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Abstract

‘To know oneself is true progress’. While one’s identity is difficult to be fully described,

a key part of it is one’s personality. Accurately understanding personality can benefit

various aspects of human’s life. There is convergent evidence suggesting that personality

traits are marked by non-verbal facial expressions of emotions, which in theory means that

automatic personality assessment is possible from facial behaviours. Thus, this thesis aims

to develop video-based automatic personality analysis approaches. Specifically, two video-

level dynamic facial behaviour representations are proposed for automatic personality

traits estimation, namely person-specific representation and spectral representation, which

focus on addressing three issues that have been frequently occurred in existing automatic

personality analysis approaches: 1. attempting to use super short video segments or even

a single frame to infer personality traits; 2. lack of proper way to retain multi-scale long-

term temporal information; 3. lack of methods to encode person-specific facial dynamics

that are relatively stable over time but differ across individuals.

This thesis starts with extending the dynamic image algorithm to modeling preceding

and succeeding short-term face dynamics of each frame in a video, which achieved good

performance in estimating valence/arousal intensities, showing good dynamic encoding

ability of such dynamic representation. This thesis then proposes a novel Rank Loss,

aiming to train a network that produces similar dynamic representation per-frame but

only from a still image. This way, the network can learn generic facial dynamics from

unlabelled face videos in a self-supervised manner. Based on such an approach, the person-

specific representation encoding approach is proposed. It firstly freezes the well-trained

generic network, and incorporates a set of intermediate filters, which are trained again

but with only person-specific videos based on the same self-supervised learning approach.

As a result, the learned filters’ weights are person-specific, and can be concatenated as

a 1-D video-level person-specific representation. Meanwhile, this thesis also proposes a

spectral analysis approach to retain multi-scale video-level facial dynamics. This ap-

proach uses automatically detected human behaviour primitives as the low-dimensional

descriptor for each frame, and converts long and variable-length time-series behaviour

signals to small and length-independent spectral representations to represent video-level

multi-scale temporal dynamics of expressive behaviours. Consequently, the combination

of two representations, which contains not only multi-scale video-level facial dynamics but



also person-specific video-level facial dynamics, can be applied to automatic personality

estimation.

This thesis conducts a series of experiments to validate the proposed approaches:

1. the arousal/valence intensity estimation is conducted on both a controlled face video

dataset (SEMAINE) and a wild face video dataset (Affwild-2), to evaluate the dynamic

encoding capability of the proposed Rank Loss; 2. the proposed automatic personality

traits recognition systems (spectral representation and person-specific representation) are

evaluated on face video datasets that labelled with either ’Big-Five’ apparent personality

traits (ChaLearn) or self-reported personality traits (VHQ); 3. the depression studies are

also evaluated on the VHQ dataset that is labelled with PHQ-9 depression scores. The

experimental results on automatic personality traits and depression severity estimation

tasks show the person-specific representation’s good performance in personality task and

spectral vector’s superior performance in depression task. In particular, the proposed

person-specific approach achieved a similar performance to the state-of-the-art method in

apparent personality traits recognition task and achieved at least 15% PCC improvements

over other approaches in self-reported personality traits recognition task. Meanwhile, the

proposed spectral representation shows better performance than the person-specific ap-

proach in depression severity estimation task. In addition, this thesis also found that

adding personality traits labels/predictions into behaviour descriptors improved depres-

sion severity estimation results.
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Chapter 1

Introduction

Who am I? One’s identity is a puzzling thing, and is something that we only learn about

slowly throughout our life. ‘Know thyself!’ is a commandment common in many cultures.

What exactly constitutes one’s identity is perhaps not entirely known, but we do know

that part of it is one’s personality. As suggested by psychological studies, human person-

ality information can help improving the understanding of human behaviour (Roberts &

Jackson, 2008; Lane & Manner, 2011; Barnett, Pearson, Pearson, & Kellermanns, 2015),

cognition and emotional processes (Komulainen et al., 2014; Revelle & Scherer, 2009) as

well as health conditions (Huang et al., 2017; Kendler, Gardner, Gatz, & Pedersen, 2007;

Hettema, Neale, Myers, Prescott, & Kendler, 2006). For example, many biological and

psychological studies (Chioqueta & Stiles, 2005; De Moor, Beem, Stubbe, Boomsma, &

De Geus, 2006; Kendler et al., 2007; Hettema et al., 2006) claimed that neurotic people

tend to experience depressed feelings more, while extrovert individuals are less likely to

suffer from depression. Given these findings, it is interesting and impactful to explore

how to develop an objective and accurate automatic self-reflection tool based on one’s

own expressive behaviours - a mirror of one’s personality.

Specifically, human personality can be defined as the characteristic set of behaviours,

cognition, and emotional patterns that evolve from biological and environmental factors

(Hogan, Johnson, Johnson, & Briggs, 1997), which can be reflected by the coherent pat-

terning of affect and behaviours over time and space (Revelle & Scherer, 2009), displaying

the integration over time of feelings, actions, desires and other components (Ortony, Nor-

1
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man, & Revelle, 2005). Since the last century, the trait-based models such as Three Factor

Model (Eysenck & Eysenck, 1965), Five Factor Model (McCrae & Costa, 1987), etc., have

been frequently employed to measure complex and implicit human personality. They pri-

marily focus on evaluating the aspects of personality that are relatively stable over time

but differ across individuals (Kassin, 2003). In general, personality recognition tasks can

be categorized into two types (Vinciarelli & Mohammadi, 2014): 1. self-reported per-

sonality, which is reflected by a person’s observable behaviours; 2. apparent (perceived)

personality, which is defined as an observer’s perception of the individual based on one

or more cues.

While the standard approaches to evaluate personality traits are subjective as they

use questionnaires based on verbal behaviour descriptors, e.g., Big Five Inventory (Cavallera,

Passerini, & Pepe, 2013), multiple psychological studies (Qin, Gao, Xu, & Hu, 2018; De-

Paulo, 1992; Borkenau & Liebler, 1992) suggested that non-verbal behaviours also contain

vital information of a human’s implicit dispositions and internal states, including both

static and dynamic elements of physical appearance, and these cues are differentially

associated with personality traits (Naumann, Vazire, Rentfrow, & Gosling, 2009).

In particular, there is convergent evidence that personality is marked by certain fa-

cial display of emotions (John, 1990), i.e. people with different personalities may behave

differently in response to the same stimulus. For example, Keltner et al. (Keltner, 1996)

found that both emotion and personality traits are expressed in distinct, observable be-

haviours that evoke responses in others, and can interpret human nature based on a certain

number of universal characters (P. Ekman, 1992b; Izard, 1977). Since facial display and

behaviours are quick, reliable, and seemingly universal signals of an individual’s emotions

and emotions can be expressed by an ordered set of facial displays (P. Ekman, 1992a),

there is converging evidence that the face can provide useful information regarding a per-

son’s emotion and personality (Knapp, Hall, & Horgan, 2013). As a result, a large part of

personality prediction works (Borkenau, Brecke, Möttig, & Paelecke, 2009; DeBruine et

al., 2006; Shevlin, Walker, Davies, Banyard, & Lewis, 2003; Zebrowitz, Hall, Murphy, &

Rhodes, 2002) are building on headshots or above-the-waist photographs. Some studies
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(J. A. Hall, Andrzejewski, Murphy, Mast, & Feinstein, 2008; Kenny, 1994; Knapp et al.,

2013) showed that when targets were photographed with a spontaneous pose and facial

displays, observers’ judgments were accurate for almost all the traits.

Since the year (2012) when AlexNet (Krizhevsky, Sutskever, & Hinton, 2012) was

proposed, the rapid development of deep learning techniques boosts the increased num-

ber of automatic facial expression analysis systems (Jaiswal & Valstar, 2016; Chen, Chen,

Chi, & Fu, 2018; K. Zhang, Huang, Du, & Wang, 2017; Martinez, Valstar, Jiang, &

Pantic, 2017; K. Zhang et al., 2017; Nicolle, Bailly, & Chetouani, 2015), etc., allow-

ing accurate predictions of individuals expressive facial behaviours to be made, which

can be further utilised to reflect individuals’ high-level mental status such as emotion

(Song, Sánchez-Lozano, Kumar Tellamekala, et al., 2019; Song, Sánchez-Lozano, Shen,

Johnston, & Valstar, 2019; Nicolle, Rapp, Bailly, Prevost, & Chetouani, 2012; Kossaifi,

Tzimiropoulos, Todorovic, & Pantic, 2017; Kollias et al., 2019a; Komulainen et al., 2014),

pain feeling (J. O. Egede et al., 2020; J. Egede, Valstar, & Martinez, 2017), mental

health status (L. Yang, Jiang, & Sahli, 2018; Pampouchidou et al., 2016; Song, Shen, &

Valstar, 2018; Song et al., 2020; Jaiswal, Song, & Valstar, 2019), and personality traits

(Celiktutan & Gunes, 2015; Güçlütürk, Güçlü, van Gerven, & van Lier, 2016; L. Zhang,

Peng, & Winkler, 2019; Kampman, Barezi, Bertero, & Fung, 2018; Bekhouche, Dornaika,

Ouafi, & Taleb-Ahmed, 2017). However, to the best of the author’s knowledge, all existing

automatic personality analysis approaches (Celiktutan & Gunes, 2015; Güçlütürk et al.,

2016; L. Zhang et al., 2019; Kampman et al., 2018; Bekhouche et al., 2017) failed to model

person-specific properties that are stable over time for each person but differ between in-

dividuals. Additionally, the produced machine representations cannot retain multi-scale

temporal dynamics. Moreover, some approaches attempted to model personality traits

from a frame or very short segment, which contradicts the definition of personality traits.

Specifically, while a person’s frame/segment-level facial status can change rapidly in a

short period, video-level (event) labels will remain unchanged for each video, as person-

ality doesn’t change on that time scale. Therefore, a brief segment (a single frame or

couple of frames) of expressive behaviours may not carry sufficient information to encode
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a personality trait-specific pattern.

Motivated by these problems, this thesis firstly focuses on developing face video-based

automatic personality analysis systems by extending the current state-of-the-art machine

learning techniques. Specifically, it aims to deal with the methodological shortcomings

summarized above, which have been frequently occurred in existing personality analysis

systems (Sec.1.1). This can be achieved by applying the proposed two long-term facial

behaviour dynamic modelling approaches, where the person-specific descriptor encodes

facial person-specific dynamics for the given individual while spectral approach encodes

multi-scale facial behaviour dynamics, to personality analysis task.

As discussed above, it is well known that personality impacts on many behaviours,

including some important clinically relevant behaviours such as depression (Vukasović &

Bratko, 2015; Lo et al., 2017; DENNIS, CHARNEY, NELSON, QUINLAN, et al., 1981;

Matsudaira & Kitamura, 2006). Particularly, this thesis will also explore the effect of

personality on behaviour that is indicative of the level of depression severity. The motiva-

tion is that the standard clinical depression assessment is subjective because these depend

almost entirely on the health professional’s own understanding of the individual’s verbal

psychological report, e.g. clinical interview and questionnaires completed by patients or

caregivers (Cohn et al., 2009). Additionally, this is often a lengthy procedure which hin-

ders access to early treatment. In the UK it has been reported that more than half of

the patients have to wait at least 3 months before receiving talking treatment (People

with mental health problems still waiting over a year for talking treatments , 2013). Some-

times the relevant patient information or mental health experts may not be accessible,

which results in many patients missing the best chance for preventing or treating their

depression at early stages of depression. This is problematic, because correct early diag-

nosis is an important factor in the treatment of depression. To improve this, automatic

objective assessment approaches to aid monitoring and diagnosis need to be developed.

While there is a lot of automatic depression analysis approaches have been proposed pre-

viously, to the best of the author’s knowledge, none of them systematically investigated

the way to apply personality descriptors to help automatic depression analysis system.
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Since there is solid psychological evidences (Ellgring, 2007; Girard, Cohn, Mahoor, Mava-

dati, & Rosenwald, 2013; Stuhrmann, Suslow, & Dannlowski, 2011; Girard et al., 2014;

Chentsova-Dutton, Tsai, & Gotlib, 2010; Gehricke & Shapiro, 2000; Renneberg, Heyn,

Gebhard, & Bachmann, 2005; Sloan, Strauss, & Wisner, 2001) that depression status are

also marked by non-verbal objective cues related to facial attributes (S. Scherer, Stratou,

& Morency, 2013; Goldstein, 1964) and associated with personality, this thesis is also

interested in extending the proposed approaches to the automatic depression analysis do-

main. In particular, it explores multiple ways to apply the personality traits descriptors

to help automatic depression analysis as well as investigating how much improvement can

be achieved.

1.1 Research questions and motivations

1.1.1 Long and subjective traditional clinical assessment

Standard clinical personality/depression assessment techniques can be subjective because

these depend almost entirely on the professional’s own understanding of the individual’s

verbal psychological report such as interviews and questionnaires completed by individuals

or others’ perception on them. Sometimes, the relevant personal information or experts

may not be accessible. Then, how to develop accurate and expert-independent

automatic personality/depression analysis systems based on face videos, which

should not only provide the objective predictions but also speed up the as-

sessment process, is the first research question.

1.1.2 Lack of proper way to extract personality-related descrip-

tor from a frame/short-segment

Many face video-based automatic personality analysis approaches attempt to infer person-

ality traits from very short video segments or even single frames (Bekhouche et al., 2017;

Aran & Gatica-Perez, 2013b; Fang, Achard, & Dubuisson, 2016; Nguyen, Marcos-Ramiro,

Marrón Romera, & Gatica-Perez, 2013), rather than long-term behaviour. The problem is
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that people with different personalities can display the exact same configuration of facial

behaviours in a single frame or very short segment (e.g., facial display, head pose, etc.).

Thus, a training strategy that learns relations between short segments and personality

labels would lead to an ill-posed machine learning task, i.e., the same input pattern has

multiple labels, making it practically impossible to learn a good hypothesis. Although

a person’s frame/segment-level facial status can change rapidly in a short period, video-

level (event) labels will remain unchanged for each video, as personality doesn’t change

on that time scale. Therefore, a brief segment (a single frame or very short segment) of

expressive behaviours may not carry sufficient information to encode a personality trait-

specific pattern. Then, the second research question is how to properly extract a

single multi-dimensional personality-related descriptor from a corresponding

brief segment or frame without using video-level personality label. In this the-

sis, the short-term and mid-term refer to the time duration that is less than 1.5 seconds

and from 1.5 seconds to 5 seconds, respectively. Meanwhile, the long-term represents the

time duration that is similar to the length of an entire personality/depression video.

1.1.3 Lack of proper person-specific and multi-scale dynamic

long-term representation

Personality traits can be defined as the aspects of personality that are relatively stable

over time but differ across individuals (Kassin, 2003). However, to the best of the author’s

knowledge, there are no reports of attempts to specifically construct a computer-vision

descriptor that reflects long-term person-specific behaviours. Meanwhile, as the opti-

mal temporal scales of facial behaviours for inferring personality is still unclear, existing

automatic personality analysis approaches generally fail to retain multi-scale temporal

dynamics in their long-term descriptor. To this end, the third research question

is that how to properly extract a descriptor that reflect the behaviours of

an entire video, which should: 1. encode person-specific spatio-temporal in-

formation; 2. encode multi-scale facial temporal dynamics from all available

frames; 3. have a fixed-length representation regardless of the length of the
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video.

1.1.4 How to apply personality information to help automatic

depression detection

In addition, though many psychological studies (Ellgring, 2007; Girard et al., 2013;

Stuhrmann et al., 2011; Girard et al., 2014; Chentsova-Dutton et al., 2010) claim that per-

sonality traits are associated with depression status, to the best of the author’s knowledge,

no previous study has systematically investigated proper ways to apply personality de-

scriptors to help automatic personality analysis systems. Therefore, the last research

question that this thesis will investigate is whether the personality informa-

tion can enhance the performance of automatic depression analysis system,

and if so what are suitable ways of doing so.

1.2 Description of the work

This thesis proposes a video-level person-specific facial dynamic encoding approach and a

video-level multi-scale facial dynamic encoding approach for automatic personality/depression

analysis. The proposed approaches focus on addressing the main problems of existing au-

tomatic personality traits analysis systems (summarized in Sec.1.1). In addition, it also

investigates proper ways to apply personality descriptor to automatic depression analysis.

1.2.1 Self-supervised learning video-level person-specific facial

dynamics

The person-specific representation approach explores a novel way to encode video-level

facial dynamics directly from the face images. Firstly, most existing approaches (Kollias

et al., 2019a; Ringeval et al., 2019) model short-term facial dynamics at the feature

level using sequential latent models such as Recurrent Neural Networks (RNN). However,

learning dynamics from extracted features may result in the loss of significant dynamics

in original face images. To keep such information, this thesis firstly extends the dynamic
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image algorithm (Bilen et al., 2017) to summarize short-term facial dynamics directly

from face images. It starts with producing per-frame aligned static facial images based

on the automatically detected facial landmarks, removing the background noises. Then,

it extends the dynamic image algorithm (Bilen et al., 2017) to produce a dynamic facial

representation based on the preceding and succeeding static facial images of the given

frame. Particularly, it encodes the past and future facial temporal evolution of the given

frame, i.e. how was the current facial status evolved from the past and how would the

current facial status changes in the future, as well as its spatial information into a sin-

gle and fixed-size 9-channel matrix. This way, the produced frame-wise representations

provide spatio-temporal patterns to the back-end models rather than solely input static

facial image as most methods did, which only contains spatial patterns.

As it can be observed, the sequence-based dynamic encoding approach described

above achieved better performance than static face images for the task of dimensional

affect estimation, which shows its strong ability in encoding facial dynamics. Thus. this

thesis further proposes to generate a similar dynamic representation (DR) that summa-

rizes motions surround the given face image, but that can be inferred from still images. It

can be treated as an image-to-image translation approach where a network is trained to

generate a Dynamic Representation (DR) that has the same size as the input face image.

During the training, a large pool of unlabelled preceding and succeeding frames for each

face image is given, from which the temporal evolution of adjacent frames can be learned

in a self-supervised manner without using target representations. The network is then

trained to generate a representation that, when projected onto each adjacent frame within

a given time-window, is capable of sorting them in time. This way, the well-trained net-

work can infer generic short-term facial dynamics from any previous unseen face image.

After that, this generic model is frozen, and a set of intermediate person-specific adap-

tation layers (PALs) are incorporated into this architecture. The self-supervised learning

is then resumed with only person-specific videos. As are result, the learned adaptation

layers’ weights will be person-specific, making them a valuable source of person-specific

dynamic modelling. This approach (Song, Jaiswal, et al., 2021) then concatenates the
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weights of the learned adaptation layers as a video-level person-specific representation,

which can be directly used to predict the personality traits without needing other parts

of the network.

1.2.2 Video-level multi-scale facial dynamics modelling

Besides the person-specific video-level representation, this thesis also proposes a multi-

scale video-level facial dynamic modelling approach called spectral approach. The spectral

approach consists of concatenating descriptors of all frames in a video as a multi-channel

time-series signal, describing the visual expressive facial behaviours. To produce a multi-

scale, length-independent video-level representation, Fourier Transform is employed to

encode the multi-channel time-series behaviour or latent signal of the entire video. This

approach further employs two frequency alignment methods to create spectral represen-

tations of equal size and frequency coverage, regardless of variation in the length of input

videos. The produced spectral representations contain long-term (video-level) facial tem-

poral information in the frequency domain, where each frequency component stands for

a unique scale of dynamics. In short, such a representation encode multi-scale facial

dynamics of the video.

1.2.3 Applying person-specific and multi-scale facial behaviour

representation to automatic personality traits analysis

Both person-specific representation and spectral representation can encode the facial dy-

namics from variable-length videos into fixed-size representations. Therefore, this thesis

proposes to combine them. The combined representation contains not only video-level

multi-scale facial temporal information but also video-level person-specific facial dynam-

ics. After that, this thesis presents how to apply such representations to automatically

predict personality traits. In this thesis, two datasets, e.g., VHQ dataset (Jaiswal, Song,

& Valstar, 2019; Jaiswal, Valstar, Kusumam, & Greenhalgh, 2019) and ChaLearn dataset

(Ponce-López et al., 2016) were used to evaluate the performance of the proposed ap-

proaches on both self-reported and apparent personality traits analysis. Several back-end
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models, e.g., Artificial Neural Network (ANN), Support Vector Machine Regressor (SVR),

Convolutional Neural Networks (CNN), etc., are employed to generate predictions. This

contribution is detailed explained in Chapter 5.

1.2.4 Personality traits-guided automatic depression analysis

As suggested by (Klein, Kotov, & Bufferd, 2011; Kendler, Gatz, Gardner, & Pedersen,

2006; Kendler et al., 2007; Hettema et al., 2006), people with certain personality traits

are more likely to be affected by depression at some point in their life. Hence, person-

ality traits can act as strong priors for predicting depression. In this sense, the final

part of this thesis devotes to investigate a superior way to apply personality descriptors

to automatic depression analysis. In particular, this study firstly employs and extends

the proposed long-term approaches as the baselines to automatically estimate depression

severity. Then, multiple strategies are proposed to apply different personality traits de-

scriptors (including labels, predictions, latent features, etc.) as the additional information

to depression analysis. This contribution is detailed explained in Chapter 7.

1.3 Contributions

1. This thesis proposes a Dynamic Facial Representation (DFR) encoding algorithms

that returns a length-independent representation from an image sequence, which

integrates the facial temporal and spatial information, summarising the variation

over time. This representation dismisses non-face related attributes.

2. This thesis proposes a novel Rank Loss to train an image-to-image translation net-

work in a self-supervised manner, tasked with inferring a Dynamic Representation

(DR) from a given face image. The DR is formulated as a kernel that, when pro-

jected onto the adjacent frames, can sort them in time. In particular, the proposed

rank loss enforces the generated DR to rank both preceding and proceeding frames

according to their relative temporal distance to the input frame. This way, the net-

work not only learns to map an image to a corresponding DR, but also contributes
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to define it. Importantly, this approach allows the network learning generic facial

dynamics from unlabelled videos.

3. Based on the proposed Rank Loss, this thesis also proposes to train a set of person-

specific adaptation layers (PALs)’ individually, and proposes to concatenate the

learned weights of the PALs as the video-level person-specific facial dynamic repre-

sentation. This representation can encode person-specific facial dynamics that are

stable over time for the given person but differ from other individuals, and is shown

to be useful for the automatic personality analysis tasks.

4. This thesis proposes a novel spectral approach that can convert long and variable

length time-series data to short and fixed-size spectral representations. The pro-

duced spectral representations can encode multi-scale temporal dynamics of the

given time-series data, and can be easily processed by standard Machine Learning

models. This approach is shown to be useful for automatic depression analysis.

Specifically, This approach can take any time-series such as behaviour primitives

(e.g. AU, gazes, etc) as the input, and consequently the advance in developing

front-end detector (e.g. AU, gazes, etc) could also benefit the task performance of

this spectral approach.

5. This thesis proposes and evaluates multiple ways to combine the personality descrip-

tors with visual behavioral descriptors for automatic depression severity estimation,

showing that additional personality information can improve the depression severity

estimation performance across two proposed video-level representation approaches.

6. This thesis investigates the influence of multiple factors on the performance of au-

tomatic personality and depression analysis, by evaluating interview tasks, types

of behaviour primitives, the length/task contents of videos, fusion strategies, etc.,

and found that AUs have different impacts on personality and depression analysis

performance and differences in task contents and fusion strategies will also resulted

in different analysis result.
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1.5 Thesis structure

The overall structure of this thesis is comprised of seven chapters. The rest of this thesis

is organized as follows.

1. Chapter 2 reviews the psychological backgrounds of personality and depression,

especially the relationship between personality, depression and facial behaviours.

This would provide a theoretical basis for the researches conducted in this thesis, i.e.,

it is feasible to infer personality and depression from non-verbal facial behaviours.

2. Chapter 3 reviews the existing automatic personality analysis and automatic depres-

sion analysis approaches, including the typical methods of pre-processing, feature

extraction, information fusion and classification/regression models that have been

used for such tasks. This chapter also specifically summaries the temporal models

used in the reviewed approaches.
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3. Chapter 4 proposes a person-specific adaptation approach. This chapter starts with

extending the dynamic image algorithm to model short-term facial dynamics, pro-

viding the theoretical basis for the proposed novel self-supervised learning algorithm,

which can learn short-term generic facial dynamics. Both approaches encode bidi-

rectional facial spatio-temporal patterns of the input image in the context of the

face, providing richer and more discriminate facial patterns compared to the original

static face images. Based on such self-supervised learning algorithm, person-specific

adaptation approach is also proposed, which encodes a person-specific video-level

facial dynamic representation for each individual.

4. Chapter 5 proposes a multi-scale video-level facial dynamics encoding approach:

spectral analysis approach. This approach encodes the video-level representation

from multi-channel time-series signals that produced by features of all frames in

each video. This approach can generate fixed-size representation regardless of the

length of videos, and encode multi-scale long-term facial behaviour dynamics.

5. Chapter 6 firstly explains all experimental settings including datasets, training de-

tails, evaluation metrics, etc. Then, it specifically evaluates the influence of different

settings on the proposed person-specific adaptation approach and spectral analysis

approach on the task of self-reported and apparent personality traits intensity esti-

mation as well as compares them to the state-of-the-art approaches. In addition, this

chapter also conducts a series of ablation studies on frame ranking and dimensional

affect estimation tasks to evaluate the proposed self-supervised learning algorithms

in modelling short-term facial dynamics.

6. Chapter 7 firstly introduces a novel audio-visual VHQ datasets that annotated both

personality and depression labels for each participants. This chapter applies the

proposed automatic personality analysis approaches as the baselines to automatic

depression severity estimation task. In addition, it explores multiple ways of com-

bining the personality descriptors with facial behaviour descriptors to benefit the

automatic depression analysis performance.
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7. The last chapter devotes to the conclusions and future work, including a briefly

review of the proposed approaches, a summary of the problems that have been ad-

dressed in this thesis, and some conclusions of the experimental results on automatic

personality and depression analysis. This chapter also discusses the limitations of

this thesis and the potential future works in detail.



Chapter 2

Background

Human personality is defined as the characteristic set of behaviours, cognition, and emo-

tional patterns that evolve from biological and environmental factors (Hogan et al., 1997),

which can be reflected by the coherent patterning of affect and behaviours over time and

space (Revelle & Scherer, 2009). Recognizing personality can help a better understand-

ing of human behaviour (Roberts & Jackson, 2008), emotional processes (Komulainen et

al., 2014) and health conditions (Huang et al., 2017; Jaiswal, Song, & Valstar, 2019).

Traditionally, personality analysis can be categorized into two types: 1. self-reported per-

sonality, which is reflected by a person’s observable behaviours; 2. apparent (perceived)

personality, which is defined as observers’ perception about the person through various

cues.

Recently, the trait-based models such as Three Factor Model (Eysenck & Eysenck,

1965), Five Factor Model (McCrae & Costa, 1987), etc., have become the most com-

mon way to measure complex and implicit human personality. They primarily focus on

evaluating the aspects of personality that are relatively stable over time but differ across

individuals (Kassin, 2003). While a standard approach of evaluating personality traits is

to use questionnaires based on verbal behaviour descriptors, such as the Big Five Inven-

tory (Cavallera et al., 2013), previous psychological studies frequently (Qin et al., 2018;

DePaulo, 1992; Borkenau & Liebler, 1992) suggested that non-verbal behaviours also con-

tain vital cues of a human’s implicit dispositions and internal states. Since the human

face contains rich details regarding personal identity, such as gender, ethnicity, emotional

16
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state, age, etc., facial appearance and behaviours can be used as a primary and salient

non-verbal source of information to infer various personalized attributes (Joo, Steen, &

Zhu, 2015).

The purpose of this chapter is reviewing the related psychological studies that provide

a theoretical basis to support facial behaviour-based automatic personality/depression

analysis. It firstly reviews the personality trait theory in Sec.2.1, and the impact of per-

sonality in Sec.2.2, emphasizing the importance of the study conducted in this thesis.

The facial expression theory is briefly reviewed in Sec.2.3. Then, the relationship be-

tween facial expressions of emotions and personality are also explored in Sec.2.4, from

the perspective of psychology, which provides the psychological evidence that personality

is marked by human facial displays and behaviours. Since this thesis is also interested

in applying personality information to help automatic depression analysis, the Sec.2.5

also reviews the psychological background of the depression. The relationship between

depression and personality traits/facial behaviours are reviewed in Sec.2.6 and Sec.2.7,

respectively, showing that depression status is associated with facial behaviours and per-

sonality traits.

2.1 Personality traits models

2.1.1 Three factor model

Three Factor Model, also called PEN model, was proposed by Eysenck et al. (Eysenck

& Eysenck, 1965). This model is based on the assumption that both internal factors

(e.g., biological factors) and external factors (e.g., environmental factors) would im-

pact on a individual’s personality traits. The PEN model comprises three traits di-

mensions: extraversion-introversion, neuroticism-emotional stability and psychoticism-

normality. Specifically, this theory (Eysenck & Eysenck, 1965) claimed that extraversion-

introversion trait correlates to the levels of brain activity, or cortical arousal. For example,

extrovert individuals generally have lower levels of cortical arousal than introvert people,

and thus they are tended to seeking arousal from external stimuli. Meanwhile, higher
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internal arousal levels lead introvert people avoiding experiencing more arousal from out-

side. These can be reflected by that extrovert people are more talkative and outgoing

than introvert individuals. For the neuroticism-emotional stability dimension, individuals

who have high neuroticism scores are more likely to experience stress and anxiety but

their emotions are more stable in comparison to emotional people. Finally, high psy-

choticism score usually achieved by individuals that are creative (Eysenck & Furnham,

1993). However, this types of people are more likely to be involved in irresponsible and

miscalculated events compared to normal people. The detailed description of PEN model

is shown in Table 2.1.1. To measure these dimensions, a verbal-based Eysenck Personality

Questionnaire (EPQ) was proposed in (Eysenck & Eysenck, 1965).

Table 2.1: Three Factor Model (PEN Model)
Trait Name High Low
Psychoticism-
Normality 1. Engaging in irresponsible or mis-

calculated behaviours

2. Contravene accepted social
norms

3. Regardless of consequences

4. Creative, aggressive, cold and
impulsive

1. Responsible behaviours

2. Less likely to commit crimes

Extraversion-
Introversion 1. Engaging more in social activi-

ties

2. Enjoying being the focus of at-
tention

3. Accumulating a larger social net-
work of friends and associates

4. Talkative and outgoing

1. Shying away from large social
gatherings

2. Feeling uncomfortable when en-
gaging with strangers

3. Enjoying contemplative exer-
cises

4. Individual’s psychic energy

Neuroticism-
Emotional
Stability

1. Experiencing higher levels of
stress and anxiety

2. Worrying about relatively in-
significant matters

3. Focusing on negative aspects of
a situation

4. Feeling jealous of others

5. Feeling dissatisfied, angry or
frustrated with others

1. Experiencing more emotional
stability

2. Able to cope with stressful
events and set

3. Less stringent demands of them-
selves

4. More tolerant of the failings of
others and remain more calm in
demanding situations
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2.1.2 Five factor model

Five Factor Model (FFM) (McCrae & Costa, 1987), also known as the ‘Big Five’, or

OCEAN model, is a typical lexical approach for personality assessment. In recent years,

it has been frequently employed in various studies and applications. The FFM model is

made up of five relatively independent personality dimensions: Openness to experience,

Conscientiousness, Extraversion, Agreeableness and Neuroticism.

