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Abstract

In this work, we investigate novel phase synchronisation features that occur in

bistable oscillators, explored with trapped ions and oscillator-only systems, as

well as in networks of spin-1 oscillators of varying size and geometry. We begin

with two coupled trapped ions each driven by a two-quanta gain process whose

dynamical states heavily influence the emergent relative phase preference. Large

gain rates produce limit-cycle states where photon numbers can become large

with relative phase distributions that are π-periodic with peaks at 0 and π, as

extensively discussed in the literature. When the gain rate is low, however, the

oscillators have very low photon occupation numbers which produces π-periodic

distributions with peaks at π
2

and 3π
2

. We find bistability between these limit-

ing cases with a coexistence of limit-cycle and low-occupation states where the

relative phase distribution can have π
2
-periodicity. These results reveal that syn-

chronisation manifests differently in quantum oscillators outside of the limit-cycle

regime. Next, we investigate the origin of these features by proposing a minimal

oscillator-only model that also exhibits bistability but with reduced complexity.

Our model of two 321 oscillators is purely dissipative, with a two-photon gain

balanced by single- and three-photon loss processes. Perturbation theory reveals

that the values of π
2

and 3π
2

are due to the form of the number distribution that is

produced by the two-quanta gain, unseen in thermal and van der Pol oscillators.

Moving away from exploring bistability, we turn our attention to synchronisation

in spin-1 oscillators which allows for the simulation of large networks. We derive

an analytic form of the relative phase distribution of two spin-1 oscillators in a

network that depends on only two complex values. The size and geometry of the

network greatly affects the strength and form of synchronisation in the system. A

strengthening of the synchronisation between next-nearest neighbours, compared

to neighbours, is observed in chain and ring networks of three and four spins.
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Chapter 1

Introduction

Synchronisation has been studied for centuries; from pendulum clocks on a beam

that would tick in unison, to the simultaneous rhythms found in swarms of in-

sects [8, 38, 83, 86], it is ubiquitous in nature. The tendency of coupled systems

to develop identical frequencies and phases has been studied in seemingly every

scientific field. Notable examples include biology, chemistry, ecology, sociology,

economics, and, of course, countless branches of physics.

Theoretical physics has changed a lot since the 17th century, when Christiaan

Huygens developed the earliest understanding of synchronisation [51]. Research

advanced beyond the classical world, and interest turned to exploring the phe-

nomenon in the realm of quantum mechanics [77]. Over the years, a host of

theoretical methods and measures have been developed, all with the goal of un-

derstanding the similarities and differences between quantum synchronisation and

its classical analogue [38, 73]. More recently, advancements in experimental tech-

niques have even led to groups observing this phenomenon among systems such

as trapped ions [21, 49].

Theoretical studies of quantum synchronisation often focus on a quantum version

of the van der Pol oscillator [61, 65, 66, 118]. This model is chosen because the

1
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quantum features can be directly compared to the widely studied, and better un-

derstood, classical model [115]. Synchronisation in other quantum systems that

go beyond this simple model, however, remains relatively unexplored. This the-

sis aims to theoretically investigate quantum synchronisation in models such as

trapped ions and simpler oscillator models that are driven to bistability, as well

as spin-1 networks with varying size and geometry.

We began our work exploring trapped ions with a two-quanta gain process that

can be driven to a bistable state. We found interesting synchronisation features in

the system of two coupled bistable ions, and, from this, developed a useful mea-

sure based on a Fourier decomposition of the relative phase distribution. Though

trapped ions are experimentally realisable, the full spin-oscillator model made

analysis difficult and the origin of the interesting synchronisation features was un-

clear. To address this, we went on to develop a minimal oscillator-only model that

was also capable of being driven to the bistable state: the 321 oscillator. Its math-

ematical simplicity allowed for the exploration of an extensive range of parameters

which ultimately led to our understanding of the synchronisation regimes.

This simplification of the trapped ion model to the 321 oscillator inspired a further

simplification which allowed us to model many coupled oscillators; our research

moved from considering two subsystems based on harmonic oscillators to networks

of up to 5 spin-1 oscillators. With the previous systems, modelling more than two

oscillators was only possible with extremely high powered computers. With spin-1

oscillators, however, the much smaller state space allowed for a larger number of

systems to be explored. We went on to extend our relative phase distribution

deconstruction to an exact description that revealed synchronisation features that

strongly depend on the network size and geometry. Understanding how quantum

synchronisation emerges in networks of spin-1 oscillators is vital for the advance-
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ment of fields such as quantum information and quantum technology. This thesis

details features of quantum synchronisation in a range of novel contexts that are

not present in the “standard” models in the literature.

