 1.1 was implemented. Since our research

aims to design an efficient method that can be executed in non-specialised

hardware for palm tree detection, we mainly focused on the top-down classi-

cal approach that involves model construction and localisation stages. The

details of the approaches are further discussed in Chapter 2. In the object

detection framework, the performance of object classifier is crucial to en-

sure that all palm tree instances are correctly classified in the input image.

First of all, we evaluated the performance of classical human-engineered

feature extractors, namely HOG, LBP, and SIFT, requiring lower com-

puting cost against the state-of-the-art CNNs approaches requiring higher

computing cost. The best performing feature extractor and classifier com-

bination were further enhanced by means of the feature selection approach.

The optimised feature-extraction-based classifier is served as the objective

function for the multimodal PSO algorithm.

Next, we delved into the localisation stage that targets detecting all palm

tree instances in an input image. The classical greedy search approach

is computationally expensive, while the subsampling approach may result

in high missing and error rates. We resolved in multimodal optimisation

approach, which is the middle way of both that maintains speed and accu-

racy. We leveraged the multimodal species-based PSO (SPSO) algorithm

as the main framework for our study. However, in the original SPSO algo-

rithm, and other multimodal optimisation algorithms, distance calculations

must be performed for all particle pairs at every iteration to find the query

points’ nearest neighbours, which was typically carried out by an exhaus-

tive naive search technique. We introduced a special tree-based structure,

called the k-d tree, to speed up the nearest neighbour search. The improved

7

1.5. CONTRIBUTIONS

SPSO, KDT-SPSO, was tested on several benchmark functions to prove its

generality in solving multimodal optimisation problems.

Then, we applied KDT-SPSO in actual palm tree detection. Prior to this,

we optimised KDT-SPSO’s parameter settings for the palm tree detection

task through a set of factorial experiments. We introduced a restart mech-

anism to speed up its convergence and improve the recall rate. The best

performing feature-extraction-based classifier was selected for the KDT-

SPSO’s objective function to seek the best set of object proposals that

maximised the classification score. KDT-SPSO’s performance was evalu-

ated and compared with the greedy search and subsampling approaches.

Lastly, we extracted a set of high confidence object proposals from digital

surface model (DSM) using the regional maxima image processing operator

and passed the extracted proposals to the KDT-SPSO framework for opti-

misation. This strategy further enhanced the performance of KDT-SPSO

by reducing the computation cost and false detection rate. We also used

the same methodology to extract and incorporate the high confidence ob-

ject proposals into the Fast R-CNN framework to test the applicability of

DSM in other object detection frameworks. We compared the performance

of all approaches.

1.5 Contributions

The major contributions resulting from the research can be summarised as

follows:

1. We established the best combination of feature extractor and classifier

for palm tree classification through empirical study and feature selec-

tion approach. The comparison in this study also provided us with

8

1.5. CONTRIBUTIONS

Figure 1.1: This figure shows the overview of our methodology in designing
an efficient method for palm tree detection. The yellow boxes indicate
the components that are integrated into our hybrid approach. The k-d
tree structure is implemented to improve the overall performance of the
multimodal PSO algorithm.

a better understanding of the advantages and limitations of each ap-

proach (Chapter 3). The main findings have been published in Chen

and Liao (2019).

2. A novel algorithm that incorporated k-d tree framework into mul-

timodal PSO was proposed to reduce the nearest neighbour search

complexity. The framework can be integrated into other multimodal

algorithms requiring distance evaluations (Chapter 4). The main

findings have been published in Chen et al. (2021).

9

1.6. THESIS STRUCTURE

3. For the first time, we formulated the palm tree detection problem as

multimodal optimisation problem and applied the improved multi-

modal PSO (KDT-SPSO) to solve the palm tree detection problem.

Compared to Al-Ruzouq et al. (2018), who applied ant colony optimi-

sation (ACO) algorithm to select the most significant features from

aerial images to detect palm trees through an image segmentation ap-

proach, our study applied the PSO algorithm to solve the palm tree

localisation problem directly without involving the image segmenta-

tion process. We also introduced a modified restart mechanism into

KDT-SPSO to avoid premature convergence. The optimum parame-

ter settings of KDT-SPSO obtained through our empirical study can

be reused in new images. Our approach is also applicable to other

types of object detection (Chapter 5). The main findings have been

published in Chen et al. (2021).

4. We introduced a novel approach that incorporated high confidence

object proposals generated from the 3D digital surface model (DSM)

into KDT-SPSO’s initialisation process to reduce computation cost.

We demonstrated that our approach could achieve state-of-the-art

accuracy without the need for specialised hardware, as is the case in

region-based CNNs (Chapter 6).

5. We also presented the fusion of DSM into Fast R-CNN region-based

CNN, for the first time, for palm tree detection in Chapter 6. The

main findings have been published in Chen and Liao (2020).

1.6 Thesis Structure

The thesis is structured as follows to address the problems:

10

1.6. THESIS STRUCTURE

1.6.1 Chapter 2

This chapter provides, in general, the approaches used in object detec-

tion focusing on palm tree detection. It briefly describes the advantages

and limitations of each approach, which provide the interest area of this

research.

1.6.2 Chapter 3

This chapter comprehensively investigates feature extraction methods and

classifiers for palm tree classification. This is a vital process as the perfor-

mance of the selected classifier affects the accuracy of palm localisation in

the later stage.

1.6.3 Chapter 4

This chapter introduces a special binary search tree, called the k-D tree,

into the PSO algorithm that significantly improves the efficiency of the

nearest neighbour search. The improved algorithm, called KDT-SPSO,

is evaluated on several benchmark functions against other competitors to

prove its applicability in solving multimodal optimisation problems.

1.6.4 Chapter 5

This chapter presents the application of KDT-SPSO in palm tree detection.

The parameters of KDT-SPSO is fine-tuned through empirical study to find

the optimal parameter settings for palm tree detection in UAV images.

The optimised KDT-SPSO is statistically tested on 25 test images, and its

performance is compared with the greedy and subsampling approaches.

11

1.6. THESIS STRUCTURE

1.6.5 Chapter 6

This chapter explains the integration of DSM in KDT-SPSO to generate

high confidence proposals to speed up convergence speed and improve ac-

curacy. It also presents how DSM is fused into the Fast R-CNN model.

The performance of all approaches is compared and detailed.

1.6.6 Chapter 7

This chapter briefly discusses the general summary and conclusions drawn

from each chapter, and gives directions for future work.

12

Chapter 2

Overview of Palm Tree

Detection

This chapter aims to provide an overview of image processing, computer

vision, machine learning, and CNN techniques that are commonly used in

palm tree detection. As with any other problem of object detection in an

image, palm tree detection involves two key tasks: (1) to detect the pres-

ence of palm tree in an image and (2) to locate accurately all instances

of palm tree in the image regardless of scale, pose, view points, occlusions

and illumination changes, which can be performed by either bottom-up or

top-down object detection strategy.

2.1 Bottom-up approach

Traditionally, palm tree detection has been performed using bottom-up ap-

proaches, which involve image segmentation in the first step by separating

foreground and background pixels. The foreground pixels are annotated

13

2.1. BOTTOM-UP APPROACH

by the object label, and they are grouped into segments with homogenous

properties such as colour, texture, and intensity to form object propos-

als representing object of interest, e.g. trees, humans, buildings, vehicles,

etc. We call this strategy a bottom-up approach because object detection

starts from the low-level features (pixels) to higher-level features (regions).

Image processing techniques such as region-growing, watershed transform,

clustering algorithm, active contour method, morphological operators, etc.,

are often applied to split or merge the image pixels during the palm tree

detection process (Bazi et al., 2014; Daliman et al., 2014; Chemura et al.,

2015; Shafri et al., 2011; Mansoori et al., 2018; Santoso et al., 2016). The

main advantage of bottom-up approaches is that the shape or boundary of

the object can be demarcated in a more representative way. The process of

classifying image pixels into different categories/labels and clustering them

to represent objects remains one of the most common research questions in

image processing (Chouhan et al., 2019). Since there is no universal seg-

mentation solution for all kinds of images and every image can be segmented

intuitively using different segmentation techniques, domain specific knowl-

edge must be used to tackle each problem effectively (Zaitoun and Aqel,

2015). Also, it is challenging to delineate objects with arbitrary shapes,

and extract objects in a cluttered and noisy background, such as trees and

bushes (Hossain and Chen, 2019). The effect of shadows, the fuzziness of

tree canopy, an overlapping crown will affect the segmentation accuracy.

Another bottleneck is the lack of discrimination power to distinguish palm

trees and background by using UAV images. UAV images usually consist of

only red, green, blue (RGB), and/or near-infrared bands (NIR), which are

far less than the multi-spectral or hyper-spectral bands offered by satellite

images. This approach is most suitable in areas where the colour of the

object of interest is significantly different from the background, otherwise,

it will be challenging to group the pixels into separate regions to represent

14

2.2. TOP-DOWN APPROACH

Figure 2.1: The SIFT key points extracted from a mature palm area where
the canopies are heavily overlapped following the method proposed by
Malek et al. (2014). The grouping of points with similar properties into
different clusters representing individual palms is difficult using the bottom-
up approach.

the object as shown in Figure 2.1.

2.2 Top-down approach

Due to the advent of machine learning and deep learning techniques, palm

tree detection have shifted from bottom-up towards top-down approaches.

Top-down approaches typically comprise of model construction stage and

localisation stage. In the model construction stage, a set of salient features

are extracted from training images of different object classes (e.g. palm

trees and non-palm trees) using feature extraction techniques. These fea-

tures define the raw images using small representative numerical data. The

extracted features are passed to a machine learning algorithm to build a

model that can classify different image categories. The localisation stage is

basically where the trained model is applied on a new input image to find

the instance(s) of a known object in the image that best matches the model.

Instead of using the tedious image processing techniques to group image

pixels to form object proposals, the top-down approach assumes that an

15

2.2. TOP-DOWN APPROACH

object is bounded in a rectangular box, and the box with a high confidence

score likely contains the object of interest.

2.2.1 Model construction stage

The features used in the learning stage can be broadly categorised into

traditional human-engineered features, and convolutional neural network

(CNN) extracted features. Human-engineered methods utilise colour his-

togram, gradient, intensity, and textures, such as histogram of gradient

(HOG) (Dalal and Triggs, 2005), local binary patterns (LBP) (Ojala et al.,

2002), scale-invariant feature transform (SIFT) (Lowe, 1999), and Haar-like

rectangle features(Viola and Jones, 2001), for example, to represent the ap-

pearance of the object of interest and used on top of strong classifiers such

as SVM, extreme learning machine (ELM), random forest (RF), AdaBoost,

logistic regression, among others for learning. Earlier work on these was

based on the template matching technique (Briechle and Hanebeck, 2001),

aiming to match the region in the input image with the highest cross-

correlation coefficient with the given image patch. Although template

matching is easy to be implemented, it is very sensitive to scale, orien-

tation, occlusion, and illumination that affect how an object appears in the

image. The modern human-engineered techniques involve using feature

extractors to extract salient information invariant to the changing image

conditions for matching. For example, Malek et al. (2014) first extracted

scale-invariant feature transform (SIFT) keypoints of date palms from UAV

image and trained an extreme learning machine to classify these features

into palm and non palm categories. In Manandhar et al. (2016), a shape

feature called circular autocorrelation of the polar shape matrix was used

to represent palm tree in UAV images and SVM was applied for classifica-

tion. Similarly, histogram of gradients (HOG) (Wang et al., 2019), local

16

2.2. TOP-DOWN APPROACH

binary patterns (LBP) (Rueda et al., 2016) and Haar-like features (Dal-

iman et al., 2016) were used to extract shape and texture features from

satellite or UAV images and achieved up to 100% detection accuracy, es-

pecially in young palm areas. The challenges in traditional methods are

the need for good design for feature extractors and fine-tuning the model

parameters during training. The results are also variable depending on the

choice of classifiers. The feature extractor and classifier should be based on

the problem domain as there is no single best combination that can solve

the universal problem.

Different from traditional methods, CNNs can learn data representation

through multiple processing layers without the user having to go through

the complex feature engineering stage. The key difference of both ap-

proaches is the method used to extract features, i.e. the vector of param-

eters that represent input images. The features used in human-engineered

approaches are created by experts while the features used in the CNN ap-

proach are derived from training data through CNN learning. One of the

earliest CNN models was introduced by LeCun et al. (2015). The features

extracted from CNN approaches can either be passed to SVM or SoftMax

(Multinomial Logistic Regression) for classification. Although both classi-

fiers perform similarly, most CNNs incorporate SoftMax into their models

because SoftMax maps the networks’ output into probability about the in-

put data, which is easily understandable by the users (Qi et al., 2017). On

the other hand, SVM maps the networks’ output in the form of distance to

the decision hyperplane, which has no physical meaning to the users. The

use of CNN-based features for palm tree detection has been widely reported

(Cheang et al., 2017; Mubin et al., 2019; Li et al., 2017). Although CNN-

based feature extraction methods reduce the need for human intervention

in the feature designing stage, CNNs require higher computer capacity to

run complex models, a long training time, and a large amount of training

17

2.2. TOP-DOWN APPROACH

data to achieve high accuracy.

2.2.2 Object localisation stage

In the object localisation stage, the trained feature-based classifier is ap-

plied to check whether the object of interest is present in the input image.

The search strategy can be categorised into an exhaustive sliding window,

subsampling, and multimodal optimisation approach.

Exhaustive sliding window approach

The sliding window is the most commonly used and typical approach to

locating objects in an input image due to its simplicity. Objects can be lo-

cated at any position and scale in the image. The sliding window detector

is run at multiple scales and locations to generate sub-windows represent-

ing object proposals. Feature-based classifier is then applied to check the

presence of the object in each of the sub-windows. The sliding window ap-

proach is computationally prohibitive because it will generate many object

proposals, particularly in high-resolution UAV images. Determining the

parameters of the windows is a non-trivial task as the size and stride of

the moving window will affect the recognition accuracy. If the window size

and stride are too large, it may increase the risk of missing out on objects,

which sacrifices the accuracy to achieve acceptable speed. In contrast, if

the moving size is too small, it may increase the risk of false detections and

computation costs.

18

2.2. TOP-DOWN APPROACH

Subsampling approach

On the contrary, instead of searching for proposals systematically on an

image, subsampling approaches select a subset of object proposals that

are largely and randomly generated on the input image. Then, the sim-

ple yet efficient non-maximal suppression (NMS) is typically used to select

high-quality proposals and discard those with low quality. Some studies

proposed to use optimisation algorithms such as branch-and-bound (Lam-

pert et al., 2008), quadratic unconstrained binary optimisation algorithm

(QUBO) (Pham et al., 2016; Li and Ghosh, 2020), simulated annealing

(Ge and Collins, 2009), among others, to select the best proposals by max-

imising the quality function whilst QUBO was claimed to be the best per-

forming algorithm. However, the subsampling approach encounters similar

issues as the sliding window approach. The initial sample size has to be

large to encompass all objects with variable sizes present in the image. If

the sample size is small, it will also have the risk of not detecting the object.

Multimodal optimisation approach

Suppose an image is described as a three-dimensional parameter space

formed by all possible 2D coordinates and scales at which an object might

be present. In that case, object localisation can be formulated as a mul-

timodal optimisation (MMO) problem that seeks multiple positions and

scales in an image that match the detector the best (maximum score).

Unlike the subsampling approach that fixes the position and scale of the

initial object proposals through the entire optimisation process, the MMO

approach generates a set of much smaller samples and iteratively updates

them through bioinspired algorithms. Despite the smaller sample size, the

updating mechanism in the optimisation algorithm can reinitialise the ex-

19

2.2. TOP-DOWN APPROACH

isting samples to explore other regions in the image, which has overcome

the issue of missing out objects as in the subsampling approach. The

performance of MMO is between the other two approaches, where it could

achieve higher accuracy than the subsampling approach while keeping lower

computing complexity than the sliding window approach.

Traditional bioinspired algorithms are originally designed to solve unimodal

problems that have only one global optimum. The algorithms tend to

converge to a single solution if used directly to solve multimodal prob-

lems. Among those, genetic algorithm (GA) (Holland, 1992), simulated

annealing (SA) (Kirkpatrick et al., 1983), particle swarm optimisation

(PSO) (Kennedy and Eberhart, 1995), differential evolution (DE) (Storn

and Price, 1997), and ant colony optimisation (ACO) (Dorigo et al., 2006)

are the most successful and most cited optimisation approaches in current

literatures (Cuevas et al., 2020). The general framework of most of the

algorithms is similar, irrespective of the natural phenomenon from which

the algorithm is inspired (Cuevas et al., 2020). Nonetheless, the compar-

ative study results presented by Piotrowski et al. (2017) showed that the

swarm-based PSO variants took much less time to find a solution com-

pared to evolution-based algorithms, such as DE and GA. The objective

function executed using PSO algorithms was also found to approach op-

timised solutions faster than SA algorithms (Soltani-Mohammadi et al.,

2016). This is because the velocity function used by PSO algorithms can

lead all particles to move towards the global solution area faster than SA

algorithms (Li et al., 2018a). PSO is also well known for its simplicity,

ease of implementation, fast convergence and fewer parameter adjustments

compared to other algorithms (Binitha et al., 2012). MMO algorithms are

modified from their unimodal versions by incorporating niching techniques

to locate multiple optima and preserve them until the end of the search.

MMO has attracted increasing interest from the bioinspired computation

20

2.3. REGION-BASED CNN APPROACH

community, e.g., pedestrian detection (Li et al., 2016), multiple traffic signs

recognition (Banharnsakun, 2018), non-cooperative target localisation (Liu

et al., 2019), breast cancer prediction (Mohan et al., 2020), and embroidery

inspection (Dong et al., 2011), to name a few.

2.3 Region-based CNN Approach

The classical machine learning approaches address object detection in two

separate tasks: object classification and object localisation. Recently, a

notable development in region-based CNN approaches, which unify ob-

ject classification and object localisation into a single CNN network, has

replaced the classical approaches. The state-of-the-art R-CNNs such as

Faster R-CNN, Single Shot Multibox Detector (SSD), and You Only Look

Once (YOLO) have been commonly used in palm tree detection (Zheng

et al., 2021; Li et al., 2018b; Ammar et al., 2021).

The concept of region-based CNN was originally proposed by Girshick et al.

(2014), a framework that combines a region proposal network and CNN,

called R-CNN, to selectively extract around 2000 region proposals in an

image to eliminate the need for an exhaustive selection of proposals. The

region proposal stage generates class-agnostic proposals in the image to

reduce the number of regions of interest (RoI) and to maintain meaningful

proposals. However, R-CNN uses three separate models; feature extraction,

bounding box classification, and regressing and fine-tuning the bounding

box position and size. Classification of the CNN model will have to run

around 2000 times per image, which compromises speed. An improved

version called Fast R-CNN was proposed later by the same author (Gir-

shick, 2015). Fast R-CNN combines the feature extraction, classification

and bounding regression stages in a unified framework. Instead of feed-

21

2.3. REGION-BASED CNN APPROACH

ing each region proposal to CNN, the entire image is fed into the CNN

to obtain a convolutional feature map. The features are shared across the

2000 region proposals for subsequent RoI pooling and detection. This saves

significant time on performing forward pass. However, the selective search

(SS) algorithm used in Fast R-CNN is slow and time-consuming. Later on,

Ren et al. (2015) proposed Faster R-RCNN to substitute the SS with a

shallow CNN called region proposal network (RPN). It slides a small net-

work over the feature maps by the last shared convolutional layer of CNN

to generate proposals and their corresponding probabilities of containing

object. This greatly improves the speed of modelling. The outputs of the

RPN are passed to the Fast R-CNN component for final classification and

bounding box regression. The framework can be considered as a combina-

tion of Fast R-CNN and RPN and is trained end-to-end. YOLO (Redmon

et al., 2015) further improves the detection speed by unifying the bound-

ing box prediction and CNN into a single neural network. The algorithm

divides the input image into regions, and then it predicts the coordinates

and probabilities of bounding boxes. Nevertheless, for a feature map of

size W ×H with k region proposals at each sliding location, there are still

WHk region proposals in total to be processed.

Although the more efficient one stage region-based CNNs such as YOLO

and SSD (Liu et al., 2015) unify ROIs generation and computation in the

same deep network by sharing convolutional layers of the same data, such

network architecture is not flexible to allow non-image data sources. Fur-

thermore, the one-stage region-based CNNs would resize all input images

to a fixed size. High-resolution UAV images’ dimension is usually huge;

resizing them to a fixed small dimension will cause problems in detect-

ing small objects like palm trees. Although large images can be cropped

into multiple smaller regions for detection, this is not an efficient approach

because the small images have to pass through the convolutional network

22

2.3. REGION-BASED CNN APPROACH

multiple times, and overlap between two images is required to detect ob-

jects which appear at the image edges. The latter results in more images

to be processed and subsequently requires higher computation cost than

processing a bigger image at once. As with any other variants of CNN,

R-CNN requires long training hours, a large number of labelled images,

and specialised hardware to run the model efficiently.

23

Chapter 3

Evaluation of Feature

Extraction Methods for

Classification of Palm Trees

3.1 Introduction

Palm tree detection aims to accurately classify and localise all palm trees

in the input image. The accuracy of the classifier is crucial to avoid false

positives and false negatives being detected during the localisation pro-

cess. While there has been an increase in the number of studies using

CNN for palm tree detection, there has been no comparative study ad-

dressing the accuracy and efficiency of feature extraction techniques for

palm tree detection, either within human-engineered features or between

human-engineered and CNN extracted features. CNN extracted features

have the advantage of learning data representation through multiple pro-

cessing layers without the user having to go through the complicated fea-

ture engineering stage (LeCun et al., 2015). However, it is well known

24

3.2. METHODS

that CNNs are memory hungry and require high computing facilities to

train and run complex models; this will favour human-engineered features

that require a lower computing footprint. As the existing feature extrac-

tors were not specifically designed for palm tree detection, this chapter

presents a detailed comparative study of the features extracted from clas-

sical human-engineered approaches and the features extracted from CNN

models in classifying palm tree images. The results provide a better under-

standing of each approach’s advantages and limitations prior to utilising

them in object localisation. The efficiency of the best combination will be

further enhanced by the dimensionality reduction approach before applying

it as the objective function for the multimodal PSO algorithm explained

in the next chapters.

3.2 Methods

In this section, we briefly introduce the feature extraction methods used

in this comparative study. Feature extraction methods transform original

data into a more compact and representative feature vector, which is then

fed into classifiers for training, and subsequently classifying objects in new

images. A total of 6 extraction methods were tested in this work.

3.2.1 Human-Engineered Features

For human-engineered features in this study, we evaluated Histogram of

Oriented Gradients (HOG), Local Binary Pattern (LBP) and Scale-Invariant

Feature Transform (SIFT) features as recently reported in (Wang et al.,

2019), (Rueda et al., 2016) and (Bazi et al., 2014), respectively, for palm

tree detection.