Specifically, Extraversion is frequently associated with gregarious, assertive, talkative,

active and sociable personality (Barrick & Mount, 1991). This dimension is also claimed

to have two sub-dimensions: ambition and sociability (Hogan, 1982). Neuroticism (also

called Emotional stability) relates to the level of anxiety, anger, worry, embarrassment,

insecurity and emotion. The third dimension has generally been interpreted as the Consci-

entiousness, which is related to conformity, will to achieve (Digman, 1989; Smith, 1967),

dependability (organized, planful and responsible) (Noller, Law, & Comrey, 1987; Fiske,

1949; Botwin & Buss, 1989), and volition (hardworking, achievement-oriented, perse-

vering) (Smith, 1967; Lei & Skinner, 1982; Digman & Takemoto-Chock, 1981; Bernstein,

Garbin, & McClellan, 1983). Agreeableness, also called likability (Noller et al., 1987; Nor-

man, 1963), is found to be associated with being flexible, forgiving, tolerant, courteous,

good-natured and soft-hearted. Finally, Openness reflects a person’s intellectual curiosity,

creativity and a preference for novelty and variety. Individuals who score high in openness

are more likely to lose focus and engage in risky behaviour (Ambridge, 2014). The robust-

ness of this model has been empirically validated under various situations (Conley, 1985;

Costa Jr & McCrae, 1988; McCrae & Costa, 1989; Noller et al., 1987; Bond, Nakazato,

& Shiraishi, 1975; Digman, 1989; Digman & Inouye, 1986; Digman, 1990). The detailed

description of FFM model is shown in Table 2.1.1.



2.1. Personality traits models 20

Table 2.2: Five Factor Model (OCEAN Model)
Trait Name Behaviours Facial expressions of emotion
Neuroticism

1. Emotional

2. Worrying about things

3. Easy to be disturbed

4. Often feeling blue

1. Increased facial displays of nega-
tive emotion

2. Embarrassing face with various
emotions

3. Negatively correlated with
Duchenne smiles

Conscientious

1. Organized and dependable

2. Self-discipline and acting duti-
fully

3. Perceived as being stubborn and
focused

1. Controlled smile

2. Gaze aversion and head move-
ments down

3. Facial muscle action that inhib-
ited the smile

Extraversion

1. Energetic and sociable

2. Talkative and more dominant

3. Perceived as attention-seeking
and domineering

1. Facial displays that encourage
positive social contacts

Agreeableness

1. Compassionate and cooperative
to others

2. Naive or submissive

3. Be more naturally altruistic

4. Feeling concern for their commu-
nity

1. Frequently displaying duchenne
laughter or sympathy

2. Negatively correlated with fa-
cial displays of anger and dis-
gust, displayed by the oblique
eyebrows of sadness and a head
movement forward

Openness

1. Unpredictability and lack of fo-
cus

2. Seeking new experiences and ad-
ventures

3. Preferring variety and diversity

4. Creative and open-minded

1. Keeping the face open and ex-
posed

2. Showing curious facial displays
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2.2 The impacts of personality

Personality traits model is a bio-psycho-social system that reflects individual differences

(Roberts & Jackson, 2008). The main motivation of developing personality analysis sys-

tems is that personality traits have great impacts on many aspects of people’s behaviours

such as emotion, health condition, social behaviour, cognition process, etc. Thus, an ac-

curate personality traits recognition system could help a better understanding of human

behaviours.

Firstly, personality traits are related to individuals’ social behaviours. According

to (Barnett et al., 2015), conscientiousness people usually prefer to learn and use new

technologies, while neurotic people tend to refuse to perceive and use them. In addition,

individuals who have high extraversion scores showed a better ability to adapt to new

technologies. As claimed by (Lane & Manner, 2011), different personalities would result

in people having different ownership and use of smartphones. As explored in (Tsao &

Chang, 2010) and (Heinström, 2000), the variability in personality also leads the dif-

ferent shopping behaviours. For example, people who have high scores in neuroticism,

agreeableness or openness prefer shopping online, while people who have high degrees

of neuroticism, extraversion, and openness are more likely to shop for fun (hedonic pur-

chase motivation). Besides, personality difference is found to be strongly correlated to

an individual’s working behaviours (Zimmerman, 2008; Jenkins, 1993). The emotional

stability of employers determines their intentions to give up the task or even quit the

job. In contrast, conscientious and agreeable people are less likely to turn over their

decisions, which means they tend to finish what they have decided. Besides, personal-

ity also relates to human behaviours such as teenagers’ illegal drug usage (Brook et al.,

2001), information-seeking behaviour (Al-Samarraie, Eldenfria, & Dawoud, 2017), politics

decisions (Greenstein, 1967), etc.

Apart from personal behaviours, many studies suggested that personality traits have

significant impacts on human cognition and emotional processes (Komulainen et al., 2014).

As found by Revelle et al. (Revelle & Scherer, 2009), individuals that have certain per-

sonality traits are more likely to experience the corresponding emotions than others. This
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research claimed that trait differences in emotionality would increase the odds of expe-

riencing trait-congruent emotions. For example, trait surprise may result in a higher

chance of experiencing anxiety while trait pleasure may lead to reduced despair. Revelle

et al. (Revelle & Scherer, 2009) concluded that neurotic people usually have larger affect

variability. They are also more likely to have higher negative and lower positive affect

status than others, resulting in a less positive attitude to daily incidents. In contrast, con-

scientiousness and agreeableness people tend to have the opposite emotional processes.

These people would generally have lower variability of sadness, and more likely to have

a positive feeling of daily incidents. Similarly, individuals who score high in extraversion

would normally have higher positive affect and more positive subjective evaluations of

daily events; Although there is no significant relationship that has been found between

openness trait and human affect, it predicted higher reactivity to daily stressors.

Finally, personality traits are strongly associated with health conditions. A large

number of previous studies (Lo et al., 2017; Kendler et al., 2006, 2007; Hettema et al.,

2006; DENNIS et al., 1981; Jaiswal, Song, & Valstar, 2019; Matsudaira & Kitamura,

2006) found that personality traits are correlated to the mental sickness, e.g. depression

(please see Sec.2.7 for details). Meanwhile, as claimed by (Huang et al., 2017), personal

characteristics, such as sense of coherence, neuroticism and optimism, affect people’s

psychological health-related quality of life (HRQOL). Specifically, higher scores in ex-

traversion, agreeableness, openness or conscientiousness usually predict better HRQOL

conditions for corresponding individuals. On the other hand, neurotic people and people

who have negative affectivity personalities are more likely to experience poorer HRQOL

conditions.

In summary, the aforementioned studies show that personality is associated with

individual’s health conditions, including mental health such as depression. Thus, it is

interesting to explore a reliable way to apply the personality descriptors for automatic

depression analysis, which is also a goal of this thesis (Please see Chapter.7 for details).
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2.3 Facial expression analysis theory

Facial expressions (facial actions) can be defined as the facial changes in response to a

person’s internal states including emotion, intentions, etc. (Tian, Kanade, Cohn, Li, &

Jain, 2005). They are represented as one or more motions or positions of the muscles

beneath the skin of the face.

The research of facial expression analysis started with the work of Darwin in 1872 (D.

et al., 1981; K. Scherer & Ekman, 1982; P. Ekman, 1989; Friesen & Ekman, 1978), and

such study was sometimes confused with emotion analysis in the computer vision domain.

However, besides emotion, facial expressions can also convey other information such as

physical efforts, ideas and intentions (Carroll & Russell, 1996; Russell, 1991a, 1991b).

Meanwhile, understanding emotions needs higher level knowledge than facial expressions.

It can be considered that emotion is to facial expressions as the climate is to weather.

Facial expression analysis can be categorized as two main theories. Darwin proposed an

emotion-based facial expression theory (D. et al., 1981), which classified facial expressions

into a set of prototypic emotional expressions, including Happy, Angry, Surprise, Fear,

Disgust and Sad (Fig.2.1(a)). This theory has been further revised by Ekman and Friesen

(Ekman & Paul, 1993; P. Ekman, 1976) and Izard et al. (Izard, Dougherty, Hembree, &

Izard, 1983).

However, these prototypic expressions have imbalanced chances of occurrence in ev-

eryone’s daily life, and they may not be able to represent facial status under some con-

ditions. Motivated by this, another facial expression theory called Facial Action Coding

System (FACS) was proposed by Ekman (Ekman & Paul, 1993). It is a human-observer-

based system that aims to capture subtle changes in one or a few discrete facial features,

e.g., eyebrows or eyelids which is the typical of paralinguistic displays. The FACS applies

44 action units (AUs) (Fig.2.1(b)) to represent the facial changes, where 30 of them are

anatomically related to the contraction of a specific set of facial muscles (P. Ekman, 1989).

The 14 reminder AUs are referred as miscellaneous facial actions. Specifically, in FACS

theory, the occurrence of AUs can vary in intensity, i.e., the degree of muscle contraction

can be represented by 3- or 5-point ordinal intensity scales.
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(a) Examples of the six basic facial expressions of emotion.

(b) Examples of some facial action units (AUs)

Figure 2.1: Visualization of two facial expression theory.
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While some existing facial expression analysis studies (Essa & Pentland, 2002; Lien,

Kanade, Cohn, Li, & Zlochower, 1998; Kimura & Yachida, 1997; Jaiswal & Valstar,

2016) indicates the intensity variation within AUs can be automatically and accurately

estimated under some specific conditions (Please refer to (Tian et al., 2005) for details), the

individual differences in appearance and expressiveness bring challenges to such tasks. In

particular, the face shape, skin color, gender, age and ethnic background (Farkas & Munro,

1987; Zlochower, Cohn, Lien, & Kanade, 1998) make individuals have completely different

faces, resulting in similar facial expressions to have different appearances. Meanwhile, the

difference in expressiveness would lead to different degrees of facial plasticity, morphology,

and frequency of intense expression (MANSTEAD, 1991). For example, Zlochower et

al.(Zlochower et al., 1998) found that the performance of optical flow-based algorithms

designed for adolescents degraded significantly for infants, which may due to the lack of

transient furrows, the reduced texture of infants’ skin, and juvenile facial conformation.

Thus, when developing and validating facial expression analysis algorithms, it usually

requires a large number of examples across various hairstyles, gender, ethnic backgrounds,

ages, etc.

2.4 Relationship between personality, emotions and

facial expressions

There is convergent evidence showing that personality can be defined by specific tenden-

cies to experience and express certain emotions. While John et al. (John, 1990) suggested

that verbal language is frequently associated with personality traits and emotions, e.g.,

many words are related to specific emotion tendencies, previous studies also claimed that

non-verbal expressive behaviours are informative to emotions and personality. Specifi-

cally, Keltner et al. (Keltner, 1996) found that both emotion and personality traits can

be expressed in distinct, observable behaviours that evoke responses in others. In addi-

tion, the studies conducted by Ekman et al.(P. Ekman, 1992b) and Izard et al. (Izard,

1977) showed that human nature, including personality and emotions of individuals, can



2.4. Relationship between personality, emotions and facial expressions 26

be interpreted by a certain number of universal non-verbal behaviours characteristics.

Specifically, DePaulo (DePaulo, 1992) concluded that personality traits are likely to be

strongly influenced by an individual’s implicit predispositions and internal states to dis-

play certain emotions. Thus, a person who tends to express certain emotions is more

likely to consistently evoke certain emotions and actions in others, contributing to the

others’ perception (apparent personality) on this individual.

According to (Calder, Ewbank, & Passamonti, 2011), some brain areas involved in

facial displays recognition are also biologically involved in processing emotions. While

emotions provide vital non-verbal cues to reflect personality traits, facial expressions are

quick, reliable, and seemingly universal signals to represent emotions. In other words,

emotions can be expressed by a set of consecutive facial expressions. As a result, fa-

cial expressions/displays are an important non-verbal source to infer personality traits

(Knapp et al., 2013), and thus a large number of personality studies (Borkenau et al.,

2009; DeBruine et al., 2006; Shevlin et al., 2003; Zebrowitz et al., 2002) build on facial

behaviours.

Many of these studies (J. A. Hall et al., 2008; Kenny, 1994; Knapp et al., 2013)

showed that when targets were photographed with spontaneous facial expressions (under

spontaneous conditions), the personality traits values predicted from observers were very

similar to the ground-truth for almost all the traits. Particularly, they claimed that con-

sistently displayed facial expressions could define how the individual is perceived by others

as well as the character of the individual’s interactions and social relations. Consequently,

facial expressions are always employed as key clues in observers’ inferences about the indi-

vidual’s personality traits. For example, a study discussed in (Knutson, 1996) shows that

happy expressions are associated with high dominance and affiliation; facial expressions of

anger and disgust refer to high dominance and low affiliation and from fearful; sad facial

expressions reflect low dominance. These findings suggest that facial expressions can not

only convey the internal state of individuals, but also form interpersonal perceptions.

Meanwhile, since the big five personality traits model is prevalent, some studies have

explicitly investigated the relationship between these traits and facial expressions. Edgar
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et al. (Edgar, McRorie, & Sneddon, 2012) found that the extraversion trait is consistently

correlated with the sensitivity to positive emotional stimuli. This trait is reflected by facial

expressions of positive emotions and negative emotions that can encourage positive social

contacts (Keltner, 1996). In contrast, neuroticism is found to be negatively linked to

positive emotions. This can be reflected by behaviours of: 1. increased facial expressions

of negative emotions such as anger, contempt and fear; 2. embarrassing face with various

emotions, including sympathy, amusement, embarrassment, and distress; 3. less likely

to display Duchenne smiles. Agreeableness is claimed to be positively associated with

facial expressions of emotion such as Duchenne laughter and displays of sympathy, which

would benefit cooperative and friendly social interactions. Meanwhile, this dimension

is negatively related to some negative emotions, including anger and disgust, reflected

by the facial actions such as oblique eyebrows of sadness and forward head movements

(Eisenberg et al., 1989). According to (Keltner, 1995), individuals who have high scores on

conscientiousness are more likely to display facial expressions showing embarrassments,

such as controlled smile, gaze aversion, head movements down and face touching, and

sometimes they laugh for reasons other than pleasure. In addition, a fine-grained research

(Watson & Clark, 1992) showed that this trait is strongly related to facial muscle actions

that inhibited the smile, consistent with the role of impulse control in conscientiousness.

Finally, individuals who score high in openness are more likely to keep their face and body

open, and display curious facial expressions.

2.5 Depression and its severity measurement

Major Depression Disorder (MDD) is a psychiatric disorder defined as a low mood state

with a problematic severity of duration for at least two weeks. This mental illness is caused

by many aspects such as biological, psychological and genetic factors. It can negatively

impact one’s day to day life, causing people to become reluctant or unable to perform

activities, which can negatively affect a person’s personal, work, school life, as well as

sleeping, eating habits, general health, etc., and affects thoughts, behaviour, feelings, and

sense of well-being (Edition, Association, et al., 1994). In extreme cases it can lead to
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suicide, which is the leading cause of death for men under 50 in the UK. Depression is

currently the most prevalent mental health disorder and the leading cause of disability in

developed countries.

A correct diagnosis of depression can provide vital information about how to re-

duce inappropriate feelings of blame, shame, loneliness and low self-esteem for the corre-

sponding patients and also facilitates the communication between (potential) patients and

health professionals about the support and services they need (Craddock & Mynors-Wallis,

2014). It is the key to choose which interventions are suitable for treating a patient. Stan-

dard clinical depression assessments usually employ verbal psychological questionnaires

completed by patients or caregivers to make judgements (Cohn et al., 2009). Among

them, Patient Health Questionnaire (PHQ-9), Beck Depression Inventory II (BDI-II) and

Hamilton Depression Scale (HAMD-17) are the most popular ones in recent years.

PHQ-9 is a self-administered instrument based on the nine DSM-V criteria for Major

Depressive Disorder. It consists of 9 questions, where each of them has four ratings ranging

from 0 to 3. Based on the total scores, four depression status can be predicted:

• 0-9: minimal depressive symptoms

• 10-14: mild depressive symptoms

• 15-19: moderate depressive symptoms

• 20-27: severe depressive symptoms

This inventory is usually employed to guide criteria-based diagnosis of depressive symp-

toms to assist in identifying treatment goals, determining severity of symptoms, as well

as guide clinical intervention.

BDI-II is the revised version of the Beck Depression Inventory (BDI), and is also

designed to assess depressive symptoms based on DSM-V criteria. This inventory is

usually used for adults and adolescents over 13 years old, allowing them to self-report on

symptoms from the last 2 weeks. It consists of 21 items. Similar to PHQ-9, each item of

this inventory has four ratings with associated values ranging from 0 to 3. Based on the

total scores, four depression statuses can be predicted:



2.5. Depression and its severity measurement 29

• 0-13: minimal depressive symptoms

• 14-19: mild depressive symptoms

• 20-28: moderate depressive symptoms

• 29-63: severe depressive symptoms

The BDI-II has been widely used in clinical or hospital settings as well as community

mental health settings. From the perspective of affective computing, the PHQ-9 and

BDI-II questionnaire have been widely employed as the label to the automatic depression

analysis dataset (Gratch et al., 2014) and AVEC challenges (M. Valstar et al., 2013, 2014,

2016; Ringeval et al., 2017, 2019) since 2013, which are used for evaluating the proposed

approaches in this thesis.

HAMD-17 is the Hamilton Depression 17-item questionnaire which was developed

in 1957 before the publication of the DSM-III and thus did not evaluate such criteria for

depression. The HAMD-17 has been used extensively within the medical community. It

is a standard clinical instrument that has been proven useful for determining a patient’s

level of depression before, during, and after the treatment. Unlike the PHQ-9 and BDI-II,

this is an observer rating, and the questionnaire is not typically used by psychologists or

used as a self-report instrument but should be administered by a clinician for psychiatric

patients. It can be used when there are concerns about the patient’s self-report accuracy

as its scores correlate well with BDI-II scores. In particular, HAMD consists of 17 items

with a rating of either 0 to 4 or 0 to 2, with total scores ranging from 0 to 54. Based on

the total scores, four depression status can be predicted:

• 0-7: No depression

• 8-16: Mild depression

• 17-23: Moderate depression

• 24-54: Severe depression
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Figure 2.2: Examples of some prototypical facial displays that reflect depressive feelings

In the clinical usage, a decrease of 50% or more in the HAM-D score often indicates the

positive treatment response, whereas a score of 7 or less is considered equivalent to a

remission.

2.6 Relationship between depression, emotions and

facial expressions

Besides the personality traits, this thesis also attempts to extend the proposed approaches

to the automatic depression analysis, i.e., infer depression status from non-verbal facial

behaviours. Thus, this section reviews the psychological evidence that depression can also

be reflected by non-verbal facial behaviours.

As many researchers suggested, there is a strong relationship between non-verbal fa-

cial expressions of emotions and depression. An early study (Goldstein, 1964) found that

some patients with depression frequently experienced ‘over arousal’. After that, Clark et

al. (Clark & Watson, 1991) interpreted depression in terms of valence, which captured the

positivity or negativity of an emotional state. The results showed that depressed people

present deficient positivity and excessive negativity. In terms of the facial displays, a key

finding that has been frequently validated is that depression is usually accompanied by

reduced positive facial displays. This hypothesis has been frequently mentioned and val-

idated across various studies (Chentsova-Dutton et al., 2010; Gehricke & Shapiro, 2000;

Renneberg et al., 2005; Rottenberg, Kasch, Gross, & Gotlib, 2002; Sloan et al., 2001;

Tsai, Pole, Levenson, & Muñoz, 2003; Tsai et al., 2003), and indeed has been replicated
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in this thesis. Additionally, depression can lead to a general reduction in facial expres-

siveness (Gaebel & Wölwer, 2004; Renneberg et al., 2005) and head movements (Fisch,

Frey, & Hirsbrunner, 1983; Joshi, Goecke, Parker, & Breakspear, 2013). In particular,

Ellgring et al. (Ellgring, 2007) summarized typical symptoms of depression in terms of

facial expressions, indicating that depression is not only associated with sad facial dis-

plays but also with “a total lack of facial expressions corresponding to the lack of affective

experience”. Regarding the negative facial expressions, researchers have conflicting con-

clusions. While most studies (Sloan, Strauss, Quirk, & Sajatovic, 1997; Reed, Sayette,

& Cohn, 2007; Brozgold et al., 1998) argued that depression is marked by the increased

negative expressions, some research reported that depressed individuals are more likely

to experience reduced negative expressions (Gaebel & Wölwer, 2004; Renneberg et al.,

2005), and that expressive behaviour is thus more bland and neutral. Some prototypical

depression-related facial expressions are shown in Fig.2.2.

Since facial expressions of emotions can reflect the depression, many researchers at-

tempted to directly apply non-verbal facial cues to infer individual’s depression status.

Cohn et al. (Cohn et al., 2009) firstly explored the feasibility of applying ML models to

process audio and mid-level non-verbal facial cues for depression classification. This study

extracted three sets of descriptors based on three models, i.e. manually annotated Facial

Action Units (AUs), Active Appearance Model (AAM) and vocal prosody descriptors.

Then, Support Vector Machines (SVM) is employed as the classifier to predict depression

occurrence. The results showed that all of them were informative to depression, with facial

AUs achieving the best accuracy of 88%, which indicates that facial behaviour primitives

are informative to automatic depression analysis. Girard et al. (Girard et al., 2014)

also specifically investigated the relationship between depression and non-verbal facial

behaviours, e.g., AUs and head poses, using both manual and automatic systems. Both

results showed that participants with high depression severity presented fewer affiliative

facial expressions (AUs 12 and 15), more non-affiliative facial expressions (AU 14) and

diminished head motion. Besides, a large number of machine learning-based automatic

depression analysis systems (L. Yang et al., 2018; Song et al., 2018, 2020; Al-gawwam
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& Benaissa, 2018; Meng et al., 2013; Pampouchidou et al., 2016) were building on the

non-verbal facial cues, and most of them achieved relatively accurate occurrence detection

or severity estimation performance (Please see Sec.3.2 for details).

2.7 Relationship between personality and depression

In the past decades, biologists researchers have found that personality is genetically asso-

ciated with depression. For example, some studies (Vukasović & Bratko, 2015; Lo et al.,

2017) claimed that some genes and environmental factors which determine individuals’

personality are also highly correlated with mental health conditions, such as depression.

Meanwhile, other studies (Kendler et al., 2006, 2007; Hettema et al., 2006) claimed that

high neuroticism and depression are correlated in the genetic factors, indicating that

neuroticism can reflect the genetic susceptibility to depression.

In addition to the biological evidence, psychological studies also frequently claimed

a strong correlation between personality and depression. Dennis et al. (DENNIS et al.,

1981) found that personality disorder is associated with depression. In particular, this

study summarized several conclusions: 1. personality disorder is more common in unipo-

lar non-melancholic depressed patients than in unipolar melancholic or bipolar depressed

patients; 2. obsessive-related traits have been found to predominate the unipolar melan-

cholic patients; 3. histrionic, hostile, and borderline traits were frequently experienced

by the nonmelancholic patients. Matsudaira et al. (Matsudaira & Kitamura, 2006) in-

vestigated the impacts of personality variability on depression and anxiety. This study

employed the Temperament and Character Inventory (TCI) as the personality measure-

ment and the Hospital Anxiety and Depression (HAD) scale as the depression and anx-

iety measurement. The experimental results showed that people who have lower scores

on some personality dimensions, e.g., Self-Directedness, Reward-Dependence, Coopera-

tiveness, Persistence, and Self-Transcendence, are most likely to feel depressed while the

immaturity of all character dimensions denoting the higher risk for specific depression.

De Moor et al.(De Moor et al., 2006) examined the relationship between regular exercise

and depression and personality, showing that people with lower neuroticism and higher
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extraversion are more likely to do regular exercise, and those people tend to have lower

depression risk.

Since both personality and depression are long-term status, some longitudinal studies

were specifically conducted, aiming at exploring the relationship between big five person-

ality traits and depression. These works consistently found that both the onset and the

chronicity of depression are associated with neuroticism personality (Ormel, Oldehinkel,

& Vollebergh, 2004; Kendler, Kuhn, & Prescott, 2004; Krueger, Caspi, Moffitt, Silva,

& McGee, 1996), while people who have a low level of extraversion are more likely to

experience the onset of depression (Krueger et al., 1996; Hirschfeld et al., 1989). Klein et

al.(Klein et al., 2011) surveyed the relationship between personality and depression. This

study summarized that most personality traits, e.g. neuroticism, extraversion and con-

scientiousness, are related to depression. In particular, neuroticism is associated with the

onset stage of depressive disorders. Similar conclusions were also made by (Chioqueta &

Stiles, 2005), claiming that neuroticism trait and openness trait are positively correlated

to feelings of depression while people who have high scores on extraversion are less likely

to experience depression.

2.8 Summary

In summary, previous biological and psychological studies have been frequently concluded

that personality traits and depression can be reflected by human facial behaviours, which

provides the theoretical basis of the thesis, i.e., automatic analysis of facial behaviours for

personality and depression recognition. Additionally, individuals with high scores in some

personality traits (e.g., Neuroticism) are more likely to experience depression, indicating

that personality can be a potential predictor for depression. In this thesis, the widely-

used Five-Factor Model is employed as the measurement for personality traits and PHQ-9

inventory is employed as the severity measurement for depression.



Chapter 3

Related Work

Since previous psychological studies have been frequently claimed that personality traits

and depression status are marked by non-verbal expressive facial cues (summarized in

Chapter. 2), a large part of recent automatic personality and depression analysis systems

were building upon them. This chapter systematically reviews studies that applied ma-

chine learning techniques to analyze human non-verbal expressive cues, especially facial

behaviours, for automatic personality and depression recognition. In particular, the au-

tomatic personality and depression analysis literature are reviewed in Sec.3.1 and Sec.3.2,

respectively.

In particular, most video-based approaches were built on the assumption that the

provided video data contains human facial behaviours that are well associated with their

personality or depression. While existing personality and depression datasets have utilised

various stimulated contents/environments to trigger participants behaviours, including:

1. asking participants conducting winter survival task, i.e., ranking a list of 12 items

in order to survive an airplane crash in winter (Sanchez-Cortes, Aran, Mast, & Gatica-

Perez, 2011) ; 2. watching emotional short videos and movie segments with strongly

affective multimedia contents (Correa, Abadi, Sebe, & Patras, 2018); 3. conducting a

set of pre-defined tasks such as Lego building (Palmero et al., 2020), read paragraphs

(M. Valstar et al., 2013, 2014) and describe figures (Palmero et al., 2020; M. Valstar et

al., 2013); 4. interacting with either a human with pre-defined questions (Celiktutan,

Skordos, & Gunes, 2017; Jaiswal, Song, & Valstar, 2019) or self-decided topics (Cafaro et

34
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al., 2017; Gratch et al., 2014); 5. interacting with robots that show different non-verbal

behaviours (Celiktutan et al., 2017) or ask verbal questions (Jaiswal, Song, & Valstar,

2019). However, there is no clear agreement regarding the best stimuli to trigger facial

behaviours for automatic personality and depression analysis. Thus, exploring a superior

way to encode multi-scale facial dynamics as well as utilizing all available information

are the main targets of this thesis. In this sense, Sec.3.3 explicitly summarized tempo-

ral modelling strategies of the reviewed approaches and their shortcomings, and Sec.3.4

discussed existing literature that encodes fixed-length feature representation of variable

length videos.

3.1 Automatic personality analysis

As an essential part of machine learning, labels are important for models’ training and

validation. Although personality trait models have been criticized that they are purely

descriptive and do not correspond to actual characteristics of individuals (Junior et al.,

2018), this type of method is still the dominant way to model people’s personality as

they can provide explicit and quantifiable description across various aspects of human

personality. Practically, the verbal questionnaires reported by individuals themselves or

others who observed them have been frequently adopted as the self-reported or apparent

personality traits labels (Corr & Matthews, 2009). Among those questionnaires, the

Big Five Inventory (BFI) developed by John et al. (John, Donahue, & Kentle, 1991)

has been widely used to measure the five traits of people’s personalities, which contains

44 questions. Besides, Beatrice et al. (Rammstedt & John, 2007) and Gosling et al.

(Gosling, Rentfrow, & Swann Jr, 2003) have proposed short and time-saving versions of

BFI, containing only 10-items, which also achieved many attentions. Based on such labels,

the following two subsections will systematically review existing automatic personality

analysis approaches.
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3.1.1 Frame/short segment-level personality modelling

The dimensions of face images used in automatic personality analysis studies are usually

high, i.e., the resolutions are usually higher than 120 × 120 × 3, resulting in at least

40, 000 dimensions for each image. Then, it is challenging to directly feed such high-

dimensional data to standard ML models for personality/depression analysis. Instead, a

large part of existing methods attempted to firstly extract low-dimensional descriptors

from each given image or short video segment (usually less than 20 frames), and then

predict personality from low-dimensional descriptors. These approaches generally consist

of two main steps: 1. image-level or short segment-level feature extraction using either

hand-crafted methods (Aran & Gatica-Perez, 2013b; Pianesi, Mana, Cappelletti, Lepri, &

Zancanaro, 2008; Lepri, Mana, Cappelletti, Pianesi, & Zancanaro, 2009; Kalimeri, Lepri,

& Pianesi, 2010; Fang et al., 2016; Staiano, Lepri, Subramanian, Sebe, & Pianesi, 2011;

Joshi, Gunes, & Goecke, 2014; Okada, Aran, & Gatica-Perez, 2015) or deep learning

models (Batrinca, Lepri, & Pianesi, 2011; Güçlütürk et al., 2016; Subramaniam, Patel,

Mishra, Balasubramanian, & Mittal, 2016; Wei, Zhang, Zhang, & Wu, 2018; Kampman et

al., 2018); 2. feeding image/segment-level features into pre-trained classifiers or regressors

to generate predictions. In particular, for video-based approach, the decision-level fusion

has been frequently made from all frame/segment-level predictions of a video, to generate

the final predictions.

Still image-based applications

While personality trait is defined to be stable over time for a particular person but differs

from others (Kassin, 2003), some studies were attempted to predict personality from a

single image such as the profile image in social media. These approaches usually start

with facial landmarks detection, by which face regions can be obtained with a simple

background. Then, based on the landmarks, various mid-level cues or semantic facial

appearance and geometrical features can be extracted for the personality analysis.

For example, Joo et al. (Joo et al., 2015) conducted studies on face images of 650

American politicians of white ethnicity, including Senators, Congressmen and Governors.
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This approach extracted Histogram of oriented gradients (HOG) features as the low-level

per frame representation. Additionally, it calculated mid-level binary attributes: Glasses,

Bald, Blonde, etc., as well as scalar attributes: Eye-height, Eye-width, Drooping-eye, etc.

The RankSVM was then employed to combine them with high-level social dimensions to

predict personality traits scores. Yan et al. (Yan et al., 2016) firstly divided each face

image into several semantic regions, and extracted multiple low-level descriptors from each

region, respectively. Then, SVM is employed to learn correlations between facial regions

from these low-level descriptors, to explore the relationship between facial appearance

and personality impressions. Vernon et al. (Vernon, Sutherland, Young, & Hartley,

2014) proposed to extracted 179 fiducial points to locate key features from each face and

used ANN to calculated 65 numerical attributes from them, which contain both local or

global facial geometric and appearance information. After that, the computed numerical

attributes were reduced to three factors corresponding to three personality traits. A

cascaded network was then adopted to synthesize a cartoon face-like image by decoding

the 3 factors to 393 image properties, according to which the social traits can be assessed.

