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Abstract

Railways are an important type of transport infrastructure but can be expensive to
run with the UK railway costing £1.525 billion to maintain in 2018/19. To reduce the
cost without reducing the quality of the infrastructure improved asset management is
required. To enable the impact of possible decisions to be understood, and the optimum
ones chosen, a railway track asset management model, such as the one developed in this
thesis, is required.

This thesis first studies the degradation and maintenance of railway track. The UK
railways network actual geometry and maintenance data was used to understand track
degradation. This data covered 8 years of the whole UK rail network, a much greater
length of time and track than previous research has considered. Many aspects were
shown to have a significant impact on the rate such as track speed, sleeper type and
maintenance history. The methodology of singling out factors showed that rail types
have less of an impact on track geometry than previous research had shown. Weibull
distributions were then used to characterise the rates of degradation of separate combi-
nations of these significant aspects. The improvement in geometry from maintenance is
also explored, with the effectiveness reducing with each further maintenance action. The
improvement in geometry from maintenance is modelled using a linear fit with a stochas-
tic element added to model the effectiveness variability. Maintenance output rate, which
has previously not been considered in literature, has also been analysed and modelled,
utilising Weibull distributions, allowing working window lengths for maintenance to be
incorporated within models.

The likelihood of different rail faults occurring was also explored using data from the UK
railway. The analysis showed that the rail type, joint and age were not only linked to
the rate of faults but also the track geometry. This link has been mentioned in literature
but has previously not been proved or quantified. The link between rail faults and
track geometry shows how the railway tracks assets are interlinked and hence need to be
modelled as such. Saving money by reducing the amount of track geometry maintenance
will increase the quantity and hence the cost of rail faults. Rail faults have been modelled
using probabilities within this thesis, with the fault rates of each fault type related to
the track geometry.

The second part of this thesis develops a Coloured Petri Net model which incorporates
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the analysis and models developed. A Coloured Petri Net has been used in a novel way
of acting as a decision framework, joining the separate degradation and maintenance
models together and allowing them to interact. This removes some shortcomings of
state based modelling techniques such as requiring discrete states of degradation. The
model predicts, over any given line of track and time period, the number of inspections,
maintenance actions, track quality and number of speed restrictions. Utilising the model
the user can assess the impact of decisions such as maintenance thresholds, asset upgrades
and traffic changes. Additional aspects such as opportunistic maintenance, as well as
maintenance productivity and work windows lengths are considered. This allows aspects
like opportunistic maintenance thresholds and varying the maintenance window length
to be analysed, which previous models in literature have not. Different scenarios can
be run through the model and the outputs compared to enable evidence based asset
management decisions to be made.

Steve Clarke IV



Railway Track Asset Management Modelling

Contents

Abstract III

Contents V

List of Figures XI

List of Tables XVI

Acronyms XXXIII

1 Introduction 1

1.1 Problem Definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Research Aims and Objectives . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.3 Thesis Layout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2 Literature Review 4

2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2.2 Asset Management . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2.2.1 Framework . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.2.2 Life Cycle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.2.3 Summary of Asset Management . . . . . . . . . . . . . . . . . . . . 7

2.3 Railway Track Assets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.3.2 Rails . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.3.3 Sleepers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

Steve Clarke V



Railway Track Asset Management Modelling

2.3.4 Ballast . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

2.3.5 Formation and Subgrade . . . . . . . . . . . . . . . . . . . . . . . . 28

2.3.6 Summary of Railway Track Assets . . . . . . . . . . . . . . . . . . 29

2.4 Existing Railway Track Degradation and Maintenance Models . . . . . . . 30

2.4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

2.4.2 Track Geometry Degradation Models . . . . . . . . . . . . . . . . . 31

2.4.3 Maintenance Effectiveness Models . . . . . . . . . . . . . . . . . . 61

2.4.4 Rail Degradation and Fault Models . . . . . . . . . . . . . . . . . . 67

2.4.5 Existing Railway Track Degradation and Maintenance Models Sum-
mary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

2.5 Literature Review Summary . . . . . . . . . . . . . . . . . . . . . . . . . . 77

3 Track Geometry Degradation 81

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

3.2 Available Data and Preparation . . . . . . . . . . . . . . . . . . . . . . . . 82

3.2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

3.2.2 Geometry Recordings . . . . . . . . . . . . . . . . . . . . . . . . . 83

3.2.3 Maintenance Records . . . . . . . . . . . . . . . . . . . . . . . . . . 84

3.2.4 Renewal Records . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

3.2.5 Track Asset Information . . . . . . . . . . . . . . . . . . . . . . . . 88

3.2.6 Track Usage History . . . . . . . . . . . . . . . . . . . . . . . . . . 88

3.2.7 Track Usage Breakdown . . . . . . . . . . . . . . . . . . . . . . . . 90

3.2.8 Ballast Fouling History . . . . . . . . . . . . . . . . . . . . . . . . 91

3.2.9 Geology Information . . . . . . . . . . . . . . . . . . . . . . . . . . 93

3.3 Calculation of the Vertical Top Geometry Degradation . . . . . . . . . . . 94

3.3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

3.3.2 Finding the Degradation Rate . . . . . . . . . . . . . . . . . . . . . 95

3.4 Degradation Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

3.4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

Steve Clarke VI



Railway Track Asset Management Modelling

3.4.2 Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

3.4.3 Analysis Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

3.4.4 Analysis Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . 146

3.5 Vertical Geometry Degradation Model . . . . . . . . . . . . . . . . . . . . 152

3.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154

4 Track Geometry Maintenance Effectiveness 155

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155

4.2 Available Data and Processing . . . . . . . . . . . . . . . . . . . . . . . . . 156

4.3 Analysis of the Effectiveness of Track Geometry Maintenance Activities . 156

4.3.1 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 156

4.3.2 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 156

4.3.3 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 173

4.4 Modelling the Effectiveness of Track Geometry Maintenance . . . . . . . . 173

4.5 Maintenance Output Rate . . . . . . . . . . . . . . . . . . . . . . . . . . . 178

4.5.1 Introduction and Available Data . . . . . . . . . . . . . . . . . . . 178

4.5.2 Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 178

4.5.3 Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 178

4.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 180

5 Rail Faults 183

5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 183

5.2 Data and Processing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 184

5.2.1 Inspections and Maintenance Types . . . . . . . . . . . . . . . . . 185

5.3 Analysis of Rail Fault Occurrences . . . . . . . . . . . . . . . . . . . . . . 187

5.3.1 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 187

5.3.2 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 187

5.4 Model Relating Track Geometry to Rail Faults . . . . . . . . . . . . . . . 201

5.4.1 Step by Step Approach . . . . . . . . . . . . . . . . . . . . . . . . . 204

Steve Clarke VII



Railway Track Asset Management Modelling

5.4.2 Limitations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 204

5.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 208

6 Railway Track Asset Management Model 210

6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 210

6.2 Modelling Technique Choice . . . . . . . . . . . . . . . . . . . . . . . . . . 210

6.3 Introduction to Coloured Petri-Nets . . . . . . . . . . . . . . . . . . . . . 211

6.4 Coloured Petri-Net Design . . . . . . . . . . . . . . . . . . . . . . . . . . . 214

6.4.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 214

6.4.2 Track Geometry Inspections . . . . . . . . . . . . . . . . . . . . . . 219

6.4.3 Track Geometry Model . . . . . . . . . . . . . . . . . . . . . . . . . 221

6.4.4 Asset Upgrades at Renewal . . . . . . . . . . . . . . . . . . . . . . 223

6.4.5 Opportunistic Maintenance . . . . . . . . . . . . . . . . . . . . . . 223

6.4.6 Planned Upgrades (Speed and Assets) . . . . . . . . . . . . . . . . 225

6.4.7 Rail Fault Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . 226

6.4.8 Possible Outputs . . . . . . . . . . . . . . . . . . . . . . . . . . . . 234

6.5 Example of Multi-Section Track Modelling . . . . . . . . . . . . . . . . . . 235

6.5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 235

6.5.2 Line Selection and Variables . . . . . . . . . . . . . . . . . . . . . . 235

6.5.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 236

6.5.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 246

6.5.5 Limitations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 247

6.5.6 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 248

7 Conclusions 249

7.1 Track Geometry Degradation . . . . . . . . . . . . . . . . . . . . . . . . . 250

7.2 Maintenance Effectiveness . . . . . . . . . . . . . . . . . . . . . . . . . . . 251

7.3 Rail Faults . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 252

7.4 Railway Track Asset Management Model . . . . . . . . . . . . . . . . . . . 252

Steve Clarke VIII



Railway Track Asset Management Modelling

7.5 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 253

Bibliography 257

8 Appendix 265

8.1 Literature Review . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 265

8.2 Track Geometry Degradation . . . . . . . . . . . . . . . . . . . . . . . . . 270

8.2.1 Stations and Tunnels . . . . . . . . . . . . . . . . . . . . . . . . . . 272

8.2.2 Track Type . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 274

8.2.3 Track Construction . . . . . . . . . . . . . . . . . . . . . . . . . . . 276

8.2.4 Track Category . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 278

8.2.5 Track . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 281

8.2.6 Route Criticality . . . . . . . . . . . . . . . . . . . . . . . . . . . . 282

8.2.7 Embankments, Soil Cuttings and Rock Cuttings . . . . . . . . . . 285

8.2.8 Curvature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 288

8.2.9 Cant . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 291

8.2.10 Maximum Axle Load . . . . . . . . . . . . . . . . . . . . . . . . . . 293

8.2.11 Electrification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 296

8.2.12 Rail Type . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 298

8.2.13 Rail Types Reduced Groups . . . . . . . . . . . . . . . . . . . . . . 302

8.2.14 Passenger % Usage . . . . . . . . . . . . . . . . . . . . . . . . . . . 307

8.2.15 Axle > 50 % Usage . . . . . . . . . . . . . . . . . . . . . . . . . . . 310

8.2.16 Dirty % Usage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 313

8.2.17 Superficial Geology . . . . . . . . . . . . . . . . . . . . . . . . . . . 316

8.2.18 Artificial Geology . . . . . . . . . . . . . . . . . . . . . . . . . . . . 322

8.2.19 Bedrock Geology Grouped . . . . . . . . . . . . . . . . . . . . . . . 324

8.2.20 Bedrock Geology . . . . . . . . . . . . . . . . . . . . . . . . . . . . 329

8.2.21 Maximum Speed . . . . . . . . . . . . . . . . . . . . . . . . . . . . 333

8.2.22 Speed Reduced Groups . . . . . . . . . . . . . . . . . . . . . . . . . 338

Steve Clarke IX



Railway Track Asset Management Modelling

8.2.23 Sleepers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 343

8.2.24 Sleeper Reduced Groups . . . . . . . . . . . . . . . . . . . . . . . . 351

8.2.25 Track Geometry Degradation Model . . . . . . . . . . . . . . . . . 356

8.3 Railway Track Asset Management Model . . . . . . . . . . . . . . . . . . . 362

Steve Clarke X



Railway Track Asset Management Modelling

List of Figures

2.1 Asset management framework (UIC, 2010) . . . . . . . . . . . . . . . . . 7

2.2 Flat bottom rail (left) and bullhead rail (right) (Balfour Beatty Rail,
2010) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.3 Rail joints . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.4 Wheel contact loading at a gap-jointed rail (Zong and Dhanasekar, 2013) 11

2.5 Consequences of thermal expansion/contraction on Continuous Welded
Rail (CWR) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.6 Short pitch corrugations (Wilson, 2012) . . . . . . . . . . . . . . . . . . 13

2.7 Rolling Contact Fatiques defects (Wilson, 2012) . . . . . . . . . . . . . . 14

2.8 Running surface squat (Wilson, 2012) . . . . . . . . . . . . . . . . . . . . 15

2.9 Tache ovale defect (Wilson, 2012) . . . . . . . . . . . . . . . . . . . . . . 15

2.10 Vertical split head defects (Wilson, 2012) . . . . . . . . . . . . . . . . . . 16

2.11 Comparison between AREMA Number 24 and BSi Category B ballast
grading boundaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

2.12 Exaggerated vertical top profile after 35 m wavelength filter, based on
geometry recordings from a measurement train (Audley and Andrews,
2013) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

2.13 Critical quantity of precipitation depending on the degree of fouling
(Lichtberger, 2005) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

2.14 Schematic representation of fouled ballasts reduced bearing capacity
(Lichtberger, 2005) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

2.15 Increase in track geometry degradation rate with ballast fouling (Williams,
2012) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

2.16 Increase of maintenance frequency due to ballast fouling (Williams, 2012) 26

Steve Clarke XI



Railway Track Asset Management Modelling

2.17 Ballast maintenance sequences (Selig and Waters, 1994) . . . . . . . . . 28

2.18 Track layer contributions to settlement (Selig and Waters, 1994) . . . . . 28

2.19 Comparison of strain/cycle models . . . . . . . . . . . . . . . . . . . . . 33

2.20 Wisc-Rail’s graphical interface (Ebrahimi and Keene, 2011) . . . . . . . 38

2.21 Effect of fouling and water content of plastic strain and rate of plastic
strain (Ebrahimi, 2011b) . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

2.22 Track segmentation process (Gular et al., 2011) . . . . . . . . . . . . . . 40

2.23 Determination of degradation rates (Gular et al., 2011) . . . . . . . . . . 40

2.24 ECOTRACK geometry degradation analysis reasoning (Ebersohn and
Selig, 1994) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

2.25 Type 2 fuzzy reasoning (Jang, 1993) . . . . . . . . . . . . . . . . . . . . 46

2.26 Simple example of an Adaptive Neural-based Fuzzy Inference System
(Jang, 1993) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

2.27 Accuracy of the predicted value of the Standard Deviation of the vertical
top geometry (Caetano and Teixeira, 2016) . . . . . . . . . . . . . . . . . 51

2.28 Markov chain degradation model . . . . . . . . . . . . . . . . . . . . . . 53

2.29 Continuous-time Markov chain model following renewal (Prescott and
Andrews, 2015) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

2.30 Continuous-time Markov chain model with maintenance (Prescott and
Andrews, 2015) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

2.31 Typical example of a transition firing in a Petri Net . . . . . . . . . . . . 57

2.32 Simple example of an inhibitor transition within a Petri Net . . . . . . . 58

2.33 Simple example of a looping Petri Net . . . . . . . . . . . . . . . . . . . 58

2.34 Degradation process - convolution transition (Andrews, 2012) . . . . . . 59

2.35 Effectiveness of maintenance on vertical top geometry Standard Devia-
tion (Williams, 2012) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

2.36 Effect track quality has on tamping effectiveness (Stephen M Famurewa
and Kumar, 2015) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

2.37 Exponential Maintenance Model (Velt, 2007) . . . . . . . . . . . . . . . 66

2.38 Markov rail failure and maintenance model (Hokstad et al., 2005) . . . . 72

Steve Clarke XII



Railway Track Asset Management Modelling

3.1 Calculating Track Category, (Network Rail, 2011) . . . . . . . . . . . . . 86

3.2 Example of Track Recordings of Vertical Alignment . . . . . . . . . . . . 88

3.3 Usage history data with fits . . . . . . . . . . . . . . . . . . . . . . . . . 90

3.4 Track Recordings With Linear Fits . . . . . . . . . . . . . . . . . . . . . 98

3.5 Comparison of Fits of Vertical Geometry Recordings against time (Con-
stant Gradient) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

3.6 Comparison of Fits of Vertical Geometry Recordings against time (Re-
ducing Gradient) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

3.7 Comparison of Fits of Vertical Geometry Recordings against time (In-
creasing Gradient) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

3.8 Example of the KS-Test D Value . . . . . . . . . . . . . . . . . . . . . . 104

3.9 Method of Splitting up the Degradation Rates Data . . . . . . . . . . . . 110

3.10 Comparison of Empirical Cumulative Distribution Function’s (ECDF’s)
of different speed groups, with differing maintenance history’s . . . . . . 111

3.11 Comparison of Boxplots of different speed groups, with differing main-
tenance history’s . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

4.1 Initial quality against improvement from track maintenance . . . . . . . 158

4.2 Initial quality against relative improvement from track maintenance . . . 158

4.3 Maintenance relative improvement by track speed . . . . . . . . . . . . . 161

4.4 Average relative improvement of maintenance for different track speeds . 162

4.5 Maintenance relative improvement the amount of previous tamps before
tamping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165

4.6 Average relative improvement of maintenance after a maintenance his-
tory of just tamping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 167

4.7 Maintenance relative improvement by number of previous stoneblows
before further stoneblowing . . . . . . . . . . . . . . . . . . . . . . . . . 168

4.8 Maintenance relative improvement by maintenance history before stoneblow-
ing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 172

4.9 Estimating the resultant quality of the first tamp after renewal is per-
formed on track with a speed greater than 115 MPH . . . . . . . . . . . 176

Steve Clarke XIII



Railway Track Asset Management Modelling

4.10 Estimating the resultant quality when stoneblowing is performed on
track with two or more previous stoneblowing operations . . . . . . . . . 177

4.11 Distribution fits of tamping output [yards per hour] . . . . . . . . . . . . 180

4.12 Distribution fits of stoneblowing output [yards per hour] . . . . . . . . . 180

5.1 Inspection methods for different rail faults . . . . . . . . . . . . . . . . . 186

5.2 Maintenance methods for different rail faults . . . . . . . . . . . . . . . . 186

5.3 Rail fault rates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 188

5.4 The effect of rail age (denoted by rail installation decade) on the rates
of different rail faults on 113 lb Flatbottom Continuous Welded Rail rail 189

5.5 The affect of rail age (denoted by rail installation decade) on the rate of
rail faults on 113 lb Flatbottom Continuous Welded Rail rail, linear fit . 190

5.6 Rail fault rates split by track curvature . . . . . . . . . . . . . . . . . . . 191

5.7 Rail fault rates split by rail type [Continuous Welded Rail installed 1955-
1970] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 194

5.8 Rail fault rates split by rail type [Continuous Welded Rail installed 1995-
2010] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 194

5.9 Rail fault rates split by the existence of tunnels and stations . . . . . . . 195

5.10 Rail fault rates split by rail joint type . . . . . . . . . . . . . . . . . . . 197

5.11 Rail fault rates split by rail joint type [95 lb Bullhead Rail, Installed
1950-65] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 197

5.12 Effect of vertical track geometry on the occurrence rate of rail faults . . 199

5.13 Effect of vertical track geometry on the occurrence rate of different rail
fault types . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 200

5.14 Effect of vertical track geometry on the occurrence rate of rail faults on
UIC 60 Continuous Welded Rail rail installed between 2000-2010 . . . . 201

5.15 Effect of vertical track geometry on the occurrence rate of rail faults
on 113 lb Flatbottom Continuous Welded Rail rail installed between
1990-2010 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 201

5.16 Effect of vertical track geometry on the occurrence rate of rail faults
on 113 lb Flatbottom Continuous Welded Rail rail installed between
1980-1990 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 201

Steve Clarke XIV



Railway Track Asset Management Modelling

5.17 Vertical track geometry impact on rail fault rates, polynomial order 3
fits (Part 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 205

5.18 Vertical track geometry impact on rail fault rates, polynomial order 3
fits (Part 2) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 206

5.19 Stack rail fault rates against vertical track geometry. Model compared
to actual data. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 207

5.20 Rail Fault Model Example . . . . . . . . . . . . . . . . . . . . . . . . . . 208

6.1 Rail Track Asset Management Model - superpage . . . . . . . . . . . . . 219

6.2 Track Geometry Inspections - subpage . . . . . . . . . . . . . . . . . . . 228

6.3 Track Geometry Model - subpage . . . . . . . . . . . . . . . . . . . . . . 229

6.4 Asset Upgrades at Renewal - subpage . . . . . . . . . . . . . . . . . . . . 230

6.5 Opportunistic Maintenance - subpage . . . . . . . . . . . . . . . . . . . . 231

6.6 Planned Upgrades (Speed and Assets) - subpage . . . . . . . . . . . . . . 232

6.7 Rail Fault Model - subpage . . . . . . . . . . . . . . . . . . . . . . . . . 233

6.8 Number of Tamping Operations (Model A and B) . . . . . . . . . . . . . 240

6.9 Yearly Condition Results . . . . . . . . . . . . . . . . . . . . . . . . . . . 241

6.10 Number of Tamping Operations . . . . . . . . . . . . . . . . . . . . . . . 243

6.11 Yearly Condition Results . . . . . . . . . . . . . . . . . . . . . . . . . . . 244

6.12 Yearly Averages of Tamping, Model A and D . . . . . . . . . . . . . . . 246

6.13 Yearly Condition Results . . . . . . . . . . . . . . . . . . . . . . . . . . . 246

7.1 Example of Track Recordings of Vertical Alignment, (Yuan, 2005) . . . . 256

Steve Clarke XV



Railway Track Asset Management Modelling

List of Tables

2.1 Typical rail sizes (Balfour Beatty Rail, 2010) . . . . . . . . . . . . . . . . 9

2.2 Estimated life of rail on track sections of varying curvature (Sawley, 2001) 12

2.3 Railway track subgrade deformation model parameters (Li and Selig, 1996) 38

2.4 Parameters used to calculate Ballast Fouling Index (Williams, 2013) . . 45

2.5 Comparison of four different degradation models using Combined Track
Record indexes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

2.6 Elements for the transition matrix for each track class (Shafahi and
Hakhamameshi, 2009) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

2.7 Linear parameters for effectiveness of maintenance (Network Rail, 2012) 62

2.8 Network Rail’s VTISM rail defect model parameters . . . . . . . . . . . 68

3.1 Available data and their recorded section types . . . . . . . . . . . . . . 83

3.2 Tamping frequencies [obtained from Network Rail] . . . . . . . . . . . . 85

3.3 Parameters used to calculate BFI, (Williams, 2013) . . . . . . . . . . . . 93

3.4 GOFs of vertical top [nm] against time [days] . . . . . . . . . . . . . . . 97

3.5 GOFs of vertical top [nm] against usage [EMGT] . . . . . . . . . . . . . 97

3.6 GOFs of vertical top [nm] against time [days] for Figures TGD - fig:
High R2 Degredation Fits, 3.6 and 3.7 . . . . . . . . . . . . . . . . . . . 97

3.7 Mean 2 Tailed K-S and Mann Whitney U Test p-Values for Maximum
Permissible Track Speeds (Data A, Usage) . . . . . . . . . . . . . . . . . 108

3.8 2 Tailed K-S and Mann Whitney U Tests null hypothesis rejection dec-
imal percent (alpha = 0.05), for Maximum Permissible Track Speeds
(Data A, Usage) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

Steve Clarke XVI



Railway Track Asset Management Modelling

3.9 Mean 2 Tailed K-S and Mann Whitney U Test p-Values for Grouped
Speeds (Data A, Usage) . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

3.10 2 Tailed K-S and Mann Whitney U Tests null hypothesis rejection dec-
imal percent (alpha = 0.05), for Grouped Speeds (Data A, Usage) . . . . 109

3.11 Mean 1 Tailed K-S and Mann Whitney U Test p-Values for Grouped
Speeds (Data A, Usage) . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

3.12 1 Tailed K-S and Mann Whitney U Tests null hypothesis rejection dec-
imal percent (alpha = 0.05), for Grouped Speeds (Data A, Usage) . . . . 109

3.13 General statistics of the degradation rate datasets . . . . . . . . . . . . . 114

3.14 Sleeper Groups . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154

4.1 Percentage of maintenance actions with negative improvement by initial
quality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 158

4.2 Descriptive statistics of the relative improvement from maintenance by
track speed . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 160

4.3 Mean 2 Tailed K-S and Mann Whitney U Test p-values for tamping
relative improvement by track speed . . . . . . . . . . . . . . . . . . . . 160

4.4 Mean 2 Tailed K-S and Mann Whitney U Test p-values for stoneblowing
relative improvement by track speed . . . . . . . . . . . . . . . . . . . . 161

4.5 Mean 2 Tailed K-S and Mann Whitney U Test p-values for tamping
relative improvement by the amount of previous tamps [Data A] . . . . . 164

4.6 Mean 2 Tailed K-S and Mann Whitney U Test p-values for tamping
relative improvement by the amount of previous tamps [Data B] . . . . . 164

4.7 Descriptive statistics of the relative improvement from stoneblowing by
the amount of previous stoneblows, ignoring the previous amount of tamps167

4.8 Mean 2 Tailed K-S and Mann Whitney U Test p-values for stoneblowing
relative improvement by the amount of previous stoneblowing actions
ignoring the amount of previous tamps [Data B] . . . . . . . . . . . . . . 167

4.9 Descriptive statistics of the relative improvement from tamping by the
amount of previous tamps . . . . . . . . . . . . . . . . . . . . . . . . . . 169

4.10 Descriptive statistics of the relative improvement from stoneblowing by
the amount of previous tamps and stoneblows [Data B] . . . . . . . . . . 170

Steve Clarke XVII



Railway Track Asset Management Modelling

4.11 Mean 2 Tailed K-S and Mann Whitney U Test p-values for tamping
relative improvement by the amount of previous tamps and stoneblows
[Data B] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 171

4.12 Maintenance Effectiveness Model Parameters and Fit Statistics . . . . . 177

4.13 Maintenance Output Rates . . . . . . . . . . . . . . . . . . . . . . . . . 178

4.14 Maintenance Output Rate [yds/hr] (minus 40) Weibull Distribution Pa-
rameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 179

5.1 Available Rail Fault Data . . . . . . . . . . . . . . . . . . . . . . . . . . 185

5.2 Inspection and maintenance methods for different rail faults . . . . . . . 186

5.3 The effect of rail age (denoted by rail installation decade) on the rates
of different rail faults on 113 lb Flatbottom Continuous Welded Rail
[Faults/Poskey/Equivalent Million Gross Tonnage] . . . . . . . . . . . . 189

5.4 The effect of curvature on the rates of different rail faults [Faults/Poskey/
Equivalent Million Gross Tonnage] . . . . . . . . . . . . . . . . . . . . . 191

5.5 The effect of rail type on the rates of different rail faults on Continu-
ous Welded Rail installed 1955-1970 [Faults/Poskey/Equivalent Million
Gross Tonnage] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 193

5.6 The effect of rail type on the rates of different rail faults on Continu-
ous Welded Rail installed 1995-2010 [Faults/Poskey/Equivalent Million
Gross Tonnage] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 193

5.7 The effect of tunnels and stations on the rates of different rail faults
[Faults/Poskey/Equivalent Million Gross Tonnage] . . . . . . . . . . . . 195

5.8 The effect of rail joint type on the rates of different rail faults [Faults/Poskey/
Equivalent Million Gross Tonnage] . . . . . . . . . . . . . . . . . . . . . 196

5.9 The effect of rail joint type on the rates of different rail faults on 95 lb
Bullhead rail installed between 1950-1965 [Faults/Poskey/Equivalent Mil-
lion Gross Tonnage] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 197

5.10 The effect of vertical track geometry on the rates of different rail faults
[Faults/Poskey/Equivalent Million Gross Tonnage] . . . . . . . . . . . . 199

5.11 Stacked Rail Fault Groups Key . . . . . . . . . . . . . . . . . . . . . . . 203

5.12 Rail fault rate against track vertical geometry polynomial fits . . . . . . 203

6.1 Coloured Petri Net (CPN) model initial markings . . . . . . . . . . . . . 215

Steve Clarke XVIII



Railway Track Asset Management Modelling

6.2 CPN model variables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 216

6.3 CPN model global variables . . . . . . . . . . . . . . . . . . . . . . . . . 217

6.4 CPN model functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 218

6.5 Model Variables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 236

6.6 Model Rules . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 236

6.7 Track Geometry Maintenance Thresholds . . . . . . . . . . . . . . . . . . 238

6.8 Maintenance Threshold Results Comparison . . . . . . . . . . . . . . . . 239

6.9 Example Maintenance Activity Costs . . . . . . . . . . . . . . . . . . . . 239

6.10 Maintenance Threshold Results, Maintenance Costs Comparison . . . . . 239

6.11 Track Geometry Condition Thresholds . . . . . . . . . . . . . . . . . . . 240

6.12 Time to Perform Maintenance Results Comparison . . . . . . . . . . . . 242

6.13 Time to Perform Maintenance Results, Maintenance Costs Comparison . 243

6.14 Maintenance Window Length Results Comparison . . . . . . . . . . . . . 245

6.15 Maintenance Window Length Results, Maintenance Costs Comparison . 245

8.1 Comparison of deterministic track degradation models . . . . . . . . . . 266

8.2 Comparison of adaptive network and fuzzy interface systems track degra-
dation models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 268

8.3 Comparison of stochastic track degradation models . . . . . . . . . . . . 269

8.4 Amount of Poskeys With Degradation Data . . . . . . . . . . . . . . . . 271

8.5 Data Amounts for Stations and Tunnels . . . . . . . . . . . . . . . . . . 272

8.6 Mean 2 Tailed K-S and Mann Whitney U Test p-values for Stations and
Tunnels (Data A, Usage) . . . . . . . . . . . . . . . . . . . . . . . . . . . 272

8.7 Mean 2 Tailed K-S and Mann Whitney U Test for Stations and Tunnels
(Data A, Usage) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 272

8.8 Mean 2 Tailed K-S and Mann Whitney U Test p-values for Stations and
Tunnels (Data B, Usage) . . . . . . . . . . . . . . . . . . . . . . . . . . . 273

8.9 Mean 2 Tailed K-S and Mann Whitney U Test for Stations and Tunnels
(Data B, Usage) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 273

8.10 Mean 1 Tailed K-S and Mann Whitney U Test p-values for Stations and
Tunnels (Data A, Usage) . . . . . . . . . . . . . . . . . . . . . . . . . . . 273

Steve Clarke XIX



Railway Track Asset Management Modelling

8.11 Mean 1 Tailed K-S and Mann Whitney U Test for Stations and Tunnels
(Data A, Usage) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 273

8.12 Mean 1 Tailed K-S and Mann Whitney U Test p-values for Stations and
Tunnels (Data B, Usage) . . . . . . . . . . . . . . . . . . . . . . . . . . . 274

8.13 Mean 1 Tailed K-S and Mann Whitney U Test for Stations and Tunnels
(Data B, Usage) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 274

8.14 Data Amounts for Track Type . . . . . . . . . . . . . . . . . . . . . . . . 274

8.15 Mean 2 Tailed K-S and Mann Whitney U Test p-values for Track Type
(Data B, Usage) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 275

8.16 Mean 2 Tailed K-S and Mann Whitney U Test for Track Type (Data B,
Usage) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 275

8.17 Mean 1 Tailed K-S and Mann Whitney U Test p-values for Track Type
(Data B, Usage) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 275

8.18 Mean 1 Tailed K-S and Mann Whitney U Test for Track Type (Data B,
Usage) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 275

8.19 Data Amounts for Track Construction . . . . . . . . . . . . . . . . . . . 276

8.20 Mean 2 Tailed K-S and Mann Whitney U Test p-values for Track Con-
struction (Data A, Usage) . . . . . . . . . . . . . . . . . . . . . . . . . . 276

8.21 Mean 2 Tailed K-S and Mann Whitney U Test for Track Construction
(Data A, Usage) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 276

8.22 Mean 2 Tailed K-S and Mann Whitney U Test p-values for Track Con-
struction (Data B, Usage) . . . . . . . . . . . . . . . . . . . . . . . . . . 276

8.23 Mean 2 Tailed K-S and Mann Whitney U Test for Track Construction
(Data B, Usage) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 277

8.24 Mean 1 Tailed K-S and Mann Whitney U Test p-values for Track Con-
struction (Data A, Usage) . . . . . . . . . . . . . . . . . . . . . . . . . . 277

8.25 Mean 1 Tailed K-S and Mann Whitney U Test for Track Construction
(Data A, Usage) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 277

8.26 Mean 1 Tailed K-S and Mann Whitney U Test p-values for Track Con-
struction (Data B, Usage) . . . . . . . . . . . . . . . . . . . . . . . . . . 277

8.27 Mean 1 Tailed K-S and Mann Whitney U Test for Track Construction
(Data B, Usage) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 278

8.28 Data Amounts for Track Category . . . . . . . . . . . . . . . . . . . . . 278

Steve Clarke XX



Railway Track Asset Management Modelling

8.29 Mean 2 Tailed K-S and Mann Whitney U Test p-values for Track Cate-
gory (Data A, Usage) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 278

8.30 Mean 2 Tailed K-S and Mann Whitney U Test for Track Category (Data
A, Usage) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 279

8.31 Mean 2 Tailed K-S and Mann Whitney U Test p-values for Track Cate-
gory (Data B, Usage) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 279

8.32 Mean 2 Tailed K-S and Mann Whitney U Test for Track Category (Data
B, Usage) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 279

8.33 Mean 1 Tailed K-S and Mann Whitney U Test p-values for Track Cate-
gory (Data A, Usage) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 280

8.34 Mean 1 Tailed K-S and Mann Whitney U Test for Track Category (Data
A, Usage) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 280

8.35 Mean 1 Tailed K-S and Mann Whitney U Test p-values for Track Cate-
gory (Data B, Usage) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 280

8.36 Mean 1 Tailed K-S and Mann Whitney U Test for Track Category (Data
B, Usage) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 281

8.37 Data Amounts for Track . . . . . . . . . . . . . . . . . . . . . . . . . . . 281

8.38 Mean 2 Tailed K-S and Mann Whitney U Test p-values for Track (Data
B, Usage) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 281

8.39 Mean 2 Tailed K-S and Mann Whitney U Test for Track (Data B, Usage)281

8.40 Mean 1 Tailed K-S and Mann Whitney U Test p-values for Track (Data
B, Usage) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 282

8.41 Mean 1 Tailed K-S and Mann Whitney U Test for Track (Data B, Usage)282

8.42 Data Amounts for Route Criticality . . . . . . . . . . . . . . . . . . . . . 282

8.43 Mean 2 Tailed K-S and Mann Whitney U Test p-values for Route Crit-
icality (Data A, Usage) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 282

8.44 Mean 2 Tailed K-S and Mann Whitney U Test for Route Criticality
(Data A, Usage) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 283

8.45 Mean 2 Tailed K-S and Mann Whitney U Test p-values for Route Crit-
icality (Data B, Usage) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 283

8.46 Mean 2 Tailed K-S and Mann Whitney U Test for Route Criticality
(Data B, Usage) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 283

Steve Clarke XXI



Railway Track Asset Management Modelling

8.47 Mean 1 Tailed K-S and Mann Whitney U Test p-values for Route Crit-
icality (Data A, Usage) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 284

8.48 Mean 1 Tailed K-S and Mann Whitney U Test for Route Criticality
(Data A, Usage) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 284

8.49 Mean 1 Tailed K-S and Mann Whitney U Test p-values for Route Crit-
icality (Data B, Usage) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 284

8.50 Mean 1 Tailed K-S and Mann Whitney U Test for Route Criticality
(Data B, Usage) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 285

8.51 Data Amounts for Embankments, Soil Cuttings and Rock Cuttings . . . 285

8.52 Mean 2 Tailed K-S and Mann Whitney U Test p-values for Embank-
ments, Soil Cuttings and Rock Cuttings (Data A, Usage) . . . . . . . . . 285

8.53 Mean 2 Tailed K-S and Mann Whitney U Test for Embankments, Soil
Cuttings and Rock Cuttings (Data A, Usage) . . . . . . . . . . . . . . . 286

8.54 Mean 2 Tailed K-S and Mann Whitney U Test p-values for Embank-
ments, Soil Cuttings and Rock Cuttings (Data B, Usage) . . . . . . . . . 286

8.55 Mean 2 Tailed K-S and Mann Whitney U Test for Embankments, Soil
Cuttings and Rock Cuttings (Data B, Usage) . . . . . . . . . . . . . . . 286

8.56 Mean 1 Tailed K-S and Mann Whitney U Test p-values for Embank-
ments, Soil Cuttings and Rock Cuttings (Data A, Usage) . . . . . . . . . 287

8.57 Mean 1 Tailed K-S and Mann Whitney U Test for Embankments, Soil
Cuttings and Rock Cuttings (Data A, Usage) . . . . . . . . . . . . . . . 287

8.58 Mean 1 Tailed K-S and Mann Whitney U Test p-values for Embank-
ments, Soil Cuttings and Rock Cuttings (Data B, Usage) . . . . . . . . . 287

8.59 Mean 1 Tailed K-S and Mann Whitney U Test for Embankments, Soil
Cuttings and Rock Cuttings (Data B, Usage) . . . . . . . . . . . . . . . 288

8.60 Data Amounts for Curvature . . . . . . . . . . . . . . . . . . . . . . . . 288

8.61 Mean 2 Tailed K-S and Mann Whitney U Test p-values for Curvature
(Data A, Usage) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 288

8.62 Mean 2 Tailed K-S and Mann Whitney U Test for Curvature (Data A,
Usage) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 289

8.63 Mean 2 Tailed K-S and Mann Whitney U Test p-values for Curvature
(Data B, Usage) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 289

8.64 Mean 2 Tailed K-S and Mann Whitney U Test for Curvature (Data B,
Usage) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 289

Steve Clarke XXII



Railway Track Asset Management Modelling

8.65 Mean 1 Tailed K-S and Mann Whitney U Test p-values for Curvature
(Data A, Usage) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 290

8.66 Mean 1 Tailed K-S and Mann Whitney U Test for Curvature (Data A,
Usage) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 290

8.67 Mean 1 Tailed K-S and Mann Whitney U Test p-values for Curvature
(Data B, Usage) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 290

8.68 Mean 1 Tailed K-S and Mann Whitney U Test for Curvature (Data B,
Usage) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 291

8.69 Data Amounts for Cant . . . . . . . . . . . . . . . . . . . . . . . . . . . 291

8.70 Mean 2 Tailed K-S and Mann Whitney U Test p-values for Cant (Data
A, Usage) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 291

8.71 Mean 2 Tailed K-S and Mann Whitney U Test for Cant (Data A, Usage) 292

8.72 Mean 2 Tailed K-S and Mann Whitney U Test p-values for Cant (Data
B, Usage) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 292

8.73 Mean 2 Tailed K-S and Mann Whitney U Test for Cant (Data B, Usage) 292

8.74 Mean 1 Tailed K-S and Mann Whitney U Test p-values for Cant (Data
A, Usage) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 292

8.75 Mean 1 Tailed K-S and Mann Whitney U Test for Cant (Data A, Usage) 293

8.76 Mean 1 Tailed K-S and Mann Whitney U Test p-values for Cant (Data
B, Usage) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 293

8.77 Mean 1 Tailed K-S and Mann Whitney U Test for Cant (Data B, Usage) 293

8.78 Data Amounts for Maximum Axle Load . . . . . . . . . . . . . . . . . . 293

8.79 Mean 2 Tailed K-S and Mann Whitney U Test p-values for Maximum
Axle Load (Data A, Usage) . . . . . . . . . . . . . . . . . . . . . . . . . 294

8.80 Mean 2 Tailed K-S and Mann Whitney U Test for Maximum Axle Load
(Data A, Usage) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 294

8.81 Mean 2 Tailed K-S and Mann Whitney U Test p-values for Maximum
Axle Load (Data B, Usage) . . . . . . . . . . . . . . . . . . . . . . . . . 294

8.82 Mean 2 Tailed K-S and Mann Whitney U Test for Maximum Axle Load
(Data B, Usage) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 294

8.83 Mean 1 Tailed K-S and Mann Whitney U Test p-values for Maximum
Axle Load (Data A, Usage) . . . . . . . . . . . . . . . . . . . . . . . . . 295

Steve Clarke XXIII



Railway Track Asset Management Modelling

8.84 Mean 1 Tailed K-S and Mann Whitney U Test for Maximum Axle Load
(Data A, Usage) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 295

8.85 Mean 1 Tailed K-S and Mann Whitney U Test p-values for Maximum
Axle Load (Data B, Usage) . . . . . . . . . . . . . . . . . . . . . . . . . 295

8.86 Mean 1 Tailed K-S and Mann Whitney U Test for Maximum Axle Load
(Data B, Usage) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 295

8.87 Data Amounts for Electrification . . . . . . . . . . . . . . . . . . . . . . 296

8.88 Mean 2 Tailed K-S and MannWhitney U Test p-values for Electrification
(Data A, Usage) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 296

8.89 Mean 2 Tailed K-S and Mann Whitney U Test for Electrification (Data
A, Usage) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 296

8.90 Mean 2 Tailed K-S and MannWhitney U Test p-values for Electrification
(Data B, Usage) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 297

8.91 Mean 2 Tailed K-S and Mann Whitney U Test for Electrification (Data
B, Usage) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 297

8.92 Mean 1 Tailed K-S and MannWhitney U Test p-values for Electrification
(Data A, Usage) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 297

8.93 Mean 1 Tailed K-S and Mann Whitney U Test for Electrification (Data
A, Usage) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 297

8.94 Mean 1 Tailed K-S and MannWhitney U Test p-values for Electrification
(Data B, Usage) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 298

8.95 Mean 1 Tailed K-S and Mann Whitney U Test for Electrification (Data
B, Usage) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 298

8.96 Data Amounts for Rail Type . . . . . . . . . . . . . . . . . . . . . . . . . 298

8.97 Mean 2 Tailed K-S and Mann Whitney U Test p-values for Rail Type
(Data A, Usage) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 299

8.98 Mean 2 Tailed K-S and Mann Whitney U Test for Rail Type (Data A,
Usage) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 299

8.99 Mean 2 Tailed K-S and Mann Whitney U Test p-values for Rail Type
(Data B, Usage) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 299

8.100 Mean 2 Tailed K-S and Mann Whitney U Test for Rail Type (Data B,
Usage) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 300

8.101 Mean 1 Tailed K-S and Mann Whitney U Test p-values for Rail Type
(Data A, Usage) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 300

Steve Clarke XXIV



Railway Track Asset Management Modelling

8.102 Mean 1 Tailed K-S and Mann Whitney U Test for Rail Type (Data A,
Usage) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 300

8.103 Mean 1 Tailed K-S and Mann Whitney U Test p-values for Rail Type
(Data B, Usage) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 301

8.104 Mean 1 Tailed K-S and Mann Whitney U Test for Rail Type (Data B,
Usage) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 301

8.105 Data Amounts for Rail Types Grouped . . . . . . . . . . . . . . . . . . . 302

8.106 Mean 2 Tailed K-S and Mann Whitney U Test p-values for Rail Types
Grouped (Data A, Usage) . . . . . . . . . . . . . . . . . . . . . . . . . . 302

8.107 Mean 2 Tailed K-S and Mann Whitney U Test for Rail Types Grouped
(Data A, Usage) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 303

8.108 Mean 2 Tailed K-S and Mann Whitney U Test p-values for Rail Types
Grouped (Data B, Usage) . . . . . . . . . . . . . . . . . . . . . . . . . . 303

8.109 Mean 2 Tailed K-S and Mann Whitney U Test for Rail Types Grouped
(Data B, Usage) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 303

8.110 Mean 2 Tailed K-S and Mann Whitney U Test p-values for Rail Types
Grouped (Data A, Usage) . . . . . . . . . . . . . . . . . . . . . . . . . . 304

8.111 Mean 2 Tailed K-S and Mann Whitney U Test for Rail Types Grouped
(Data A, Usage) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 304

8.112 Mean 2 Tailed K-S and Mann Whitney U Test p-values for Rail Types
Grouped (Data B, Usage) . . . . . . . . . . . . . . . . . . . . . . . . . . 304

8.113 Mean 2 Tailed K-S and Mann Whitney U Test for Rail Types Grouped
(Data B, Usage) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 305

8.114 Data Amounts for Rail Types Grouped . . . . . . . . . . . . . . . . . . . 305

8.115 Mean 2 Tailed K-S and Mann Whitney U Test p-values for Rail Types
Grouped (Data A, Usage) . . . . . . . . . . . . . . . . . . . . . . . . . . 306

8.116 Mean 2 Tailed K-S and Mann Whitney U Test for Rail Types Grouped
(Data A, Usage) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 306

8.117 Mean 2 Tailed K-S and Mann Whitney U Test p-values for Rail Types
Grouped (Data B, Usage) . . . . . . . . . . . . . . . . . . . . . . . . . . 306

8.118 Mean 2 Tailed K-S and Mann Whitney U Test for Rail Types Grouped
(Data B, Usage) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 307

8.119 Data Amounts for Passenger pcnt Usage . . . . . . . . . . . . . . . . . . 307

Steve Clarke XXV



Railway Track Asset Management Modelling

8.120 Mean 2 Tailed K-S and Mann Whitney U Test p-values for Passenger
pcnt Usage (Data A, Usage) . . . . . . . . . . . . . . . . . . . . . . . . . 307

8.121 Mean 2 Tailed K-S and Mann Whitney U Test for Passenger pcnt Usage
(Data A, Usage) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 308

8.122 Mean 2 Tailed K-S and Mann Whitney U Test p-values for Passenger
pcnt Usage (Data B, Usage) . . . . . . . . . . . . . . . . . . . . . . . . . 308

8.123 Mean 2 Tailed K-S and Mann Whitney U Test for Passenger pcnt Usage
(Data B, Usage) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 308

8.124 Mean 1 Tailed K-S and Mann Whitney U Test p-values for Passenger
pcnt Usage (Data A, Usage) . . . . . . . . . . . . . . . . . . . . . . . . . 309

8.125 Mean 1 Tailed K-S and Mann Whitney U Test for Passenger pcnt Usage
(Data A, Usage) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 309

8.126 Mean 1 Tailed K-S and Mann Whitney U Test p-values for Passenger
pcnt Usage (Data B, Usage) . . . . . . . . . . . . . . . . . . . . . . . . . 309

8.127 Mean 1 Tailed K-S and Mann Whitney U Test for Passenger pcnt Usage
(Data B, Usage) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 310

8.128 Data Amounts for Axle > 50 pcnt Usage . . . . . . . . . . . . . . . . . . 310

8.129 Mean 2 Tailed K-S and Mann Whitney U Test p-values for Axle > 50
pcnt Usage (Data A, Usage) . . . . . . . . . . . . . . . . . . . . . . . . . 310

8.130 Mean 2 Tailed K-S and Mann Whitney U Test for Axle > 50 pcnt Usage
(Data A, Usage) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 311

8.131 Mean 2 Tailed K-S and Mann Whitney U Test p-values for Axle > 50
pcnt Usage (Data B, Usage) . . . . . . . . . . . . . . . . . . . . . . . . . 311

8.132 Mean 2 Tailed K-S and Mann Whitney U Test for Axle > 50 pcnt Usage
(Data B, Usage) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 311

8.133 Mean 1 Tailed K-S and Mann Whitney U Test p-values for Axle > 50
pcnt Usage (Data A, Usage) . . . . . . . . . . . . . . . . . . . . . . . . . 312

8.134 Mean 1 Tailed K-S and Mann Whitney U Test for Axle > 50 pcnt Usage
(Data A, Usage) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 312

8.135 Mean 1 Tailed K-S and Mann Whitney U Test p-values for Axle > 50
pcnt Usage (Data B, Usage) . . . . . . . . . . . . . . . . . . . . . . . . . 312

8.136 Mean 1 Tailed K-S and Mann Whitney U Test for Axle > 50 pcnt Usage
(Data B, Usage) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 313

8.137 Data Usage for Dirty pcnt Usage . . . . . . . . . . . . . . . . . . . . . . 313

Steve Clarke XXVI



Railway Track Asset Management Modelling

8.138 Mean 2 Tailed K-S and Mann Whitney U Test p-values for Dirty pcnt
Usage (Data A, Usage) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 313

8.139 Mean 2 Tailed K-S and Mann Whitney U Test for Dirty pcnt Usage
(Data A, Usage) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 314

8.140 Mean 2 Tailed K-S and Mann Whitney U Test p-values for Dirty pcnt
Usage (Data B, Usage) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 314

8.141 Mean 2 Tailed K-S and Mann Whitney U Test for Dirty pcnt Usage
(Data B, Usage) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 314

8.142 Mean 1 Tailed K-S and Mann Whitney U Test p-values for Dirty pcnt
Usage (Data A, Usage) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 314

8.143 Mean 1 Tailed K-S and Mann Whitney U Test for Dirty pcnt Usage
(Data A, Usage) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 315

8.144 Mean 1 Tailed K-S and Mann Whitney U Test p-values for Dirty pcnt
Usage (Data B, Usage) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 315

8.145 Mean 1 Tailed K-S and Mann Whitney U Test for Dirty pcnt Usage
(Data B, Usage) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 315

8.146 Data Amounts for Superficial Geology . . . . . . . . . . . . . . . . . . . 316

8.147 Mean 2 Tailed K-S and Mann Whitney U Test p-values for Superficial
Geology (Data A, Usage) . . . . . . . . . . . . . . . . . . . . . . . . . . . 316

8.148 Mean 2 Tailed K-S and Mann Whitney U Test for Superficial Geology
(Data A, Usage) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 316

8.149 Mean 2 Tailed K-S and Mann Whitney U Test p-values for Superficial
Geology (Data B, Usage) . . . . . . . . . . . . . . . . . . . . . . . . . . . 317

8.150 Mean 2 Tailed K-S and Mann Whitney U Test for Superficial Geology
(Data B, Usage) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 317

8.151 Mean 1 Tailed K-S and Mann Whitney U Test p-values for Superficial
Geology (Data A, Usage) . . . . . . . . . . . . . . . . . . . . . . . . . . . 317

8.152 Mean 1 Tailed K-S and Mann Whitney U Test for Superficial Geology
(Data A, Usage) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 318

8.153 Mean 1 Tailed K-S and Mann Whitney U Test p-values for Superficial
Geology (Data B, Usage) . . . . . . . . . . . . . . . . . . . . . . . . . . . 318

8.154 Mean 1 Tailed K-S and Mann Whitney U Test for Superficial Geology
(Data B, Usage) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 318

8.155 Data Amounts for Superficial Geology (Bedrock, Speed) . . . . . . . . . 319

Steve Clarke XXVII



Railway Track Asset Management Modelling

8.156 Mean 2 Tailed K-S and Mann Whitney U Test p-values for Superficial
Geology (Bedrock, Speed) (Data A, Usage) . . . . . . . . . . . . . . . . 319

8.157 Mean 2 Tailed K-S and Mann Whitney U Test for Superficial Geology
(Bedrock, Speed) (Data A, Usage) . . . . . . . . . . . . . . . . . . . . . 319

8.158 Mean 2 Tailed K-S and Mann Whitney U Test p-values for Superficial
Geology (Bedrock, Speed) (Data B, Usage) . . . . . . . . . . . . . . . . . 320

8.159 Mean 2 Tailed K-S and Mann Whitney U Test for Superficial Geology
(Bedrock, Speed) (Data B, Usage) . . . . . . . . . . . . . . . . . . . . . 320

8.160 Mean 1 Tailed K-S and Mann Whitney U Test p-values for Superficial
Geology (Bedrock, Speed) (Data A, Usage) . . . . . . . . . . . . . . . . 320

8.161 Mean 1 Tailed K-S and Mann Whitney U Test for Superficial Geology
(Bedrock, Speed) (Data A, Usage) . . . . . . . . . . . . . . . . . . . . . 321

8.162 Mean 1 Tailed K-S and Mann Whitney U Test p-values for Superficial
Geology (Bedrock, Speed) (Data B, Usage) . . . . . . . . . . . . . . . . . 321

8.163 Mean 1 Tailed K-S and Mann Whitney U Test for Superficial Geology
(Bedrock, Speed) (Data B, Usage) . . . . . . . . . . . . . . . . . . . . . 321

8.164 Data Amounts for Artificial Geology . . . . . . . . . . . . . . . . . . . . 322

8.165 Mean 2 Tailed K-S and Mann Whitney U Test p-values for Artificial
Geology (Data A, Usage) . . . . . . . . . . . . . . . . . . . . . . . . . . . 322

8.166 Mean 2 Tailed K-S and Mann Whitney U Test for Artificial Geology
(Data A, Usage) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 322

8.167 Mean 2 Tailed K-S and Mann Whitney U Test p-values for Artificial
Geology (Data B, Usage) . . . . . . . . . . . . . . . . . . . . . . . . . . . 322

8.168 Mean 2 Tailed K-S and Mann Whitney U Test for Artificial Geology
(Data B, Usage) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 323

8.169 Mean 1 Tailed K-S and Mann Whitney U Test p-values for Artificial
Geology (Data A, Usage) . . . . . . . . . . . . . . . . . . . . . . . . . . . 323

8.170 Mean 1 Tailed K-S and Mann Whitney U Test for Artificial Geology
(Data A, Usage) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 323

8.171 Mean 1 Tailed K-S and Mann Whitney U Test p-values for Artificial
Geology (Data B, Usage) . . . . . . . . . . . . . . . . . . . . . . . . . . . 323

8.172 Mean 1 Tailed K-S and Mann Whitney U Test for Artificial Geology
(Data B, Usage) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 324

8.173 Data Amounts for Bedrock Geology Grouped . . . . . . . . . . . . . . . 324

Steve Clarke XXVIII



Railway Track Asset Management Modelling

8.174 Mean 2 Tailed K-S and Mann Whitney U Test p-values for Grouped
Bedrock Geology (Data A, Usage) . . . . . . . . . . . . . . . . . . . . . . 325

8.175 Mean 2 Tailed K-S and Mann Whitney U Test for Grouped Bedrock
Geology (Data A, Usage) . . . . . . . . . . . . . . . . . . . . . . . . . . . 325

8.176 Mean 2 Tailed K-S and Mann Whitney U Test p-values for Grouped
Bedrock Geology (Data B, Usage) . . . . . . . . . . . . . . . . . . . . . . 326

8.177 Mean 2 Tailed K-S and Mann Whitney U Test for Grouped Bedrock
Geology (Data B, Usage) . . . . . . . . . . . . . . . . . . . . . . . . . . . 326

8.178 Mean 2 Tailed K-S and Mann Whitney U Test p-values for Grouped
Bedrock Geology (Data A, Usage) . . . . . . . . . . . . . . . . . . . . . . 327

8.179 Mean 2 Tailed K-S and Mann Whitney U Test for Grouped Bedrock
Geology (Data A, Usage) . . . . . . . . . . . . . . . . . . . . . . . . . . . 327

8.180 Mean 2 Tailed K-S and Mann Whitney U Test p-values for Grouped
Bedrock Geology (Data B, Usage) . . . . . . . . . . . . . . . . . . . . . . 328

8.181 Mean 2 Tailed K-S and Mann Whitney U Test for Grouped Bedrock
Geology (Data B, Usage) . . . . . . . . . . . . . . . . . . . . . . . . . . . 328

8.182 Data Amounts for Bedrock Geology . . . . . . . . . . . . . . . . . . . . . 329

8.183 Mean 2 Tailed K-S and Mann Whitney U Test p-values for Bedrock
Geology (Data A, Usage) . . . . . . . . . . . . . . . . . . . . . . . . . . . 330

8.184 Mean 2 Tailed K-S and Mann Whitney U Test for Bedrock Geology
(Data A, Usage) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 330

8.185 Mean 2 Tailed K-S and Mann Whitney U Test p-values for Bedrock
Geology (Data B, Usage) . . . . . . . . . . . . . . . . . . . . . . . . . . . 331

8.186 Mean 2 Tailed K-S and Mann Whitney U Test for Bedrock Geology
(Data B, Usage) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 332

8.187 Data Amounts for Maximum Speed . . . . . . . . . . . . . . . . . . . . . 333

8.188 Mean 2 Tailed K-S and Mann Whitney U Test p-values for Maximum
Speed (Data A, Usage) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 334

8.189 Mean 2 Tailed K-S and Mann Whitney U Test for Maximum Speed
(Data A, Usage) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 335

8.190 Mean 2 Tailed K-S and Mann Whitney U Test p-values for Maximum
Speed (Data B, Usage) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 336

8.191 Mean 2 Tailed K-S and Mann Whitney U Test for Maximum Speed
(Data B, Usage) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 337

Steve Clarke XXIX



Railway Track Asset Management Modelling

8.192 Data Amounts for Maximum Speed Reduced . . . . . . . . . . . . . . . . 338

8.193 Mean 2 Tailed K-S and Mann Whitney U Test p-values for Maximum
Speed Reduced (Data A, Usage) . . . . . . . . . . . . . . . . . . . . . . . 338

8.194 Mean 2 Tailed K-S and Mann Whitney U Test for Maximum Speed
Reduced (Data A, Usage) . . . . . . . . . . . . . . . . . . . . . . . . . . 339

8.195 Mean 2 Tailed K-S and Mann Whitney U Test p-values for Maximum
Speed Reduced (Data B, Usage) . . . . . . . . . . . . . . . . . . . . . . . 339

8.196 Mean 2 Tailed K-S and Mann Whitney U Test for Maximum Speed
Reduced (Data B, Usage) . . . . . . . . . . . . . . . . . . . . . . . . . . 340

8.197 Mean 1 Tailed K-S and Mann Whitney U Test p-values for Maximum
Speed Reduced (Data A, Usage) . . . . . . . . . . . . . . . . . . . . . . . 340

8.198 Mean 1 Tailed K-S and Mann Whitney U Test for Maximum Speed
Reduced (Data A, Usage) . . . . . . . . . . . . . . . . . . . . . . . . . . 341

8.199 Mean 1 Tailed K-S and Mann Whitney U Test p-values for Maximum
Speed Reduced (Data B, Usage) . . . . . . . . . . . . . . . . . . . . . . . 341

8.200 Mean 1 Tailed K-S and Mann Whitney U Test for Maximum Speed
Reduced (Data B, Usage) . . . . . . . . . . . . . . . . . . . . . . . . . . 342

8.201 Data Amounts for Sleepers . . . . . . . . . . . . . . . . . . . . . . . . . . 343

8.202 Mean 2 Tailed K-S and Mann Whitney U Test p-values for Sleepers
(Data A, Usage) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 344

8.203 Mean 2 Tailed K-S and Mann Whitney U Test for Sleepers (Data A,
Usage) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 344

8.204 Mean 2 Tailed K-S and Mann Whitney U Test p-values for Sleepers
(Data B, Usage) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 345

8.205 Mean 2 Tailed K-S and Mann Whitney U Test for Sleepers (Data B,
Usage) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 346

8.206 Data Amounts for Sleepers (Second Layer) . . . . . . . . . . . . . . . . . 347

8.207 Mean 2 Tailed K-S and Mann Whitney U Test p-values for Sleepers
(Data A, Usage) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 348

8.208 Mean 2 Tailed K-S and Mann Whitney U Test for Sleepers (Data A,
Usage) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 348

8.209 Mean 2 Tailed K-S and Mann Whitney U Test p-values for Sleepers
(Data B, Usage) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 349

Steve Clarke XXX



Railway Track Asset Management Modelling

8.210 Mean 2 Tailed K-S and Mann Whitney U Test for Sleepers (Data B,
Usage) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 350

8.211 Data Amounts for Sleepers Grouped . . . . . . . . . . . . . . . . . . . . 351

8.212 Mean 2 Tailed K-S and Mann Whitney U Test p-values for Sleepers
Grouped (Data A, Usage) . . . . . . . . . . . . . . . . . . . . . . . . . . 351

8.213 Mean 2 Tailed K-S and Mann Whitney U Test for Sleepers Grouped
(Data A, Usage) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 352

8.214 Mean 2 Tailed K-S and Mann Whitney U Test p-values for Sleepers
Grouped (Data B, Usage) . . . . . . . . . . . . . . . . . . . . . . . . . . 352

8.215 Mean 2 Tailed K-S and Mann Whitney U Test for Sleepers Grouped
(Data B, Usage) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 352

8.216 Mean 2 Tailed K-S and Mann Whitney U Test p-values for Sleepers
Grouped (Data A, Usage) . . . . . . . . . . . . . . . . . . . . . . . . . . 353

8.217 Mean 2 Tailed K-S and Mann Whitney U Test for Sleepers Grouped
(Data A, Usage) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 353

8.218 Mean 2 Tailed K-S and Mann Whitney U Test p-values for Sleepers
Grouped (Data B, Usage) . . . . . . . . . . . . . . . . . . . . . . . . . . 353

8.219 Mean 2 Tailed K-S and Mann Whitney U Test for Sleepers Grouped
(Data B, Usage) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 354

8.220 Data Amounts for Sleepers Grouped . . . . . . . . . . . . . . . . . . . . 354

8.221 Mean 2 Tailed K-S and Mann Whitney U Test p-values for Sleepers
Grouped (Data A, Usage) . . . . . . . . . . . . . . . . . . . . . . . . . . 355

8.222 Mean 2 Tailed K-S and Mann Whitney U Test for Sleepers Grouped
(Data A, Usage) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 355

8.223 Mean 2 Tailed K-S and Mann Whitney U Test p-values for Sleepers
Grouped (Data B, Usage) . . . . . . . . . . . . . . . . . . . . . . . . . . 355

8.224 Mean 2 Tailed K-S and Mann Whitney U Test for Sleepers Grouped
(Data B, Usage) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 356

8.225 Vertical geometry degradation on large concrete sleepers with track
speeds 5-60MPH, Weibull parameters and descriptive statistics [nm/
Equivalent Million Gross Tonnage] . . . . . . . . . . . . . . . . . . . . . 356

8.226 Vertical geometry degradation on small concrete and large steel sleepers
with track speeds 5-60MPH, Weibull parameters and descriptive statis-
tics [nm/ Equivalent Million Gross Tonnage] . . . . . . . . . . . . . . . . 357

Steve Clarke XXXI



Railway Track Asset Management Modelling

8.227 Vertical geometry degradation on small steel and timber sleepers with
track speeds 5-60MPH, Weibull parameters and descriptive statistics
[nm/ Equivalent Million Gross Tonnage] . . . . . . . . . . . . . . . . . . 357

8.228 Vertical geometry degradation on large concrete sleepers with track
speeds 65-70MPH, Weibull parameters and descriptive statistics [nm/
Equivalent Million Gross Tonnage] . . . . . . . . . . . . . . . . . . . . . 358

8.229 Vertical geometry degradation on small concrete and large steel sleep-
ers with track speeds 65-70MPH, Weibull parameters and descriptive
statistics [nm/ Equivalent Million Gross Tonnage] . . . . . . . . . . . . . 358

8.230 Vertical geometry degradation on small steel and timber sleepers with
track speeds 65-70MPH, Weibull parameters and descriptive statistics
[nm/ Equivalent Million Gross Tonnage] . . . . . . . . . . . . . . . . . . 359

8.231 Vertical geometry degradation on large concrete sleepers with track
speeds 75-110MPH, Weibull parameters and descriptive statistics [nm/
Equivalent Million Gross Tonnage] . . . . . . . . . . . . . . . . . . . . . 359

8.232 Vertical geometry degradation on small concrete and large steel sleep-
ers with track speeds 75-110MPH, Weibull parameters and descriptive
statistics [nm/ Equivalent Million Gross Tonnage] . . . . . . . . . . . . . 360

8.233 Vertical geometry degradation on small steel and timber sleepers with
track speeds 75-110MPH, Weibull parameters and descriptive statistics
[nm/ Equivalent Million Gross Tonnage] . . . . . . . . . . . . . . . . . . 360

8.234 Vertical geometry degradation on large concrete sleepers with track
speeds 110-125MPH, Weibull parameters and descriptive statistics [nm/
Equivalent Million Gross Tonnage] . . . . . . . . . . . . . . . . . . . . . 361

8.235 Vertical geometry degradation on small concrete and large steel sleep-
ers with track speeds 110-125MPH, Weibull parameters and descriptive
statistics [nm/ Equivalent Million Gross Tonnage] . . . . . . . . . . . . . 361

8.236 Vertical geometry degradation on small steel and timber sleepers with
track speeds 110-125MPH, Weibull parameters and descriptive statistics
[nm/ Equivalent Million Gross Tonnage] . . . . . . . . . . . . . . . . . . 362

8.237 Maintenance methods for different rail faults (Stacked Probabilities) . . 362

Steve Clarke XXXII



Railway Track Asset Management Modelling

Acronyms

ANFIS Adaptive Neural-based Fuzzy Inference System.

ANN Artificial Neural Network.

BCF Ballast Condition Factor.

BFI Ballast Fouling Index.

BH Bullhead.

CDF Cumulative Distribution Function.

CEMGT Cumulative Equivalent Million Gross Tonnage.

COV Coefficient of Variation.

CPN Coloured Petri Net.

CTR Combined Track Record.

CWR Continuous Welded Rail.

ECDF Empirical Cumulative Distribution Function.

ELR Engineer Line Reference.

EMGT Equivalent Million Gross Tonnage.

ESR Early Speed Restriction.

FB Flatbottom.

FIS Fuzzy Interface System.

GOF Goodness Of Fit.

GPR Ground Penetrating Radar.

IRJ Insulated Rail Joint.

LCC Life Cycle Cost.

LSCT Large-Scale Cyclic Triaxial.

Steve Clarke XXXIII



Railway Track Asset Management Modelling

LTSF Local Track Section Factor.

M&R Maintenance and Renewal.

MF Membership Function.

MGT Million Gross Tonnage.

MSA Million Standard Axles.

MTTF Mean Time To Failure.

NR Network Rail.

OLE Overhead Line Equipment.

ORE Office of Research and Experiments.

PDF Probability Density Function.

PL Plain Line.

PN Petri Net.

RAMS Reliability, Avaliability, Maintainability and Safety.

RCF Rolling Contact Fatique.

RMSE Root Mean Squared Error.

S&C Switches and Crossing.

SD Standard Deviation.

SRS Strategic Route Section.

TGP Track Geometry Parameters.

TQI Track Quality Index.

T-SPA Track Strategic Planning Application.

UIC International Union of Railways.

VTISM Vehicle Track Interaction Strategic Model.

Steve Clarke XXXIV



Railway Track Asset Management Modelling

Chapter 1

Introduction

Railways are an important type of transport infrastructure deployed in most countries
around the world. They have many advantages allowing quick and efficient transporta-
tion of freight and passengers across an area with lower emissions than road traffic.
The railway industry also employs large quantities of people from research, production,
installation and then use, with Oxera (2014) estimating that the UK railway industry
employs around 212,000 people and contributes £9.3 billion to the economy. Due to
the benefits of a country having high quality railway infrastructure it is important to
constantly maintain and upgrade it. However, a railway system is expensive to run,
with Network Rail (2019) reporting a yearly expenditure of £12.639 billion for 2018/19.
This consists of £3.082 billion on renewals, £3.164 billion on enhancement projects and
£1.525 billion on maintenance for the 32,186 km of track and other assets such as sta-
tions and bridges. Due to these high costs it is imperative to be able to run a railway
network efficiently, which is where asset management techniques are employed. One of
the many tools deployed as part of asset management are Life Cycle Cost (LCC) mod-
els, which are based on mathematical and/or statistical relationships and can be used
to estimate asset’s future costs. These costs, depending on the model, can include in-
spection, maintenance, renewal and upgrades costs of an asset. The results obtained are
used to estimate future expenditure, plan major renewals and upgrades and optimise
asset policies such as maintenance schedules. As part of this thesis an LCC model has
been developed to forecast the future costs of running sections of railway track including
inspections, maintenance, renewals and upgrades.

1.1 Problem Definition

Managing railway infrastructure is complex with one of the main tasks consisting of
maintaining the track geometry for safety purposes and passenger comfort. The track
geometry worsens with time as trains traverse the track, and once the track quality
reaches an undesirable state, maintenance actions are undertaken. The geometry degra-
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dation is a seemingly random process which is related to many factors, such as weather,
traffic loads and speed, so is especially hard to estimate accurately within a model. On
top of that the alternative maintenance activities each have varying effects on improving
the track geometry with each use. Other aspects of the track also degrade such as the
rails where faults can occur. Within the railway track the degradation rates of these
different assets are interconnected but these relationships are very hard to pinpoint and
quantify. Due to the complexity and size of a railway network the logistics of performing
work is troublesome with some work having to be scheduled years in advance. There is
also a finite amount of resources available so certain work has to be prioritised. This
includes physical resources like the number of maintenance equipment and people, as
well as aspects like the availability of the track to perform maintenance on. All this
makes producing a useful LCC model that accurately models the dynamic system of the
track a difficult task with complex degradation mechanisms and interactions, varying
maintenance effectiveness and highly dependent work scheduling. Despite this it is a
problem that is important to solve. Due to the complexity of the system to model and
the high cost of maintaining the railway infrastructure, there are large optimisation op-
portunities. These could be cost savings whilst maintaining the same track quality or
improved quality for the same expenditure, improving passenger comfort and safety.

1.2 Research Aims and Objectives

The primary research aim is to develop an LCC model which is capable of estimating the
future costs of managing a section of track. The model will also allow the possibility of
optimising the maintenance and inspection strategies to sustain a high standard of track
quality whilst reducing costs. To accomplish this, multiple research objectives have been
identified:

1. Understand the benefits of asset management and the uses of LCC models .
2. Review of research into the types of track assets, their degradation mechanisms

and maintenance actions.
3. Review of current modelling techniques and previous railway track models.
4. Analyse the factors which affect the track geometry, maintenance effectiveness and

rail faults using data supplied by Network Rail (NR).
5. Establish a modelling method which will be suitable to model the railway track.
6. Construct a model which takes into account track degradation, inspections, main-

tenance, upgrades and renewals.
7. Demonstrate the model’s uses using existing track sections within the UK railway

network.
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1.3 Thesis Layout

Chapter 2 includes background information on asset management, railway track assets,
their degradation processes and maintenance actions as well as an overview of previous
research undertaken on railway track degradation and other LCC models.

In Chapter 3 data obtained from the UK railway network has been used to quantify the
track degradation and perform an analysis to uncover the main factors that affect the
rate of geometry degradation.

Within chapter 4 the effectiveness of the primary maintenance methods used to correct
the track geometry has been analysed and the main factors identified. As part of this,
a stochastic model is introduced to predict the improvement from maintenance, as well
as the output of mechanical maintenance machines.

Chapter 5 introduces rail fault data which is analysed to identify the main factors which
impact the rate of faults occurring. This includes quantifying the link between the track
geometry quality and the rail fault rate, which has been used to produce a probabilistic
model.

A stochastic CPN asset management model that simulates the track geometry degrading
and rail faults occurring has been developed in chapter 6. The model allows for asset
management decisions such as inspection intervals, maintenance thresholds and access
times to be modelled and the impact of decisions known.

Chapter 7 gives conclusions from the work undertaken and recommendations for future
work.

The Appendix contains summary statistics of the data used and backing results from
the analysis in Chapters 3. Additional tables related to the proposed rail fault model
are also included.
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Chapter 2

Literature Review

2.1 Introduction

To develop a Life Cycle Cost (LCC) model there are three things which need to be
understood. First are the uses of an LCC model and how it fits into asset management,
with these understood it is possible to decide on required outputs of the developed
models and design variables. Secondly, it is important to understand the system that is
being modelled, in this case a railway track. As part of this, previous research into the
assets involved and how they degrade has been reviewed. This will serve as the basis
to an analysis of the factors which change the degradation rate of the track, such as
track speed. Additionally, the types of maintenance activities have also been researched.
Thirdly, a review of previous track models and general modelling techniques has been
undertaken. This will allow for an informed decision on the modelling techniques used
as the basis of the LCC model.

2.2 Asset Management

Asset management is an important part of most industries and applies to both tangible
assets, such as machinery and buildings, as well as intangible assets, which includes
patents and brand recognition. Within this thesis railway infrastructure assets will be
focused on. Asset management is a complex idea that encompasses multiple uses and
possible outcomes with many inputs. A formal definition of asset management, which
is also one of the most widely used definitions, was outlined by the Institute of Asset
Management (2008a) as being:

Systematic and coordinated activities and practices through which an or-
ganization optimally and sustainably manages its assets and asset systems,
their associated performance, risks and expenditures over their life cycles for
the purpose of achieving its organizational strategic plan.
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There are a multitude of principles and attributes which are used to optimise asset man-
agement with some primary ones being outlined by the Institute of Asset Management
(2008b) as:

• Holistic; look at the whole picture.
• Systematic; methodical approach.
• Systemic; consider individual assets as part of a system and optimising the system

instead of just the individual assets.
• Risk-based; decisions of expenditure and resources affected by their associated

risks.
• Optimal; best value comparing factors such as performance, cost and risk over an

asset’s life cycle.
• Sustainable; considering long-term effects of short-term activities enabling future

long-term objectives such as economic, environmental sustainability and the system
performance to be achieved.

With the implementation of good asset management techniques there are many benefits
achievable which have a positive impact on all areas of a business. Some of these benefits
are discussed by the Institute of Asset Management (2008a), which describes how the
inclusion of successful management to optimise asset’s life cycles can result in:

• Improved health, safety and environmental performance;
• Optimised investment return and growth;
• Improved long term planning and confidence in future plans;
• Enhanced customer satisfaction;
• Demonstrate the best value for money, with the prediction of future costs being

used to obtain funding. A comprehensive estimate of future costs reduces uncer-
tainty and increases the likelihood of obtaining funding;

• Improved corporate reputation.

The railway industry is a substantial business that includes a large network of many
types of assets. Due to this the railway industry is well suited to see many large benefits
from implementing effective asset management, including cost savings, safety improve-
ments, increased customer satisfaction and usage growth. As part of this, the industry
has to deliver the outputs desired by the customers, funders and other key sharehold-
ers sustainably with the lowest whole life cost (UIC, 2010). This is done by focusing
maintenance, renewals and enhancements that are key to the customers as opposed to
just prioritising work according to asset condition. It is also important to have great
emphasis on evidence-based decision-making by using knowledge on how assets degrade
and fail to optimise the timings and types of interventions. With the use of extensive
knowledge it is possible to maintain the same level of sustainable performance whilst
reducing the volume of work. This knowledge is also desired to demonstrate to external
shareholders the value of works and to prove the plan with the best value whole life cost
is implemented.
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Poor asset management can lead assets to degrade to the point where they are unfit for
purpose. At best, this can lead to system down time and at worst, potential safety risks.
The railway infrastructure contains a large range of assets that must be maintained in
such a way that they are kept in a serviceable condition. The consequences of failure are
often high, due to the potentially high monetary expense of correction and associated
down time and also the risk of fatalities and injuries to the public, users and workforce.
There are numerous examples of cases where poor maintenance has allowed catastrophic
failures to occur, such as the infamous Potters Bar train derailment, which occurred
on the 10th May 2002. This accident was caused by the failure of a set of points where
flawed maintenance procedures had allowed a number of components to degrade to a poor
condition. This caused a passenger train travelling at 97 mph to derail on its approach to
Potters Bar railway station causing a large amount of damage to the track, a bridge and
the station (HSE Potters Bar Investigation Board, 2003). The crash caused 7 fatalities
and 76 major and minor injuries. Due to the incident Network Rail was fined £3,150,000
(Bright, 2011). This incident highlights the importance of effective asset management
and the requirement to consider safety and condition, as well as costs.

2.2.1 Framework

The desired outcomes of asset management are achievable through the implementation
of an asset management framework which should identify the key components of an as-
set management system, like the one seen in Figure 2.1 which is related to the railway
industry. This framework describes the important mechanisms involved, as well as the
core decisions and activities required, starting from the top and working down the dia-
gram to lower level strategies and decisions. This thesis will concentrate on the enabling
mechanism, LCC tools.

The enabling mechanisms on the left of Figure 2.1 outline aspects that are required to
optimise asset management to get the greatest return for investment leading to a higher
level of performance and safety or cost savings. This includes detailed information about
the assets in the railway network and their locations. It is important to have information
of the assets types, ages and conditions along with maintenance and renewal histories,
failure histories and their impacts on performance and safety, as well as unit costs of
previous works and failures, to predict future costs. Decisions within the railway network
should be supported and optimised using mechanisms such as LCC tools. These tools can
be used for decisions on maintenance activities and renewals on the railway infrastructure
assets and should also be used for forecasts of work volumes and the associated costs.
To make this possible the tools should include an understanding of the different assets’
degradation and failure mechanisms, and the impact of these on the railway service and
safety. Different maintenance and renewal options should be included within the model
along with accurate cost estimates to enable comparisons of the possible options and to
assist in decision-making, such as inspection intervals and maintenance thresholds.
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Figure 2.1: Asset management framework (UIC, 2010)

2.2.2 Life Cycle

The British Standard Institution (2004) identifies the important phases of an asset’s life
cycle as inception, design, manufacturing, installation, operation and maintenance, and
disposal. Operation and maintenance are considered to be the most important aspects in
the rail industry due to the long operational life of the assets, for example rails can last 10-
15 years and concrete sleepers have a typical life of 30-40 years (Lichtberger, 2005). This
results in the majority of costs occurring over the operational part of the life cycle. During
system design, it is important to look not only at the cost of an installation but also to
take account of the whole system life cycle and the associated costs of each part. This
means considering factors such as Reliability, Avaliability, Maintainability and Safety
(RAMS) and their impact on the LCC, taking account of technological advancements
and changes if possible. Historically many new technological advancements have helped
to reduce operational and maintenance costs, such as, Continuous Welded Rail (CWR)
(introduced in the 1950’s) and steel sleepers (introduced in the 1980’s). These factors are
considered for every asset in the system and used to inform decision-making both during
the design phase and during operation when the optimal asset management strategy can
be selected.

2.2.3 Summary of Asset Management

It is important for the railway industry to utilise effective asset management to increase
return of investment which will in turn improve safety and performance or reduce costs.
This can be accomplished by setting up a framework that has clear objectives and poli-
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cies, which are chosen by considering risk, as well as short, and long-term effects on the
railway network’s performance and safety. As part of this the management of assets such
as track need to optimised in order to identify the best decisions. These decisions can be
supported by mechanisms such as LCC tools, which require detailed information of the
assets in the railway network, how they degrade, the effectiveness of maintenance inter-
ventions, the associated costs and the availability of work access and resources. These
tools can also be used to optimise maintenance and inspection regimes to achieve higher
service quality and safety levels or reduced costs by increasing the return of investment.

2.3 Railway Track Assets

2.3.1 Introduction

Railway track mainly consists of Plain Line (PL) track and Switches and Crossings
(S&Cs). These are made of many components with different degradation mechanisms,
maintenance procedures and inspection approaches. Successful asset management re-
quires an understanding of the separate components such as ballast and sleepers, their
degradation mechanisms, interactions and any associated risks. It is also important to
understand the maintenance actions and inspection choices that are available so these
can also be embedded into the model. In the UK there are about 29,800 km of in use
plain line track and 18,400 S&C units of which 99.8% use ballast to spread the load and
hold the sleepers in place. The components that make up a plain line track are:

• Rails; provide a smooth running surface and guidance.
• Sleepers; support the rails at the correct inclination and spacing (gauge), trans-

mitting vertical, lateral and longitudinal forces into the ballast.
• Rail Pads; sit between the rails and the sleepers reducing forces on the sleepers

and providing electrical insulation.
• Fastenings; secure the rail to the sleepers.
• Ballast; consists of crushed rock, which supports the sleepers at the correct level

and alignment. It spreads the forces into the formation, and also enables surface
water to drain away.

• Formation; supports the ballast and collects water into the drainage system.
• Subgrade; this is the natural geological layer that all other parts of the track system

are built on.
• Drainage; conveys water away from the track.

Within this thesis many of the asset types are considered due to the the railway track
assets being linked. The primary focus is the degradation of the ballast and rails.
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2.3.2 Rails

The rail is made out of steel with a cross section consisting of the head, web and foot
with the train wheels running on the head. In the UK there are about 4,050 km of rail
which is jointed where the rail lengths are held together using bolted fish-plated joints
as seen in Figure 2.3a. The more modern technique of CWR, as seen in Figure 2.3b, is
used on about 25,750 km of track in the UK with more jointed track being converted to
CWR every year.

Some of the most common rail sizes in the UK are CEN56 and CEN60 flat bottom rails,
as well as S95 bullhead. These are named after their weight in kg/m for flat bottom and
lb/yd for the older bullhead designs. The difference in shape between bullhead and flat
bottom rail can be seen in Figure 2.2, with dimensions for the three most common UK
rails given in Table 2.1.

Figure 2.2: Flat bottom rail (left) and bullhead rail (right) (Balfour Beatty Rail, 2010)

Table 2.1: Typical rail sizes (Balfour Beatty Rail, 2010)

Rail Type Weight [kg/m] A [mm] B [mm] C [mm] D [mm]

CEN56 56.27 96.85 158.75 140.00 20.00

CEN60 60.03 72.00 172.00 150.00 16.50

S95 47.07 69.85 145.26 96.85 19.05

Rail Joints

Jointed rail has many disadvantages when compared to CWR due to the additional forces
at the gap between the joined rail ends, which is incorporated to allow for thermal rail
expansion, and the strength of the fishplates and bolts that hold the joints together. A
comparison of the forces on a flat, continuous rail head to those in jointed rail can be
seen in Figure 2.4, which illustrates the increased force at the joint, due to the decreased
contact area, as the wheel hits the edge. The discontinuity leads to severe, early, localised
damage either to the rail head or to the fishplated joint, resulting in a shorter service
life. CWR has a much longer service life than jointed rail as discussed by Zong and
Dhanasekar (2013), who reported that Insulated Rail Joints (IRJs), which are joints that
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include epoxy resin to enable track circuits for signalling, have an average life of about
20% compared to CWR. They also discuss the increased forces due to the discontinuity
of rail joints increasing ballast breakup and formation compaction and hence can lead
to faster track geometry degradation. Many factors affect the service life of bolted rail
joints. The bending strength of a pair of fishplates, one either side of the rail, in practice
does not exceed 30% of that of the rail. The fishplates can also be damaged by the
passing of each wheel and the degradation is accelerated by loose joint sleepers, loose or
over-tight bolts and excessive expansion gaps, (Mundrey, 2010). It is estimated that 60%
of rail failures occur at the rail joints with many of these failures being due to yielding
around the bolt holes (Akhtar et al., 2010). Bolt hole cracking is dangerous since failure
often leads to a piece of rail becoming detached (Reid, 1993). The cracks are caused by
shear stresses created from the dynamic wheel/rail forces generated by the discontinuity
in the running surface. Failures of rail joints can be revealed either by eddy current and
ultrasonic inspection or by visual inspection. Track geometry recordings (vertical profile
of the track) can also detect rail joint faults since the faults can induce large spikes in
the readings (sudden dips in the rail top).

Despite giving a stronger connection than fishplated joints, welded rail joints are still
a source of weakness in the rail. This is due to the difficulty of perfectly matching up
the cross-sections. Small errors can lead to increased stresses in the joint. The process
of welding can also add impurities to the steel and the heat can negatively affect the
material properties, causing metallurgical defects to develop, which can lead to sudden
failures (Steenbergen and Esveld, 2006; Ministry of Railways, 2005). A primary drawback
of CWR lies in its ability to deal with thermal expansion and contraction forces in the
rail caused by changes in the environmental temperature (Sung et al., 2005). CWR lacks
expansion/contraction joints and therefore requires the ballast to hold the sleepers and
rail in place. In hot weather, as the rail expands, if the latitudinal or longitudinal forces
from the rail expansion become larger than the confining forces of the ballast the rail
could buckle, as seen in Figure 2.5a. In cold weather contraction can cause rail breaks
to occur, as seen in Figure 2.5b. One advantage of CWR over jointed rail is that it gives
a smoother running surface, resulting in less vibration and noise, reduced wear on the
bogie and lower maintenance costs due to the longer life span (Lei and Feng, 2004).

Chapter 2 Steve Clarke 10



Railway Track Asset Management Modelling

(a) Typical fishplated rail joint
(Interflon, 2011)

(b) Typical welded rail joint
(Zwolski, 2012)

Figure 2.3: Rail joints

Figure 2.4: Wheel contact loading at a gap-jointed rail (Zong and Dhanasekar, 2013)

(a) Rail buckling caused by thermal
expansion

(Zwolski, 2012)

(b) Rail break caused by thermal contraction
(Zwolski, 2012)

Figure 2.5: Consequences of thermal expansion/contraction on CWR
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Rail Failure Mechanisms

Rail has many failing mechanisms, most of which result from fatigue caused by large
forces. These larger forces on the rails normally occur around curve sections of track
and hence rail installed on curved track tends to develop more faults. This is shown by
Table 2.2, where Sawley (2001) estimated the rail life in Million Gross Tonnage (MGT)
for different radii curves on the US railway network. Table 2.2 shows the dramatic
effect that the increased loading that occurs at curved sections of track has on the rails
serviceable life. Rail degrade by a combination of fatigue and wear, leading to many
types of faults. There is also an environmental impact as rails rust, weakening them.
Within this section a brief outline of the primary failure mechanisms are discussed.

