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Abstract

This thesis is concerned with the study of manifold-valued data analysis. Manifold-

valued data is a type of multivariate data that lies on a manifold as opposed to a Eu-

clidean space. We seek to develop analogue classical multivariate analysis methods,

which are appropriate for Euclidean data, for data that lie on particular manifolds. A

manifold we particularly focus on is the manifold of graph Laplacians.

Graph Laplacians can represent networks and for the majority of this thesis we focus on

the statistical analysis of samples of networks by identifying networks with their graph

Laplacian matrices. We develop a general framework for extrinsic statistical analysis

of samples of networks by this representation. For the graph Laplacians we define met-

rics, embeddings, tangent spaces, and a projection from Euclidean space to the space

of graph Laplacians. This framework provides a way of computing means, perform-

ing principal component analysis and regression, carrying out hypothesis tests, such

as for testing for equality of means between two samples of networks, and classify-

ing networks. We will demonstrate these methods on many different network datasets,

including networks derived from text and neuroimaging data.

We also briefly consider another well studied type of manifold-valued data, namely

shape data, comparing three commonly used tangent coordinates used in shape analysis

and explaining the difference between them and why they may not all be suitable to

always use.
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Important operators

The vectorise operator vec is obtained from stacking the columns of a matrix, i.e. for a

m1 ×m2 matrixX with columns x1, . . . ,xm2 , vec is defined:

vec(X) = (xT1 , . . . ,x
T
m2

)T . (0.0.1)

The vech operator is the half vectorisation of a matrix including the diagonal i.e. for a

symmetric m×m matrixX = (xij), vech is defined:

vech(X) = (x11, x12, . . . , x1m, x22, x23, . . . , x2m, x33, x34, . . . , xmm)T . (0.0.2)

The vech∗ operator is the half vectorisation of a matrix including the diagonal but with
√

2 multiplying the terms corresponding to the off-diagonal, i.e. for a symmetricm×m
matrixX = (xij), vech∗ is defined:

vech∗(X) = (x11,
√

2x12, . . . ,
√

2x1m, x22,
√

2x23, . . . ,
√

2x2m, x33,
√

2x34, . . . , xmm)T .

(0.0.3)

The φ operator is the half vectorisation of a matrix not including the diagonal i.e. for a

symmetric m×m matrixX = (xij), φ is defined:

φ(X) = (x12, . . . , x1m, x23, . . . , x2m, x34, . . . , xm−1m)T . (0.0.4)
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CHAPTER 1

Introduction

The motivating application of this work is to provide a framework for the statistical

analysis of samples of networks, including principal component analysis, regression,

two-sample testing and classification. A network is a mathematical structure made up

of nodes and edges with corresponding weights that are present between nodes. The

statistical analysis of networks dates back to at least the 1930s, however interest has

increased considerably in the 21st century (Kolaczyk, 2009). Networks are able to rep-

resent many different types of data as explained in da Fontoura Costa et al. (2011), ex-

amples include social interactions, neuroimaging data and text documents. A text doc-

ument is represented as a network where nodes represent words and edges are present

between words that appear ‘near’ each other, we define these in more detail in Section

1.3.1. Whilst an extensive amount of work has been done for the analysis of individual

networks, it is becoming interesting to also focus on collections of networks as well

(Kolaczyk et al., 2017). As we aim to provide a framework for the statistical analysis of

samples of networks we are interested in collections of networks instead of just a single

one.

For a sample of networks we shall represent each network as a data structure called

a graph Laplacian matrix, which we define later in (1.2.1). A graph Laplacian is an

example of manifold-valued data. A manifold is a space that locally resembles a Eu-

clidean space (Dryden and Mardia, 2016, page 59). Often standard Euclidean statistical

methods cannot be directly applied to manifold-valued data and different methods must

be developed, this is true for the manifold of graph Laplacians. Manifold-valued data

has been studied frequently in different contexts, for example on a sphere in Fisher

(1953) and in shape space in Kendall (1977), Kendall (1984) and Bookstein (1978).

2



CHAPTER 1: INTRODUCTION

1.1 Manifold-valued data

As we represent networks as graph Laplacians which lie on a manifold we will need

to use ideas from manifold-valued data analysis to define statistical procedures for net-

works. We will define some key concepts for manifold-valued data that we will go on

to use.

On a manifold a geodesic path between two points is the path that lies on the manifold

representing, for a given distance metric, the shortest path between the two points.

On a manifold there can be multiple distance metrics referred to as either an intrinsic

or extrinsic distance. An intrinsic distance is the length of a shortest geodesic path

in the manifold. An extrinsic distance is one induced by a Euclidean distance in an

embedding of the manifold (Dryden and Mardia, 2016, p112). Formally a function

d :M×M → [0,∞) is a metric for the manifoldM if it satisfies the following four

conditions,

(M1) d(x,y) ≥ 0

(M2) d(x,y) = 0⇔ x = y

(M3) d(x,y) = d(y,x)

(M4) d(x, z) ≤ d(x,y) + d(y, z),

(1.1.1)

for x,y, z ∈M (Cullinane, 2011).

There are several different ways that one can define the mean of a sample of data that

lie on a manifold. The Fréchet mean is a commonly used definition (Fréchet, 1948).

For a random variable Y ∈ M, whereM is a manifold, the population Fréchet mean

is defined as

µ = arg inf
µ′∈M

EY (d2(µ′, Y )), (1.1.2)

where EY is the expectation for the random variable Y and d is a distance inM. The

sample Fréchet mean is then defined as

µ̄ = arg inf
µ′∈M

1

n

n∑
k=1

d2(µ′, Yk). (1.1.3)

Different choices of d lead to different definitions of different means on the manifold

and these means are termed either intrinsic or extrinsic (Dryden and Mardia, 2016,

3



CHAPTER 1: INTRODUCTION

Chapter 6). The Fréchet mean is an intrinsic mean if d(., .) is an intrinsic distance in

M. The sample extrinsic mean of the random variables Yk, of dimension m×m, on a

manifoldM is

P (µ∗), where µ∗ = arg inf
µ′∈Rm×m

n∑
k=1

d2(µ′, Yk)
2, (1.1.4)

where d is an extrinsic distance and P is a projection from the embedding space to a

unique closest point inM. Examples of extrinsic means, in the context of shape spaces,

can be found in Bhattacharya and Patrangenaru (2003, 2005).

The tangent space of a manifold is a linear space, used for the statistical analysis of

manifold-valued data as standard Euclidean statistical methods are often applied in the

tangent space. Figure 1.1 shows a simple visualisation of a possible tangent space to

a manifold, in this case a sphere. The tangent space at the pole ν is an Euclidean

approximation touching the manifold, chosen so a geodesic is mapped to a straight

line preserving distance to the pole. A tangent space mapping provides a connection

between the tangent space to the manifold and the inverse mapping is the map from

the manifold to the tangent space (Dryden and Mardia, 2016, Chapter 5). There are

often multiple ways of mapping to a tangent space however for the majority of our

work on statistical analysis of networks we shall only consider one possible tangent

space projection. However in Chapter 6 we shall consider a case when there are several

choices of tangent space projections and compare these.

d

Tν
ν

O

d

X

v

Figure 1.1: A simple visualisation of a mapping ofX onto a tangent space Tν .

A very well studied example of manifold-valued data is in shape analysis, and similar

ideas and methodology used for this application shall also be useful in our application

for the statistical analysis of networks.

4



CHAPTER 1: INTRODUCTION

1.1.1 Shape analysis

In shape analysis the definition of shape, given in Dryden and Mardia (2016, Definition

1.1), is “all the geometrical information that remains when location, scale and rota-

tional effects are removed from an object”. An observation is a configuration matrix,

Xi (k × m), which is the Cartesian coordinates matrix for k landmarks in m dimen-

sions. Translation, rotation and potentially scale need to be removed from the original

configurations for shape analysis to be performed.

Translation is removed by pre-multiplying by H the Helmert sub-matrix, first used by

Kendall (1984). The Helmert sub-matrixH , of dimension k−1×k, has jth row defined

as

(hj, . . . , hj︸ ︷︷ ︸
j times

,−jhj, 0, . . . , 0︸ ︷︷ ︸
k−j−1 times

), hj = −(j(j + 1))−
1
2 , (1.1.5)

(Dryden and Mardia, 2016, page 49). The landmark coordinates after removing trans-

lation are the Helmertized landmark coordinates,

XH
k−1×m

= H
k−1×k

× X
k×m

.

When we apply ideas extended from shape analysis to the statistical analysis of net-

works we do not require the condition of objects having invariance to scale therefore

work is carried out in the size-and-shape space (Dryden and Mardia, 2016, Chapter 5),

however we do want invariance to reflection hence our size-and-shape space is defined

[X]S = {XHR : R ∈ Om}, (1.1.6)

where Om is the set of orthogonal matrices of dimension m ×m. The tangent coordi-

nates, with pole ν, for this space are defined as

v = XHR̂− ν,

where R̂ is the Procrustes rotation of XH onto ν. It is this tangent space we use in the

framework for the statistical analysis of graph Laplacians. The Procrustes rotation, R,

5



CHAPTER 1: INTRODUCTION

between two configurationsX1 andX2 is defined as

R̂(X1,X2) = arg min
R∈O(m)

‖X1R−X2‖. (1.1.7)

In some applications of shape analysis one may want to have invariance under scale but

not reflection which leads to different spaces to consider (Dryden and Mardia, 2016,

Chapter 3). Only in Chapter 6 will we consider a different space where we have invari-

ance to scaling but not reflection, named the shape space, defined

[X]S = {ZR : R ∈ SOm},

where

Zi =
HXi

‖HXi‖
,

and SOm is the set of special orthogonal matrices of dimension m×m; these matrices

are orthogonal but restricted to have determinant +1. TheZi is a (k−1)×mmatrix, on

the pre-shape sphere, hence satisfying ‖Zi‖ = 1. The pre-shape sphere is used in much

previous work, such as Le and Kendall (1993) and Mardia and Dryden (1999), and is

a (k − 1)m− 1 dimensional hypersphere where information on scaling and translation

has been removed from configurations. There are several possible tangent coordinates

in this case which we explore in Chapter 6.

1.1.2 Symmetric positive semi-definite matrices

Another frequently studied manifold is the space of symmetric positive semi-definite

matrices (Moakher and Zéraï, 2011). We shall prove in Result 2.1.1 that the space of

graph Laplacians is a subspace of the space of symmetric positive semi-definite matri-

ces. Therefore it is useful to understand the space of symmetric positive semi-definite

matrices, as this has been studied far more than the space of graph Laplacians. We

denote the space of symmetric positive semi-definite matrices of dimension m×m by

PSDm = {Am×m : xTAx ≥ 0 for x ∈ Rm; A = AT}. (1.1.8)

The space PSDm is a stratified manifold, split on the rank of the matrices (Weinberger,

1994). The strata are the sets of fixed rank symmetric positive semi-definite matrices

6



CHAPTER 1: INTRODUCTION

which form a smooth manifold where, put simply, these are manifolds that we can

perform calculus on (Lee, 2003). The space of PSDm is a convex cone, which we will

see in Section 2.1 is true for the space of graph Laplacians. For a space C to be convex

any C1,C2 ∈ C must satisfy

cC1 + (1− c)C2 ∈ C for any 0 ≤ c ≤ 1. (1.1.9)

For a space, C, to be a cone any C ∈ C must satisfy

cC ∈ C for any c > 0. (1.1.10)

Applications of positive semi-definite matrices include analysis of medical diffusion

tensor data (Fletcher and Joshi, 2007) and pattern recognition (Prabhu et al., 2005). In

Fiori (2009) an optimisation problem is used to calculate an intrinsic Fréchet mean of

symmetric positive definite matrices and to interpolate between two matrices. An in-

trinsic mean of symmetric positive definite matrices is also considered in Pennec et al.

(2006) using a logarithm based metric. In Arsigny et al. (2007) and Fillard et al. (2007)

another logarithm based metric, named the log Euclidean metric, is used between pos-

itive definite matrices. The log Euclidean metric is also considered in Dryden et al.

(2009) which compares different metrics on the space of positive definite matrices for

calculating Fréchet means and interpolation. In this paper, as well as in Zhou et al.

(2016), it was seen using the extrinsic metrics, such as the square root Euclidean and

Procrustes size-and-shape, that embed the symmetric positive definite matrices can be

beneficial, for example leading to more easily interpreted interpolations. We will use

similar metrics for graph Laplacians, which we define is Section 1.2.3.

1.2 Statistical analysis of samples of networks

For a sample of networks we shall have each observation as a weighted network, de-

noted Gm = (V,E), comprising a set of nodes, V = {v1, v2, . . . , vm}, and a set of

edge weights, E = {wij : wij ≥ 0, 1 ≤ i, j ≤ m}, indicating nodes vi and vj are

either connected by an edge of weight wij > 0, or else unconnected (if wij = 0). An

unweighted network is the special case with wij ∈ {0, 1}. The networks we consider

in a given sample will have identical corresponding node sets to all other networks in

7



CHAPTER 1: INTRODUCTION

that sample. We assume throughout the correspondence between nodes is known as

otherwise graph matching would be needed which we will not consider (Conte et al.,

2004). We restrict attention to networks that are undirected and without loops, so that

wij = wji and wii = 0.

1.2.1 Properties of networks

Newman (2010) considers some of the main properties of interest of networks, exam-

ples are measures of centrality, geodesic distance between nodes and degree distribu-

tion. The degree of a node i in a network is di =
∑m

j=1wij . Nodes with higher degrees

are often seen to play an important role in a network (Newman, 2010, page 9).

There are many summary statistics available for a network, for example the average

degree which is given by 1
m

∑m
i=1 di. Another example is the algebraic connectivity of a

network which is defined as the second smallest eigenvalue, λ2, of the graph Laplacian

matrix, defined in (1.2.1) (Fiedler, 1973). Newman (2010, Chapter 7 and 8) provides

many more summary statistics such as the clustering coefficient in Equation (7.39) and

the assortativity coefficient in Equation (7.82) of their book. We shall not use these as

we are interested in the whole structure of the network data and do not want to lose

information by representing networks by univariate summary statistics.

One property of a network that we shall use in Section 2.1 is the number of compo-

nents a network has. A network with 1 component is called “connected” meaning there

exists a path between every pair of nodes (Gross and Yellen, 2004, page 10). For any

network with more than 1 component there only exists paths between pairs of nodes in

the same component and this network is “disconnected”. If the algebraic connectivity

of a network is λ2 = 0 then the network is disconnected (Fiedler, 1973). An example

of a connected and disconnected network can be seen in Figure 1.2, for the discon-

nected network the nodes {1, 2} are in one component whilst {3, 4, 5} are in the other

component.

1.2.2 Graph Laplacians

For the networks we have defined, a network can be uniquely identified by its graph

Laplacian. The graph Laplacian matrix, L = (lij), for the network Gm = (V,E), is

8



CHAPTER 1: INTRODUCTION

(a)

1

2

3

4

5

(b)

1

2

3

4

5

Figure 1.2: Example of 5 node networks that are a) connected and b) disconnected
with 2 components.

defined as

lij =

−wij, if i 6= j∑
k 6=iwik, if i = j

(1.2.1)

for 1 ≤ i, j ≤ m. It is worth noting there are other forms of graph Laplacians that we

will not consider, such as the symmetric normalized Laplacian, defined in Banerjee and

Jost (2008).

An in depth survey of graph Laplacians can be found in Merris (1994) which includes

many results for graph Laplacian properties including its spectrum and algebraic con-

nectivity. Graph Laplacians have been extensively studied in the field of spectral graph

theory (Chung, 1997; Spielman, 2007). This topic has many applications such as in

spectral clustering (von Luxburg, 2007), wavelet transforms (Hammond et al., 2011)

and image segmentation (Shi and Malik, 2000). However, collections of graph Lapla-

cians, and the space they lie on, is something studied far less.

The graph Laplacian can be written as L = D −A, in terms of the adjacency matrix,

A = (wij), (1.2.2)

and degree matrix,

D = diag(
m∑
j=1

w1j, . . . ,
m∑
j=1

wmj) = diag(A1m), (1.2.3)

9



CHAPTER 1: INTRODUCTION

where 1m is the m-vector of ones. The ith diagonal element of D equals the degree

of node i. Using the graph Laplacian matrix over the degree matrix keeps information

on edge weights whilst using the graph Laplacian matrix over the adjacency matrix

keep information on the degree of each node. Another advantage of using the graph

Laplacian matrix, L, is its natural link with the algebraic connectivity of a network,

defined in Section 1.2.1 as the second smallest eigenvalue, λ2, of L.

As recently seen in Ginestet et al. (2017), representing networks as graph Laplacians

and defining metrics between them provides a promising method for statistical analysis

of networks.

1.2.3 Metrics between networks

To perform statistical analysis of networks we must define suitable metrics that will

measure distances between networks. For a function between networks to be a metric

it must satisfy the conditions in (1.1.1). We will consider two general metrics between

graph Laplacians, which are the:

Euclidean power metric: dα(L1,L2) = ‖Lα1 −Lα2‖, (1.2.4)

Procrustes power metric: dα,S(L1,L2) = inf
R∈O(m)

‖Lα1 −Lα2R‖, (1.2.5)

where R̂ is the ordinary Procrustes match of Lα2 to Lα1 (Dryden and Mardia, 2016,

Chapter 7) and ‖A‖ = {trace(ATA)}1/2 is the Frobenius norm, which is also known

as the Euclidean norm. Common choices of Euclidean power metrics and Procrustes

power metrics are d1, d 1
2

and d 1
2
,S , referred to as the Euclidean, square root Euclidean

and Procrustes size-and-shape metrics respectively (Dryden et al., 2009).

Many metrics already exist for the comparison of networks, such as the cut distance,

Hamming distance and the edit metric (Klopp and Verzelen, 2017; Shimada et al.,

2016). A mass univariate approach, where each edge is considered separably, is a com-

mon comparison tool for network analysis for neuroimaging (Ginestet et al., 2014). A

limitation of many of the metrics that already exist is they focus on differences between

edges in networks and not the structure of a network as a whole, like the degree of

nodes. For example the Hamming distance only considers differences in edges and is
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defined between networks G = (V,E) and G′ = (V ′, E ′) as

dHD(G,G′) =
∑
i<j

1{wij 6= w′ij}.

Also some of the metrics are not straightforward to calculate results with, if even pos-

sible. For examples when using the distance metric the graph edit distance, defined

in (1.2.6), it would not be straightforward to find the network that minimises the sum

of the distances between itself and a sample of networks, which would be needed for

calculating a mean. The graph edit distance is the least-cost edit operation sequence

between two networks, where an edit includes node and edge insertion and deletion, it

is written formally as

dGED(G,G′) = min
edit1,..editk

k∑
i=1

c(editi), (1.2.6)

where c(editi) is the cost of the ith edit, and the k edits transform G into G′ (Gao et al.,

2010).

Another issue with most existing metrics is they do not take into account node labelling;

this problem can be seen by the recent pseudo-metric between networks,NetEMD, de-

fined in Wegner et al. (2018). A pseudo-metric differs to a metric as it no longer satisfies

condition M2 in (1.1.1) meaning NetEMD(x, y) = 0 ; x = y. The NetEMD met-

ric is the mean of all modified earth movers distances of distributions of chosen features

within the networks. The distributions that have performed well are the graphlet degree

distributions for graphlets up to 4 or 5 nodes. A graphlet is a small connected subgraph

and the graphlet degree distribution is how many nodes ‘touch’ each graphlet (Pržulj,

2010). This metric has been shown to perform well for comparison of certain networks

when it is the network topological features that are of interest, for example when clas-

sifying Reddit communities networks of discussion based and question/answer based

communities (Wegner et al., 2018). However NetEMD is unsuitable for many types

of networks where node labelling is important, such as text or neuroimaging networks.

When the graphlet degree distribution is used the metric is unchanged by permutation

of node labelling. If the same number of nodes ‘touch’ each possible graphlet in two

networks they will haveNetEMD = 0, even though the actual nodes doing the ‘touch-

ing’ are different. This means the importance of the labelling of nodes is lost, which is

obviously undesirable.

11
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Our metrics between graph Laplacians, defined in (1.2.4) and (1.2.5), do not suffer

from the undesirable effect from node permutations and this is one reason it may be

advantageous to use. For the networks in Figure 1.3 we calculate NetEMD, in Ta-

ble 1.1, to illustrate the effect it only being a pseudo-metric has, and compare it with

the Euclidean, square root Euclidean and Procrustes size-and-shape metric between

graph Laplacians to show these do not suffer the same effect. We also include the

Hamming distance. For example A the networks have had their nodes permuted, and

so whilst the two networks look identical their node labelling is different. Example

B and C are examples of networks representing text, for these examples an edge is

present if two words appear next to each other, Example B shows networks of two

sentences, ‘I had my house cleaned′ and ‘I had cleaned my house′, they have identical

words but in a different order which changes the meaning of the sentence. In Example C

the two networks represent the sentences ‘Why did that researcher choose that example′

and ‘I wrote this sentence for this purpose′, these sentences share no common words

but have an identical structure. These examples all have NetEMD of 0, if we were

comparing the networks structure a distance of 0 seems reasonable, but if the nodes’

meaning are of interest a larger distance would be needed. The Euclidean, square root

Euclidean, Procrustes size-and-shape and Hamming distance all give distances above 0.

Therefore these metrics are sensible to use for networks where the node’s values are of

interest. Also it is worth noting the relative distance between the pairs of networks for

the Euclidean, square root Euclidean and Procrustes size-and shape metrics are similar.

For each metric Example B results in the smallest distance and Example C results in the

largest.

Example NetEMD Euclidean Square root
Euclidean

Procrustes
size-and-shape

Hamming

A 0 4.47 1.64 1.62 8
B 0 3.16 1.18 1.16 4
C 0 9.17 4.90 4.90 12

Table 1.1: Some network distance metrics between the example networks in Figure 1.3

1.2.4 Statistical methods

Using the metrics defined in (1.2.4) and (1.2.5) we will develop a framework for the

statistical analysis of networks represented as graph Laplacians. With this framework
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Figure 1.3: Pairs of networks for which NetEMD=0
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we can adapt many standard statistical methods so they are suitable for samples of

networks. Examples of the standard statistical methods we shall generalise include

principal component analysis, linear regression and two-sample hypothesis testing. We

shall now briefly describe some of the standard statistical methods we shall use.

We shall use Ward’s method (Ward, 1963) for the clustering of graph Laplacians. Ward’s

method is an agglomerative hierarchical clustering method where to begin each graph

Laplacian is assigned its own cluster and the algorithm then recursively joins the two

most similar clusters, continuing until there is just one cluster left.

In the framework we define for the statistical analysis of graph Laplacians we will solve

a convex optimisation problem. A general convex optimisation problem is one such that

we wish to find

arg min{f(L)}

subject to: gi(L) ≤ 0, i = 1, ..., kg

hj(L) = 0, j = 1, ..., kh,

(1.2.7)

where f , g1, ... and h1, ... are convex functions and kg and kh are the number of inequal-

ity and equality constraints respectively. A convex optimisation problem has the useful

characteristic that any local minimum must be the unique global minimum (Rockafellar,

1993).

We shall visualise graph Laplacians in lower dimensions using both principal compo-

nent analysis (PCA) and multidimensional scaling (MDS). There are already several

generalisations of PCA for manifold data, such as Geodesic PCA described in Huck-

emann et al. (2010) and Huckemann and Hotz (2009). The PCA we shall define in

Section 2.5 for graph Laplacians is similar to Fletcher et al. (2004), where a tangent

space is used to perform PCA and then results are projected back to the space of graph

Laplacians. Earlier approaches of PCA in tangent spaces in shape analysis include Kent

(1994) and Cootes et al. (1994).

When defining methods for regression of graph Laplacians as well as looking at para-

metric models for regression such as the linear model we also will use the popular

non-parametric model, the Nadaraya Watson model (Watson, 1964; Nadaraya, 1965;

Bierens, 1988). The Nadaraya Watson model predicts an unknown variable y with
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known covariate x for the dataset ({y1, x1}, . . . , {yn, xn}) as

y(x) =

∑n
i=1Kh(x− xi)yi∑n
i=1KH(x− xi)

, (1.2.8)

where Kh is a kernel function. We also consider regression with spatial covariate

and for this we shall adapt Kriging, also referred to as Gaussian process prediction,

a brief overview of which can be found in Chilès and Desassis (2018). Kriging is a

geospatial method of estimating points on a random field. The Kriging predictor of

an unknown quantity Z on a random field with known coordinates x for the dataset

({Z1,x1}, . . . , {Zn,xn}) is

Z(x) =
n∑
i=1

W (xi)Zi, (1.2.9)

where the weights, W , are chosen to reflect the spatial proximity of data points. The

working to find these weights for the spatial graph Laplacians is found in Section 3.5.

We will define a two-sample test for graph Laplacians. Whilst this will rely heav-

ily of the framework for graph Laplacians it will follow the same outline of standard

two-sample tests. This outline is defining a test statistic and either finding or approxi-

mating its distribution. Common two-sample tests are the students t-tests, Hotelling’s

T-squared test and Chi-squared test.

In Chapter 5 we shall classify networks by representing them as graph Laplacians and

one method to do so involves the use of well documented, supervised classification

methods to classify the graph Laplacians. There are many possible standard classifica-

tion methods we could use but the three we consider are linear discriminant analysis

(LDA), random forests and support vector machines (SVM). Linear discriminant anal-

ysis is a form of classification that takes a linear combination of variables to form a rule

for classification, explained in detail in Chapter 11 of Mardia et al. (1979). LDA relies

on the assumption the variables are normally distributed for each class with identical

covariance matrices and only the mean vector differing, however it has been seen to still

work well when these assumptions are violated (Li et al., 2006). Random forests are

a type of ensemble learning method that can be used in classification. Random forests

create multiple decision trees which then vote for the most popular class, first described

in Breiman (2001), they limit overfitting that is prone in a single decision tree. A de-

cision tree is a classifier that partitions data in a tree like structure using decision rules
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(Breiman, 2017). Support vector machines construct a hyperplane that separates the

classes by as large a gap as possible. Support vector machines are particularly use-

ful when data is not linearly separable as the kernel trick can be used to transform the

data into a higher dimensional space where a hyperplane can be fitted to classify the

data, more detail can be found in Chapter 12 of Hastie et al. (2005). Classification

techniques are prone to over fitting and so to evaluate the success of a classification

method data needs to be split into a training and test set. The training set is what the

classification method will be trained on and then of course it is tested on the test set to

see how the classification has performed. However the success of the classification is

then dependent on how the training and test set were decided and so cross validation,

where multiple training and test sets are used, is best as this reduces this dependency.

A common metric to measure the success of classification is the accuracy defined as

accuracy = 100
Number of correctly classified data points

Total number of data points
. (1.2.10)

1.2.5 Network data generating models

When applying our statistical method we will sometimes generate networks for simula-

tion studies from different network models; the four we consider and use particularly in

Chapter 4 are the stochastic block model, the Erdös-Renyi random network model, the

Watts-Strogatz small-world model and the normal weighted network model.

The stochastic block model is a commonly used network model, for example it is used

in block-clustering, where nodes with similar roles are clustered together (Snijders and

Nowicki, 1997; McDaid et al., 2013). A stochastic block model for anm node network,

partitions the node set into k subsets C1, . . . , Ck. The probability of an edge between

nodes i and j is then given by puv where i ∈ Cu and j ∈ Cv. A stochastic block model

can be represented by a probability matrix P = (pij), where pij is the probability of

an edge being present between node i and j. We do not allow mixed membership in

the stochastic block model, as described in Airoldi et al. (2008). When there is only

one block the network is an Erdös-Renyi random network and so the probability of any

edge being present, pij , is constant for all nodes.

The Watts-Strogatz small-world model is described in Watts and Strogatz (1998). For

the Watts-Strogatz model we set the size of the lattice along each dimension as 1, nei

is the neighbourhood sizes each node is originally connected with respectively and p is

16



CHAPTER 1: INTRODUCTION

the respective rewiring probability.

Another model we shall use we call the normal weighted network model which pro-

duces networks with weights that are modelled normally, wij ∼ N (p, σ2), for 1 ≤
i, j ≤ m. To prevent negative weights occurring p and σ must be chosen so the chance

of the weight being negative is negligible.

However for the majority of our work we shall apply our methods to real network data

examples which we shall now describe.

1.3 Datasets to be used

1.3.1 19th Century novels

As stated in Moisl (2015) ‘Linguistics is a science, and should therefore use scientific

methodology’, and we will use our statistical methods for corpus linguistic networks.

In corpus linguistics, networks are used to model documents comprising a text corpus

(Phillips, 1983). By representing text as networks and then graph Laplacians we provide

a way of answering questions such as, what is the mean of a sample of texts, how

does writing style change with time and how can we classify the author of a text given

samples of their previous texts. A recent famous example of classifying texts is for

the analysis of the novel ‘The Cuckoo’s Calling’ written under the pen name ‘Robert

Galbraith’; this was found to actually be written by the famous J.K. Rowling (Juola,

2015). An example of studying differences between authors using text networks is seen

in Antiqueira et al. (2007), however this just uses network summary statistics described

in Section 1.2.1, for example the average degree of the nodes. Our approach shall

compare networks as whole data objects.

To represent a text document as a network each node represents a word, and edges indi-

cate words that co-occur within some span–typically 5 words, which we use henceforth–

of each other (Evert, 2008). The span of 5 is justified in corpus linguistics due to the

idea from Miller (1956) that the number of objects an average person can hold in work-

ing memory is between 5 and 9 and so this is true for words also. This representation

conserves information on the co-occurrence of words, and these co-occurrences can be

distinctive of different texts, be it authors or genre. Representing texts using colloca-

tion is perhaps a more intelligent way to analyse texts then representing them by the
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commonly used bag of words model, where only word frequency is considered and the

order of words is ignored (Wallach, 2006). The R package CorporaCoCo by Hen-

nessey et al. (2017) can be used to convert text into its co-occurrences.

Author Novel name Abbreviation Year written
Austen Lady Susan LS 1794
Austen Sense and Sensibility SE 1795
Austen Pride and Prejudice PR 1796
Austen Northanger Abbey NO 1798
Austen Mansfield Park MA 1811
Austen Emma EM 1814
Austen Persuasion PE 1815
Dickens The Pickwick Papers PP 1836
Dickens Oliver Twist OT 1837
Dickens Nicholas Nickleby NN 1838
Dickens The Old Curiosity Shop OCS 1840
Dickens Barnaby Rudge BR 1841
Dickens Martin Chuzzlewit MC 1843
Dickens A Christmas Carol C 1843
Dickens Dombey and Son DS 1846
Dickens David Copperfield DC 1849
Dickens Bleak House BH 1852
Dickens Hard Times HT 1854
Dickens Little Dorrit LD 1855
Dickens A Tale of Two Cities TTC 1859
Dickens Great Expectations GE 1860
Dickens Our Mutual Friend OMF 1864
Dickens The Mystery of Edwin Drood ED 1870

Table 1.2: The Jane Austen and Charles Dickens novels from the CLiC database
(Mahlberg et al., 2016).