Images displayed in users’ social media are also important sources to understand

their personality. Celli et al. (Celli, Bruni, & Lepri, 2014) analyzed profile images from

Facebook. They utilised the bag-of-visual-words model to represent each image. The

extracted visual words were then fed to a series of regressors such as Support Vector

Regression (SVR), Naive Bayes, decision tree and logistic regression, to predict users’

personality traits. Dhall et al. (Dhall & Hoey, 2016) extracted both hand-crafted and

deep-learned facial region features from Twitter profile images. It is worth mentioning

that the background information was also taken into consideration in this work. The

results showed that better predictions could be produced when using the background as

additional information compared to use users’ body or face regions only. In contrast,

Qin et al. (Qin et al., 2018) recorded face images in a very controlled environment to

avoid the influence of facial cosmetics, jewellery, and other decorations. In addition,

’irrelevant’ information such as hair, clothes, background, etc. was also removed. Based

on the pure face, this study extracted five hand-crafted features (HOG, Local Binary
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Pattern (LBP), Gabor, Scale-invariant feature transform (SIFT) and Generalized Search

Trees (Gist)) which were fed to several standard classifiers and regressors, e.g. Parzen

Window, Decision Tree, etc. to estimate self-reported personality (16PF) and intelligence.

The experiment results demonstrated that despite some personality traits can be reliably

predicted from the facial features, others may largely depend on the social environment.

Besides the face image, some studies investigated other types of images posted on

social media, and claimed that they can also partially reflect users’ behaviours and tenden-

cies. Guntuku et al. (Guntuku, Qiu, Roy, Lin, & Jakhetiya, 2015) researched 123 images

collected from Sina Weibo (Chinese Twitter). This study extracted several typical hand-

crafted features such as Colour Histograms, SIFT, LBP, from each image, and fed them

to SVM with RBF kernel to detect mid-level descriptors, from which personality traits

can be estimated. The results showed that these mid-level cues outperformed low-level

hand-crafted features for most traits. Based on Instagram, Ferwerda et al. (Ferwerda,

Schedl, & Tkalcic, 2016) explored the way users manipulate pictures by investigating the

relationship between image features extracted by colour filters, and real personality traits.

Video-based applications

Videos can provide temporal information in addition to the static facial displays, which

have been claimed to be crucial to reflect individuals’ internal dispositions. As a re-

sult, video-based approaches can usually place personality analysis on a new level with

a broader range of possible applications. Although videos were provided, some early

studies still failed to utilise temporal information. For example, Biel et al. (Biel, Teijeiro-

Mosquera, & Gatica-Perez, 2012) addressed the personality traits estimation task by

extract frame-wise facial activity statistics and then utilised SVR to learn them indepen-

dently. This work evaluated the most prominent facial expressions for personality traits

modelling, claiming that Extraversion is the easiest trait to predict. This conclusion also

has been validated by (Biel, Aran, & Gatica-Perez, 2011; Biel & Gatica-Perez, 2013). In

other words, this approach still infers personality at the image-level.

As an extension of (Biel et al., 2012), Teijeiro et al. (Teijeiro-Mosquera, Biel, Alba-
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Castro, & Gatica-Perez, 2015) studied the relationship between facial expressions and

apparent personality traits in Vlog. Instead of modelling personality at the still image

level, they introduced a short time-window to model temporal dynamics from the per

frame statistical representation of facial expressions. It investigated the influence of the

video slice duration and facial location on personality traits estimation, showing that

the quality of extraversion predictions is negatively correlated with time-window length.

Besides, this study also found that the video slice at the beginning of each video is enough

to form viewers’ impressions. Aran et al. (Aran & Gatica-Perez, 2013a) also focused on

using temporal dynamics of the short segment to infer personality traits. In particular,

they first encoded dynamics of each video segment into a weighted Motion Energy Images

(MEI), from which the dynamic features were extracted. Then, Ridge Regression and

SVM were employed to analyze extracted features for personality prediction.

Besides the hand-crafted approaches, various deep learning models also have been

introduced to video-based personality analysis studies. Batrinca et al. (Batrinca et al.,

2011) proposed a Descriptor Aggregation Network (DAN) to extract frame-wise features

at multiple spatial resolutions. This method was later adopted to return per frame per-

sonality predictions in (Ventura, Masip, & Lapedriza, 2017). The result shows that facial

information, especially eyes, nose and mouth, plays key roles in the personality trait es-

timation. Guccluturk et al. (Güçlütürk et al., 2016) proposed an audio-visual Residual

Network for personality traits estimation. This structure consists of two streams: visual

stream and audio stream, by which visual and audio features were deep learned. Both

features were then combined at the fully connected layer (FC) to provide a personality

prediction for each frame. The final video-level prediction is then made by averaging these

frame-level predictions. Wei et al. (Wei et al., 2018) proposed a Deep Bi-modal Regres-

sion Network to extract per frame audio and visual features. For visual information, they

also applied DAN to aggregate features from different convolution layers by using either

global average pooling or global max pooling. Similar to above approaches, the final pre-

diction is made by the fusion of frame-level predictions. In short, all the aforementioned

deep learning frameworks predict personality from still images without utilizing temporal
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information.

To consider important dynamic cues, another CNN-based approach (Subramaniam et

al., 2016) employed Long-short-term-memory Networks (LSTMs). This approach consists

of three steps: 1. videos are firstly divided into several equal-length short segments, where

a frame from each video segment is selected to generate a 3D aligned cropped face image;

2. The 3D face images are fed into either CNNs or LSTMs; 3. Personality traits were

predicted at the frame-level, and then the video-level prediction is made by the decision-

level fusion of frame-level predictions.

While most studies aimed at returning a single personality traits’ label/score for each

person, Celiktutan and Gunes attempted to estimate apparent personality traits continu-

ously over time. In (Celiktutan & Gunes, 2014), human annotators were asked to provide

a big-five rating for each frame, and then several low-level hand-crafted features are com-

bined to predict personality. Celiktutan et al. (Celiktutan & Gunes, 2015) also explored

the relationship between frame-level mid-level facial cues (gaze, attention and head) and

self-reported personality traits in the context of human-robot interactions. Both results

showed that there is a plausible relationship between the facial expressions, personality

traits and social dimensions. These works have been further investigated as a part of the

personality traits challenge (Celiktutan, Eyben, Sariyanidi, Gunes, & Schuller, 2014) and

presented as a demo in (Celiktutan, Sariyanidi, & Gunes, 2015). Besides, Subramanian

et al. (Subramanian, Yan, Staiano, Lanz, & Sebe, 2013) also investigated the relationship

between frame-level facial cues and the social attention descriptor (automatically detected

head poses). They found that social attention descriptors are excellent predictors of the

Extraversion and Neuroticism traits.

In summary, all the methods reviewed above attempt to learn personality from a

single frame or a super-short segment, i.e., assuming video-level personality labels as the

frame/segment-level labels to train Machine Learning (ML) models. This is problematic

because people with different personalities can of course display the exact same configu-

ration of behaviour primitives in a single frame (e.g., facial expression, head pose, etc.).

What indicates personality is how they change over time in response to certain stimuli.
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Thus, a training strategy that learns relations between short segments and personality

labels would lead to an ill-posed machine learning task, i.e., the same input pattern has

multiple labels, making it practically impossible to learn a good hypothesis. Additionally,

while a person’s frame/segment-level facial status can change rapidly in a short period,

video-level (event) labels will remain unchanged for each video, as personality traits do not

change on that time scale. Therefore, we assume that a brief segment (a single frame or

couple of frames) of expressive behaviours does not carry sufficient information to encode

a personality trait-specific pattern.

3.1.2 Video-level personality modelling

Since it is not realistic to infer reliable personality traits from a frame or a super short

segment, some studies constructed video-level descriptors and attempt to model reliable

and stable personality traits from long-term human behaviours.

To generate video-level descriptors, computing global statistics of hand-crafted de-

scriptors from all frames/segments (Bekhouche et al., 2017; Aran & Gatica-Perez, 2013b;

Fang et al., 2016; Nguyen et al., 2013) is the most popular way. However, these reviewed

descriptors usually fail to retain detailed temporal correlations between frames/segments,

which are essential components of facial behaviours, and crucial to reflect personality.

The automatic system proposed by (Joshi et al., 2014) is a typical example. This work

calculated the mean and standard deviation of PHOG features (extracted per frame) for

each video, as the video-level facial behaviour descriptor, and then fed them to linear

SVR for traits prediction. Aran et al. (Aran & Gatica-Perez, 2013b) aimed to infer

personality of participants from videos of small group meetings, from which multiple

hand-crafted audio and visual features were computed for each frame. Then, statistics

such as average speaking turn, prosodic features and visual activity were computed for

each video, represented as video-level descriptors, which were fed to Ridge Regression to

estimate personality traits. A similar method was proposed in (Pianesi et al., 2008), where

hand-crafted acoustic and visual features were first extracted from each frame, and then

video-level descriptors were obtained by computing their statistics. The final predictions
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were produced by feeding video-level descriptors to SVM. Bekhouche et al. (Bekhouche

et al., 2017) firstly extracted Local Phase Quantization (LPQ) and Binarized Statistical

Image Features (BSIF) from each face image of the video. Then, Pyramid Multi-Level

(PML) was introduced to combine both features at the frame-level. The long-term infor-

mation of a whole video was obtained by averaging the features over all frames. After

that, SVR and a Gaussian Process Regression (GPR) were employed to process these

features for personality traits estimation.

Besides the low-level features, mid-level cues were also found to be informative to

personality. In (Staiano et al., 2011), mid-level visual attention cues (represented as the

head pose and gaze) were extracted for personality analysis. Similarly, human postures

and gestures cues during the speaking were considered in (Nguyen et al., 2013). The

statistics of these frame-wise mid-level cues were computed as the video-level descriptor

and fed to Ridge Regression and Random Forest for personality prediction. In (Fang et

al., 2016), three types of video-level features, including intra-personal (related to only one

participant), dyadic (related to a pair of participants) and one vs all features (related to

one participant versus the other members of the group), were proposed. In particular,

they were computed from statistics of frame-wise audio and visual cues, such as speech

activity, prosodic and motion activity. Then, SVR and Ridge Regression were used to

learn these features to predict personality traits.

Instead of using statistics, other types of video-level descriptors produced from the

mid-level visual and acoustic cues also have been widely explored. For example, in (Lepri

et al., 2012; Fleeson, 2001), authors employed medium-grained meeting behaviours such

as automatically detected speaking time and social attention features to classify extraver-

sion trait. It concluded that speaking time and social gaze are effective indicators of

extraversion, and the distribution of peers’ social attention is a crucial clue. Based on

the frame-level hand-crafted mid-level visual features, e.g., body/head motion, prosodic

features, etc., Okada et al. (Okada et al., 2015) proposed to construct a multi-channel

time-series binary signal for each video. They then explored a co-occurrent pattern of

them using a graph clustering algorithm, which is treated as the video-level non-verbal
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behaviour descriptor. Finally, the personality traits and social impressions are estimated

based on the produced co-occurrent descriptors using Ridge Regression and linear SVM.

While the approaches described above modelled long-term information from extracted

descriptors, some systems proposed to model it at the input level, e.g., summarizing all

frames into a single matrix before feeding to ML models. Kampman et al. (Kampman

et al., 2018) introduced CNNs for personality prediction, where a tri-modal architecture

extracts feature from audio, video and text. Interestingly, this work only took a random

frame from each video for CNN-based feature extraction. In other words, they only used

a single image to represent the whole video. Meanwhile, for the audio part, it split raw

waveforms as the raw waveform itself and the signal with squared amplitude, as input

to CNNs. Zhang et al. (L. Zhang et al., 2019) extended the temporal segment networks

(L. Wang et al., 2016) to the personality analysis task. The method operates on a pool

of sparsely sampled faces from the entire video, i.e., a face image is selected from each

short segment. Then, a consensus strategy is employed to process all the selected face

images, to produce video-level predictions for personality traits. In (Lepri et al., 2009), a

Motion History Image (MHI) was computed as the representation of each 1-minute slice,

from which a set of energy-related acoustic and visual features, e.g., head fidgeting, hands

fidgeting, pose fidgeting, etc, were extracted. The result indicates a similar conclusion

made by (Pentland, 2006) and (Kalimeri et al., 2010), i.e., 1-minute slices are long enough

to compute reliable features. Meanwhile, this length is also small enough to capture the

transient nature of social behavior.

3.2 Automatic depression analysis

Non-verbal expressive behaviours are also informative to people’s depression status. In

the past decade, automatic depression analysis has attracted a lot of attentions, where a

series of challenges have been organized (M. Valstar et al., 2013, 2014, 2016; Ringeval et

al., 2017, 2019). Among these approaches, a large part of them (Wen, Li, Guo, & Zhu,

2015; Zhou, Jin, Shang, & Guo, 2018; Zhu, Shang, Shao, & Guo, 2017; Jan, Meng, Gaus,

& Zhang, 2018; L. Yang et al., 2018) base their predictions on the non-verbal audio-visual
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behaviours of participants expressed during interviews.

3.2.1 Frame/segment-level depression modelling

Early automatic depression analysis works (Meng et al., 2013; Gupta et al., 2014; Senous-

saoui, Sarria-Paja, Santos, & Falk, 2014; Pampouchidou et al., 2016) generally used

traditional Machine Learning models, e.g. SVR (Gong & Poellabauer, 2017; M. Valstar

et al., 2013), decision tree (Sun et al., 2017; L. Yang et al., 2018, 2016), Logistic regression

(Dibeklioğlu, Hammal, & Cohn, 2018), etc., to predict depression from a single frame or

short segment using traditional hand-crafted features such as LBP (Dhall & Goecke, 2015;

L. He, Jiang, & Sahli, 2018), Low-Level Descriptor (LLD) (Sun et al., 2017; Stepanov et

al., 2018; L. Yang et al., 2018), HOG (M. Valstar et al., 2014), etc). In addition, the

DepressNet proposed by Zhou et al. (Zhou et al., 2018) is a typical deep learning ap-

proach that analyzes depression at the frame level. It learns depression representations

with visual explanation, aiming to identify the salient facial region for depressed people.

In this approach, the facial region that is most informative to depression was highlighted

and used to predict depression at the frame level. The video-level depression score was

computed by averaging the predictions from all frames.

Meanwhile, the short segment-based approaches can retain short-term temporal infor-

mation in the input and force the back-end model to consider it. This type of approaches

generally divide each video into several equal-length segments, and learn features from

each segment independently. For example, Meng et al. (Meng et al., 2013) extracted

LBP and EOH as visual features and LLD as audio features. Then, this approach ap-

plied Motion History Histogram (MHH) to summarize dynamics from features of each

short segment of a video. These dynamics features were then individually fed to Partial

Least Square (PLS) regression to return segment-level depression predictions, where the

video-level prediction is made by the decision-level fusion of them using the linear opinion

pool. Yang et al. (L. Yang et al., 2018) proposed to select several equal length segments

in each video to balance the number of depressed and non-depressed training examples.

They also proposed a Histogram of Displacement Range (HDR) method that records the
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dynamics of facial landmarks in a video segment. They used CNNs to learn deep features

from hand-crafted audio and video descriptors (including HDR) and the final decision

is made by the decision-level fusion of audio, video and text predictions using decision

trees. Ma et al. (Ma, Yang, Chen, Huang, & Wang, 2016) proposed a DeepAudioNet

to deep learn vocal features at the short segment-level, of which the outputs are fed to

Long-Short-Term-Memory Networks (LSTMs), to return a depression prediction for each

segment. Gupta et al. (Gupta et al., 2014) used LBP-TOP to summarize short-term

temporal information from each segment, which is combined with motion features and

facial landmarks as the segment-level representation. A feature selection step is then ap-

plied to select features to train an SVR model for segment-level depression prediction. Al

Jazaery et al. (Al Jazaery & Guo, 2018) employed C3D network to extract short-term

depression-related dynamic features from each short video segment. Then, these features

were fed to a Recurrent Neural Network (RNN) to model long-term dynamics and make

segment-level predictions. The final score was obtained by averaging all segment-level

predictions. A similar approach was proposed by Melo et al. (de Melo, Granger, &

Hadid, 2019), which also used C3D CNNs to model short-term dynamics and predict

depression severity at the short segment-level and then the final decision was also made

by averaging all segment-level predictions. Recently, Haque et al. (Haque, Guo, Miner, &

Fei-Fei, 2018) employed Causal Convolutional Networks (C-CNN) (Bai, Kolter, & Koltun,

2018) to predict depression severity from audio, text and 3D facial landmarks at the long

sentence-level, which has been shown to outperform recurrent neural networks (RNNs)

on long sequences for inferring depression.

3.2.2 Video-level depression modelling

While the reviewed segment-level based approaches can efficiently encode short-term dy-

namics, most of them ignored long-term temporal behaviour patterns of participants

except RNNs and LSTMs were used in (Al Jazaery & Guo, 2018) and (Ma et al., 2016).

These approaches assumed the video-level depression labels as the frame/segment-level

labels when training models. As discussed before, behaviour descriptors extracted from
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a single frame or a short segment can be ambiguous and explained by various causes,

e.g., a smile may be caused by feeling happy or feeling helpless. Additionally, the same

short-term behaviours can be expressed by subjects with different levels of depression.

Thus, this strategy would make trained models practically impossible to learn a good

hypothesis. In other words, depression levels can be more reliably described using the

entire video rather than short segments of the video.

For these reasons, some studies devoted to building a video-level descriptor for each

clip, where the Gaussian Mixture Model (GMM) and its extensions have been frequently

employed. For example, Williamson et al. (Williamson et al., 2013; Williamson, Quatieri,

Helfer, Ciccarelli, & Mehta, 2014) who were the winners of the AVEC 2013 (M. Valstar

et al., 2013) and AVEC 2014 depression challenges (M. Valstar et al., 2014), based their

approaches on audio data. They utilised formant frequencies and delta-mel-cepstra to

represent underlying changes in vocal tract shape and dynamics. After that, by exploring

the correlations between these features and using PCA, an 11-dimensional feature vector

(five principal components for the formant domain and six principal components for the

delta-mel-cepstral domain) is obtained. Finally, a Gaussian Staircase Model, an extension

of the GMM, was introduced as the regression model to summarize descriptors of each

clip. The approach proposed by Cummins et al. (Cummins et al., 2013) is also based on

GMM where a GMM-UBM model was applied to learn features representing each entire

clip, which contain both audio and visual information. Jain et al. (Jain, Crowley, Dey, &

Lux, 2014) used GMM (Fisher Vector) to encode the segment-level extracted LBP-TOP,

HOG, HOF and MBH features into a video-level visual descriptor. Nasir et al. (Nasir, Jati,

Shivakumar, Nallan Chakravarthula, & Georgiou, 2016) proposed to use i-vector, which

is an extension model of GMM. This model summarizes several segment-level extracted

audio features such as TECC and MFCC, and encoded them into a video-level descriptor.

He et al. (L. He et al., 2018) is another typical approach using the combination of hand-

crafted features and traditional ML models. This work extended the LBP-TOP feature

to MRLBP-TOP for extracting short-term dynamics and then Fisher Vector is used to

aggregate them as the long-term representation.
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The topics of the interview tasks decide the context of the interview, and thus would

trigger participants’ expressive behaviours in different ways. As a result, a few stud-

ies constructed video-level descriptors based on interview topics. Gong et al. (Gong &

Poellabauer, 2017) investigated the relationship between the interview topics and depres-

sion level. They found that there are 83 different topics in video contents in DAIC-WOZ

database (Gratch et al., 2014) and each clip only contains a few of them. To predict

depression severity, they constructed a long vector containing each topic’s feature in a

video, including the occurrence of the topic, statistics of hand-crafted audio features, and

facial attributes. Sun et al (Sun et al., 2017) also investigated the interview topics, where

they found that only 6 topics are potentially highly correlated to the depression levels.

3.3 Temporal modelling of facial behaviours

Temporal dynamics are important sources of information for video-based face analysis.

The basis of this thesis is that personality traits and depression status can be reflected

by expressive facial behaviours which are made up of both appearance and dynamics.

Traditional hand-crafted features and recently proposed deep learning architectures since

AlexNet (Krizhevsky et al., 2012) have been proved to be powerful to encode spatial

information from images. However, the optimum ways to encode the temporal dynamics

of facial behaviours for personality and depression analysis have not been fully explored.

Thus, this section explicitly reviews and summarizes the typical temporal models used for

related face tasks. In particular, this section separately reviews the short-term temporal

modelling methods and long-term temporal modelling methods.

3.3.1 Short-term temporal models

The short-term temporal modeling of the face usually accomplished either by generat-

ing a single set of features from multiple consecutive frames at a time (early modeling

of temporal dynamics (Bilen et al., 2017)) or by using memory-based models, such as

Recurrent Neural Networks (RNNs) and Markov Models (late modeling of temporal dy-
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namics (Al Jazaery & Guo, 2018; de Melo et al., 2019)), or by a combination of both

(Jaiswal & Valstar, 2016; Song, Sánchez-Lozano, Kumar Tellamekala, et al., 2019).

Among these solutions, the late modeling of short-term facial dynamics usually

achieved by computing the temporal correlations between frame-wisely extracted descrip-

tors. To do so, some early studies extended hand-crafted spatial features to the temporal

domain. For example, some features, e.g., LBP, HOG, etc., have been extended the spatial

domain to the temporal dimension, referred as the Three Orthogonal Planes (TOP), and

were widely used by AVEC baselines (Schuller, Valster, Eyben, Cowie, & Pantic, 2012;

M. Valstar et al., 2013, 2014). Particularly, the LBP features are extended to the tempo-

ral domain as the LBP-TOP in (Kaltwang, Todorovic, & Pantic, 2016). When combining

this LBP-TOP with a sparse regression method, the excellent AU recognition and affect

estimation performances were yielded on the SEMAINE database (McKeown, Valstar,

Cowie, Pantic, & Schroder, 2012). In (Kaya, Gürpınar, & Salah, 2017), histogram-based

features, such as LPQ, LBP and LGBP, were extended to the temporal dimension, which

were further combined with deep-learned features to summarize spatio-temporal patterns.

Gupta et al. (Gupta et al., 2014) also extend LBP to LBP-TOP to encode short-term

temporal information for personality analysis.

However, the TOP extension of features grows drastically in complexity as the num-

ber of frames increases, and thus learning temporal models is a better choice. While

graphical models such as Hidden Markov Models (HMMs) or Conditional Random Fields

(CRFs) provide powerful temporal representations, they are prone to failure when model-

ing long-term dynamics. These drawbacks can be tackled with Recurrent Neural Networks

(RNNs), which are feed forward networks of latent states that can be learned through

back-propagation. RNN models exploit the temporal information by applying latent vari-

ables that are supposed to model the intrinsic correlation that exists between the input

and the output at a given frame, conditioned to the latent states at previous frames. This

type of model, including Long-short-term-memory networks (LSTM), Gated Recurrent

Units (GRUs), etc., can be used with either hand-crafted features or in combination with

CNNs.
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While RNNs are relatively sensitive to the hyper-parameters and training data, which

leads them to be overfitting, some extensions handling such back-propagation problems

have been proposed too. As a result, RNN-based models have been widely adopted to

model temporal dynamics of emotions and facial actions from the face (Jaiswal & Valstar,

2016; K. Zhang et al., 2017; Kollias et al., 2019b; Jaiswal & Valstar, 2016) recently.

In (Nicolaou, Gunes, & Pantic, 2011), a Bidirectional-LSTM (BLSTM) architecture is

employed to learn hand-crafted features, which showed superior performance than using

SVR as the back-end model. This is because the BLSTM can learn facial dynamics from

videos in addition to the spatial information. Hasani et al. (Hasani & Mahoor, 2017)

extracted features using Inception module (Szegedy et al., 2015). When feeding the deep-

learned features to an LSTM, the prediction performance was enhanced compared to

using the Inception module only in a per-frame basis. Similar approaches were adopted

in (Khorrami, Le Paine, Brady, Dagli, & Huang, 2016) and (Kollias et al., 2019b), where

relatively shallow CNNs were used in combination with an RNN or GRU, to learn short-

term spatio-temporal facial patterns. In (Han, Zhang, Cummins, Ringeval, & Schuller,

2016), the output of RNNs is combined with an SVR, thus preventing the former to

incur in overfitting, and the latter not to consider the temporal domain. The proposed

approach, coined Strength Modeling algorithm, applies the two models in a hierarchical

manner.

Besides the RNNs and TOP-based models, other temporal models that aims to learn

dynamics from features, such as co-occurrent pattern (Okada et al., 2015), statistic-based

dynamic features (Teijeiro-Mosquera et al., 2015), Histogram of Displacement Range

(HDR) method (L. Yang et al., 2018) etc., also have been investigated in recent years, to

infer short-term dynamics from video segments. In (Nicolle et al., 2012), global and local

features were extended to the temporal domain through the magnitude of the Fourier

transform of each of them.

However, the late modelling methods described above mainly focused on learning

temporal information from the extracted frame/segment-level features rather than face

images themselves. Since the feature extraction significantly reduces the input face im-
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age’s dimensionality, this process may result in the loss of some critical spatio-temporal

patterns. Instead, some studies attempted to model temporal evolution directly from the

face image sequence, and consequently, the dynamics can be encoded in the context of

the face. For example, in (de Melo et al., 2019), the C3D network was utilised to learn

short-term temporal patterns from a set of stacked input frames. However, this model

would become high-complex when modelling relative long sequences, as the number of

input channels equals the number of frames. Thus, the number of input frames are usu-

ally limited to less than 20. Aran et al. (Aran & Gatica-Perez, 2013a) directly encoded

facial dynamics of an image sequence by producing a weighted Motion Energy Images

(MEI), which can be easily forwarded to back-end models for feature extraction. Lepri et

al. (Lepri et al., 2009) proposed to produce a Motion History Images (MHI) as the dy-

namic representation of a 1-minute slice, from which a set of energy-related acoustic and

visual features, e.g. head fidgeting, hands fidgeting, pose fidgeting, etc, were extracted.

Similarly, Bilen et al. (Bilen et al., 2017) proposed a dynamic image algorithm that also

encodes dynamics of an image sequence into an image-size matrix. The dynamic image

is an on-the-fly sequence descriptor, i.e., it computes a representation for a given set of

frames. The form of this descriptor is that of a kernel that, when projected into the pre-

ceding frames, assigns to each a score that allows them to be sorted in time. This approach

was further extended to the face domain in (Song, Sánchez-Lozano, Kumar Tellamekala,

et al., 2019), and achieved good performance.

Some researchers also proposed to combine both early and late modeling of temporal

dynamics, and clearly shown the superior performance in comparison to use either of them

only. Jaiswal et al. (Jaiswal & Valstar, 2016) proposed a spatio-temporal CNN on a set of

stacked input frames to encode facial dynamics at the input level for facial AU recognition,

with its center being the target frame. The output of the CNN is forwarded to a BLSTM

to additionally model the temporal information at the feature-level. In (Al Jazaery &

Guo, 2018), C3D network is employed to model dynamics directly from a set of frames

and then RNNs is introduced to model dynamics from frame-wisely extracted features

again, for depression analysis.
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In summary, most late temporal modelling approaches attempted to learn temporal

patterns of facial features rather than the temporal patterns of facial images.

However, during the feature extraction process which significantly reduces the dimension-

ality of the input data, some crucial dynamic cues may lost. Although some works have

proposed to encode dynamics in the context of the original data (face), by constructing

a dynamic representation from a set of frames (Jaiswal & Valstar, 2016; Bilen et al.,

2017; Aran & Gatica-Perez, 2013a), these methods have some practical drawbacks, as the

learning of such approaches can become quite complex for long-term sequences. To this

end, this thesis attempted to encode temporal information directly from face images.

3.3.2 Long-term temporal models

Both personality and depression status are stable in a relatively long-term that would

be much longer than the duration of an interview video, and thus relatively long-term

information may provide more stable predictions. The majority of related approaches

reviewed in this chapter focused on using recurrent or latent-based models to model long-

term temporal information of the face video. For example, in (Subramaniam et al., 2016;

Al Jazaery & Guo, 2018; de Melo et al., 2019; Ma et al., 2016), authors applied RNN-

based models, e.g., LSTM, BLSTM, to model temporal dynamics from of an entire clip, for

either personality traits or depression level prediction. In particular, the employed models

learn dynamics from all frame/segment-level extracted features, i.e., from the beginning

of the clip to the end of the clip, which are extracted by CNNs. Thus the long-term

temporal dynamics can be obtained through this process. Instead of using RNNs, Haque

et al. (Haque et al., 2018) employed Causal Convolutional Networks (C-CNN) (Bai et

al., 2018) to model dynamics for long sentences, which has been shown to outperform

recurrent neural networks (RNNs) for such cases. Zhang et al. (L. Zhang et al., 2019)

extended the temporal segment networks (L. Wang et al., 2016) to personality analysis.

Then, they proposed a consensus strategy to process all the temporal correlations of all

selected faces.

In summary, memory-based neural networks such as RNNs, are easy to be overfitting,
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and they usually need frame/segment-level annotations during the training. As a result,

recent approaches have frequently assumed video-level labels as the frame/segment-level

labels. However, as discussed in Sec.1, this would result in the trained models having

poor generalization capability because a frame/short-segment is not sufficient to repre-

sent either personality traits or depression status. Other approaches, such as Causal

Convolutional Networks, haven’t shown the outstanding capability to model very long-

term (more than 500 frames) temporal information for personality and depression analysis.

Meanwhile, the use of temporal segment networks (L. Wang et al., 2016) leads to a large

part of frames to be removed (L. Zhang et al., 2019), resulting in a significant loss of

local temporal and spatial facial information. To address such issues, this thesis proposed

two long-term facial dynamics modelling approaches, namely spectral representation

and person-specific facial dynamic descriptor. Both of them can not only encode

the video-level facial dynamics of variable-length videos into length-independent dynamic

representations, but also avoid using video labels as the frame/segment-level label during

models’ training.

3.4 Video-level representations encoding of variable-

length video data

In real-world applications, collected videos that contains human behaviours usually have

variable duration (e.g., videos in SEMAINE dataset (McKeown et al., 2012) range from

25 minutes to 50 minutes). While standard ML models require fixed-size inputs, how to

represent each video of an arbitrary number of frames using a length-independent repre-

sentation while retaining important clues is an important research question. A straight-

forward solution is to select a fixed number of frames/segments from each video to con-

struct a fixed-length sub-video. For example, Bishay et al. (Bishay, Priebe, & Patras,

2019) divided the shortest videos into N clips without overlap, and longer videos into N

equally-spaced clips. As a result, each video is represented by N sub-clips of equal length.

Similarly, a fixed number of equal-length video segments are extracted from each depres-
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sion video in (L. Yang et al., 2018). Li et al. (Li et al., 2020) selects 32 frames from each

video for personality recognition. In addition, a large number of action recognition ap-

proaches also utilised this strategy, i.e., selecting a fixed number of frames (Feichtenhofer,

Fan, Malik, & He, 2019; C. Yang, Xu, Shi, Dai, & Zhou, 2020; Bilen, Fernando, Gavves,

Vedaldi, & Gould, 2016) or segments (Munro & Damen, 2020) to represent a whole video

with an arbitrary duration.