25

3.2. METHODS

Histogram of Oriented Gradients (HOG)

Histograms of oriented gradients (HOG) was introduced by Dalal (Dalal

and Triggs, 2005) for pedestrian detection, but it can also be used for gen-

eral object detections. The gradient information that comprises magnitude

and orientation in each image pixel was computed to extract HOG features

from the input image (Figure 3.1). Then, the gradient map was divided

into 6 × 6 pixels non-overlapping cells. A 9-bin histogram summarizing

the gradient information of each pixel within each cell was generated. The

pixels were categorised into one of the bins depending on their orientation.

Overlapping blocks composed of 2 × 2 cells were slid across the input im-

age, a total of 36 feature vectors extracted by the 4 cells were concatenated

into the final HOG feature vector. The overlapping ratio was 50% of the

block size. The output of the HOG feature extraction was a histogram

with 2916 dimensions (bins) for each image.

Figure 3.1: Transformation of pixel values into gradient information using
HOG feature extractor

Local Binary Pattern (LBP)

Local binary patterns (LBP) was introduced by Ahonen et al. (2006), which

is one of the commonly used techniques to describe the local texture char-

acteristic of data due to its low computation cost and high accuracy. To

26

3.2. METHODS

extract LBP features from a sub-image, firstly the image was scanned by

a 3 × 3 pixels window; each centre pixel in the window was compared

with its 8 neighbours. If the neighbour’s value was higher than the centre

value, a ”1” is denoted, ”0” if not. Then, the 8-bit binary numbers were

converted to decimal resulting in 256 possible values and assigned to the

centre pixel, e.g. 10101010 was converted to 170 and subsequently pro-

duced a LBP feature map as illustrated in Figure 3.2. The generated LBP

feature map was divided into 15 × 15 pixels non-overlapping blocks. In

each block, a histogram comprising 59 bins was constructed following the

method suggested in Ojala et al. (2002), where each bin summarised the

frequency of occurrence of a unique uniform pattern containing at most

two 0-1 or 1-0 transitions. Other non-uniform patterns were assigned to

the 59th bin. The output of the LBP feature extraction was a histogram

with 944 dimensions (bins) for each image formed by 16 blocks × 59 bins.

Figure 3.2: Transformation of pixel values into binary digit using LBP
feature extractor

Scale-Invariant Feature Transform (SIFT)

Scale-invariant feature transform (SIFT) extractor, which was proposed by

(Lowe, 1999) can to extract features that are invariant to scale, rotation,

illumination, and translation. In the original SIFT extractor, the first step

27

3.2. METHODS

is to identify salient points from the input image. This is done by blurring

the image in multiple scales by means of Gaussian operator. Then, the

corners and edges are detected from the resultant image using the difference

of Gaussians (DOG) approximation. Each extracted feature in the DOG

map is compared with its 8 neighbours to select the local maximum or

minimum point. Then, the 16 × 16 pixels surrounding the selected point

are divided into sixteen 4 x 4 pixels subregions. An 8-bin histogram is used

to summarise the gradient orientation and magnitude of the pixels within

each subregion, and this forms the final 128 feature descriptor.

As the original SIFT operator generate random points in an image without

storing the spatial information of the points. It is important to preserve

the point’s spatial information because each cell corresponds to a specific

position of the palm tree. The combination of all points can only represent

the structure of the whole palm tree. Instead of finding random salient

points as proposed in the original SIFT, we generated uniformly and densely

spaced points at 12 pixels step and summarised the gradient information

on these points. The 128-feature descriptors extracted by all points were

concatenated into one feature vector as shown in Figure 3.3. The output of

the SIFT feature extraction was a histogram with 3200 dimensions (bins)

for each image.

Figure 3.3: The sample of 128 feature descriptors computed by SIFT op-
erator in the region of one point

28

3.2. METHODS

3.2.2 CNN Extracted Features

The use of CNNs in object classification has burgeoned over the last decade

since the introduction of the AlexNet model (Krizhevsky et al., 2012) which

won the 2012 ILSVRC (ImageNet Large-Scale Visual Recognition Chal-

lenge). Since its inception, various forms and types of CNNs have been de-

veloped. There is a direct relationship between the number of convolutional

layers and accuracy, but it trades off with computation time (Özgenel and

Sorguç, 2018). We used the AlexNet model in this study as it was shown

achieving up to 97% accuracy in palm tree detection in high-resolution re-

mote sensing images (Li et al., 2017), which made it a preferred option for

our experiment over other deeper networks that required higher execution

time and computation resources.

The AlexNet architecture consists of five convolutional layers (Conv), some

of which are followed by max-pooling layers, and finally three fully-connected

(FC) layers as presented in Figure 3.4 and Table 3.1. It is important to

note that there was no fine-tuning of the AlexNet model being carried out

by back-propagating at this stage; the pre-trained model was only used as

a feature extractor. The required features were extracted from the fifth

convolutional layer (Conv 5), first, and second FC layers (FC6 and FC7)

for classification. The resulting feature vector was then fed as input to the

proposed classifiers. We examined whether the features extracted from the

different layers performed differently.

3.2.3 Classifier used in this work

After the features were extracted from the training images, they were fed

into a classifier for training. There are a large number of classification

algorithms (at least 179 classifiers from 17 families according to the study by

29

3.2. METHODS

Table 3.1: Details of the AlexNet architecture

Layer Activation
Image Input Layer 227 x 227 x 3

Convolution (COV1) 55 x 55 x 96
ReLU 55 x 55 x 96

Cross Channel Normalization 55 x 55 x 96
Max Pooling 27 x 27 x 96

Convolution (COV2) 27 x 27 x 256
ReLU 27 x 27 x 256

Cross Channel Normalization 27 x 27 x 256
Max Pooling 13 x 13 x 256

Convolution (COV3) 13 x 13 x 384
ReLU 13 x 13 x 384

Convolution (COV4) 13 x 13 x 384
ReLU 13 x 13 x 384

Convolution (COV5) 13 x 13 x 384
ReLU 13 x 13 x 384

Max Pooling 6 x 6 x 256
Fully Connected (FC6) 1 x 1 x 4096

Relu 1 x 1 x 4096
Dropout 1 x 1 x 4096

Fully Connected (FC7) 1 x 1 x 4096
ReLU 1 x 1 x 4096

Dropout 1 x 1 x 4096
Fully Connected (FC8 1 x 1 x 2

Softmax 1 x 1 x 2
Classification output -

30

3.2. METHODS

Figure 3.4: Architecture of AlexNet used in this study

Fernández-Delgado et al. (2014)) available for implementation, we selected

Random Forest (RF) and SVM in this work for classification accuracy and

computation runtime evaluations because they were the top two classifiers

achieving high accuracy on the comparison over large data sets as reported

in the same study.

Random Forests (RF)

Random forests (RF) was proposed by Breiman (2001), which combines a

number of independent decision tree classifiers through bootstrap/bagging

approach to make prediction more accurate. Each decision tree represents a

subset of bootstrapped samples randomly drawn from the original training

data set during training. Within a subset of randomly selected features

at each node of the tree, the feature that best splits the data points is

chosen for binary partitioning. The process is repeated recursively for each

unsplit node until the stopping criterion is met. The training samples that

are not used for building the trees are considered out-of-bag data and used

to compute the prediction error rate. The prediction class of observation is

determined by the majority vote of the decision trees for that observation

(Equation 3.1). There are two parameters to be defined in RF: 1) the

number of the decision tree, and 2) the number of features to be selected in

31

3.2. METHODS

Table 3.2: Details of the feature extractors and classifiers tested in the
study

Algorithm Feature Extractor Classifier Feature Length
HOG (RF) HOG Random Forest 2916
LBP (RF) LBP Random Forest 944
SIFT (RF) SIFT Random Forest 2048
COV5(RF) AlexNet COV 5 Random Forest 43264
FC6(RF) AlexNet FC6 Random Forest 9216
FC7(RF) AlexNet FC7 Random Forest 4096

HOG (SVML) HOG SVM (Linear Kernel) 2916
LBP (SVML) LBP SVM (Linear Kernel) 944
SIFT (SVML) SIFT SVM (Linear Kernel) 2048
COV5(SVML) AlexNet COV 5 SVM (Linear Kernel) 43264
FC6(SVML) AlexNet FC6 SVM (Linear Kernel) 9216
FC7(SVML) AlexNet FC7 SVM (Linear Kernel) 4096

HOG (SVMRBF) HOG SVM (RBF Kernel) 2916
LBP (SVMRBF) LBP SVM (RBF Kernel) 944
SIFT (SVMRBF) SIFT SVM (RBF Kernel) 2048
COV5(SVMRBF) AlexNet COV 5 SVM (RBF Kernel) 43264
FC6(SVMRBF) AlexNet FC6 SVM (RBF Kernel) 9216
FC7(SVMRBF) AlexNet FC7 SVM (RBF Kernel) 4096

VJ HAAR Adaboost -
Alexnet Alexnet SoftMax -

each split. We set the number of the decision tree as 100 because the out-

of-bag data prediction error rate converged and stabilised at this level. The

subset of features to be selected in each split was determined by the typical

recommendation, which is
√
p, where p is the total number of features

extracted by the feature extractor.

f(x) = arg max
y

N∑
i=1

I(hi(x) = y) (3.1)

where hi(x) is the prediction of the response variable x using ith tree.

I(hi(x) = y) = 1 if hi(x) = 1 and 0 otherwise.

Support Vector Machine (SVM)

Cortes and Vapnik (1995) proposed support vector machine classifier (SVM),

which determines the optimal hyperplane that best separates two classes.

32

3.2. METHODS

For our case, the trained classifier predicts on which side of the hyperplane

the new input image falls, which is to classify it to class ”1” (palm tree) or

”-1” (non-palm tree) following the distance function below:

f(x) = sgn(
M∑
i=1

αiyix
Txi + b) (3.2)

where (xi, yi) is the trained feature with its class, y ∈ {−1, 1} and α and b

are trained weights that were fined-tune using the default setting in Matlab.

We tried to optimised the trained weights instead of using the default values

but failed. The model performance deteriorated miserably despite the fact

that the best weights were being used. This was probably due to over-

fitting issues and will be addressed in the future. In addition to the linear

kernel, a non-linear radial basis function (RBF) kernel was also used for the

evaluation. RBF kernel maps the original features into higher dimensional

space in which they are linearly separable through similarity comparisons

without explicitly transforming the data. The RBF is expressed as:

K(x, x′) = exp(−γ‖x− x′‖2) (3.3)

The solution can be computed by:

f(x) = sgn(
M∑
i=1

αiyiK(x, xi) + b) (3.4)

The solution can be expressed as:

f(x) = sgn(
N∑
i=1

yiαiK(x, xi) + b) (3.5)

33

3.2. METHODS

3.2.4 Baselines For Comparison

We selected the off-the-shelf Viola-Jones framework and AlexNet CNN

model available in Matlab machine learning packages as baselines for com-

parison. These object detection algorithms integrate feature extraction and

classification algorithms in the same model. The components in the models

have been fine-tuned by default achieving state-of-the-art performance.

Viola-Jones Algorithm (VJ)

Viola and Jones (2001) proposed to use Haar-like features that are repre-

sented by a set of rectangles to compute the intensity difference between

two regions in an image. For example, the intensity difference value is

obtained by subtracting the sum of pixel values in the black region from

the sum of pixel values in the white region, as shown in Figure 3.5. The

raw image is transformed into an integral image to speed up the processing

time. The VJ framework uses AdaBoost to combine a set of weak classi-

fiers to become final strong classifier, as shown in Equation 3.6. Each weak

classifier consists of features that best segregate the dataset into two. A

cascade architecture is also integrated into the framework where at each

stage a set of classifiers are trained and built to detect almost all of the

positive samples while rejecting a small fraction of non-positive samples.

The samples that are not rejected by the stage classifiers will be processed

by the next stage classifiers. Via this architecture, a lot of negative samples

can be rejected at the early stages, therefore the detection speed can be

increased by focusing on the promising regions in the images.

f(x) =


1

∑T
t=1 αtft(x) ≥ θt

0 otherwise

(3.6)

34

3.2. METHODS

where ft(x) is the weak classifier at t stage, αt is the ensemble weight, and

θt is the detection rate, both are obtained through the learning process in

Matlab. We set 20 stages for training until the algorithm converged at the

13th stage. The threshold for allowable false alarm rate per stage was set

at 0.5.

Figure 3.5: Examples of the Haar-like features used in the experiment

AlexNet model

For this approach, the fully-connected pre-trained AlexNet model was used.

Since re-training the whole model from scratch requires a large number of

training samples and time to search for the optimal parameters and set-

tings, the transfer learning approach (Yosinski et al., 2014) was applied

to fine-tune the pre-trained AlexNet model using our palm tree training

samples for only focusing on palm tree classification task. Using the ap-

proach, we only optimised the weights of the last three FC layers while

freezing the weights of other layers during re-training. The weights were

updated by back-propagating from the SoftMax function using stochastic

gradient descent (SGD) algorithm with the default cross-entropy log loss.

Originally, the last FC layer was fed to a 1000-way SoftMax that produced

classification results for 1000 classes, it was modified to only two in our

study. The output SoftMax classification function can be formulated as

P (y = j|zi) =
ezi∑N
j=0 e

zj
(3.7)

35

3.2. METHODS

where z = WTX + b, W and b correspond to trained weights and bias

respectively, and X is the input feature vector of a sample. The function

computes the probability that sample X belongs to class j given the weights

and bias. The model ended up with 2 classification outputs, which was

either palm tree or non-palm tree. The training accuracy reached almost

100% after the 5th epoch, as shown in Figure 3.6, with a learning rate set

at 10−4, and a mini-batch size set at 10.

Figure 3.6: Training accuracy of the proposed AlexNet model

3.2.5 Implementation Details

Description of data

The UAV images used for this study were acquired using a DJI Phantom

4 quad-copter drone equipped with 12.4 megapixels RGB camera taken

over a few plantations comprising flat to hilly terrain located in Malaysia.

The images were taken between 9 a.m. to 5 p.m. at an altitude of 200 m

above ground with 80% side and frontal overlaps. The aerial photos were

post-processed using Pix4D Desktop Professional to produce 10 cm/pixel

36

3.2. METHODS

orthophoto, which was georectified to the correct location and scale. A total

of 2294 positive and 2734 negative images inclusive of mature trees (>3

years old after planting), immature trees (≤ 3 years old after planting), and

other non-palm tree objects were manually cropped from the full-scale high-

resolution UAV images. Samples with different illumination conditions

were included to increase the diversity of data for training. Each training

sample was resized to 60 × 60 pixels and converted to greyscale for feature

extraction using human-engineered approaches. They were resized to 227

× 227 pixels for CNN approaches and 24 × 24 pixels for the VJ framework.

The samples were split into 70% for training and 30% for validation. A few

examples are shown in Figure 3.7.

(a) Positive samples. (b) Negative samples

Figure 3.7: Training samples used in the study.

The experiments were implemented in MATLAB R2020a by utilising the

libraries as shown in Table 3.3 for feature extraction. The experiments

were performed on a notebook computer with a Four-Core Intel i7 (TM)

10610U 1.80GHz CPU, 16 GB of DDR3 RAM, Intel UHD Graphics, and

OS Windows 10.

Table 3.3: Sources of the library used for feature extraction

Feature extraction method Library
HOG MATLAB Computer Vision Toolbox
LBP MATLAB Computer Vision Toolbox
SIFT VLFeat (Vedaldi and Fulkerson, 2010)
CNN MATLAB Deep Learning Toolbox

HAAR MATLAB Computer Vision Toolbox

37

3.2. METHODS

Evaluation Methods

The model performance was evaluated based on precision, recall, F1-score,

success rate (SR), and runtime. Precision is defined as the proportion of

correctly classified palm trees out of all detected palm trees (including the

wrongly classified ones). The recall is defined as the proportion of palm

trees correctly classified out of all known palm trees in the images. F1-

score is the average of both measures. SR measures the percentage of

successful detection (all positive and negative samples) out of all samples.

If the detection is correct, it is coded as ”1”, otherwise ”0”. Runtime is the

computation cost in milliseconds (ms) for an algorithm to perform feature

extraction and classification in a single run.

Precision =
TP

TP + FP
(3.8)

Recall =
TP

TP + FN
(3.9)

F1− score =
2.P recision.Recall

Precision+Recall
(3.10)

SR =
TP + TN

TP + TN + FP + FN
(3.11)

where TP stands for true positive, which is the image correctly classified

as the palm tree. TN stands for true negative which is the image correctly

classified as a non-palm tree. FP stands for false positive which is the

image falsely classified as the palm tree, and FN stands for false negative,

which is falsely classified as the non-palm tree.

38

3.3. RESULTS AND DISCUSSION

3.3 Results and Discussion

Statistical analyses were performed using SPSS Statistics software to de-

termine if there were any statistical difference between the tested models

in terms of SR and runtime. Pearson’s chi-square test was performed on

SR results to compare the observed and expected frequencies. Since the

runtime results were not normally distributed, the non parametric Kruskal-

Wallis method with Dunn post-hoc pair-wise statistical test that does not

assume normality was performed to compare the models. The results are

shown in Table 3.4, where symbols + and − indicate the competitor is

significantly better than or worse than AlexNet, respectively at α = 0.05.

The table results show that the AlexNet model was the best performing

model with a 96.45% F1-score and significantly higher SR at 96.76%, which

shows its clear superiority in classifying most samples correctly with respect

to the remaining models. On the other hand, the VJ algorithm achieved

the poorest performance among all methods with a 66.97% F1-score and

75.12% SR. The reason for the poor accuracy is mainly attributed to the

low recall rate at only 55.29%, where almost half of the palm tree sam-

ples were rejected as non-palm tree samples. The poor recall rate may

be due to the high sensitivity of the algorithm to translation and shape

changes. The images with palm trees slightly displaced from the image

centre were falsely classified as negatives. In addition, many young palm

trees with slightly different canopy structures from that of mature palm

trees were also missed out. These findings suggests that two sets of VJ

algorithms may be required to effectively differentiate mature and young

palms. COV5(SVMRBF) was the second-best model, and its F1-Score and

SR was only about 1%, slightly below the optimised AlexNet. This proves

that the features extracted from the pre-trained COV5 layer, which de-

scribes lower level details of the input image, can be fed into SVM for palm

39

3.3. RESULTS AND DISCUSSION

Table 3.4: The quantitative accuracy assessment results of different palm
tree extraction approaches

Algorithm
Recall Precision F1-Score Success Runtime
(%) (%) (%) Rate (%) (ms)

AlexNet 96.53 96.38 96.45 96.76= 21.27 =
COV5(SVMRBF) 94.56 96.31 95.43 95.86 - 369.46 -
SIFT (SVMRBF) 95.62 93.92 94.76 95.18 - 20.69 +
FC6(SVMRBF) 93.50 95.82 94.65 95.18 - 60.08 -
COV5(SVML) 94.11 94.54 94.32 94.83 - 198.17 -

FC7(SVMRBF) 92.75 95.49 94.10 94.69 - 61.75 -
LBP (SVMRBF) 92.30 95.92 94.07 94.69 - 7.37 +

COV5(RF) 91.84 93.54 92.68 93.38 - 205.92 -
FC6(RF) 92.30 92.72 92.51 93.18 - 186.43 -
LBP (RF) 90.94 93.77 92.33 93.11 - 101.39 -
FC7(RF) 91.69 92.67 92.18 92.90 - 196.08 -

HOG (SVMRBF) 89.58 94.28 91.87 92.76 - 31.53 -
FC6(SVML) 91.54 91.96 91.75 92.49 - 38.50 -
FC7(SVML) 91.39 91.53 91.46 92.21 - 41.16 -
SIFT (RF) 90.33 92.43 91.37 92.21 - 95.09 -

SIFT (SVML) 90.18 90.18 90.18 91.04 - 14.37 +
LBP (SVML) 89.27 89.68 89.48 89.80 - 5.07 +

HOG (RF) 85.35 89.97 87.60 88.97 - 103.50 -
HOG (SVML) 85.35 85.61 85.48 86.77 - 15.82 +

VJ 55.29 84.92 66.97 75.12 - 0.58 +

Symbols + and− indicate that the competitor is respectively better than or worse
than AlexNet according to the Pearson’s chi-square test (SR) or Kruskal-Wallis
with post-hoc Dunn tests (runtime) at α = 0.05.

tree classification and obtain competitive result. SIFT(SVMRBF) was the

third-best model at 95.18% F1-Score, which was also the best model to

achieve the highest accuracy amongst all human-engineered approaches.

Its accuracy was about 2% lower than that of AlexNet.

We summarised the performance of each feature extractor by averaging its

F1-Score obtained from different classifiers and the results are presented

in Figure 3.8. Among all feature extractors, COV5 yielded the best result.

We observe that the accuracy of CNN-based features reduced gradually

from COV5 to FC7, which concurs with the findings by Liu et al. (2018).

We infer that the layers closer to the final classification layer (i.e. FC7) are

more optimised to identify certain objects, i.e. the pre-defined 1000 classes.

Therefore, the feature representation of the later layers (i.e. FC6 and FC7)

40

3.3. RESULTS AND DISCUSSION

are more specific to describe the original 1000 classes in the unoptimised

model. Since none of the categories in the pre-trained AlexNet model is

related to the palm tree, directly extracting the features from the deeper

layers produced inferior results than the shallower one.

SIFT was the best feature extractor in human-engineered methods, fol-

lowed by LBP and HOG. The accuracy of HOG was the lowest, it may be

due to the fact that the extractor limited the information shared between

image cells. For instance, each SIFT point described the gradient informa-

tion from a subregion that contains 16 × 16 pixels. Since the subregions of

the neighbouring SIFT points overlap, their information could be shared.

Similarly, in the LBP feature extraction process, each image was divided

into 3 × 3 pixels overlapping windows, and each center pixel in the win-

dow was compared with its 8 neighbours. However in HOG extractor, the

image was already divided into non-overlapping cells since the beginning,

limiting the information shared between the cells. This is one of the major

disadvantages of human-engineered method where the user needs to care-

fully design the feature extractor to solve specific problem based on certain

assumptions. The advantage of CNN is that it omits the feature designing

steps.

We also summarised the performance of each classifier by averaging its

F1-Score obtained from different feature extractors, and the results are

presented in Figure 3.9. The best performing classifier was SVMRBF, fol-

lowed by RF and SVML. The SVMRBF and RF performed better than

SVML, suggesting that the palm tree and non-palm tree data are not lin-

early separable, which gave the SVM with non-linear kernel and random

forest a leg-up over the linear SVM algorithm. The result also proves that

SVM with RBF kernel was more suitable than a random forest to classify

palm tree images in our study.

41

3.3. RESULTS AND DISCUSSION

Figure 3.8: Comparison of performance between feature extractors, aver-
aging over different classifiers

In terms of time efficiency, as expected, the VJ algorithm with HAAR-like

features achieved the fastest computation speed due to the implementa-

tion of integral image and cascade algorithm, which cut down the com-

putation efforts significantly. Even though COV5(SVMRBF) achieved the

second-best result, its accuracy traded off with speed as it was the slow-

est algorithm because it contained the most features (43264) and required

more time for computation. The accuracy of SIFT(SVMRBF) was slightly

lower than COV5(SVMRBF), but its computation speed was almost 18

times faster than COV5(SVMRBF). However, it was still not the best op-

tion for palm tree detection as its computation speed was only marginally

faster (although significant) than AlexNet that attained higher accuracy.