Table 2.2: Estimated life of rail on track sections of varying curvature (Sawley, 2001)

Curve Radius [m] Estimated Rail Life [MGT]

Straight 1460

1,750 1050

875 640

580 540

440 510

350 440

290 390

250 380

220 370

190 350

175 330

Rail Corrugations
Rail corrugations are cyclic, commonly vertical, irregularities on the rail surface. They
can be short pitch with wavelengths between 30 and 90 mm (0.2-0.3 mm deep) or long
pitch with wavelengths above 300 mm (0.1-2.0 mm deep), (Wilson, 2012). An example
of short pitch corrugations can be seen in Figure 2.6.

Short pitch corrugations are caused by repetitive longitudinal oscillations of the wheel
sliding on the rail and are commonly made by lighter axle loads (<20 tonnes). Long pitch
corrugations develop due to plastic flow of the steel rail caused by high wheel/rail contact
stresses. Heavier and faster trains, higher track and bogie stiffness, smaller wheel/rail
contact interface and softer rails all increase the amount of long pitch corrugations.

Rail corrugations are discovered by visual inspections and act to increase dynamic wheel
loads and vibration, thereby escalating the rate of degradation and failure of many track
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and vehicle components, (Smith, 2005).

Corrugations are minimised by using higher strength steel rails to sustain greater contact
stresses and reduce plastic flow. A good wheel/rail profile has a large contact area, which
can minimise the contact stress. Corrugations can also be lessened by reducing the track
stiffness by using softer and thicker rail pads. Corrugations are removed by grinding
the rail until it is flat and smooth, whilst ensuring that it has the correct cross-sectional
profile, (Wilson, 2012).

Figure 2.6: Short pitch corrugations (Wilson, 2012)

Rolling Contact Fatigue
Rolling Contact Fatique (RCF) is a common defect in most railway systems. Contact
fatigue describes defects that arise from the development of excessive shear stresses at
the wheel/rail interface. Common types of RCF are checking, shelling and flaking.

Checking occurs primarily on the high rail in sharp corners (gauge corner) and can look
like fish scales, as seen in Figure 2.7a. Cracks initiate from the rail surface, or just below,
every 2-5 mm along the rail. These cracks can then grow to 2-5 mm deep at which point
they tend to break out as small wedges. Flaking is similar, but occurs on both the high
and low rails of a corner on the running surface of the rail. An example can be seen in
Figure 2.7b.

Shelling also generally occurs on the high rail of curved track and is an internal defect
about 2-8 mm deep on the gauge side of the rail head, with the early stages of shelling
noticeable as dark spots at the gauge corner of the rail. The defect can break off into
a shell, as in Figure 2.7c, or can grow downwards and form a defect in the transverse
plane, as seen in Figure 2.7d, which, if not discovered, can result in a rail failure, (Smith,
2005).

RCF occurs due to shear stress above the serviceable limits of the rail material in the
wheel/rail contact area. This stress is caused by nominal, dynamic and impact wheel
loadings which are affected by many factors including track geometry, bogie character-
istics, wheel and rail irregularities and track cant. RCF is normally found on the high
rail around corners due to the larger forces experienced on this rail, (Wilson, 2012).
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(a) Gauge corner checking (b) Flaking with minor spalling

(c) Severe stage of shelling (d) Transverse defect initiated from shelling

Figure 2.7: Rolling Contact Fatiques defects (Wilson, 2012)

Squat Defects
Squats are subsurface laminations which initiate at small cracks. These then extend
diagonally downwards, reaching depths of 4-6 mm. They then spread laterally and
longitudinally across and along the rail surface, (Wilson, 2012).

There are two categories of commonly occurring squats: running surface squats and
gauge corner squats. Running surface squats are caused by thermal traction effects
associated with wheel slips, which cause elevated surface hardness. Gauge corner squats
initiate from pre-existing cracks, such as RCF, and usually occur on the gauge side of
the rail head on the high rail of corners.

Squats are visible as a darkened area on the running surface of the rail head caused by a
slight depression and are often double-sided kidney shapes, as seen in Figure 2.8. Squats
can occur in irregular patterns on one or both of the rails and gradually develop over
many months or years, (Grassie, 2011).

The depression in the running surface caused by squats can cause increased vertical
impact loading, which exacerbates the degradation of other assets in the track structure,
as well as creating increased vibration and noise. Ultrasonic testing can be used to see
the depth and length of the squats sub-surface cracks. Once detected, squats can be
removed by grinding of the rail but due to their depth a large quantity of metal often
needs to be removed (as much as 6 mm), which greatly reduces the usable life of a rail,
(Wilson, 2012).
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Figure 2.8: Running surface squat (Wilson, 2012)

Tache Ovale
These are internal defects that propagate from near the centre of the rail head, growing
transversely. An example can be seen in Figure 2.9. Due to the internal nature of tache
ovale they cannot be detected by visual inspection but are instead discovered by regular
ultrasonic rail inspections.

Tache ovales are created by the presence of excessive levels of hydrogen in the rail steel
or weld (caused by cooling steel too quickly). The build up of these hydrogen molecules
leads to increased internal pressure and can cause a crack to initiate, (Smith, 2005).

Due to being a rail production problem, it is possible that the same piece of rail develops
many tache ovales. This can lead to catastrophic failure of the rail, especially under high
impact loads.

To avoid the appearance of tache ovale defects the critical hydrogen content in the rail is
reduced by appropriate steel making and heat treatment procedures. If rails affected by
tache ovale are in the track, the growth can be inhibited by reducing normal, dynamic
and wheel impact loadings by methods such as speed reductions. Ultrasonic testing is
used to monitor the tache ovale until they become a critical size, at which point the rail
is replaced, (Wilson, 2012).

Figure 2.9: Tache ovale defect (Wilson, 2012)
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Vertical and Horizontal Split Head
When a vertical crack appears within the rail head, as in Figure 2.10a, it is known as
a vertical split head and this can cause the rail head to split in two. Alternatively a
horizontal defect can occur. The defects cannot be detected visually until it is already
large. An example of an externally visible vertical split head can be seen in Figure 2.10b.
The size of a split head can be determined using ultrasonic testing, (Profillidis, 2006).

The vast majority of split heads occur due to impurities in the steel. They are much
more common in older rails. The initial crack propagates vertically (or horizontally) as
well as experiencing longitudinal growth. Split heads are often caused by heavier axles
and impact loads as well as off-centre contact between hollow wheels and a worn rail.

Where the crack extends along the rail it can lead to a large part of the rail head being
weakened. If this is not detected and rectified a complete vertical failure of the rail head
can occur, which would increase the risk of derailment, (Profillidis, 2006).

Split heads are becoming less common due to better steel rail manufacturing but can
still occur in modern rails under extreme rail wear conditions. Once detected on the
track the crack growth is monitored using ultrasonic inspections, and can be minimised
by reducing the applied nominal, dynamic and most importantly wheel impact loading
stresses by measures such as, speed restrictions or changes to maximum axle loads. Split
heads can be minimised by grinding the rails to a shape where the wheel loading is
concentrated on the centre of the rail head, (Wilson, 2012).

(a) Vertical split head internal view (b) Vertical split head external view

Figure 2.10: Vertical split head defects (Wilson, 2012)

Wheel Burns
Wheel burns are defects on the running surface of the rail that appear in pairs opposite
each other on the two parallel rails and can reach lengths of more than 50 mm.

Wheel burns are caused by the continuous slipping of the wheels, increasing the tem-
perature near the surface of the rail, which then cools quickly causing the steel rail
to transform into the hard and brittle martensite phase. Wheel slipping is commonly
caused by excessive track gradients, rapid acceleration of trains or by contamination of
the running surface.
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Wheel burn defects tend to break up, leading to a depression in the running surface, and
hence increased impact loads. These impact loads exacerbate the degradation of both
the track and the bogie. As with other transverse defects, if they are not detected in time
a complete vertical failure of the rail head may occur. Due to the high impact loading
caused from the wheel burn these transverse defects tend to propagate at a faster rate
than other defects.

To reduce the likelihood of wheel burns, rail lubrication must be applied correctly in the
right amounts. The trains must also be driven sensibly with no rapid acceleration. It
is also recommended that the rail head is cleaned of any contaminants by high pressure
water spray, especially after a long dry spell of weather. Ultrasonic inspection should
be undertaken regularly to monitor the transverse defects under the wheel burn before
they reach a critical size, (Wilson, 2012).

2.3.3 Sleepers

Sleepers are traverse ties on which the rails are connected. The sleepers have many
purposes, including, (Swarnakar, 2012):

• Even transfer of the load from the rails to the ballast;
• Holding rails at the correct gauge and alignment;
• Supporting the rails evenly;
• Absorbing blows and vibrations from moving loads;
• Providing longitudinal and lateral stability;
• Providing an easy way to correct track geometry faults.

Sleepers are typically manufactured from timber, reinforced concrete or steel. In the UK
there are 22,200 km of concrete, 4,700 km of timber and 2,800 km of steel sleepers, with
200,000 timber sleepers being replaced by concrete sleepers every year (Williams, 2012).
Each material choice brings advantages and disadvantages, which are discussed below.

Timber Sleepers

Timber sleepers are usually made from hardwood such as oak but softwoods can be used
on lighter lines. In the USA timber sleepers are primarily used, with 93% of all sleepers
in use being made of timber. The main advantages of timber sleepers are, (Li, 2012;
Profillidis, 2006):

• Are relatively light and easy to handle and install, with no required plant;
• Are cheap and easy to manufacture (dependent on country of production);
• Can be sustainably sourced;
• Have a good capacity to absorb shocks and vibrations;
• Acts as an electrical insulator allowing track circuits for signalling;
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• Are flexible, resulting in better load distribution and hence are useful on poor
subgrades;

• Are adaptable and available in multiple sizes with the ability to be cut down on
site making them especially useful for non-standard situations such as S&C;

• Can be reused as garden landscaping or biomass fuel if untreated.

The main disadvantages are:

• Their limited lifetime, typically 20-50 years if treated, otherwise 7-12 years;
• They can be damaged by wear, decay and vermin; Environmental factors such as

sunlight and moisture have a large effect on a timber sleepers service life;
• Their low weight leads to low transverse resistance, making them unsuitable for

high speed lines;
• Smaller sleeper gaps are required when compared to concrete, resulting in more

sleepers per km;
• If treated with a product such as coal tar creosote, which is a toxic hazard, there

are added disposal costs and the sustainable sleepers lose environmental credibility;
• Maintaining gauge can be difficult as the sleeper degrades;
• Susceptibility to fire hazards.

Degradation Mechanisms
Wooden sleepers generally degrade slowly due to wear beneath the baseplate, as well
as wearing of the fixing holes for screws and spikes that hold the rail or baseplate in
place. Both of these processes occur due to rail traffic causing movement between the
separate parts of the fastening system. The other major degradation mechanism is the
natural process of rot and decay of the timber which can be exacerbated by vermin. The
timber sleepers on most highly trafficked lines in the UK have been replaced by concrete
sleepers, with timber sleepers tending to remain on low trafficked lines. This means that
wear from traffic has reduced, leaving rot and decay as the primary reason for sleeper
replacement. Timber sleepers are visually inspected and replaced individually if required
(Williams, 2012).

Concrete Sleepers

Pre-stressed, reinforced, mono-block, concrete sleepers have become a replacement for
timber sleepers in many parts of the world including Europe, Australia and Japan. The
main advantages of concrete sleepers are, (Swarnakar, 2012; Li, 2012):

• Their long service life, typically between 45-55 years;
• Their high weight leading to increased track stability, which makes them better

suited to CWR than the alternatives;
• Increased stability makes concrete sleepers the best option for high speed lines;
• The elastic fastening systems used with them helps maintain the correct gauge,
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cross level and alignment;
• They act as an electrical insulator allowing track circuits for signalling;
• They are inflammable and not affected by vermin with minimal corrosion;
• They are easy to mass produce;
• Larger sleeper spacing possible leading to fewer sleepers per km in comparison to

alternatives.

The main disadvantages are:

• Their vulnerability to impact damage;
• Their high weight, typically between 215 kg and 270 kg, makes them difficult to

handle meaning that plant equipment is required for installation, resulting in longer
installation times;

• They are relatively expensive, especially if outside of standard sizes as required at
S&C;

• They are susceptible to heavy damage in derailments, thus requiring replacements
(Zakeri and Rezvani, 2012);

• Having greater height than other sleeper types makes concrete sleepers less well
suited to routes with minimal height clearance, such as in tunnels;

• They have minimal scrap value;
• They are not sustainable and have a large environmental cost due to their produc-

tion requiring a large amount of energy;
• They can be damaged in transportation.

Degradation Mechanisms
Concrete sleepers generally degrade slowly. The rail seat area tends to wear with the
rate being increased by thin or worn rail pads. Sleepers can also be physically damaged
by activities such as tamping. Poor ballast conditions can lead to soffit attrition and
cracking due to inconsistent support. It is also possible for spalling to occur due to
rusting of the steel reinforcement causing them to delaminate the concrete. Concrete
sleepers can still function as required with cracks but when they fail the load on adjacent
sleepers and rail is increased and this can lead to localised geometry faults. Concrete
sleepers can be individually replaced but rail seat wear due to ineffective rail pads will
generally affect a large section of sleepers, meaning that all need to be replaced. This
means that the rail pad is of great importance (Williams, 2012).

Steel Sleepers

Steel sleepers are hollow, open bottom rectangular cuboid’s with rounded edges that
taper out near the ends for transverse track stability. Their main advantages are, (Li,
2012; Profillidis, 2006):

• Their long service life, typically between 30-60 years;
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• They are light and easy to install but tamping is required to force ballast inside;
• They are inflammable and not affected by vermin;
• They are recyclable with good scrap value.

The main disadvantages are:

• They are liable to corrosion;
• They are unsuitable for areas with track circuits for signalling due to electrical

conductivity;
• They have low transverse resistance resulting in poor high speed line performance;
• They can develop cracks at the rail seat.

Degradation Mechanisms
Due to the relatively recent introduction of steel sleepers, their failure mechanisms in the
field are not understood to the same degree as concrete and timber sleepers. Fatigue is
the primary source of failure which causes cracking in and around the rail seat (ARTC,
2009). Since failure is caused by fatigue, failure occurs suddenly with no prior indication.
To reduce fatigue it is important to prevent excessive fatigue loads such as those caused
by poor ballast, which results in a particular sleeper taking more load than adjacent
sleepers. Steel sleepers can rust in certain conditions, which can greatly weaken them.
Like other sleepers, steel sleepers can be spot replaced if required.

2.3.4 Ballast

The ballast is the platform on which the sleepers are laid. It consists of crushed rock
which can vary due to requirement and available local sources. Granite, traprock,
quartzite, basalt, carbonate rocks and slag are some of the most commonly used mate-
rials, (AREMA, 2012). Good ballast is composed of angular, crushed hard stones and
rocks, uniformly graded, free of dust and dirt and not prone to cementing action, (Selig
and Waters, 1994). The stones have to be able to withstand large loads without being
crushed, and they must be angular to enable interlocking in order to create a strong
assembly of particles. Ballast has many functions, including, Profillidis (2006); Calla
(2003):

• Distributing stresses transmitted by the sleepers down to the sub-ballast;
• Attenuating train vibrations and sound;
• Resisting the track shifting both transversely and longitudinally;
• Allowing rainwater drainage;
• Facilitating track geometry to be restored through maintenance.

Under the ballast layer there is a sub-ballast layer that consists of gravel and is commonly
around 15 cm thick. The sub-ballast functions to, (Profillidis, 2006):

• Protect the subgrade from the intrusion of ballast stones;
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• Distribute stresses from the ballast down to the subgrade;
• Allow rainwater run-off;
• Create a transverse slope (of 3-5%) in the upper part of the subgrade to allow

water to run-off.

The granulometric composition of ballast is important for it to fulfil its role correctly.
For fresh, clean ballast a comparison of two common composition limits can be seen in
Figure 2.11, which was created using information from BS EN 13450 (2002) and AREMA
(2012). It can be seen from Figure 2.11 that the AREMA boundaries tend to be more
well graded, allowing smaller particles but also having more large particles than the BSi
option which is more uniformly graded. Despite the slight differences, both agree that
the majority of the ballast should have particle sizes of 20-60 mm.

The material and particle size are not the only geometric characteristics for good ballast.
It is also important that the ballast has a minimal quantity of fines and fine particles,
which are classified as passing sieve sizes of 0.063 mm and 0.500 mm respectively, (BS
EN 13450, 2002; Profillidis, 2006). The large stone sizes and minimal inclusion of fines
helps the ballast to drain quickly. The particle shape is also an important factor with
a flakiness index, shape index and particle length boundaries being checked for new
ballast. The mechanical properties of the ballast are also tested to quantify its resistance
to fragmentation and wear, which has set boundaries (Aursudkij, 2007; BS EN 13450,
2002).

Track settlement mainly occurs within the ballast and is measured using a specially
designed train, such as the New Measurement Train used by Network Rail. This train can
travel at up to 125 mph and uses laser scanning equipment to measure the track geometry
changes every 0.2 m. This is possible with the inclusions of gyroscopes, accelerometers
and transducers to detect the movement of the train. As a train travels down the track it
will be effected by undulations in the track profile. When it comes to effecting the passage
of the train, long smooth undulations do not affect the safety of the trains passage and
are not felt within the train so these are removed to leave only the more sudden changes
in vertical profile that may have a detrimental effect on the running trains. To remove
these smooth changes, which are represented by long wavelengths within the vertical
top profile, a filter is used. Network Rail (NR) use a 35 m wavelength four-pole high
pass filters (Lewis, 2011). The vertical Standard Deviation (SD) is the most-used track
geometry measurement for indicating the track condition, as vertical geometry tends
to degrade fastest and is also the main factor that effects the ride quality and possible
maximum speed (Network Rail, 2012). The SD is typically calculated from the average
height of both rails (after the 35 m filter has been applied) for 220 yard sections of track
and can be found using Equation 2.1, where m is the total number of values, a is the
mean value and a1 is the sample value, (Dingwall, 1998).

SD =

√
1

m
Σ(a1 − a)2 (2.1)
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An inflated example of the vertical top profile of a poskey, after a 35 m wavelength filter
has been applied, is shown in Figure 2.12. The left and right rails are recoded separately
and an average profile found, which is then used to calculate the SD in mm.

Figure 2.11: Comparison between AREMA Number 24 and BSi Category B ballast
grading boundaries

Figure 2.12: Exaggerated vertical top profile after 35 m wavelength filter, based on
geometry recordings from a measurement train (Audley and Andrews, 2013)

Degradation Mechanisms

Fouling
Ballast fouling occurs when the ballast contains small particles, which are described by
Selig and Waters (1994) as particles smaller than 4.76 mm in diameter, and in BS EN
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13450 (2002) as those particles that pass through a 5 mm sieve. The causes of fouling
are, (Selig and Waters, 1994; Williams, 2012):

• Ballast breakdown caused by dynamic forces from traffic leading to the ballast
particles to rub together as well as maintenance activities such as tamping;

• Infiltration from the surface (such as coal spilling and airborne dirt);
• Sleeper wear;
• Infiltration from underlying granular layers;
• Infiltration from the subgrade.

The main sources of fouling in British and North American railways are given by Selig
and Waters (1994). In British railways the main causes of fouling is wagon spillage at
43%, followed by traffic and sleeper wear, which includes ballast breakage at 21%, and
tamping at 20%. In North America 76% of fouling is due to ballast breakage, 13% related
to underlying granular layers and 7% caused by surface infiltration.

Ballast fouling impedes the drainage path, resulting in the subgrade becoming saturated.
This increases the soil’s plasticity, resulting in faster permanent deformation (Kirchhof,
2006). Lichtberger (2005) indicates that the critical Ballast Fouling Index (BFI) is 30%,
as above this level the amount of run-off is minimal as seen in Figure 2.13, where the BFI
is used to quantify the degree of fouling. Wet beds can appear in highly fouled ballast;
these can be seen from the surface where a slurry of water and fines mix and can increase
the degradation rate of sleepers and rails. As fouling increases the distribution of loads is
reduced, as seen in Figure 2.14. This leads to faster settlement within the subgrade due
to the increased concentration of the load and also increased ballast contamination from
subgrade infiltration (Williams, 2012). Increases in fouling also decrease the ballast’s
resilience to deformation as the fines coat the contact points between large particles,
acting like a lubricant, lowering the strength of the particle network and increasing the
ballast stones movement, (Ebrahimi, 2011b). The degree of fouling affects how quickly
the vertical geometry degrades, with higher fouling resulting in faster degradation as
seen from Figure 2.15, (Williams, 2012). The vertical geometry can be maintained by
tamping, but this greatly increases ballast breakup with it being estimated that every
tamping operation produces as many fines as 20 MGT of traffic, (Ottomanelli et al.,
2005).

Fouling also has an impact on the effectiveness of tamping and hence the ability to
restore good track geometry. As fouling occurs and the voids in between the large
ballast stones fill, resulting in denser ballast. Tamping then loosens the stones and
particles creating voids, which under load, as the small particles move, are quickly filled.
This leads to a higher rate of ballast settlement after tamping than experienced with
new, clean ballast (Aursudkij, 2007). This leads to a higher frequency of maintenance
being required as shown by Figure 2.16, (Williams, 2012). It is noted that Figure 2.16
includes stoneblowing maintenance, which is much more effective on fouled ballast, so for
higher levels of fouling the relative frequency would be much greater for tamping alone,
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which is estimated to be four times higher for choked ballast, where all the voids are filled
with fines and fine particles. It is for this reason that stoneblowing is the maintenance
of choice for heavily fouled ballast (Williams, 2012). Tamping and stoneblowing are
described in Section 2.3.4.

High degrees of fouling such as those that are present when wet beds appear can be
identified during visual inspection. However, lesser degrees of fouling cannot be identified
by visual inspection. In such cases equipment such as Ground Penetrating Radar (GPR)
is used. From the readings obtained from the GPR, it is possible to calculate the BFI,
enabling the correct decision on maintenance or renewal action to be made. The BFI is
a percentage that is used to categorise the degree of fouling. It can be calculated from
Equation 2.2, where P4 and P200 are the percentage of ballast particles that pass through
the 4.75 mm and 0.075 mm sieves.

BFI = P4 + P200 (2.2)

Figure 2.13: Critical quantity of precipitation depending on the degree of fouling
(Lichtberger, 2005)
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Figure 2.14: Schematic representation of fouled ballasts reduced bearing capacity
(Lichtberger, 2005)

Figure 2.15: Increase in track geometry degradation rate with ballast fouling
(Williams, 2012)
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Figure 2.16: Increase of maintenance frequency due to ballast fouling (Williams, 2012)

Maintenance Techniques

Ballast maintenance restores the track geometry and involves either tamping or stoneblow-
ing, with small faults being corrected manually. When the ballast reaches a highly fouled
state general maintenance has less of an effect so more radical maintenance, such as a
renewal, is performed. This can involve cleaning the ballast and reusing a proportion of
it or carrying out a complete renewal in which all the ballast is replaced.

Tamping
Tamping is the most common form of maintenance for the correction of track geometry
faults. Tamping is undertaken by a specialised tamping train which uses tines to correct
the track level. The process is outlined by Figure 2.17a, where:

A: Track profile needs correcting.
B: Tamping train lifts the rail and sleeper to a target level, leaving an empty space

below the sleeper.
C: The tamping tines are inserted on both sides of the sleeper. This causes ballast

breakage.
D: The vibrating tines squeeze ballast into the gap under the sleeper, recovering the

correct position of the sleepers. This also causes ballast breakage.
E: The tines are removed, leaving the track in the correct position and the tamping

machine moves on to the next sleeper.

After a tamping operation is complete, fast degradation of the track geometry occurs
due to the ballast skeleton being loosened by the tamper. Once an equilibrium has been
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reached in the ballast, the rate of degradation will reduce but the track geometry will
reach the same level as observed prior to tamping quicker than it did before the tamping
operation took place. This effect is known as ballast memory and is reduced by lifting
the sleepers to a higher level than ultimately required in order to account for the fast
settlement which will occur directly after tamping (Aursudkij, 2007). Ballast tamping is
most effective on single graded ballast stones. Hence, as ballast fouling increases tamping
has less of an effect on prolonging degradation. Acting in combination with ballast
memory, this effect of fouling reduces the time interval between required tamps after
each tamping operation, until it is no longer economical to undertake tamping operations
(Selig and Waters, 1994). When this is the case, stoneblowing can be performed. Ballast
cleaning or complete renewal of the ballast can also be considered.

Stoneblowing
Stoneblowing is a more modern alternative to tamping but is more expensive and slower.
However, it has many advantages over tamping, including causing much less ballast
breakup with Wright (1983) (as cited by Aursudkij (2007)) showing that tamping pro-
duced eight times more particles below 14 mm per operation than stoneblowing. The
process of stoneblowing is demonstrated in Figure 2.17b, where:

A: Track profile needs correcting.
B: Stoneblowing train lifts the rail and sleeper to a target level, leaving an empty

space below the sleeper.
C: Stoneblowing tubes are inserted into the ballast next to the sleeper.
D: Compressed air blows a measured quantity of stones into the space below the

sleeper. The stones are normally about 20 mm in size.
E: The tubes are removed from the ballast.
F: Sleeper is lowered onto the new stones.

Another advantage stoneblowing has over tamping is that it can be used even when
ballast is fouled, returning the track to a better condition than tamping would with a
reduced degradation rate after. This leads to a longer time period between successive
stoneblowing operations. Stoneblowing is particularly effective for smaller geometry
corrections where small lifts, less than one inch, are used. Due to the small size of the
injected stones stoneblowing is not as well suited to larger lifts which are greater than
one inch. For these larger lifts the ballast rearrangement caused by tamping is more
effective (Zarembski, 2005). The general rule of thumb is that for fresh, clean ballast
tamping is used and later in life, as the ballast becomes fouled and tamping becomes
less effective, stoneblowing is used, until the ballast condition due to fouling becomes
unacceptable. At this point ballast cleaning or a ballast renewal is undertaken.
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(a) Tamping sequence (b) Stoneblowing sequence

Figure 2.17: Ballast maintenance sequences (Selig and Waters, 1994)

2.3.5 Formation and Subgrade

The formation layer below the ballast layers is typically made from sand and designed
with a slope from the track centre to the side to enable good drainage and run-off. Below
this is the subgrade, a prepared (compacted) natural layer, which forms the base of the
track system. The subgrade can be strengthened by activities such as lime stabilisation
and the use of geogrids, reducing the amount of settlement that occurs. These layers
can be inspected using GPR but maintenance is not possible without a complete track
renewal.

Degradation Mechanisms
The formation and subgrade are affected by settlement in the same way as the ballast,
where loading causes the particle skeleton to change, reducing the void ratio, which
ultimately causes track geometry faults. Despite having similar degradation mechanisms
it is shown by Selig and Waters (1994) that the majority of the overall track settlement
and hence geometry faults occur within the ballast and not the subgrade, Figure 2.18.

Figure 2.18: Track layer contributions to settlement (Selig and Waters, 1994)
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2.3.6 Summary of Railway Track Assets

A railway track consists of rails, fastenings and rail pads, sleepers, ballast, formation
and subgrade, with the forces produced from passing trains occurring on the rails and
moving downwards.

The rail which provides a smooth running surface can either be CWR or jointed, with
CWR being the modern preference. The fishplated joints are the weakest part of the
rail, with the increased dynamic forces from the dip damaging the rails and the other
assets. CWR also has problems; changes in temperature, which causes the rail to expand
or contract can lead to buckling or breaks unless there is the required lateral resistance
given by the ballast on the sleepers. The majority of rail defects are caused by fatigue
and are more likely to occur when under higher stresses, such as the top rail around
a bend, or impact damage, such as by joints. These rail defects can cause increased
forces to occur, due to irregularities in the rail running surface, leading to the faster
degradation of other assets, such as sleepers and ballast.

There are three main types of sleepers used; timber, reinforced concrete or steel. The
sleepers transfer the load from the rails whilst supporting them evenly and providing
longitudinal and lateral stability. Timber sleepers are cheap, renewable, recyclable, light,
adaptable and easy to install, but they have a limited lifespan between 20-50 years and
their low weight decreases their transverse resistance making them unsuitable for high
speed lines. Gauge tends to degrade faster with timber sleepers due to the available
fastening systems and the timber degrading. Timber sleepers are more dependent on
environmental conditions than other sleeper types with moisture or sunlight causing rot
and decay as well as vermin causing damage. As timber sleepers are more prone to
environmental damage the lifespan of timber sleepers can be more time dependant than
usage. Wear of the sleeper below the baseplate is also common and can cause geometry
problems. Concrete sleepers have longer serviceable life spans between 45-50 years and
are much more suited to higher speed lines due to their high weight. Embedded anchors
for the fastenings also reduces the degradation of the gauge. Being very heavy, concrete
sleepers are slower to install as they require plant equipment. Unlike timber sleepers,
concrete sleepers can not be sustainably sourced, require large amounts of energy to
produce and cannot be recycled easily leading to minimal scrap value. Concrete sleepers
tend to fail due to either wear of the rail seat area or cracking caused by inconsistent
support from the ballast. Steel sleepers are the newest form of sleepers used in the
UK and can have a long service life between 30-60 years. They are light and easy to
install and recyclable, but they can corrode in certain climates and their low transverse
resistance makes them unsuitable for fast lines. Fatigue causing cracking around the
rail seat is the most common failure mode. With all sleeper types, if a sleeper is in a
highly degraded state it will not support the rail correctly, increasing the load on the
nearby sleepers. This increased load will cause higher rates of degradation of the sleepers,
fastenings and rail pads and ballast. Due to the uneven loads the degradation will not
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be constant leading to possible geometry faults. Sleepers that are not of the required
condition to full-fill their role are replaced.

Ballast is uniformly graded and primarily consists of stones between 20-60 mm. The
stones tend to be angular to enable stronger interlocking. The ballast transmits stresses
down into the formation and allows rainwater drainage. It tends to settle quickly to
begin with, as the ballast particles move into a compacted, strong skeleton, after which
it tends to settle slower. Uneven settlement is the primary cause of geometry faults and
hence speed restrictions. The track geometry is recorded by a measurement train, with
the primary used measurement being the SD of the vertical geometry. Ballast degrades
as it becomes fouled with fine particles which reduce drainage, leading to higher levels
of saturation within the subgrade which causes faster settlement. The fine particles are
generally produced from a combination of subgrade infiltration, wagon spillage, ballast
breakage and tamping. These fine particles lubricate the ballast stone’s edges, causing
greater movement of the stones and increased geometry degradation. Fouled ballast is
also less efficient at spreading the load of passing trains causing increased stresses within
the subgrade and hence faster geometry degradation. Maintenance activities such as
tamping and stoneblowing are used to rearrange the ballast particles and return the
track to the required geometry. Tamping is generally more effective on newer ballast,
with fouled ballast causing the track to tend to return to its previous condition at a
faster rate. When tamping is not being effective, with the track geometry degrading
quickly after completion, stoneblowing is commonly used instead, as it tends to be more
effective on fouled ballast, reducing the rate at which the track geometry degrades after
completion compared to tamping.

Below the ballast is the formation and subgrade. The formation layer is typically on a
gradient and made from sand to allow rainwater run-off helping to maintain an unsat-
urated subgrade and ballast. The subgrade is the compacted, natural geological layer
beneath the track. Stresses from passing trains cause settlement to occur, which, if not
constant along the track, can cause geometry faults but the majority of the overall track
settlement and hence geometry faults occurs within the ballast and not the subgrade
layer.

2.4 Existing Railway Track Degradation and Maintenance
Models

2.4.1 Introduction

There are many existing models for mapping the degradation of many of the railway
track assets. These models are mainly used to analyse track geometry and defects, rail
defects and sleeper degradation and can be classified as either deterministic or stochas-
tic. Deterministic models are either empirical, developed through experimentation or
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field data, or mechanistic, where the model is based around physical knowledge. They
relate the factors that contribute to the degradation process being modelled generally
through equations. They can be highly complex, requiring large quantities of input
data, and during construction the modeller must ensure that all contributing factors are
considered. Deterministic models also do not take into account the random nature of
degradation, which can be illustrated by considering two identical pieces of track that,
although used and maintained in the same way, will degrade differently (Selig and Wa-
ters, 1994). Mechanistic models are advantageous for new track sections or track with
minimal prior information, as they do not use past degradation patterns to predict future
behaviour. Stochastic models are usually constructed using historical records and data
and use probability distributions to account for variability. Stochastic models account
for all the factors that effect degradation since they are based on actual measurements
of track performance, but without good past data their accuracy can be limited. Whilst
stochastic models are based on actual track behaviour, they do not give any insight into
the underlying physics of the degradation so it’s causes can be unclear.

2.4.2 Track Geometry Degradation Models

Deterministic Models

Alva-Hurtado and Selig’s Strain Model
The primary cause of track geometry degradation is plastic strain within the ballast.
Many mathematical models have been developed to calculate this permanent strain,
with one of the most widely used being developed by Alva-Hurtado and Selig (1981) (as
cited by Shi 2009). By using results obtained from triaxial tests, Alva-Hurtado and Selig
describe how the permanent strain, εN , after a number of cycles, N , is related to the
permanent strain after one cycle, ε1, by Equation 2.3. The model accounts for the fact
that the initial loading of ballast causes a large amount of plastic deformation due to
rearrangement of the stones as they try to reach a point of equilibrium. In subsequent
loadings the amount of plastic strain reduces. The permanent strain after N cycles is
given by:

εN = ε1 (1 + ClogN) (2.3)

Where C is a dimensionless constant, which controls the growth of deformation, with
Selig and Waters (1994) recommending values between 0.2-0.4. Research by Office of
Research and Experiments (ORE) and British Railway (as cited by Profillidis (2006))
suggested a C value of 0.2 whereas the American Railways suggested a value between
0.25-0.40.
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Selig and Waters’ Strain and Settlement Models
Selig and Waters (1994) proposed a different relationship that takes into account a non-
linear relationship between strain and the log of the number of cycles. Using triaxial
tests to relate the permanent strain, εN , the permanent strain after one cycle, ε1, and
the amount of load cycles, N , similarly to Alva-Hurtado and Selig (1981). Field mea-
surements were used to replace cycles with traffic, as MGT. To take into account the
non-linear relationship found, Selig and Waters (1994) compared semi-log, hyperbolic,
parabolic and power mathematical relationships. It was found that the power law func-
tion, seen as Equations 2.4 and 2.5, closely fitted the data obtained:

εN = ε1N
b (2.4)

εT = εT1T
c (2.5)

Where b is a constant that within their experiment resulted in a value of 0.17, εT1 is
the strain after 1 MGT of traffic and T is the traffic load in MGT. Using the field
measurements Selig and Waters found that c = 0.21, ε1 = 0.0035 and εT1 = 0.026.

As plastic strain is settlement divided by the layer thickness, Selig and Waters (1994)
notes that a similar power law function can be used for the settlement, with the same
value of b, where the settlement, SN , after N cycles is given by:

SN = S1N
b (2.6)

Selig and Waters noted that when the log of the settlement was plotted against the
log of the number of cycles a linear relationship was visible. Similarly to Equation 2.3,
the equations suggested by Selig and Waters model very fast initial strain/settlement
of the track with the rate reducing with increasing amounts of load cycles. Using the
recommended values for Equations 2.3 and 2.6 to plot Figure 2.19 it can be seen that
the model proposed by Alva-Hurtado and Selig (1981) is linear on a semi-logarithmic
scale, whereas the Selig and Waters (1994) tends to increase slowly. The figure also
demonstrates, taking the log scale into account, the fast initial degradation with the rate
decreasing over additional load cycles as well as how Selig and Waters (1994) is much
more pessimistic about the rate of strain with higher values obtained from Equation 2.5.
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Figure 2.19: Comparison of strain/cycle models

Shenton’s Settlement Model
An alternative settlement law was explored by Shenton (1985). Based on laboratory and
field experiments, Shenton (1985) (as cited by Dahlberg 2007) developed the settlement
law:

SN = K1N
0.2 +K2N (2.7)

Where SN is the settlement after N load cycles. K1 and K2 are constants, which depend
on many factors, including axle load, rail section, sleepers spacing as well as the track
and subgrade stiffness, previous maintenance and lift. Axel load is noted as the most
important with lighter axles shown to have minimal impact on track geometry, (Shenton,
1985).

The experiments showed that settlement was proportional to the fifth root of the number
of load cycles up to 106 cycles but that above 106 cycles this relationship did not hold.
The values of K1 and K2 must therefore be specified in such a way that the first term of
Equation 2.7 is dominant for N < 106 and that the second term is only significant for
N > 106. As with the previously discussed settlement/strain models Equation 2.7 with
appropriate values for K1 and K2 demonstrates early fast settlement which slows with
further load cycles.

Sato’s Settlement Model
Another model for determining ballast settlement under repeat loading, SN , was sug-
gested by Sato (1995) based on laboratory studies and was expressed as:

SN = γ(1− e−αN ) + βN (2.8)

Where the loading factor, N can be either the number of load cycles or cumulative traffic
tonnage. The constants γ and α describe the long term settlement of the track and β

Chapter 2 Steve Clarke 33



Railway Track Asset Management Modelling

describes the short-term. One α is the vertical acceleration required to initiate slip,
which can be measured using spring-loaded plates of the ballast material on a vibrating
table. β is proportional to the sleeper pressure and peek acceleration experienced by the
ballast particles and is effected by the condition of the ballast material as well as the
presence of water. The value of γ is based on the quality of the initial packing of the
ballast material.

TU Munich Settlement Model
At the Technical University of Munich, Iwnicki et al. (2000) developed another settlement
model using laboratory experiments representative of vehicles passing over a dipped joint.
A dipped joint is a joint which due to degradation dips below the normal rail top (height
position) when traversed by a train. Three equations were developed to account for an
optimistic, Sopt, pessimistic, Spes, and median, Smed, levels of settlement as (Iwnicki
et al., 2000):

Sopt = 1.57p∆Na + 3.04p1.21 logNa (2.9a)

Spes = 2.33p∆Na + 15.2p1.21 logNa (2.9b)

Smed = 1.89p∆Na + 5.15p1.21 logNa (2.9c)

Where Na is the number of axle passes and p is the pressure in the ballast which is
calculated using the Zimmermann method, which involves a theoretical longitudinal
sleeper placed under the track (Kuttelwascher, 2012). The first part of the equations
gives the initial, quicker settlement which occurs immediately after maintenance and the
second part relates to the more gradual, longer term settlement that occurs after 10,000
axle passes where an axle pass is one load cycle (Iwnicki et al., 2000). The decision that
settlement begins to slow at 10,000 load cycles differs from Shenton (1985) who suggested
that settlement starts to slow later, after 1,000,000 load cycles but this difference maybe
due to the degree of packing the ballast was initially compacted to.

Office of Research and Experiments Track Geometry Models
Due to maintenance being a major factor of railway assets life, the effect of maintenance
on the track quality and further degradation has been thoroughly explored in literature.
Profillidis (2006) describes how after maintenance (such as tamping), longitudinal defects
progress rapidly up to around 2 Million Standard Axles (MSA) beyond which the rate
decreases as the track has become more stable. This proves that after maintenance the
track is not fully stabilised with it being estimated that it is only about 50% of when
the track is fully stabilised. The ORE of the International Union of Railways (UIC)
developed a semi-logarithmic empirical relation for mean track settlement related to
cumulative axle load which took into account the initial fast rate settlement that then
slows under a greater amount of loading operations. The mean track settlement, me, is
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related to the cumulative traffic tonnage, T by (Profillidis, 2006):

me = a1 + a0 log
T

Tr
(2.10)

Where Tr equals 2 × 106 tonnes or 2 MGT, the point at which the rate of settlement
slows. a1 is the mean settlement for traffic load Tr, with values typically between 5-
15 mm, and a0 is the settlement increase rate in mm/decade which is mainly depended
on subgrade quality and is typically 2-6 mm/decade. A more useful characteristic of
longitudinal defects is the SD as this represents the inconsistent settlement which causes
uneven vertical geometry. For this ORE developed the empirical relationship relating the
SD of longitudinal defects, SDLD, to the cumulative traffic tonnage, T by (Profillidis,
2006): .

SDLD = c1 + c0 log
T

Tr
(2.11)

Where c1 is the SD of longitudinal defects for a traffic load of Tr, with values varying
between 1.0-1.35 mm. It is related to early settlement and quality of maintenace, in-
creasing after each maintenance action due to how the ballast condition degrades with
each tamping activity and with time as it becomes fouled. c0 is the rate of increase of the
SD of longitudinal defects, with values varying between 0.1-0.2 mm/decade. It can be
noted that Equation 2.11 is in the same form as 2.10 but with differing variable values.
Equation 2.11 can be rearranged to find a simple traffic interval between maintenance,
T limLD , using a SD limit, SDlim, which is when maintenance occur. The amount of traffic
in tons between maintenance can be calculated by:

Tlim = 2× 106 × 10

SDlim
LD − c1
c0


(2.12)

Velt’s Track Quality Model
It is noted by Velt (2007) that good quality track degrades slower than poor quality track,
so the stability is dependent on the condition. This can be mathematically expressed for
the track quality, Q after a certain amount of time, t, by:

Q = Q0e
bt (2.13)

Where Q0 is the initial quality when t = 0 and b is the degradation rate. The use of
an exponential relationship demonstrates slow early degradation which later speeds up
which is the opposite of most other research undertaken and discussed in this section but
is backed up by work undertaken by Quiroga and Schnieder (2012), which is discussed
later.
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Office of Research and Experiments’ Track Quality Model
Shafahi and Hakhamameshi (2009) state a simple model for track degradation first de-
veloped by ORE in 1988 and then converted to a Combined Track Record (CTR) index
resulting in:

E = 36.57× T−0.0418 × P 0.2955 (2.14)

Where E is the track degradation index as a CTR, T is the total accumulated tonnage
since the track was new in MGT and P is the design axle load in tonnes. CTR is a
type of Track Quality Index (TQI) which defines the quality of the track as a function
of four Track Geometry Parameters (TGP) which degrade including unevenness, twist,
alignment and gauge. The CTR index value varies between 0-100 where 0-50 classes
as a failed track and 80-100 is excellent. By using a TQI, the four aspects of geometry
degradation of the track are all taken into consideration when describing the track quality
but by doing this detail of which TGP is the main problem is unknown and hence the
required type of maintenance is also unknown.

Sato’s Track Damage Model
Sato (1995) developed an empirical track damage model using field data obtained on the
Japanese railway network using track geometry recording vehicles. The model uses rail
vibrations to predict the growth of irregularities and is given by:

S = 2.09× 10−3 × T 0.21 × V 0.98 ×M1.1 × L0.21 × P 0.26 (2.15)

Where S is the increase in track irregularities in mm/100 per day, T is the traversed
tonnage in MGT/year, V is the mean velocity of the trains on the track in km/h, L is
the influence of the rails where L = 1 for CWR and L = 10 for jointed rail. P is the
influence of the subgrade where P = 1 for good soil and P = 10 for poor soil and M is
the structural parameter given by:

M = PbyzSi (2.16)

Where Pb is the quasi static pressure in the ballast, yz is the acceleration of the rail and
Si is an impact coefficient which is a function of the rail properties.

Wisc-Rail
Wisc-rail is a ballast degradation model that predicts how the track geometry degrades
over time as a SD of the vertical geometry. The models focus is the effect of fouled
ballast in varying moisture contents on the rate of track degradation. It was developed
as part of a thesis completed by Ebrahimi (2011b) and was written in Matlab, with a
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graphical interface which can be seen in Figure 2.20.

To establish the effect of differing ballast fouling conditions with varying moisture con-
tent, a Large-Scale Cyclic Triaxial (LSCT) test was used. The chosen stresses were
equivalent to a 264 kN (30 tonne) axle load, and with the number of load repetitions,
converted to MGT.

The effect of mineral, coal and clay fouling were then measured by adding the material
prior to compaction and then increasing the moisture content by adding water to the top
of the LSCT sample. The plastic strain was then constantly measured up to, N = 2×105.
From Figure 2.21 it can be seen that the semi-logarithmic rate of plastic strain (rp =

dεp/ln(N)) is constant through the initial compaction phase (N < 1× 104 or 0.3 MGT)
and is linear during the fouling impact phase (N > 1 × 104) for constant fouling and
water content conditions (Ebrahimi, 2011b). This results in the relationships for the rate
of plastic strain to be defined as:

rp =
dεp
d lnN

= b N < 104 (0.3 MGT) (2.17a)

rp =
dεp
d lnN

= b+ alog
(
N − 104

)
N > 104 (2.17b)

Where b and a are related to other aspects such as axle loads, ballest fouling (as BFI)
and moisture content.

Due to the constantly changing traffic loads, moisture condition and degree of fouling,
to give a total plastic strain over a large time period Equation 2.18 is used.

εp (N) =

N∑
i=1

(∫ Ni+1

Ni

(
dεp

d (lnN)

)
i

d (lnN)

)
(2.18)

The deformation of the subgrade calculated as a strain, εp, is then calculated using
Equation 2.19 which was developed by Li and Selig (1996), where the parameters d, c
and m are related to the subgrade’s classification by Table 2.3. σs is the soils static
strength.

εp (N) = c

(
σds
σs

)m
Nd (2.19)

The change in the vertical geometry, measured as a SD can then be found using Equa-
tion 2.20 which was developed by Chrismer and Selig (1994). dL is the total vertical
deformation from plastic strain in the ballast and subgrade and δv0 is the SD at the
start of the time period. They equation presumes that a SD increase is equivalent to
15% of the total track settlement.
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δv = δv0 + 0.15dL (2.20)

Table 2.3: Railway track subgrade deformation model parameters (Li and Selig, 1996)

Subgrade Classification

Model Parameters ML MH CL CH

d 0.1 0.13 0.16 0.18

c 0.64 0.84 1.1 1.2

m 1.7 2.0 2.0 2.4

The ballast deformation model that is at the centre of Wisc-Rail is a highly developed
method, based on a series of well planned laboratory experiments that seem to closely
match situations in the field. The model has not been checked against field data and may
require alterations before it can be used. From Figure 2.20 it can be seen that the model
requires a substantial amount of input data, some of which will be hard to obtain for an
in-situ track such as the moisture content in each season and the unconfined subgrade
strength. The models ability to estimate ballast deformation with the inclusion of water
content and a fouling index is highly important as these have a great influence on the
rate of plastic strain as seen in Figure 2.21.

Figure 2.20: Wisc-Rail’s graphical interface (Ebrahimi and Keene, 2011)
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Figure 2.21: Effect of fouling and water content of plastic strain and rate of plastic strain (Ebrahimi, 2011b)
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Multivariate Statistical Analysis Approach
Gular et al. (2011) introduced a method of predicting track geometry degradation, in-
cluding twist, gauge, alignment, cant and level. This involved relating the degradation
rates to: traffic loads, x1; velocity [km/h], x2; curvature (1/R) [1/m], x3; gradient [%],
x4; cant, x5; sleeper-type, x6; rail type [kg/m], x7; rail length [m], x8; falling rocks, x9;
land-slide, x10; snow, x11 and flood, x12.

Gular et al. used data from 180 km of track in Turkey which was then split into ho-
mogeneous sections, as demonstrated by Figure 2.22. This resulted in 820 segments,
with an average length of 220 m. The data available included 7 years of track geometry
recordings, with two undertaken each year.

To account for the unknown track quality when maintenance actions were performed,
it was presumed that the track quality was at the maintenance threshold whenever a
maintenance record existed, as seen in Figure 2.23. The resultant dataset had 820 rows,
one for each section and 84 columns, one for each month of the 7 years of data. This
was created for each of twist, gauge, alignment, cant and level.

From this a degradation rate for each track parameter is calculated by using Equa-
tion 2.21 to calculate the gradient of a linear line between the initial and final degra-
dation points, as demonstrated in Figure 2.23. An average degradation rate was then
found for each section of track.

τij =
Dj −Di

Yj − Yi
(2.21)

Figure 2.22: Track segmentation process
(Gular et al., 2011)

Figure 2.23: Determination of
degradation rates
(Gular et al., 2011)

To take into account uncertainty and the degree that the relating factors, x1-x12 affect
the degradation rate, in mm/tonne, Equation 2.22 was formalised.

−
τi=αi1x1 + αi2x2 + αi3x3 + αi4x4 + αi5x5 + αi6x6 + αi7x7 + αi8x8+

αi9x9 + αi10x10 + αi11x11 + αi12x12 + αi0
(2.22)
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To enable qualitative variables such as sleeper type to be included dummy variables are
used, for example a timber sleeper has a value of one and a concrete sleeper has a value
of zero.

A statistical process consisting of; correlations, hypothesis testing, stepwise analysis, case
statistics and multicollinearity tests, gave values of how strong of a relationship there is
between the variables or if it should not be included. This forms the values of αin, which
can be seen in Gular et al. (2011) for twist, gauge, alignment, cant and level.

The model is a good example of all the possible factors that effect the degradation.
The resulting R2 values for twist, gauge, alignment, cant and level were 0.624, 0.718,
0.694, 0.775 and 0.684. These are reasonable values but show that some errors will occur
when using the model. There are also issues with the initial data as taking Maintenance
and Renewal (M&R) data and presuming that it occurred at the point of the threshold
value to increase the amount of data points is going to lead to much of the data being
incorrect. This is because the M&R activities may have occurred late due to issues
such as unavailable plant or early due to another track geometry measurement being at
the threshold (tamping maintains many geometry issues at once). Another aspect that
may lead to M&Rs occurring before the threshold would be opportunistic maintenance.
Additionally, by taking a mean degradation value for each section, the increased rate of
degradation seen after each maintenance activity, due to reductions in ballast quality, is
not taken into account.

Despite some shortcomings within the model, the statistical mathematics used to de-
velop the model are well utilised for the situation enabling the many factors that effect
track degradation to be quantified. The method of splitting the track into homogeneous
sections is also an effective way of allowing all the factors that have an effect on the
degradation rate of the track geometry to be analysed while keeping to data clean.

ECOTRACK Geometry Degradation Rate Model
ECOTRACK is a decision support system that calculates the costs of different mainte-
nance policies allowing the most efficient M&R activities to be undertaken. Models are
included for all aspects of the track degradation with these models relying on a database
that contains all the information about a railway network, including all previous M&R
activities, as well as previous faults, track geometry recordings and even layout and oper-
ational data (Jovanovic and Pearce, 2000). The model for calculating track degradation
is described below and the rail model is discussed in Section 2.4.4.

The ECOTRACK model calculates degradation rates from past track geometry record-
ings, including rates of vertical level, alignment, twist and cross level. The principle
behind the ECOTRACK model can be seen in Figure 2.24, which demonstrates how
geometry degradation occurs. If left unmaintained a track section would follow the ini-
tial dotted curve, which shows initially very fast degradation in the period marked a.
This includes the bedding in period where large settlement occurs as the ballast stones
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move as they become compacted. The initial fast period of degradation then slows and
becomes linear as shown by area b in Figure 2.24. After this period the degradation rate
tends to increase rapidly in the period marked c. Following the dashed line, the effect
of maintenance can be seen. When maintenance is initially completed the track quality
is improved but not returned to the initial new state. Faster degradation than when
new then occurs which, with the reduced initial quality, results in the track reaching the
maintenance limit quicker. After each maintenance activity the quality returned is lower
and the rate of degradation is higher, hence the usage until maintenance is required is re-
duced. When a replacement takes place at 60 MGT, in Figure 2.24, the track is returned
to a new state and the degradation process starts again, following the same as before
due to being a direct replacement. When an upgrade is completed at 120 MGT, the
improved track degrades slower, increase the usage until maintenance is required. The
degradation is measured as a roughness increase, which is calculated using the equation
on Figure 2.24. Due to the main part of the degradation which occurs up to the mainte-
nance limit having a constant degradation rate, area b in Figure 2.24, the ECOTRACK
model uses linear regression to calculate this part, ignoring the fast degradation which
occurs in area a. The fast degradation that occurs in area c is also ignored with it pre-
sumed that maintenance will occur before the degradation rate will increase (Jovanovic
and Pearce, 2000). This leads to the ECOTRACK model actually calculating the red
saw-like shape in Figure 2.24. The linear regression is calculated through the past ge-
ometry recordings (ERRI, 1994). The ECOTRACK model is designed to estimate the
quality improvement, drop in the red line, with occurs with maintenance as well as the
change to the degradation rate after each maintenance activity.

The ECOTRACK model was a well-developed commercial product, which was success-
fully implemented in many European countries. Despite its simplification of the non-
linear track geometry degradation to a linear one the model was proved in the field to
be useful at predicting the occurrences of M&Rs.
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Figure 2.24: ECOTRACK geometry degradation analysis reasoning (Ebersohn and
Selig, 1994)

Network Rail’s Geometry Degradation Model
As part of NR’s extensive selection of LCC models there are multiple tier 2 LCC models
which include many designed for track. The tier 2 models look at a single asset and are
used to examine the range of possible renewals, maintenance and utilisation options to
establish an optimal policy. The model consists of elements for modelling the degradation
of many parts of the track including ballast, sleepers and rail defects. The ballast
degradation is discussed here, the geometry fault model is considered in Section 2.4.2
and the rail defect model is described in Section 2.4.4 (Halcrow, 2012).

The geometry and ballast model uses the 35 m vertical top geometry SD as the primary
condition measurement. The geometry at a particular time, Gt, is related to the time
by (Network Rail, 2012):

Gt = K eat
b

(2.23)

Where K, a and b are the track section specific parameters, where K ≤ 0. These values
are based on empirical knowledge and are obtained by fitting the equation to SD values
obtained from NR’s tier 1 Track Strategic Planning Application (T-SPA) model which
is part of their Vehicle Track Interaction Strategic Model (VTISM). The T-SPA model
requires inputs such as; current infrastructure and conditions, traffic data, static and
dynamic forces, RCF and unit costs of work, then allows the user to set criteria such as
maintenance, renewal and inspection rules. With this data the model is able to output
data such as the volumes of track maintenance and renewals, as well as the associated
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costs over a certain time span (Williams, 2012).

The T-SPA model is a complex model of nearly 40 equations and many parameters to
estimate the track SD at a particular time. Due to this the model is instead used to find
just 3 points at 0.5, 1.0 and 2.0 years.

The T-SPA model calculates the damage accumulation by using traffic forces, which
depend primarily on the number of axles, axle loads and train speed as well as track
properties such as sleeper spacing and support stiffness. The impact of geometry fault
(related to the total unsprung mass), dip joints (track irregularities at joints and welds)
and total ride force are considered.

The three contributing factors are then combined by:

SDT =
√
SD2

DJ + SD2
UM + SD2

RF (2.24)

Where SDT is the total SD in mm at the calculated time, SDDJ is the SD caused from
the dip joints, SDUM is the geometry fault SD and SDRF is the SD caused by the total
ride force.

Values for the SD are calculated using the T-SPA model for 0.5, 1.0 and 2.0 years and
the Equation 2.23 fitted using a computer program. This then gives the values of K, a
and b for that particular track section.

Equation 2.23 gives the expected SD at any given time, for clean ballast. To account for
ballast fouling and its effect on geometry degradation a Ballast Condition Factor (BCF)
is used. This is related to the BFI by:

If BFI=0% then:

BCF = 1 (2.25a)

If 0% < BFI < 80% then:

BCF = 1 + (0.625×BFI) (2.25b)

If 80% ≤ BFI < 100% then:

BCF = 1.447 + (4.668× 10−6e11.638×BFI) (2.25c)

If BFI = 100% then:

BCF = 2 (2.25d)

With the BFI being estimated by:

BFI =
EF + (TF ×MGTAll) + (DF ×MGTDirty) + (MF × Tamps)

V A
(2.26)
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Where the parameters have been defined in Table 2.4 (Williams, 2013).

As each section of track degrades differently, even if they are seemingly identical, and
because the model does not take into account all the factors that effect track geometry
degradation, a Local Track Section Factor (LTSF), is applied. This is calculated by using
least squares regression to map the line found from Equation 2.23 multiplied by the BCF
on to past SD recordings. The SD of the track section at any time can then be found
using Equation 2.27.

SDV erticalTop = K(BFC)(LTSF) eat
b

(2.27)

Table 2.4: Parameters used to calculate Ballast Fouling Index (Williams, 2013)

Parameter Description Default Value

VA Available ballast void after renewal 22.95%

EF Environmental fines 0.209% a year

TF Traffic fines 0.0214% per MGT

MF Maintenance (tamping) fines 0.578% per tamp

DF Dirty wagon fines 0.18% per MGT

Adaptive Networks and Fuzzy Logic

Fuzzy logic is used to overcome the boolean results given by classical systems based
around binary logic which follows the principle where a state can be either true or false.
By applying fuzzy sets as a method of representing and manipulating data that is not
precise, this allows the system to take uncertainty into account. It also allows recordable
data, such as geometric quality of the track, to be combined with subjective information,
such as visual inspections. Fuzzy logic uses human decision-making propositions like;
IF x is s; THEN y is t, where x and y are linguistic variables and s and t are possible
values. To achieve fuzzy sets, Membership Functions (MFs) are used to replace the
standard indicator function used for classical systems. The MF can be any shape and
represents the degree of truth, which can vary between 1 and 0, whereas classical systems
which use binary logic has to be either 0 or 1 (Rojas, 1996; Dernoncourt, 2013).

Adaptive networks are networks of nodes and links which combine dynamics on the
network as well as dynamics of the network. This produces a network where the links
between the states adapt with respect to its states, enabling the network topology to
dynamically change (Gross and Sayama, 2009). There are multiple types of adaptive
networks including Artificial Neural Network (ANN) and Adaptive Neural-based Fuzzy
Inference System (ANFIS) models, where an ANFIS is a mixture of an ANN and a
Fuzzy Interface System (FIS). Kalogirou (2006) summarises the advantages of adaptive
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networks as requiring less data than stochastic modelling with improved accuracy but
states that they have limited applicability and are non-interpretive.

Type 2 Fuzzy Reasoning Model
Dell’orco et al. (2002) proposes a FIS that uses type 2 fuzzy reasoning and is able to
logically make a decision on how long it is possible to delay maintenance based on a
number of inputs. A simple type 2 fuzzy reasoning inference system with two inputs, x
and y, one output and two fuzzy rules can be seen in Figure 2.25.

Standard data obtainable for a railway track was suggested consisting of; alignment,
longitudinal level, cross-level, gauge, rail wear and rail corrugations. Instead of normal
maintenance thresholds, a MF is used. Inspection data such as geometry SD is converted
to fuzzy logic using MFs, linked to the maintenance MF and then though defuzzification,
an estimate of time until maintenance is required is obtained.

Figure 2.25: Type 2 fuzzy reasoning (Jang, 1993)

Ottomanelli et al.’s Maintenance Occurrence Model
Ottomanelli et al. (2005) expands on the work carried out by Dell’orco et al. (2002)
by using a simplified version of an ANFIS with three inputs and one output for 200m
long pieces of track. An ANFIS uses type 3 fuzzy reasoning, which is demonstrated
in Figure 2.26a with two inputs x and y and one output f . The ANFIS architecture
is a neural network that integrates fuzzy logic principles into a single framework (Jang
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et al., 1997). It uses IF-THEN fuzzy rules that have learning capabilities to approximate
non-linear functions from given data (Jang, 1993). The equivalent ANFIS to the FIS in
Figure 2.26a can be seen as Figure 2.26b.

The three inputs are: the difference between the track alignment SD and vertical SD
to a given threshold, with negative values meaning that the threshold has been passed.
The third input is the time period since tamping was last completed. The output given
is an estimate of the number of days until tamping works will have to be undertaken.

The robustness of the system is proved by Ottomanelli et al. by adding in an error for
the input values ranging from the most recent (last input) up to the 5th to last from
this it was possible to see that the output error caused from a wrong input was minimal
varying between 0.5-7.29% depending on when the error occurred and the degree of the
error.

(a) Type-3 Fuzzy Interface System

(b) Equivalent type-3 Adaptive Neural-based Fuzzy Inference System

Figure 2.26: Simple example of an Adaptive Neural-based Fuzzy Inference System
(Jang, 1993)

Dell’orco et al.’s Maintenance Occurrence Model
Another method of predicting tamping works was proposed by Dell’orco et al. (2008)
by using a complete ANFIS network. The SD of the longitudinal level, alignment, cross
level, number of tamping works previously carried out and number of days since last
tamping operation at the date of measurements were used as the inputs. The output
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given is the number of days since the last tamping operation that the next one will be
required.

The ANFIS is then used to find the predicted date of the next tamping operation for
each track segment. It is then possible to group close segments that require tamping at
similar predicted dates to be completed at the same time by using the Fuzzy C-Means
clustering method. This is able to group the interventions in location and time. It can
also take into account possible working dates set by the railway organisation and time
limits for maintenance.

The ANFIS was tested by using a 8.4 km piece of track, split into fourteen 600m long
segments, with data being supplied by the Italian railways. The data consisted of 150
measurements for each segment, with Dell’orco et al. noting that after each successful
tamping operation the returned SD values for the track were lower than the tamping
operation carried out before, which is expected. The error obtained during the training
phase of the ANFIS reached a constant value of 37 days.

Shafahi et al.’s Artificial Neural Network and Adaptive Neural-based Fuzzy
Inference System Models
Another expert system has been proposed by Shafahi et al. (2008) using an ANN. This
consists of a number of simple processes, which are known as the neurons which com-
municate with each other via weighted links. An ANN network consists of a number of
inputs and outputs with hidden layers in-between consisting of any number of neurons,
which are connected by the weighted links. An ANN involves back propagation using
known inputs and outputs, from which the network learns, optimising the weighted links
(Gershenson, 2003).

A cycle length of one year and a CTR index were used and track was split into blocks of
a chosen length (Shafahi et al., 2008). The system of classification is the same as done
by Shafahi and Hakhamameshi (2009), which is discussed in Section 2.4.2. Six inputs
where used consisting of:

1. CTR index for the year and previous four years classified into 5 states.
2. Traffic volume or load classified into light and heavy.
3. Maximum allowable speed of the line sorted into five classes.
4. Geographical location classified into plain, hilly and mountainous, a class value is

then given combining this and traffic volume.
5. Maximum gradient of the block classified into five classes.
6. Minimum radius of curves in the block

The output desired was the CTR state, which from the data, it was known that each
year the track either stayed in the same state or moved to the state below. The same
data was used as by Shafahi and Hakhamameshi (2009), who’s Markov chain method is
described in Section 2.4.2. After the training period the ANN correctly predicted the
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next state for 67% of track sections.

Converting the ANN model into an ANFIS model improved the results by 6% leading to
73% of the estimations being of the correct state. A table comparing the linear regression
results obtained from the expert systems developed by Shafahi et al. (2008), the Markov
Chain method by Shafahi and Hakhamameshi (2009) and the ORE equation, as seen
from Equation 2.14 can be seen in Table 2.5. Where the linear regression is obtained by
plotting the estimated answers against the observed.

Table 2.5: Comparison of four different degradation models using Combined Track
Record indexes

Observation-Estimation Relationship

Model a b R2

ORE 0.1188 72.823 0.1190

Markov Chain 0.7805 19.871 0.8317

Neural Network 1.0352 0.0171 0.7243

Neuro-fuzzy Network 0.8749 0.6443 0.8096

Stochastic Models

Quiroga and Schnieder’s Track Quality Model
Quiroga and Schnieder (2012) introduce a model to predict track quality which takes into
account tamping operations and how degradation increases after each tamping operation.
The model links a track quality measurement, Q, with time, t, by:

Q = a eb(t−t0) + ε(t) (2.28)

Where a and b are log-normally distributed stochastic variables and ε is normally dis-
tributed with a mean value of zero. t0 is the time of the last tamping operation. Due
to the parameters values being distributed once these have been defined, a Monte Carlo
simulation can be run and the results used to optimise the occurrences of tamping. The
use of distributions for the parameters, instead of the strict empirical relationships at
the heart of the models in Section 2.4.2, results in a spread of answers for the rate of
degradation. This spread allows for confidence in the results to be quantified. The ε
parameter, adds variability to the results and the first part of Equation 2.28 follows a
similar exponential format to Velt’s track quality model in Section 2.4.2.

Andrade and Teixeira’s Track Geometry Degradation Model
A similar style stochastic model to the one proposed by Quiroga and Schnieder (2012) is
presented by Andrade and Teixeira (2011). Vertical top geometry recordings expressed as
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a SD were obtained from the Portuguese railway. The recordings demonstrating a linear
relationship between the SD and usage expressed as MGT. Andrade and Teixeira (2011)
found disparity in the degradation rates of the sections that were virtually identical,
with the same assets, speed and usage. This gives a good indication that a stochastic
modelling technique is more suitable for modelling the railway track as it allows for this
disparity to be accounted for. The linear relationship used consisted of:

σ = c1 + c0T (2.29)

Where, T is the accumulated tonnage, σ is the resulting track SD, c1 is the initial track
SD and c0 is the rate of degradation. To account for the disparity in degradation rates,
distributions were fitted to the parameters c1 and c0, where log-normal distributions
was shown to best fit the data. To increase the accuracy of the distributions the track
sections were grouped by what they contained, in this case; bridges, PL, stations and
switches. The model can then be solved using Monte-Carlo sampling, with the results
giving the possible spread of the track condition.

Caetano and Teixeira’s Track Geometry Degradation Model
As with the degradation model described by Andrade and Teixeira (2011), Caetano and
Teixeira (2016) employs a linear degradation relationship between the track geometry
and usage in MGT with a stochastic variable solved by Monte Carlo. Unlike Andrade and
Teixeira (2011) who placed variability on the initial quality and degradation rate with
log-normal distributions, to achieve the variability in the degradation rate Caetano and
Teixeira (2016) multiplies the current track linear degradation rate, ri, by a stochastic
variable, δi:

SD = SD0 + Zil (2.30)

Where SD0 is the current track geometry condition and l is the future usage in MGT. ri
is found for each track section by fitting a linear line to the past geometry records, where
i is the amount of recordings available for the fit. The stochastic variable δi is related
to i so that for lower values of i, where there is less confidence in the linear fit and the
value of ri, the spread is increased. How the degree of errors change as more geometry
recordings were used to predict the degradation is demonstrated in Figure 2.27, where
it can be seen that as i increases the errors reduce, initially quickly until i = 6 where it
starts to slow. It was found that the logistic distribution was the best fit for the errors.
A track sections future geometry as a SD can then be solved by Monte Carlo.
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Figure 2.27: Accuracy of the predicted value of the Standard Deviation of the vertical
top geometry (Caetano and Teixeira, 2016)

Markov Models

Introduction to Markov Models
A Markov model is a random process which is memoryless, meaning that only the current
state of the process influences where it will go next. The reason for this is that Markov
is based on the exponential distribution, which has a constant hazard rate. Another
assumption of Markov is that the probabilities are constant. Markov models have a
finite amount of states, i.e. degradation states. Markov chains are discrete time models,
where after a set amount of time, i.e. an hour, week or year, there is a probability of
which state will be moved to the next Markov processes are continuous time, where the
time to move to another state is governed by an exponential distribution with the density
function of:

fT (t) = λe−λt for t ≥ 0 (2.31)

Which state a Markov process will move to next is found by calculating the waiting
time, T , for each possible next state, choosing the smallest, it will then move after that
amount of time to that state (Norris, 1998).

Shafahi and Hakhamameshi’s Markov Chain Degradation Model
Shafahi and Hakhamameshi (2009) outlines a method using Markov chains for determin-
ing the degradation of track condition. To split the track condition into different states
a Track Quality Index (TQI) is used. The TQI used is a Combined Track Record (CTR)
which can vary between 0-100 which was split into 5 states; failed, medium, good, very
good and excellent. Due to the data used only showing a maximum decrease of 10 CTR
in one year it is not possible for the track state to make more than one transition in a year
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i.e. from 5 to 3. As there are 5 states and it is only possible to move one transition in a
year or stay in the same state and no works are completed to improve the degradation
state, the Markov Chain seen in Figure 2.28 is produced. The accompanying transition
matrix for this Markov Chain is:

P =


1 0 0 0 0
q2 p2 0 0 0
0 q3 p3 0 0
0 0 q4 p4 0
0 0 0 q5 p5

 (2.32)

In 2.32, pn equates to the probability of staying in the same state, with the top left
equalling one as once the track state 1 has been reached it cannot degrade further. The
qn values are the probability of degrading to a lower track state in the given time period
of a year. The probability of either staying in the same state or degrading to a lower
state must equal 1, therefore qn = 1 − pn. The state of the track is expressed as a row
vector p(n) which for a track that is in an initial state with excellent condition would
be; p0 = [0 0 0 0 1]. As part of a Markov chain the condition after the nth year can
be found by:

pm+n = pmP
n (2.33)

Where m is the age of the track at the start of the chain and n is number of years that
are calculated.

Data was then taken from the Iranian railway. This consisted of topographical, annual
traffic and axle load, date of construction or reconstruction and track condition data for
each block of track taken for 3 years. The traffic amounts were used to split the blocks into
light and heavy traffic and the topography conditions into plain, hilly and mountainous.
An average CTR index was then found for each track age for each group. This average
CTR was then used to place the track in a track state, (Shafahi and Hakhamameshi,
2009).

The sum of the square differences between the expected state that was predicted from
the Markov chain, Equation 2.33, and the track condition at each age is used as the
objective function to estimate the transition matrix. The objective function was then
minimized by the quasi-Newton method. This produced a transition matrix for each
track class, with the pn values found seen in Table 2.6. From the table it is possible
to see that with a track quality of excellent the probability of the block degrading is
low, but as the track quality worsens the probability increases, as seen by the lower p2
values. Shafahi and Hakhamameshi used linear regression between the observed, x, and
expected, y results to see the strength of the model. An R2 value of 0.832 was achieved.
The results show that there is some strength to the model to predict track deformation
but also demonstrates that there is a degree of error.
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Despite the ability of the model to predict degradation, the use of a TQI reduces the
result’s usefulness as it is unknown what geometry aspect needs to be maintained and
hence what maintenance action to undertake is also unknown. Additionally, by using a
Markov chain important aspects of a complete model would be hard to implement such
as inspections to discover the current system state. This is due to the discrete time-step
used within the process, as an inspection maybe every 6 months but the time step would
be much smaller than this.

Figure 2.28: Markov chain degradation model

Table 2.6: Elements for the transition matrix for each track class
(Shafahi and Hakhamameshi, 2009)

Track Class (K) Terrain Traffic p2 p3 p4 p5

1 Plain Light 0.3957 0.6104 0.7565 0.8641

2 Hilly Light 0.1264 0.6497 0.7365 0.8151

3 Mountainous Light 0.1931 0.5247 0.7310 0.8732

4 Plain Heavy 0.3404 0.5314 0.6753 0.8390

5 Hilly Heavy 0.3296 0.5546 0.7085 0.8067

6 Mountainous Heavy 0.1633 0.4897 0.6593 0.7417

Prescott and Andrews’s Markov Process Model
A Markov process model is proposed by Prescott and Andrews (2015) and includes
degradation, inspections, maintenance and renewal of a 1/8th of a mile track section.
The model uses vertical top SD as the measure of quality with the degradation related
to time. The track quality is split into four states; good, critical, speed restriction and
line closure, with exponential rates, λ, to calculate the speed of degradation. States
are related to particular vertical top SD values and the exponential rates are dependent
on the amount of previous tamping operations. The Markov chain model is shown in
Figure 2.29. Within the model the track section degrades through states 0, 1, 2 and 3,
with these being the actual state of degradation, A, which is unknown until an inspection
occurs, hence in states 0-3 the known condition, K, is still good. Inspections occur at
set time intervals and are represented by the dotted lines on Figure 2.29. When an
inspection occurs the state moves so the known state is the same as the actual state, e.g.
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if the track section is in state 5, where the track condition is in a speed restriction but
the last known condition was that it was critical. When the inspection occurs the track
condition becomes known, so the state moves to state 7, where the actual and known
conditions are both speed restriction. Now that an inspection has identified a section
requires a speed restriction one can be put in place.

Maintenance is scheduled when the known state is critical, speed restriction or line
closure. There are two types of maintenance scheduling embedded within the model.
Normal tamping maintenance is scheduled when the condition of the track is known
to be critical, and urgent tamping is scheduled when the track is known to have a
speed restriction or line closure. The rate of degradation increasing after each tamping
activity, resulting in smaller times to reach the chosen quality levels. This requires
smaller exponential rates but due to the exponential rates within a Markov model being
constant when tamping occurs the system cannot be returned to state 0 as from here
the exponential rates are for track that has been renewed and had no tamping activities
taken place. Due to this the model demonstrated in Figure 2.29 is copied for after
each additional tamping activity with the related exponential rates. When maintenance
occurs either by normal or urgent scheduling the system is moved to a good state in the
associated part of the model for the current amount of previous tamping activities. This
is seen in Figure 2.30, where states 0-9 are for a track which has just been renewed and
10-19 is for track that has been tamped once. This chain of small individual models for
each amount of tamping activities goes up to seven previous tamps and hence there are
80 states within the whole model. After seven tamps, the rate of degradation is presumed
not the change. Any additional tamps return the track to a good condition, but stays in
the model part for seven tamps. Renewals are scheduled after a certain amount of time
and return the state back to state 0.

The Markov model for the track section creates 80 different equations which are then
solved numerically using a forth-order Runge-Kutta algorithm. This results in the prob-
ability of being in each state which can be summed to give the total probability of being
in a good, critical, speed restriction or line closure state. These probabilities can then be
multiplied by 365 to give the average amount of days a year that the track section is in
each state. Due to the model using different states for known and unknown conditions
it is possible to calculate the amount of time spent where the condition has changed
state but has not been inspected yet, so it is unknown it changed. The results can
also demonstrate the probabilities of being in each state after any amount of days since
renewal so the results can show aspects such as how the chance of a speed restriction
increases the longer it has been since a renewal. The amount of maintenance actions can
also be found, with the probabilities of the amount that have been undertaken for any
amount of days since renewal.

The model has multiple inputs which are related to asset policies, so by changing these
inputs the effect of changes to policy can be seen in the outputs discussed above. These
inputs consist of the track quality as a SD that maintenance is requested, the mean time

Chapter 2 Steve Clarke 54



Railway Track Asset Management Modelling

to scheduled and undertake normal maintenance, inspection interval and renewal period.
Prescott and Andrews (2015) notes that the model is currently relatively simple but can
return useful information that important decisions can be based on. It is also noted that
increasing the aspects of the model to include aspects such as; multiple track sections,
stoneblowing and other degradation aspects such as alignment and rail faults may lead
to a state-space explosion. This is a common issue with Markov models, where the more
complex the system gets the larger the Markov model becomes, which makes analysing
difficult to perform.

Figure 2.29: Continuous-time Markov chain model following renewal (Prescott and
Andrews, 2015)
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Figure 2.30: Continuous-time Markov chain model with maintenance (Prescott and
Andrews, 2015)

Petri Net Modelling Approach

Introduction to Petri Nets
Petri Nets (PNs) are directed bipartite graphs that can be used as a pictorial representa-
tion of dynamic processes. PNs consist of two different types of nodes; places which are
depicted by small circles and transitions depicted by small rectangles. The places can be
either a state or condition of the system and can contain tokens, which are visualised by
a dot. These tokens are moved around the PN, from place to place, by the transitions,
which after a certain amount of time, fire the tokens from the input places into the out-
put places, with the time for a transition to fire being a non-negative real number which
is marked on the transition. Figure 2.31 demonstrates how the transition works, in the
initial state the token is in place 1, p1, which activates transition 1, t1. After the time,
D1, the transition fires taking away a token from p1 and placing one in p2. If the tran-
sition time is zero, it is known as a immediate transition and occurs without delay. The
places are connected to the transitions by edges which have arrows to give the direction
of movement and can also contain a number depicting the amount of tokens required
in the previous place until the transition is activated. For a transition to be activated
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all the input places must contain the required amount of tokens depicted by the edges.
Once the transition fires, all the tokens required to activate it are removed from the input
places and tokens added to the output places, equalling the amounts depicted on the
edges. An additional edge type that is used is the inhibitor edge which is depicted by a
filled in circle instead of an arrow. The inhibitor edge stops a transition from activating
while the leading place contains the required amount of tokens, (Schneesweiss, 2004).
An example of numbered and inhibitor edges can be seen in Figure 2.32. First the PN
starts in the initial state with the inhibitor restricting the activation of t1 and with t2
being activated, so after time, D2, the transition t2 fires, so a token is removed from p3
and a token is added to p4. Now that the inhibitor place is empty and as there are the
required two tokens in p1, t1 is activated. After time, D1, two tokens are removed from
p1 and one is added to p2. Inhibitors have many uses, allowing more logical operations
as a transition can only fire if another place is empty, such as to ensure a maximum of
one token is in a place (for example modelling a queue).

A more complete example of a PN is demonstrated in Figure 2.33. The PN starts in its
initial state, in which only t3 is activated. After time, D3, a token is removed from p3
and a token added to p2 and p4. Now only t1 is activated, leading to the removal of a
token from p1 and p4 and the addition of a token in p1 and p2, after time, D1. Now
that there are two tokens in p2, t2 is activated. After time, D2, two tokens are removed
from p2 and a token is added to t3. This returns the PN back to its initial state and the
loop keeps repeating.

PNs have the additional ability for the transition times to be any kind of distribution,
which is especially useful for stochastic modelling. This freedom of distributions allows
for any data to be represented. When distributions are used Monte Carlo sampling is
employed to sample transition times from the distributions as they are activated. After
running multiple simulations, with each time consisting of differing transition times due
to the use of distributions, the running average of the required outputs from the PN,
such as time spent in p1 or amount of time t1 fires, will start to convergence.

(a) Initial state (b) After transition 1 has fired

Figure 2.31: Typical example of a transition firing in a Petri Net
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(a) Initial state (b) After transition 2 has fired

(c) After transition 1 has fired

Figure 2.32: Simple example of an inhibitor transition within a Petri Net

(a) Initial state (b) After transition 3 has fired

(c) After transition 1 has fired (d) After transition 2 has fired

Figure 2.33: Simple example of a looping Petri Net

Andrews’s Petri Net Asset Management Model
Andrews (2012) discusses the use of PNs to model track degradation, including inspec-
tion, interventions and renewal processes. A PN was used as they have many advantages
over other modelling techniques such as Markov models, as they allow the use of variable
degradation rates and the use of any distribution type for the transition times, which
allows for a closer representation of how track geometry degrades. The distributions
required for the degradation transitions were found by using multiple track geometry
measurements as a SD for each track section to find linear degradation rates and hence
the times to certain SD values. Distributions were then fitted to these times, where it
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was decided that the Weibull distributions was the best fit, which is supported by Audley
and Andrews (2013), where a comparison of the fits of multiple distributions was under-
taken using the coefficient of determination, R2, as the goodness of fit measure. Audley
and Andrews found that the two and three parameter Weibull distributions returned the
largest R2 values of 0.986 and 0.987 respectively and due to the closeness of the fits the
two parameter Weibull distribution was chosen over the three parameter for simplicity.

Conditional transitions were used to allow transition times to be related to previous
activities, such that track degradation immediately after tamping is related to the pre-
vious amount of tamping operations undertaken. This is accomplished by changing the
Weibull parameters, used for the degradation transitions, depending on the amount of
previous tamping operations. By doing this the quicker degradation that occurs after
each tamping operation, which is caused by the reduction in ballast quality, can be
modelled within the PN. Convolution transitions were used for degradation of the track
geometry, of which the vertical top 35 m SD was used, with four states consisting of;
new, maintenance required, speed restriction required and line closure required. The
convolution transitions are used as the Weibull distributions of times to the different
states all originate from the same initial time, e.g. renewal to a needing maintenance
state or renewal to a speed restriction required state. Figure 2.34 demonstrates how
the blue parts, including times to SD = σ1 and σ2, are known, but the red section,
Fσ2|σ1(u), is unknown but required. To calculate the times between the degraded states,
Fσ2|σ1(u), Equation 2.34 is solved using the trapeze rule (Andrews, 2012).

fσ2 (t) dt =

t∫
u=0

fσ2 (t) du× fσ2|σ1(t− u)dt (2.34)

Figure 2.34: Degradation process - convolution transition (Andrews, 2012)

The PN is made up of four sections. The first is the degradation process, then there is the
measurement train condition monitoring, maintenance and renewal processes. This leads
to a complete track section PN containing 17 transitions and 13 places. The complete
PN and a description of all the transitions and places can be seen in Andrews (2012).

To solve the PN Monte Carlo sampling is used and involves repeated random sampling of
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a value, X, between zero and one, the same boundaries as the probabilities in a distribu-
tion’s Cumulative Distribution Function (CDF). The CDF for the Weibull distribution
is:

F (t) = 1− exp

(
−
(
t

η

)β)
= X (2.35)

To obtain the sample time, t, the time until the transition fires, for each sampled value
of X, Equation 2.35 can be rearranged to get:

t = η[−(ln(X))]1/β (2.36)

The Monte Carlo simulation was run 65,000 times, with each time different random values
ofX being used until the running average of the number of interventions converged. Once
this happens it is possible to obtain from the model information such as the minimum,
maximum and average number of line closures and speed restrictions. It is also possible
to find the total amount of days that speed restrictions were imposed and how many days
maintenance was required. The model also gives the amount of tamping interventions
and renewals that were undertaken for the given lifetime ran in the simulation.

The PN approach to modelling a railway track has many strong points. The ability to
have changing distributions depending on previous works makes PNs much more adept
for the track degradation process than other techniques such as Markov processes. PNs,
unlike Markov processes, are not memoryless and so allow the degradation to be related
to the track section’s M&R history. The PN model proposed by Andrews (2012) contains
the important aspects of track degradation, M&Rs and inspections allowing lots of useful
information to be pulled from the model and policies, such as when M&Rs occur and
inspections are undertaken, to be altered. The model can then be rerun with the new
policies and the effect on performance, such as time spent with a speed restriction,
compared with differing policies.

From research into other existing models it is possible to see that this PN approach
does not take into consideration other inputs such as line speed and sleeper type, which
other researchers, like Sato (1995), Gular et al. (2011) and Halcrow (2012), classified as
important enablers of the track geometry degradation. This means that this PN approach
is very general and hence may give results which are different to what is found in the
field. The accuracy would be improved by calculating a greater amount of distributions
for different inputs which categorise a particular track section in greater detail.

Network Rail’s Geometry Faults Model
As part of NR’s Track Tier 2 model, which was described in Section 2.4.2, there is also
a method of estimating the amount of geometrical faults that will occur over a given
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stretch of track in a set time period. This model is based on empirical relationships that
have been derived from field data and relates the probability of faults, Pt, to the vertical
track geometry as a SD in mm, Gt, by:

Pt = ln(A+ α log(Gt) +B + (log(Gt))
2) (2.37)

Where A, B and α are variables. A Poisson process simulation is then used to derive the
specific fault occurrences and calculate the amount over a chosen length of time. The
probability is taken to be the Poisson rate for a single time step, which is equal to one
month. A CDF is then evaluated and compared with a random sample to determine its
fault occurred in each time step (Halcrow, 2012).

2.4.3 Maintenance Effectiveness Models

Knowing the track geometry degradation is useful to predict the next time the thresholds
are passed and maintenance is required. After the maintenance activity the track is not
returned to an as good as new state, with each subsequent maintenance activity returning
the track to a lower quality state, as shown by Figure 2.24 and discussed in Section 2.3.4.
Due to this it is important to be able to predict accurately the quality of the track after
a maintenance activity has been carried out.