The main drawback of the approaches described above is that they discarded some

frames, which may contain crucial human behaviour clues. Thus some researchers pro-

posed to re-sample per-frame representations of a video (which can be a multi-channel

time-series data) to a fixed length by using interpolation, Dynamic Time Warping (DTW),

etc. However, these approaches will distort the original signals. To avoid distortions, other

studies employed fixed-size histograms or statistics to summarize the distribution of per-

frame representations. Specifically, they generate video-level descriptors by computing

statistics of features (Pampouchidou et al., 2016; Gupta et al., 2014; Gong & Poellabauer,

2017; Stepanov et al., 2018), using Gaussian Mixture Model (GMM) (Williamson et al.,

2014; Cummins et al., 2013; Jain et al., 2014; Dhall & Goecke, 2015; Anis, Zakia, Mo-

hamed, & Jeffrey, 2018; Hao et al., 2019) or fisher vector (Dhall & Goecke, 2015; L. He et

al., 2018; Bishay, Palasek, Priebe, & Patras, 2019), etc. Although these methods summa-

rized undistorted information, important temporal dynamics between segments/frames,

such as the order of events, may be lost after creating the statistics. Besides, Vector of

Local Aggregated Descriptors (VLAD) has been widely employed for video-based action

recognition (Tu et al., 2019; Duta, Ionescu, Aizawa, & Sebe, 2017). The main strength

of VLAD is that it constructs a fixed-size super vector to represent a video-level feature,

regardless of the video’s duration. While it can avoid: 1. disporting original data; 2.

ignoring frames; 3. losing short-term temporal correlations between frames, this repre-

sentation still lacks the capability to encode multi-scale long-term dynamics.
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3.5 Summary

In summary, temporal dynamics are important assets for automatic personality and de-

pression analysis. As described above, the information carried by short segments/single

frames is not reliable for personality and depression analysis. In other words, pairing

video-level personality/depression labels with short segments/single frames to train per-

sonality/depression analysis models is problematic. While some studies are devoted to

extracting video-level visual descriptors for automatic personality and depression analysis,

those approaches usually failed to retain multi-scale dynamics. Meanwhile, the systems

based on task topics require human annotated verbal information to decide the time loca-

tion of each topic, which makes them not being the fully automatic approaches. To this

end, this thesis proposed two fully automatic long-term descriptor extraction approaches,

namely spectral representation (Song et al., 2018, 2020) (Chapter. 5) and person-specific

adaptation descriptor (Song, Jaiswal, et al., 2021) (Chapter. 4). Both of them can en-

code multi-scale facial behaviours dynamics of an entire video into a length-independent

descriptor, for automatic depression and personality analysis, regardless of the length of

the video.



Chapter 4

Self-supervised learning of

person-specific facial dynamics

As discussed in Chapter 2 and Chapter 3, facial dynamics are important sources to reflect

individuals’ emotion, personality and depression status. Meanwhile, the personality trait

is defined as the aspects of personality that are relatively stable over time but differ across

individuals (Kassin, 2003). Motivated by this, this Chapter proposes to learn video-level

(long-term) person-specific facial behaviour dynamics for personality traits estimation.

However, while it is not possible to directly feed an entire video to networks, frame-level

manual annotation of face videos is time-consuming, expensive and subjective. More-

over, the optimum frame-level label for inferring personality is still unclear. Meanwhile,

although assuming the video-level personality label as the frame-level label is a popular

solution that has been frequently used by existing approaches, it may not train good

models. To deal with such issues, this thesis proposes a novel rank loss (Song, Sanchez,

Shen, & Valstar, 2021) that allows networks to learn facial dynamics in a self-supervised

manner without using any human annotations.

Specifically, this Chapter first explains the theoretical basis of the proposed self-

supervised learning approach: dynamic image algorithm (Bilen et al., 2017), and shows

how to extend this algorithm to model short-term facial dynamics from image sequences.

Then, the self-supervised short-term facial dynamic modelling approach is proposed to

55
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learn generic short-term facial dynamics from unlabelled face videos, which utilises natu-

ral facial temporal evolution (the temporal orders of frames) to supervise models’ training

process, without requiring any human-annotated label. This approach can not only infer

facial dynamics from any previous unseen still face image but also provide the basis for

the video-level person-specific facial representation construction. Finally, this Chapter

shows how to learn such video-level person-specific facial representation by training a set

of intermediate filters using the same self-supervised learning algorithm, which are incor-

porated into the previous learned generic dynamic network. This way, the learned filters’

weights are person-specific, making them a valuable source for modeling person-specific

facial dynamics. Their weights are then concatenated as a person-specific representation,

which can be directly used to predict the personality traits without needing other parts

of the network.

Compared to the techniques such as Recurrent Neural Networks (RNNs) and Hidden

Markov Model (HMM) that learn dynamics at the feature level, which may result in the

loss of critical facial details, the proposed approaches model dynamics directly from the

face. As reviewed in Sec. 2.7, there is convergent evidence indicating that personality and

depression are reflected by specific tendencies to experience and express certain emotions.

In this sense, the final section not only evaluates the proposed person-specific dynamic

representation on the task of personality traits estimation, but also evaluates the short-

term dynamics encoding capability of the proposed approach on the task of emotion

(dimensional affect) estimation.

4.1 Dynamic facial models

To learn a dynamic descriptor from a short face video segment, this section describes a

method that extends the dynamic image algorithm (Bilen et al., 2017) to the face domain.

The dynamic image algorithm was originally presented as a sequence descriptor with a

fixed size regardless of sequence length, which can be used in a plug-and-play format

in CNN-based networks for action recognition. The form of this descriptor is that of a

kernel that, when projected onto the preceding frames, assigns to each frame a score that
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allows them to be sorted in order of time. In other words, the goal is to have a sequence

descriptor whose per-frame scores are increasingly similar to the final frame as the sorted

sequence progresses. Such a representation is conjectured to be a good dynamic descriptor

of a sequence. This assumption was empirically validated in (Bilen et al., 2017; Song,

Sánchez-Lozano, Kumar Tellamekala, et al., 2019; Song, Sanchez, et al., 2021). This idea

itself is very similar to temporal templates introduced by Bobick & Davis in 2001 (Bobick

& Davis, 2001) but has proved to be a superior descriptor for action recognition (Bilen

et al., 2017). The use of a summarized dynamic image allows CNN-based architectures

that are designed to take still images to be easy to process an image sequence of variable

lengths.

Although the dynamic image algorithm has been successfully applied to human action

recognition, its extension to model the dynamics of facial actions is not straightforward

because: 1. Bilen et al.(Bilen et al., 2016) made use of whole images to generate dynamic

appearance, without segmentation of specific, semantically meaningful regions of objects

(the human body, or the face, etc.), which are highly valuable for human action analysis;

2. Most human actions have asymmetric temporal patterns, displaying a clear arrow of

time, which makes their temporal evolution predictable and distinguishable. In contrast,

it can be observed that facial actions display a symmetric temporal pattern of changes

in shape and appearance. As shown in Fig. 4.1(a), facial actions are in many cases indis-

tinguishable from their temporally reversed counterparts. This means the facial actions

are still plausible “motions” when reversed in time; 3. The human action recognition task

returns a single prediction per video, and thus the objects (instruments, tools, etc.) in

videos are good features for classification because the objects used in different human ac-

tions are normally different. However, the difference of people’s faces (identities) can not

be utilised for our task because the goal is to encode facial dynamics such as emotions to

benefit personality/depression analysis, which means a person’s face can display variable

expressions and different people can display the same expressions.
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(a) The symmetry of facial motions

(b) The ambiguity of facial motions

Figure 4.1: Temporal ambiguity and symmetry of facial motions. Fig. 4.1(a) illustrates
the symmetric temporal pattern of facial actions. The lower facial action is the tempo-
rally reversed counterpart of the upper one, where both sequence can be a plausible
facial action. Fig. 4.1(b) displays the temporal ambiguity of facial actions, as the same
facial display (in the center) can occur in different facial actions.

4.1.1 Novelty and contributions

The main novelty of this approach resides in the encoding of short-term facial spatio-

temporal information into a length-independent representation, in the context of the face.

This work differs from (K. Zhang et al., 2017; Kollias et al., 2019b) as the proposed

approach encodes short-term dynamics directly from the face images rather than extracted

features. It also differs from that of Nicolle et al. (Nicolle et al., 2012) in that it does not

rely on the frequency domain, as their approach contains nuisance factors that are hard

to capture with a CNN. Finally, it differs from (Jaiswal & Valstar, 2016; de Melo et al.,

2019; Al Jazaery & Guo, 2018) in that the dynamics of a sequence are encoded into a

length-independent matrix that has the same size of the input images, allowing the use of

a flexible number of frames, rather than as a concatenation of frames, which in practice

limits the time extent of the short-term encoding.

Although the proposed approach is based on the dynamic image algorithm (Bilen et

al., 2017), it differs from it in that: 1. while the original dynamic image is proposed as the

sequence descriptor, the proposed approach constructs per frame dynamic representation;
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Figure 4.2: Examples of static face images (SFIs). The upper row displays original frames
in the video and the lower row displays the corresponding SFIs.

2. the proposed Dynamic Facial Representation (DFR) model can jointly encode both

preceding and succeeding dynamics rather than one of them; 3. the proposed approach

takes the shape information into account, allowing only the dynamics of the target (face)

rather than both target and background to be encoded.

4.1.2 Static facial image

The sequence-based approach starts with detecting a set of 68 facial landmarks for each

video frame using OpenFace 2.0 toolkit (Baltrusaitis et al., 2018). Based on these land-

marks, a binary mask is applied to the original face image, whereby only the pixels lying

within the convex hull defined by the landmarks are set to one. This mask is applied to

the input image to generate the static facial image (SFI), which basically accounts for

the facial appearance. Then, only the face region is cropped and aligned. This way, the

background noise is removed before the feature extraction process. Some examples are

shown in Fig.4.2.
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4.1.3 Dynamic facial image

Based on the obtained faces, this section extends the dynamic image algorithm to the

face domain, summarizing the proceeding and succeeding temporal evolution of each

given face image. The dynamic image is a matrix that has the same size as the input

images. Its parameters are learnt to rank the position of the given frames from their

features by implementing dot product between the per-frame features and the dynamic

image. That is to say, a dynamic image is an operator that encodes the temporal evolution

of the given sequence. In particular, it is worth noting that the score, defined as a dot

product, represents the similarity between the generated representation dt and the feature

descriptor Va. By enforcing this score to be higher for frames that are closer to the input

image It, this approach are targeting a feature representation that is “decreasingly similar”

to the features computed at adjacent frames. This way, the learned representation encodes

dynamics as a summary of weighted variations. In this thesis, the term ‘facial dynamics’

represents the temporal evolution of facial behaviours, which can be learned from the

adjacent sequence of the target face image. Importantly, the generated dynamic images

are spatially corresponded to the given face images, allowing back-end CNNs to deep

learn the spatio-temporal patterns in the context of the face. Consequently, by extending

this algorithm to include shape and adapting it to the face domain by leveraging facial

landmarks, the dynamic facial image (DFI) without background noise can be obtained.

Let It ∈ Rm×n be the t-th face image of a sequence composed of T consecutive face-

aligned images, all of size m × n, and let Vt = 1
τ

∑t
τ=1 Iτ be the average value image up

to frame t. The mapping chosen in this paper is the same as that which attained highest

performance in the original paper by Bilen et al. (Bilen et al., 2017), which defined φ to

be the identity function. Let d ∈ Rd be the DFI of the image sequence. The ranking

score for frame t is defined as the dot product between d and Vt:

S(d, Vt) = 〈d, Vt〉 (4.1)

Thus, for the frame Ic, the goal is to learn a DFI dc so that if c > b > a > e, then
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S(dc, Vb) > S(dc, Va), where a, b, c, e are time stamp, i.e., Ie is the first frame of the

subsequence and Ic is the last frame (target frame) of the subsequence. Specifically, the

frame Ib that is temporally closer to the target frame Ic would have higher score than

the frame Ia. In other words, dc is learned so that when projected into the aggregated

kernel of the input image size, it returns a score that sorts frames by time. The learned

kernel dc ranks these input SFIs based on their temporal orders, and hence encodes facial

temporal evolution that provided by the sub-sequence (from Ie to Ic), making it a good

facial behaviour descriptor. In order to learn dc, hinge loss is minimized between pairs of

scores:

dc
∗ = argmin

dc

E(dc) (4.2)

E(dc) =
λ

2
‖dc‖2 + γ

∑
b>a

max{0, 1− S(dc, Vb) + S(dc, Va)} (4.3)

where γ = 2
c(c−1) , is the L2-norm regularised error. The second term in Eq. 4.3 defines

the accumulated errors on the subset that are produced by the incorrectly ranked pairs.

A pair b > a is said to be correctly ranked if S(dc, Vb) ≥ S(dc, Va) + 1. The minimisation

of Eq. 4.3 is accomplished with RankSVM (Smola & Schölkopf, 2004). The parameters

in the final learned kernel dc are in the real space. As this kernel has the same size

of the input images, it can be interpreted as a three-channel raster image. It is worth

highlighting that during both training and inference stages, each DFI is generated from a

set of its proceeding frames using RankSVM, i.e., each DFI is a RankSVM kernel learned

from the proceeding subsequence of the target facial image. In other words, the proposed

approach trains a RankSVM kernel (DFI) for each training and testing frame individually.

4.1.4 Encoding bidirectional temporal evolution

The dynamic image was originally used as the short video descriptor for human action

recognition. While it is possible to segment a long personality/depression video into a

set of short segments and encoding each of them into a dynamic facial image, deciding

the optimal start and end time stamp for each segment requires extra effort. On the

contrary, this thesis aims to produce a per-frame dynamic facial representation (DFR)
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that can summarize both preceding and succeeding temporal evolution of the given frame.

In other words, we propose to summarize bidirectional short-term facial dynamics for each

frame.

While the DFI can be produced by the aforementioned dynamic algorithm by treating

the given face image as the end of the sequence, summarizing the past temporal evolu-

tion of the given face, i.e., how was the current facial status evolved from the past, the

succeeding sequence were not considered by this way. Thus, this section also proposes to

generate the dynamic image of the succeeding sequence called Backward dynamic facial

image (BDFI), which encodes the future temporal evolution of the given face, i.e., how

would the current facial status change in the future. In this setting, the latest frame of

the succeeding sequence is treated as the beginning of the sequence and the given frame

is denoted as the end of the sequence. Specifically, T face-aligned frames are taken after

the given face Ic, all of size m × n. Then, the average value image down to frame t can

be denoted as

Vt =
1

T − t+ 1

T∑
t

It (4.4)

where c ≤ t ≤ T . Vt is defined as the average of a given feature mapping of the image,

φ(It). Follow the similar process of the DFI algorithm, RankSVM with the loss function

defined in Equation 4.3 and Equation 4.2 is employed to learn a kernel that if q > c, then

S(dc, Vq) < S(dc, Vt). As a result, this kernel can be treated as the representation of given

frames as it summarized reversed dynamics of the image sequence after Ic. eq:argmin

4.1.5 Dynamic facial representation

Based on the methods described above, three facial representations, e.g., SFI, DFI and

BDFI, can be produced for each frame of a video (except the first T − 1 and last T − 1

frames, where T denotes the length of the time-window). Each of them is a 3-channel

matrix that has the same size as the original aligned face images. In this sense, this

section proposes to combine three obtained representations as a 9-channel matrix for each

frame, unifying spatial and bidirectional facial temporal evolution in a single dynamic

facial representation (DFR). As a result, spatial and dynamic channels in the DFR are
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Figure 4.3: The diagram of the DFR generation. This approach starts with obtaining
aligned face region from each original frame (Step 1). Then, DFI and BDFI are computed
from preceding and succeeding frames of the given frame, based on the dynamic image
algorithm (Bilen et al., 2017) (Step 2). By concatenating DFI, SFI and BDFI of the given
frame, DFR is produced (Step 3).

spatially corresponded at the pixel level, which means they can guide the back-end model

focusing on most task-discrmintative part of the face. Importantly, in doing so it keeps

the size of the representation fixed regardless of the sequence length, making it easy to

be combined with most developed front-end and back-end models for downstream tasks.

The entire pipeline of this approach is illustrated in Fig.4.3.

4.2 Learning person-specific video-level facial dynamic

representation

A common challenge in automatic personality traits analysis concerns how to bridge the

gap between generic and person-specific models. While there are underlying similarities

in how people express their facial behaviours, there are also subtle differences at the

individual level, in how these facial actions are expressed. Since there is lack of person-

specific information annotation, how to effectively incorporate person-specific information

to the models at test time is a generic and open problem. Inspired by the dynamic facial
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model described above, this section explores how to encode person-specific video-level

facial dynamics from an unlabelled face video of the individual.

The DFR described above achieved excellent performance on dimensional affect

recognition (Please see Sec.6.3.2 for details), indicating that if an image-size represen-

tation can rank images of a sequence based on their temporal positions, it would be a

good descriptor to summarize the temporal evolution of the sequence. Motivated by this,

this person-specific dynamic encoding approach is also building upon the same assump-

tion. In particular, this approach starts with pre-training an encoder using emotion data

(explained in Sec.4.2.5), as there is evidence (Subramanian et al., 2016; Keltner, 1996)

that personality and depression are associated with emotion (Subramanian et al., 2016;

Keltner, 1996). Then, self-supervised learning of a dynamic representation of faces that

built on DFR is described in Sec. 4.2.4, allowing the network’s training to be supervised by

the temporal evolution of natural facial actions, i.e., the temporal order of frames, where

no manual annotation is required, and consequently the network can learn short-term fa-

cial dynamics for each frame, respectively. Based on this self-supervised learning strategy,

Sec.4.2.5 proposes to train a Dynamic Facial Neural Network (DFNN) that learns generic

facial dynamics, and Sec. 4.2.6 introduces a novel domain adaptation approach to train

a set of person-specific adaptation layers (PALs) for each individual. Finally, Sec. 4.2.7

shows how the learned weights of PALs can indeed be used as a basis for personality traits

prediction. This pipeline of the person-specific adaptation approach is illustrated in Fig.

4.4.

4.2.1 Novelty and contributions

The proposed self-supervised learning approach builds upon the assumption described in

Bilen et al. (Bilen et al., 2017) and the sequence-based DFR model presented in Sec.4.1.

In contrast to the sequence-based approach that encodes frame-level DFR from adjacent

image sequences, this approach creates a dynamic representation (DR) only from a single

face image (the DR mentioned here is different from the DFR described in previous

sections). Specifically, based on the rank loss, a UNet-style network: Dynamic Facial
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Figure 4.4: The pipeline of person-specific descriptor extraction and personality
traits/depression prediction. The approach starts with pre-training an emotion guided
encoder (Step 1), and then applying the proposed rank loss to train a Dynamic Facial
Neural Network (DFNN) (Step 2) in a self-supervised manner, which can infer generic
facial dynamics of any given face. After that, the DFNN is frozen, and a set of intermedi-
ate filters (person-specific adaptation layers (PALS)) are added to skip layers, which are
trained using person-specific videos for each individual, respectively (Step 3). Then, the
learned PALs weights are concatenated as a person-specific facial behaviour representa-
tion for the corresponding individual (Step 4). Finally, this representation can be fed to
a pre-trained regressor (ANN) for personality traits/depression prediction (Step 5).
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Neural Network (DFNN) can be trained using a large pool of unlabelled face videos. The

well-trained DFNN is expected to be able to infer temporal dynamics from face images of

any previous unseen individual, i.e., generating a DR that has the same size as the input

face image, which can sort adjacent frames of the input face image based on their relative

temporal distances to the input face image. Here, the generic facial dynamics is defined

as the facial behaviour dynamics that can be observed in most people’s face.

Based on this self-supervised learning approach, the proposed domain adaptation ap-

proach then incorporates person-specific information to the pre-trained network through

adaptation layers. It can be observed that while the proposed Rank Loss allows a net-

work to learn rich generic facial behaviour dynamics in a self-supervised setting, it lacks

person-specific information, crucial for the task of personality traits estimation. To incor-

porate such information, this approach adds a set of person-specific adaptation layers

(PALs) to the pre-trained DFNN which remains frozen, and resume the self-supervised

training with a single video only. Under this setting, the adaptation layers would only

carry person-specific facial dynamics. After that, contrary to existing approaches

that build on top of the pre-trained network, the proposed approach uses the weights

of the PALs as the source of information for the downstream tasks, in this thesis

predicting personality traits/depression severity. PALs have been trained to adapt to the

facial behaviours on a person-specific basis, so these weights constitute a person-specific

facial dynamic descriptor for a given subject, and their sizes are independent to the length

of the video and time-window, reducing the variability of the produced representations.

It can be observed that a small fully connected network is capable of delivering promising

results in the task of personality prediction from videos using our person-specific weights.

To the best of the author’s knowledge, the proposed approach is the first work that

brings the advantages of the dynamic image algorithm at summarizing sequences to sce-

narios where only still images are given. Even though some early works attempted to

summarize temporal dynamics from image sequences (Bilen et al., 2017), predicting or

anticipating motion from still images (Pintea, van Gemert, & Smeulders, 2014; Walker,

Doersch, Gupta, & Hebert, 2016), or generating an output image or sequence according
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to a target attribute or style (Choi et al., 2018; Isola, Zhu, Zhou, & Efros, 2017; Long,

Shelhamer, & Darrell, 2015; T.-C. Wang et al., 2018; Yi, Zhang, Tan, & Gong, 2017;

R. Zhang, Isola, & Efros, 2016; Pumarola, Agudo, Martinez, Sanfeliu, & Moreno-Noguer,

2018), none of the existing studies have attempted to infer a DR from a single still face

image. Meanwhile, this approach is not only the first work that extends a self-supervised

learning approach to automatic personality analysis, but also the first work that uses

CNN’s weights as a feature descriptor for automatic personality/depression analysis. In

comparison to other related studies, this approach are: 1) in contrast to (Güçlütürk et al.,

2016; Wei et al., 2018; Subramaniam et al., 2016), the proposed approach is learned in

a self-supervised manner without requiring human annotated labels, overcoming the lack

of per-frame label problem; 2). the proposed representation is learned from all available

frames of a video without losing any short-term details. This differs from (L. Zhang et

al., 2019; Subramaniam et al., 2016; Kampman et al., 2018) that use only a small part of

each video.

4.2.2 The inputs and targets

Since the goal is to train a network that learns facial dynamics, this section aims to

learn a similar dynamic representation (DR). However, instead of learning a separate

DR from each given image sequence (as proposed in (Bilen et al., 2017)), this section

aims to learn a generic network which can predict the DR for any facial image sequence

given a single (central) image of that sequence. This way the network is forced to learn

generic temporal evolution of faces within any short sequence. While the DFR could

be directly used as target representations for the proposed self-supervised learning task,

it can be observed that facial actions display a symmetric and ambiguous temporal

pattern, that could lead to weak representations, as the “predictive” task, understood as

ranking preceding frames, would become harder. As shown in Fig. 4.1(a), the temporally

reversed counterparts of facial actions are also plausible facial actions. Let’s denote an

image sequence as {I1, I2, I3, I4, I5}, then its ‘temporally reversed counterpart’ can be

represented as {I5, I4, I3, I2, I1}. Important sources of such ambiguous information are
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the activation (onset) and deactivation (offset) phases of facial displays. As shown in

Fig. 4.1(b), three similar frames can carry completely different dynamics, and thus if one is

to define the corresponding facial representation from the preceding frames only, one would

end up with completely different descriptors. Having very different descriptors for similar

inputs is known to make the learning process harder. In order to partially overcome this

limitation, the output DR ranks both preceding and successive frames of the input frame,

based on their temporal distance relative to it. The use of temporal distance (regardless

of direction) relative to the given image allows the modeling of symmetric patterns while

ranking the surrounding frames rather than learning to predict these frames addresses the

ambiguity issue in a more efficient way.

Formally, let It ∈ Rm×n be a given face image, and let It−T , It−T+1, · · · , It−1 and

It+1, It+2, · · · , It+T be the frames corresponding to a window of 2T + 1 frames, centered

at It. Let Va, a ∈ [t − T, t + T ] be the static representation for the frame a. This

section choose Va to be the image itself, i.e. Va = Ia. The self-supervised learning

task is defined as learning a network f(·, θ), with parameters θ, that produces a dynamic

representation (DR) dc from just a single input image Ic. The DR is tasked with encoding

temporal evolution from the adjacent frames to that of Ic. In particular, dc is defined as

a representation with the same size as that of Va, that can rank preceding and succeeding

frames based on their relative temporal distance to Ic. The ranking of frames is performed

by assigning a score to each, which is defined as the (Frobenius) inner product between

the DR dc and the representation Va, with a ∈ [c−T, c+T ]. Mathematically speaking, the

score for frame a ∈ [c−T, c+T ], assigned by the DR dc, is defined as S(dc, Va) = 〈dc, Va〉.

The scores are then used in an ordinal manner to sort the frames within the given window.

In particular, this approach is interested in assigning ascending scores for frames a, b < c,

and descending scores for a, b > c. This way, the difference between the scores computed

at time a and b can be defined as:

δab(t)
.
= S(dc, Va)− S(dc, Vb) (4.5)

where a is chosen to be closer to c than b, with both a and b being either preceding or
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succeeding frames w.r.t. c. Then, the goal is to learn a DR dc that makes δab(c) > 0

for pairs a, b corresponding to a, b > c or a, b < c, with |a − c| < |b − c|. As shown in

Sec. 4.2.4, only the actual value of δab(c) will be considered when the pair a, b has been

incorrectly ranked, i.e. when δab(c) < 0. Thus, the target representation can be defined

as a dc that meets the following criteria:

δab(c) > 0 for


|a− c| < |b− c|

(a− c)(b− c) > 0

(4.6)

It is important to remark that the proposed approach computes the scores for the cases in

which both frames are either before the current frame c, or after it. In other words, this

approach only interested in computing ascending scores when a, b < c, and descending

scores when a, b > c, as the cases where e.g. a > c and b < c would raise ambiguous

definitions.

Discussion: Before defining the target loss function, let us delve into the interpre-

tation of what the DR is enforced to describe. In particular, it is worth noting that the

score, defined as a dot product, represents the similarity between the generated represen-

tation dc and the frame descriptor Va. By enforcing this score to be higher for frames

that are temporally closer to the input image Ic, this approach is targeting at a feature

representation that is “decreasingly similar” to the features computed at adjacent frames.

This way, the learned representation encodes dynamics as a summary of weighted vari-

ations. In practical, the length of time-windows has a significant impact on the ranking

capablity of learned DRs. This is explicitly evaluated and discussed in Sec. 6.3.2.

4.2.3 Network architecture

In this section, the choice of the network f(·, θ) is the U-Net network (Ronneberger,

Fischer, & Brox, 2015) (The thesis coins this network Dynamic Facial Neural Net-

work (DFNN)), which is an 5-layer encoder-decoder network with multiple skip layers

at different spatial resolutions (see Fig. 4.5). The encoder contains five blocks, where
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Figure 4.5: The DFNN architecture.

each block is made up of a 2-D convolution layer, an instance normalization layer and a

Leaky ReLU activation function. The decoder also contains five blocks. Each block in

the decoder contains a transposed convolution layer which first doubles the size of input

feature maps. This is then fed to a instance normalization layer and Leaky ReLU. All

five pairs of encoder-decoder layers are connected by skip layers.

To infer person-specific facial dynamics, this section also extends DFNN architecture

to a DFNN-PALs structure, where a set of intermediate filters are incorporated into

the DFNN. In particular, the DFNN-PALs inserts a convolution block consisting of a

convolution layer with kernel size 1, a instance normalization layer and a Leaky ReLU to

each skip layer of the DFNN. During the person-specific training, the weights of DFNN

are frozen and only the weights of the inserted PALs will be adjusted. The number of

filters (kernel size of 1) for PALs are set as 32, 64, 128, 256, 512 in this thesis, respectively.

During the person-specific training, the weights of DFNN are frozen and only the weights

of the inserted PALs are adjusted. The network structure is shown in Fig.4.6.

4.2.4 Training strategy

The above definition loosely defines the task of the proposed self-supervised learning

approach f(·, θ). The goal is to learn a projection dt from the input face image It as

dt = f(It, θ). A priory, this could be accomplished by defining a target dt for each input

It using the original dynamic image algorithm, according to the neighboring frames and
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Figure 4.6: The structure of DFNN-PAL.

the aforementioned criteria. In that case, one could use a reconstruction loss between the

generated output and the corresponding target, so that the network learns to reproduce

such a representation. However, such a loss function would not account for the ranking

capabilities of the generated representation, i.e. subtle errors in the reconstruction loss do

not necessarily correlate with errors in the ranking of frames. This hypothesis has been

empirically validated in (Song, Sánchez-Lozano, Shen, et al., 2019) that, when using a

pre-defined representation and a reconstruction loss, the task of sorting adjacent frames

degrades substantially.

Instead, this section proposes to learn the DR by enforcing the network to produce

outputs that directly meet Eqn. 4.6, i.e. this approach allows the network to also help

design the DR. More specifically, when the network generates an output from a given face

image, the proposed approach projects it onto its preceding and succeeding frames within

a window of N = 2T + 1 frames with centre Ic, and compute the pair-wise scores using

Eqn. 4.5 and Eqn. 4.6. Then the proposed Rank Loss only penalizes the negative scores,

i.e. those frames that would be incorrectly sorted based on their scores. To avoid small

fluctuations over zero to influence the loss, the rank loss function includes a rank success

factor σ. Mathematically speaking, let Ic be the given frame, corresponding to the central

image of a window of N = 2T + 1 frames. Let dc = f(Ic, θ) be the output of the network
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for the given frame. the DR is generated to minimize the following rank loss function:

Lf (dc) = γ × ‖dc‖2

+
c−1∑

b=c−T

c∑
a=b+1

min(max(0, η − δab(c)), ε1)

+
c+T−1∑
a=c

T∑
b=a+1

min(max(0, η − δab(c)), ε2)

(4.7)

where δab(c) is defined in Eq. (4.5). In Eq. (4.7), γ is a regularization factor (set to 1)

and η denotes the minimum value that separates the scores between two correctly ranked

images. Meanwhile, ε1 and ε2 were used to avoid extremely large loss value caused by

outliers, e.g., incorrectly detected face regions, which can cause the network to be biased.

Specifically, they were used as a relaxation factor to set an upper bound to the rank

loss of each single pair. In the experiments of this thesis, the setting is ε1 = ε2, which

were ranged from 0.35 to 0.66 based on the size of time-window. The loss Lf (dc) can be

differentiated w.r.t. the parameters of the network f , and therefore the network can be

learned through typical backpropagation methods. The training process is also illustrated

in Fig. 4.7.