LBP(SVMRBF) was the next best option for palm tree detection since it

balanced accuracy and speed. Although LBP(SVMRBF)’s accuracy was

about 3% lower than AlexNet, its computation speed was 3 times faster,

significantly saving computation cost if applied in large-scale UAV images.

Its training time was also significantly faster than AlexNet’s training time

(2 seconds VS 2 hours).

42

3.3. RESULTS AND DISCUSSION

Figure 3.9: Comparison of performance between classifiers, averaging over
different feature extractors

Likewise, we summarised the computation speed of feature extractors and

presented them in Figure 3.11. COV5 was the slowest method as it con-

tained the longest feature vector. Therefore, both SVM and random for-

est required higher computation costs to perform kernel calculations, and

search through all nodes in the decision trees, respectively, to identify the

correct class. LBP was the fastest as it had the shortest feature vector

(944), yet achieving comparable results to the AlexNet methods. It proves

that the discrimination power of the LBP extractor was sufficient to classify

palm trees correctly despite having the shortest feature vector. Comparing

the computation time of different classifiers, on average, RF performed the

slowest while SVML performed the fastest. The computation complexity of

RF is affected by the number of decision trees used in the ensemble model.

Although we can reduce the number of decision trees in the model to speed

up computation time, it may reduce accuracy. The SVML was the fastest

algorithm because it did not need to compute the kernel function as in

Equation 3.3.

43

3.4. DIMENSIONALITY REDUCTION OF LBP FEATURES

Figure 3.10: Comparison of computation time between feature extractors,
averaging over different classifiers

3.4 Dimensionality reduction of LBP features

Based on the results in the previous sections, it was shown that the combi-

nation of LBP extractor and SVM (RBF kernel) achieved a balance between

accuracy and computation speed to classify palm tree images. The next

research question that we would like to ask is whether the performance

of LBP can be further enhanced. This section describes an extended trial

that utilises a feature selection approach to boost the LBP’s performance

by reducing its feature dimension. Feature selection algorithm reduces data

dimensionality by skimming off the important and less redundant, which

is useful to speed up classification algorithm and improve prediction ac-

curacy (Huan Liu and Lei Yu, 2005). Feature selection can be generally

categorised into three categories: filter, wrapper and hybrid methods. The

filter methods select features based on the statistical scores for their cor-

relation to the predictors without using any classifier. For example, t-test

can be used to evaluate whether the values of a particular feature for class

1 is significantly different from the values of the same feature for class 2

44

3.4. DIMENSIONALITY REDUCTION OF LBP FEATURES

Figure 3.11: Comparison of computation time between classifiers, averaging
over different feature extractors

(Wang et al., 2012a). If this hold, the feature is useful to differentiate our

data. Filter methods do not consider the correlation between each feature

and are usually fast to compute, which is useful in pre-processing stage to

discard low-quality features.

The concept of wrapper methods is similar to filter methods. The main

difference is that the selected features are fed into the machine learning clas-

sifier for training and cross-validated on test data. The process is repeated

to test all possible combinations of subset, and the changes in the model

performance for each combination are evaluated. The wrapper methods

are usually computationally more expensive than filter methods. In the

cases where the feature dimension is very large, filter methods are firstly

applied to obtain a reduced number of features before passing them to the

more sophisticated feature selection algorithms for processing. The hybrid

methods combine the characteristics of both methods in a unified algorithm

to perform a heuristic search in the space of all possible features.

45

3.4. DIMENSIONALITY REDUCTION OF LBP FEATURES

3.4.1 Methods

In this study, we used the filter method to compute t-statistics for every

feature. Then, the features were sorted based on each feature’s p-value

from the lowest (most significant) to highest (least significant), and added

into a list S. After that, the best feature in S was removed from S and

added into subset T one at a time. The features in T were passed to

SVM (RBF) classifier for training. The cross-validation performance of

the trained model for each addition of feature was evaluated. The process

was repeated until all of the features in S were tested.

3.4.2 Results and discussion

Figure 3.12 illustrates the cross-validation error of the model against the

number of features used for training. It shows that the cross-validation

error stabilised when about 450 best features were used. This means that

the top 450 features possess the equivalent description ability as the original

944 features. Adding more features to the data may cause redundancy and

will reduce computation speed.

Figure 3.12: Cross-validation performance against the number of LBP fea-
tures used for classification

46

3.5. SUMMARY

Table 3.5: Comparison of accuracy and computation runtime of LBP fea-
tures before and after dimensionality reduction.

Algorithm Recall (%) Precision (%) F1-Score (%) Success Rate (%) Runtime (ms)
LBP(SVMRBF)-R 92.75 95.34 94.03 94.62 3.86*
LBP(SVMRBF) 92.30 95.92 94.07 94.69 7.37

LBP(SVMRBF)-R denotes LBP features after dimensionality reduction while LBP(SVMRBF) denotes
the original LBP features. Symbols ∗ indicates that the result is significantly different based Kruskal-
Wallis tests at α = 0.05.

Table 3.5 shows the performance of LBP with reduced features (LBP(SVMRBF)-

R) and the LBP with original features (LBP(SVMRBF)). The accuracy of

both models was similar. However, LBP(SVMRBF)-R was significantly

faster than LBP(SVMRBF), where it only required half of the computa-

tion cost of LBP(SVMRBF) to carry out the same classification task. This

shows that our approach reduced the computation cost of LBP(SVMRBF)

without compromising its accuracy.

3.5 Summary

This chapter evaluated the performance of six feature extraction methods

in combination with three classifiers for palm tree classification. They were

also compared with the optimised AlexNet model and Viola-Jones algo-

rithm. The classification accuracy reached by the AlexNet model optimised

with our palm tree images was significantly superior to that obtained by all

other models. Nevertheless, we suggest adopting LBP with the SVM (RBF

kernel) classifier for palm tree detection because its computation speed was

3 times faster than AlexNet, albeit with a 3% lower accuracy. For palm

tree detection in large-scale and high-resolution, a balance between accu-

racy and computation speed is necessary to complete the task in time with

minimum errors. LBP feature extractor with simple implementation also

requires a lesser memory footprint than CNN models. We had also ob-

tained other interesting findings: (1) both random forest and SVM (RBF

47

3.5. SUMMARY

kernel) obtained higher accuracy than SVM (linear kernel) indicating that

palm tree features are non-linearly separable, (2) the weights of the deeper

layers that are closer to the classification layer in CNN are optimised to

detect target objects, they needed to be fine-tuned if the object of inter-

est is not encompassed in the predefined categories , (3) HOG achieved

the lowest accuracy in our study probably because the information is not

effectively shared between subregions as opposed to LBP and SIFT, and

(4) the pre-trained CNN model can be utilised as feature extractor with-

out requiring the user to go through the complicated feature construction

processes. However, if a domain expert properly design a feature extractor

to solve a specific problem, it can achieve similar performance as the CNN

model, but with faster training and computation speed.

We also presented an enhanced LBP(SVMRBF) model, achieved through

dimensionality reduction using feature selection methods. The enhanced

model achieved similar accuracy as the original one, but only required half

of the computation cost. It was also seven times faster than the fully-

connected AlexNet, which was a significant improvement for palm tree

detection in large-scale UAV images. The number of features may fur-

ther be reduced by filtering the correlated features and selecting the best

combination using the hybrid feature selection approach, which is a more

computationally expensive method.

At the time of writing the thesis, we observed that our results contradicted

the latest results reported by Zheng et al. (2021). The authors claimed

that SVM- and random forest- based classifiers were the worst performing

algorithms, achieving less than 30% F1-score for multi-class classification

and about 86% for overall palm tree detection. We postulated their dismal

results were due to: (1) over-fitting of the model as they used more than

86,000 samples for training, whereas we only used about 3,500 samples, (2)

48

3.5. SUMMARY

limited number of sliding window sizes, and (3) unoptimised parameters for

SVM and RF. The authors did not report the feature extractor that they

used in conjunction with the SVM and RF classifiers. If the raw image data

were used, the classifiers would probably return unsatisfactory results. In

the future, we plan to test our algorithms on the datasets provided by the

authors, which are freely available for public use.

49

Chapter 4

Improved Multimodal Particle

Swarm Optimisation

Algorithm

4.1 Introduction

As our aim of this thesis is to develop an efficient algorithm for palm tree

detection in UAV images, we leverage the species-based multimodal PSO

(SPSO) as the main framework for our study because PSO was proven

to be faster and simpler, yet achieving similar accuracy as the other bio-

inspired algorithms. In many MMO algorithms including SPSO, repetitive

distance evaluations to search nearest neighbours to find multiple optima in

the search space are unavoidable, which is time consuming. The overhead

increases exponentially if the population size is large. In this chapter, we

propose to speed up the nearest neighbour search calculation by introducing

a special tree-based structure, called kd-tree, into SPSO to improve the

efficiency of the nearest neighbour search.

50

4.2. BACKGROUND

First, we discuss the details of the basic unimodal and multimodal PSO

algorithms. Then, we describe the limitation in the algorithm’s search pro-

cess and introduce the k-d tree search mechanism. We apply the improved

multimodal PSO, called KDT-SPSO, to multimodal benchmark functions

to demonstrate the effectiveness of our proposed method in solving general

multimodal optimisation tasks.

4.2 Background

4.2.1 Particle Swarm Optimisation (PSO)

In this section, we present in detail the particle swarm optimisation (PSO)

algorithm. It is important to include this section in this chapter as it forms

the basis of our work for this thesis. PSO algorithm, originally proposed by

Kennedy and Eberhart (1995), has been found robust and fast in solving

non-linear and non-differentiable problems. It was inspired by the social

and cooperative behaviour of the swarms in nature, such as birds and fish.

The PSO algorithm maintains a population of particles (swarm), where

each particle represents a candidate solution in a multidimensional search

space. The particles start at random initial positions and explore through

the search space with variable velocity to find the minimum or maximum

of a given objective function. Each particle has memory to keep track of

its current position, previous best position and velocity. The whole swarm

shares the overall best position found among all the particles, known as

global best. The steps of the PSO algorithm are summarized as follows

and its pseudocode is presented in Algorithm 1:

1. Initialisation: Generate a population of N particles with random

positions and velocities in the search space.

51

4.2. BACKGROUND

2. Evaluation and best positions update: The fitness value of all

particles in the population are computed based on the given objective

function. A particle’s personal best position is replaced if its current

fitness value is better than the last one. The population’s best posi-

tion is also replaced if the current fitness value found so far by any

of the particles is better than the last one.

3. Velocity and position updates: In each iteration, each particle’s

velocity and position are updated according to the following formula,

respectively:

Vi(t+ 1) = γVi(t) + c1β1(Pi(t)−Xi(t)) + c2β2(Pg(t)−Xi(t)) (4.1)

Xi(t+ 1) = Xi(t) + Vi(t+ 1) (4.2)

where Vi(t) denotes the rate of position change; Xi(t) is the position

of particle i at iteration t, where Xi(t) has K dimensions. The ve-

locity vector encodes the amount of change in position and direction

while the position vector shows the location of a particle; γ represents

the inertial weight introduced by (Shi and Eberhart, 1998) into the

original PSO to balance the global and local search; c1 and c2 stand

for cognitive and social coefficients to balance the exploration and ex-

ploitation; β1 and β2 are uniformly generated random numbers in the

range [0,1]; Pi(t) refers to the position with the best value recorded

so far by the particle i (pbest); Pg denotes the position of the global

best particle, which is the particle with the best value found so far in

the entire swarm and will be shared by all the particles (gbest). The

new position of particle i is calculated using Equation 4.2.

52

4.2. BACKGROUND

4. Termination: Steps 2 and 3 are repeated until a stopping criterion

is reached.

Algorithm 1 Algorithm of a standard PSO

1: Randomly initialise Xi(t) for all i, where t = 0;
2: Evaluate f(Xi(t));
3: Assign Pi = Xi(t);
4: Assign Pg = Pj, where j = arg max

i
{f(Pi)}

5: while termination criteria is not met do
6: for each particle i in the population do
7: Equation 4.1;
8: Equation 4.2;
9: Evaluate f(Xi(t));
10: if f(Xi(t)) > f(Pi) then
11: Assign Pi = Xi(t);
12: end if
13: end for
14: j = arg max

i
{f(Pi)};

15: if f(Pg) < f(Pj) then
16: Assign Pg = Pj;
17: end if
18: end while

4.2.2 PSO for Multimodal Optimisation

The classical unimodal PSO is not ideal for solving multimodal problems

because it is likely to guide all particles to converge to one of the optima

(gbest). It can be extended to deal with multimodal problems using a

niching technique that allows each particle to be influenced by the best-fit

particle selected from its neighbours. Using this mechanism, the parti-

cles are able to search for different regions simultaneously and converge to

multiple optima in the search space. Niching is one of the earlier meth-

ods developed for GA to keep the diversity of populations(Goldberg and

Richardson, 1987). Niches represent multiple global bests/peaks across the

search space while niching is used to group similar particles into subswarms

and maintain them around each peak until the end of the search (Li et al.,

53

4.2. BACKGROUND

2018a). Numerous niching methods have been proposed, such as muta-

tion, crowding, fitness sharing, clustering, speciation, etc. (see (Barrera

and Coello, 2009) and (Li et al., 2018a) for a complete discussion). Among

those, speciation has been commonly used in the literature due to its effec-

tiveness and efficiency for exploring multiple solutions compared to other

techniques (Parrott and Xiaodong Li, 2006; Luo et al., 2016; Huang et al.,

2017).

Parrott and Xiaodong Li (2004) created the first species-based PSO (SPSO).

A species is a group of particles in a population with similar properties,

and the particle with the highest fitness value in the group is chosen as the

species seed. SPSO aims to identify multiple species within a population;

the pbest position of a species seed is adopted as the gbest position by all

other particles within the species. The similarity metric, on the other hand,

can be measured by Euclidean distance; the smaller the Euclidean distance

between two particles, the more similar they are:

d(Xi, Xj) =

√√√√ K∑
k=1

(Xk
i −Xk

j)2 (4.3)

where d(Xi, Xj) is the distance between two particles. A particle Xi is

grouped into a species if its distance is within a user specified radius r

from the species seed. The value of r is critical to the performance of

SPSO. If it is too large, it encourages particles to converge to only a few

global optima. On the contrary, if it is too small, it will introduce the

possibility of premature convergence as each particle may become a seed.

The framework of the SPSO is summarised as follows and its pseudocode

is presented in Algorithm 2:

1. Initialisation: A population of N particles is initialised with random

velocity and position.

54

4.3. OPTIMISING SPSO USING K-D TREE STRUCTURE

2. Evaluation and determine species seeds: The species seed set

S is initially empty. All particles are evaluated, sorted in decreasing

order of fitness and added to a list Xsort. All particles in Xsort are

evaluated one after another (from best to least-fit) against all species

seeds found so far in S. If S does not contain any seed that is closer

than a radius r to the particle considered, the particle will be selected

as new seed and added to S. Otherwise, it will become a member

belonging to one of the seeds. Since the species seeds in S are sorted

in the order of decreasing fitness, the first identified seed will domi-

nate over other seeds identified later. For example, particles will be

allocated to the more highly fit seeds first before the less fit ones.

3. Velocity and position update: Each particle’s velocity and po-

sition are updated according to Equations 4.1 and 4.2. Instead of

following gbest (Pg), each particle is guided by its local best particle

(lbest), the species seed.

4. Termination: Steps 2 and 3 are repeated until a stop criterion is

met.

4.3 Optimising SPSO using k-d tree struc-

ture

The SPSO framework proposed by Parrott and Xiaodong Li (2004) can

adapt better for multimodal optimisation problems than the global ones.

However, it is still a challenging task to determine species members be-

cause the Euclidean distance calculations of all particles pairs have to be

performed at every iteration. The complexity of the calculations is affected

by the species radius r (Al-Ruzouq et al., 2018). Assuming there are N

55

4.3. OPTIMISING SPSO USING K-D TREE STRUCTURE

Algorithm 2 Algorithm for determining species seeds and members in a
population

1: S = ∅;
2: Sort X in decreasing fitness values, where X = {X1, X2, ..., XN}, ob-

taining Xsort;
3: while (there are unprocessed particle in Xsort) do
4: Search for the best unprocessed Xi ∈ Xsort;
5: found← false;
6: for each seed s in S do
7: if d(Xi, s) ≤ r then
8: Assign s as lbest for Xi

9: found← true;
10: Break;
11: end if
12: end for
13: if found = false then
14: S ← S ∪ {Xi};
15: end if
16: end while

sorted particles in Xsort, the while loop in Algorithm 2 is executed N

times to check if each particle is within the radius r of the seeds in S. If

S currently consists of i species seeds, the for loop will be performed at

best 1 and at worst i times. The former will happen when the particle

considered is within r of the first seed. In contrast, the latter will happen

if the particle considered falls outside of r of all seeds in S. This shows

that the time complexity of the distance evaluations is between O(N) and

O(N2).

Some studies have suggested choosing neighbourhood members based on

particle indices without involving real distance calculations (Li, 2010; Wang

et al., 2012b). These indices merely represent the ordering of particles in a

population list, and they are not necessarily closely related. For example,

in (Wang et al., 2012b) a ”ring” structure was used where every particle was

labelled with permanent index i, and each particle i was connected with its

two immediate particles i − 1 and i + 1. The strategy is computationally

inexpensive because the Euclidean distance calculation is not required and

56

4.3. OPTIMISING SPSO USING K-D TREE STRUCTURE

the population indices are fixed throughout the entire run. However, the

spatial distance between two connected particles could be very large which

would inevitably increase the difficulty for the algorithm to converge and

locate the optima effectively (Qu et al., 2013).

We propose to build the relationship between each particle using k-d tree

data structure and utilise the structure to search for seeds’ nearest neigh-

bours. We name this improved SPSO as KDT-SPSO. In the best-case

scenario, the while loop in Algorithm 5 is only performed once when all

unprocessed particles in Xsort are within r of the first seed. In such a case,

KDT-SPSO takes O(N) times to report all nodes fall within the search

region. In the worst-case scenario, the while loop steps through Xsort

N times when all seeds do not have their radii overlapped. The num-

ber of evaluations performed in each of the loops follows a complexity of

O(
√
N + m), where O(

√
N) is the total number of regions intersected by

the boundary of the search region in the k-d tree; m is the number of points

falling inside the search region, which is equal to 1 if the seed does not have

any neighbour. If the k-d tree building procedure is taken into account,

KDT-SPSO’s complexity would be O(N · log2N) in the best-case scenario

and O(N(
√
N)) in the worst-case scenario. It can be seen that k-d tree

search outperforms exhaustive nearest neighbour search in the worst-case

scenario, particularly if N is sufficiently large, which is typically required

to solve multimodal problems. The proposed strategy is not limited to the

SPSO used in our experiment, but can also be extended to other evolution-

ary and swarm algorithms that require distance calculation. The details of

k-d tree building and searching procedures are discussed below.

57

4.3. OPTIMISING SPSO USING K-D TREE STRUCTURE

4.3.1 Building k-d tree structure

The procedure of identifying species members can be formulated as nearest

neighbour search problem (NNS) to find all points within a given range

from a specified query point. However, naive NNS calculates the distance

of each query point (seed) for every reference point (particle). Instead of

using the brute-force approach, we propose to build a relationship between

particles using a k-d tree data structure to enhance the efficiency of NNS.

In the process of finding the nearest neighbours to the query points, we

traverse down the tree to the regions that contain most of the nearest

neighbours. The implementations of the k-d tree in evolutionary algorithms

have been reported recently. Nguyen et al. (2015) used a k-d tree structure

to divide the search space of GA into explored and unexplored regions so

that the algorithm could focus more on searching the unexplored areas.

Instead of selecting random parent solutions, Lacerda and Batista (2019)

utilised the k-d tree structure in DE to group the parent solutions with

similar characteristics under the same subtree, which were then used to

generate new candidate solutions to improve convergence. To the best of

our knowledge, ours is the first work using a k-d tree in SPSO to address

the issue of distance evaluation in identifying species members.

The k-d tree data structure proposed by Bentley (1975) was an extended

version of the binary tree for organising data points in a space with k di-

mensions to assure fast searching. If the points comprise (x, y) dimensions,

firstly they are sorted based on values of the first dimension, i.e., x. Then,

the median point is selected as a splitting (parent) node that partitions all

points into two parts with respect to their coordinates in the x axis. The

left subspace holds the points with x value smaller than the parent node

while the right subspace holds the points with x value at least as large as

the parent node. The splitting procedure is called recursively in the left

58

4.3. OPTIMISING SPSO USING K-D TREE STRUCTURE

and right subspaces to create another two new subspaces along alternate

dimensions. For example, at the first level, x dimension is utilised to split

the whole space into two subspaces, and at the second level, y dimension is

utilised to split each of the two subspaces into another two subspaces and

so on. The splitting process continues until all points are subdivided. We

illustrate the splitting process in Figure 4.1 for a clearer understanding.

The steps of building a k-d tree are given in Algorithm 3. The accumu-

lated cost of sorting and recursively building two child nodes amounting to

O(N · log2N), which is also widely reported in the literature (Wald and

Havran, 2006).

Algorithm 3 BuildKdTree (X, depth)

1: Input: A set of points X and current depth depth in the tree
2: Output: The nodes of the k -d tree storing X
3: if X ≤ 0 then
4: return None;
5: end if
6: axis = depth mod k;
7: Sort and select median by axis from X;
8: node.location← median;
9: node.leftChild ← BuildKdTree(sorted points in X before median,
depth+1);

10: node.rightChild ← BuildKdTree(sorted points in X after median,
depth+1) ;

11: return node;

4.3.2 Nearest neighbour search using a k-d tree

After building the tree structure, the nearest neighbour search of a query

point can be done efficiently by selectively traversing down the tree. To

find all points within a radial range r of the query seed, the algorithm

starts at the root node and recursively searches both left and right child

nodes. If the query circle is fully contained in one of the subspaces, there

is no need to explore the other subspace. We illustrate an example of how

the k-d tree is implemented to locate all nearest neighbours within a radial

59

4.3. OPTIMISING SPSO USING K-D TREE STRUCTURE

(a)

(b)

Figure 4.1: The chart on top (a) and the tree graph at the bottom (b) show
how a two-dimensional space is structured using the k-d tree. The blue dots
in the chart represent data points and also correspond to the tree nodes
subdividing the space into two regions. The black vertical lines correspond
to the splits in the x-axis while the red horizontal lines correspond to
the splits in the y-axis. The space is split along a different dimension at
each level of the tree. The points with lower values than the split node
in the corresponding axis are partitioned into the left/bottom subspace,
while the points with higher values will be partitioned into the right/upper
subspace. The deeper the level of the splits, the thinner the line. The
splitting procedure is repeated until each data point is transformed into a
node.