1.1 The Outline of the Thesis

Chapter 2 introduces the focus of the thesis: synchronisation, describes the widely

studied van der Pol oscillator, and outlines recent results in the field. Synchroni-

sation is discussed, first, in a classical context, beginning with the observation of

simultaneously ticking clocks by Christiaan Huygens. Then, quantum synchroni-

sation is explained, where phase-locking is observed in quantum systems through

analysis of measures such as relative phase distributions and quasiprobabilities.

Next, an important model often used to study synchronisation, the van der Pol

oscillator, is introduced in both its classical and quantum forms. This provides

the reader with the features of synchronisation that are typically found in the

literature that will be used to contrast our results found in bistable oscillator

models.

Chapter 3 begins by describing a spin-oscillator model that can be realised in

trapped ions, a novel two-phonon gain process, and the exchange process used to

couple two oscillators. While previous work has utilised this ion model, the in-

clusion of the two-phonon drive results in a bistability in the phonon state of the

ion. This bistability is shown to appear in the steady state numerics of the system

and is predicted with mean field theory. Next, synchronisation features of two

coupled ions are explored with a relative phase distribution that is decomposed

into Fourier coefficients. Familiar results are found for ions driven to limit-cycle

states and a mean field argument explains this. Weakly driven oscillators, how-

ever, produce entirely different synchronisation patterns, similar to what occurs
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in asymmetrically driven ions. Finally, a method for resolving the phonon state

of the ions by simply counting emitted photons is discussed.

Chapter 4 seeks to describe, in detail, exactly how the new synchronisation pat-

terns form. A minimal model, the 321 oscillator, is proposed which simplifies the

system whilst reproducing the bistable state with another two-phonon gain pro-

cess. The steady state and dynamical properties of the 321 oscillator are explored

both numerically and with mean field theory to produce a phase diagram of the

different possible states of the system. A thorough discussion on the definition of

the bistable state is included along with a proposed measure, the bistability con-

trast, to quantify bistableness. Next, dynamical properties of the bistable state are

explored, including a metastability prediction from eigenvalue analysis as well as

observed intermittency in quantum jump simulations. Finally, the synchronisation

features of two coupled 321 oscillators are discussed, again with the relative phase

distribution decomposed into Fourier coefficients. A perturbative calculation is

then carried out in the weak driving regime, and the interesting synchronisation

patterns are explained to be due to the phonon distribution whose particular form

is a direct result of the two-phonon gain.

Chapter 5 makes a departure from bistability and instead focuses on minimis-

ing the size of the oscillator state space so that the number of oscillators can

be increased beyond two. A spin-1 model is introduced; equivalent to a heavily

truncated van der Pol oscillator with only three energy levels. A simple Lind-

blad master equation is introduced that gives rise to a limit-cycle in the spin-1

oscillator which is visualised with the Husimi-Q function. The formalism of the

network geometry is described for any number of oscillators, specifically consider-

ing all-to-all, ring, and chain networks. Next, an exact measure that describes the

relative phase distribution is derived from the Husimi-Q function which consists
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of only two complex values. This novel approach allows for easy visualisation of

the phase locking phenomena in a range of parameter regimes, initially shown for

the two-spin network with varying oscillator driving-damping ratios and coupling

strengths. Analysis of larger networks reveals different synchronisation phenom-

ena for different network sizes and geometries. Specifically, a strengthening of

the synchronisation is seen between next nearest neighbours compared to nearest

neighbours in networks of 3 or more oscillators.

The two-phonon driving of the spin-oscillator model, and subsequent synchronisa-

tion patterns of the bistable state in Chapter 3, as well as the entirety of Chapters 4

and 5 are from original research undertaken in collaboration with Andrew Armour

and Weibin Li. The key results in Chapter 4 are published in [53]. The results in

Chapters 3 and 5 are currently being prepared for future publications.