4.2.5 Generic facial dynamics modelling

Since most people express their facial actions in a similar manner (P. Ekman, 1992b), the

first goal is to learn a DFNN network that encodes general facial dynamics that can be

observed from most individuals. This section proposes to pre-train the encoder, by adding

a regression head consisting of some fully connected layers, plugged on top of the encoder,

to perform the task of valence and arousal estimation. By pre-training the encoder in

such a way, the generated DR is meant to capture the temporal variations on the emotion

feature space of related facial behaviours. In other words, as personality traits are found

to be reflected by certain emotions (John, 1990; Keltner, 1996; DePaulo, 1992), this pre-

training would guide the network to capture personality-related information, rather than

other kinds of information such as identity.
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Figure 4.7: During training, a set of sequences is given, which are the adjacent frames of a
given image It. In (1), the given image It is forwarded to the network that needs to learn,
that produces a DR dt. The ranking capabilities of dt can be measured by projecting
it onto the preceding and succeeding frames (2). To rank the frames, the difference of
each pair-wise scores is computed as a dot product between the generated DR and the
corresponding preceding or succeeding frame (3). These scores are used to compute a
Rank Loss, which allow us to measure the extent of which the current dt is correctly
ranking the frames within the sequence. The Rank Loss can be backpropagated w.r.t.
the parameters of the network that has produced the DR dt (4). This way, the network not
only learns to produce a target dynamic representation dt, but also contributes to define
it. (5) During the inference stage, when an unseen face is used as input, the generated dt
can produce a score for each of its preceding and succeeding frames based on their relative
temporal positions to the input frame.
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After the pre-training of the encoder, the DFNN is trained with the self-supervised

learning approach proposed in Sec.4.2, as a pretext task. The proposed rank loss allows

the DFNN learning general facial dynamic patterns from a large pool of unlabelled face

videos which can be easily obtained. In particular, the DFNN learns to rank adjacent

frames of various facial displays showed by people of different age, gender, ethnic, identity,

etc. Thus, it should encode facial action patterns that can be observed in most people

regardless of their identities.

4.2.6 Person-specific facial dynamics modelling

While there are underlying similarities in how people express their emotional and cognitive

states through facial behaviours, there are also subtle individual differences (discussed in

Sec.2.3). In this thesis, it can be observed that, while the ranking accuracy (defined by

Equation 6.4 in Sec. 6.2.5) at training time is around 96% (The average results obtained

by time-windows equaling 7 and 11 frames, with the stride of 2), the ranking capabilities

of the DR at test time is of 87% accuracy on pairwise comparisons. In order to boost this

performance for each individual at test time, a set of Person-specific Adaptation Layers

(PALs) is attached as the skip layers into the generically trained DFNN network, aiming

at encoding person-specific spatio-temporal patterns. This setting allows the PALs to

encode dynamics from feature maps at multiple spatial resolutions.

These PALs are trained for each person independently. Departing from the trained

generic network, which is kept frozen, only the parameters of the PALs layers are adjusted

based on person-specific videos, by optimizing Eq. (4.7). This makes the PALs parameters

person-specific, i.e. the parameters θ split into a generic and a person-specific subset,

corresponding to the UNet and the PALs, respectively. In other words, let θ = {θg, θps},

with θg being the weights of the DFNN, resulting after optimizing Eq. (4.7) in a large

pool of generic face videos, and θps the weights of the extra PALs. Now, the optimization

problem consists of optimizing Eq. (4.7) only w.r.t. θps, assuming that only a set of

person-specific videos are given. Under this setting, it can be observed that the average

ranking capabilities of the DR on unseen videos of each specific person goes up to 93%
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(the dataset and experimental settings are presented in Sec. 6.1) after adaptation, as

shown in Fig. 4.8.

It is clear that DRs generated by the DFNN-PALs network led to the improved per-

formance (from 87% to 93%) in ranking frames of previous unseen videos for each specific

individual, but reduced the performance for other individuals. This section hypothesizes

the reason for the enhanced performance in inferring dynamics for the specific person is

that the adjusted PALs can better encode person-specific facial dynamics of the given

person, in addition to the general facial dynamics provided by DFNN. Additionally, while

the facial displays varied a lot for each video, the PALs still helped the DFNN to accu-

rately infer facial dynamics from most frames (93% ranking accuracy). These indicate

that the dynamics encoded in PALs are stable over various facial displays of the given

person. Meanwhile, based on the decreased ranking performance on other individuals,

this section also hypothesises that the facial dynamics encoded in PALs rarely occur in

others due to the subtle differences in facial dynamics at individual level. As a result, the

PALs is expected to encode person-specific facial dynamics that is relatively stable over

time for a given person but differ compared to others.

4.2.7 Person-specific representation

As we can see, this approach offers a person-specific representation that is independent

of video length: that of the PAL layers. In particular, this section proposes to use

the learned weights and bias θps as the representation for the downstream tasks.

Because the weights and bias θps have been specifically trained by the videos of the given

person, they are person-specific and constitute a fixed-size representation regardless of

the length of the video. In this thesis, each produced person-specific representation used

in this thesis is made up of the filter weights of 5 PALs, whose number are 32, 64, 128, 256,

and 512, respectively, making the produced representation 1984 dimensional (992 weights

and 992 biases).

Since the temporal scale of the person-specific representation is decided by the size

of time-window but the optimum time-scale for personality analysis is still unclear, this
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Figure 4.8: The average ranking accuracy curve of DFNN and DFNN-PALs. The DFNN
is trained by 50000 iterations, where the ranking accuracy of DRs generated by DFNN
in validation set is finally stable at about 87%. Then, the weights of DFNN is frozen,
and train PALs for another 50000 iterations. It is clear that the PALs lead the enhanced
ability of inferring facial dynamics from the given person (93% ranking accuracy) but the
reduced ability of inferring other people’s facial dynamics (80% ranking accuracy).

section proposes to construct multi-scale person-specific descriptors, each capturing facial

dynamics at a unique temporal scale. This can be achieved by using a set of time-windows

with different lengths, to train multiple sets of PALs. As a result, the combination of these

person-specific descriptors represent facial dynamics obtained at multiple temporal and

spatial resolutions, for a given person.

4.3 Applications: personality traits estimation and

dimensional affect estimation

4.3.1 Facial affect analysis using multi-scale DR

Given that the generated DRs are 3-channel raster images displaying a “summary” of

possible facial motions, they can be feed to most state-of-the-art Machine Learning frame-

works for any still image-based facial analysis tasks. To evaluate the usefulness of the
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proposed still image-based approach in encoding multi-scale facial dynamics, this section

further proposes to generate multiple sets of DRs, each capturing a different temporal

scale by using a different window length to train CNN models. It should be noted that

each generated DR dc is a 3-channel tensor with its size equaling to the given face image

Ic, regardless of the choice of the time-window size. Thus, they can be easily concatenated

before applying them to further related tasks. Herein, this section will explore the use

of a Single Dynamic Representation (SDR), using just the generated DR, and the

use of a Multi-level Dynamic Representation (MDR), which combines the output

of networks trained using different time-windows, as a multi-channel matrix representing

multi-scale temporal dynamics. In particular, a multi-level representation is used for the

dimensional affect estimation experiments presented in Sec.6.2.5. The first level corre-

sponds to T = 0, i.e., a window length of one frame. In practice, this level does not

require the training of a DR, as it basically consists of the input image. Then, the num-

ber of rest channels and the temporal scale of rest channels are decided by the validation

process to capture the most valuable temporal dynamics along with the static appearance.

Fig. 4.9 shows a description of the MDR for this three-level approach.

4.3.2 Personality traits prediction

This main goal of this chapter is to propose and apply the person-specific facial dynamic

encoding approach to video-based automatic personality analysis tasks. To this end, an

Artificial Neural Network (ANN) structure used in (Jaiswal, Song, & Valstar, 2019) is

extended here as the regressor. Fig. 4.10 shows the topology of the ANN used in this

section. It consists of 4 fully-connected hidden layers, where each of them is equipped

with a dropout (Srivastava, Hinton, Krizhevsky, Sutskever, & Salakhutdinov, 2014) with

probability 0.5, to prevent model from overfitting. The last layer has 5 output units,

each corresponding to one of the Big-Five personality traits. This architecture enables

the model to jointly learn all the five personality traits.

Before feeding the produced person-specific representations to the personality recog-

nition model (ANN is employed in this thesis), their dimensions were reduced using
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Figure 4.9: The proposed MDR approach (top) that can be used to infer several time-
length dynamics, and further combined to enhance face-related tasks such as dimensional
affect estimation. During training (bottom), a set of videos is used to learn the DRs,
without explicitly generating a fixed set of target representations. In this thesis, the
short-term refer to the time duration that is less than 1.5 seconds and mid-term refers
the time duration ranges from 1.5 seconds to 5 seconds.
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Figure 4.10: The ANN model used to learn spectral vectors and person-specific represen-
tations.

Correlation-based Feature Selection (CFS) (M. A. Hall, 1999). The CFS algorithm hy-

pothesizes that a good feature set contains features that are highly correlated with the

target, yet uncorrelated with each other. In this thesis, CFS is employed to select a

subset of the most important person-specific features from produced person-specific rep-

resentations. This process was done on training sets, where Pearson’s linear correlation

coefficient was employed to measure the correlations between each feature and the target.

4.4 Summary

The person-specific approach proposed in this chapter is the first work that utilises CNN

parameters as the feature representation for personality analysis. Its novelties and ad-

vantages have been summarized in Sec. 4.1.1, while the main drawback of this approach

is time-consuming, i.e., it has to re-train a set of intermediate layers for each test video.

Consequently, this approach is not efficient for real-world applications considering the lim-

itation of current computation resources. In addition, as shown in Fig. 6.3 and Fig. 6.5,

this approach is only good at encoding short-term dynamics. Thus, the next chapter will

propose a spectral approach to encode multi-scale long-term facial dynamics, which also

encodes facial dynamics more efficiently. The evaluation of the person-specific approach

and DFR models are presented in Chapter 1.



Chapter 5

Modelling multi-scale facial

dynamics

While the person-specific approach encodes person-specific short-term facial dynamics, it

lacks the ability to encode long-term multi-scale facial dynamics, which are also crucial for

understanding one’s personality traits and depression levels. Let us recall the main prob-

lems of existing long-term encoding approaches that used in related studies: 1. statistical

features and GMM-based approaches (Bekhouche et al., 2017; Fang et al., 2016) usually

failed to retain facial dynamics between adjacent frames; 2. memory-based models such

as Recurrent Neural Networks (RNNs) are easy to be overfitting. These approaches also

require frame/segment-level labels for model training, which regard video-level labels as

the frame/segment-level labels (Güçlütürk et al., 2016; Wei et al., 2018; Subramaniam et

al., 2016). As discussed before, these training strategies would end up utilising the same

input pattern with multiple labels, making it practically impossible to train models that

have good generalization capability; 3. other approaches (L. Zhang et al., 2019; Subra-

maniam et al., 2016; Kampman et al., 2018) either select a set of key frames to represent

an entire video, or attempted to only used a short segment of a video to represent the

global information. They ignore the information contained in the discarded frames.

To addresses problems summarized above, this chapter proposes a spectral analysis

approach that provides multi-scale video-level facial dynamics for automatic personality
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Figure 5.1: The pipeline of the spectral approach. This approach starts with using low
dimensional multi-channel human behaviour time-series data (e.g. latent descriptor, be-
haviour primitives, etc.) to represent videos (Step 1), and then converts them to spectral
signal consisting of multiple frequency information of all frames (Step 2). Since spectral
signals are symmetric, only the first half of them are kept.Then, the frequency alignment is
implemented by removing high frequency components and obtaining common frequencies
for human behaviours of all videos (Step 3). Finally, the aligned spectral signals of all di-
mensions (Step 4) are concatenated and are feed to ML models for personality/depression
analysis (Step 5).

traits and depression analysis. It first concatenates per-frame descriptors to produce a

multi-channel time-series signal describing the visual facial expressive behaviours across a

video. Then, this approach employs two frequency alignment methods to create spectral

representations of equal size and frequency coverage, regardless of variation in the length

of input videos. The final generated long-term spectral representations contain multiple

video-level facial behaviour frequencies, representing multi-scale video-level facial tempo-

ral information in the frequency domain, where each frequency component stands for a

unique scale of dynamics. Meanwhile, the lengths of interview videos are usually variable,

with the duration of the longest video sometimes several times longer than the shortest

one. Yet most Machine Learning models require fixed-size input. To this end, the pro-

posed spectral approach also aims to encode information of variable length videos into

fixed-size video representations. In this Chapter, fmc (n) is defined as the cth time-series

signal in mth video. The pipeline of this approach is shown in Fig. 5.1.
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5.1 Novelty and contributions

Compared to other recent methods, the main advantages and novelties of the spectral

approach are: 1). it can convert long and variable length time-series data to a small

and fixed-size representation, allowing the long-term information of the entire video to

be used for analysis, which differs from (Güçlütürk et al., 2016; L. Yang et al., 2018;

Biel et al., 2012; Kalimeri et al., 2010; Wei et al., 2018) in the sense that they can only

process fixed-length segments from videos for analysis; 2). the spectral representation

contains multi-scale video-level temporal information, in contrast to (Joshi et al., 2014;

Aran & Gatica-Perez, 2013b; Nguyen et al., 2013; Teijeiro-Mosquera et al., 2015) that

did not retain temporal information, or (Jaiswal & Valstar, 2016; Stepanov et al., 2018;

L. He et al., 2018; Anis et al., 2018) where only a fixed-length time window is used to

encode a single-scale short-term dynamic, thereby losing temporal information at other

scales. In summary, this approach converts long and variable length time-series data, (the

multi-channel time-series signal that is made up of the per-frame facial descriptors), to

short and length-independent spectral representations that contain multi-scale temporal

dynamics, which can be easily used with standard Machine Learning techniques.

5.2 Encoding multi-scale video-level dynamics

Given that the difference in personality/depression status causes people to have different

expressive behaviours in videos when facing a set of similar stimuli, which can be repre-

sented by time-series signals, both temporal patterns and spatial patterns are significant.

Additionally, both personality and depression status are expected to be relatively stable

in a interview time scale. Thus, this approach aims to extract representations that reflect

video-level information including multi-scale temporal facial dynamics.

The proposed approach firstly uses the Fourier Transform (FT) to convert time-

series signals of a video to the frequency domain. The resulting spectral representation

is a decomposition of the original time-series signal into its constituent frequencies. Let

f(x) be a time-series signal, then the Fourier Transform can convert it to a spectral
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representation F (w)

F (w) =

∫ ∞
−∞

f(x)e−(2πixw)/Ndx (5.1)

where w can be any real number and F (w) is a complex function that can be re-written

as

F (w) =

∫ ∞
−∞

f(x)(cos((2πixw)/N)− i sin((2πixw)/N))dx

=

∫ ∞
−∞

(Re(fc(x)) + iIm(fs(x)))

= Re(F (w)) + iIm(F (w))

(5.2)

where fc(x) and fs(x) denote f(x) cos((2πixw)/N) and −f(x) sin((2πixw)/N), respec-

tively. R(F (w)) is the real part of F (w) and Im(F (w)) is the corresponding imaginary

part of F (w). Here, w determines the frequency (2πw)/N that F (w) represents. Con-

sequently, the spectral representation F (w), w ∈ [−∞,∞] contains information from all

frequencies presented in f(x).

In the applications of personality and depression analysis, each video is made up of

a set of frames, resulting in one discrete time-series signal for each frame-level feature.

Therefore Discrete Fourier Transform (DFT) is applied to the feature signal fc(n), where

c = 1, 2, · · · , C denotes the feature index and n = 1, 2, · · · , N denotes the frame index,

as given below:

Fc(w) =
N−1∑
n=0

fc(n)e−
2πi
N
wn

=
N−1∑
n=0

fc(n)[cos(2πwn/N)− i sin(2πwn/N)]

=
N−1∑
n=0

(Re(fcc(n)) + iIm(fsc(n)))

= Re(Fc(w)) + iIm(Fc(w))

(5.3)

where fc(n) is the time-series signal of cth feature, which consists of N frames and Fc(w)

is the DFT of the signal fc(n) at frequency w, where w = 0, 1, 2 · · · ,W − 1.

As can be seen from Eqn. 5.3, each frequency component is computed from all frames
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of the fc(n). This is to say, each component in the spectral signal summarizes a unique

frequency information presented in the entire video. Therefore, the spectral signal contains

information corresponding to W frequencies given by 2πw/N,w = 0, 1, 2, · · ·W−1. These

components represent different types of facial dynamics, i.e. high frequency components

represent sharp facial behavioural changes and low frequency components represent more

gradual changes in facial behaviour. As the relationship between the duration of a Tc(w)

and its frequency Fc(w) is Tc(w) = 1/Fc(w), the produced spectral signal can be said

to summarize multi-scale temporal information of the entire video. Here, the number

of discrete frequency components W in Fc(w) is set to be the same as N in order to

completely summarize the information contained in the discrete time-series data fc(n) (It

is well known that the fc(n) can be fully reconstructed from Fc(w) if W = N).

5.3 Frequency alignment

Motivation: As mentioned above, a time-series signal consisting of N frames can be

converted to a spectral signal that has W = N frequency components without losing

any information. Thus, the spectral signals of variable-length videos will have differ-

ent number of frequency components, which would again lead to feature representations

of varying dimensionality. To make them equal, it should be noted that the spectral

signals of time-series data are always symmetric around their central frequency W/2,

i.e. if F (w) = Re(w) + iIm(w) and F (W − w) = Re(W − w) + iIm(W − w), then

Re(w) = Re(W −w), Im(w) = −Im(W −w). This means that the first W/2 components

of the spectral signal can fully represent the information contained in f(n). Additionally,

as facial actions are continuous and smooth processes, high-frequency information usually

represents noise or outliers caused by e.g. incorrectly detected faces, errors in facial points

localization, etc. In practice, after removing the high-frequency information, the reduced

spectral signal can still represent the original time-series data well, as applying the inverse

DFT to the modified spectral signals can recover most of the information present in the

original time-series data. This is illustrated in Fig. 5.2 and Fig. 5.3. In both figures, all

unused frequency components were replaced by zeros.
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Figure 5.2: Examples of the reconstructed time-series signals after removing high fre-
quency components. The original signal has 7923 frames and its spectral signal also has
7923 frequencies.

Solutions: Motivated by this, the proposed approach only keeps the first W/2 compo-

nents of spectral signals. Then, components corresponding to high frequencies are also

removed. Since the goal is to generate video-level spectral representation of the equal size

from the variable length time-series data, one may consider to keep the first K lowest

frequencies of spectral signals for all videos, with K < W/2. However, the wth component

in videos of different lengths will represent different frequencies. Consider two time-series

signals f 1(n) and f 2(n) of length N1 and N2 respectively. Additionally, consider their

corresponding spectral representations as F 1(w) and F 2(w) respectively. If N1 6= N2,

the wth component (0 < w < N1/2, N2/2) of the spectral signal F 1(w) denotes the DFT

value at frequency 2πw/N1 while the wth component of F 2(w) denotes the DFT value at

frequency 2πw/N2. Clearly, 2πw/N1 6= 2πw/N2, and thus the wth component of spectral

signals F 1(w) and F 2(w) do not represent the same frequency. In order to resolve the

problem of misaligned frequencies, this section proposes the following two solutions:

Solution 1: Zero-padding is a common method often used to increase the frequency

resolution after Fourier Transformation of a discreet time series. In this method, zeros are

appended to the time-series data to increase its length, allowing the DFT of this time-

series data to have more frequency components. In particular, the frequency resolution W

of the spectral signal is equal to the number of frames N in the original time-series data.

By padding with zeros, Nadd zeros are added at the end of the original time-series signal

to create a new time-series of length N + Nadd. Consequently, the spectral signal of the

new time-series signal will have W + Nadd frequency components. Please see (Lindsten,
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Figure 5.3: Examples of the average correlation between reconstructed behaviour primi-
tive time-series signals and original behaviour signals as a function of the percentage of
used frequencies. It can be observed that even after removing more than 90% of high
frequency components, the reconstructed signals still have high correlation with the orig-
inal signals. (The Pose rotation z is the least useful behaviour primitive for depression
analysis; the Gaze leftEye y achieved lowest correlation (CCC) with the original signals
when removing 90% high frequency components)
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2010) for detailed theoretical explanation of this method. For the task conducted in this

thesis, the proposed approach first set a number that is not smaller than the longest video

in both training and testing sets (or potential test videos). Then, zeros are added to the

time-series signals extracted from the rest of the videos, making time-series signals of all

videos to have the same length as the longest video. Consequently, the spectral signals

of all zero-padded time-series signals will have the same resolution. By further selecting

only the first K components of each spectral signal, the dimensionality can be significantly

reduced.

Solution 2: Although zero-padding can increase the frequency resolution of spectral

signals, the values of the increased frequency components are estimated. Moreover, the

multi-channel facial behaviour time-series signals added by zero-padding are zero-signal.

This strategy assumes that the facial status in the added frames is neutral and remains

unchanged, which is not accurate. Therefore, the extended multi-channel time-series

signal may not accurately represent the facial behaviour patterns of the corresponding

person. To avoid this, the second solution extracts fixed-size spectral signals from vari-

able length time-series data by choosing k common frequencies from the spectral signals

obtained from each video. In this case, the values of k chosen frequencies are obtained

from the original signal rather than an zero-padded signal. Hence, each component in the

produced representation represents the accurate value rather than the estimated value of

the corresponding frequency. It should be noted that the advantage of this method is

at the cost that the spectral signals gets downsampled thereby losing some information.

Assuming that there are M time-series signals f 1, f 2, · · · fM corresponding to M variable

length videos, this solution can be achieved by the following steps:

1. Choosing a fixed frequency resolution R, i.e. the number of frequency components

used to represent each time-series data, and then shorten the time-series, reducing

the total number of frames in the original time-series signal fm(n) from Nm to

Nm − (Nm mod R) frames, which is a multiple of R, resulting in a slightly shorter

time-series signal S(fm(n)). In practice, the first (Nm mod R)/2 frames and the last

(Nm mod R)/2 frames are removed from each video. For example, if R is chosen as
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100 or 500, which means the maximum length of removed video contents were less

than 99 frames or 499 frames, respectively.

2. Each time-series S(fm(n)) is converted to its spectral signal S(Fm(w)) using Eq

5.3. Since the number of frequency components is equal to the number of frames,

the number of frequency components in S(Fm(w)) will also be multiple of R, which

can be defined as Wm = (tm × R),m = 1, 2, · · · ,M . As a result, the frequen-

cies represented in each spectral signal can be denoted as 2πwm/(tm × R), wm =

0, 1, 2, · · · , tm × (R− 1).

3. As the number of frequencies in each spectral signal is a multiple of R, all of them

would contain the same R components whose frequencies are given by:

nf (m) = 2πwm(r)/Wm

= 2πr × tm/(R× tm)

= 2πr/R

(5.4)

where r = 0, 1, 2, · · · (R− 1). It is clear that the R selected frequencies are indepen-

dent of tm, and these R frequencies, i.e. 2π × 0/R, 2π × 1/R, 2π × 2/R, · · · , 2π ×

(R − 1)/R, are encoded in all spectral signals. This process is also illustrated in

Fig.5.4. Finally, the proposed approach removes those high frequency components

and only keeps the first K components.

As a result, the solution 2 could not only align the frequencies of variable-length

time-series signals, but also prevents the distortion of the aligned spectral signals.

5.4 Spectrum representations

After obtaining the aligned spectral signal for each time-series signal, this section also

describes two methods to construct a fixed-size joint representation so that spectral signals

of all features (all behaviour primitives) can easily be used as the single input for standard

ML techniques.
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Figure 5.4: Illustration of the frequency selection (Step 3 of the solution 2): After the
DFT, the second half of the spectral signals are removed as they are symmetric.
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Assuming that the extracted per frame behaviour descriptor has C dimensions, the

proposed approach produces C aligned spectral signals consisting of K frequencies for

each video. Since the values in spectral signals are complex numbers, each of them is

converted to two spectrum maps in the real domain: an amplitude map and a phase map,

where the amplitude map can be computed by

|Fm
c (w)|/N =

√
Remc (w)2 + Imm

c (w)2/N (5.5)

and the phase map can be computed by

arg(Fm
c (w)) = arctan

Imm
c (w)

Remc (w)
(5.6)

where Remc (w) and Imm
c (w) are the real and imaginary part of Fm

c (w) respectively, as

defined in Equation(5.3). Hence, C amplitude maps and C phase maps are extracted

from a video, all of which have K frequencies. Then, the following two methods are

further proposed to combine them:

1. Spectral heatmap. A C×K multi-channel amplitude spectrum map and a C×K

multi-channel phase spectrum map. In both maps, each row represents an amplitude

map or a phase map of a single feature signal while each column represents a unique

frequency. In this thesis, two spectrum maps are concatenated as a two-channel

spectral heatmap.

2. Spectral vector. A 1-D vector that concatenates C×K amplitude features and C×

K phase features from all time-series signals. As a consequence, the concatenated

vector contains C ×K × 2 components.

It is clear that both representations encode information from descriptors of all frames for

all dimensions. Additionally, the length-independent property of the produced represen-

tations makes them suitable for use with standard ML techniques.
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Figure 5.5: The 1-D CNN model used to learn spectral heatmaps.

5.5 Personality traits recognition models

Inspired by the success of applying deep learning work (Z. Wang, Yan, & Oates, 2017; Liu,

Reimer, Song, Mehler, & Solovey, 2021) for multi-channel signal processing, a 1-D CNN

structure that has been frequently used in the multi-channel time-series data analysis, is

employed to extract features from spectral heatmaps. The reason behind this choice is

that the rows in the heatmaps, which represent multiple facial features, have no natural

ordering, spatial or otherwise. Therefore, standard 2-D CNNs may not be suitable. Hence,

the proposed spectral heatmaps are treated as multi-channel 1-D data and a 1-D CNN

is employed as the personality traits estimation back-end model. As shown in Fig.5.5,

this CNN architecture is made up of three Conv-Batch-ReLU blocks, where each block

contains a 1-D convolution layer followed by a batch normalization layer and a ReLU

layer. In particular, each convolution layers consists of 128 filters of kernel size 7 × 1,

128 filters of kernel size 5× 1, and 64 filters of kernel size 3× 1, respectively. After that,

a channel-level global average pooling layer is employed to obtain a feature of a single

value from each feature map, producing a 64-D deep feature. Finally, a fully connected

layer with 64 input neurons, a dropout layer (Srivastava et al., 2014) (probability factor

p = 0.5) and an output layer of five neurons are used at the top of the average pooling layer

to jointly predict five personality traits. Meanwhile, the ANN architecture introduced in

Sec.4.3 is again employed to process spectral vector, allowing five personality traits can

be jointly learned.
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5.6 Summary

The spectral approach proposed in this section first employs Fourier Transform to con-

vert time-series behavioural signals to the frequency domain as spectral signals, where

each component in a spectral signal encodes different frequency information of the whole

video. As a result, the produced spectral signals contain multi-scale video-level temporal

information. However, due to the variation in the length of original videos, the length

of their corresponding time-series behaviour signals and spectral signals are also variable.

To allow spectral signals to be easily processed by standard ML models, two frequency

alignment methods are also proposed. Additionally, two spectral representations, i.e.,

spectral heatmap and spectral vector, are employed to encode aligned spectral signals,

allowing them to be learned by CNNs and ANNs, respectively.

In comparison to the person-specific representation encoding approach, the spectral

approach theoretically has clear advantages in encoding multi-scale and long-term dynam-

ics. In addition, it does not require training a set of layers for each test video, making it

more suitable for real-world applications. However, it can only learn a representation from

per-frame 1D features instead of the original video data, which means its performance is

largely depending on the quality of the extracted features.



Chapter 6

Evaluation of the person-specific

representation and spectral

representation

This chapter evaluates the proposed person-specific dynamic encoding approach (pre-

sented in Chapter 4) and multi-scale facial dynamics encoding approach (presented in

Chapter 5) on automatic true/apparent personality traits analysis tasks. Sec. 6.1 intro-

duces the datasets used for not only personality studies but also for frame ranking and

dimensional affect estimation tasks. Then, implementation details of two approaches and

the evaluation metrics are described in Sec. 6.2 and Sec. 6.2.5, respectively. The per-

formance of both spectral and person-specific approaches on personality traits estimation

are compared with the existing state-of-the-art approaches in Sec.6.3.1. After that, a

series of ablation studies are conducted to evaluate various aspects of the proposed two

approaches. In particular, experiments on frame ranking (Sec. 6.3.2) and dimensional

affect estimation (Sec. 6.3.2) tasks are firstly introduced to evaluate the performance of

the proposed rank loss-based self-supervised learning strategy (used by the person-specific

dynamic encoding approach) in modelling short-term facial dynamics. Then, the influence

of different settings on two approaches are also evaluated in Sec. 6.3.2 and Sec. 6.3.3,

respectively.

93
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6.1 Datasets

6.1.1 Frame ranking datasets

Three datasets were used for the frame ranking experiments. The RECOLA dataset

(Ringeval, Sonderegger, Sauer, & Lalanne, 2013) is solely used to train the DFNN based

on the proposed self-supervised learning algorithm. Then, SEMAINE and BP4D datasets

were used to evaluate the capabilities of the trained DFNN, by testing the ranking accu-

racy of the generated DRs.

The used subset of the RECOLA dataset contains 27 videos corresponding to the

AVEC 2016 challenge (M. Valstar et al., 2016), where each video is approximately 5

minutes of 25 fps. During each recording, a pair of participants are communicating over

a video conference to conduct a collaborative task. These videos were recorded from 16

female participants and 11 male participants. Among them, there are 20 Frenches, 5

Italians and 2 Germans.

The SEMAINE dataset recorded uncontrolled facial expressions of participants who

have a conversation with an operator. All videos in this dataset were recorded with the

frame rate of ∼ 50 fps. For experiments conducted in this thesis, a subset of SEMAINE

dataset that has been used by AVEC 2012 challenge (Schuller et al., 2012) is employed.

This subset contains 31 videos for training (501, 277 frames), 32 videos for development

(449, 074 frames) and 32 videos for the test (407, 772 frames). The scenario used in the

recordings is the Sensitive Artificial Listener (SAL) technique (Douglas-Cowie, Cowie,

Cox, Amir, & Heylen, 2008), where each participant was asked to interact with emotionally

stereotyped “characters” whose responses are stock phrases keyed to the user’s emotional

state. In this subset, all frames have been annotated with valence and arousal intensities,

each lying in the range [−1, 1].

This thesis uses a subset of BP4D dataset, which is defined by the FERA 2015 chal-

lenge (M. F. Valstar et al., 2015). This subset contains 75, 586 frames for training, 71, 260

frames for development and 75, 726 frames in the test set. During the video recording,

young adults were asked to respond to emotion elicitation tasks (happiness/amusement,
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sadness, surprise/startle, embarrassment, fear/nervous, physical pain, anger/upset, and

disgust), where each task was governed by a professional actor/director of performing

arts. The frame rate of all videos in this dataset is 25 fps.

To make all videos used in this thesis to have the same frame rate, wherever this

thesis refers to the stride S when setting up the span of frames to be considered, this will

be automatically scaled to 2S for the SEMAINE dataset. During the DFNN training,

both the input and the output are tensors of size 224× 224× 3. It should be noted that

all videos in training, validation and test sets of SEMAINE and BP4D were used as the

test set for cross dataset evaluation of frame ranking in this section.

6.1.2 Dimensional affect estimation datasets

The dimensional affect estimation experiments were conducted on two video-based datasets,

including a dataset collected under lab environment: SEMAINE (described in Sec. 6.1.1)

and a dataset collected in the wild: Affwild 2 (Kollias & Zafeiriou, 2018). The Affwild 2

dataset is the extended version of the Affwild dataset (Kollias et al., 2019a). This dataset

is collected from Youtube, which contains 558 face videos of 458 subjects (279 males and

179 females) with the frame rate of 30 frames per second. Again, all frames have been

annotated with valence and arousal intensities within [−1, 1].