60

4.3. OPTIMISING SPSO USING K-D TREE STRUCTURE

(a)

(b)

Figure 4.2: The chart on top (a) and the tree graph at the bottom(b) show
how nearest neighbour search is performed using the k-d tree. The blue
dots in the chart represent data points, which also correspond to tree nodes
subdividing the space into two regions. The black vertical lines correspond
to splits in the x-axis while the red horizontal lines correspond to splits
in the y-axis. To find the neighbours of P7 (red dot), the algorithm only
needs to evaluate P16, P19, P7, P6, P8, and P9 (yellow dots). The yellow
nodes in the tree graph indicate visited nodes while the grey nodes indicate
eliminated nodes that are not visited.

61

4.3. OPTIMISING SPSO USING K-D TREE STRUCTURE

r of point P7 in Figure 4.2. The search begins from the root node (P16).

The distance between the node and the query point is computed. Since the

distance is out of the query range, it is not added to the neighbourhood list.

The algorithm continues examining the next two child nodes. If the search

range is fully contained in only one of the subspaces, the search on the

other side can be eliminated. If it crosses the other side, both subspaces

have to be visited. As the splitting plane is axis-aligned, we can easily

check whether the query circle crosses the splitting plane by calculating

the absolute distance between the query point’s x/y coordinate and split

node’s axis coordinate.

Since the algorithm begins at level 1, the discriminator at this level is the

x-axis. It can be observed that the absolute distance is greater than r, it

means that the nearest neighbours are all in the right side, and the left sub-

space can be pruned. We continue to look up points in the right subspace

recursively. If the query circle crosses both half-spaces, the algorithm needs

to unwind the recursion and walks back up to the current parent node af-

ter reaching a tree node to check the other side of the subspace. It can be

observed that the algorithm only needs to visit 6 points out of 22 points to

obtain the nearest neighbours which greatly reduces the computation cost

as compared to naive search.

In general, the k-d tree radius search procedure has the complexity of

O(
√
N + m), where m is the number of a point falling inside the search

region. The pseudocode of the k-d tree search is shown in Algorithm 4

and the steps of KDT-SPSO are summarised in Algorithm 5. Since the

complexity of KDT-SPSO and SPSO may change in each iteration, we also

included the actual computation time as one of the evaluation measures to

gauge the real performance of both algorithms in several benchmark tests,

and they are discussed in the next section.

62

4.3. OPTIMISING SPSO USING K-D TREE STRUCTURE

Algorithm 4 SearchNN (root, q, r, result, depth)

1: result = ∅;
2: Input: The root/a subtree of a k-d tree , query point, radius, results

and current depth
3: Output: Result of all nearest points within r of q
4: CurrNode = root;
5: distance← ComputeDistance(CurrNode, q) ;
6: if distance ≤ r then
7: result← result ∪ {CurrNode};
8: end if
9: axis= depth mod k;
10: if CurrNode[axis] > (q[axis]− r) then
11: if CurrNode.leftChild is not Null then
12: SearchNN(Curr node.leftChild, q, r, result, depth+ 1);
13: end if
14: end if
15: if CurrNode[axis] < (q[axis] + r) then
16: if CurrNode.rightChild is not Null then
17: SearchNN(CurrNode.rightchild, q, r, result, depth+ 1);
18: end if
19: end if
20: return result

Algorithm 5 Algorithm for determining species seeds and members using
KDT-SPSO

1: Build k-d tree structure for all particles X using Algorithm 3;
2: Sort all X in decreasing fitness values, obtaining Xsort;
3: S = ∅;
4: while (there are unprocessed particle in Xsort) do
5: Search for the best unprocessed Xi ∈ Xsort;
6: S ← S ∪ {Xi};
7: Search all X within r of Xi using Algorithm 4;
8: Mark all found X as processed and assign Xi as lbest for X;
9: end while

63

4.4. BENCHMARK FUNCTIONS AND EXPERIMENT SETTINGS

4.4 Benchmark functions and experiment set-

tings

Before applying KDT-SPSO to solve palm localisation problems, the pro-

posed method was tested on six commonly used benchmark multimodal

functions from the Congress on Evolutionary Computation (CEC)’2013

Special Session and Competition on Niching Methods for Multimodal Func-

tion Optimization test suite (Li et al., 2013) for performance evaluations.

The performance of KDT-SPSO was also compared against another two al-

gorithms, in particular r3PSO (Li, 2010) and SPSO (Parrott and Xiaodong

Li, 2006). r3PSO is a ring topology based PSO, and each member interacts

with its immediate member on its left and right. Both are representatives of

niching PSO algorithm that use population indices and Euclidean distance

measurements respectively to form their neighbourhood.

The characteristics of the six functions are presented in Table 4.1 and

their optima are known in advance. The details of parameter settings are

summarised in Table 4.2. Parameter r is not needed in r3PSO. The other

parameters in the experiments were fixed as follows: The cognitive and

social constants c1 and c2 were both set to 2 as proposed by Kennedy and

Eberhart (1995) to average influences of both components to the overall

performance. The initial weight γ was set to be the same as in the study of

Shi and Eberhart (1999): 0.9 and linearly reduced to 0.4. Since there is no

restarting mechanism in r3PSO, the mechanism was disabled in both KDT-

SPSO and SPSO for fair comparisons. All test functions are considered as

maximisation functions. The codes for r3PSO and SPSO were reproduced

referring to the pseudocodes presented in their respective studies. Each

benchmark function was run independently 50 times. In each run, the

parameter settings and particle positions were randomly reinitialised.

64

4.4. BENCHMARK FUNCTIONS AND EXPERIMENT SETTINGS

T
ab

le
4.

1:
T

es
t

fu
n
ct

io
n
s.

F
u
n
ct
io
n
n
a
m
e

F
u
n
ct
io
n

D
im

en
si
o
n
s

R
a
n
g
e

N
u
m
b
er

o
f

g
lo
b
a
l
o
p
ti
m
a

F
1
:
F
iv
e-
u
n
ev

en
-p
ea

k
tr
a
p

F
1
(x

)
=

                          8
0
(2
.5
−
x
)

fo
r
0
≤
x
<

2
.5
,

6
4
(x
−

2
.5
)

fo
r
2
.5
≤
x
<

5
.0
,

6
4
(7
.5
−
x
)

fo
r
5
.0
≤
x
<

7
.5
,

2
8
(x
−

7
.5
)

fo
r
7
.5
≤
x
<

1
2
.5
,

2
8
(1
7
.5
−
x
)

fo
r
1
2
.5
≤
x
<

1
7
.5
,

3
2
(x
−

1
7
.5
)

fo
r
1
7
.5
≤
x
<

2
2
.5
,

3
2
(2
7
.5
−
x
)

fo
r
2
2
.5
≤
x
<

2
7
.5
,

8
0
(x
−

2
7
.5
)

fo
r
2
7
.5
≤
x
≤

3
0

1
x
∈

[0
,3

0
]

2

F
2
:
E
q
u
a
l
M
a
x
im

a
F
2
(x

)
=

si
n
6
(5
π
x
)

1
x
∈

[0
,1

]
5

F
3
:
U
n
ev

en
D
ec
re
a
si
n
g
M
a
x
im

a
F
3
(x

)
=

ex
p
(−2

lo
g
(2
)
×
(x−

0
.0
8

0
.8
5
4

) 2)
×

si
n
6
(5
π
(x

3
/
4
−

0
.0
5
))

1
x
∈

[0
,1

]
1

F
4
:
H
im

m
el
b
la
u
’s

fu
n
ct
io
n

F
4
(x
,y

)
=

2
0
0
−

(x
2
+
y
−

1
1
)2
−

(x
+
y
2
−

7
)2

2
x
,y
∈

[−
6
,6

]
4

F
5
:
S
ix
-H

u
m
p
C
a
m
el

B
a
ck

F
5
(x
,y

)
=
−
4
[(
4
−

2
.1
x
2
+

x
4 3
)x

2
+
x
y
+

(4
y
2
−

4
)y

2
]

2
x
∈

[−
1
.9
,1
.9
]

y
∈

[−
1
.1
,1
.1
]

2

F
6
:
S
h
u
b
er
t

F
6
(~x

)
=
−
∏ 2 i=

1

∑ 5 j
=
1
(j

co
s[
(j

+
1
)x

i
+
j]

2
x
1
,x

2
∈

[−
1
0
,1

0
]

1
8

65

4.4. BENCHMARK FUNCTIONS AND EXPERIMENT SETTINGS

Table 4.2: Parameters and criteria for test functions.

Function r
Maximum no.
of evaluation

Population
size

Accuracy
level ε

F1 0.01 20000 100 1.00E-04
F2 0.01 20000 100 1.00E-04
F3 0.01 20000 100 1.00E-04
F4 0.05 20000 100 1.00E-04
F5 0.05 20000 100 1.00E-04
F6 0.50 200000 500 1.00E-04

4.4.1 Performance Evaluations

As the global optima of all test functions were known a priori, the following

four measurements were used to evaluate the performance of the algorithms:

1. Success Rate (SR): SR measures the percentage of successful runs

(all known global optima are successfully found) out of 50 indepen-

dent runs. The algorithm is allowed to run for a maximum number

of evaluations (MNE) before termination. If all known optima are

found within a run, it is coded as ”1”, otherwise ”0”. Since our goal

is to find all global optima, local optima are not considered in the

measurement.

2. Peak Ratio (PR): PR measures the average number of known

global optima found over the total number of known global optima

in a run.

3. Average number of evaluations (ANE): ANE measures the av-

erage number of evaluations required to identify all known global

optima, reflecting the convergence speed. If the algorithm cannot lo-

cate all global optima in the run, then the ANE equals the predefined

MNE.

4. Computation time (CT): CT is the average computation cost in

66

4.4. BENCHMARK FUNCTIONS AND EXPERIMENT SETTINGS

second (s) for an algorithm to perform all required evaluations over

a run.

A global optimum is found if the fitness value of a species seed is within

the accuracy level ε, and within the radius r from the expected solution.

The results were recorded for each run and the experimental results across

the total 50 runs were averaged and reported.

4.4.2 Experiment results and analysis

Statistical analyses were performed to determine if there were statistically

significant differences between the three algorithms in ANE, CT, SR and

PR. Since the results were all left-skewed, non parametric Kruskal-Wallis

statistical test that does not assume normality was selected to compare the

algorithms. Pearson’s chi-square test was performed on SR results, which

were recorded in binary format. The results are shown in Tables 4.3 to 4.6,

where symbols +, − and ≈ indicate the competitor is better than, worse

than and similar to KDT-SPSO, respectively, based on the Kruskal-Wallis

method with Dunn post-hoc pair-wise test or Pearson Chi-Square test (for

SR results) at α = 0.05.

The results in Table 4.3 show that in general, both SPSO and KDT-SPSO

required a similar number of evaluations while r3PSO required the highest

number to identify all the optima within the required accuracy. r3PSO

performed poorly because two connected particles based on population in-

dices may be distant from each other in actual distance and require more

evaluations to converge. It had reached the MNE before all the optima

were found in 32% and 60% of the runs in F4 and F6, respectively. Both

SPSO and KDT-SPSO performed equally well because their main structure

are similar except the mechanism of nearest neighbour search is improved

67

4.4. BENCHMARK FUNCTIONS AND EXPERIMENT SETTINGS

in KDT-SPSO.

Table 4.3: Comparison of average number
of evaluations (ANE).

Function r3PSO SPSO KDT-SPSO
F1 224 - 200 ≈ 206
F2 3556 ≈ 3134 ≈ 3336
F3 1310 ≈ 1042 ≈ 1386
F4 14178 − 11308 ≈ 11768
F5 6718 ≈ 5774 ≈ 6400
F6 168800 − 145710 ≈ 143320

Symbols +, − and≈ indicate that the competitor is
statistically better than, worse than, and similar to
KDT-SPSO by Kruskal-Wallis and post-hoc Dunn
tests at α = 0.05.

ANE is commonly used to reflect the convergence speed, but do not neces-

sarily translate into actual computation runtime. This is because the latter

depends on many factors such as software or hardware used, coding style,

programming language, and complexity of the algorithm. However, some

users may be interesting in knowing under the same environment, which

algorithms use fewer computer resources, and whether the algorithms that

require more computing time lead to better results. The CT results in

Table 4.4 show that the r3PSO was the fastest in all evaluations. This

is because the neighbourhood of particles in r3PSO is predefined and re-

mains the same throughout the entire run. Moreover, the algorithm does

not require Euclidean distance calculation. On the other hand, compared

to KDT-SPSO, SPSO was faster in F1 and F2, similar in F3, but gradu-

ally became slower from F4 onwards. Since F1 to F3 are relatively simpler

functions, so they converge more quickly than the other functions. When

a function starts converging, the number of seeds reduces and stabilises

towards the end of a run. This results in the gradual reduction in SPSO

overhead because of the execution of for loop in Algorithm 2 reduces. In

addition, as KDT-SPSO requires a construction phase in each iteration,

the construction overhead can be significant for simple functions and small

dataset. Due to these reasons, SPSO is more efficient than KDT-SPSO in

68

4.4. BENCHMARK FUNCTIONS AND EXPERIMENT SETTINGS

F1 to F3.

Another factor that affects the computation speed of both algorithms is the

size of the dataset whereby KDT-SPSO performed significantly better than

SPSO in F6 with a large population size. To show the advantage of KDT-

SPSO over SPSO, a separate test with the population size varied from 50 to

1200 was performed on F4. The results are presented in Figure 4.3, and they

clearly show that KDT-SPSO significantly outperformed SPSO when the

population size increased. This is because the distance evaluation in SPSO

increases exponentially with population size, which is the common issue

encountered in traditional niching PSO algorithms. The k-d tree search in

KDT-SPSO helped to prune most of the data points to be visited. Also, in

a large dataset, the cost of building k-d tree structure becomes negligible.

Since the palm tree detection problem is much more complex than F6 with

higher dimension (3D) and more unevenly spaced optima, incorporating k-

d tree search algorithm in traditional niching PSO algorithms is beneficial

to improve the NNS efficiency.

Table 4.4: Comparison of computation
time (CT) in seconds.

Function r3PSO SPSO KDT-SPSO
F1 1.19+ 1.38 + 1.59
F2 1.44+ 1.63 + 1.71
F3 1.42+ 1.98 ≈ 1.97
F4 3.64+ 6.30 - 5.00
F5 1.38+ 2.31 - 1.74
F6 32.40+ 100.94 - 68.34

Symbols +, − and ≈ indicate that the competi-
tor is statistically better than, worse than, and
similar to KDT-SPSO by Kruskal-Wallis and
post-hoc Dunn tests at α = 0.05.

Interestingly, shorter computation time does not necessarily equate to lower

accuracy. It can be observed from the SR results presented in Table 4.5 that

despite KDT-SPSO being faster than SPSO, both performed equally well

and KDT-SPSO was slightly better than SPSO in F4. It shows that the

recall capability of both algorithms is high. On the other hand, although

69

4.4. BENCHMARK FUNCTIONS AND EXPERIMENT SETTINGS

Figure 4.3: Comparison of computation time of three different algorithms.

the speed of r3PSO was the fastest, its SR was generally the lowest. It

performed significantly worse than KDT-SPSO in F4 and F6. In F6, it

successfully located all optima only in 40% of the runs compared to 74%

achieved by SPSO and KDT-SPSO. We noticed that in these two functions,

although some of the particles were already close to the nearest global op-

timum, they remained stagnant even before the MNE was reached. This

happens because when population indices are used, two neighbouring par-

ticles may be located in different niches and they oscillate between the two

niches. Due to this, particles’ fitness values always fluctuate and are unable

to reach an equilibrium state. As a result, the particles fail to locate the

known optima within the acceptable accuracy level ε.

Since F6 is the most complex function among the others, none of the al-

gorithms was able to identify all optima in all 50 runs. The results in

Table 4.6 further elaborate the percentage of global optima found by each

algorithm in each function. r3PSO recorded the lowest PR in F4 and F6,

which were only 0.945 and 0.961, respectively. The poor performance of

r3PSO was also widely reported in literature (Qu et al., 2013; Liu et al.,

2020), implying that although r3PSO is fast, it is not suitable for complex

functions requiring a high recall rate. Nonetheless, its overall performance

in terms of speed and recall rate was still the best in relatively simple func-

70

4.5. SUMMARY

tions, for example, F1, F2, F3, and F5. In general, all three algorithms

evaluated were not able to identify every optimum in F6 suggesting that

larger population size is probably needed but will be commensurate with

higher overhead. The other option is to integrate restarting mechanism

in the algorithms to reposition selected particles to other parts of search

spaces.

Table 4.5: Comparison of success rate
(SR).

Function r3PSO SPSO KDT-SPSO
F1 1 ≈ 1 ≈ 1
F2 1 ≈ 1 ≈ 1
F3 1 ≈ 1 ≈ 1
F4 0.78 − 0.98 ≈ 1
F5 1 ≈ 1 ≈ 1
F6 0.4 − 0.74 ≈ 0.74

Symbols +, − and ≈ indicate that the com-
petitor is better than, worse than, and simi-
lar to KDT-SPSO according to Pearson’s chi-
square test at α = 0.05.

Table 4.6: Comparison of peak ratio
(PR).

Function r3PSO SPSO KDT-SPSO
F1 1 ≈ 1 ≈ 1
F2 1 ≈ 1 ≈ 1
F3 1 ≈ 1 ≈ 1
F4 0.945 − 0.995 ≈ 1
F5 1 ≈ 1 ≈ 1
F6 0.961 − 0.986 ≈ 0.984

Symbols +, − and ≈ indicate that the com-
petitor is better than, worse than, and similar
to KDT-SPSO according to Kruskal-Wallis and
post-hoc Dunn tests at α = 0.05.

4.5 Summary

In this chapter, we discussed the implementation of a special type of binary

search tree, called k-d tree, to speed up the multimodal PSO (SPSO) NNS

during optimisation process. The use of k-d tree search involves two stages:

the tree construction stage and tree searching stage. The tree construction

71

4.5. SUMMARY

stage aims to subdivide all points into a binary tree structure comprising of

multiple nodes representing the data’s subspaces. During the NNS process,

the algorithm only needs to evaluate the points in the subspaces within the

predefined distance from the query point, eliminating the need to evalu-

ate all points exhaustively. A detailed comparison of six of the CEC 2013

multimodal benchmark functions between the proposed method and other

techniques, namely r3SPSO and SPSO, shows that the proposed method

was significantly faster than SPSO and successfully discovered more op-

tima than r3SPSO. The proposed mechanisms can also be applied in other

metaheuristics algorithms that require distance evaluation. The benefits

of using the proposed method is more apparent in solving complex prob-

lems, e.g. palm tree detection, that require a large population size than

the simple ones.

72

Chapter 5

Application of KDT-SPSO for

Palm Tree Detection

5.1 Introduction

The previous chapter explains the details of KDT-SPSO and its perfor-

mance in solving selected benchmark functions. This chapter describes the

utilisation of KDT-SPSO for palm tree detection in UAV images. Figure

5.1 and Figure 5.2 present a ”big picture” overview of how KDT-SPSO is

incorporated into the palm tree detection framework. Our approach con-

sists of three major steps. First, an input image randomly generates a large

set of particles representing plausible palm tree candidates. Each particle

contains a potential solution, i.e. x and y coordinates of the pixel centres

and size of the tree. Then, fitness/classification score representing the de-

tection’s quality is computed for each candidate. This forms the objective

function for KDT-SPSO, which is then optimised aiming to find the best

sets of locations and scales that maximise the particles’ fitness score. The

higher the score, the more likely the subregion contains a palm tree. These

73

5.2. METHODS

processes are repeated in each iteration until the maximum number of eval-

uations is reached. At each of the candidate coordinates, a square image

patch with the width and height of its proposed size is extracted and fed

into the feature-extraction-based-classifier selected in Chapter 3 to produce

a classification score.

5.2 Methods

5.2.1 Feature extraction and classification

The feature-extraction-based-classifier (LBP(SVMRBF)-R) selected in Sec-

tion 3.4 was applied to produce the fitness score for the candidates. SVM

normally gives categorical output for classification purposes, but contin-

uous value is required in KDT-SPSO for meaningful comparisons among

candidates. Therefore, the output of f(x) was transformed into posterior

probabilities based on the following sigmoid function as suggested in Platt

(1999):

P (y = 1) | f(x)) =
1

1 + exp(Af(x) +B)
(5.1)

where parameters A and B were found by maximum likelihood estimation

from the same training data used to fit the SVM. The posterior probabilities

in the range of [0,1] were turned into fitness values used in KDT-SPSO and

the particle with fitness value of more than 0.5 corresponds to a palm tree.

74

5.2. METHODS

5.2.2 Reinitialisation of non-participating particles

As observed in the results of F4 and F6 in Section 4.4.2, some of the optima

were not detected because of the imbalanced number of particles assigned

to each species. In some cases, there may be a lack of particles exploring

other potential regions if too many particles track the same peak, resulting

in loss of diversity, leading to premature convergence. They are likely to

move around and move closer to the same lbest and not able to generate

new movements beyond the search region. One of the ways to address the

issue is by increasing the number of particles, but it is impractical when

the search space and amount of optima to be identified are large. Parrott

and Xiaodong Li (2006) suggested integrating a reinitialisation mechanism

into SPSO and triggering it when the number of particles inside a species

exceeds a maximum population threshold (POPmax). This mechanism al-

lows particles that have already converged to be reinitialised in other search

regions.

In the present study, we modified the original mechanism. The particles

that were further away from the seed and caused the species to exceed the

population capacity were reinitialised and relocated to a random position

in each iteration. The POPmax was also set to limit the number of particles

inside each species where only the closest POPmax particles remained as

the members of a species and other particles that would cause the species

population to exceed the threshold would be reinitialised. The mechanism

was also extended to select the particles that were neither seed nor species

members with fitness value <= 0.5 as they did not represent palm trees. We

called these selected particles as non-participating particles (NPP) because

they did not contribute to the improvement of convergence. By reinitial-

ising them with new positions and velocities, the number of evaluations

executed in the existing regions could be cut down and the selected parti-

75

5.2. METHODS

cles could help to explore other areas. Nevertheless, the selected particles’

current pbest were not reinitialised so that the new positions could only be

accepted if they were fitter than pbest. This approach maintained a balance

between exploration and exploitation. The rest of the particles would keep

exploiting their respective species regions to look for better solutions. The

summary of KDT-SPSO’s procedures for palm tree detection is explained

in Algorithm 6, the pictorial illustration is shown in Figure 5.1, and the

flowchart is presented in Figure 5.2.