Deterministic Models

Network Rail’s Model
As part of NR’s tier 2 track model the effectiveness of tamping and stoneblowing are
calculated. The model uses the vertical top SD of the track before maintenance is un-
dertaken, SDPre, to find the SD after maintenance, SDPost, by using the linear function
of:

SDPost = AG + (SDPre ×BG) (2.38)

The values of AG and BG are related to the line speed and can be found in Table 2.7. The
use of a linear relationship between the before and after tamping condition of the track
is supported by M Miwa and Oyama (2000) and is used in their tamping restoration
model. The values in Table 2.7 were found by using past data of SD measurements of
within 30 days before and after a maintenance activity on different line speeds, (Halcrow,
2012). Looking at the values in the table it can be seen that stoneblowing is less effected
by the initial condition of the track with lower BG values than tamping. A comparison
of the effect speed has can be seen in Figure 2.35.

From Figure 2.35 it is possible to see that both tamping and stoneblowing can actually
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increase the track geometry SD if undertaken at an already low SD value (coloured lines
are above the black line (no improvement)). It can also be seen that in general tamping
is more effective on tracks with SD values between 1-4 mm whereas stoneblowing is more
effective on tracks where the SD has already past 4 mm. Figure 2.35 also shows that the
track speed alters the effectiveness of maintenance, with higher speed lines SD tending
to be improved by maintenance more than slower lines (seen by the lower gradients).
The reason why the line speed alters the effectiveness of maintenance is not known. It
could be due to the degree of fouling in the ballast as slower lines tend to have poorer
quality ballast due to maintenance, such as ballast renewal, not being undertaken as the
permissible SD limits are much higher. An issue with the model may arise from the
decision of using data from 30 days before and after the maintenance activities as this
maybe ignoring some bedding in period. The data may also be skewed by the use of over
lifting for some sections of the track to reduce ballast memory and may lead to a little
or negative quality improvement in the short term. Once the track is fully bedded in the
full improvement will be seen, but this may not occur in the 30 days after maintenance.
It is also noted that the model does not take into consideration the amount of previous
maintenance activities that have occurred or the ballast condition.

Table 2.7: Linear parameters for effectiveness of maintenance (Network Rail, 2012)

Tamping Stoneblowing

Line Speed (mph) AG BG AG BG

20 0.365 0.754 0.880 0.577

30 0.360 0.742 0.864 0.571

40 0.356 0.730 0.847 0.566

50 0.351 0.718 0.831 0.560

60 0.347 0.706 0.814 0.554

70 0.342 0.693 0.798 0.548

80 0.338 0.681 0.782 0.543

95 0.331 0.663 0.757 0.534

110 0.325 0.645 0.732 0.525

125 0.318 0.626 0.708 0.517

140 0.311 0.608 0.683 0.508
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(a) Effectiveness of tamping

(b) Effectiveness of stoneblowing

Figure 2.35: Effectiveness of maintenance on vertical top geometry Standard Deviation
(Williams, 2012)

Caetano and Teixeira’s tamping effectiveness relationship
As with the NR’s maintenance model and other work by Stephen M Famurewa and Ku-
mar (2015) which is discussed below, Caetano and Teixeira (2016) recommends a linear
relationship between the initial quality before maintenance and the resultant quality.
Using track recordings obtained from the LisbonPorto railway line in Portugal, parame-
ters for the linear relationship have been found for track which was last renewed around
10 and 20 years ago. This results in two equations for the vertical top geometry, which
are:
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∆SD10 = −0.17 + 0.50SDf (2.39a)

∆SD20 = −0.13 + 0.36SDf (2.39b)

Where SDf is the current track section geometry and ∆SD10 and ∆SD20 are the tamp-
ing improvement expressed as a SD for track 10 and 20 years old. Looking at the values
in the equations it can be seen that tamping performs better on newer track, as seen by
the linear gradient of 0.50 compared to 0.36.

Stephen M Famurewa and Kumar’s tamping effectiveness relationship
Stephen M Famurewa and Kumar (2015) suggest another linear relationship between
the initial vertical geometry SD and the resultant SD from tamping. To quantify the
unknown linear parameters sections of track with good quality ballast were used with a
linear relationship fit, as in Figure 2.36. The fit resulted in the linear equation:

R = 0.5445SD0 − 0.8893 (2.40)

Where R is the recovery of SD and SD0 is the SD of the track section before tamping
is undertaken. It can be seen from the values that Stephen M Famurewa and Kumar
(2015) and Caetano and Teixeira (2016) agree about the degree the previous SD effects
the quality improvement for newer good quality track, with Stephen M Famurewa and
Kumar (2015) noting a value of 0.5445 and Caetano and Teixeira (2016) a value of 0.5.
The two models differ though for the general improvement caused by tamping with values
of -0.17 and -0.8893 with the value of -0.17 recommended by Caetano and Teixeira (2016)
being more optimistic.

Chapter 2 Steve Clarke 64



Railway Track Asset Management Modelling

Figure 2.36: Effect track quality has on tamping effectiveness (Stephen M Famurewa
and Kumar, 2015)

Velt’s Maintenance effectiveness model
Velt (2007) notes that there is a diminishing return of quality of maintenance such as
tamping as track ages. To model this relationship an exponential relationship is used
to account for a slow early reduction in effectiveness which increase to a point where
the maintenance action cannot return the quality back to a serviceable level, as seen in
Figure 2.37. The exponential relationship follows:

Q = Q0e
gt (2.41)

Where Q is the quality after works are completed, Q0 is the initial quality, t is time and
g is an unknown variable.
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Figure 2.37: Exponential Maintenance Model (Velt, 2007)

Stochastic Models

Log-normal Distribution Model
Audley and Andrews (2013) discusses a method of predicting the likelihood of reaching
a particular SD after tamping.

Past track geometry recordings from the UK were used to build up the probabilities
of reaching different SD values after a full renewal or a certain amount of tamping
operation up to two. Recordings of the minimum SD after the occurrence of tamping
were used. Different distributions were then fitted, with the two parameteer log-normal
shown to best represent the data, with an R2 value of 0.995.The two parameter log-
normal Probability Density Function (PDF) is defined as:

f(σ) =
1

σ
√

2πα2
exp(−(ln σ − µ)2

2α2
) (2.42)

Where α and µ are the parameters, with α giving the scale and µ giving the location.
Values were found for after a renewal, one tamp and two tamps for four speed bands of
115-125, 80-110, 60-75 and 10-55 mph. These can then be used to obtain the probability
of reaching any level of SD by using the log-normal CDF.

Like the NR maintenance effectiveness model, the model proposed by Audley and An-
drews uses track speed as an effecting factor but unlike the NR model, Audley and
Andrews does not consider the track condition prior to maintenance as a driving fac-
tor. As seen in Figure 2.35 the previous quality does have an effect on the change in
SD achieved from tamping, due to this the log-normal distribution model maybe losing
accuracy as it presumes that the SD level reached from tamping is only dependent of the
amount of previous tamps and line speed. The use of the amount of previous tamping
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operations is in line with other research which states that the achievable track quality
after tamping is dependent on the BFI which increases with each tamping operation as
the tamping tines cause ballast breakage.

2.4.4 Rail Degradation and Fault Models

The rail on the track is prone to a large amount of possible faults as described in Sec-
tion 2.3.2. Rail faults can be extremely dangerous due to the weakness they cause in the
running service of the track, with the possibility of causing derailments. These faults
need to be predicted to allow future work and costs to be forecast.

Deterministic Models

Network Rail Model
Another method that is used by NR as part of their tier 1 model, known as VTISM, is
outlined by Denby (2013) and Gordon (2006). The model is based off of relationships
between the amount of actionable rail defects, consisting of either squats, tache ovals,
bolt holes, welds or others and other aspects such as gross tonnage, track curvature,
vertical geometry and rail type. The relationships were found using past data of rail
defects obtained from the UK railway network. The model also takes into account the
three different track types of CWR, jointed rail and S&C as well as stations and tunnels
and can be seen as Equation 2.43 with the parameters being outlined in Table 2.8. Each
type of rail defect of squats, tache ovals, bolt holes, welds or others for all three track
types has its own values for the parameters.

D = d× EP ×max {minG, a+ b×G} × (m+ n×min {maxC, |C|})

× rrail × sstation × ttunnel
(2.43)

It is then possible to find the amount of serious rail defects and rail breaks per mile per year
as a proportion of actionable defects.

The NR model that makes up part of VTISM is a very complete model and includes
all the factors which are known to effect the amount of rail defects. Equation 2.43 has
been developed over many years, using a large amount of field data obtained from the
UK railways. Despite the amount of variables in Equation 2.43, only E, G and C are
required for each track section with the rest of the variables having values related to the
defect type and rail type, jointed, CWR or S&C, with these values being given in Denby
(2013). By looking at these it can be seen that more defects occur in bullhead rails,
followed by pre-1976 flatbottom rail, post-1976 flatbottom rail and then CEN-60. It can
also be seen that for squats and tache ovales a tunnel section will experience more defects
but a station would experience less. Weld defects are more common in both tunnels and
stations but bolt holes are not effected by location.
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Table 2.8: Network Rail’s VTISM rail defect model parameters

Parameter Description

D Actionable defects per mile per year for the chosen defect group and track type

d Defect constant

E Cumulative Equivalent Million Gross Tonnage (CEMGT)

p Exponent of E

G Vertical short wave geometry SD [mm]

minG Minimum vertical short wave geometry SD [mm]

a, b Linear relationship for geometry and relative defect rate

C Average rail curvature of the track section, 1/radius [m−1]

maxC Maximum curvature [m−1]

m, n Linear relationship for curvature and relative defect rate

rrail Multiplier for rail type

sstation Multiplier if in a station

ttunnel Multiplier if in a tunnel

ECOTRACK Rail Replacement Model
The ECOTRACK rail model includes three methods of calculating when to undertake
rail replacements, with a rail replacement occurring when one of the models passes its
threshold (Jovanovic and Pearce, 2000). There is an age based and usage based model
where rail replacements occur after a set time frame or amount of cumulative MGT.
The thresholds are based on the rail type and steel used, sleeper type and operational
conditions. The third model involves an exponential degradation, related to cumulative
tonnage and number of failures. Cumulative tonnage is increased by a factor related to
the track curvature, to increase degradation on curved sections of track.

Despite not predicting rail faults this model gives a clear indication on reasons why a
rail would be replaced. By using a combination of usage, time and amount of faults
thresholds the rail will be replaced before its condition becomes unfit for purpose, and
hence dangerous. The conversion of the usage depending on the track radius agrees with
other models and research into the rails, discussed in Section 2.3.2, that the curvature
of the track is a leading cause of rail faults. This is due to the increased forces exerted
on the rails, especially the top rail, around bends.

Stochastic Models

NR Probability Simulation Model
As part of the Network Rail tier 2 model an empirical rail defects model is used to predict
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the amount of rail defects that will occur over a section of track in a set time period.
The rate of defects is a function of the geometry of the track, G, Cumulative Equivalent
Million Gross Tonnage (CEMGT), experienced by the rails, the curvature of the track
section, C, and the section rail type and weight, S, by:

DefectRatet = (A+ CEMGTα
t × (B + β Gt)× (K + δ C))× S (2.44)

Where A, B, K, α, β and δ are section specific parameters and are altered depending on
the section of track being analysed. The different rail section types are bullhead, 113lb
flatbottom pre and post 1976 as well as the more modern UIC CEN 60. The curvature
is calculated by dividing one by the radius of the curve, where a straight piece of track
will have a curve value, C, of zero (Gordon, 2006).

The model then uses the calculated defect rate in a Poisson process simulation to derive
the specific defect occurrences. Sections of 1/8th mile and a time step of one month are
used to find the Poisson rate for each time step. The CDF associated with the Poisson
rate is then found. The number of defects in a time step is found by evaluating the CDF
against a random number using a constant seed for a given time step. A constant seed
for each time step allows different users to replicate results with the same parameters.
The amount of serious defects is then calculated as a proportion of the amount of defects.

The model was well researched in its development with a large amount of data being used.
It takes into account all the primary causes of rail defects, including, usage, geometry,
curvature and rail type. The use of a Poisson process simulation also enables the degree
of randomness of the defects to be taken into account. Some factors are not included in
the model that other models do. These include; stations, due to the fatigue caused by the
slowing down and accelerating of trains or reduced fatigue due to slower moving trains;
poor drainage and diesel deposits and tunnels, due to harder inspection and maintenance
as well as damp and corrosive conditions.

Weibull Distribution Model
A method of modelling rail breaks is proposed by Chattopadhyay et al. (2005) (as cited
by Kumar 2006), where a two parameter Weibull distribution is used. This is backed
up by Simoes (2008) who also suggests the use of a Weibull distribution to find the rails
Mean Time To Failure (MTTF) and reliability. The Weibull distribution is used due to
its ability to provide reasonably accurate failure analysis from a small sample size and
because it has been proven for other mechanical components ageing, wear and degrada-
tion. Chattopadhyay et al. uses the amount of traffic as MGT which is denoted by m,
as the affecting factor. The two parameter Weibull distribution used as a cumulative rail
failure distribution , Fn(m), and as a density function, f(m), are given by:
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Fn(m) = 1− exp(−(λm)β) (2.45a)

f(m) = λβ(λm)β−1exp(−(λm)β) (2.45b)

Where λ is the inverse of the characteristic/scale function, η, and β is the shape pa-
rameter of the distribution. These values are found by fitting the Weibull distribution
to data of times until a rail break occurs in the field using a computer program. This
can be done for one section of track if enough data is available or by grouping similar
sections together by conditions such as curve radius and type of rail.

It is then possible to calculate a failure intensity function, Λ(m) which is an increasing
function of m indicating how the number of failures increases with m. This function is
found using a combination of 2.45a and 2.45b resulting in:

Λ(t) =
f(m)

1− F (m)
= λβ(λm)β−1 (2.46)

The total number of failures over a period from i to (i+ 1) can be found using:

E[N(Mi+1,Mi)] = λβ((Mi+1)
β − (Mi)

β) (2.47)

Where λ and β are the Weibull function parameters and Mi is the total accumulated
MGT up to the ith inspection.

It is then possible to calculate the MTTF using Equation 2.48a which uses the gamma
function outlined in Equation 2.48b.

MTTF = η Γ

(
1

β
+ 1

)
(2.48a)

Γ(n) = (n− 1)! (2.48b)

The use of a Weibull distribution allows the random nature of rail breaks to be modelled.
By splitting the track up homogeneously into sections of similar aspects, such as speed,
curvature, rail weight, rail type, tunnels and stations it is possible to make this model
include all the important factors that cause rail breaks. Chattopadhyay et al. (2005)
did not include different faults or seriousness of faults in their analysis. Base on the
approach it would be possible to include these by splitting the original defect data into
different types of defects before fitting Weibull parameters to the groups. This would
give greater detail to the models output, improving its usefulness.

Markov Chain Method - Including Inspections
Hokstad et al. (2005) and earlier work undertaken by Dolven et al. (2004) discus a method
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of combining a continuous and discrete-time Markov model to allow the continuous
degradation and failures to be modelled with the discrete time transitions of inspections.
This enables the probability of not detecting a fault during an inspection to be included.
The model is designed to discover what the most cost effective preventative maintenance
strategy is by altering the interval times of inspections.

First, a continuous-time Markov model is produced as seen as part of Figure 2.38. A
fault free piece of rail occurs in OK, this then moves towards a degradation failure, F1,
through states D1u and D2u with transitions of µ, ω and ν. The u denotes an undetected
state whereas when a fault is detected in a given state it is shown with a d. When a
fault has been detected in D1u it moves to D1d, from which point it moves to D2d with
a transition of σ and then can move to failure, F1 with transition ν if the fault at D2d is
not discovered. Once a fault has been detected in D1, additional inspections are made.
The ρ transition describes the rate of detecting state D2 in these additional inspections
undertaken due to detecting state D1.

The transitions q1, q2 and q3 are the probabilities of finding a fault, with q1 being the
probability of finding a fault whilst in D1. q2 is the probability of finding a fault, D2,
without prior knowledge of a fault and q3 is the probability of finding a fault, D2, with
prior knowledge of a fault, D1. When a fault is found at D1 no maintenance work
is undertaken but when fault D2 is found work is instantly undertaken, returning the
rail back to an OK state. Both F1 and OK∗ are absorbing states, after which at the
beginning of an interval the state is returned to OK.

Past data is then used to obtain the transition rates with the inspections probabilities,
qn and ρ being chosen from expert judgement. It is then possible to alter both the
length of inspection interval and the frequency of additional inspections when fault D1

is discovered. From this it is possible to find the number of failures over a given track
length in a given amount of time. The different inspection intervals are then compared
and the most cost effective ones in terms of cost, reliability and safety is chosen.

The results from the model, using the calculated rates from the data show that over
a 365 km piece of track over 5027 days the expected number of failures is 213 with a
one year interval time and 312 for a two year interval time. As a MTTF per km of track,
this results in 23.6 years and 16.1 years respectively. It is noted that different lines will
have different transition probabilities which will need to be found from past data.

Continuous Markov models are very suitable to random failures, which occur with rail
faults, due to being exponentially based. The use a time discrete Markov model is
also well suited to inspections due to their constant time step and probabilities to find
faults. By having different states for known and unknown conditions allows for the
inspection time to be lowered when a fault has already been found, allowing the fault
to be monitored and fixed at the correct time. The model does not completely model
real life as once an inspection occurs and a major fault is found the corrective work is
assumed to be instantaneous. There is also no other maintenance considered as part of
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the model other than renewal which returns the model back to a new state. The models
parameters have to be calculated for each different section of track to be used, but it
would be possible to categorise similar pieces of track together to obtain a list of failure
rates for different track types. This could be split up by factors known to affect rail
faults such as speed, rail weight, rail type, curvature and tunnels.Additional failures can
also be added such as ’shock’ failures that can occur in any state. It is possible to use
the same approach for other assets that degrade but the inspections are not guaranteed
to find the faults (such as sleepers with visual inspections).

Figure 2.38: Markov rail failure and maintenance model (Hokstad et al., 2005)

2.4.5 Existing Railway Track Degradation and Maintenance Models
Summary

Track Geometry Degradation Models Summary

Many models have been proposed to calculate railway geometry degradation, including
deterministic, FIS, adaptive networks and stochastic methods. A large selection of mod-
els have been introduced within this section and are compared in Tables 8.1, 8.2 and 8.3,
in the Appendix.

As part of the deterministic models, there have been many empirical relationships sug-
gested. These tend to link either the amount of cycles or traffic as tonnage with the
track settlement or strain. As settlement and strain within a track causes vertical geom-
etry degradation, with it estimated by Chrismer and Selig (1994) that the SD increases
by 15% of the settlement, it can be said that the proposed relationships for strain and
settlement are similar for the vertical geometry SD. It can be seen in Table 8.1 that
in general the degradation rate immediately after a renewal or maintenance degrades
quickly but decreases with time/usage. This happens due to the ballast stones after
work occurring not being in equilibrium and hence early forces tend to move the stones
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a lot, once the ballast is compacted again so the ballast skeleton is interlocked the rate
decreases. The point at which the rate reduces varies in literature with Shenton (1985)
estimating it happening at 1,000,000 cycles, Iwnicki et al. (2000); Ebrahimi (2011b) es-
timating its occurrence at 10,000 cycles or 0.3 MGT and Profillidis (2006) estimating
2,000,000 standard axles. Sato (1995) discuses how the point which vertical geometry
degradation slows to dependent on the quality of the initial ballast packing, which maybe
the reason for the disparity within the literature. Additionally, the load of each cycle
may vary between the different experiments, which would change the speed the ballast
reaches equilibrium.

The relationships found in the literature to quantify the fast early degradation which
decreases vary. Semi-logarithmic relationships are proposed by Alva-Hurtado and Selig
(1981); Profillidis (2006) with Ebrahimi (2011b) also recommending its use in the Wisc-
Rail model up to 0.3 MGT followed by a linear relationship. A power relationship is
recommended by Selig and Waters (1994) and Shenton (1985) suggests its use for up
to 1,000,000 cycles followed by linear. Even an exponential relationship with time as
the main input is advised by Velt (2007) but this line differs from the other suggested
relationships, resulting in slow early degradation which increases with time. Sato (1995)
also suggests an exponential relationship but with tonnage as the main input and an ad-
ditional linear part to the relationship. A linear relationship between the track vertical
geometry and tonnage is presented by Gular et al. (2011) for the multivariate statis-
tical analysis approach, Jovanovic and Pearce (2000) for the ECOTRACK system and
Andrade and Teixeira (2011); Caetano and Teixeira (2016). Andrews (2012) also uses
a linear link between the vertical geometry SD and time. Other non-standard relation-
ships are also proposed for the result of tonnage by Iwnicki et al. (2000) for the TU
Munich settlement model, Shafahi and Hakhamameshi (2009) for the ORE track quality
model and NR uses an exponential-power equation to link the track SD with time. By
assessing the models it can be seen that the consensus is that the track initially degrades
fast but slows and becomes linear. The point this slows is important as if it is low, like
the 0.3 MGT suggested by Ebrahimi (2011b), then it is acceptable to assume that the
initial degradation can be ignored and a simple linear relationship used, as was decided
as part of the ECOTRACK system (Jovanovic and Pearce, 2000).

Across the models discussed there are 3 main inputs used; cycles, tonnage and time.
Cycles and tonnage are very similar as each cycle is equivalent to one axle pass, whereas
the tonnage is a combination of all the axle passes multiplied by the axle load. In general
cycles and tonnage are used for the deterministic models, whereas the stochastic models
tend to use time as the degradation causing factor. The stochastic models, being based
on actual track geometry recordings, tend to be in time as the inspections are recorded as
a date and not as a current usage. Using time does not make much sense as a track will
not degrade if there are no trains traversing it as there are no forces to cause settlement.
Additionally, by using time it is then difficult to model the affect of changes in the
amount of traffic. Due to these reasons it is recommended that degradation is calculated
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in respect of usage, not time.

There are many factors which affect the rate of geometry degradation, with the addi-
tional factors considered compared in Tables 8.1, 8.2 and 8.3. Across the models there
are certain factors with are agreed upon. The track speed is generally considered to be
important due to the increased dynamic loads caused by faster trains. Many models
have taken this into account either directly (Sato, 1995; Gular et al., 2011; Halcrow,
2012; Shafahi et al., 2008) or indirectly as another factor such as pressure within the
ballast (Iwnicki et al., 2000; Sato, 1995; Shenton, 1985). Axle loads is another well doc-
ument factor that affects geometry degradation with increased axle loads causing higher
forces to occur within the track and hence settlement. Again it is included either di-
rectly (Shafahi and Hakhamameshi, 2009; Ebrahimi, 2011b; Halcrow, 2012), or indirectly
(Sato, 1995; Iwnicki et al., 2000; Shenton, 1985). To account for different degrees of traf-
fic many models which used time as the primary factor also include some traffic level
element (Halcrow, 2012; Shafahi et al., 2008; Shafahi and Hakhamameshi, 2009). Other
factors which have been considered within the models discussed include; subgrade type
(Shenton, 1985; Profillidis, 2006; Sato, 1995; Ebrahimi, 2011b), sleeper type (Shenton,
1985; Ebrahimi, 2011b; Gular et al., 2011), sleeper spacing (Shenton, 1985; Sato, 1995;
Halcrow, 2012), ballast condition (Shenton, 1985; Sato, 1995; Profillidis, 2006; Ebrahimi,
2011b; Halcrow, 2012), rail type (Shenton, 1985; Sato, 1995; Iwnicki et al., 2000; Gu-
lar et al., 2011; Jovanovic and Pearce, 2000; Halcrow, 2012), ballast thickness (Sato,
1995; Ebrahimi, 2011b), topography (Shafahi et al., 2008; Gular et al., 2011; Shafahi
and Hakhamameshi, 2009), track aspects i.e. stations and switches (Halcrow, 2012; Jo-
vanovic and Pearce, 2000; Andrade and Teixeira, 2011) and track design i.e. curvature
and cant (Gular et al., 2011; Jovanovic and Pearce, 2000; Halcrow, 2012; Shafahi et al.,
2008). Prescott and Andrews (2015); Andrews (2012) include the amount of previous
maintenance actions as a way of including the ballast condition, as ballast fouling is the
reason degradation increases after each maintenance action.

The models discussed fall into three main types; deterministic, adaptive networks and
fuzzy logic and stochastic, each with their own advantages and disadvantages. Deter-
ministic models are based on the fundamental laws of physical science and are generally
quantified through laboratory experiments. They are applicable to almost any situation,
are highly intuitive and laboratory results are easy to achieve, but they have limited
robustness and struggle to model uncertainties. Despite requiring no/minimal data to
set up, deterministic models tend to require a lot of information to run, as seen by the
large quantity of additional factors required for the deterministic models compared in
Table 8.1. Stochastic models tend to be fit to historical field data using autoregression.
The resulting models are robust and accurate with the inclusion of variability as en-
countered in the real world and uncertainties, but they require good data, have limited
applicability and are non-interpretive. Adaptive networks and fuzzy logic require less
data than stochastic models with possible improved accuracy and with the use of fuzzy
sets variability and uncertainty are incorporated but like stochastic models they are
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non-interpretive and have limited applicability (Kalogirou, 2006). Even though adaptive
networks have been shown to make good models for predicting aspects such as next
maintenance action and track quality next year for one track section, they are not so
suitable for modelling the whole system, including degradation, inspections, maintenance
and renewals, for multiple track sections over a long time period, hence they do not tend
to be used for LCC models. After assessing the models within this chapter and looking
at the advantages and disadvantages of the modelling types, stochastic techniques seem
to be best suited for creating a LCC model for the railway track primarily due to the
variability of track degradation that occurs in the field but also due to the difficulty of
knowing the information required for a detailed deterministic model.

Of the stochastic techniques discussed Markov and PN models have been shown to make
effective track models. As both are graphical, the model design tends to be intuitive
to the system being modelled. Comparing the applicability of the discrete-time and
continuous-time Markov models proposed by Shafahi and Hakhamameshi (2009) and
Prescott and Andrews (2015) it could be seen that a continuous-time Markov chain is
much more flexible, allowing aspects such as inspections to be modelled and the amount
of maintenance actions to be outputted. Both continuous-time Markov models and PNs
are flexible and allow for informative graphical results. In general Markov models are
quicker to solve than PNs and are well-established as a modelling method but once
they become more complex such as including multiple track sections and maintenance
actions a state-space explosion can occur, which is where the model becomes too large to
solve. Other issues with Markov come from the memoryless property where the model
decisions are based only on the current system state and not on the sequence of events
that proceeded it. Additionally, Markov is based around the exponential distribution and
hence if the movement between states is not exponentially distributed a Markov model
is not applicable and will give results that are wrong. This makes Markov models not
applicable to railway track vertical geometry degradation, which is shown by Audley and
Andrews (2013) to follow a Weibull distribution. PNs on the other hand are much more
flexible and can use any type of distribution for the transitions. Additionally, aspects
such as changing transition rates can be incorporated with minimal extensions to the net.
The main disadvantage of using a stochastic PN approach is the computation time, as
they have to be solved using random sampling such as Monte Carlo, which for a complex
net may take a long time to converge. By assessing the advantages and disadvantages
of the modelling techniques introduced, it was decided that a PN approach would be
most suitable for a track LCC model. This is because of its flexibility for modelling all
aspects of a dynamic system, the inclusion of any distribution type, usefulness of the
outputs, pictorial representation makes it easy to understand and map to the system
and variability and uncertainty.
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Maintenance Effectiveness Models Summary

The effectiveness of maintenance activities, with accurately predicted returned track
quality are an important aspect of a track asset management model. This is because,
which maintenance activity to undertake and when, are important decisions that have to
be made by the responsible party. The degree of effectiveness of tamping and stoneblow-
ing have previously been related to the track quality before maintenance by linear rela-
tionship (Halcrow, 2012; Caetano and Teixeira, 2016; Stephen M Famurewa and Kumar,
2015). An exponential relationship is also demonstrated which shows that as the track
ages the level of quality the track can be returned to reduces, with the rate increasing
with time (Velt, 2007). This differs from Prescott and Andrews (2015) who suggests that
after seven tamping operations maintenance reaches an equilibrium. Another method
used is to use distributions of the returned track SD values, of which it was found that
the log-normal distribution seemed to be the best fit. Different log-normal parameters
were found for different speed bands and the previous amount of tamping operations.
From this the probabilities of returning the track to different SD levels could be found
(Audley and Andrews, 2013).

Amongst the different models discussed different factors that alter the effectiveness of
maintenance activations can be seen. These consist of; track speed (Halcrow, 2012;
Audley and Andrews, 2013), track age (Caetano and Teixeira, 2016; Velt, 2007) and the
amount of previous maintenance actions (Audley and Andrews, 2013). It can be said
that both the track age and amount of previous maintenance actions are both easily
quantified values that give an indication of the level of ballast fouling, with the effect
of ballast fouling on maintenance effectiveness discussed on Page 26. It would be more
accurate to use a BFI instead as different track becomes fouled at different rates, but an
in-situ track’s BFI is hard to quantified and often modelled instead, but these models
are only an estimate and have their own errors.

After assessing the models it can be seen that the initial track quality is probably the
most important aspect. It has also been shown that the ballast condition is important.
To account for this the amount of previous maintenance actions is a good representation
as it is known that each tamping action causes a large quantity of fines. The track speed
is also shown to affect the maintenance effectiveness but this is not backed up by any
physical reason, hence further research into this is required.

Rail Degradation and Fault Model Summary

There have been many models produced to predict rail faults incorporating both deter-
ministic and stochastic methods. Assessing the models it is possible to see many factors
that are related to rail faults. Amongst these are; tonnage (Denby, 2013; Jovanovic
and Pearce, 2000; Gordon, 2006), curvature (Denby, 2013; Jovanovic and Pearce, 2000;
Gordon, 2006) and rail type (Denby, 2013; Jovanovic and Pearce, 2000; Gordon, 2006).
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Other factors are suggested by Denby (2013) including track vertical geometry, stations
and tunnels.

Due to the randomness of rail faults and breaks, a stochastic model seems to be more
applicable as the resultant outputs can show the mean amount of failures as well as
the probabilities of different amounts of failures, as with the Weibull distribution model
proposed by Simoes (2008). This is helpful within a LCC model as it quantifies confidence
in the estimated costs, with the output costs having a spread of values. The possible
inclusion of the probabilities of an inspection, such as incorporated in the Markov model
proposed by in Hokstad et al. (2005), is also a useful addition to a rail fault model. Many
faults are not easily identified until the defect reaches a large size, and hence faults can be
missed in inspections. By adjusting the probability of finding faults, the level of worker
competence and equipment errors can be included within the model.

2.5 Literature Review Summary

The effective use of asset management within the railway industry could increase the
return of investment, improving safety and performance or reducing costs. To ensure
that the best asset policies are chosen, tools such as LCC models are used to predict the
future costs and asset conditions of different options, which are then compared and used
as evidence to support changes to the policies. Due to this it is imperative that the LCC
model correctly represents the system giving accurate future costs. It is important that
policies can be changed within the model so comparisons can be made. An LCC model
requires detailed information on the systems assets, conditions, degradation mechanisms,
effectiveness of maintenance activities, costs and the availability of work access and
resources. With these it is possible to design an LCC model that can predict future
costs and performance by recording asset conditions and the amount of inspections,
maintenance and renewals actions taken over a time period.

A railway track is made up of multiple assets, including; rails, sleepers, ballast and
subgrade. The rail is the running surface for the train but due to experience high forces
fatigue tends to occur causing faults such as RCF and possible fail breaks. Rails are
either inspected visually or by ultrasonic testing and are maintained either by grinding,
to remove surface defects, or by rail replacements. There are two methods of joining
rails, jointed and CWR, with CWR being shown to experience fewer faults. Other
aspects that can affect the rate of rails faults include track tonnage, curvature, rail
type, vertical geometry, stations and tunnels. The sleepers hold the rails in the correct
place and transfer the load down into the ballast whilst providing longitudinal and lateral
stability. There are three main types of sleepers used: timber, concrete and steel. Timber
sleepers are good at absorbing shocks and vibrations, but they have a short life and their
low weight reduces their transverse resistance. Concrete sleepers have a long life and are
very heavy resulting in a high transverse resistance. Steel sleepers are cheap and with
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a long service life but, like timber sleepers, are light and hence have low resistance to
movement. Sleepers have failed when they no longer support the loading from the train
and are replaced when required. The ballast transmits the forces down to the subgrade,
absorb vibrations, resists the track shifting and allow drainage. When trains traverse the
track, the ballast skeleton shifts, changing the track geometry. It also tends to become
full of fines, known as fouling, which reduce the ballast drainage and load distribution,
increasing the rate the ballast stones move and the force on the subgrade. Fouling is
caused by the infiltration of fines from the environment and subgrade, as well as ballast
breakage caused by passing trains and tamping. The ballast is maintained by either
cleaning the ballast to remove the fine material or just replaced. The subgrade layer
which the track was built on tends to settle with repeated loading, causing changes in
the track geometry, but the majority of movement occurs within the ballast.

Railway tracks quality is primary categorised by the vertical geometry, as this affects
the quality of the ride for the passengers as well as the maximum safe speed. Poor un-
even vertical geometry can lead to derailments so speed restrictions or line closures are
required to maintain safety. These are expensive so an effective LCC model would ac-
curately predict the degradation and minimise the amount of speed restrictions and line
closures. The vertical geometry is recorded as a SD of an average between the two rails
vertical geometry after a 35 m filter is used to remove long undulations in the geometry
which do not affect the ride or safety. The track geometry is recorded by an inspection
train, and multiple SD recordings for a track section can be used to quantify the degrada-
tion. Previous research suggests that after maintenance the geometry initially degrades
quickly but slows down to become linear with the time required until it becomes linear
is dependent on the initial packing of the ballast. To fit this shape multiple relationships
have been suggested including semi-logarithmic, power, exponential and linear (ignoring
the initial period of fast degradation). The speed at which the geometry degrades is
related to many aspects of the track including track speed, axle loads, usage (tonnage),
subgrade type, sleeper type and spacing, ballast condition, rail type, ballast thickness,
topography, track aspects such as stations and switches, track design i.e. curvature and
cant. There is also a general variability in the rate of degradation where two seemingly
identical track sections will still degrade slightly differently from each other. The track
geometry is improved by tamping and stoneblowing maintenance actions. Tamping in-
volves lifting the track to the desired level, then vibrating tines push the ballast stones
to fill the gap below the sleeper. Stoneblowing also lifts the sleeper but injects small
stones underneath it to fill the gap. The returned track quality after maintenance tends
to vary, with previous research showing that the initial quality, track speed, age and
amount of previous maintenance actions affect the returned track geometry SD. Age and
amount of previous maintenance actions are used to categorise the ballast fouling, which
has been shown to affect the returned quality. The actual ballast fouling is not used as
it is hard to measure in the field.

Many modelling techniques have been used previously to model vertical geometry, main-
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tenance effectiveness and rail faults. These fall into three main types: deterministic,
adaptive networks and stochastic models. The deterministic models are based on the
fundamental laws of physical science, can be applied in almost any situation, are highly
intuitive and normally based on laboratory results which are generally easy to obtain.
However, they lack robustness, do not model uncertainty and generally require a lot
of information which may be hard to obtain in the field. Adaptive networks including
ANFIS models require less data than stochastic models, can be very accurate and the
use of fuzzy sets adds uncertainty and variability, but they have limited applicability
and are not flexible enough to model a complete system with degradation, inspections,
maintenance, renewals and resource allocation. Stochastic models are fit to previous mea-
surements taken from the field using auto-regression, resulting in a robust model that
can model uncertainty and variability. The outputs achievable from stochastic models
are much more informative than deterministic, giving the spread of possible results which
can then be used to give the probabilities of certain results. For example, this makes
it possible to say that there is a 80% chance the cost will be between two numbers.
Stochastic models tend to require a large amount of processing to achieve results, with
many methods requiring random number generation and multiple simulations. Due to
the ability to model the complete railway system with the variability seen in the field
and obtain detailed results, stochastic models are a very good fit for creating a railway
track LCC model.

There are many ways of modelling stochastically. Markov models are well-established in
the area and can be either discrete or continuous and give a graphical representation of
the system. Discrete Markov models are not flexible enough to create a whole LCC model
due to the use of probabilities and a constant time step. Continuous Markov models are
much more flexible and can be solved quickly using algorithms. The issue with Markov
is its memoryless property, which is due to being based around the exponential distribu-
tion. Due to this a Markov model bases the next movement only on the current system
state ignoring any history. Additionally, the ability to only use exponential distributions
means that aspects which do not have random movement cannot be included, and as it
is not expected for the track degradation to follow an exponential fit, a Markov model is
not applicable to the problem. Markov models also tend to grow in size very quickly as
aspects are added, such as multiple maintenance actions, to a point where it may take
a very time to solve. Another very flexible, graphical stochastic modelling technique are
PNs. They have most of the advantages that Markov models have except can take much
longer to solve due to having to be solved via Monte-Carlo sampling, with many simu-
lations. Unlike Markov models PNs are not based around the exponential distribution
so are not memoryless and allow transitions to follow other distributions. As PNs are
flexible enough to build a whole LCC model with, allow for the general variability seen
in the field to be included, produce useful outputs for asset management and can be
designed to allow inputs to be changed which enables comparisons between asset policies
to be undertaken. Due to this it was decided that a PN approach is the best suited to
creating a railway track LCC model in this thesis.
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Railway track degradation is caused by trains traversing the track, due to this within
the model the degradation should be related to the track usage (tonnage) and not time
which is common in previous stochastic track model. This should result in more accurate
degradation information and also allows for the model to account for changes in the track
usage. Other aspects that previous stochastic models have not included but which will
be explored in this thesis include: track degradation related to the many aspects which
are known to affect it; maintenance effectiveness related to the current track condition;
rail faults and breaks included with track geometry degradation with the link between
the two also modelled; data uncertainty brought through the model into the outputs
and memoryless degradation. To accomplish these an analysis of the factors which affect
the rate of degradation will have to be undertaken so only the most important aspects
are included in the model (Chapter 3); analysis of the link between the quality before
and after maintenance quantified stochastically (Chapter 4); analysis of the cause of rail
faults in particular the link between track geometry and rail faults and find a way to
model the link (Chapter 5). Production of a LCC model using PNs is introduced in
Chapter 6.
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Chapter 3

Track Geometry Degradation

3.1 Introduction

This chapter explores the main measure used to categorise the degradation of the railway
track, the data obtained, how it has been organised and used, how the rate of degradation
was found and then how this information plus additional asset and usage information was
used to identify the leading factors that affect the rate of degradation. This is important
as when producing an asset management model an understanding of all the contributing
factors to degradation is required so they can all be included and hence lead to a model
that better represents the real world. It is also imperative to not include any factors
which have no effect on the rate of degradation and hence the output of the model, as
by including unnecessary inputs, the model is made more complicated to use with no
additional benefits. Additionally, as the model to be developed will be stochastic in
nature, it is important to maintain large amounts of data for the model to be based on,
with every additional factor reducing the size of the datasets used within the model.

As part of the analysis, the major factors that effect the rate of degradation of the
railway track have been identified, such as sleeper type or track speed, and the choices
within these factors statistically compared and grouped if possible answering questions
such as, does a particular sleeper type lead to faster or slower degradation compared to
another. This information will help to identify reasons for different track section’s rate
of degradation and help to make informed decisions on renewal/upgrade choices and the
running of the track.

It was decided that the degradation would be related to the track usage and not to time,
as from the extensive literature review and data, it could be seen that the primary cause
of degradation on a railway track is the running of trains on the line. The creation
of a usage based asset management model would also allow changes in the track usage
to be modelled stochastically, which is more difficult in a time based model. This is
important for the railway industry as the usage of the train lines changes by varying
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degrees each year, which some yearly increases of over 200% occurring on the UK rail
network. These changes will increase with additional factors such as the use of new
technology, i.e. moving block signalling, and speed changes.

3.2 Available Data and Preparation

3.2.1 Introduction

This section reviews the historical data of the UK rail network and discusses how it has
been assembled to allow degradation rates to be found and an analysis of the contribut-
ing factors to be undertaken. A large quantity of data was obtained from the owner and
infrastructure manager of the UK’s railway network, Network Rail (NR), including eight
years of track geometry recordings and details of mechanical maintenance interventions,
such as tamping and stoneblowing. Renewal information has also been obtained, as well
as knowledge of the track assets installed and their locations, track usage history and
geology information. This data has been used to calculate the rates of degradation of
the track sections over different phases of its life cycle, as well as the effectiveness of
maintenance activities. Maintenance activities were chosen as the place to split the data
into phases, with the degradation rate being categorised by the track section’s mainte-
nance history. This was decided as from extensive research it is known that as the track
assets degrade the rate of degradation of the vertical top geometry increases, primarily
due to the quality of the ballast reducing as it becomes fouled with fine particles. This
occurs due to the build up of fines from the atmosphere and passing trains, as well as
from ballast breakup caused by maintenance activities, passing trains and infiltration
from the subgrade, (Selig and Waters, 1994). As the ballast fouling increases, the fine
particles block the voids reducing drainage and the ballast’s resilience to deformation,
leading to faster vertical geometry degradation, (Ebrahimi, 2011a). As maintenance, in
particular tamping, causes a large amount of ballast fouling, it is a good idea to use the
amount of previous maintenance activities to group together track sections, as these will
have similar ballast fouling levels.

The acquired data was measured over different length track sections with the UK railway
network being split up into many parts. The highest level are the Strategic Route
Sections (SRS’s), which are tens of miles in length. These are then split up into Engineer
Line References (ELRs), and then Segment IDs, which divide the network into sections
with the same traffic. These are then further broken up into 220 yard sections, known as
position keys or poskeys for short. The poskeys are then fragmented further into track
IDs which vary in length from 1 to 220 yards, and are dependent on changes in the
track, e.g. a change in sleeper type or an Switches and Crossing (S&C) would result in
a different track ID within the poskey. Table 3.1 lists the available data, as well as the
track section type they are recorded for. To use all the data together it was first required
to relate all the data to the same section type. To maximise the amount of data and
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hence confidence in a statistical analysis it is best to split up the railway network into
as small of sections as possible. This also increases the amount of sections which will
have consistent information, such as sleeper type, across their whole length, which was
required for the detailed analysis.

Table 3.1: Available data and their recorded section types

Data type Section type

Geometry recordings Poskeys

Maintenance records Poskeys

Renewal records Track IDs

Asset information Track IDs

Track usage history Track IDs

Track usage breakdown 2014 Segment IDs

BFI history Track IDs

Subgrade geology information Varying lengths not related to any other section type

3.2.2 Geometry Recordings

Measurement trains have been used to obtain track geometry measurements on the UK
rail network since 2006. The train obtains many geometry recordings, primarily including
the vertical top profile and the alignment. The vertical top profile is considered to be
the most representative measure of track quality as it affects many aspects such as ride
comfort for the passengers and the permissible, safe speed limit for the line. The 35
m wavelength Standard Deviation (SD), which is discussed on Page 21, gives a good
indication of the track quality, and with the use of many recordings taken over the years,
a good way to calculate and categorise track degradation, as well as the effectiveness of
maintenance operations.

NR has supplied a database consisting of 5,622,354 vertical top SD measurements from
the year 2006 to 2014, with the date and poskey of each measurement also recorded.
The calculated SDs are recorded in general to one decimal place but some more recent
recordings are calculated to two decimal places. With the computed SDs being rounded
to one decimal place, a degree of accuracy had been lost, making small changes in the
quality of the track geometry hard to identify. The obtained data was accurate to 0.1 mm
though, which it was decided, still had the required degree of accuracy to see the type
of changes in track quality which were expected over the large time periods between
railway track maintenance activities.

Due to the vertical top geometry SDs being recorded for the 220 yard sized poskey
sections, and with no way of calculating it for different sized sections, it was decided
that all the other obtained data would have to be known for individual poskeys too. Due
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to inconsistent data such as asset type or track speed, some poskeys were removed from
the analysis. They were only removed where required, if sleepers were being analysed,
as long as the sleepers on the whole poskey were consistent even if the track speed was
different it would still be included. Ideally the geometry recordings would have been
calculated for the smaller track IDs as their smaller size would result in more track
sections and more data to undertake a statistical analysis of the causes of degradation.
The track ID’s also have consistent asset data within them, so data would not have to
be removed, as it is with the use of poskeys, when differing assets appear in the same
section, see Section 3.2.5.

3.2.3 Maintenance Records

Mechanical maintenance records, including tamping and stoneblowing activities, have
also been obtained. These are recorded for the poskeys and comprised of 376,006 records
in a database. The type of each activity, either tamping or stoneblowing, as well as
the date the work was completed, were included in this database. Due to already being
recorded for the poskeys, no further work had to be completed to line the maintenance
records up with the geometry recordings.

As it was decided that the degradation fits would be grouped by the amount of previous
maintenance activities, for the poskeys which underwent their latest full renewal before
the start of the maintenance records, an estimate of the amount of maintenance activities
prior to the records starting was required. This was needed to understand each track sec-
tions full maintenance history and its impact on the railway track degradation. Without
the estimated previous maintenance before records, only newer track (less that 10 years
old) could be included within the analysis on maintenance histories. The maintenance
records started in 2005 and as stoneblowing was rarely used before this, it was decided to
presume that all major pre 2005 maintenance would have been tamping. This presump-
tion will result in all track sections which underwent a stoneblowing operation pre 2005
to be categorised in the wrong maintenance history, but as stoneblowing was rare before
the year 2005, the amount of poskeys categorised with the wrong maintenance history
due to the lack of stoneblowing would be very low. To estimate the amount of tamping
operations, Table 3.2, was obtained from NR, where the table was created from past data
and asset management policies. Table 3.2 first uses the track category to obtain a base
tamping frequency in tamping operations per year, where the track category is set using
the poskeys speed and usage using Figure 3.1. The Ballast Fouling Index (BFI), which
is introduced and organised in Section 3.2.8, is then used to alter the base frequency, as
new track tends to require very little maintenance work whereas poorer condition track
with a higher BFI will degrade faster and require more maintenance actions. The overall
tamping frequency can be obtained by multiplying the base frequency by one plus the
BFI alteration value. This was calculated for each year between the full renewal of the
poskey and the start of the maintenance records, then the total sum was rounded to
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obtain an estimate of the total amount of tamping operations pre 2005 for each poskey.
This can be expressed as Equation 3.1, where y is the year the poskey last underwent a
full renewal and n is the year being calculated.

Total Tamps Pre 2005 = b
2004∑
n=y

Tamping Base Frequencyn ∗ (1 + BFI Alterationn)e

(3.1)

The maintenance records had to be cleaned to remove additional maintenance activi-
ties where the data seemed to have recording errors. There were multiple duplicated
maintenance activities that were recorded having to have occurred at similar times to
each other in the data. These should not exist as two mechanical maintenance activities
would not occur close to each other. To find and remove these duplicated records it was
decided that subsequent records that occur within 30 days of the previous maintenance
activity should be deleted as these are most likely a record mistake. The choice of 30 days
came from discussions with engineers at NR, and by looking at NR’s asset management
policies to see at what points maintenance is scheduled. From this it could be seen that
the closest that two mechanical maintenance activities should occur is about 6 months
apart, but can be lower if required, but most of the time if this is the case a renewal will
occur instead, as it is not feasible to be maintaining the track more than twice a year
with mechanical tampers and stoneblowers.

Table 3.2: Tamping frequencies [obtained from Network Rail]

Track
Category

Tamping
Base

Frequency
BFI <25 25< BFI <50 50< BFI <75 BFI >75

1A 0.5 -0.26 0.11 0.09 0.25

1 0.33 -0.24 0.12 0.02 0.21

2 0.33 -0.24 0.04 0.12 0.09

3 0.33 -0.22 0.07 0.06 0.08

4 0.25 -0.15 0.04 0.11 0.01

5 0.16 -0.27 -0.03 0.16 0.21

6 0.10 0.09 -0.12 0.16 0.55
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Figure 3.1: Calculating Track Category, (Network Rail, 2011)

3.2.4 Renewal Records

Records of the year of all rail, sleeper and ballast renewals for each Track ID were given
as an 11,085,265 row database. The database included a record of each track ID for the
years 1995 to 2006, and the year of the latest rail, sleeper and ballast renewal there was
in that year. Using this database it was possible to find the latest full renewal for each
track ID. Due to being recorded for each track ID, these had to be related to the larger
poskey sections to line up with the geometry recordings. As part of this the entire poskey
had to have a consistent rail, sleeper and ballast renewal dates and these all had to be
the same year for the poskey or the poskey data was deleted. This was undertaken as it
was desirable to have all poskeys starting from a full renewal where the rails, sleepers and
ballast for entire poskey had been renewed at the same time, as it meant that all poskeys
that were included in the further analysis and in the stochastic model data started in
the same condition. This resulted in 81,965 poskeys which had undertaken a known full
renewal.

Due to the renewals being recorded as only the year of occurrence and not an exact
date, the track geometry recordings were used to obtain an informed estimate of the
actual renewal date. The largest drop (improvement) in SD was used to identify the full
renewal in the year, with the lower SD recording taken as the renewal date. Before this
was undertaken the vertical top geometry recordings had to be cleansed of outliers, which
could possible show a large drop in the SD and hence be picked up as the renewal date
when they should not be. These outliers were classified as unexplained large drops and
peaks and temporarily removed from the data and later returned before the calculation
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of the degradation fits in Section 3.3.2. It was decided that an unexplained drop or peak
with a SD change of 0.4 mm or more would be removed. This was decided as from
research it could be seen that despite general geometry fluctuations occurring such as
seasonal track quality changes these would be unlikely to be as high as 0.4 mm, hence it
was presumed that recordings creating drops or peeks over 0.4 mm were probably errors,
unrecorded maintenance actions or manual maintenance. An example of how the data
was cleansed can be seen in the year 2008 of Figure 3.2, where the recordings of the large
unexplained dips have been removed.

After a renewal a large bedding in period can occur, where the ballast skeleton, which
is made up of ballast stones, moves causing track geometry improvements, until the
skeleton reaches an optimum equilibrium. To take this into account, track recordings
over the first 240 days after full renewal were checked for further geometry improvement.
A new renewal date was taken as either a lower SD recording within 120 days, a SD
recording between 120-180 days which has an improvement of more than 0.1 mm or a
SD recording between 180-240 days which has an improvement of more than 0.3 mm.
These were chosen as a bedding period of 120 days was expected but it may take longer.
The reason that greater improvements were chosen to be required the more days past
the renewal date was to stop a minimum being found in the first 120 days and then a
similar or very slight improvement occurring at a further point, which could be due to
general fluctuations and were not enough of an improvement to move the new renewal
date for, as that would affect the degradation curve fitting later. The lowest of these
recordings is used as the new full renewal date, with all previous recordings removed.
Figure 3.2 demonstrates how the bedding in period is taken into account with the largest
improvement in SD occurring around August 2008, but the actual renewal date taken as
in December when a lower SD recording occurs. This would then be taken as the start
of the data that would be used to calculate the track degradation.

As the track recording records only go back to 2006, for full renewals that occurred in
a year with no track recordings it was assumed that the renewal occurred in the middle
of the year. This results in the minimum possible error, with the estimate being at
most half a year out. The middle of the year has also been used as an estimate of
the full renewal date for all poskeys which did not have at least three track recordings,
spread over the whole year. It was decided that three records was not enough to have
confidence the largest drop was when the renewal happened. Additionally, if the largest
drop, due to the lack of data, occurred between two geometry recordings 200 days apart,
the lower value would have been presumed as the renewal date, when the renewal could
have actually occurred very close to the first recording and hence the estimate would be
nearly 200 days out. Due to the added uncertainty in estimating the full renewal date
without track recordings these poskeys are recorded separately. For reference in this
thesis the poskeys for which the full renewal dates were estimated using track recordings
will be called Data A and the poskeys with the estimated dates as the middle of the year
will be known as Data B. Data A contains data with the full history known information
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from records (track renewed prior to the start of geometry recordings and maintenance
actions). As Data B contains poskeys which were last renewed prior to records began,
the maintenance histories had to be estimated prior to 2006, as discussed in Section 3.2.3.
This adds more uncertainty as the poskeys in Data B may be categorised into the wrong
maintenance history.

(a) Before Cleansing (b) After Cleansing (removal of unexplained
dips, first half of the year 2008)

Figure 3.2: Example of Track Recordings of Vertical Alignment

3.2.5 Track Asset Information

Detailed information of the UK’s rail network’s track assets and lines was also obtained in
the form of a database. This included useful information for 632,741 track ID’s such as:
rail and sleeper type, maximum permissible track speed and axle load, operating route
and its criticality, existence of tunnels, stations, S&C, electrification types, embankments
and cuttings, track curvature and cant. As this data was recorded for each track ID,
again the data had to be related to the larger poskeys so the information could be
used in conjunction with the geometry recording SDs for analysis of the track geometry
degradation. When a poskey’s track IDs had inconsistencies for a data type such as
sleeper type, the data was not recorded for the poskey. For example, if a poskey was
made up of four track IDs, each with the same sleeper type, this is recorded and used
to categorise the poskey, whereas if one of the track IDs consisted of a different sleeper
type then the sleeper type is not recorded for the poskey. This will ensure that when
grouping similar poskeys together, as required to analyse the degradation rates, that all
of those being grouped consist wholly of the chosen factor type.

3.2.6 Track Usage History

Track usage is recorded as the Equivalent Million Gross Tonnage (EMGT) that went over
the line each year for the years from 1995 to 2013. A database was obtained containing
11,085,265 records including the track ID, year of recording, EMGT for the year and
cumulative EMGT for the rail, sleeper and ballast since renewal, with the renewal taken
as the middle of the recorded renewal year. The EMGT differs from just Million Gross
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Tonnage (MGT), as it also takes into account the variations in track damage caused by
different traffic types, due to reasons such as axle loads, speed and different bogies with
different suspensions. Traffic is split into three types: hauled passenger, hauled freight
as well as tractive units, where tractive units are the unit of a train which delivers power
through its wheels. For each train type in each category the MGT is multiplied by a
factor to obtain the EMGT, which are then summed together to obtain the total EMGT
in each year for the track ID. The hauled passenger trains factors are based on axle loads
and speeds; the hauled freight train’s factors are based on the axle loads and percentage
of freight trains; the tractive units factors are based on the axle loads and the power of
the unit, where the higher these values are, the higher the factors associated with them
are. With all the train types a reduction is given for bogies designed to reduce track
damage, (Network Rail, 2011).

As the usage history was recorded for separate track ID’s, these had to be related to
the larger poskeys as with the track asset information and renewal records. Similarly to
before, when multiple track ID’s make up a poskey, they were checked for consistency
and if all the track ID’s had the same usage history then this was recorded for the poskey,
if not, the usage was not recorded. As the majority of the track ID’s last full renewal was
before 1995, which was when the usage history records began, NR supplied estimates
for the usage since renewal were used, with these being included in the cumulative
EMGT records. This estimate adds uncertainty into the cumulative EMGT, but this
was not an issue for calculating track geometry degradation in respect to usage as this
only required the yearly usage values for 2006 onwards, as this is when the geometry
recording records began. It does add extra uncertainty to the calculation of ballast
fouling history as discussed in Section 3.2.8. The presumption of middle of the year
renewals for the cumulative usage history adds additional uncertainty to the values but
for track sections that were renewed post 2006, when the track recording measurements
started, an estimated renewal date was found, see Section 3.2.4. With the estimated
renewal date, linear interpolation could be used to calculate the usage since renewal
in the renewal year, using the renewal years usage, e.g. if the renewal was estimated
to have occurred on the 3rd May, which is the 123rd day of the year, and the yearly
usage was 20 EMGT, then the usage for the renewal year after the renewal would be;
20 ∗ ((365 − 123)/365) = 13.260 EMGT. The calculation alters slightly for leap years
when the equation would be; 20 ∗ ((366− 124)/366) = 13.224 EMGT.

As the proposed model has a driving input consisting of usage instead of time it was
required to have all the data, which is recorded as dates, expressed as a usage since
renewal. Once the yearly cumulative usage for each poskey was plotted against time,
using the renewal date as zero EMGT, a line had to be fitted to the data to allow
estimates of the usage at any date to be found. Initially, linear and second degree
polynomial fits were used, with the fit being forced through the origin (no usage when
fully renewed). These fits had mean r2 values of 0.9713 and 0.9966 and median r2 values
of 0.9902 and 0.9992. The polynomial fit is much better fit than the linear fit as it allows
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changes in yearly usage to be modelled. Despite the high r2 values it was decided to
use interpolation instead, as even though the polynomial fit in general was very close
as seen in Figure 3.3a, some occasional poskeys had poor fits, as seen in Figure 3.3b.
These fits would result in significant errors in the cumulative usage estimates of works or
inspections, resulting in further errors when calculating the degradation rates. The poor
fits generally occurred when the poskey underwent large changes in yearly usage and/or
had data missing between the most recent full renewal and the start of the usage data.
Due to the difficulty of fitting an equation to the cumulative usage date, because of the
possibility of different shapes and large yearly changes, a linear interpolation model was
chosen to find the usage since renewal for all track recordings and maintenance activities
in each poskey. By using a linear interpolation model instead of regular fits such as
polynomial, even large yearly changes in usage can be taken into account, and the best
estimates obtained. By using the linear interpolation, a presumption is made that the
track usage is linear across a whole year, with all changes in traffic occurring between
the end of one year and the start of the next. This could lead to errors in the estimates
of usage at the time of an inspection or maintenance activity as the traffic increase or
decrease could have occurred in the middle of the year, but as there was no more detailed
data of the usage but the yearly values, it was decided that linear interpolation would
give the best estimates for the usage at all stages of a track sections life history.
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(b) Unknown usage and a large traffic increase

Figure 3.3: Usage history data with fits

3.2.7 Track Usage Breakdown

A track usage breakdown from the year 2014 was used to give a detailed categorisation
of the traffic types that use each poskey. The UK rail network is a mixed traffic network
with most lines being used for both passenger and freight trains, due to this it is im-
portant to not only know the usage as EMGT but to understand the actual traffic that
traversed each track section. For this multiple databases were used including; a detailed
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traffic database with 4,988,913 records, including traffic data for each segment ID which
consisted of the train types, if they were loaded or unloaded, the sum of their axle load,
the amount of times in the year they traversed the segment ID and the combined tonnage
of these journeys. To understand the actual speed of the traffic the maximum speed of
each of the train types was used. This was given in a database with 1,472 records, where
for each train type, and whether it was loaded or unloaded, the maximum possible speed
of that train was recorded as well as if it is classified as a freight or passenger train. This
was required, as the trains traversing the track may not do the maximum permissible
speed. When exploring the link between traffic speeds and the rate of geometry degra-
dation, the track section should be classified by the actual speed (and hence dynamic
forces) of trains that traverse the track.

Due to the data being recorded in segment IDs, it was required to relate the data to the
smaller poskey level. This was straightforward as all poskeys that make up a segment ID
have the same traffic as the segment ID. Once all the data was related to poskeys it was
possible to find the percentage of traffic which was freight, the percentage with combined
axle loads over 50 tonnes, the mean and median averages of the maximum speeds of the
trains that passed over the poskey in a year. The amount of traffic over 50 tonnes was
calculated in addition to freight as in general, passenger trains are below 50 tonnes axle
load and freight are above. Using axle load moves empty freight into the lower group with
passenger trains (were normally empty freight would still be classified as freight). This
splits the traffic by more directly relating to the forces the track will experience instead
of a simple train classification (passenger/freight) split. The percentages are calculated
as both the amount of trains and also tonnage. Higher percentages tend to occur when
calculated as a percentage of the usage as even if the same amount of passenger trains
traversed the track as freight, which gives 50% freight by the amount of trains, due to
freight trains being heavier, the percentage of fright trains by usage would be higher
than 50%. Despite the calculation of the mean and median track section speeds using
the maximum train speeds, it could be seen that these were virtually identical to the
track sections maximum permissible speed, so for the further analysis this has been used
instead.

3.2.8 Ballast Fouling History

NR also supplied their estimates for the ballast condition, as a BFI, which were calculated
by one of their existing models. The provided BFI history database contained 11,085,265
records, including the last ballast renewal year, cumulative BFI and BFI increase for each
year from 1995 to 2013 for each track ID. The model used estimated the BFI’s using
Equation 3.2, where the parameters have been defined in Table 3.3, (Network Rail,
2012). Despite the ballast fouling model developed by NR incorporating all the major
factors that contribute to ballast fouling, as discussed in the literature review and seen
in Table 3.3, the resultant BFI values are still estimates, and may encompass multiple
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errors. These could arise from issues with the numbers in Table 3.3, or from errors in
the maintenance and usage histories. This is especially the case for track sections where
the last ballast renewal occurred before the year 2006, which was when the maintenance
records began, as the quantity of maintenance activities prior to this had to be estimated.
Additionally, the estimates of track usage prior to when usage records began in 1995,
as well as unknown percentages of dirty wagons, could also lead to further errors in the
BFI estimate obtained from NR’s ballast fouling model. Due to these possible errors
in the BFI estimates, it was decided to not use the values for analysing a link between
ballast condition and vertical geometry degradation but to explore the factors that lead
to fouled ballast, such as the factors included in Equation 3.2, instead.

BFI =
EF + (TF ×MGTAll) + (DF ×MGTDirty) + (MF × Tamps)

V A
(3.2)

To obtain the BFI values required to estimate the amount of previous work before the
records started, which was undertaken in Section 3.2.3, the BFI’s prior to 1995 had to be
estimated. This was accomplished, similarly as with the usage data in Section 3.2.6, by
plotting the cumulative BFI data against time in days, with the last full renewal recorded
being as zero days. Unlike with usage where it is known that at zero days the usage was
zero, we do not know the BFI value at renewal, as even new ballast contains a degree of
fines. Due to this the chosen fit would have to allow extrapolation back from the start of
the BFI data back to the renewal. This meant that the use of linear interpolation, which
was used for the usage history, could not be used. Due to yearly changes in the rate of
ballast fouling, a linear line fit also was not an acceptable fit for the data. It was decided
that a polynomial line best fitted the data while allowing for the slight changes in yearly
accumulated BFI that occur, also unlike the linear interpolating fit used for the usage
data, it allows for extrapolation back towards the renewal. The fit was given boundaries
to maintain the expected shape; a boundary of between 0.2-0.3 being specified for when
time equal zero to guarantee that the new ballast has a fouling between 20-30% and
the fits were checked for any negative gradient as this would not be possible without
maintenance. The values of 0.2-0.3 was chosen due to the recommended initial ballast
fouling recommended by NR of 0.2295, as seen in Table 3.3. This value is not zero as
even new ballast will have a degree of fines. Unlike with the usage data, discussed in
Section 3.2.6, where the polynomial line was not used as it struggled to fit the data when
extreme changes in the rate of usage occurred, the changes in the rate of ballast fouling
were much smaller allowing the polynomial equation to fit the data very well. The fit
was then used to estimate the BFI for each year since a full renewal for each poskey
for use in the estimation of the amount of maintenance actions that occurred before the
maintenance data started. This calculation can be seen in Section 3.2.3.
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Table 3.3: Parameters used to calculate BFI, (Williams, 2013)

Parameter Description Default Value

VA Avaliable ballast void after renewal 22.95%

EF Environmental fines 0.209% a year

TF Traffic fines 0.0214% per MGT

MF Maintenance (tamping) fines 0.578% per tamp

DF Dirty wagon fines 0.18% per MGT

3.2.9 Geology Information

A spreadsheet containing information on the geology under the track was supplied by NR.
This spreadsheet included information on the bedrock, which is the in-situ geology under
the track as well as any additional superficial and/or artificial layers that were placed
on top of the bedrock before the construction of the track. The spreadsheet contains
information of the layer type, ELR, start and end mile and yardage of the section and
its geology type. The geology sections vary greatly in size from tens of yards to over
20 miles, with a mean length of 1,055 yards. There was 3,227 records of sections with an
artificial layer with equalled 829 miles of track, 20,793 records of a bedrock layer with
equalled 11,006 miles of track and 20,848 records of sections with a superficial layer with
equalled 7,212 miles of track. There was two unique artificial layer types, 338 unique
bedrock geology types and 36 unique superficial layer geology types.

It was required to reduce the amount of geology types, as when analysing the affect
the geology type has on track degradation, it was important to keep the size of the
datasets as large as possible so a statistical analysis was possible. So by combining similar
geology’s, and hence increasing the size of the datasets, a more detailed analysis could be
undertaken. To accomplish the reduction it was decided to classify the geology by their
primary material for example ’sand and gravel’ would be classified as just ’sand’, whereas
for ’gravel and sand’ where gravel is the primary material, it was classified as ’gravel’.
Combining similar geology’s using this method does remove some detail as it increases the
spread of geological properties within the classifications such as by classifying ’sand’ with
’sand and gravel’ where these would have slightly differing mechanical properties such
as stiffness and drainage speed. Despite this it was decided that the size of the datasets
of poskeys for the ungrouped geologies would not be large enough to perform a detailed
analysis of the link between geology and rate of vertical geometry degradation, with only
a couple of the ungrouped geologies occurring in more than twenty poskeys. A more
accurate method of grouping similar geologies would be to use the geologies mechanical
properties instead of the primary material, but this information was not recorded with
the geology types. After the geology grouping was accomplished the amount of unique
bedrock geology types was reduced to 141 and superficial layer geology reduced to 15.
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Due to the geology sections varying in length, no direct link between the poskeys, which
is the section size that the data was required in, and the geology sections existed. Due to
this the locations of the sections had to be used. To identify the locations, the particular
line was required for both the geology and poskeys, for this the ELR was used. The
distances down the line for both the geology sections and poskey locations were then
used to find which geology made up each poskey. The artificial, bedrock and superficial
layers were checked separately for each poskey to ensure that the entire poskey has
the same geology across each layer and when the poskey had differing geology within a
layer the geology of that layer in that poskey was not classified. This results in 141,211
poskeys with a known consistent bedrock layer, 123,937 with a known superficial layer
(including the layers where it is known that a superficial layer does not exist) and 149,021
poskeys with a known artificial layer. From these there are 107,332 poskeys with a known
bedrock, superficial and artificial layer.

3.3 Calculation of the Vertical Top Geometry Degradation

3.3.1 Introduction

This section discusses how curve fitting is used to fit mathematical equations to the
degradation data and how the degradation rates quantified. The organised data con-
tained 150,952 poskeys which had recordings of track vertical geometry SDs which will
be used to categorise the degradation and calculate the degradation rate. Of these 81,965
had known full renewal data, where the ballast, sleepers and rails were renewed at the
same time, which was consistent across the whole poskey. With all the data related to the
poskeys, including track geometry records (expressed as both days and usage as EMGT
since renewal), maintenance histories (expressed as both days and usage as EMGT since
renewal), asset information, geology and section traffic types, it was now possible to find
the degradation rate for the different phases of the poskey’s life-cycle’s, and classify these
by their maintenance history. It was important to split up the degradation rates by their
maintenance history as this ensures that the combined datasets of degradation all relate
to railway track in similar conditions. This is required when analysing the datasets to
identify the main factors, as it helps ensures conclusions are based on causation not
correlation. If a comparison between two datasets, such as concrete sleepers and steel
sleepers, is undertaken but the steel sleeper dataset consists of degradation rates from
newer track that has only been maintained a couple of times, then the concrete sleeper
dataset would probably contain higher degradation values, but it could not be said that
this is because of the sleeper choice. The difference would probably be due to the older
track in the concrete sleeper dataset, which has already undertaken multiple mainte-
nance activities and has high ballast fouling, degrading faster than the newer track in
the steel sleeper dataset because of the loss of resilience caused by fouling and not the
sleeper choice.
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3.3.2 Finding the Degradation Rate

Once the poskeys had a renewal date and all vertical geometry recordings and major
maintenance occurrences recorded as both time and usage since full renewal, the outliers,
which were removed in Section 3.2.4, were returned and then a degradation line could
be fitted for vertical geometry SD against time in days and against usage in EMGT. For
Data A this started from the full renewal to the first maintenance activity, seen in red on
Figure 3.4. Fits were found for between each maintenance activity, with the date or usage
being normalised to zero at the time/usage of the latest previous maintenance activity.
This can be seen in blue in Figure 3.4. If a drop in the vertical geometry SD occurred of
more than 0.4 mm, ignoring the outliers, it was presumed that an unknown maintenance
activity had occurred and further calculations of fits in the poskey were ignored. This
was done as the further fits of data for the poskey would have had a previous unknown
maintenance activity, and hence could not be categorised by maintenance history. The
value of 0.4 mm was chosen after a discussion with engineers at NR as this would allow
for small general fluctuations within the recordings, where small improvements can occur
on their own due to factors such as environmental conditions but improvements greater
than 0.4 mm would probably be due to a maintenance activity occurring. This could
include manual track works, which are unknown from the acquired data and do not
encompass the whole poskey. Some manual work is only a few meters, making modelling
them difficult when using poskeys as the section size. This is due to the improvement
being hard to identify and categorise with most of the manual works improvements not
being visible in the calculated vertical geometry SDs, due to improving only a small part
of the poskey.

The calculated fits were then recorded and characterised by their poskey and the amount
of previous work. Data B, could not be started at full renewal as there were no track
geometry recordings around of time of full renewals, due to this it was decided to start
after the first known maintenance activity recorded after track recordings started. Then
similarly to Data A, fits were found between each sub-sequential maintenance activity.
The fits were then characterised by their poskey and the amount of previous works
including the ones known from the maintenance records and those estimated to have
occurred between full renewal and the start of the maintenance records. The use of the
estimated amount of previous works is the primary reason why Data A and Data B have
been kept separate as errors in these estimates will result in the found degradation rate
being classified with dissimilarly degraded track sections. This may cause issues during
the analysis of the primary factors of track degradation, as discussed in Section 3.3.1.

It was decided to firstly use a linear fit, as this gives a good trend of the degradation
and the gradient gives a quantifiable rate which can be compared between track sections.
Other fits were also explored including power, exponential and polynomial, which equa-
tions can be found in Table 3.4. These were chosen as some were similar to equations of
previous research explored in the literature review, and they allow for changes in the rate
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of degradation, unlike a linear fit. Unlike other common fits such as Fourier, Gaussian,
sum of sine and rational, the chosen fits give sweeping curves with consistent gradient
signs (except polynomial) and can also fit linear data if required. This was desirable as
the fit was not expected to be a wave. Looking at the mean average r2 and Root Mean
Squared Error (RMSE) values obtained from all the poskeys and maintenance history
possibilities it can be seen that polynomial gave the best fit, closely followed by power.
These values for time and usage can be seen in Tables 3.4 and 3.5. Despite the poly-
nomial equation giving the best fit statistically, its ability to have turning points where
the gradient changes sign, results in fits that do not actually represent the underling
degradation trend within the track recordings, which can be seen in Figures 3.5, 3.6 and
3.7. These figures also demonstrate how the linear fit, despite not always being the best
fit statistically, does fit the general trend of degradation in the poskeys. By examining
the fits it is possible to see that the power curve represents the data best, due to the
power equation allowing for rapid changes in gradient and an almost linear part in one
line. The exponential curve follows closely to the linear fit, and has no real benefit in its
use. The GOF measures in Tables 3.4 and 3.5 are an average of many fits, with varying
strengths, with many results with r2 values above 0.9, but also many lower. The data
for the poskeys in Figure 3.5 are very linear and consistent whereas Figures 3.6 and 3.7
demonstrate poskeys with decreasing and increasing rates of degradation. The r2 and
RMSE values for the poskeys and fits in these figures can be seen in Table 3.6. In the
table it can be seen that despite some low r2 values of between 0.3-0.4 when the fits are
visually inspected, it can be seen that the fits do represent the data well. The spread
of the geometry readings and their step nature where multiple readings would have the
same vertical geometry SD then jump up or down, is the reason for the low Goodness
Of Fit (GOF) results. This is demonstrated in Figure 3.7 where the one decimal place
accuracy of the SDs leads to stepped data. After analysing the fits visually it was decided
that despite the low r2 and high RMSE values the fits describe the general degradation
within each poskey well, with the power curve fitting the degradation trend best.

Despite the power curve fitting the data well, it has to be noted that it is not always
ideal for extrapolation, with the increasing gradient fits in Figure 3.7 seeming to be
the least acceptable to extrapolate. This is due to the overly steep gradient that the
power curve tends to have when there are some high geometry recordings at the end of
the data, which, if extrapolated would quantify the degradation as much faster than is
likely. A similar problem could arise for the decreasing gradients as it is possible for the
power line to be nearly flat and showing no degradation by the end of the data, which if
extrapolated would result in unrealistic high times/usage to higher SD levels.
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Table 3.4: GOFs of vertical top [nm] against time [days]

Data A Data B

Fit Equation r2 RMSE r2 RMSE

Linear Y = a ∗X + c 0.5795 108.8 0.5384 124.5

Polynomial Y = a ∗X2 + b ∗X + c 0.6699 98.40 0.6487 115.4

Power Y = a ∗Xb + c 0.6600 99.19 0.6317 117.7

Exponential Y = a ∗ exp(b ∗X) 0.5775 109.1 0.5376 124.8

Table 3.5: GOFs of vertical top [nm] against usage [EMGT]

Data A Data B

Fit Equation r2 RMSE r2 RMSE

Linear Y = a ∗X + c 0.5804 108.4 0.5369 124.2

Polynomial Y = a ∗X2 + b ∗X + c 0.6707 98.07 0.6484 115.2

Power Y = a ∗Xb + c 0.6551 99.97 0.6224 119.2

Exponential Y = a ∗ exp(b ∗X) 0.5779 109.0 0.5369 124.9

Table 3.6: GOFs of vertical top [nm] against time [days] for Figures TGD - fig: High
R2 Degredation Fits, 3.6 and 3.7

Linear Power Exponential Polynomial

Figure r2 RMSE r2 RMSE r2 RMSE r2 RMSE

3.5 Top Left 0.9851 118.6 0.9924 86.00 0.9482 221.1 0.9926 85.24

3.5 Top Right 0.9808 35.29 0.9823 34.37 0.9803 35.71 0.9829 33.77

3.5 Bottom Left 0.9916 78.82 0.9944 65.02 0.9828 112.8 0.9947 63.55

3.5 Bottom Right 0.9917 49.93 0.9940 43.03 0.9823 72.91 0.9941 42.51

3.6 Top Left 0.3527 201.7 0.7081 136.6 0.3346 204.5 0.4962 179.5

3.6 Top Right 0.3601 82.72 0.9850 13.23 0.3484 83.47 0.6083 67.60

3.6 Bottom Left 0.3138 92.90 0.8017 51.23 0.3000 93.83 0.4895 82.20

3.6 Bottom Right 0.3596 106.4 0.6348 82.14 0.3471 107.4 0.5241 93.77

3.7 Top Left 0.3473 90.43 0.6344 68.54 0.3653 89.18 0.6259 69.34

3.7 Top Right 0.3565 95.33 0.7149 64.71 0.3757 93.89 0.6345 73.27

3.7 Bottom Left 0.3757 241.9 0.5373 211.2 0.4141 234.3 0.4876 222.2

3.7 Bottom Right 0.3670 78.94 0.4669 74.07 0.3807 78.07 0.4763 73.41
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Figure 3.5: Comparison of Fits of Vertical Geometry Recordings against time (Constant Gradient)
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Figure 3.6: Comparison of Fits of Vertical Geometry Recordings against time (Reducing Gradient)
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Figure 3.7: Comparison of Fits of Vertical Geometry Recordings against time (Increasing Gradient)
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3.4 Degradation Analysis

3.4.1 Introduction

To understand which factors affect the rate of vertical alignment degradation, such as
track speed and sleeper type, an analysis of the linear degradation rates has been un-
dertaken. These were chosen over the statistically stronger fitting power equation as the
linear fit succeeds in quantifying the general rate of degradation, as seen in Figures 3.5,
3.6 and 3.7 and discussed in Section 3.3.2, as a single number with dimensions which
relate directly to the degradation. The dimensions of the gradient of the linear fits for
time and usage are; nm/Day and nm/EMGT . The analysis was also preformed to
see which options within the factors result in similar degradation, and which lead to
faster/slower degradation. For example how do G44 concrete sleepers perform compared
to W560 steel sleepers, at reducing vertical alignment degradation.

This section is important to help to understand the main factors that can affect the rate
of vertical alignment degradation, and hence allows these to be incorporated into a model.
This enables the model to include all the important factors without including additional
options, that lead to a more complex model that is more difficult and time-consuming
to use with no additional benefits.

As part of the analysis both the time and usage degradation rates were used, but the
results obtained using the datasets of time generally showed little difference between
the factors. This maybe due to track degradation being primarily caused by usage and
not time, hence any significant differences within factors, such as track speed, may be
masked by the disparity of usage that occurs on different track sections around the UK
railway network. Due to this, and that the Petri Net (PN) model to be developed will be
based on usage to enable traffic changes to be modelled, it was decided that the analysis
outlined in this section will use the usage based degradation rates.

3.4.2 Method

Techniques

The analysis to find the contributing factors involved splitting up the poskeys by a chosen
factor then comparing the datasets. The types of techniques that have been used include:
Descriptive Statistics

1. Amount of data.
2. Mean, minimum, maximum and range.
3. Median, quartiles and interquartile range.
4. SD, Coefficient of Variation (COV).

Visual
1. Empirical Cumulative Distribution Function (ECDF) Plots.
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2. Box Plots.
Nonparametric Hypothesis Tests

1. K-S Test (2 Sample): Evaluates the difference between the ECDF’s of the
two samples, where the null hypothesis is that both samples come from a pop-
ulation with the same distribution. As part of this the maximum difference
between the ECDF’s of the two samples is used, as described in Equation 3.3
where F and G are the ECDF’s of the two samples, f and g, and x is the
degradation rate values, (Stephens, 1970). This is graphically shown in Fig-
ure 3.8.

D = sup|F (x)−G(x)| (3.3)

It is then possible to reject the null hypothesis at a significance level, α, when
D > Dα, where Dα is based on the size of the two samples, and is calculated
by:

Dα = cα

√
m+ n

m ∗ n
(3.4)

Where m and n are the size of samples f and g, and cα is based on the
chosen significance level. At 0.1%, 1%, 5% and 10% cα equals; 1.95, 1.63,
1.36 and 1.22. It is also possible to calculate a p-value by using the Inverse
Kolmogorov-Smirnov distribution which follows the form of:

p = QKS(z) = 2 ∗
∞∑
j=1

(−1)j−1 exp(−2 ∗ j2 ∗ z2) (3.5)

Where z can be calculated by Equation 3.6 and involves the found D statistic
and the effective number of data points, Ne which is calculated by Ne =

(m ∗ n)/(m+ n), (Press et al., 2007).

z = D ∗ [
√
Ne + 0.12 + 0.11/

√
Ne] (3.6)

The KS Test involves a couple of assumptions about the data, including;
(a) Observations are independent.
(b) Responses are ordinal.
(c) Data is continuous and does not have to follow any particular distribution.
(d) Both datasets follow a similar shape and hence fit the same distribution,

with similar shape parameters.
2. Mann Whitney U Test: Tests the null hypothesis that 2 samples come

from the same population against an alternative that they come from different
populations (2 tailed test) or that one sample comes from a population of
larger values (1 tailed test). The test calculates the sum, for each dataset,
of the amount of values in one dataset that each value in another dataset is
smaller. This is known as the U statistic, with one being calculated for each
dataset. The addition of the two U statistics is equal to the product of the
two dataset sizes, U1 + U2 = n1 ∗ n2. The U statistic can be calculated by
an indirect method, where the datasets are combined and the sum of ranks
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taken for each dataset. This is then used in Equation 3.7, where Wi = sum of
ranks for dataset i known as the Wilcoxon rank sum statistic, and i = 1, 2.

Ui = Wi −
ni(ni + 1)

2
(3.7)

For larger datasets, more than 10 samples, U , is approximately normally

distributed, with µ = n1∗n2
2 and σ =

√
n1∗n2(n1+n2+1)

12 . With these it is
possible to find the z-score by z = U−µ

σ , and hence now possible to obtain a
p-value, which at a 5% significance, rejects the null hypothesis if below 0.05.
The Mann Whitney U Test has a couple of assumptions about the data,
including;
(a) Observations are independent.
(b) Responses are ordinal.
(c) Data is continuous and does not have to follow any particular distribution.
(d) Both datasets follow a similar shape and hence fit the same distribution,

with similar shape parameters.
(e) The datasets being compared have similar variances.

Figure 3.8: Example of the KS-Test D Value

Process

As part of the analysis, many possible factors have been explored with the options within
these factors having been grouped if they were statistically similar. This was done as
it helped maintain larger datasets, which allow for greater confidence in the statistical
results of the used tests and the ability to split the datasets up further to explore more
factors. Joining together similar options within a factor will also reduce the complexity
of the chosen PN type model by reducing the amount of distributions required for the
transitions, without decreasing the model’s accuracy. Additionally, the distributions
found will be constructed with larger datasets the less the data is split up, increasing
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the confidence in the fits found.

A script was written within the statistical software Matlab which split up all the main-
tenance history datasets within Data A and B by a factor such as track speed, where
different speeds create unique datasets. This leads to multiple datasets within each
maintenance history for Data A and B. These datasets were then compared using the
methods discussed. The non-parametric hypothesis tests consisting of 2 tailed K-S Test
and Mann Whitney, where used to compared between the different options of the chosen
factor within each maintenance history. The 2-sample K-S and Mann Whitney tests
where both used due to the difference in their calculations leading them to have differ-
ing shortcomings. The Mann Whitney test, due to being calculated by ranks, is highly
dependent on the difference between the medians, whereas the K-S test is based around
the largest difference between the datasets which may not be at the medians. Both tests
are reasonably poor at differences within the tails, but due to the data being analysed
being degradation data, the tails are generally extreme values that are not representative
of the normal degradation, so this actually helps ignore outliers. It is important for both
tests, especially the Mann-Whitney tests that the compared dataset are similar in shape,
so ECDF’s were used to visually check that the datasets being compared followed similar
shapes without crossovers.

The non-parametric hypothesis tests resulted in K-S Test and Mann Whitney p-values
and hypothesis test values, between each option in each maintenance history. An average
was then found over all the different maintenance history’s, giving one mean p-value
and mean hypothesis tests result comparing one factor option and another. The mean
was used instead of a median so extreme p-values were accounted for in the resultant
number. The mean results from the tests leads to tables such as Tables 3.7 and 3.8
which were obtained using Data A. In the mean p-values table, those with values below
0.05 (coloured red) reject the null hypothesis at a 5% significance level and hence are
statistically different datasets. As a statement does not simply become true with p-
values below 0.05 and false when above, it is important to look at the p-value Grabowski
(2016). A p-value of 0.05 is a significant result, with a low chance of rejecting a true
hypothesis (type-1 error). Due to the analysis being undertaken, weaker links between
the datasets are still desirable to identify, with higher type-1 errors acceptable for the
reduction in type-2 errors (accepting a false hypothesis). It was decided that p-value
below 0.2 and above 0.05 (coloured yellow) do not reject the null hypothesis, but they
also do not strongly agree that the two datasets are from the same population. The
p-values above 0.2 (coloured green) strongly accept the null hypothesis, meaning that it
is likely that the datasets have similar distributions and come from the same population.

The mean hypothesis tests results in Table 3.8 can be seen as the percentage of the
comparisons which reject the null hypothesis at the chosen significance level, where 0
(coloured in green) means 0% of the comparisons over all the maintenance history’s
rejected the null hypothesis and 1 (coloured in red) means 100% of the comparisons
rejected the null hypothesis. The results between 0-1 (coloured orange and yellow) occur
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when some comparisons within the maintenance histories rejected the null hypothesis and
some did not, where yellow has been used when the majority accepts the null hypothesis
and orange when they reject. It can be noted that the p-values equal 1 on the diagonal
as these compare the same dataset against itself and hence accept the null hypothesis.