The text networks we focus on are for the full text in novels written by Jane Austen and

Charles Dickens dataset 1 as listed in Table 1.2, obtained from CLiC (Mahlberg et al.,

2016). For each of the 7 Austen and 16 Dickens novels, the “year written” refers to

the year in which the author started writing the novel; see The Jane Austen Society of

North America (2018) and Charles Dickens Info (2018).

We choose to study Dickens novels as they are frequently studied in corpus linguistics,

for example in Mahlberg et al. (2016, 2013). Austen novels are a good set of novels

to use alongside Dickens novels as they were written in a similar time period and too
1Christmas Carol and Lady Susan are short novellas rather than novels, but we shall use the term

“novel” for each of the works for ease of explanation.
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Author Novel name Abbreviation
Earl of Beaconsfield Sybil, or sy
Benjamin Disraeli the two nations

Earl of Beaconsfield Vivian vi
Benjamin Disraeli Grey

Mary Braddon Lady Audley’s Secret la
Anne Brontë Agnes Grey ag

Charlotte Brontë Jane Eyre ja
Charlotte Brontë The Professor pr

Emily Brontë Wuthering Heights wh
Baron Edward Bulwer The Last Days po

Lytton of Pompeii
Elizabeth Gaskell Cranford cr
Elizabeth Gaskell Mary Barton ma
Elizabeth Gaskell North and South no

Wilkie Collins Antonina, or the Fall of Rome an
Wilkie Collins Armadale ar
Wilkie Collins The Woman in White ww

Arthur Conan Doyle The Hound of the Baskervilles ba
George Eliot Daniel Deronda de
George Eliot The Mill on the Floss mi

Thomas Hardy Jude the Obscure ju
Thomas Hardy The Return of the Native na
Thomas Hardy Tess of the D’Urbervilles te

William Makepeace Vanity va
Thackeray Fair

Robert Louis The Strange Case of
Stevenson Dr Jekyll and Mr Hyde je

Bram Stoker Dracula dr
Mary Shelley Frankenstein fr

Anthony Trollope The Small House at Allington al
Oscar Wilde The Picture of Dorian Gray do

Table 1.3: More novels from the CLiC database (Mahlberg et al., 2016).
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have been studied extensively, for example in Mahlberg (2010); Burrows (1987). We

will also briefly look at a larger set of novels of all 19th century authors available from

CLiC (Mahlberg et al., 2016), this includes the Austen and Dickens novels as well as

the novels found in Table 1.3.

Word Rank in all Austen Rank in Rank in
and Dickens novels Dickens novels Austen novels

the 1 1 1
and 2 2 3
to 3 3 2
of 4 4 4
a 5 5 5
i 6 6 7

in 7 7 8
that 8 8 13
it 9 11 10
he 10 10 16
his 11 9 20
was 12 13 9
you 13 12 15
with 14 14 21
her 15 16 6
as 16 15 18

had 17 17 17
for 18 20 19
at 19 21 25
mr 20 18 38
not 21 26 12
be 22 28 14
she 23 31 11
said 24 19 58
have 25 25 23

Table 1.4: The most common 25 words in the Austen and Dickens novels.

For each novel we produce a network representing pairwise word co-occurrence. A

choice that needs to be made is if we allow co-occurrences over sentence boundaries

and chapter boundaries, (Evert, 2008, Section 3) for this data we allow it. If the node

set V corresponded to every word in all the novels it would be very large, for the Austen

and Dickens subset this would give m = 48285, but a relatively small number of words

are used far more than others. In the Austen and Dickens subset the top m = 50 words

cover 45.6% of the total word frequency,m = 1000 cover 79.6%, andm = 10000 cover
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96.7%. We focus on a truncated set of the m most frequent words and the wij’s are the

pairwise co-occurrence counts between these words. In our analysis we choose m =

1000 as a sensible trade-off between having very large, very sparse graph Laplacians

versus small graph Laplacians of just the most common words. Truncating a novel’s

word set has been shown to be effective before, for example Burrows (1987) considers

just the high frequency words in Austen novels to get insightful results. For each novel

and the truncated node set, the network produced is converted to a graph Laplacian.

A pre-processing step for the novels is to normalise each graph Laplacian, in order

to remove the gross effects of different lengths of the novels, by dividing each graph

Laplacian by its own trace, resulting in a trace of 1 for each novel.

As an indication of the broad similarity of the most common words we list the top 25

words for the Austen and Dickens subset in Table 1.4, these words are almost identical

to the top 25 words for the full 19th century novel set. Of the top 25 words across all

novels 22 appear in the most frequent 25 words for the Dickens novels and 23 for the

Austen novels. The words not, be, she do not appear in Dickens’ top 25 and the words

mr and said do not appear in Austen’s top 25. Some differences in relative rank are

immediately apparent: her, she, not having higher relative rank in Austen and he, his,

mr, said having higher relative rank in Dickens.

Our key statistical goals for the novel data are to investigate the authors’ evolving writ-

ing styles, by regressing the networks on “year written”; to explore dominant modes of

variability, by developing principal component analysis for samples of networks; and

to test for significance of differences in Austen’s and Dickens’ writing styles, via a

two-sample test of equality of mean networks.

1.3.2 M-money transaction networks

Another network dataset we shall use throughout is the M-money transaction network

dataset, which corresponds to the movement of M-money in Tanzania. M-money trans-

actions include sending and receiving money, making savings deposits, bill payments,

making non-cash payments and transferring money from ones mobile phone account to

bank accounts and vice versa as described in Mpogole et al. (2016, page 4).

We convert the M-money transactions for the year 2014 into daily networks, giving

365 networks, made of (m =)130 nodes representing the districts of Tanzania found

in Table 1.5. An edge is present if a transaction occurred between the two districts on
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the day. This creates an unweighted network as an edge is either present, if there is a

transaction or not. As the nodes for these networks correspond with a spatial location

we can plot these networks on a map of Tanzania which we shall do in Example 2.3.2.

Again like with the networks representing Austen and Dickens novels, we pre-process

these daily networks to standardise by dividing by the trace, so the graph Laplacians for

each day have trace=1.

The uptake of M-money in east African countries like Tanzania has been extremely

high, from zero to 5.5 million users in its first 4 years (Mpogole et al., 2016). Tanza-

nia like many emerging economies is struggling to keep key demographic data, such as

socio-demographic status, up to date. Engelmann et al. (2018) explains how studying

M-money transactions can fill in some of the gaps in the demographic data. As the M-

money data can give insightful demographic results it is an interesting dataset to study,

especially as very little research exists on it currently. We shall use the M-money net-

works throughout to demonstrate our methods on, particularly focussing on identifying

differences between transactions on weekdays and weekends.

1.3.3 Neuroimaging- fMRI data

Another motivating application for the statistical analysis of network data is from neu-

roimaging. Using functional MRI images of brains, correlations emerge between func-

tionally related areas of the brain. These are referred to as functional connectivity and

give detailed maps of complex neural systems (Biswal et al., 2010).

We use the same dataset as Ginestet et al. (2017) kindly provided by Dr Cedric Ginestet

from the the 1000 Functional Connectomes Project launched by Biswal et al. (2010).

The data we use from Ginestet et al. (2017) parcellates the scan for a participant into

a set of 50 cortical and subcortical regions using the Automated Anatomical Labelling

(AAL) template (Tzourio-Mazoyer et al., 2002). As pointed out in Ginestet et al. (2017)

the resulting networks are sensitive to the choice of parcellation and just as in their work,

our own work generalizes to other parcellations.

For the data there are a total of 1017 participants, with 462 males and 555 females. For

each participant a correlation matrix Sk = (sij) is created between each area of the

brain from the scans. The correlation matrix is converted to a network with areas of the

brain as nodes and edges present between correlated areas (Biswal et al., 2010; Ginestet

et al., 2017). The network and hence graph Laplacian is created by thresholding, giving
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District names
Arumeru Arusha Babati Bagamoyo
Bariadi Biharamulo Bukoba Rural Bukoba Urban

Bukombe Bunda Chake Chunya
Dodoma Rural Dodoma Urban Geita Hai

Hanang Handeni Igunga Ilala
Ileje Ilemela Iramba Iringa Rural

Iringa Urban Kahama Karagwe Karatu
Kasulu Kibaha Kibondo Kigoma Rural

Kigoma Urban Kilindi Kilolo Kilombero
Kilosa Kilwa Kinondoni Kisarawe

Kishapu Kiteto Kondoa Kongwa
Korogwe Kwimba Kyela Lindi Rural

Lindi Urban Liwale Ludewa Lushoto
Mafia Magu Makete Manyoni

Masasi Maswa Mbarali Mbeya Rural
Mbeya Urban Mbinga Mbozi Mbulu

Meatu Micheweni Misungwi Mkinga
Mkoani Mkuranga Monduli Morogoro Rural

Morogoro Urban Moshi Rural Moshi Urban Mpanda
Mpwapwa Mtwara Rural Mtwara Urban Mufindi
Muheza Muleba Musoma Rural Musoma Urban

Mvomero Mwanga Nachingwea Namtumbo
Newala Ngara Ngorongoro Njombe
Nkasi Nyamagana Nzega Pangani

Rombo Ruangwa Rufiji Rungwe
Same Sengerema Serengeti Shinyanga Rural

Shinyanga Urban Sikonge Simanjiro Singida Rural
Singida Urban Songea Rural Songea Urban Sumbawanga Rural

Sumbawanga Urban Tabora Urban Tandahimba Tanga
Tarime Temeke Tunduru Ukerewe
Ulanga Urambo Urban Uyui
West Wete Zanzibar Central Zanzibar North A

Zanzibar North B Zanzibar South

Table 1.5: District names of Tanzania
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the weights of each edge as

wi,j =

0, if sij < c

1, if sij ≥ c
(1.3.1)

for some thresholding value c. This c could be a constant for all the networks, but

we choose c being a quantile of the correlation values for each correlation matrix, we

denote this by Q. There is some debate on how to threshold a correlation matrix into a

network, briefly explained in Ginestet et al. (2014), however for the methods we shall

use on this data we feel our thresholding is sensible.

Again by representing these networks as graph Laplacians, two-sample tests can be

performed to study significant differences in brain activity network means between dif-

ferent demographic groups. We shall consider differences in brain activity network

means for gender.

1.3.4 Enron email corpus

The Enron dataset consists of daily networks representing the email interaction between

employees at the Enron company. Enron was an American energy company that was

hit by an accountancy scandal which resulted in its ultimate closure, more detail on the

scandal can be found in Healy and Palepu (2003). During the investigation of Enron the

Enron corpus was collected consisting of a large set of emails between Enron employ-

ees. This data was made public during the legal investigation of Enron by the Federal

Energy Regulatory Commission (Klimt and Yang, 2004). An overview of this dataset

can be found in Diesner et al. (2005).

Similar to Shetty and Adibi (2004) we use this data to form social networks between

the (m =)151 employees we have present. For each month we create a network with

employees as nodes and edges with weights that are the number of emails exchanged

between the two employees in the given month. We can then represent these as graph

Laplacians for each month. The networks we have are for the months inclusive of June

1999 to April 2002. Just like with the networks representing Austen and Dickens novels,

we pre-process these to standardise by dividing by the trace, so the graph Laplacians

for each month have trace=1.

The Enron dataset has been studied extensively as social networks due to the unique-
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ness of the dataset. Previous work on the dataset includes studying the hierarchy, clus-

tering and importance of the employers within Enron (Agarwal et al., 2012; Wilson

and Banzhaf, 2009). A lot of work has also explored the time structure of the Enron

networks and how the email interactions change with time (Diesner and Carley, 2005).

We will focus on the time structure of the Enron networks, especially trying to identify

changes within the network that correspond to the scandal.

1.3.5 Shape data

In Chapter 6 we no longer study network data but instead use shape data as we defined

in Section 1.1.1. The motivating data we consider is an enzyme dataset containing the

configurations of enzymes with k = 88 biological landmarks in m = 3 dimensions at

n = 4216 different times, which we use in Example 6.3.1. Example configurations for

this data are shown in Figure 1.4.

(a) (b) (c)

Figure 1.4: Landmark configurations of the enzyme data at time (i) 1, (ii) 2000 and
(iii) 4000.

We also use briefly in Chapter 6 use three other shape datasets. The first is the dataset of

ape skull landmarks which contain (k=)8 landmarks in (m=)2 dimensions for (n=)167

individuals, including gorillas, chimpanzees and orangutans. We also use the landmarks

of a DNA molecule that moves in time, with (k=)22 atoms/landmarks in (m=)3 dimen-

sions for (n=)30 time points. The final dataset is the landmarks for sand grain profiles

from the Baltic sea and Caucasian River Selenchuk for (k=)50 landmarks in (m=)2

dimensions for (n=)49 grains, the original data for this is from Stoyan (1997).
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1.4 Thesis outline

In Chapter 2 we shall provide a general framework for the statistical analysis of net-

works by representing them as graph Laplacians. This framework will be used through-

out Chapters 2, 3, 4 and 5. The framework will involve defining an embedding space,

tangent space and metric for the graph Laplacians space. We will use this framework

to apply some basic statistical produces such as calculating the mean and performing

principal component analysis.

As the novel dataset and Enron dataset have a time structure in Chapter 3 we define

parametric and non-parametric methods of regression for graph Laplacians. For the

Enron data we shall see an unwanted phenomena named the horseshoe effect, due to its

time structure, and so we define a method of removing this effect.

In Chapter 4 we define a two-sample test between graph Laplacians to test samples for

a difference in population mean of samples. When we apply our two-sample test to the

Austen and Dickens data we see there is significant evidence to suggest a difference in

population mean for the authors, hence we provide a method of investigating what the

specific differences between these authors are.

Samples of graph Laplacians can belong in different classes for example the novels

being in a class of novels written by Dickens vs those not written by him. In Chapter

5 we define a method of classifying graph Laplacians into different classes and also

provide a method of detecting anomalies in a sample of graph Laplacians.

In Chapter 6 we consider a different type of manifold-valued data, shape data on the

shape space. For this manifold the choice of tangent coordinates is important and we

investigate why this is. We provide advice on which tangent coordinates to use under

certain cases.

Finally we summarise our findings in Chapter 7. We give future work, including ex-

plaining how the framework we have developed could be generalised to other metrics

between graph Laplacians.
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CHAPTER 2

Population network estimation using
graph Laplacians

2.1 Space of graph Laplacians

In this chapter we will define the space of Graph Laplacians and use the fact it is a sub-

space of the space of positive semi-definite matrices. We then shall define a framework

to perform statistical analysis on samples of networks that are represented as graph

Laplacians. The framework presented in this chapter can be found in Severn et al.

(2019). This framework involves the embedding of graph Laplacians. This embedding

of whole networks represented as graph Laplacians is completely different to network

embeddings which focus on the embedding of nodes of a single network, for example

in Chen et al. (2018). Once the framework has been introduced we shall use it to define

methods of calculating means, interpolating and performing PCA on graph Laplacians.

From the definition of a graph Laplacian in (1.2.1) it is clear the space of all graph

Laplacians of dimension m×m can be written as

Lm = {L = (lij)} such that:

L = LT (symmetric),

lij ≤ 0 ∀i 6= j (non-positive off-diagonal elements),

L1m = 0m (zero row sum),

(2.1.1)

where 1m and 0m are the m-vector of ones and zeroes respectively. We note due to

the rows summing to zero that the diagonal elements must be non-negative as the off-
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diagonals are non-positive. Also due to the symmetry, LT1m = 0m, hence the columns

also sum to zero.

The space of Lm is a manifold, in particular it is a sub-manifold of Rm×m with corners

(Ginestet et al., 2017). A d dimensional manifold with corners can be locally modelled

by [0,∞)k × Rd−k; for full details see Joyce (2009). Many of the methods we will

define are adapted from the space of symmetric positive semi-definite matrices, PSDm
(defined in (1.1.8)), which we shall now prove Lm is a subset of, and also prove some

similar properties these spaces share.

Result 2.1.1. Lm ⊂ PSDm, where PSDm is the space of symmetric positive semi-

definite matrices of dimension m×m.

Proof. For L ⊂ PSDm we must have L ∈ Lm ⇒ L ∈ PSDm. A sufficient condition

for L ∈ PSDm is for L to have real positive diagonal elements and to be diagonally

dominant (De Klerk, 2006, page 232). A matrix, A = (aij) is diagonally dominant if

|aii| ≥
∑

i 6=j |aij| for all i. For a L ∈ Lm it is clear it has positive diagonal elements

and that |lii| =
∑

i 6=j |lij|, hence any L ∈ Lm is diagonally dominant and so L ∈
PSDm.

Just like the space PSD, the space for graph Laplacians is a convex cone. For defini-

tions of “convex” and “cone” see (1.1.9) and (1.1.10) respectively.

Result 2.1.2. The space Lm is a convex space.

Proof. It is sufficient to show for any L1 = (l1ij),L2 = (l2ij) ∈ Lm that L = (lij) =

cL1 + (1− c)L2 ∈ Lm for any 0 ≤ c ≤ 1. We can see

LT = cLT1 + (1− c)LT2 = cL1 + (1− c)L2 = L, (symmetry)

lij = cl1ij + (1− c)l2ij ≤ 0 for i 6= j (non-positive off-diagonal elements)

L1 = cL11 + (1− c)L21 = 0, (zero row sum).

Clearly thenL ∈ Lm as it satisfies all the graph Laplacian conditions in (2.1.1) we have

convexity.

Result 2.1.3. The space Lm is a cone.

Proof. It is sufficient to show that for any L1 = (l1ij) ∈ Lm we must have L = (lij) =
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cL1 ∈ Lm, for any c > 0. We see

LT = cLT1 = cL1 = L, (symmetry)

lij = cl1ij ≤ 0 for i 6= j, (non-positive off-diagonal elements)

L1 = cL11 = 0 (zero row sum).

Clearly then L ∈ Lm as it satisfies all the graph Laplacian conditions in (2.1.1) so Lm
is a cone.

Just like the space PSDm, our space of interest Lm is also a stratified manifold, it can

be written as

Lm = L(1)
m ∪ L(2)

m ∪ ... ∪ L(m−1)
m ,

where L(r)
m are the strata defined as

L(r)
m = {L ∈ Lm : rank(L) = r},

which is the space of graph Laplacians of rank r. For an m node network the rank of its

graph Laplacian corresponds to the number of components of the network, defined in

Section 1.2.1. A graph Laplacian representing a network with m − r components has

rank r. Each stratum L(r)
m , is a sub-manifold of Rm×m with dimension mr − r(r − 1)

2
.

Previous work in Ginestet et al. (2017) focussed on the space of graph Laplacians rep-

resenting fully connected networks, L(m−1)
m and only briefly considered disconnected

networks having precisely m − r components. We however will work with the much

more general space Lm.

2.2 Framework

The general framework we will define in this section for the statistical analysis of graph

Laplacians is shown schematically in Figure 2.1. This framework involves embedding

a graph Laplacian (Fα) and then mapping this into a tangent space, using the inverse

exponential map (exp−1ν ), where statistical analysis can be performed. The results from

the analysis are then mapped from the tangent space to the embedding space (expν)

where an inverse embedding is applied (F−1α ), the result is still not guaranteed to be a
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graph Laplacian and so another projection (PL) is needed to project the result into Lm.

The identity projection, Id, maps an object to itself and the mapping illustrates that

Lm ⊂ PSDm.

PSDm PSDm

Mm Mm
Tν(M) Lm⊂ ⊂

Fαexp−1ν Id

PLF−1αexpν

⊃

Figure 2.1: Schematic for the general framework for the statistical analysis of graph
Laplacians. The embedding, Fα, inverse embedding, F−1α , and embed-
ding space,Mm, are defined in Section 2.2.1 and 2.2.3 respectively. The
tangent space, Tν(M), and associated projections, exp−1ν and expν , are
defined in Section 2.2.4. The projection, PL, is defined in Section 2.2.5.

2.2.1 Embedding

To embed a graph Laplacian we first write L = UΛUT by the spectral decomposition

theorem, with Λ = diag(λ1, . . . , λm) and U = (u1, . . . ,um), where {λi}i=1,...,m and

{ui}i=1,...,m are the eigenvalues and corresponding eigenvectors of L. Since Lm ⊂
PSDm then λi ≥ 0, hence for any α > 0

Fα(L) = Lα = UΛαUT : PSDm →Mm, (2.2.1)

embeds PSDm intoMm, whereMm is an embedding space, dependent on the choice

of metric, and defined for specific metrics in Section 2.2.3. A common choice for α for

us will be either α = 1 or α = 1
2
.

We observe the following, which is useful in later proofs.

Result 2.2.1. For L ∈ Lm then Fα(L) is centred, meaning Fα(L)1m = 0m.

Proof. L is centred as L1m = 0m, this means L has an eigenvalue λi = 0 correspond-

ing to the eigenvector ui = 1m. As Fα(L) = UΛαUT , the eigenvectors of Fα(L) are

the columns ofU hence ui = 1m is also an eigenvector of Fα(L) and its corresponding

eigenvalue is λαi = 0α = 0. Therefore Fα(L)1m = 0m hence Fα(L) is also centred.
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2.2.2 Metrics

As explained in Section 1.1 embeddings can be used to define metrics and this is the

case for our space Lm. The Euclidean power metric (1.2.4) and Procrustes power metric

(1.2.5) we introduced between graph Laplacians can now be written in terms of the

embedding, Fα, for L1,L2 ∈ Lm, as

dα(L1,L2) = ‖Fα(L1)− Fα(L2)‖ (2.2.2)

dα,S(L1,L2) = inf
R∈O(m)

‖Fα(L1)− Fα(L2)R‖. (2.2.3)

These metrics in fact hold more generally for L1,L2 ∈ PSDm. Using definitions from

Section 1.1 we can see on Lm the Euclidean distance d1 is intrinsic as Fα is just the

identity map, but in general dα and dα,S are extrinsic with respect to the manifold, as

they are Euclidean distances in the embedding space. As explained in Section 1.2.3,

common choices of metrics are d1, d 1
2

and d 1
2
,S , referred to as the Euclidean, square

root Euclidean and Procrustes size-and-shape metrics respectively.

Example 2.2.1: Clustering of the Austen and Dickens novel data
We initially compare some choices of distance metrics on the Austen and Dickens data

after constructing the graph Laplacians from the m = 1000 most frequent words across

all 23 novels. Figure 2.2 (left column) shows the results of a hierarchical cluster anal-

ysis using Ward’s method (Ward, 1963), described in Section 1.2.4, based on pairwise

distances between novels using the metrics d1, d 1
2

and d 1
2
,S . The dendrograms in Fig-

ure 2.2 are a graphical way of representing how the clusters are formed at each stage

in the algorithm. The dendrograms when using d 1
2

and d 1
2
,S separate the authors into

two very distinct clusters, shown by the dashed line, whereas when using d1, Dick-

ens’ David Copperfield and Great Expectations are clustered with Austen’s Lady Susan

which although seems unsatisfactory, actually these three novels all contain more first

person narration which could explain them clustering together. The next sub-division

of the Dickens cluster using d 1
2

or d 1
2
,S splits the novels into groups of the earlier novels

versus later novels, with the exception being the historical novel A Tale of Two Cities

which is clustered with the earlier novels. There is not such a clear sub-division for

Dickens when using d1. In the Austen cluster when using d 1
2

or d 1
2
,S there is clearly a

large distance between Lady Susan and the rest. Lady Susan is Austen’s earliest work,

a short novella published 54 years after Austen’s death.
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Figure 2.2: Cluster analysis and MDS plots based on (from top to bottom) the Eu-
clidean distance, d1, square root Euclidean distance, d 1

2
, and Procrustes

size and shape distance, d 1
2
,S each withm = 1000. The dashed horizontal

line on the dendrogram indicates the cut to form two distinct clusters. The
plots display Austen’s novels in blue and lower case, and Dickens’ novels
in red and upper case, the abbreviations are found in Table 1.2.
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Figure 2.3: Cluster analysis and MDS plots based on the Euclidean distance, d1 using
full word set of novels. The dashed horizontal line on the dendrogram
indicates the cut to form two distinct clusters. The plot displays Austen’s
novels in blue and lower case, and Dickens’ novels in red and upper case,
the abbreviations are found in Table 1.2.

Figure 2.2 (right column) shows corresponding plots for the novels of the first two

multi-dimensional scaling (MDS) variables from a classical multi-dimensional scaling

analysis, also referred to as Principal coordinate analysis (PCoA) in Gower (1966).

The d 1
2

and d 1
2
,S MDS plots are visibly identical, although they are slightly different

numerically. We see that there is a clear separation in MDS space between Austen’s

and Dickens’ works with a very strong separation in MDS1 using d 1
2

and d 1
2
,S , and

less so d1. An alternative method of clustering to Ward’s method is k-means clustering

applied to the first two MDS coordinates. For the k-means clustering k was chosen to

be 2 and for each metric k-means clustered the novels by author exactly.

When using d1 it is computationally possible to calculate the metric between the novels

using the entire set of 48285 words, which leads to graph Laplacians of dimension

m = 48285. Results based on the entire set are shown in Figure 2.3, and appear similar

to using the Euclidean metric on the truncated words set, except now in the dendrogram

Austen and Dickens are separated completely.

2.2.3 Reverse embeddings

The framework requires an inverse to the embeddings. We consider three choices of

F−1α for the reverse mapping back from the embedding space, which are suitable for

different scenarios. The choice of F−1α is dependent on whether we want to project to

33



CHAPTER 2: POPULATION NETWORK ESTIMATION USING GRAPH LAPLACIANS

PSD before reversing the powering of α.

When using the Euclidean power metric, the spaceMm is the space of real symmetric

m×m matrices with centred rows and columns, and we use

F−1α (Q) =


(Q)

1
α , when 1

α
is an odd integer :Mm →MmQ+QT + {(Q+QT )T (Q+QT )} 1

2

4

 1
α

, otherwise :Mm → PSDm

The second expression before taking the power 1
α

is the closest symmetric positive semi-

definite matrix to Q in terms of Frobenius distance (Higham, 1988). If Q ∈ PSDm
then this projection has no effect. But for Q /∈ PSDm with eigenvalues %1, . . . %m it

has at least one eigenvalue %i < 0. Therefore for 1
α
/∈ Z we project to the closest

symmetric positive semi-definite as in this case raising Q to the power 1
α
/∈ Z is only

real ifQ ∈ PSD. When 1
α
∈ Z then inQ

1
α a negative eigenvalue, %i, becomes

%
1
α
i =

< 0, if 1
α

is odd

> 0, if 1
α

is even

as %i < 0 we would want the corresponding eigenvalue in Q
1
α to be negative or close

to 0, and this is only true when 1
α

is odd, and therefore when 1
α

is even we project first

into PSD before raising the power.

For the Procrustes power metric, the spaceMm is the reflection size-and-shape space,

denotedRSΣm
m−1 (Dryden et al., 2009; Dryden and Mardia, 2016, p67), and in this case

we use

F−1α (Q) = (QQT )
1
2α :Mm → PSDm.

We choose this reverse map as it removes the orthogonal matrices from the Procrustes

fits, which we will see in the next section is introduced from the exponential map.

2.2.4 Tangent space

To perform further statistical analysis, such as interpolation, extrapolation and PCA, the

inverse exponential map, exp−1ν , is used to project into a tangent space from Mm, in

34



CHAPTER 2: POPULATION NETWORK ESTIMATION USING GRAPH LAPLACIANS

which standard statistical methods can be applied, where ν ∈ Mm denotes the pole of

the projection. The inverse exponential map is commonly used in tangent projections,

for example in Dryden and Mardia (2016, Section 3) and Schmidt et al. (2006), as well

as using this mapping in our graph Laplacian framework, in Section 6.2.5 we study this

mapping for a different space, the shape space.

We have seen that in Result 2.2.1 the centering constraints on graph Laplacians are

preserved for our choice of embedding Fα inMm. We can remove the centering con-

straints and reduce the dimensions when projecting to a tangent space by pre and post

multiplying by the m − 1 × m Helmert sub-matrix H and its transpose, defined in

Section 1.1.1, as a component of the projection.

For the Euclidean power metric, defined in (2.2.2), we define the inverse exponential

map exp−1ν to the tangent space Tν(Mm) = R
m(m−1)

2 as

exp−1ν (Q) = vech∗{H(Q− ν)HT}

expν(v) = ν +HT (vech∗)−1(v)H ,
(2.2.4)

where vech∗ is defined in (0.0.3). For this definition of tangent space for the Euclidean

power metricMm is actually Euclidean, with zero curvature, and the results from sta-

tistical procedures are often unaffected by the choice of ν so we often take ν = 0.

For the Procrustes power metric, defined in (2.2.3), we define the map exp−1ν to the

tangent space Tν(Mm) = Rm−1×m−1 as

exp−1ν (Q) = vec{H(QR̂− ν)HT}

expν(v) = (ν +HTvec−1(v)H)R̃
(2.2.5)

where vec is defined in (0.0.1). R̂ is the ordinary Procrustes match of Q to ν defined

in (1.1.7) and R̃ is the ordinary Procrustes match from (ν + HTvec−1(v)H) to ν

(Dryden and Mardia, 2016, chapter 7). The reflection size-and-shape space is a space

with positive curvature (Kendall et al., 1999) and the choice of ν depends on what

statistical analysis is being performed. A sensible choice for ν is often the unprojected

sample Fréchet mean, defined later in Section 2.3.

For the Euclidean power metric the Euclidean distance in the embedding space is con-

served in the tangent space, the three following results prove this. This is useful as it

can sometimes simplify calculations.
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Result 2.2.2. ForQ = Fα(L) where L ∈ Lm then

‖HQHT‖ = ‖Q‖

=
√

trace(QTQ).

Proof. Q is centered from Result 2.2.1, and clearly alsoQ = QT .

‖HQHT‖ =
√

trace(HQTHTHQHT )

=
√

trace(HQTCQHT )

=
√

trace(HTHQTCQ) as trace is invariant under cyclic permutation

=
√

trace(CTQTQ)

=
√

trace(QTQ)

= ‖Q‖,

we have used that HTH = C (Dryden and Mardia, 2016, page 63) where C is the

centering matrix (Dryden and Mardia, 2016, Equation 2.3) which has no effect onQ as

it is centered, meaning CQ = Q.

Result 2.2.3. For an m×m symmetric matrix S = ST then

‖vech∗(S)‖ = ‖S‖

Proof.

‖vech∗(S)‖ = (
m∑
i=1

∑
j<i

(
√

2sij)
2 +

m∑
i=1

s2ii)
1
2

= (
m∑
i=1

∑
j<i

2s2ij +
m∑
i=1

s2ii)
1
2

= (
m∑
i=1

m∑
j=1

s2ij)
1
2

= ‖S‖.

Result 2.2.4. For the Euclidean power metric the Euclidean distance in the embedding

space is conserved in the tangent space, meaning that for Q1 = Fα(L1) and Q2 =
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Fα(L2) where L1,L2 ∈ Lm and ν is the chosen pole, then

‖ exp−1ν (Q1)− exp−1ν (Q2)‖ = ‖Q1 −Q2‖.