Algorithm 6 Algorithm of KDT-SPSO for palm tree detection

1: Randomly initialise Xi(t) for all i in image space, where t = 0;
2: Extract image patch based on Xi(t)’s coordinates and size;
3: Compute image patch’s LBP features;
4: Evaluate f(Xi(t))’s fitness/probability value using trained SVM;
5: Assign Pi = Xi(t);
6: while termination criteria is not met do
7: r = rmax × t/tmax;
8: Select particles with probability > 0.5, obtaining Xpalm

9: Determine species seeds and species members in Xpalm following Al-
gorithm 5;

10: Update velocity and position of Xi(t) following Equation 4.1 and
Equation 4.2;

11: Select NPP and reinitialise their position and velocity;
12: Extract image patches based on Xi(t)’s updated coordinates and size;

13: Repeat Step 3 and Step 4;
14: if f(Xi(t)) > f(Pi) then
15: Assign Pi = Xi(t);
16: end if
17: end while

76

5.2. METHODS

(a) Step 1 (b) Step 2

(c) Step 3 (d) Step 4

(e) Step 5

Figure 5.1: Pictorial description of the KDT-SPSO algorithm for palm tree
detection.

77

5.2. METHODS

F
ig

u
re

5.
2:

F
lo

w
ch

ar
t

of
th

e
p
ro

p
os

ed
K

D
T

-S
P

S
O

al
go

ri
th

m
fo

r
p
al

m
tr

ee
d
et

ec
ti

on
.

78

5.3. OPTIMISING KDT-SPSO’S PARAMETERS FOR PALM TREE
DETECTION

5.3 Optimising KDT-SPSO’s parameters for

palm tree detection

In this section, the performances of the proposed method for palm tree

detection are presented. It is well known that the parameters used in

metaheuristics are problem dependent, the same set of parameters used for

specific problems may not be suitable for another set of problems. To make

the performance of the proposed KDT-SPSO more robust for palm tree

detection, an empirical analysis was performed on a 400× 400 pixels sample

image of an oil palm field (a subset of Image 1) to find an appropriate

parameter settings that produced optimal results. The effect of three levels

of population size (POPsize) and maximum population threshold (POPmax)

on the detection performances, namely SR, PR and ANE, were evaluated.

Since the captured images were already georectified to the correct scale,

the maximum number of palm trees in a given image could be estimated.

The POPsize used in this study represents the multiplier of the expected

number of palm trees that exist in an image, i.e. POPsize of 6 means 6 ×

expected number of palm trees.

Other parameters were fixed: The maximum species radius rmax was set

to 35 pixels, equivalent to 7 m on the ground and smaller than the average

planting distance between palm trees of about 9 m. Referring to Brits

et al. (2002), the species radius r started with a small value and gradually

increased to rmax. Through this approach, more species could be formed

and discovered at the beginning of a run, and they were slowly absorbed

into fitter species at the end of the run. The cognitive and social coefficients

c1 and c2 were both set to 2 as suggested in Kennedy and Eberhart (1995)

to average the influences of both components to the overall performance.

The initial weight γ was set to 0.9 and linearly reduced to 0.4 following

79

5.3. OPTIMISING KDT-SPSO’S PARAMETERS FOR PALM TREE
DETECTION

Shi and Eberhart (1999). The velocity V (Equation 4.1) was constricted

within the range [Vmin, Vmax], which was [−15, 15] for both position and

tree size to prevent particles from moving too far away from the existing

search region. A particle was reinitialised to a new position if its updated

position exceeded the image domain.

5.3.1 Results and discussion of parameter optimisa-

tion experiments

The results of the empirical study summarised in Table 5.1 clearly show that

the combination of POPsize = 10 and POPmax = 2 achieved the highest

SR and PR, where all palm trees were successfully identified in each of the

50 independent runs. It used the second least number of evaluations after

POPsize = 6 and POPmax = 2 pair to complete the search. The poorest

performer was POPsize = 6 and POPmax = 4 pair where it used the most

number of evaluations to complete the search, yet achieving the lowest

SR and PR. The mean effect of POPsize and POPmax on SR and ANE

is demonstrated in Figure 5.3. Figure 5.3a shows that SR was positively

correlated to population size. A larger population size provides better

search capability to detect all palm trees. Nevertheless, ANE was not

influenced by population size, as shown in Figure 5.3b. This implies that

more iterations are still required to identify all palm trees if low population

size is used.

To illustrate the parameter selection of KDT-SPSO, four sets of graphs were

plotted (Figure 5.3) to observe the influence of POPsize and POPmax on

the SR and ANE. Figure 5.3c shows that higher POPmax threshold has an

adverse effect on SR. The recall capability of KDT-SPSO was highest when

only 2 particles were allowed to stay in the same species. This is because

80

5.4. EVALUATION OF KDT-SPSO’S PERFORMANCE ON TEST
IMAGES

when a higher threshold value is used, more particles are trapped in the

same species and unable to identify more palm trees outside the species.

The result also shows that it is necessary to trigger reinitialisation in KDT-

SPSO. On the other hand, lower POPmax also improved convergence speed,

as shown in Figure 5.3d. This happens because when more particles are

reinitialised, the chances of finding new optima are higher leading to faster

convergence.

Table 5.1: Experimental results with respect to the performance of KDT-
SPSO with different levels of POPsize and POPmax on the test image based
on 50 independent runs.

POPsize POPmax SR (%) PR ANE

6 2 88.00 0.994 1339.20

6 4 60.00 0.976 1949.76

6 6 62.00 0.975 1920.96

8 2 98.00 0.999 1512.96

8 4 92.00 0.996 1893.12

8 6 90.00 0.995 1578.24

10 2 100.00 1 1473.60

10 4 94.00 0.997 1843.20

10 6 90.00 0.995 1852.80

5.4 Evaluation of KDT-SPSO’s performance

on test images

After obtaining the optima POPsize and POPmax settings from the previ-

ous section, the KDT-SPSO was performed on 25 sets of new images as

shown in Figure 5.6. The size of each test image was 500 × 500 pixels

containing 5-33 palm trees. The algorithm was compared with the perfor-

81

5.4. EVALUATION OF KDT-SPSO’S PERFORMANCE ON TEST
IMAGES

(a) (b)

(c) (d)

Figure 5.3: Effect of POPsize and POPmax on SR and ANE.

mance of exhaustive sliding window approach and subsampling approach

as explained in Section 2.2.2. The description of the methods compared in

the experiment is presented in Table 5.2.

5.4.1 Exhaustive sliding window approach

To detect palm trees of various sizes using sliding window technique, the

original image was firstly downscaled to 6 different sizes at the scale of 0.9x

to the original image following the image pyramid approach. Then, each of

the resized images (7 including the original image) was traversed by a 60 ×

60 pixels square window to extract image patches as object proposals for

palm tree classification. Since the same location might be repeatedly de-

tected in different image scales, non-maximal suppression (NMS) is applied

to select the proposals with the highest SVM fitness value. The final selec-

tion of NMS is dependent on the object’s fitness score and overlap threshold

82

5.4. EVALUATION OF KDT-SPSO’S PERFORMANCE ON TEST
IMAGES

that we have defined. That is, to find the set of proposals that have the

largest scores but simultaneously do not exceed the overlap threshold:

IOU(ri, rj) =
Area(ri ∩ rj)
Area(ri ∪ rj)

(5.2)

where IOU(ri, rj) refers to the ratio of intersection area of object proposals

ri and rj to the total area covered by ri and rj. NMS starts with a list of

object proposals with scores sorted from the highest to the lowest. In the

beginning, the first proposal in the list is selected, and the overlap ratio

between itself and the remaining proposals is computed as in Equation

5.2. If the overlap ratio IOU(ri, rj) exceeds the predefined threshold, the

proposal with the lower score will be eliminated from the list. After all

comparisons are made, the selected proposal is moved to the list of final

detections. The process is repeated for the remaining proposals in the list.

We set the overlap threshold at 0.25 as it was the best value achieving the

highest F1-Score in our optimisation test, as shown in Figure 5.4.

Figure 5.4: F1-score results against different levels of NMS’s overlap ratio.

83

5.4. EVALUATION OF KDT-SPSO’S PERFORMANCE ON TEST
IMAGES

5.4.2 Subsampling approach

In contrast to the exhaustive sliding window approach, which systemat-

ically samples a large number of object proposals at various scales and

locations in the input image, the subsampling approach samples a subset

of plausible proposals at random scales and locations. Then, NMS is ap-

plied to select a subset for the proposals with the best scores. The object

proposal selection problem can also be formulated as a binary optimisa-

tion problem as reported by (Rujikietgumjorn and Collins, 2013; Pham

et al., 2016), which is to select the best set of proposals that minimises the

following quadratic objective function:

f(x) =
n∑
i=1

cixj +
n∑
i=1

n∑
j=1

cijxixj (5.3)

where the first term ci represents the unary energy, which is the classifica-

tion score of the proposal i. The second term cij is defined as the pairwise

energy, which measures the score when a pair of candidates xi, xj overlaps

based on the overlap ratio, computed as the intersection area between two

overlapping proposals, divided by the area of the smaller proposal. If the

overlap ratio is high, a large penalty will be given so that only the fitter one

will be chosen. xi ∈ {0, 1} is the binary variables that need to be solved,

an optimisation algorithm is applied to search for the best assignment of 0

and 1 that maximises the objective function value.

As the studies claimed that QUBO could achieve better results than NMS

in selecting the best candidates, we included the QUBO approach for com-

parison. We leveraged the QUBO source code in Matlab provided by Pham

et al. (2016) for our study. We set the overlapping threshold at 0.1 as it

was the optimum value achieving the highest F1-Score as shown in Figure

84

5.4. EVALUATION OF KDT-SPSO’S PERFORMANCE ON TEST
IMAGES

5.5, a large penalty (i.e. -100000) was given to the overlapping pairs that

exceed the threshold.

Figure 5.5: F1-score results against different levels of QUBO’s overlap ratio.

In addition to the overlapping threshold, the initial number of sub-samples

to be generated also needs to be defined. If the number of sub-samples is

too low, it may miss out a lot of objects. If the number is too high, there will

be no significant advantage in terms of computation cost over the sliding

window approach. We investigated the effect of two different numbers

of initial object proposals, which were 7500 and 3250 on the detection

accuracy. 7500 was equivalent to the total number of evaluations spent in

KDT-SPSO approach (375 particles × 20 iterations). This was to compare

whether both algorithms could perform similarly if only a limited number

of evaluations was allowed. Then, the number of proposals was halved

(3250) to evaluate whether a smaller proposal size was sufficient to detect

all palm trees in the images. In addition, NMS was also tested to compare

its performance against QUBO.

85

5.5. RESULTS AND DISCUSSION

Table 5.2: Description of the methods tested in our palm tree detection
experiment.

Method Description
SW Sliding window approach and final selection using

NMS
S-NMS1 Generating 3250 random object proposals and fi-

nal selection using NMS
S-QUBO1 Generating 3250 random object proposals and fi-

nal selection using QUBO
S-NMS2 Generating 7500 random object proposals and fi-

nal selection using NMS
S-QUBO2 Generating 7500 random object proposals and fi-

nal selection using QUBO
KDT-SPSO Our proposed method

5.4.3 Evaluation methods

Precision, recall, F1-score and runtime (s) as described in Section 3.2.5

were used as the evaluation measures. The non-parametric Kruskal-Wallis

was also applied to test the results statistically for significant difference at

α = 0.05.

5.5 Results and discussion

The results of the experiment are shown in Tables 5.3 - 5.6 and the snap-

shots of the KDT-SPSO optimisation process are presented in Figure 5.7.

Results show that the average recall rate of KDT-SPSO was 97.86%, which

was slightly lower than that of the sliding window technique, because some

of the palms were missed in 15 out of 25 test images. The poorest results

are observed in Image 25 mainly because many palm canopies were out of

shape. As a result, the classifier was not able to recognise them as palm

trees. This situation normally happens when a palm tree is infected with

disease or smothered by overgrown creepers plants. The second reason was

because the distances between the palm trees in the images were inconsis-

86

5.5. RESULTS AND DISCUSSION

Table 5.3: Comparison of recall rate obtained by different methods on UAV
images (%).

Image
Number Recall rate (%)
of palms SW S-NMS1 S-QUBO1 S-NMS2 S-QUBO2 KDT-SPSO

1 33 100.00 100.00 100.00 100.00 100.00 99.58
2 31 100.00 100.00 96.77 100.00 100.00 99.47
3 27 100.00 92.59 96.30 100.00 100.00 97.26
4 17 100.00 94.12 94.12 100.00 100.00 97.41
5 32 100.00 96.88 96.88 100.00 100.00 99.87
6 25 100.00 76.00 72.00 100.00 100.00 97.36
7 21 90.48 76.19 76.19 80.95 80.95 90.48
8 30 100.00 90.00 90.00 93.33 93.33 99.93
9 21 100.00 85.71 85.71 90.48 90.48 100.00
10 30 100.00 96.67 96.67 96.67 96.67 100.00
11 22 100.00 95.45 90.91 95.45 95.45 100.00
12 31 100.00 93.55 93.55 96.77 96.77 100.00
13 23 91.30 56.52 56.52 82.61 82.61 89.48
14 25 100.00 80.00 80.00 88.00 88.00 97.08
15 26 100.00 84.62 84.62 88.46 88.46 99.92
16 20 95.00 75.00 75.00 75.00 75.00 94.80
17 30 100.00 100.00 100.00 100.00 100.00 99.93
18 18 100.00 94.44 94.44 100.00 100.00 100.00
19 7 100.00 100.00 100.00 100.00 100.00 100.00
20 16 100.00 100.00 100.00 100.00 100.00 100.00
21 21 100.00 100.00 100.00 100.00 100.00 100.00
22 30 100.00 96.67 96.67 100.00 100.00 99.07
23 5 100.00 100.00 100.00 100.00 100.00 100.00
24 27 100.00 100.00 100.00 100.00 100.00 100.00
25 16 75.00 62.50 62.50 75.00 75.00 84.75

Mean 98.07≈ 89.88≈ 89.55≈ 94.51≈ 94.51≈ 97.86

Symbols +, − and ≈ indicate that the competitor is statistically better than, worse than,
and similar to KDT-SPSO by Kruskal-Wallis and post-hoc Dunn tests at α = 0.05.

tent. Some of them were less than the predefined species radius, thus might

have caused two very close species to merge into one. Since the species ra-

dius r needs to be known a priori in KDT-SPSO or many other SPSO

variants, it becomes a limitation when the distances between optima are

inconsistent. In such cases, an algorithm that can adaptively change the

optimum species radius will be advantageous to eliminate the requirement

of predefining r.

Notably, the recall rates of all subsampling approaches were lower than

that of the KDT-SPSO and sliding window technique. This shows the

weakness of the subsampling approach where the randomly generated ob-

ject proposals may not be sufficient to encompass all palm trees comprising

87

5.5. RESULTS AND DISCUSSION

of various sizes and locations in the input images. Their recall rate deteri-

orated significantly when the proposal size was reduced to half. S-QUBO2

and S-NMS2, which had the equivalent number of proposals needed to be

evaluated as KDT-SPSO, could only yield a lower recall rate than or at

best similar to KDT-SPSO’s. The main factor is contributed to the updat-

ing mechanism in KDT-SPSO, which had helped the algorithm to search

in other regions for palm trees, whereas in subsampling approach, the loca-

tion and sizes of the proposals were fixed since the beginning. Interestingly,

in our experiment, QUBO did not show significant improvement in recall

rate over NMS approach, which contradicts the results reported in (Rujiki-

etgumjorn and Collins, 2013; Pham et al., 2016). In fact, it was slightly

poorer than NMS in the 3250-sample test (89.55% vs 89.88%), and same as

the NMS in the 7500-sample test (94.51% vs 94.51%). This shows that the

efficiency of classifier is the foremost factor affecting the recall rate rather

than the performance of the optimisation/ subset selection methods. NMS

can perform as good as the QUBO algorithm without going through the

complicated optimisation process.

Despite the lower recall rate, KDT-SPSO attained a higher precision rate

(88.56%) than the sliding window technique’s (80.00%). Its precision rate

was higher than that of the sliding window technique in most of the test

images, except Image 2 and Image 24. This shows that the optimisation

approach implemented in KDT-SPSO had guided the algorithm in select-

ing palm tree candidates with fitter scores. As demonstrated in Figure 5.7,

the particles (red asterisks) were moving towards the locations with bet-

ter fitness, which were the palm tree centres. Also, the particles might be

trapped in only a few palm tree centres if the restart mechanism was not

integrated resulting in high false negative rate. However, both of the algo-

rithms performed poorly in complex oil palm environments with mixture of

forest trees and bushes, such as Image 4, Image 20, and Image 23. In Image

88

5.5. RESULTS AND DISCUSSION

Table 5.4: Comparison of precision rate obtained by different methods on
UAV images (%).

Image
Number Precision rate (%)
of palms SW S-NMS1 S-QUBO1 S-NMS2 S-QUBO2 KDT-SPSO

1 33 100.00 94.29 94.29 100.00 100.00 100.00
2 31 100.00 100.00 96.77 96.88 100.00 99.93
3 27 92.86 92.59 92.86 96.43 96.43 98.01
4 17 41.46 84.21 80.00 89.47 89.47 80.84
5 32 94.12 93.94 93.94 94.12 94.12 99.82
6 25 92.59 100.00 100.00 96.15 96.15 96.63
7 21 90.47 94.12 100.00 94.44 94.44 92.22
8 30 90.91 100.00 100.00 87.50 87.50 98.20
9 21 61.76 85.71 90.00 82.61 82.61 79.40
10 30 88.24 100.00 100.00 96.67 96.67 96.33
11 22 75.86 91.30 90.91 80.77 80.77 84.14
12 31 91.18 96.67 90.63 90.91 90.91 97.11
13 23 87.50 92.86 92.86 90.48 90.48 99.18
14 25 88.89 90.91 90.91 95.65 95.65 95.77
15 26 92.86 100.00 100.00 100.00 100.00 99.34
16 20 82.61 93.75 93.75 83.33 83.33 86.29
17 30 96.77 100.00 100.00 100.00 100.00 99.87
18 18 62.07 89.47 89.47 90.00 90.00 78.53
19 7 43.75 77.78 77.78 77.78 77.78 72.43
20 16 43.24 59.26 57.14 51.61 51.61 53.24
21 21 84.00 95.45 95.45 91.30 87.50 88.68
22 30 88.24 90.63 90.63 93.75 90.91 94.08
23 5 20.00 55.56 55.56 33.33 33.33 30.17
24 27 100.00 100.00 100.00 100.00 96.43 97.45
25 16 92.31 100.00 90.91 100.00 100.00 96.35

Mean 80.07≈ 91.14≈ 90.55≈ 88.53≈ 88.24≈ 88.56≈
Symbols +, − and ≈ indicate that the competitor is statistically better than, worse than,
and similar to KDT-SPSO by Kruskal-Wallis and post-hoc Dunn tests at α = 0.05.

23, about 80% of the objects were falsely detected as palm trees by sliding

window technique resulting in the lowest F1-Score of 33.33% compared to

46.18% achieved by KDT-SPSO. This shows that greedy search adversely

affects the detection accuracy because it increases the chances of misclas-

sification of non-palm tree objects. In contrast to recall rate, S-NMS1

and S-QUBO1 approaches based on 3250 samples produced the top two

precision rates among all tested approaches. This shows that introducing

unnecessary object proposals will increase the chance of false detections.

Subsequently, the F1-Score results that averaged both recall and precision

rates show that KDT-SPSO was the best while the sliding window ap-

proach was the worst performing algorithm. Again, the performances of

89

5.5. RESULTS AND DISCUSSION

Table 5.5: Comparison of F1-Score obtained by different methods on UAV
images (%).

Image
Number F1-Score (%) (%)
of palms SW S-NMS1 S-QUBO1 S-NMS2 S-QUBO2 KDT-SPSO

1 33 100.00 97.06 97.06 100.00 100.00 99.78
2 31 100.00 100.00 96.77 98.41 100.00 99.69
3 27 94.54 92.59 94.55 98.18 98.18 97.61
4 17 58.62 88.89 86.49 94.44 94.44 88.31
5 32 96.97 95.38 95.38 96.97 96.97 99.84
6 25 96.15 86.36 83.72 98.04 98.04 96.78
7 21 90.48 84.21 86.49 87.18 87.18 91.32
8 30 95.24 94.74 94.74 90.32 90.32 99.05
9 21 76.36 85.71 87.80 86.36 86.36 88.46
10 30 93.75 98.31 98.31 96.67 96.67 98.12
11 22 86.27 93.33 90.91 87.50 87.50 91.31
12 31 95.38 95.08 92.06 93.75 93.75 98.52
13 23 89.36 70.27 70.27 86.36 86.36 93.98
14 25 94.12 85.11 85.11 91.67 91.67 96.34
15 26 96.30 91.67 91.67 93.88 93.88 99.62
16 20 88.37 83.33 83.33 78.95 78.95 90.16
17 30 98.36 100.00 100.00 100.00 100.00 99.90
18 18 76.60 91.89 91.89 94.74 94.74 87.88
19 7 60.87 87.50 87.50 87.50 87.50 83.77
20 16 60.38 74.42 72.73 68.09 68.09 69.45
21 21 91.34 97.67 97.67 95.45 93.33 93.94
22 30 93.75 93.55 93.55 96.77 95.24 96.48
23 5 33.33 71.43 71.43 50.00 50.00 46.18
24 27 100.00 100.00 100.00 100.00 98.18 98.70
25 16 82.76 76.92 74.07 85.71 85.71 89.93

Mean 85.97≈ 89.42≈ 88.94≈ 90.28≈ 90.12≈ 91.80

Symbols +, − and ≈ indicate that the competitor is statistically better than, worse than,
and similar to KDT-SPSO by Kruskal-Wallis and post-hoc Dunn tests at α = 0.05.

NMS and QUBO in selecting the fittest proposals were very similar. Al-

though all methods performed equally well in detecting young palm trees

and simple environment, the low precision rate achieved by all methods in

a complex environment indicates that a more robust classification model,

e.g. convolutional neural networks (CNN), is needed to improve the ac-

curacy, at the expense of additional computation cost. Alternatively, the

results can possibly be improved by eliminating the outliers or anomalies

using post-processing techniques such as isolation forest and local outlier

factor, which can be considered for further study.

Finally, the runtime results show that KDT-SPSO required significantly

less time than the sliding window technique for detecting all the palm trees

90

5.5. RESULTS AND DISCUSSION

in each test image without comprising the overall accuracy, proven by the

higher F1-Score of 91.80% as opposed to 85.97% achieved by sliding window

technique. This could be achieved because KDT-SPSO optimises palm tree

locations and sizes simultaneously, whereas sliding window technique uses

a brute-force approach to identify both of the parameters. As expected,

S-NMS1 and S-QUBO1 were the two fastest methods as the proposals

evaluated by them were far less than the rest of the methods, with some

trade-off in accuracy. NMS was marginally faster than QUBO, suggesting

no significant advantage of using QUBO in palm tree detection. S-NMS2

and S-QUBO2 evaluated the same amount of proposals as in KDT-SPSO;

although not significant, their speed were slightly faster than KDT-SPSO.

The speed of KDT-SPSO can be further improved by executing the method

parallelly on a multi-core CPU, which is one of the advantages our approach

has over the subsampling approach.