As From the results seen in Tables 3.7 and 3.8, it can be seen that the poskeys with speeds
between 5-60 MPH have similar vertical geometry degradation due to the high p-values
and hypothesis tests significance results of zero (no test rejected the null hypothesis).
Poskeys with speeds between 75-110 MPH also degrade similarly, but due to the lower
p-values than the 5-60 MPH group, and average hypothesis tests result above 0 (but
still less than or equal to 0.5 (50% of tests rejecting the null hypothesis)), they are not
statistically as similar. It was desirable for the analysis approach to minimise groups,
to maintain larger datasets (reducing type-2 errors). Due to this the decision was made
to join groups when the majority of tests accepted the null hypothesis and the average
p-value was greater than 0.2. The low p-values compared to other speeds of groups 65-70
and 115-125 MPH, show that these groups are distinct. So it can be said that the track
with speeds between 115-125 MPH degrades at a different rate than other speed groups.
The speed groups have been based on NR policy documents. From these results it was
decided to split all the speeds into four groups, consisting of 5-60, 65-70, 75-110 and
115-125 MPH. Again the non-parametric tests were used to see if these groups where
similar. These results can be seen in Tables 3.9 and 3.10, which demonstrate that the
chosen groups are all statistically unique. Further analysis including the results obtained
using Data B can be seen Section 3.4.3.

One tailed tests were then used to see at which speeds poskeys degrade faster. The results
are presented in Tables 3.11 and 3.12. For one tailed tests at a 5% significance, p-values
below 0.05 (red in the tables) reject the null hypothesis in favour of the alternative that
the population mean of the first dataset is higher than the second. Where the two sided
test allows for an understanding of which groups populations are significantly different
(or similar), one tailed allow us to identify which groups degrade faster or slower. This
is read in the tables as column against row, so the p-value of 0.00 where the column
5-60 MPH meets the row 65-70 MPH, means that the poskeys with speeds 5-60 MPH
statistically have a distribution consisting of higher values, and hence degrade quicker.
It is possible to see from the results in the tables that the faster the track the slower
the tracks vertical geometry degrades. This can also be seen visually in Figures 3.10
and 3.11, which show ECDF’s and box plots comparing the datasets of different speeds,
with different maintenance history’s. The figures include both data from Data A and B,
which have been kept separate but both used to see if they agree, which they do as seen
in the figures. The box plots include notches around the median which are equal in size
to:

Notch Locations = q2 ±
1.57 ∗ (q3 − q1)√

n
(3.8)
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Where q2 is the median, q1 and q3 are the 25th and 75th percentiles and n is the size of
the dataset. It can be said that the medians of the datasets are significantly different
at a 5% significance level if the notches do not overlap. The whiskers of the box plots
extend to:

Whisker Location Upper = q3 + 1.5 ∗ (q3 − q1) (3.9)

Whisker Location Lower = q1 − 1.5 ∗ (q3 − q1) (3.10)

With any data points outside of this being marked with a red x. The whisker locations
are equivalent to ±2.7 SDs and 99.3% coverage of the data.

Despite the analysis in Tables 3.11 and 3.12 showing that higher speed track degrades
slower, this is not what would be expected. Higher speed trains exert higher dynamic
forces which would lead to faster degradation. There are many differences between the
different speed tracks not included in the results, which could be the root cause of the
results and not the track speed. The higher speed tracks in general have dissimilar types
of sleepers and rails to the lower speed track, as well as more frequent maintenance due
to lower tolerances of vertical alignment SD before the track is deemed unsafe for the
speed. This issue is the same for any first level analysis, and a major problem of many
investigations into causes of degradation discussed in the literature review. To reduce
the chance of addition factors affecting the results of the chosen factor to explore, the
data has to be split up into more levels, such as seen in Figure 3.9. In this Figure
the data is first split up by the maintenance history and then speed as before, using the
grouped speeds from the earlier analysis discussed above to help maintain larger datasets.
These datasets are then split up further by the sleeper type, leading to a comparison
of different sleeper types where the maintenance history is the same and track speeds
are similar. As before, the non-parametric tests will be used to compare the datasets
within the same maintenance history and speed group and then an average found. The
analysis would start with sleeper type split into low level groups. The results of the
analysis are then used to combine the sleeper types into larger groups, to be analysed
again (now that there are larger datasets, with evidence that all the data within each
group have similarly performing sleeper types). The approach of splitting data by many
factors can quickly lead to very small datasets (less that 10), reducing the confidence in
the analytical results. This is why the grouping of similarly performing options in each
degradation factor is important.
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Table 3.7: Mean 2 Tailed K-S and Mann Whitney U Test p-Values for Maximum
Permissible Track Speeds (Data A, Usage)

Track
Speed
[MPH]

5-30 35-40 45-50 55-60 65-70 75-80 85-95 100-
110

115-
125

5-30 1.00 0.41 0.31 0.36 0.71 0.06 0.00 0.00 0.00

35-40 0.41 1.00 0.61 0.59 0.22 0.00 0.00 0.00 0.00

45-50 0.31 0.61 1.00 0.78 0.05 0.00 0.00 0.00 0.00

55-60 0.36 0.59 0.78 1.00 0.00 0.00 0.00 0.00 0.00

65-70 0.71 0.22 0.05 0.00 1.00 0.20 0.19 0.31 0.00

75-80 0.06 0.00 0.00 0.00 0.20 1.00 0.30 0.46 0.03

85-95 0.00 0.00 0.00 0.00 0.19 0.30 1.00 0.29 0.05

100-110 0.00 0.00 0.00 0.00 0.31 0.46 0.29 1.00 0.01

115-125 0.00 0.00 0.00 0.00 0.00 0.03 0.05 0.01 1.00

Table 3.8: 2 Tailed K-S and Mann Whitney U Tests null hypothesis rejection decimal
percent (alpha = 0.05), for Maximum Permissible Track Speeds (Data A, Usage)

Track
Speed
[MPH]

5-30 35-40 45-50 55-60 65-70 75-80 85-95 100-
110

115-
125

25-30 0.00 0.00 0.00 0.00 0.00 0.50 1.00 1.00 1.00

35-40 0.00 0.00 0.00 0.00 0.00 1.00 1.00 1.00 1.00

45-50 0.00 0.00 0.00 0.00 0.50 1.00 1.00 1.00 1.00

55-60 0.00 0.00 0.00 0.00 1.00 1.00 1.00 1.00 1.00

65-70 0.00 0.00 0.50 1.00 0.00 0.33 0.67 0.33 1.00

75-80 0.50 1.00 1.00 1.00 0.33 0.00 0.38 0.25 0.83

85-95 1.00 1.00 1.00 1.00 0.67 0.38 0.00 0.25 0.67

100-110 1.00 1.00 1.00 1.00 0.33 0.25 0.25 0.00 1.00

115-125 1.00 1.00 1.00 1.00 1.00 0.83 0.67 1.00 0.00
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Table 3.9: Mean 2 Tailed K-S and Mann Whitney U Test p-Values for Grouped Speeds
(Data A, Usage)

Track Speed [MPH] 5-60 65-70 75-110 115-
125

5-60 1.00 0.06 0.00 0.00

65-70 0.06 1.00 0.06 0.00

75-110 0.00 0.06 1.00 0.05

115-125 0.00 0.00 0.05 1.00

Table 3.10: 2 Tailed K-S and Mann Whitney U Tests null hypothesis rejection decimal
percent (alpha = 0.05), for Grouped Speeds (Data A, Usage)

Track Speed [MPH] 5-60 65-70 75-110 115-
125

5-60 0.00 0.83 1.00 1.00

65-70 0.83 0.00 0.80 1.00

75-110 1.00 0.80 0.00 0.82

115-125 1.00 1.00 0.82 0.00

Table 3.11: Mean 1 Tailed K-S and Mann Whitney U Test p-Values for Grouped
Speeds (Data A, Usage)

Track Speed [MPH] 5-60 65-70 75-110 115-
125

5-60 N/A 1.00 1.00 1.00

65-70 0.00 N/A 0.81 0.99

75-110 0.00 0.09 N/A 0.97

115-125 0.00 0.00 0.05 N/A

Table 3.12: 1 Tailed K-S and Mann Whitney U Tests null hypothesis rejection decimal
percent (alpha = 0.05), for Grouped Speeds (Data A, Usage)

Track Speed [MPH] 5-60 65-70 75-110 115-
125

5-60 N/A 0.00 0.00 0.00

65-70 1.00 N/A 0.00 0.00

75-110 1.00 0.67 N/A 0.00

115-125 1.00 1.00 0.75 N/A
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Splitting Up Degradation Rates Data 
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Figure 3.9: Method of Splitting up the Degradation Rates Data
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Figure 3.10: Comparison of ECDF’s of different speed groups, with differing maintenance history’s
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3.4.3 Analysis Results

As part of the analysis many factors have been considered, including asset choices, line
usage and geology under the track. For each factor a first layer analysis consisting of
only splitting up the data once by the one factor, such as with the maximum speed
example demonstrated in Section 3.4.2, has been undertaken. This first layer analysis
includes the all the data relating to each option in the factor, generally resulting in
large datasets and gives a general idea of the factors to concentration on for the further
analysis involving more layers. It is important to note that the results from the first
layer analysis should not be taken at face value as there may be other reasons for the
statistical differences other than the factor being explored. Depending on the results of
the first layer analysis, further second and third layer analyses have been undertaken
splitting up the datasets by additional factors. These were decided from information
researched as part of the literature review, as well as trends within the data, such as the
different sleeper types used on varying track speeds. Within this section the resultant
statistics, in particular the non-parametric tests, from comparing the split up datasets
have been analysed. These results have been summarised in Section 3.4.4 and published
in Clarke and Prescott (2017).

General Statistics

To assess the general values and spread found within the datasets, means and Coefficient
of Variation (COV) have been found. The COV was used to determine the spread of
the data as it is dimensionless making it possible to compare the spread of the time
and usage datasets. COV is defined as the ratio between the standard deviation and
mean of a dataset, COV = σ/µ. The values obtained can be seen in Table 3.13, in
which the mean degradation rate values for time and usage have the units of nm/Day
and nm/EMGT . The mean values show that average degradation rate within Data B
is higher for usage, which was expected due to Data B containing older track sections,
which are expected to degrade faster. The time data shows the opposite, that the mean
rate of degradation is higher in Data A. Looking at the COV values within the table,
it can be seen that the spread of the whole time datasets are smaller than the usage
datasets (COV of 1.6 and 1.3 vs 2.0 and 2.2). Looking at the Table, when the dataset
of vertical geometry degradation rates is split by the maintenance history and then the
COV of each remaining dataset found. The mean of the these are lower than the spread
in the whole dataset as expected. When split by maintenance history, the usage datasets
show a larger decrease in spread than the time datasets. This shows that the high spread
found within the whole dataset is due to a larger difference between the maintenance
history groups than is found with the time data. By further splitting up the datasets by
the track sections speed using the ten groups used in Table 3.7, last column, the spread
is reduced further. The mean values obtained show that the usage results from Data A
has the smallest spread, with a small spread being desirable for a stochastic model as it
reduces the uncertainty in the results of the model. The results show that in general the
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spread found in Data B tends to be a lot higher than Data A. This is probably due to
the added uncertainty of the estimated amount of previous maintenance actions for these
track sections. Additionally, it was expected that older track would have a higher degree
of spread. The more distinct maintenance history datasets within the usage results and
lower spread when split up, increases the confidence in choosing usage as the driving
degradation factor and not time. The much higher spread results obtained using Data
B also demonstrate why Data A and Data B have been kept separate.

Table 3.13: General statistics of the degradation rate datasets

Dataset Mean
COVs
Whole
Dataset

Mean of COVs of
Dataset split by the
maintenance history

Mean of COVs of Dataset
split by the maintenance
history and the track

speed

Data A - Time 0.8758 1.6279 0.9630 0.6396

Data B - Time 0.7389 1.3789 1.1638 0.8063

Data A - Usage 0.0643 1.9942 0.8029 0.5862

Data B - Usage 0.0972 2.2212 1.6665 1.4100

Stations and Tunnels

Track sections installed at stations undergo different loading than other sections, due
to the trains decelerating, waiting and accelerating. To test if this affects the degrada-
tion rate, the poskeys were split into groups, one containing no stations and the other
containing poskeys that are entirely or partly stations. Including poskeys which were
only partly stations was decided as leading up to and straight after a station where the
main decelerating and accelerating occurs will also have different loads to normal track
away from stations. Additionally, as there is only a small amount of poskeys which
are completely within a station there would not have been enough data to perform an
analysis. The amount of data used can be seen in Table 8.5, where for a dataset to be
used it was decided that it should include a minimum of twenty degradation rate values.
Each dataset is created by first splitting up the whole degradation rate dataset by the
maintenance history and then by the existence of a station. Each found degradation rate
is its own data point, so each poskey can have many data points for between different
maintenance histories (rate between renewal and first tamp, first tamp and second etc.).
It was decided that more than twenty degradation rate values were required in each of
the made datasets as the 2 sample KS-Test compares between the ECDF’s, and datasets
that contain less than twenty pieces of data do not tend to create a distribution that
would be representative of a population as there is not enough points to form a shape
which is not highly swayed by extreme values. The total amount of degradation rate
values that made up these datasets are also noted within the table. Furthermore, it
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was decided to include tunnels into the analysis by splitting up the non-station dataset
into tunnels and neither a station nor tunnel. Tunnels were classified in the same way as
stations with poskeys that contained part of a tunnel being recorded in the tunnel group.
This was done due to the lack of tunnel data, as seen in Table 8.5, where even with partly
tunnel poskeys being included the amount of data available was still low. It was thought
that tunnels would degrade differently as the track encounters dissimilar environmental
condition, where within a tunnel, there is no precipitation or direct sunshine. Addition-
ally, the temperature in tunnels do not fluctuate as much across the year compared to
outside track, resulting in very low chances of frost. Due to these it would be expected
that track in tunnels degrades slower but there are also issues with track inside tunnel.
Fines from the tunnel roof will enter the ballast in higher quantities than general outside
environmental fines, causing faster ballast fouling. Also, due to height restrictions the
ballast bed might be thinner, but there is no data on the ballast thickness’s to check this.
Maintenance activities are also harder to complete in tunnels due to space restrictions
and lack of natural light. The last factor which may cause track in tunnels to degrade
faster is the drainage, which tends to be less effective within tunnels and hence will lead
to the subgrade and ballast having higher levels of saturation reducing their resilience
to deformation, increasing settlement and geometry degradation. It was not possible to
identify any issue that drainage make cause as there was no data available of the type
of or conditions of the drainage around the UK railway system.

To test for any significant difference in the degradation rate of the vertical geometry be-
tween track sections installed at stations, within tunnels and neither, 2-sided hypothesis
tests were used. The amount of data used in the tests is shown in Table 8.5, where it is
apparent that the results from Data A may not give a good representation of any general
difference between the groups due to minimal data for track within stations or tunnels.
This is because only two datasets contained over twenty values for both; from renewal
to the first maintenance and after one tamping operation, causing the resultant mean
p-value results and rejection percentages to only be based on two comparisons and con-
tain no information on older track which has undergone more maintenance actions. The
results obtained using Data A are recorded in Tables 8.6 and 8.7. Comparing stations
to neither, the mean p-value of 0.39 and a null hypothesis rejection percentage of 0%,
show that there is no statistically significant difference between track at stations and
not at stations. More significant results are seen when analysing track contained within
a tunnel. The results from Data A show that there is a significant difference between
tunnels and stations or neither with mean p-values of 0.05 and 0.03 and associated re-
jection percentages of 75%. The results for Data B in Tables 8.8 and 8.9 weakly agree
with the results from Data A for the stations with a mean p-value of 0.30 but show much
more significance difference with 40% of the tests rejecting the null hypothesis in favour
of track within stations degrading significantly different from track between stations.
The results for tunnels disagree with the conclusions obtained from Data A showing less
significant differences, with mean p-values of 0.35 and 0.26 and rejection percentages of
33%. The lack of data which was available within Data A to perform the tests reduces
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the confidence in the results. Due to this the results obtained from Data B, despite
the extra uncertainty within Data B, are more reliable for categorising any difference
between the groups. Due to the results seen in the tables it cannot be said that there is
a significant difference of the rate of vertical geometry gradation between track within
stations, tunnels or neither but there are differences as demonstrated by the rejection
percentages.

Despite the 2-sided test results not showing a significant difference between the datasets,
1-tailed tests are still useful to give an idea of which group degrades faster even if it
is not significantly faster. The results can be seen in Tables 8.10 and 8.11 for Data
A and Tables 8.12 and 8.13 for Data B respectively. The mean p-value of 0.20 for
Data A gives evidence that track at station degrades faster but not significantly so than
track at neither a station nor within a tunnel. However none of the tests undertaken
demonstrated a significance at a 5% confidence level (p-values less than 0.05), hence the
0% rejection percentage between neither and stations. Due to this there is not enough
evidence to say one degrades faster than the other. The results for track within tunnels
show that despite the significant differences found in the two-sided tests, it cannot be
said that track within tunnels degrades faster or slower. This is seen by the mean
p-values all being close to 0.5 and that the rejection percentages show that tunnels
degrade significantly faster in 50% of the tests but the percentages showing that neither
nor stations degrade significantly faster than tunnels was 25% and 50%. So some tests
showed that tunnels degraded significantly faster and other results demonstrated that
tunnels actually degrade significantly slower.

For additional evidence Data B was used. The results obtained from the tests using Data
B gives more evidence to track at stations degrading significantly faster than track not at
stations, with 40% of the tests rejecting the null hypothesis. The results for tunnels give
evidence to suggest that track in tunnels tends to degrade slower, with 25% of the tests
rejecting the null hypothesis in favour of neither having higher degradation rates and 42%
in favour of stations. Only 17% of the test results returned showed tunnels degrading
faster than neither and none of the tests showed that tunnels degraded significantly
faster than stations. It must be noted that out of all the hypothesis tests performed
across all the investigated factors in this chapter that the ECDF’s shapes for tunnels
varied the most from the comparable ECDF’s of stations and neither. This is due to the
extra variability in the degradation rates for track within a tunnel, with higher variance
values found. This can cause issues in the results obtained from the hypothesis tests
as noted in section 3.4.2 and hence the results were not entirely trustworthy. Due to
this and the results of the tests it can be said that there are differences in the rate of
track degradation within stations, tunnels or neither but these in general are not that
significant at a 5% confidence level. It can also be said that track at stations tend to
degrade slightly faster than track between stations.

The results of the 1-sided tests for tunnels are not conclusive with some evidence sup-
porting the conclusion that track in tunnels tends to degrade slower. The more reliable
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conclusion is that the degradation rate of track within tunnels tends to vary more than
track not within tunnels, sometimes being higher sometimes being lower, depending on
the tunnel. This makes sense due to the factors discussed within this section like more
variable depth of ballast and drainage quality but due to a lack of data these cannot
be tested. The length of the tunnel may also play a factor, due to the differences in
internal environment further underground compared to the entrances of the tunnels, but
by splitting the tunnel data further depending on the distance from the tunnel entrances
created datasets too small for a detailed analysis to be undertaken. It would have been
desirable to perform a second layer analysis to help identify the possible reasons for the
disparity of degradation rates within the tunnel data, and to remove uncertainty in the
results being due to another underling factor but there was not enough data to split
it up further. Moreover, as tunnels and stations occur all over the network it can be
assumed that there would also be an even amount of asset choice and subgrade geology
type spread in the three factor options, reducing the chance these would be affecting the
results.

Track Type

The track type describes the method used to join the rail lengths together. This consists
of either jointed track which uses plates and bolts or Continuous Welded Rail (CWR)
where long sections are welded together on site. Jointed track is a legacy design which
is no longer used, hence in Table 8.14, it can be seen that there is no data for jointed
track within the recently renewed poskeys in Data A. Due to this only Data B was
used to analyse the affect of the joint type on the vertical geometry degradation. The
results from the 2-tailed hypothesis tests, Tables 8.15 and 8.16, show that there is strong
statistical evidence to suggest that jointed track degrades differently from CWR, with
all the tests returning p-values of zero hence rejecting the null hypothesis that they are
similar.

Looking at the 1-tailed tests in Tables 8.17 and 8.18, it can be seen that all the tests
rejected the null hypothesis, showing that jointed track’s vertical geometry degrades
faster than CWR. This result maybe due to additional aspects though such as the track
speed as jointed rail tends to only be on the slower speed lines, with the faster higher
priority lines all having been converted to CWR. Due to this the results might be due
to the line speed and not the join type.

To further investigate the effect of the joint type on the geometry degradation a second
layer analysis had to be performed to take into account the track speed first and then
the joint type. The track speed was chosen as the extra factor as track with similar
speeds tends to be built with comparable designs with akin asset choices. Additionally,
they tend to have interchangeable maintenance policies and also similar dynamic loading
caused by the speed of the trains. The hypothesis tests were performed again by first
splitting the degradation rates up first by the poskeys maintenance history and then the
speed, in the four groups identified in Section 3.4.3, then either CWR or jointed. As
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part of this the tests were only performed between datasets within the same maintenance
history and speed group. This ensures that other than the track type the groups of
poskey degradation rates would have minimal other differences. The results from these
tests showed that no track over 60 MPH still had jointed rail installed and there was
not enough data within Data A to perform the analysis due to jointed rail not being
installed in newly renewed track any more. So the comparison tests were only performed
on track with speeds less than 60 MPH using Data B. The results from the tests again
showed a very significant difference between CWR and jointed track, with the 1-sided
tests showing that 100% of those performed rejected the null hypothesis in favour of
jointed track degrading significantly faster with a mean p-value of 0.00. An additional
check was performed to see if rail the rail type was affecting the results in any way. This
was performed by first splitting the datasets up by speed, then rail type and then track
type. The results from the hypothesis tests again showed a highly significant difference
between jointed and CWR track with a mean p-value of 0.00.

Track Construction

Due to there being many track criticality’s on the UK rail network not all track it built to
the same standards. This enables more critical track to be built to a higher standard and
the less to a lower standard, efficiently using the available capital for track construction.
The quality levels are defined as A, B, C and D, where A is the highest standard used
on higher priority track. Due to better working practices and that most recent renewals
have occurred on the high priority lines there are no track sections within Data A in
band D and minimal in C, as seen in Table 8.19. Due to there only being one dataset
for construction type C in Data A, this type was not included in the analysis. The
results from the hypothesis tests can be seen in Tables 8.20, 8.21, 8.22 and 8.23. In
these it can be seen that the mean p-value of 0.21 for Data A suggests that construction
standards A and B perform similarly but when the pass/reject results are taken into
account it can be seen that 75% of the tests rejected the null hypothesis. Using Data
B as more evidence, a mean p-value of 0.08 suggests that there is a difference between
the construction bands, and similarly to Data A, 67% of the tests rejected the null
hypothesis. The other p-values within Table 8.22 show a significant difference between
the rest of the construction bands, which is back up with between 90-100% of the tests
rejecting the null hypothesis in Table 8.23. Due to the obtained results it can be said
that there is a statistically significant difference of the degradation rates between all the
different track construction standards, with A and B being closest but still statistically
dissimilar.

The 1-tailed tests add to the evidence that the construction groups degrade differently.
Tables 8.24 and 8.25 show the results from Data A. In these tables it can be seen by the
mean p-value of 0.11 and 75% rejection that there is evidence to suggest that construction
quality band B degrades faster than A. This is further cemented by Data B’s results, seen
in Tables 8.26 and 8.27, with a mean p-value of 0.06 and rejection percentage of 80%.
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Data B’s mean p-values of zero in column D show that track constructed to quality band
D degrades significantly faster than A, B and C, also there is evidence to suggest band C
degrades significantly faster than A and B. The results indicate that higher construction
bands degrade slower, which was the expected results as these would have been built to
a higher standard.

Despite the strong evidence, it was thought that there maybe an underlying factor that
is the reason for the results. As the higher construction bands are primarily used for
high priority fast track, the results might have been affected by a large amount of high
speed track sections in the higher band and primarily slower track in the lower bands.
Due to this a further analysis was undertaken to first take into account the track speed
and then compare the construction bands. By taking into account the track speed as
well as the maintenance history, comparisons between the construction groups will only
occur between track sections that contain similar sleeper and rail types, maintenance
policies and dynamic loading caused by the speed. The speed was grouped into the
four groups of similar degrading speeds discussed in Section 3.4.3. The results from
this showed that the 5-60, 65-70 and 75-110 MPH groups contained mostly construction
band B and track speeds between 115-125 MPH are mostly built on construction band
A. Construction band B is the most common but a higher percentage of newer track is
built to band A standard. There is no track of band C with track speeds above 110 MPH
and none of band D above 60 MPH. The results of the hypothesis tests showed similar
differences to the first layer tests in Tables 8.20, 8.21, 8.22, 8.23, 8.24, 8.25, 8.26 and
8.27. The results from Data A showed an even more significant difference between bands
A and B with B always being larger. Data B showed less significant results but still
showed that the better quality construction bands encounter slower degradation with
the 1-tailed test results never rejected the null hypothesis in favour the better quality
construction bands performing worse. The results were less significant as the rejection
percentages of the lower construction groups in the one-tailed tests varied between 0.55
and 1.00 whereas the first layer analysis returned results between 0.80 and 1.00. Due to
the results obtained from both the first layer and second layer analysis it can be said
with confidence that the better the quality of the track construction the slower the track
will degrade, with similar increases in the degradation rates occurring as you step down
the construction bands.

Track Category

The track category is related to the usage and speed of the track, with 1A being fast
heavily traversed lines and 6 being slow with minimal traffic, as seen in Figure 3.1. The
amount of available data for the categories is shown in Table 8.28 where it is possible
to see that there is not enough data in category 6 to incorporate it into the analysis.
It is also possible to see that categories 2 and 3 are the most common. Looking at the
2-tailed tests for Data A and B, Tables 8.29, 8.30, 8.31 and 8.32, it is possible to see
that in general the track categories are all statistically separate from each other. Data A
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shows a degree of overlap between categories 2 and 3 as well as 3 and 4, with 50% of the
test rejecting the null hypothesis. The results obtained from Data B disagree with Data
A by demonstrating a degree of similarity between 1A and 1 with only 42% of the tests
rejecting the null hypothesis. Data B also does not show the same similarity between
categories 2 and 3 or 3 and 4 as Data A with significant rejection percentages of 81%
and 86%. The results for Data A and B demonstrate how poskeys within the different
track categories all degrade significantly differently from each other.

To see which track categories experienced the slowest vertical geometry degradation,
1-sided hypothesis tests were undertaken and the results noted in Tables 8.33, 8.34, 8.35
and 8.36. Looking at the results it is obvious to see that they suggest that lower track
category performs best, with 1A performing best with the lowest degradation values,
followed by 1 then 2, 3, 4 and 5. This is shown by none of the tests rejecting the
null hypothesis in favour of a lower category containing higher degradation values but
between 50-100% of the tests rejecting the other way around.

As the track category is based on the track speed and usage, to see any differences
caused by the varying maintenance policies used on the different track categories, the
speed and usage need to be taken into account. As the analysis has been undertaken
using degradation data related to the usage, this is already taken into account. To take
into account the different speeds it was decided to undertake a second layer analysis first
splitting the data up by the maintenance history as before and then by the speed groups
identified in Section 3.4.3. Over the data there was no speed band which contained both
categories 1 and 5 or 6, or 1A and 2, 3, 4, 5 or 6. Due to this there were no results
comparing between them but it can be presumed that if category 1 degrades faster than
1A and 2 faster than 1 then it can be inferred that 2 degrades faster than 1A. The results
of the hypothesis tests taking into account the track speed returned similar values to the
first layer test described above, demonstrating again that lower category track degrades
slower with significant differences between the categories. The results of the second layer
tests actually showed slightly more significant differences between the track categories
which was unexpected as it was thought that some significance between the bands would
be due to the different speeds. Due to these results it seems likely that it is the difference
in asset policy used for different track categories that causes the low category track to
degrade slower.

Track

A railway track consists of Plain Line (PL) and S&Cs. Due to the design of S&Cs,
maintenance activities are harder to complete around them and quite often manual
maintenance has to be used instead. With maintenance activities harder to complete
and the extra dynamic forces encountered as trains traverse S&Cs it was decided this
would be an important factor to analysis. Due to the geometry SD data obtained being
related to 220yd poskeys, sections containing S&Cs also contain varying amounts of PL
track. This means poor quality S&Cs could be hidden within a section with good quality
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PL track, leading to a low SD recording for the whole poskey. As there is no way of
calculating the SD of just the S&Cs, the analysis could only be completed by comparing
poskeys that contained a S&C with purely PL track. Due to the rarity of S&Cs compared
to PL there was not enough data within Data A to perform hypothesis testing, as seen
in Table 8.37. Using Data B it was possible to perform the hypothesis tests, with the 2
tailed results recorded in Tables 8.38 and 8.39. The mean p-value of 0.21 and with only
33% of the test rejecting the null hypothesis there is not enough evidence to say that
S&Cs degrade differently to PL.

Moving on to the 1-tailed test in Tables 8.40 and 8.40, it can be seen that 67% of the tests
rejected the null hypothesis test in favour for PL degrading faster than S&Cs. Despite
these results it is not possible to say that PL track degrades faster as there are many
factors. First of all there is only three datasets of S&Cs used in the tests, increasing the
uncertainty in the results. Additionally, there are more issues with the data analysed
such as a lack of information of manual maintenance activities which are common on
S&Cs, hence the S&Cs could be undergoing more maintenance than the PL track. The
time spent on the maintenance is also higher on S&Cs as they are more complicated
to maintain and a higher risk if left in poor quality. Due to the small quantity of
poskeys which contained S&Cs, it was not possible to undertake a second layer analysis
as completed for other factors, as the datasets when split up by an additional factor as
well as S&Cs became to small to take worthwhile statistics from.

Route Criticality

The route criticality is a categorisation of track used by NR to organise track sections
by incident costs, with 1 having the highest costs and 5 the lowest. Incident costs are
related to the track usage as an incident on a line with minimal traffic will not affect
many passengers but on a busy line more passengers will be affected hence there will be
greater costs. The data amounts used for the comparison are summarised in Table 8.42,
which shows that there is an even spread of poskeys for each route criticality with 3 and
4 being slightly more common and 5 being the least. The hypothesis test results for
Data A and B is shown in Tables 8.43, 8.44, 8.45 and 8.46. The obtained mean values
strongly suggest that criticality 1 and 2 degrade very similarly and 5 is dissimilar from
all other criticality’s. Data A results for criticality 3 show a significant difference to 1
and 2 with mean p-values under the significant 0.05 and with 88% and 100% rejections
of the null hypothesis. Data B collaborates but does not demonstrate the same degree
of significance with mean p-values of 0.14 and 0.10, which are about the 5% significance
level, but 65 and 68% of the tests rejected the null hypothesis in favour of the alternative
that they are significantly different. The difference between 3 and 4 were more significant
in Data B, where within Data A 67% of the tests rejected the null hypothesis and in
Data B 76% of the tests rejected the null hypothesis. As both the results from Data A
and B have rejection percentages above 67% between criticality 3 and 4, it can be said
that they significantly different. This can be said for all the criticality bands except 1
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and 2, where there is evidence to suggest they are similar. This evidence consists of low
rejection percentages of 0% of Data A and 21% of Data B and high mean p-values of
0.39 and 0.25.

By performing 1-tailed tests, recorded in Tables 8.47, 8.48, 8.49 and 8.50, we can see
that in general lower criticality track degrades faster except 1 and 2 where there were
no tests that rejected the null hypothesis. The columns for criticality 5, show that all
the mean p-values are below 0.05 with 85-100% reject rates. These results show that
poskeys in criticality band 5 degrade significantly faster than the other bands. This
is similar for band 4 which has strong evidence to suggest that poskeys in this band
degrade faster than those in bands 1, 2 and 3. The 1-tailed results for criticality 3 show
significantly larger degradation rates than 1 and 2, with mean p-values of 0.01, 0.00,
0.09 and 0.07 and rejection percentages of 88%, 100%, 63% and 73% respectively. So it
can be seen from the tables that higher criticality track tends to degrade slower except
bands 1 and 2 which are too similar to say one degrades faster. The results are similar
to the maximum speed analysis, possible due to higher criticality lines tending to have
higher track speeds.

To see if the results obtained from the analysis were due to the differing track speeds
in the criticality bands, it was decided to perform a second layer analysis first taking
into account the speed and then the criticality. This was undertaken by first splitting
up the datasets related to the maintenance history by the speed bands obtained in
Section 3.4.3, and then by the criticality. The results obtained using Data A showed
less significance between the bands expect between bands 1 and 2, where the rejection
percentage increased from 0% when speed was not taken into account to 29%. In general
though the mean rejection percentage and mean p-value (ignoring the values obtained
comparing datasets against themselves (diagonal of the tables)) for the first layer analysis
was 86% and 0.07 whereas the second layer analysis returned values of 71% and 0.11.
The same can be said with Data B with the mean values for the first layer analysis
being 80% and 0.07 whereas after taking into account the speed the tests returned mean
values of 61% and 0.15. The lower rejection percentages and higher p-values obtained
when speed was taken into account proves that some differences found in the first layer
analysis were due to the track speed differences, and all the other differences between
the different track speeds such as assets choices. Even after taking speed into account,
the results still showed that poskeys of different criticality bands degrade significantly
differently from each other except 1 and 2 where there is some evidence of similarities.
In general, it can be said that higher route criticality track (1 and 2) tends to degrade
slower than less critical track.

Embankments, Soil Cuttings and Rock Cuttings

To test whether installing track on geotechnical infrastructure affects the rate of vertical
geometry degradation the poskeys were split into four groups. The first group consisted of
poskeys that contained no embankments, soil or rock cuttings and the second, third and
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forth groups consisted of poskeys that contained embankments, soil cuttings and rock
cuttings respectively. Any poskey that contained more than one type of geotechnical
infrastructure was removed as these poskeys might skew the results and hence reduce
the accuracy of any comparisons. It can be seen from Table 8.51 that there was not
enough data within Data A to include rock cuttings. The table also demonstrates the
large amount of track build on geotechnical infrastructures, with more track occurring on
them than not. To see if the different types of geotechnical infrastructure contribute to
differing rates of vertical geometry degradation hypothesis tests were undertaken, with
the mean p-value and rejection percentages noted in Tables 8.52 and 8.53 for Data A
and 8.54, 8.55 for Data B. The mean p-values obtained using Data A show no significant
differences between the groups but the rejected percentage table shows that 50% of soil
cuttings compared to no infrastructure rejected the null hypothesis and 38% were rejected
at a 5% confidence when comparing embankments and no infrastructure. Data B agrees
with Data A as all the mean p-values are well above the significant level, additionally
the highest percentage of rejected null hypothesis occurred between soil cuttings and no
infrastructure but this was only 26% and had an associated mean p-value of 0.42. Looking
at the results of rock cutting 0% of the tests rejected the null hypothesis against any
other group, meaning there is no significant statistical difference between rock cuttings
and the other groups. There was only three datasets usable for rock cutting, which does
not give a general trend over all ages of track and hence further data would be required
to be more confident in this result.

The 1-sided results in Tables 8.56, 8.57,8.58 and 8.59 again show little difference between
the groups with the majority of mean p-values greater than 0.4. The most evidential
results are comparing soil cutting to no infrastructure using Data A, in which 50% of
soil cuttings reject the null hypothesis in favour of poskeys on soil cutting degrading
faster than poskeys not on geotechnical infrastructure, but a high mean p-value of 0.25
is associated with this and Data B disagrees with a rejection percentage of only 14%.
During the comparison between soil cuttings and embankments a low mean p-value
of 0.06 was obtained giving evidence of soil cuttings degrading faster but to obtain
this value only 38% of the tests were significant and also Data B only reported 8% of
the compared datasets rejecting the null hypothesis. Due to these results it cannot be
said that geotechnical infrastructure has a significant effect on the vertical geometry
degradation, with all groups performing similar, hence there is no evidence to say that
one performs better than another.

Curvature

Curved sections of track undergo different dynamic loads than PL track due to a centrifu-
gal force pushing the train outward as it traverses the curved track section, increasing
the load on the outer rail. As cant is normally introduced to curved sections of track to
allow higher speeds without the risk of derailment there are additional loads that can
occur on the inside rail. This is due to some trains not travelling fast enough for the
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centrifugal force to reach equilibrium with the cant, causing forces to shift from the out-
side rail to the inside rail increasing loading. Due to the different loading that occurs at
curved track sections it was decided that it would be an important factor to check. The
curvature is measured as 1/curve radius in meters and from the data amounts recorded
in Table 8.60 it can be seen that there is a large amount of curved track section on the
UK rail network. It was decided to split the degree of curvature into 3 bands; 0-0.0005,
0.0005-0.001 and 0.001-0.002 m−1. This was done to see if different degrees of curvature
have varying affects on the vertical geometry degradation. The results from the hypoth-
esis tests are recorded in Tables 8.61, 8.61, 8.61 and 8.61. There was not enough data
within Data A to include the 0.001-0.002 band within the analysis, but comparing the
others it is possible to see in general that the curvature has little effect on the track
vertical geometry degradation. There is evidence to suggest that there is some difference
between no curvature and 0-0.0005 with a null hypothesis rejection percentage of 50%
but a high mean p-value of 0.39 suggests otherwise. This is backed up by Data B results
where a rejection percent of 23% can be seen with a mean p-value of 0.31. Data B also
shows little difference between the curvatures with the most different being the highly
curved track between 0.001-0.002, which had 5% significance rejection percentages of
44%, 50% and 31% but mean p-values of 0.32, 0.10 and 0.27. The 2-sided hypothesis
test results for Data A and B suggest there is a difference between the different curva-
tures with 0-0.0005 and 0.0005-0.001 being closest and 0.001-0.002 being most different
from the rest but none are significantly different.

Looking at the one-tailed results for Data A in Tables 8.65 and 8.66, they suggest that
track with no curvature performs worse (experiences higher levels of vertical geometry
degradation), with mean p-values of 0.21 and 0.18 and rejections of the null hypothesis
of 50% and 33% when comparing against curvatures between 0-0.0005 and 0.0005-0.001.
Curvature of between 0-0.0005 results in datasets of poskeys with lower degradation rates
than the other curvature groups, with no test rejecting the null hypothesis in favour
of 0-0.0005 is larger. Data B results in Tables 8.67 and 8.68 shows less significance
than Data A. Comparing between no curvature, 0-0.0005 and 0.0005-0.001 the highest
rejection percentage is 28% between no curvature and 0-0.0005, which also had the
highest rejection percentage between curvatures in Data A. Similarly to Data A 0-0.0005
seems to perform best with no tests rejecting the null hypothesis. The highly curved track
between 0.001-0.002 seems to degrade fastest, with mean p-values of 0.22, 0.05 and 0.20
and rejection percentages of 50%, 69% and 44%. The results show no highly significant
differences between the curvatures with the most significant being between 0-0.0005 and
0.001-0.002, in which 0.001-0.002 degrades faster with 69% of the tests rejecting the null
hypothesis. In general track with a curvature between 0-0.0005 performs best followed by
0 and 0.0005-0.001, which are very similar and then 0.001-0.002 which degrades fastest.
Despite the results suggesting this, the results in general show that curvature has minimal
effect on the rate of vertical geometry degradation other than highly curved track which
tends to degrade faster.
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To check if the results obtained were being skewed by an underlying reason and as there
was enough data available it was decided to perform a second layer analysis. For this
speed was chosen as the additional factor as used in some other factors. After splitting
the data up by speed and then curvature there was not enough data for the highly curved
track between 0.001-0.002 to be included. Results obtained for the 2-tailed tests showed
fewer differences between the curvatures, with Data A’s rejection percentages dropping
from 50%, 17% and 17% to 17%, 40% and 0%. The same can be said about Data B’s
results which show reductions from 23%, 8% and 15% to 9%, 7% and 6%. The results
from the 1-tailed tests also saw reductions in rejection percentages. After performing the
second layer analysis, it could be seen that curvature below 0.001 has little to no effect
on the rate of vertical geometry degradation.

Cant

Cant is the angle of the track and occurs on curved track section, with the measurement
recorded being the height difference between the low and high rail in cm, and can lead
to differences in the loads on the rails as discussed in Section 3.4.3. The results from the
two tailed hypothesis tests can be seen in Tables 8.70, 8.71, 8.72 and 8.73. The results
obtained using Data A show a strong similarity of track with no cant and cant between
0-40, with a 0% rejection of the null hypothesis and a mean p-value of 0.54. Similarly,
cant between 40-80 and 80-210 show no significant difference but with a lower mean
p-value of 0.11. There is evidence of a significant difference between track with a cant
between 80-210 and track with no cant or cant between 0-40 with mean p-values of 0.04
and 0.02 and null hypothesis rejection percentages of 75% and 100%. Unlike Data A,
Data B shows very little difference between the four groups with the lowest mean p-value
of 0.36 and highest rejection percentage of 18% neither of which is remotely significant.

Assessing the results for the one sided tests for Data A it suggests that track with a cant
between 80-210 performs best with none of the tests results rejecting the null hypothesis
in favour of 80-210 degrading faster. This is backed up by the mean p-values results of
0.02, 0.00 and 0.05 and rejection percentages of 75%, 100% and 75% that were found
when comparing no cant, 0-40 and 40-80 against 80-210. The results also suggest that
having a cant between 40-80 performs the next best with no cant and 0-40 performing
too similar to say if one degrades faster. Like with the 2-sided results Data B shows no
significance difference between the different degrees of cant. As Data A and B disagree
it is difficult to say if there is any significant difference between the cant degree or which
degrades faster as even though Data A has fewer assumptions and hence can be trusted
more, Data B contains a lot more data, with Data A only using 2 datasets for 0-40 and
80-210, as seen in Table 8.69. Due to the lack of data in Data A, we cannot be confident
in its results especially when Data B disagrees. Hence, it is more probable that Data B
results are true which shows little difference between the different cants, which agrees
with the analysis on curvature, in Section 3.4.3, which makes sense as canted track occurs
on curved track, with higher curves having greater cants.
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Similarly to with curvature, it was decided to perform a second layer analysis taking into
account the track speed first but the returned results were very similar to the first layer
analysis showing very little difference between the different cant amounts.

Maximum Axle Load

The maximum permissible axle load in tonnes for the track sections were split into three
groups; 0-22, 23-25 and 26 tonnes. These groups were chosen to try to maintain large
datasets whilst selecting three groups for more detail than just two. The amount of data
for each group can be seen in Table 8.78, which shows how the chosen groups maximise
the amount of datasets used to a minimum of three for Data A and twenty for Data
B. The results from the 2-sided hypothesis tests for Data A can be seen in Tables 8.79
and 8.80 and show that 0% of the tests rejected the null hypothesis when comparing
between 0-22 and 23-25. The low mean p-value of 0.11 does show that, even though
none of the tests showed a significantly different at a 5% significance level, nearly all
the tests were close to showing a significant difference. So there is evidence to say that
the degradation rates experienced on groups of 0-22 and 23-25 tonnes are different. The
rejection percentages of 67% and 75% when comparing between 26 and 0-22 or 23-25
give evidence to support that track with maximum axle loads of 26 tonnes degrades
differently to other track with lower axle loads. The results from Data B, seen in Tables
8.81 and 8.82, show more significant differences between the groups. Unlike Data A
where 0% of the tests rejected the null hypothesis in favour of a statistical significant
difference between 0-22 and 23-25, Data B shows a 75% rejection rate from the tests and
a mean p-value of 0.15. The low mean p-value of 0.11 for Data A and 75% rejection from
Data B gives evidence to support that there is a statistical difference between the axle
loads. As with Data A, Data B shows a difference between axle loads of 26 and 0-22
with a mean p-value of 0.07 and with an 85% rejection from the tests. Data B also shows
some difference between 26 and 23-25 with 45% of the tests rejecting the null hypothesis.
Looking at the results it can be said that in general the three axle load groups come
from populations with differing distributions.

The 1-sided results have been recorded in Tables 8.83, 8.84, 8.85 and 8.86. The results
from Data A show that track with permissible axle loads of 26 tonnes tend to have the
lowest degradation rates with 67% of tests returning significant p-values in favour of 0-22
degrading faster and 75% for 23-25, with no tests returning significant values for track
with axle loads of 26 degrading faster. The results show a rejection percentage of 33% in
favour of track with axle loads between 23-25 degrading faster than 0-22, but this with a
mean p-value of 0.28 is not significant enough to say with confidence that 23-25 degrades
faster. The results for axle loads of 26 tonnes are similar in Data B, with 0% and 4%
rejection percentages when analysing if track with axle loads of 26 degrade faster than
0-22 or 23-25. The tests performed the other way round to see if either 0-22 or 23-25
degrade faster than 26 agrees that 26 degrades slowest with rejection percentages of 90%
and 46%. Due to the fact that both Data A and Data B strongly suggest that track
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sections with axle loads of 26 tonnes degrade slower than track with lower axle loads, gives
strong evidence that this is true. The results from Data B when comparing between 0-22
and 23-25 disagree with Data A, by showing that 80% of the tests resulted in significant
p-values in favour of rejecting the null hypothesis in preference of the alternative that
0-22 degrades faster than 23-25. Due to the disparity between the results from Data A
and B it is hard to say which should be believed, as Data B has more assumptions but a
higher quantity of data, hence we cannot say with confidence which degrades faster 0-22
or 23-25 but the 80% rejection percentage obtained using Data B does tend to point to
0-22 degrading faster.

It was expected that higher axle loads would do more damage to the track and hence
cause it to degrade faster but this is not what the results show. This could be due to
many reasons such as higher axle load track sections tending to be constructed with
better sleeper and rail designs. To reduce the impact of such factors an analysis has
been performed by first splitting up the datasets by speed groups and then by axle load,
as similar speed track tends to have assets installed which are alike in performance. The
results obtained from Data A showed more significant results between 0-22 and 23-25
or 26 tonnes but less significance between 23-25 and 26. Performing the hypothesis
tests on Data B again yielded results which showed less significance between the axle
load groups. The mean rejection percentage and p-values obtained from the first layer
analysis were 68% and 0.16 whereas the second layer analysis returned results of 46% and
0.23. The reduction in rejection percentages and increase in mean p-values gives evidence
to support that some significant differences that could be seen in the initial results found
from the first layer analysis were caused by differences between the poskeys track speeds
and not axle load. There was still evidence in the results when the speed was taken into
account to say that the three axle load groups are dissimilar, containing varying rates of
vertical geometry degradation.

The 1-sided tests performed using Data A did not demonstrate many significant differ-
ences with the largest occurring between 0-22 and 26 tonnes. This result was far from
significant though as 64% of the tests rejected the null hypothesis in favour of the group
0-22 degrading faster and 29% rejected in favour of track with axle loads of 26 tonnes
degrading faster. Data B also showed more significant evidence to suggest that the group
containing poskeys of axle loads between 0-22 contained significantly higher degradation
rates than 26 tonnes. Between these groups 69% of the tests returned significant p-values
in favour of 0-22 containing larger degradation values but only 5% the other way. Ad-
ditionally, Data B suggests that in general track with lower axle loads degrades faster,
but the results were not as significant as with the first layer analysis. This again was
unexpected but there may be reasons for the differences which are not due to the axle
load. The analysis undertaken was performed using degradation rates which were related
to the usage expressed as EMGT. This meant that a degree of the damage caused by
the axle loads had already been taken into account, as it is included in the calculation
of EMGT obtained from NR and discussed in Section 3.2.6. It is generally known in
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physics and engineering that higher loads lead to faster settlement and degradation, so
the results from the tests do not make much sense unless the calculation for the EMGT
overcompensates for the damage dealt from the different axle loads attaching too high
of a factor to the higher axle loads or too small of a factor to the lower axle loads.

To test to see if the use of EMGT for the degradation rates was effecting the results
it was decided to explore the affect of the axle load using the time related degradation
rates. The results from these showed smaller differences between the groups with lower
rejection percentages in the 2-tailed tests. The 1-sided test results disagreed with the
usage based analysis, with some evidence to suggest that poskeys with higher axle loads
tend to degrade faster, which was expected due to the higher loads.

Electrification

There are three types of electrification on the UK railway network: No Electrification,
Overhead Line Equipment (OLE) and 3rd or 4th rail. The different electrification systems
use contrasting methods to power the trains; no electrification using heavy diesel locomo-
tives, 3rd/4th rail collect electricity via a shoe running along the electrified rail to power
an electric train, and OLE uses pantographs to collect electricity from the suspended
overhead lines. Despite the different trains having contrasting weights and power asso-
ciated with them, most of this is taken into account in the usage conversion to EMGT
as discussed in 3.2.6, but it was decided to still see if the electrification may still have a
large impact on the rate of vertical geometry degradation. Table 8.87 shows the amount
of data for each type of electrification which was used as part of the hypothesis tests. By
looking at the table it can be seen that 3rd/4th rail is the least common with more than
twice as much available data for OLE and more than twice again for no electrification.
The results for the 2-sided hypothesis tests are noted in Tables 8.88, 8.89, 8.90 and 8.91.
Data A shows that in 100% of the tests rejected the null hypothesis at a 5% significance
level with all the mean p-values being 0.00. This shows a very strong significant sta-
tistical difference between the electrification types but the results for 3rd/4th rail were
only based on the use of two datasets, due to this further evidence from Data B was
used. Data B shows a similar significant different between no electrification and OLE or
3rd/4th rail with rejection percentages of 93% and 95% as well as mean p-values of 0.02
and 0.04. Data B does not show as much of a difference between OLE and 3rd/4th rail
as Data A, with an obtained mean p-value of 0.18 and with 43% of the tests rejecting
the null hypothesis at a 5% significance level. Looking at the results from both Data A
and B it can be said that there is a highly significant difference in the vertical geometry
degradation rates between no electrification and both OLE and 3rd/4th rail track. There
is also evidence to suggest that OLE and 3rd/4th rail track tend to degrade differently
as well.

To test which method of electrification degrades faster or slower, 1-sided hypothesis tests
were used with the results placed in Tables 8.92, 8.93, 8.94 and 8.95. The results from
Data A show that track with no electrification degrades significantly faster than 3rd/4th
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rail which in turn degrades significantly faster than OLE. This is shown by the mean p-
values of 0.00 in the no electrification column and the 0.00 in the 3rd/4th rail column when
it was compared to OLE. These p-values are backed up with 100% of the tests rejecting
the null hypothesis in favour of them degrading faster. As with Data A, B shows that
track sections with no electrification degrade fastest with mean p-values of 0.01 and 0.02
and associated rejection percentages of 96% and 95% when comparing against OLE and
3rd/4th rail. Again Data B also demonstrates that 3rd/4th rail degrades faster that OLE,
but not as significantly as Data A, with 57% of the tests rejecting the null hypothesis
with a mean p-value of 0.16. By looking at both Data A and B, and their agreement
with each other, it can be said with confidence that the track with different types of
electrification experience significantly different vertical geometry degradation rates, with
track installed with no electrification degrading fastest followed by 3rd/4th rail and then
OLE. Despite these significant results with the use of EMGT to take into account the
differences in usage and train weights (with diesel trains are much heavier), there maybe
another reason for the disparity between them. Most fast line over 100 MPH in the
country have OLE installed and higher speed lines tend to use the larger more resilient
sleepers and rail, which would reduce the degradation rate. Due to this a second layer
analysis was performed first taking into account the speed then the electrification type.

Using the same statistical techniques an analysis was undertaken taking into account
speed first and then the electrification type. The four speed groups found in Section 3.4.3
have been used to split up the datasets first and then split by the electrification type and
compared only within the same maintenance history and speed group. Results obtained
from the 2-sided hypothesis tests for Data A showed less significant results than the
first layer analysis. The results agreed that track sections with no electrification degrade
significantly different to OLE and 3rd/4th rail, but with less significance than seen in
Table 8.89 with rejection percentages of 88% and 90% instead of 100%. The second
layer analysis disagrees that OLE and 3rd/4th rail are significantly different with only
25% of the tests rejecting the null hypothesis, this is unlike the first layer analysis where
100% rejected the null hypothesis. This shows that some significant difference seen as
part of the first layer analysis was actually due to the track speed differences. Performing
the tests using Data B gave results that mirrored those obtained using Data A with large
significant differences between no electrification and OLE or 3rd/4th rail. The associated
rejection percentages obtained were 83% and 73%, which were lower than the 93% and
95% obtained as part of the first layer analyses using Data B, as seen in Table 8.91. Data
B also returned results which showed similarities between OLE and 3rd/4th rail, with a
mean p-value of 0.40 and with only 13% of the tests rejecting the null hypothesis. Again
the results for the second layer analysis of Data B taking into account the different
track speeds showed less significant differences between the electrification types than
the first layer analysis, proving that some differences seen were due to the track speed.
Assessing the results it is possible to say that track sections with no electrification degrade
significantly differently but there are similarity’s between OLE and 3rd/4th rail.
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Due to the results returned from the 2-sided tests showing differences to the first layer
analysis it was decided to also re-perform the 1-sided tests. Data A showed that sections
with no electrification degrade significantly faster with 90-94% of the tests rejecting
the null hypothesis in favour of this. Unlike the first layer analysis where 100% of the
tests rejected the null hypothesis in favour of the 3rd/4th rail dataset containing higher
degradation rate values than OLE, only 50% rejected the null hypothesis when speed was
taken into account. Data B agrees that no electrification degrades fastest with rejection
percentages between 84-85%. The results from Data B also show little evidence of either
OLE or 3rd/4th rail degrading faster with associated rejection percentages of 7% and
12% and similar mean p-values of 0.51 and 0.46.

Rail Type

A wide array of rail types are used on the UK railway system, from older Bullhead (BH)
designs to newer Flatbottom (FB). As seen from Table 8.96, there are no BH rails in
Data A as this is the post-2006 data, in which no BH rails were installed as they had been
superseded by FB designs. Due to this BH rails are only found on older, low priority
track which has not been upgraded yet. It is also possible to see from the table that 113lb
FB rail is the most common followed by UIC and 110lb FB rail which not used any more.
There was only enough data in Data A for an analysis to be undertaken on 113 lb FB and
UIC 60 rail with the results of the hypothesis tests noted in Tables 8.97 and 8.98. The
75% rejection of the null hypothesis within the analysis shows that the vertical geometry
of track installed with 113 lb FB and UIC 60 rail degrade at significantly different rates.
Data B results, Tables 8.99 and 8.100, also show a significant difference between the rail
types with a mean p-value of 0.06 and with 83% of the tests rejecting the null hypothesis.
From the table it can be seen that UIC 60 degrades significantly different to the other rail
types with mean p-values of 0.00, 0.00, 0.00, 0.02 and 0.06 with associated percentages
of 100%, 100%, 100%, 86% and 83%. The same can be said for 95lb BH rail. In general
there is a significant difference between all the rail types with the closest overlap being
between 98lb and 109lb FB with mean p-values of 0.16 and with only 30% of the test
rejecting the null hypothesis.

To see which rail type leads to faster track geometry degradation, 1-tailed tests were
used, with the results noted in Tables 8.101, 8.102, 8.103 and 8.104. These results show
that there is significant statistical evidence to say that the heavier the rail the better the
track performs. There is also evidence to suggest that the FB design is better than BH
for reducing vertical geometry degradation. Despite the minimal 3lb difference between
the 95lb BH and 98lb FB rail, BH rail degrades significantly faster with a mean p-value
of 0.03 and with 80% of the tests rejecting the null hypothesis. These tables show strong
evidence that heavier rail performs significantly better but, the heavier rail types tend
to be installed on track with higher speeds and with larger sleepers, which might be the
reason for the results instead of the actual affect of the rail type on the vertical geometry
degradation. To be able to say with more certainty that the rail type is a significant
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factor it was decided to first split up the data by speed and then rail type. Taking
into account speed, greatly reduces the differences between rail types. The rejection
percentage between 11lb FB and UIC 60 using Data A reduced from 75% to 57%. Data
B also demonstrated large reduction in rejection percentages with 95lb BH and 98lb
FB dropping from 0.70 to 0.00, 109lb and 110lb FB from 0.44 to 0.30 and 110lb and
113lb FB from 0.61 to 0.28. The reduced rejection values show that the track speed was
greatly affecting the difference between rail types. Using the results of the hypothesis
tests when speed was also taken into account, three groups could be created by joining
together similarly performing rail types. These groups consist of: Group 1; 95lb BH,
98lb FB, Group2; 109, 110lb, 113lb FB and Group 3; UIC 60.

To test that the groups were significantly different 2-sided hypothesis tests were per-
formed with the results recorded in Tables 8.106, 8.107, 8.108 and 8.109. As seen in
Table 8.105 there was not enough data with Data A to include Group 1. This is due
to Group 1 containing the oldest type of rails installed on the UK railway network and
hence they do not occur on track installed post 2006. Group 2 is the most common
group followed by group 3 and then there is minimal data from group 1. In results
obtained using Data A 57% of the tests rejected the null hypothesis when comparing
group 2 and 3. This significant difference is mirrored by Data B where 69% of the tests
rejected hypothesis. Data B show a highly significant difference between Group 1 and
Group 2 with a mean p-value of 0.00 and 100% of the tests rejecting the null hypothesis.
There were no speed groups where there were sleepers from Group 1 and Group 3 so an
analysis was not possible between these. To assess which types of sleepers help reduce
the vertical geometry degradation of track one-sided hypothesis tests were used, with
the results noted in Tables 8.110, 8.111, 8.112 and 8.113. It was expected that the larger
rail would perform better at reducing the rate of vertical geometry degradation. This is
backed up by Data A in which 57% of the tests rejected the null hypothesis in favour
of Group 2 coming from a population with higher rates of degradation, with 0% of the
tests rejecting the other way round. This is backed up by Data B with 56% rejection
rate but 22% of the hypothesis tests undertaken reject the null hypothesis in favour of
Group 3 degrading faster. When comparing Group 1 and Group 2, Data B shows a
very significant result that Group 1 contains larger degradation rates. Looking at the
tables it can be said that Group 3 performs best, followed by Group 2 and then Group
3 with Group 3 performing much worse than Group 2. From this it can also be inferred
that track sections with rail types contained in Group 1 experience much higher levels
of degradation than Group 3.

The rail types installed on the UK railway are directly related to the sleeper choices.
Due to this it was decided that it would be important to carry out a further analysis. To
accomplish this it was decided that the data would be split by maintenance history, speed,
sleeper type and then rail type, using the speed groups discussed in Section 3.4.3, and
the sleeper groups in Section 3.4.3. This meant that the hypothesis tests were comparing
rail types that had similar sleeper types and similar speeds. Speed was still included as
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similar speed lines have interchangeable maintenance procedures and thresholds. It was
required to use the grouped speed and sleeper types to give large enough datasets to
perform an analysis on. The results from this third layer analysis are outlined in Tables
8.115, 8.116, 8.117 and 8.118 with the data amounts in Table 8.114. Looking at the
results from Data A it can be seen that including the sleeper type greatly reduces the
significance of the result between Group 2 and 3, with the rejection percentage dropping
from 0.57 to 0.39. Data B shows even larger reductions with the rejection percentage
between Group 1 and 2 reducing from 1.00 to 0.30 and the mean p-value increasing from
0.00 to 0.31. Data B also showed a reduction between Group 2 and 3 with the rejection
percentage going from 0.69 to 0.60 and the mean p-value from 0.13 to 0.22. The results
show that a degree of the differences found in the first and second layer analysis were
due to the sleeper choices. With the sleeper types, speed and maintenance history taken
into account it can be seen that there is an effect of the rail choice on the tracks vertical
geometry degradation, but it does not seem to be a large difference.

Passenger % Usage

It was decided to see if track sections that undergo different ratios of passenger and
freight traffic degrade at varying rates as the different trains types cause differing forces
on the track. The percentage of passenger traffic was used, being calculated in two ways,
either the amount or the usage as seen in Section 3.2.7. The results when the passenger
percentage was split by usage demonstrated more significant differences between the five
groups, each encompassing 20%, than when split by amounts. Additionally, as higher
usages and axle loads are known to damage the track more, it makes sense to categorise
the traffic by usage and not the amounts. Hence, the results for usage are shown and
discussed here, with the amounts in each group shown in Table 8.119. The disparity
of passenger and freight traffic on the UK rail network can be seen by the amounts in
the table, with all five groups containing a substantial amount of data. The group with
80-100% is the most populated and 20-40% the least. There is a large amount of both
mainly freight or passenger lines but also highly mixed lines. Tables 8.120 and 8.121
show the hypothesis test results for Data A. In these tables it can be seen by the mean
p-values of 0.00, 0.00, 0.01 and 0.01 in column 0-20 that the highly freight based traffic
lines with less than 20% passenger trains by EMGT degrade significantly different from
the other groups with a greater amount of passenger trains. Another significant result
can be seen when comparing 20-40% to 40-60% with a mean p-value of 0.04 and a 75%
rejection over the tests. The results from Data A do not show any more significant
differences between the groups but show that track sections consisting of 60-80 and 80-
100% passenger trains degrade at similar speeds as seen by none of the tests rejecting
the null hypothesis at a 5% significance level. Looking at Data B results in Tables 8.122
and 8.123, there is less evidence of significant differences between the groups with the
most significant result occurring between 0-20% to 60-80% with a mean p-value of 0.06
and a 93% rejection percentage. Data B shows that again there is evidence that 0-20%
degrades differently with the highest rejection percentages of 43%, 55%, 93% and 60%.
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Due to the results it cannot be said that there are significant differences between the
percentage of passenger trains that make up the traffic, except between 0-20 and the
rest, but there are some differences as seen in Table 8.123 for Data B, where there are
no comparisons in which no results rejected the null hypothesis, with all the rejection
percentages returned occurring between 23-48%.

The one sided test results in Tables 8.124, 8.125, 8.126 and 8.127, show that the 0-20%
group degrades fastest. Data A results returned 100% rejection of the null hypothesis in
favour of the group 0-20% containing larger degradation rates. Additional the highest
rejections occur in 0-20% when using Data B as well as the lowest p-values. The results
never rejected the null hypothesis that 0-20% degrades slower in either Data A or B.
Data A shows that 40-60% tends to perform best whereas the results from Data B give
evidence to suggest that the group with 60-80% passenger trains performs best, with the
lowest degradation rates. By looking at all the results it can be said that there is not
much evidence to suggest that the percentage of passenger trains has a large affect on
the rate of vertical geometry degradation, other than when the usage is more than 80%
freight, which causes significantly faster vertical geometry degradation. The reason for
a lack of evidence to suggest any significant difference maybe due to the use of EMGT
which takes into account the different damage that freight and passenger trains do to the
track. To see if this was the case a similar analysis was performed on the degradation
data related to time but this showed no significant differences either other than 0-20%
containing the largest degradation rates similar to the results when usage was used.

Axle Load > 50 % Usage

It was decided to categorise the traffic similarly to the percentage of passenger trains by
looking at the axle load of the trains as this meant that empty freight trains would not be
classified as freight but in the less than 50 tonnes categories, so the groups should be more
related to the forces exerted on the trains than just passenger and freight. The results
were calculated for both the amount of trains with combined axle loads per carriage more
or less than 50 tonnes and the tonnage of trains. Results obtained from using the usage
datasets instead of the amount of trains showed more significant differences between
the percentage groups, so these results have been shown and analysed here. The data
amounts used are shown in Table 8.128, in which it is possible to see that the groups are
very similar in sizes. Results from the hypothesis tests are noted in Tables 8.129, 8.130,
8.131 and 8.132. The mean p-value results for Data A show that groups 0-20% and
80-100% degrade different from the other groups with mean p-values between 0.00 and
0.08 and rejection percentages of 67-100%. The other groups seem to degrade similarly
with a slight difference between 40-60% and 60-80% in which 50% of the tests rejected
the null hypothesis. Data B also shows a significant difference between 80-100% and the
others with mean p-values of 0.12, 0.11, 0.04 and 0.05. Unlike Data A, Data B shows a
degree of similarity between 0-20% and 20-40% as well as 40-60% and 60-80% with mean
p-values of 0.32 and 0.33, with only 24% and 25% rejecting the null hypothesis. The
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groups 0-20% and 20-40% are then dissimilar from the rest with mean p-values from 0.08
to 0.20 and rejection percentages between 55-70%. In general the groups are dissimilar
from each other with the closest two groups being 40-60% and 60-80% in which 50% of
the tests rejected the null hypothesis in Data A but only 25% did in Data B. The group
with the highest percentage of trains with carriage combined axle loads over 50 tonnes,
80-100%, is shown to differ the most from the others. This is similar to the 0-20% group
in the percentage of passenger trains, which makes sense as the 80-100% group would be
primarily heavy freight trains.

To see which groups degrade faster, 1-tailed tests were used. The results for these can be
seen in Tables 8.133, 8.134, 8.135 and 8.136. The results from Data A and B both agree
that poskeys with traffic consisting of more than 80%, by usage, having axle loads above
50 tonnes degrade faster. This can be seen by the mean p-values which vary from 0.00-
0.10 and the rejection percentages between 60% and 100%, with Data A showing more
significant results. The rest of the results from Data A do not show significantly that any
group other that 80-100% degrades faster or slower. Data B shows that 20-40% degrades
significantly quicker than 40-60% with a mean p-value of 0.04 and a rejection percentage
of 80% and also shows that 40-60% tends to have the lower degradation rates. In general
the results show that the ratios of trains with different combined axle loads have little
effect on the vertical geometry degradation, other than track with 80-100% traffic above
50 tonnes combined axle load, where this track degrades significantly faster than the
others. These results are similar to the passenger percentage results in Section 3.4.3,
which was expected, but by using the axle loads of the trains to classify them instead of
just passenger or freight, more significant results were found especially for the non-mixed
traffic lines.

Dirty Traffic % Usage

NR classify all traffic as either dirty or not depending on the amount of fines which
come off the train where dirty traffic tends to be freight that is carry dirty materials
which drop of train and infiltrate into the ballast. This causes the ballast to become
fouled at an increased rate, and hence possible lead to faster geometry degradation, as
discussed in Section 2.3.4. The amount of dirty traffic on any track section in the data
never was higher than 40%, so it was decided to split the data up by into four groups
of 0-10%, 10-20%, 20-30% and 30-40% dirty traffic. Dirty traffic was calculated as the
percentage of the amount of dirty trains as well as the percentage of usage in EMGT.
The results from the hypothesis tests showed that using the usage percentages, similarly
to the percentage of freight trains discussed above, resulted in more significant results so
these have been shown and discussed further here. Tables 8.138, 8.139, 8.140 and 8.141
show the 2-sided hypothesis results obtained from the data. There was not enough data
within Data A to include 30-40% as seen from Table 8.137. There is also minimal data
within Data A for 10-20% and 20-30% with only 2 datasets for each. The same occurs
in Data B where there are only four datasets for 30-40%. Table 8.137 also shows how
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the vast majority of the railway track is used by traffic which consists of less than 10%
dirty traffic. The results from Data A show many significant differences with 100% of
tests rejecting the null hypothesis when comparing 0-10% and 10-20% as well as 30-40%
against the other three groups. There is also evidence to suggest a statistical difference
between the groups 0-10% and 20-30% with a mean p-value of 0.10 and with 50% of the
tests rejecting the null hypothesis. The closest two groups are 10-20% and 20-30% where
only 25% of the tests rejecting the null hypothesis, despite these significant results the
lack of data for the groups with more than 10% dirty traffic reduces the confidence in
the mean results so Data B has been examined as well. Data B disagrees with Data A,
showing minimal differences between the groups. The most significant result occurred
between 0-10% and 30-40% with a 75% rejection of the null hypothesis and a mean p-
value of 0.20. The results between 20-30% and 30-40% also returned a mean p-value of
0.20 but with 50% of the tests rejecting the null hypothesis instead. Despite the extra
assumptions associated with Data B, the inclusion of a greater amount of datasets in
the analysis makes the results more trustworthy and include more information such as
comparisons between older track which has undergone many maintenance activities. Due
to the results obtained from Data B it cannot be said that the percentage of dirty traffic
has a significant effect on the rate of vertical geometry degradation.

Even though there are not many significant differences between the groups, one-sided
tests have been used to discover which groups tend to degrade faster even if it is not
significantly so. The results from these tests can be seen in Tables 8.142, 8.143, 8.144 and
8.145. The results from Data A show clearly that the group 30-40% degrades significantly
faster than the groups with less dirty traffic. 10-20% degrades the next fastest and then
20-30%. The group with the minimal amount of dirty traffic between 0-10% seems to
perform best. Data B, as with the 2-tailed hypothesis tests, shows less significance than
Data A. The only significant results occurred between 30-40% and 0-10% in which 75%
of the tests rejected the null hypothesis in favour of 30-40% degrading faster, with 0%
rejecting the other way round. In general by looking at the mean p-values, which are
lowest in column 30-40 and highest in column 0-10, it can be said that the group 30-40%
degrades fastest and 0-10% slowest but the results are not statistically significant enough
to be confident in this conclusion. The groups 10-20% and 20-30% are reasonably similar
as seen from the 2-tailed tests and backed up by the results in Table 8.145 where 22% of
the tests rejected the null hypothesis in favour of 20-30% containing higher degradation
values and 11% the other way round.

Superficial Geology

When installing a railway track if the bedrock layer is not suitable, either in resistance or
drainage, then a superficial layer is placed on top. The five main types of materials used
as well as no superficial layer are noted in Table 8.146 with the associated data quantities.
There is only enough data for the analysis using Data A to include clay, diamicton and
sand, but Data B also includes enough to analyse gravel and peat as well. Table 8.146
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shows that more than 50% of the railway track in the UK is built on a superficial layer,
with clay and diamicton being the most common followed closely by sand, with gravel
and peat barely being used. To see if the different superficial layer materials affects the
rate of vertical geometry degradation two-sided hypothesis tests have been implemented,
with the results from Data A noted in Tables 8.147 and 8.148. Looking at the values in
the tables it can be seen that clay degrades significantly differently to both no superficial
layer and diamicton, with mean p-values of 0.05 and 0.02, but has similarity’s with sand
as only 13% of the tests rejected the null hypothesis. Sand also performs significantly
different from both no layer and diamicton with rejection percentages of 75% and 63%.
Diamicton and no layer show evidence of having similar performance with only 25% of
the tests rejecting the null hypothesis with a mean p-value of 0.29. The results obtained
using Data B, as seen in Tables 8.149 and 8.150, show that no two types of superficial
layer are very similar, with the lowest rejection percentage being 13% between gravel
and clay or diamicton. The most significant results occur between sand and diamicton,
peat and none and sand and peat, with these having rejection percentages of 70%, 67%
and 58% and mean p-values of 0.15, 0.17 and 0.12. Data A results showed a significant
difference between clay and none or diamicton but Data B results do not demonstrate
such a significance with mean p-values of 0.33 and 0.20 and null hypothesis rejection
percentages of 33% and 45%. Generally the results show no two superficial layer materials
performing very similarly but the results also show that there is not enough evidence to
be able to conclude with confidence that they perform significantly differently either.

As the results from the 2-tailed tests show some differences between the layer materials,
1-sided tests were performed to see which materials perform best at reducing vertical
geometry degradation. The results from these tests for Data A are noted in Tables
8.151 and 8.152, and Data B in Tables 8.153 and 8.154. The results from Data A
show that diamicton performs worst with mean p-values of 0.17, 0.01 and 0.04 when
comparing against no layer, clay and sand. Additionally, no tests undertaken rejected
the null hypothesis in favour of another material performing worse than diamicton, as
seen by the zeros in the diamicton row of Table 8.152. No superficial layer being installed
performs the second worse with 88% and 75% of the tests returning significant p-values
(less than 0.05) and hence rejecting the null hypothesis in favour of no layer performing
worse than clay and sand. Clay and sand are quite similar, as seen from the 2-sided test
on Data A, and hence neither degrades significantly faster than the other, with 25% of
the test results in favour of clay degrading faster and 13% of tests in favour of sand.
Data B agrees with Data A that the use of diamicton for the superficial layer instead
of no layer, clay and sand leads to faster degradation with mean p-values of 0.09, 0.14
and 0.11. Sand degrades slowest with 0% of the tests returning a significant p-value
in favour of sand degrading faster. Peat is the worst material to use for the superficial
layer with between 58-75% of the tests against the other material choices rejecting the
null hypothesis, and only between 0-8% the other way round. The results from Data B
do not show any significance between none, clay and gravel. Looking at all the results
together it is possible to say that there are differences between the superficial layer types
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but in general they are not significant. Of the materials used there is evidence to suggest
that the use of sand is the most effective, followed by gravel and clay, then diamicton
and then peat, with these two degrading significantly faster than the rest. Despite
diamicton and peat returning results which show that they degrade significantly faster
than no superficial layer, it cannot be said that using these materials for a superficial
layer instead of nothing actually increases the rate of degradation. This is because the
layer would have been installed on poor bedrock, whereas the results for no superficial
layer had the track installed directly on top of a good quality bedrock layer.

To take into account the different bedrock and artificial layers that are installed with
the superficial layer it was decided to undertake a three layer analysis, first splitting
the data up by the maintenance history, bedrock and then artificial. This meant that
comparisons were only undertaken between different superficial layer geologies, which
occurred on track with similar bedrock and artificial layers as well as maintenance history.
The bedrock was grouped using the similarities found in Section 3.4.3. Once this was
completed it could be seen that there were only four datasets larger than 20 with an
artificial layer but lots of data without, so it was decided to remove all sections that
contained an artificial layer and instead split the data up by maintenance history, bedrock
and then speed, with speed being chosen as track with similar speeds tend to have
interchangeable assets and maintenance procedures. To maintain larger dataset the
track speeds were split into the four groups of similarly degrading speeds as discussed
in Section 3.4.3. The decision on how to split up the data resulted in comparisons only
being undertaken between different superficial layer geologies, which occurred on track
with similar bedrock and speeds, no superficial layer as well as maintenance history.
Splitting the datasets by multiple factors leads to smaller datasets, which for Data A
and B meant that gravel and peat could not be included in the analysis. The amount
of data usable for the tests was still large for no superficial layer, clay, diamicton and
sand, which can be seen in Table 8.155. Results of 2-sided hypothesis tests on Data
A, which can be seen in Table 8.156 and 8.156, returned quite different results to the
first layer analysis. This shows that some results were being affected but an underlying
difference in speeds or bedrock type and not just the difference in the superficial layer
geologies. Data A shows some differences between all the superficial layer types, with all
the returned rejection percentages being between 31-56%. Tables 8.158 and 8.158, show
the mean results of the hypothesis tests for Data B. These tables again show that there are
differences between the superficial layers but the difference is not highly significant with
rejection percentages between 24-53%. From the 2-sided hypothesis tests it could be seen
that none of the layer types are completely similar with a minimum rejection percentage
of 24% seen over the results from Data A and B. Additionally none of the superficial
layer types where significantly different with the highest mean rejection percentage of
56% with a high associated mean p-value of 0.28. It was expected that there would
be differences between the choices of superficial layer geology as different materials have
dissimilar stiffness and drainage speeds but it was also expected that the superficial layer
choices would not make a significant difference due to the majority of the vertical top
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degradation occurring within the ballast above the superficial layer.

As there had been changes in the results of the 2-sided tests when the bedrock layer
and maximum speed were also taken into account and statistical differences between the
superficial layer geologies were shown by the 2-sided tests, it was decided that 1-sided
tests would also be undertaken again. The results from the 1-sided tests, seen in Tables
8.160, 8.160, 8.162 and 8.162, show which superficial layers perform better. The results
from Data A give evidence to support sand being the best choice for the superficial
layer. This can be seen by the higher p-values and the low mean rejection percentages
in the sand columns. Additionally, the sand row shows the highest rejection percentages
with between 28-44% of the tests rejecting the null hypothesis in favour of the layer
type containing significantly higher degradation rates at a 5% confidence level compared
to sand. The other results between none, clay and diamicton are less clear cut such
as clay and none where 20% of the tests saying clay degrades faster and 25% saying
none, hence there is not enough evidence to say that one degrades faster than another.
Looking at Data B, there is even more evidence to suggest that sand performs best at
reducing vertical geometry degradation with only 4%, 0% and 3% of tests rejecting the
null hypothesis in favour of sand degrading faster than none, clay and diamicton whereas
43%, 43% and 58% rejected the null hypothesis in favour of sand degrading significantly
slower at a 5% significance level. Again, as with Data A, Data B show minimal evidence
of either none, clay or diamicton degrading significantly faster than each other, with all
the mean p-values calculated being between 41-54%. Looking at both Data A and B it
can be said that track built on a sand superficial layer performs significantly better than
other track. This was expected as sand is known as a good formation layer due to its
high drainage speed. The results also show that no layer, clay and diamicton seem to
perform similarly.

Artificial Geology

Sometimes even with a superficial layer installed a further artificial layer is used to
increase the quality of the formation below the ballast. The material for this layer is
most often a combination of slag, ash and other waste materials and is known as made
ground. These are used as they are cheap waste products but produce a layer with
high stiffness and permeability. There is only a small amount of track sections that use
a superficial layer in the UK, as seen in Table 8.164, as the layer is only installed at
locations of particularly poor formation. In this table it is possible to see that under 4%
of the railway track installed in the UK was constructed with a superficial layer. To see
if track sections with artificial layers perform differently hypothesis tests have been used,
with the results for the 2-sided tests being noted in Tables 8.165, 8.166, 8.167 and 8.168.
For the results obtain from Data A it can be seen that there is a significant difference
between the two groups, with 100% of the tests rejecting the null hypothesis with a mean
p-value of 0.00. It has to be noted that these means were created with only two datasets
for the artificial layer, hence greater evidence would be recommended, for which Data
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B was used. Unlike Data A, Tables 8.167 and 8.168 do not show a significant difference
with mean p-values of 0.21 and with only 27% of the tests rejecting the null hypothesis,
that they come from populations with similar distributions. Due to these results it was
decided that there was not enough evidence to say that the vertical geometry of track
sections that are built on top of an artificial layer degrade at different speeds.

The 2-sided test results do show some difference between the groups, so 1-sided tests
were performed to see if track sections installed on an artificial layer degrade faster or
slow. These results can be seen in Tables 8.169, 8.171, 8.170, 8.171 and 8.172. Data A
gives strong evidence to suggest that track built on an artificial layer has slower vertical
geometry degradation, with 100% of the tests rejecting the null hypothesis in favour of
no artificial layer having higher degradation rate values. It must be noted again that
these results are a mean based on only two datsets. Data B results, similarly to the
2-sided results, show less significance than Data A but do agree that an artificial layer
reduces degradation. These results are not significant though as only 29% of the tests
rejected the null hypothesis, additionally 7% of the tests found that the sections with an
artificial layer degrade significantly faster.

Bedrock Geology

Every track section has a bedrock layer as this is the initial on-site geology. Depending on
the bedrock and the track usage and design, superficial and artificial layers are sometimes
placed on top of the bedrock layer to increase the tracks resilience, reducing the forces
that are experienced in the bedrock layer, reducing geometry degradation. There is a
vast array of different bedrock materials under the UK railway network, with the thirteen
most prevalent being analysed. The amounts of data obtained for each type is outlined
in Table 8.184, in which it can be seen that mudstone is the most common followed by
chalk, clay and then sandstone. There was only enough data within Data A to include
chalk, clay, limestone, mudstone and sandstone in the analysis, with only two datasets
for limestone containing more than twenty calculated degradation rates. The 2-side
hypothesis test results for Data A can be seen in Tables 8.183 and 8.184. In these tables
it can be seen that limestone is significantly different from the other bedrock materials
with 100% of the tests involving limestone rejecting the null hypothesis. There are other
significant results, with tests between mudstone and chalk returning a mean p-value of
0.05 with 67% of the tests returning a p-value less than 0.05. There is also evidence
to suggest that chalk and clay have similarities with a rejection percentage of 33%,
mudstone and sandstone are also similar with a low rejection percentage of only 25%,
but the two groups are dissimilar from each other with rejection percentages between
63-67%. Moving on to the results obtained from Data B in Tables 8.185 and 8.186 which
include thirteen different bedrock geology types. First looking at if the results obtained
from Data B agree with those from Data A. Data B agrees that track installed on a
limestone bedrock degrades at a significantly different rate to chalk and clay with mean
p-values of 0.09 and 0.25 and rejection percentages of 79% and 54%. Data B disagrees
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that limestone is significantly different to mudstone and sandstone but still shows some
difference with mean p-values of 0.23 and 0.17 and rejection percentages of 29% and
46%. Data A also showed that chalk and clay are similar and mudstone and sandstone
are similar. Looking at the results in Data B there is evidence to support both, with
only 18% of the tests rejecting the null hypothesis between chalk and clay and only
20% between mudstone and sandstone. Additionally, the results obtained from Data
A showed a difference between the two groups, which Data B also supports. This is
demonstrated by results of the tests between them which contained low mean p-values
between 0.04-0.25 and high rejection percentages between 54-88%. Looking at the results
it was decided to group the similarly performing geology materials together, to increase
the dataset sizes. To accomplish this, groups of high mean p-values and low rejection
percentages where made making sure that geology types in which more than 50% of the
tests rejected the null hypothesis were kept in separate groups. This involved a lot of
shuffling about but there are two distinct groups; one containing argillaceous, dolomitic,
limestone, psammite, siltstone and the other containing sand, chalk and clay. Out of
the remaining bedrock geology types it is possible from the results to see that halite
and pebbly sand are similar and mudstone, sandstone, and slate also contained similar
degradation values. Using these four groups it was possible to perform the hypothesis
tests again to confirm that the groups are statistically dissimilar and to see which groups
degrade faster.

The results for the 2-side hypothesis tests from the grouped bedrock geology using Data
A can be seen in Tables 8.174 and 8.175. The amount of data in each group has been
noted in Table 8.173, in which it can be seen that there is not enough data within
Data A for group 3 to be analysed and there are only two datasets for group 1 but in
general the amount of data that made up each dataset for each bedrock geology group
was high. The 2-sided hypothesis test results from Data A show a significant difference
between groups 1, 2 and 4. It can be seen that group 1 is significantly different with
100% of tests rejecting the null hypothesis that it is similar to either group 2 or 3 with
mean p-values of 0.00. Looking between groups 2 and 4, a significant difference can
still be seen with 75% of the tests returning p-values less than the 5% significance level
with a low mean p-value of 0.07. For additional evidence and to see about group 3 the
analysis has also been conducted using Data B and the results placed in Tables 8.176 and
8.177. These tables again show some significant differences between the groups. Group
1 is significantly different from group 2 with a 95% rejection percentage and group 2
is significantly different from group 4 with a rejection percentage of 86%. The results
also show some differences between the other groups with a highest mean p-value of 0.27
and minimum rejection percentage of 38%. The results show that there are differences
between the groups, with group 1 being the most significantly different from the other
groups. There is not enough evidence within the results to say that any group is similar
enough to join together.

To assess which bedrock reduces the track geometry degradation 1-tailed tests were used.
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The results of these tests can be seen in Tables 8.178, 8.179, 8.180 and 8.181. There was
strong evidence within the results from Data A to suggest that Group 2 has the lowest
vertical geometry degradation followed by 4 and then 1 degrades fastest. The results from
Data B also show that group 1 degrades significantly faster with rejection percentages
between 53-95%. The next fastest group to degrade is group 4, closely followed by group
3 and then group 2 degrades the slowest. This is similar to the conclusions made from
the results of Data A.

Maximum Speed

In the research undertaken within the literature review it could be seen that many pieces
of previous research show that the speed trains traverse the track has a great effect on
the rate of vertical geometry degradation. This is expected as an increase in the speed
of a train increases the dynamic forces that are transferred into the track, leading to
the ballast particles to break and move causing settlement and hence faster degradation
of the vertical geometry. Assessing the types of assets which are installed on different
speed tracks shows that in general the faster lines tend to use larger concrete sleeper
designs and heavier rail designs than the slower speed track. The larger sleeper and rail
designs are used to counteract the additional forces that are experienced on the faster
track by giving the track added resilience. In addition, higher speed track tends to be
a higher priority and hence keeping the track in a serviceable condition is of a greater
importance. The maximum permissible track speeds were grouped using NR’s grouping.
This was done as these groups are used by NR to decide what quality the track is based
on the vertical geometry SD i.e. a SD of 4 mm would be classified as good condition for
track speeds 10-20, 25-30 and 35-40 MPH whereas for track speeds between 100-110 and
115-125 MPH the track would be classified as being in a very poor condition. This is due
to the safety requirements, as faster tracks need a smoother running surface to be safely
traverse. Due to this the track quality level that maintenance is undertaken at differs for
each of the ten speed bands NR use. There is also a large disparity between the usage of
the higher speed track compared to the slower track but this has been taken account of
by using degradation rates calculated with EMGT instead of time. A comparison of the
degradation rates of different speed track was undertaken to first see which track speeds
degrade significantly differently to each other and then to see which tend to degrade
faster.