Proof. The proof for this result relies on Result 2.2.2 and 2.2.3,

‖ exp−1ν (Q1)− exp−1ν (Q2)‖ = ‖vech∗(H(Q1 − ν)HT )− vech∗(H(Q2 − ν)HT )‖

= ‖vech∗(H(Q1 − ν)HT −H(Q2 − ν)HT )‖

= ‖(H(Q1 − ν)HT )− (H(Q2 − ν)HT )‖

= ‖(H(Q1 − ν −Q2 + ν)HT )‖

= ‖(H(Q1 −Q2)H
T )‖

= ‖Q1 −Q2‖.

2.2.5 Projection

We carry out analysis in the tangent space, e.g. computing a sample mean, and so results

are found in this space. After inverting the tangent space projection and inverting the

embedding for results the results still may not lie in the graph Laplacian space, Lm. So

we are interested in projecting from the matrix spaceMm, defined for different metrics

in Section 2.2.3, to the space of graph Laplacians, Lm, as results can only be interpreted

in this space. We seek a P that maps Y = (yij) ∈ Mm to the “closest point” in Lm.

For the Euclidean and Procrustes power metric such projections are

Pα(Y ) = arg inf
L∈Lm

dα(Y ,L)

Pα,S(Y ) = arg inf
L∈Lm

dα,S(Y ,L).
(2.2.6)

For certain α 6= 1 when Y 6∈ PSDm the distances may not be defined, however for

these α values the reverse embeddings, defined in Section 2.2.3, ensures Y ∈ PSDm
so the distances will be defined. It is desirable that when computing the projection we

have a convex optimisation problem, defined in (1.2.7), so the local minimum will be

the unique global minimum (Rockafellar, 1993).

Result 2.2.5. For Pα with α = 1 the projection can be found by solving a convex
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optimisation problem guaranteeing a unique solution.

Proof. The projection can be written as minimising

f(Y ) = d21(L,Y )

=
m∑
i=1

m∑
j=1

(lij − yij)2

subject to: lij − lji = 0, 0 ≤ i, j ≤ m
m∑
j=1

lij = 0, 0 ≤ i ≤ m

lij ≤ 0, 0 ≤ i, j ≤ m and i 6= j.

(2.2.7)

To prove this optimisation is convex we first note the constraints are all convex, as they

are all linear functions. We then need to prove the function we are minimising is convex,

which is

m∑
i=1

m∑
j=1

(lij − yij)2 = (l− y)T (l− y),

where l = vec(L) and y = vec(Y ), where vec is defined in (0.0.1). To prove this is

convex we must calculate the Hessian by differentiating the function twice,

∂(l− y)T (l− y)

∂l
=
∂(lT l− lTy − yT l + yTy)

∂l

= 2lT − 2yT

∂2(l− y)T (l− y)

∂lT∂l
= 2Im2 .

The Hessian is thus 2Im2 which is positive definite meaning this function is strictly

convex.

The natural projection for each metric would minimise their respective distance to Lm,

as in (2.2.6). However for α 6= 1 the optimization is not in general convex. Therefore as

the projection for the Euclidean power metric with α = 1, defined in (2.2.7), involves

convex optimisation we will use the projection P1 from now on for all our metrics and

we will refer to this projection as PL. To implement the projection, P1, we can, for

example, use either the CVXR (Fu et al., 2018) or rosqp (Anderson, 2018) packages

in R (R Core Team, 2018) to solve the optimisation. rosqp is particularly fast even
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for large dimensions, such as m = 1000. As the unique global solution can be found

computationally then for Y1,Y2 ∈ Mm if Y1 = Y2 then PL(Y1) = PL(Y2) so the

projection is unique, clearly this implication only holds one way as the projection is

many to one.

2.3 Means

Now our framework is defined we can define the mean of a set of graph Laplacians.

We define the population mean for graph Laplacians as

µ = PL(η),

where η = arg inf
u∈PSDm

E[d2(L, u)],
(2.3.1)

assuming µ exists. The sample mean for a set of graph Laplacians is then defined as

µ̂ = PL(η̂),

where η̂ = arg inf
u∈PSDm

1

n

n∑
k=1

d2(Lk, u).
(2.3.2)

The sample mean is the sample Fréchet mean in the embedding space, defined in (1.1.3),

that has had the inverse embedding applied. However η̂ is not guaranteed to be a graph

Laplacian and so the projection is then used to guarantee the result will lie in Lm.

For the Euclidean power distance we have

η = F−1α (E[Fα(L)])

η̂ = F−1α

(
1

n

n∑
k=1

Fα(Lk)

)

=

(
1

n

n∑
k=1

(Lk)
α

) 1
α

,

and µ and µ̂ are unique in this case. For the Procrustes power distance µ and µ̂ may be

sets, and the conditions for uniqueness rely on the support and curvature of the space

(Le, 1995). Result 13.1 of Dryden and Mardia (2016) proven by Kendall (1990) states

if the support of the distribution is a geodesic ball Br then there exists a unique mean

in Br, this holds for our data and so we can assume uniqueness. A stronger condition
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for global uniqueness is if the support of the distribution is a geodesic ball Br such that

B2r is regular then the mean is unique even outside of Br.

A regular geodesic ball, Br(p), of radius r centred at p has the cut locus of p not meet

the ball Br(p) and the supremum of the sectional curvature of the ball must be less

than ( π
2r

)2 (Dryden and Mardia, 2016, definition 13.2). Example 13.1 in Dryden and

Mardia (2016) gives a method for checking this assumption for size-and-shape space.

The guarantee of a unique mean within the support of the data is all we require as we are

not interested in values outside the support of the data, and therefore we do not consider

proving a global mean.

We have seen in Section 1.1 that there are two classes of means on a manifold, the

intrinsic mean and extrinsic mean defined in (1.1.4). Our mean in the graph Laplacian

space is an extrinsic mean in general. Although for the Euclidean power metric when

α = 1, we have µ̂ = η̂ and the mean is a Fréchet intrinsic mean (Fréchet, 1948; Ginestet

et al., 2017) in this case.

Result 2.3.1. Let Lk, k = 1, . . . , n, be a random sample of i.i.d. observations from a

distribution with population mean µ in (2.3.1). For the power Euclidean distance dα
the estimator µ̂, in (2.3.2), is a consistent estimator of µ.

Proof. For an estimator µ̂ to be consistent for a population mean µ, it must converge

in probability to µ as n → ∞. Let {µ̂n} be a sequence of estimates from a sample set

{L1, . . . ,Ln}, for this to converge in probability to µ then for any ε > 0 and any δ > 0

there exists a number N such that for all n ≥ N Pn < δ, where Pn = P (|µ̂n − µ| > ε).

From the law of large numbers 1
n

∑n
k=1(Fα(Lk) converges in probability to E[Fα(L)]

and hence η̂ =
(
1
n

∑n
k=1(Lk)

α
) 1
α converges in probability to η = (E[Fα(L)])

1
α , by the

continuous mapping theorem as long as η exists and is unique.

We now need to show the convergence in probability holds when we project η̂ and η

to Lm. If the projection is not needed for η then clearly the convergence will hold. As

Lm ⊂Mm then when the projection is needed it will always project to the boundary of

Lm denoted B(Lm). To have convergence in probability of η̂, for any ε > 0 and δ > 0

there must exists an N1 such that for n ≥ N1 then P (|µ̂ − µ| > ε) < δ. We know

from the convergence in probability of η̂, that for any ε > 0 and δ > 0 there exists an

N2 such that for n ≥ N2, P (|η̂ − η| > ε) < δ. We choose an ε small enough so that

the boundary of the graph Laplacian space can be thought to have 0 curvature. From

Ginestet et al. (2017) we know Lm is a manifold with corners, and stated briefly a d
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η

η̂

µ̂

B(Lm)

ε

ζ
µ

(a) Case 1

η

B(Lm)

η̂

µ̂

ϑ
q

ε

ζ

µ

(b) Case 2

Figure 2.4: Schematic to the two cases used to prove if there is convergence between
the sample and population unprojected means then there is convergence
between the sample and population projected means.

dimensional manifold with corners can be locally modelled by [0,∞)k ×Rd−k, for full

details see Joyce (2009). Let |η̂ − η| = ε and |µ̂ − µ| = ζ . This leads to two cases,

shown in Figure 2.4:

• Case 1: µ is not on a corner of B(Lm). In this case the estimator behaves as

in Figure 2.4a. The estimator η̂ is orthogonally projected onto µ̂, hence due to

Pythagoras’ theorem it is clear ζ ≤ ε.

• Case 2: µ is on a corner of B(Lm). In this case the estimator behaves as in Figure

2.4b. Clearly π
2
≤ ϑ ≤ π. We consider a point q along the line between η̂ and η

such that the angle between µ̂, µ and q is π
2
. Note ζ ≤ |η̂ − q| following identical

arguments as in case 1, and clearly |η̂ − q| ≤ ε. Hence ζ ≤ ε.

We do not consider when µ̂ is on a corner when µ is not on a corner as for small enough

ε this will not occur. We now have for n ≥ N2 that ζ ≤ ε, hence

δ > P (|η̂ − η| > ε) = P (|µ̂− µ| > ζ) ≥ P (|µ̂− µ| > ε).

Therefore when n ≥ max(N1, N2) then P (|µ̂ − µ| > ε) < δ and so {µ̂} converges in

probability to µ as n→∞, i.e. µ̂ is a consistent estimator.

A similar result to Result 2.3.1 holds for dα,S where stronger conditions for consistency

of η̂ are given in Bhattacharya and Patrangenaru (2003), but an identical projection
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argument used in the proof for dα holds.

(a) Austen Euclidean mean

(b) Dickens Euclidean mean

Example 2.3.1: Means of the Austen and Dickens novel data
Figure 2.5 shows an illustration of the sample means for Austen and Dickens novels

using d1, d 1
2

and d 1
2
,S with the 1000 words arranged in a grid and edges drawn between

words which co-occur with weight wij ≥ 10−5
∑m

k=1wkk. The means for the different

metrics all look very similar for both authors, perhaps unsurprisingly as approximately

half of the words in each novel are represented by the first 50 words. These plots

demonstrate how for large networks it is hard to visually compare the means of samples

of networks thus motivating our two sample test for equality of means in Section 4 and
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(c) Austen square root Euclidean mean

(d) Dickens square root Euclidean mean
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(e) Austen Procrustes size-and-shape mean

(f) Dickens Procrustes size-and-shape mean

Figure 2.5: The mean for both Austen’s novels and Dickens novels using d1, d 1
2

and
d 1

2
,S based on the top m=1000 word pairs. Zoom in for more detail.
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more specifically the method in Section 4.6.1 to explore specific differences in mean

co-occurrences for the authors. These plots are drawn using the program Cytoscape

(Shannon et al., 2003) and more detail can be seen by magnifying the view to a large

extent, for example there are more co-occurrences of she, her by Austen and the, his,

don’t by Dickens.

Example 2.3.2: Means of the M-money transaction data
For the M-money transaction networks, described in Section 1.3.2, we use our frame-

work to calculate the mean daily network for d1, d 1
2

and d 1
2
,S , found in Figure 2.6.

The mean networks are plotted on the map of Tanzania, with a node plotted at the

centre of the corresponding district it represents. The nodes are sized proportionally

to their degree and edges are only drawn between words which co-occur with weight

wij ≥ 10−4
∑m

k=1wkk. The mean networks look very similar for each metric, with the

majority of transactions involving districts on the west around Dar es Salaam, a major

Tanzanian city. This is expected as this is the most populated area. Another node con-

tributing to a large proportion of transaction is Dodoma Urban which is the capital of

Tanzania.

2.4 Geodesics and interpolation

We now consider an interpolation path,L(c), where c is the position along the path, 0 ≤
c ≤ 1, between the graph Laplacians at L(0) and L(1). For c < 0 and c > 1 the path

L(c) is extrapolating from the graph Laplacians at L(0) and L(1). The interpolation

and extrapolation path between graph Laplacians for each metric is defined by first

finding the geodesic path in the tangent space between the embedded graph Laplacians,

which is then projected to Lm. This is given by

L(c) = PL(F−1α (expν{c exp−1ν (Fα(L2))})), (2.4.1)

where L1 = PL(F−1α (ν)).
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(a) Euclidean mean

(b) Square root Euclidean mean

(c) Procrustes size-and-shape mean

Figure 2.6: The mean for the M-money networks using d1, d 1
2

and d 1
2
,S .
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For the Euclidean power metrics this can be simplified

L(c) = PL(F−1α (expν{c exp−1ν (Fα(L2))})),

= PL(F−1α (Fα(L1) + cFα(L2)− cFα(L1)))

= PL(F−1α (cFα(L2)− (1− c)Fα(L1))).

(2.4.2)

Therefore the interpolation path for the Euclidean power metric is just the geodesic in

the embedding space, given in (2.4.3), projected back into Lm.

cFα(L2) + (1− c)Fα(L1). (2.4.3)

Note when α = 1 and 0 ≤ c ≤ 1 the projection is not required, as the geodesic path

actually lies in Lm, and is

cL2 + (1− c)L1.

Example 2.4.1: Interpolation and extrapolation for the Austen and Dickens novel
data
Figure 2.7 shows the interpolation and extrapolation paths between the mean Austen

and mean Dickens novels, when using d1, d 1
2

and d 1
2
,S . The plots only include the

25 nodes corresponding to the most frequent words out of m = 1000 nodes. The

size of a node in the networks is proportional to its degree and the thickness of edges

proportional to their weight. For each metric the paths look very similar. For c = 0.5

the network shown is the mean network between the mean of the Dickens and Austen

mean networks. At c = 6 we are extrapolating past Austen’s mean network and the

feminine words have larger degrees and their edges have larger weights, for example

‘her’ to ‘to’ and ‘of ’, and ‘she’ to ‘to’. For c = −5 we are extrapolating past Dickens

mean and the nodes for ‘she’ and ‘her’ are actually removed indicating they have degree

0, which is further evidence of the fact Austen used feminine words more than Dickens.

2.5 Principal component analysis

Principal component analysis (PCA) is a useful statistical method for describing domi-

nant modes of variability within a dataset. However the method relies on the data lying

in a Euclidean space. We will use the tangent space of graph Laplacians to perform
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(a) c = −5 (b) c = 0.5 (c) c = 6

(d) c = −5 (e) c = 0.5 (f) c = 6

(g) c = −5 (h) c = 0.5 (i) c = 6

Figure 2.7: Interpolation (c = 0.5) and extrapolation (c = −5, c = 6) networks
between Dickens’ and Austen’s mean novels using d1 in a), b) and c), and
d 1

2
in d), e) and f) and d 1

2
,S in g), h) and i) . The top 25 words are displayed

where the mean novels for the authors are estimated using the respective
metric and m = 1000.
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PCA in and then project results back to the space of graph Laplacians.

To perform PCA on graph Laplacians we let vk = exp−1ν (Fα(Lk)) , where ν = Fα(η̂)

for η̂ defined in (2.3.2) using either the Euclidean or Procrustes power metric. Then

we define S = 1
n

∑n
k=1 vkv

T
k , which is an estimated covariance matrix. Suppose S is

of rank r, with non-zero eigenvalues, λ1, . . . , λr, then the corresponding eigenvectors

γ1, . . . ,γr, are the PCs in the tangent space, and the PC scores are

skj = γTj vk, for k = 1, . . . , n, j = 1, . . . , r. (2.5.1)

The path of the jth PC in Lm is

L(c) = PL(F−1α ( expν(cλ
1
2
j γj) )), c ∈ R. (2.5.2)

When the Euclidean power metric is used and α = 1 is chosen, the importance of the ith

node in the principal component γ is the proportion of the sum of the absolute diagonals

each node has in a principal components when it is projected back into the embedding

space, given as

expν(γ)ii
(
∑m

j=1 expν(γ)jj)
, for 1 ≤ i ≤ m. (2.5.3)

These importances can be negative. A large negative importance indicates the node is

indicative a negative coordinate for the principal component. This method for finding

node importances does not hold for any metric other than d1. This is as the principal

components in the embedding space for the other metrics do not have an interpretable

connection to each node in a network as the inverse embedding is not just the identity

projection as it is when d1 is used. When using a metric other than d1 importances of

nodes can be found by extrapolating along the PC path of networks.

After the PC space has been found for the collection of graph Laplacians Lk for 1 ≤
k ≤ n it is useful to project other graph Laplacians into this space, for example in

Section 5.1.2. A graph Laplacian Lnew, that was not used to find the PC space, can be

projected into it and will have the jth PC score as

sj = γTj vnew,

where vnew = exp−1ν (Fα(Lnew)).
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Figure 2.8: Plot of PC 1 and PC 2 scores (left) for the Austen and Dickens novels,
coloured in time order (red to green for Austen novels and green to violet
for Dickens novels) and plot of the cumulative variance explained by each
PC (right), using the (top to bottom) Euclidean, square root Euclidean and
Procrustes size-and-shape metric. The abbreviations for novels are found
in Table 1.2.
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Example 2.5.1: PCA applied to the Austen and Dickens novel data
We now apply the methods of PCA to the Austen and Dickens text data, for m = 1000.

The first and second PC scores are plotted in Figure 2.8 for the Euclidean, square root

Euclidean and Procrustes size-and-shape metric. The plots look very similar for all

metrics, in fact they appear visibly identical between the square root and Procrustes

metrics. The cumulative variance explained by each PC for each metric is also in Figure

2.8. The variance explained by PC1 and PC 1 and 2 together is 49% and 70%, 37% and

46% and 37% and 46% for the Euclidean, square root Euclidean and Procrustes size-

and-shape respectively. Clearly the Euclidean metric is minimising the variance best

when using 2 coordinates. A benefit of the square root Euclidean and Procrustes size-

and-shape metric is clear here as they separate the Austen and Dickens novels with a

large gap on PC1 where as David Copperfield (DC) and Persuasion (PE) are very close

in PC1 for the Euclidean. For all metrics we can see Lady Susan looks like an anomaly

for Jane Austen’s writing as it very far from the cluster of Austen’s other works. We now

analyse the Euclidean PCs in more detail, to interpret what the principal components

are actually measuring.
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Figure 2.9: The importance of each word given by (2.5.3) in (left) PC 1 and (right)
PC 2.

Figure 2.9 contains plots representing the importance and sign of each word in the first

and second Euclidean PC. From Figure 2.8 a more positive PC 1 score is indicative

of an Austen novel whilst a more negative one a Dickens novel. For a positive PC1

score the nodes ‘her’ and ‘she’ have importance whilst for a negative score words such

as ‘his’, and ‘he’ have more importance, which is expected as Austen writes with more
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female characters. The second PC actually is similar to a fitted regression line which we

describe in Chapter 3, but even without this we can see from the colouring of the novels

that Austen novels over time have the second PC increasing, as Lady Susan (LS) and

Persuasion (PE) are her earliest and latest novels respectively. This is the opposite to

Dickens where PC2 decreases with time. Pickwick papers (PP) is Dickens earliest and

The Mystery of Edwin Drood (ED) his latest. The second PC has feminine words like

‘her’ and ‘she’ as the most positive words, but more first and second person words, such

as ‘I’, ‘my’ and ‘you’ as negative words. This is consistent with Austen increasingly

using a stylistic device called “free indirect speech” in her later novels (Shaw, 1990).

“Free indirect speech” has the property the third person pronouns, such as ‘she’ and

‘her’ are used instead of first person pronouns, such as ‘I’ and ‘my’.

Example 2.5.2: PCA applied to M-money transaction data
We also apply our PCA method to the M-money data networks. The plots for PC 1

and 2 scores and the cumulative variance explained by each PC are found in Figure

2.10, for the Euclidean, square root Euclidean and Procrustes size-and-shape metrics.

The plots have the networks corresponding to Saturdays and Sundays colored red and

blue respectively, as we hypothesis networks on these days will differ to weekdays,

something we investigate further in Example 4.6.2. When using the Euclidean metric

the networks for Sundays seem to cluster in the bottom left, but for the other two metrics

the Sundays do not cluster as clearly. For Saturdays there appears to be no clustering

regardless of the metric used. From the cumulative variance plots it is clear that the first

two PCs are not explaining a large percentage of the variance for any metric, and so a

lot of information is being lost in the 2D plots.

2.6 Summary

In this chapter we have proposed a novel framework for the statistical analysis of net-

works by representing them as graph Laplacians. This framework is very general and

whilst we have only defined it for two types of metrics, the Euclidean power and Pro-

crustes power metric it generalises to other metrics. We have shown how using this

framework we can perform standard statistical methods on samples of graph Laplacians

such as calculating the mean and PCA. We shall use this framework in the following

chapters to consider regression, two-sample testing and classification of samples of net-

works.
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Figure 2.10: (left) Plot of PC 1 and PC 2 scores for the M-money networks, weekdays
are coloured black, Saturdays red and Sundays blue and (right) plot of
the cumulative variance explained by each PC , using the (top to bottom)
Euclidean, square root Euclidean and Procrustes size-and-shape metric.
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We have seen in the examples so far that the square root Euclidean and Procrustes size-

and-shape metrics often give visibly similar if not identical results. This is suggesting

that the rotation term allowed in the Procrustes size-and-shape metric is often similar

to the identity matrix as very little rotation is occurring. In the following chapters if the

square root Euclidean metric and Procrustes size-and-shape metric give visibly identical

results we shall only include a plot for one and then we shall state the similarity between

the two.

54



CHAPTER 3

Regression of graph Laplacians

In this chapter we will use the statistical framework we set up for graph Laplacians to

study a broad range of regression problems. A main motivation of the regression meth-

ods we define is for regression over time for dynamic network datasets. The study of

dynamic networks has recently increased as more data of this type is becoming avail-

able (Rastelli et al., 2018). An example of previous work on dynamic network data

is Friel et al. (2016) which embedded nodes of bipartite dynamic networks in a latent

space. Friel et al. (2016) used this embedding to study the interlocks in a bipartite

network over time, motivated by networks representing the connection of leading Irish

companies and board directors, where interlocking represents a director simultaneously

sitting on multiple company boards. The dynamic networks motivating the regression

models we shall now define, using our graph Laplacian framework, do not have bipar-

tite constraints. The motivating datasets are the Austen and Dickens novels, described

in Section 1.3.1, which we have the year each novel was first written for, and the Enron

networks, described in Section 1.3.4, which each correspond to a specific month.

We have seen in Section 2.5 for networks with a time structure, PCA can be used to

visualise this structure in a lower dimensional space. By performing PCA on the novel

dataset, in Example 2.5.1, we hypothesise a linear regression model may be suitable for

the novel networks. We also describe a Nadaraya-Watson non-parametric regression

model for networks. For the Enron data we will show a limitation of using PCA in

visualising the regression and suggest a solution to this. At the end of this chapter we

will briefly look at regression for spatial networks.

Throughout this chapter we assume the data are the pairs {Lk, tk}, for 1 ≤ k ≤ n in

which the Lk ∈ Lm are graph Laplacians to be regressed on covariate vectors tk =
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(t1k, . . . , t
u
k). For the majority of this chapter we consider a one dimensional covariate

(u = 1) that we often think of as time however the methods we define will generalise to

any covariates.

3.1 Linear regression

Linear regression is a simple model for regression that supposes a linear relationship be-

tween the response and the covariates. We saw this may be a reasonable assumption for

the novel graph Laplacians changing with time in Example 2.5.1. Using our framework

for graph Laplacians we will fit a linear model extrinsically, meaning we fit a linear

model in the tangent space (see Section 2.2.4). Using this model we can predict the

graph Laplacians for specific covariates by obtaining a prediction in the tangent space

and using our framework to transform it back into the graph Laplacian space, Lm.

The linear model for graph Laplacians regression error model differs for the Euclidean

power metric, defined in (2.2.2) and the Procrustes power metric, defined in (2.2.3). For

the Euclidean power metric the regression error model is

exp−1ν (Fα(Lk)) = vech∗(D0 +
u∑

w=1

twkDw) + ε, (3.1.1)

ε ∼ Nm(m−1)/2(0,Ω), (3.1.2)

where vech∗ is defined in (0.0.3). This regression model is in the tangent space and we

take ν = 0. In general Ω has a large number of elements, so in practice it is necessary

to restrict Ω to be diagonal or even isotropic, Ω = ω2Im(m−1)/2. Recall that for the

novels m = 1000. The estimated parameters {D̂0, . . . , D̂u} in (3.1.1) are the least

squares solution to

(D̂0, . . . , D̂u) = arg min
D0,...,Du

n∑
k=1

‖ exp−1ν (Fα(Lk))− vech∗(D0 +
u∑

w=1

twkDw)‖2,

(3.1.3)

which are also the maximum likelihood estimates when Ω is diagonal. The predicted
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graph Laplacian for the covariate tk is given by

f(tk) = L̂k = PL

(
F−1α

(
expν

(
vech∗

(
D̂0 +

u∑
w=1

twk D̂w

))))
∈ Lm, (3.1.4)

and so L̂k is the fitted graph Laplacian for the covariate tk. The optimisation in (3.1.3) is

a convex optimisation problem, defined in (1.2.7), and the parameters of the regression

line are found using the standard least squares approach in the tangent space. As the

tangent space has dimension m(m − 1)/2 for the Euclidean power metrics then the

optimisation reduces element-wise for 1 ≤ i, j ≤ m, to m(m − 1)/2 independent

optimisations.

For the Procrustes power metric the regression error model is

exp−1ν (Fα(Lk)) = vec(D0 +
u∑

w=1

twkDw) + ε, (3.1.5)

ε ∼ N(m−1)2(0,Ω), (3.1.6)

where vec is defined in (0.0.1). The only difference using the Procrustes power metric

has with the Euclidean power metric in the model is the vech∗ is changed to vec, and we

take ν = Fα(η̂). These changes are due to the difference in the definition of the tangent

space, in (2.2.5), when using the Procrustes power metric. Just like for the Euclidean

power metric in (3.1.3) the parameters {D̂0, . . . , D̂u} for the Procrustes power metric

are found by minimising the least squares error, which is a convex optimisation.

Once a linear regression line is fitted, of interest is to test if there is significant evidence

of linear regression with a covariate, meaning the correspondingD value is not a matrix

of 0s. To test for the significance of covariate tw the hypotheses are H0 : Dw = 0 and

H1 :Dw 6= 0. By Wilks’ Theorem (Wilks, 1962), if H0 is true then the likelihood ratio

test statistic is

T ` = −2 log ∆ = −2

(
sup
D,Dw=0

`(D)− sup
D,Dw 6=0

`(D)

)
∼ χ2

m(m−1)
2

, (3.1.7)

approximately when n is large, whereD = {D0, . . . ,Du,Ω} and ` is the log-likelihood

function of φ(exp−1ν (Fα(Lk)) under the distribution from (3.1.1), which is a multivari-

ate normal distribution. Using (3.1.7) H0 is rejected in favour of H1 at the 100α%

significance level if T ` is greater than the (1 − α) quantile of χ2
m(m−1)

2

, in which case
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there is evidence for linear regression.

Example 3.1.1: Linear regression applied to the Austen and Dickens novel data
For the Austen and Dickens data each novel, represented by a graph Laplacian Lk, is

paired with the year, tk, the novel was written. We regress the {Lk} on the {tk} using

the method in Section 3.1 for each author’s novels, using the Euclidean and square root

Euclidean metrics with u = 1. To visualise the regression lines in Figure 3.1 we find

L̂(tk) for tk at year intervals for the specific metrics and project these to the PC1 and

PC2 space. For each metric the regression lines seem to fit Austen’s data well, and could

be used to see how her writing style has changed over time. As we noted in Example

2.5.1, for the PCA on the novels, Austen uses the stylistic device “free indirect speech”,

which corresponded to PC 2, more in later novels which the regression line also reflects.

The regression lines fit the Dickens’ novels less well, for example the novel A Tale of

Two Cities is appearing closer to earlier novels on the regression line when it was in

fact one of Dickens later novels. Unlike other Dickens novels, A Tale of Two Cities is a

historical novel and so it may be expected that it does not fit in the temporal sequence

of graph Laplacians as the other novels by Dickens.

To test for regression we estimated Ω by assuming it was diagonal and then performed

our test for regression, defined in (3.1.7) on the novels. The p-values were extremely

small (< 10−16) for both the Austen and Dickens regression lines, for both the Eu-

clidean and square root Euclidean metrics. Hence there is very strong evidence to

believe that the writing style of both authors changes with time, regardless of which

metric we choose.

3.2 Nadaraya-Watson regression of graph Laplacians

versus Euclidean covariate

The linear regression model we have just defined for graph Laplacians is an example

of a parametric regression model. Parametric models may not always be appropriate

especially if the underlying model for the data is unknown and cannot be sensibly ap-

proximated. In these cases non-parametric regression models are preferable. A popular

choice is Nadaraya Watson regression described in Section 1.2.4. The Nadaraya Wat-

son regression model can be adapted to work for graph Laplacians and the metrics we

have defined for them.

58



CHAPTER 3: REGRESSION OF GRAPH LAPLACIANS

(a)

−0.03 −0.01 0.01 0.03

−
0
.0

2
−

0
.0

1
0
.0

0
0
.0

1

coordinate 1

c
o
o
rd

in
a
te

 2 TTCBR

BH

DC

DS

GE

HT

LD
MC

NN

OT

OMF

PP

ED

OCS

C

EM

PE

PR

LS

MA

NO SE

(b)

−0.08 0.00 0.08 0.16

−
0
.0

8
0
.0

0
0
.0

8

coordinate 1

c
o
o
rd

in
a
te

 2 TTC

BR

BH
DC

DS

GE

HT

LD

MC

NN

OT

OMF

PP

ED

OCS

C

EM

PE

PR

LS

MANO
SE

Figure 3.1: Plot of PC 1 and PC 2 scores for the Austen and Dickens novels, coloured
in time order (red to green for Austen novels and green to violet for Dick-
ens novels) with extrinsic regression lines for Dickens novels (blue) and
Austen novels (red) using the a) Euclidean and b) square root Euclidean
metric. The abbreviations for novels are found in Table 1.2.

The standard Nadaraya-Watson estimate defined in (1.2.8) for predicting graph Lapla-

cians from given Euclidean covariates, t, is given by

L̂(t) =

∑n
i=1Kh(t− ti)Li∑n
i=1Kh(t− ti)

, (3.2.1)

where Kh is a kernel function with bandwidth h > 0. A common choice of kernel

function is the Gaussian kernel given as

Kh(u) =
1

h
√

2π
exp(−‖u‖

2

2h2
). (3.2.2)

Any kernel function by definition is guaranteed to be non negative and therefore the

standard Nadaraya-Watson estimate of a graph Laplacian is always the sum of positively

weighted graph Laplacians. From Results 2.1.2 and 2.1.3 we know the space Lm is a

convex cone meaning the sum of positively weighted graph Laplacians, and hence the

estimate in (3.2.1) will be a graph Laplacian i.e. L̂(t) ∈ Lm .