6.1.3 Personality traits analysis datasets

As discussed in Chapter. 1, automatic personality traits recognition can be categorized

into two types (Vinciarelli & Mohammadi, 2014): self-reported personality recognition

and apparent personality recognition. While multiple video-based databases (McKeown

et al., 2012; Ponce-López et al., 2016; Biel & Gatica-Perez, 2010; Sanchez-Cortes et al.,

2011) are publicity available for apparent personality research, to the best of author’s

knowledge, only a few public databases have been recorded for studying self-reported

personality. Even among the available self-reported personality databases, most of them

have very few subjects. For example, the database introduced in (Celiktutan et al.,

2017) only has 18 subjects (Please see (Junior et al., 2018) for the survey of personality



6.2. Implementation details 96

databases).

Therefore, this thesis conducts self-reported personality experiments on the VHQ

dataset (Jaiswal, Valstar, et al., 2019; Jaiswal, Song, & Valstar, 2019) (Please also see

Sec.7.2), which consists of 165 videos collected from 55 participants. In this dataset , each

participant completed 3 questionnaire interview sessions (BFI-10, PHQ-9, and GAD-7).

During each session, participants were asked to answer a set of questions verbally under

three interaction modes: face-to-face interaction, video conference, and human-to-robot

interaction. The labels of Big-Five personality traits were obtained by asking participants

to fill the BFI-44 questionnaire online.

The apparent personality estimation experiments were conducted on the ChaLearn

(Ponce-López et al., 2016) dataset, where the Big-Five apparent personality traits are

also employed as the labels. The ChaLearn dataset contains 10, 000 talking-to-the-camera

videos of 2, 764 YouTube users, which have been assigned to three subsets: training set

(6, 000 videos), validation set (2, 000 videos) and test set (2, 000 videos). All videos are

around 15 seconds long and are recorded at 30 frames per second. In the experiments of

this section, the videos of the ChaLearn dataset have been re-sampled to 25 frames per

second. The personality trait labels in this database were obtained by multiple human

annotators using Amazon Mechanical Turk.

6.2 Implementation details

6.2.1 Frame ranking and dimensional affect estimation

Configuration: All experiments were carried out using the PyTorch library (Paszke et

al., 2017) for deep learning. Both the input and the output of the trained models are

tensors of size 224 × 224 × 3. To generate SFI, DFI, DFR and DR (MDR) per frame,

multiple time-windows with different settings were employed (explained in Sec.6.3.2). For

the sequence-based approach, the RankSVM algorithm is also applied to generate the DFI

and DFR from a sequence at test time, i.e., it is learned on the go for each subsequence

of images. In contrast, for still image-based approach, it is important to note that, at
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test time, each still face image is used as the input (treated as the center frame) to

the trained DFNN to generate the corresponding DR/MDR individually. Each produced

representation is then used for the downstream tasks (frame ranking/dimensional affect

estimation).

Pre-processing: The publicly available OpenFace 2.0 toolkit of (Baltrusaitis et al.,

2018) was employed to detect a set of 68 facial landmarks for each frame. Using these

landmarks, face regions are cropped, resized and aligned to meet the network size. Then,

all pixels corresponding to the outer part of the convex hull defined by the landmarks are

set to zero to remove all non-facial appearance information.

Models training details: In this thesis, multiple DFNNs were used for generat-

ing DRs, which have been trained and validated on the entire RECOLA dataset, us-

ing an Adam optimizer (Diederik P. Kingma, 2015) with a learning rate of 10−3, and

β = (0.5, 0.9). The parameter θ in Eqn. 4.7 is set beforehand to ensure the chance level

ranking accuracy to be less than 0.1%. In terms of models for dimensional affect estima-

tion, the VGG-16 networks pre-trained by the VGG face database were combined with

the Bidirectional Gated Recurrent Units (BGRU) (Cho et al., 2014) networks (BGRU

was set to have one hidden layer with 200 neurons). During the training, all settings were

set based on (Kollias et al., 2019b), with the input layer modified to adapt to the size

of the input DRs/MDRs. In summary, for the sequence-based approach (presented in

Sec. 4.1), the DFI, BDFI and DFR were computed per frame by corresponding adjacent

sub-sequences at both training and test time, and then fed to VGG-16 for valence/arousal

estimation. For the still image-based approach (presented in Sec. 4.2), at test time the

DRs/MDRs are generated from each frame only using the well-trained DFNN models.

6.2.2 Person-specific representation

Person-specific representation generation

DFNN training: This section first employed Aff-Wild dataset to pre-train the encoder,

for the task of valence and arousal intensities estimation, which follows the setting de-

scribed in (Kollias et al., 2019a). After that, the RECOLA dataset (Ringeval et al.,
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2013) is solely used to train and validate the DFNN, whereas all videos in training, val-

idation and test sets of SEMAINE and BP4D datasets were used as the test set for the

cross-dataset frame ranking evaluation of the trained DFNNs.

Training of PALs: To produce PALs for each person, the proposed approach keeps

the DFNN’s weights frozen, and keep the initial weights of PALs the same for all individu-

als. During the person-specific training, frames are fed to the network based on their time

stamps, i.e. from the beginning of the video to the video’s end. This not only ensures

that the weights of PALs always converge (during training) to the same set of values for a

particular video, but also ensures that the difference between individually trained PALs is

only influenced by person-specific facial dynamics rather than the initialization of weights

or the order in which the frames are used for training. To adjust the hyper-parameters

of the PALs’ training, this section equally divided each video in training and validation

sets of Chalearn into two parts, i.e., one for training and the other for ranking accuracy

validation. This section finally chose a set of hyper-parameters that generated the highest

ranking accuracy, and then used each entire video to train a set of new PALs for each

person as the person-specific representation. Meanwhile, the same hyper-parameters ob-

tained from Chalearn experiments were used to train PALs for videos in the VHQ dataset.

Since this process does not need human annotations, PALs are produced for each video in

Chalearn and VHQ. All experiments of DFNN and PALs were implemented in PyTorch,

where ADAM (Kingma & Ba, 2014) was used as the optimization method.

6.2.3 Spectral representation

Frame-level descriptors:

In the experiments, two types of frame-level descriptors were utilised as the basis to

construct spectrum representations. The first descriptor (called latent descriptor in this

thesis) is the per-frame latent 1-D feature obtained from the last encoder layer of the

well-trained DFNN network (introduced in Sec.4.2). The second descriptor is called facial

behaviour primitives, which consists of multiple objective, visual and non-verbal human

behaviour attributes that are easily interpreted by both people and machines, to wit Facial
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Action Units (AUs), head pose and gaze directions. In this thesis, 17 AU intensities, 6

gaze directions and 6 head poses are estimated for each video frame using the OpenFace

2.0 facial behaviour toolkit (Baltrušaitis, Robinson, & Morency, 2016):

• Head pose: The poses of the head can convey vital information about the mental

state of a person especially related to attention and interest levels. The head poses

are encoded in terms of the angle of rotation of the head about the X (horizontal),

Y (vertical) and Z (depth) direction (pitch, yaw and roll), with the origin of the

axes fixed at the camera. In order to take into account the variation of these angles

due to other factors (e.g. person’s height).

• Eye gaze: The behaviour encoded by the direction of eye gaze can also represent

important psychological information and has been previously shown to be useful for

predicting depression (Song et al., 2018). The eye gaze directions are encoded in

terms of the angles which the direction makes with the X (horizontal) axis and Y

(vertical) axis.

• Facial Action Units (AUs): Facial AUs, which can be described as the atomic

units of different facial expressions, represent the movement of one or more local-

ized groups of facial muscles. First proposed by Ekman and Friesen (P. Ekman &

Friesen, 1977), the system of Facial Action Coding System (FACS), is widely used

for objective analysis of human facial expressions. The facial expressions represented

by these AUs can provide useful cues to the emotional state of a person and hence

is potentially valuable for depression analysis. The intensities of a total of 17 AUs

have been used in the experiments are: AU1, AU2, AU4, AU5, AU6, AU7, AU9,

AU10, AU12, AU14, AU15, AU17, AU20, AU23, AU25, AU26 and AU45.

Pre-processing and post-processing:

As described above, the publicly available OpenFace 2.0 toolkit is employed to output

an aligned face image for each frame, as well as the facial behaviour primitives. For

frames in which no face was detected or if the confidence value of the detected face
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was small, they were removed from analysis. To minimize the effects of participants’

identity, the value of each human behaviour primitive was normalized by subtracting its

corresponding median value computed over the whole video, respectively. Due to the high

dimensionality of spectral vector, correlation-based Feature Selection (CFS) (M. A. Hall,

1999) was employed to select only the most relevant features before feeding them to

ANNs. CFS is a popular feature selection technique which only selects those features

which are highly correlated with the output variable but uncorrelated with each other,

thereby giving a very compact set of useful features. The feature selections were done on

training sets, and validated on the corresponding validation sets. In this feature selection

algorithm, the Pearson’s linear correlation coefficient is used to measure the correlations.

6.2.4 Personality models and training details:

Due to the limited amount of data (165 videos from 55 participants) in the VHQ dataset,

the leave-one-subject-out cross validation is conducted to evaluate the ANN and CNN

models of self-reported personality traits. In each fold, videos of 54 participants were

used for training and the remaining one was used for testing. The reported results were

obtained by averaging the results over all 55 folds. For the ChaLearn dataset, standard

training, validation and test procedure is implemeted based on the corresponding subsets

defined in the dataset. The dimensions of selected features in different experiments ranged

from 16 to 42. During the validation and test, the same features were selected from the

validation and test data. The training and evaluation of personality models (ANN) were

implemented in MATLAB 2019, where RMSProp with learning rate of 0.0005 was used

as the optimization method and training was done for 150 epochs.

6.2.5 Evaluation Metrics

Three standard measures were used to assess the performance of the proposed approaches

on the dimensional affect estimation; firstly the Pearson Correlation Coefficient (PCC,

Eq. 6.1),

ρx,y =
cov (X, Y )

σXσY
(6.1)
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where the cov is the covariance and σX , σY are the standard deviations, secondly the

Concordance Correlation Coefficient (CCC, Eq. 6.2):

ρccc =
2ρx,yσxσx

σ2
x + σ2

y + (µx − µy)2
, (6.2)

where µx and µy are mean values of time-series predictions and labels while σx and σy are

standard deviations, and thirdly the Mean Squared Error (MSE).

MSE =
1

n

n∑
i=1

(xi − yi)2 (6.3)

where xi and yi are the ith prediction and ground-truth, respectively. In addition, the

ranking accuracy is employed to evaluate the ranking ability of the generated representa-

tions of both proposed approaches, and is defined as

RA =

∑I
i=1

∑Ni
ni=1 CRIP(i)(ni)

K(K − 1)
∑I

i=1 ni
(6.4)

where i is the video index, ni is the nth input image of the ith video and CRIP(i)(ni) is

the number of correctly ranked pairs for the corresponding input. Here, for each input

image, there are k preceding and k succeeding frames, resulting in k(k − 1)/2 preceding

image pairs and k(k − 1)/2 succeeding image pairs need to be ranked. Consequently,

K(K − 1)
∑I

i=1 ni represents the number of all ranked image pairs.

Meanwhile, four metrics are utilised to evaluate the personality traits estimation

performance, which is Pearson Correlation Coefficient (PCC) defined above; the Root

Mean Square Error (RMSE) defined in Eqn 6.5; and the mean accuracy measurement

used in the ChaLearn challenge (Ponce-López et al., 2016) (defined in Eqn 6.6).

RMSE =

√√√√ 1

n

n∑
i=1

(fi − yi)2 (6.5)

In the above equations, fi is the ith prediction of the prediction vector f , yi is the corre-

sponding ground-truth in the ground-truth vector y, cov is the covariance and σf , σy are
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standard deviations of f and y respectively, µf and µy are the mean values of predictions

and labels respectively. Meanwhile, the ACC is defined as

ACC = 1− 1

Nt

Nt∑
i=1

|ti − pi| (6.6)

where ti and pi are the labels and predictions, respectively and Nt is the number of videos.

6.3 Personality traits recognition results

6.3.1 Comparison to the state-of-the-art

This section compares the best systems achieved by the proposed two video-level facial

dynamic encoding approaches as well as the combination of them against other published

automatic personality analysis approaches on the VHQ and ChaLearn datsets. To do

such comparison, three previous published baselines, including histogram feature (Jaiswal,

Song, & Valstar, 2019), deep regression network (video features only) (Wei et al., 2018)

and deep residual network (Güçlütürk et al., 2016; K. He, Zhang, Ren, & Sun, 2016),

were implemented based on the codes provided online. For VHQ dataset, all baselines

were trained and evaluated using the combined videos (the combination of three types

of videos), which is termed as the video-level fusion in this section. Meanwhile, Two

frame-level descriptors, e.g. facial behaviour primitives (AUs, Gazes, Head Poses) and

the latent features produced from the last layer of the well-trained DFNN encoder, were

utilised to construct spectral representations (spectral vector and spectral heatmap).

Table. 6.1 reports the self-reported personality prediction results on the VHQ dataset.

It should be noted that the reported ’Single-task’ results are the average results over

a set of three single task videos, i.e., PHQ-9, GAD-7 and BFI-10 while the reported

’Single-scale’ results are the average results over three single temporal scale settings. The

’multi-task’ denotes the decision-level fusion results of three types of video and ’multi-

scale’ denotes the decision-level fusion results of systems using three different temporal

scales. It can be observed that in terms of the average performance, the spectral vectors
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of behaviour primitives provided better predictions than the spectral vectors of latent fea-

tures. This may due to that the high dimensions of the latent features (1894−D), which

makes it hard to be properly learned by a simple back-end models. More importantly, the

top-3 DFNN-PALs systems achieved the better results than the spectrum representations

with either behaviour primitives or latent features, and also outperformed the four base-

lines, for all three measures. Among them, the multi-scale person-specific representations

performed best in terms of RMSE and ACC measures while the multi-task models gave

the best performance in terms of PCC measure (0.39). These results suggest that the

proposed dynamic encoding approach can extract important clues from facial behaviour,

for self-reported personality prediction. In particular, this method achieved promising

results on predicting Agreeableness, Neuroticism and Openness traits. In addition, it is

clear that the combination of spectral representation and person-specific representation

generated the best result among all systems, indicating that both multi-scale facial dy-

namics and person-specific facial dynamics are informative to self-reported personality

traits. While person-specific information provided better performance, each of them con-

tains some unique clues for this task. Fig.6.1 shows the predictions generated by our

multi-scale person-specific representation on VHQ dataset. It can be observed that for

Neuroticism trait most predictions of people whose ground-truth scores range from 12 to

27 are very close to corresponding labels. This could caused by the fact that there is more

training data in this range and hence the model is able to perform better in this range.

It can also be observed that, for all traits, most predictions have lower values than the

corresponding ground-truths. One of the reasons for this observation could be the uneven

distribution of scores and presence of outliers towards the lower end of scores.

Table. 6.2 compares the apparent personality prediction results on ChaLearn dataset.

Again, the spectrum vectors of behaviour primitives clearly beaten the spectral vectors

of latent features. It is also clear that the multi-scale DFNN-PALs model produced the

best average PCC and RMSE results except the combined system, with the best PCC

performance on three traits and best RMSE results on all five traits. In addition, the

predictions from DRN method (Wei et al., 2018) achieved highest PCC for Agreeable-
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ness trait. In terms of ACC, both of DFNN-PALs systems outperformed most existing

methods and achieved comparable average results (0.9168) to the state-of-the-art-method

(CR-Net) (0.9187). In particular, for Agreeableness and Openness traits, the proposed

DFNN-PALs approach achieved significant improvement over most existing approaches.

Meanwhile, the combined system achieved the best predictions on three traits with the

second best performance on Extraversion trait. This result again can indicates that both

multi-scale facial dynamics and person-specific facial dynamics are informative to ap-

parent personality traits. According to Fig.6.2, unlike predictions on VHQ dataset, the

distributions of predictions on Chalearn dataset, are more balanced rather than having

lower values compared to corresponding labels. This could be due to the fact that the

training data is more evenly distributed with fewer outliers. It can also be observed that

the average prediction performance on Chalearn dataset is higher than that on the VHQ

dataset. This may be contributed to the large number of training examples in Chalearn

dataset, leading the trained model to have better generalization capability.

To investigate whether there is statistical difference between the performance of the

proposed best system (i.e., person-specific representation) and other reproduced systems

(e.g. Spectrum (BP), NJU-LAMDA and DCC) is statistically significant, Table 6.3 re-

ports the p value computed between the L2 results of our multi-scale person-specific

representation and each of the others, where the L2 results were obtained from all test

examples (2000 results on Chalearn dataset and 55 results on VHQ dataset). In addi-

tion, 5-fold cross-validation is conducted on the entire Chalearn dataset to evaluate the

statistical difference in terms of PCC and ACC measurements. At each fold, the PALs

of 8000 videos were used for training and the rest 2000 videos were used for testing. The

p-value results reported in Table 6.4 are computed from the 5-fold results between by

our multi-scale approach and each of the others. Both tables show that our multi-scale

approach has clear advantages over others in predicting Agreeableness and Neuroticism

traits. Meanwhile, Table 6.4 also indicates that there is statistical significant difference

in the PCC and ACC results of Openness predictions.
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Figure 6.1: Predictions of our best system on the VHQ dataset.

Figure 6.2: Predictions of our best system on the ChaLearn dataset.
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Traits Extrav Agree Consc Neuro Open Avg.

PCC

Histogram (Jaiswal, Song, & Valstar, 2019) -0.15 -0.15 -0.28 0.04 -0.14 -0.14
NJU-LAMDA∗ (Wei et al., 2018) 0.25 0.33 0.15 0.31 0.26 0.26
DCC∗ (Güçlütürk et al., 2016) 0.11 0.08 0.02 0.12 0.14 0.09

Spectrum (BP) 0.17 0.02 0.12 0.26 0.24 0.16
Spectrum (LF) 0.11 -0.08 0.02 0.12 0.18 0.07

DFNN-PALs (Single-task) 0.29 0.42 0.30 0.32 0.16 0.30
DFNN-PALs (Multi-task:VF) 0.42 0.27 0.34 0.31 0.36 0.34
DFNN-PALs (Multi-task:DF) 0.36 0.44 0.28 0.52 0.36 0.39

DFNN-PALs (Single-scale) 0.19 0.31 0.18 0.32 0.27 0.25
DFNN-PALs (Multi-scale) 0.34 0.46 0.29 0.51 0.27 0.37
DFNN-PALs (Multi-scale) 0.37 0.43 0.33 0.55 0.36 0.41

+ Spectrum (BP)

RMSE

Histogram (Jaiswal, Song, & Valstar, 2019) 7.06 4.71 5.46 6.28 7.91 6.44
NJU-LAMDA∗ (Wei et al., 2018) 6.19 4.33 4.88 6.09 6.97 5.69
DCC∗ (Güçlütürk et al., 2016) 6.33 4.42 4.72 6.58 7.03 5.82

Spectrum (BP) 6.50 4.50 4.82 6.23 7.19 5.91
Spectrum (LF) 6.78 4.81 5.05 6.52 7.40 6.11

DFNN-PALs (single-task) 6.02 4.13 4.55 6.01 7.00 5.54
DFNN-PALs (Multi-task:VF) 5.74 4.37 4.47 6.08 6.65 5.46
DFNN-PALs (Multi-task:DF) 6.03 4.07 4.60 5.49 6.85 5.41

DFNN-PALs (single-scale) 6.24 4.18 4.64 6.00 6.82 5.58
DFNN-PALs (Multi-scale) 6.02 4.03 4.56 5.45 6.79 5.37
DFNN-PALs (Multi-scale) 5.86 3.99 4.50 5.25 6.71 5.26

+ Spectrum (BP)

ACC

Histogram (Jaiswal, Song, & Valstar, 2019) 0.8332 0.8410 0.8221 0.8361 0.8377 0.8340
NJU-LAMDA∗ (Wei et al., 2018) 0.8412 0.8451 0.8385 0.8449 0.8438 0.8427
DCC∗ (Güçlütürk et al., 2016) 0.8380 0.8433 0.8354 0.8370 0.8392 0.8386

Spectrum (BP) 0.8408 0.8442 0.8397 0.8406 0.8417 0.8414
Spectrum (LF) 0.8366 0.8423 0.8337 0.8314 0.8390 0.8360

DFNN-PALs (single-task) 0.8426 0.8459 0.8422 0.8470 0.8387 0.8433
DFNN-PALs (Multi-task:VF) 0.8461 0.8499 0.8395 0.8458 0.8450 0.8452
DFNN-PALs (Multi-task:DF) 0.8425 0.8491 0.8380 0.8521 0.8416 0.8447

DFNN-PALs (single-scale) 0.8407 0.8466 0.8398 0.8483 0.8425 0.8436
DFNN-PALs (Multi-scale) 0.8430 0.8517 0.8415 0.8540 0.8433 0.8467
DFNN-PALs (Multi-scale) 0.8455 0.8506 0.8418 0.8587 0.8462 0.8486

+ Spectrum (BP)

Table 6.1: Video-based self-reported personality prediction results on VHQ dataset.
Multi-task:VF denotes the video-level fusion of multiple videos and Multi-task:DF de-
notes the decision-level fusion of multiple videos. Spectrum (BP) denotes the spectrum
representation produced from behaviour primitives (Song et al., 2020). Spectrum (LF)
denotes the spectrum representation produced by the frame-level features extracted from
the last encoder layer of the well-trained DFNN. ∗ denotes the results obtained by our
own implementation using the code provided online.

6.3.2 Ablation studies of the person-specific representation

This section firstly evaluate the short-term facial dynamic encoding ability of the proposed

self-supervised learning strategy that is used by person-specific dynamic encoding, based
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Traits Extrav Agree Consc Neuro Open Avg.

PCC

Histogram (Jaiswal, Song, & Valstar, 2019) 0.30 0.05 0.22 0.22 0.20 0.20
NJU-LAMDA∗ (Wei et al., 2018) 0.43 0.37 0.45 0.34 0.36 0.39
DCC∗ (Güçlütürk et al., 2016) 0.36 0.12 0.20 0.25 0.25 0.24

Spectrum (BP) 0.37 0.30 0.34 0.36 0.32 0.34
Spectrum (LF) 0.23 0.19 0.25 0.33 0.23 0.25

DFNN-PALs (Single-scale) 0.50 0.30 0.43 0.44 0.43 0.42
DFNN-PALs (Multi-scale) 0.52 0.31 0.45 0.45 0.44 0.45
DFNN-PALs (Multi-scale) 0.56 0.35 0.45 0.47 0.47 0.46

+ Spectrum (BP)

RMSE

Histogram (Jaiswal, Song, & Valstar, 2019) 0.17 0.15 0.17 0.17 0.16 0.16
NJU-LAMDA∗ (Wei et al., 2018) 0.14 0.12 0.13 0.14 0.13 0.13
DCC∗ (Güçlütürk et al., 2016) 0.15 0.14 0.15 0.15 0.14 0.15

Spectrum (BP) 0.15 0.13 0.14 0.14 0.14 0.14
Spectrum (LF) 0.20 0.15 0.16 0.14 0.15 0.16

DFNN-PALs (single-scale) 0.12 0.13 0.14 0.14 0.12 0.13
DFNN-PALs (Multi-scale) 0.12 0.10 0.13 0.12 0.11 0.12
DFNN-PALs (Multi-scale) 0.10 0.10 0.13 0.11 0.11 0.11

+ Spectrum (BP)

ACC

Baseline (Escalante et al., 2018) 0.9112 0.9112 0.9152 0.9103 0.9111 0.9118
PML (Bekhouche et al., 2017) 0.9155 0.9103 0.9137 0.9082 0.9100 0.9115

BU-NKU (Kaya, Gurpinar, & Ali Salah, 2017) 0.9212 0.9137 0.9197 0.9146 0.9170 0.9172
NJU-LAMDA (Wei et al., 2018) 0.9133 0.9126 0.9166 0.9100 0.9123 0.9130

Evolgen (Subramaniam et al., 2016) 0.9150 0.9119 0.9119 0.9099 0.9117 0.9121
DCC (Güçlütürk et al., 2016) 0.9107 0.9102 0.9138 0.9089 0.9111 0.9109

ucas (Ponce-López et al., 2016) 0.9129 0.9091 0.9107 0.9064 0.9099 0.9098
CR-Net (Li et al., 2020) 0.9200 0.9176 0.9218 0.9150 0.9191 0.9187

PerEmoN (L. Zhang et al., 2019) 0.920 0.914 0.921 0.914 0.915 0.917
Histogram (Jaiswal, Song, & Valstar, 2019) 0.8949 0.8970 0.9001 0.8913 0.8975 0.8962

Spectrum (BP) 0.9165 0.9099 0.9178 0.9109 0.9117 0.9134
Spectrum (LF) 0.8860 0.8997 0.9061 0.9082 0.9035 0.9007

DFNN-PALs (single-scale) 0.9178 0.9255 0.9063 0.9132 0.9177 0.9161
DFNN-PALs (Multi-scale) 0.9183 0.9262 0.9082 0.9133 0.9180 0.9168
DFNN-PALs (Multi-scale) 0.9203 0.9285 0.9108 0.9161 0.9197 0.9187

+ Spectrum (BP)

Table 6.2: Apparent personality prediction results on ChaLearn dataset.

Traits Extrav Agree Consc Neuro Open

VHQ
Spectrum (BP)(Song et al., 2020) +(2.94E-02) +(1.58E-02) +(3.11E-02) -(6.68E-02) -(5.27E-01)

NJU-LAMDA∗ (Wei et al., 2018) -(1.91E-01) +(3.39E-03) +(3.78E-02) -(4.68E-01) -(2.20E-01)

DCC∗ (Güçlütürk et al., 2016) +(3.01E-03) +(5.90E-04) +(2.14E-02) +(2.97E-02) +(6.34E-03)

ChaLearn
Spectrum (BP)(Song et al., 2020) -(1.93E-01) +(3.68E-03) +(9.84E-04) +(1.17E-02) +(3.86E-03)

NJU-LAMDA∗ (Wei et al., 2018) -(1.54E-01) +(8.16E-03) -(5.81E-02) +(4.70E-02) -(5.37E-02)

DCC∗ (Güçlütürk et al., 2016) +(7.05E-03) +(1.52E-04) +(2.90E-02) +(2.57E-04) +(4.15E-05)

Table 6.3: Statistical significant differences of the L2 error between the proposed multi-
scale approach’s predictions and three reproduced systems’ predictions on VHQ and
Chalearn dataset, where + / - denotes that there is / there is no statistical significant
differences between our approach and the other approach while the corresponding P-value
is presented in the square.
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Traits Extrav Agree Consc Neuro Open

PCC
Spectrum (BP)(Song et al., 2020) +(8.12E-04) -(4.68E-01) +(4.29E-05) +(3.29E-04) +(1.18E-05)

NJU-LAMDA∗ (Wei et al., 2018) +(1.42E-02) -(1.04E-01) -(9.94E-01) +(1.12E-03) +(3.55E-03)

DCC∗ (Güçlütürk et al., 2016) +(1.06E-04) +(2.83E-06) +(4.01E-08) +(3.16E-06) +(5.20E-06)

ACC
Spectrum (BP)(Song et al., 2020) -(5.99E-01) +(1.05E-05) +(1.21E-03) +(2.03E-03) +(4.76E-04)

NJU-LAMDA∗ (Wei et al., 2018) +(6.15E-03) +(2.74E-06) +(9.21E-03) +(2.61E-02) +(1.85E-03)

DCC∗ (Güçlütürk et al., 2016) +(3.42E-03) +(3.76E-05) +(1.41E-02) +(4.98E-03) +(8.06E-04)

Table 6.4: Statistical significant differences of the PCC and ACC results between the
proposed multi-scale approach and three reproduced systems in 5-fold cross validation on
VHQ dataset.

on two applications: frame ranking (Sec. 6.3.2) and dimensional affect estimation (Sec.

6.3.2). Then, the influence of several factors, including encoder pre-training settings, the

size of time-window, the employed fusion strategies, and task contents and video lengths,

on personality recognition performance are evaluated.

Frame ranking results

Comparison with other generative methods: Fig.6.3 shows the capability of the

DRs generated by DFNN in ranking the corresponding adjacent frames in SEMAINE

and BP4D. The evaluation was conducted under different scenarios by choosing a set

of different window lengths and strides to train models and generate the corresponding

representations. The number of frames used per training image is N = 2T+1 (T preceding

frames, T succeeding frames and the given frame). The experiments sample N frames

using four different strides S. The image sequence range is then of N × S frames. The

ranking capabilities of the proposed approaches are reported for T = {3, 5, 7, 9} (i.e.

N = {7, 11, 15, 19}). In the most extreme case, i.e. when T = 9 and S = 4, the ranking is

measured on a window size of N = 2T + 1 = 19 frames, evenly sampled from a sequence

of N × S = 76 frames. At test time, frames are chosen following the same sampling

procedure as that of the corresponding model. To compute the ranking accuracy, the

DRs are generated for each of the images available in the corresponding datasets, which

is then projected onto the frames lying within the corresponding window of N frames,

sampled with stride S. The ranking accuracy is the percentage of pairs that are correctly

ranked (Eq.6.4), i.e. the percentage of pairs for which δab(t) > 0. Meanwhile, the results
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Figure 6.3: Average ranking accuracy (%) on two datasets. Four generative models are
trained using RECOLA dataset and tested on SEMAINE and BP4D datasets. RankSVM
classifiers were trained on SEMAINE and BP4D datasets, and each classifier only rank
its training frames. The results obtained by RankSVM are treated as the upper bound.

shown with blue dash lines correspond to the results achieved by the sequence-based

approach, i.e., applying a RankSVM at test time, trained using the frames that were later

ranked by it. Thus, the results given by the RankSVM are treated as an upper bound for

the ranking accuracy. In particular, Fig. 6.3 compares the DFNN trained by the proposed

self-supervised learning algorithm against the following approaches:

• UNet (MSE). Using the dynamic images, the model is trained using as objective the

Mean Squared Error.

• UNet (P). In this method, the dynamic images is used as target representation,

and the objective function used to train the model is the Perceptual loss proposed

in (Johnson, Alahi, & Fei-Fei, 2016).

• Pix2Pix (Isola et al., 2017) refers to using a conditional GAN, again using the

dynamic images as the corresponding targets.

According to Fig. 6.3, the ranking accuracies of the proposed DFI (the ranking
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accuracy of BDFI is almost the same to the DFI) is much better than other methods, in-

dicating that the extended dynamic image algorithm has strong capability to rank frames

that contains facial behaviours. Then, the results show how the proposed still image-based

self-supervised learning algorithm (DFNN) achieved similar results to those given by the

sequence-based approach (DFI) that uses at test time the adjacent frames to compute the

kernel. Remarkably, the still image-based approach (DFNN) yields around 76% ranking

accuracy even for the longest cases (i.e., when ranking 19 frames with different strides).

It is also clear that, when pairing the input images with a DR to serve as a basis to learn

generative networks, the ranking accuracy at test time degrades substantially, indicating

that the subtle errors in the reconstruction loss do not necessarily correlate with errors in

the ranking of frames. This also illustrates the contribution of the Rank Loss at the task

of defining the form of the DR, allowing for a better generalization.