To identify significant differences between the groups 2-sided significance tests were used
as discussed in Section 3.4.2. First both Data A and B were split up by the maintenance
history, so comparisons were only undertaken between track which had undergone the
same maintenance activities and hence will be of similar ages with akin asset ages and
ballast condition. These datasets were then split up by the different speed groups, with
the amount of datasets remaining for each speed larger than 20 noted in Table 8.187.
The total amount of degradation rate values that made up these datasets are also noted
within the table. The table shows that there is a large spread of speeds across the UK
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railway network with 75-80 MPH being the most common. Due to only one dataset
within Data A being constructed for speeds 0-30, 35-40 and 45-50 MPH these have not
been included within the hypothesis tests as the results of using one dataset and not a
mean obtained from many contains more uncertainty as a few extreme values in the one
dataset would skew the results. Additionally, with only one dataset, which contained
degradation values from a renewal to the first maintenance action, the tests would only
give an idea of any difference when the track is new and not over its life cycle. Looking
at the mean results obtained from the 2-sided hypothesis tests for Data A, which are
shown in Tables 8.188 and 8.188, it can be seen that there is evidence to suggest that the
groups 55-60 and 115-125 MPH degrade significantly differently from the other speeds.
This is shown for 55-60 MPH with all the obtained mean p-values being 0.00 and 100%
of the tests rejecting the null hypothesis in favour of the datasets being significantly
different at a 5% significant level. The same is true for track with speeds between 115-
125 MPH where the hypothesis tests comparing against the other speeds rejected the null
hypothesis in 67-100% of the tests with mean p-values between 0.00-0.05 all less than
the chosen 5% significance level. The results obtained from the comparisons between the
other speeds show a degree of similarity between 75-80, 85-95 and 100-110 MPH track
with high mean p-values between 0.29 and 0.46, well above the significant 0.05 value.
Looking at the rejection percentages it can also be seen that only 25-38% of the tests
rejected the null hypothesis. There is also evidence to suggest that there are similarity’s
between track sections with speeds 65-70 MPH and 75-80, 85-95 and 100-110 MPH,
with mean p-values between 0.19 and 0.31 but rejection percentages between 33-67%.
Due to this it cannot be said that there is enough evidence to say that the speed group
65-70 MPH degrades significantly different but there is enough evidence to suggest that
there is some difference.

For more evidence and for results for speeds 0-30, 35-40 and 45-50 MPH similar tests
were performed using Data B, with the results noted in Tables 8.190 and 8.190. There
is strong evidence to suggest that the vertical geometry of track sections with maximum
speeds of 0-30, 35-40, 45-50 and 55-60 MPH degrade similarly, with mean p-values be-
tween 0.20-0.41 and low rejection percentages between 5-45%. The results also show
that these speeds are significantly different from the other faster speeds with mean rejec-
tion percentages between 76-100% and mean p-values 0.00-0.07. The results for speeds
between 115-125 MPH using Data B echo those obtained from Data A, with rejection
percentages between 59-100% suggesting that track with speeds 115-125 MPH degrade
significantly differently to the other speeds. Again similarly to Data A the results ob-
tained from Data B show a degree of similarity between track sections with speeds 75-80,
85-95 and 100-110 MPH, with mean p-values between 0.16-0.38 and rejection percentages
between 32-41%. The results from Data B show more significant differences than Data
A with higher rejection percentages but the majority of the tests still failed to reject the
null hypothesis at a 5% significance level and hence there is evidence to suggest that
track sections of these speeds degrade at a similarly rate. The results also show similar-
ities between speeds 65-70 and 75-80 MPH with only 35% of the tests rejecting the null
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hypothesis but 65-70 MPH shows significant differences to the rest of the speed groups.
Assessing both the results from Data A and Data B it can be said that there are four
significant groups of speeds, within which there are similarities between the degradation
rates. These groups consist of 0-60, 65-70, 75-110 and 115-125 MPH. Additionally, it was
thought that the 65-70 MPH group could be a transition group where 65 MPH would fit
into 0-60 and 70 into 75-110 MPH but when tested this was not the case, with 65 and
70 MPH being shown as statistically similar.

To check that these groups are significantly different from each other hypothesis tests
were used again, with the data amounts displayed in Table 8.192. Due to reducing the
amount of groups the size of the datasets has increased, leading to more confidence in
the results of the tests which for the two sided tests can be seen the Tables 8.193, 8.194,
8.195 and 8.196. These tables show that the chosen four groups from before are all
significantly different with the closest two groups being 65-70 and 75-110 MPH with
mean p-values and rejection percentages for Data A and B of 0.19, 0.06, 67% and 80%.
To see which track speeds degrade faster 1-sided hypothesis tests were undertaken and
the results noted in Tables 8.197, 8.198, 8.199 and 8.200. The results from Data A
show that slower track degrades faster. This is seen by 0% of the tests rejecting the
null hypothesis in favour of faster track degrading at a greater rate than slower track,
and between 67-100% of the tests rejecting the null hypothesis in favour of the slower
track degrading faster. Similar results are demonstrated when Data B was used but with
higher rejection percentages between 84-100%. The significant results in the tables and
higher amount of data used, mean that it can be said with a high degree of confidence
that slower track degrades faster than higher speed track. This was not the expected
result of higher speed track degrading faster due to the higher dynamic loads caused
by the passing trains. As noted before the faster track in general uses larger sleepers
and rails, which could reduce the loads and hence damage caused by the trains by more
than the increase caused by the higher speed trains leading to an overall decrease in
degradation rate.

Sleeper Type

There are many sleeper designs and materials used in the UK railway network. The
majority of these are made of concrete, but steel and timber are also used. Concrete
sleepers tend to be used on faster, higher priority track due to their higher resilience
whereas the steel and timber tend to occur on the slower track where the extra resistance
is not required and hence the cheaper and easier to install materials are used. The
amount of data used as part of the hypothesis tests are outlined in Table 8.201, where
it is possible to see that there was enough data to include eight concrete, six steel and
three timber sleeper designs. Of the designs the G44 and F27 seem to be the most
common concrete sleepers and W560 the most frequently used steel. Despite the F27
sleeper currently being installed on large sections of track it can be seen from the table
that minimal new track (Data A) has been installed using F27 sleepers, with the G series
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sleepers becoming standard. There was only enough data within Data A to include the
G44, G47 and G49 concrete designs and the W560 steel design in the analysis. The
results from the 2-sided hypothesis tests for Data A can be seen in Tables 8.202 and
8.203. Looking at the tables the first obvious conclusion to draw is that the W560 steel
sleeper design degrades significantly differently to the concrete design sleepers with 100%
of the tests rejecting the null hypothesis and mean p-values between 0.00-0.01. The three
concrete designs show less significant differences between them. The G49 sleeper shows
evidence of performing differently to the G44 and G47 sleepers with 50% of the tests
returning significant p-values, whereas only 25% of the tests rejected the null hypothesis
when the tests were performed between G44 and G47 sleepers. For additional evidence
and to include more designs in the analysis Data B was used, with the results of the
2-sided hypothesis tests noted in Tables 8.204 and 8.205. Comparing the results from
Data A and B it can be seen that Data B agrees that W560 is significantly different
from G44, G47 and G49 designs with mean p-values of 0.00 but it disagrees that G44
and G47 are more similar than G47 and G49, with a 50% rejection percentage between
G44 and G47 whereas Data B returns no significant p-values at a 5% significance across
the undertaken tests between G47 and G49. Track installed with G47 and G49 seem to
behave similarly to F24, F27, F28 and W600 with rejection percentages all below 25%.
Softwood and timber sleeper are statistically different from the other sleeper types with
rejection percentages between 75-100% and are also different from each other with 50%
of the tests rejecting the null hypothesis.

Due to the sleeper choice installed being highly related to the track speed it was decided
that it was important to perform the tests first by splitting up the data by the track
speeds, into the four groups shown in Section 3.4.3, and then the sleeper type. This
was decided as comparing timber sleepers, which are only installed on track with speeds
less than 70 MPH, against large concrete sleepers, which are used on high speed track,
is comparing the speed differences as well the the sleeper difference. The two-tailed
hypothesis test results for Data A and B are recorded in Tables 8.207, 8.208, 8.204 and
8.205 with the amount of available data used in Table 8.206. Using the results in these
tables, the types of sleepers were grouped together, making sure the groups contained
sleeper types which when compared against each other had low rejection percentages
and high p-values. This was undertaken as for the stochastic PN model proposed in this
thesis requires large datasets to make the required distributions. Similar sleepers where
grouped and the tests re-performed until all the remaining groups were significantly
different from each other. This resulted in three groups: Group 1; F23, F24, W500,
W600, F27, W560, Group 2; F28, G49, G44, G47, F40 and Group 3; Timber, W402,
HH10, Metal, W500. The types of sleepers that make up: Group 1 are smaller concrete
sleepers and larger steel sleepers; Group 2 are large concrete sleepers and Group 3 are
timber and smaller steel sleepers.

The results from the two-sided hypothesis tests for the grouped sleepers can be seen in
Tables 8.212, 8.213, 8.214 and 8.215. Looking at the amounts seen in Table 8.211, it
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can be seen that there was not enough data within Group 3 for it to be included in the
analysis of Data A. The results of the hypothesis tests show strong differences between
the groups with Data A rejecting the null hypothesis that Group 1 and Group 2 come
from similar populations in 83% of the tests. Data B agrees with 72%. Looking at
Group 3 in Data B, there is a significant differences between Group 2 and itself with
a mean p-value of 0.03 and 87% of the tests rejecting the null hypothesis. There is
some evidence of similarities between Group 1 and Group 2 but the results were deemed
too significant to join the groups together. To assess which sleepers choices reduce the
vertical geometry degradation, one-sided hypothesis tests were undertaken, with the
results of these recorded in Tables 8.216, 8.217, 8.218 and 8.219. Data A shows Group
1 degrading significantly faster than Group 1 with 83% of the tests rejecting the null
hypothesis in favour of Group 1 containing higher degradation vales, and 0% the other
way round. The p-values also demonstrate such a strong conclusion. The results from
Data B back this up with 74% of the test results returning a significant p-value. Data
B also shows that Group 3 degrades significantly faster than Group 2. There is also
evidence to indicate that Group 3 degrades faster than Group 1, with 52% of test results
suggesting that Group 3 degrades faster and 11% the other was round. These results
show that the large concrete sleepers perform best, followed with a large gap by small
concrete and large steel sleepers and then timber and small steel sleepers.

Similarly to the analysis of the rail types performed in Section 3.4.3, due to the connection
between sleeper type and rail type it was decided that a further third layer analysis
of sleepers should be undertaken. This involved splitting the degradation rate data
up by the maintenance history, speed and rail type, using the grouped speed and rail
types from Sections 3.4.3 and 3.4.3. The resultant tables from the hypothesis tests have
been noted in Tables 8.221, 8.222, 8.223 and 8.224. The data amounts are recorded
in Table 8.220. Due to the additional splits, more datasets consisting of more than 20
datapoints (degradation rates) were created (datasets with less than 20 datapoints are
removed from the analysis). This enabled all sleeper groups to be included in the analysis
of Data A. The results from Data A suggest that the rail type was not the reason for
the significant differences found as part of the first and second layer analysis with the
rejection percentage between Group 1 and 2 actually increasing from 0.83 to 1.00 and
the mean p-value reducing from 0.08 to 0.00. Data B also shows little difference in the
results with the rejection percentages and mean p-values of the third layer analysis being
0.59-0.83 and 0.09-0.17 compared to the second layer analysis where it was 0.50-0.87 and
0.03-0.19. Due to this it can be said that the significances between the sleeper groups
are most likely due to the sleepers and nothing else.
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3.4.4 Analysis Summary

Tunnels and Stations

The results from the analysis did not show many significant differences between the ver-
tical geometry degradation of track sections at stations and between stations, but there
was enough evidence to suggest that there is a small difference between the two with
in general track at stations degrading faster. The results showed a smaller difference
than was demonstrated by Andrade and Teixeira (2011) but agree that track at stations
degrades faster with Andrade and Teixeira (2011) suggesting that on average track at
stations degrades 40% faster than PL track. The results for tunnels were more inconclu-
sive but again were enough to say that track in tunnels tends to degrade at a different
rate than track at stations or between them. Some results returned demonstrated track
in tunnels degrading faster and other results indicated they degrade slower. What could
be seen is that there was a greater variability of degradation rates experienced by track
within tunnels, which could be due to them experiencing different environmental factors,
drainage, ballast depth or maintenance procedures.

Track Type

The track type describes the method of joining the rails together either by the legacy
jointed method, using plates and bolts or the newer, more common, method of welding
long rail sections together to make CWR. The results from the analysis strongly demon-
strate a large statistically significant difference in the vertical top geometry degradation
rates between track installed with either jointed or CWR, with track installed on jointed
rail degrading at a much faster rate. This is a common conclusion about the rail joints
with Sato (1995).

Track Construction

The UK railway network track is constructed to different quality levels depending on
the tracks future purpose. These construction bands vary from A to D with A being
the highest quality construction. From the analysis there was strong evidence to suggest
that track constructed to different quality bands degrade significantly different from
each other, with the closest being bands A and B. The hypothesis test results also
demonstrate that the track built to the higher construction bands undergoes slower
rates of degradation.

Track Category

The track category is related to the usage and speed of the track, with 1A being fast
heavily traversed lines and 6 being slow with minimal traffic, as seen in Figure 3.1. The
outcome of the hypothesis tests showed a significant difference in the degradation rates
between the track categories, with lower track categories seeming to degrade faster.
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Track

Railway track can be either PL or contain S&Cs. As the analysis had been undertaken
using 220yd poskeys, all sections categorised as S&C would also contain a large amount
of PL track, which if in good condition could hide a fast degrading S&C, when the
SD is calculated. Additionally, work on S&Cs is quite often manual work, which was
not included in the analysis, hence small work could be being undertaken on the S&Cs
reducing there degradation rates, but this work was unknown. Despite these issues it was
decided to still include track, either PL or S&Cs, into the analysis as previous research
has shown concern about the degradation of track at S&Cs, due to higher loading and
the inability to maintain them with large maintenance equipment. The results of the
analysis showed some differences between the two, with PL track tending to degrade
faster.

Route Criticality

A track sections route criticality is based on the cost of failure of the track, where highly
trafficked lines tend to be of a higher criticality as a fault would affect more people. The
results of the analysis showed that there are significant differences between the degra-
dation rates of the route criticality bands, except 1 and 2 which are reasonably similar.
It can also be noted that higher criticality bands degrade significantly slower. This was
probably due to the higher quality assets and more rigorous maintenance procedures
used on the higher criticality track reducing the rate of degradation.

Embankments, Soil Cuttings and Rock Cuttings

It was thought that constructing track on geotechnical infrastructure may affect the rate
of vertical geometry. This affect could have been positive if the geotechnical structure
was of good quality, or negative if the structure had low stiffness and hence high degrees
of settlement. The analysis instead showed very little difference in the degradation
rates of poskeys installed on embankments, soil and rock cuttings or no geotechnical
structure. This does make sense though, as research undertaken by Selig and Waters
(1994) showed that most of the settlement occurs within the ballast and not in the layers
below, hence changes in the rate of settlement below the ballast would have little effect
on the track vertical geometry degradation. Additionally, due to most of the UK railway
network being initially constructed many years ago, most of the settlement below the
track would already have occurred.

Curvature

A large quantity of track sections installed on the UK railway network incorporate a
curve. It was thought that these curves due to causing uneven forces across the rails
when traversed would lead to inconsistent settlement. To test this an analysis was per-
formed comparing the vertical geometry degradation rates of track sections of different
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curvatures. The results of these test showed minimal differences between levels of curva-
ture between 0-0.001m−1. They also showed evidence to suggest that highly curved track
between 0.001-0.002 tend to degrade slightly faster than the other degrees of curvature.

Cant

Track is designed with a cant to allow trains to travel at high speeds on curved sections
of track as the cant counteracts the centrifugal forces. Performing the analysis it could
be seen that, similar to the curvature that cant is linked to, that the degree of cant has
little effect on the rate of vertical geometry degradation. This is maybe due to the cant
design keeping the forces across the rails even as the trains traverse the curved track,
or that the additional forces that occur have a minimal impact on the vertical geometry
SD. It maybe the case that the cant and curvature effect other aspects of the track such
as the gauge more than the vertical geometry.

Axle Load

Increased loading causes faster settlement and hence it was expected that higher axle
loads would cause faster vertical geometry degradation but from the analysis this did
not seem to be the case. The results showed that there were differences between the
three chosen axle load groups of 0-22, 23-25 and 26 tonnes with the groups of lower
axle loads tending to contain poskeys with higher rates of degradation. This maybe
due to the degradation rates being calculated using the EMGT supplied by NR, which
already took into account the axle loads. To check this the time related degradation
rates were used instead for the hypothesis tests, with the results showing less significant
differences between the groups and with the higher load poskeys experiencing slightly
faster degradation, which was the expected result.

Electrification

There are three types of electrification on the UK railway network; no electrification
which uses heavy diesel trains, 3rd/4th rail and OLE. The results from the analysis showed
significant differences between no electrification and 3rd/4th rail and OLE as well as some
difference between 3rd/4th rail and OLE. 1-sided hypothesis tests showed that poskeys
which have no electrification, and hence use diesel trains, degrade significantly faster
than electrified line, with OLE degrading slightly slower than 3rd/4th rail. This result
was expected due to the additional weight of diesel trains causing increased damage
to the track but the use of EMGT should already have taken this into account but
this calculation my not be fully taking into account the difference in damage caused by
different axle loads.
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Rail Type

On the UK railway network there are two main types of rail design; BH and FB, with
BH being a legacy design. Within these there are different sizes of rail, recorded as
weights. It was thought that larger rail would increase the stiffness of the track and
hence reduce vertical geometry degradation. From the results of the two sided hypothesis
tests it was possible to group together similarly performing rail types. This created three
significantly different groups: Group 1; 95lb BH, 98lb FB, Group 2; 109, 110lb, 113lb FB
and Group 3; UIC 60. Further analysis of the rail type was completed taking account
of the maintenance history, track speed and sleeper types. When all of these were taken
account of the significance between the rails was reduced, showing some differences but
these were no longer highly significant. This proved that a large degree of the differences
of vertical geometry degradation between the rail types found by the first and second
layer analysis was actually due to the sleeper choices and track speed. The results also
showed that Group 1 degraded faster than the other groups and Group 2 degraded faster
than Group 3. This was expected as Group 3 contained the largest rails and Group 1
the smallest. Another thing to note from the analysis was that BH designs tended to
lead to faster degradation than similar weight FB designs.

Passenger Percentage (Usage)

The percentage of passenger trains was calculated in Section 3.2.7 and was thought to be
important as freight trains tend to be heavier. This would lead us to expect that lower
amounts of passenger trains and hence higher amounts of freight trains would cause faster
degradation of the track due to the higher forces. The use of EMGT to calculate the
degradation rates takes into account the different weights and tractive units and hence
was expected to reduce any differences seen. The results from the tests show that there
are differences between the five groups (each encompassing 20%) but the only significant
results were between 0-20%, which contains the most freight, and the others. In this
there was evidence to suggest that the poskeys with less than 20% passenger trains tend
to degrade faster.

Axle Load > 50 % Usage

Similar to the percentage of passenger trains, it was decided to categorise the traffic by
the combined axle load of each carriage. This was thought to differ from just looking at
the percentage of passenger trains, as full freight trains have axle loads over 50 tonnes
whereas empty freight and passenger tend to have lower loads. Hence the groups are
created by the actual axle loads and not the train classification which does not distinguish
between empty and full freight trains. The results obtained showed more significant
differences between the five groups, each encompassing 20%, than just classifying trains
as either freight and passenger. The results though still did not show any large differences
between the groups, with the most significantly different group being 80-100% traffic over
50 tonnes, which had higher degradation rates. This shows that the amount of high axle
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load trains that traverse a line has little affect on the vertical geometry degradation unless
they make up the majority of the traffic. Additionally, the more significant differences
found compared to just using the passenger percentages shows that it is important to
classify traffic by the loads in transfers onto the track and not the use of the train.

Dirty Traffic Percentage (Usage)

The percentage of dirty traffic varied in the data from 0-40% and was calculated as
the percentage of dirty trains that traverse each poskey in respect to usage in EMGT,
see Section 3.2.7. It was thought that higher levels of dirty traffic would cause faster
degradation due to fines from the load infiltrating the ballast, increasing the rate of
ballast fouling. This is important as ballast fouling can cause higher levels of ballast
saturation and reduce ballast resilience, increasing the rate of settlement. Results from
the performed hypothesis tests showed some differences between the groups, 0-10%,
10-20%, 20-30% and 30-40% with 10-20% and 20-30% being the closest together. The 1-
sided hypothesis test results showed that in general poskeys with undergo large amounts
of dirty traffic, 30-40% tend to encounter faster vertical degradation rates and on the
other hand the poskeys with minimal dirty traffic, 0-10%, experienced slower rates of
degradation. There is minimal evidence to suggest if 10-20% or 20-30% degrade faster
but a higher percentage of the tests were rejected in favour of 20-30% degrading faster.
So it can be said that the percentage of dirty traffic does have a mild effect on the rate
of vertical geometry degradation, with higher percentages causing faster degradation.

Superficial Layer

When initially building a railway track, if the bedrock layer in-situ is not a suitable
formation to build a railway track on, an additional superficial layer is installed. This
layer can consist of many types of geology with the most common on the UK railway
network being clay and diamicton followed closely by sand with some places using peat
and gravel. It was thought that the superficial layer would have an effect on the rate
of vertical degradation due to settlement occurring within the layer, lack of stiffness
increasing the load on the bedrock layer and drainage which if poor can increase the
saturation within the ballast reducing its resilience causing settlement. The results from
the hypothesis tests performed show that there are small differences between the layer
choices, with sand performing the best and peat the worst. No layer, clay and diamicton
tend to behave similarly with no evidence to be able to say which performs better.
The superficial layer may have only a small impact on the rate of vertical geometry
degradation due to many reasons. The layer is often thin so not much settlement can
occur within the layer. Additionally, as most of the superficial layers have been installed
a long time ago, with many track renewals occurring above them, most the settlement
may already have occurred within the layer. This is backed up by previous research by
Selig and Waters (1994) which shows that the majority of track settlement and hence
vertical geometry degradation occurs in the ballast and not the layers below.
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Artificial Geology

A small proportion of track that makes up the UK railway network are constructed on top
of an artificial layer, placed above the superficial layer and bedrock. This artificial layer
is typically made from waste products such as slag and ash to create a cheap layer of high
stiffness and permeability. Hypothesis tests have been used to help understand the effect
that the use of an artificial layer has on the rate of vertical geometry degradation. The
tests showed that there is only a small difference between track sections with an artificial
layer installed and those that do not, possibly due the primary settlement occurring
within the ballast and not in the formation, (Selig and Waters, 1994). This means that
a change in the rate of settlement within the formation layers will have a minimal effect
on the overall track settlement and hence the vertical geometry degradation. There were
some conflicting results within the tests with some tests returning significant results
in favour of the geometry of artificial track degrading slower and some tests returning
results in favour of the opposite. There were a slightly higher amount of tests returning
results that showed track constructed with an artificial layer degrading slower, but this
is not strong enough evidence to be able to say with confidence that this is always true.

Bedrock Geology

The bedrock geology is the initial in-situ geology under the track. If the bedrock geology
did not have a high enough stiffness and drainage then further superficial and artificial
layers are placed on top before track is constructed. It was thought that a degree
of the track settlement and hence vertical geometry degradation would occur in the
bedrock layer. In the UK there were many types of bedrock materials with the most
common being mudstone, chalk, clay and sandstone. The results obtained from the two
tailed hypothesis tests showed that certain materials performed similarly, so these were
grouped together. This lead to four significantly different groups consisting of: Group 1;
Argillaceous, Dolomitic, Limestone, Psammite and Siltstone, Group 2; Sand, Chalk and
Clay, Group 3; Halite and Pebbly Sand and Group 4; Mudstone, Sandstone and Slate.
The test results using the grouped bedrocks showed that they were all different with
Group 3 and 4 being the closest. Performing one tailed hypothesis tests on the grouped
geologies showed that Group 2 contained the lowest rates of degradation followed by 4
and 3 and then 1.

Maximum Speed

Previous research examined as part of the literature review agrees that the track speed is
one of the most important factors contributing to the rate of railway track degradation.
This is due to the increase in dynamic forces transmitted through the track by faster
trains. The results from the performed tests echo the previous research by showing
significant differences of the vertical geometry degradation rates between the different
track speeds. The initial 2-sided hypothesis tests showed that the speeds could be split
into four distinct groups due to similarities between the vertical geometry degradation
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rates. These groups were 0-60, 65-70, 75-110 and 115-125 MPH. With these groups it
could be shown with a high degree of significance that the higher speed groups tend to
degrade slower, which was unexpected as it was thought that the increased dynamic loads
caused by the faster trains would lead to higher rates of geometry degradation. The result
might be due to the larger sleepers and rails installed on the higher speed tracks reducing
the rate of geometry degradation by a greater degree than the increase in dynamic loads
increases it. Additionally, the different speed track has different maintenance procedures
and thresholds.

Sleeper Type

The sleeper transfers forces from the train, distributing them into the ballast, as well as
holding the rail in place and reducing vibrations. Due to this it was thought that the
sleeper design would have an impact on the vertical geometry degradation. To test this
two-sided hypothesis tests were used comparing sleeper types within similar speed groups,
with sleepers showing similarities being grouped together. This lead to three distinct
groups. The first one contained small concrete sleepers and larger metal sleeper designs
(F23, F24, W600, F27, W560), the second group consisted of large concrete sleepers
(F28, G49, G44, G47, F40) and the third group contained timber and smaller metal
sleepers (Timber, W402, HH10, Metal, W500). Of these it could be shown by one sided
hypothesis tests that the large concrete sleepers performed best followed by the smaller
concrete and larger steel sleepers and then the smaller steel and timber sleepers. As the
rail type and sleeper choice are closely linked it was decided to check if the rail type was
affecting the results of the hypothesis tests. So the datasets were split up by maintenance
history, speed and then rail types. The results from this showed no reduction in the
significance between the groups unlike when a similar test was performed on rail type
when taking account of the sleepers greatly reduced the significance. This proves that the
sleeper choice has a large impact on the rate of vertical geometry degradation whereas
the rail type does not.

3.5 Vertical Geometry Degradation Model

The analysis in Section 3.4 has shown that many factors influence the rate of vertical
geometry degradation. The analysis also showed that there are large variances within
the rate, even when the datasets were subset into groups with many similar features.
Due to the high level of variability seen in the rates, a stochastic model approach would
work best for predicting the rate of degradation of a track section.

To model the rates it was decided to fit distributions which could then be used as part
of a larger stochastic asset management model, such as the one proposed in Chapter 6.
Previous research by Audley (2014) has shown that Weibull distributions give the best
fit for times for track to degrade to certain track quality levels. Linear degradation rates
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were used by Audley (2014) to produce the distributions. Due to this the shape of the
rates would be the same as the shape of the linear rates and gives evidence to Weibull
distributions being applicable. The Weibull distribution is a very versatile distribution
and is commonly used in reliability engineering, (Peacock, 2011).

Due to a lack of data, Data A and B were combined to obtain stronger more accurate
distribution fits. Additionally, there was not enough data to subset it by all the factors
that impact the degradation rates which are discussed in Section 3.4. It was decided from
the results of the analysis and the size of possible datasets that the data should be split by
the maintenance histories. There was not enough data to maintain starting stoneblowing
after separate quantities of tamping i.e. keeping tamp, stone separate from tamp, tamp,
stone. So the data was split into the amount of previous tamping operations for the
degradation rates after tamping and the amount of previous stoneblowing operations
(ignoring the previous amount of tamps) for stoneblowing. To maintain larger datasets
it was also decided to group the histories, so they go up in groups of two, hence one group
is zero and one previous tamp and another is three and four previous tamps. Assessing
the impact of the other factors in Section 3.4, it could be seen that the grouped results for
sleepers and track speed were the most statistically different from each other, so these
have been chosen as additional factors to split the data by. There were three groups
of sleepers, which are described in Table 3.14, fours groups of track speeds (0-60, 70-
75, 80-110, 115-125 MPH) and eight maintenance histories (Renewal, Tamping after a
renewal (zero previous maintenance), up to nine previous tamps and stoneblowing up to
three previous stoneblowing operations (in groups of two)). This results in 4 ∗ 3 ∗ 8 = 96

Weibull distributions of vertical geometry degradation rates. Descriptive statistics of the
datasets as well as the fitted Weibull parameters can be found in Tables 8.225, 8.226,
8.227, 8.228, 8.229, 8.230, 8.231, 8.232, 8.233, 8.234, 8.235 and 8.236 for each of the
possible combinations of sleepers, track speeds and maintenance histories. The Weibull
distribution requires two parameters, scale (η) and shape (β). The scale is recorded in
the same unit of measure as the data fitted, in this case, nm/EMGT . Higher scale values
lead to a greater range of results and higher average values. The shape is dimensionless,
and when equal to one makes the Weibull distribution an exponential, with a consistent
failure rate. If beta is less than 1, the failure rate is decreasing, and increasing if more
than 1. Value for beta around 3, tend to closely resemble the normal distribution. A
beta less than 3 is negatively skewed. Looking at the beta values in Tables 8.225, 8.226,
8.227, 8.228, 8.229, 8.230, 8.231, 8.232, 8.233, 8.234, 8.235 and 8.236 it can be seen that
most are between 1-2. This shows that the datasets of degradation rates were slightly
negatively skewed with increasing failure rates.

The fitted Weibull distributions of track degradation rates (related to usage), can be
used is stochastic based models solved using Monte-Carlo. Degradation rates can be
sampled from the distributions with more common rates being sampled more often.

Chapter 3 Steve Clarke 153



Railway Track Asset Management Modelling

Table 3.14: Sleeper Groups

Group Included Assets

Small concrete and large steel F23, F24, W600, F27, W560

Large concrete F28, G49, G44, G47, F40

Timber and small steel Timber, W402, HH10, Metal, W500

3.6 Summary

This chapter presents an in-depth analysis of the vertical geometry degradation of railway
track. As many aspects of a railway track are interlinked (high speed, high priority track
has large rails, large sleepers and more maintenance) a multiple layer approach was
taken. This removed the impact of linked factors on the results by removing as many
factors as possible before comparing. This proved necessary as some results showed a
large impact when analyses on their own but had a much small impact when the factor
was singled out, i.e. rail joints when sleeper type was removed.

The main factors identified by the analysis were; track speed, sleeper design, maintenance
history and rail joint type. Track speed and joint type were expected as they change
the dynamic forces experienced by the track. It is expected that the sleeper choice
makes a large difference due to the changes in track structure and stiffness. Another
highly influential factor identified was the bedrock. This appeared to be related to the
geology’s permeability and not the stiffness. The sand superficial layer was shown to
perform best showing the importance of good drainage in track design.

Other factors identified as important drivers of geometry degradation include: rail type,
electrification, dirty traffic and curvature. In literature the rail type is commonly clas-
sified as an important factor, which the first-level analysis agreed with but the multiple
layer analysis showed a reduced effect.

Grouping the degradation data not only allowed a multiple layer analysis to be performed
but is also required to maintain larger distinct datasets, split by the identified factors,
for stochastic modelling like the one presented in Section 3.5.

The distribution based model presented is useful as it takes into account the wide varia-
tion of vertical geometry degradation rates seen including the changes in probability of
different rates occurring.
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Chapter 4

Track Geometry Maintenance
Effectiveness

4.1 Introduction

Maintenance is an important aspect of managing any type of asset, from infrastructure
to vehicles to computer systems. This is due to the extended life an asset is granted
by an effective maintenance procedure, increasing the time between costly and often
inconvenient renewals. It is important to understand the different types of possible
maintenance, their effectiveness and the optimal implementation time to enable efficient
asset management choices to be made. Additionally, to be able to produce an asset
management model, these have to be quantifiable and predictable.

There are two main types of maintenance techniques employed on the UK railway in-
frastructure to correct the track geometry as it worsens with use. These are tamping
and stoneblowing, which are described in detail in Section 2.3.4. In this chapter the ef-
fectiveness of these two methods are explored, as well as the factors which may influence
them.

Previous research, discussed in Section 2.4.3, showed many factors which influence the
effectiveness of maintenance, with the most common factor being the initial quality
before maintenance (Halcrow, 2012; Caetano and Teixeira, 2016; Stephen M Famurewa
and Kumar, 2015). Additional aspects discussed include the track speed (Halcrow, 2012;
Audley and Andrews, 2013), track age (Caetano and Teixeira, 2016; Velt, 2007) and the
amount of previous maintenance actions (Audley and Andrews, 2013) with the latter
two being easily quantifiable measures that are related to the level of ballast fouling.
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4.2 Available Data and Processing

To understand the geometry improvement caused by maintenance activities, it was re-
quired to be able to quantify the track geometry before and after maintenance. For this,
the same data utilised in Chapter 3 was employed. Using the track geometry inspection
data, recorded as a Standard Deviation (SD) for each 220 yd poskey on the network,
and the times of maintenance occurrences, it was possible to quantify the improvement
caused by the maintenance actions. Due to the possibility of additional degradation
between the last inspection and the maintenance occurrence or the maintenance action
and the first inspection, only maintenance activities which occurred within 60 days of
the last recorded inspection and 60 days of the next recorded inspection were utilised.
This decision was made to reduce the underestimation of the improvement for sections
which degraded further before maintenance or after maintenance, with 60 days chosen
due to the generally slow rate of geometry degradation. Additionally, it was found that
a large proportion of the maintenance activities underwent an inspection within the 60
days before and after maintenance. This meant that large datasets of geometry improve-
ment were still created, which was important for analysis and building a stochastic asset
management model. Processing the data in this way resulted in datasets of geometry
improvements for tamping and stoneblowing for each poskey, with these being related
to their maintenance history and additional information such as track speed.

4.3 Analysis of the Effectiveness of Track Geometry Main-
tenance Activities

4.3.1 Methodology

In order to identify the effectiveness and variability of maintenance activities it was de-
cided that visual aids, such as scatter graphs, boxplots and Empirical Cumulative Dis-
tribution Function’s (ECDF’s), would best describe the data, as well as help to identify
any factors which affect the degree of improvement. Non-parametric tests were also used
in a similar way to how they were used when performing the track geometry degradation
analysis in Section 3.4.2, as these allowed any significant differences between datasets to
be found, taking into account the size and spread.

4.3.2 Results

Initial Track Quality Effect on the Improvement

It was thought that the possible vertical track geometry improvement caused by tamping
and stoneblowing would be related to the initial geometry. This is demonstrated in
Figure 4.1, where it can be seen that the worse the initial track quality, the greater
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the improvement seen. The linear fits show that the effect tends to be greater for
stoneblowing than tamping, with a gradient for stoneblowing of 0.3626 compared to a
gradient for tamping of 0.3062. However, it must be noted that the linear fits were poor
with r2 values for tamping and stoneblowing of 0.29 and 0.35 due to the high variability
in the data. Despite this the fits still show the general trend. The linearity was also
demonstrated when a univariate quadratic line was fitted, as the resultant coefficients
for the x2 part were insignificant. The graphs also demonstrate that stoneblowing is
more likely to have a negative effect on the track geometry, with the linear fit showing
a negative improvement below an initial vertical geometry of 1.5 mm. Stoneblowing’s
higher chance of reducing the track quality is also shown by the number of maintenance
actions which lead to a negative improvement with 33.8% of the actions reducing the
track quality compared to 12.2% of tamping actions. The confidence in this significant
difference is high due to the large datasets used of 4,920 tamps and 3,221 stoneblowing
operations. There is a greater risk of performing maintenance on already good quality
track with these percentages being higher for lower initial track geometry SDs as shown
in Table 4.1. This means that the lower the track geometry SD which maintenance
is performed at, the higher the probability that the maintenance will have a negative
impact. The top line which no points are above in the cone shape of points in Figure 4.1
shows that there is a maximum improvement achievable for all initial qualities governed
by a minimum possible vertical geometry SD, which is slightly above 0 mm. The cone
shapes also show the increase in variability in the effectiveness of maintenance activities
as the initial quality increases.

Due to the strong evidence of the effect the initial quality has on the amount of improve-
ment achieved, it was decided to study the relative/percentage improvement. This was
calculated as the percentage reduction in the track geometry SD from the last inspection
before the maintenance action:

Relative SD Improvement = (Initial SD− Resultant SD)/Initial SD (4.1)

Plotting the relative improvement against the initial quality removes the cone shape
relationship, as seen in Figure 4.2. The non-flat gradient of the linear fits demonstrate
that the initial quality still affects the relative improvement, with the steeper gradient of
stoneblowing showing that it is more affected than tamping. A main cause of this is the
large amount of negative improvements that occur when maintenance is performed on
good quality track. To remove the effect the initial quality has on the improvement when
analysing further factors, it was decided that the relative improvement should be used
instead of the actual improvement. This is important for factors such as track speed,
as the speed dictates the track quality at which maintenance is undertaken, with higher
track speeds having maintenance performed at lower geometry SDs due to safety and
ride comfort. If the relative improvement was not used it is likely that the higher track
speeds would show lower improvement, but this would be skewed as a large improvement
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is not possible if the track quality is already good.

Table 4.1: Percentage of maintenance actions with negative improvement by initial
quality

Initial Track Geometry SD [mm]

All Data 0-1 1-2 2-3 3-4 4-5 5-6

Tamping Percentage [%] 12.2 15.6 12.5 10.5 10.0 9.3 11.8

Stoneblowing Percentage [%] 33.8 61.1 45.1 24.1 16.7 14.2 8.6

Tamping Dataset Count 4920 651 2622 1119 381 108 34

Stoneblowing Dataset Count 3221 134 1467 1076 377 127 35

(a) Tamping (b) Stoneblowing

Figure 4.1: Initial quality against improvement from track maintenance

(a) Tamping (b) Stoneblowing

Figure 4.2: Initial quality against relative improvement from track maintenance
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Track Speed

Due to previous maintenance effectiveness models including track speed, such as those
developed by Audley and Andrews (2013) and Halcrow (2012), it was decided to analyse
its affect. This was accomplished by splitting the datasets of relative geometry im-
provement from tamping and stoneblowing according to different speed groups. The low
speeds, below 50 MPH, were grouped to maintain large datasets. Descriptive statistics
were used to compare the groups, with these outlined in Table 4.2, as well as boxplots
and ECDF’s as shown in Figure 4.3. The non-parametric, K-S and Mann Whitney U
tests were also utilised to show any significant differences between datasets.

Tamping
Looking at the mean and median values from Table 4.2 as well as the boxplot and ECDF
for tamping in Figure 4.3, there seems to be minimal difference between the speed groups
5-60 and 75-95 MPH. This is backed up by the mean 2-tailed K-S and Mann Whitney U
test p-values in Table 4.3. The non-parametric tests, show that speeds 65-70 and 115-
125 MPH are significantly different from the other groups, and 100-110 MPH is slightly
different from the rest. It can be seen from the boxplot in Figure 4.3 that tamping in the
speed group 65-70 MPH tends to have a lower relative improvement, whereas 100-110 is
higher than the rest and then 115-125 is significantly higher than this. The cause of this
disparity is unknown but maybe due to differences in assets or maintenance regimes.

This increase in improvement can be seen when plotting the average for each speed group
against the middle speed of the group, seen in Figure 4.4a. This shows an upwards trend,
where tamping on higher speed tracks leads to a greater relative improvement. The
gradients of the mean and median fit are 0.0005 and 0.0006, with r2 values of 0.402 and
0.284 respectively. Despite the low r2 it was felt that the linear fit gave a general trend
linking track speed to tamping’s relative improvement. The effect was calculated back
into an actual improvement to get an idea of speed’s effect. For a track section with an
initial vertical geometry SD of 3.00 mm, the resultant SD would be 2.56 mm for a track
speed of 40 MPH and 2.40 mm for a track speed of 125 MPH, if the median line was
used. Looking at the very small difference between these values, taking into account the
large variability demonstrated in the boxplots, it can be said that the track speed has
little impact on the improvement gained from maintenance within most speed bands.
The non-parametric tests did give evidence to suggest that tamping performed on track
of speeds 115-125 MPH tends to give a significantly greater relative improvement than
on other speeds. This is the highest speed track which tends to have heavier sleepers
and rails which maybe impacting the possible quality. Additionally, more speed lines
also tend to be higher priority so are given increased levels of maintenance.

Stoneblowing
The effectiveness of stoneblowing does not show any dependency on the track speed,
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with the non-parametric test results in Table 4.4 showing no significance between any
of the speed groups. This can also be seen in the boxplot in Figure 4.3 where all the
bars are very similar and the ECDF, where the lines are very close to each other. The
general link between the track speed and stoneblowing effectiveness, using the average
relative improvement in each speed group, is shown to be negative in Figure 4.4b. This
negative link has gradients of -0.0003 for the mean and -0.0003 for the median, with
low r2 values of 0.201 and 0.404. The low gradient values show how minimal the effect
of track speed is on stoneblowing effectiveness. A track section with an initial SD of
3.00 mm for a track speed of 40 MPH, using the median values, would have a resultant
SD after stoneblowing of 2.68 mm, whereas if the track speed was 125 MPH it would be
2.77 mm. The small difference between these values again shows that the track speed
tends to have no effect on the effectiveness of stoneblowing.

Table 4.2: Descriptive statistics of the relative improvement from maintenance by track
speed

Track Speed [MPH]

All Data 5-50 55-60 65-70 75-80 85-95 100-110 115-125

Tamping

Mean 0.197 0.174 0.189 0.151 0.183 0.171 0.198 0.231

Median 0.182 0.171 0.167 0.111 0.172 0.154 0.191 0.232

N 4920 128 343 316 744 903 909 1577

Stoneblowing

Mean 0.099 0.116 0.131 0.097 0.080 0.087 0.106 0.099

Median 0.091 0.111 0.115 0.098 0.077 0.073 0.091 0.089

N 3221 200 386 394 680 632 664 265

Table 4.3: Mean 2 Tailed K-S and Mann Whitney U Test p-values for tamping relative
improvement by track speed

5-50 55-60 65-70 75-80 85-95 100-110 115-125

5-50 NA 0.40 0.06 0.49 0.46 0.12 0.00

55-60 0.40 NA 0.03 0.57 0.32 0.33 0.00

65-70 0.06 0.03 NA 0.01 0.10 0.00 0.00

75-80 0.49 0.57 0.01 NA 0.35 0.07 0.00

85-96 0.46 0.32 0.10 0.35 NA 0.01 0.00

100-110 0.12 0.33 0.00 0.07 0.01 NA 0.00

115-125 0.00 0.00 0.00 0.00 0.00 0.00 NA
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Table 4.4: Mean 2 Tailed K-S and Mann Whitney U Test p-values for stoneblowing
relative improvement by track speed

5-50 55-60 65-70 75-80 85-95 100-
110

115-
125

5-50 NA 0.72 0.70 0.52 0.56 0.76 0.72

55-60 0.72 NA 0.52 0.50 0.50 0.53 0.54

65-70 0.70 0.52 NA 0.59 0.69 0.86 0.98

75-80 0.52 0.50 0.59 NA 0.81 0.53 0.61

85-95 0.56 0.50 0.69 0.81 NA 0.57 0.68

100-110 0.76 0.53 0.86 0.53 0.57 NA 0.90

115-125 0.72 0.54 0.98 0.61 0.68 0.90 NA

5-50 55-60 65-70 75-80 85-95 100-110 115-125

Track Speed [MPH]
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(a) Boxplot of Tamping
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(c) Boxplot of Stoneblowing
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Figure 4.3: Maintenance relative improvement by track speed
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Figure 4.4: Average relative improvement of maintenance for different track speeds

Previous number of Tamping and Stoneblowing Activities

Maintenance history is another aspect discussed in the literature with regard to its effect
on the improvement following maintenance, (Audley and Andrews, 2013). This is due to
the link between maintenance history and the level of ballast fouling, with track which
has undergone multiple maintenance activities having higher levels of fouling. Caetano
and Teixeira (2016) and Velt (2007) also include the affect of ballast fouling within
their proposed models, using the track age instead of the maintenance history. It is
thought that the inclusion of fines in the ballast negatively impacts the effectiveness of
maintenance.

It was decided that the maintenance history would better represent the amount of ballast
fouling than age due to it having a link with track age as well as it being a direct cause
of fouling within the ballast due to ballast breakup. As discussed in Chapter 3, the
datasets were maintained as either Data A or Data B, with Data A containing recently
renewed track with a full recorded maintenance history and Data B containing older
track sections with estimated maintenance histories. These have been kept separate so
the added assumptions and likelihood of an error in the estimate of the maintenance
history for the data in Data B did not impact the high quality of Data A, where the
entire history of maintenance and inspections were known.

Tamping
Descriptive statistics were calculated for the different maintenance histories which tamp-
ing was performed at within the data, with these being shown in Table 4.9. The relative
improvement has been used to reduce the likelihood of the results being skewed by the
effect the initial quality has on the level of improvement. The datasets have been shown
visually using boxplots and ECDF’s in Figure 4.5. Looking at Data A in Table 4.9, there
were more than twenty quantified improvements for the maintenance history groups from
the first tamp after a renewal to after three previous tamps, allow these datasets to be
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used for non-parametric tests with confidence. Non-parametric tests were used to show
any significance between these datasets with the results recorded in Table 4.5. The re-
sults showed that whilst there is enough evidence to suggest that the effect of tamping
after a renewal is significantly different to the effect after one tamp, there are no other
significant differences between the datasets. This is backed up by the medians and means
of the histories in Table 4.9, with tamping after a renewal showing the smallest relative
improvement and tamping after one tamp showing the highest (of the groups with at
least 10 data points). The average improvements following two and three tamps were
between the two. The boxplot, in Figure 4.5a, shows that as well as having the lowest
relative improvement, tamping after a renewal has the largest range.

Due to Data B containing older track sections, it is possible to see the effect of an
increased amount of previous maintenance actions, all the way up to ten previous tamps,
all with datasets above 200 records. The mean non-parametric p-values are shown in
Table 4.6. The results show that from four previous tamps to ten tamps there are
no significant differences in the relative improvement. This is echoed by the boxplot,
in Figure 4.5c, where the bars are all very similar as are the averages in Table 4.9.
The results also show that there are no significant differences in the improvement seen
between one tamp and three tamps. The two separate groups, 1T-3T and 4T-10T are
shown to have some significant differences by the low average p-values in the results of
the non-parametric tests in Table 4.6. The group 1T-3T shows slightly greater relative
improvements, but from looking at the boxplots it can be also be seen that 1T-3T have a
higher spread. Looking at the averages between Data A and B, it can be seen that for the
groups that appear in both (1T-3T) that the averages are very close. Therefore, based
on the combination of the descriptive statistics, boxplots, ECDF’s and non-parametric
hypothesis tests for Data A and B it seems that tamping is most effective for track that
has previously undergone 1T-3T and less effective for track that has undergone 4T-10T.
This is due to ballast breakdown from previous maintenance increasing ballast fouling
which reduces the effectiveness of tamping. The results also show the least effective is
tamping performed for the first time following a renewal. This was not expected as the
railway track assets are still relatively new, with minimal ballast fouling. It is likely this
is due to tamping being performed too earlier after a renewal when the track geometry is
still good. Figure 4.2a shows that on average tamping performed on low track geometry
SD shows smaller relative improvements.

The reduction in improvement following tamping that is observed as the number of tamps
performed increases can be seen in Figure 4.6a, where there is a downward trend in the
linear fits. Despite the extra uncertainties in Data B, the much larger datasets give a
good degree of confidence in the average results, with Data A lacking the large datasets
required to be confident in an average value being representative of a larger population.
The downward trend is gradual with Data B median values having a gradient of -0.0041
and the mean values a gradient of -0.0038, with r2 values of 0.549 and 0.302. Despite
the low r2 values it was felt that the linear fit gave an idea of how the maintenance

Chapter 4 Steve Clarke 163



Railway Track Asset Management Modelling

history affected the improvement from tamping, with the results showing that each pre-
vious tamping operation only reduced the relative improvement by around 0.004. If a
track section was tamped after one previous tamp at an initial vertical geometry SD of
3.00 mm, using the median line this would result in a SD after maintenance of 2.41 mm,
whereas after ten previous tamps it would be 2.52 mm. This small difference gives evi-
dence of the minimal effect the maintenance history has on the effectiveness of tamping.
This, due to the link between ballast fouling and the amount of maintenance actions,
shows that the quality of ballast has a minimal impact on the improvement found from
tamping, for the levels of ballast fouling found on UK railway infrastructure. Despite
having only a small effect, the non-parametric hypothesis tests showed the existence of
three groups of similar performing maintenance histories: tamp directly after a renewal,
one to three previous tamps and more than 3 previous tamps.

Table 4.5: Mean 2 Tailed K-S and Mann Whitney U Test p-values for tamping relative
improvement by the amount of previous tamps [Data A]

R 1T 2T 3T

R NA 0.02 0.46 0.96

1T 0.03 NA 0.79 0.35

2T 0.46 0.79 NA 0.73

3T 0.96 0.35 0.73 NA

Table 4.6: Mean 2 Tailed K-S and Mann Whitney U Test p-values for tamping relative
improvement by the amount of previous tamps [Data B]

1T 2T 3T 4T 5T 6T 7T 8T 9T 10T

1T NA 0.89 0.31 0.00 0.10 0.01 0.18 0.05 0.02 0.03

2T 0.89 NA 0.32 0.00 0.12 0.00 0.12 0.08 0.03 0.01

3T 0.32 0.32 NA 0.05 0.53 0.04 0.62 0.31 0.14 0.11

4T 0.003 0.00 0.05 NA 0.55 0.82 0.39 0.57 0.78 0.77

5T 0.10 0.12 0.53 0.55 NA 0.28 0.94 0.60 0.69 0.63

6T 0.01 0.00 0.04 0.82 0.28 NA 0.23 0.46 0.57 0.61

7T 0.18 0.12 0.62 0.39 0.94 0.23 NA 0.75 0.57 0.49

8T 0.05 0.08 0.31 0.57 0.60 0.46 0.75 NA 0.91 0.90

9T 0.02 0.03 0.14 0.78 0.69 0.57 0.57 0.91 NA 0.98

10T 0.03 0.01 0.11 0.77 0.63 0.61 0.49 0.90 0.98 NA
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(a) Boxplot of Data A
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(c) Boxplot of Data B
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Figure 4.5: Maintenance relative improvement the amount of previous tamps before
tamping

Stoneblowing
Similarly to tamping, the effect of a track section’s maintenance history on the improve-
ment obtained by stoneblowing has been explored. Due to the possibility of stoneblowing
occurring after any number of previous tamps there were more maintenance history com-
binations to consider than when considering tamping alone. The different combinations,
dataset sizes and averages are described in Table 4.10. The datasets are visually demon-
strated in the boxplot and ECDF in Figure 4.8. It was not possible to use Data A
for the analysis of stoneblowing, as there was minimal data due to stoneblowing being
primarily used on older track. The use of non-parametric tests, K-S and Mann-Whitney
U, produced the p-values in Table 4.11.

Looking first at the effect of the first stoneblowing action after tamping, the results
showed no significant difference in its relative effectiveness for maintenance histories 1T-
6T and 8T-9T but the results for 7T showed an increase in effectiveness and an even
larger increase for 10T. There is no mechanistic reason for these anomalies. Looking at
the general trend in Figure 4.6b, it can be seen that the more tamps that have been
performed prior to stoneblowing, the greater the effect of the first stoneblow. The linear
fits for the median and mean values had gradients of 0.0095 and 0.0115 with r2 values of
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0.456 and 0.476. If a track section had an initial SD of 3.00 mm, using the median line,
the resultant SD after stoneblowing would be 2.86 mm if the previous maintenance only
consisted of one tamp and 2.55 mm if after 10 tamps. The amount of previous tamping
action appears to have the opposite effect on the first stoneblow compared to performing
another tamp, additionally the effect of more previous maintenance actions is greater for
stoneblowing (higher gradients), but neither is a significant amount, especially when the
variability of the datasets (seen in the boxplot in Figure 4.8a) is taken into account.

Looking at the effectiveness of multiple stoneblowing operations it can be seen that there
is a large reduction in improvement over multiple actions. This is seen by the averages
in Table 4.10 where the mean and median relative improvement for 1S is 0.092 and 0.083
but these drop to 0.014 and 0.059 for 2S. A similar trend is seen from 1T1S to 1T2S,
2T1S to 2T2S, 3T1S to 3T2S, etc. This shows that stoneblowing is only effective when
used twice on the same track section, with a third stoneblowing operation, no matter how
many tamps were performed previously, leading to very little improvement. It is thought
this is due to the amount of small stones beneath the sleepers becoming too numerous to
support the load (does not have the skeleton strength of larger ballast stones), resulting
in the sleeper quickly moving back to its position prior to stoneblowing. The results
in Table 4.10 also show that the second stoneblowing operation is on average slightly
more effective than the first with the relative improvement from 1T1S being greater
than 1T, 2T1S than 2T, 4T1S than 4T, etc. The average p-values in Table 4.11 show
that the number of previous tamping operations has little effect on the improvement
from stoneblowing, with very few significant differences between the datasets which had
undergone the same number of stoneblowing operations. Due to this it was decided
to group together the maintenance histories by the number of previous stoneblowing
operations, ignoring the number of previous tamps. This led to the boxplot and ECDF
in Figure 4.7 and averages in Table 4.7. Looking at these it is very apparent that past
the second stoneblowing actions the improvement seen is greatly reduced, with zero and
one previous stoneblowing actions leading to similar improvements. The median relative
improvement more than halves between a second and third stoneblowing operation, with
the mean being nearly one ninth. The results of the non-parametric hypothesis tests
seen in Table 4.8, show a similar conclusion, where there are similarities between 0S and
1S, as well as 2S and 3S but a highly significant difference between these groups.

From the results it can be said that the number of previous tamping actions has little
effect on the improvement caused by stoneblowing, but the effectiveness of stoneblowing
is reduced greatly after the second stoneblowing operation.
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Table 4.7: Descriptive statistics of the relative improvement from stoneblowing by the
amount of previous stoneblows, ignoring the previous amount of tamps

No. of previous stoneblows

All Data 0S 1S 2S 3S

Mean 0.075 0.082 0.089 0.010 0.007

Median 0.089 0.095 0.105 0.047 0.040

N 3018 1309 1295 335 79

Table 4.8: Mean 2 Tailed K-S and Mann Whitney U Test p-values for stoneblowing
relative improvement by the amount of previous stoneblowing actions ignoring the

amount of previous tamps [Data B]

0S 1S 2S 3S

0S NA 0.27 0.00 0.02

1S 0.27 NA 0.00 0.01

2S 0.00 0.00 NA 0.81

3S 0.02 0.01 0.81 NA
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Figure 4.6: Average relative improvement of maintenance after a maintenance history
of just tamping
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Figure 4.7: Maintenance relative improvement by number of previous stoneblows before
further stoneblowing
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Table 4.9: Descriptive statistics of the relative improvement from tamping by the amount of previous tamps

Maintenance History Before Tamping

All Data R 1T 2T 3T 4T 5T 6T 7T 8T 9T 10T

Data A

Mean 0.199 0.190 0.227 0.214 0.199 0.258 0.082

Median 0.167 0.156 0.241 0.207 0.165 0.200 0.082

N 1076 778 210 56 24 7 1

Data B

Mean 0.194 0.214 0.210 0.196 0.174 0.189 0.167 0.189 0.182 0.177 0.175

Median 0.182 0.207 0.212 0.200 0.154 0.163 0.143 0.176 0.167 0.182 0.167

N 3893 801 719 484 317 215 219 276 272 301 289
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Table 4.10: Descriptive statistics of the relative improvement from stoneblowing by the amount of previous tamps and stoneblows [Data B]

All Data 1T 2T 3T 4T 5T 6T 7T 8T 9T 10T 1S 2S 3S 1T1S

Mean 0.076 0.053 0.034 0.084 0.059 0.046 0.091 0.137 0.068 0.077 0.172 0.092 0.014 -0.042 0.118

Median 0.090 0.042 0.080 0.102 0.062 0.066 0.087 0.154 0.083 0.100 0.214 0.083 0.059 0.047 0.130

N 2942 162 147 122 126 104 116 109 133 140 150 189 57 23 111

1T2S 2T1S 2T2S 3T1S 3T2S 4T1S 4T2S 5T1S 5T2S 6T1S 7T1S 7T2S 8T1S 8T2S 9T1S

Mean 0.021 0.089 0.043 0.067 0.012 0.072 -0.033 0.100 0.040 0.094 0.090 -0.062 0.085 -0.001 0.086

Median 0.050 0.100 0.018 0.075 -0.008 0.105 0.036 0.105 0.058 0.171 0.083 -0.059 0.125 0.050 0.106

N 41 109 31 106 32 121 39 115 36 79 141 37 143 42 181
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Table 4.11: Mean 2 Tailed K-S and Mann Whitney U Test p-values for tamping relative improvement by the amount of previous tamps and
stoneblows [Data B]

1T 2T 3T 4T 5T 6T 7T 8T 9T 10T 1S 2S 3S 1T1S 1T2S 2T1S 2T2S 3T1S 3T2S 4T1S 4T2S 5T1S 5T2S 6T1S 7T1S 7T2S 8T1S 8T2S 9T1S

1T NA 0.60 0.22 0.84 0.61 0.45 0.00 0.54 0.27 0.00 0.18 0.19 0.31 0.02 0.26 0.20 0.61 0.67 0.26 0.21 0.26 0.09 0.83 0.02 0.09 0.06 0.03 0.48 0.06

2T 0.60 NA 0.34 0.77 0.91 0.25 0.03 0.60 0.40 0.00 0.21 0.27 0.52 0.04 0.38 0.31 0.36 0.56 0.37 0.53 0.15 0.34 0.76 0.10 0.23 0.06 0.25 0.52 0.22

3T 0.22 0.34 NA 0.51 0.53 0.77 0.10 0.50 0.72 0.00 0.90 0.05 0.24 0.21 0.13 0.78 0.22 0.67 0.18 0.73 0.05 0.79 0.28 0.42 0.64 0.04 0.51 0.13 0.66

4T 0.84 0.77 0.51 NA 0.91 0.36 0.02 0.77 0.51 0.00 0.27 0.29 0.41 0.06 0.31 0.55 0.55 0.75 0.20 0.47 0.18 0.25 0.69 0.09 0.24 0.07 0.11 0.46 0.20

5T 0.61 0.91 0.53 0.91 NA 0.45 0.12 0.86 0.65 0.00 0.39 0.28 0.49 0.11 0.42 0.64 0.42 0.80 0.21 0.70 0.16 0.46 0.64 0.19 0.42 0.06 0.28 0.45 0.47

6T 0.45 0.25 0.77 0.36 0.45 NA 0.08 0.63 0.61 0.00 0.93 0.05 0.13 0.20 0.09 0.83 0.20 0.68 0.07 0.84 0.09 0.57 0.41 0.22 0.66 0.02 0.29 0.25 0.60

7T 0.00 0.03 0.10 0.02 0.12 0.08 NA 0.06 0.08 0.11 0.12 0.01 0.07 0.66 0.01 0.20 0.02 0.04 0.01 0.14 0.00 0.39 0.06 0.40 0.20 0.00 0.44 0.02 0.10

8T 0.54 0.60 0.50 0.77 0.86 0.63 0.06 NA 0.81 0.00 0.66 0.13 0.24 0.15 0.16 0.62 0.29 0.92 0.17 0.63 0.08 0.45 0.72 0.11 0.52 0.04 0.16 0.44 0.48

9T 0.27 0.40 0.72 0.51 0.65 0.61 0.08 0.81 NA 0.00 0.60 0.06 0.21 0.20 0.10 0.76 0.17 0.81 0.18 0.97 0.03 0.73 0.47 0.28 0.67 0.03 0.59 0.22 0.65

10T 0.00 0.00 0.00 0.00 0.00 0.00 0.11 0.00 0.00 NA 0.00 0.00 0.02 0.03 0.00 0.01 0.00 0.00 0.00 0.00 0.00 0.01 0.00 0.01 0.00 0.00 0.00 0.00 0.00

1S 0.18 0.21 0.90 0.27 0.39 0.93 0.12 0.66 0.60 0.00 NA 0.03 0.12 0.23 0.06 0.88 0.17 0.60 0.12 0.83 0.05 0.72 0.41 0.29 0.89 0.01 0.57 0.25 0.84

2S 0.19 0.27 0.05 0.29 0.28 0.05 0.01 0.13 0.06 0.00 0.03 NA 0.86 0.01 0.94 0.07 0.60 0.09 0.98 0.06 0.75 0.06 0.74 0.01 0.04 0.49 0.03 0.83 0.04

3S 0.31 0.52 0.24 0.41 0.49 0.13 0.07 0.24 0.21 0.02 0.12 0.86 NA 0.07 0.81 0.18 0.61 0.23 0.91 0.31 0.93 0.22 0.70 0.15 0.16 0.66 0.21 0.82 0.18

1T1S 0.02 0.04 0.21 0.06 0.11 0.20 0.66 0.15 0.20 0.03 0.23 0.01 0.07 NA 0.03 0.53 0.04 0.08 0.01 0.38 0.01 0.61 0.12 0.71 0.40 0.00 0.65 0.04 0.47

1T2S 0.26 0.38 0.13 0.31 0.42 0.09 0.01 0.16 0.10 0.00 0.06 0.94 0.81 0.03 NA 0.13 0.70 0.18 0.87 0.12 0.67 0.09 0.76 0.05 0.09 0.46 0.05 0.93 0.08

2T1S 0.20 0.31 0.78 0.55 0.64 0.83 0.20 0.62 0.76 0.01 0.88 0.07 0.18 0.53 0.13 NA 0.16 0.59 0.10 0.88 0.03 0.95 0.33 0.45 0.93 0.03 0.71 0.15 0.84

2T2S 0.61 0.36 0.22 0.55 0.42 0.20 0.02 0.29 0.17 0.00 0.17 0.60 0.61 0.04 0.70 0.16 NA 0.37 0.72 0.18 0.60 0.10 0.77 0.05 0.13 0.19 0.06 0.86 0.10

3T1S 0.67 0.56 0.67 0.75 0.80 0.68 0.04 0.92 0.81 0.00 0.60 0.09 0.23 0.08 0.18 0.59 0.37 NA 0.19 0.71 0.13 0.44 0.71 0.16 0.42 0.05 0.27 0.32 0.36

3T2S 0.26 0.37 0.18 0.20 0.21 0.07 0.01 0.17 0.18 0.00 0.12 0.98 0.91 0.01 0.87 0.10 0.72 0.19 NA 0.13 0.90 0.06 0.71 0.03 0.06 0.66 0.05 0.89 0.05

4T1S 0.21 0.53 0.73 0.47 0.70 0.84 0.14 0.63 0.97 0.00 0.83 0.06 0.31 0.38 0.12 0.88 0.18 0.71 0.13 NA 0.04 0.71 0.36 0.30 0.88 0.01 0.66 0.20 0.95

4T2S 0.26 0.15 0.05 0.18 0.16 0.09 0.00 0.08 0.03 0.00 0.05 0.75 0.93 0.01 0.67 0.03 0.60 0.13 0.90 0.04 NA 0.04 0.43 0.01 0.06 0.71 0.01 0.75 0.02

5T1S 0.09 0.34 0.79 0.25 0.46 0.57 0.39 0.45 0.73 0.01 0.72 0.06 0.22 0.61 0.09 0.95 0.10 0.44 0.06 0.71 0.04 NA 0.29 0.59 0.81 0.01 0.97 0.14 0.79

5T2S 0.83 0.76 0.28 0.69 0.64 0.41 0.06 0.72 0.47 0.00 0.41 0.74 0.70 0.12 0.76 0.33 0.77 0.71 0.71 0.36 0.43 0.29 NA 0.07 0.36 0.35 0.17 0.82 0.42

6T1S 0.02 0.10 0.42 0.09 0.19 0.22 0.40 0.11 0.28 0.01 0.29 0.01 0.15 0.71 0.05 0.45 0.05 0.16 0.03 0.30 0.01 0.59 0.07 NA 0.38 0.00 0.66 0.02 0.22

7T1S 0.09 0.23 0.64 0.24 0.42 0.66 0.20 0.52 0.67 0.00 0.89 0.04 0.16 0.40 0.09 0.93 0.13 0.42 0.06 0.88 0.06 0.81 0.36 0.38 NA 0.01 0.62 0.18 0.93

7T2S 0.06 0.06 0.04 0.07 0.06 0.02 0.00 0.04 0.03 0.00 0.01 0.49 0.66 0.00 0.46 0.03 0.19 0.05 0.66 0.01 0.71 0.01 0.35 0.00 0.01 NA 0.00 0.30 0.01

8T1S 0.03 0.25 0.51 0.11 0.28 0.29 0.44 0.16 0.59 0.00 0.57 0.03 0.21 0.65 0.05 0.71 0.06 0.27 0.05 0.66 0.01 0.97 0.17 0.66 0.62 0.00 NA 0.08 0.61

8T2S 0.48 0.52 0.13 0.46 0.45 0.25 0.02 0.44 0.22 0.00 0.25 0.83 0.82 0.04 0.93 0.15 0.86 0.32 0.89 0.20 0.75 0.14 0.82 0.02 0.18 0.30 0.08 NA 0.13

9T1S 0.06 0.22 0.66 0.20 0.47 0.60 0.10 0.48 0.65 0.00 0.84 0.04 0.18 0.47 0.08 0.84 0.10 0.36 0.05 0.95 0.02 0.79 0.42 0.22 0.93 0.01 0.61 0.13 NA
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Figure 4.8: Maintenance relative improvement by maintenance history before stoneblowing
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4.3.3 Summary

The results of the analysis showed that the initial track quality has a large impact on the
improvement seen from performing maintenance, with the improvement achieved from
stoneblowing being shown to be more dependent on the initial quality than tamping.
Stoneblowing was also found to be the riskier maintenance method with a greater amount
of historic operations leading to a negative improvement, particularly on track with good
geometry. It was found that the worse the initial quality, the greater the improvement
but also the spread; by using a relative/percentage improvement this was normalised.

When track speed was analysed it could be seen that it had little effect on the im-
provement following tamping, with a slight increase in the relative improvement being
observed for higher speed track. This result might be due to higher quality maintenance
being performed on higher speed sections as these tend to be busier and more critical
lines. Track speed had an even smaller effect on the improvement following stoneblowing,
with no significant differences between any of the speed groups.

Exploring the effect of the maintenance history showed a small impact on the effective-
ness of maintenance. The number of previous tamps caused a slight reduction in the
improvement seen from tamping with three distinct groups being seen; directly after
a renewal, after one to three tamps and after more than three tamps. One to three
tamps showed the greatest relative improvement followed by more than three tamps.
Stoneblowing was shown not to be affected by the amount of previous tamping opera-
tions. There was strong evidence to suggest that whilst the improvement seen from the
first two stoneblowing operations, on any combination of previous tamps, was consistent,
the improvement seen by a third and fourth was greatly reduced. This evidence makes
it hard to suggest ever performing a third stoneblowing operation on a track section,
with a renewal probably being required by this point. The reduction in improvement
seen is probably due to a build up of small stones beneath the sleepers from previous
stoneblowing activities.

Due to these results it was decided that when modelling the improvement achieved from
performing maintenance that the significance of tamping higher speed tracks leading to
a greater improvement needs to be taken into account. Additionally, the three distinct
maintenance histories for tamping should be separated (first tamp after a renewal, after
1-3 tamps and more than 3 tamps), with it also being important to model the first two
stoneblowing operations differently to the third and fourth.

4.4 Modelling the Effectiveness of Track Geometry Main-
tenance

Due to maintenance actions not returning the track state back to a perfect condition, it
is important to be able to predict the quality level after maintenance in order to optimise
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the timing and choice of maintenance, or decide whether to renew instead. It has been
demonstrated that there is a linear link between the initial vertical track geometry and
the resultant geometry, with the variability increasing with the initial quality.

From analysing the improvements from tamping actions it was seen that there were three
groups of maintenance actions which behaved significantly different; first tamp after a
renewal, tamping after one to three previous tamps and after more than three tamps.
Additionally, tamping track with speeds under 115 MPH had significantly different re-
sults than track with speeds over and including 115 MPH. This leads to six different
groups of tamping. There were also shown to be two significant groups for stoneblowing:
stoneblowing after zero and one previous stoneblowing actions or after more than one.

The linear fit between the initial and resultant quality was seen to be a good basis for a
model since the linearity was proved when univariate quadratic lines were fitted, where
the resultant coefficients of x2 were seen to be insignificant. A linear model linking initial
and resultant quality has been proposed previously by Halcrow (2012), but in addition
to the linear fit it was decided to stochastically model the high variability seen in the
data. This involved modelling the residuals of the linear fit. The residuals, as expected,
were more variable the higher the initial track geometry SD, creating the cone shape
seen in Figures 4.9a and 4.10a.

To remove the effect the initial track quality had on the variability of the residuals, it was
decided to divide the residuals by the initial quality to obtain relative residuals, Figures
4.9b and 4.10b. In all cases the relative residuals were slightly skewed, hence a normal
distribution could not represent the data. To allow more types of distribution fits, all
residuals needed to be positive. This was accomplished by adding the largest negative
value in the dataset of relative residuals plus 10% to the other residuals. It was then
possible to demonstrate the relative residuals using the Weibull distribution, with the
PP plots of these fits shown in Figures 4.9c and 4.10c. Weibull was used as its highly
flexible allowing both positive and negative skew. Other distributions were tested, but
Weibull was found to best represent the data.

For each distinct group, the resulting model involved using the initial quality and a linear
fit to obtain an initial resultant geometry SD, as seen in Figure 4.1a and represented by
the equation:

TGAfter = a ∗ TGBefore + b+ ε (4.2)

Where TG is the track geometry recorded as a SD of a length of track either before or
after maintenance, a and b are the gradient and constant of the linear fit. ε represents
the residuals.

Variability to account for the linear residuals was included by adding the distributed
relative residuals multiplied by the initial track SD to convert it back to a geometry SD.
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The transformed relative residual data for the Weibull distributions were found by:

Residuals = (a ∗ TGBefore + b)− TGAfterActual (4.3)

RelativeResiduals = Residuals/TGBefore (4.4)

TransformedRelativeResiduals = RelativeResiduals+ c (4.5)

Where c is the largest negative value in the dataset of relative residuals plus 10%. As
the Weibull distribution is being used to represent the transformed relative residuals,
combining the equation gives:

Weib(η, β) = (Residuals/TGBefore) + c (4.6)

Residuals = (Weib(η, β)− c) ∗ TGBefore (4.7)

Where η and β are the scale and shape parameters for the fitted Weibull distribution of
transformed relative residuals. Combining the linear fit and variability gives:

TGAfter = a ∗ TGBefore + b+ ((Weib(η, β)− c) ∗ TGBefore) (4.8)

This equation can be more cleanly written as:

TGAfter = (a+Weib(η, β)− c) ∗ TGBefore + b (4.9)

with the values for the variables found in Table 4.12. In this table it can be seen that
all of the Weibull distribution fits had β values between 2.9 and 3.9, showing that the
results had minimal skewness (very slightly negative skewed).

The model could then be simulated using a Monte-Carlo method. To ascertain the shape
of the model results and compare against the actual data one simulation of Monte-Carlo
was run using the actual data initial qualities (vertical geometry SD) as the input. This
resulted in one result per original initial quality data point (sampled dataset same size as
actual historical dataset being comparing to). From this it can be seen that the models
accurately represent the actual effectiveness of maintenance seen in the data, Figures
4.9d and 4.10d.
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(a) Residuals of linear fit (b) Relative Residuals of linear fit

(c) PP plot of relative residuals Weibull
distribution fit (d) Historical data vs model

Figure 4.9: Estimating the resultant quality of the first tamp after renewal is
performed on track with a speed greater than 115 MPH
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(a) Residuals of linear fit (b) Relative Residuals of linear fit

(c) PP plot of relative residuals Weibull
distribution fit (d) Historical data vs model

Figure 4.10: Estimating the resultant quality when stoneblowing is performed on track
with two or more previous stoneblowing operations

Table 4.12: Maintenance Effectiveness Model Parameters and Fit Statistics

Stoneblowing Tamping

Maintenance History 0S-1S >2S R 1T-3T >3T R 1T-3T >3T

Track Speed [MPH] <115 <115 <115 ≥ 115 ≥ 115 ≥ 115

Linear Fit

Gradient (a) 0.641 0.615 0.574 0.694 0.781 0.424 0.527 0.526

Constant (b) 468.7 567.2 303.4 175.6 83.4 476.8 318.2 348.3

N 2781 440 555 1372 1416 217 896 464

r2 0.63 0.48 0.60 0.72 0.77 0.34 0.46 0.47

RMSE 469.6 404.0 431.3 441.1 394.8 394.6 362.6 350.5

Relative
Residuals
Weibull
Fit

η 0.654 0.589 0.763 0.661 0.616 0.736 0.720 0.713

β 3.342 2.890 3.791 3.425 3.477 3.148 3.730 3.912

Constant (c) -0.632 -0.565 -0.683 -0.590 -0.557 -0.642 -0.646 -0.641

chi2 0.076 0.512 0.527 0.000 0.000 0.065 0.000 0.001

AD test 0.130 0.965 0.648 0.011 0.000 0.341 0.004 0.055
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4.5 Maintenance Output Rate

4.5.1 Introduction and Available Data

Due to railway infrastructure being used for a large part of every day, minimal access
time is available for performing maintenance. Due to this, access window lengths play an
important role in the ability to efficiently maintain the track. Maintenance data obtained
from Network Rail (NR) was recorded as separate jobs (tamping and stoneblowing), with
the time to complete the job and the length of track maintained. From this data it was
possible to obtain an output per hour for each job.

4.5.2 Analysis

It was decided to subset the data to reduce the impact of outliers by removing mainte-
nance jobs that took less than an hour or more than 24 hours to complete. A summary
of the maintenance output rates for tamping and stoneblowing are shown in Table 4.13.
The results show that the output rate of tamping is slightly higher than stoneblowing
with tamping’s median and mean rates being 1% and 5% higher. Tamping jobs tend to
be shorter with a mean of 5.3 hours compared to the 6.2 hours for stoneblowing. Despite
stoneblowing jobs tending to be longer, and hence possibly obtaining greater output
economies of scale, the outputs were slightly lower than tamping. This could mean, if
they had similar job lengths the difference between tamping and stoneblowing would be
larger.

Table 4.13: Maintenance Output Rates

Tamping Stoneblowing

Poskeys/Hr Yds/Hr Hrs/Job Poskeys/Hr Yds/Hr Hrs/Job

Minimum 0.228 50.1 1.0 0.227 50.0 1.0

Q1 0.576 126.8 2.5 0.578 127.2 3.0

Median 1.008 221.8 4.0 1.000 220.0 4.8

Mean 1.230 270.6 5.3 1.176 258.4 6.2

Q3 1.743 383.4 6.9 1.571 345.5 8.0

Maximum 4.545 1000.0 24.0 4.545 1000.0 24.0

4.5.3 Model

To characterise the output rates distributions were used. Before fitting distributions it
was decided to reduce the output rates so the smallest values were closer to zero. This
was done as many distributions including Weibull start at zero. A value of 80% of the
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minimum values in Table 4.13 was used. The minimum value was 50 yds/hr, so 80%
of this is 40. 50 was not used as it was desirable to have all non-zero positive values
for distribution fitting. The Weibull, normal and exponential distributions were tested.
Looking at the ECDF’s for tamping and stoneblowing in Figures 4.11a and 4.12a it is
clear that the Weibull distribution is the best fit for both types of maintenance. The
quality of the fit can be seen in the PP-Plots in Figures 4.11b and 4.12b, where apart
from some small problems with the lower tails the fits are strong. The fitted Weibull
parameters are recorded in Table 4.14, in which it can be seen that the results for tamping
and stoneblowing are very similar. This was expected due to the closeness of results in
Table 4.13. The fitted distributions can be used to obtain expected maintenance job
output rates using the Weibull inverse Cumulative Distribution Function (CDF), as
demonstrated by Equations 4.10 for tamping and 4.11 for stoneblowing, where p is a
uniform random number between zero and one. To obtain an estimate of amount of
yards of maintenance is complete in one work shift, for example 6 hours, the sampled
values from Equations 4.10 and 4.11 (via Monte-Carlo), are multiplied by the number
of hours of work. This is then divided by 220 to obtain an estimate of the number of
Poskeys which could be maintained (Poskeys are 220yds each).

Tamping Output Rate [yd/hr] = 249.278 ∗ (− ln(1− p))1/1.28754 + 40 (4.10)

Stoneblowing Output Rate [yd/hr] = 237.267 ∗ (− ln(1− p))1/1.30895 + 40 (4.11)

Table 4.14: Maintenance Output Rate [yds/hr] (minus 40) Weibull Distribution
Parameters

Weibull Parameters

η β

Tamping 249.278 1.28754

Stoneblowing 237.267 1.30895
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(a) ECDF Comparing Fits (b) PP-Plot of Weibull Fit

Figure 4.11: Distribution fits of tamping output [yards per hour]

(a) ECDF Comparing Fits (b) PP-Plot of Weibull Fit

Figure 4.12: Distribution fits of stoneblowing output [yards per hour]

4.6 Summary

This chapter has explored the factors that influence the effectiveness of maintenance as
well as, the output rate of tamping and stoneblowing activities. Models for each of these
were also introduced.

The initial track quality was shown to have a large impact on the improvement seen from
performing maintenance, more so for stoneblowing compared to tamping. The geometry
records before and after maintenance showed that an increase in the track geometry
SD can happen (quality reduced by maintenance). This was much more numerous for
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Stoneblowing activities, especially if performed on track with already good geometry.
The worse the initial quality (when maintenance performed), the greater the average
improvement was, but the spread of possible improvements also increased; by using a
relative/percentage improvement this was normalised.

Track speed was shown to have little effect on the improvement following tamping, other
than track speeds of 115 MPH and over, which had a significantly higher average relative
improvement. There is not an obvious link between track speed and maintenance. Higher
speed sections tend to be busier and more critical lines, so higher quality maintenance
might be being performed. The improvement from stoneblowing had no relationship
with track speed.

Maintenance history was showed a small impact on the effectiveness of maintenance.
The more tamps previously performed the less effective the maintenance actions became.
Three distinct groups being identified; directly after a renewal, after one to three tamps
and after more than three tamps. The greatest relative improvement was found in the
group one to three tamps followed by more than three tamps. Stoneblowing was shown
not to be affected by the amount of previous tamping operations. The number of previous
stoneblowing activities was shown to be important. The improvement seen from the first
two stoneblowing operations, on any combination of previous tamps, was consistent.
The average improvement of stoneblowing in the group 0-1 previous stoneblows was
significantly higher than found stoneblowing performed on track which has previously
undergone 2 or more previous stoneblowing activities. The significance of the results
suggest that after a second stoneblowing activity the next maintenance activity should
be a full renewal. As stoneblowing adds small stones into the ballast, these small stones
will build up, and appear to impact the ability to successfully undertaken stoneblowing.
The reduction in improvement seen is probably due to a build up of small stones beneath
the sleepers from previous stoneblowing activities.

Based on the results of the analysis it was decided to split the maintenance effectiveness
data into eight groups. Two for stoneblowing activities; performing stoneblowing on
track which has previously been stoneblown one or fewer times and more than one time.
Six groups for tamping; first tamp after a renewal, after one to three tamps and after
more than 3 tamps. These three groups are duplicated for track speeds under 115MPH
and those equal to and over.

In Section 4.4, the data and results from the maintenance effectiveness analysis were used
to develop a stochastic model. The eight significantly different factors are used to split up
the available data. The models consisted of a linear relationship between the initial and
resultant vertical track geometry SD with the addition of a stochastic variable to take
into account the large variations found in the data. The stochastic variable consisted
of transforming the linear equation residuals by dividing by the initial quality, and then
represented these by a Weibull distribution. The residuals were transformed to remove
the high amounts of heteroscedasticity, making the Weibull distribution represent the
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spread at all initial qualities. The final model is shown to give results that are comparable
to the actual maintenance effectiveness data.

As well as maintenance effectiveness, the output rate has also been analysed. For a
maintenance model it is important to understand how much mainteance can be performed
at a time. If ten poskeys need to be maintained, it would be wrong to classify this has
ten separate maintenance activities. Railway works activities cost per shift of work. So
if the ten poskeys could be completed in one shift, this should only be recorded as one
maintenance activity. Whereas if only five poskeys could be maintained in a shift, it is
two maintenance activities to complete the work (which would have a higher cost for the
same number of poskeys).

The analysis showed that there was a wide range of possible output rates and job lengths
(in hours). Tamping and stoneblowing had similar output rates, with tamping being very
slightly higher. Tamping activities tended to be shorter than stoneblowing, with a mean
job lengths of 5.3 hours and 6.2 hours. The longer jobs tended to show higher output
rates, which was expected due to economies of scale and setup being a small proportion
of the job (by time). Weibull distributions was found to strongly represent the range of
output rates for tamping and stoneblowing. Output rates can be sampled using Monte-
Carlo and the inverse Weibull CDF.

In the previous chapters the rate of track geometry degradation has been analysed as
well as the effectiveness of the primary maintenance actions to repair the geometry,
tamping and stoneblowing. A railway track is made up of many aspects which can
degrade. Tamping and stoneblowing are common maintenance activities but so are rail
replacements and maintenance. To build a more complete model it was decided to include
rail degradation (as faults and breaks), which is discussed in the next chapter.
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Chapter 5

Rail Faults

5.1 Introduction

Rails experience large forces (nominal, dynamic and impact wheel loadings) from travers-
ing trains leading to a wide range of defects, which can be common occurrences. The
majority of these faults are caused by fatigue from the contact between the trains wheels
and the rail. Section 2.3.2 describes the main types of faults, their failure mechanisms
and the inspections and maintenance required. In the UK there have been two main
types of rail design; the superseded Bullhead (BH) and the currently used Flatbottom
(FB), which come in different sizes, described by their weight. Additionally, there are
two types of rail joining methods: the obsolete jointed rail where plates bolted either
side hold rail sections together, and Continuous Welded Rail (CWR) where the rail ends
are welded, these are described in further detail in Section 2.3.2.

Rail faults can cause many problems on a railway track as it is important that there is
good contact between the wheels and rail as well as a smooth running surface. Faults such
as corrugations alter the rail surface smoothness, impacting ride quality, whereas others
such as head wear lead to a reduced wheel/rail interface area which decreases the grip
for breaking and accelerating. Rail faults can turn into breaks which lead to increased
forces on surrounding sleepers and speed restrictions being required to maintain safety.
These are known as Early Speed Restrictions (ESRs) and can be costly to implement
due to subsequent delays in the train timetables. Breaks also impact the track electric
circuits which are used to know the location of trains on the track.

Rail faults are usually identified through visual checks or by the use of ultrasonic equip-
ment used to identify internal defects. To correct the identified faults, grinding or welding
is used to return the rail to the correct profile or the rail is replaced, depending on the
fault type and severity.

Due to the impact that rail faults can have on safety and cost, it is important to under-
stand the likelihood of occurrences to be able to predict future costs of maintaining the
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track and make informed decisions on asset choices, especially in terms of upgrades.