91

5.5. RESULTS AND DISCUSSION

Table 5.6: Comparison of runtime (s)

Image
Number Runtime (s)
of palms SW S-NMS1 S-QUBO1 S-NMS2 S-QUBO2 KDT-SPSO

1 33 495.45 28.29 30.84 72.64 73.72 80.48
2 31 434.80 29.21 30.34 72.03 73.17 77.88
3 27 428.98 29.25 30.60 72.18 74.61 75.65
4 17 421.92 30.03 29.48 73.24 75.00 80.77
5 32 470.27 28.01 29.43 72.18 73.4 71.08
6 25 428.47 28.97 30.19 71.72 73.85 70.14
7 21 425.56 28.40 30.09 71.47 73.04 68.61
8 30 428.00 30.30 30.95 70.54 71.67 72.83
9 21 427.19 28.72 30.54 74.38 75.85 72.66
10 30 428.34 30.17 30.20 71.50 74.04 73.05
11 22 429.97 29.99 30.21 71.85 73.39 67.82
12 31 428.17 29.80 30.36 71.84 73.68 82.08
13 23 427.44 30.27 30.95 71.98 74.08 77.35
14 25 434.98 29.83 29.58 74.05 75.47 77.56
15 26 422.56 29.82 30.58 71.69 72.91 83.06
16 20 432.57 29.83 29.32 74.56 75.84 81.89
17 30 442.47 29.12 29.74 74.28 75.71 78.94
18 18 428.09 29.54 30.20 74.10 75.26 82.31
19 7 437.33 29.56 30.14 73.46 75.98 83.57
20 16 379.38 29.08 32.43 74.93 76.24 78.40
21 21 432.19 28.71 29.55 74.70 75.78 74.56
22 30 429.07 29.11 29.94 74.89 76.10 75.80
23 5 428.00 28.92 30.84 73.05 75.64 72.69
24 27 434.08 28.29 30.15 73.68 76.30 80.22
25 16 451.24 29.29 29.37 74.03 75.82 80.19

Mean 433.06− 29.30 + 30.24 + 73.00≈ 74.66≈ 76.78

Symbols +, − and ≈ indicate that the competitor is statistically better than, worse than,
and similar to KDT-SPSO by means of Kruskal-Wallis and post-hoc Dunn tests at α = 0.05.

92

5.5. RESULTS AND DISCUSSION

(a) Image 1 (b) Image 2 (c) Image 3

(d) Image 4 (e) Image 5 (f) Image 6

(g) Image 7 (h) Image 8 (i) Image 9

(j) Image 10 (k) Image 11 (l) Image 12

(m) Image 13 (n) Image 14 (o) Image 15

93

5.5. RESULTS AND DISCUSSION

(q) Image 16 (r) Image 17 (s) Image 18

(t) Image 19 (u) Image 20 (v) Image 21

(w) Image 22 (x) Image 23 (y) Image 24

(z) Image 25

Figure 5.6: Test images showing results of KDT-SPSO detection. The blue
circles indicate detected palm trees. The red circles indicate false positives
while the yellow circles indicate false negatives. The images are best viewed
in colour.

94

5.5. RESULTS AND DISCUSSION

(a) Image 1, 1st iteration
samples

(b) Image 1, 5th iteration (c) Image 1, 20th iteration

(d) Image 2, 1st iteration (e) Image 2, 5th iteration (f) Image 2, 20th iteration

(g) Image 3, 1st iteration (h) Image 3, 5th iteration (i) Image 3, 20th iteration

(j) Image 4, 1st iteration (k) Image 4, 5th iteration (l) Image 4, 20th iteration

Figure 5.7: Snapshots of the KDT-SPSO’s searching process at 1st, 5th and
20th iteration, respectively in Image 1 (a-c), Image 2(d-f), Image 3 (g-i),
and Image 4 (j-l). The red asterisks indicate particles, the blue asterisks
indicate species seeds while the blue circles indicate detected canopy sizes.
The canopy diameter corresponds to the width of the image patch. The
red circles in Image 4 indicate false positives. The images are best viewed
in colour.

95

5.6. SUMMARY

5.6 Summary

In this chapter, we present how KDT-SPSO was applied in palm tree de-

tection. The objective function of KDT-SPSO was represented by the clas-

sification score, which was computed using the LBP(SVMRBF)-R model

selected in Chapter 3. Prior to the real tests, we investigated the optimal

parameter settings of KDT-SPSO for palm tree detection through a set of

factorial experiments. The optimised KDT-SPSO was then tested on 25

new images and compared with the greedy sliding window and subsampling

approaches. Our approach successfully achieved 91.80% (F1-Score), which

was the highest amongst all competitors. When we went along with the ex-

periments, we found that the QUBO approach, which was applied to select

the best subset from a large number of proposals in subsampling approach,

performed marginally poorer than the NMS approach, which is out of our

expectation as many of the available literatures concluded that QUBO was

significantly better than NMS. We think that the benefit of QUBO is prob-

ably apparent in solving more complicated problems, such as multi-class

object detections rather than the two-class palm tree detection problem.

Despite the best performance, KDT-SPSO still takes a significant amount

of time for fitness evaluations in large-scale UAV images where a large pop-

ulation size is required. We propose to incorporate additional information,

which is the digital surface model (DSM), into KDT-SPSO to generate

lesser but higher confidence proposals to reduce the number of evaluations.

96

Chapter 6

Integration of Digital Surface

Model (DSM) into Palm Tree

Detection Framework

6.1 Introduction

The previous chapter has detailed the general workflow of KDT-SPSO in

palm tree detection. However, it is still computationally expensive to run

the approach on a large-scale UAV image. The major cost is attributed

to the large number of particles that need to be evaluated at each iter-

ation. The possible improvements include reducing the number of pop-

ulations and/or adjusting the stopping criterion, which require extensive

experiments to obtain the optimal parameters. We present a novel ap-

proach that generates a small set of high confidence palm tree proposals

from structure-from-motion (SfM)-derived digital surface model (DSM),

then pass these proposals to the KDT-SPSO algorithm for evaluation. Our

proposed method does not require additional training and is computation-

97

6.2. BACKGROUND

Figure 6.1: 3D representation of palm trees

ally efficient since we only need to apply local maximum (LM) operator to

extract potential palm tree proposals from DSM. This is inspired by the

appearance of a palm tree in 3D space that resembles a hill (Figure 6.1),

and the tree centre can be identified as the hill top. In the second part of

this chapter, we present a proof-of-concept study that incorporates DSM

into the existing Fast R-CNN framework to increase detection accuracy

and speed. The findings from this section can provide users with better

computing facilities an alternative to detecting palm trees in UAV images.

6.2 Background

Three-dimensional (3D) remote sensing data have been widely utilised in

mapping tree location and measuring tree height and canopy size (Kor-

pela, 2004). Over the last two decades, the use of airborne laser scanning

(ALS) in forest monitoring and mapping have become the internationally

established method due to its high accuracy and quick acquisition (Næs-

set, 2007). However, the acquisition of ALS data requires tedious planning

and high investment cost, which is less viable for relatively small scale

plantations. The acquisition of overlapping images from UAVs allows the

generation of 3D photogrammetric point clouds offers a flexible and cost-

effective way for obtaining 3D information (Westoby et al., 2012). Stucture-

from-Motion (SfM), an automated photogrammetric technique based on

98

6.2. BACKGROUND

computer vision approach is used to generate orthomosaic and 3D point

clouds, and subsequently derive a digital surface model (DSM) representing

the scene’s terrain from sequences of overlapping images. The SfM-derived

DSM offered comparable accuracy as the ALS-derived DSM, where the

SfM-derived DSM resulted in a mean overestimation of 0.18 m (SD = 0.30

m). In comparison, the ALS-derived DSM resulted in a mean overestima-

tion of 0.28 m (SD = 0.16 m) when compared to the GPS-surveyed ground

control points (Guerra-Hernández et al., 2018). Unlike ALS, SfM-derived

DSM can be obtained without additional cost during the orthophoto gen-

eration (Stone et al., 2016). Figure 6.2 illustrates the outcome of the SfM

photogrammetric process.

The 3D data from DSM alone can be utilised to identify tree locations

quickly using LM filtering (Fawcett et al., 2019). The common assumption

is that the pixel of treetops has higher elevation than its neighbouring pix-

els, thus being assigned as tree center. The computation of LM is faster

and easier than that of machine learning approaches and does not require

training. However, directly applying LM filters on DSM for tree detection

without further classification using a machine learning approach can gen-

erate erroneous results because it will also include other non-tree objects

that cannot be differentiated using DSM alone, particularly when large lo-

cal topographic variation exists in the study area. In order to reduce the

errors, some studies introduced the canopy height model (CHM) (Lisein

et al., 2013; Mohan et al., 2017), which is computed by subtracting digi-

tal terrain model (DTM) from DSM. DTM is a model representing bare

ground elevation, which is an estimated model derived from DSM. The

operation aims to segregate trees from the ground for more accurate tree

location estimation. However, it is non-trivial to derive an accurate DTM

when overlapped tree canopies fully block the ground.

99

6.3. INTEGRATION OF DIGITAL SURFACE MODEL (DSM) INTO
KDT-SPSO

(a) SfM-derived 3D point
cloud

(b) The resultant 2D ortho-
mosaic

(c) The resultant DSM

Figure 6.2: The deliverables of the SfM photogrammetric process from
sequences of overlapping UAV images. The blue colour in the resultant
DSM represents a lower elevation value

The advantage of our proposed approach is that it does not require the

derivation of DTM and CHM, yet can generate highly accurate results

because the detected LM proposals (either palm or non-palm trees) will

be further classified using machine learning approach. To the best of our

knowledge, this is the first work that combines SfM-derived DSM and 2D

visual images for tree detection using machine learning techniques, partic-

ularly palm tree. The closest study was carried out by Rizeei et al. (2018)

that used image segmentation techniques to group pixels from 2D visual

images with homogenous properties as an individual object (palm tree),

and used ALS data to estimate the palm height. However, the approach

was parametric and required heavy user input.

6.3 Integration of Digital Surface Model (DSM)

into KDT-SPSO

We aim to extract as many high confidence palm tree proposals as possible

from DSM to serve as the input for KDT-SPSO. The proposals still need

to be evaluated by the feature-extraction-based classifier because they can

be either palm trees or random objects that just protrude from the ground

100

6.3. INTEGRATION OF DIGITAL SURFACE MODEL (DSM) INTO
KDT-SPSO

Figure 6.3: The 4-connected regional maxima operator that is used to
identify potential palm tree proposals in the experiment

surface. We utilised the regional maxima operator available in Matlab for

the processing. The operator slid a 3×3 pixels moving window over all

pixels in the DSM to evaluate if the centre pixel’s value was higher than its

4 neighbours’ values (Figure 6.3). The selected locations were included in

the proposal list and passed to KDT-SPSO for initialisation. Since the pro-

posals only contained x and y coordinates, KDT-SPSO randomly assigned

radius values to each of them. After that, the process of optimisation

followed the flowchart as presented in Chapter 5. Firstly, we tested our

approach on three large-scale UAV test images (Figure 6.4) and their cor-

responding DSMs to investigate the performance of KDT-SPSO on large

areas. Image A represents a young palm area where the canopies have not

overlapped. Image B represents a mature palm area where the canopies

are heavily overlapped and only a small part is bare ground, which is more

challenging than the first case. Image C is the most challenging as it is

mixed with other crops and buildings. We compared the performance of

the original KDT-SPSO with the enhanced KDT-SPSO integrated with

DSM (named as KDT-SPSO+D) in terms of recall rate, precision rate,

F1-score and computation runtime (s).

Subsequently, we repeated the same experiment on an additional 25 test

images of 500 × 500 pixels (Figure 6.5) and their corresponding DSMs for

statistical analyses.

101

6.3. INTEGRATION OF DIGITAL SURFACE MODEL (DSM) INTO
KDT-SPSO

(a) Image A: Immature
area (1234 × 1056 pixels)

(b) Image B: Mature area
(1079 × 977 pixels)

(c) Image C: Mixed vege-
tation area (1344 × 1261
pixels)

Figure 6.4: The three large-scale UAV images used in testing the effect of
integrating DSM into palm tree detection pipeline.

(a) Image 1 (b) Image 2 (c) Image 3

(d) Image 4 (e) Image 5 (f) Image 6

(g) Image 7 (h) Image 8 (i) Image 9

102

6.3. INTEGRATION OF DIGITAL SURFACE MODEL (DSM) INTO
KDT-SPSO

(j) Image 10 (k) Image 11 (l) Image 12

(m) Image 13 (n) Image 14 (o) Image 15

(p) Image 16 (q) Image 17 (r) Image 18

(s) Image 19 (t) Image 20 (u) Image 21

103

6.3. INTEGRATION OF DIGITAL SURFACE MODEL (DSM) INTO
KDT-SPSO

(v) Image 22 (w) Image 23 (x) Image 24

(y) Image 25

Figure 6.5: The 25 additional small-scale UAV images of 500 × 500 pixels
each used in testing the effect of integrating DSM into palm tree detection
pipeline

6.3.1 Results and discussion

The comparison results of the first 3 large-scale images are shown in Table

6.1, and the output are demonstrated in Figure 6.6. The results clearly

show the superiority of KDT-SPSO+D over KDT-SPSO in terms of com-

putation time and accuracy. KDT-SPSO+D was almost 10 times faster

than KDT-SPSO because the number of proposals generated using DSM

was 6 to 8 times less than that of the original KDT-SPSO. In KDT-SPSO,

the initial number of particles was decided based on the parameters ob-

tained from the preliminary test. The ratio was fixed across all different

images and had to be larger than the number of objects possibly present

in the images to avoid missed detections. The population size can be ex-

tremely large if the algorithm is applied on large-scale high-resolution UAV

images. On the other hand, the number of proposals generated using DSM

104

6.3. INTEGRATION OF DIGITAL SURFACE MODEL (DSM) INTO
KDT-SPSO

Table 6.1: Comparison of performance between KDT-SPSO and KDT-
SPSO+D on the first 3 set of large-scale images

Image
Number Number of KDT-SPSO/KDT-SPSO+D
of palms Proposals Recall (%) Precision (%) F1-Score (%) Runtime(s)

A 137 1955/310 100/100 100/100 100/100 438.04/58.24
B 116 1581/238 100/98.28 100/100 100/99.13 316.54/45.94
C 77 2541/332 100/98.68 51.68/75.00 68.14/85.23 529.42/53.61

is dynamic depending on the amount of ”hill” like objects present in the

image.

The object proposals extracted from DSM are of high confidence to be palm

trees, therefore reducing the risk of false detections (i.e. Image C). This is

the major reason why KDT-SPSO+D’s accuracy, particularly the precision

rate was higher than that of KDT-SPSO despite generating fewer proposals.

The initial object proposals produced by both algorithms are shown in

Figure 6.7. As observed from the figures, instead of the random positions

generated by KDT-SPSO, the proposals generated by KDT-SPSO+D are

mainly concentrated in areas containing palm trees. However, as DSM

generally generates fewer proposals, KDT-SPSO+D may not have enough

particles to explore other potential regions, increasing the chance of missed

detections (Image 2). The other reason that possibly causes the lower recall

rate of KDT-SPSO+D is the artefacts introduced during DSM production.

The elevation of some areas may be underestimated due to error and noise

(Sai et al., 2019), therefore affecting the quality of local maximum/proposal

extraction.

Likewise, the comparison of the additional 25 images (Table 6.2) shows

that KDT-SPSO+D performed significantly faster than KDT-SPSO with

no significant difference in accuracy. KDT-SPSO+D also obtained a higher

average F1-Score than that of KDT-SPSO. However, in some areas with

hilly and uneven topography, i.e. Image 4, Image 9, Image 13, Image 19,

Image 22, and Image 23, KDT-SPSO+D performed only marginally faster

105

6.3. INTEGRATION OF DIGITAL SURFACE MODEL (DSM) INTO
KDT-SPSO

(a) Image A: KDT-SPSO (b) Image A: KDT-SPSO +DSM

(c) Image B: KDT-SPSO (d) Image B: KDT-SPSO +
DSM

(e) Image C: KDT-SPSO (f) Image C: KDT-SPSO +DSM

Figure 6.6: Test images showing results of KDT-SPSO (left column) and
KDT-SPSO+DSM (right column) detections. The blue circles indicate
detected palm trees. The red circles indicate false positives while the yellow
circles indicate false negatives. The images are best viewed in colour.

(a) KDT-SPSO (b) KDT-SPSO+D

Figure 6.7: Comparison of the initial proposals (red asterisk) generated by
KDT-SPSO(a) and KDT-SPSO+D(b).

106

6.3. INTEGRATION OF DIGITAL SURFACE MODEL (DSM) INTO
KDT-SPSO

Table 6.2: Comparison of performance between KDT-SPSO and KDT-
SPSO+D on additional 25 images of 500 × 500 pixels.

KDT-SPSO/ KDT-SPSO+D
Image Number of Palms Recall (%) Precision (%) F1-Score (%) Runtime(s)

1 26 92.71/93.46 96.49/97.74 94.50/95.54 21.46/6.37
2 28 85.56/92.85 100/97.95 92.08/95.18 18.69/7.97
3 30 95.06/100 100/92.04 97.44/95.85 19.85/7.39
4 27 90.27/100 99.03/94.47 94.24/97.14 21.69/18.56
5 30 99.23/98.18 100/100 99.61/99.04 22.15/7.02
6 27 86.41/85.18 99.53/96.91 92.08/90.52 21.33/5.71
7 28 95.01/98.57 98.24/98.57 96.54/98.57 21.12/6.77
8 23 85.68/98.26 99.12/87.29 91.80/92.33 21.00/14.18
9 24 93.22/100 97.30/99.20 95.01/99.59 20.92/20.96
10 27 80.63/100 99.91/86.58 89.05/92.79 21.53/6.33
11 14 95.98/95.71 87.29/72.81 91.13/82.49 23.50/6.23
12 15 83.33/90.66 78.86/68.75 80.46/78.17 21.43/5.78
13 20 94.79/92.00 93.27/100 93.56/95.00 21.06/18.14
14 30 91.18/92.00 99.36/99.31 95.00/95.44 20.66/6.33
15 29 79.88/87.58 100/97.67 88.75/92.26 20.95/6.25
16 23 93.20/99.13 99.61/94.30 96.15/96.63 21.27/6.23
17 28 95.61/95.26 99.40/100 97.43/97.56 21.01/6.59
18 16 78.12/93.31 100/95.42 87.39/94.15 21.67/5.98
19 28 91.14/100 100/100 95.23/100 20.80/18.22
20 24 66.66/80.00 100/100 80.00/88.74 20.77/15.57
21 35 99.42/98.57 100/100 99.71/99.26 21.69/7.07
22 25 100/100 78.12/86.25 87.71/92.60 21.67/18.37
23 26 100/100 85.13/83.39 91.92/90.89 21.13/19.90
24 27 100/93.51 93.86/100 96.80/96.60 21.95/6.17
25 34 99.41/90.44 96.16/99.19 97.72/94.60 21.37/6.29

Mean 90.90/94.98 96.03/93.91 92.85/94.04 21.23/10.18*

Symbol ∗ indicates a difference in significance between two algorithms
by means of Kruskal-Wallis test at α = 0.05. The better performer is
indicated in bold.

107

6.4. INTEGRATION OF DSM INTO REGION-BASED CNN (R-CNN)

than KDT-SPSO. This is probably because more proposals are extracted

from DSM with hilly and uneven surfaces compared to the flat ones, thus

increasing the processing time. In the future, we will explore the possibility

of smoothening the DSM before LM operation so that only salient points

are extracted.

6.4 Integration of DSM into region-based CNN

(R-CNN)

Due to the outstanding performance of incorporating DSM into KDT-

SPSO, we studied whether the same approach can be applied in the state-of-

the-art region-based CNN, namely Fast R-CNN (Girshick, 2015) for palm

tree detection. This can reaffirm the applicability of DSM in other object

detection frameworks. We can also benchmark our hybrid KDT-SPSO+D

algorithm against R-CNNs that were reported achieving state-of-the-art

accuracy in palm tree detection in UAV images, but requiring better com-

puting facilities. We introduce a novel technique that uses Fast R-CNN

as base network and DSM derived from SfM 3D point cloud to guide the

region of interests (RoIs) generation. The architecture is summarised in

Figure 6.8. Different from one-stage region-based CNNs such as Faster R-

CNN, YOLO and SSD, Fast R-CNN has separate region proposal and CNN

networks, thus allowing more room for improvement, i.e. using additional

data and works on any dimension of input images.

6.4.1 Methods

Our proposed approach comprises two modules. The first module uses the

same method as described in Section 6.3 that takes a DSM as input and

108

6.4. INTEGRATION OF DSM INTO REGION-BASED CNN (R-CNN)

generates potential palm tree locations as outputs using the LM operator.

The LM filtering can be considered as a spatial constraint to guide the

CNN model in searching for objects and making it faster for prediction. In

order to not miss out on any potential palm trees, the smallest kernel size

(3×3) was used to search for local maxima. Unlike Selective Search (SS)

proposed by Uijlings et al. (2013), and Region Proposal Network (RPN)

in Faster R-CNN that extract many ROIs with or without objects, LM

filtering provides higher confidence ROIs that are difficult to be obtained

from 2D images. The idea of the improved technique shares similar idea as

in Taewan Kim and Ghosh (2016), i.e., using 3D LiDAR depth map and

RGB image to increase detection accuracy. However, Taewan Kim and

Ghosh (2016) extracted region proposals from both 3D and 2D data using

SS that required higher computation costs.

This study used the concept of anchor boxes as implemented in RPN to

account for palm trees of varying sizes. Three anchor boxes of size 40× 40,

80 × 80 and 120 × 120 pixels that were close to the minimum, average

and maximum canopy sizes were introduced at each potential palm tree

location. The second module, which is the Fast R-CNN network first con-

volved input RGB image with a series of a number of convolutional and

max pooling layers to a feature map. Then, the three anchor boxes were

projected onto the corresponding feature map for RoI extraction. Since

there are three RoIs of different sizes, a RoI pooling layer was used to ex-

tract a fixed-length feature vector. Each feature vector was subsequently

fed into a sequence of fully connected layers and finally two sibling con-

volution layers: a box-regression layer that outputs bounding box related

values and a classification layer that outputs the SoftMax probability of

palm tree and ”background” classes.

The VGG16 model (Simonyan and Zisserman, 2014) pre-trained on Ima-

109

6.4. INTEGRATION OF DSM INTO REGION-BASED CNN (R-CNN)

geNet was employed as the base network of Fast R-CNN as suggested in

the original paper. As this is only a proof-of-concept study that demon-

strates the viability of incorporating DSM into R-CNN framework, we did

not amend the structure of the base network. Whereas we fine-tuned it

for palm tree detection. To fine-tune the model, 94 images and their cor-

responding DSM of size 400× 400 pixels that were cropped outside of the

test areas were selected for training. Each image contained 10-20 palm

trees and the bounding box of each palm tree was manually annotated as

ground-truth. This will bias towards positive samples as they were dom-

inating. Thus, additional 100 locations were randomly sampled in each

image to increase the negative sample size. The training sample was con-

sidered as positive if its overlap ratio with the ground-truth is greater than

0.6. If the overlap was less than 0.1, it was labelled as negative. The rest

of the training samples with an overlap between 0.1 to 0.6 were discarded.