The estimate in (3.2.1) is just the graph Laplacian which minimises the sum of the

Euclidean distance, d1, between the graph Laplacians weighted by Kh, given by

L̂(t) = arg min
L∈Lm

n∑
i=1

Kh(t− ti)d1(Li,L)2. (3.2.3)
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We can generalise this to give a more general Nadaraya-Watson estimate suitable for

minimising any distance between graph Laplacians (Davis et al., 2010). This general

Nadaraya-Watson estimate is the projected matrix that minimises the given distance, d,

between weighted graph Laplacians, given as,

L̂(t) = PL(arg min
L∈PSDm

n∑
i=1

Kh(t− ti)d(Li,L)2). (3.2.4)

This is an extrinsic method hence the projection is needed and the constraint L ∈
PSDm is needed for the distance to be defined. For the Euclidean power metric this

becomes

L̂(t) = PL

(
F−1α

(∑n
i=1 Fα(Kh(t− ti)Li)∑n

i=1Kh(t− ti)

))
, (3.2.5)

note when α = 1 this estimate simplifies to that in (3.2.1).

To solve (3.2.4) for the Procrustes metric, the algorithm for weighted generalised Pro-

crustes mean given in Dryden and Mardia (2016, Chapter 7) would be implemented.

Example 3.2.1: Nadaraya-Watson regression of the Austen and Dickens novel data
with time
We apply the Nadaraya-Watson model to the Charles Dickens and Jane Austen novels

separately to predict their writing styles at different times. We compared using the

metrics d1 and d 1
2
. For each author a Nadaraya-Watson estimate was produced for each

year within the period the author was writing. We compared different bandwidths, h,

in the Gaussian Kernel. The results are shown in Figure 3.2 plotted on the first and

second principal component space for all the novels. Using the bandwidth h = 2 seems

preferred for both metrics as when h = 1 the regression lines are not at all smooth and

when h = 5 both regression lines are not fitting to the curve of the data at all.

For both metrics with h = 2 the regression lines for Dickens appears to show a turning

point around the years 1850 and 1851. In the year 1851 Dickens had a tragic year

including his wife having a nervous breakdown, his father dying and his youngest child

dying. It is possible that the turning point is corresponding to these significant events

(Charles Dickens Info, 2018). As there are far fewer novels written by Austen it is far

less obvious if there is any turning point in her writing, however it is still clear that Lady

Susan still appears to be an anomaly, not fitting with the regression line consistent with

Austen’s other works.
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Figure 3.2: Regression paths for the Dickens novels, coloured in time order green to
violet between the years 1836 to 1870, and Austen novels ,coloured in
time order red to green between the years 1794 to 1815, using (left to
right) d = d1 and d = d 1

2
, with bandwidth (top to bottom) h = 1, 2, 5.

The abbreviations for novels are found in Table 1.2.
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3.3 Nadaraya-Watson regression of Euclidean response

versus graph Laplacian covariate

The Nadaraya Watson can also be applied in a reverse setting where some variable ti
is dependent on the graph Laplacian Li, this can be written as ti = t(Li). This could

be used if, for example, one had the times networks were produced and then wanted

to predict the time a new network was produced. In this case the Nadaraya-Watson

estimator is a linear combination of known t values, weighted by the graph Laplacian

distances, given by

t̂(L) =

∑n
i=1Kh(d(L,Li))ti∑n
i=1Kh(d(L,Li))

, (3.3.1)

where d can be any metric between two graph Laplacians. Just as before a common

kernel to use, and the one we shall choose, is the Gaussian kernel defined in (3.2.2).

Example 3.3.1: Nadaraya-Watson regression of times on the Austen and Dickens
novel data
We apply this method to predict the year a novel was written given its graph Laplacian.

As there are only 7 Austen novels we only applied this method to the Dickens novels

as we did not feel there was sufficient data to get sensible results for the Austen novels.

For a specified metric the Nadaraya-Watson estimate for time for a novel was found

using all novels except the one of interest, and this was repeated for all 16 of Dickens’

novels. We used the Gaussian kernel and for each metric the Nadaraya-Watson method

was run repeatedly for bandwidths with intervals of 0.0001 between 0 and 0.1 and

then the bandwidth that gave the smallest overall error of the predictions, measured by

the root mean square deviation, was chosen. This gave the bandwidths 0.0048 for the

Euclidean metric, 0.0524 for the square root Euclidean and 0.0523 for the Procrustes

metric. These bandwidths correspond to the root mean square deviations 8.151, 7.262

and 7.260 years for the Euclidean, square root Euclidean and Procrustes size-and-shape

metric respectively.

The predicted time for every Dickens novel for both the Euclidean and the square root

Euclidean metrics are found in Figure 3.3. The plot for the predicted time when using

the Procrustes size-and-shape metric is not included as this is visibly identical to the

plot produced for the square root Euclidean metric. The linear regression line between

the predicted and true times is included in the plots in Figure 3.3, for an optimal pre-
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diction the line would be y = x i.e. have gradient 1 and pass through the origin, as the

prediction would equal the true year. For all metrics the rough ordering of the novels is

maintained and the linear regression lines seem close to y = x.
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Figure 3.3: The true and predicted times corresponding when each Dickens novel was
written when using the Nadaraya-Watson model, using a) the Euclidean
metric and b) the square root Euclidean metric. The linear regression line
between the predicted and true times is plotted in black and the line y = x
is plotted in red. The abbreviations for novels are found in Table 1.2.

3.4 Horseshoe effect

We defined in Section 2.5 how principal component analysis can be applied for graph

Laplacians to reduce dimensions and produce 2D plots. We will see now how this

method may produce a common but unwanted and often ignored phenomenon called

the horseshoe effect when the data has a time structure. To investigate this effect we

consider the the Enron networks and plot in Figure 3.4 the PC plots using the Euclidean

and square root Euclidean metric for this data. The plot for the Procrustes size-and-

shape metric is not included as it is visibly identical to the plot for the square root

Euclidean metric. For all plots a horseshoe or arc shape can be seen suggesting there is

a change point in the Enron data at the ‘tip’ of the arc, this is in fact an example of the

horseshoe effect, and to conclude there is a change point in the data may be misleading

(Kendall, 1970).

The horseshoe effect is present in many datasets including in political roll call votes

(Diaconis et al., 2008), archaeology seriation data (Kendall, 1971) and microbiome data
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Figure 3.4: PC plot for Enron network using (a) Euclidean metric and (c) Square root
Euclidean metric. The red digits indicate the month of the data. Plots for
distance of the 3rd network with each other network for the (b) Euclidean
and (d) square root Euclidean metric.

64



CHAPTER 3: REGRESSION OF GRAPH LAPLACIANS

(Morton et al., 2017). Explained in Mardia et al. (1979, page 412) the horseshoe effect

occurs when the distances which are ‘large’, between data points, appear the same as

those that are ‘moderate’. To investigate this effect we can contrive example datasets,

that we can think of as in the graph Laplacian tangent space, that illustrate the horseshoe

effect.

Based on the example in Morton et al. (2017), an example showing the horseshoe effect

clearly, is the dataset v1, . . . ,vn, where vk = exp−10 (Fα(Lk)), with n = 100 and m =

n+ 2 = 102 where

(vk)j =

1 if j = k, k + 1, k + 2,

0 otherwise.
(3.4.1)

There clearly is a time structure to this data which can be visualised in (3.4.2). For each

increment in time the data is shifted by 1 row (Morton et al., 2017). The PCA plot for

this example is (a) in Figure 3.5 which clearly shows the horseshoe effect.

vT1 = (1, 1, 1, 0, 0, 0, . . . )

vT2 = (0, 1, 1, 1, 0, 0, . . . )

vT3 = (0, 0, 1, 1, 1, 0, . . . )

(3.4.2)

Another example is for an autoregressive model, where v1 = 0 and for 2 ≤ k ≤ n

vk = c+ ρvk−1 + εk

where εk ∼ Nm
(
0, σ2I

)
,

(3.4.3)

where vk = exp−10 (Fα(Lk)). Again there is clearly a strong time structure to this data.

The PCA plot for this is show in (b) of Figure 3.5 for c = 0, ρ = 0.99 and σ = 1 and

again this clearly is showing the horseshoe effect.

For both the examples we have presented, the PCA plots show horseshoe shapes, even

though the data has no change point in. The reason for this horseshoe can be explained

most clearly by considering the distance between v1 and vk for both examples shown

in (c) and (d) of Figure 3.5. For (c) as k increases the distance increases rapidly until it

stabilise and therefore the distance between v1 and vk become almost identical for all

k > K. This same effect is less obvious in (d) but we can still see the gradient in (d) is

negative showing the rate the distance is increasing is decreasing. We see the same is
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true for the Enron data in Figure 3.4 as the distances rapidly increase until they begin

to stabilise for both metrics. For the Enron data we look at the distance with the third

network as this still shows the same effect but happens to be less noisy then using the

first network. The horseshoe effect is explained by these distance plots as the distance

metric between say time 1 and a ‘large’ time is around the same as between time 1 and

a ‘medium’ time. Morton et al. (2017) described this as a “saturation property” of the

metric, and so on the PCA plot the point corresponding to a ‘large’ time is pulled in

closer to time 1 than we intuitively would expect.
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Figure 3.5: Euclidean PCA plots and plots for the Euclidean distance between v1 and
vk, for 2 ≤ k ≤ n, for ((a) & (b)) Model 3.4.1 and ((c) & (d)) Model
3.4.3.

When considering data such as the Enron data the horseshoe effect is potentially mis-

leading as it can lead to the conclusion there is a change point in the data when in fact
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there is not one. This motivates wanting to create a method for visualising the data in

a low dimensional space in such a way that avoids producing the misleading horseshoe

effect. When using the Euclidean metric PC and MDS plots are identical (Williams,

2002, Section 2.2), and hence if a Euclidean PC plot exhibits the horseshoe effect so

will the Euclidean MDS plot. For the other metrics PCA and MDS do not give identical

plots, although generally they do give plots that look similar. Because for the Euclidean

metric PC and MDS plots are identical instead of altering our PCA method we shall use

MDS to remove the horseshoe effect by defining a new distance metric between graph

Laplacians. This metric is chosen to be unsaturating by using prior knowledge of the or-

dering of the data. The metric we choose is an adaptation of the Mahalanobis metric in

the embedding space (Mahalanobis, 1936). The Mahalanobis distance only provides an

adaptation for the Euclidean power metrics, defined in (2.2.2), and does not provide an

adaptation to the Procrustes power metric, defined in (2.2.3). The adapted Mahalanobis

distance between two graph Laplacians Lk and Ll, at times k and l respectively, is√
(exp−10 (Fα(Lk))− exp−10 (Fα(Ll))− µ)TΣ−1kl (exp−10 (Fα(Lk))− exp−10 (Fα(Ll))− µ),

whereµ and Σkl are the mean and covariance matrix of exp−10 (Fα(Lk))−exp−10 (Fα(Ll))

respectively. These values are not feasible to estimate from the data and therefore we

must assume a model for theLks. For the Enron data, and many time structure datasets,

a sensible model is an autoregressive model, given by

exp−10 (Fα(Lk)) = c+ ρ exp−10 (Fα(Lk−1)) + εk,

where εk ∼ Nm
(
0, σ2Im(m−1)

2

)
.

(3.4.4)

This model has weak stationarity and hence the means must satisfy

E[exp−10 (Fα(Lk))] = E[exp−10 (Fα(Lk+1))].

Using (3.4.4) we get

E[exp−10 (Fα(Lk))] =
c

1− ρ
.

To simplify this we assume c = 0 hence E[exp−10 (Fα(Lk))] = 0 and

µ = E[exp−10 (Fα(Lk))] − E[exp−10 (Fα(Lk−1))] = 0. The autocovariance for this au-
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toregressive model is known to be

Σkl =
σ2ρ|k−l|

1− ρ
Im(m−1)

2

,

this is diagonal matrix where the diagonal elements are the variance of elements and we

have assumed a 0 covariance between any other elements.

To estimate the value of ρ we firstly rewrite (3.4.4) by

yk = ρvk + εk,

where yk = exp−10 (Fα(Lk)) and vk = exp−10 (Fα(Lk−1)). We can then estimate ρ by

ρ = argρ∗ min
n∑
k=2

(yk − ρ∗vk)T (yk − ρ∗vk) (3.4.5)

= argρ∗ min f(ρ∗). (3.4.6)

To solve this equation we differentiate with respect to ρ∗ giving

df

dρ∗
=

n∑
k=2

(−2yTk vk + 2ρvTi vk),

this equation is set to 0 to find the value of ρ∗ which minimises (3.4.5)

ρ =

∑n
k=2(y

T
k vk)∑n

k=2(v
T
k vk)

.

The Mahalanobis metric between graph Laplacians, Lk and Ll, can now be written as

=

√
1− ρ
σ2ρ|k−l|

(exp−10 ((Fα(Lk))− exp−10 (Fα(Ll)))T (exp−10 (Fα(Lk))− exp−10 (Fα(Ll)))

=
1

σ

√
1− ρ
ρ|k−l|

‖ exp−10 (Fα(Lk))− exp−10 (Fα(Ll))‖.

=
1

σ

√
1− ρ
ρ|k−l|

‖Fα(Lk)− Fα(Ll)‖,

using Result 2.2.4. As 1
σ

is just a positive constant this is just consistently scaling the

distance, and has no effect except scale in the MDS plots, we remove it to prevent us

from having to estimate σ values.
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Figure 3.6: MDS plots using the Mahalanobis metric for (a) Model 3.4.1 with α = 1,
(b) Model 3.4.3 with α = 1, (c) the Enron data with α = 1 and (d) the
Enron data with α = 1
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Figure 3.6 shows the MDS plots when using the Mahalanobis distance for the simulated

data and the Enron data. For (b) where the data is simulated from an autoregressive

model and so we know our assumptions are valid the MDS plot looks sensible and has

removed the horseshoe effect. In all the other cases where the assumption of an au-

toregressive model may be violated we see the middle values are clumping together and

these plots are not sensible. For (a) the first coordinates are extremely large and this is as

the ρ estimate is around 0.66 so the distances between data points further away becomes

extremely large. The second coordinates are much smaller and the shape of the points

is unexpected and suggests the the second coordinate is not acting sensibly. For the En-

ron data we look at the adaptation of the Euclidean and square root Euclidean metrics

by using the Mahalanobis distance with α = 1 and 1
2
. When using the Mahalanobis

distance for the Enron data, found in plots (c) and (d) of Figure 3.6, the clumping of the

middle data points is very extreme.

It is possible that when the autoregressive model assumptions are violated the estimates

of ρ are not sensible. We therefore look at the effect of choosing a ρ value that max-

imises the variance explained by the first coordinate for each example, shown in Figure

3.7. The plot for the autoregressive model in 3.4.3 has remained the same due to the fact

assumptions were not violated for it. For the simulated data of model 3.6 the MDS plot

still contains unexplained turning points, this is most likely due to the fact the model

has completely violated the assumptions required to use the Mahalanobis distance. For

the Enron data the plots with ρ maximising variance seem more sensible and the 3rd,

7th, 34th, 35th and 36th month seem to stand out as true change points. Of these the 7th

and 35th also stand out in the original plots in Figure 3.4. The 7th month corresponds

to December 1999, this is picked out to be an anomaly in Wang et al. (2014), believed

to coincide with Enron’s tentative sham energy deal with Merrill Lynch created to meet

profit expectations and boost the stock price. Month 34 and 35 correspond to March

and April 2002 these correspond to the former Enron auditor, Arthur Andersen, being

indicted for obstruction of justice (The Guardian, 2006). For the Enron data the data

points have been coloured by two clusters found by hierachial clustering of the MDS

coordinates. The change in clusters is between July and September 2000 for both met-

rics, and this seems to correspond to Enron shares hitting an all-time high, so could be

sensible that a change would take place after this (The Guardian, 2006).

To see if the results when using the Mahalanobis distance for the Enron data are sensi-

ble we plot the consecutive distance between monthly networks of the Enron data from
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Figure 3.7: MDS plots using the Mahalanobis metric with ρ chosen to maximise the
variance explained by PC 1, for (a) Model 3.4.1 with α = 1, (b) Model
3.4.3 with α = 1, (c) the Enron data with α = 1 and (d) the Enron data
with α = 1
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the months June 1999 to May 2002 for the Euclidean and square root Euclidean met-

ric in Figure 3.8. The consecutive distances give us an idea of which months may be

anomalies or turning points as these are likely to be ones with a large distance from the

month previous. This method of detecting anomalies and turning points in networks has

been used in Koutra et al. (2013), although with a different metric between networks.

From our plots it looks like month 7, 34 and 35 may be anomalies. These all correspond

to anomalies we picked out before, when using the Mahalanobis distance, suggesting

using the Mahalanobis distance is sensible. Hence we have provided a sensible method

for producing low-dimensional visualisations of data with a time structure that avoids

the horseshoe effect. We have however had to impose quite strong modelling assump-

tions and so this method may not always be as suitable to use as it is for the Enron

data.
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Figure 3.8: Consective distances between the Enron networks for each month for the
a) Euclidean metric and b) square root Euclidean metric.

3.5 Kriging

To conclude this chapter we finally consider the case where graph Laplacians are de-

pendent on spatial coordinates. We can denote this as Li = L(xi), where xi ∈ RK

are coordinates. We will adapt the commonly used spatial method, Kriging, described

in Section 1.2.4, so we can estimate graph Laplacians for known coordinates. Whilst

we could use our method in Section 3.2 to tackle this problem we believe it is better

to use Kriging which makes modelling assumptions based on the spatial structure. We

will apply Kriging on our tangent space, and so we denote the tangent space vector
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vi = exp−1ν (Fα(Li)) as vi = v(xi). Applying Kriging in a tangent space to a man-

ifold is seen in Pigoli et al. (2016), this focused on the manifold of positive definite

symmetric matrices whereas we shall focus on the manifold of graph Laplacians.

As our graph Laplacians have a spatial structure we will assume the graph Laplacians

in the tangent space are from a stationary random field. Data on a stationary random

field have a constant mean over the field and the covariance between data points is only

dependant on the distance between data points. These seem like sensible assumptions

for our tangent space. Formally these assumptions are

E(v(x)) = E(v(y)) = µ, ∀x,y ∈ C

Covvj(x,y) = Covvj(|x− y|, 0), ∀x,y ∈ C and 1 ≤ j ≤ m(m− 1)

2

where Covvj(x,y) represents the covariance between (v(x))j and (v(y))j . For sim-

plicity we will also assume Covvj(x,y) are not dependent on j and that each element

in v(x) is independent. Again these assumptions seem sensible and can be formally

written as

Covvj(x,y) = Covv(x,y) ∀x,y ∈ RK

Cov(vj(x),vw(x)) = 0 ∀x ∈ RK when j 6= w.

We also assume Covvj(x,y) is known, in practice this would not generally be true and

would need to be estimated. In general the expectation of the graph Laplacians in the

tangent space, µ, will not be known and therefore we implement ordinary Kriging, the

method designed for when µ is unknown.

From (1.2.9) the estimate for L0 = L(x0) when using Kriging is of the form L̂0 =

PL(F−1α (expν(v0))) with v0 =
∑n

i=1Wivi, for a sample of graph Laplacians with

known coordinates {L1, ...,Ln} and tangent vector {v1, ...,vn}. We choose the esti-

mator to be unbiased and due to the stationarity of the field under the model we have

µ = E(v̂0) = E(
n∑
i=1

Wivi) =
n∑
i=1

Wiµ

n∑
i=1

Wi = 1.

The estimator is also chosen to have minimum variance, so to find the Wi values we
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minimise Var(
∑n

i=1Wivi − v̂0). This gives the estimator as

v̂0 = arg min
v0

Var(
n∑
i=1

Wivi − v0)

subject to
n∑
i=1

Wi = 1.

Ordinary Kriging uses Lagrange multipliers to solve the minimisation, hence the solu-

tion can be written
w1

...

wn

λ

 =


Covv(x1,x1) . . . Covv(x1,xn) 1

... . . . ...
...

Covv(xn,x1) . . . Covv(xn,xn) 1

1 . . . 1 0


−1 

Covv(x1,x0)
...

Covv(xn,x0)

1

 ,

where λ is a Lagrange multiplier. The weights are now known so the estimate is L̂0 =

PL(F−1α (expν(v0))) where v̂0 =
∑n

i=1Wivi.

Example 3.5.1: Kriging applied to simulated graph Laplacian data
We demonstrate the use of Kriging on graph Laplacians by a simulation study. We

consider graph Laplacians dependent on 2D coordinates this could be representative of

networks specific to places with latitude and longitude coordinates. We only consider

α = 1 for this example and we chose graph Laplacians with dimension m = 5. Each

element in the tangent vector is modelled by a Gaussian process with E(v) = µ = 1

for 1 ≤ j < m(m−1)
2

and Covv(x,y) = s− s(1− exp(−|x−y|)
r

), with sill s = 0.025 and

range r = 50. Graph Laplacians were generated for each grid point in a 50 by 50 grid,

leading to 2500 graph Laplacians. Figure 3.9 provides an illustration of the networks in

a small section of the field, we can see how along the field the networks seem to vary

smoothly.

To test our method for Kriging of networks we split the set of graph Laplacians ran-

domly into a training set of n =1875 graph Laplacians and coordinates and a test set

of 625 graph Laplacians and coordinates, as explained in Section 1.2.4. For each coor-

dinate in the test set Kriging was performed to give a predicted graph Laplacian. This

was run 10 times and the mean squared prediction error was 0.003, which is very small,

showing that when the assumptions are met Kriging provides a good predictor for the

response. The Kriging method in future should be tested on real data when the assump-
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tions may be violated to see how the method performs then.
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Figure 3.9: Example networks along Kriging field in Example 3.5.1, corresponding
to the field’s x coordinates (left to right) 1, 3, 5 and y coordinates (top to
bottom) 1, 3 and 5.

3.6 Summary

In this chapter we have proposed several regression models for networks using the gen-

eral framework defined in Chapter 2. We have used both parametric and non-parametric

models to predict the graph Laplacians from covariates, namely time and spatial coor-

dinates. The non-parametric model was the Nadaraya-Watson regression model whilst

the parametric model was the linear regression model, more complex parametric models

such as quadratic regression could be easily adapted from our framework too.

Not only did we use Nadaraya-Watson regression to estimate graph Laplacians from

known Euclidean covariates, we used it also to estimate Euclidean responses from
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known graph Laplacians. A very similar method to this can be used to estimate the

probability a known graph Laplacian belongs to a certain class which we shall use in

Chapter 5. Chapter 5 looks at the further regression problem of classification, where

the aim is to predict a discrete outcome, not a continuous one as we have done in this

chapter.

We studied the horseshoe effect on graph Laplacians that occurs on PC plots when the

data has a time structure by considering the Enron dataset. We proposed a method to

remove the horseshoe effect, however this method required quite strong assumptions for

the data. Whilst this method gave promising results for the Enron data, as the method

was motivated for Enron data the method could be too specific to this data and so it

would be of interest to see if this method seems appropriate to other datasets and if the

assumptions seem valid for more datasets.

For graph Laplacians with a spatial structure we adapted the classical method of Krig-

ing to predict graph Laplacians for known spatial coordinates. We currently have only

demonstrated this on a simulation study where all assumptions are met and so our es-

timator did well. It is of interest for future work to use this model on real data with a

spatial structure to see if the assumptions we have made hold for real data and how the

method performs in more contexts.
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Two-sample hypothesis tests for graph
Laplacian data

In this chapter we define a formal two-sample test to test for a difference in population

mean network given two samples of networks. This topic is seen already to be an

interesting challenge in Tang et al. (2017), which proposes a hypothesis test for a certain

model of network, named random dot product networks, using adjacency matrices. We

use our graph Laplacian framework to define our two-sample test. Ginestet et al. (2017)

also uses graph Laplacians with a central limit theorem to develop a hypothesis test for

networks, which we shall compare with our two-sample test.

To define our two-sample test we consider two populations A and B of m ×m graph

Laplacians with corresponding population means µA and µB and unprojected means

ηA and ηB defined in (2.3.1). Given two random samples {A1,A2, . . . ,AnA} and

{B1,B2, . . . ,BnB} respectively from A and B, the goal is to test the hypotheses

H0 : µA = µB and H1 : µA 6= µB. (4.0.1)

A suitable test statistic for this test is T = d(PL(Â),PL(B̂))2 for a suitable metric d,

where Â and B̂ are defined as η̂ in (2.3.2), hence PL(Â) and PL(B̂) are the sample

population means for populations A and B, respectively. However for this test statistic,

as the projection is included, no central limit theorem is immediately available for the

test statistics and so the test must be developed non-parametrically, for example using a

permutation test. A permutation test requiring the projected means is computationally

not appealing as the projection would need to be performed many times and so the test

would become quite slow for larger graph Laplacians. Although this test is not entirely
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prohibitive, especially for smaller dimensional graph Laplacians, we instead choose to

test

H0 : ηA = ηB and H1 : ηA 6= ηB, (4.0.2)

with a far less computationally intensive test statistic:

T = d(Â, B̂)2, (4.0.3)

which is, in general, a squared extrinsic distance. Note for all these cases Â, B̂ ∈
PSDm so theses distances are well-defined, due to the fact stated in Section 2.2.2 that

our distances in Lm hold more generally for PSDm. Whilst testing the equality of the

η values in (4.0.2) is not equivalent to testing equality of the µs in (4.0.1) we shall

show it is a sensible approximation of this test. The tests are not equivalent as ηA 6= ηB

does not imply µA 6= µB due to the projection being many to one. It is possible for

µA = PL(ηA) = PL(ηB) = µB but ηA 6= ηB.

To confirm our test in (4.0.2), using the test statistic in (4.0.3), is a suitable approxi-

mation of the test in (4.0.1) we compare d2α(µA,µB) with d2α(ηA,ηB) for some sim-

ple examples. In Figure 4.1 two random samples, Ak and Bk with k = 1, . . . , 100,

were generated from Erdös-Renyi networks described in Section 1.2.5 and d2α(µ̂A, µ̂B)

and d2α(η̂A, η̂B) were found. This was repeated 1000 times for 16 values of pB ∈
[0.025, 0.2], the probability of an edge in the second sample. The probability of an

edge in the first sample was set as pA = 0.1. Figure 4.1 shows how d21
2

(µ̂A, µ̂B)

and d21
2

(η̂A, η̂B) are always very similar for all the simulations. Importantly when

d21
2

(η̂A, η̂B) 6= 0, so η̂A 6= η̂B, it is clear d21
2

(µ̂A, µ̂B) 6= 0 meaning µ̂A 6= µ̂B. An

equivalent result is seen when using d21
2
,S

. Therefore it is sensible to assume in practice

if ηA 6= ηB implies µA 6= µB and so test we shall use in (4.0.2) is usually equivalent to

the desired test in (4.0.1). We do not compare the distances for d1, as when using d1 the

projection is not required as the η values are intrinsic means so are already guaranteed

to belong to Lm. In this case the test we use in (4.0.2) is identical to the desired test in

(4.0.1) and d1(Â, B̂)2 = d1(PL(Â),PL(B̂))2.

Any Euclidean or Procrustes power metric is suitable to use in the test statistic in (4.0.3).

However we will just consider the Euclidean,

TE = d1(ÂE, B̂E)2, (4.0.4)
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Figure 4.1: Comaprison of d21
2

(µA,µB) with d21
2

(ηA,ηB) for graph Laplacians gen-

erated from Erdös-Renyi networks with a) m=5 and b) m=10.

the square root Euclidean,

TH = d 1
2
(ÂH , B̂H)2, (4.0.5)

and the Procrustes size-and-shape,

TS = d 1
2
,S(ÂS, B̂S)2, (4.0.6)

where the subscripts {E,H, S} refer to whether the Euclidean, square root or Procrustes

size-and-shape means have been used, respectively. For these test statistics we will

derive a general central limit theorem that will lead to an asymptotic distribution for the

test statistic. We will also provide a method for a non-parametric test when assumptions

about the data’s distribution cannot be made and so the distribution of the test statistic

is unknown.

The likelihood ratio test for regression with test statistic −2 log ∆ in Section 3.1 gives

an alternative test for equality of means when the covariates are group labels. However

if we were to use this test from Section 3.1 an additional assumption of normality for

the observations needs to be made, and therefore the two-sample test we have defined

in the current chapter is preferred.

An alternative two-sample test is that proposed in Ginestet et al. (2017) which we shall

define and compare with the test statistics we have defined, on a variety of different

datasets.
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4.1 Ginestet two-sample test

The two-sample test statistic from Ginestet et al. (2017) is

TG =
nAnB
nA + nB

(φ(ÂE)− φ(B̂E))T Σ̂′−1(φ(ÂE)− φ(B̂E))
D−→ χ2

(m2 ),

with Σ̂′ =
nAΣ̂′A + nBΣ̂′B
nA + nB − 2

,

where Σ̂′A and Σ̂′B are the estimated covariance matrices for φ(A) and φ(B) respec-

tively using a shrinkage estimator from Schäfer and Strimmer (2005) and φ is defined

in (0.0.4). This distribution holds under the assumption E(µEAij) 6= 0 and E(µEBij) 6= 0

for i 6= j and also assumes Σ′A = Σ′B = Σ′, which may not always be true.

The test in Ginestet et al. (2017) is defined by ignoring the diagonal element of the

graph Laplacian and so it equates to just using the adjacency matrix, defined in (1.2.2).

The test statistic when including the diagonal is

T ′G =
nAnB
nA + nB

(vech(ÂE)− vech(B̂E))T Σ̂′′−(vech(ÂE)− vech(B̂E)),

where Σ′′A = Cov(vech(A)), Σ′′B = Cov(vech(B)), Σ̂′′ =
nAΣ̂′′A+nBΣ̂′′B
nA+nB−2

and vech is

defined in (0.0.2). As Σ̂′′ will not in general be full rank, Σ̂′′− represents the Moore-

Penrose inverse (Penrose, 1955). Two interesting results hold for TG and T ′G.

Result 4.1.1. T ′G has an identical asymptotic distribution to TG.

Result 4.1.2. TG = T ′G when nA − 1, nB − 1 ≥ m(m−1)
2

and the standard unbiased es-

timator for covariance matrices is used instead of the shrinkage estimator from Schäfer

and Strimmer (2005).

These results show that for simplicity it is fine to ignore the diagonal as done in TG.

The proofs of these results are found in Section 4.8.1.

4.2 A central limit theorem

Similarly to Ginestet et al. (2017) a central limit theorem will be used to find the asymp-

totic distribution of the test statistic of our hypothesis test when using the Euclidean

power metric.

Result 4.2.1. Consider independent identically distributed random observations Ak
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where Fα(Ak), k = 1, . . . , n, has a distribution with mean E[Fα(A)], where Fα is

defined in (2.2.1). Then for any Euclidean power metric

√
n (φ (Fα(η̂))− φ (Fα(η)))

D−→ Nm(m−1)
2

(
0,Σ

)
,

as n→∞, where φ(A) is defined in (0.0.4) and Σ is a finite variance matrix.

This central limit theorem holds, under the condition var(Fα(A))ij) is finite, for all

1 ≤ i, j ≤ m, as the embedded extrinsic mean when using the power Euclidean metric,

Fα(η̂), is just the arithmetic mean in the embedding space.

When α = 1 this result is similar to that in Ginestet et al. (2017) although they work

directly in Lm whereas we work in the embedding space. When considering the Pro-

crustes power metric similar central limit theorem results follow involving a rotation

term, providing the more stringent conditions of Bhattacharya and Patrangenaru (2005,

Section 3) hold.