5.2 Data and Processing

Inspection data has been obtained from Network Rail (NR), in which each fault found
has been recorded for the whole UK railway infrastructure from 2007 to 2015. The
information included the fault, rail and joint types, whether a rail break occurred or an
ESR was required. This data is summarised in Table 5.1, in which it can be seen that
squats are the most common fault type. These are followed by other, weld, then profile
issues, such as lipping and side wear, and then Rolling Contact Fatique (RCF). The fault
group ’other’ includes problems such as vertical and horizontal head splits. Looking at
the summary results in Table 5.1, within the rail fault dataset 0.538% of faults also
had a rail break reported. The probability of a break occurring is highly dependent on
the type of fault, with bolt holes leading to breaks nearly 6% of the time. ESRs are
more common with 2.807% of faults leading to a speed restriction being required. Bolt
hole faults are shown to require an ESR 43% of the time, which, when considered with
prevalence of breaks, shows the importance of the move from jointed rail to CWR (which
has much fewer joints, with these being Insulated Rail Joints (IRJs) that are required
for track circuits). Head wear faults seem to have a greater impact on the running of
a railway than other wear-related faults (lipping and side wear), where the other ones
almost never require ESRs and have no recorded breaks. Wheelburn faults also do not
tend to turn into breaks or require ESRs.
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Table 5.1: Available Rail Fault Data

Breaks Early Speed Restrictions

Fault Type Total Faults Amount Percentage Amount Percentage

Squat 63722 10 0.016 649 1.018

Tache Ovale 7420 57 0.768 633 8.531

Bolt Hole 1705 102 5.982 735 43.109

Weld 20295 278 1.370 393 1.936

Other 27989 502 1.794 1782 6.367

RCF 10693 6 0.056 424 3.965

Wheelburn 9795 1 0.010 49 0.500

Lipping 11956 0 0.000 2 0.017

Side wear 18735 0 0.000 11 0.059

Head wear 4248 4 0.094 153 3.602

Corrugation 24 0 0.000 0 0.000

Unknown 2117 1 0.047 185 8.739

Overall 178699 961 0.538 5016 2.807

5.2.1 Inspections and Maintenance Types

A number of different inspection and maintenance types are required due to the variation
of faults. Visual inspections are primarily used for external faults such as wear, whereas
ultrasonic inspections find inner defects such as tache ovale and squats. Figure 5.1 shows
the percentages of each fault type found by each inspection method. From this it can be
seen that many fault types are found using one primary type of inspection apart from
weld, other and RCF defects that are found using more than one type of inspection. The
results show that ultrasonic inspections find more faults than visual inspections, which
is due to the fact that a large proportion of fault types start internally.

The breakdown of the type of maintenance used for each fault type is shown in Fig-
ure 5.2. This shows a similar trend to inspections, that certain types of maintenance are
better suited to different faults. Wear-related faults tend to be ground or welded, but
corrugations and bolt holes need rail replacements.
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Table 5.2: Inspection and maintenance methods for different rail faults

Inspections Maintenance

Ultrasonic Other Visual ReRail Weld Grind Other

Squat 84.4% 1.4% 14.2% 32.8% 62.6% 1.9% 2.7%

Tache Ovale 97.9% 1.4% 0.7% 72.2% 24.1% 1.2% 2.4%

Bolt Hole 92.3% 6.6% 1.1% 90.0% 1.9% 0.1% 8.0%

Weld 47.4% 7.3% 45.3% 51.9% 38.5% 4.5% 5.2%

Other 57.7% 6.0% 36.3% 64.1% 27.7% 4.3% 3.9%

RCF 63.9% 4.7% 31.4% 50.8% 27.8% 18.8% 2.6%

Wheelburn 94.1% 0.8% 5.0% 26.7% 60.7% 6.3% 6.3%

Lipping 5.5% 5.5% 89.0% 2.9% 10.5% 85.1% 1.4%

Side wear 0.5% 20.3% 79.2% 4.4% 29.4% 63.4% 2.8%

Head wear 11.2% 13.0% 75.7% 21.3% 53.9% 20.9% 3.9%

Corrugation 69.6% 13.0% 17.4% 70.6% 5.9% 11.8% 11.8%

Unknown 92.6% 0.8% 6.6% 46.4% 16.6% 30.8% 6.2%

Figure 5.1: Inspection methods for different rail faults

Figure 5.2: Maintenance methods for different rail faults
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5.3 Analysis of Rail Fault Occurrences

5.3.1 Methodology

To understand the occurrences of rail faults it is important to interpret the factors which
influence them. A fault rate related to the length of track and the amount of traffic
was found and used to analyse the impact of different factors which were thought to be
related to the rate at which rail faults occur. It was decided to use a track length of
220yd (same as one poskey) and to take account of usage in Equivalent Million Gross
Tonnage (EMGT). This is because usage rather than time is the main driver of rail
faults. First the rail fault occurrence rate per 220yd poskey per year was found using:

RateFaults/Poskey/Y ear = NumFaults/TrackLength ∗ 220/8 (5.1)

Where TrackLength is in yards, and the results was divided by eight, as the dataset
included eight years of faults. This was then converted to fault rate per Poskey per
EMGT by:

RateFaults/Poskey/EMGT = RateFaults/Poskey/Y ear/TrafficEMGT/Y ear (5.2)

Where TrafficEMGT is the average EMGT which traverses a poskey a year.

The rate of faults per poskey per EMGT was found for the many factors explored. For
example, calculating the rate of faults on jointed rail involves taking the total amount
of faults found on jointed rail divided by the length of track with jointed rail (in yards)
multiplied by 220 to obtain a rate per poskey, divided by 8 to make it yearly.

This is then divided by the average traffic in EMGT recorded traversing jointed rail
track per year over the time period of the inspection data (2007-15). Performing this
calculation normalises the occurrence rates taking into account the differing length of
track within which different asset types occur and variability of traffic across the railway
network.

5.3.2 Results

The fault rates per poskey per EMGT were calculated initially with no factors to give an
average across the whole network. This is shown in Figure 5.3, where the numbers above
the bars are the number of faults. The overall fault rate of a poskey is 0.016/EMGT,
meaning a fault occurs every 62 EMGT. Squats are the most numerous and hence have
the highest rate with it expected that a squat would occur on a poskey every 167 EMGT
of traffic.
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Figure 5.3: Rail fault rates

Rail Age

To assess the impact the rail age has on the fault rate it was decided to split the data
into track sections with rails installed in differing decades. To remove the impact of
the changing type of rails and joint types across the decades, only 113 lb FB CWR was
assessed, as this is the most common rail and joint type combination on the UK railway
and has been used since the 1960’s. By keeping the rail and joint type consistent, any
differences in the fault rates are likely due to the rail age. It was expected that the
rate of faults would be greater on older rail, as most rail faults are caused by wear and
fatigue. The rates of the different fault types for rail installed in each decade since the
1960’s is recorded in Table 5.3 and shown visually in Figure 5.4. The results show that
the older the rail the higher the rate of faults, with rail installed in the 1960’s having an
145% increase in faults compared to rail installed in the 2000’s. It also appears that the
link between the track age and fault rate is mostly linear as seen in Figure 5.5, where
the total fault rates for each decade have been plotted against the middle of the decades.
The linear fit had an r-squared value of 0.9301 and a Root Mean Squared Error (RMSE)
of 0.0017.

Looking at the different types of rail faults in Table 5.3, it appears that weld, squat and
tache ovale defects are the ones most affected by the rail age, whereas wear-related faults
(lipping, side and head wear) are less so, but still affected. In general the different fault
types follow a similar pattern to the total faults with newer rail having lower rates of
faults. RCF, bolt hole and wheelburn faults do not show a correlation between age and
fault rate. This makes sense for wheelburn faults, as these are not caused by fatigue
but by the high forces from wheels slipping (acceleration which is too high for the grip
between the wheels and rail). It is unknown why RCF has no relationship with track age
as it is caused by fatigue. It is possible that rail on bends, where RCF tends to occur, is
renewed more often than straight line rail, and hence the proportion of rail on corners is
lower in the datasets of older rail. Weld faults see a large step (50% increase) in the rate
of occurrence between rail installed in the 70’s and 80’s. This gives evidence to suggest
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that the expected life of a weld is 30-40 years.

Table 5.3: The effect of rail age (denoted by rail installation decade) on the rates of
different rail faults on 113 lb Flatbottom Continuous Welded Rail

[Faults/Poskey/Equivalent Million Gross Tonnage]

Squat Tache Ovale Bolt Hole Weld Other RCF Wheelburn

1960-69 (60’s) 8.81e-3 1.07e-3 1.01e-4 3.02e-3 3.91e-3 9.28e-4 6.64e-4

1970-79 (70’s) 8.83e-3 9.89e-4 1.14e-4 2.79e-3 3.16e-3 1.03e-3 9.06e-4

1980-89 (80’s) 6.27e-3 6.97e-4 1.10e-4 1.88e-3 1.98e-3 1.00e-3 5.72e-4

1990-99 (90’s) 6.10e-3 6.18e-4 9.99e-5 1.46e-3 2.00e-3 1.31e-3 7.18e-4

2000-09 (00’s) 2.77e-3 3.77e-4 4.52e-5 9.51e-4 1.32e-3 8.99e-4 4.88e-4

70’s % Var 60’s 0.2 -7.4 12.9 -7.5 -19.3 10.6 36.4

80’s % Var 60’s -28.8 -34.8 9.1 -37.7 -49.4 8.2 -13.9

90’s % Var 60’s -30.8 -42.2 -1.2 -51.5 -48.9 41.2 8.0

00’s % Var 60’s -68.5 -64.8 -55.3 -68.5 -66.1 -3.2 -26.6

Lipping Side wear Head wear Corrugation Unknown Total

1960-69 (60’s) 1.09e-3 2.05e-3 4.66e-4 3.61e-6 2.42e-4 2.23e-2

1970-79 (70’s) 1.18e-3 2.07e-3 4.58e-4 0.00e+0 2.33e-4 2.18e-2

1980-89 (80’s) 8.92e-4 1.53e-3 3.38e-4 1.77e-6 1.33e-4 1.54e-2

1990-99 (90’s) 7.08e-4 1.19e-3 4.57e-4 4.16e-6 1.93e-4 1.49e-2

2000-09 (00’s) 7.65e-4 1.08e-3 2.75e-4 1.85e-6 1.26e-4 9.10e-3

70’s % Var 60’s 8.4 1.0 -1.7 -100.0 -3.8 -2.7

80’s % Var 60’s -18.0 -25.5 -27.4 -51.0 -45.1 -31.1

90’s % Var 60’s -34.8 -41.8 -2.0 15.2 -20.0 -33.5

00’s % Var 60’s -29.6 -47.5 -40.9 -48.9 -47.7 -59.3

Figure 5.4: The effect of rail age (denoted by rail installation decade) on the rates of
different rail faults on 113 lb Flatbottom Continuous Welded Rail rail
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Figure 5.5: The affect of rail age (denoted by rail installation decade) on the rate of
rail faults on 113 lb Flatbottom Continuous Welded Rail rail, linear fit

Curvature

Due to the increased sideways (centrifugal) forces, there is a shift of forces from the inner
rail to the outer rail when a train traverses curved track. This results in the forces that
occur on curved rails being higher than on straight track. Due to this it was expected
that faults would be more common on curved sections of track. The track sections
were split into four groups of curvature which are defined in Table 5.4. The table also
shows the fault rates for the different curvatures for each fault type and the percentage
variance from straight track. Figure 5.6 shows the data for all faults. These show that, in
general, faults occur less often on track with curvatures between 0-0.001 m-1, but there
is a 40% increase for tightly curved track between 0.001-0.002 m-1. These results differ
from Sawley (2001) who predicted a reducing lifetime of rails as the curvature increased.

The impact of curvature on different rail faults varies as expected and is due to the indi-
vidual failure mechanisms. Corrugations and RCF are related to fatigue caused by high
forces, hence curvature has a greater effect on the rate of these faults occurring compared
to wear-related faults. Tache ovales are seen to be strongly related to the curvature of
the track which was unexpected as these tend to originate from manufacturing defects.
The evidence points to the increased forces experienced on rails increasing the rate at
which they grow internally. The reason that the rate of faults of slightly curved track
is lower than straight is unknown but may be due to maintenance procedures (curved
track rails replaced more often than straight) or how the track is used, with the speed
restrictions common on curved sections reducing the forces. It is also thought that the
use of a cant on curved sections, as is the case on the UK railway network, reduces the
impact of the centrifugal forces.
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Table 5.4: The effect of curvature on the rates of different rail faults [Faults/Poskey/
Equivalent Million Gross Tonnage]

Curvature [m-1] Squat Tache Ovale Bolt Hole Weld Other RCF Wheelburn

0 6.447e-3 6.670e-4 1.900e-4 1.887e-3 2.959e-3 1.004e-3 1.088e-3

0-0.0005 4.870e-3 5.280e-4 7.091e-5 1.498e-3 1.637e-3 6.871e-4 3.882e-4

0.0005-0.001 5.465e-3 8.137e-4 1.092e-4 2.241e-3 2.219e-3 1.023e-3 5.618e-4

0.001-0.002 7.741e-3 1.587e-3 2.174e-4 3.368e-3 3.803e-3 2.199e-3 1.538e-3

0-0.0005 % Var 0 -24.5 -20.8 -62.7 -20.6 -44.7 -31.5 -64.3

0.0005-0.001 % Var 0 -15.2 22.0 -42.5 18.7 -25.0 2.0 -48.4

0.001-0.002 % Var 0 20.1 137.9 14.4 78.4 28.5 119.1 41.3

Curvature [m-1] Lipping Side wear Head wear Corrugation Unknown Total

0 1.316e-3 2.147e-3 4.921e-4 1.585e-6 1.923e-4 1.839e-2

0-0.0005 4.814e-4 6.828e-4 1.671e-4 2.663e-6 8.623e-5 1.110e-2

0.0005-0.001 6.608e-4 9.366e-4 2.656e-4 1.365e-6 1.645e-4 1.446e-2

0.001-0.002 1.564e-3 2.435e-3 6.287e-4 9.349e-6 6.427e-4 2.573e-2

0-0.0005 % Var 0 -63.4 -68.2 -66.0 68.1 -55.2 -39.6

0.0005-0.001 % Var 0 -49.8 -56.4 -46.0 -13.8 -14.4 -21.4

0.001-0.002 % Var 0 18.8 13.4 27.7 489.9 234.3 39.9

Figure 5.6: Rail fault rates split by track curvature

Rail Type

The UK railway infrastructure contains many types of rail. The main two designs are
the superseded BH and currently used FB, which has a much larger foot profile. Within
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the two design groups there are different sizes, described by lb/yard, varying from 95 lb
to 121 lb. The only rail type not measured this way is the most recent, UIC 60, where
the 60 stands for 60 kg/m which is equivalent to 121 lb/yd. The most common rail types
installed are 113 lb FB, 110 lb FB, 95 lb BH, UIC 60 FB and 109 lb FB, with 113 lb FB
being the most common. To analyse the effect the rail type has on the occurrence rate
of faults it was required to remove other factors which influence the rate first. Due to
rail types being installed over different time periods, to remove the impact of rail age it
was decided to analyse rails installed over a similar time period. Additionally, the effect
of the joint type was removed by only using CWR. It was decided to use CWR as it was
the most common method of joining rails and is still in use today.

To assess the variation of older rail types it was decided to use rail installed between
1955-70. This period was chosen as there were many designs installed, allowing for a
comparison between more rail types. The occurrence rates are recorded in Table 5.5,
which is shown visually in Figure 5.7. The results show that larger rails have lower rates
of faults, with 98 lb FB seeing a 10.6% reduction compared to 95 lb BH. 109 lb FB has
a 28.9% reduction, 110 lb has 30.3% and 113 lb has 38.4%. Looking at the individual
types of faults, the largest reductions occur in bolt hole, other, wheelburn and weld.
Wear-related faults (lipping, side wear and head wear) also see large reductions. 98 lb
FB rail appears to have an issue with tache ovale, with a rate that is over three times
higher than the other rail types. Tache ovale faults primarily start as manufacturing
defects, so it appears that the quality of 109 lb FB produced between 1955-70 was lower
than that of other rail types. The results were as expected as larger rails reduce the
stress within the rail caused by the forces of traversing trains. As most rail faults are
caused by fatigue, lower stresses lead to less fatigue and hence reduced number of faults.

To compare more recent rail types it was decided to use rails installed between 1995-2010,
with the results shown in Table 5.6 and Figure 5.8. 110 lb and 113 lb FB rails occur in
both the older the newer rail datasets. For 1955-70 113 lb rail fault rate was 11.6% less
than 110 lb in Table 5.5. For the years 1995-2010 it was 9.6% less. The similar results,
even though the rails were installed in different decades, give confidence to saying that
the amount of faults that occur on 113 lb FB rail is around 10% lower than 110 lb rail.
As the sizes of these rails are similar it is envisaged that the costs would also lead to
a strong case to use 113 lb over 110 lb. UIC 60 FB rail sees a large decrease in faults
with a 48.6% reduction from 110 lb FB rail. This is primarily from a large reduction in
squats, but large reductions are seen in all rail fault types but bolt holes, side wear and
head wear. It is unknown why there has been an increase in side and head wear of over
100% especially as lipping (which is also wear-related) has seen a 43.9% reduction.
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Table 5.5: The effect of rail type on the rates of different rail faults on Continuous
Welded Rail installed 1955-1970 [Faults/Poskey/Equivalent Million Gross Tonnage]

Squat Tache Ovale Bolt Hole Weld Other RCF Wheelburn

95 lb BH 9.98e-3 9.29e-4 5.80e-4 4.99e-3 7.20e-3 3.48e-4 1.28e-3

98 lb FB 6.27e-3 4.13e-3 0.00e+0 4.91e-3 8.53e-3 2.58e-4 1.23e-3

109 lb FB 9.35e-3 1.44e-3 4.52e-5 3.47e-3 3.72e-3 5.43e-4 9.77e-4

110 lb FB 9.97e-3 1.04e-3 6.37e-5 3.91e-3 3.60e-3 6.50e-4 4.96e-4

113 lb FB 8.25e-3 1.07e-3 3.46e-5 2.90e-3 3.14e-3 7.53e-4 6.12e-4

98 lb % Var 95 lb -37.2 345.3 -100.0 -1.6 18.5 -25.8 -3.9

109 lb % Var 95 lb -6.3 54.9 -92.2 -30.4 -48.3 55.8 -23.5

110 lb % Var 95 lb -0.1 11.9 -89.0 -21.6 -50.0 86.6 -61.1

113 lb % Var 95 lb -17.3 15.3 -94.0 -41.9 -56.4 116.3 -52.1

Lipping Side wear Head wear Corrugation Unknown Total

95 lb BH 2.90e-3 6.96e-4 3.48e-4 1.16e-4 3.48e-4 2.97e-2

98 lb FB 5.81e-4 1.29e-4 1.94e-4 0.00e+0 3.23e-4 2.66e-2

109 lb FB 8.86e-4 4.07e-4 1.45e-4 0.00e+0 1.54e-4 2.11e-2

110 lb FB 3.89e-4 3.69e-4 8.80e-5 3.74e-6 1.37e-4 2.07e-2

113 lb FB 5.70e-4 6.32e-4 2.11e-4 0.00e+0 1.35e-4 1.83e-2

98 lb % Var 95 lb -80.0 -81.4 -44.3 -100.0 -7.2 -10.6

109 lb % Var 95 lb -69.5 -41.6 -58.4 -100.0 -55.8 -28.9

110 lb % Var 95 lb -86.6 -47.0 -74.7 -96.8 -60.8 -30.3

113 lb % Var 95 lb -80.4 -9.2 -39.5 -100.0 -61.3 -38.4

Table 5.6: The effect of rail type on the rates of different rail faults on Continuous
Welded Rail installed 1995-2010 [Faults/Poskey/Equivalent Million Gross Tonnage]

Squat Tache Ovale Bolt Hole Weld Other RCF Wheelburn

110 lb FB 3.27e-3 3.06e-4 1.27e-5 1.25e-3 1.81e-3 1.06e-3 4.71e-4

113 lb FB 3.05e-3 4.04e-4 4.01e-5 9.70e-4 1.14e-3 8.20e-4 4.65e-4

UIC60 FB 1.37e-3 1.18e-4 1.43e-5 3.80e-4 6.19e-4 5.49e-4 2.26e-4

113 lb % Var 110 lb -6.8 32.3 214.7 -22.3 -37.1 -22.5 -1.4

UIC60 % Var 110 lb -58.1 -61.3 12.3 -69.6 -65.8 -48.1 -52.1

Lipping Side wear Head wear Corrugation Unknown Total

110 lb FB 5.73e-4 4.08e-4 1.02e-4 0.00e0 1.78e-4 9.44e-3

113 lb FB 5.23e-4 7.39e-4 2.49e-4 1.39e-6 1.27e-4 8.53e-3

UIC 60 FB 3.22e-4 1.02e-3 2.07e-4 7.95e-7 2.62e-5 4.86e-3

113 lb % Var 110 lb -8.8 81.3 144.3 -28.8 -9.6

UIC60 % Var 110 lb -43.9 150.7 107.7 -85.3 -48.6
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Figure 5.7: Rail fault rates split by rail type [Continuous Welded Rail installed
1955-1970]

Figure 5.8: Rail fault rates split by rail type [Continuous Welded Rail installed
1995-2010]

Stations and Tunnels

It was thought that the existence of stations and tunnels could have an impact on rail
faults due to the different loading found at stations and the protected environment within
tunnels. As before, the rates of different faults on track containing stations and tunnels
has been found and compared to the average of the rest of the network. These rates
are shown in Table 5.7 and Figure 5.9. Table 5.7 also shows the percentage difference
of the rates compared to the network average of track sections with neither tunnels and
stations. This shows that rail faults are 44.8% more likely to occur at stations and 38.4%
less within tunnels.

The reduction in tunnels is expected due to the protection from the environment such as
temperature fluctuations and frost, with rails being affected by extreme temperatures due
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to contraction and expansion. Only head wear, other and corrugations have increased
rates in tunnels. The results from corrugations can be misleading due to a small sample
size of only 24 cases being recorded to have occurred over the time period of the data.
It is unknown why head wear is more common as other wear-related faults see large
decreases in their occurrence rate (lipping and side wear). The slight increase in other
faults could be due to difficulties performing inspections leading to faults being missed
early on and them turning into other faults such as rail splits before they are noticed.

The increase in fault rates for all types of faults seen at stations was expected due to the
dynamic forces produced from the trains braking and accelerating. Wheelburn faults see
the largest increase as these are caused by the wheels slipping on the rail as the trains
accelerate. Wear-related faults see the next greatest increase at stations, which would
also be due to slipping between the wheels and rail causing friction and in turn wear of
the rail.

Table 5.7: The effect of tunnels and stations on the rates of different rail faults
[Faults/Poskey/Equivalent Million Gross Tonnage]

Squat Tache Ovale Bolt Hole Weld Other RCF Wheelburn

Neither 5.9707e-3 6.970e-4 1.500e-4 1.909e-3 2.497e-3 9.933e-4 8.113e-4

Tunnels 2.229e-3 1.762e-4 5.287e-5 9.825e-3 2.837e-3 3.833e-4 5.155e-4

Stations 7.785e-3 8.987e-4 1.945e-4 2.183e-3 3.842e-3 1.273e-3 2.039e-3

Tunnels % Var -62.7 -74.7 -64.7 -48.5 13.6 -61.4 -36.5

Stations % Var 30.4 28.9 29.7 14.4 53.9 28.1 151.3

Lipping Side wear Head wear Corrugation Unknown Total

Neither 1.010e-3 1.599e-3 3.403e-4 2.281e-6 1.834e-4 1.616e-2

Tunnels 2.071e-4 4.847e-4 1.740e-3 4.406e-6 3.481e-4 9.962e-3

Stations 1.859e-3 2.425e-3 6.100e-4 0.000e0 2.858e-4 2.340e-2

Tunnels % Var -79.5 -69.7 411.4 93.1 89.8 -38.4

Stations % Var 84.1 51.6 79.2 -100.0 55.9 44.8

Figure 5.9: Rail fault rates split by the existence of tunnels and stations
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Rail Joint Type

It was thought that the additional forces produced as a train travels over the joints in
jointed rail would increase the rate of faults. Looking at the rates in Table 5.8, which are
also shown in Figure 5.10, it can be seen that the rate of faults is 87% lower on CWR.
Looking at individual fault types it could be seen that, as expected, bolt hole faults see
the largest reduction of 97.5% (much fewer bolt holes in CWR) followed by wear-related
faults. The reason for such a large reduction of wear faults is possibly due to the rail
ages with jointed rail tending to be older than CWR as well as CWR being used on
larger rail. To remove some impact of this, the analysis was undertaken using the same
type of rail installed over a similar time period.

It was decided to compare using 95 lb BH rail as these had numerous faults on both
jointed and CWR methods. 95 lb BH was primarily installed between 1950-1965, which
was also the same period in which CWR started to become more common. Looking
at the results in Table 5.9 and Figure 5.11, it can be seen that the variances between
the joint types (64.6%) is much lower than in Table 5.8. This shows that the results in
the first table were being impacted by the difference in rail ages and types between the
joint types. Despite this the results demonstrate the large reduction in faults seen when
moving from jointed rail to CWR. Looking at the individual faults in Table 5.9, again
bolt holes is shown to have the largest reduction. Wear-related faults (lipping, side and
head wear) still see a large reduction, showing that the additional movement and forces
that occur as trains traverse the joints lead to high levels of wear. Weld is the only fault
type that saw an increase from the move to CWR, which is expected due to the increase
in welds added into the rail.

Table 5.8: The effect of rail joint type on the rates of different rail faults
[Faults/Poskey/ Equivalent Million Gross Tonnage]

Squat Tache Ovale Bolt Hole Weld Other RCF Wheelburn

Jointed 2.105e-2 2.413e-3 2.283e-3 5.546e-3 1.930e-3 6.086e-4 7.605e-4

CWR 5.274e-3 6.153e-4 5.395e-5 1.735e-3 1.800e-3 7.620e-4 5.420e-4

% Variance -75.0 -74.5 -97.6 -68.7 -90.7 -87.5 -92.9

Lipping Side wear Head wear Corrugation Unknown Total

Jointed 1.079e-2 1.703e-2 3.701e-3 1.098e-5 1.684e-3 9.749e-2

CWR 5.836e-4 9.130e-4 2.304e-4 1.864e-6 1.234e-4 1.263e-2

% Variance -94.6 -94.6 -93.8 -83.0 -92.7 -87.0
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Table 5.9: The effect of rail joint type on the rates of different rail faults on 95 lb
Bullhead rail installed between 1950-1965 [Faults/Poskey/Equivalent Million Gross

Tonnage]

Squat Tache Ovale Bolt Hole Weld Other RCF Wheelburn

Jointed 1.61e-2 1.54e-3 4.33e-3 4.91e-3 1.99e-2 1.69e-3 1.86e-2

CWR 1.08e-2 8.11e-4 5.80e-4 5.45e-3 8.00e-3 3.48e-4 1.74e-3

% Variance -33.2 -47.3 -86.6 10.9 -59.9 -79.4 -90.7

Lipping Side wear Head wear Corrugation Unknown Total

Jointed 7.79e-3 8.40e-3 1.92e-3 0.00e0 2.41e-3 8.77e-2

CWR 2.09e-3 3.48e-4 1.16e-4 1.16e-4 4.64e-4 3.11e-2

% Variance -73.2 -95.9 -81.9 -80.8 -64.6

Figure 5.10: Rail fault rates split by rail joint type

Figure 5.11: Rail fault rates split by rail joint type [95 lb Bullhead Rail, Installed
1950-65]
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Track Geometry

A railway track is a complex system made up of many assets, ballast, rail and sleepers,
which degrade differently. It was thought that the individual conditions of the assets
may have an impact on the degradation rate of the other assets. The primary link was
thought to be the track vertical geometry and the rate of rail faults, as more asperous
track would endure higher dynamic forces. In order to analyse a possible link the linear
geometry degradation fits from Chapter 3 were used to estimate the track geometry
when each rail fault occurred. The geometry fits were also used with the usage data to
categorise the average usage which occurred over track between certain geometry bands
(Standard Deviation (SD) every 1 mm). With this it is possible to calculate the rate of
faults that occur in different geometry bands.

The results are shown in Table 5.10 and in Figures 5.12 and 5.13, where the numbers
above the bars are the number of faults. The results for all faults show an increasing
rate of rail faults as the track geometry worsens, with the rate also increasing with
worsening track vertical geometry. Looking closely at the individual fault types it can
be seen that all types of faults see an increasing rate as the SD of the vertical geometry
increases. Squats, tache ovales and welds have a more linear relationship than the other
faults. Bolt holes show a large step increase of 4-5 mm, suggesting that the increased
dynamic forces at this point starts to damage the bolt holes, with very little damaged
being caused on track with better vertical geometry. Wear-related faults (lipping, side
wear and head wear) seem very dependent on the track geometry with very low rates
seen below 4-5 mm, which increase rapidly above this. This makes sense as when the
track geometry worsens, the traversing trains tend to move on the rail more (side to side
motion) with greater force accelerating the rate of wear.

To ensure that the results were not being skewed by rail type, joint or age it was decided
to perform the same analysis but on smaller sets of data with consistent factors. The
most common rail types were analysed to maintain large datasets. This included UIC60
CWR installed between 2000-2010 (Figure 5.14), 113 lb FB CWR installed between
1990-2010 (Figure 5.15) and 113 lb FB CWR installed between 1980-1990 (Figure 5.16).
Looking at these figures it can be seen that they follow a similar trend to the results
obtained when all the data was used in Figure 5.12, showing that the rail type, joint and
age was not affecting the shape of the results. By reducing the dataset size it was not
possible to have confidence in the results at an individual fault level.
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Table 5.10: The effect of vertical track geometry on the rates of different rail faults
[Faults/Poskey/Equivalent Million Gross Tonnage]

Geo SD [mm] Squat Tache Ovale Bolt Hole Weld Other RCF Wheelburn

0-1 1.35e-3 1.34e-4 1.03e-5 4.05e-4 2.37e-4 1.01e-4 2.54e-4

1-2 3.79e-3 3.94e-4 1.17e-5 1.26e-3 9.37e-4 2.51e-4 3.22e-4

2-3 5.98e-3 8.00e-4 5.34e-5 2.01e-3 1.92e-3 5.51e-4 6.82e-4

3-4 7.38e-3 9.03e-4 2.05e-4 2.65e-3 3.33e-3 1.00e-3 1.11e-3

4-5 9.48e-3 1.28e-3 7.43e-4 3.32e-3 6.14e-3 1.54e-3 2.50e-3

5-6 1.23e-2 1.56e-3 7.58e-4 3.72e-3 9.07e-3 2.82e-3 3.86e-3

6-7 1.58e-2 2.11e-3 9.28e-4 3.97e-3 1.32e-2 4.39e-3 6.24e-3

7-8 2.19e-2 2.40e-3 9.02e-4 6.31e-3 1.86e-2 4.81e-3 7.52e-3

Geo SD [mm] Lipping Side wear Head wear Corrugation Unknown Total

0-1 1.86e-5 1.24e-5 1.03e-5 0.00e+0 8.26e-6 2.54e-3

1-2 5.15e-5 5.64e-5 3.50e-5 2.26e-6 4.10e-5 7.15e-3

2-3 2.59e-4 3.47e-4 1.23e-4 7.31e-7 1.18e-4 1.28e-2

3-4 5.76e-4 9.97e-4 3.84e-4 4.27e-6 1.77e-4 1.87e-2

4-5 1.28e-3 2.48e-3 7.76e-4 6.69e-6 4.02e-4 3.00e-2

5-6 2.41e-3 4.12e-3 1.40e-3 4.73e-5 6.15e-4 4.26e-2

6-7 6.92e-3 1.04e-2 3.80e-3 0.00e+0 1.77e-3 6.95e-2

7-8 3.61e-3 1.77e-2 3.31e-3 0.00e+0 2.40e-3 8.96e-2

Figure 5.12: Effect of vertical track geometry on the occurrence rate of rail faults
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(a) Squat (b) Tache Ovale

(c) Bolt Hole (d) Weld

(e) Other (f) Rolling Contact Fatique

(g) Wheelburn (h) Lipping

(i) Side Wear (j) Head Wear

(k) Corrugation (l) Unknown

Figure 5.13: Effect of vertical track geometry on the occurrence rate of different rail
fault types
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Figure 5.14: Effect of vertical track geometry on the occurrence rate of rail faults on
UIC 60 Continuous Welded Rail rail installed between 2000-2010

Figure 5.15: Effect of vertical track geometry on the occurrence rate of rail faults on
113 lb Flatbottom Continuous Welded Rail rail installed between 1990-2010

Figure 5.16: Effect of vertical track geometry on the occurrence rate of rail faults on
113 lb Flatbottom Continuous Welded Rail rail installed between 1980-1990

5.4 Model Relating Track Geometry to Rail Faults

The analysis has shown that the rate of faults is heavily dependent on the track vertical
geometry SD. Due to this it is required to be able to calculate the rate of each fault type
for all possible track qualities. The link is important to model because it would allow
the impact on rail faults to be calculated for decisions which affect track geometry, such
as changing the tamping thresholds. To create the model the results from Table 5.10 on
page 199 have been related to the mid-points of each vertical geometry band.
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The proposed model is stochastic, with a random aspect to account for the chance of a
fault having occurred, and is designed to fit in a larger asset management model which
is solved using Monte-Carlo, such as the one proposed in Chapter 6. If a probability
of a rail fault was 0.01/poskey/EMGT, and the section of track being analysed was 10
poskeys long (2200 yards) over a period of 3 EMGT, the probability of a fault would be
0.01 ∗ 10 ∗ 3 = 0.3 or this can be said as 0.3 faults would occur. If a uniform random
number generator between 0-1 was used, any number above 0.3 would mean no fault
occurred whereas if the random number was lower a fault occurred. We know that the
fault rate is not as simple as a single number, with the link to track geometry needing
to be included. Short time periods (small usage) and/or shorter sections of track should
be used to ensure the probabilities stay below 1.

This is accomplished by fitting equations to the relationships seen previously in Sec-
tion 5.3.2. It was decided to stack the data, hence a line is fitted to the data from
squats, then a line is fitted to the sum of squats and tache ovale. By doing this we can
simplify the decisions within the model. If the probability of a squat was 0.004 and the
probability of a squat or tache ovale was 0.006, then the random number generated just
needs to be checked in order of the stacking. For example; the random number sampled
is 0.005 then we check if it is less than the rate for squats (0.004), which it is not, then
we check if its less than squats or tache ovale (0.006), which it is, hence a tache ovale
occurred as we already know it was not a squat. For the purpose of readability the stack
groups will be known by the key in Table 5.11.

For each group a polynomial fit to an order of three was used to link the vertical track
geometry to the rail fault rates. A polynomial was used as the analysis from Section 5.3.2
showed that the link was not linear, and the polynomial fit allows for many shapes. It
was decided to hold an intercept through the origin as this improved the fits (visually
they make more sense), stopping the fits going negative (fault rates values less than zero).
Linear, polynomial (order two and three), exponential and power fits were tested but the
polynomial fit with an order of three was best for all fault groups. Comparing the fits of
polynomial order two and three showed an average r2 improvement of 1% and a reduction
in the RMSE of 53% whilst still visually fitting the trends in the data. The polynomial
order 3 fits are shown in Figures 5.17 and 5.18. A summary of the polynomial order
three fits are shown in Table 5.12 with the polynomial form denoted in Equation 5.3,
where Geo is the vertical geometry SD in mm. This equation will be known as poly3,
hence the equation for the rail fault rate of G-Squat will be poly3-G-Squat(Geo). The
stacked results of the fits are compared to the actual in Figure 5.19, in which it can be
seen how closely it resembles the actual data.

Rail Fault Rate [/poskey/EMGT] = A∗ (Geo)3 +B ∗ (Geo)2 +C ∗ (Geo)+D (5.3)
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Table 5.11: Stacked Rail Fault Groups Key

Group Included Rail Fault Types

G-Squat Squat

G-TacheOvale Squat or Tache Ovale

G-BoltHole Squat, Tache Ovale or Bolt Hole

G-Weld Squat, Tache Ovale, Bolt Hole or Weld

G-Other Squat, Tache Ovale, Bolt Hole, Weld or Other

G-RCF Squat, Tache Ovale, Bolt Hole, Weld, Other or RCF

G-Wheelburn Squat, Tache Ovale, Bolt Hole, Weld, Other, RCF or Wheel-
burn

G-Lipping Squat, Tache Ovale, Bolt Hole, Weld, Other, RCF, Wheel-
burn or Lipping

G-SideWear Squat, Tache Ovale, Bolt Hole, Weld, Other, RCF, Wheel-
burn, Lipping or Side Wear

G-HeadWear Squat, Tache Ovale, Bolt Hole, Weld, Other, RCF, Wheel-
burn, Lipping, Side Wear or Head Wear

G-Corrugation Squat, Tache Ovale, Bolt Hole, Weld, Other, RCF, Wheel-
burn, Lipping, Side Wear, Head Wear or Corrugation

G-Unknown(All)
Squat, Tache Ovale, Bolt Hole, Weld, Other, RCF, Wheel-
burn, Lipping, Side Wear, Head Wear, Corrugation or Un-
known

Table 5.12: Rail fault rate against track vertical geometry polynomial fits

G-Squat G-TacheOvale G-BoltHole G-Weld G-Other G-RCF

A 7.64E-5 7.85E-5 6.90E-5 9.38E-5 1.18E-4 1.13E-4

B -6.45E-4 -6.55E-4 -5.45E-4 -7.96E-4 -6.94E-4 -5.46E-4

C 3.44E-3 3.73E-3 3.56E-3 4.85E-3 5.22E-3 5.07E-3

D 0.00E+0 0.00E+0 0.00E+0 0.00E+0 0.00E+0 0.00E+0

r2 0.999 0.999 0.999 0.998 0.999 1.000

RMSE 2.38E-4 2.37E-4 2.43E-4 5.53E-4 6.29E-4 3.81E-4

G-Wheelburn G-Lipping G-Sidewear G-Headwear G-Corrugation G-Unknown(All)

A 1.12E-4 7.34E-5 1.66E-4 1.61E-4 1.60E-4 1.70E-4

B -3.87E-4 1.31E-4 -3.48E-4 -1.98E-4 -1.92E-4 -2.31E-4

C 4.93E-3 3.87E-3 4.61E-3 4.28E-3 4.27E-3 4.33E-3

D 0.00E+0 0.00E+0 0.00E+0 0.00E+0 0.00E+0 0.00E+0

r2 1.000 0.997 0.997 0.996 0.996 0.995

RMSE 4.23E-4 1.59E-3 1.78E-3 2.34E-3 2.33E-3 2.48E-3
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5.4.1 Step by Step Approach

Below describes a step by step approach to assessing

1. Decide the length of track in poskeys (L) and amount of traffic in the period being
modelled in EMGT (T).

2. Estimate the expected average vertical geometry SD over the period (Geo)
3. Sample a random number between 0-1 (uniform distribution) (R)
4. Calculate poly3 for each fault type using Geo, and multiply by L and T
5. If R < poly3-G-Unknown(All)(Geo)*L*T then a fault occurred, continue to check

the fault type, if R > poly3-G-Unknown(All)(Geo)*L*T no fault occurred
6. If R < poly3-G-Squat(Geo)*L*T then a squat occurred
7. If R < poly3-G-TacheOvale(Geo)*L*T then a tache ovale occurred
8. Continue checking each fault type in order of the stacking until the fault type is

found

A graphical example of how the model works is shown in Figure 5.20. In the example
the track vertical geometry SD was 4.2, and the amount of traffic was 1 EMGT and the
amount of poskeys was 1. If a random number of 0.013 was sampled then the model
predicts weld fault (where the red lines cross), whereas if 0.035 was sampled the model
reports no fault occurring.

5.4.2 Limitations

The model proposed has some limitations which are listed below:

1. Cannot predict more than one fault appearing in the assessed period, hence a
recommendation of short track lengths and low usage is recommended to reduce
the impact. This reduces the impact as the probability of more than one fault
occurring would be negligible.

2. Does not take into account rail and joint type or age. These could easily be added
with more data, but for the purpose of this model it was decided that splitting the
data into smaller datasets would reduce the strength of the geometry link, which
was the main aspect that was being modelled.
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(a) G-Squat (b) G-TacheOvale

(c) G-BoltHole (d) G-Weld

(e) G-Other (f) G-RCF

(g) G-Wheelburn (h) G-Lipping

Figure 5.17: Vertical track geometry impact on rail fault rates, polynomial order 3 fits
(Part 1)
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(a) G-Sidewear (b) G-Headwear

(c) G-Corrugation (d) G-Unknown(All)

Figure 5.18: Vertical track geometry impact on rail fault rates, polynomial order 3 fits
(Part 2)
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(a) Actual Data

(b) Model

Figure 5.19: Stack rail fault rates against vertical track geometry. Model compared to
actual data.
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Figure 5.20: Rail Fault Model Example

5.5 Summary

In this chapter rail faults and the factors which influence them have been investigated.
The analysis has shown that the distinct fault types are impacted differently by the
factors explored. It has also demonstrated that the occurrence rate of rail faults is
impacted by many factors, including age, rail and joint type, curvature, tunnels, stations
and track vertical geometry.

The most common types of faults on the network are squats (35%), other (16%) and
weld (11%). The types of faults that are most likely to results in an ESR are bolt hole
(43%), followed by tache ovale (9%), other (6%) and RCF (4%). Faults can also turn
into rail breaks with the highest percentage being from bolt hole (6%) then other (2%),
welds and tache ovales (1%).

There are two main types of inspections, visual and ultrasonic, where ultrasonic is used to
detect internal defects such as tache ovale and squats and visual is used to detect external
defects like head and side wear. There are also three main types of maintenance: weld,
grind or replace the rail. Wear-related defects such as lipping tend to be ground, whereas
squats are commonly welded and bolt hole faults require replacements.

The average rate of rail faults per poskey (220yd track section) per EMGT of traffic is
0.016, meaning a fault occurs every 62 EMGT which traverses a poskey.

The rail age was shown to have a linear impact on the rate of faults, with older rail
experiencing higher rates. Fatigue related faults (squats and tache ovales) were most
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affected but wear-related faults were also highly dependent on the rail age. The impact
of age is high with fault rates on rail installed in 2000-10 being 60% lower than rates in
similar rail installed in 1960-70.

Track curvature was seen to reduce the rate up to 0.001 m-1 compared to straight track,
but the rate of faults increased significantly above this. The reason that the rate was
lower on slightly curved track is thought to be due to the inclusion of cant in track
designs as well as lower speeds on curved sections. The results of the analysis showed
that fatigue-related faults were more related to track curvature than wear.

The results of the analysis exploring the impact of rail being installed in tunnels or at
stations, showed a reduction in faults in tunnels, but an increase at stations. The reduc-
tion in tunnels was expected as the rail is protected from the elements, and the increase
at stations is most likely due to the dynamic forces produced from trains accelerating
and braking.

Rail type was shown to impact all faults with small increases in the size of the rail having
large impacts on the rate of faults. UIC60 (the newest type of rail type) is seen to have
a big step improvement over the commonly-used 113 lb FB rail, nearly halving the rate
of faults.

The type of rail joint is the factor that had the largest impact on the rate of faults,
with CWR showing a large reduction in faults compared to the legacy jointed rail. As
expected, bolt hole faults show the largest reduction which is very important due to the
percentage of these faults that lead to ESRs and rail breaks.

It was thought that the track vertical geometry increasing the rate of faults due to the
unevenness of track with poor geometry would increase the forces experienced by the rail.
The analysis proved this to be the case, with the rate increasing as the vertical geometry
worsened. The results showed that this relationship was not linear, with the rate at
which the fault rate was increasing also increasing with worsening geometry. Squats,
tache ovales and welds had a more linear relationship whereas wheelburn, lipping, side
wear, and head wear had a step change at geometry SD of 4-5 mm with very low fault
rates being seen on lower levels of vertical track geometry SD.

The proposed stochastic model to link the track geometry to the rate of faults closely
matches the data, while taking into account track length and traffic.

With an understanding of the factors which influence the track geometry degradation,
maintenance effectiveness and rail faults it is possible to design a railway track asset
management model, which will be explored in the following chapter.
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Chapter 6

Railway Track Asset Management
Model

6.1 Introduction

Good quality railway infrastructure is an important economic driver for any country.
Due to this it is imperative that it is kept in a good condition but often this is carried
out with very limited financial resources. To maximise the benefit seen from the expen-
diture it is important to make the correct asset management decisions leading to efficient
maintenance regimes and the correct asset choices. To enable efficient asset management
decisions to be made, modelling is used to estimate the impact of decisions and compare
different options. Modelling can also be used to predict the future costs of maintaining
an asset, enabling future planning.

In this chapter a Petri Net model is introduced which has been designed as an asset
management tool for railway track. The knowledge obtained from the literature review
in Chapter 2 and the analysis performed in Chapters 3, 4 and 5 is used to help to design
a model. The model is populated using the data obtained from Network Rail (NR),
which is introduced in Chapter 3.

6.2 Modelling Technique Choice

It was decided to utilise a Petri Net (PN) modelling approach which is introduced in Sec-
tion 2.4.2. Due to the high levels of variability seen in the data in the previous chapters,
it was felt that a stochastic model would best suit a railway track asset management
model. Out of the possible modelling techniques, Coloured Petri Nets (CPNs) were cho-
sen due to their highly flexible nature, working as a model, or a framework which smaller
models, such as the track geometry maintenance model discussed in Section 4.4, can be
inserted. Other proven uses are discussed by Jensen (1997), including, communication
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protocols, distributed systems, imbedded systems, automated production systems and
work flow analysis.

The model has been built in a free-ware computer software called CPN-Tools, which was
based on work by Jensen and Kristensen (2009).

6.3 Introduction to Coloured Petri-Nets

CPNs are an extension of PNs which add a wide array of extra functionality. Similar
to PNs such as the one introduced by Andrews (2012), which is discussed in Section
2.4.2, CPNs still consist of places which tokens move between via along arcs and via
transitions.

Tokens

CPNs add coloured sets which are linked to tokens and can contain information, which
moves around the net with the token. Each coloured set is defined and can only contain
one type of data, such as boolean, integer, real number (decimals) and string (text).
Each token can have many coloured sets attached to it, these are known as multisets.
The multisets attached to tokens can change as the tokens move through the net with
the information in the mutliset changing or even coloured sets being added or removed.
This is important for a railway track model as historical and classification data, such as
maintenance histories and track types, are important factors.

Places

Places are denoted by circles and contain tokens. Each place can only contain one type
of multiset tokens, which is known as its colour set inscription. This is denoted to the
bottom right of a place. For the purpose of this thesis all inscriptions will be denoted
by the data types, i.e. if a place allowed multisets consisting of two real numbers (R),
an integer (I), three boolean (B) and a string (S) such as (1.2, 3.4, 5, TRUE, TRUE,
FALSE, "Test"), the inscription would be RRIBBBS.

Places also contain the initial markings, which are shown at the top left of the place.
These are the initial locations of the tokens and the information they contain in their
coloursets. An example of initial marking would be 1‘(1,TRUE)++2‘(3,FALSE), which
creates three tokens of a multiset of one integer and one boolean, IB. The multiset is
denoted by the part in brackets, with the quantities of tokens with these multisets marked
in front of the brackets. In the markings ++ means "and".
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Transitions

Transitions allow tokens to move between places and allow time to pass (for processes
that requires time to complete) or can be used to make decisions. The top right of each
transition shows the time inscription which describes the time it takes for the transition
to fire (move a token), with transitions denoted by rectangles. It is denoted with @+,
i.e. @+60 would mean that it takes 60 time steps to fire. By utilising Monte-Carlo
simulation (random number generation), it is possible to use distributions to describe
the time period for a transition to fire. This means that a time such as @+N(100, 10)
would denote the time to fire being related to a normal distribution with a mean of 100
(time steps) and a Standard Deviation (SD) of 10 (time steps), hence each time the
transition is activated (has a token to fire) the time to fire varies.

To enable transitions to make decisions, guards are used. These are rules which the
inputting tokens are required to pass for a transition to fire. This is useful for ensuring
transitions only fire certain types of tokens or tokens containing certain information.
Due to limitations with CPN-Tools guards (in particular the lack of support for random
values or time related functions), they have not been used in the proposed model, with
code segments used instead.

Transitions also have code segments. These calculate when a transition is activated
(all input arcs have required tokens). The calculation can use any of the information
contained within the coloured sets of the inputting tokens. This allows token information
to be changed, as well as new colour sets and decisions to be made. Code segments are
written in a coding language called Standard Meta Language (SML), but for the purpose
of the diagrams in this chapter normal mathematical expressions have been used instead
to maintain legibility. Code segments allow normal mathematical models to be inserted,
into a CPN. Code segments plus conditional output arcs can give the same result as a
guard, where the code segment results are used to return the token back to the original
place if a condition is failed.

Transitions also have priorities which are recorded in the bottom left. These tell the
model what order to activate transitions if multiple transitions have the required inputs
at the same time. In this chapter five priorities are included, and are denoted as either
lowest, low, medium, high or highest, with highest always firing first.

Arcs

There are two main types of arcs, normal and inhibitor. Normal arcs connect places
and transitions and create the net that the tokens move around. These are denoted as
lines with arrows showing the direction of movement. Normal arcs in CPNs have a large
amount of flexibility. They bind the token colour sets to variables which are passed to
the transition. These variables can then be used in the transition as part of a guard or
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code segment. The variables are then used on the output arcs to create new tokens with
differing colour sets to the inputs. When a transition has multiple inputs, if the same
variables appear on different input arcs then the variable values have to be equal. This
allows the model to choose which tokens to pull through the transition based on other
inputs, instead of picking a random token from each input place.

Output transitions have added functionality, with the ability to run functions via condi-
tional arc inscriptions or even add a time for the token to pass through the arc, known as
an arc delay. Conditional arc inscriptions allow decisions to be made on what the output
tokens should contain, i.e. if an output arc inscription was "if y = 2 then 2‘(1) else if
y = 1 then 1‘(1) else empty" then the output would be based on the value of y (either
from the input arc or from a transition code segment). If y = 2 then two tokens with an
integer colour set with value 1 are sent to the output place, if y = 1 then one token with
an integer colour set with value 1 is sent to the output place, if y = any other value no
token is outputted. Conditional arc expressions along with transition code segments add
a high level of functionality to CPNs, allowing any complexity of guards to be created.
Output arc delays are extremely useful allowing a transition to take different amounts
of time for each separate output. Arc delays can be conditional and are also related to
the input variables.

Inhibitor arcs are a feature of simple PNs but still have uses in CPNs. An inhibitor links
a place to a transition but tokens cannot move along it, instead while the connecting
place has a token the connecting transition cannot be activated.

Hierarchical Features

CPNs can be hierarchical. This means that a transition can be used to represent another
PN known as a subnet. This allows large complex nets to be split into smaller sections, so
they are easier to draw and understand. Additionally, a net can be simplified by having
repeating parts of a net design removed and the one subnet used instead. The top of the
hierarchy is known as the superpage, and those below which contain subnets are called
subpages. A page can be a superpage and a subpage if it has both levels above and below
(is a subnet and also contains transitions to further subnets). Hierarchical transitions
are denoted by a double outline and are known as substitution transitions. Instead of the
transition firing as normal, the token moves into the subnet. The substitution transition
has to have the same inputs and outputs places as the subnet, with all connecting places
on both nets. Places which are in subnets which are related to a place in the higher level
nets are denoted by a double outline and are connected such that a change to one (on
any page) happens to all of them, these places are known as fusion places. The fusion
place on a superpage is known as a socket, whereas when it occurs on the subpage it is
known as a port, (CPN).
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6.4 Coloured Petri-Net Design

6.4.1 Overview

The hierarchical CPN discussed in this section is designed to act as an asset management
tool for railway track, replicating the degradation of the track as well as maintenance
decisions. Figure 6.1 shows the top-level of the CPN. The model consists of four main
parts: "Track Geometry Model", "Rail Fault Model", "Planned Upgrades (Speed and
Assets)" and "Asset Upgrades at Renewal". Within the nets are:

1. Variables, which the colour sets are attached to when the tokens move along arcs.
These are written as combinations of letters based on what information they hold
and appear in brackets on arcs as well as in code segments. Throughout this
chapter all variable will be written in round brackets within the text. A full list of
the variables within the model can be seen in Table 6.2.

2. Initial markings, which show the initial tokens in the model. These are denoted
in red to the top left of each place which tokens start in. Within the explanation
of the CPN model initial markings are denoted in square brackets. A full list of
initial markings with examples can be seen in Table 6.1.

3. Functions, which are denoted by F! and occur within code segments and conditional
arc inscriptions. A full list of the functions within the model are included in Table
6.4.

4. Global variables, are values stored in the model which do not change within the
simulations. These are outlined in Table 6.3.

The model starts in place P1, where the information about the railway line is entered
as tokens, with a token per track section. This input is known as [track] and consists of:
unique section number (s), vertical geometry SD at the last inspection (q), number of
previous tamping and stoneblowing operations (mt, ms), time since the last inspection
(t), track speed (ts) and track asset types (tt) for each section to be modelled. An
example input could be: track section 1, which at the last inspection, which was 34 days
ago, had a vertical geometry of 1500 um, has a track type of 2 (large concrete sleepers on
a track speed between 80-110 MPH), a track speed of 9 (110 MPH), and has undergone 3
previous tamping actions and no stoneblowing. This track section would have an initial
marking of 1‘(1, 1500.0, 3, 0, -34, 2, 9), following the order of the variables on the output
arc of P1 and P1’s colour set inscription.

With a token for every track section to be modelled in P1, transition T1 is activated. T1
takes each token from P1, and calculates a random vertical geometry degradation rate
(d) based on the track type and maintenance history by sampling a Weibull distribution.
The code segment attached to T1 first checks if stoneblowing had previously occurred on
the section (last maintenance was stoneblowing) ((ms)>0). If stoneblowing had occurred
the model samples a degradation rate from the Weibull distribution with parameters
from the tables in Section 8.2.25 using the corresponding track assets and stoneblowing
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history (columns labelled "After Stoneblowing") (function F!SD). If no stoneblowing had
occurred previously on the track section but there had been previous tamping operations,
the degradation results from after tamping operations are used (F!TD) and if no previous
tamping or stoneblowing operations were recorded (mt = 0 and ms = 0) then the results
after a renewal are used (F!RD). Again the tables in Section 8.2.25 are referenced but
the columns "After Tamping" are used instead. A degradation rate is sampled from the
Weibull distribution using the inverse Cumulative Distribution Function (CDF) with a
uniform random number between zero and one. The Weibull parameters in the tables
in Section 8.2.25 are included within the model. Using the information of track type
(tt) stored in the track section tokens, the model function use the corresponding table
in Section 8.2.25 for the Weibull parameters. When T1 fires the tokens into P2 it brings
through all the input arc information (variables) as well as the sampled degradation rate
(d). An additional boolean colour set is added with a value of FALSE, this is to mark
that no maintenance has been scheduled for the track section yet and is required for the
"Track Geometry Model" subpage.

Once all the track sections have had a degradation rate sampled and moved to P2, the
substitution transition track geometry model, ST1, is activated. Throughout the model
copies of all the track sections will always be in P2, with the values in the colour sets
being changed by the models in the subnets. P2 is a socket of a fusion place that has
ports on all subpages, linking them all together.

Table 6.1: CPN model initial markings

Name Variables Included Purpose

upgradeS s,Uts,Ut List of sections with times to track speed
changes

upgradeT s,Utt,Ut List of sections with times to track type
changes

upgradeR s,Utt,Ut List of sections with times to track type
changes also has to contain everything from
upgradeT

inspectT s,TRUE List of all track section numbers with TRUEs
attached (inspection undertaken)

inspectF s,FALSE List of all track section numbers with FALSEs
attached (inspection required)

renewals s,tt List of all track section numbers and their track
type at the start of the model

track s,q,mt,ms,t,ts,tt Full information on each track section to be
modelled

sectionEnds s Contains two tokens, one for the maximum
value of s and one of the lowest
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Table 6.2: CPN model variables

Variable Type Purpose

s, s2 Integer Poskey ID Number. The track IDs of the line modelled
have to be integers and sequential i.e. 1, 2, 3, 4 etc. This is
due to the model presuming section ID 9 is between
sections IDs 8 and 10.

Utt Integer Track type to upgraded to

Uts Integer Track speed to upgrade to

Ut Integer Time to upgrade

q, q2 Real Initial Track Vertical Geometry SD [µm, micrometre]

d, d2 Real Current Vertical Geometry Degradation Rate
[µm/Equivalent Million Gross Tonnage (EMGT)]

mt, mt2 Integer Number of Previous Tamping Maintenance Actions

ms, ms2 Integer Number of Previous Stoneblowing Maintenance Actions

t Integer Time of last geometry maintenance

m Boolean Marks if vertical geometry maintenance has been scheduled

u Boolean True if urgent maintenance

M Integer Maintenance type; 3 = renewal, 2 = stoneblow and 1 =
tamping

tt, tt2 Integer Track type

ts, ts2 Integer Track speed

f Integer Fault type

ft Integer Fault time

u Real Usage since the last rail fault check

Q Real Current vertical geometry

fmt Integer Rail maintenance type; 1 = grind, 2 = weld and 3 = rerail
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Table 6.3: CPN model global variables

Variable Purpose

CT Current Model Time

TI_mu Average time between track geometry inspections (normal
distribution mu)

TI_sigma Variation in time between track geometry inspections (normal
distribution sigma)

TM_mu Average time to perform track geometry maintenance (normal
distribution mu)

TM_sigma Variation in time to perform track geometry maintenance
(normal distribution sigma)

Urgent_thresh Table of vertical geometry SD threshold values for urgent
maintenance which relate to the track speed.

Normal_thresh Table of vertical geometry SD threshold values for normal
maintenance which relate to the track speed.

Opp_thresh Table of vertical geometry SD threshold values for opportunistic
maintenance which relate to the track speed.

RIV_mu Average time between visual rail inspections (normal distribution
mu)

RIV_sigma Variation in time between visual rail inspections (normal
distribution sigma)

RIU_mu Average time between ultrasonic rail inspections (normal
distribution mu)

RIU_sigma Variation in time between ultrasonic rail inspections (normal
distribution sigma)

RMG_mu Average time to perform rail maintenance (Grind) (normal
distribution mu)

RMG_sigma Variation in time to perform rail maintenance (Grind) (normal
distribution sigma)

RMW_mu Average time to perform rail maintenance (Weld) (normal
distribution mu)

RMW_sigma Variation in time to perform rail maintenance (Weld) (normal
distribution sigma)

RMR_mu Average time to perform rail maintenance (Rerail) (normal
distribution mu)

RMR_sigma Variation in time to perform rail maintenance (Rerail) (normal
distribution sigma)

Shift_Hrs Number of hours per maintenance shift of work
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Table 6.4: CPN model functions

Function Inputs Outputs Description

F!TQ CT , t,
q, d, ts

q Calculates vertical track geometry SD after tamping
[µm]. Uses the stochastic model outlined in Section
4.4. As part of this the function outputs the
variables to a text file. This data, with the
additional data from F!TD, F!SQ, F!SD and F!RD,
can then be used to trace the degradation history of
each track section and hence find an average
condition for the track.

F!TD tt, mt d Calculates vertical track geometry SD degradation
rate after tamping [µm/EMGT]. Uses the stochastic
model proposed in Section 3.5. External output to
text file like F!TQ.

F!SQ CT , t,
q, d

q Calculates vertical track geometry SD after
stoneblowing [µm]. Uses the stochastic model
outlined in Section 4.4. External output like F!TQ.

F!SD tt, ms d Calculates vertical track geometry SD degradation
rate after stoneblowing [µm/EMGT]. Uses the
stochastic model proposed in Section 3.5. External
output like F!TQ.

F!RD tt d Calculates vertical track geometry SD degradation
rate after renewal [µm/EMGT]. Uses the stochastic
model outlined in Section 3.5.

F!RC ts, t,
CT

Bool Checks to see if the poskey passes the conditions
required for a renewal instead of maintenance.
Example could be after two previous stoneblowing
operations and/or when the time between
maintenance is less than 6 months.

F!SC tt Bool Checks to see if the poskey passes the conditions
required for a stoneblow instead of tamping.
Example could be after 7 previous tamping
operations.

F!U time usage Uses a cumulative usage equation specified as an
input to calculate the usage at any model time.

F!ML M Mainte-
nance
length in
Poskeys

Calculates the total length of track maintained in
the maintenance operation using the model
introduced in Section 4.5.3. Shift_Hrs also
required.

F!RF CQ, u r Calculates if a rail fault occurred and what type it
was using the results from Section 5.4.

CQ Current Vertical Geometry SD [µm] calculated by:
q + d(F!U(CT )− F!U(t))

F!RFM f fmt Calculates the type of maintenance performed, using
a simple uniform random number between 0-1 with
the stacked probabilities in Table 8.237.
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Figure 6.1: Rail Track Asset Management Model - superpage

6.4.2 Track Geometry Inspections

Moving down the hierarchy into the "Track Geometry Model" subpage, shown in Figure
6.3, a port of track section pool, P2, where all the track section information is kept
can be seen. With the tokens in P2, they move into the substitution transition Track
Geometry Inspection, ST5. The subnet for ST5 is shown in Figure 6.2. Again there is a
port of P2 on the subpage. The purpose of the subnet is to model an inspection train
being used on the track, and order maintenance if required.

P3 contains a token for every track section with the section number (s) and a boolean of
FALSE, denoted by the multiset InspectF. The FALSE tells the model that an inspection
is required. These tokens activate T2, which takes all the tokens at once and moves
them to P4, adding a variable length of time to the first inspection which follows a
uniform (discrete) distribution, sample values between zero and the average length of
time between inspections (TI_mu). By using InspectF on the arcs the transition can
only activate when all the tokens, with the correct colour sets, denoted in InspectF are
in P3. They all activate T2 which fires them all at the same time. This means that they
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will all reach P4 at the same time; this is desirable as an inspection train would inspect
a line all at once and not individual sections at a time.

With the tokens in P4, T3 being activated. Due to T3 having two input arcs with the
variable s, the model ensures these values are the same, i.e. T3 takes track section 3
from P2 and P4. The code segment attached to T3 checks the current vertical geometry
of the track. As the degradation rates that are being used are usage-based (as that is the
driver of the degradation, not time), a conversion in required. As part of the model an
equation for the expected cumulative usage is required (F!U); this can be any formula, for
example a quadratic equation. The code segment first calculates the current cumulative
usage since the model started by using the current model time (CT ) and the cumulative
usage at the time of the last maintenance action occurred (t). The difference between
the two is the usage that has occurred since the last maintenance action. This is then
multiplied by the degradation rate (d) and added to the initial quality (q) to obtain the
current vertical geometry SD for each track section.

With the current quality known, it is checked against maintenance thresholds. First,
the model checks if the current quality is higher than the threshold for emergency main-
tenance, where the threshold is dependent on the track speed (ts) (due to safety). If
emergency maintenance is not required it checks if normal maintenance should be sched-
uled, also checking if normal maintenance has already been planned (m). If normal
maintenance has already been planned T3 does not add to the maintenance plan again,
unless its become urgent. When T3 fires (inspection complete) the token for the track
section in P4 is replaced, with a TRUE variable to indicate it has already been inspected.
During an inspection (T3), if the track section quality is below the normal threshold for
maintenance (M = 0) then the transition replaces the track section token from P2 (with
no changes). If maintenance is required (M > 0), the track section is returned to P2, but
with a TRUE variable to inform the model during future inspections that maintenance
has already been planned (if inspection intervals are less than the time to undertake
maintenance it is possible the model will schedule maintenance more than once).

If normal maintenance is required (M = 1) then a token is fired into P6, which is a
port of a place on the subpage for the "Track Geometry Model". The section number
(s), maintenance histories (mt, ms) and time since last maintenance action (m) are
passed into P6 as these are required later to decide on the type of maintenance. An
additional colour set of FALSE is also passed into P6 so the model knows that it is
normal maintenance and not urgent. If urgent maintenance is required (M = 3) then a
TRUE is passed instead. If no maintenance is required no token is passed to P6. The arc
between T3 and P6 also has a time aspect. When normal maintenance is planned (M
= 1) then the time the token takes to reach P6 is sampled from a normal distribution
with a mean time to undertake maintenance (TM_mu) and a SD (TM_sigma). These
parameters are one of the many which can altered by the user depending on real data
or expected future values. A distribution was used as there would be variability in how
long it takes to undertake maintenance due to issues with resource allocation across the
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railway network (only a certain amount of tampers and stoneblowers). If the maintenance
is urgent the model uses a time period of one day to undertake the maintenance.

When a track section requires urgent maintenance (M = 3) but normal maintenance has
already been planned (but not undertaken yet) (m = TRUE), a token is also fired from
T3 into P7 (which is a port of a fusion place on the subpage "Track Geometry Model")
as part of the inspection. This is used in the "Track Geometry Model" subpage to stop
the planned normal maintenance.

Once all the track sections have been inspected P4 will contain a list of tokens with
section numbers (s) and TRUE values. T4 will only activate when all the tokens have
TRUE values (inspection complete), as InspectT along the arc between them is a multiset
containing all the track sections with TRUE values attached. T4 is the time between
inspections, with the time sampled from a normal distribution with a mean of TI_mu
and a SD of TI_sigma. When T4 fires after the sampled time, all the tokens from P4 are
returned but with FALSE values attached (which will activate T3 again). An additional
token is fired to P5, which contains the current model time (CT ), hence P5 contains a
record of the number of inspections that have occurred and when they occurred.

The "Track Geometry Inspection" subnet keeps going during the whole modelling time
period, sending track sections that need maintenance to the fusion place P6 which moves
it into the "Track Geometry Model" subnet.

6.4.3 Track Geometry Model

The subnet of the "Track Geometry Model" is shown in Figure 6.3 and is designed to
perform maintenance.

Once the track sections in P2 have been inspected in the substitution transition ST5
("Track Geometry Inspection") any track sections needing to be maintained are fired
into P6 (which is the port to P6 in the "Track Geometry Inspection" subnet). From
the last inspection the sections to be maintained will reach P6 at different times, with
sections requiring urgent maintenance reaching P6 faster. When a track sections token
reaches P6 the transition T5 will be activated if the same track section (s) has already
been sent to P7 and the scheduled maintenance is not urgent (FALSE in colour set). For
example, if an inspection occurred which identified a track section as requiring normal
maintenance a token for that track section will be sent to P6. If another inspection
occurs before the token reaches P6 (due to the delay in the arc between T3 and P6 in
the subnet "Track Geometry Inspection"), and a future inspection identifies that urgent
maintenance is required (due to further degradation occurring), a second token will also
be sent to P6 with a TRUE colour set to signify it is urgent. The urgent token will reach
P6 first and cause the section to be maintained. When the normal scheduled maintenance
finally reaches P6, maintenance would already have occurred and hence does not need
to be maintained again. In this situation though the inspection that decided urgent
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maintenance was required would also have sent a token for the track section to P7. As
the token in P7 and the normal maintenance required token in P6 will have the same
(s) value, T5 is activated and the tokens move into T5, which is a sink transition (no
outputs), hence the tokens are removed from the model. As the transition priority of T5
is high it will always activate instead of T6 if its input arc conditions are met.

Track section tokens, which reach P6 and do not activate T5, activate T6, which chooses
the type of maintenance to perform. It first checks if the renewal conditions have been
met (F!RC), if they have not been met or if the maintenance required is urgent (cannot
perform urgent renewals) then the model checks if the conditions for stoneblowing have
been met (F!SC). If these are not met tamping is required. If tamping or stoneblowing
is required (M < 3), a token is fired to P8 with colour sets containing the track section
number (s), the type of maintenance (M) and whether the maintenance was urgent or
not (u). If a renewal is required (M = 3), then a token is fired to P12 with just the
section number (s).

When P12 is marked T7 is activated. T7 also has input arcs from the track section
pool, P2, and the renewal pool, P13. T7 takes the token for the track section being
maintained from P2 (with all the information about the track section in the multiset),
and the corresponding track section token from P13. P13 holds a token for every track
section being modelled, with the track type (tt2) which should be used for the renewal.
When T7 fires it replaces the token it took from P13. It also fires a new track section
token to P2 with updated information in the multiset. The updated information consists
of an initial vertical geometry SD of 800 µm (presumed quality after a renewal), resetting
the maintenance histories (mt, ms) to zero, set the maintenance boolean back to FALSE
(maintenance not scheduled), updates the track type (tt) to the type marked in the
renewal pool, P13 (tt2). The time of the last maintenance action (t) is updated with
the current time (CT ) and a new geometry degradation rate is sampled (F!RD). T7 also
fires a token to P11 where a record of maintenance and renewals is kept. The record
consists of the section number, the maintenance type (3 as a renewal), whether it was
urgent (FALSE as renewals cannot be urgent), and the current time (CT ) (time renewal
occurred). The fusion place Renewal Pool, P13, is used to allow for the track type to be
changed in the model at the first renewal after a certain time period. This is performed
in the subnet "Asset Upgrades at Renewal" which is described in Section 6.4.4.

If tamping or stoneblowing is required when T6 fires, P8 is marked. This activates T8,
which takes the associated track sections token from P2. When T8 fires a token is sent
back to P2 with updated multisets. The time of last maintenance (t) is updated with
the current time (CT ) and the boolean for maintenance scheduled (m) is changed too
FALSE. If the type of maintenance (M) from T6 is one, tamping occurs. As such a
new initial geometry is found from F!TQ using the tamping model from Section 4.4, and
a new degradation rate from F-TD. The number of previous tamping operations (mt)
is also increased by one. If stoneblowing occurs (M = 2) then a new initial geometry
is found using F!TS, a new degradation rate from F!SD and the number of previous
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stoneblowing operations (ms) is increased by one. T8 also fires a token to P9, which
consists of the track section number (t) and the type of maintenance (M). This is then
used in the "Opportunistic Maintenance" subnet. P10 also receives tokens when T8
fires, these are simple tokens with no colour sets. The number of tokens is dependent
on the length of track access for maintenance work, with the number of additional track
sections maintained within the access time (input in the model) being calculated using
F!ML which follows Section 4.5. T8 also updates the maintenance count, P11.

6.4.4 Asset Upgrades at Renewal

The subnet "Asset Upgrades at Renewal" is designed to allow changes to the track assets
to be made when a renewal occurs. The subnet can be seen in Figure 6.4. In the net the
fusion place Renewal Pool appears again and starts with a token for every track section
with their track types at the start of the model. P15 contains tokens for upgrades,
denoted by upgradeR, taking the form of the section number (s) the time to upgrade
(Ut) and the track type to upgrade the section to (Utt). At the start of the model
running each token activates T10 which fires them to P14. Due to the delay on the arc
between T10 and P14, the token does not reach P14 till the time to upgrade (Ut). T9 is
then activated, which takes the token for the track section to be upgraded from P13 and
updates the track type. The next time the track section is renewed, it will be renewed
with the new track asset type specified in Utt.

6.4.5 Opportunistic Maintenance

When performing maintenance on a railway track it is possible to maintain more than
one track section, hence the track sections around the one requiring maintenance are also
maintained. This can have negative impacts, as seen in Section 4.3.2, where performing
maintenance earlier increasing the chance of doing more harm than good. Due to this it
is important that the correct decisions are made regarding opportunistic maintenance.
Within the proposed model the "Opportunistic Maintenance" sub net, shown in Figure
6.5, tries to mimic the decisions of a track engineer picking the cluster of track sec-
tions around the one being maintained that are in the poorest condition. This includes
avoiding opportunistic maintenance being performed too early.

The subnet connects to the "Track Geometry Model" via the fusion places P2, P7, P9
and P10. When maintenance is performed on a track section a copy of the section number
and maintenance type are fired into P9 and the number of additional sections that can
be opportunistically maintained based on the working window are fired into P10 (one
token for each section). If no additional sections can be maintained, P10 is empty of
tokens and hence T28 can be activated. When T28 fires it removes the token from P9
and no opportunistic maintenance occurs.

If P10 has tokens T20 is activated. When it fires, it finds the adjoining track sections.
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If section number, s, is 7, smin is 3 and smax is 123 then two tokens will be fired into
P26, one was s = 8 and one where s = 6. If smin = 7 = s then there is no track
section in one direction (end of line/track being modelled), hence only one token is fired
to P26 (s = 8). An additional boolean colour set is added to the tokens which records
if the section was up or down the line (up). T21 then fires, this calculates the current
vertical geometry of the track, using the track section information stored in the multiset
in P2. T21 then fires the token to P27 if the current quality is above the opportunistic
thresholds (which are related to the track speeds). If a second token is in P26 then this
also fired into P27 if its quality is above the threshold.

If there are two tokens in P27, T22 is activated. This checks that the track sections
require the same type of maintenance. This stops tamping occurring if stoneblowing
already has. If both are applicable to the type of opportunistic maintenance (M), then
the T22 picks the one in the worst condition and fires it to P28, while firing the better
quality track section back to P27. If only one token made it to P27 (quality was below
the threshold for one of the tokens or end of line), T23 is activated instead of T22. This
again checks that the type of maintenance (M) is applicable to the track section, if it
was it is fired into P28. The token in P28 activates T25. This maintains the track
section similar to T8 in the subnet "Track Geometry Model", updating the multiset
attached to the token with the same section number in P2. If that section already had
maintenance scheduled a token is fired into P7 to stop the scheduled maintenance. T25
takes a token from P10. P10 holds a token for each track section can be maintained
within the maintenance access period, for example three tack sections. T25 removing a
token represents using up one of the possible sections which could be maintained in the
maintenance action. A token is also fired to P29, so a new starting place for checking
adjacent is known. When T25 fires, if it removes the last token from P10, the sink
transitions called reset (T26 and T27) removes the remaining tokens from the sub net
and opportunistic maintenance finishes.

The token in P29 activates T24 if there are still tokens remaining in P10. T24 identifies
for the next track section to be checked for maintenance, using the token information.
This is always the section next to the last one maintained by T25. For example, if the
value of the colour set, up, is TRUE then it is known that the last section had a lower
section number (s) than the original which means the next section to be checked would
be one lower again (as long as it is not the end of the track being analysed). If the original
section number to be maintained was 27, then after the first opportunistic maintenance
check, section 28 was maintained, T24 would input section number 29 into P26, to mark
this should be checked next. T24 fires a token into P26 and the cycle continues until
there are no tokens left in P10 or none of the adjacent track sections are applicable for
maintenance (wrong sort of maintenance or quality level is below the threshold). When
this happens T28 activates and removes all the tokens from P10 leaving no tokens on
the sub net.

Chapter 6 Steve Clarke 224



Railway Track Asset Management Modelling

6.4.6 Planned Upgrades (Speed and Assets)

To allow for the track speed to be changed or to undertake renewals on specific dates (not
waiting till a renewal naturally occurs as Section 6.4.4) the subnet "Planned Upgrades
(Speed and Assets)" was designed and shown in Figure 6.6. As the model is designed to
predict long term (>20 years) of railway track degradation and maintenance it is likely
that aspects such as speed would change over time. As the track speed is a required
model input, the model needs to know if it will change and when. This allows to assess
the impact of changing the future track speed. Planned upgrades is also important as it
may not be desirable to wait until a renewal is required to change the track assets. For
example if a track speed increase is desirable in 10 years, which will require improved
track assets, the model will need to know to upgrade the track assets at this time.

Speed Upgrade

P16 has an initial marking of upgradeS which consists of a selection of tokens for each
speed change that is desired throughout the model. Each token equates to one speed
change and must include the section number (s), the speed to change to (Uts) as well
as the time to the speed is changed (Ut). The tokens in P16 activate T11. T11 fires the
tokens to P17, with the tokens being delayed by Ut. When the tokens reach P17 they
activate T12 which takes the track section token to be changed from P2 and returns it
with a new track speed (Uts). Due to the track speed changing, the rate of degradation
would also change. This is accomplished by T12 first calculating the current vertical
geometry SD (CQ) and also the type of the last maintenance (M). The token returned
from T12 to P2 also updates the initial quality (q) with the current quality (CQ), updates
the last time of maintenance (t) to the current time (CT ). It also recalculates the
degradation rate (d), sampling from the Weibull distributions corresponding to the track
type (tt) and the previous type of maintenance (M), where M = 2 for tamping, 1 for
stoneblowing and 3 for renewal.

Track Type Upgrade

Similar to the speed upgrade, P18 starts with tokens of which sections to upgrade (s),
what to upgrade them to (Utt) and after how long (Ut), specified by upgradeT. The
tokens in P18 activate T14 which fires them to P19 after delay Ut. T13 is then activated,
which takes the corresponding track section token from P2. When T13 fires, it sends a
token back to P2, where it has been renewed with an updated track type of Utt. As part
of the forced renewal, the maintenance histories are returned to zero, a new degradation
rate is found, the initial geometry is set to 800 µm and the time of last maintenance is
updated to the current time. Additionally, a token is sent to P11 to count the renewal.
A token is also sent to P7 if maintenance is already planned on the track section to stop
the maintenance occurring.
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6.4.7 Rail Fault Model

In addition to predicting track geometry the model has also been designed to take into
account rail faults, in particular the link between rail faults and vertical geometry seen
in Section 5.3.2. This is accomplished in the subnet "Rail Fault Model", which is shown
in Figure 6.7. A port of P2 appears again in this subnet, linking the geometry and
rail fault models together. P20 has an initial marking (inspectT), which adds a token
for every track section with an associated TRUE variable. P20 activates T16, which
takes all the tokens in P20; then after 7 time steps, these are returned but with FALSE
values attached instead. This activates T20 which checks each section type similar to
the "Track Geometry Inspections" subnet described in Section 6.4.2. As part of the
check the track sections current quality (geometry) is found, which is used in the rail
fault model introduced in Section 5.4 to determine if a fault occurred and what fault
type it was (F!RF). The usage since the last fault check is also calculated and used in
the rail fault model to alter the rates (as the rates are for 1 EMGT). As each section
is one poskey there is no need to make an adjustment for track section length. If a
fault occurred (f > 0) a token is fired into P21. The token includes the track section
(s), the current time (CT ) and the fault type (f) and a boolean value to specify the
inspection type that can find the fault, based on the analysis in Section 5.2.1 and the f
values in Table 8.237. For example, if a squat occurs (f = 1) a token is fired to P21 with
an inspection type, it, of FALSE which means only ultrasonic inspections can find the
fault. This is based on the analysis in 5.2.1 which showed 84.4% of squats being found
using ultrasonic inspection. If the fault type can be found by either inspection method
(ultrasonic or visual) i.e. weld faults, then the token is duplicated, one with a TRUE
and one with a FALSE. P21 holds rail faults that have occurred but have not been found
yet.

P22 holds tokens for rail inspections. The initial marking adds two boolean tokens,
one TRUE and one FALSE. The TRUE token is for visual inspections and the FALSE
is for ultrasonic. Initially T18 is activated by P22. When T18 fires there is a delay
on the output arc back to P22. This delay is the time between inspections and are
normally distributed, with separate inspection regimes possible for visual and ultrasonic
inspections. When the tokens reach P22, if a fault has occurred and a token is in P21
which can be seen by the inspection type in P22 (same inspection type, it), T17 will
activate instead of T18 due to the higher priority of T17. This removes the fault from
P21 and moves it to P24 (fault identified). If the fault type was one that could be found
by either inspection type a token will be left in P21 of the inspection type that did not
occur. If this is the case T20 will activate and remove the extra token from P21 (the
fault had already been found). T19 is then activated. T19 finds the type of maintenance
used to fix the fault using the fault type, f , and the probabilities in Table 8.237. If a
grind is required it will return 1, weld = 2 and rerail = 3. T19 then fires the token to
P25. The token is delayed by the arc delay which calculates the time to perform the
maintenance based on the type of maintenance scheduled in T19. P25 collects a count
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of all the rail faults as well as their fault type (f), inspection type (it), track section it
occurred on (s), time fault occurred (ft), time fault was fixed (CT ) and maintenance
type (fmt)
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6.4.8 Possible Outputs

The model can output a large amount of data stored in the counting places (P5, P11,
P25). These include:

1. Quantity of track geometry and rail (visual and ultrasonic) inspections and when
they occurred, over a period of time.

2. Quantity of tamping, stoneblowing and track renewals, when they occurred and
on what track sections, over a period of time.

3. Number of rail faults that occurred, their types, what inspection method found
them and what maintenance method was used

4. Time from a rail fault occurring to it being found and maintained, involves both
inspection regimes and time to perform maintenance.

5. Amount of maintenance actions that are urgently required (speed restrictions ap-
plied) as well as the amount of time speed restrictions are in place.

6. Track quality conditions using the outputs from F!TQ (track geometry after tamp-
ing), F!TD (track geometry degradation rates after tamping), F!SQ (track geome-
try after stoneblowing), F!SD (track geometry degradation rates after stoneblow-
ing) and F!RD (track geometry after renewal), can be obtained using additional
software such as Matlab.

These outputs in addition to the large amount of possible inputs the model user can
change (maintenance thresholds, access time periods,time to perform different mainte-
nance, upgrades etc.), allows many aspects to be investigated including the impact of:

1. Usage change. Amount of trains traversing the track can change in the modelled
period as the degradation is related to usage not time. This allows the impact of
traffic changes on maintenance costs to be modelled and understood.

2. Change in the working window, and how this impacts the number of track sections
that can be maintained in a single maintenance visit. Shorter working windows
will reduce the quantity of opportunistic maintenance performed leading to more
maintenance visits.

3. Changes to inspection intervals and the speed that maintenance is undertaken. If
too long is spent undertaking maintenance or long times between inspections, more
urgent maintenance and hence speed restrictions will occur.

4. Changes to maintenance boundaries. Higher geometry boundaries will lead to less
geometry maintenance but a higher number of rail faults and lower average track
quality (and hence lower passenger comfort and safety).

5. Changing the track speed or asset types. This allows the impact of upgrades, and
whether they are good financial value, to be modelled. If an upgrade costs more
but is shown by the model to have minimal impact of maintenance saving, the
investment may not be worth it. Track speed is also important to understand,
as increasing the track speed, with reduced maintenance thresholds and increased
degradation, can lead to an increased amount of maintenance actions and hence
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more money required.
6. Changes to the rules of what maintenance type to choose. When should stoneblow-

ing start to be used, what conditions require a renewal over maintenance.

6.5 Example of Multi-Section Track Modelling

6.5.1 Introduction

To test the model it was decided to run an example line of track, using a time step of
one day and a time period of 60 years.

6.5.2 Line Selection and Variables

A rail track of 50 miles in length (400 poskeys) was tested within the model over a 60 year
period. The chosen line section included a selection of different speeds but was primarily
between 80-125MPH with sleepers choices (Track Type, tt, in the model) matched to
which track speeds they were most likely to occur on. For example, large concrete sleepers
for fast track and small steel and timbers for the slower track sections. This made sure the
track section to be tested was realistic, but also ensured that the related distributions
used were the ones based on the most data (higher confidence). The included track
sections were given starting conditions and maintenance histories which varied per section
instead of start from new. The global variables used are recorded in Table 6.5. For the
example sensible values were chosen by assessing past data. As no data was available for,
the times to perform maintenance once a threshold is past, rail inspection periods and
the time to action rail maintenance, these values were picked logically. Where urgent
maintenance is performed much faster and more complex maintenance such as Rerail,
takes longer to plan and action than grinding. The model rules are recorded in Table
6.6, where the usage has been given as a cumulative function. This allows the model to
calculate the expected cumulative tonnage (EMGT) at any point. The equation chosen
increases the traffic slightly each year, with the first year having 10 EMGT of traffic and
year 60 will have 16.3 EMGT.
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Table 6.5: Model Variables

Variable Value [days]

TI_mu 100

TI_sigma 10

TM_mu 60

TM_sigma 10

RIV_mu 50

RIV_sigma 5

RIU_mu 200

RIU_sigma 40

RMG_mu 14

RMG_sigma 2

RMW_mu 28

RMW_sigma 4

RMR_mu 60

RMR_sigma 5

Shift_Hrs 7

Table 6.6: Model Rules

Rule Boundaries

Stoneblowing Occurs after seven previous tamps

Renewal Occurs after two stoneblowing operations

Usage 10 ∗ (T/365)1.1 where T is in days

6.5.3 Results

Impact of Maintenance Thresholds

To assess the impact of changing the maintenance thresholds the model was run using the
thresholds in Table 6.7. Model A contains lower thresholds, hence it would be expected
that the average condition of the track will be better compared to B at the expense of
further maintenance actions. The thresholds for Model A were based on NR’s quality
bands, with opportunistic maintenance occurring when a track condition degraded to
very good, normal maintenance when it became good and urgent maintenance if the
quality became poor. Model B thresholds were set slightly higher to see the impact of
increasing the maintenance thresholds.