Meanwhile, It should be noted that the proposed DR is capable of accurately ranking

both preceding and succeeding frames, something not possible with methods trained with

explicit target representations. This is because the original dynamic image algorithm

would only be able to rank either preceding or succeeding frames, and it would need to

be given the temporal information at test time. An example is shown in Fig. 6.4. This

clearly illustrates the capacities of the proposed still image-based approach at the task of

sorting the surrounding frames of a given image relative to their position to it.

Influence of the encoder pre-training: This section also evaluates the effects of

the proposed emotion-guided encoder pre-training for the subsequent learning of facial

dynamics in terms of frame ranking accuracy. In particular, four different settings are

used to pre-train the encoder: 1. pre-training it with arousal and valence labels and

freezing its weights afterwards; 2. pre-training it and then reducing the learning rate to

5×10−5 as the initial learning rate for the subsequent training; 3. pre-training it and then

keeping the initial learning for the subsequent training; 4. No pre-training is conducted.

The evaluation was done using different time-window hyperparameters, w.r.t. window

length and stride, for training networks and generating corresponding DRs. The number

of frames used in the time-window around each input image is N = 2T + 1 (T preceding
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Figure 6.4: Examples of ranking frames using DRs generated by different methods. The
networks of Pix2Pix, Unet(P) and Unet(MSE) were trained using Seq DI as the target.
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frames, T proceeding frames and the given frame), which are the same to the settings

described above. At test time, frames are chosen following the same sampling procedure

as that used during training of the model. The results in Fig. 6.5 show that the proposed

method with the encoder of setting 4 achieved results similar to those given by RankSVM

(Smola & Schölkopf, 2004). Remarkably, this setting yields around 75% accuracy even for

the longest cases (i.e., when ranking 19 frames with a stride of 4 frames). When comparing

the four different settings, it is clear that settings 3 and 4 achieve similar results, which

are better than settings 1 and 2. In addition, it can be observed that when the size of

the time-window is less than 25 frames (0.5s for preceding frames and 0.5s for proceeding

frames), the ranking accuracy remains mostly stable and rises slightly with increasing

stride. However, when the time-window becomes large, the ranking performance drops

significantly. This suggests that the proposed rank loss allows DFNN to efficiently learn

short-term facial dynamics but is not suitable for modelling long-term dynamics.

These results also indicate that the emotion-guided encoder pre-training did not have

a significant impact on ranking accuracy. On the other hand, the learning rate of the

encoder plays an essential role in learning general facial dynamics. Reducing or freezing

the learning rate of the encoder resulted in lower-ranking accuracy. This section assumes

that the majority of emotion-related dynamics are not crucial for frame ranking, and

thus the relatively large learning rate can force both emotion-related part of encoder and

emotion-independent part of encoder to learn temporal cues that relate to frame ranking.

Dimensional affect estimation results

This section evaluates the proposed approach on the dimensional affect estimation task,

i.e., predicting the intensities of valence and arousal for each frame. In particular, this sec-

tion compares the results achieved by the proposed dynamic representations (DFI/DFR/DR/MDR)

against the static aligned faces extracted from videos. As introduced in Sec. 6.2, the

VGG-16 network (Parkhi, Vedaldi, Zisserman, et al., 2015) is fine-tuned for each of the

alternatives aforementioned. More specifically, a VGG-16 network is employed to predict

valence and arousal intensities by processing the generated DFI/DFR/DR/MDR, as well
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Figure 6.5: Average frame ranking accuracy obtained by four encoder settings.
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Arousal Valence

Method CCC MSE CCC MSE
Static 0.201 0.098 0.185 0.113
Pix2Pix∗ (Isola et al., 2017) 0.082 0.166 0.076 0.195
Unet(P)∗ (Johnson et al., 2016) 0.145 0.125 0.102 0.172
Unet(MSE)∗ 0.015 0.181 0.029 0.189
DFI 0.293 0.077 0.276 0.079
BDFI 0.291 0.077 0.276 0.080
DFR 0.358 0.042 0.320 0.061
SDR 0.289 0.078 0.273 0.082
MDR 0.316 0.058 0.299 0.072

Table 6.5: Affect estimation results on the SEMAINE dataset. SI denotes the still face
image; ∗ denotes our own implementation

as for the per-frame output of other generative methods, e.g., UNet(MSE), UNet(P), and

Pix2Pix. The results on SEMAINE and Affwild2 dataset are shown in Table 6.5 and

Table 6.6. Firstly, it is clear that all proposed dynamic representations outperformed the

static faces on both datasets (except that SDR generated slightly worse arousal predic-

tions and BDFI achieved slightly worse valence predictions), illustrating that the facial

dynamics encoded by the proposed dynamic representations can provide additional useful

information to static face for dimensional affect estimation. Secondly, the DR/MDR gen-

erated from DFNNs yielded better results than all other generative approaches. Again,

this indicates that the proposed rank loss is superior to the reconstruction loss in capture

generic dynamics from unlabelled face videos. Finally, the DR/MDR generated by the

DFNN achieved comparable results to the sequence-based dynamic representations under

most conditions, showing that the facial dynamics learned by the proposed self-supervised

learning approach have similar impacts as the dynamics learned from the sequence-based

approach on dimensional affect estimation tasks.
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Arousal Valence

Method CCC MSE CCC MSE
Static 0.333 0.114 0.297 0.156
Pix2Pix∗+VGG (Isola et al., 2017) 0.091 0.166 0.088 0.195
Unet(P)∗+VGG (Johnson et al., 2016) 0.192 0.125 0.134 0.172
Unet(MSE)∗+VGG 0.063 0.181 0.082 0.189
DFI 0.351 0.109 0.297 0.151
BDFI 0.352 0.110 0.295 0.153
DFR 0.399 0.102 0.358 0.136
SDR 0.326 0.119 0.299 0.151
MDR 0.345 0.111 0.316 0.145

Table 6.6: Affect estimation results on the Affwild 2 dataset. SI denotes the still face
image; ∗ denotes our own implementation

Ablation studies on personality analysis tasks

Encoder pre-training settings: Fig. 6.6 compares the personality prediction results

returned by person-specific representation encoded in PALs, based on the four encoder

settings described earlier. The performance was computed on both VHQ and ChaLearn

datasets. The comparison is made in terms of the PCC measure, averaged over all five

personality traits. For both datasets, it is clear that the results achieved by the third set-

ting outperformed the fourth setting. The difference in performance on the two datasets

may be caused by: 1. the large differences in the number of training examples, i.e., 54 in

VHQ dataset and 6000 in Chalearn dataset; 2. the different annotations: while Chalearn

provides apparent personality traits labels, the VHQ dataset provides self-reported person-

ality traits labels. However, it can be observed that the relative difference in performance

between different encoder settings are almost the same. In summary, the self-supervised

training of the pre-trained encoder can still lead the learned model to retain some emotion

information that is positively associated with personality, resulting in better personality

performance when keeping the initial learning rate.

Size of time-window: Fig.6.7 and Fig.6.8 compare the personality prediction re-

sults of the person-specific descriptors, produced by three different time-windows with
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Figure 6.6: Average personality prediction results obtained by four encoder settings.

stride 2: N = 7 (0.52s), N = 11 (0.84s) and N = 15 (1.16s). It can be observed that

the best self-reported personality predictions (average PCC of five traits is 0.2552) were

achieved when the time-window size was 0.84s while the best apparent personality pre-

diction results (average PCC of five traits is 0.4192) were achieved when the time-window

size was 1.16s. It also can be observed that self-reported personality prediction is more

sensitive than the apparent personality prediction, to the time-window size. More im-

portantly, when conducting decision-level fusion of multi-scale predictions, i.e., the final

predictions were made by applying linear regression to combine the predictions from all

models, the performance clearly exceeds the ones from single-scale models (please see the

following paragraph for more details on different fusion strategies). The hypothesis of this

result is that the most relevant features for personality prediction may occur at different

temporal scales. Therefore, using multi-scale dynamics can help learn more optimum

models for personality prediction.

Fusion strategy: In real world applications, multiple videos may be available for

each person. Therefore, it is interesting to explore how to optimally combine them to

generate more accurate predictions. As three videos were recorded for each participant in

the VHQ dataset, Fig.6.9 evaluates the following three ways to combine them for person-

ality analysis: video-level fusion (combine three videos to a single video to train PALs and

generate person-specific descriptors, where frames located at the borders were not used
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Figure 6.7: Self-reported personality prediction results obtained by four time-window
settings on VHQ dataset, using person-specific representations. The average PCC for five
traits are: 0.1877 (0.52s), 0.2532 (0.84s), 0.2002 (1.16s), and 0.3740 (multi-scale).

Figure 6.8: Apparent personality prediction results obtained by four time-window settings
on ChaLearn dataset, using person-specific representations. The average PCC for five
traits are: 0.3942 (0.52s), 0.4157 (0.84s), 0.4192 (1.16s), and 0.4258 (multi-scale).
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Figure 6.9: Self-reported personality prediction results obtained by three fusion strategies
on VHQ dataset. The average PCC for five traits are: 0.3370 (video-level fusion), 0.3287
(feature-level fusion), and 0.3894 (decision-level fusion).

for the PAL training.), feature-level fusion (concatenating the person-specific descriptors

produced by each video) and decision-level fusion (combining the predictions generated

from each video using linear regression). It can be observed from the Fig.6.9 that the

decision-level fusion produced the best performance for three traits (agreeableness, neu-

roticism and openness), and achieved the best average performance (PCC= 0.3894) over

five traits. Additionally, video-level fusion outperformed the feature-level fusion in terms

of average performance.

Task contents and video length: The VHQ dataset recorded three videos for

each participant under three different interview scenarios, i.e., verbally answering PHQ-9,

GAD-7 and BFI-10 questionnaires, respectively. To investigate the influence of the task

contents on automatic personality traits analysis, Fig. 6.10 compares the personality traits

prediction results obtained by person-specific representations from each type of videos in

the VHQ dataset. As we can see, the best performance of four traits, i.e., Extraversion,

Agreeableness, Conscientiousness and Neuroticism, were obtained from GAD-7 videos,

while the models trained from BFI-10 videos performed best for the Openness trait.

These results suggest that under the recording conditions of VHQ dataset, the GAD-

7 questionnaire-based interview triggers facial behaviours that are more informative for
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Figure 6.10: Self-reported personality prediction results obtained by videos of four task
settings on VHQ dataset, using person-specific representations. The average PCC for five
traits are: 0.1898 (PHQ videos), 0.2652 (GAD videos), 0.1861 (BFI videos), and 0.3371
(Multi-task).

E, A, C, N traits, while behaviours triggered by BFI-10 questionnaire-based interviews

are more relevant to Openness. In addition, there are large variations on prediction

performance across the three types of videos, indicating that the behaviour triggered by

different tasks may have considerable impact on the performance of personality prediction.

Since an individual’s personality traits are expected to be relatively stable over time,

this section also investigates the impact of the duration of interview on personality anal-

ysis, i.e. this section assumes longer videos that contain facial behaviours triggered by

multiple diverse tasks should result in PALs with better generalization capability. To

test this hypothesis, Fig. 6.10 also reported the personality prediction results obtained

by person-specific representations when PALs are trained by combining the three types

of videos in the VHQ dataset, (Video-level fusion). The resulting videos are then longer

than any of the individual PHQ/BFI/GAD videos, and contains three interviews. Fig.

6.10 illustrates that the video-level fusion significantly improves the performance for four

personality traits, and achieved the best average PCC of 0.3371 over all the five traits,

clearly outperforming the PCC results obtained from PHQ-9 videos (0.1898), GAD-7

videos (0.2652) and BFI-10 videos (0.1861). These results suggest that using longer videos
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containing different tasks, forces PALs to learn behaviour patterns which occur frequently

under different conditions i.e. patterns stable over time are indicative of personality.

6.3.3 Ablation studies of the spectral representation

This section evaluates two settings of the spectral approach on personality traits estima-

tion. Firstly, it compares the performance achieved by two frequency alignments. Then,

it shows that the spectral vector achieved better performance than the spectral heatmap

in VHQ dataset.

Comparison of frequency alignment methods:

As described in Section 5.3, two frequency alignment methods, i.e. zero-padding and fre-

quency selection, have been employed. Fig.6.11 compares them against the models where

no alignment was done. The reported results are the average values achieved by spectral

vectors on three types of VHQ videos. The results demonstrate that frequency align-

ment is necessary as both alignment methods achieved enhanced performance compared

to models with no alignment. It can also be observed that the two frequency alignment

methods achieved similar performance, with the proposed frequency selection method

performing slightly better than zero-padding. Both methods have their own advantages:

while zero-padding can increase the resolution of the spectral signals, the use of frequency

selection prevents the original signal from distortion.

Comparison of spectral representations:

This section also compares the performance obtained by two proposed spectral represen-

tations, i.e., spectral heatmap and spectral vector. Fig.6.12 shows the average results

achieved by them on three types of VHQ videos. Additionally, these results represent

the average performance of two frequency alignments. It is clear that the performance of

spectral vectors is much better compared to the performance of the spectral heatmaps,

across all five personality traits. One possible reason behind this outcome is that the

feature selection process removes a large part of less informative behaviour information
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(a) PCC results obtained by the spectral vector with different frequency alignment methods

(b) RMSE results obtained by the spectral vector with different frequency alignment meth-
ods

Figure 6.11: The results obtained by the spectral vector with different frequency alignment
methods on VHQ dataset
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(a) PCC results obtained by two spectral representations

(b) RMSE results obtained by two spectral representations

Figure 6.12: The results obtained by two spectral representations on VHQ dataset
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before feeding spectral vectors to ANNs, and thus the reduced data is more compact and

less noisy.

6.3.4 Analysis of facial behaviour primitives

This section independently evaluates the performance of each facial behaviour primitive

on each personality trait estimation individually, using the proposed spectral vector. To

do so, models were trained from the spectral vectors of each behaviour primitive, respec-

tively. Here, Here, after the feature selection, the dimension of the final feature vector

for each behaviour primitive (AU/gaze/head pose) ranges from 10 to 29. The results are

achieved on the VHQ dataset by averaging the results obtained from three interview tasks.

Please note that the reported results only indicate the relationship between automatically

detected behaviours and personality traits intensities, which may be slightly different to

the result achieved by using human annotated behaviour information. This is because

the tool (OpenFace 2.0) that used for behaviour detection is not 100% accurate and the

errors in detection may affect the personality traits analysis results.

As shown in Fig.6.13 and Fig.6.14, not only the five personality traits have com-

pletely different relationship with different facial behaviour primitives, but also each the

same apparent personality trait and self-reported personality trait are reflected by dif-

ferent facial behaviour primitives. For self-reported personality traits estimation, AU02,

AU01 and AU04 provided most important information for Extraversion trait; gaze− 1x,

pose−1z and AU01 achieved the best predictions on Agreeableness trait; AU05, AU06 and

gaze− 0x predicted best Conscientiousness trait; AU14 and AU25 contain most relevant

information for predicting Neuroticism trait; and finally, AU12, AU26 and pose− 1x gen-

erated the best predictions for Openness trait. Meanwhile, For apparent personality traits

estimation, AU04, AU09 and AU05 provided most important information for Extraver-

sion trait; AU09, AU01 and AU04 achieved the best predictions on Agreeableness trait;

AU05, AU07 and AU09 predicted best Conscientiousness trait; AU05 and AU04 contain

most relevant information for predicting Neuroticism trait; and finally, AU12, AU25 and

AU20 generated the best predictions for Openness trait. It can be observed that AU01 is
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informative to predict both types of Agreeableness trait; AU05 is informative to predict

both types of Conscientiousness trait, and AU12 is informative to predict both types of

Openness trait.

6.4 Summary

This section presents the detailed experimental settings and results achieved by the pro-

posed person-specific representation and spectral representation on both self-reported

and apparent personality traits analysis. Based on the results, it can be observed that

person-specific representation generated better results than the spectral representation in

personality traits recognition. Specifically, many factors such as the encoder pre-training

strategies, video contents and length, the size of the time window, as well as the fusion

strategy can largely affect the performance of the person-specific representation. For spec-

tral representation, the spectral vector outperforms the spectral heatmap. This can be

explained by the fact that the CNN model employed to learn spectral heatmap has the

larger number of weights than the ANN used for spectral vector, and thus the limited

training data is not enough to train a good CNN model. Another finding of this section

is that different behaviour primitives (e.g., AUs, head poses and gazes) have completely

different relationships with each personality trait.



6.4. Summary 125

(a) PCC results obtained by the spectral vector of each behaviour primitive

(b) RMSE results obtained by the spectral vector of each behaviour primitive

Figure 6.13: Personality traits estimation results obtained by spectral vector of each facial
behaviour primitive on VHQ dataset.(gaze− 0x, gaze− 0y, gaze− 0z represent the gaze
direction for left eye; gaze − 1x, gaze − 1y, gaze − 1z represent the gaze direction for
right eye; pose− Tx, pose− Ty, pose− Tz represent the location of the head; pose−Rx,
pose − Ry, pose − Rz represent the rotation of the head. Please see (Baltrusaitis et al.,
2018) for details.
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(a) PCC results obtained by the spectral vector of each behaviour primitive

(b) RMSE results obtained by the spectral vector of each behaviour primitive

Figure 6.14: Personality traits estimation results obtained by spectral vector of each facial
behaviour primitive on ChaLearn dataset.



Chapter 7

Personality-guided automatic

depression analysis

As discussed in Chapter 1, the standard clinical depression assessment methods depend-

ing on verbal questionnaires are subjective and time-consuming. Thus it is necessary to

develop automatic and objective assessment methods to aid depression monitoring and

diagnosis. As reviewed in Sec.2.6, there is convergent psychological evidence suggested

that depression is marked by non-verbal objective visual cues such as head movements,

facial displays and gaze (S. Scherer et al., 2013; Goldstein, 1964), which can be automati-

cally detected and analyzed without the intervention of clinicians. Therefore, building an

automatic system based on such cues would not only provide an objective and repeatable

evaluation but also would help alleviate key problems around cost and time requirements

(Rana et al., 2019).

While there are many approaches devoted to automatically understanding depression

status from non-verbal cues, an important factor that has not received much attention in

the affective computing field is the relationship between personality traits and depression.

As discussed in Sec.2.7, depression status is associated with personality traits (Kendler

et al., 2006, 2007; Hettema et al., 2006; Klein et al., 2011; Krueger et al., 1996; Taka-

hashi, Roberts, Yamagata, & Kijima, 2015). In short, these studies claimed that people

with certain personality traits are more likely to be affected by depression. As a result,

127
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personality traits can act as strong priors and provide valuable information in addition to

the facial behaviours for automatic depression analysis. Motivated by this, this chapter

focuses on investigating: 1. whether the personality information can help ML models to

learn better hypothesis of the depression status; 2. what are the better ways to combine

facial behaviour descriptors and personality traits information for automatic depression

severity estimation.

7.1 Novelty and contributions

Compared to previous automatic depression analysis studies that only used facial be-

haviour descriptors for prediction, this study explores several ways to combine facial

behaviour descriptors with personality traits information for automatic depression analy-

sis. Firstly, a new questionnaire-based audio-visual dataset is introduced (VHQ dataset).

This dataset consists of recordings of participants undergoing 3 interview sessions. During

each session, each participant was asked to answer a set of questions verbally based on

one of the questionnaires: PHQ-9, GAD-7, or BFI-10. Meanwhile, the interview scenario

can be one of the human face-to-face interaction, human video conference or human-to-

robot interaction scenario. The Big-Five personality traits label for each participant is

the original scores obtained by asking the participant to complete the BFI-44 question-

naire online. In this dataset, the average duration and standard deviation of duration,

for each type of videos are 221.63s and 99.69s (BFI), 145.63s and 54.14s (GAD), 201.58s

and 75.97s (PHQ), 568.9s and 97.97s (combined), respectively. The main contribution of

the thesis for this dataset is that: 1. it describes the interaction methods that are used

for the data collection; 2. it presented the statistics of the processed dataset (the final

released dataset); 3. it provides several baselines depression analysis results as well as

several personality-guided depression analysis results. To the best of author’s knowledge,

this is the first dataset that can be jointly used for the tasks of automatic personality

traits, depression and anxiety analysis.

Then, this chapter investigates three ways to combine facial behavioural descriptors

and personality descriptors (Sec.7.3.2). The experimental result shows that the feature
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level fusion of facial behaviour representation and personality traits descriptors improved

the depression severity estimation performance under most interview scenarios. To the

best of the author’s knowledge, this work presents the first study that systematically

investigates the feasibility of applying various personality traits information to vision-

based automatic depression analysis.

7.2 Datasets

VHQ dataset: This section introduces a new audio-visual database called Virtual Hu-

man Questionnaire (VHQ) database (Jaiswal, Song, & Valstar, 2019; Jaiswal, Valstar, et

al., 2019). The VHQ database consists of 165 face videos (55 videos for each session)

recorded from a total of 55 participants. This database was collected to demonstrate

the use of virtual human agents to simulate social interaction during which a user’s facial

behaviour can be analyzed. The study consisted of participants going through 3 interview

sessions. In each session, 55 participants were asked to verbally answer a set of questions

according to the following three standard questionnaires:

• Patient Health Questionnaire - 9 (PHQ-9): It is a self-administered questionnaire

used for scoring 9 DSM-IV criteria for depression. It is widely used as a tool for

monitoring the severity of depression. The range of total scores from this question-

naire varies from a minimum 0 (no depression) to a maximum 27 (severe depression).

This is detailed discussed in Sec.2.5.

• Generalised Anxiety Disorder Assessment (GAD-7): It is a self-administered ques-

tionnaire consisting of 7 items. It has been widely used as a screening tool and for

measuring the severity of generalized anxiety disorder. The range of scores from

this questionnaire varies from a minimum 0 (no anxiety) to a maximum 21 (severe

anxiety).

• Big Five Inventory (John et al., 1991): This is a self-administered questionnaire

widely used for measuring ’big-five’ personality traits that commonly used to de-

scribe personality and psyche (detailed discussed in Sec.2.1). Two versions of BFI
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Figure 7.1: Age (left) and gender (right) distribution among the participants.

were used in this study. To conduct the interviews, the BFI-10 (Rammstedt & John,

2007) consisting of only 10 items was used. This was done because the original 44

item BFI questionnaire was considered too long for the interviews. However, to train

our models, scores from the original 44 item BFI questionnaire (obtained using an

electronic form) were employed.

During each interview session, the questions were taken verbatim from one of the above

questionnaires. The interview sessions were conducted in one of three interaction modes: a

real human interviewer sitting directly in front of the participant, a real human conducting

interview over a video-conferencing link or a virtual human agent interviewer implemented

based on the ARIA-VALUSPA Platform (Jaiswal, Valstar, et al., 2019). The purpose of

these settings was to analyze the effect of different interaction modes on the participants’

answers. The scores from the self-administered questionnaires were used as ground-truth

labels for training and evaluation of models. The distribution of participants’ age, gender

and depression severity of this dataset are displayed in Fig. 7.1 and Fig. 7.2.

7.3 Methodology

This section explains the facial behaviour descriptors, personality descriptors, fusion

strategies, feature selection methods and depression estimation models used for the study.
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Figure 7.2: Depression (left) and anxiety (right) severity distribution among participants,
according to PHQ-9 and GAD-7 scores respectively. For depression, the PHQ-9 scores
were grouped into none (0-4), mild (5-9), moderate (10-14) and moderately severe (15-
19) category. For anxiety, the GAD-7 scores were grouped into minimal (0-4), mild (5-9),
moderate (10-14) and severe (15-21) category.

7.3.1 Non-verbal expressive facial behavioral descriptors

In this study, three video-level baseline facial descriptors are extracted from each video

to provide facial behaviour information, including the proposed spectral vectors, spectral

heatmaps and the person-specific representations. Here, only the automatically detected

facial behaviour primitives (AUs, head poses and gazes) were used as the per-frame de-

scriptor to produce the spectral vectors and spectral heatmaps, as they has much lower

dimensions than the per-frame latent descriptor produced by DFNNs (According to ex-

perimental results, the spectral representations of facial behaviour primitives performed

much better than spectral representations of the latent descriptor in both personality and

depression analysis tasks.)

• Spectral vectors: Based on the process introduced in 5, the raw spectral vector of

length 29×128 (29 facial behaviour primitives and 128 frequencies) for each subject

is a 1-D vector obtained from multi-channel time-series signals consisting of 29

behaviour primitives. The final spectral vector (usually less than 100 components)

is produced by applying CFS to the raw spectral vector, in order to reduce its

dimensionality.
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Figure 7.3: The network architecture for training-level fusion. This fusion strategy is
achieved in a multi-task learning manner.

• Spectral heatmaps: Based on the process introduced in 5, the final produced

spectral heatmap for each subject contains two matrices of size 29 × 128 (29 fa-

cial behaviour primitives and 128 frequencies), representing amplitude and phase

information, which are obtained from 29 × n multi-channel behaviour primitives

time-series signals.

• Person-specific representations: Based on the process introduced in 4.3.2, this

section also employs the personal video of each individual to train a set of PALs,

whose weights and bias are then concatenated as a 1984-D person-specific behaviour

descriptor for each person. The final person-specific vector (usually less than 50

components) is produced by applying CFS to the raw person-specific vector, in

order to reduce its dimensionality.

7.3.2 Personality descriptors and fusion strategy

This section presents three ways of incorporating personality descriptors as the additional

information to facial behaviour descriptors for automatic depression severity estimation.

• Training-level fusion: Firstly, the personality labels are employed to guide the

depression severity estimation model’s training. This can be achieved by adding

five extra neurons in the output layer, paired with the big five personality traits

(extraversion, conscientiousness, agreeableness, neuroticism and openness) labels

during the training. This way, the model learns personality-related information

in addition to the depression feature in a multi-task learning manner (shown in
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Fig.7.3). Besides, this section also investigates the impact of each personality trait

individually, by adding only a single extra output neuron in addition to the depres-

sion severity output during the training, which paired with each personality trait

label, respectively.

• Feature-level fusion with personality annotations: The personality descrip-

tor was represented in the form of scores corresponding to the big five personality

traits labels obtained from the BFI-44 questionnaire. The resulting five dimensional

personality feature vector was then combined with the facial behavioural descriptor

obtained from video data, as the final descriptor.

• Feature-level fusion with personality predictions: The personality descriptor

were represented in the form of scores corresponding to the big five personality

trait predictions generated by the best system (please see Sec.7.4.2), which was

concatenated with the facial behavioural descriptor obtained from video data, as

the final descriptor.

7.3.3 Feature selection and normalization

The two feature-level fusion strategies would result in the high dimensionality of the

combined descriptor (much higher compared to the amount of training data, i.e., in this

chapter only 54 training examples, and the dimensions of original feature sets are usually

more than 500). This may lead to models’ overfitting. To avoid this, Correlation-based

Feature Selection (CFS) (M. A. Hall, 1999) is again introduced to reduce the dimensional-

ity, which selects a subset of features that are most relevant for our task, where Pearson’s

linear correlation coefficient is employed to measure the correlations. Then, each selected

feature X was normalized by computing its Z-score given by the following equation:

Z =
X − µ
σ

(7.1)

where µ and σ represents the mean and standard deviation of the feature values from the

corresponding dimension, over the entire training data.
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7.3.4 Depression analysis model

To train regression models for depression severity (PHQ-9 scores) estimation, the ANN

architecture described in Sec.4.3.2 has also been employed here to process behavioural

and personality descriptors. The utilised ANN architecture consists of four hidden layers

and an output layer that yields the estimated depression severity. Here, for the training

level fusion setting (Sec.7.3.2), the output layer has either six or two neurons during

the training, where five or one of them paired with either big five personality traits

annotations or one of them. Meanwhile, the other output neuron corresponds to the

depression severity. Same to the settings described in Sec.4.3.2, dropout with probability

0.5 and ReLU activation are attached at each hidden layer. MSE is employed as the

loss function for training and RMSProp gradient descent method is used as the training

method.

7.4 Experimental Settings

7.4.1 Implementation details

Datasets: As described in Sec.7.2, the VHQ database contains both personality traits

and depression severity annotations for each individual, and thus it is suitable to the

purpose of this Chapter, i.e. applying personality information to automatic depression

analysis.

Pre-processing and training detalis: Following the same settings described in

Sec. 6.2, this section also employed the OpenFace 2.0 toolkit to obtain aligned face images

and facial behaviour primitives (e.g., AUs, gaze directions, and head poses). Meanwhile,

all training settings of ANN models are the same to the settings described in Sec. 6.2.4,

i.e., this thesis conducts leave-one-subject-out cross-validation on VHQ dataset. When

implementing the training-level fusion (multi-task learning), both corresponding depres-

sion severity and personality traits labels were used to compute the loss.

Evaluation Metrics: In this study, RMSE, PCC and CCC measurements intro-

duced in Sec.6.2.5 were also employed to evaluate the depression severity estimation per-
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formance. In addition, mean absolute error (MAE) is also utilised, which is defined as

MAE =
1

n

n∑
i=1

|fi − yi| (7.2)

where fi is the predicted depression severity and yi is the corresponding ground-truth.

7.4.2 Experiments

To systematically investigate the feasibility of applying personality information to auto-

matic depression analysis, a series of experiments have been conducted.

• Firstly, the proposed three baseline representations, e.g., spectral vectors, spectral

heatmaps and person-specific representations were produced to generate baseline

results, where spectral vectors and person-specific representations were processed

by the CFS and then fed to ANN models. Meanwhile, spectral heatmaps were

processed by 1-D CNN (introduced in Sec.5.5) models. In these experiments, only

facial behaviour dynamic representations were used to predict depression levels.

• Secondly, systems of the training-level fusion (multi-task learning) were compared on

the VHQ dataset. Six systems were evaluated, including the five multi-task learning

systems each of which learn the depression severity and a personality trait intensity,

respectively, as well as multi-task learning of the depression severity and all five

personality traits intensities. In the test phase, only the outputs corresponding to

the depression severity are used to predict depression levels.

• Thirdly, systems of feature-level fusion with personality labels were conducted and

evaluated on the VHQ dataset. Firstly, each personality trait label was attached

to the facial behaviour descriptor to construct the behaviour-personality descriptor,

respectively, which is then fed to ANN for the depression severity estimation task.

After that, this section also adds annotations of all five personality traits to the be-

haviour descriptor to construct the behaviour-personality descriptor for depression

severity estimation.
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• Finally, representations were produced and evaluated on the VHQ dataset under

the feature-level fusion with the personality predictions setting (Sec.7.3.2). This

experiment firstly attaches each personality trait prediction to the facial behaviour

descriptor to construct the behaviour-personality descriptor for depression sever-

ity estimation, respectively. Then, five personality traits predictions were jointly

attached to the behaviour descriptor for depression severity estimation.

7.5 Results and discussions

7.5.1 Facial behaviour descriptor VS behaviour-personality de-

scriptor

This section specifically evaluates both advantages and disadvantages of the proposed

fusion strategies and compares them against the baselines. All the reported results are

the average results over three interview tasks of the VHQ dataset.

Baselines: Table.7.1 compared the average results yielded by three baselines, where

the spectral vector achieved the best performance, and person-specific representations

outperformed the spectral heatmap. A potential reason for the spectral heatmap’s poor

performance can be explained as the limited number of training data (54), which is not

enough to train a good CNN model, i.e., the CNN model is underfitting. Since the

spectral vectors and person-specific representations are 1-D vectors and processed by

feature selection, their dimensions are much smaller than spectral maps. As a result, they

can be learned by ANNs with fewer parameters that are needed to be optimized. However,

while person-specific representations only encodes a single scale of short-term dynamics,

the spectral vector encodes multiple-scale dynamics of facial behaviour primitives, which

can be the reason for the best depression analysis performance achieved by the spectral

vector baseline.