Consider two independent random samplesAk, k = 1, . . . , nA, andBk, k = 1, . . . , nB,

where Fα(Ak) and Fα(Bk) have distributions with mean E[Fα(A)] and E[Fα(B)] re-

spectively. When finding the distribution for the test statistic of our hypothesis test for

these samples we rely on the central limit theorem in Result 4.2.1 that is only valid for

the Euclidean power metric. Hence we only consider the distribution for the test statis-

tic in (4.0.3) when using the Euclidean power metric, T = dα(Â, B̂). Using our central

limit theorem in Result 4.2.1 we have when nA, nB −→∞,

n
1
2
A(φ(Fα(Â))− φ(Fα(ηA)))∼̇Nm(m−1)

2

(0,ΣA),

n
1
2
B(φ(Fα(B̂))− φ(Fα(ηB)))∼̇Nm(m−1)

2

(0,ΣB),

where ΣA = Cov(φ(Fα(A))) and ΣB = Cov(φ(Fα(B))). These distributions are

independent of one another. We can then write

x =

(
nAnB
nA + nB

) 1
2

(φ(Fα(Â))− φ(Fα(B̂)))

∼̇Nm(m−1)
2

((
nAnB
nA + nB

)
1
2 (φ(Fα(ηA))− φ(Fα(ηB)),Σ),

(4.2.1)

where Σ = nBΣA+nAΣB

nA+nB
as nA, nB −→ ∞ and nA

nB
→ r ∈ (0,∞). To find the distribu-

tion of T under the null hypothesis we first note the Euclidean power distance squared

can be expressed as the quadratic form of normal random variables,
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Lemma 4.2.1. When nA, nB −→∞ and nA
nB
→ r ∈ (0,∞),

T = dα(Â, B̂)2 =
nA + nB
nAnB

xTQx. (4.2.2)

where x, defined in (4.2.1), is normally distributed.

Proof. If we write Fα(Â) = (âij) and Fα(B̂) = (b̂ij), then the Euclidean power dis-

tance squared between the sample means Fα(Â) and Fα(B̂) can be written in terms of

these elements as,

dα(Â, B̂)2 = ‖(Fα(Â)− Fα(B̂)‖2

=
∑∑

i 6=j
(âij − b̂ij)2 +

m∑
i=1

(âii − b̂ii)2.
(4.2.3)

The summands satisfy Fα(Â)1m = 0m and Fα(Â) = Fα(Â)T , and similarly for B̂ too,

hence we can write âii = −
∑

i 6=j âij and b̂ii = −
∑

i 6=j b̂ij , and âij = âji and b̂ij = b̂ji.

We substitute these in to remove the âij and b̂ij with i ≥ j and rewrite Equation (4.2.3)

as

d1(ÂE, B̂E)2 =
∑∑

i 6=j
(âij − b̂ij)2 +

m∑
i=1

(
∑
j 6=i

(−âij + b̂ij))
2,

= 2
∑∑

i 6=j
(âij − b̂ij)2 +

m∑
i=1

∑
p 6=i,p 6=j,j 6=i

(b̂ij − âij)(b̂ip − âip),

= 4
∑∑

i<j
(âij − b̂ij)2

+
∑

i<j,k<p,(i,j)6=(k,p)

∑
i=k,i=p,j=k or j=p

(b̂ij − âij)(b̂kp − âkp),

(4.2.4)

for which all the a and b terms are independent.

For simplification of notation from now on we work with the difference matrix, D, of

Fα(Â) and Fα(B̂),

D = Fα(Â)− Fα(B̂) = (δij)

δij = âij − b̂ij.

Hence the distance in (4.2.4) can be written in terms of the elements from this difference
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matrix as,

dα(Â, B̂)2 = 4
∑∑

i<j
(δij)

2 +
∑

i<j,k<p,(i,j)6=(k,p)

∑
i=k,i=p,j=k or j=p

(δij)(δkp). (4.2.5)

The m(m−1)
2

column vector x from (4.2.1) can be written as,

x =

(
nAnB
nA + nB

) 1
2

φ(D),

in terms of which the squared distance can be expressed as the quadratic form,

dα(Â, B̂)2 =
nA + nB
nAnB

xTQx,

where the Q matrix, illustrated below, has each row and column corresponding to a δij
value. The value of qrs corresponding to row δij and column δkp is the coefficient of

δijδkp in (4.2.5). Written out in full,

Q = (4.2.6)

δ12 δ13 . . . δ1m δ23 . . . δ2m . . . δ(m−2)m δ(m−1)m



δ12 4 1 1...1 1 1 1...1 1 0...0 0 0

δ13 1 4 1...1 1 1 0...0 0 . . . 0 0

. . .
1...
1

1...
1

4 . . .4
1...
1

0...
0

. . .
0...
0

. . . ...
...

δ1m 1 1 1...1 4 0 . . . 1 . . . 1 1

δ23 1 1 0...0 0 4 1...1 1 . . . 0 0

. . .
1...
1

0...
0

. . . ...
1...
1

4 . . .4
1...
1

. . . ...
...

δ2m 1 0 0...0 1 1 1...1 4 . . . 1 1

. . .
0...
0

... . . . ... . . . . . . ... 4 . . .4
...

...

δ(m−2)m 0 0 . . . 1 0 . . . 1 . . . 4 1

δ(m−1)m 0 0 . . . 1 0 . . . 1 . . . 1 4

The values of qrs can be determined element-wise by first finding the i, j, k, p values
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where the qrs value equals the coefficient of δijδkp; these are,

i = f(r,m),

j = g(r, i,m),

k = f(s,m),

p = g(s, k,m),

where f(r,m) = m− 1− floor

(√
(−8(r − 1) + 4m(m− 1)− 7

2
− 1

2

)
,

g(r, i,m) = r + i− m(m− 1)

2
+

(m− i+ 1)(m− i)
2

.

(4.2.7)

The function f and g map an index of a vector to indices of the upper diagonal of a

matrix, with dimension m×m, running through row by row. The function f gives the

row index and the function g gives the column index. Using Equation (4.2.5) the matrix

in (4.2.8) can hence be summarised by ,

qrs =


4, if r = s

1, if i = k or i = p or j = k or j = p

0, otherwise.

(4.2.8)

As we have now shown that the test statistic, when using the Euclidean power met-

ric, can be written as the quadratic form of normal random variables we can now

find the distribution of this test statistic under the null hypothesis. When H0 is true

φ(Fα(ηA)) = φ(Fα(ηB)) and so from Equation (4.2.1) we can see x ∼ N (0,Σ).

Hence the distribution of the test statistic is just the distribution of a quadratic form of

normal random variables with mean 0, and so the distribution of the tests statistic is as

follows:

Result 4.2.2. Consider independent random samples of networks of size nA and nB. For

the power Euclidean metrics under the null hypothesis, H0: ηA = ηB, as nA, nB −→
∞, such that nA/nB → r ∈ (0,∞):

nAnB
nA + nB

T =
nAnB
nA + nB

dα(Â, B̂)2
D−→

m(m−1)/2∑
i=1

λiχ
2
1, (4.2.9)
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in which each χ2
1 is independent and λi are the m(m − 1)/2 non-zero eigenvalues of

ΣQ.

Proof. The result follows directly from Box (1954) which provides the distribution of

a quadratic form of normal random variables with mean 0.

When the value of Σ is known, or can be sensibly approximated, this distribution can

be used to find the critical value, T100a%, such that the null hypothesis is rejected when

T > T100a%, where T100a% is chosen to give a significance level of 100a%.

The quantiles of the distribution in Result 4.2.2 and hence the critical value can be found

easily through large simulations. To find quantiles without simulation the distribution

can be approximated by a singular chi squared distribution or a Gaussian distribution

(Box, 1954). The distribution in Result 4.2.2 can be approximated, using results from

Box (1954), by

T ∼.. gχ2
h

where g =
nA + nB
nAnB

∑l
i=1 λ

2
i∑l

i=1 λi
and h =

(
∑l

i=1 λi)
2∑l

i=1 λ
2
i

.
(4.2.10)

As this chi-squared distribution is the sum of independent random variables with fi-

nite mean and variance then by the central limit theorem this distribution can then be

approximated by

T ∼.. nA + nB
nAnB

N

(
l∑

i=1

λi, 2
l∑

i=1

λ2i

)
. (4.2.11)

In practice Σ will generally not be known and so needs to be estimated. In our applica-

tion using the novel dataset withm = 1000, Σ is a symmetric matrix withM(M+1)/2

parameters where M = m(m − 1)/2 = 499500. The Σ matrix hence is often very

highly dimensional, which can lead to issues estimating it, especially from relatively

small samples. It is seen in Preston and Wood (2011) that for the smaller samples we

will deal with, using regularised versions of tests statistics will often perform better.

One approach is to use the shrinkage estimator from Schäfer and Strimmer (2005) to

estimate Σ, as employed by Ginestet et al. (2017), but this is still impractical for our

application with m = 1000. If we assume a diagonal matrix Σ = Λ∗ then the λi
correspond to the variances of individual components of the difference in means, and
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these can be estimated consistently from method of moments estimators. A further very

simple model that enables us to write the distribution more explicitly for α = 1 is an

isotropic covariance matrix with covariance matrix Σ = σ2Im(m−1)/2, which only re-

quires estimation of a single variance parameter σ2, we consider this model in Section

4.2.1. We shall also consider, in Section 4.2.2, how we can calculate Σ when using the

Euclidean power metric with α = 1 for two specific models, the stochastic block model

and Erdös-Renyi model, and how this enables us to write the distribution of the test

statistic more precisely. Alternatively we will also consider non-parametric methods

that do not require large covariance matrices to be estimated or models for the data to

be prescribed.

4.2.1 A parametric test assuming isotropic covariance matrix

If we assume isotropic covariance matrices for both sets A and B we can write the

distribution of the test statistic when the Euclidean power metric is used. In this case

for x as defined in (4.2.1) we have ΣA = σ2
AIm(m−1)

2

and ΣB = σ2
BIm(m−1)

2

and we

also must assume that under H0 σ
2
A = σ2

B = σ2
0 , meaning under the null hypothesis the

populations have equal covariance matrices. Then under H0

x ∼.. N
(
0, σ2

0Im(m−1)
2

)
. (4.2.12)

As the covariance matrix is a scaled identity matrix, the eigenvalues of ΣQ in Result

4.2.2 are the eigenvalues of σ2
0Q which are known if the eigenvalues ofQ are known.

Result 4.2.3. The eigenvalues ofQ are {2m,m, . . . ,m,︸ ︷︷ ︸
m−1 times

2, . . . , 2︸ ︷︷ ︸
m(m−3)

2
times

}, for m ≥ 3.

This is proved in Section 4.8.2. Now the distribution of T can be written in a closed

form solution under H0.

Result 4.2.4. Under the null hypothesis,

T = d(ÂE, B̂E)2 ∼ 2mτ 20χ
2
1 +mτ 20χ

2
m−1 + 2τ 20χ

2
m(m−3)

2

approximately for large nA and nB where nA/nB → r ∈ (0,∞), τ 20 = nA+nB
nAnB

σ2
0 and

the χ2 terms are independent.

The proof is given in Section 4.8.3.

Of course the value of σ0 would not be known in practice and hence would still need to
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be estimated. Under H0 we estimate σ2
0 as the variance of the off-diagonal elements of

the graph Laplacians {A1, . . . ,AnA ,B1, . . .BnB}. A motivation for when the isotropic

covariance matrix assumptions are approximately valid is if both samples belong to

sets of Erdös-Renyi random network models defined in Section 1.2.5. For this case the

isotropic covariance is derived in (4.2.15). The Erdös-Renyi random network model is

a special case of a stochastic block model network that we consider next.

4.2.2 A parametric test assuming stochastic block model

For a stochastic block model defined in Section 1.2.5 the value of Σ is known when

α = 1, which we can use to write a distribution for our test statistic. We will firstly

consider the most general case, in which every node is in its own block, hence k = m

and we can therefore write the probability of an edge between nodes i and j as pij . We

define P = (pij) and set all pii = 0 to prevent loops.

We consider now the two sets A and B being modelled by stochastic block models

with probability matrices PA = (pAij) and PB = (pBij) respectively. In this case the

population Euclidean graph Laplacian mean for each set is entirely dependent on its

probability matrix, hence the hypotheses to test become H0: PA = PB = P = (pij)

and H1: PA 6= PB. The distribution of x under the stochastic block model is

x ∼.. N

((
nAnB
nA + nB

) 1
2

µ′,Σ

)
where µ′ = (pB12 − pA12, . . . , pBm−1m − pAm−1m)T ,

and Σ = diag
(
nB p

A
12 (1− pA12) + nA p

B
12 (1− pB12)

nA + nB
, . . . ,

nB p
A
m−1m (1− pAm−1m) + nA p

B
m−1m (1− pBm−1m)

nA + nB

)
,

(4.2.13)

the working for which is found in Section 4.8.4. Under the null hypothesis we see

µ′ = (0, . . . , 0)T and Σ = diag (p12(1− p12), . . . , pm−1m(1− pm−1m)) ,

these can be substituted into Result 4.2.2 enabling us to find the approximate distribu-

tion of TE for a specific P .
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For the special case of a stochastic block model, where there is only 1 block the sets A
and B are made of graph Laplacians representing Erdös-Renyi random networks, de-

fined in Section 1.2.5, with probabilities pA and pB of any edge occurring respectively.

In this case the µ′ and Σ in (4.2.13) become

µ′ = (pB − pA, . . . , pB − pA)T , (4.2.14)

Σ =
nB pA (1− pA) + nA pB (1− pB)

nA + nB
Im(m−1)

2

. (4.2.15)

It is clear the population Euclidean graph Laplacian mean is entirely dependent on the

probability of an edge occurring for an Erdös-Renyi random network, hence for the

two-sample test the hypotheses simplify to H0: pA = pB = p and H1: pA 6= pB. Under

H0 x has an isotropic covariance matrix just as in (4.2.12) and so the distribution of TE
can be written under H0 using Result 4.2.4,

Result 4.2.5. Under the null hypothesis for samples of Erdös-Renyi random networks,

TE = d1(ÂE, B̂E)2 ∼ 2mτ 20χ
2
1 +mτ 20χ

2
m−1 + 2τ 20χ

2
m(m−3)

2

approximately for large nA and nB where nA/nB → r ∈ (0,∞). Where τ 20 =
nA+nB
nAnB

p(1− p) and the χ2 terms are all independent.

For the Erdös-Renyi random networks we in fact can also compute explicitly the distri-

bution for H1.

Result 4.2.6. Under the alternative hypothesis for samples of Erdös-Renyi random net-

works,

TE = d1(ÂE, B̂E)2 ∼2mτ 21χ
2
1

(
(pB − pA)2m(m− 1)

2τ 21

)
+mτ 21χ

2
m−1 + 2τ 21χ

2
m(m−3)

2

,

approximately for large nA and nB where nA/nB → r ∈ (0,∞). Where

τ 21 =
(

nAnB
nA+nB

)−1
nB pA (1−pA)+nA pB (1−pB)

nA+nB
and χ2(a) is the non-central χ2 distribution

with non-centrality parameter a, these χ2 terms are all independent.

The proof is in Section 4.8.5.

In practice we would not know the values of pA, pB and p and hence we need to es-

timate these. Under H0 we estimate p as the arithmetic mean of the off-diagonal ele-

ments of the graph Laplacians {A1, . . . ,AnA ,B1, . . .BnB}, which is a consistent es-
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timator under H0 and the Erdös-Renyi model. Similarly under H1 we can estimate pA
and pB as the arithmetic mean of the off-diagonal elements of the graph Laplacians

{A1, . . . ,AnA} and {B1, . . .BnB} respectively which are again consistent estimators

under H1 and the Erdös-Renyi model.

4.3 Non-parametric tests

The approach in the preceding sections relied on either estimating Σ directly or impos-

ing strong parametric modelling assumptions, and it was also limited to the case with d

being the Euclidean power metric, i.e. it was not appropriate when d is the Procrustes

power metric. An alternative approach to avoid these limitation is to develop a non-

parametric test. We use a random permutation test similar to that in Preston and Wood

(2010), which we define in Algorithm 1 for r permutations.

Algorithm 1 Random permutation test to test the equality of means for two samples of
graph Laplacians, Â = {A1, . . . ,AnA} and B̂ = {B1, . . .BnB}, using the test statistic
T .

1: Calculate the test statistics between Â and B̂, given by T = T (Â, B̂) .

2: Generate random sets Â∗ and B̂∗ of size nA and nB respectively, by randomly

sampling without replacement from Â ∪ B̂.

3: Compute the test statistic of sets Â∗ and B̂∗, given by T ∗ = T (Â∗, B̂∗).

4: Repeat steps 2 and 3 r times, to give test statistics T ∗1 , T
∗
2 , . . . , T

∗
r .

5: Order the test statistics T ∗(1) ≤ T ∗(2) ≤ · · · ≤ T ∗(r).

6: Calculate the p-value, which is 1− j
r

for the minimum 1 ≤ j ≤ r − 1 satisfying

T ∗(j) < T ≤ T ∗(j + 1), unless T ≤ T ∗(1), in which case the p-value is 1 or if

T > T ∗(r), in which case the p-value is 0.

The random permutation test approximates the distribution of T under H0 by finding

multiple T values for the permuted samples where H0 holds. With this approximated

distribution we can then find the significance of the test statistic for the true samples. A

limitation of using the permutation test is it assumes exchangeability of the observations

under the null hypothesis (Amaral et al., 2007). This means under the null hypothesis

the populations of sets A and B are assumed identical which is not always the case.

When we apply our methods to data we will consider an example of simulated data

where null exchangeability does not hold, to examine the consequences.
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4.4 Comparing the test statistics

We will now compare our three test statistics, TE , TH and TS , defined in (4.0.4), (4.0.5)

and (4.0.6), along with the Ginestet et al. (2017) test statistic, TG. We investigate how

good an approximation the asymptotic distributions are for TE and TG, found in Sec-

tions 4.2 and 4.1, for synthetic and real data. Problems with the convergence are likely

when the covariance estimate is poor from lack of data, or when the off-diagonal ele-

ments are near 0 in expectation. We will describe a good indication of the adequacy

of the approximation by checking the size of the test. We will see in Section 4.5 cases

when the approximation is poor and in these it is better to perform this test using a

random permutation test to simulate the distribution under H0.

For an approximation of the distribution of a test statistic, T , under H0 to be suitable

then the empirical size of the test, P(reject H0|H0 true), should be close to the nominal

size of the test, 100a%. The empirical size of the test can be rewritten as P(p-value <

a|H0 true). The nominal size is set before the test whilst the empirical size is calculated

after a test and it is calculated differently for simulated and real data.

For simulated data Monte Carlo simulations are used to simulate the datasets repeatedly,

for the vth Monte Carlo realisation pv is the p-value computed from Algorithm 1 or an

asymptotic distribution, the empirical size is then given as

1

M

M∑
v=1

1{pv≤a}, (4.4.1)

where 1 is the indicator function.

For real data, when Monte Carlo simulations cannot be used, under tests with asymp-

totic distributions where the cut-off value, T100a% is known, the empirical size is found

as

1

r

r∑
v=1

1{T ∗v>T100a%}, (4.4.2)

from running Algorithm 1 once. Essentially this calculates the size by comparing the

asymptotic distribution with a distribution calculated from permutations.

A test is considered successful if it produces a high power provided the size is correct,

where power is P(reject H0|H1 true) . The power of a test can only be calculated when
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the distribution of the test statistic, T ∈ {TE, TH , TS, TG}, under H1 can be found. We

can only calculate the distribution under H1 for our synthetic data as we can simulate

the distribution under different alternate simple hypotheses. For the synthetic data the

distribution under H1 can be approximated by running step 1 of Algorithm 1 M times

for sets under H1, to create the collection of test statistics {T 1, . . . , TM}. The distri-

bution of the collection {T 1, . . . , TM} will then approximate the distribution of a T

under H1 and the power can be estimated by finding the probability of rejecting H0, i.e.

T > T100a%, under the simulated alternative distribution.

We now compare the test statistics for different data. We will see and explain from the

synthetic and neuroimaging data that our test statistic using a permutation test consis-

tently out performs using the tests with asymptotic distributions and so for the later data

in this chapter we shall only consider the permutation tests.

4.5 Simulation study

We now apply our two-sample test to synthetic data, with n = nA = nB. Two of the

network models we use for the simulated data are the Erdös-Renyi random networks

(E.R) and the Watts-Strogatz small-world model (W.S) described in Section 1.2.5. For

the W.S model we fix neiA = neiB = nei as the neighbourhood sizes and pA and pB
are the respective rewiring probability. We also use the normal model (N), defined in

Section 1.2.5, which produces networks with weights wij ∼ N (pB, σ
2), for 1 ≤ i, j ≤

m. For all models the hypotheses simplify to H0: pA = pB = p and H1: pA 6= pB.

The aim of the simulation study is to check the convergence for the cases we have an

asymptotic distribution for the test statistic and to compare the powers for the different

test statistics.

To check the convergence of TE and TG distributions under H0 we look at the values

of the empirical size, P(reject H0|H0 true), found in Table 4.1 for different synthetic

data. We expect the empirical size to be ≈ 100a% and we set 100a% = 5%. We run

M = 1000 Monte Carlo simulations to find the empirical size, given in (4.4.1), of the

tests using TE and TG for both tests with asymptotic distributions and non-parametric

tests. For the non-parametric test we use Algorithm 1 with r = 100 permutations. The

distribution used in Asy (4.2.4) is that of Result 4.2.4 where the cut-off is found by

simulating this distribution for 100000 values. The Asy (4.2.4) distribution requires the
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estimation of a parameter, when the graph Laplacian represent networks which model

E.R networks the p in Result 4.2.5 is estimated, whilst for all other cases the σ0 value

of Result 4.2.4 is estimated.

From Table 4.1 when TG is used with its asymptotic distribution, we can see the empir-

ical size rarely matches 5% for higher dimensional networks; this indicates the approx-

imation of the distribution for TG is poor for these examples, most likely through poor

covariance matrices estimates. When using the asymptotic distribution for TE from Re-

sult 4.2.4 the assumptions are met for the E.R and N models and in these cases the size

is approximately 5%, therefore the approximation seems good. The assumptions for

Result 4.2.4 are not met for the W.S model and in these cases the size is not around 5%

showing the distribution is a poor fit. Even for the more general asymptotic distribution

from Result 4.2.2 for TE the size is not near 5% for the W.S model, but is close to 5%

for the other models.

Model m n Variables Empirical Size (%)
TE TH TG

Asy Asy Perm Perm Asy Perm
(4.2.4) (4.2.2)

E.R 5 100 p = 0.5 6.0 6.4 6.2 5.9 5.1 6.6
E.R 5 100 p = 0.1 4.4 4.9 5.3 4.8 4.9 5.7
E.R 10 100 p = 0.5 4.4 4.5 5.3 5.5 4.1 5.2
E.R 10 100 p = 0.1 3.9 4.8 4.8 5.3 4.8 5.5
E.R 50 100 p = 0.5 4.4 3.9 6.3 5.9 1.5 5.5
E.R 50 100 p = 0.1 5.1 3.8 5.8 5.6 0.8 4.9
W.S 5 100 p = 0.1, nei = 1 0.0 2.2 6.3 6.4 4.4 6.2
W.S 5 100 p = 0.5, nei = 1 1.3 3.4 5.2 5.1 3.9 5.0
W.S 40 100 p = 0.1, nei = 1 0.0 0.0 6.1 6.2 0.0 4.4
W.S 40 100 p = 0.5, nei = 1 0.0 0.5 6.0 6.3 1.6 6.0

E.R&N 10 100 p = 0.5, σ = 0.01 4.7 5.2 5.8 87.6 4.9 6.6
E.R&N 10 100 p = 0.5, σ = 0.1 4.8 5.2 5.9 82.8 4.0 6.6
E.R&N 20 100 p = 0.5, σ = 0.01 4.5 5.5 5.3 77.8 2.5 7.7
E.R&N 20 100 p = 0.5, σ = 0.1 5.9 6.5 5.7 69.1 3.3 7.0

Table 4.1: A table comparing the test statistics TE , TH and TG. Asy indicates the
size was found using the asymptotic distribution of H0, Asy (4.2.4) and
Asy(4.2.2) are when the asymptotic distribution used is from Result 4.2.4
and Result 4.2.2 respectively. Perm indicates a permutation test was used.
The critical value was set to give a nominal size of 5%, bold values indicate
the empirical size is within 1.96 standard errors of 5%, which is 5±1.351%.

We were interested how the non-parametric tests performed when null exchangeability
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does not hold. When the E.R or the W.S models were used in Table 4.1 null exchangi-

bility holds and the empirical size under the random permutation tests, for TE , TH and

TG, match up well to 5%. Null exchangibility does not hold for the last 4 rows in Ta-

ble 4.1. For these examples the mean of both sets A and B are equal but the variance

differs. We expected this may cause problems when using the random permutation test.

When using TG and TH the empirical size does not match 5% well, however when TE
is used the empirical size is still close to 5%.

Figure 4.2 contains power plots for synthetic data to compare our three test statistics

along with TG. The power is calculated as described in Section 4.4. Random permuta-

tion tests are used to perform the test when using TH and TS . We include powers using

the asymptotic distribution of TE and TG as well as using a random permutation tests

for both, to allow for poor convergence. For the test statistic TE we calculate it by the

asymptotic distribution in Result 4.2.2. We set r = 100 for the random permutation

tests and use M = 1000 to estimate the power. For Figure 4.2a and 4.2b the sets A and

B contained graph Laplacians representing E.R networks with pA = p = 0.1, m = 5

and 10 respectively. For these examples all the test statistics perform well. However

TE , using it both asymptotically and by permutation, and TH perform best giving larger

powers when pB 6= pA. For Figure 4.2c the graph Laplacians represent W.S models

with nei = 1, pA = p = 0.1 and m = 5. Here all of the tests perform very similarly,

with TG both used asymptotically and by permutation and TE by permutation perform-

ing the best, giving higher power for pB 6= pA. We have already seen in Table 4.1 that

the asymptotic distribution for TG fits this model with m = 5 well, but the asymptotic

distribution for TE does not fit this model well, also when using TE asymptotically we

get the lowest powers.

When the mean degrees between the sets are different, found on the graph Laplacian

diagonal, these will contribute a lot to the test statistic, however the test can also differ-

entiate sets with similar or even identical mean degrees. For example, when m = 10,

let setA be the set of E.R networks with pA = 4
9

and B be the set of W.S networks with

p = 0.1 and nei = 2 . The mean degree for all nodes is 4, but applying our two-sample

test, with any T ∈ {TE, TH , TS, TG}, the power of the test is 1, meaning the null is

always rejected. This shows an advantage of using the graph Laplacian matrix over the

degree matrix, defined in (1.2.3).

From the simulation study we have seen for large dimensions the asymptotic distribu-

tions for TE and TG are poor. When the data fits having an isotropic covariance matrix
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Figure 4.2: Power plots for varying pB underH1, for a) ER model p = 0.1 andm = 5,
b) ER model p = 0.1 and m = 10 and c) WS model nei = 1, p = 0.1 and
m = 5. Black-TE asymptotic, light blue-TE permutation, red-TH , dark
blue-TS , green-TG asymptotic and pink-TG permutation.
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the distribution for TE fits well and gives powerful results, but this is too restrictive as

few real datasets will fit this model. So for different datasets neither TE or TG used

asymptotically will perform consistently well. Therefore it is more appropriate to use

a test statistic with a permutation test, of these TE consistently performs well, as well

as being the most computationally appealing. We now consider real data, for which we

will discuss how the conclusions from the simulation study similarly hold for this data

too.

4.6 Application of the two-sample test to network data

We now apply our test to real network data. In Example 4.6.1 we perform our test on

the FCP neuroimaging data described in Section 1.3.3. Example 4.6.2 uses the NLAB

data described in Section 1.3.2. In Example 4.6.3 we perform the test on the novel data

and explore in more detail the difference in mean between Austen and Dickens.

Example 4.6.1: Two-sample test applied to the neuroimaging data
For the FCP neuroimaging dataset, introduced in Section 1.3.3, it is of interest to test if

there is a significant difference between functional connectivity for gender. We perform

two-sample tests on gender using TE , TH , TS and TG. As stated in Section 1.3.3 the

neuroimaging covariance matrices have a quantile thresholding value, c, to convert them

to networks. We run our tests for different c values to ensure this value is not having a

large effect on the performance of each test statistic.

For the two-sample tests we set the significance value at the 5% level, and therefore the

empirical size is expected to be 5% for all test statistics. The random permutation tests

used are those defined in Algorithm 1, using r = 1000. We run the test not only on

the full sample of 462 males and 555 females, but also a sub-sample of 50 networks for

each gender, as this is more representative of typical neuroimaging sample sizes. We

find the empirical size of the test when using TE and TG asymptotically, by comparing

the asymptotic distribution with the distribution from permutations, given in (4.4.1).

Table 4.2 provides the results for the different thresholding values. The size for TG
used asymptotically is never near 5%, this indicates the asymptotic distribution of TG
is a very poor fit for this dataset, this is almost certainly due to the small sample size

estimating a large covariance matrix. When using TE with its asymptotic distribution

the size is very far from 5% for the large sample but surprisingly close for the smaller
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sample. Because of the problems with the approximation of distribution for both TG and

TE it is more appropriate to use these by permutation test. Using TE , TH , TS or TG’s

random permutation test give significant results at the 5% level. If we are to assume

that there is a difference in brain activity for gender which seems to be the conclusion,

then TE , TH , TS and TG’s random permutation test all perform well. However due to

the need to estimate and invert a large covariance matrix many times in TG’s random

permutation test it is very computationally intensive, and so our test statistics seem

favourable for larger dimensional graph Laplacians, particularly TE which is the least

computationally intensive.

Sample Threshold Size P-value
TG TE TE TE TH TS TG TG

size Asy Asy Asy Perm Perm Perm Asy Perm
Full 0.2 Q 20.8 96.8 0.000 0.002 0.006 0.006 0.000 0.000
Full 0.4 Q 89.5 93.4 0.000 0.002 0.011 0.011 0.000 0.000
Full 0.6 Q 91.5 92.4 0.000 0.001 0.006 0.006 0.000 0.000
Full 0.8 Q 9.3 92.7 0.000 0.000 0.001 0.000 0.000 0.000
50 0.2 Q 0 6.6 0.920 0.000 0.000 0.000 0.995 0.000
50 0.4 Q 0 3.3 0.996 0.000 0.000 0.000 1.000 0.000
50 0.6 Q 0 3.0 0.999 0.000 0.000 0.000 0.406 0.000
50 0.8 Q 0 1.0 0.988 0.000 0.000 0.000 0.929 0.000

Table 4.2: A table with the p-value of the two-sample test when using TG, TE and TH
for the FCP dataset. The empirical size is included when TG and TE are
used asymptotically. Bold when the p-value is under 0.05.