Chapter 6 Steve Clarke 236



Railway Track Asset Management Modelling

The model, as with all stochastic models, has completed running when convergence is
reached on the outputs. Convergence occurs when the running average becomes steady
(stops changing drastically). For the model proposed this occurs in about 1000 simu-
lations as seen in Figure 6.8a, each simulation took 12 minuets to calculate, with the
required 1000 simulations taking over a week to run. The high calculation time is due
to limitations within the computer program used (CPN-Tools). The average number
of tamping operations per year is given in Figure 6.8b. The figure shows that there is
a small steady increase in the number of tamping operations required a year for both
Model A and B. This is due to the usage not being constant throughout the 60 years,
instead following the usage equation in Table 6.6, which gives a steady increase of traffic
on the line.

Comparing the results given in Table 6.8, it can be seen that Model A with the lower
maintenance boundaries has a higher amount of tamping operations, stoneblowing op-
erations and renewals over the 60 year period. Remembering that renewals count the
number of 220 yd sections renewed as the model only undertakes one section renewal at
a time (no opportunistic renewals). Tamping and stoneblowing can occur over multiple
sections at a time via opportunistic maintenance and modelling the working window, but
each operation is only counted once (not the number of sections) as maintenance costs
tend to be per whole shift. By associating costs to maintenance procedures it is possible
to understand which maintenance thresholds lead to lower running costs of the railway
track. Some fabricated costs have been outlined in Table 6.9. Multiplying the costs by
the maintenance quantities for Model A and B in Table 6.8, gives Table 6.10. In this
table it can be seen that Model A, which had lower maintenance thresholds has higher
track geometry maintenance costs. This is due to more maintenance being required than
Model B to keep a higher quality level. Alternatively, the cost of rail maintenance costs
in lower in Model A (due to less rail maintenance required). This is due to the link
proved in Section 5.3.2, where worse track geometry leads to more rail faults. With the
average track geometry quality higher in Model A, due to the lower maintenance thresh-
olds, fewer rail faults occur. Overall, using the fabricated maintenance costs in Table
6.9, Model B was shown to have lower costs. This is due to the saving in track geometry
maintenance compared to Model A, being larger than the increase in rail maintenance
costs. If rail maintenance costs were much higher, Model A could become cheaper. The
track condition is not the same between Models A and B and also needs to be taken
into account when making asset management decisions. As the higher costs of Model
B maybe worse the improvement in average quality, and the advantages this brings like
improved passenger comfort safety.

The average geometry condition of each model can be seen in Figure 6.9. Track quality
is related to the required level of service, for example, a vertical geometry SD of 5 mm
on a slow track is safe but would not be on a fast track. Due to this the SD values have
been changed into quality bands. This is accomplished using Table 6.11 which aligns to
NR’s current quality band thresholds. Over the model simulations in each year for each
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track section the time spent in each band is recorded and the data collated across all
simulations and track sections to obtain an average condition band over the line for each
year. The average percent of each band is multiplied by a value between 0-1 to achieve
one number between 0-1 for the geometry quality, GeoQ. This is given by:

GeoQ = %Excelent∗1.0+%V.Good∗0.75+%Good∗0.5+%Poor∗0.25+%Red∗0

(6.1)

If a track section spent its entire time in excellent condition its condition score would by
1. Whereas if it spent half the time in good and half in poor the condition score would
be 0.375.

The condition results found at the bottom of Table 6.8 show that the average condition
of Model A is slightly above very good, whereas Model B is in between good and very
good. Looking at Figure 6.9 it can be seen that the condition of the track in both Model
A and B is decreasing with time, which is most likely to do with the growing level of
traffic being modelled. When the track condition falls into Super Red (the lowest quality
band) a speed restriction is imposed on the line to maintain safety. Model A spent 0.01%
of time (2.2 days) in Super Red whereas Model A was 0.03% of the time (6.6 days). Any
financial penalty of having to impose speed restrictions should be included. With the
condition, time with speed restrictions and costs predicted a decision can be made on
the preferable scenario.

Table 6.7: Track Geometry Maintenance Thresholds

Model A Threshold [um] Model B Threshold [um]
Speed
Band
(MPH)

Oppor-
tunistic Normal Urgent Oppor-

tunistic Normal Urgent

5-20 5200 7400 8300 6000 8000 8300

25-30 4300 6100 7000 5200 7400 7000

35-40 4100 5800 6700 4300 6100 6700

45-50 3800 5400 6300 4100 5800 6300

55-60 3500 5000 5900 3800 5400 5900

65-70 3000 4300 5400 3500 5000 5400

75-80 2700 3800 4800 3000 4300 4800

85-95 2200 3200 4000 2700 3800 4000

100-110 1900 2700 3400 2200 3200 3400

115-125 1700 2400 3000 1900 2700 3000
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Table 6.8: Maintenance Threshold Results Comparison

Activity Number in
Model A

Number in
Model B

Tamping Operations 2603 1943

Stoneblowing Operations 302 212

Sections Renewed (220yd) 401 290

Rail Faults (Rerail) 2027 2317

Rail Faults (Weld) 2259 2582

Rail Faults (Grind and Other) 1036 1184

Average Condition (GeoQ) 0.79 0.68

Table 6.9: Example Maintenance Activity Costs

Activity Cost [£]

Tamping Operation 5,000

Stoneblowing Operation 8,000

Renewal 40,000

Rerail 2,000

Weld Rail 500

Grind Rail 400

Table 6.10: Maintenance Threshold Results, Maintenance Costs Comparison

Activity Cost in Model A [£] Cost in Model B [£]

Tamping Operations 13,015,000 9,715,000

Stoneblowing Operations 2,416,000 1,696,000

Sections Renewed (220yd) 12,030,000 8,700,000

Track Geometry Maintenance Subtotal 27,461,000 20,111,000

Rail Faults (Rerail) 4,054,000 4,634,000

Rail Faults (Weld) 1,129,500 1,291,000

Rail Faults (Grind and Other) 414,400 473,600

Rail Fault Maitnenance Subtotal 5,597,900 6,398,600

Total 33,058,900 26,509,600
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Table 6.11: Track Geometry Condition Thresholds

Threshold [um]
Speed Band

(MPH) Excellent Very Good Good Poor
Super-Red
(Speed

Restriction)

5-20 5200 7400 8300 9900 >9900

25-30 4300 6100 7000 7700 >7700

35-40 4100 5800 6700 7200 >7200

45-50 3800 5400 6300 6700 >6700

55-60 3500 5000 5900 6300 >6300

65-70 3000 4300 5400 6000 >6000

75-80 2700 3800 4800 5700 >5700

85-95 2200 3200 4000 5300 >5300

100-110 1900 2700 3400 5000 >5000

115-125 1700 2400 3000 4700 >4700

(a) Model Convergence (b) Yearly Averages

Figure 6.8: Number of Tamping Operations (Model A and B)
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(a) Model A (b) Model B

Figure 6.9: Yearly Condition Results

Impact of Increased Time to Perform Maintenance

The developed model has many inputs which can be altered to assess the impact on the
track. When vertical geometry maintenance, tamping, stoneblowing and renewals, are
identified as required, the maintenance does not happen instantly. There maybe other
higher priority maintenance, or a lack of resources, which delays it. In the time it takes
to perform the maintenance, the track continues to degrade. Which may lead to urgent
maintenance being required (possibly at a higher cost) or even line speed restrictions.
The previous Model A was used as the baseline. This decision reduced the number of
times the model needed to be run, which was required due to the long calculation time.
Model A is compared to Model C. Where Model C has all the same variables and rules
as Model A (Tables 6.7, 6.6 and 6.5), but the variable TM_mu has been increased from
60 days to 120 days.

Results for Model C were calculated and compared to Model A, and can be seen in Table
6.12. For this comparison tamping and stoneblowing maintenance operations have been
split between normal and urgent. Urgent maintenance occurs when an inspection finds a
track section within the urgent threshold of Table 6.7. These are track sections which are
in poor condition and close to requiring speed restrictions for safety, so maintenance is
prioritised. The results show that, increasing the time to perform geometry maintenance
led too fewer operations and renewals occurring. Despite there being less tamping and
stoneblowing operations in Model C, there are more urgent operations required. Due
to the longer time from scheduling maintenance before it happens in Model C, more
degradation occurs before the section is maintained. If a section degrades quickly, and
an inspection happens before maintenance is complete, urgent maintenance is scheduled
instead. Urgent maintenance is likely to be more costly, due to short time frames, as
obtaining the required resources is more difficult and hence normally costly. Also, urgent

Chapter 6 Steve Clarke 241



Railway Track Asset Management Modelling

maintenance is often completed instead of another normal maintenance action, delaying
other maintenance which is required. In Table 6.13 it was presumed urgent maintenance
would be 50% more expensive. Note in this table Model C is still cheaper overall for
track geometry maintenance due to the cost saving from the reduction in maintenance
actions being greater than the cost of additional urgent maintenance actions.

The additional time to maintenance has reduced the overall amount of geometry mainte-
nance. There are two probable reasons. Due to the extra time to perform maintenance,
the average time between maintenance operations has increased, leading to less possible
in the 60 years modelled. Another reason will be due to opportunistic maintenance.
The extra time before maintenance increases the chance of track sections around the
targetted one degrading to a point where opportunistic maintenance is undertaken. This
leads to more track sections being maintained at a time. Reducing the over number
of maintenance actions, but not necessarily reducing the average number of tamps per
track section.

The conditions in Table 6.12 and in Figure 6.11 show that the average condition of the
track for Model C was lower than Model A. This is due to the extra time in good and
poor track conditions while waiting for maintenance. Due to the increasing traffic on
the track, which is governed by the commutative usage formula in Table 6.6, the average
number of maintenance actions per year slowly increases as seen in Figure 6.10b. The
lower average condition of the track in Model C led to an increase in the number of rail
faults and hence maintenance actions, as seen in Table 6.12.

Table 6.12: Time to Perform Maintenance Results Comparison

Activity Number in
Model A

Number in
Model C

Tamping Operations 2542 2112

Urgent Tamping Operations 61 109

Stoneblowing Operations 290 243

Urgent Stoneblowing Operations 12 13

Sections Renewed (220yd) 401 327

Rail Faults (Rerail) 2027 2170

Rail Faults (Weld) 2259 2351

Rail Faults (Grind and Other) 1036 1075

Average Condition (GeoQ) 0.79 0.73
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Table 6.13: Time to Perform Maintenance Results, Maintenance Costs Comparison

Activity Cost in Model A [£] Cost in Model C [£]

Tamping Operations 12,710,000 10,560,000

Urgent Tamping Operations (+50%) 457,500 817,500

Stoneblowing Operations 2,320,000 1,944,000

Urgent Stoneblowing Operations (+50%) 144,000 156,000

Sections Renewed (220yd) 12,030,000 9,810,000

Track Geometry Maintenance Subtotal 27,661,500 23,287,500

Rail Faults (Rerail) 4,054,000 4,340,000

Rail Faults (Weld) 1,129,500 1,175,500

Rail Faults (Grind and Other) 414,400 430,000

Rail Fault Maitnenance Subtotal 5,597,900 5,945,500

Total 33,259,400 29,233,000

(a) Model Convergence (b) Yearly Averages

Figure 6.10: Number of Tamping Operations
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(a) Model A (b) Model C

Figure 6.11: Yearly Condition Results

Impact of a Decreased Maintenance Window Length

The cost of maintenance is more related to the number of shifts of work than it is the
number of track sections maintained. Due to this the length of a maintenance shift, and
hence how much work can be completed in a shift, are very important to the cost of
maintaining a railway track. This is also an aspect previous models in literature have
not considered. In the previous Models A-C, the length in hours of a maintenance shift
was 7 hours. Using the maintenance output model introduced in Section 4.5.3, on Page
178, the median number of tamps and stoneblows in an 7 hour shift are 7.2 and 7.0
poskeys, respectively. To assess the impact of the maintenance window length, Model D
was calculated. Model D was given all the same parameters as Model A except for the
shift length which was decreased to 4 hours. Hence, in Model D, the median number of
tamps and stoneblows per shift are 4.1 and 4.0, respectively.

Reducing the working window was shown to increase the number of tamping operations,
but decrease the number of stoneblows and renewals. These results are seen in Table
6.14. Due to the reduced working window in Model D, each tamping operation maintains
fewer track sections (poskeys). To perform the same amount of tamping operations
on each track section, Model D requires more work shifts of tamping. The reduction
in stoneblowing and renewals occurs due to opportunistic maintenance. As less track
sections are being maintained at a time, fewer track sections are maintained within
the opportunistic thresholds in Table 6.7. This reduces the average quality of the track
slightly (0.76 vs 0.79) as on average track is being left longer until it is maintained, despite
the same maintenance thresholds. The model rules were set to switch to stoneblowing
after seven previous tamps, then renew after two stoneblows. As, on average, tamping
is being performed later in Model D, this means it takes longer (time and usage) before
the maintenance method is changed to stoneblowing. This Resulted in less stoneblows
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being required within the 60 year period modelled for model D. As renewals occur after
two stoneblows, Model D also sees a reduction in renewals.

Due to fewer renewals and less opportunistic maintenance the average track quality in
Model D is lower than A, as seen in Figure 6.13. This leads to the slight increase in rail
maintenance seen in Table 6.14. The costs in Table 6.15 show that, for the example mon-
etary values in Table 6.9, despite fewer renewals and stoneblowing operations in Model
D, the overall costs are still higher. Model D also had lower average track geometry. So
reducing the working window not only increases maintenance costs and occurrences, but
also leads to a reduction in the average track quality.

Table 6.14: Maintenance Window Length Results Comparison

Activity Number in
Model A

Number in
Model D

Tamping Operations 2603 3214

Stoneblowing Operations 302 260

Sections Renewed (220yd) 401 351

Rail Faults (Rerail) 2027 2080

Rail Faults (Weld) 2259 2411

Rail Faults (Grind and Other) 1036 1099

Average Condition (GeoQ) 0.79 0.76

Table 6.15: Maintenance Window Length Results, Maintenance Costs Comparison

Activity Cost in Model A [£] Cost in Model D [£]

Tamping Operations 13,015,000 16,070,000

Stoneblowing Operations 2,416,000 2,080,000

Sections Renewed (220yd) 12,030,000 10,530,000

Track Geometry Maintenance Subtotal 27,461,000 28,680,000

Rail Faults (Rerail) 4,054,000 4,160,000

Rail Faults (Weld) 1,129,500 1,205,500

Rail Faults (Grind and Other) 414,400 439,600

Rail Fault Maitnenance Subtotal 5,597,900 5,805,100

Total 33,058,900 34,485,100
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Figure 6.12: Yearly Averages of Tamping, Model A and D

(a) Model A (b) Model D

Figure 6.13: Yearly Condition Results

6.5.4 Summary

A railway track is a complex system that can be difficult to model. Despite this, the
CPN model proposed in this chapter has many features which include:

1. Geometry degradation and rail fault occurrences with the link between them.
2. Usage based, hence changes in the track usage are included in the model.
3. Rail model includes two types of inspections and three types of maintenance to

take into the variation in inspection and maintenance type depending on the rail
fault type.

4. Track model includes renewals, tamping and stoneblowing, as well as opportunistic
maintenance with clustering techniques which resembles track engineer decisions.

5. Can be used on any length of single line track over any time period.
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6. Changes to the track speed at any point in the time period being modelled, as well
as forced renewal upgrades and upgrades when a renewal is required.

7. Allows change in working window lengths to be modelled.
8. Works as a framework that additional modules can be added to improve the model’s

capability.
9. Outputs large amounts of useful data such as the number of different maintenance

actions and inspections which can be used to calculate the cost of the track mod-
elled. Track quality outputs can be calculated from the outputs separately (Matlab
has been used in the Thesis).

10. Due to the model inputs allowing for the user to set the initial track qualities, the
model can be applied to any track section with known data. It does not require
the track sections to start in a new state. This allows the model to be used on any
existing railway.

The modular approach used in the CPN model’s design allows additional aspects to be
added to the model relatively simply. This is due to utilising a CPN as a decision-
making model and framework for other models to run within, which is an extension
on how previous research has utilised a CPN technique, (Yianni, 2017; Kilsby, 2017;
Audley, 2014). The track geometry degradation model is a linear model with distributed
parameters, geometry maintenance is a linear model with distributed residues and the
rail fault model is a simple probability based model. All the individual models are
stochastic and solved using Monte-Carlo but deterministic models would also work. For
example, if a sleeper degradation model was developed, it would be inserted as its own
subpage within the model, linking to P2, the primary track section pool (where all track
information is stored within the model), similarly to the rail fault model.

6.5.5 Limitations

The developed model has some limitations:

1. Lack of data. Due to lack of data not all significant factors are included within the
model, such as the impact of rail type on rail faults.

2. Running Time. The model time to calculate (full-convergence) can take many days
depending on the time period and track length modelled. This is due to the complex
nature of the model and limitations in the software its built in (CPN-Tools).

3. The clustering method used for opportunistic maintenance assumption of sequen-
tial track sections means it cannot account for branches or gaps in the line. Only
a single line can be modelled at a time.

4. Rail fault model can only predict the occurrence of one fault per track section at a
time (7 day period), when multiple faults could occur in real life. The 7 day period
can be reduced to lower the impact of this at the expense of the models running
time.
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6.5.6 Results

The developed model has demonstrated its ability to assess many aspects within a railway
tracks asset management process. The impact of different inputs of the model have been
assessed by keeping all other aspects constant. This includes:

• Higher (less strict) geometry thresholds;
– Lead to less geometry maintenance operations but an increase in rail faults

and hence repairs.
– A reduction in the average geometry quality which may impact safety/passenger

comfort.
– A larger percentage of speed restrictions was also seen (Model A 0.01%; Model

B 0.03%) which have associated costs as well as reducing the reputation of
the network operator.

• Increasing Traffic;
– Reduces the track quality as the traffic increases.
– As traffic levels increase the number of maintenance operations, like tamping,

required per year, increases. This is due to the increased rate of geometry
degradation and rail fault occurrences caused by increased traffic.

• Increase in time from identifying the need for geometry maintenance and it being
completed;
– Reduces the overall number of track geometry maintenance actions, but in-

creases the number of urgent interventions.
– Less geometry maintenance, reduces the average track quality, and increases

the number of rail faults that need to be maintained.
• Decrease in the period of a track geometry maintenance shift (tamping and stoneblow-

ing);
– As fewer track sections can be maintained in a shift, less opportunistic main-

tenance occurs. Leading to more shifts of tamping required.
– Due to the period which tamping is used to correct the track geometry in-

creases, the number of stoneblowing and renewals within the 60 years de-
creases.

– Despite more tamping operations, the average track quality still reduces.

Within this Thesis costs of maintenance activities have been fabricated. To fully under-
stand and analyse the outputs from the model, accurate costs will have to be incorpo-
rated. This will enable the user to understand aspects such as if the cost saving from
reducing geometry maintenance is greater than the cost of repairing the additional rail
faults.
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Chapter 7

Conclusions

This thesis outlines the development of a railway track model, capable of accurately
predicting future maintenance requirements, and hence costs. The model allows asset
management strategies to be predicted and compared to help make informed decisions.
The production of the model was undertaken after extensive analysis of not only the
geometry degradation, but also maintenance effectiveness, maintenance output rates
and rail faults. This is the first study to consider and analyse the maintenance output
rates.

Due to the amount of available actual real life data and the degree of analysis undertaken
(such as number of factors considered), the analysis in this thesis is one of the most
detailed and overarching undertaken in the field of railway track. The multiple aspects
analysed were individually modelled within a Coloured Petri Nets (CPNs), which was
used as a decision framework and to capture outputs. This is a very novel use of CPN,
and makes the final model design extremely flexible (with separate modules (smaller
models), joined together). Due to this the model design will scale better than models
developed in previous research as more track aspects are included.

The proposed model covers more aspects of a railway track than the ones found it liter-
ature. This includes, track geometry degradation, maintenance effectiveness (tamping,
stoneblowing and renewals), rail faults (multiple types), rail maintenance (multiple types
related to the faults found), geometry and rail inspections, opportunistic maintenance,
maintenance shift lengths and changes in traffic levels. Previous models have tended to
concentrate on one aspect. The link between the track geometry and the number of rail
faults has never been quantified or modelled before, neither has the impact of changing
maintenance windows lengths.

The final model uses a novel approach to CPNs, is based on a large amount of research
and analysis (as shown in Chapters 2-5), and has demonstrated its ability to represent
a railway over a long time period. Additionally, it has shown the impact of changing
different asset management policies on the number of maintenance actions and track
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condition can be compared and analysed.

7.1 Track Geometry Degradation

Using data supplied by Network Rail (NR), a detailed analysis of degradation rates was
performed. It was found that track geometry tended to follow a linear relationship with
usage. Many techniques were employed to maximise the amount of usable data, including
predicting historical maintenance actions and renewal dates, allowing for the full cycle of
a railway track to be analysed. This included up to 10 tamps and 3 stoneblows, whereas
previous research by Audley (2014), using a similar sized dataset also from NR, only
included up to 2 tamps and did not analyse stoneblowing.

The analysis showed that maintenance history, track speed, sleeper and rail joint types
were the primary factors influencing vertical geometry degradation rates. These were
expected based on previous literature. The analysis was able to prove that certain
options within these factors performed similarly, so could be grouped to maximise the
size of datasets to feed into a stochastic model. For example, there were three distinct
groups of sleepers (small concrete and large steel, large concrete and timber and small
steel), which performed significantly different from each other. As steel sleepers are still
relatively new, the results give confidence in their use as large steel sleepers were shown
to perform similarly to small concrete ones.

Many aspects were explored, many of which had not been analysed in literature (or
minimal previous work), such as the embankments, soil and rock cuttings, tunnels and
stations, curvature and cant, electrification, percentage of dirty traffic and the geology
of layers under the ballast. The results showed that the bedrock geology, electrification
type, dirty traffic percentage and curvature were factors which impacted the rate of
degradation. This is important as many of these have not been identified in previous
work. Previous research had singled out rail type as being one of the leading factors. On
initial analysis the results agreed, but when a multi-level analysis was undertaken (to
remove as many factors as possible before comparing), it was shown that the rail type
has minimal impact. As the rail type is linked to the sleeper type, it was proved that the
improvement from larger rails actually comes from the larger sleepers used with them.

Using the results from the analysis, data was split into similar track sections, based on
the primary factors and the groups found within these. Weibull distributions were then
used to represent the variability of linear degradation rates of vertical track geometry
Standard Deviation (SD) against usage.
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7.2 Maintenance Effectiveness

Railway geometry maintenance does not return the track to an as good as new state. The
degree of improvement returned from the primary two maintenance actions, tamping and
stoneblowing, were analysed. Tamping is much more common than stoneblowing and
has been used for a much longer time period. Due to this very few sources in literature
discuss the effectiveness of stoneblowing.

The results showed a linear relationship between the initial and resultant quality. Both
tamping and stoneblowing were proved to become less effective with continual use on
the same track section, this has been previously proved for tamping but not stoneblow-
ing. Additionally, the data showed that maintenance can have a negative effect, with
many tamps, and even more for stoneblows, actually reducing the track quality. This
has not been mentioned in most previous literature where it is incorrectly assumed all
maintenance improves the track quality. Previous research identified track speed as an
important factor, but the analysis results showed no impact on stoneblowing and mini-
mal on tamping, except for track speeds >=115MPH, which was significantly different
from the rest. Due to the decrease in effectiveness found in stoneblowing after many uses,
it is recommended to renew the track after the second stoneblowing operation. This is
important knowledge when deciding maintenance regimes.

A model was developed that combined a linear relationship with a stochastic element
to account for the variability in the data. This type of model has been used previously
for track degradation but not maintenance effectiveness. The linear model related the
resultant geometry after maintenance to the geometry before. The analysis showed that
the variability in improvement increases with the initial geometry (heteroscedasticity).
This has previously not been considered in literature and was used to normalise the
variability before a Weibull distribution was fitted. It is an important aspect to con-
sider, as waiting longer to perform maintenance (higher vertical geometry SD), increases
the average improvement but also decreases the confidence on estimating the resultant
geometry.

The maintenance output rate was analysed as no previous literature existed. The length
of maintenance activities (in time) and the output rate (yds/hr) were considered. The
results showed that the output rate for stoneblowing is slightly lower than tamping. This
increases the cost of stoneblowing (£/yd) compared to tamping due to most costs being
per shift (plant and labour)). With an understanding of the output rates of maintenance
the impact of the length (in time) of the maintenance shifts can be modelled. This
allows decisions such as running trains later in the day, which will reduce the time for
maintenance work, to be modelled and understood in advance. The model consists of
two Weibull distributions to represent the spread of outputs rates found for tamping and
stoneblowing, these are multiplied by the maintenance length (in hours) to obtain an
estimate of the length of track that could be maintained in one maintenance shift.
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7.3 Rail Faults

Rail faults are common and vary in nature, with 12 separate rail fault types identified
on the UK rail network. The analysis undertaken used the occurrence of rail faults
associated to the usage not time. This is uncommon in research, where previous research
has used time instead, but very important due to the amount of rail faults caused by
fatigue. Many aspects were shown to impact the rate of rail faults. By analysing the
fault types separately, it was possible to see that the same factors do not impact all types
of faults in the same way. This is important as faults types have different inspection and
maintenance regimes as well as some being more dangerous than others. This adds more
depth to the understanding of rail fault occurrences than previous analysis has shown.
For example fatigue related faults were shown to be most depended on the rail age, as
these are discovered using ultrasonic inspections, it might be desirable to increase the
number of ultrasonic inspections on track with older rail (>20 years old).

Previous research mentioned that rail faults were related to the forces on the rails. As
the track geometry governs the smoothness of the running surface, and hence impacts
the forces, it was thought that the two must be linked. Previous research has never
demonstrated a link between the conditions of the assets within the railway track system.
As the railway track is operated as one system, it is important to understand how
decisions based on one asset in the system, impacts the other assets. For example, a
decision to save money by reducing the number of geometry maintenance actions, may
increase the number of faults and hence costs of maintaining the rail. By relating fault
rates (by usage), with the track geometry recordings it was possible to quantify the link
between them. This proved, for all rail fault types, that the occurrence rate increases
with worsening track geometry.

A rail fault model has been proposed that includes the proven link between the occurrence
rate of rail faults and track geometry. As this link has never been shown in previous
literature, it has never been considered in a rail fault model. The link was quantified
using a cubic function. To obtain the probability of each fault type, the average track
geometry for a chosen time period is entered, with the results multiplied by the usage
in the same period. Once a probability is found, occurrences are sampled using Monte-
Carlo method. The model allows the impact on the amount of rail faults from different
track geometry SD to be calculated and understood.

7.4 Railway Track Asset Management Model

A railway track is a complex system, with many assets and degradation mechanisms.
There are also a lot of possible asset management decisions which need to be understood.
Due to this a complete railway track model is complex. Utilising the knowledge obtained
from the extensive analysis undertaken, a hierarchical CPN model was developed. It
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incorporated the individual models proposed in this thesis and the required decision
making aspects to make an asset management model (such as what type and when to
maintain). The model was designed as separate modules joined together by a master Net,
where each module has a different aspect to model, such as rail faults or opportunistic
maintenance. This design allows the model to easily scale to include more aspects,
such as including a sleeper model. By combining the separate models together within
the CPN, information is shared and interactions can be modelled. This is required as
aspects such as the rail model, need the geometry information from the track geometry
degradation and maintenance model to calculate (due to the new link found in this
thesis between geometry and rail faults). The track geometry degradation model is a
linear model with distributed parameters, geometry maintenance is a linear model with
distributed residues and the rail fault model is a simple probability based model. This
novel approach to using CPNs as a decision framework for other models, allowing them to
work together and interact, has been proved to be very successful with many advantages,
such as scalability and readability.

The model introduced includes many aspects which have not previously been considered
in literature including: modelling the working window length for maintenance, main-
tenance of geometry up to a high amount of previous tamps, stoneblows being based
on actual data, rail faults link to track geometry and different types of rail faults and
inspections (some rail faults can only be found with certain inspection methods). Other
aspects such as opportunistic maintenance with a simple clustering methodology are also
included.

The model allows for many inputs to be changed, allowing the user to understand the
possible impact of different asset management policies. This includes aspects such as
inspection intervals, time to complete different maintenance actions, rules of when to
use stoneblowing and renewals, changes in traffic, assets or line speeds, maintenance
thresholds and maintenance shift lengths. Many aspects can be outputted for analysis,
most importantly; the number of different inspections and maintenance actions (overall
and in each year), number of these which were urgently required, expected track quality
(overall and in each year) and number of speed restrictions. Due to the stochastic nature
of the model, each of these outputs results give a range of possibilities. All these aspects
together create a very comprehensive railway track model.

7.5 Future Work

Despite this thesis developing a detailed asset management model for railway track, due
to the complex nature of degradation and maintenance of track there are still many
aspects of improvement. These include:

1. Improvements to the separate models. Many models, such as rail faults, have been
introduced, each of which can be improved individually, improving the overall
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model. Some possibilities include:
• Geometry Degradation Model. One possible approach assessed was the Gamma

process. The Gamma Process is well suited to model gradual degradation,
which is monotonic (condition always decreasing), such as wear and erosion,
(Abdel-Hameed, 1975). The Gamma process relates the degradation rates
to the gamma distribution. The distribution varies in time, as time goes by
the time to failure (passing maintenance thresholds) decreases, so does the
variation. The gamma process is related to Markov and such is memoryless,
calculating degradation in small, independent, random steps. This is shown
in Figure 7.1, where the linear fit presumes a constant degradation rate with
time, unlike the gamma process. The linear fit presumes that after two in-
spections (or one with a known starting quality), the point of failure is known.
The Gamma process results have been shown to be more realistic, especially
at the tails of possible results, (Yuan, 2005). Due to the random movements
in each step, issues such as the sampling of very low degradation rates leading
to track sections in the model not requiring maintenance for an unrealistic pe-
riod of time maintenance, are removed. The Gamma process could be utilised
in the CPN similarly to the method currently used in this thesis (Weibull dis-
tribution of degradation rates), as it can be used to calculate the track quality
at any point of time (or usage), which can then be checked against the main-
tenance thresholds by the CPN model. The Gamma process would need to
be linked to the track geometry maintenance, to account for maintenance not
returning track to as good as new.

• Rail Fault Model. The current model links the impact of track geometry on
the fault occurrence rate using regression. Due to this it is not possible to
simply calculate the times to a fault, but have to solve by Monte-Carlo for each
time step separately to assess if a fault occurred. This makes the fault rate
memoryless with a constant hazard rate. Reliability/survival models are very
common and have been well researched. One of the most common types are
Cox models, in particular Proportional Hazards Models. These use regression
to link survive times (times to failure) to predictors. The model type allows
for both categorical and quantitative inputs (such as rail joint type or track
geometry), (Cox, 1972). Due to the link to track geometry, which is a function
of time, the model will have to be extended as discussed by Martinussen and
Scheike (2006). This type of model would bring many advantages over the
current memoryless model. The Cox model would allow times to the next fault
to be calculated, which is much quicker than the current process of checking
probabilities in time steps, until a fault occurs. The Cox model could also
take into account more of the factors which influence the rate of faults, as
these would become inputs to the regression model. The assumptions of the
Cox model will have to be checked before its application, such as constant
proportionality between the different variables hazard curves, Calavas (1994).
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If the rail fault model was changed to a Cox model approach, some minor
alterations to the CPN model would be required.

2. Maintenance machine availability. The model developed presumes that there will
always be tampers and stoneblowers available. This will not always be true with
situations where stoneblowers are used purely because a tamping machine may not
be available. The inclusion of this would also allow decisions of the maintenance
fleet size to be modelled and informed decisions made. Adding a machine avail-
ability model into the present Petri Net (PN) would be possible and has previously
been done Audley (2014).

3. Develop a clustering methodology for the Opportunistic Maintenance which can
take into account track sections with multiple lines and branches. This will allow
larger sections of railway lines to be modelled.

4. Integrate more maintenance techniques. Only the main three types of track geom-
etry maintenance; tamping, stoneblowing and renewals have been included within
the model. Additional methods such as partial renewals and manual maintenance
could be included.

5. Sleeper and Switches and Crossing (S&C) models. This thesis has only explored the
degradation and maintenance of plain line track and rails. An additional module
which includes a model for railway sleepers could be added to the Petri-Net model
in this thesis. A S&C model would be important due to the higher levels of
derogation and risk of failure at these track locations.

6. Obtain accurate costs of work. These would have to be related to shift costs (of
varying shift lengths) for performing tamping and stoneblowing. The inspections
and rail faults would have to be a cost each. Due to the varying nature of costs of
maintenance these costs could also be distributed. Multiplied by the quantities of
inspections and maintenance outputted by the model to obtain predicted costs.

7. More data. This will improve the analysis undertaken, the distribution fits used
in the model and the amount the data can be split by the significant factors.
This could be from more years of NR collecting data or obtaining data from other
sources such as countries.

8. Speed up the model. The model is slow due to its complexity as well as the
limitations of the program it was built in (CPN-Tools), such as lack of multi-
core Central processing unit (CPU) support. The PN model could be sped up by
developing the model in a coding language such as C++ as shown by Yianni (2017)
and Kilsby (2017). Yianni (2017) also shows how utilising a computer Graphics
Processing Unit (GPU) can sped up PNs even further. Additional changes to the
calculation method could also speed up the time for the model results to converge
such as using Latin Hypercube instead of Monte-Carlo. Speeding up the model
would allow further results to be run and compared.

9. Optimisation. Despite the developed model being able to output results based on
the users input it currently cannot tell the user the optimum inputs and hence the
optimum asset management strategy. Optimisation works well on PNs models as
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shown by Yianni (2017), Kilsby (2017) and Audley (2014) who all utilised generic
algorithms. Genetic algorithms basically run the model a certain number of times
varying the inputs. It then takes the inputs with the best results and combines them
(like natural selection, best survive and have offspring) . Results are calculated for
the new inputs and the process repeats until the results stop improving. For an
asset management model if everything has accurate costs minimising the model
output cost would be the most effective asset management decisions.

As the model does not need asset conditions to start in a new state, it can be applied
to any railway track, as long as the basic input information is known (last inspection
and quality, track assets, line speed and maintenance history). To enable the model to
be used commercially, such as by NR, points 5 and 7 will need to be rectified. The
model needs to be rebuilt utilising faster technology to greatly reduce the running time,
as the current runtime of over a week to obtain results is not feasible in a commercial
setting. Also, to fully compare the results out of the model, the outputs such as number
of tamping actions, need to be accurately costed.

(a) Linear Degradation (b) Gamma Process Degradation

Figure 7.1: Example of Track Recordings of Vertical Alignment, (Yuan, 2005)
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Table 8.1: Comparison of deterministic track degradation models

Model Input Outputs Additional Factors Relationship Degradation Rate Page

Alva-Hurtado and
Selig’s strain model

Cycles Strain Semi-
logarithmic

Decreasing 31

Selig and Waters’
strain and
settlement models

Cycles or
tonnage

Strain or settlement Power Decreasing 32

Shenton’s settlement
model

Cycles Settlement Axle load, rail section, sleeper type
and spacing, track and subgrade
stiffness, previous maintenance,
ballast condition

Power +
Linear

Fast up to
1,000,000 cycles
then slows

33

Sato’s settlement
models

Cycles or
tonnage

Settlement Vertical acceleration required to
initiate slip, sleeper pressure, peek
acceleration of the ballast particles
(ballast condition and saturation),
and ballast packing quality.

Exponential +
Linear

Fast then slows
with the point of
change depending
upon the initial
ballast packing

33

TU Munich
settlement models

Cycles Settlement Pressure in the ballast Other Fast up to 10,000
cycles then slows

34

Office of Research
and Experiments’
track geometry
models

Tonnage Settlement or
vertical, alignment
or twist geometry
SD

Subgrade quality, ballast condition Semi-
logarithmic

Fast up to
2,000,000
standard axles
then slows

34

Velt’s track quality
model

Time Track quality Exponential Increasing 35

Continues on the next page
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Model Input Outputs Additional Factors Relationship Degradation Rate Page

Office of Research
and Experiments’
track quality model

Tonnage Combined Track
Record (CTR) index

Axle load Other Decreasing 36

Sato’s track damage
model

Tonnage Track irregularities Speed, rail type (Continuous
Welded Rail (CWR) vs jointed),
subgrade quality, quasi static
pressure in the ballast, acceleration
of the rail and other rail properties.

Other N/A 36

Wisc-Rail Cycles or
tonnage

Strain or vertical
geometry SD and
Ballast Fouling
Index (BFI)

Subgrade classification, ballast
saturation, traffic axle loads, ballast
fouling, subgrade static strength,
ballast thickness, rate of fouling.

Semi-
logarithmic up
to 0.3 Million
Gross Tonnage
(MGT) then
linear

Fast but
decreasing up to
10,000 cycles
(0.3 MGT) then
constant

36

Multivariate
statistical analysis
approach

Tonnage Degradation rate of
twist, alignment,
cant or vertical
geometry

Traffic load, velocity, curvature
(cant), gradient, sleeper, rail, rail
length, falling rocks, flood. No rail
for vertical, twist and cant.

Linear Constant 40

ECOTRACK
geometry
degradation rate
model

Tonnage Geometry
degradation rate and
maintenance
effectiveness

Infrastructure with conditions Linear Constant 41

Network Rail’s
geometry
degradation model

Time Vertical geometry
SD

Infrastructure, conditions, traffic
(axles, volumes), speed, rail
properties, static and dynamic
forces, Rolling Contact Fatique
(RCF), sleeper spacing and stiffness
and BFI.

Exponential-
Power

Decreasing 43
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Table 8.2: Comparison of adaptive network and fuzzy interface systems track degradation models

Model Inputs Outputs Model
Type Page

Type 2 fuzzy reasoning model SD of alignment, vertical level, cross-level, gauge, rail
wear and corrugations

Time to
maintenance

Fuzzy
Interface
System
(FIS)

46

Ottomanelli et al.’s maintenance occurrence
model

SD until alignment and vertical level thresholds, time
since last tamping action

Time to tamping
maintenance

Adaptive
Neural-
based
Fuzzy
Inference
System
(ANFIS)

46

Dell’orco et al.’s Maintenance Occurrence
Model

SD of alignment, vertical level and cross-level,
previous number of tamping actions and time since
last tamp

Time to tamping
maintenance

ANFIS 47

Shafahi et al.’s Artificial Neural Network and
Adaptive Neural-based Fuzzy Inference System
Models

CTR index state for last five years, traffic volume,
maximum speed, topography, gradient and curvature

CTR index state
for the next year

Artificial
Neural
Network
(ANN) and
ANFIS

48
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Table 8.3: Comparison of stochastic track degradation models

Model Main
Input

Outputs Additional
Factors

Relationship Degradation Rate Page

Quiroga and Schnieder’s track
quality model

Time Track quality Exponential Increasing 49

Andrade and Teixeira’s track
geometry degradation model

Tonnage Vertical geometry SD Bridges, Plain
Line (PL),
stations and
switches

Linear Constant 49

Caetano and Teixeira’s track
geometry degradation model

Tonnage Vertical geometry SD Amount of
Previous Data

Linear Constant 50

Shafahi and Hakhamameshi’s
discrete-time Markov chain
degradation model

Time CTR index Topography
(plain, hilly etc.),
traffic (light,
heavy)

N/A Increasing 51

Prescott and Andrews’s
continuous-time Markov chain
model

Time Amount of
maintenance, renewals
and speed and line
restrictions. Time
spent in each condition
state.

Previous
maintenance
actions

Unknown 53

Andrews’s Petri Net asset
management model

Time Amount of
maintenance, renewals
and line restrictions.

Previous
maintenance
actions

Linear Constant 58

Network Rail’s geometry faults
model

Time Occurrences for
geometry faults

Vertical geometry
SD

NA NA 60
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8.2 Track Geometry Degradation
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Maintenance R 1T 2T 3T 4T 5T 6T 7T 8T 9T 10T 1S 2S 3S 4S 5S 6S 7S

Data A (Usage) 6022 920 240 58 22 7 1 0 0 0 0 239 41 10 4 2 0 0

Data A (Time) 6080 927 242 59 23 7 1 0 0 0 0 241 41 10 4 2 0 0

Data B (Usage) 0 3942 3284 2584 1889 1423 1344 1210 1397 1422 1442 764 158 55 23 11 3 1

Data B (Time) 0 3990 3296 2595 1901 1431 1357 1224 1415 1430 1447 772 158 55 23 11 3 1

Total (Usage) 6022 4862 3524 2642 1911 1430 1345 1210 1397 1422 1442 1003 199 65 27 13 3 1

Total (Time) 6080 4917 3538 2654 1924 1438 1358 1224 1415 1430 1447 1013 199 65 27 13 3 1

8S TS T2S T3S T4S T5S T6S 2TS 2T2S 2T3S 2T4S 3TS 3T2S 3T3S 3T4S 3T5S 4TS 4T2S 4T3S 4T4S

0 33 5 1 0 0 0 7 0 1 0 1 0 0 0 0 1 0 0 0

0 33 5 1 0 0 0 7 0 1 0 1 0 0 0 0 1 0 0 0

1 671 153 52 12 3 1 694 141 35 7 691 110 26 13 2 574 126 41 9

1 673 153 52 12 3 1 696 141 35 7 692 110 26 13 2 576 126 41 9

1 704 158 53 12 3 1 701 141 36 7 692 110 26 13 2 575 126 41 9

1 706 158 53 12 3 1 703 141 36 7 693 110 26 13 2 577 126 41 9

4T5S 4T6S 5TS 5T2S 5T3S 5T4S 5T5S 6TS 6T2S 6T3S 6T4S 7TS 7T2S 7T3S 8TS 8T2S 9TS Total Maintenance

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 7615 Data A (Usage)

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 7686 Data A (Time)

2 1 591 132 36 10 2 598 80 23 8 718 141 27 691 137 779 28290 Data B (Usage)

2 1 591 132 36 10 2 602 80 23 8 721 141 27 692 138 782 28466 Data B (Usage)

2 1 591 132 36 10 2 598 80 23 8 718 141 27 691 137 779 35905 Total (Usage)

2 1 591 132 36 10 2 602 80 23 8 721 141 27 692 138 782 36152 Total (Time)

Table 8.4: Amount of Poskeys With Degradation Data
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8.2.1 Stations and Tunnels

Data Amounts

Stations and Tunnels Neither Sta-
tions

Tun-
nels

Data
A

Usage

Datasets Used 7 2 2

Data points Used 6185 282 318

Data
B

Usage

Datasets Used 34 15 6

Data points Used 22413 1031 341

Table 8.5: Data Amounts for Stations and Tunnels

2-Tailed Hypothesis Tests

Stations and Tunnels Neither Sta-
tions

Tun-
nels

Neither 1.00 0.39 0.05

Station 0.39 1.00 0.03

Tunnel 0.05 0.03 1.00

Table 8.6: Mean 2 Tailed K-S and Mann Whitney U Test p-values for Stations and
Tunnels (Data A, Usage)

Stations and Tunnels Neither Sta-
tions

Tun-
nels

Neither 0.00 0.00 0.75

Station 0.00 0.00 0.75

Tunnel 0.75 0.75 0.00

Table 8.7: Mean 2 Tailed K-S and Mann Whitney U Test for Stations and Tunnels
(Data A, Usage)
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Stations and Tunnels Neither Sta-
tions

Tun-
nels

Neither 1.00 0.30 0.35

Station 0.30 1.00 0.26

Tunnel 0.35 0.26 1.00

Table 8.8: Mean 2 Tailed K-S and Mann Whitney U Test p-values for Stations and
Tunnels (Data B, Usage)

Stations and Tunnels Neither Sta-
tions

Tun-
nels

Neither 0.00 0.40 0.33

Station 0.40 0.00 0.33

Tunnel 0.33 0.33 0.00

Table 8.9: Mean 2 Tailed K-S and Mann Whitney U Test for Stations and Tunnels
(Data B, Usage)

1-Tailed Hypothesis Tests

Stations and Tunnels Neither Sta-
tions

Tun-
nels

Neither NA 0.20 0.49

Station 0.76 NA 0.50

Tunnel 0.52 0.50 NA

Table 8.10: Mean 1 Tailed K-S and Mann Whitney U Test p-values for Stations and
Tunnels (Data A, Usage)

Stations and Tunnels Neither Sta-
tions

Tun-
nels

Neither NA 0.00 0.50

Station 0.00 NA 0.50

Tunnel 0.25 0.50 NA

Table 8.11: Mean 1 Tailed K-S and Mann Whitney U Test for Stations and Tunnels
(Data A, Usage)
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Stations and Tunnels Neither Sta-
tions

Tun-
nels

Neither NA 0.26 0.62

Station 0.74 NA 0.73

Tunnel 0.38 0.33 NA

Table 8.12: Mean 1 Tailed K-S and Mann Whitney U Test p-values for Stations and
Tunnels (Data B, Usage)

Stations and Tunnels Neither Sta-
tions

Tun-
nels

Neither NA 0.40 0.17

Station 0.00 NA 0.00

Tunnel 0.25 0.42 NA

Table 8.13: Mean 1 Tailed K-S and Mann Whitney U Test for Stations and Tunnels
(Data B, Usage)

8.2.2 Track Type

Data Amounts

Track Type CWR Jointed

Data
A

Usage

Datasets Used 7 0

Data points Used 6663 0

Data
B

Usage

Datasets Used 35 11

Data points Used 22989 549

Table 8.14: Data Amounts for Track Type
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2-Tailed Hypothesis Tests

Track Type CWR Jointed

CWR 1.00 0.00

Jointed 0.00 1.00

Table 8.15: Mean 2 Tailed K-S and Mann Whitney U Test p-values for Track Type
(Data B, Usage)

Track Type CWR Jointed

CWR 0.00 1.00

Jointed 1.00 0.00

Table 8.16: Mean 2 Tailed K-S and Mann Whitney U Test for Track Type (Data B,
Usage)

1-Tailed Hypothesis Tests

Track Type CWR Jointed

CWR NA 0.00

Jointed 1.00 NA

Table 8.17: Mean 1 Tailed K-S and Mann Whitney U Test p-values for Track Type
(Data B, Usage)

Track Type CWR Jointed

CWR NA 1.00

Jointed 0.00 NA

Table 8.18: Mean 1 Tailed K-S and Mann Whitney U Test for Track Type (Data B,
Usage)
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8.2.3 Track Construction

Data Amounts

Track Construction A B C D

Data
A

Usage

Datasets Used 7 4 1 0

Data points Used 5490 1036 47 0

Data
B

Usage

Datasets Used 24 29 15 7

Data points Used 6546 15085 1024 331

Table 8.19: Data Amounts for Track Construction

2-Tailed Hypothesis Tests

Track Construction A B

A 1.00 0.21

B 0.21 1.00

Table 8.20: Mean 2 Tailed K-S and Mann Whitney U Test p-values for Track
Construction (Data A, Usage)

Track Construction A B

A 0.00 0.75

B 0.75 0.00

Table 8.21: Mean 2 Tailed K-S and Mann Whitney U Test for Track Construction
(Data A, Usage)

Track Construction A B C D

A 1.00 0.08 0.00 0.00

B 0.08 1.00 0.02 0.00

C 0.00 0.02 1.00 0.00

D 0.00 0.00 0.00 1.00

Table 8.22: Mean 2 Tailed K-S and Mann Whitney U Test p-values for Track
Construction (Data B, Usage)
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Track Construction A B C D

A 0.00 0.67 1.00 1.00

B 0.67 0.00 0.90 1.00

C 1.00 0.90 0.00 1.00

D 1.00 1.00 1.00 0.00

Table 8.23: Mean 2 Tailed K-S and Mann Whitney U Test for Track Construction
(Data B, Usage)

1-Tailed Hypothesis Tests

Track Construction A B

A NA 0.11

B 0.92 NA

Table 8.24: Mean 1 Tailed K-S and Mann Whitney U Test p-values for Track
Construction (Data A, Usage)

Track Construction A B

A NA 0.75

B 0.00 NA

Table 8.25: Mean 1 Tailed K-S and Mann Whitney U Test for Track Construction
(Data A, Usage)

Track Construction A B C D

A NA 0.06 0.00 0.00

B 0.94 NA 0.01 0.00

C 0.99 0.94 NA 0.00

D 1.00 1.00 0.99 NA

Table 8.26: Mean 1 Tailed K-S and Mann Whitney U Test p-values for Track
Construction (Data B, Usage)
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Track Construction A B C D

A NA 0.80 1.00 1.00

B 0.00 NA 0.97 1.00

C 0.00 0.00 NA 1.00

D 0.00 0.00 0.00 NA

Table 8.27: Mean 1 Tailed K-S and Mann Whitney U Test for Track Construction
(Data B, Usage)

8.2.4 Track Category

Data Amounts

Track Category 1A 1 2 3 4 5 6

Data
A

Usage

Datasets Used 3 5 4 4 2 2 0

Data points Used 341 1718 2160 1352 857 242 0

Data
B

Usage

Datasets Used 12 23 27 25 22 20 1

Data points Used 1258 3414 4326 6945 4674 2575 26

Table 8.28: Data Amounts for Track Category

2-Tailed Hypothesis Tests

Track Category 1A 1 2 3 4 5

1A 1.00 0.00 0.00 0.00 0.00 0.00

1 0.00 1.00 0.18 0.02 0.00 0.00

2 0.00 0.18 1.00 0.10 0.00 0.00

3 0.00 0.02 0.10 1.00 0.00 0.00

4 0.00 0.00 0.00 0.00 1.00 0.01

5 0.00 0.00 0.00 0.00 0.01 1.00

Table 8.29: Mean 2 Tailed K-S and Mann Whitney U Test p-values for Track Category
(Data A, Usage)
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Track Category 1A 1 2 3 4 5

1A 0.00 1.00 1.00 1.00 1.00 1.00

1 1.00 0.00 0.50 0.88 1.00 1.00

2 1.00 0.50 0.00 0.50 1.00 1.00

3 1.00 0.88 0.50 0.00 1.00 1.00

4 1.00 1.00 1.00 1.00 0.00 1.00

5 1.00 1.00 1.00 1.00 1.00 0.00

Table 8.30: Mean 2 Tailed K-S and Mann Whitney U Test for Track Category (Data
A, Usage)

Track Category 1A 1 2 3 4 5

1A 1.00 0.30 0.00 0.00 0.00 0.00

1 0.30 1.00 0.08 0.00 0.00 0.00

2 0.00 0.08 1.00 0.06 0.00 0.00

3 0.00 0.00 0.06 1.00 0.05 0.00

4 0.00 0.00 0.00 0.05 1.00 0.01

5 0.00 0.00 0.00 0.00 0.01 1.00

Table 8.31: Mean 2 Tailed K-S and Mann Whitney U Test p-values for Track Category
(Data B, Usage)

Track Category 1A 1 2 3 4 5

1A 0.00 0.42 0.96 1.00 1.00 1.00

1 0.42 0.00 0.70 1.00 1.00 1.00

2 0.96 0.70 0.00 0.81 0.98 1.00

3 1.00 1.00 0.81 0.00 0.86 1.00

4 1.00 1.00 0.98 0.86 0.00 0.98

5 1.00 1.00 1.00 1.00 0.98 0.00

Table 8.32: Mean 2 Tailed K-S and Mann Whitney U Test for Track Category (Data
B, Usage)
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1-Tailed Hypothesis Tests

Track Category 1A 1 2 3 4 5

1A NA 0.00 0.00 0.00 0.00 0.00

1 0.93 NA 0.09 0.01 0.00 0.00

2 1.00 0.94 NA 0.24 0.00 0.00

3 1.00 0.99 0.78 NA 0.00 0.00

4 1.00 1.00 1.00 1.00 NA 0.00

5 1.00 1.00 1.00 1.00 1.00 NA

Table 8.33: Mean 1 Tailed K-S and Mann Whitney U Test p-values for Track Category
(Data A, Usage)

Track Category 1A 1 2 3 4 5

1A NA 1.00 0.00 1.00 1.00 1.00

1 0.00 NA 0.75 1.00 1.00 1.00

2 0.00 0.00 NA 0.75 1.00 1.00

3 0.00 0.00 0.00 NA 1.00 1.00

4 0.00 0.00 0.00 0.00 NA 1.00

5 0.00 0.00 0.00 0.00 0.00 NA

Table 8.34: Mean 1 Tailed K-S and Mann Whitney U Test for Track Category (Data
A, Usage)

Track Category 1A 1 2 3 4 5

1A NA 0.20 0.00 0.00 0.00 0.00

1 0.74 NA 0.04 0.00 0.00 0.00

2 0.97 0.93 NA 0.04 0.00 0.00

3 1.00 0.98 0.95 NA 0.05 0.00

4 1.00 1.00 0.99 0.95 NA 0.00

5 1.00 1.00 1.00 1.00 0.99 NA

Table 8.35: Mean 1 Tailed K-S and Mann Whitney U Test p-values for Track Category
(Data B, Usage)
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Track Category 1A 1 2 3 4 5

1A NA 0.50 1.00 1.00 1.00 1.00

1 0.00 NA 0.78 1.00 1.00 1.00

2 0.00 0.00 NA 0.90 0.98 1.00

3 0.00 0.00 0.00 NA 0.90 1.00

4 0.00 0.00 0.00 0.00 NA 0.98

5 0.00 0.00 0.00 0.00 0.00 NA

Table 8.36: Mean 1 Tailed K-S and Mann Whitney U Test for Track Category (Data
B, Usage)

8.2.5 Track

Data Amounts

Track PL S&C

Data
A

Usage

Datasets Used 7 1

Data points Used 6700 116

Data
B

Usage

Datasets Used 35 3

Data points Used 23832 121

Table 8.37: Data Amounts for Track

2-Tailed Hypothesis Tests

Track PL S&C

PL 1.00 0.21

S&C 0.21 1.00

Table 8.38: Mean 2 Tailed K-S and Mann Whitney U Test p-values for Track (Data B,
Usage)

Track PL S&C

PL 0.00 0.33

S&C 0.33 0.00

Table 8.39: Mean 2 Tailed K-S and Mann Whitney U Test for Track (Data B, Usage)
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1-Tailed Hypothesis Tests

Track PL S&C

PL NA 0.74

S&C 0.23 NA

Table 8.40: Mean 1 Tailed K-S and Mann Whitney U Test p-values for Track (Data B,
Usage)

Track PL S&C

PL NA 0.00

S&C 0.67 NA

Table 8.41: Mean 1 Tailed K-S and Mann Whitney U Test for Track (Data B, Usage)

8.2.6 Route Criticality

Data Amounts

Route Criticality 1 2 3 4 5

Data
A

Usage

Datasets Used 5 4 4 3 2

Data points Used 1351 1274 2343 1317 433

Data
B

Usage

Datasets Used 21 25 26 26 20

Data points Used 3020 3315 5356 7610 4252

Table 8.42: Data Amounts for Route Criticality

2-Tailed Hypothesis Tests

Route Criticality 1 2 3 4 5

1 1.00 0.39 0.02 0.00 0.00

2 0.39 1.00 0.00 0.00 0.00

3 0.02 0.00 1.00 0.28 0.00

4 0.00 0.00 0.28 1.00 0.00

5 0.00 0.00 0.00 0.00 1.00

Table 8.43: Mean 2 Tailed K-S and Mann Whitney U Test p-values for Route
Criticality (Data A, Usage)
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Route Criticality 1 2 3 4 5

1 0.00 0.00 0.88 1.00 1.00

2 0.00 0.00 1.00 1.00 1.00

3 0.88 1.00 0.00 0.67 1.00

4 1.00 1.00 0.67 0.00 1.00

5 1.00 1.00 1.00 1.00 0.00

Table 8.44: Mean 2 Tailed K-S and Mann Whitney U Test for Route Criticality (Data
A, Usage)

Route Criticality 1 2 3 4 5

1 1.00 0.25 0.14 0.00 0.00

2 0.25 1.00 0.10 0.03 0.00

3 0.14 0.10 1.00 0.10 0.00

4 0.00 0.03 0.10 1.00 0.03

5 0.00 0.00 0.00 0.03 1.00

Table 8.45: Mean 2 Tailed K-S and Mann Whitney U Test p-values for Route
Criticality (Data B, Usage)

Route Criticality 1 2 3 4 5

1 0.00 0.21 0.68 1.00 1.00

2 0.21 0.00 0.65 0.91 1.00

3 0.68 0.65 0.00 0.76 1.00

4 1.00 0.91 0.76 0.00 0.80

5 1.00 1.00 1.00 0.80 0.00

Table 8.46: Mean 2 Tailed K-S and Mann Whitney U Test for Route Criticality (Data
B, Usage)
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1-Tailed Hypothesis Tests

Route Criticality 1 2 3 4 5

1 NA 0.51 0.01 0.00 0.00

2 0.49 NA 0.00 0.00 0.00

3 0.94 0.99 NA 0.20 0.00

4 1.00 1.00 0.81 NA 0.00

5 1.00 1.00 1.00 0.98 NA

Table 8.47: Mean 1 Tailed K-S and Mann Whitney U Test p-values for Route
Criticality (Data A, Usage)

Route Criticality 1 2 3 4 5

1 NA 0.00 0.88 1.00 1.00

2 0.00 NA 1.00 1.00 1.00

3 0.00 0.00 NA 0.67 1.00

4 0.00 0.00 0.00 NA 1.00

5 0.00 0.00 0.00 0.00 NA

Table 8.48: Mean 1 Tailed K-S and Mann Whitney U Test for Route Criticality (Data
A, Usage)

Route Criticality 1 2 3 4 5

1 NA 0.30 0.09 0.00 0.00

2 0.67 NA 0.07 0.01 0.00

3 0.94 0.93 NA 0.10 0.00

4 0.99 0.99 0.88 NA 0.02

5 1.00 1.00 1.00 0.98 NA

Table 8.49: Mean 1 Tailed K-S and Mann Whitney U Test p-values for Route
Criticality (Data B, Usage)
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Route Criticality 1 2 3 4 5

1 NA 0.31 0.63 1.00 1.00

2 0.07 NA 0.73 0.91 1.00

3 0.00 0.00 NA 0.84 1.00

4 0.00 0.00 0.02 NA 0.85

5 0.00 0.00 0.00 0.00 NA

Table 8.50: Mean 1 Tailed K-S and Mann Whitney U Test for Route Criticality (Data
B, Usage)

8.2.7 Embankments, Soil Cuttings and Rock Cuttings

Data Amounts

Geotechnical Infrastructure None
Em-
bank-
ments

Soil
Cut-
tings

Rock
Cut-
tings

Data
A

Usage

Datasets Used 5 4 4 1

Data points Used 2409 2083 1581 51

Data
B

Usage

Datasets Used 27 28 26 3

Data points Used 7823 8206 5187 86

Table 8.51: Data Amounts for Embankments, Soil Cuttings and Rock Cuttings

2-Tailed Hypothesis Tests

Geotechnical Infrastructure None
Em-
bank-
ments

Soil
Cut-
tings

None 1.00 0.21 0.34

Embankment 0.21 1.00 0.12

Soil Cutting 0.34 0.12 1.00

Table 8.52: Mean 2 Tailed K-S and Mann Whitney U Test p-values for Embankments,
Soil Cuttings and Rock Cuttings (Data A, Usage)
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Geotechnical Infrastructure None
Em-
bank-
ments

Soil
Cut-
tings

None 0.00 0.38 0.50

Embankment 0.38 0.00 0.13

Soil Cutting 0.50 0.13 0.00

Table 8.53: Mean 2 Tailed K-S and Mann Whitney U Test for Embankments, Soil
Cuttings and Rock Cuttings (Data A, Usage)

Geotechnical Infrastructure None
Em-
bank-
ments

Soil
Cut-
tings

Rock
Cut-
tings

None 1.00 0.39 0.42 0.62

Embankment 0.39 1.00 0.38 0.53

Soil Cutting 0.42 0.38 1.00 0.44

Rock cutting 0.62 0.53 0.44 1.00

Table 8.54: Mean 2 Tailed K-S and Mann Whitney U Test p-values for Embankments,
Soil Cuttings and Rock Cuttings (Data B, Usage)

Geotechnical Infrastructure None
Em-
bank-
ments

Soil
Cut-
tings

Rock
Cut-
tings

None 0.00 0.19 0.26 0.00

Embankment 0.19 0.00 0.19 0.00

Soil Cutting 0.26 0.19 0.00 0.00

Rock cutting 0.00 0.00 0.00 0.00

Table 8.55: Mean 2 Tailed K-S and Mann Whitney U Test for Embankments, Soil
Cuttings and Rock Cuttings (Data B, Usage)
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1-Tailed Hypothesis Tests

Geotechnical Infrastructure None
Em-
bank-
ments

Soil
Cut-
tings

None NA 0.54 0.25

Embankment 0.50 NA 0.06

Soil Cutting 0.70 0.89 NA

Table 8.56: Mean 1 Tailed K-S and Mann Whitney U Test p-values for Embankments,
Soil Cuttings and Rock Cuttings (Data A, Usage)

Geotechnical Infrastructure None
Em-
bank-
ments

Soil
Cut-
tings

None NA 0.25 0.50

Embankment 0.13 NA 0.38

Soil Cutting 0.00 0.00 NA

Table 8.57: Mean 1 Tailed K-S and Mann Whitney U Test for Embankments, Soil
Cuttings and Rock Cuttings (Data A, Usage)

Geotechnical Infrastructure None
Em-
bank-
ments

Soil
Cut-
tings

Rock
Cut-
tings

None NA 0.48 0.51 0.33

Embankment 0.47 NA 0.55 0.56

Soil Cutting 0.47 0.42 NA 0.47

Rock cutting 0.72 0.48 0.55 NA

Table 8.58: Mean 1 Tailed K-S and Mann Whitney U Test p-values for Embankments,
Soil Cuttings and Rock Cuttings (Data B, Usage)
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Geotechnical Infrastructure None
Em-
bank-
ments

Soil
Cut-
tings

Rock
Cut-
tings

None NA 0.09 0.14 0.00

Embankment 0.13 NA 0.08 0.00

Soil Cutting 0.16 0.19 NA 0.00

Rock cutting 0.00 0.17 0.17 NA

Table 8.59: Mean 1 Tailed K-S and Mann Whitney U Test for Embankments, Soil
Cuttings and Rock Cuttings (Data B, Usage)

8.2.8 Curvature

Data Amounts

Curvature [m−1] 0 0-
0.0005 0.0005-

0.001

0.001-
0.002

Data
A

Usage

Datasets Used 5 4 3 1

Data points Used 2755 756 568 71

Data
B

Usage

Datasets Used 29 20 20 8

Data points Used 11211 2078 1442 245

Table 8.60: Data Amounts for Curvature

2-Tailed Hypothesis Tests

Curvature [m−1] 0 0-
0.0005 0.0005-

0.001

0 1.00 0.39 0.37

0-0.0005 0.39 1.00 0.44

0.001-0.002 0.37 0.44 1.00

Table 8.61: Mean 2 Tailed K-S and Mann Whitney U Test p-values for Curvature
(Data A, Usage)
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Curvature [m−1] 0 0-
0.0005 0.0005-

0.001

0 0.00 0.50 0.17

0-0.0005 0.50 0.00 0.17

0.001-0.002 0.17 0.17 0.00

Table 8.62: Mean 2 Tailed K-S and Mann Whitney U Test for Curvature (Data A,
Usage)

Curvature [m−1] 0 0-
0.0005 0.0005-

0.001

0.001-
0.002

0 1.00 0.31 0.38 0.32

0-0.0005 0.31 1.00 0.31 0.10

0.0005-0.001 0.38 0.31 1.00 0.27

0.001-0.002 0.32 0.10 0.27 1.00

Table 8.63: Mean 2 Tailed K-S and Mann Whitney U Test p-values for Curvature
(Data B, Usage)

Curvature [m−1] 0 0-
0.0005 0.0005-

0.001

0.001-
0.002

0 0.00 0.23 0.08 0.44

0-0.0005 0.23 0.00 0.15 0.50

0.0005-0.001 0.08 0.15 0.00 0.31

0.001-0.002 0.44 0.50 0.31 0.00

Table 8.64: Mean 2 Tailed K-S and Mann Whitney U Test for Curvature (Data B,
Usage)
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1-Tailed Hypothesis Tests

Curvature [m−1] 0 0-
0.0005 0.0005-

0.001

0 NA 0.81 0.68

0-0.0005 0.21 NA 0.39

0.001-0.002 0.18 0.50 NA

Table 8.65: Mean 1 Tailed K-S and Mann Whitney U Test p-values for Curvature
(Data A, Usage)

Curvature [m−1] 0 0-
0.0005 0.0005-

0.001

0 NA 0.00 0.00

0-0.0005 0.50 NA 0.17

0.001-0.002 0.33 0.00 NA

Table 8.66: Mean 1 Tailed K-S and Mann Whitney U Test for Curvature (Data A,
Usage)

Curvature [m−1] 0 0-
0.0005 0.0005-

0.001

0.001-
0.002

0 NA 0.77 0.39 0.22

0-0.0005 0.21 NA 0.22 0.05

0.0005-0.001 0.55 0.77 NA 0.20

0.001-0.002 0.73 0.89 0.81 NA

Table 8.67: Mean 1 Tailed K-S and Mann Whitney U Test p-values for Curvature
(Data B, Usage)
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Curvature [m−1] 0 0-
0.0005 0.0005-

0.001

0.001-
0.002

0 NA 0.00 0.10 0.50

0-0.0005 0.28 NA 0.20 0.69

0.0005-0.001 0.03 0.00 NA 0.44

0.001-0.002 0.00 0.00 0.00 NA

Table 8.68: Mean 1 Tailed K-S and Mann Whitney U Test for Curvature (Data B,
Usage)

8.2.9 Cant

Data Amounts

Cant [cm] 0 0-40 40-80 80-210

Data
A

Usage

Datasets Used 5 2 3 2

Data points Used 2747 353 626 402

Data
B

Usage

Datasets Used 29 19 20 17

Data points Used 11201 1126 1841 913

Table 8.69: Data Amounts for Cant

2-Tailed Hypothesis Tests

Cant [cm] 0 0-40 40-80 80-210

0 1.00 0.54 0.51 0.04

0-40 0.54 1.00 0.24 0.02

40-80 0.51 0.24 1.00 0.11

80-210 0.04 0.02 0.11 1.00

Table 8.70: Mean 2 Tailed K-S and Mann Whitney U Test p-values for Cant (Data A,
Usage)
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Cant [cm] 0 0-40 40-80 80-210

0 0.00 0.00 0.33 0.75

0-40 0.00 0.00 0.50 1.00

40-80 0.33 0.50 0.00 0.00

80-210 0.75 1.00 0.00 0.00

Table 8.71: Mean 2 Tailed K-S and Mann Whitney U Test for Cant (Data A, Usage)

Cant [cm] 0 0-40 40-80 80-210

0 1.00 0.48 0.36 0.40

0-40 0.48 1.00 0.41 0.45

40-80 0.36 0.41 1.00 0.44

80-210 0.40 0.45 0.44 1.00

Table 8.72: Mean 2 Tailed K-S and Mann Whitney U Test p-values for Cant (Data B,
Usage)

Cant [cm] 0 0-40 40-80 80-210

0 0.00 0.05 0.15 0.18

0-40 0.05 0.00 0.08 0.13

40-80 0.15 0.08 0.00 0.18

80-210 0.18 0.13 0.13 0.00

Table 8.73: Mean 2 Tailed K-S and Mann Whitney U Test for Cant (Data B, Usage)

1-Tailed Hypothesis Tests

Cant [cm] 0 0-40 40-80 80-210

0 NA 0.39 0.77 0.82

0-40 0.55 NA 0.87 1.00

40-80 0.28 0.12 NA 0.81

80-210 0.02 0.01 0.05 NA

Table 8.74: Mean 1 Tailed K-S and Mann Whitney U Test p-values for Cant (Data A,
Usage)
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Cant [cm] 0 0-40 40-80 80-210

0 NA 0.00 0.00 0.00

0-40 0.00 NA 0.00 0.00

40-80 0.33 0.50 NA 0.00

80-210 0.75 1.00 0.75 NA

Table 8.75: Mean 1 Tailed K-S and Mann Whitney U Test for Cant (Data A, Usage)

Cant [cm] 0 0-40 40-80 80-210

0 NA 0.50 0.54 0.57

0-40 0.52 NA 0.53 0.62

40-80 0.42 0.44 NA 0.57

80-210 0.37 0.35 0.43 NA

Table 8.76: Mean 1 Tailed K-S and Mann Whitney U Test p-values for Cant (Data B,
Usage)

Cant [cm] 0 0-40 40-80 80-210

0 NA 0.13 0.05 0.12

0-40 0.00 NA 0.03 0.00

40-80 0.15 0.16 NA 0.06

80-210 0.21 0.19 0.21 NA

Table 8.77: Mean 1 Tailed K-S and Mann Whitney U Test for Cant (Data B, Usage)

8.2.10 Maximum Axle Load

Data Amounts

Maximum Axle Load [Tonnes] 0-22 23-25 26

Data
A

Usage

Datasets Used 3 4 5

Data points Used 792 2046 3874

Data
B

Usage

Datasets Used 20 28 29

Data points Used 5581 8150 9938

Table 8.78: Data Amounts for Maximum Axle Load
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2-Tailed Hypothesis Tests

Maximum Axle Load [Tonnes] 0-22 23-25 26

0-22 1.00 0.11 0.25

23-25 0.11 1.00 0.19

26 0.25 0.19 1.00

Table 8.79: Mean 2 Tailed K-S and Mann Whitney U Test p-values for Maximum Axle
Load (Data A, Usage)

Maximum Axle Load [Tonnes] 0-22 23-25 26

0-22 0.00 0.00 0.67

23-25 0.00 0.00 0.75

26 0.67 0.75 0.00

Table 8.80: Mean 2 Tailed K-S and Mann Whitney U Test for Maximum Axle Load
(Data A, Usage)

Maximum Axle Load [Tonnes] 0-22 23-25 26

0-22 1.00 0.15 0.07

23-25 0.15 1.00 0.27

26 0.07 0.27 1.00

Table 8.81: Mean 2 Tailed K-S and Mann Whitney U Test p-values for Maximum Axle
Load (Data B, Usage)

Maximum Axle Load [Tonnes] 0-22 23-25 26

0-22 0.00 0.75 0.85

23-25 0.75 0.00 0.45

26 0.85 0.45 0.00

Table 8.82: Mean 2 Tailed K-S and Mann Whitney U Test for Maximum Axle Load
(Data B, Usage)
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1-Tailed Hypothesis Tests

Maximum Axle Load [Tonnes] 0-22 23-25 26

0-22 NA 0.28 0.88

23-25 0.66 NA 0.88

26 0.13 0.10 NA

Table 8.83: Mean 1 Tailed K-S and Mann Whitney U Test p-values for Maximum Axle
Load (Data A, Usage)

Maximum Axle Load [Tonnes] 0-22 23-25 26

0-22 NA 0.33 0.00

23-25 0.00 NA 0.00

26 0.67 0.75 NA

Table 8.84: Mean 1 Tailed K-S and Mann Whitney U Test for Maximum Axle Load
(Data A, Usage)

Maximum Axle Load [Tonnes] 0-22 23-25 26

0-22 NA 0.89 0.93

23-25 0.08 NA 0.70

26 0.07 0.27 NA

Table 8.85: Mean 1 Tailed K-S and Mann Whitney U Test p-values for Maximum Axle
Load (Data B, Usage)

Maximum Axle Load [Tonnes] 0-22 23-25 26

0-22 NA 0.00 0.00

23-25 0.80 NA 0.04

26 0.90 0.46 NA

Table 8.86: Mean 1 Tailed K-S and Mann Whitney U Test for Maximum Axle Load
(Data B, Usage)
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8.2.11 Electrification

Data Amounts

Electrification None OLE 3rd/4th

Rail

Data
A

Usage

Datasets Used 4 5 2

Data points Used 4108 2094 529

Data
A

Usage

Datasets Used 29 28 22

Data points Used 14063 6083 3621

Table 8.87: Data Amounts for Electrification

2-Tailed Hypothesis Tests

Electrification None OLE 3rd/4th

Rail

None 1.00 0.00 0.00

OLE 0.00 1.00 0.00

3rd/4th Rail 0.00 0.00 1.00

Table 8.88: Mean 2 Tailed K-S and Mann Whitney U Test p-values for Electrification
(Data A, Usage)

Electrification None OLE 3rd/4th

Rail

None 0.00 1.00 1.00

OLE 1.00 0.00 1.00

3rd/4th Rail 1.00 1.00 0.00

Table 8.89: Mean 2 Tailed K-S and Mann Whitney U Test for Electrification (Data A,
Usage)
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Electrification None OLE 3rd/4th

Rail

None 1.00 0.02 0.04

OLE 0.02 1.00 0.18

3rd/4th Rail 0.04 0.18 1.00

Table 8.90: Mean 2 Tailed K-S and Mann Whitney U Test p-values for Electrification
(Data B, Usage)

Electrification None OLE 3rd/4th

Rail

None 0.00 0.93 0.95

OLE 0.93 0.00 0.43

3rd/4th Rail 0.95 0.43 0.00

Table 8.91: Mean 2 Tailed K-S and Mann Whitney U Test for Electrification (Data B,
Usage)

1-Tailed Hypothesis Tests

Electrification None OLE 3rd/4th

Rail

None NA 1.00 0.99

OLE 0.00 NA 0.00

3rd/4th Rail 0.00 0.98 NA

Table 8.92: Mean 1 Tailed K-S and Mann Whitney U Test p-values for Electrification
(Data A, Usage)

Electrification None OLE 3rd/4th

Rail

None NA 0.00 0.00

OLE 1.00 NA 1.00

3rd/4th Rail 1.00 0.00 NA

Table 8.93: Mean 1 Tailed K-S and Mann Whitney U Test for Electrification (Data A,
Usage)
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Electrification None OLE 3rd/4th

Rail

None NA 0.98 0.97

OLE 0.01 NA 0.16

3rd/4th Rail 0.02 0.78 NA

Table 8.94: Mean 1 Tailed K-S and Mann Whitney U Test p-values for Electrification
(Data B, Usage)

Electrification None OLE 3rd/4th

Rail

None NA 0.00 0.00

OLE 0.96 NA 0.57

3rd/4th Rail 0.95 0.00 NA

Table 8.95: Mean 1 Tailed K-S and Mann Whitney U Test for Electrification (Data B,
Usage)

8.2.12 Rail Type

Data Amounts

Rail Type
95lb
Bull-
head

98lb
Flat-
bot-
tom

109lb
Flat-
bot-
tom

110lb
Flat-
bot-
tom

113lb
Flat-
bot-
tom

UIC
60

Data
A

Usage

Datasets Used 0 0 1 0 4 5

Data points Used 0 0 27 0 2978 3468

Data
B

Usage

Datasets Used 7 5 9 18 31 12

Data points Used 259 154 369 1154 17926 2999

Table 8.96: Data Amounts for Rail Type
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2-Tailed Hypothesis Tests

Rail Type

113lb
Flat-
bot-
tom

UIC
60

113lb Flatbottom 1.00 0.22

UIC 60 0.22 1.00

Table 8.97: Mean 2 Tailed K-S and Mann Whitney U Test p-values for Rail Type
(Data A, Usage)

Rail Type

113lb
Flat-
bot-
tom

UIC
60

113lb Flatbottom 0.00 0.75

UIC 60 0.75 0.00

Table 8.98: Mean 2 Tailed K-S and Mann Whitney U Test for Rail Type (Data A,
Usage)

Rail Type
95lb
Bull-
head

98lb
Flat-
bot-
tom

109lb
Flat-
bot-
tom

110lb
Flat-
bot-
tom

113lb
Flat-
bot-
tom

UIC
60

95lb Bullhead 1.00 0.06 0.00 0.00 0.00 0.00

98lb Flatbottom 0.06 1.00 0.16 0.14 0.00 0.00

109lb Flatbottom 0.00 0.16 1.00 0.18 0.09 0.00

110lb Flatbottom 0.00 0.14 0.18 1.00 0.22 0.02

113lb Flatbottom 0.00 0.00 0.09 0.22 1.00 0.06

UIC 60 0.00 0.00 0.00 0.02 0.06 1.00

Table 8.99: Mean 2 Tailed K-S and Mann Whitney U Test p-values for Rail Type
(Data B, Usage)
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Rail Type
95lb
Bull-
head

98lb
Flat-
bot-
tom

109lb
Flat-
bot-
tom

110lb
Flat-
bot-
tom

113lb
Flat-
bot-
tom

UIC
60

95lb Bullhead 0.00 0.70 1.00 1.00 1.00 1.00

98lb Flatbottom 0.70 0.00 0.30 0.80 1.00 1.00

109lb Flatbottom 1.00 0.30 0.00 0.44 0.78 1.00

110lb Flatbottom 1.00 0.80 0.44 0.00 0.61 0.86

113lb Flatbottom 1.00 1.00 0.78 0.61 0.00 0.83

UIC 60 1.00 1.00 1.00 0.86 0.83 0.00

Table 8.100: Mean 2 Tailed K-S and Mann Whitney U Test for Rail Type (Data B,
Usage)

1-Tailed Hypothesis Tests

Rail Type

113lb
Flat-
bot-
tom

UIC
60

113lb Flatbottom NA 0.86

UIC 60 0.12 NA

Table 8.101: Mean 1 Tailed K-S and Mann Whitney U Test p-values for Rail Type
(Data A, Usage)

Rail Type

113lb
Flat-
bot-
tom

UIC
60

113lb Flatbottom NA 0.00

UIC 60 0.75 NA

Table 8.102: Mean 1 Tailed K-S and Mann Whitney U Test for Rail Type (Data A,
Usage)
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Rail Type
95lb
Bull-
head

98lb
Flat-
bot-
tom

109lb
Flat-
bot-
tom

110lb
Flat-
bot-
tom

113lb
Flat-
bot-
tom

UIC
60

95lb Bullhead NA 0.98 1.00 1.00 1.00 1.00

98lb Flatbottom 0.03 NA 0.75 0.87 0.98 1.00

109lb Flatbottom 0.00 0.23 NA 0.69 0.93 0.99

110lb Flatbottom 0.00 0.07 0.28 NA 0.87 0.99

113lb Flatbottom 0.00 0.00 0.04 0.13 NA 0.97

UIC 60 0.00 0.00 0.00 0.01 0.03 NA

Table 8.103: Mean 1 Tailed K-S and Mann Whitney U Test p-values for Rail Type
(Data B, Usage)

Rail Type
95lb
Bull-
head

98lb
Flat-
bot-
tom

109lb
Flat-
bot-
tom

110lb
Flat-
bot-
tom

113lb
Flat-
bot-
tom

UIC
60

95lb Bullhead NA 0.00 0.00 0.00 0.00 0.00

98lb Flatbottom 0.80 NA 0.10 0.00 0.00 0.00

109lb Flatbottom 1.00 0.40 NA 0.11 0.00 0.00

110lb Flatbottom 1.00 0.80 0.50 NA 0.00 0.00

113lb Flatbottom 1.00 1.00 0.78 0.69 NA 0.00

UIC 60 1.00 1.00 1.00 0.86 0.88 NA

Table 8.104: Mean 1 Tailed K-S and Mann Whitney U Test for Rail Type (Data B,
Usage)
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8.2.13 Rail Types Reduced Groups

Second Layer Analysis

Data Amounts

Rail Type Group Group
1

Group
2

Group
3

Data
A

Usage

Datasets Used 0 9 10

Data points Used 0 2884 3374

Data
B

Usage

Datasets Used 8 86 19

Data points Used 346 18958 2807

Group 1 95lb Bullhead, 98lb Flatbottom

Group 2 109, 110lb, 113lb Flatbottom

Group 3 UIC 60

Table 8.105: Data Amounts for Rail Types Grouped

2-Tailed Hypothesis Tests

Rail Type Group Group
2

Group
3

Group 2 1.00 0.20

Group 3 0.20 1.00

Group 2 109, 110lb, 113lb Flatbottom

Group 3 UIC 60

Table 8.106: Mean 2 Tailed K-S and Mann Whitney U Test p-values for Rail Types
Grouped (Data A, Usage)
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Rail Type Group Group
2

Group
3

Group 2 0.00 0.57

Group 3 0.57 0.00

Group 2 109, 110lb, 113lb Flatbottom

Group 3 UIC 60

Table 8.107: Mean 2 Tailed K-S and Mann Whitney U Test for Rail Types Grouped
(Data A, Usage)

Rail Type Group Group
1

Group
2

Group
3

Group 1 1.00 0.00 NaN

Group 2 0.00 1.00 0.13

Group 3 NaN 0.13 1.00

Group 1 95lb Bullhead, 98lb Flatbottom

Group 2 109, 110lb, 113lb Flatbottom

Group 3 UIC 60

Table 8.108: Mean 2 Tailed K-S and Mann Whitney U Test p-values for Rail Types
Grouped (Data B, Usage)

Rail Type Group Group
1

Group
2

Group
3

Group 1 0.00 1.00 NaN

Group 2 1.00 0.00 0.69

Group 3 NaN 0.69 0.00

Group 1 95lb Bullhead, 98lb Flatbottom

Group 2 109, 110lb, 113lb Flatbottom

Group 3 UIC 60

Table 8.109: Mean 2 Tailed K-S and Mann Whitney U Test for Rail Types Grouped
(Data B, Usage)
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1-Tailed Hypothesis Tests

Rail Type Group Group
2

Group
3

Group 2 NA 0.79

Group 3 0.19 NA

Group 2 109, 110lb, 113lb Flatbottom

Group 3 UIC 60

Table 8.110: Mean 2 Tailed K-S and Mann Whitney U Test p-values for Rail Types
Grouped (Data A, Usage)

Rail Type Group Group
2

Group
3

Group 2 NA 0.00

Group 3 0.57 NA

Group 2 109, 110lb, 113lb Flatbottom

Group 3 UIC 60

Table 8.111: Mean 2 Tailed K-S and Mann Whitney U Test for Rail Types Grouped
(Data A, Usage)

Rail Type Group Group
1

Group
2

Group
3

Group 1 NA 1.00 NaN

Group 2 0.00 NA 0.70

Group 3 NaN 0.29 NA

Group 1 95lb Bullhead, 98lb Flatbottom

Group 2 109, 110lb, 113lb Flatbottom

Group 3 UIC 60

Table 8.112: Mean 2 Tailed K-S and Mann Whitney U Test p-values for Rail Types
Grouped (Data B, Usage)
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Rail Type Group Group
1

Group
2

Group
3

Group 1 NA 0.00 NaN

Group 2 1.00 NA 0.22

Group 3 NaN 0.56 NA

Group 1 95lb Bullhead, 98lb Flatbottom

Group 2 109, 110lb, 113lb Flatbottom

Group 3 UIC 60

Table 8.113: Mean 2 Tailed K-S and Mann Whitney U Test for Rail Types Grouped
(Data B, Usage)

Third Layer Analysis

Data Amounts

Rail Type Group Group
1

Group
2

Group
3

Data
A

Usage

Datasets Used 0 18 13

Data points Used 0 2839 3299

Data
B

Usage

Datasets Used 7 151 23

Data points Used 222 17904 2646

Group 1 95lb Bullhead, 98lb Flatbottom

Group 2 109, 110lb, 113lb Flatbottom

Group 3 UIC 60

Table 8.114: Data Amounts for Rail Types Grouped
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2-Tailed Hypothesis Tests