Training-level fusion: Fig.7.4 compared the results achieved by two baselines

(spectral vector and person-specific representations) against their corresponding training-

level fusion systems (multi-task learning). It can be observed that multitask learning
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Descriptor MAE RMSE PCC
Spectral Heatmap 3.79 4.75 0.09

Spectral vector 3.13 4.19 0.37
Person-specific 3.29 4.38 0.21

Table 7.1: The average results of leave-one-subject-out cross-validation achieved by three
baselines on three tasks of VHQ dataset

depression severity and personality traits generally yielded worse depression severity esti-

mation performance. In particular, all spectral vector-based training-level fusion systems

could not achieve a comparable result to the baseline. Meanwhile, for person-specific

representations-based systems, only multitask learning depression with neuroticism trait

achieved a slightly better result than the baseline. These results indicate that using a

simple ANN to multitask learn personality information is not a superior way to learn

better depression models.

Feature-level fusion: Fig.7.5 and Fig.7.6 compared the results achieved by spectral

vector and person-specific behaviour representations against their corresponding behaviour-

personality descriptors, i.e., feature-level fusion of behaviour descriptor and personality

labels/predictions, where the personality predictions were obtained from the best systems

presented in Sec.6.3.1. As we can see from Fig.7.5, when individually adding a label or

prediction of agreeableness, conscientiousness or openness trait as an additional descriptor

to spectral vectors, the produced results are the same to the baseline. This is because the

attached 1-D personality features have not made any difference in the feature selection

process, i.e., they haven’t been selected during this process. In other words, the final

selected feature sets of these three settings are exactly the same to the feature set selected

from baselines. Meanwhile, the extraversion and neuroticism traits’ labels/predictions

either slightly enhanced or degraded the baseline performance. Importantly, when com-

bining all five personality traits’ labels/predictions, the depression severity performance

has been increased dramatically.

Meanwhile, according to Fig.7.6(a), individually adding the label or prediction of

extraversion, agreeableness, conscientiousness or openness as the additional descriptor to
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(a) PCC results

(b) RMSE results

Figure 7.4: The average results achieved by training-level fusion strategies on three tasks
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(a) PCC results

(b) RMSE results

Figure 7.5: The average results achieved by feature-level fusion strategies on three tasks
using spectral vectors
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person-specific behaviour descriptors yielded the same result to the baseline result due

to the same reason explained above. In contrast to the spectral vector, adding neuroti-

cism traits’ labels/predictions slightly enhanced the person-specific representation baseline

performance. Again, when combining all five personality traits’ labels/predictions, the

depression severity estimation performance has been enhanced.

In summary, both personality traits predictions that have been automatically de-

tected using the proposed approaches, and personality traits labels, can positively impact

depression severity estimation performance under some tested conditions, indicating that

personality traits can provide useful clues in addition to the facial behaviour descriptors

for inferring depression levels. However, using personality traits as additional targets for

multitask learning ANNs may not be an efficient way to fuse personality and behaviour

information for depression analysis.

7.5.2 Interactive Behaviour Studies

Analysis of facial behaviour primitives

This section independently evaluates the performance of each facial behaviour primitive

on depression severity estimation. To do so, models were trained and tested using the

spectral vectors of each behaviour primitive, respectively.

As shown in Fig.7.7, individually using spectral vectors of gaze-0y, AU09, and AU45

intensities achieved decent estimation performance, where PCC results are over 0.2, and

RMSE results are less than 4.5. Particularly, gaze-0y yielded the best result among 29

behaviour primitives, with PCC more than 0.25 and RMSE less than 4.4. The predic-

tions obtained from the rest head poses and gaze directions have lower correlations with

the ground-truth, as four features corresponding to these ranked at the bottom part of

both CCC and RMSE. Besides, this section also reports the performance of each human

behaviour primitive on depression severity estimation achieved in AVEC 2013 dataset.

According to Fig.7.8, it is clear that AU15, AU17, AU12, AU04 and AU09 intensities

achieved the best performance, where AU15 generated the best result among all behaviour

primitives, with PCC of more than 0.65. Apparently, the evaluations on two datasets re-
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(a) PCC results

(b) RMSE results

Figure 7.6: The average results achieved by feature-level fusion strategies on three tasks
using person-specific representations
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sulted in different conclusions in terms of the most informative behaviour primitives on

depression severity estimation, except that both evaluations showed that most head poses

and gaze directions behaviours are less informative to depression, as they achieved low

PCC and high RMSE results on both datasets. The different results in most informative

behaviour primitives may be due to that: 1. the tasks and scenarios are entirely different

in two datasets; 2. their labels were recorded by different questionnaires, which may lead

them not to measure the same aspect of depression.

Task contents

Since the differences in task contents resulted in differences in personality traits predic-

tion performance, this section also investigates the influence of different interview tasks

on depression severity estimation using baselines and two feature-level fusion conditions.

As illustrated in Fig.7.9, it is clear that the depression severity estimation results var-

ied a lot when using videos from different interview tasks. Here, only the best result

achieved by each condition is reported (all results were achieved using spectral vectors).

In VHQ dataset, the GAD-7 questionnaire-based interview task seems triggered the most

depression-informative behaviours, with PCC of 0.49, 0.36, 0.59 under three conditions,

while the BFI-10 questionnaire-based interviews produced the worst prediction perfor-

mance, with PCC of 0.24, 0.23, 0.34, respectively, for depression severity estimation.

These large differences indicate that the task contents have great impacts on depres-

sion analysis performance. This is because different tasks triggered different behaviour

responses in people’s faces. Meanwhile, the feature-level fusion with personality traits

labels generated the best depression analysis performance with PCC of 0.59 on GAD-7

task, showing that combining behaviour descriptors with self-reported personality traits

information can increase the upper-bound of the depression severity estimation applica-

tion.
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(a) PCC results obtained by the spectral vector of each behaviour

(b) RMSE results obtained by the spectral vector of each behaviour

Figure 7.7: Depression severity estimation results obtained by spectral vector of each
facial behaviour primitive, on VHQ dataset. gaze−0x, gaze−0y, gaze−0z represent the
gaze direction for left eye; gaze−1x, gaze−1y, gaze−1z represent the gaze direction for
right eye; pose− Tx, pose− Ty, pose− Tz represent the location of the head; pose−Rx,
pose − Ry, pose − Rz represent the rotation of the head. Please see (Baltrusaitis et al.,
2018) for details.
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(a) PCC results obtained by the spectral vector of each behaviour

(b) RMSE results obtained by the spectral vector of each behaviour

Figure 7.8: Depression severity estimation results obtained by spectral vector of each
facial behaviour primitive, on AVEC 2013 dataset.
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(a) PCC results

(b) RMSE results

Figure 7.9: Best results obtained from three tasks using different fusion strategies
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7.6 Summary

This section introduces a new audio-visual dataset that can be used for automatic person-

ality, depression and anxiety analysis studies, based on which it investigates how to use

personality information for depression severity estimation. Differing from most existing

approaches that only used behavioural descriptors to predict depression severity, this sec-

tion focuses on exploiting the underlying relationship between depression and personality

traits. In particular, several standard ways that combine behavioural descriptors and

personality information are evaluated for automatic depression severity estimation. The

results show that even simply concatenating behavioural descriptors with self-reported

personality traits or personality traits predictions can improve the depression severity

estimation performance. This finding is consistent with previous biological and psycho-

logical studies(Summarized in Sec. 2.7) that depression is well associated with one’s

personality traits. The main limitation of this Chapter is that only several standard fu-

sion methods were investigated. In other words, superior results may be achieved if more

advanced methods are extended to combine behavioural and personality information.



Chapter 8

Conclusions and future work

This chapter summarizes the proposed person-specific adaptation approach and spectral

analysis approach, making conclusions based on the obtained video-based automatic per-

sonality and depression analysis results. Besides, this section also discusses the limitations

of the proposed approaches and gives directions for the future work.

8.1 Person-specific facial dynamics modelling

The personality traits primarily focus on evaluating the aspects of personality, which are

relatively stable over time but differ across individuals (Kassin, 2003). Thus, this thesis

first proposed a person-specific adaptation approach to encode person-specific video-level

facial dynamic descriptors for automatic personality traits estimation. The person-specific

approach builds on the assumption of a sequence dynamic encoding approach: dynamic

image algorithm (Bilen et al., 2017). To evaluate the capability of such approach on facial

dynamics modelling, this thesis extended the dynamic image algorithm to the face domain

with facial shape information (facial landmarks), allowing a single raster image to encode

short-term temporal evolution from a face image sequence. The main advantage of this

approach is that it encodes facial dynamics in the context of the face, and the produced

DFR is length-independent.

Since dynamic facial representations achieved better performance than static face

images on dimensional affect estimation. This thesis further proposed to self-supervised

147
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learning a similar dynamic representation that also aims to infer short-term facial dy-

namics but from a single face image. In particular, this thesis proposed a Rank Loss

allowing networks to learn generic facial dynamics from unlabelled face videos. As a

result, the well-trained generic network (DFNN) can infer a DR from any previously un-

seen test image, which effectively summarizes the facial dynamics surround it. Based

on this self-supervised learning approach, the person-specific adaptation approach starts

with pre-training an emotion-guided encoder, and then employed the rank loss to train

generic network in a self-supervised manner, which learns generic short-term facial dy-

namics from a set of unlabelled face videos. The generic model is then frozen, and a set of

intermediate filters are incorporated into this architecture. The proposed self-supervised

learning is then resumed with only person-specific videos. This way, the learned filters’

weights will be person-specific, making them a valuable source of person-specific dynamic

modelling. Finally, the weights of the learned filters are concatenated as a person-specific

representation, which can be directly used to predict the personality/depression status

without needing other parts of the network.

The experiments were first conducted to evaluate the dynamic encoding abilities of

the proposed approach. In particular, the dynamic representations generated by sequence-

based approach and the self-supervised learned generic net were tested on frame ranking

task and dimensional affect estimation task, whose results suggest the following conclu-

sions: 1. the DFNN trained with the proposed rank loss function generalizes better

ranking ability to unseen face images than models trained with reconstruction loss using

pre-defined representations, demonstrating the ability of the proposed still image-based

self-supervised learning approach can properly learn facial dynamics without the need of

human annotations; 2. the DFR generated by RankSVM and multi-scale DR generated

by DFNN can effectively encode spatio-temporal facial patterns, as both of them achieved

better dimensional affect estimation results than only using static images as the input;

3. The time-window of the frames used for training decides the temporal scale of learned

dynamics. The results indicate that dynamics at each scale can provide some useful

and unique information for valence and arousal estimation. This was evident from the
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results where the fusion of multi-scale temporal dynamics provided better performance

than single-scale models.

Meanwhile, the experiments were also conducted on automatic self-reported/apparent

personality traits estimation tasks to evaluate the impacts of different settings on the pro-

posed person-specific approach. The results suggested that: 1. While the conducted ex-

periments kept the initial learning rate of the DFNN’s encoder during the self-supervised

training, the emotion guided pre-training still enhanced the automatic personality traits

prediction performance. The hypothesis is that the pre-training may provide good initial

weights for the encoder; 2. facial behaviours triggered by different tasks may have consid-

erable impact on the performance of personality prediction models; 3. longer videos that

contain more tasks, can force PALs to learn behaviour patterns which occur frequently

under different conditions i.e., patterns stable over time are indicative of personality; 4.

facial dynamics at each scale can provide some useful and unique information regarding

personality. This was evident from the results where the fusion of multi-scale temporal

dynamics provided better performance than single-scale models; 5. person-specific ap-

proach achieved similar apparent personality traits estimation performance to the current

state-of-the-art on the Chalearn dataset, and the state-of-the-art self-reported personality

traits estimation result on the VHQ dataset.

Limitations: In this thesis, person-specific facial dynamics are represented by the

unique weights and biases of PALs. However, there are several limitations of this approach:

1. the differences in weights and biases of only a set of intermediate layers may not be

enough to represent the differences in people’s facial behaviours; 2. the proposed approach

can only encode short-term facial dynamics as the frame ranking performance degrades

heavily when the time-window is longer than 1 s, i.e., it lacks the ability to encode long-

term facial dynamics; 3. it requires training a set of intermediate layers for each test video

at the inference stage, which is very time-consuming; 4. the UNet used in this thesis may

not the optimum network for personality/depression analysis tasks; 5. this thesis only

evaluated the person-specific representation of facial behaviours, while other modalities,

e.g. audio, body poses, EEG, etc. may also informative to personality/depression analysis;
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6. there is a lack of publicity available large-scale audio-visual self-reported personality

datasets, which restrict the application of deep learning approaches in this field.

8.2 Multi-scale facial dynamics modelling

The spectral approach is proposed to encode multi-scale long-term facial dynamics. It

firstly employs Fourier Transform to convert multi-channel time-series signals (produced

by multiple per-frame facial behaviour primitives) to the frequency domain as spectral

signals. Each spectral component encodes a unique scale of dynamic (frequency) infor-

mation of the entire video. As a result, the produced spectral signals contain multi-scale

video-level facial temporal information of multiple behaviour primitives. However, due to

the variation in original videos’ length, their corresponding spectral signals’ sizes are also

different. Then, two frequency alignment methods were proposed to deal with such prob-

lems and generate two length-independent spectral representations, i.e., spectral heatmap

and spectral vector, which encode multi-scale video-level temporal information, and can

be easily learned by CNNs or ANNs.

This approach was applied to the task of automatic personality traits estimation.

In the thesis, three measurements: PCC, RMSE and ACC, were used to evaluate the

personality recognition performance. Although only ACC was widely used in previous

related studies, the additional usage of PCC and RMSE can evaluate not only the errors

but also the correlation between predictions and ground-truth. The generated results

indicate the following conclusions: 1. The spectral approach can significantly reduce

the dimension of the original time-series data while retaining most information; 2. each

personality trait is associated with a unique set of behaviour primitives, where AU02,

AU01 and AU04 provided most important information for the Extraversion trait; gaze−

1x, pose− 1z and AU01 achieved the best predictions on the Agreeableness trait; AU05,

AU06 and gaze− 0x predicted the best Conscientiousness trait; AU14 and AU25 contain

most relevant information for predicting Neuroticism trait; and finally, AU12, AU26 and

pose−1x generated the best predictions for Openness trait; 3. The proposed two frequency

alignment methods achieved similar results while the spectral vector showed superior
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performance than spectral heatmap for personality tratis analysis; 4. The person-specific

representation produced better performance than the spectral vector in the automatic

personality traits estimation task. The underlying reason can be explained that person-

specific representation specifically encodes personalized dynamics that stable over time

for the given person but different from others, which has not been considered in spectral

vector. 5. The combination of spectral vector and person-specific representation achieved

the best results than using either of them, showing that both multi-scale facial dynamics

and person-specific short-term facial dynamics encoded in the proposed two approaches

contain unique information that is informative to personality traits estimation.

Limitations: While experiments showed that the spectral approach can significantly

reduce the dimension of the original data and retain most information, a limitation of this

approach is that it requires manual selection of the settings and heavy pre-processing.

Meanwhile, the spectral approach only used the automatically detected AUs, gaze and

head pose as the frame-level facial representation, ignoring some other useful information

(e.g., microexpressions, speech, etc.). In addition, this approach may still discard some

useful dynamics (frequencies) during the frequency alignment process. Finally, the per-

formance of using CNN to train from spectral heatmaps can be potentially improved if

more training data is available, i.e., the lack of data problems prevents training a good

deep model.

8.3 Personality-guided depression analysis

Chapter .7 investigated several ways of applying personality traits information to de-

pression analysis. This Chapter combines video-level behaviour descriptors (spectral rep-

resentations and person-specific representations) with different self-reported personality

traits descriptors, including training-level fusion (multi-task learning personality traits

and depression levels), feature-level fusion with personality traits labels, and feature-level

fusion with personality traits predictions. The experiment results showed that: 1. the

spectral vector baseline generated superior results than the person-specific representa-

tion in the automatic depression severity estimation task. This can be explained by that
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only personalized dynamics may not carry enough information for depression analysis, as

depressed individuals can show some similar generic behaviours, e.g., lack of facial expres-

sions. Therefore, spectral vectors that encode both generic and personalized multi-scale

facial dynamics, can provide more valuable clues; 2. the most informative facial be-

haviour primitives on depression severity estimation can be different on different datasets

but AU09 showed decent results on both datasets; 3. multi-task learning personality

traits and depression using simple ANN model may not be a proper way to enhance the

depression severity estimation performance; 4. the feature-level fusion of personality and

behaviour descriptors provided clear improvements in the depression severity estimation

performance, indicating that the personality information can indeed help the automatic

depression analysis from the perspective of affective computing; 5. both personality traits

labels and predictions can improve the depression analysis performance, where the labels-

based fusion generated even better results. This is because the personality predictions

are not 100% accurate, and their errors may further negatively impact the depression

analysis.

Limitations: While the experimental results showed that personality information

can help the automatic depression analysis, this thesis only evaluated several basic fu-

sion strategies. Meanwhile, the VHQ dataset only contains a limited number of valid

subjects (55) and the dimensions of the final feature vectors used in experiments of this

thesis are relatively large (more than 15). Thus, the models’ training may suffer from the

curse of dimensionality. Thus, the models’ training may suffer from the curse of dimen-

sionality. Specifically, the CFS used in the thesis may not be the best choice to reduce

the dimensions of the person-specific representation and the spectral representation. We

assume that there is a potential to further improve their performance if other proper di-

mensionality reduction approaches are employed, such as other feature selection methods

or proper Principal component analysis (PCA) methods. In Chapter 7, only depression

severity estimation studies were conducted. However, in some real-world applications,

a binary prediction (depressed or not) and a categorical prediction (minimal depressive

symptoms, mild depressive symptoms, moderate depressive symptoms and severe depres-
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sive symptoms) may also useful.

8.4 Future work

According to the limitations summarized above, the correlation and error between per-

sonality/depression predictions and ground-truth are not optimal. To further improve

the performance, one main future direction is to address the drawbacks of the proposed

person-specific approach and spectral approach. For person-specific approach, the future

work will focus on: 1. using a unique network that has a unique typology and weights to

better represent one’s complex person-specific behaviours, and finding good target func-

tions to encode long-term facial behavioural patterns; 2. combining the current work with

audio-visual and verbal information to predict personality, i.e., investigating the optimum

network structure for jointly learning the personality traits from audio-visual and verbal

signals in a self-supervised manner. Regarding the spectral approach, one potential fu-

ture work will be building a spectral pooling method inserted to CNNs for end-to-end

training, allowing super long and variable length time-series signals to be directly fed to

CNN models, i.e., multimodal audio-visual data (or even other data such as EEG) can

be learned in an end-to-end manner. Another future work will be devoted to improving

the frequency alignment algorithm, avoiding the important frequency information being

lost during the frequency alignment process. Finally, in terms of the personality-guided

depression analysis, a potential research direction is to apply and extend more advanced

fusion algorithms such as attention mechanisms for the better fusion of behaviour and per-

sonality descriptor. In addition, for both approaches, this thesis only employed CFS to

reduce the dimensionality of the spectral/person-specific features. It can be assumed that

introducing more advanced dimensionality reduction algorithms would further improve

the performance.

Besides improving the proposed approaches themselves, the future work also aims

to extend the current VHQ dataset with: 1. more subjects; 2. more recordings for each

participant; 3. data recorded from multiple sensors (audio, video and physiological signals

such as skin conductance, heart rate, etc.); 4. more scenarios. It can be expected that an
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enhanced dataset is collected, the curse of dimensionality issue of the proposed approach

can be better addressed. Moreover, with more modalities and more data, well-trained

models could have stronger generalization capability.

Finally, this thesis only applied the proposed approaches to personality/depression

intensities estimation. However, in some real-world applications, binary predictions or

categorical predictions may be more useful. Thus, from the perspective of application,

future work can be devoted to: 1. applying the proposed approaches to generate binary

or categorical predictions; 2. applying the proposed approaches to analyze other human

internal states such as anxiety, state of the mind, etc.
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Borkenau, P., Brecke, S., Möttig, C., & Paelecke, M. (2009). Extraversion is accurately

perceived after a 50-ms exposure to a face. Journal of Research in Personality ,

43 (4), 703–706.

Borkenau, P., & Liebler, A. (1992). Trait inferences: Sources of validity at zero acquain-

tance. Journal of personality and social psychology , 62 (4), 645.

Botwin, M. D., & Buss, D. M. (1989). Structure of act-report data: Is the five-factor

model of personality recaptured? Journal of Personality and social Psychology ,

56 (6), 988.

Brook, J. S., Brook, D. W., De La Rosa, M., Whiteman, M., Johnson, E., & Montoya,



References 158

I. (2001). Adolescent illegal drug use: The impact of personality, family, and

environmental factors. Journal of behavioral medicine, 24 (2), 183–203.

Brozgold, A. Z., Borod, J. C., Martin, C. C., Pick, L. H., Alpert, M., & Welkowitz,

J. (1998). Social functioning and facial emotional expression in neurological and

psychiatric disorders. Applied Neuropsychology , 5 (1), 15–23.

Cafaro, A., Wagner, J., Baur, T., Dermouche, S., Torres Torres, M., Pelachaud, C., . . .

Valstar, M. (2017). The noxi database: multimodal recordings of mediated novice-

expert interactions. In Proceedings of the 19th acm international conference on

multimodal interaction (pp. 350–359).

Calder, A. J., Ewbank, M., & Passamonti, L. (2011). Personality influences the neural

responses to viewing facial expressions of emotion. Philosophical Transactions of

the Royal Society B: Biological Sciences , 366 (1571), 1684–1701.

Carroll, J. M., & Russell, J. A. (1996). Do facial expressions signal specific emotions?

judging emotion from the face in context. Journal of personality and social psychol-

ogy , 70 (2), 205.

Cavallera, G., Passerini, A., & Pepe, A. (2013). Personality and gender in swimmers in

indoor practice at leisure level. Social Behaviour and Personality , 41 , 693–704.

Celiktutan, O., Eyben, F., Sariyanidi, E., Gunes, H., & Schuller, B. (2014). Maptraits

2014-the first audio/visual mapping personality traits challenge-an introduction:

Perceived personality and social dimensions. In Proceedings of the 16th international

conference on multimodal interaction (pp. 529–530).

Celiktutan, O., & Gunes, H. (2014). Continuous prediction of perceived traits and social

dimensions in space and time. In Image processing (icip), 2014 ieee international

conference on (pp. 4196–4200).

Celiktutan, O., & Gunes, H. (2015). Computational analysis of human-robot interactions

through first-person vision: Personality and interaction experience. In Robot and hu-

man interactive communication (ro-man), 2015 24th ieee international symposium

on (pp. 815–820).

Celiktutan, O., Sariyanidi, E., & Gunes, H. (2015). Let me tell you about your per-



References 159

sonality!†: Real-time personality prediction from nonverbal behavioural cues. In

Automatic face and gesture recognition (fg), 2015 11th ieee international conference

and workshops on (Vol. 1, pp. 1–1).

Celiktutan, O., Skordos, E., & Gunes, H. (2017). Multimodal human-human-robot inter-

actions (mhhri) dataset for studying personality and engagement. IEEE Transac-

tions on Affective Computing , 10 (4), 484–497.

Celli, F., Bruni, E., & Lepri, B. (2014). Automatic personality and interaction style recog-

nition from facebook profile pictures. In Proceedings of the 22nd acm international

conference on multimedia (pp. 1101–1104).

Chen, J., Chen, Z., Chi, Z., & Fu, H. (2018). Facial expression recognition in video with

multiple feature fusion. IEEE Transactions on Affective Computing , 9 (1), 38–50.

Chentsova-Dutton, Y. E., Tsai, J. L., & Gotlib, I. H. (2010). Further evidence for the

cultural norm hypothesis: Positive emotion in depressed and control european amer-

ican and asian american women. Cultural Diversity and Ethnic Minority Psychology ,

16 (2), 284.

Chioqueta, A. P., & Stiles, T. C. (2005). Personality traits and the development of de-

pression, hopelessness, and suicide ideation. Personality and individual differences ,

38 (6), 1283–1291.
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Dibeklioğlu, H., Hammal, Z., & Cohn, J. F. (2018). Dynamic multimodal measurement of

depression severity using deep autoencoding. IEEE journal of biomedical and health

informatics , 22 (2), 525–536.

Diederik P. Kingma, J. B. (2015). Adam: A method for stochastic optimization. In Int’l

conference for learning representations (iclr).

Digman, J. M. (1989). Five robust trait dimensions: Development, stability, and utility.

Journal of personality , 57 (2), 195–214.

Digman, J. M. (1990). Personality structure: Emergence of the five-factor model. Annual

review of psychology , 41 (1), 417–440.

Digman, J. M., & Inouye, J. (1986). Further specification of the five robust factors of

personality. Journal of personality and social psychology , 50 (1), 116.

Digman, J. M., & Takemoto-Chock, N. K. (1981). Factors in the natural language

of personality: Re-analysis, comparison, and interpretation of six major studies.

Multivariate behavioral research, 16 (2), 149–170.

Douglas-Cowie, E., Cowie, R., Cox, C., Amir, N., & Heylen, D. (2008). The sensitive

artificial listener: an induction technique for generating emotionally coloured con-

versation. In Lrec workshop on corpora for research on emotion and affect (pp.

1–4).



References 162

Duta, I. C., Ionescu, B., Aizawa, K., & Sebe, N. (2017). Spatio-temporal vlad encoding

for human action recognition in videos. In International conference on multimedia

modeling (pp. 365–378).

Edgar, C., McRorie, M., & Sneddon, I. (2012). Emotional intelligence, personality and

the decoding of non-verbal expressions of emotion. Personality and Individual Dif-

ferences , 52 (3), 295–300.

Edition, F., Association, A. P., et al. (1994). Diagnostic and statistical manual of mental

disorders. Washington, American Psychological Association.

Egede, J., Valstar, M., & Martinez, B. (2017). Fusing deep learned and hand-crafted

features of appearance, shape, and dynamics for automatic pain estimation. In Au-

tomatic face & gesture recognition (fg 2017), 2017 12th ieee international conference

on (pp. 689–696).

Egede, J. O., Song, S., Olugbade, T. A., Wang, C., Williams, A., Meng, H., . . . Bianchi-

Berthouze, N. (2020). Emopain challenge 2020: Multimodal pain evaluation from

facial and bodily expressions.

Eisenberg, N., Miller, P. A., Schaller, M., Fabes, R. A., Fultz, J., Shell, R., & Shea,

C. L. (1989). The role of sympathy and altruistic personality traits in helping: A

reexamination. Journal of Personality , 57 (1), 41–67.

Ekman, & Paul. (1993). Facial expression and emotion. American Psychologist , 48 (4),

384-392.

Ekman, P. (1976). Pictures of facial affect. Consulting Psychologists Press .

Ekman, P. (1989). The argument and evidence about universals in facial expressions.

Handbook of social psychophysiology , 143–164.

Ekman, P. (1992a). An argument for basic emotions. Cognition & emotion, 6 (3-4),

169–200.

Ekman, P. (1992b). Facial expressions of emotion: New findings, new questions. SAGE

Publications Sage CA: Los Angeles, CA.

Ekman, P., & Friesen, W. V. (1977). Facial action coding system.

Ellgring, H. (2007). Non-verbal communication in depression. Cambridge University



References 163

Press.

Escalante, H. J., Kaya, H., Salah, A. A., Escalera, S., Gucluturk, Y., Guclu, U., . . .

others (2018). Explaining first impressions: modeling, recognizing, and explaining

apparent personality from videos. arXiv preprint arXiv:1802.00745 .

Essa, I. A., & Pentland, A. P. (2002). Coding, analysis, interpretation, and recognition of

facial expressions. IEEE Transactions on Pattern Analysis & Machine Intelligence,

19 (7), 757-763.

Eysenck, H. J., & Eysenck, S. (1965). The eysenck personality inventory.

Eysenck, H. J., & Furnham, A. (1993). Personality and the barron-welsh art scale.

Perceptual and Motor Skills , 76 (3), 837–838.

Fang, S., Achard, C., & Dubuisson, S. (2016). Personality classification and behaviour

interpretation: An approach based on feature categories. In Proceedings of the 18th

acm international conference on multimodal interaction (pp. 225–232).

Farkas, L. G., & Munro, I. R. (1987). Anthropometric facial proportions in medicine.

Charles C Thomas Pub Limited.

Feichtenhofer, C., Fan, H., Malik, J., & He, K. (2019). Slowfast networks for video

recognition. In Proceedings of the ieee/cvf international conference on computer

vision (pp. 6202–6211).

Ferwerda, B., Schedl, M., & Tkalcic, M. (2016). Using instagram picture features to

predict users’ personality. In International conference on multimedia modeling (pp.

850–861).

Fisch, H.-U., Frey, S., & Hirsbrunner, H.-P. (1983). Analyzing nonverbal behavior in

depression. Journal of abnormal psychology , 92 (3), 307.

Fiske, D. W. (1949). Consistency of the factorial structures of personality ratings from

different sources. The Journal of Abnormal and Social Psychology , 44 (3), 329.

Fleeson, W. (2001). Toward a structure-and process-integrated view of personality: Traits

as density distributions of states. Journal of personality and social Psychology ,

80 (6), 1011.

Friesen, E., & Ekman, P. (1978). Facial action coding system: a technique for the



References 164

measurement of facial movement. Palo Alto, 3 .

Gaebel, W., & Wölwer, W. (2004). Facial expressivity in the course of schizophrenia

and depression. European archives of psychiatry and clinical neuroscience, 254 (5),

335–342.

Gehricke, J.-G., & Shapiro, D. (2000). Reduced facial expression and social context

in major depression: discrepancies between facial muscle activity and self-reported

emotion. Psychiatry Research, 95 (2), 157–167.

Girard, J. M., Cohn, J. F., Mahoor, M. H., Mavadati, S., & Rosenwald, D. P. (2013).

Social risk and depression: Evidence from manual and automatic facial expression

analysis. In Automatic face and gesture recognition (fg), 2013 10th ieee international

conference and workshops on (pp. 1–8).

Girard, J. M., Cohn, J. F., Mahoor, M. H., Mavadati, S. M., Hammal, Z., & Rosenwald,

D. P. (2014). Nonverbal social withdrawal in depression: Evidence from manual

and automatic analyses. Image and vision computing , 32 (10), 641–647.

Goldstein, I. B. (1964). Role of muscle tension in personality theory. Psychological

Bulletin, 61 (6), 413.

Gong, Y., & Poellabauer, C. (2017). Topic modeling based multi-modal depression detec-

tion. In Proceedings of the 7th annual workshop on audio/visual emotion challenge

(pp. 69–76).

Gosling, S. D., Rentfrow, P. J., & Swann Jr, W. B. (2003). A very brief measure of the

big-five personality domains. Journal of Research in personality , 37 (6), 504–528.

Gratch, J., Artstein, R., Lucas, G. M., Stratou, G., Scherer, S., Nazarian, A., . . . others

(2014). The distress analysis interview corpus of human and computer interviews.

In Lrec (pp. 3123–3128).

Greenstein, F. I. (1967). The impact of personality on politics: An attempt to clear away

underbrush. American Political Science Review , 61 (3), 629–641.
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