The losses of box-classification and box-regression layers were computed

separately and combined as final loss:

L(p, p∗, t, t∗) = Lcls(p, u) + λ[u ≥ 1]Lreg(t, t
∗) (6.1)

in which, Lcls = − log pu is the classic cross-entropy log loss of true class u.

The second task loss, Lreg is defined as:

Lreg(t, t
∗) =

∑
i∈x,y,w,h

smoothL1(ti − t∗i) (6.2)

in which

smoothL1(x) =


0.5x2 If |x| < 1

|x| − 0.5 otherwise,

(6.3)

t and t∗ are vectors representing four parametrised coordinates of the pre-

110

6.4. INTEGRATION OF DSM INTO REGION-BASED CNN (R-CNN)

dicted bounding box and the ground-truth box associated with a positive

anchor respectively where:

tx =
(x− xa)
wa

, ty =
(y − ya)
ha

(6.4)

tw = log(
w

wa
), th = log(

h

ha
) (6.5)

t∗x =
(x∗ − xa)

wa
, t∗y =

(y∗ − ya)
ha

(6.6)

t∗w = log(
w∗

wa
), t∗h = log(

h∗

ha
) (6.7)

Variables x, y, w, and h denote the box’s centre coordinates and its width

and height while xa, ya, wa and ha correspond to the four parametrised

coordinates of anchor box. This can be interpreted as regressing a bound-

ing box from an anchor box to a nearby ground-truth box. The Inverson

bracket indicator function [u ≥ 1] evaluates to 1 if the anchor is positive

(palm), and is 0 if the anchor is negative (background). Lreg is ignored for

background ROIs since the ground-truth bounding box is not labelled. λ

controls the weights of both losses, and it was set to 1.

In this study, one image per mini-batch was randomly sampled for train-

ing. Stochastic gradient decent (SGD) solver with based learning rate of

0.0001 was run for 10 epochs to minimise the objective function. Data

augmentation was ignored since there was little visual difference between

palm tree objects. The mean mini-batch accuracy obtained after learning

for 14 hours was 96.88%.

6.4.2 Implementation and evaluation details

To evaluate the performance of the proposed method, it was compared with

the original Faster R-CNN and YOLO V2 (both were based on VGG16).

111

6.4. INTEGRATION OF DSM INTO REGION-BASED CNN (R-CNN)

Figure 6.8: Architecture of the proposed method used in this experiment.

Due to the limitation of our computing facilities, the experiments were

performed in Matlab Online, a cloud-based version of Matlab.

At test time, the 3 large-scale test images were partitioned into multiple

sub-images with the size of 400 × 400 pixels via a sliding window, with

stride=150 pixels and ran through the trained models. The stride ensures

all regions, especially the image edges were analysed, but this will result in

overlapping detections on the edges. Such a problem was alleviated using

NMS.

The resolution of the palm tree is reduced in a deep convolutional fea-

ture map caused by repeated down-sampling of R-CNN, which is usually

too small to contain discriminative information for reliable classification.

Therefore, we cropped an image of size 2000 × 2000 pixels near Image A

and partitioned it into 10 sub-images of different sizes, ranging from 200

× 200 pixels up to 2000 × 2000 pixels to test the effect of input image

size on the detection accuracy and time of Faster R-CNN, YOLO, and our

approach using VGG16 as a base network.

The evaluation of tree detection was based on the precision rate, recall rate,

F1-Score and runtime as described in Chapter 3.

112

6.4. INTEGRATION OF DSM INTO REGION-BASED CNN (R-CNN)

6.4.3 Results and discussion

Performance comparison with other methods

Table 6.3 shows the detection accuracy in terms of precision, recall and

F1-Score of the three methods in three study areas. Results show that

the proposed method achieved F1-score of 99.29% in Image A, 98.99% in

Image B, and 88.75% Image C. The precision in Site 3 was low because all

of the coconut trees were mistakenly identified as palm trees. The pictorial

descriptions of the results are shown in Figure 6.9. In the future, we will

provide more coconut tree samples for training to decrease the number

of false positives. The proposed method outperformed Faster R-CNN in

Image A and Image B, but slightly poorer in Image C. There were more

trees not being detected by our approach than that of Faster R-CNN in

Image C, and we observed that none of the local maxima was found on

those false negatives, probably due to the issue of over-smoothing during

the production of DSM. On the other hand, YOLO performed the best in

all three images. DSM can probably be integrated into the YOLO model

for further performance enhancement.

Our approach ran almost 50% faster than Faster R-CNN. The outstanding

improvement in speed is that the proposed method only needs to evaluate

RoIs at selected locations identified by LM filter, thus reducing the need

to process a large number of background proposals. Also, LM filtering

successfully reduced the number of false positives. RPN in Faster R-CNN

exhaustively analyses all locations in the feature map, thus increasing the

possibility of false detections. YOLO achieved the fastest detection speed,

mainly because it resized the input image to 25×25 pixels, greatly reducing

the convolutional layers’ processing time. However, this may cause small

objects not to be detected in high-resolution images.

113

6.4. INTEGRATION OF DSM INTO REGION-BASED CNN (R-CNN)

Table 6.3: Comparative results between Faster R-CNN, our approach, and
Yolo in respective to recall ,precision, F1-score, and detection time in three
study areas

Image Methods Recall (%) Precision (%) F1-Score (%) Runtime (s)

A
Faster R-CNN 95.62 97.76 96.68 35.64

Ours 97.81 100 98.89 33.55
Yolo 100 100 100 27.3

B
Faster R-CNN 94.82 100 97.34 42.00

Ours 97.43 100 98.69 28.65
Yolo 100 100 100 22.73

C
Faster R-CNN 98.72 81.72 89.41 61.01

Ours 92.21 85.54 88.75 48.76
Yolo 100 87.5 93.33 36.72

(a) Image A: Faster R-
CNN

(b) Image A: Our ap-
proach

(c) Image A: YOLO

(d) Image B: Faster R-
CNN

(e) Image B: Our ap-
proach

(f) Image B: YOLO

(g) Image C: Faster R-
CNN

(h) Image C: Our ap-
proach

(i) Image C: YOLO

Figure 6.9: Test images showing results of Faster R-CNN (first column),
our approach (second column) and YOLO (third column). The blue circles
indicate detected palm trees. The red circles indicate false positives while
the yellow circles indicate false negatives. The images are best viewed in
colour.

114

6.4. INTEGRATION OF DSM INTO REGION-BASED CNN (R-CNN)

Performance comparison based on AlexNet backbone

The backbone network of the R-CNNs used in this experiment was based

on VGG16 model as suggested in the original study. We did an additional

experiment by switching the base network to the AlexNet model to com-

pare its performance with our KDT-SPSO approaches, and the results are

demonstrated in Table 6.4. Since AlexNet is a shallower network than

VGG16, its performance was poorer than VGG16-based R-CNNs as pre-

sented in Table 6.3 despite the faster detection speed. Nevertheless, our ap-

proach using DSM managed to improve the accuracy and computation time

of the original Faster R-CNN (AlexNet) as expected. Interesting, our hy-

brid KDT-SPSO+D approach’s accuracy (Table 6.1) was higher than that

of Faster R-CNN (both VGG16 and AlexNet) and very close to YOLO,

proving that our proposed method was as robust as the state-of-the-art

R-CNN model.

Table 6.4: Comparative results between Faster R-CNN and our approach
based on AlexNet backbone.

Methods Recall (%) Precision (%) F1-Score (%) Runtime (s)

Image A
Faster R-CNN (AlexNet) 100.00 91.95 95.80 13.98

Ours (AlexNet) 95.62 99.23 97.40 10.69

Image B
Faster R-CNN (AlexNet) 95.68 98.23 96.94 8.44

Ours (AlexNet) 95.69 99.11 97.37 6.17

Image C
Faster R-CNN 93.51 40.91 56.92 17.94
Ours (AlexNet) 93.51 70.59 80.45 13.99

Effect of input image size on accuracy and detection time

Results in Figure 6.10 show that the accuracy of our proposed method

was not affected by the image size whereas the accuracy of Faster R-CNN

reduced gradually when the image size was larger than 1000 × 1000 pix-

els due to the increase in false positive rate. On the other hand, YOLO

experienced sudden decline in accuracy and resulted in 100% false nega-

tive rate when the image size was larger than 800 × 800 pixels. YOLO

115

6.4. INTEGRATION OF DSM INTO REGION-BASED CNN (R-CNN)

Figure 6.10: Comparison of palm detection F1 score with respect to differ-
ent image dimensions.

resized all input images to the training sample resolution, i.e. 400 × 400

pixels, to maintain fast detection speed. As a result, the resolution of a

single palm tree had become very low and eventually smaller than the cell

size of the feature map. Therefore, it was hard to distinguish palm trees

from generic clutter in the background. Although this can be improved

by training the network using higher resolution images, it will increase the

computation time and memory consumption quadratically. In contrast,

both Faster R-CNN and our proposed method did not resize input images

to a fixed resolution, thus providing greater flexibility in passing images of

various sizes to the networks.

Considering that using large-scale UAV images directly will result in high

computation time and memory consumption for training and testing, the

large images are usually cropped on a much smaller scale with some overlaps

between sub-images and processing the sub-images asynchronously. How-

ever, results in Figure 6.11 show that too many sub-images will increase

computation time. This is because each sub-image has to be analysed in-

116

6.4. INTEGRATION OF DSM INTO REGION-BASED CNN (R-CNN)

Figure 6.11: Comparison of palm detection speed with respect to different
image dimensions.

dependently and the network has to process redundant information due to

the overlapping regions between the sub-images.

Since the proposed method and Faster R-CNN could handle large-scale

images without cropping, their rate of increase in detection time was similar

to the rate of increase in image size. In contrast, multiple sub-images of

size 400 × 400 pixels have to be cropped from the whole images for YOLO

detection to maintain high accuracy. Consequently, the rate of increase in

detection time was faster than the rate of increase in the image size. Despite

YOLO had the fastest speed in detecting a single 400 × 400 pixels sub-

image, its speed gradually deteriorated with the increase of input image size

and eventually outperformed by the proposed method with a wide margin,

i.e. in 2000 × 2000 pixels image. This implies that the proposed method

is still the best option to detect palm trees in large-scale UAV images.

117

6.5. SUMMARY

6.5 Summary

The first section of this chapter demonstrates the advantages of incorporat-

ing the DSM into KDT-SPSO’s algorithm to improve the overall detection

accuracy and computation efficiency. As the computation cost of KDT-

SPSO is largely affected by the population size, the utilisation of DSM for

proposal generation using local maximum filtering approach showed a sig-

nificant improvement over the original KDT-SPSO. Proposal identification

using LM operator is simple, fast and does not require any training.

The second section of this chapter presents a proof-of-concept study that in-

corporated DSM data into the existing Fast R-CNN framework to increase

its detection accuracy and speed. Results show that the proposed method

was up to 50% faster than Faster R-CNN and successfully achieved 93.33

to 100% average accuracy in three study areas (VGG16 backbone). Its de-

tection speed and accuracy were higher than the state-of-the-art one-stage

YOLO if they were tested on the large-scale UAV image. An advantage of

our proposed method resides in the fact that it can be applied to images

of any size and maintain the same accuracy. The class-agnostic proposals

generated from DSM can also be utilized to detect other objects such as

vehicles and buildings.

Out of expectation, the hybrid KDT-SPSO+D algorithm attained higher

accuracy and yet achieved similar processing speed as the deeper VGG16-

based Faster R-CNN model. In fact, it was faster than Faster R-CNN

in Image 3. Although it may not be a fair apples-to-apples comparison

as both algorithms were tested on different hardware (personal laptop vs

cloud server) and trained using different training data (R-CNNs require im-

age patches that consist of multiple objects for training), the results show

that with little computation cost, our hybrid approach could attain state-

118

6.5. SUMMARY

of-the-art accuracy and perform palm tree detection task within reason-

able time. We attribute the outstanding performance of KDT-SPSO+D to

several reasons: 1) The carefully trained and improved feature-extraction-

based classifier LBP(SVMRBF)-R is able to classify palm tree instances

as accurate as CNNs, but with significant reduction in processing time.

2) KDT-SPSO offers an efficient searching strategy to locate all palm tree

instances in images, and 3) DSM is used to generate high confidence pro-

posals that likely contain palm trees for KDT-SPSO, thus reducing the time

of searching other non-palm tree areas. The combination of these features

makes KDT-SPSO+D a successful approach.

119

Chapter 7

Summary and Future Work

This thesis proposes a hybrid multimodal particle swarm optimisation algo-

rithm that leverages feature-extraction-based classifier for objective func-

tion, a k-D tree-based speeded up mechanism for search process, and a dig-

ital surface model- (DSM) based method for high confidence proposal gen-

eration for palm tree detection in UAV images. This chapter summarises

our main findings, highlights the limitations of the proposed methods, and

gives directions for future work.

7.1 Evaluation of feature extraction meth-

ods for classification of palm trees

Chapter 3 presented the evaluation of six feature extraction methods and

three types of classifiers for palm tree classification. The feature extrac-

tors, which were originally designed for visual images, were able to extract

useful information from palm tree data and discriminate them from non-

palm tree objects. The state-of-the-art fully-connected CNN algorithm that

trained and classified objects from end-to-end, as well as the classic Viola-

120

7.1. EVALUATION OF FEATURE EXTRACTION METHODS FOR
CLASSIFICATION OF PALM TREES

Jones algorithm, were included for comparative study. The fully-connected

CNN was found to yield the best accuracy with trade-off in computational

time. The two-stage approach utilised a light-weight LBP feature extrac-

tor, and the RBF-kernel SVM classifier achieved slightly lower accuracy but

three times faster than the fully-connected CNN. It was considered the best

combination because it did not require long training time and specialised

computer hardware to run the model. The Viola-Jones algorithm achieved

the lowest accuracy despite its fastest speed due to its high sensitivity to

lighting conditions and shape changes. We suggest that two types of Viola-

Jones classifiers are needed to detect mature and young trees separately if

the algorithm is considered.

We further enhanced the performance of LBP by means of dimensionality

reduction. The feature selection process was performed to choose the most

important features from the original data. The selection results show that

the top 450 features in LBP were sufficient to discriminate palm tree and

non-palm tree images as opposed to the original 944 features. After the

reduction, it was 50% faster than the original LBP and seven times faster

than the fully-connected CNN, which was a significant improvement. The

selected features may not be the best combination as they were selected

through a sequential forward selection approach, which added features one

at a time without exploring all possible combinations. We plan to apply a

more sophisticated, but computationally expensive hybrid feature selection

to select the best subset of features that are more efficient and robust than

the current combination. In future, we will also include the classification of

various palm tree categories, e.g. diseased palms, nutrient deficient palms,

pest-infested palms, etc. in our algorithm to provide more useful insights

to estate managers about their plantations.

121

7.2. IMPROVED MULTIMODAL PARTICLE SWARM
OPTIMISATION ALGORITHM

7.2 Improved multimodal particle swarm op-

timisation algorithm

Chapter 4 presented the main framework for the palm tree detection task

focused in this thesis. One of the limitations of the existing multimodal

PSO algorithm was the exhaustive nearest neighbour search (NNS) mecha-

nism, which scaled up quadratically when the number of particles increased.

We introduced a k-d tree structure to speed up the search process. The

k-d tree structure reduced the computation complexity by only visiting the

subtrees that most likely contained the neighbours. We statistically tested

the improved algorithm, named KDT-SPSO, on a number of benchmark

functions, and the results showed that it was up to 48% faster than the

original SPSO. The proposed improvement can also be applied in other

bioinspired algorithms or metaheuristics algorithms that require distance

evaluations. The main limitation of the k-d tree framework is that its per-

formance may deteriorate in high-dimensional space attributed to the curse

of dimensionality where the algorithm needs to visit more nodes to find the

nearest neighbours (Andoni and Indyk, 2017). Although our problem only

involved three dimensions, it may be worthwhile to extend the trials to

more complex problems with much higher dimensions to test the applica-

bility of our algorithm and suggest possible improvements, such as using

approximate nearest neighbour search to address the issue.

122

7.3. APPLICATION OF KDT-SPSO FOR PALM TREE DETECTION

7.3 Application of KDT-SPSO for palm tree

detection

In Chapter 5, we applied the improved multimodal optimisation algorithm

(KDT-SPSO) developed in Chapter 4 for real palm tree detection problem.

The enhanced LBP-based classifier was integrated into KDT-SPSO as the

objective function to be maximised. Prior to implementing the algorithm

in test images, we fine-tuned the parameters of KDT-SPSO. The results

show that KDT-SPSO yielded the best accuracy among its competitors,

the greedy search and subsampling search approaches. KDT-SPSO’s com-

putation speed was between its competitors. As some of the parameters in

KDT-SPSO such as the cognitive and social coefficients and initial weight

were fixed in our study according to the recommended values, we plan to

explore the effect of varying the parameters on the model’s performance in

the future.

There are also many areas for potential research to enhance the perfor-

mance of KDT-SPSO further. In the future, post-processing techniques

such as isolation forest and local outlier factor can be applied to eliminate

the outliers or anomalies found in the final output to reduce its error rate.

Secondly, designing a self-adaptive mechanism to adjust species radius for

different conditions and stopping criteria ill be interesting. Thirdly, we will

explore the feasibility of extracting LBP features on the entire image once

and converting the feature map to the integral image to reduce the over-

head of the algorithm. Finally, optimisation of the code, parallelising of

the algorithm on multi-core CPU, and implementing of the code on GPU

will also be considered in the upcoming research to speed up processing.

In future, we also plan to test our algorithm on the dataset published by

Zheng et al. (2021), which was not available at the time of thesis writing.

123

7.4. INTEGRATION OF DIGITAL SURFACE MODEL (DSM) INTO
PALM TREE DETECTION FRAMEWORK

7.4 Integration of digital surface model (DSM)

into palm tree detection framework

In Chapter 6, we proposed a novel approach that incorporated 3D digital

surface model (DSM) into the KDT-SPSO’s initialisation process that sig-

nificantly improved the computational speed. The proposed methodology

extracted high confidence palm tree proposals from DSM using local max-

imum filtering approach and passed to KDT-SPSO for optimisation. Due

to the use of DSM as prior information about the number and location of

palm trees, the detection time was 10 times faster and the accuracy was

slightly higher than the original KDT-SPSO.

We performed an additional experiment by incorporating DSM into the

Fast R-CNN model (a region-based CNN) to test the applicability of DSM

in R-CNN and to confirm whether KDT-SPSO was comparable to the state-

of-the-art R-CNN. We found that the Fast R-CNN with DSM was 50%

faster and slightly more accurate than Faster R-CNN. It helped reduce

the number of false positive target windows than those based on image

information alone, as is the case in KDT-SPSO with DSM. Although the

proposed approach performed poorer than YOLO, the accuracy and speed

of YOLO were easily affected by the input image size.

Out of expectation, our hybrid palm tree detection approach, KDT-SPSO+D

achieved similar computational speed and higher accuracy than that of

Faster R-CNN. The results suggest that our approach could complete palm

tree detection task within reasonable time and attain state-of-the-art ac-

curacy with lesser computational cost. Since applying R-CNNs in high-

resolution aerial images requires long training hours and high performing

computer, our proposed method that requires only mid- to low- range com-

puters is a preferable alternative to R-CNN approaches. The main limi-

124

7.4. INTEGRATION OF DIGITAL SURFACE MODEL (DSM) INTO
PALM TREE DETECTION FRAMEWORK

tation of our approach is that it can only be applied in UAV images with

DSM data, which is usually not available in satellite images that can cover

bigger areas. Although DSM can be generated from high-resolution multi-

view stereo satellite images, e.g. Sentinel-2, WorldView-3/4, GeoEye-1,

etc., processing them into an accurate model remains a challenge as they

are usually collected on different dates. Therefore, the resultant DSM may

be erroneous due to different illumination conditions, geometric configura-

tions, and topography changes (Gong and Fritsch, 2019). In addition, the

resolution of satellite-derived DSM is generally lower than UAV’s (e.g. 1

m/pixel vs 0.1 m/pixel), its efficiency and accuracy in extracting palm tree

proposals still need to be investigated in future. As over-smoothing may be

an issue of concern during the production of DSM, we plan to investigate

the parameters involved in the DSM production to generate good-quality

DSM for inclusion into our method. We also propose to fuse the DSM

data into KDT-SPSO’s objective function so that it is optimised simulta-

neously with the classification score to make the algorithm more robust

and accurate.

125

Bibliography

Ahonen, T., Hadid, A., and Pietikainen, M. (2006). Face description with
local binary patterns: Application to face recognition. IEEE Transac-
tions on Pattern Analysis and Machine Intelligence, 28(12):2037–2041.

Al-Ruzouq, R., Shanableh, A., Barakat A. Gibril, M., and AL-Mansoori,
S. (2018). Image segmentation parameter selection and ant colony op-
timization for date palm tree detection and mapping from very-high-
spatial-resolution aerial imagery. Remote Sensing, 10(9).

Ammar, A., Koubaa, A., and Benjdira, B. (2021). Deep-learning-based
automated palm tree counting and geolocation in large farms from aerial
geotagged images. Agronomy, 11(8).

Andoni, A. and Indyk, P. (2017). Nearest neighbors in high-dimensional
spaces. In Handbook of Discrete and Computational Geometry, pages
1135–1155. Chapman and Hall/CRC.

Banharnsakun, A. (2018). Multiple traffic sign detection based on the
artificial bee colony method. Evolving Systems, 9(3):255–264.

Barrera, J. and Coello, C. A. C. (2009). A Review of Particle Swarm
Optimization Methods Used for Multimodal Optimization, pages 9–37.
Springer Berlin Heidelberg, Berlin, Heidelberg.

Bazi, Y., Malek, S., Alajlan, N., and AlHichri, H. (2014). An automatic
approach for palm tree counting in uav images. In 2014 IEEE Geoscience
and Remote Sensing Symposium, pages 537–540.

Bentley, J. L. (1975). Multidimensional binary search trees used for asso-
ciative searching. Commun. ACM, 18(9):509–517.

Binitha, S., Sathya, S. S., et al. (2012). A survey of bio inspired optimiza-
tion algorithms. International journal of soft computing and engineering,
2(2):137–151.

Breiman, L. (2001). Random forests. Machine learning, 45(1):5–32.

Briechle, K. and Hanebeck, U. D. (2001). Template matching using fast
normalized cross correlation. In Optical Pattern Recognition XII, volume
4387, pages 95–102. International Society for Optics and Photonics.

126

Brits, R., Engelbrecht, A. P., and Van den Bergh, F. (2002). A niching
particle swarm optimizer. In Proceedings of the 4th Asia-Pacific con-
ference on simulated evolution and learning, volume 2, pages 692–696.
Singapore: Orchid Country Club.

Cheang, E. K., Cheang, T. K., and Tay, Y. H. (2017). Using convolutional
neural networks to count palm trees in satellite images. arXiv preprint
arXiv:1701.06462.