Rail Type Group Group
2

Group
3

Group 2 1.00 0.27

Group 3 0.27 1.00

Group 2 109, 110lb, 113lb Flatbottom

Group 3 UIC 60

Table 8.115: Mean 2 Tailed K-S and Mann Whitney U Test p-values for Rail Types
Grouped (Data A, Usage)

Rail Type Group Group
2

Group
3

Group 2 0.00 0.39

Group 3 0.39 0.00

Group 2 109, 110lb, 113lb Flatbottom

Group 3 UIC 60

Table 8.116: Mean 2 Tailed K-S and Mann Whitney U Test for Rail Types Grouped
(Data A, Usage)

Rail Type Group Group
1

Group
2

Group
3

Group 1 1.00 0.31 NaN

Group 2 0.31 1.00 0.22

Group 3 NaN 0.22 1.00

Group 1 95lb Bullhead, 98lb Flatbottom

Group 2 109, 110lb, 113lb Flatbottom

Group 3 UIC 60

Table 8.117: Mean 2 Tailed K-S and Mann Whitney U Test p-values for Rail Types
Grouped (Data B, Usage)
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Rail Type Group Group
1

Group
2

Group
3

Group 1 0.00 0.30 NaN

Group 2 0.30 0.00 0.60

Group 3 NaN 0.60 0.00

Group 1 95lb Bullhead, 98lb Flatbottom

Group 2 109, 110lb, 113lb Flatbottom

Group 3 UIC 60

Table 8.118: Mean 2 Tailed K-S and Mann Whitney U Test for Rail Types Grouped
(Data B, Usage)

8.2.14 Passenger % Usage

Data Amounts

Passenger % Usage 0-20 20-40 40-60 60-80 80-100

Data
A

Usage

Datasets Used 4 2 4 4 4

Data points Used 1016 605 1258 1089 2599

Data
B

Usage

Datasets Used 20 22 24 24 30

Data points Used 2622 1724 2712 3429 12856

Table 8.119: Data Amounts for Passenger pcnt Usage

2-Tailed Hypothesis Tests

Passenger % Usage 0-20 20-40 40-60 60-80 80-100

0-20 1.00 0.00 0.00 0.01 0.01

20-40 0.00 1.00 0.04 0.41 0.50

40-60 0.00 0.04 1.00 0.32 0.20

60-80 0.01 0.41 0.32 1.00 0.55

80-100 0.01 0.50 0.20 0.55 1.00

Table 8.120: Mean 2 Tailed K-S and Mann Whitney U Test p-values for Passenger pcnt
Usage (Data A, Usage)
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Passenger % Usage 0-20 20-40 40-60 60-80 80-100

0-20 0.00 1.00 1.00 0.88 1.00

20-40 1.00 0.00 0.75 0.00 0.25

40-60 1.00 0.75 0.00 0.25 0.38

60-80 0.88 0.00 0.25 0.00 0.00

80-100 1.00 0.25 0.38 0.00 0.00

Table 8.121: Mean 2 Tailed K-S and Mann Whitney U Test for Passenger pcnt Usage
(Data A, Usage)

Passenger % Usage 0-20 20-40 40-60 60-80 80-100

0-20 1.00 0.25 0.17 0.03 0.18

20-40 0.25 1.00 0.30 0.24 0.27

40-60 0.17 0.30 1.00 0.23 0.22

60-80 0.03 0.24 0.23 1.00 0.29

80-100 0.18 0.27 0.22 0.29 1.00

Table 8.122: Mean 2 Tailed K-S and Mann Whitney U Test p-values for Passenger pcnt
Usage (Data B, Usage)

Passenger % Usage 0-20 20-40 40-60 60-80 80-100

0-20 0.00 0.43 0.55 0.93 0.60

20-40 0.43 0.00 0.25 0.40 0.23

40-60 0.55 0.25 0.00 0.45 0.38

60-80 0.93 0.40 0.45 0.00 0.48

80-100 0.60 0.23 0.38 0.48 0.00

Table 8.123: Mean 2 Tailed K-S and Mann Whitney U Test for Passenger pcnt Usage
(Data B, Usage)
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1-Tailed Hypothesis Tests

Passenger % Usage 0-20 20-40 40-60 60-80 80-100

0-20 NA 1.00 1.00 0.97 0.97

20-40 0.00 NA 0.77 0.41 0.29

40-60 0.00 0.02 NA 0.16 0.10

60-80 0.00 0.25 0.83 NA 0.35

80-100 0.00 0.32 0.85 0.61 NA

Table 8.124: Mean 1 Tailed K-S and Mann Whitney U Test p-values for Passenger pcnt
Usage (Data A, Usage)

Passenger % Usage 0-20 20-40 40-60 60-80 80-100

0-20 NA 0.00 0.00 0.00 0.00

20-40 1.00 NA 0.00 0.00 0.25

40-60 1.00 0.75 NA 0.50 0.50

60-80 1.00 0.00 0.00 NA 0.13

80-100 1.00 0.00 0.00 0.00 NA

Table 8.125: Mean 1 Tailed K-S and Mann Whitney U Test for Passenger pcnt Usage
(Data A, Usage)

Passenger % Usage 0-20 20-40 40-60 60-80 80-100

0-20 NA 0.87 0.87 0.99 0.85

20-40 0.13 NA 0.46 0.77 0.41

40-60 0.13 0.46 NA 0.67 0.42

60-80 0.02 0.15 0.29 NA 0.24

80-100 0.09 0.41 0.51 0.73 NA

Table 8.126: Mean 1 Tailed K-S and Mann Whitney U Test p-values for Passenger pcnt
Usage (Data B, Usage)
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Passenger % Usage 0-20 20-40 40-60 60-80 80-100

0-20 NA 0.00 0.00 0.00 0.00

20-40 0.48 NA 0.13 0.00 0.14

40-60 0.63 0.23 NA 0.05 0.23

60-80 0.95 0.50 0.48 NA 0.48

80-100 0.65 0.20 0.29 0.04 NA

Table 8.127: Mean 1 Tailed K-S and Mann Whitney U Test for Passenger pcnt Usage
(Data B, Usage)

8.2.15 Axle > 50 % Usage

Data Amounts

Axle > 50 % Usage 0-20 20-40 40-60 60-80 80-100

Data
A

Usage

Datasets Used 4 4 5 4 3

Data points Used 1124 1466 1874 1292 843

Data
B

Usage

Datasets Used 22 25 24 24 21

Data points Used 3750 4353 4470 4931 5680

Table 8.128: Data Amounts for Axle > 50 pcnt Usage

2-Tailed Hypothesis Tests

Axle > 50 % Usage 0-20 20-40 40-60 60-80 80-100

0-20 1.00 0.04 0.06 0.08 0.00

20-40 0.04 1.00 0.31 0.32 0.01

40-60 0.06 0.31 1.00 0.11 0.02

60-80 0.08 0.32 0.11 1.00 0.07

80-100 0.00 0.01 0.02 0.07 1.00

Table 8.129: Mean 2 Tailed K-S and Mann Whitney U Test p-values for Axle > 50
pcnt Usage (Data A, Usage)
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Axle > 50 % Usage 0-20 20-40 40-60 60-80 80-100

0-20 0.00 0.75 0.75 0.75 1.00

20-40 0.75 0.00 0.25 0.25 1.00

40-60 0.75 0.25 0.00 0.50 0.83

60-80 0.75 0.25 0.50 0.00 0.67

80-100 1.00 1.00 0.83 0.67 0.00

Table 8.130: Mean 2 Tailed K-S and Mann Whitney U Test for Axle > 50 pcnt Usage
(Data A, Usage)

Axle > 50 % Usage 0-20 20-40 40-60 60-80 80-100

0-20 1.00 0.32 0.16 0.20 0.12

20-40 0.32 1.00 0.08 0.16 0.11

40-60 0.16 0.08 1.00 0.33 0.04

60-80 0.20 0.16 0.33 1.00 0.05

80-100 0.12 0.11 0.04 0.05 1.00

Table 8.131: Mean 2 Tailed K-S and Mann Whitney U Test p-values for Axle > 50
pcnt Usage (Data B, Usage)

Axle > 50 % Usage 0-20 20-40 40-60 60-80 80-100

0-20 0.00 0.24 0.67 0.62 0.55

20-40 0.24 0.00 0.66 0.60 0.70

40-60 0.67 0.66 0.00 0.25 0.81

60-80 0.62 0.60 0.25 0.00 0.81

80-100 0.55 0.70 0.81 0.81 0.00

Table 8.132: Mean 2 Tailed K-S and Mann Whitney U Test for Axle > 50 pcnt Usage
(Data B, Usage)
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1-Tailed Hypothesis Tests

Axle > 50 % Usage 0-20 20-40 40-60 60-80 80-100

0-20 NA 0.27 0.41 0.29 0.00

20-40 0.64 NA 0.62 0.40 0.00

40-60 0.37 0.33 NA 0.37 0.01

60-80 0.73 0.38 0.49 NA 0.03

80-100 0.97 0.80 0.90 0.87 NA

Table 8.133: Mean 1 Tailed K-S and Mann Whitney U Test p-values for Axle > 50
pcnt Usage (Data A, Usage)

Axle > 50 % Usage 0-20 20-40 40-60 60-80 80-100

0-20 NA 0.63 0.38 0.50 1.00

20-40 0.25 NA 0.00 0.25 1.00

40-60 0.50 0.38 NA 0.50 1.00

60-80 0.25 0.25 0.25 NA 0.67

80-100 0.00 0.00 0.00 0.00 NA

Table 8.134: Mean 1 Tailed K-S and Mann Whitney U Test for Axle > 50 pcnt Usage
(Data A, Usage)

Axle > 50 % Usage 0-20 20-40 40-60 60-80 80-100

0-20 NA 0.47 0.77 0.68 0.10

20-40 0.48 NA 0.89 0.74 0.10

40-60 0.22 0.04 NA 0.31 0.02

60-80 0.32 0.18 0.68 NA 0.07

80-100 0.84 0.78 0.98 0.91 NA

Table 8.135: Mean 1 Tailed K-S and Mann Whitney U Test p-values for Axle > 50
pcnt Usage (Data B, Usage)
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Axle > 50 % Usage 0-20 20-40 40-60 60-80 80-100

0-20 NA 0.19 0.14 0.14 0.60

20-40 0.12 NA 0.00 0.05 0.70

40-60 0.55 0.80 NA 0.32 0.93

60-80 0.50 0.64 0.09 NA 0.83

80-100 0.03 0.03 0.00 0.05 NA

Table 8.136: Mean 1 Tailed K-S and Mann Whitney U Test for Axle > 50 pcnt Usage
(Data B, Usage)

8.2.16 Dirty % Usage

Data Usage

Dirty % Usage 0-10 10-20 20-30 30-40

Data
A

Usage

Datasets Used 7 2 2 2

Data points Used 5535 673 197 226

Data
B

Usage

Datasets Used 34 20 9 4

Data points Used 21354 1558 284 244

Table 8.137: Data Usage for Dirty pcnt Usage

2-Tailed Hypothesis Tests

Dirty % Usage 0-10 10-20 20-30 30-40

0-10 1.00 0.00 0.10 0.00

10-20 0.00 1.00 0.08 0.01

20-30 0.10 0.08 1.00 0.00

30-40 0.00 0.01 0.00 1.00

Table 8.138: Mean 2 Tailed K-S and Mann Whitney U Test p-values for Dirty pcnt
Usage (Data A, Usage)
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Dirty % Usage 0-10 10-20 20-30 30-40

0-10 0.00 1.00 0.50 1.00

10-20 1.00 0.00 0.25 1.00

20-30 0.50 0.25 0.00 1.00

30-40 1.00 1.00 1.00 0.00

Table 8.139: Mean 2 Tailed K-S and Mann Whitney U Test for Dirty pcnt Usage (Data
A, Usage)

Dirty % Usage 0-10 10-20 20-30 30-40

0-10 1.00 0.33 0.37 0.20

10-20 0.33 1.00 0.36 0.45

20-30 0.37 0.36 1.00 0.20

30-40 0.20 0.45 0.20 1.00

Table 8.140: Mean 2 Tailed K-S and Mann Whitney U Test p-values for Dirty pcnt
Usage (Data B, Usage)

Dirty % Usage 0-10 10-20 20-30 30-40

0-10 0.00 0.35 0.33 0.75

10-20 0.35 0.00 0.17 0.00

20-30 0.33 0.17 0.00 0.50

30-40 0.75 0.00 0.50 0.00

Table 8.141: Mean 2 Tailed K-S and Mann Whitney U Test for Dirty pcnt Usage (Data
B, Usage)

1-Tailed Hypothesis Tests

Dirty % Usage 0-10 10-20 20-30 30-40

0-10 NA 0.00 0.05 0.00

10-20 0.99 NA 0.92 0.00

20-30 0.81 0.04 NA 0.00

30-40 0.99 0.93 0.99 NA

Table 8.142: Mean 1 Tailed K-S and Mann Whitney U Test p-values for Dirty pcnt
Usage (Data A, Usage)
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Dirty % Usage 0-10 10-20 20-30 30-40

0-10 NA 1.00 0.50 1.00

10-20 0.00 NA 0.00 1.00

20-30 0.00 0.75 NA 1.00

30-40 0.00 0.00 0.00 NA

Table 8.143: Mean 1 Tailed K-S and Mann Whitney U Test for Dirty pcnt Usage (Data
A, Usage)

Dirty % Usage 0-10 10-20 20-30 30-40

0-10 NA 0.34 0.31 0.15

10-20 0.53 NA 0.53 0.23

20-30 0.64 0.49 NA 0.10

30-40 0.64 0.59 0.82 NA

Table 8.144: Mean 1 Tailed K-S and Mann Whitney U Test p-values for Dirty pcnt
Usage (Data B, Usage)

Dirty % Usage 0-10 10-20 20-30 30-40

0-10 NA 0.30 0.33 0.75

10-20 0.10 NA 0.22 0.13

20-30 0.11 0.11 NA 0.50

30-40 0.00 0.13 0.00 NA

Table 8.145: Mean 1 Tailed K-S and Mann Whitney U Test for Dirty pcnt Usage (Data
B, Usage)
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8.2.17 Superficial Geology

First Layer Analysis

Data Amounts

Superficial Geology None Clay Diamic-
ton Gravel Peat Sand

Data
A

Usage

Datasets Used 4 4 4 1 1 4

Data points Used 2306 1136 1009 32 34 737

Data
B

Usage

Datasets Used 28 20 21 4 6 20

Data points Used 7276 3654 3551 90 157 3032

Table 8.146: Data Amounts for Superficial Geology

2-Tailed Hypothesis Tests

Superficial Geology None Clay Diamic-
ton Sand

None 1.00 0.05 0.29 0.23

Clay 0.05 1.00 0.02 0.16

Diamicton 0.29 0.02 1.00 0.08

Sand 0.23 0.16 0.08 1.00

Table 8.147: Mean 2 Tailed K-S and Mann Whitney U Test p-values for Superficial
Geology (Data A, Usage)

Superficial Geology None Clay Diamic-
ton Sand

None 0.00 0.63 0.25 0.75

Clay 0.63 0.00 0.88 0.13

Diamicton 0.25 0.88 0.00 0.63

Sand 0.75 0.13 0.63 0.00

Table 8.148: Mean 2 Tailed K-S and Mann Whitney U Test for Superficial Geology
(Data A, Usage)
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Superficial
Geology

None Clay Diamic-
ton Gravel Peat Sand

None 1.00 0.36 0.16 0.55 0.17 0.30

Clay 0.36 1.00 0.20 0.35 0.17 0.33

Diamicton 0.16 0.20 1.00 0.16 0.17 0.15

Gravel 0.55 0.35 0.16 1.00 0.07 0.40

Peat 0.17 0.17 0.17 0.07 1.00 0.12

Sand 0.30 0.33 0.15 0.40 0.12 1.00

Table 8.149: Mean 2 Tailed K-S and Mann Whitney U Test p-values for Superficial
Geology (Data B, Usage)

Superficial
Geology

None Clay Diamic-
ton Gravel Peat Sand

None 0.00 0.33 0.50 0.25 0.67 0.33

Clay 0.33 0.00 0.45 0.13 0.50 0.35

Diamicton 0.50 0.45 0.00 0.13 0.42 0.70

Gravel 0.25 0.13 0.13 0.00 0.50 0.25

Peat 0.67 0.50 0.42 0.50 0.00 0.58

Sand 0.33 0.35 0.70 0.25 0.58 0.00

Table 8.150: Mean 2 Tailed K-S and Mann Whitney U Test for Superficial Geology
(Data B, Usage)

1-Tailed Hypothesis Tests

Superficial Geology None Clay Diamic-
ton Sand

None NA 0.98 0.17 0.89

Clay 0.02 NA 0.01 0.70

Diamicton 0.72 0.95 NA 0.96

Sand 0.14 0.30 0.04 NA

Table 8.151: Mean 1 Tailed K-S and Mann Whitney U Test p-values for Superficial
Geology (Data A, Usage)
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Superficial Geology None Clay Diamic-
ton Sand

None NA 0.00 0.25 0.00

Clay 0.88 NA 1.00 0.13

Diamicton 0.00 0.00 NA 0.00

Sand 0.75 0.25 0.75 NA

Table 8.152: Mean 1 Tailed K-S and Mann Whitney U Test for Superficial Geology
(Data A, Usage)

Superficial
Geology

None Clay Diamic-
ton Gravel Peat Sand

None NA 0.37 0.09 0.47 0.08 0.68

Clay 0.56 NA 0.14 0.60 0.16 0.66

Diamicton 0.86 0.81 NA 0.74 0.20 0.87

Gravel 0.53 0.40 0.27 NA 0.03 0.83

Peat 0.87 0.78 0.70 0.98 NA 0.86

Sand 0.29 0.29 0.11 0.21 0.06 NA

Table 8.153: Mean 1 Tailed K-S and Mann Whitney U Test p-values for Superficial
Geology (Data B, Usage)

Superficial
Geology

None Clay Diamic-
ton Gravel Peat Sand

None NA 0.28 0.57 0.25 0.75 0.00

Clay 0.13 NA 0.53 0.25 0.58 0.00

Diamicton 0.02 0.03 NA 0.00 0.58 0.00

Gravel 0.00 0.00 0.50 NA 0.75 0.00

Peat 0.00 0.00 0.08 0.00 NA 0.00

Sand 0.43 0.40 0.78 0.38 0.67 NA

Table 8.154: Mean 1 Tailed K-S and Mann Whitney U Test for Superficial Geology
(Data B, Usage)
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Third Layer Analysis

Data Amounts

Superficial Geology None Clay Diamic-
ton Sand

Data
A

Usage

Datasets Used 17 12 9 10

Data points Used 1409 660 499 386

Data
B

Usage

Datasets Used 83 44 32 28

Data points Used 3045 1340 981 844

Table 8.155: Data Amounts for Superficial Geology (Bedrock, Speed)

2-Tailed Hypothesis Tests

Superficial Geology None Clay Diamic-
ton Sand

None 1.00 0.28 0.21 0.29

Clay 0.28 1.00 0.27 0.21

Diamicton 0.21 0.27 1.00 0.27

Sand 0.29 0.21 0.27 1.00

Table 8.156: Mean 2 Tailed K-S and Mann Whitney U Test p-values for Superficial
Geology (Bedrock, Speed) (Data A, Usage)

Superficial Geology None Clay Diamic-
ton Sand

None 0.00 0.40 0.56 0.39

Clay 0.40 0.00 0.31 0.45

Diamicton 0.56 0.31 0.00 0.44

Sand 0.39 0.45 0.44 0.00

Table 8.157: Mean 2 Tailed K-S and Mann Whitney U Test for Superficial Geology
(Bedrock, Speed) (Data A, Usage)
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Superficial Geology None Clay Diamic-
ton Sand

None 1.00 0.37 0.29 0.25

Clay 0.37 1.00 0.32 0.28

Diamicton 0.29 0.32 1.00 0.20

Sand 0.25 0.28 0.20 1.00

Table 8.158: Mean 2 Tailed K-S and Mann Whitney U Test p-values for Superficial
Geology (Bedrock, Speed) (Data B, Usage)

Superficial Geology None Clay Diamic-
ton Sand

None 0.00 0.24 0.35 0.41

Clay 0.24 0.00 0.26 0.36

Diamicton 0.35 0.26 0.00 0.53

Sand 0.41 0.36 0.53 0.00

Table 8.159: Mean 2 Tailed K-S and Mann Whitney U Test for Superficial Geology
(Bedrock, Speed) (Data B, Usage)

1-Tailed Hypothesis Tests

Superficial Geology None Clay Diamic-
ton Sand

None NaN 0.60 0.39 0.67

Clay 0.34 NaN 0.36 0.66

Diamicton 0.50 0.59 NaN 0.73

Sand 0.27 0.31 0.25 NaN

Table 8.160: Mean 1 Tailed K-S and Mann Whitney U Test p-values for Superficial
Geology (Bedrock, Speed) (Data A, Usage)

Chapter 8 Steve Clarke 320



Railway Track Asset Management Modelling

Superficial Geology None Clay Diamic-
ton Sand

None NaN 0.20 0.38 0.11

Clay 0.25 NaN 0.06 0.10

Diamicton 0.19 0.25 NaN 0.06

Sand 0.28 0.40 0.44 NaN

Table 8.161: Mean 1 Tailed K-S and Mann Whitney U Test for Superficial Geology
(Bedrock, Speed) (Data A, Usage)

Superficial Geology None Clay Diamic-
ton Sand

None NaN 0.41 0.47 0.71

Clay 0.54 NaN 0.41 0.71

Diamicton 0.53 0.52 NaN 0.78

Sand 0.27 0.26 0.19 NaN

Table 8.162: Mean 1 Tailed K-S and Mann Whitney U Test p-values for Superficial
Geology (Bedrock, Speed) (Data B, Usage)

Superficial Geology None Clay Diamic-
ton Sand

None NaN 0.17 0.31 0.04

Clay 0.17 NaN 0.21 0.00

Diamicton 0.08 0.15 NaN 0.03

Sand 0.43 0.43 0.58 NaN

Table 8.163: Mean 1 Tailed K-S and Mann Whitney U Test for Superficial Geology
(Bedrock, Speed) (Data B, Usage)
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8.2.18 Artificial Geology

Data Amounts

Artificial Geology None Made
Ground

Data
A

Usage

Datasets Used 7 2

Data points Used 6280 269

Data
B

Usage

Datasets Used 34 15

Data points Used 21888 868

Table 8.164: Data Amounts for Artificial Geology

2-Tailed Hypothesis Tests

Artificial Geology None Made
Ground

None 1.00 0.00

Made Ground 0.00 1.00

Table 8.165: Mean 2 Tailed K-S and Mann Whitney U Test p-values for Artificial
Geology (Data A, Usage)

Artificial Geology None Made
Ground

None 0.00 1.00

Made Ground 1.00 0.00

Table 8.166: Mean 2 Tailed K-S and Mann Whitney U Test for Artificial Geology
(Data A, Usage)

Artificial Geology None Made
Ground

None 1.00 0.21

Made Ground 0.21 1.00

Table 8.167: Mean 2 Tailed K-S and Mann Whitney U Test p-values for Artificial
Geology (Data B, Usage)
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Artificial Geology None Made
Ground

None 0.00 0.27

Made Ground 0.27 0.00

Table 8.168: Mean 2 Tailed K-S and Mann Whitney U Test for Artificial Geology
(Data B, Usage)

1-Tailed Hypothesis Tests

Artificial Geology None Made
Ground

None NA 0.98

Made Ground 0.00 NA

Table 8.169: Mean 1 Tailed K-S and Mann Whitney U Test p-values for Artificial
Geology (Data A, Usage)

Artificial Geology None Made
Ground

None NA 0.00

Made Ground 1.00 NA

Table 8.170: Mean 1 Tailed K-S and Mann Whitney U Test for Artificial Geology
(Data A, Usage)

Artificial Geology None Made
Ground

None NA 0.70

Made Ground 0.29 NA

Table 8.171: Mean 1 Tailed K-S and Mann Whitney U Test p-values for Artificial
Geology (Data B, Usage)
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Artificial Geology None Made
Ground

None NA 0.07

Made Ground 0.27 NA

Table 8.172: Mean 1 Tailed K-S and Mann Whitney U Test for Artificial Geology
(Data B, Usage)

8.2.19 Bedrock Geology Grouped

Data Amounts

Bedrock Geology Group Group
1

Group
2

Group
3

Group
4

Data
A

Usage

Datasets Used 2 4 1 5

Data points Used 538 1481 81 3452

Data
B

Usage

Datasets Used 19 22 12 30

Data points Used 1906 5328 571 11966

Group 1 Argillaceous, Dolomitic, Limestone, Psammite and Silt-
stone

Group 2 Sand, Chalk and Clay

Group 3 Halite and Pebbly Sand

Group 4 Mudstone, Sandstone and Slate

Table 8.173: Data Amounts for Bedrock Geology Grouped
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2-Tailed Hypothesis Tests

Bedrock Geology Group
1

Group
2

Group
4

Group 1 1.00 0.00 0.00

Group 2 0.00 1.00 0.07

Group 4 0.00 0.07 1.00

Group 1 Argillaceous, Dolomitic, Limestone,
Psammite and Siltstone

Group 2 Sand, Chalk and Clay

Group 4 Mudstone, Sandstone and Slate

Table 8.174: Mean 2 Tailed K-S and Mann Whitney U Test p-values for Grouped
Bedrock Geology (Data A, Usage)

Bedrock Geology Group
1

Group
2

Group
4

Group 1 0.00 1.00 1.00

Group 2 1.00 0.00 0.75

Group 4 1.00 0.75 0.00

Group 1 Argillaceous, Dolomitic, Limestone,
Psammite and Siltstone

Group 2 Sand, Chalk and Clay

Group 4 Mudstone, Sandstone and Slate

Table 8.175: Mean 2 Tailed K-S and Mann Whitney U Test for Grouped Bedrock
Geology (Data A, Usage)
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Bedrock Geology Group
1

Group
2

Group
3

Group
4

Group 1 1.00 0.01 0.19 0.20

Group 2 0.01 1.00 0.17 0.05

Group 3 0.19 0.17 1.00 0.27

Group 4 0.20 0.05 0.27 1.00

Group 1 Argillaceous, Dolomitic, Limestone,
Psammite and Siltstone

Group 2 Sand, Chalk and Clay

Group 3 Halite and Pebbly Sand

Group 4 Mudstone, Sandstone and Slate

Table 8.176: Mean 2 Tailed K-S and Mann Whitney U Test p-values for Grouped
Bedrock Geology (Data B, Usage)

Bedrock Geology Group
1

Group
2

Group
3

Group
4

Group 1 0.00 0.95 0.55 0.45

Group 2 0.95 0.00 0.42 0.86

Group 3 0.55 0.42 0.00 0.38

Group 4 0.45 0.86 0.38 0.00

Group 1 Argillaceous, Dolomitic, Limestone,
Psammite and Siltstone

Group 2 Sand, Chalk and Clay

Group 3 Halite and Pebbly Sand

Group 4 Mudstone, Sandstone and Slate

Table 8.177: Mean 2 Tailed K-S and Mann Whitney U Test for Grouped Bedrock
Geology (Data B, Usage)

Chapter 8 Steve Clarke 326



Railway Track Asset Management Modelling

1-Tailed Hypothesis Tests

Bedrock Geology Group
1

Group
2

Group
4

Group 1 NA 0.99 0.91

Group 2 0.00 NA 0.03

Group 4 0.00 0.98 NA

Group 1 Argillaceous, Dolomitic, Limestone,
Psammite and Siltstone

Group 2 Sand, Chalk and Clay

Group 4 Mudstone, Sandstone and Slate

Table 8.178: Mean 2 Tailed K-S and Mann Whitney U Test p-values for Grouped
Bedrock Geology (Data A, Usage)

Bedrock Geology Group
1

Group
2

Group
4

Group 1 NA 0.00 0.00

Group 2 1.00 NA 0.75

Group 4 1.00 0.00 NA

Group 1 Argillaceous, Dolomitic, Limestone,
Psammite and Siltstone

Group 2 Sand, Chalk and Clay

Group 4 Mudstone, Sandstone and Slate

Table 8.179: Mean 2 Tailed K-S and Mann Whitney U Test for Grouped Bedrock
Geology (Data A, Usage)
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Bedrock Geology Group
1

Group
2

Group
3

Group
4

Group 1 NA 0.93 0.70 0.80

Group 2 0.04 NA 0.22 0.06

Group 3 0.19 0.73 NA 0.36

Group 4 0.15 0.94 0.58 NA

Group 1 Argillaceous, Dolomitic, Limestone,
Psammite and Siltstone

Group 2 Sand, Chalk and Clay

Group 3 Halite and Pebbly Sand

Group 4 Mudstone, Sandstone and Slate

Table 8.180: Mean 2 Tailed K-S and Mann Whitney U Test p-values for Grouped
Bedrock Geology (Data B, Usage)

Bedrock Geology Group
1

Group
2

Group
3

Group
4

Group 1 NA 0.00 0.00 0.00

Group 2 0.95 NA 0.42 0.86

Group 3 0.59 0.08 NA 0.38

Group 4 0.53 0.00 0.13 NA

Group 1 Argillaceous, Dolomitic, Limestone,
Psammite and Siltstone

Group 2 Sand, Chalk and Clay

Group 3 Halite and Pebbly Sand

Group 4 Mudstone, Sandstone and Slate

Table 8.181: Mean 2 Tailed K-S and Mann Whitney U Test for Grouped Bedrock
Geology (Data B, Usage)

Chapter 8 Steve Clarke 328



R
ailw

ay
T
rack

A
sset

M
anagem

ent
M
odelling

8.2.20 Bedrock Geology

Data Amounts

Bedrock Geology Argilla-
ceous Chalk Clay Dolomitic Halite Lime-

stone
Mud-
stone

Pebbly
Sand

Psam-
mite Sand Sand-

stone Siltstone Slate

Data
A

Usage

Datasets Used 1 3 4 1 0 2 5 1 0 1 4 1 1

Data points Used 38 747 569 22 0 340 2542 67 0 130 879 125 22

Data
B

Usage

Datasets Used 3 20 19 4 4 12 30 7 5 14 20 14 5

Data points Used 71 2437 1730 93 95 603 8188 318 151 1014 3374 486 178

Table 8.182: Data Amounts for Bedrock Geology
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2-Tailed Hypothesis Tests

Bedrock Geology Chalk Clay Lime-
stone

Mud-
stone

Sand-
stone

Chalk 1.00 0.24 0.00 0.05 0.27

Clay 0.24 1.00 0.00 0.10 0.10

Limestone 0.00 0.00 1.00 0.00 0.01

Mudstone 0.05 0.10 0.00 1.00 0.11

Sandstone 0.27 0.10 0.01 0.11 1.00

Table 8.183: Mean 2 Tailed K-S and Mann Whitney U Test p-values for Bedrock Geology (Data A, Usage)

Bedrock Geology Chalk Clay Lime-
stone

Mud-
stone

Sand-
stone

Chalk 0.00 0.33 1.00 0.67 0.67

Clay 0.33 0.00 1.00 0.75 0.63

Limestone 1.00 1.00 0.00 1.00 1.00

Mudstone 0.67 0.75 1.00 0.00 0.25

Sandstone 0.67 0.63 1.00 0.25 0.00

Table 8.184: Mean 2 Tailed K-S and Mann Whitney U Test for Bedrock Geology (Data A, Usage)
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Bedrock Geology Argilla-
ceous Chalk Clay Dolomitic Halite Lime-

stone
Mud-
stone

Pebbly
Sand

Psam-
mite Sand Sand-

stone Siltstone Slate

Argillaceous 1.00 0.07 0.09 0.52 0.37 0.32 0.19 0.03 0.52 0.02 0.08 0.56 0.72

Chalk 0.07 1.00 0.39 0.00 0.34 0.09 0.04 0.24 0.00 0.34 0.05 0.08 0.09

Clay 0.09 0.39 1.00 0.00 0.43 0.25 0.12 0.21 0.01 0.30 0.17 0.14 0.07

Dolomitic 0.52 0.00 0.00 1.00 0.16 0.55 0.19 0.09 0.37 0.03 0.07 0.27 0.02

Halite 0.37 0.34 0.43 0.16 1.00 0.03 0.16 0.54 0.15 0.18 0.16 0.33 0.30

Limestone 0.32 0.09 0.25 0.55 0.03 1.00 0.23 0.05 0.39 0.11 0.17 0.25 0.30

Mudstone 0.19 0.04 0.12 0.19 0.16 0.23 1.00 0.31 0.15 0.33 0.35 0.35 0.44

Pebbly Sand 0.03 0.24 0.21 0.09 0.54 0.05 0.31 1.00 0.07 0.38 0.37 0.36 0.25

Psammite 0.52 0.00 0.01 0.37 0.15 0.39 0.15 0.07 1.00 0.09 0.03 0.21 0.35

Sand 0.02 0.34 0.30 0.03 0.18 0.11 0.33 0.38 0.09 1.00 0.30 0.22 0.30

Sandstone 0.08 0.05 0.17 0.07 0.16 0.17 0.35 0.37 0.03 0.30 1.00 0.24 0.37

Siltstone 0.56 0.08 0.14 0.27 0.33 0.25 0.35 0.36 0.21 0.22 0.24 1.00 0.50

Slate 0.72 0.09 0.07 0.02 0.30 0.30 0.44 0.25 0.35 0.30 0.37 0.50 1.00

Table 8.185: Mean 2 Tailed K-S and Mann Whitney U Test p-values for Bedrock Geology (Data B, Usage)
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Bedrock Geology Argilla-
ceous Chalk Clay Dolomitic Halite Lime-

stone
Mud-
stone

Pebbly
Sand

Psam-
mite Sand Sand-

stone Siltstone Slate

Argillaceous 0.00 0.67 0.50 0.00 0.00 0.00 0.33 0.75 0.00 1.00 0.67 0.17 0.00

Chalk 0.67 0.00 0.18 1.00 0.00 0.79 0.88 0.50 1.00 0.36 0.85 0.75 0.80

Clay 0.50 0.18 0.00 1.00 0.00 0.54 0.66 0.36 1.00 0.43 0.53 0.69 0.80

Dolomitic 0.00 1.00 1.00 0.00 0.00 0.00 0.38 0.00 0.00 0.75 0.75 0.33 1.00

Halite 0.00 0.00 0.00 0.00 0.00 0.88 0.13 0.00 0.00 0.50 0.13 0.25 0.17

Limestone 0.00 0.79 0.54 0.00 0.88 0.00 0.29 0.58 0.50 0.50 0.46 0.25 0.40

Mudstone 0.33 0.88 0.66 0.38 0.13 0.29 0.00 0.14 0.40 0.43 0.20 0.11 0.00

Pebbly Sand 0.75 0.50 0.36 0.00 0.00 0.58 0.14 0.00 0.50 0.43 0.14 0.29 0.38

Psammite 0.00 1.00 1.00 0.00 0.00 0.50 0.40 0.50 0.00 0.60 0.80 0.30 0.33

Sand 1.00 0.36 0.43 0.75 0.50 0.50 0.43 0.43 0.60 0.00 0.39 0.50 0.40

Sandstone 0.67 0.85 0.53 0.75 0.13 0.46 0.20 0.14 0.80 0.39 0.00 0.39 0.00

Siltstone 0.17 0.75 0.69 0.33 0.25 0.25 0.11 0.29 0.30 0.50 0.39 0.00 0.00

Slate 0.00 0.80 0.80 1.00 0.17 0.40 0.00 0.38 0.33 0.40 0.00 0.00 0.00

Table 8.186: Mean 2 Tailed K-S and Mann Whitney U Test for Bedrock Geology (Data B, Usage)
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8.2.21 Maximum Speed

Data Amounts

Maximum Speed [MPH] 0-30 35-40 45-50 55-60 65-70 75-80 85-95 100-
110

115-
125

Data
A

Usage

Datasets Used 1 1 1 3 3 4 4 4 4

Data points Used 64 66 122 946 691 1089 1253 1403 953

Data
B

Usage

Datasets Used 9 11 19 21 20 24 23 24 19

Data points Used 364 511 1401 4033 3323 4397 3560 2579 2600

Table 8.187: Data Amounts for Maximum Speed
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2-Tailed Hypothesis Tests

Maximum Speed [MPH] 55-60 65-70 75-80 85-95 100-
110

115-
125

55-60 1.00 0.00 0.00 0.00 0.00 0.00

65-70 0.00 1.00 0.20 0.19 0.31 0.00

75-80 0.00 0.20 1.00 0.30 0.46 0.03

85-95 0.00 0.19 0.30 1.00 0.29 0.05

100-110 0.00 0.31 0.46 0.29 1.00 0.01

115-125 0.00 0.00 0.03 0.05 0.01 1.00

Table 8.188: Mean 2 Tailed K-S and Mann Whitney U Test p-values for Maximum Speed (Data A, Usage)
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Maximum Speed [MPH] 55-60 65-70 75-80 85-95 100-
110

115-
125

55-60 0.00 1.00 1.00 1.00 1.00 1.00

65-70 1.00 0.00 0.33 0.67 0.33 1.00

75-80 1.00 0.33 0.00 0.38 0.25 0.83

85-95 1.00 0.67 0.38 0.00 0.25 0.67

100-110 1.00 0.33 0.25 0.25 0.00 1.00

115-125 1.00 1.00 0.83 0.67 1.00 0.00

Table 8.189: Mean 2 Tailed K-S and Mann Whitney U Test for Maximum Speed (Data A, Usage)
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Maximum Speed [MPH] 0-30 35-40 45-50 55-60 65-70 75-80 85-95 100-
110

115-
125

0-30 1.00 0.35 0.25 0.20 0.01 0.00 0.00 0.00 0.00

35-40 0.35 1.00 0.41 0.26 0.01 0.00 0.00 0.00 0.00

45-50 0.25 0.41 1.00 0.30 0.10 0.06 0.01 0.00 0.00

55-60 0.20 0.26 0.30 1.00 0.07 0.04 0.01 0.00 0.00

65-70 0.01 0.01 0.10 0.07 1.00 0.31 0.09 0.00 0.00

75-80 0.00 0.00 0.06 0.04 0.31 1.00 0.28 0.16 0.01

85-95 0.00 0.00 0.01 0.01 0.09 0.28 1.00 0.38 0.07

100-110 0.00 0.00 0.00 0.00 0.00 0.16 0.38 1.00 0.19

115-125 0.00 0.00 0.00 0.00 0.00 0.01 0.07 0.19 1.00

Table 8.190: Mean 2 Tailed K-S and Mann Whitney U Test p-values for Maximum Speed (Data B, Usage)
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Maximum Speed [MPH] 0-30 35-40 45-50 55-60 65-70 75-80 85-95 100-
110

115-
125

0-30 0.00 0.33 0.33 0.38 0.94 1.00 1.00 1.00 1.00

35-40 0.33 0.00 0.05 0.32 0.91 1.00 1.00 1.00 1.00

45-50 0.33 0.05 0.00 0.45 0.76 0.87 0.89 0.95 1.00

55-60 0.38 0.32 0.45 0.00 0.83 0.85 0.93 1.00 1.00

65-70 0.94 0.91 0.76 0.83 0.00 0.35 0.73 0.95 1.00

75-80 1.00 1.00 0.87 0.85 0.35 0.00 0.40 0.41 0.92

85-95 1.00 1.00 0.89 0.93 0.73 0.40 0.00 0.32 0.82

100-110 1.00 1.00 0.95 1.00 0.95 0.41 0.32 0.00 0.59

115-125 1.00 1.00 1.00 1.00 1.00 0.92 0.82 0.59 0.00

Table 8.191: Mean 2 Tailed K-S and Mann Whitney U Test for Maximum Speed (Data B, Usage)
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8.2.22 Speed Reduced Groups

Data Amounts

Maximum Speed [MPH] 0-60 65-70 75-110 115-
125

Data
A

Usage

Datasets Used 3 3 6 4

Data points Used 1221 691 3790 953

Data
B

Usage

Datasets Used 21 20 30 19

Data points Used 6504 3323 10767 2600

Table 8.192: Data Amounts for Maximum Speed Reduced

2-Tailed Hypothesis Tests

Maximum Speed [MPH] 0-60 65-70 75-110 115-
125

0-60 1.00 0.00 0.00 0.00

65-70 0.00 1.00 0.19 0.00

75-110 0.00 0.19 1.00 0.10

115-125 0.00 0.00 0.10 1.00

Table 8.193: Mean 2 Tailed K-S and Mann Whitney U Test p-values for Maximum Speed Reduced (Data A, Usage)
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Maximum Speed [MPH] 0-60 65-70 75-110 115-
125

0-60 0.00 1.00 1.00 1.00

65-70 1.00 0.00 0.67 1.00

75-110 1.00 0.67 0.00 0.75

115-125 1.00 1.00 0.75 0.00

Table 8.194: Mean 2 Tailed K-S and Mann Whitney U Test for Maximum Speed Reduced (Data A, Usage)

Maximum Speed [MPH] 0-60 65-70 75-110 115-
125

0-60 1.00 0.06 0.00 0.00

65-70 0.06 1.00 0.06 0.00

75-110 0.00 0.06 1.00 0.05

115-125 0.00 0.00 0.05 1.00

Table 8.195: Mean 2 Tailed K-S and Mann Whitney U Test p-values for Maximum Speed Reduced (Data B, Usage)
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Maximum Speed [MPH] 0-60 65-70 75-110 115-
125

0-60 0.00 0.83 1.00 1.00

65-70 0.83 0.00 0.80 1.00

75-110 1.00 0.80 0.00 0.82

115-125 1.00 1.00 0.82 0.00

Table 8.196: Mean 2 Tailed K-S and Mann Whitney U Test for Maximum Speed Reduced (Data B, Usage)

1-Tailed Hypothesis Tests

Maximum Speed [MPH] 0-60 65-70 75-110 115-
125

0-60 NaN 1.00 1.00 1.00

65-70 0.00 NaN 0.81 0.99

75-110 0.00 0.09 NaN 0.97

115-125 0.00 0.00 0.05 NaN

Table 8.197: Mean 1 Tailed K-S and Mann Whitney U Test p-values for Maximum Speed Reduced (Data A, Usage)
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Maximum Speed [MPH] 0-60 65-70 75-110 115-
125

0-60 NaN 0.00 0.00 0.00

65-70 1.00 NaN 0.00 0.00

75-110 1.00 0.67 NaN 0.00

115-125 1.00 1.00 0.75 NaN

Table 8.198: Mean 1 Tailed K-S and Mann Whitney U Test for Maximum Speed Reduced (Data A, Usage)

Maximum Speed [MPH] 0-60 65-70 75-110 115-
125

0-60 NaN 0.90 1.00 1.00

65-70 0.06 NaN 0.95 0.98

75-110 0.00 0.03 NaN 0.93

115-125 0.00 0.00 0.02 NaN

Table 8.199: Mean 1 Tailed K-S and Mann Whitney U Test p-values for Maximum Speed Reduced (Data B, Usage)
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Maximum Speed [MPH] 0-60 65-70 75-110 115-
125

0-60 NaN 0.00 0.00 0.00

65-70 0.85 NaN 0.00 0.00

75-110 1.00 0.88 NaN 0.00

115-125 1.00 1.00 0.84 NaN

Table 8.200: Mean 1 Tailed K-S and Mann Whitney U Test for Maximum Speed Reduced (Data B, Usage)
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8.2.23 Sleepers

Data Amounts

Sleepers F19 F23 F24 F27 F28 F40 G44 G47 G49 HH10 W402 W500 W560 W600 Metal Hard-
wood

Soft-
wood

Tim-
ber

Material Type C C C C C C C C C S S S S S S T T T

Data A
Usage

Sets 0 1 0 1 0 1 7 2 2 1 0 0 2 0 0 1 0 0

Points 0 26 0 54 0 21 4208 726 323 38 0 0 725 0 0 44 0 0

Data B
Usage

Sets 4 4 14 25 21 16 14 2 3 2 3 2 4 3 7 9 11 2

Points 106 135 1023 7459 1876 2045 3572 119 309 407 286 180 844 126 1255 280 463 86

Material Type C Concrete

S Steel

T Timber

Table 8.201: Data Amounts for Sleepers
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2-Tailed Hypothesis Tests

Sleepers G44 G47 G49 W560

G44 1.00 0.12 0.08 0.00

G47 0.12 1.00 0.19 0.00

G49 0.08 0.19 1.00 0.01

W560 0.00 0.00 0.01 1.00

Table 8.202: Mean 2 Tailed K-S and Mann Whitney U Test p-values for Sleepers (Data A, Usage)

Sleepers G44 G47 G49 W560

G44 0.00 0.25 0.50 1.00

G47 0.25 0.00 0.50 1.00

G49 0.50 0.50 0.00 1.00

W560 1.00 1.00 1.00 0.00

Table 8.203: Mean 2 Tailed K-S and Mann Whitney U Test for Sleepers (Data A, Usage)
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Sleepers F19 F23 F24 F27 F28 F40 G44 G47 G49 HH10 W402 W500 W560 W600 Metal Hard-
wood

Soft-
wood

Tim-
ber

F19 1.00 NaN 0.16 0.09 0.00 0.00 0.39 NaN NaN NaN NaN NaN NaN NaN 0.04 0.06 0.01 NaN

F23 NaN 1.00 0.23 0.17 0.00 0.00 0.00 NaN NaN NaN NaN NaN NaN NaN 0.21 0.65 0.17 NaN

F24 0.16 0.23 1.00 0.26 0.13 0.11 0.16 0.42 0.73 0.02 0.19 0.42 0.04 0.50 0.08 0.25 0.01 0.00

F27 0.09 0.17 0.26 1.00 0.06 0.04 0.06 0.44 0.10 0.00 0.07 0.19 0.03 0.42 0.25 0.28 0.02 0.00

F28 0.00 0.00 0.13 0.06 1.00 0.19 0.26 0.60 0.28 0.00 0.01 0.18 0.00 0.34 0.02 0.10 0.00 0.00

F40 0.00 0.00 0.11 0.04 0.19 1.00 0.10 0.02 0.29 0.13 0.01 0.03 0.09 0.06 0.14 0.12 0.01 0.00

G44 0.39 0.00 0.16 0.06 0.26 0.10 1.00 0.33 0.06 0.00 0.00 0.00 0.00 0.01 0.00 0.03 0.00 0.00

G47 NaN NaN 0.42 0.44 0.60 0.02 0.33 1.00 0.13 0.00 0.01 0.08 0.00 0.58 0.00 0.35 0.00 NaN

G49 NaN NaN 0.73 0.10 0.28 0.29 0.06 0.13 1.00 0.00 0.12 0.13 0.00 0.23 0.00 0.13 0.00 NaN

HH10 NaN NaN 0.02 0.00 0.00 0.13 0.00 0.00 0.00 1.00 0.07 0.01 0.38 0.00 0.73 0.40 0.00 NaN

W402 NaN NaN 0.19 0.07 0.01 0.01 0.00 0.01 0.12 0.07 1.00 0.36 0.03 0.31 0.05 0.18 0.00 NaN

W500 NaN NaN 0.42 0.19 0.18 0.03 0.00 0.08 0.13 0.01 0.36 1.00 0.00 0.35 0.00 0.21 0.00 NaN

W560 NaN NaN 0.04 0.03 0.00 0.09 0.00 0.00 0.00 0.38 0.03 0.00 1.00 0.02 0.40 0.26 0.00 NaN

W600 NaN NaN 0.50 0.42 0.34 0.06 0.01 0.58 0.23 0.00 0.31 0.35 0.02 1.00 0.08 0.29 0.00 NaN

Metal 0.04 0.21 0.08 0.25 0.02 0.14 0.00 0.00 0.00 0.73 0.05 0.00 0.40 0.08 1.00 0.38 0.03 NaN

Hardwood 0.06 0.65 0.25 0.28 0.10 0.12 0.03 0.35 0.13 0.40 0.18 0.21 0.26 0.29 0.38 1.00 0.08 0.00

Softwood 0.01 0.17 0.01 0.02 0.00 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.03 0.08 1.00 0.08

Timber NaN NaN 0.00 0.00 0.00 0.00 0.00 NaN NaN NaN NaN NaN NaN NaN NaN 0.00 0.08 1.00

Table 8.204: Mean 2 Tailed K-S and Mann Whitney U Test p-values for Sleepers (Data B, Usage)
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Sleepers F19 F23 F24 F27 F28 F40 G44 G47 G49 HH10 W402 W500 W560 W600 Metal Hard-
wood

Soft-
wood

Tim-
ber

F19 0.00 NaN 0.50 0.75 1.00 1.00 0.00 NaN NaN NaN NaN NaN NaN NaN 0.50 0.50 1.00 NaN

F23 NaN 0.00 0.33 0.38 1.00 1.00 1.00 NaN NaN NaN NaN NaN NaN NaN 0.00 0.00 0.75 NaN

F24 0.50 0.33 0.00 0.39 0.75 0.73 0.64 0.00 0.00 0.75 0.33 0.00 0.67 0.00 0.60 0.17 0.94 1.00

F27 0.75 0.38 0.39 0.00 0.87 0.88 0.82 0.00 0.25 1.00 0.67 0.50 0.67 0.00 0.50 0.17 0.91 1.00

EF28 1.00 1.00 0.75 0.87 0.00 0.38 0.55 0.00 0.17 1.00 0.83 0.50 1.00 0.33 0.86 0.78 1.00 1.00

F40 1.00 1.00 0.73 0.88 0.38 0.00 0.75 0.75 0.50 0.50 1.00 0.75 0.67 0.50 0.57 0.69 0.88 1.00

G44 0.00 1.00 0.64 0.82 0.55 0.75 0.00 0.50 0.67 1.00 1.00 1.00 1.00 0.83 1.00 0.86 1.00 1.00

G47 NaN NaN 0.00 0.00 0.00 0.75 0.50 0.00 0.00 1.00 1.00 0.50 1.00 0.00 1.00 0.50 1.00 NaN

G49 NaN NaN 0.00 0.25 0.17 0.50 0.67 0.00 0.00 1.00 0.25 0.50 1.00 0.25 1.00 0.50 1.00 NaN

HH10 NaN NaN 0.75 1.00 1.00 0.50 1.00 1.00 1.00 0.00 0.50 1.00 0.00 1.00 0.00 0.50 1.00 NaN

W402 NaN NaN 0.33 0.67 0.83 1.00 1.00 1.00 0.25 0.50 0.00 0.50 0.83 0.50 0.67 0.33 1.00 NaN

W500 NaN NaN 0.00 0.50 0.50 0.75 1.00 0.50 0.50 1.00 0.50 0.00 1.00 0.50 1.00 0.25 1.00 NaN

W560 NaN NaN 0.67 0.67 1.00 0.67 1.00 1.00 1.00 0.00 0.83 1.00 0.00 0.83 0.00 0.33 1.00 NaN

W600 NaN NaN 0.00 0.00 0.33 0.50 0.83 0.00 0.25 1.00 0.50 0.50 0.83 0.00 0.67 0.33 1.00 NaN

Metal 0.50 0.00 0.60 0.50 0.86 0.57 1.00 1.00 1.00 0.00 0.67 1.00 0.00 0.67 0.00 0.30 0.83 NaN

Hardwood 0.50 0.00 0.17 0.17 0.78 0.69 0.86 0.50 0.50 0.50 0.33 0.25 0.33 0.33 0.30 0.00 0.79 1.00

Softwood 1.00 0.75 0.94 0.91 1.00 0.88 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.83 0.79 0.00 0.50

Timber NaN NaN 1.00 1.00 1.00 1.00 1.00 NaN NaN NaN NaN NaN NaN NaN NaN 1.00 0.50 0.00

Table 8.205: Mean 2 Tailed K-S and Mann Whitney U Test for Sleepers (Data B, Usage)
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Second Layer Analysis

Data Amounts

Sleepers F19 F23 F24 F27 F28 F40 G44 G47 G49 HH10 W402 W500 W560 W600 Metal Hard-
wood

Soft-
wood

Tim-
ber

Material Type C C C C C C C C C S S S S S S T T T

Data A
Usage

Sets 0 1 0 1 0 0 12 5 5 1 0 0 6 0 0 1 0 0

Points 0 23 0 38 0 0 4064 701 304 23 0 0 718 0 0 25 0 0

Data B
Usage

Sets 1 2 23 59 33 28 23 2 5 5 5 4 7 3 12 3 10 2

Points 26 49 929 7105 1601 1863 3374 74 259 387 223 151 766 80 1166 73 364 60

Material Type C Concrete

S Steel

T Timber

Table 8.206: Data Amounts for Sleepers (Second Layer)
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2-Tailed Hypothesis Tests

Sleepers G44 G47 G49 W560

G44 1.00 0.41 0.11 0.01

G47 0.41 1.00 0.28 0.01

G49 0.11 0.28 1.00 0.20

W560 0.01 0.01 0.20 1.00

Table 8.207: Mean 2 Tailed K-S and Mann Whitney U Test p-values for Sleepers (Data A, Usage)

Sleepers G44 G47 G49 W560

G44 0.00 0.20 0.50 0.80

G47 0.20 0.00 0.50 1.00

G49 0.50 0.50 0.00 0.60

W560 0.80 1.00 0.60 0.00

Table 8.208: Mean 2 Tailed K-S and Mann Whitney U Test for Sleepers (Data A, Usage)
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Sleepers F19 F23 F24 F27 F28 F40 G44 G47 G49 HH10 W402 W500 W560 W600 Metal Hard-
wood

Soft-
wood

Tim-
ber

F19 1.00 NaN 0.00 0.00 0.00 NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN

F23 NaN 1.00 NaN 0.41 0.01 NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN 0.00 NaN

F24 0.00 NaN 1.00 0.31 0.17 0.43 0.44 NaN 0.44 0.03 0.08 0.69 0.12 0.35 0.22 NaN 0.00 0.00

F27 0.00 0.41 0.31 1.00 0.06 0.24 0.09 NaN NaN 0.13 0.11 0.73 0.04 0.63 0.21 0.16 0.00 0.00

F28 0.00 0.01 0.17 0.06 1.00 0.22 0.49 0.08 0.48 0.13 0.14 0.22 0.09 0.25 0.01 0.42 0.00 0.00

F40 NaN NaN 0.43 0.24 0.22 1.00 0.13 0.20 0.41 0.11 0.35 0.17 0.04 0.31 0.03 0.21 NaN NaN

G44 NaN NaN 0.44 0.09 0.49 0.13 1.00 0.02 0.45 0.00 0.39 0.07 0.00 0.06 0.02 0.09 0.00 NaN

G47 NaN NaN NaN NaN 0.08 0.20 0.02 1.00 0.01 0.07 NaN 0.01 0.30 NaN 0.31 0.03 0.00 NaN

G49 NaN NaN 0.44 NaN 0.48 0.41 0.45 0.01 1.00 0.22 0.35 0.23 0.30 0.38 0.03 0.32 0.00 NaN

HH10 NaN NaN 0.03 0.13 0.13 0.11 0.00 0.07 0.22 1.00 0.29 0.08 0.39 0.13 0.34 0.26 0.00 NaN

W402 NaN NaN 0.08 0.11 0.14 0.35 0.39 NaN 0.35 0.29 1.00 0.04 0.22 0.28 0.07 0.02 NaN NaN

W500 NaN NaN 0.69 0.73 0.22 0.17 0.07 0.01 0.23 0.08 0.04 1.00 0.00 0.61 0.05 0.45 0.00 NaN

W560 NaN NaN 0.12 0.04 0.09 0.04 0.00 0.30 0.30 0.39 0.22 0.00 1.00 0.01 0.22 0.14 0.00 NaN

W600 NaN NaN 0.35 0.63 0.25 0.31 0.06 NaN 0.38 0.13 0.28 0.61 0.01 1.00 0.27 0.94 NaN NaN

Metal NaN NaN 0.22 0.21 0.01 0.03 0.02 0.31 0.03 0.34 0.07 0.05 0.22 0.27 1.00 0.42 0.00 NaN

Hardwood NaN NaN NaN 0.16 0.42 0.21 0.09 0.03 0.32 0.26 0.02 0.45 0.14 0.94 0.42 1.00 0.05 NaN

Softwood NaN 0.00 0.00 0.00 0.00 NaN 0.00 0.00 0.00 0.00 NaN 0.00 0.00 NaN 0.00 0.05 1.00 0.22

Timber NaN NaN 0.00 0.00 0.00 NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN 0.22 1.00

Table 8.209: Mean 2 Tailed K-S and Mann Whitney U Test p-values for Sleepers (Data B, Usage)
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Sleepers F19 F23 F24 F27 F28 F40 G44 G47 G49 HH10 W402 W500 W560 W600 Metal Hard-
wood

Soft-
wood

Tim-
ber

F19 0.00 NaN 1.00 1.00 1.00 NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN

F23 NaN 0.00 NaN 0.50 1.00 NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN 1.00 NaN

F24 1.00 NaN 0.00 0.32 0.54 0.19 0.33 NaN 0.00 1.00 0.17 0.00 0.67 0.00 0.50 NaN 1.00 1.00

F27 1.00 0.50 0.32 0.00 0.75 0.42 0.70 NaN NaN 0.00 0.50 0.00 0.50 0.00 0.36 0.00 1.00 1.00

F28 1.00 1.00 0.54 0.75 0.00 0.39 0.22 0.50 0.00 0.70 0.80 0.00 0.71 0.67 0.96 0.33 1.00 1.00

F40 NaN NaN 0.19 0.42 0.39 0.00 0.75 0.00 0.33 0.67 0.20 0.33 0.70 0.00 0.80 0.00 NaN NaN

G44 NaN NaN 0.33 0.70 0.22 0.75 0.00 0.75 0.25 1.00 0.50 0.50 1.00 0.67 0.79 0.00 1.00 NaN

G47 NaN NaN NaN NaN 0.50 0.00 0.75 0.00 1.00 0.50 NaN 1.00 0.50 NaN 0.50 0.50 1.00 NaN

G49 NaN NaN 0.00 NaN 0.00 0.33 0.25 1.00 0.00 0.75 0.00 0.17 0.60 0.00 0.80 0.00 1.00 NaN

HH10 NaN NaN 1.00 0.00 0.70 0.67 1.00 0.50 0.75 0.00 0.50 0.63 0.10 0.50 0.30 0.50 1.00 NaN

W402 NaN NaN 0.17 0.50 0.80 0.20 0.50 NaN 0.00 0.50 0.00 0.50 0.67 0.25 0.70 1.00 NaN NaN

W500 NaN NaN 0.00 0.00 0.00 0.33 0.50 1.00 0.17 0.63 0.50 0.00 1.00 0.00 0.63 0.00 1.00 NaN

W560 NaN NaN 0.67 0.50 0.71 0.70 1.00 0.50 0.60 0.10 0.67 1.00 0.00 1.00 0.50 0.50 1.00 NaN

W600 NaN NaN 0.00 0.00 0.67 0.00 0.67 NaN 0.00 0.50 0.25 0.00 1.00 0.00 0.67 0.00 NaN NaN

Metal NaN NaN 0.50 0.36 0.96 0.80 0.79 0.50 0.80 0.30 0.70 0.63 0.50 0.67 0.00 0.33 1.00 NaN

Hardwood NaN NaN NaN 0.00 0.33 0.00 0.00 0.50 0.00 0.50 1.00 0.00 0.50 0.00 0.33 0.00 0.50 NaN

Softwood NaN 1.00 1.00 1.00 1.00 NaN 1.00 1.00 1.00 1.00 NaN 1.00 1.00 NaN 1.00 0.50 0.00 0.50

Timber NaN NaN 1.00 1.00 1.00 NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN 0.50 0.00

Table 8.210: Mean 2 Tailed K-S and Mann Whitney U Test for Sleepers (Data B, Usage)
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8.2.24 Sleeper Reduced Groups

Second Layer Analysis

Data Amounts

Sleeper Group Group
1

Group
2

Group
3

Data
A

Usage

Datasets Used 6 13 1

Data points Used 836 5160 70

Data
B

Usage

Datasets Used 70 60 29

Data points Used 9745 7967 3097

Group 1 F23, F24, W600, F27, W560

Group 2 F28, G49, G44, G47, F40

Group 3 Timber, W402, HH10, Metal, W500

Table 8.211: Data Amounts for Sleepers Grouped

2-Tailed Hypothesis Tests

Sleeper Group Group
1

Group
2

Group 1 1.00 0.08

Group 2 0.08 1.00

Group 1 F23, F24, W600, F27, W560

Group 2 F28, G49, G44, G47, F40

Table 8.212: Mean 2 Tailed K-S and Mann Whitney U Test p-values for Sleepers
Grouped (Data A, Usage)
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Sleeper Group Group
1

Group
2

Group 1 0.00 0.83

Group 2 0.83 0.00

Group 1 F23, F24, W600, F27, W560

Group 2 F28, G49, G44, G47, F40

Table 8.213: Mean 2 Tailed K-S and Mann Whitney U Test for Sleepers Grouped
(Data A, Usage)

Sleeper Group Group
1

Group
2

Group
3

Group 1 1.00 0.11 0.19

Group 2 0.11 1.00 0.03

Group 3 0.19 0.03 1.00

Group 1 F23, F24, W600, F27, W560

Group 2 F28, G49, G44, G47, F40

Group 3 Timber, W402, HH10, Metal, W500

Table 8.214: Mean 2 Tailed K-S and Mann Whitney U Test p-values for Sleepers
Grouped (Data B, Usage)

Sleeper Group Group
1

Group
2

Group
3

Group 1 0.00 0.72 0.50

Group 2 0.72 0.00 0.87

Group 3 0.50 0.87 0.00

Group 1 F23, F24, W600, F27, W560

Group 2 F28, G49, G44, G47, F40

Group 3 Timber, W402, HH10, Metal, W500

Table 8.215: Mean 2 Tailed K-S and Mann Whitney U Test for Sleepers Grouped
(Data B, Usage)
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1-Tailed Hypothesis Tests

Sleeper Group Group
1

Group
2

Group 1 NA 0.94

Group 2 0.04 NA

Group 1 F23, F24, W600, F27, W560

Group 2 F28, G49, G44, G47, F40

Table 8.216: Mean 2 Tailed K-S and Mann Whitney U Test p-values for Sleepers
Grouped (Data A, Usage)

Sleeper Group Group
1

Group
2

Group 1 NA 0.00

Group 2 0.83 NA

Group 1 F23, F24, W600, F27, W560

Group 2 F28, G49, G44, G47, F40

Table 8.217: Mean 2 Tailed K-S and Mann Whitney U Test for Sleepers Grouped
(Data A, Usage)

Sleeper Group Group
1

Group
2

Group
3

Group 1 NA 0.90 0.28

Group 2 0.09 NA 0.03

Group 3 0.69 0.94 NA

Group 1 F23, F24, W600, F27, W560

Group 2 F28, G49, G44, G47, F40

Group 3 Timber, W402, HH10, Metal, W500

Table 8.218: Mean 2 Tailed K-S and Mann Whitney U Test p-values for Sleepers
Grouped (Data B, Usage)
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Sleeper Group Group
1

Group
2

Group
3

Group 1 NA 0.00 0.52

Group 2 0.74 NA 0.91

Group 3 0.11 0.00 NA

Group 1 F23, F24, W600, F27, W560

Group 2 F28, G49, G44, G47, F40

Group 3 Timber, W402, HH10, Metal, W500

Table 8.219: Mean 2 Tailed K-S and Mann Whitney U Test for Sleepers Grouped
(Data B, Usage)

Third Layer Analysis

Data Amounts

Sleeper Group Group
1

Group
2

Group
3

Data
A

Usage

Datasets Used 3 18 7

Data points Used 146 4877 757

Data
B

Usage

Datasets Used 73 72 30

Data points Used 10400 7417 1887

Group 1 F23, F24, W500, W600, F27, W560

Group 2 F28, G49, G44, G47, F40

Group 3 Timber, W402, HH10, Metal, W500

Table 8.220: Data Amounts for Sleepers Grouped
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2-Tailed Hypothesis Tests

Sleeper Group Group
1

Group
2

Group
3

Group 1 1.00 0.00 0.37

Group 2 0.00 1.00 0.09

Group 3 0.37 0.09 1.00

Group 1 F23, F24, W500, W600, F27, W560

Group 2 F28, G49, G44, G47, F40

Group 3 Timber, W402, HH10, Metal, W500

Table 8.221: Mean 2 Tailed K-S and Mann Whitney U Test p-values for Sleepers
Grouped (Data A, Usage)

Sleeper Group Group
1

Group
2

Group
3

Group 1 0.00 1.00 0.00

Group 2 1.00 0.00 0.86

Group 3 0050 0.86 0.00

Group 1 F23, F24, W600, F27, W560

Group 2 F28, G49, G44, G47, F40

Group 3 Timber, W402, HH10, Metal, W500

Table 8.222: Mean 2 Tailed K-S and Mann Whitney U Test for Sleepers Grouped
(Data A, Usage)

Sleeper Group Group
1

Group
2

Group
3

Group 1 1.00 0.11 0.17

Group 2 0.11 1.00 0.09

Group 3 0.17 0.09 1.00

Group 1 F23, F24, W600, F27, W560

Group 2 F28, G49, G44, G47, F40

Group 3 Timber, W402, HH10, Metal, W500

Table 8.223: Mean 2 Tailed K-S and Mann Whitney U Test p-values for Sleepers
Grouped (Data B, Usage)
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Sleeper Group Group
1

Group
2

Group
3

Group 1 0.00 0.74 0.59

Group 2 0.74 0.00 0.83

Group 3 0.59 0.83 0.00

Group 1 F23, F24, W600, F27, W560

Group 2 F28, G49, G44, G47, F40

Group 3 Timber, W402, HH10, Metal, W500

Table 8.224: Mean 2 Tailed K-S and Mann Whitney U Test for Sleepers Grouped
(Data B, Usage)

8.2.25 Track Geometry Degradation Model

Table 8.225: Vertical geometry degradation on large concrete sleepers with track speeds
5-60MPH, Weibull parameters and descriptive statistics [nm/ Equivalent Million Gross

Tonnage]

After Tamping After Stoneblowing

History: R T0-1 T2-3 T4-5 T5-6 T6-7 S0-1 S2-3

Weibull A 2.126e-4 1.698e-4 1.800e-4 1.472e-4 7.973e-5 1.559e-4 1.664e-4 NA

Weibull β 5.635e-1 1.304e0 9.726e-1 1.767e0 4.304e0 1.821e0 1.340e0 NA

Min 5.014e-5 5.013e-5 5.043e-5 5.318e-5 5.175e-5 5.285e-5 5.051e-5 6.996e-5

Q1 6.888e-5 7.355e-5 6.815e-5 7.463e-5 5.667e-5 6.815e-5 7.085e-5 6.996e-5

Median 1.040e-4 1.032e-4 9.093e-5 9.634e-5 6.352e-5 1.021e-4 9.716e-5 6.996e-5

Q3 1.724e-4 1.823e-4 1.898e-4 1.739e-4 9.006e-5 2.138e-4 1.943e-4 6.996e-5

Max 1.147e-1 1.189e-3 3.477e-3 3.984e-4 1.043e-4 2.860e-4 8.338e-4 6.996e-5

Mean 9.174e-4 1.546e-4 1.832e-4 1.297e-4 7.251e-5 1.375e-4 1.508e-4 6.996e-5

Number 150 196 108 26 10 12 81 1
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Table 8.226: Vertical geometry degradation on small concrete and large steel sleepers
with track speeds 5-60MPH, Weibull parameters and descriptive statistics [nm/

Equivalent Million Gross Tonnage]

After Tamping After Stoneblowing

History: R T0-1 T2-3 T4-5 T5-6 T6-7 S0-1 S2-3

Weibull η 1.933E-4 2.145E-4 2.222E-4 2.061E-4 2.211E-4 2.367E-4 2.124E-4 NA

Weibull β 1.029E+0 8.184E-1 1.049E+0 1.165E+0 7.253E-1 1.004E+0 6.490E-1 NA

Min 5.134E-5 5.001E-5 5.021E-5 5.036E-5 5.033E-5 5.039E-5 5.001E-5 5.652E-5

Q1 6.682E-5 7.053E-5 7.671E-5 7.540E-5 7.674E-5 7.110E-5 7.322E-5 5.652E-5

Median 1.011E-4 1.068E-4 1.271E-4 1.184E-4 1.212E-4 1.239E-4 1.098E-4 5.652E-5

Q3 1.608E-4 1.929E-4 2.495E-4 1.945E-4 1.941E-4 2.591E-4 1.754E-4 5.652E-5

Max 1.460E-3 1.853E-2 3.306E-3 1.587E-3 3.145E-2 2.916E-3 1.295E-1 5.652E-5

Mean 1.905E-4 2.577E-4 2.168E-4 1.933E-4 3.458E-4 2.362E-4 5.083E-4 5.652E-5

Number 86 371 278 193 193 219 428 1

Table 8.227: Vertical geometry degradation on small steel and timber sleepers with
track speeds 5-60MPH, Weibull parameters and descriptive statistics [nm/ Equivalent

Million Gross Tonnage]

After Tamping After Stoneblowing

History: R T0-1 T2-3 T4-5 T5-6 T6-7 S0-1 S2-3

Weibull η 1.683E-4 2.449E-4 2.128E-4 6.852E-4 4.508E-4 5.928E-4 4.757E-4 NA

Weibull β 9.376E-1 8.984E-1 1.032E+0 6.843E-1 1.105E+0 1.108E+0 8.192E-1 NA

Min 5.186E-5 5.009E-5 5.043E-5 5.014E-5 5.519E-5 5.400E-5 5.018E-5 NA

Q1 6.617E-5 7.817E-5 7.302E-5 1.725E-4 1.572E-4 1.669E-4 9.216E-5 NA

Median 9.074E-5 1.240E-4 1.224E-4 4.178E-4 2.668E-4 3.820E-4 2.565E-4 NA

Q3 1.659E-4 2.291E-4 2.033E-4 7.839E-4 5.568E-4 7.972E-4 5.136E-4 NA

Max 4.391E-3 5.278E-3 1.840E-3 7.507E-2 2.674E-3 3.297E-3 4.742E-3 NA

Mean 1.760E-4 2.632E-4 2.093E-4 1.126E-3 4.319E-4 5.687E-4 5.443E-4 NA

Number 122 590 164 179 87 149 139 0
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Table 8.228: Vertical geometry degradation on large concrete sleepers with track speeds
65-70MPH, Weibull parameters and descriptive statistics [nm/ Equivalent Million

Gross Tonnage]

After Tamping After Stoneblowing

History: R T0-1 T2-3 T4-5 T5-6 T6-7 S0-1 S2-3

Weibull η 1.430E-4 1.692E-4 1.202E-4 1.177E-4 1.499E-4 9.852E-5 1.584E-4 NA

Weibull β 1.537E+0 1.410E+0 1.903E+0 2.481E+0 2.122E+0 2.740E+0 6.454E-1 NA

Min 5.122E-5 5.044E-5 5.024E-5 5.077E-5 5.857E-5 5.067E-5 5.071E-5 8.876E-5

Q1 6.520E-5 7.022E-5 6.374E-5 6.554E-5 6.414E-5 5.873E-5 6.136E-5 8.876E-5

Median 9.428E-5 1.012E-4 9.134E-5 9.976E-5 1.149E-4 7.727E-5 7.772E-5 8.928E-5

Q3 1.409E-4 1.987E-4 1.206E-4 1.327E-4 1.983E-4 1.157E-4 1.056E-4 8.980E-5

Max 6.220E-4 4.570E-4 3.510E-4 2.246E-4 2.527E-4 1.487E-4 1.002E-2 8.980E-5

Mean 1.272E-4 1.522E-4 1.059E-4 1.041E-4 1.320E-4 8.732E-5 3.168E-4 8.928E-5

Number 68 63 36 16 10 7 44 2

Table 8.229: Vertical geometry degradation on small concrete and large steel sleepers
with track speeds 65-70MPH, Weibull parameters and descriptive statistics [nm/

Equivalent Million Gross Tonnage]

After Tamping After Stoneblowing

History: R T0-1 T2-3 T4-5 T5-6 T6-7 S0-1 S2-3

Weibull η 1.361E-4 1.402E-4 1.640E-4 1.559E-4 1.547E-4 1.410E-4 1.339E-4 NA

Weibull β 1.616E+0 1.566E+0 9.848E-1 1.212E+0 1.584E+0 1.395E+0 1.548E+0 NA

Min 5.132E-5 5.060E-5 5.009E-5 5.055E-5 5.036E-5 5.017E-5 5.044E-5 5.916E-5

Q1 6.454E-5 6.543E-5 6.890E-5 6.819E-5 6.893E-5 6.352E-5 6.959E-5 7.651E-5

Median 8.353E-5 8.753E-5 1.027E-4 8.643E-5 9.800E-5 9.066E-5 9.360E-5 1.286E-4

Q3 1.407E-4 1.547E-4 1.594E-4 1.424E-4 1.836E-4 1.431E-4 1.361E-4 1.503E-4

Max 4.098E-4 5.352E-4 4.610E-3 1.155E-3 4.779E-4 7.463E-4 7.832E-4 1.575E-4

Mean 1.205E-4 1.244E-4 1.656E-4 1.442E-4 1.373E-4 1.268E-4 1.190E-4 1.151E-4

Number 53 164 168 118 87 104 179 3
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Table 8.230: Vertical geometry degradation on small steel and timber sleepers with
track speeds 65-70MPH, Weibull parameters and descriptive statistics [nm/ Equivalent

Million Gross Tonnage]

After Tamping After Stoneblowing

History: R T0-1 T2-3 T4-5 T5-6 T6-7 S0-1 S2-3

Weibull η 1.413E-4 1.601E-4 1.948E-4 1.652E-4 6.280E-4 2.690E-4 1.182E-4 NA

Weibull β 1.946E+0 1.514E+0 1.011E+0 1.587E+0 7.753E-1 9.743E-1 2.001E+0 NA

Min 5.027E-5 5.054E-5 5.077E-5 5.149E-5 5.112E-5 5.624E-5 5.031E-5 NA

Q1 7.342E-5 7.807E-5 6.832E-5 8.490E-5 9.873E-5 6.596E-5 6.855E-5 NA

Median 1.053E-4 1.054E-4 1.175E-4 9.933E-5 3.023E-4 1.411E-4 8.028E-5 NA

Q3 1.580E-4 1.744E-4 1.490E-4 1.629E-4 1.405E-3 3.217E-4 1.191E-4 NA

Max 3.447E-4 7.898E-4 1.723E-3 3.918E-4 2.426E-3 1.140E-3 2.753E-4 NA

Mean 1.244E-4 1.426E-4 1.936E-4 1.465E-4 7.358E-4 2.726E-4 1.040E-4 NA

Number 44 125 45 19 7 9 26 0

Table 8.231: Vertical geometry degradation on large concrete sleepers with track speeds
75-110MPH, Weibull parameters and descriptive statistics [nm/ Equivalent Million

Gross Tonnage]

After Tamping After Stoneblowing

History: R T0-1 T2-3 T4-5 T5-6 T6-7 S0-1 S2-3

Weibull η 1.263E-4 1.434E-4 1.292E-4 1.556E-4 1.550E-4 1.043E-4 1.450E-4 1.090E-4

Weibull β 1.470E+0 1.235E+0 1.485E+0 1.381E+0 1.249E+0 3.316E+0 1.287E+0 2.360E+0

Min 5.016E-5 5.036E-5 5.034E-5 5.126E-5 5.187E-5 5.854E-5 5.012E-5 5.131E-5

Q1 6.313E-5 6.491E-5 6.406E-5 6.544E-5 6.440E-5 7.284E-5 6.160E-5 6.889E-5

Median 8.332E-5 8.727E-5 8.478E-5 9.893E-5 9.145E-5 8.020E-5 8.229E-5 8.078E-5

Q3 1.245E-4 1.464E-4 1.255E-4 1.566E-4 1.418E-4 1.199E-4 1.443E-4 1.145E-4

Max 1.029E-3 1.555E-3 6.751E-4 6.677E-4 7.529E-4 1.547E-4 1.002E-3 2.079E-4

Mean 1.127E-4 1.317E-4 1.152E-4 1.401E-4 1.423E-4 9.345E-5 1.322E-4 9.624E-5

Number 352 318 192 69 44 10 217 12
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Table 8.232: Vertical geometry degradation on small concrete and large steel sleepers
with track speeds 75-110MPH, Weibull parameters and descriptive statistics [nm/

Equivalent Million Gross Tonnage]

After Tamping After Stoneblowing

History: R T0-1 T2-3 T4-5 T5-6 T6-7 S0-1 S2-3

Weibull η 1.897E-4 1.500E-4 1.327E-4 1.325E-4 1.251E-4 1.361E-4 1.189E-4 1.607E-4

Weibull β 1.041E+0 1.488E+0 1.568E+0 1.659E+0 1.712E+0 1.323E+0 1.656E+0 2.272E+0

Min 5.010E-5 5.008E-5 5.049E-5 5.029E-5 5.004E-5 5.001E-5 5.003E-5 6.416E-5

Q1 6.976E-5 6.972E-5 6.704E-5 6.318E-5 6.610E-5 6.375E-5 6.346E-5 7.596E-5

Median 1.142E-4 1.007E-4 8.684E-5 8.721E-5 8.695E-5 8.380E-5 8.235E-5 1.298E-4

Q3 1.692E-4 1.569E-4 1.343E-4 1.428E-4 1.258E-4 1.252E-4 1.175E-4 2.057E-4

Max 2.511E-3 8.831E-4 5.727E-4 5.098E-4 4.914E-4 8.782E-4 5.696E-4 2.517E-4

Mean 1.857E-4 1.338E-4 1.177E-4 1.171E-4 1.104E-4 1.232E-4 1.052E-4 1.415E-4

Number 92 141 245 231 184 209 321 10

Table 8.233: Vertical geometry degradation on small steel and timber sleepers with
track speeds 75-110MPH, Weibull parameters and descriptive statistics [nm/

Equivalent Million Gross Tonnage]

After Tamping After Stoneblowing

History: R T0-1 T2-3 T4-5 T5-6 T6-7 S0-1 S2-3

Weibull η 1.276E-4 1.777E-4 1.326E-4 1.871E-4 1.900E-4 3.121E-4 1.151E-4 NA

Weibull β 2.346E+0 1.457E+0 1.852E+0 9.318E-1 9.714E-1 1.242E+0 1.741E+0 NA

Min 5.278E-5 5.010E-5 5.033E-5 5.059E-5 5.061E-5 5.376E-5 5.170E-5 NA

Q1 6.205E-5 7.334E-5 6.776E-5 6.518E-5 7.296E-5 8.242E-5 6.396E-5 NA

Median 1.116E-4 1.144E-4 1.008E-4 9.153E-5 9.698E-5 2.378E-4 8.110E-5 NA

Q3 1.451E-4 2.092E-4 1.472E-4 1.253E-4 1.376E-4 3.994E-4 1.081E-4 NA

Max 2.644E-4 8.148E-4 4.042E-4 1.322E-3 1.134E-3 9.674E-4 3.314E-4 NA

Mean 1.126E-4 1.592E-4 1.168E-4 1.954E-4 1.932E-4 2.898E-4 1.014E-4 NA

Number 36 166 73 38 26 13 19 0
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Table 8.234: Vertical geometry degradation on large concrete sleepers with track speeds
110-125MPH, Weibull parameters and descriptive statistics [nm/ Equivalent Million

Gross Tonnage]

After Tamping After Stoneblowing

History: R T0-1 T2-3 T4-5 T5-6 T6-7 S0-1 S2-3

Weibull η 1.089E-4 1.621E-4 1.996E-4 2.695E-4 1.546E-4 2.724E-4 1.086E-4 NA

Weibull β 1.753E+0 1.095E+0 1.163E+0 1.104E+0 9.954E-1 1.640E+0 1.861E+0 NA

Min 5.013E-5 5.044E-5 5.039E-5 5.169E-5 5.219E-5 7.316E-5 5.028E-5 5.362E-5

Q1 6.284E-5 5.838E-5 6.376E-5 6.772E-5 5.249E-5 8.641E-5 5.788E-5 5.362E-5

Median 7.369E-5 8.014E-5 1.129E-4 1.368E-4 7.341E-5 1.414E-4 7.134E-5 5.362E-5

Q3 1.018E-4 1.271E-4 2.570E-4 2.701E-4 1.873E-4 2.956E-4 1.166E-4 5.362E-5

Max 3.518E-4 9.457E-4 8.403E-4 8.257E-4 5.205E-4 1.022E-3 2.873E-4 5.362E-5

Mean 9.593E-5 1.554E-4 1.878E-4 2.587E-4 1.550E-4 2.620E-4 9.567E-5 5.362E-5

Number 48 123 58 22 5 6 19 1

Table 8.235: Vertical geometry degradation on small concrete and large steel sleepers
with track speeds 110-125MPH, Weibull parameters and descriptive statistics [nm/

Equivalent Million Gross Tonnage]

After Tamping After Stoneblowing

History: R T0-1 T2-3 T4-5 T5-6 T6-7 S0-1 S2-3

Weibull η 4.220E-5 1.619E-4 1.624E-4 9.611E-5 6.630E-5 1.247E-4 7.562E-5 NA

Weibull β 9.378E-1 2.028E+0 1.206E+0 2.845E+0 4.568E+0 2.043E+0 5.093E+0 NA

Min 1.847E-5 6.153E-5 5.380E-5 5.145E-5 5.043E-5 5.606E-5 5.571E-5 NA

Q1 1.950E-5 7.007E-5 5.512E-5 5.375E-5 5.219E-5 5.683E-5 5.935E-5 NA

Median 2.894E-5 1.156E-4 8.387E-5 6.699E-5 5.936E-5 9.480E-5 6.157E-5 NA

Q3 4.969E-5 2.206E-4 2.075E-4 8.024E-5 6.024E-5 1.395E-4 8.669E-5 NA

Max 7.950E-5 2.524E-4 4.283E-4 9.124E-5 9.018E-5 2.250E-4 9.251E-5 NA

Mean 3.792E-5 1.425E-4 1.511E-4 8.499E-5 6.100E-5 1.097E-4 6.957E-5 NA

Number 7 5 5 5 7 7 6 0
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Table 8.236: Vertical geometry degradation on small steel and timber sleepers with
track speeds 110-125MPH, Weibull parameters and descriptive statistics [nm/

Equivalent Million Gross Tonnage]

After Tamping After Stoneblowing

History: R T0-1 T2-3 T4-5 T5-6 T6-7 S0-1 S2-3

Weibull η NA NA NA NA NA NA NA NA

Weibull β NA NA NA NA NA NA NA NA

Min 6.806E-5 NA NA NA NA NA NA NA

Q1 6.806E-5 NA NA NA NA NA NA NA

Median 6.806E-5 NA NA NA NA NA NA NA

Q3 6.806E-5 NA NA NA NA NA NA NA

Max 6.806E-5 NA NA NA NA NA NA NA

Mean 6.806E-5 NA NA NA NA NA NA NA

Number 1 0 0 0 0 0 0 0

8.3 Railway Track Asset Management Model

Table 8.237: Maintenance methods for different rail faults (Stacked Probabilities)

Fault Type f Rerail (fmt = 3) Or Weld (fmt = 2) Or Grind and
Other (fmt = 1)

Squat 1 0.328 0.954 1.000

Tache Ovale 2 0.722 0.963 1.000

Bolt Hole 3 0.900 0.919 1.000

Weld 6 0.519 0.904 1.000

Other 7 0.641 0.918 1.000

RCF 8 0.508 0.786 1.000

Wheelburn 4 0.267 0.874 1.000

Lipping 10 0.029 0.134 1.000

Side wear 11 0.044 0.338 1.000

Head wear 12 0.213 0.752 1.000

Corrugation 5 0.706 0.765 1.000

Unknown 9 0.464 0.630 1.000
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