Example 4.6.2: Two-sample test applied to the M-money transaction data
For the M-money transaction networks, described in Section 1.3.2, we hypothesise that

the networks for a weekday will be different to the networks on a weekend, as a week-

day may correspond to more business transactions than the weekend. However it is not

clear from the PCA plots in Example 2.5.2 if this hypothesis is true and so we use our

two-sample test to test this hypothesis by testing if the mean network for a weekday is

different to the mean network for a weekend day.We perform out test using the permuta-

tion test from Algorithm 1 with r = 1000, as we have seen that for large networks, like

these, that the asymptotic tests are not appropriate. For each metric all permuted values

were less than the observed test statistic leading to p-values of 0, meaning there is strong

evidence for a difference in mean networks, for M-money transactions in Tanzania, on

weekdays and weekends.

Example 4.6.3: Two-sample test applied to the novel data
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It is interesting to test if different authors have significantly different writing styles and

by representing text as graph Laplacians we can apply our two-sample test to address

this question. We run our two-sample test for the sets of networks representing Austen

and Dickens novels which gives the test statistics TE = 0.0011, TH = 0.0690, TS =

0.0689. We compute the p-value from the permutation test from Algorithm 1 with

r = 1000 permutations for each of TE, TH , TS and in each case all permuted values

were less than the observed statistics for the data. Hence, in each case the estimated p-

value is zero, indicating very strong evidence for a difference in mean graph Laplacian

for the authors.

In Example 2.5.1 we saw from the PC plots Dickens and Austen works were very well

separated and so it is not surprising they have significantly different means. A ques-

tion with a less obvious answer is does Dickens’ work significantly differ to the whole

collection of 19th century authors’ work, described in Section 1.3.1, and we again use

our two-sample test to address this question. The p-value is calculated from the per-

mutation test with r = 1000, giving p-values 0.003, 0 and 0 for the Euclidean, square

root Euclidean and Procrustes shape-and-size respectively, therefore in each case there

is significant evidence that the means of Dickens novels is different to the other 19th

century novels. We will look in more detail at the difference between Dickens and all

the other 19th century authors again in Example 5.1.1.

4.6.1 Exploring difference between Austen and Dickens

Given that the Austen and Dickens novels are significantly different in mean we would

like to explore how they differ. We provide a method of doing so in Severn et al. (2019).

In particular we examine the off-diagonal elements of PL( ˆηDickens)− PL( ˆηAusten), i.e.

the differences in the mean weighted adjacency matrix, and compare them to appro-

priate measures of standard error of the differences using a z-statistic. The method of

comparison we provide is multiple univariate tests, similar ideas have been used before

for network analysis, for example in Ginestet et al. (2014).

The histograms of the off-diagonal individual graph Laplacians are heavy tailed, and

a plot of sample standard deviations versus sample means, found in Figure 4.3, show

an overall average linear increase with approximate slope β = 0.2, but with a large

spread. We shall use this relationship in a regularised estimate of our choice of stan-

dard error. For a particular co-occurrence pair of words we have weighted adjacency
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values xi, i = 1, . . . , n1 and yj, j = 1, . . . , n2 with sample means x̄ and ȳ, and sample

standard deviations sx and sy. For our analysis here we use the Euclidean mean graph

Laplacians. We estimate the variance in our sample with a weighted average of the

sample variance and an estimate based on the linear relationship between the mean and

standard deviation, and in particular the population pooled variance is estimated by

s2p =
n1(w1s

2
x + (1− w1)β

2x̄2) + n2(w2s
2
y + (1− w2)β

2ȳ2)

(n1 + n2 − 2)
,

where the weights are taken as wi = ni/N, i = 1, 2, where we take N = 200. If all

values in one of the samples are 0 (due to no word co-occurrence pairings in any of that

author’s books) then we drop that word pairing from further analysis, as we are only

interested in the relative usage of the word occurrences that are actually used by both

authors. A univariate z-statistic for comparing adjacencies is then

z =
x̄− ȳ

(ξ + sp)
√

1
n1

+ 1
n2

, (4.6.1)

where we include the regularizing offset ξ > 0 to avoid highlighting very small differ-

ences in mean adjacency with very small standard errors. The value for ξ is chosen as

the median of all sp values under consideration.

(a) (b)

Figure 4.3: The sample mean vs standard deviation for each off-diagonal element for
the (a) Dickens novels and (b) Austen novels. The red line has intercept 0
and gradient 0.2.

The exploratory graphical displays in Figure 4.3 illuminate striking differences between

the novelists. For Austen there are very common pairings of words with ‘her’, ‘she’,
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Figure 4.3: Networks displaying the top 100 pairs of words ranked according to the
z-statistic in (4.6.1), with more prominent co-occurrences used by Austen
(top, in blue) and the more prominent co-occurrences used by Dickens
(bottom, in yellow).
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‘herself ’, which form important hubs in this network. Austen also pairs these hubs

with more emotional words ‘feelings’, ‘felt’, ‘feel’, ‘kindness’, ‘happiness, ‘affection’,

‘pleasure and stronger words ‘power’, ‘attention’, ‘must’, ‘certainly’, ‘advantage’ and

‘opinion’. Also we see more use of ‘letter’ in Austen, which is a literary device often

used by the author. For Dickens there are more common uses of abbreviations, espe-

cially ‘don’t’ which is an important hub, and also ‘it’s’, ‘i’ll’ and ‘that’s’. In contrast

the Austen network highlights ‘not’. Dickens also more prominently pairs body parts

‘arm’, ‘arms’, ‘eyes’, ‘feet’, ‘hair’, ‘hand’, ‘hands’, ‘head’, ‘mouth’, ‘face’, ‘shoulder’,

‘legs’ in combination with the strong hubs ‘his’ and ‘the’. Dickens use of body parts is

an interesting finding that has been noted and studied before in Mahlberg (2013). The

hubs ‘his’ and ‘the’ are also paired with other objects, such as ‘door’, ‘chair’, ‘glass’.

Finally, Dickens has the more prominent use of pairs with a sombre word, such as

‘dark’, ‘black’ and ‘dead’, which might have been expected.

4.7 Summary

In this Chapter we have defined a two-sample test to test the equality of means of sam-

ples of graph Laplacians using our graph Laplacian framework. The two-sample test has

a test statistic which is the distance squared between the sample’s unprojected means.

The two-sample test is general and could be easily adapted to be used with many differ-

ent distance metrics between graph Laplacians. We specifically looked at the test when

using the Euclidean, square root Euclidean and Procrustes size-and-shape metrics. For

the Euclidean metric the distribution of the test statistic could be found asymptotically

however unless simple models hold for the data then this asymptotic distribution re-

quires the estimation of a large covariance matrix.

We compare our three tests with a similar test proposed in Ginestet et al. (2017) on

simulated data and the neuroimaging data. Ginestet’s test also requires the estimation

of a large covariance matrix and for this reason we see that for graph Laplacians with

large dimensions Ginestet’s and the Euclidean tests with asymptotic distributions are

not suitable to use, giving incorrect empirical sizes. Instead any of our tests used using

a permutation test are more suitable. For our two-sample tests, using the Euclidean

metric is computationally more appealing, as no square rooting or Procrustes analysis

is needed, and as using the Euclidean metric consistently gives suitable results it seems

that this test is favourable.
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We apply the two-sample test also to the M-money transaction data where we can see

that money transfer networks for weekends are significantly different than weekdays.

We also apply the test to the 19th century author datasets, where the test shows signif-

icance difference between means for the different authors. To study what are the main

differences in the means for the 19th century novels dataset we propose a method to

determine the co-occurrences which differ the most significantly between authors. This

method gave insightful results that agree with previous findings for the authors.

4.8 Calculations for Chapter 4

4.8.1 Alternative to TG using the diagonal

Proof of equivalent distributions

Result 4.1.1. T ′G has an identical asymptotic distribution to TG.

Proof. We know from Ginestet et al. (2017),

n
1
2
A(vech(ÂE)− vech(µEA))T ∼̇N (0,Σ′′A),

n
1
2
B(vech(B̂E)− vech(µEB))T ∼̇N (0,Σ′′B),

where vech is defined in (0.0.2), and Σ′′A = Cov(vech(A)) and Σ′′B = Cov(vech(B)),

for A ∈ A and B ∈ B. Note now Σ′′A and Σ′′B are m(m+1)
2
× m(m+1)

2
matrices. With

simple manipulation we see,

(
nAnB
nA + nB

) 1
2

(vech(ÂE)− vech(B̂E))T

∼̇N

((
nAnB
nA + nB

) 1
2

(vech(µEA)− vech(µEB)),Σ′′

)
.

Under H0 we set vech(µEA) = vech(µEB), and assume Σ′′A = Σ′′B = Σ′′ and Σ̂′′ → Σ′′,

giving

(
nAnB
nA + nB

) 1
2

(vech(ÂE)− vech(B̂E))T ∼̇N
(
0, Σ̂′′

)
.
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As we have now included the diagonal of the graph Laplacians in the test statistic the

covariance matrix Σ̂′′ will not be full rank (m(m+1)
2

), due to the fact that the diagonal is

dependant on the off-diagonal of a graph Laplacian. The covariance matrix is at most

rank m(m−1)
2

and therefore Σ̂′′ is singular. We can use the fact Σ̂′′ is a symmetric square

matrix to write by spectral decomposition,

Σ̂′′ = UΛUT

where Λ = diag(λ1, . . . , λm(m−1)
2

, 0, . . . , 0︸ ︷︷ ︸
m times

) and λi are the non zero eigenvalues of Σ̂′′,

U ’s columns are the eigenvectors of Σ̂′′ and U = UT . The Moore-Penrose inverse is

Σ̂′′− = UΛ−UT , (4.8.1)

where Λ− = diag(λ−11 , . . . , λ−1m(m−1)
2

, 0, . . . , 0︸ ︷︷ ︸
m times

). It is clear then that,

(
nAnB
nA + nB

) 1
2

(vech(ÂE)− vech(B̂E))TU(Λ−)
1
2 ∼̇N

0, diag( 1, . . . , 1︸ ︷︷ ︸
m(m−1)

2
times

, 0, . . . , 0︸ ︷︷ ︸
m times

)

 ,

and hence

TG
′ =

nAnB
nA + nB

(vech(ÂE)− vech(B̂E))T Σ̂′′−(vech(ÂE)− vech(B̂E))
D−→ χ2

m(m−1)
2

.

Proof of equality of test statistics

Result 4.1.2. TG = T ′G when nA − 1, nB − 1 ≥ m(m−1)
2

and the standard unbiased es-

timator for covariance matrices is used instead of the shrinkage estimator from Schäfer

and Strimmer (2005).

Proof. When nA−1 ≥ m(m−1)
2
≤ nB−1 the estimate, Σ̂′, from the test in Ginestet et al.

(2017), and Σ̂′′ can be estimated by the sample covariance matrices without the need

for the shrinkage estimator, as nA and nB are large enough for the covariance matrices

to reach their maximum rank.
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We will prove

TG =
nAnB
nA + nB

zT Σ̂′−1z =
nAnB
nA + nB

yΣ̂′′−y = TG
′,

where
m(m−1)

2
×1

z = φ(ÂE)− φ(B̂E)

m(m+1)
2

×1
y = vech(ÂE)− vech(B̂E).

We also define
m×1
d = diag(ÂE) − diag(B̂E). As the diagonal elements of a graph

Laplacians are a linear combination of the upper triangular elements we can write d =

Fz. As permutations of elements in the half vectorisation are irrelevant we can denote

y = (dT , zT )T

y =

 F

Im(m−1)
2

 z.
The covariance of y is given as

Cov(y) = Σ̂′′ =

 F

Im(m−1)
2

Cov(z)

 F

Im(m−1)
2

T

=

 F

Im(m−1)
2

 Σ̂′

 F

Im(m−1)
2

T ,

this is not full rank. We can write

 F

Im(m−1)
2

 = WDV T , by singular decomposition,

where W and V are orthogonal, then set P = WD−1V T , where we know D−1 will

exist as

 F

Im(m−1)
2

 has full column rank . Hence

Im(m−1)
2

= P T

 F

Im(m−1)
2

 =

 F

Im(m−1)
2

T P .
Therefore the Moore-Penrose inverse for Σ̂′′ is Σ̂′′− = P Σ̂′−1P T as this satisfies the

four conditions required to be a Moore-Penrose inverse in Penrose (1955). For example
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the first condition is satisfied

Σ̂′′Σ̂′′−Σ̂′′ =

 F

Im(m−1)
2

 Σ̂′

 F

Im(m−1)
2

T P Σ̂′−1P T

 F

Im(m−1)
2

 Σ̂′

 F

Im(m−1)
2

T

=

 F

Im(m−1)
2

 Σ̂′Σ̂′−1Σ̂′

 F

Im(m−1)
2

T

= Σ̂′′,

and similarly the other three hold

Σ̂′′−Σ̂′′Σ̂′′− = Σ̂′′−,

(Σ̂′′−Σ̂′′)T = Σ̂′′−Σ̂′′,

(Σ̂′′Σ̂′′−)T = Σ̂′′Σ̂′′−.

Hence we get the result

TG
′ =

nAnB
nA + nB

yΣ̂′′−y

=
nAnB
nA + nB

zT

 F

Im(m−1)
2

T Σ̂′′−

 F

Im(m−1)
2

 z
=

nAnB
nA + nB

zT

 F

Im(m−1)
2

T P Σ̂′−1P T

 F

Im(m−1)
2

 z
=

nAnB
nA + nB

zT Σ̂′−1z

= TG.

4.8.2 Proof of the test statistic’s asymptotic distribution when the

covariance is isotropic

Eigenvalues ofQ

Result 4.2.3. The eigenvalues ofQ are {2m,m, . . . ,m,︸ ︷︷ ︸
m−1 times

2, . . . , 2︸ ︷︷ ︸
m(m−3)

2
times

}, for m ≥ 3.
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To prove the expressions for the eigenvalues ofQ we firstly examine the eigenvalues of

Q for different ms to see if there is a pattern to spot. For m = 3 the eigenvalues are

{6, 3, 3}, for m = 4 the eigenvalues are {8, 4, 4, 4, 2, 2} and for m = 5 the eigenvalues

are {10, 5, 5, 5, 5, 2, 2, 2, 2, 2}. We have seen numerically that Result 4.2.3 is true for

m = 3, 4, 5 and so now we will prove it for m > 5, hence in the following proofs

the cases m = 3, 4, and 5 are ignored as they are already shown to be true. First

we will prove the three eigenvalues, 2, m and 2m, are in fact eigenvalues by giving

a corresponding eigenvector for each and then we will prove that we have the correct

multiplicity of each eigenvalue. Many of the results stated within these proofs rely on

visual observations from the visualisation of Q in (4.2.6). Throughout we denote qr as

the rth row ofQ.

Lemma 4.8.1. 2m is an eigenvalue ofQ, for m ≥ 3.

Proof. For the eigenvalue 2m a corresponding eigenvector is u1 = (1, . . . , 1)T . This

can be seen easily as in every row there is a four and the number of ones is (m − 2) +

(m− 2) = 2m− 4, so the row sum will be 2m for every row.

To find the other two eigenvalues it is useful to note there are three cases for the rth row

• r = r1 = 1 where qr11 = 4, this is the first row and is always of the form

(4, 1, . . . , 1︸ ︷︷ ︸
2(m−2)times

, 0, . . . , 0︸ ︷︷ ︸
(m−3)(m−2)

2
times

),

• r = r2 where 1 < r2 ≤ (m − 1) + (m − 2) = 2m − 3. qr21 = 1, in qr2 2:2m−3
there is a 4, m− 2 lots of 1s and m− 3 lots of 0s, and in q

r2 2m−2:m(m−1)
2

there are

m− 3 lots of 1s and (m−3)(m−4)
2

lots of 0s.

• r = r3 where 2m − 3 < r3 ≤ m(m−1)
2

. Similarly qr31 = 0, in qr3 2:2m−3 there are

4 lots of 1s and 2m− 8 lots of 0s, and in q
r3 2m−2:m(m−1)

2

there is a 4 and there are

2m− 8 lots of 1s and (m−5)(m−4)
2

lots of 0s.

We use these cases to find a corresponding eigenvector to the eigenvalues m and 2.

Lemma 4.8.2. m is an eigenvalue ofQ, for m ≥ 3.

Proof. For the eigenvalue m a corresponding eigenvector is

f1 = (1,
m− 4

2(m− 2)
, . . . ,

m− 4

2(m− 2)︸ ︷︷ ︸
2(m−2)times

,
−2

m− 2
, . . . ,

−2

m− 2︸ ︷︷ ︸
(m−3)(m−2)

2
times

)T . We use the cases to show
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this is an eigenvector. First callQf1 = {q1f1, . . . , qm(m−1)
2

f1}T , then

qr1f1 = 4 +
2(m− 2)(m− 4)

2(m− 2)
+ 0,

= m,

qr2f1 = 1 +
(4 +m− 2)(m− 4)

2(m− 2)
− 2(m− 3)

m− 2
,

= m
m− 4

2(m− 2)
,

qr3f1 = 0 +
4(m− 4)

2(m− 2)
− 2(4 + 2m− 8)

m− 2
,

= m
−2

m− 2
,

for r1 = 1, 1 < r2 ≤ 2m− 3 and 2m− 3 < r3 ≤ m(m−1)
2

. ClearlyQf1 = mf1, and so

f1 is an eigenvector for the eigenvalue m.

Lemma 4.8.3. 2 is an eigenvalue ofQ, for m ≥ 4.

Proof. A corresponding eigenvector to the eigenvalue 2 is

w1 = (1,
−1

m− 2
, . . . ,

−1

m− 2︸ ︷︷ ︸
2(m−2)times

,
2

(m− 2)(m− 3)
, . . . ,

2

(m− 2)(m− 3)︸ ︷︷ ︸
(m−3)(m−2)

2
times

)T . We use the

cases to show this is an eigenvector, first callQw1 = {q1w1, . . . , qm(m−1)
2

w1}T , then

qr1w1 = 4− 2(m− 2)

m− 2
+ 0,

= 2,

qr2w1 = 1− 4 +m− 2

m− 2
+

2(m− 3)

(m− 2)(m− 3)
,

= 2
−1

m− 2
,

qr3w1 = 0− 4

m− 2
+

(4 + 2m− 8)2

(m− 2)(m− 3)
,

= 2
2

(m− 2)(m− 3)
,

for r1 = 1, 1 < r2 ≤ 2m − 3 and 2m − 3 < r3 ≤ m(m−1)
2

. Clearly Qw1 = 2w1

meaning w1 is an eigenvector for the eigenvalue 2.
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We now prove the multiplicity of each eigenvalue is as stated. We define the multiplicity

of the eigenvalues 2m, m and 2 as γ2m, γm and γ2 respectively.

First look at the eigenvector found for m, due to the invariance of permutation of rows

and columns of Q the values in the eigenvector f1 can be rearranged in a specific

way and still be an eigenvector. If we create a matrix F where F [Q = 4] = 1,

F [Q = 1] = m−4
2(m−2) and F [Q = 0] = −2

m−2 , then the first row is fT1 , and every

other row is also an eigenvector, by the same logic. We define the lth row of F as

fTl = (fl1, fl2, . . . , flm(m−1)
2

). We prove the following lemma for the multiplicity of the

eigenvalue m,

Lemma 4.8.4. The multiplicity γm ≥ m− 1, for m ≥ 3.

Proof. We suppose for contradiction that the first m−1 eigenvectors, hence rows of F ,

are not linearly independent, and so there exists θ1, . . . , θm−2 ∈ R such that

θ1f
T
1 + · · ·+ θm−2f

T
m−2 = fTm−1. (4.8.2)

It can be seen easily that for qrs with 1 ≤ r, s ≤ m− 1 that i = k = 1 from Equations

(4.2.7), meaning

qrs =

4, if r = s

1, if r 6= s
(4.8.3)

frs =

1, if r = s

m−4
2(m−2) , if r 6= s.

(4.8.4)

Equation (4.8.2) can be split to look at it component-wise, for 1 ≤ t ≤ m(m−1)
2

,

θ1f1t + · · ·+ θm−2fm−2t =fm−1t, (4.8.5)

θtftt +
∑
l 6=t

θlflt =fm−1t. (4.8.6)

Substituting from Equation (4.8.4) into Equation (4.8.6) for 1 ≤ t ≤ m− 2 gives

θt +
∑
l 6=t

θl
m− 4

2(m− 2)
=

m− 4

2(m− 2)
. (4.8.7)
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If we subtract Equation (4.8.7) with t = 2 from this with t = 1 we get,

(1− m− 4

2(m− 2)
)(θ1 − θ2) = 0,

θ1 = θ2,

this can be repeated for all 1 ≤ t ≤ m − 2, giving θ1 = θ2 = · · · = θm−2. Looking at

Equation (4.8.6) for t = m− 1 and substituting the result for the θs we get,

θ1(m− 2)(m− 4)

2(m− 2)
= 1,

θ1 =
2

m− 4
,

this is then substituted into Equation (4.8.7),

2

m− 4
+

2(m− 3)(m− 4

2(m− 2)(m− 4)
=

m− 4

2(m− 2)
,

2

m− 4
(
2(m− 2) + (m− 4)(m− 3)

2(m− 2
=

m− 4

2(m− 2)
,

m(m− 2) = 0,

m = 0 or 2,

this is a contradiction as we have been looking at m > 5, so the first m − 1 rows in F

are linearly independent eigenvectors, and so the multiplicity ofm is at leastm−1.

Now looking at the eigenvalue 2, we can rearrange the eigenvector w1 to give more

eigenvectors. We again create a matrix W where W [Q = 4] = 1, W [Q = 1] = −1
m−2

andW [Q = 0] = 2
(m−2)(m−3) , the first row iswT

1 , and every other row is also an eigen-

vector, by the same logic. We define the lth row ofW aswT
l = (wl1, wl2, . . . , wlm(m−1)

2

).

We prove the following lemma for the multiplicity of the eigenvalue 2,

Lemma 4.8.5. The multiplicity γ2 ≥ m(m−3)
2

, for m ≥ 3.

Proof. Suppose for contradiction that the last m(m−3)
2

eigenvectors, hence rows of W ,

are not linearly independent, so there exists κm+2, . . . , κm(m−1)
2

∈ R such that

κm+2w
T
m+2 + · · ·+ κm(m−1)

2

wT
m(m−1)

2

= wT
m+1, (4.8.8)
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component-wise this gives, for 1 ≤ l ≤ m(m−1)
2

κm+2wm+2l + · · ·+ κm(m−1)
2

wm(m−1)
2

l
= wm+1l. (4.8.9)

We look at the qrs values as they directly correspond to wrs values. For r ≥ m + 2 qrs

is the coefficient for δijδkp where δij ∈ {δ25, . . . , δ2m, δ34, . . . , δm−1m}. Note

qr,2 is the coefficient of δijδ13,

qr,3 is the coefficient of δijδ14,

qr,m is the coefficient of δijδ23,

qr,m+1 is the coefficient of δijδ24,

from this we see, for r ≥ m+ 2 qrs,

wr2 =
−1

m− 2
iff qr2 = 1

iff δij ∈ {δ34, . . . , δ3m}, this corresponds to

r ∈ R1 = {r34, . . . , r3m}.

wr3 =
−1

m− 2
iff qr3 = 1

iff δij ∈ {δ34, δ45, . . . , δ4m}, this corresponds to

r ∈ R2 = {r34, r45, . . . , r4m}.

wrm =
−1

m− 2
iff qrm = 1

iff δij ∈ {δ25, . . . , δ2m, δ34, . . . , δ3m}, this corresponds to

r ∈ R3 = {r25, . . . , r2m, r34, . . . , r3m}.

wr,m+1 =
−1

m− 2
iff qr,m+1 = 1

iff δij ∈ {δ25, . . . , δ2m, δ34, δ45, . . . , δ4m}, this corresponds to

r ∈ R4 = {r25, . . . , r2m, r34, r45 . . . , r4m}.

The set difference ofR1 andR2 is equal to that forR3 andR4. Using this and the fact

that

wr2, wrr3, wrm, wrm+1 = −1
m−2 or 2

(m−2)(m−3) , we see for r ≥ m+ 2

wr2 6= wr3 iff wrm 6= wrm+1.
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The specific equations from Equation (4.8.9) that we use are

κm+2wm+22 + · · ·+ κm(m−1)
2

wm(m−1)
2

2
= wm+12, (4.8.10)

κm+2wm+23 + · · ·+ κm(m−1)
2

wm(m−1)
2

3
= wm+13, (4.8.11)

κm+2wm+2m + · · ·+ κm(m−1)
2

wm(m−1)
2

m
= wm+1m, (4.8.12)

κm+2wm+2m+1 + · · ·+ κm(m−1)
2

wm(m−1)
2

m+1
= wm+1m+1. (4.8.13)

Due to the equal set difference it is clear to see the left hand side of Equation (4.8.10)

subtract Equation (4.8.11) equals the left hand side of Equation (4.8.12) subtract Equa-

tion (4.8.13), therefore their right hands must be equal giving

wm+12 − wm+13 = wm+1m − wm+1m+1. (4.8.14)

We find the value of each term in this equation,

wm+12 =
2

(m− 2)(m− 3)
as qm+12 is the coefficient of δ24δ13 which is 0,

wm+13 =
−1

m− 2
as qm+13 is the coefficient of δ24δ14 which is 1,

wm+1m =
−1

m− 2
as qm+1m is the coefficient of δ24δ23 which is 1,

wm+1m+1 = 1 as qm+1m+1 = 4,

substituting this into Equation (4.8.14) gives,

2

(m− 2)(m− 3)
+

1

m− 2
=
−1

m− 2
− 1

m− 1

m− 3
= 1−m

(m− 2)(m− 1) = 0

m = 1 or 2,

this is a contradiction as we are looking at m > 5 so the last m(m−3)
2

rows of W are

linearly independent eigenvectors, so the multiplicity of 2 is at least m(m−3)
2

.

We are now able to prove the multiplicity of each eigenvalue.

Lemma 4.8.6. The multiplicities are given by γ2m = 1, γm = m− 1 and γ2 = m(m−3)
2

.
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Proof. The sum of the multiplicity cannot exceed the size of the matrix Q, so γ2m +

γm +γ2 ≤ m(m−1)
2

. For contradiction suppose γ2m 6= 1 or γm 6= m− 1 or γ2 6= m(m−3)
2

,

using Lemma 4.8.5 and 4.8.4 this means γ2m > 1 or γm > m − 1 or γ2 >
m(m−3)

2
,

leading to

γ2m + γm + γ2 > 1 +m− 1 +
m(m− 3)

2

>
m(m− 1)

2
.

Equating our two results gives,

m(m− 1)

2
< γ2m + γm + γ2 ≤

m(m− 1)

2

this is clearly a contradiction and so γ2m = 1, γm = m− 1 and γ2 = m(m−3)
2

.

We have now proved Result 4.2.3, by showing 2m,m and 2 are eigenvalues of Q with

multiplicity 1,m − 1 and m(m−3)
2

respectively, and as their multiplicities sum to the

dimension ofQ no other eigenvalues exist.

4.8.3 Distribution of TE under H0 when the covariance is isotropic

Under the null hypothesis, Σ = σ2
0Im(m−1)

2

. We know the distribution of d(Â, B̂)2,

from Result 4.2.2, is nA+nB
nAnB

∑l
i=1 λiχ

2
1, where λi are the l non-zero eigenvalues of ΣQ.

We see ΣQ = σ2
0Q, and so the eigenvalues of this are λi = σ2

0λ
q
i , where the λqi ’s are

the eigenvalues of Q. From Result 4.2.3 we know the eigenvalues of Q and so we can

substitute in our results, leading to,

d1(ÂE, B̂E)2 ∼.. 2m
nA + nB
nAnB

σ2
0χ

2
1

+m
nA + nB
nAnB

σ2
0χ

2
1 + · · ·+m

nA + nB
nAnB

σ0χ
2
1︸ ︷︷ ︸

m−1times

+ 2
nA + nB
nAnB

σ2
0χ

2
1 + ..+ 2

nA + nB
nAnB

σ2
0χ

2
1︸ ︷︷ ︸

m(m−3)
2

times

,

as the chi-squared terms are independent this simplifies to Result 4.2.4.
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4.8.4 Proof of the distribution of graph Laplacians from a stochas-

tic block model

Proof. To calculate the distribution ofx under the stochastic block model we first calcu-

late the distribution of the elements in the mean graph Laplacians, ÂE and B̂E , by using

the distribution of the elements in a graph Laplacian inA and B. From the definition of

a Stochastic block model network we know, for the graph LaplacianAk = (aijk),

aijk ∼ −B(1, pAij) for i 6= j,

where B denotes the binomial distribution.

The Euclidean mean of the graph Laplacians in set A is ÂE = 1
nA

∑nA
k=1Ak = (âij)

therefore

âij =
1

nA

nA∑
k=1

aijk.

Now we can see as as nA →∞ for i 6= j

nAâij =

nA∑
k=1

aijk ∼ −B(nA, p
A
ij),∑nA

k=1 aijk√
nA

∼ N
(
−
√
nAp

A
ij, pA(1− pAij)

)
,

so âij ∼ N
(
− pAij,

1

nA
pAij(1− pAij)

)
.

Similarly as nB →∞,

b̂ij ∼ N
(
− pBij,

1

nB
pBij(1− pBij)

)
for i 6= j.

These binomial to normal approximations hold when nA(m− 1)pAij(1− pAij), nB(m−
1)pBij(1− pBij), nApAij(1− pAij) and nBpBij(1− pBij) tend to infinity, which they do unless

pAij or pBij equals 0 (Molenaar (1970)). As

x =

(
nAnB
nA + nB

) 1
2 (
â12 − b̂12, . . . , âm−1m − b̂m−1m

)
,
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it is clear

x ∼.. N

((
nAnB
nA + nB

) 1
2

µ′,Σ

)
where µ′ = (pB12 − pA12, . . . , pBm−1m − pAm−1m)T ,

and Σ = diag
(
nB p

A
12 (1− pA12) + nA p

B
12 (1− pB12)

nA + nB
, . . .

,
nB p

A
m−1m (1− pAm−1m) + nA p

B
m−1m (1− pBm−1m)

nA + nB

)
.

4.8.5 Distribution of TE under H1 for Erdös-Renyi model network

samples

Under the alternative hypothesis pA 6= pB. We already know

x ∼.. N

((
nAnB
nA + nB

) 1
2

µ′,Σ

)
,

were µ′ and Σ are defined in Equations (4.2.14) and (4.2.15). We shall now define

µ∗ =
(

nAnB
nA+nB

) 1
2
µ′. We can now prove the distribution of the Euclidean distance

squared under the alternative hypothesis

First it should be noted from Imhof (1961) we are expecting this distribution to be the

sum of non-central chi-square random variables. We have seen previously d1(ÂE, B̂E)2 =

xTQx, asQ is symmetric it can be decomposed giving,

xTQx = xTUTΛUx,

where U has rows, uTi , as orthonormal eigenvectors of Q and Λ is a diagonal matrix

with the eigenvalues of Q, λqi , on the diagonal. We look at the distributions of Ux =(
uT1 x,u

T
2 x, . . .

)T ,

Ux ∼.. N
((
uT1µ

∗,uT2µ
∗ . . .

)T
,UΣUT

)
,

∼.. N
((
uT1µ

∗,uT2µ
∗ . . .