Chemura, A., van Duren, I., and van Leeuwen, L. M. (2015). Determi-
nation of the age of oil palm from crown projection area detected from
worldview-2 multispectral remote sensing data: The case of ejisu-juaben
district, ghana. ISPRS Journal of Photogrammetry and Remote Sensing,
100:118–127.

Chen, D., Liu, S., Kingsbury, P., Sohn, S., Storlie, C. B., Habermann, E. B.,
Naessens, J. M., Larson, D. W., and Liu, H. (2019). Deep learning and
alternative learning strategies for retrospective real-world clinical data.
NPJ digital medicine, 2(1):1–5.

Chen, Z. Y. and Liao, I. Y. (2019). Evaluation of feature extraction methods
for classification of palm trees in uav images. In 2019 International
Conference on Computer and Drone Applications (IConDA), pages 13–
18. IEEE.

Chen, Z. Y. and Liao, I. Y. (2020). Improved fast r-cnn with fusion of
optical and 3d data for robust palm tree detection in high resolution
uav images. International Journal of Machine Learning and Computing,
10(1):122–127.

Chen, Z. Y., Liao, I. Y., and Ahmed, A. (2021). Kdt-spso: A multimodal
particle swarm optimisation algorithm based on kd trees for palm tree
detection. Applied Soft Computing, 103:107156.

Chouhan, S. S., Kaul, A., and Singh, U. (2019). Image segmentation using
computational intelligence techniques: Review. Archives of Computa-
tional Methods in Engineering, 26:533–596.

Cortes, C. and Vapnik, V. (1995). Support-vector networks. Machine
learning, 20(3):273–297.

Cuevas, E., Fausto, F., and González, A. (2020). An Introduction to Nature-
Inspired Metaheuristics and Swarm Methods, pages 1–41. Springer In-
ternational Publishing, Cham.

Dalal, N. and Triggs, B. (2005). Histograms of oriented gradients for human
detection. In 2005 IEEE Computer Society Conference on Computer
Vision and Pattern Recognition (CVPR’05), volume 1, pages 886–893
vol. 1.

127

Daliman, S., Abu-Bakar, S., and Azam, S. M. N. (2016). Development of
young oil palm tree recognition using haar-based rectangular windows.
In IOP Conference Series: Earth and Environmental Science, volume 37,
page 012041. IOP Publishing.

Daliman, S., Rahman, S. A., Bakar, S. A., and Busu, I. (2014). Seg-
mentation of oil palm area based on glcm-svm and ndvi. In Region 10
Symposium, 2014 IEEE, pages 645–650. IEEE.

Dong, N., Wu, C.-H., Ip, W.-H., Chen, Z.-Q., Chan, C.-Y., and Yung, K.-L.
(2011). An improved species based genetic algorithm and its application
in multiple template matching for embroidered pattern inspection. Expert
Systems with Applications, 38(12):15172 – 15182.

Dorigo, M., Birattari, M., and Stutzle, T. (2006). Ant colony optimization.
IEEE Computational Intelligence Magazine, 1(4):28–39.

Fawcett, D., Azlan, B., Hill, T. C., Kho, L. K., Bennie, J., and Anderson,
K. (2019). Unmanned aerial vehicle (uav) derived structure-from-motion
photogrammetry point clouds for oil palm (elaeis guineensis) canopy seg-
mentation and height estimation. International Journal of Remote Sens-
ing, 0(0):1–23.

Fernández-Delgado, M., Cernadas, E., Barro, S., and Amorim, D. (2014).
Do we need hundreds of classifiers to solve real world classification prob-
lems? Journal of Machine Learning Research, 15(90):3133–3181.

Ge, W. and Collins, R. T. (2009). Marked point processes for crowd count-
ing. In 2009 IEEE Conference on Computer Vision and Pattern Recog-
nition, pages 2913–2920.

Girshick, R. (2015). Fast r-cnn. In Proceedings of the IEEE international
conference on computer vision, pages 1440–1448.

Girshick, R., Donahue, J., Darrell, T., and Malik, J. (2014). Rich feature
hierarchies for accurate object detection and semantic segmentation. In
Proceedings of the IEEE conference on computer vision and pattern recog-
nition, pages 580–587.

Goh, K., Teo, C., Chew, P., and Chiu, S. (1999). Fertiliser management in
oil palm-agronomic principles and field practices. Fert Manage Oil Palm
Plant, 20:21.

Goldberg, D. E. and Richardson, J. (1987). Genetic algorithms with shar-
ing for multimodal function optimization. In Proceedings of the Second
International Conference on Genetic Algorithms on Genetic Algorithms
and Their Application, page 41–49, USA. L. Erlbaum Associates Inc.

Gong, K. and Fritsch, D. (2019). Dsm generation from high resolution
multi-view stereo satellite imagery. Photogrammetric Engineering & Re-
mote Sensing, 85(5):379–387.

128

Guerra-Hernández, J., Cosenza, D. N., Rodriguez, L. C. E., Silva, M.,
Tomé, M., Dı́az-Varela, R. A., and González-Ferreiro, E. (2018). Com-
parison of als- and uav(sfm)-derived high-density point clouds for indi-
vidual tree detection in eucalyptus plantations. International Journal of
Remote Sensing, 39(15-16):5211–5235.

Holland, J. H. (1992). Genetic algorithms. Scientific American, 267(1):66–
73.

Hossain, M. D. and Chen, D. (2019). Segmentation for object-based image
analysis (obia): A review of algorithms and challenges from remote sens-
ing perspective. ISPRS Journal of Photogrammetry and Remote Sensing,
150:115–134.

Huan Liu and Lei Yu (2005). Toward integrating feature selection algo-
rithms for classification and clustering. IEEE Transactions on Knowledge
and Data Engineering, 17(4):491–502.

Huang, L., Ng, C.-T., Sheikh, A. H., and Griffith, M. C. (2017). Niching
particle swarm optimization techniques for multimodal buckling maxi-
mization of composite laminates. Applied Soft Computing, 57:495 – 503.

Kennedy, J. and Eberhart, R. (1995). Particle swarm optimization. In
Proceedings of ICNN’95 - International Conference on Neural Networks,
volume 4, pages 1942–1948 vol.4.

Kirkpatrick, S., Gelatt, C. D., and Vecchi, M. P. (1983). Optimization by
simulated annealing. Science, 220(4598):671–680.

Kong, T., Yao, A., Chen, Y., and Sun, F. (2016). Hypernet: Towards accu-
rate region proposal generation and joint object detection. In Proceedings
of the IEEE conference on computer vision and pattern recognition, pages
845–853.

Korpela, I. (2004). Individual tree measurements by means of digital aerial
photogrammetry. Silva Fennica. Monographs, 3.

Krizhevsky, A., Sutskever, I., and Hinton, G. E. (2012). Imagenet clas-
sification with deep convolutional neural networks. Advances in neural
information processing systems, 25:1097–1105.

Lacerda, A. S. and Batista, L. S. (2019). Kdt-moea: A multiobjective op-
timization framework based on k-d trees. Information Sciences, 503:200
– 218.

Lampert, C. H., Blaschko, M. B., and Hofmann, T. (2008). Beyond sliding
windows: Object localization by efficient subwindow search. In 2008
IEEE conference on computer vision and pattern recognition, pages 1–8.
IEEE.

LeCun, Y., Bengio, Y., and Hinton, G. (2015). Deep learning. nature,
521(7553):436–444.

129

Li, J. and Ghosh, S. (2020). Quantum-soft qubo suppression for accurate
object detection. In Vedaldi, A., Bischof, H., Brox, T., and Frahm, J.-M.,
editors, Computer Vision – ECCV 2020, pages 158–173, Cham. Springer
International Publishing.

Li, J., Yuan, S., Li, Q. S., and Li, B. (2018a). A review of particle swarm
optimization for multimodal problems, pages 443–473. Institution of En-
gineering and Technology.

Li, W., Dong, R., Fu, H., and Yu, L. (2019). Large-scale oil palm tree detec-
tion from high-resolution satellite images using two-stage convolutional
neural networks. Remote Sensing, 11(1).

Li, W., Fu, H., and Yu, L. (2017). Deep convolutional neural network
based large-scale oil palm tree detection for high-resolution remote sens-
ing images. In 2017 IEEE International Geoscience and Remote Sensing
Symposium (IGARSS), pages 846–849.

Li, W., Fu, H., Yu, L., and Cracknell, A. (2017). Deep learning based
oil palm tree detection and counting for high-resolution remote sensing
images. Remote Sensing, 9(1):22.

Li, W., Ma, W., Quan, B., Pei, M., and Feng, X. (2016). A pedestrian de-
tection method based on pso and multimodal function. In 2016 Chinese
Control and Decision Conference (CCDC), pages 6054–6058.

Li, W., Xia, M., Fu, H., and Yu, L. (2018b). A deep learning based end-
to-end oil palm tree detection approach using large-scale high-resolution
uav images. In AGU Fall Meeting Abstracts, volume 2018, pages GC51H–
0883.

Li, X. (2010). Niching without niching parameters: Particle swarm op-
timization using a ring topology. IEEE Transactions on Evolutionary
Computation, 14(1):150–169.

Li, X., Engelbrecht, A., and Epitropakis, M. G. (2013). Benchmark func-
tions for cec’2013 special session and competition on niching methods
for multimodal function optimization. RMIT University, Evolutionary
Computation and Machine Learning Group, Australia, Tech. Rep.

Lisein, J., Pierrot-Deseilligny, M., Bonnet, S., and Lejeune, P. (2013). A
photogrammetric workflow for the creation of a forest canopy height
model from small unmanned aerial system imagery. Forests, 4(4):922–
944.

Liu, Q., Du, S., van Wyk, B. J., and Sun, Y. (2020). Niching particle swarm
optimization based on euclidean distance and hierarchical clustering for
multimodal optimization. Nonlinear Dynamics, 99(3):2459–2477.

Liu, T., Ye, X., and Sun, B. (2018). Combining convolutional neural net-
work and support vector machine for gait-based gender recognition. In
2018 Chinese Automation Congress (CAC), pages 3477–3481.

130

Liu, W., Anguelov, D., Erhan, D., Szegedy, C., Reed, S. E., Fu, C.,
and Berg, A. C. (2015). SSD: single shot multibox detector. CoRR,
abs/1512.02325.

Liu, X., Li, D., Dong, N., Ip, W. H., and Yung, K. L. (2019). Noncoopera-
tive target detection of spacecraft objects based on artificial bee colony
algorithm. IEEE Intelligent Systems, 34(4):3–15.

Lowe, D. G. (1999). Object recognition from local scale-invariant features.
In Proceedings of the Seventh IEEE International Conference on Com-
puter Vision, volume 2, pages 1150–1157 vol.2.

Luo, W., Sun, J., Bu, C., and Liang, H. (2016). Species-based particle
swarm optimizer enhanced by memory for dynamic optimization. Applied
Soft Computing, 47:130 – 140.

Malek, S., Bazi, Y., Alajlan, N., AlHichri, H., and Melgani, F. (2014).
Efficient framework for palm tree detection in uav images. IEEE Journal
of Selected Topics in Applied Earth Observations and Remote Sensing,
7(12):4692–4703.

Manandhar, A., Hoegner, L., and Stilla, U. (2016). Palm tree detection
using circular autocorrelation of polar shape matrix. ISPRS Annals of
the Photogrammetry, Remote Sensing and Spatial Information Sciences,
3:465.

Mansoori, S. A., Kunhu, A., and Ahmad, H. A. (2018). Automatic palm
trees detection from multispectral UAV data using normalized difference
vegetation index and circular Hough transform. In Huang, B., López,
S., and Wu, Z., editors, High-Performance Computing in Geoscience and
Remote Sensing VIII, volume 10792, pages 11 – 19. International Society
for Optics and Photonics, SPIE.

Mohan, M., Silva, C. A., Klauberg, C., Jat, P., Catts, G., Cardil, A., Hu-
dak, A. T., and Dia, M. (2017). Individual tree detection from unmanned
aerial vehicle (uav) derived canopy height model in an open canopy mixed
conifer forest. Forests, 8(9):340.

Mohan, S., Bhattacharya, S., Kaluri, R., Feng, G., Tariq, U., et al. (2020).
Multi-modal prediction of breast cancer using particle swarm optimiza-
tion with non-dominating sorting. International Journal of Distributed
Sensor Networks, 16(11).

Mubin, N. A., Nadarajoo, E., Shafri, H. Z. M., and Hamedianfar, A. (2019).
Young and mature oil palm tree detection and counting using convolu-
tional neural network deep learning method. International Journal of
Remote Sensing, 40(19):7500–7515.

Nguyen, D. T., Li, W., and Ogunbona, P. O. (2016). Human detection
from images and videos: A survey. Pattern Recognition, 51:148–175.

131

Nguyen, T. T., Jenkinson, I., and Yang, Z. (2015). An experimental study
of combining evolutionary algorithms with kd-tree to solving dynamic
optimisation problems. In Mora, A. M. and Squillero, G., editors, Ap-
plications of Evolutionary Computation, pages 857–868, Cham. Springer
International Publishing.

Næsset, E. (2007). Airborne laser scanning as a method in operational
forest inventory: Status of accuracy assessments accomplished in scan-
dinavia. Scandinavian Journal of Forest Research, 22(5):433–442.

Ojala, T., Pietikainen, M., and Maenpaa, T. (2002). Multiresolution gray-
scale and rotation invariant texture classification with local binary pat-
terns. IEEE Transactions on Pattern Analysis and Machine Intelligence,
24(7):971–987.

Özgenel, Ç. F. and Sorguç, A. G. (2018). Performance comparison of pre-
trained convolutional neural networks on crack detection in buildings. In
ISARC. Proceedings of the International Symposium on Automation and
Robotics in Construction, volume 35, pages 1–8. IAARC Publications.

Parrott, D. and Xiaodong Li (2004). A particle swarm model for track-
ing multiple peaks in a dynamic environment using speciation. In Pro-
ceedings of the 2004 Congress on Evolutionary Computation (IEEE Cat.
No.04TH8753), volume 1, pages 98–103 Vol.1.

Parrott, D. and Xiaodong Li (2006). Locating and tracking multiple dy-
namic optima by a particle swarm model using speciation. IEEE Trans-
actions on Evolutionary Computation, 10(4):440–458.

Pham, T. T., Rezatofighi, S. H., Reid, I., and Chin, T. (2016). Efficient
point process inference for large-scale object detection. In 2016 IEEE
Conference on Computer Vision and Pattern Recognition (CVPR), pages
2837–2845.

Piotrowski, A. P., Napiorkowski, M. J., Napiorkowski, J. J., and Rowinski,
P. M. (2017). Swarm intelligence and evolutionary algorithms: Perfor-
mance versus speed. Information Sciences, 384:34 – 85.

Platt, J. C. (1999). Probabilistic outputs for support vector machines
and comparisons to regularized likelihood methods. In ADVANCES IN
LARGE MARGIN CLASSIFIERS, pages 61–74. MIT Press.

Qi, X., Wang, T., and Liu, J. (2017). Comparison of support vector ma-
chine and softmax classifiers in computer vision. In 2017 Second Inter-
national Conference on Mechanical, Control and Computer Engineering
(ICMCCE), pages 151–155.

Qu, B. Y., Suganthan, P. N., and Das, S. (2013). A distance-based lo-
cally informed particle swarm model for multimodal optimization. IEEE
Transactions on Evolutionary Computation, 17(3):387–402.

132

Redmon, J., Divvala, S. K., Girshick, R. B., and Farhadi, A. (2015).
You only look once: Unified, real-time object detection. CoRR,
abs/1506.02640.

Ren, S., He, K., Girshick, R., and Sun, J. (2015). Faster r-cnn: Towards
real-time object detection with region proposal networks. In Advances
in neural information processing systems, pages 91–99.

Ren, Y., Zhu, C., and Xiao, S. (2018). Small object detection in opti-
cal remote sensing images via modified faster r-cnn. Applied Sciences,
8(5):813.

Rizeei, H. M., Shafri, H. Z., Mohamoud, M. A., Pradhan, B., and Kalantar,
B. (2018). Oil palm counting and age estimation from worldview-3 im-
agery and lidar data using an integrated obia height model and regression
analysis. Journal of Sensors, 2018.

Rokhmana, C. A. (2015). The potential of uav-based remote sensing for
supporting precision agriculture in indonesia. Procedia Environmental
Sciences, 24:245–253.

Rueda, C., Miserque, J., and Laverde, R. (2016). Validation of an oil-palm
detection system based on a logistic regression model. In 2016 IEEE
ANDESCON, pages 1–4.

Rujikietgumjorn, S. and Collins, R. T. (2013). Optimized pedestrian de-
tection for multiple and occluded people. In 2013 IEEE Conference on
Computer Vision and Pattern Recognition, pages 3690–3697.

Sai, S. S., Tjahjadi, M. E., and Rokhmana, C. A. (2019). Geometric accu-
racy assessments of orthophoto production from uav aerial images. KnE
Engineering, pages 333–344.

Santoso, H., Tani, H., and Wang, X. (2016). A simple method for detection
and counting of oil palm trees using high-resolution multispectral satellite
imagery. International Journal of Remote Sensing, 37(21):5122–5134.

Shafri, H. Z., Hamdan, N., and Saripan, M. I. (2011). Semi-automatic
detection and counting of oil palm trees from high spatial resolution
airborne imagery. International Journal of Remote Sensing, 32(8):2095–
2115.

Shi, Y. and Eberhart, R. (1998). A modified particle swarm optimizer.
In 1998 IEEE International Conference on Evolutionary Computation
Proceedings. IEEE World Congress on Computational Intelligence (Cat.
No.98TH8360), pages 69–73.

Shi, Y. and Eberhart, R. C. (1999). Empirical study of particle swarm
optimization. In Proceedings of the 1999 Congress on Evolutionary
Computation-CEC99 (Cat. No. 99TH8406), volume 3, pages 1945–1950
Vol. 3.

133

Simonyan, K. and Zisserman, A. (2014). Very deep convolutional networks
for large-scale image recognition. arXiv preprint arXiv:1409.1556.

Soltani-Mohammadi, S., Safa, M., and Mokhtari, H. (2016). Comparison of
particle swarm optimization and simulated annealing for locating addi-
tional boreholes considering combined variance minimization. Computers
& Geosciences, 95:146 – 155.

Stone, C., Webster, M., Osborn, J., and Iqbal, I. A. (2016). Alternatives
to lidar-derived canopy height models for softwood plantations: a review
and example using photogrammetry. Australian Forestry, 79:271 – 282.

Storn, R. and Price, K. (1997). Differential evolution–a simple and efficient
heuristic for global optimization over continuous spaces. Journal of global
optimization, 11(4):341–359.

Taewan Kim and Ghosh, J. (2016). Robust detection of non-motorized road
users using deep learning on optical and lidar data. In 2016 IEEE 19th
International Conference on Intelligent Transportation Systems (ITSC),
pages 271–276.

Uijlings, J. R., Van De Sande, K. E., Gevers, T., and Smeulders, A. W.
(2013). Selective search for object recognition. International journal of
computer vision, 104(2):154–171.

USDA-FAS (2020). Oilseeds: world markets and trade.
https://www.fas.usda.gov/psdonline/circulars/oilseeds.pdf.

Vedaldi, A. and Fulkerson, B. (2010). Vlfeat: An open and portable li-
brary of computer vision algorithms. In Proceedings of the 18th ACM
international conference on Multimedia, pages 1469–1472.

Viola, P. and Jones, M. (2001). Rapid object detection using a boosted
cascade of simple features. In Proceedings of the 2001 IEEE Computer
Society Conference on Computer Vision and Pattern Recognition. CVPR
2001, volume 1, pages I–I.

Wald, I. and Havran, V. (2006). On building fast kd-trees for ray tracing,
and on doing that in o(n log n). In 2006 IEEE Symposium on Interactive
Ray Tracing, pages 61–69.

Wang, D., Zhang, H., Liu, R., and Lv, W. (2012a). Feature selection based
on term frequency and t-test for text categorization. In Proceedings of
the 21st ACM International Conference on Information and Knowledge
Management, CIKM ’12, page 1482–1486, New York, NY, USA. Associ-
ation for Computing Machinery.

Wang, H., Moon, I., Yang, S., and Wang, D. (2012b). A memetic particle
swarm optimization algorithm for multimodal optimization problems.
Information Sciences, 197:38 – 52.

134

Wang, Y., Zhu, X., and Wu, B. (2019). Automatic detection of individual
oil palm trees from uav images using hog features and an svm classifier.
International Journal of Remote Sensing, 40(19):7356–7370.

Westoby, M., Brasington, J., Glasser, N., Hambrey, M., and Reynolds, J.
(2012). ‘structure-from-motion’ photogrammetry: A low-cost, effective
tool for geoscience applications. Geomorphology, 179:300–314.

Yosinski, J., Clune, J., Bengio, Y., and Lipson, H. (2014). How transferable
are features in deep neural networks? arXiv preprint arXiv:1411.1792.

Zaitoun, N. M. and Aqel, M. J. (2015). Survey on image segmentation
techniques. Procedia Computer Science, 65:797–806.

Zhang, J., Yeung, S., Shu, Y., He, B., and Wang, W. (2019). Effi-
cient memory management for gpu-based deep learning systems. CoRR,
abs/1903.06631.

Zheng, J., Fu, H., Li, W., Wu, W., Yu, L., Yuan, S., Tao, W. Y. W., Pang,
T. K., and Kanniah, K. D. (2021). Growing status observation for oil
palm trees using unmanned aerial vehicle (uav) images. ISPRS Journal
of Photogrammetry and Remote Sensing, 173:95–121.

135

	Abstract
	List of Publications
	Acknowledgements
	List of Tables
	List of Figures
	List of Abbreviations
	Introduction
	Background
	Main challenges in palm tree detection
	Objectives of the research
	Overview of the methodology
	Contributions
	Thesis Structure

	Overview of Palm Tree Detection
	Bottom-up approach
	Top-down approach
	Region-based CNN Approach

	Evaluation of Feature Extraction Methods for Classification of Palm Trees
	Introduction
	Methods
	Results and Discussion
	Dimensionality reduction of LBP features
	Summary

	Improved Multimodal Particle Swarm Optimisation Algorithm
	Introduction
	Background
	Optimising SPSO using k-d tree structure
	Benchmark functions and experiment settings
	Summary

	Application of KDT-SPSO for Palm Tree Detection
	Introduction
	Methods
	Optimising KDT-SPSO's parameters for palm tree detection
	Evaluation of KDT-SPSO's performance on test images
	Results and discussion
	Summary

	Integration of Digital Surface Model (DSM) into Palm Tree Detection Framework
	Introduction
	Background
	Integration of Digital Surface Model (DSM) into KDT-SPSO
	Integration of DSM into region-based CNN (R-CNN)
	Summary

	Summary and Future Work
	Evaluation of feature extraction methods for classification of palm trees
	Improved multimodal particle swarm optimisation algorithm
	Application of KDT-SPSO for palm tree detection
	Integration of digital surface model (DSM) into palm tree detection framework

	Bibliography