)T
,Σ
)
,
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the covariance becomes Σ due to being a scaled identity matrix, Σ = σ2
1Im(m−1)

2

, where

σ2
1 = nB pA (1−pA)+nA pB (1−pB)

nA+nB
, and the fact UUT . This gives the elements the distribu-

tion

uTi x ∼.
. N

(
uTi µ

∗, σ2
1

)
,

uTi x

σ1
∼.. N

(
uTi µ

∗

σ1
, 1

)
.

We can now write

d1(ÂE, B̂E)2 =

(
nAnB
nA + nB

)−1
xTQx (4.8.15)

=

(
nAnB
nA + nB

)−1 m(m−1)
2∑
i=1

λqi (u
T
i x)2,

=

(
nAnB
nA + nB

)−1 m(m−1)
2∑
i=1

λqi σ
2
1 χ

2
1

((
uTi µ

∗

σ1

)2
)
, (4.8.16)

using the definition for the non-central chi-square distribution on page 412 of Scheffe

(1999). The terms in this sum are all independent. We already know the eigenvalues λqi
from Result 4.2.3, and saw the first eigenvector corresponding with eigenvalue 2m was

(1, . . . , 1)T . We want an orthonormal set of eigenvectors and souT1 =
√

2
m(m−1)(1, . . . , 1)T .

As all the eigenvectors in the set must be orthogonal we have uT1u
T
i = 0 for i 6= 1. Now

we note µ∗ =
(

nAnB
nA+nB

) 1
2

(pB − pA)
√

m(m−1)
2

u1 and so

uTi µ
∗ =

(
nAnB
nA + nB

) 1
2

(pB − pA)

√
m(m− 1)

2
uTi u1,

(
uTi µ

′)2 =


(

nAnB
nA+nB

)
(pB − pA)2

(
m(m−1)

2

)
if i = 1,

0 if i 6= 1.
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Substituting these results into Equation (4.8.15) gives

d1(ÂE, B̂E)2 ∼.. 2m

(
nAnB
nA + nB

)−1
σ2
1χ

2
1

((
nAnB
nA + nB

)
(pB − pA)2

m(m− 1)

2σ2
1

)
+m

(
nAnB
nA + nB

)−1
σ2
1χ

2
1 + · · ·+m

(
nAnB
nA + nB

)−1
σ2
1χ

2
1︸ ︷︷ ︸

m−1times

+ 2

(
nAnB
nA + nB

)−1
σ2
1χ

2
1 + ..+ 2

(
nAnB
nA + nB

)−1
σ2
1χ

2
1︸ ︷︷ ︸

m(m−3)
2

times

,

the chi-square random variables are independent and so this is simplified to Result 4.2.6.
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CHAPTER 5

Classification and anomaly detection

5.1 Classification

In the previous chapter we have seen many examples where networks can belong to

different classes, such as the dataset of networks representing novels belonging to the

class of novels written by Austen or by Dickens. The class a network belongs to may

be unknown and in these cases it is useful to be able to classify the graph Laplacian to

determine which class it belongs to. In this chapter we will provide two novel methods

of classifying graph Laplacians, one will be performed in the embedding space and the

other in the space of PC scores.

For classification, graph Laplacians representing networks must belong to a class out

of C possible classes. We will only consider a binary classification problem, meaning

C = 2 and we will refer to the classes as ‘1’ and ‘0’. The classification methods are

supervised methods so require a training set of graph Laplacians where the classes are

already known, described in Section 1.2.4. The training set can be thought of as two

sets, one from each class denoted A = {L1
1, ...,L

1
n1
} and B = {L0

1, ...,L
0
n0
}. Each

classification method will output probabilities a graph Laplacian belongs to each class.

For the binary classes, ‘0’ and ‘1’, we will choose to predict p1i , which is the probability

the graph Laplacian Li belong to class 1, we shall write this as p1i = p1(Li). As there

are only two classes then the probability of being in class ‘0’ can be found easily as

p0i = 1− p1i . These probabilities can be converted to a classification rule, a natural one

being to classify a graph Laplacian as belonging to a certain class if the probability it

belongs to this class is over 0.5.

At the end of this chapter we also provide a method of classifying if a graph Laplacian
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represents an anomaly in a dataset. This is an unsupervised method as we want to be

able to detect an anomaly with no prior knowledge of a dataset.

5.1.1 Method 1: Classification in the manifold

The classification method we describe now takes place in the embedding space. This

method is very similar to the regression method we described in Section 3.3 with it too

using the Nadaraya-Watson model, described in Section 1.2.4, however instead of pre-

dicting a Euclidean response based on graph Laplacian predictors we now are predicting

the probability a graph Laplacian belongs to a certain class.

To use the Nadaraya-Watson model for classification we need the probabilities each

graph Laplacian in our training sample is in each class. As we know the class each of

these graph Laplacians are in then we will set the probability as

p1(Li)

1 if Li is in class 1

0 if Li is in class 0.

When setting the probabilities we are assuming that if two graph Laplacians are identi-

cal they will belong to the same class, i.e. if Li = Lj and Li belongs to class ‘0’ then

Lj must belong to class ‘0’ too, this seems like a reasonable assumption. Just like the

Nadaraya-Watson estimate for regression in Equation (3.3.1), our estimate for proba-

bility is a linear combination of the training set probabilities. The Nadaraya-Watson

estimator for the probability L ∈ Lm belongs to class 1 becomes

p̂1(L) =

∑n0

i=1Kh(d(L,L0
i ))× 0 +

∑n1

i=1Kh(d(L,L1
i ))× 1∑n0

i=1Kh(d(L,L0
i )) +

∑n1
i=1Kh(d(L,L1

i ))
,

where d can be any metric between two graph Laplacians, including the Euclidean

power and Procrustes power metrics and Kh is the kernel function with bandwidth h.

Just as in Section 3.2 a common kernel and the one we shall choose in the Gaussian

kernel defined in (3.2.2). We see p̂1 is guaranteed to represent a probability itself in

Result 5.1.1.

Result 5.1.1. 0 ≤ p̂1 ≤ 1.
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Proof. As Kh(·) ≥ 0 clearly p̂1 ≥ 0 and

n0∑
i=1

Kh(d(L,L0
i ))× 0 +

n1∑
i=1

Kh(d(L,L1
i ))× 1 =

n1∑
i=1

Kh(d(L,L1
i ))

≤
n0∑
i=1

Kh(d(L,L0
i )) +

n1∑
i=1

Kh(d(L,L1
i ))

⇒ p̂1(L) ≤ 1.

In this method of classification the bandwidth, h is a parameter that needs to be chosen.

This parameter can be optimised, by repeating the classification for different h and

choosing the h that performed best, often chosen by the accuracy produced defined in

(1.2.10). This optimisation of h is similar to the optimisation of the bandwidth when

the Nadaraya-Watson model was used for regression in Example 3.3.1. We shall not

look into optimising h in our examples and instead choose the bandwidth as a quarter

of the mean distance between every graph Laplacian in the sample as we feel this is a

sensible bandwidth that gives good results.

5.1.2 Method 2: Classification in the space of PC scores

An alternative method of classification of graph Laplacians we consider is classifica-

tion within a linear space. One option of a linear space to use is the graph Laplacian’s

tangent space for a specific metric. We choose not to perform the classification in the

tangent space as this has a very large number of dimensions. Instead we perform clas-

sification in a reduced dimensional space offered by the PC scores, defined in Section

2.5. This method of classification is similar to Wang et al. (2017) which proposes a

joint embedding of multiple undirected graphs for this purpose.

With the PC scores we can then use standard supervised classification methods to clas-

sify the graph Laplacians. The three different classification methods we will consider

when using the PC scores are linear discriminant analysis (LDA), random forests and

support vector machines (SVM) described in Section 1.2.4. Whilst we will only con-

sider these three classification methods in the PCA space the general method we have

described will hold to numerous other standard classification methods such as gradient

boosting machines and Naive Bayes.
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5.1.3 Application of classification methods to network data

As we explained in Section 1.2.4 we shall use cross validation to evaluate the classi-

fication methods and we shall use leave one out cross validation where the algorithm

is trained on all the data except one graph Laplacian. The trained algorithm will then

predict a probability for the left out graph Laplacian, this is repeated until every graph

Laplacian has a prediction for it. For a sample of n graph Laplacians the leave one out

method requires the algorithm to be trained and tested for each of the graph Laplacians,

so the algorithm will be trained and tested a total of n times.

For the classification of PC scores the leave one out method requires the PC scores to be

calculated for each training set and so for a sample of n graph Laplacians PCA will be

performed n times. Therefore we only use the Euclidean power metrics and specifically

α = 1 and 1
2
, as the Procrustes power metric is very time consuming to get the PC scores

for each training set and then project other graph Laplacians into this space.

Example 5.1.1: Classification methods applied to the novel data
We shall compare our methods on the 19th century authors dataset to demonstrate how

we can classify text by author. This is a useful task explained in Coulthard (2004) and

could be used for example in plagiarism detection and even for author identification

in crimes involving text evidence. We shall classify Dickens’ novels with other 19th

century authors. We will think of a graph Laplacian belonging to the class ‘1’ as rep-

resenting a novel written by Dickens. To begin we just classify Dickens and Austen

novels and so the ‘0’ class are graph Laplacians representing Austen’s novels.

For the Austen and Dickens dataset, Figure 5.1 shows the probability of classifying

a network as corresponding to a Dickens novel using Method 1 and Method 2 using

the linear discriminant analysis classifier in the tangent space. The LDA is performed

firstly using just the first PC for the Euclidean and square root Euclidean metrics. We

can see for the Euclidean metric this does a good job only incorrectly classifying David

Copperfield. For the square root metric all the novels are correctly classified. When

LDA is performed using the first 2 PCs then for both metrics all novels are correctly

classified. For Method 1 all novels are correctly classified for both metrics.
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Figure 5.1: The probability of classifing if a novel was written by Dickens, ordered
along the x axis by the magnitude of this probability. Coloured red if
Dickens novel or blue if Austen novel. The top row is when classifying
using Method 1 using the a) Euclidean and b) square root Euclidean met-
ric. The bottom row is classifying using Method 2 with the LDA classifier
with 1 PCA coordinate for the c) Euclidean and b) square root Euclidean
metric. The abbreviations for novels are found in Table 1.2.

We saw in Example 4.6.3 that the Austen and Dickens novels have significantly different

means and the two novelists are very well separated on 1st and 2nd PC plots in Example

2.5.1, therefore it is not surprising classifying them is almost trivial. To demonstrate our

method for a more interesting example we look at the full 19th century novel data. The

1st and 2nd PC scores for all these novels are plotted in Figure 5.2 for the Euclidean

and square root Euclidean metrics, there is far more overlapping of Dickens novels with

the extra 19th century author’s novels, so classifying Dickens novel with the addition of

these extra authors is a less trivial example. For this example the class ‘1’ now is still the

graph Laplacians representing Dickens novels however the ‘0’ class represents any non-

Dickens 19th century author’s novel. From the PC plots in Figure 5.2 the Dickens novels

form a more distinct cluster when using the square root Euclidean metric compared to
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using the Euclidean metric, and so it seems likely we will get better results for the

classification when using the square root Euclidean metric.
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Figure 5.2: Plot of PC1 and PC2 scores for all 19th century novels using the (a) Eu-
clidean metric and (b) square root Euclidean metric. Red - Dickens, blue -
Austen and green - other. The abbreviations for novels are found in Tables
1.2 and 1.3.

Figure 5.3 shows the classification probabilities when using Method 1, for the Euclidean

and square root Euclidean metrics, the Procrustes size-and-shape is not included as re-

sults are nearly identical to results for the square root Euclidean metric. The bandwidth

chosen was 0.010, 0.073 and 0.072 for the Euclidean, square root Euclidean and Pro-

crustes size-and-shape respectively. For the square root metric the novels with the high-

est probability of being written by Dickens are his novels and hence if we classified a

novel as being written by Dickens if it has over 0.8 probability as being written by him

we would get a classification accuracy of 100%. For the Euclidean metric the novels

with highest probability of being written by Dickens are all his own novel with the ex-

ception of Vanity Fair and Dracula, and so no classification rule exists that could give

100% accuracy.
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Figure 5.3: The probability of classifing if a novel was written by Dickens using
Method 1 using the a) Euclidean and b) square root Euclidean metric.
Coloured red if Dickens novel, blue if Austen novel and green if another
author. Ordered along the x axis by the magnitude of this probability. The
abbreviations for novels are found in Tables 1.2 and 1.3.

Figure 5.4, 5.5 and 5.6 show the classification probabilities for the full 19th century

novel dataset when using Method 2 using LDA, random forests and SVM respectively.

Performing LDA on the square root Euclidean PC scores gives very good results, for

just two PCs the novels with the largest probability of being written by Dickens are

almost all his novels, and when using 8 PCs all the novels are correctly classified if the

classification probability was chosen to be 0.8. Performing LDA on the Euclidean PC

scores does not give as good results. Keeping the first 2 PCs leads to poor prediction

of whether a novel was written by Dickens. The prediction is improved when more

PCs are included. When using the first 8 PCs the novels with a high probability of

being Dickens are all his novels with the exception of Vanity Fair. The random for-

est and SVM both perform worse than LDA for both metrics as even when 8 PCs are

used for both there is no classification rule that could give 100% classification accuracy.

We see repeatedly Charles Dickens’ own novel David Copperfield has quite a low fit-

ted probability of being written by Dickens in our classifications, this novel is thought

to be semi-autobiographical and perhaps this explains why it would be misclassified

(LaFarge, 2009). As well often Robert Louis Stevenson’s Jekyll and Hyde, William

Thackeray’s Vanity Fair and Emily Brontë’s Whuthering Heights have high fitted prob-

abilities of being written by Dickens. William Thackeray knew Charles Dickens and

were described as literary rivals, so perhaps it is unsurprising that they may write simi-

larly (Maggie Kopp, 2011).
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Figure 5.4: The probability of classifing if a novel was written by Dickens using LDA,
ordered along the x axis by the magnitude of this probability. Coloured
red if Dickens novel, blue if Austen novel and Green if other. Using (left to
right) 2, 5 or 8 PCA coordinates, from the (top) Euclidean and (bottom)
square root Euclidean metrics, for the classification. The abbreviations
for novels are found in Tables 1.2 and 1.3.
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Figure 5.5: The probability of classifing if a novel was written by Dickens using Ran-
dom forests, ordered along the x axis by the magnitude of this probability.
Coloured red if Dickens novel, blue if Austen novel and Green if other.
Using (left to right) 2, 5 or 8 PCA coordinates, from the (top) Euclidean
and (bottom) square root Euclidean metrics, for the classification. The
abbreviations for novels are found in Tables 1.2 and 1.3.
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Figure 5.6: The probability of classifing if a novel was written by Dickens using SVM,
ordered along the x axis by the magnitude of this probability. Coloured
red if Dickens novel, blue if Austen novel and Green if other. Using (left to
right) 2, 5 or 8 PCA coordinates, from the (top) Euclidean and (bottom)
square root Euclidean metrics, for the classification. The abbreviations
for novels are found in Tables 1.2 and 1.3.

Example 5.1.2: Classification methods applied to the M-money transaction data
We have seen for the M-money transaction data in Example 4.6.2 that the mean network

for a weekday is significantly different to the mean of a weekend. We shall use our dif-

ferent classification methods to try and classify the M-money networks into weekdays

and weekend days. In Example 2.5.2 we saw from the plot of first and second PC co-

ordinates that the weekend days, especially Saturdays overlapped a lot with weekdays,

we therefore do not expect to get 100% accuracies in this classification.

To compare the different classification methods we shall compare their maximum ac-

curacies, where accuracy is defined in (1.2.10). We choose to look at a balanced dataset

so we know the accuracy should be above 50% as we can achieve 50% accuracy by

just classifying randomly. The balanced dataset consists of the graph Laplacians for the

104 weekend days of the year, class ‘1’, and then 104 randomly selected graph Lapla-

cians corresponding to weekdays, class ‘0’. The classification were again run using a

leave one out cross validation strategy. The threshold probability to classify a graph

Laplacian as a weekend was then chosen to give the highest accuracy. The results are

found in Table 5.1. The largest accuracy achieved, 69.2% correspond to using a random

forest with the top 8 Euclidean PC scores. Using the Nadaraya Watson approach also
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gives good results of around 63/64% for any of the Euclidean, square root Euclidean

and Procrustes size-and-shape metric.

Method Pcs Threshold Maximum Accuracy
used used probability (%)

Euclidean NW NA 0.47 64.4

Square root Euclidean NW NA 0.47 63.5

Procrustes size-and-shape NW NA 0.47 63.5

Euclidean LDA 2 0.59 57.2

Euclidean LDA 5 0.52 57.2

Euclidean LDA 8 0.50 66.8

Square root Euclidean LDA 2 0.56 58.2

Square root Euclidean LDA 5 0.55 62.0

Square root Euclidean LDA 8 0.50 65.4

Euclidean RF 2 0.62 54.8

Euclidean RF 5 0.50 61.5

Euclidean RF 8 0.43 69.2

Square root Euclidean RF 2 0.89 52.9

Square root Euclidean RF 5 0.46 62.0

Square root Euclidean RF 8 0.43 63.0

Euclidean SVM 2 0.56 51.4

Euclidean SVM 5 0.54 51.0

Euclidean SVM 8 0.18 50.0

Square root Euclidean SVM 2 0.58 53.4

Square root Euclidean SVM 5 0.26 50.0

Square root Euclidean SVM 8 0.33 50.0

Table 5.1: Maximum classification accuracies for the M-money networks, classifying
if a network corresponds to a weekday or weekend. The threshold proba-
bility is the threshold to classify a graph Laplacian as a weekend to give
the corresponding accuracy.
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5.2 Anomaly detection

Detecting anomalies in data is a task of interest in statistics, and this remains true when

the data consists of networks (Akoglu et al., 2015). Anomaly detection is similar to a

classification problem, where one class is the majority of the data, ‘inliers’, and a second

class are the outliers or anomalies. However anomaly detection differs from standard

classification problems as it is an unsupervised problem as we have no training data in

which the class each graph Laplacian belongs to is known. A simple way to investigate

anomalies of networks is by looking at a 2D representation of graph Laplacians, such

as MDS or PCA plots where anomalies can be detected visually (Bunke et al., 2007)

which we saw in Section 2.5. However this relies on our own judgements and therefore

is subjective, so we propose a classification rule for outliers using our graph Laplacian

framework.

A simple and intuitive way of detecting an anomaly is by considering the distance be-

tween each graph Laplacian and the unprojected sample mean, where the distances are

dα(Lk, η̂)

dα,S(Lk, η̂),

and η̂ is the sample of graph Laplacians unprojected sample mean defined in Equation

(2.3.1). If a graph Laplacian has a much greater distance from the mean than other

graph Laplacians within the sample this could be an indication that it is an anomaly.

To classify a graph Laplacian as an anomaly requires defining a threshold such that

a distance to the sample mean greater than this threshold indicates an anomaly. This

threshold can be found when we choose the distance as the Euclidean power distance.

To calculate this threshold we will work with the distance squares, as the distribution

and hence threshold of these can be found and then square rooted back to distances.

The test statistic that we are therefore using is Z = dα(L, η̂)2. One way to calculate the

threshold is to assume a model for the graph Laplacians and we will assume

φ(Fα(L)) ∼ Nm(m−1)
2

(φ(Fα(η)),Σ), (5.2.1)

where φ is defined in (0.0.4), hence we are working in the off diagonal space of the em-

bedded graph Laplacians, similarly to Section 4. Due to the consistency of the sample

means in Result 2.3.1, as n→∞ we have φ(Fα(η̂))→ φ(Fα(η)). Therefore using the
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central limit theorem in Result 4.2.1, as n→∞

φ(Fα(L))− φ(Fα(η̂)) ∼ Nm(m−1)
2

(0,Σ).

Using the same logic as used to prove Result 4.2.2 we can write the distance squared as

a quadratic form of normals,

Z = dα(L, η̂)2 = xTQx,

where x = φ(Fα(L)) − φ(Fα(η̂)) and Q is defined in (4.2.8). Therefore similarly to

Result 4.2.2 when n→∞

Z = dα(L, η̂)2
D−→

m(m−1)/2∑
i=1

λiχ
2
1, (5.2.2)

in which each χ2
1 is independent and λi are the m(m − 1)/2 non-zero eigenvalues of

ΣQ. In general the value of Σ and hence the λis are unknown and we will have to

estimate Σ and to do this we use the shrinkage estimator from Schäfer and Strimmer

(2005), that we also used in our two-sample test in Section 4.2.

Once the λis are found, then through large simulations the quantiles of the distribution

for the distance squared can be found which can then be used as thresholds, for example

at a significance value of 100a%, we can find by simulation a threshold, c, as the 100(1−
a)th quantile of

∑m(m−1)/2
i=1 λiχ

2
1, we therefore classify a graph Laplacian as an outlier

if

Z = dα(L, η̂)2 > c.

Often it is not appropriate to estimate Σ, especially whenm is large, as we have already

seen in Chapter 4, and in these cases it is better to approximate the distribution in (5.2.2)

to avoid estimating Σ. The distribution can be approximated using results from Box

(1954), as we have seen previously in (4.2.10) for the approximation of the distribution

of the two-sample test. This approximation is

Z = dα(L, η̂)2 ∼.. gχ2
h. (5.2.3)

As Σ is inappropriate to estimate we shall not use the λ values to estimate g and h and
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instead estimate them using the median and upper and lower quartiles of the distribu-

tion, denoted for this distribution as Z0.5(h, g), Z0.75(h, g) and Z0.25(h, g). We use the

quartiles to approximate g and h, as the quartiles are robust to anomalies and as we are

using data which may contain anomalies we want a method that is robust to the anoma-

lies. The quartiles for the distance squared to the mean for the observed data are easily

calculated and denoted Ẑ0.5, Ẑ0.75 and Ẑ0.25. To calculate g and h we set the median of

the approximate distribution to the known median to give

Ẑ0.5 ≈ ĝĥ(1− 2

9ĥ
)2

ĝ ≈ Ẑ0.5

ĥ(1− 2

9ĥ
)2
.

(5.2.4)

We can then find the ĥ that minimises the sum of the squares between the quartiles,

given as

ĥ = argh min((Z0.5(h)− Ẑ0.5)
2 + (Z0.75(h)− Ẑ0.75)

2 + (Z0.25(h)− Ẑ0.25)
2).

The value of ĥ can be found using the optimize function in R (R Core Team, 2018).

We now have estimates ĥ and ĝ for the unknown parameters, g and h, of (5.2.3) and

hence an approximated distribution of Z, the test statistic, is now known and the thresh-

old for this at a 100a% significance level is gχ2
h,1−a, which will be known.

Example 5.2.1: Anomaly detection applied to Austen and Dickens novels
It is interesting to determine if certain Austen and Dickens novels are outliers with the

rest of their respective writing. We will use the method we have described for both

authors using α = 1 to classify anomalies. A limitation of our method is when calcu-

lating the threshold we assumed n → ∞, for both authors n is not at all large and so

this assumption is violated. We also are assuming the graph Laplacians follow a normal

distribution as stated in Equation (5.2.1). We will compare the actual distribution of

distance squared with the theoretical and approximated theoretical distribution to see

the effect of these assumptions.

To use the theoretical distribution in (5.2.2) we must estimate a covariance matrix, and

when m = 1000 this covariance is far too large to estimate hence instead we just look

at the top 50 words for all novels so that our graph Laplacians have m = 50. Figure

5.7 includes plots for both Authors of the distance each novel is from the mean novel
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using the Euclidean metric. The threshold to classify a novel as an anomaly at a 0.1%

significance level is included for both authors too. The threshold was calculated by a

million simulations of the distribution which was deemed large enough to give sensible

results. From these plots we can see clearly that the novel Lady Susan is an anomaly

of Jane Austen’s novels. Lady Susan is actually a novella of Austen’s and is sensible

to be chosen as an outlier with it often being referred to as atypical for Austen’s work

as it comprises of letters (Gaston, 2016). Also Persuasion is above the threshold and

so is also suggested to be an outlier. For the Dickens novels the novels, The Pickwick

Papers, Oliver Twist, The Old Curiosity Shop, A Christmas Carol, David Copperfield,

Bleak House and Great Expectations are all above the threshold and hence anomalies.

Our method is picking out over a third of Dickens’ novels as anomalies and so this is

indicating the theoretical threshold is not sensible.
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Figure 5.7: Distance a novel’s graph Laplacian is from their authors mean for the
Euclidean metric, for Austen (left) and Dickens (right), with the threshold
line for an anomaly included for m = 50. The abbreviations for novels
are found in Table 1.2.

In Figure 5.8 the distribution of the distance squared, found from the data, for α = 1

is plotted against the theoretical distribution given in (5.2.2) when m = 50, it is clear

these distributions do not match up at all, and so using this distribution to calculate

a threshold is not sensible. When using the approximated distribution, now for m =

1000, we can see from Figure 5.8 that this distribution does match up well and so is far

more sensible to use to estimate a threshold. This is most likely as when we use the

approximated distribution we no longer need to estimate a large covariance matrix. We

choose m = 1000 as for the approximated distribution we do not need to estimate a
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large covariance matrix so having a larger m is OK.

Figure 5.9 has the distances for m = 1000 and the approximated threshold line. This

gives far more sensible results than before with none of Dickens novels picked out as

anomalies and just Lady Susan as an anomaly for Austen.
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Figure 5.8: Distribution of d21 for Austen’s novels (left) and Dickens’ novels (right)
for m = 50 (top) and m = 1000 (bottom). Black- true distribution, green
- theoretical distribution in (5.2.2) and red- approximated theoretical dis-
tribution given in (5.2.3) using g and h approximated using the quartiles.

131



CHAPTER 5: CLASSIFICATION AND ANOMALY DETECTION

(a)

1795 1800 1805 1810 1815

0
.0

0
0

0
.0

1
0

0
.0

2
0

0
.0

3
0

Year

D
is

ta
n
c
e
 f
ro

m
 m

e
a
n

EM

PE

PR

LS

MA
NO

SE

(b)

1835 1845 1855 1865

0
.0

0
0
.0

1
0
.0

2
0
.0

3
0
.0

4

Year

D
is

ta
n
c
e
 f
ro

m
 m

e
a
n

TTC
BR

BH

DC

DS

GE

HT

LD
MCNN

OT

OMF

PP

ED

OCS

C

Figure 5.9: Distance a novel’s graph Laplacian is from their authors mean for the
Euclidean metric, for Austen (left) and Dickens (right), with the threshold
line for an the approxmiated threshold for m = 1000. The abbreviations
for novels are found in Table 1.2.

5.3 Summary

In this chapter we have proposed two methods for the classification of graph Laplacians

into binary classes. Both methods output a probability the graph Laplacian is in a

certain class and this probability can be thresholded to assign the graph Laplacian to a

class. The first method used Nadaraya-Watson regression on the manifold, very similar

to the regression performed in Section 3.3 however now to predict probabilities. The

second method used standard classification methods, like LDA, random forests and

SVMs on the PC score space defined in our graph Laplacian framework. These methods

were compared for the 19th century author data where classes were chosen as graph

Laplacians representing novels by certain authors. The first method seemed favourable

especially when using the square root Euclidean metric, however the second method

still performed well, especially when LDA was used. Many other classification methods

could also be considered for the second case, like logistic regression, which may out

perform those we currently have considered.

We also looked at anomaly detection, where a graph Laplacian was considered an

anomaly if its distance to the unprojected mean was above a threshold. This thresh-

old could be found asymptotically however for the Dickens and Austen novels, which

we applied it on, this threshold did not give sensible results. We described a method of

estimating the threshold, which gave far better results for Dickens and Austen novels.
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Comparing tangent coordinates

For the previous chapters when we have used ideas from shape analysis we have stuck

to the size-and-shape space, defined in (1.1.6), where objects are not restricted to be

invariant to scale but had invariance to reflection. However in this chapter we will

now define and consider the specific case in shape analysis where the effect of scale is

removed but the effect of reflection remains; this space that we work on is called the

shape space or before the effect of rotation is removed the pre-shape space.

There are many instances in shape analysis where scale is removed, an obvious one

being if the objects are not recorded on the same scale so scale must be removed to

make the objects comparable. Also in many applications where scale information is

available instead of working in the size-and-shape space it can be beneficial to work in

the shape space and consider the size variable separately (Dryden and Mardia, 2016).

In shape analysis it is common for information on reflection of the shape to remain, as

often we would consider shapes to be different if they were reflections of one another.

Just like our statistical analysis of networks, in shape analysis the use of a linear space

such as a tangent space to the shape space or pre-shape space is of interest as standard

multivariate analysis can be applied here, such as shape PCA (Kent, 1994). Unlike the

size-and-shape space we used in previous chapters where there is only one way com-

monly used to project to the tangent space, for the shape space there are several com-

mon ways of projecting on to a tangent space; the three we consider here are residual

tangent coordinates, partial tangent coordinates and inverse exponential map tangent

coordinates. Partial and inverse exponential map tangent coordinates are projections

of a configuration onto the tangent space, whereas residual tangent coordinates are an

approximation onto the tangent space and this approximation is only good for low vari-
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ability data.

In this chapter we investigate empirically the characteristics of the three different tan-

gent coordinates in the context of different datasets. We explore why residual tangent

coordinates are not appropriate for large variability datasets specifically when applying

shape PCA and demonstrate this idea using several datasets. Finally we will conclude

and provide guidance on which tangent coordinates are most suitable to use.

6.1 Shape analysis

We briefly introduced the idea of shape analysis in Section 1.1.1. As we mentioned, in

the present chapter we will consider a space where we have invariance to scaling but

not reflection, named the shape space. For a k ×m configuration matrix, Xi, where k

is the number of landmarks and m is the number of dimensions the shape space for it is

defined

[X]S = {ZR : R ∈ SOm},

where

Zi =
HXi

‖HXi‖
,

andH , the Helmert sub-matrix, is defined in (1.1.5). The rotation termR belongs now

to SOm, the set of orthogonal matrices with determinant 1, and notOm like in previous

chapters as we now do not have invariance to reflection. From the definition of H the

denominator is equivalent to the centroid size ofXi (Dryden and Mardia, 2016, Section

3.2.5), where centroid size is defined

S(X) = ‖X − 1x̂T‖, (6.1.1)

where x̂ is the centroid which is a column vector with ith element ( 1
k

∑k
i=1Xij). The

Zi matrix is a (k − 1) × m matrix which lies on the pre-shape sphere, as it has had

location and scale removed. For a matrix to lie on the pre-shape sphere it must satisfy

‖Zi‖ = 1.

There are three common distance metrics used on the pre-shape sphere. These three
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distances are the full Procrustes distance, dF , the partial Procrustes distance, dP , and

the Riemannian distance, ρ, defined between the configuration matrices X1 and X2,

with pre-shape coordinates Z1 and Z2 respectively, as,

dP (X1,X2) = inf
Γ∈SO(m)

‖Z2 −Z1Γ̂‖, (6.1.2)

dF (X1,X2) = inf
Γ̂∈SO(m),β∈R+

‖Z2 − βZ1Γ̂‖, (6.1.3)

ρ(X1,X2) = inf
Γ∈SO(m)

arccos(ZT
1 Z2Γ̂). (6.1.4)

The Riemannian distance, ρ, is the minimised great circle distance, i.e. the minimal

geodesic path, defined in Section 1.1, carried out over rotations between Z1 and Z2. Γ

is the optimal rotation defined in (1.1.7), but restricted to now belong to SOm, this can

be written explicitly as

Γ̂ = UV T

where ZT
2 Z1 = ‖Z1‖‖Z2‖V ΛUT ,U ,V ∈ SO(m).

(6.1.5)

The scaling parameter β can be written explicitly as

β =
trace(ZT

2 Z1Γ̂)

trace(XT
1 X1)

. (6.1.6)

The three distances are all related hence the partial and full Procrustes distance can be

written in terms of the Riemannian distance, ρ, by

dP = 2 sin(
ρ

2
)

dF = sin(ρ),
(6.1.7)

see Dryden and Mardia (2016).
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6.2 Shape tangent coordinates

Just like the analysis of graph Laplacians, in shape analysis we work in a tangent space

where we can perform standard statistical methods. For the shape analysis we consider,

where shapes are invariant to scale but not reflection, the tangent space is a linearized

space tangent to a pole. We will normally choose the pole as the sample full Procrustes

mean shape on the pre-shape sphere. Using (1.1.3) the sample full Procrustes mean

shape on the pre-shape sphere, µ̂ ((k − 1)×m), is defined as

µ̂ =
H
(
arg infµ′∈Rk×m

1
n

∑n
k=1 d

2
F (µ′, Xk)

)
‖H

(
arg infµ′∈Rk×m

1
n

∑n
k=1 d

2
F (µ′, Xk)

)
‖
. (6.2.1)

The dimension, q, of the tangent space is

q = km−m− m(m− 1)

2
− 1. (6.2.2)

This is as the original space is km dimensions then m are removed by translation con-

straints, m(m − 1)/2 by rotational constraints and 1 due to size constraints. The rota-

tional constraint comes from the fact the tangent space we consider does not depend on

rotation (Dryden and Mardia, 2016, Page 65).

There are multiple ways of projecting on to the tangent space, we shall now define

and study the same three as defined in Section 4.4 Dryden and Mardia (2016) which

are the (i) residual tangent coordinates, (ii) partial tangent coordinates and (iii) inverse

exponential map tangent coordinates, schematics for them are found in Figure 6.1.

6.2.1 Residual tangent coordinates

The residual tangent coordinates appear to be favoured by practitioners as they are for-

mulated in a more straightforward way than the other tangent coordinates (Dryden and

Mardia, 2016). However the residual tangent coordinates only give an approximation

to the tangent space as configurations are not projected onto it, seen for the pre-shape

residuals in the schematic in Figure 6.1. Also the term ‘residual tangent coordinates’ is

used by different authors to mean different things. We review two which we term pre-

shape residuals and denote by vR (used in Dryden and Mardia (2016)) and Procrustes

residuals denoted by vRproc (used in the implementation of the generalised Procrustes
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Figure 6.1: The different tangent coordinates, (a) the residual, (b) the parital and (c)
the inverse exponential.
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algorithm found in the shapes package in R (Dryden, 2018) based on work from

Goodall (1991), Ten Berge (1977) and Gower (1975)) We shall define both types of

residual tangent coordinates and explain why it is appropriate for us to only consider

the pre-shape residuals.

The pre-shape residual tangent coordinates are defined for a configuration on the pre-

shape sphereZi, with the sample full Procrustes mean shape µ̂ on the pre-shape sphere,

defined in (6.2.1), chosen as the pole, as

v
(i)
R = vec(β̂(i)ZiΓ̂

(i))− vec(µ̂),

where the optimal rotation, Γ̂(i), and the optimal scaling, β̂(i), are given in (6.1.5) and

(6.1.6) to minimize the Procrustes distance between µ̂ andZi, and where vec is defined

in (0.0.1).

The Procrustes residuals are similar and defined as

v
(i)
Rproc = c

(
vec(β̂(i)ZiΓ̂

(i))− 1

n

n∑
j=1

vec(β̂(j)ZjΓ̂
(j))

)
, (6.2.3)

where

c =

√∑n
j=1 S(Xj)2√∑n

j=1 S(β̂(j)ZjΓ̂)2
,

where S(X) is defined in (6.1.1). These differ to the pre-shape residuals as now the

arithmetic mean of the configurations registered to the mean is subtracted, which is

not on the pre-shape sphere and hence does not have unit size as µ̂ does for the pre-

shape residuals. The Procrustes residuals also use scaling, c, so the sum of the squared

centroid sizes for the original configurations is equal to that for the registered configu-

rations.

We can write the Procrustes residuals in terms of the pre-shape residuals as

vRproc = c(vR + a)

where a = vec(µ̂)− 1

n

n∑
j=1

vec(β̂(j)ZjΓ̂
(j)).

As vRproc is just a translation followed by a scaling of vR we do not consider the differ-
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ences of vRproc and vR further as both residuals will lead to an identical arrangement of

PCA coordinates just on a different scale. From now on we think of the residual tangent

coordinate as the pre-shape residual tangent coordinate, we choose these as their scale

is comparable to that of the partial and inverse exponential map tangent coordinates.

As the residual tangent coordinates, vR, are an approximation to the tangent space coor-

dinates these coordinates are not actually orthogonal to the chosen pole on the pre-shape

sphere, meaning in general trace(vTRvec(µ̂)) 6= 0. Further the space of residual tangent

coordinates is q+1 dimensional, instead of q dimensional, defined in (6.2.2), this is one

more than the pre-shape sphere as the size constraint is lost for this approximation. The

residual approximation to a tangent space is good when configurations are close to the

pole of the projection (Dryden and Mardia, 2016), however for datasets with high vari-

ability the approximation is unsuitable. We will compare vR with the other two tangent

coordinates to determine if the current wide use of vR by practitioners is suitable.

6.2.2 Partial tangent coordinates

The partial tangent coordinates, vP , are formed by projecting a configuration up from

the pre-shape sphere to the tangent space seen in Figure 6.1. For the configuration on

the pre-shape sphere Zi the partial tangent coordinates with γ ((k− 1)×m) chosen as

the pole are

v
(i)
P = [Ikm−m − vec(γ)vec(γ)T ]vec(ZiΓ̂

(i)), (6.2.4)

where Γ̂(i) is defined in Equation 6.1.5 for Zi and γ. This type of tangent coordinates

preserves the full Procrustes distance between points on the pre-shape sphere and the

pole, so ‖v(i)P ‖ = d
(i)
F , where d(i)F = dF (Xi,γ). We use the sample full Procrustes mean

shape, µ̂, defined in (6.2.1), as the pole, as this makes the tangent coordinate more

comparable to the residual tangent coordinates which use the full Procrustes mean.

6.2.3 Inverse exponential map tangent coordinates

Inverse exponential map tangent coordinates are another projection of a configuration

onto the tangent space seen in Figure 6.1. They have the property that the Riemannian

distance between a point on the pre-shape sphere and the pole are preserved, so ‖v(i)E ‖ =

ρ(i), where ρ(i) = ρ(Xi,γ). A configuration on the pre-shape sphere, Zi, has inverse
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exponential map tangent coordinates with γ ((k − 1)×m) as the pole given by,

v
(i)
E =

ρ(i)

sin(ρ(i))
[Ikm−m − vec(γ)vec(γ)T ]vec(ZiΓ̂

(i)), (6.2.5)

where Γ̂(i) is defined in Equation 6.1.5 for Zi and γ and ρ(i) = ρ(Xi, µ̂) defined in

Equation 6.1.4. We again use the sample full Procrustes mean shape, µ̂, defined in

(6.2.1), as the pole.

6.2.4 Criteria for comparing tangent coordinates

To compare the tangent coordinates we will consider the difference between them for

low variability data and higher variability data. By low variability we mean for each

configuration’s Riemannian distance to the sample full Procrustes mean is ‘small’ and

by using (6.1.7) if ρ is small so are dF and dP .

A use of tangent coordinates is for performing shape PCA (Dryden and Mardia, 1993),

where configurations are projected onto a tangent space and then standard PCA is per-

formed on this. We expect for high variability data the choice of tangent coordinate is

important in shape PCA and it is this effect we will study. However for low variability

data the three different tangent coordinates are close to being equal and so the choice is

not important.

Relation between tangent coordinates for data with low variability

To show the three tangent coordinates are close to being equal when there is low vari-

ability first we will show when ρ is small vP and vE are approximately equal. From

the schematics in Figure 6.1 and the formulas for the tangent coordinates, (6.2.4) and

(6.2.5), it is clear the difference between using vP and vE is just from their lengths.

Hence v(i)E can be written in terms of v(i)P by

v
(i)
E =

ρ(i)

sin(ρ(i))
v
(i)
P . (6.2.6)
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To show when ρ is small vP and vE are always approximately equal we use a Taylor

expansion on (6.2.6), giving

vE = ρ(ρ− ρ3

3!
+ ...)−1vP

=

(
1− ρ2

3!
+ ...

)−1
vP ,

and then we use a Taylor expansion again to give

= (1 +
ρ2

3!
− ...)vP

= vP
(
1 +O(ρ2)

)
,

and so we have shown vP and vE are approximately equal for low variability data.

To show vR and vP are approximately equal for small ρ we note for vR when there

is low variability it is clear, from the schematics in Figure 6.1, that very little scaling

is needed to minimise the Procrustes distance between a point on the pre-shape sphere

and the pole and hence the optimal scaling will be

β̂(i) = 1− ε1,

where ε1 is small and non-negative. Suppose that the partial Procrustes distance be-

tween the configuration and the pole, µ̂, is small, then

vec(ZΓ̂) = vec(µ̂) + ε2

vec(µ̂)Tvec(ZΓ̂) = 1 + vec(µ̂T )ε2,

where ε2 is small, meaning ‖ε2‖ � 1. Therefore

vR = vec(β̂ZΓ̂)− vec(µ̂)

= vec((1 + ε1)ZΓ̂)− vec(µ̂)

= vec(ZΓ̂)− vec(µ̂) +O(vec(ε1ZΓ̂)),
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and

vP = (Ikm−m − vec(µ̂)vec(µ̂)T )vec(ZΓ̂)

= vec(ZΓ̂)− vec(µ̂)(1 + vec(µ̂T )ε2)

= vec(ZΓ̂)− vec(µ̂) +O(vec(µ̂T )ε2),

so clearly as ε1 and ε2 are small then vR and vP are approximately equal. And so we

can see all three tangent coordinates are just as appropriate to use in the low variability

case as one another.

Relation between tangent coordinates for data with high variability

To the best of our knowledge there is no literature comparing the use of the three tangent

coordinates for higher variability data, perhaps because in practice shape data often have

low variability, and so any choice is suitable, however the motivating enzyme data,

described in Example 6.3.1, showed higher variability. It turns out for higher variability

data the choice of tangent coordinates is important when performing shape PCA, as

vR are not suitable to use for higher variability data. The process of shape PCA can

be found in detail in Section 7.7 of Dryden and Mardia (2016). Just like the PCA we

have defined for graph Laplacians in Section 2.5, in shape PCA shapes are projected

onto the tangent plane, then standard PCA is performed on these. The results of this

are projected back into the pre-shape space then results can easily be visualised back in

configuration space. In shape PCA there is a question of what tangent coordinates to

use in the projection and this does not appear to have an answer, with Kent (1994) using

vP and Cootes et al. (1992) using vR.

When performing shape PCA the number of PCs with non-zero eigenvalues when using

vP and vE will be at most q if q ≥ n− 1, defined in Equation 6.2.2, or otherwise there

will be n − 1. When using vR there are at most q + 1 if q + 1 ≥ n− 1 or otherwise

n− 1. Using vR gives one more non-zero eigenvalue than the other tangent coordinates

due to their extra dimension.

Figure 6.2 shows a schematic for finding vR for data with quite a high variability. The

vRs are pulled in close to the sample mean vector and hence for high variability data it

is this vector that will dominate the first PCs. So we expect that for higher variability

data when vR are used shape PCA will give first PCs that are just indications of the
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Procrustes distance from the sample mean to the shape, as the first PC becomes the

mean vector coloured red in Figure 6.2. Obviously this is undesirable because shape

PCA is being dominated by the sample mean when we want to remove its effect. The

PCA is not taking into account as much information on landmark configurations so

information from this is being lost. We use the shapes package in R (Dryden, 2018)

throughout to perform the shape PCA.

To investigate the effect of using vR for high variability data the plots of PC scores,

found in Section 6.3, are coloured by a configuration’s Riemannian distance, ρ, to the

mean shape, defined in Equation 6.1.4. This colouring is equivalent to colouring by

the full Procrustes distance to the mean shape, dF , for ρ ≤ π
2
, seen using (6.1.7). The

condition ρ ≤ π
2

has been checked and met for each dataset. These plots then show how

the full Procrustes distance affects the PC scores, for each type of tangent coordinate,

so we can see if the distances from the mean is having an effect when vR are used.

O

Z1Z2

µ̂

v1Rv2R

Figure 6.2: Residual tangent coordinates for data with a large variability.

It should be noted that shape PCA may not always be the best method for very high

variation using any of the tangent coordinates and methods such as Geodesic PCA,

found in Huckemann et al. (2010), principal Geodesic analysis (PGA) found in Fletcher

and Joshi (2004) or Barycentric subspace analysis (BSA) found in Pennec et al. (2018)

may be more appropriate. These methods adapt PCA onto a manifold, however they

are often more computer intensive and so we do not consider them now.
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6.3 Comparison of shape tangent coordinates for shape

data

The motivating data to consider the different tangent coordinates for high variability

data was the enzyme data introduced in Section 1.3.5, with k = 88, m = 3 and n =

4216 different times, which we use in Example 6.3.1. Just from exploring the data it is

clear this data displays high variability, for example in Figure 1.4 which shows some

example landmark configurations for the enzyme data that seen very varied.

To check the choice of tangent coordinate is not important for lower variability data

we use three other datasets in Example 6.3.2. These are the Ape skull data, DNA data

and sand grain data, introduced in Section 1.3.5. These three datasets all have low

variability. Finally we consider a simulation study were we can control the variability

of the shapes and see the effect this has on shape PCA for the three different tangent

coordinates.

Example 6.3.1: Comparing tangent coordinates for the enzyme data
For the enzyme data we perform shape PCA. Plots for the PC 1 and PC 2 raw scores

for each set of tangent coordinates are shown in Figure 6.3. The graphs show a clear

difference between using vR compared to vP or vE . There is a very well defined convex

hull for the PC scores when vR is used but a far less defined one for both vP and vE .

For all the different tangent coordinates the variance explained by the PCs were very

similar and for all tangent coordinates only a small fraction of the PCs are needed to

explain a large amount of the variance. Only 9 PCs are needed to explain around 80%

of the variance when using each tangent coordinate.

As stated in Section 6.2 the PC plots in Figure 6.3 are coloured to compare the effect

a configuration’s Procrustes distance from the mean has on its PC score for different

tangent coordinates, additional plots for further PCs using vR are also included. From

Figure 6.3 it can be seen, by the red points, that when vP and vE are used configurations

closer to the mean shape are located near the origin hence have PC scores near to 0. This

is not surprising and can be interpreted as the sample Procrustes mean of the data is

located near the arithmetic mean of the tangent coordinates; this is partly explained by

Chapter 7 of Dryden and Mardia (2016) which states that after optimal full Procrustes

positioning has been carried out the full Procrustes mean is equal to the arithmetic mean

of each coordinate. However when vR are used configurations closest to the mean have
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Figure 6.3: (top) Graphs of PC 1 vs PC 2 raw scores for the enzyme data using (left
to right) vR, vP and vE . (bottom) Graphs of PC 1 scores against d) PC
3 scores and e) PC 4 scores when using vR. Coloured by the Riemannian
distance to the mean shape, Equation 6.1.4, with red showing closest to
mean shape.
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a higher PC 1 score. There also is a correlation between the Procrustes distance from

the mean and PC 1 and 3 scores, seen in Figure 6.3, shown by the band of red.

We look at the modulus of the correlation coefficient between the full Procrustes dis-

tance and the first PC score to see how correlated these are for each tangent coordinate.

The correlation coefficients are 0.920, 0.531 and 0.547 for vR, vP and vE respectively.

The correlation coefficient is very near 1 for vR and not that near it in the other two

cases confirming the full Procrustes distance is highly correlated to the first PC score

when vR are used. This supports the reasoning in Section 6.2 of why vR is not appro-

priate for higher variability datasets, which is that some of the PCs are highly linked to

the Procrustes distance to the mean. Hence the information gained from shape PCA is

less relevant and the use of vR is not suitable for this data.

Example 6.3.2: Comparing tangent coordinates for the low variation data
We now look at the three tangent coordinates for lower variability datasets to confirm

they are all close to being equivalent in this case, as reasoned for low variability data in

general in Section 6.2. Using the residual tangent coordinates, vR should give a good

approximation to a tangent space when there is little variation from configurations to the

mean shape like in this data. Figure 6.4 shows results of shape PCA for the apes, DNA

and sand data. These show little difference between all three sets of tangent coordinates,

and all have configurations that are close to the mean shape having PC 1 and 2 scores

close to the zero. For the ape data there is a difference in the PC score plots between

vR and the other two tangent coordinates, however they are just a mirror images of

each other and therefore provide identical information. All three tangent coordinates

appear approximately equivalent and vR are indeed suitable to use for lower variability

datasets.

6.3.1 Simulation study

As seen for the enzyme data, which has high variability, the use of residual tangent

coordinates was not suitable, we want to see now if this is the case for other cases of

high variability data. For synthetic data we can precisely control the shape variability

and see the effect this has when using the three different tangent coordinates. We use

three models, defined below, for simulating data, in each case with k = 8, m = 3 and

n = 4000, withXi the ith configuration.
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Figure 6.4: Graphs of PC 1 and 2 scores for the (top to bottom) ape data, DNA data
and sand data using (left to right) vR, vP and vE . Coloured by the Rie-
mannian distance to the mean shape, Equation 6.1.4, with red showing
closest to mean shape.
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Model 1 :

vec(Xi) ∼ N(vec(c), σ2Imk)

where c =


(0, 0, 0)

(1, 0, 0)

...

(0, 1, 1)

 ,

c is the matrix of the coordinates of the vertices of a unit cube.

Model 2 :

vec(Xi) ∼ N(vec(c),Σ)

where Σ =

(
σ2Im 0

0 α2Ik(m−1)

)
,

with c defined as above.

Model 3 :

X1 = c

Xi = pXi−1 + ε

vec(ε)
iid∼ N(0, σ2Imk),

this an autoregressive model of order 1, denoted AR(1).

Simulated data plots of PC 1 and PC 2 raw scores are coloured by the Riemannian

distance from the mean for each tangent coordinate, to see the relationship between

these, found in Figure 6.5. Model 1 has σ2 = 1, Model 2 with α2 = 0.1 and σ2 = 5 and

Model 3 where p = 0.999 and σ2 = 1. The cumulative variance plots are not included

but in each dataset only a small fraction of PCs explain a large amount of the variance.

The PC score plots show a similar effect as the enzyme data, when using vP and vE ,

configuration closer to the mean are near the origin. When vR are used the PC 1 scores

seems to be linked to the configurations Riemannian distance from the mean shape.

This effect is very extreme for Model 1 and 2, where the first PC seems to actually just

be an indication of the Procrustes distance between a configuration and the mean shape.

For Model 3 this effect from using vR is less but it is still clear the shapes closer to the
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mean are not centred around the origin; they tend to have a negative PC 1 and 2 score,

showing the first PCs for a configuration are linked with the Procrustes distance from

the mean. Whereas the plots for vP and vE have red points more centred around the

origin.

Just as with the enzyme data we look at the modulus of the correlation coefficients

between full Procrustes distance and the first PC score for vR, vP and vE . For Model

1 these are 0.989, 0.017 and 0.016 and for Model 2 they are 0.948, 0.003 and 0,002.

This confirms the correlation is only when using vR for Model 1 and 2. It is clear from

Figure 6.5g that for Model 3 the relationship between the full Procrustes distance and

PC 1 score is not linear when using vR and so the correlation coefficient will not tell us

anything meaningful in this case.

Further investigation into the relation between PC1 and the mean shape

We have seen when using vR that increasing variability leads to the first PC being just

an indication of a configurations Procrustes distance from the mean, and so the first

PC vector becomes the mean vector, seen as the red line in Figure 6.2. To look at

this effect in more detail we look at the Cosine similarity between the Procrustes mean

shape and first PC vector for the simulated data in Model 2 when using vR, for 4000

configurations. The cosine similarity between the sample Procrustes mean, µ̂ and a

vector v is defined as

cos(θ) =
µ̂ · v
‖µ̂‖‖v‖

.

A cosine similarity near 1 or −1 shows a strong similarity whereas one near 0 shows

little similarity, as the sign is irrelevant it is the absolute value of the cosine that we look

at.

Figure 6.6 shows how the cosine similarity changes as the variability (σ2) increases

for Model 2 with α2 set to 0.1. We see that generally as the variability increases the

absolute cosine similarity tends to increase and eventually tends to 1 indicating for high

variability the first PC is just dominated by the sample full Procrustes mean shape, and

hence using vR is not suitable in theses cases. As the variability decreases the cosine

similarity overall is decreasing showing there is less link between the first PC vector and

the mean shape and so vR would be appropriate to use in this case. The bump in Figure

6.6 is unexpected as we expected the cosine to be increasing with σ2, which clearly is
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Figure 6.5: Graphs of PC 1 and 2 scores for simulated data for Models (top to bottom)
1,2 and 3 using (left to right) vR, vP and vE . Coloured by the Riemannian
distance to the mean shape, Equation 6.1.4, with red showing closest to
mean shape.
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Figure 6.6: Absolute cosine similarity between the mean and PC 1 vector as vari-
ability of configurations is altered for Model 2. Vertical lines at σ2 =
0.01, 1, 2 and 6.

not true for σ2 values between 1 and 2.

The plot in Figure 6.6 is marked with vertical red lines at σ2 values that we have then

used to produce 3D plots of sample Procrustes means and the first PC vector, found in

Figure 6.7. In these 3D plots the black point represents the landmark with variance σ2

whilst the red points are those with variance α2 = 0.1. These plots support a theory as

follows that may explain the bump. For low σ2 the sample Procrustes mean is similar

to the population mean, a cube, seen in Figures 6.7a and 6.7c, when σ2 = 0.01 and 1.

As σ2 increases variation from this mean increases hence the same effect seen multiple

times before occurs; the first PC vector is dominated by the mean vector, which explains

the first increase on the cosine graph. The dip may be as the sample mean shape around

σ2 = 1 starts to change until by σ2 = 2 it is 7 landmarks getting closer together

and the one landmark with σ2 variance is much further seen in Figure 6.7e and more

pronounced by 6.7g when σ2 = 6. So as the mean is changing the first PC vector is

not remaining similar to it, hence the drop in cosine score. We believe by σ2 = 2 there

is a new sample mean shape, from here the variance is increasing hence the cosine is

tending to 1. Whilst the exact reasoning behind the cosine values especially the bump

is still unclear it is clear the use of vR leads to the first PC vector to be dominated by

the mean at some instances and using vR are not suitable in these instances.
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6.4 Summary

We have seen that for high variability data, residual tangent coordinates, vR, give very

different results in shape PCA to the other two tangent coordinates, the partial tangent

coordinates, vP , and the inverse exponential tangent coordinates, vE . In these cases

using vR gives the first PC as just an indication of a configurations Riemannian distance

to the mean and this makes their use unsuitable, as landmark configuration information

is taken less into account and the effect of the mean is not being removed. Using vP
and vE give very similar results throughout and therefore for high variability data only

vP and vE should be used and never vR. For lower variability data all three tangent

coordinates are approximately equivalent and all are suitable for use.

No definite measure exists on when a dataset is too variable for vR to be suitable and

so currently the only test is by comparison between them and the other two tangent

coordinates, therefore we suggest if there is doubt on a dataset’s variability it is best to

use vP or vEs from the start, so the comparison is not necessary. Further work would be

looking at more empirical conditions on what we mean by a dataset being ‘too varied’

for vR to be appropriate.

(a) (b)
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(c) (d)

(e) (f)

(g) (h)

Figure 6.7: 3D plots for model 2 with (top to bottom) α2 = 0.1 and σ2 = 0.01,
α2 = 0.1 and σ2 = 1, α2 = 0.1 and σ2 = 2, and α2 = 0.1 and σ2 = 6 of
the (left to right) sample full Procrustes mean and sample full Procrustes
mean with the first PC vector plotted on.
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Conclusion

In this work we have developed a novel framework for the statistical analysis of net-

works by representing them as graph Laplacians. With this framework we defined two

general metrics between graph Laplacians, the Euclidean power metric and the Pro-

crustes power metric, and developed for network data analogues of many methods of

classical multivariate analysis such as calculating means, interpolating and extrapolat-

ing and performing PCA.

The framework however, remains general for metrics and the use of other metrics be-

tween graph Laplacians could be considered. For example a metric to consider in future

work is the log-Euclidean metric defined for L1,L2 ∈ Lm as

dlog(L1,L2) = ‖ log(L1)− log(L2)‖.

where the log of the graph Laplacian L = U

(
Λ′ 0

0 0

)
UT is defined as log(L) =

U

(
log(Λ′) 0

0 0

)
UT . This metric is of interest to consider as logarithm-based metrics

have been used previously to interpolate between graph Laplacians in Bakker et al.

(2018).

Using the graph Laplacian framework we also explored different regression models.

When we took the graph Laplacian as the response with Euclidean covariates we defined

a linear regression model and Nadaraya-Watson model to estimate a graph Laplacian.

We also used a Nadaraya-Watson model to predict Euclidean responses from Graph

Laplacian covariates. We often considered the covariate being a scalar, for example

time, and we therefore investigated the horseshoe effect present in PCA and MDS plots
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for graph Laplacians with a time structure. We developed a new method for visualis-

ing graph Laplacians removing this horseshoe effect. There is an increasing number of

temporal network data, for example in Friel et al. (2016), which considers temporal net-

works representing the connection of leading Irish companies and board directors, and

in Dubey and Mueller (2019) where one example includes temporal networks represent-

ing the taxi trips in New York. As temporal network datasets become more common

future work will involve applying our regression models to more temporal network data

to confirm it works consistently well for a range of data. We also considered the case

with multidimensional covariates, e.g. spatial coordinates, for graph Laplacians and in

this case we defined an adaptation of Kriging to predict a graph Laplacian from known

spatial coordinates.

We have developed a two-sample test to test equality of means for samples of graph

Laplacians. We focused on using the metrics d1, d 1
2

and d 1
2
,S , giving test statistics TE ,

TH and TS , these all performed well when using a permutation test, however using TE
was significantly faster as no square rooting of the graph Laplacian or optimising rota-

tion was needed and therefore d1 seemed to be the better metric to use. The test could

be easily altered to facilitate using different metrics. We also compared all these test

statistics to one previously defined in Ginestet et al. (2017), TG. The test statistic TG
required the estimation of a large covariance matrix and so we saw when m was large,

approximately over 40, the estimation of the covariance matrix was poor and TG is not

advisable to use. We also provided a method of studying why the means between net-

works differed which we applied to the novel data. Understanding differences between

bodies of text is an interesting challenge in corpus linguistics. Further work should com-

pare our method with the methods of comparing differences in text used as standard in

corpus linguistics. We can also apply our new method to interesting corpus linguistic

questions, such as how does character speech/quotes differ to narration/non-quotes in

novels (Mahlberg and Wiegand, 2018).

We provided two methods for classifying graph Laplacians belonging to binary classes.

One method took place in the manifold whilst the other used PC scores. Both performed

well although the classification in the manifold performed slightly better. Further work

should consider when graph Laplacians can belong to more than 2 classes, for the clas-

sification using PC scores this should be a relatively simple adaptation. Adapting deep

learning classification methods, such as convolutional neural networks, for manifold-

valued data could be considered to see how this compares with the methods we have
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already proposed. Some work has been done with deep learning for manifold-valued

data, for example in Chakraborty et al. (2018), but there is a lot of scope to expand this.

We also provided a method to detect anomalies.

Throughout we have compared the Euclidean metric, d1, the square root Euclidean

metric, d 1
2
, and the Procrustes size-and-shape metric, d 1

2
,S . We have seen using d 1

2
and

d 1
2
,S often gives visibly identical results. The results between d1 and d 1

2
for the examples

we have looked at are generally only slightly different and so neither metric seems

advantageous over the other, except d1 is computationally more appealing. Investigating

the differences in these metrics for more datasets would be a useful next step to see if d 1
2

and d 1
2
,S are advantageous in some cases, as they are when used for symmetric positive

semi-definite matrices in Dryden et al. (2009). One advantage we hypothesise is that d 1
2

and d 1
2
,S can distinguish differences in network connectivity better than d1. To illustrate

this advantage we provide examples in Figure 7.1 and Table 7.1.

(a)

1

2

3

4

5

(b)

1

2

3

4

5

(c)

1

2

3

4

5

(d)

1

23

4

5 6

(e)

1

23

4

5 6

(f)

1

23

4

5 6

Figure 7.1: (top) 5 node networks and (bottom) 6 node networks used to compare the
Eucldiean, square root Euclidean and Procrustes size-and-shape metrics
in Table 7.1.

The connected network (a) in Figure 7.1 has had an edge deleted to form both networks

(b) and (c), however (b) is now disconnected whilst (c) is still connected. From Table 7.1

d1 gives identical distances between (a) and both (b) and (c) however d 1
2

and d 1
2
,S give

a larger distance between (a) and (b), for certain application this could be advantageous

as the connectivity of the networks is taken into account in these metrics. Similarly for
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Distance between d1 d 1
2

d 1
2
,S

(a) (b) 2 1.027 0.971
(a) (c) 2 0.687 0.675
(d) (e) 2 0.940 0.888
(d) (f) 2 0.732 0.732

Table 7.1: Comparing the Eucldiean, square root Euclidean and Procrustes size-and-
shape metrics for the networks in Figure 7.1

(d) in Figure 7.1 an edge is deleted to create a disconnected network, (e), and connected

one, (f). Table 7.1 shows the same effect that d 1
2

and d 1
2
,S give a larger distance between

the connected and disconnected network. For the analysis we have done the connec-

tivity is not a property of interest, as it is not something we have interpreted for our

applications, hence the proposed advantage of d 1
2

and d 1
2
,S distinguishing differences

in networks connectivity is not seen as advantageous in our applications. However this

advantage for d 1
2

and d 1
2
,S could be advantageous in other application which may be

of interest to study (Bao et al., 2018, Section 4.1). This is just one possible difference

between the metrics and we expect as the novel framework for the statistical analysis of

networks is used with these metrics for a wider array of applications and dataset more

differences and advantages between metrics will become apparent. We can then provide

guidelines as to which metric one should use based on the application.

Finally we looked at a different application of manifold-valued data analysis, namely

shape analysis. In this application we used the shape space and compared several tan-

gent coordinates that are commonly used. We found that the residual tangent coordi-

nates that are commonly used by practitioners are not suitable for datasets with large

variation. It would be useful to define empirical conditions on when a dataset is too var-

ied to use the residual tangent coordinate, so we can guide practitioners which tangent

coordinate to use.
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