Chapter 2

Synchronising oscillators

In this Chapter, we will discuss the background material necessary to understand

quantum synchronisation in novel coupled oscillator models. First, in Sec. 2.1,

we explain synchronisation in the context of classical systems (Sec. 2.1.1), start-

ing with Christiaan Huygens and his pendulum clocks. We then explore how the

concept changes in the quantum regime (Sec. 2.1.2) and introduce the specific

measures that are used to study synchronisation. In Sec. 2.2, we introduce an im-

portant model system, the van der Pol oscillator, and describe the self-sustained os-

cillations that develop in it. We start by discussing the classical regime (Sec. 2.2.1)

before going on to describe synchronisation in a quantum version of the van der

Pol oscillator (Sec. 2.2.2).

2.1 Synchronisation

Synchronisation is ubiquitous in nature and emerges in countless fields of study [5,

83, 86]. In biological research, there has been significant interest in describing syn-

chronisation in neuronal networks of the brain [18, 19, 26, 32, 44, 48, 108, 111] as

well as in networks of cells that mediate the heartbeat [74, 113], insulin secretion

6
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in the pancreas [59, 107], and processes in the small intestine [28]. Synchroni-

sation is also observed in the behaviour exhibited by swarms of fireflies [15, 16]

and crickets [117], various circadian rhythms [33, 86], as well as in animal popula-

tions [12, 91]. Even sociological and economic systems synchronise, from opinions

forming in crowds [90] and rhythmically tapping at musical performances [95], to

the chaos of the stock market [82], and the flow of global trade [36].

In physics, research into synchronisation began classically [86], with pendulum

clocks [51], organ pipes [94], and radios [4, 115]. Research eventually evolved to

explore how synchronisation changes for classical systems operating in the quan-

tum regime, such as the maser [25] as well as van der Pol [61, 118], Kerr [66],

and optomechanical [68, 118, 120] oscillators. Different physical systems are pro-

posed to explore quantum synchronisation in individual oscillators and complex

many-body realisations [31, 92, 99, 124]. Examples of this are atomic ensem-

bles [122, 126], trapped ions [49, 61], and superconducting circuits [78], as well as

precisely engineered nonlinear oscillators [30, 80, 81, 119]. This list of studies is

far from exhaustive and merely highlights interesting examples whilst reminding

the reader that synchronisation is a universal phenomenon and not confined to

the precisely engineered pendula or the specific models explored in this work.

2.1.1 Classical Synchronisation

In the 17th century, Christiaan Huygens noticed a peculiar effect when working on

naval pendulum clocks [51]; two pendula with a common support would develop

perfectly identical swings (Fig. 2.1).

“It is quite worth noting that when we suspend two clocks so constructed from

two hooks imbedded in the same wooden beam, the motions of each pendulum in
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opposite swings were so much in agreement that they never receded the least bit

from each other and the sound of each was always heard simultaneously.” [123]

Figure 2.1: Original drawing by Christiaan Huygens of two pendulum clocks with
a common support. Taken from [51].

This was the first time synchronisation had been described in a scientific way.

Synchronisation is an effect that adjusts the motion of oscillating objects that

interact weakly. Although the clocks seemed isolated, Huygens realised that they

must have been interacting somehow. The pendula were passing imperceptible

amounts of energy through the common support and so became coupled. Though

this coupling was extremely weak, it still had the ability to alter the oscillatory

motion of the pendula. Figure 2.2a shows schematically that, for similar oscillators

with small detuning ∆f = f1 − f2 ≈ 0 between the oscillator frequencies f1,2, the

observed frequencies F1,2 become identical, ∆F = F1 − F2 = 0. This is known as

frequency locking and is the first indication of synchronisation in a system.

In this scenario, the frequency locking is facilitated by a coupling interaction that

is incredibly weak when compared to the the processes that govern the dynamics

of the individual oscillators. This was possible because the clocks were designed

to have identical frequencies, though engineering limitations at the time would

have produced discrepancies. Synchronisation is not, however, found only in this

near-identical oscillator regime. Instead, even oscillators with natural frequencies

that differ considerably can synchronise provided that the interaction is sufficiently

strong.
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Figure 2.2: (a) The observed frequency difference of two coupled oscillators, ∆F =
F1−F2, against the difference in frequency of the oscillators if they were uncoupled,
∆f = f1 − f2, in arbitrary units. The synchronisation region shows how different
the natural frequencies can be, whilst still facilitating synchronisation ∆F = 0.
(b) The strength of the coupling between oscillators J , increases the width of the
synchronisation region, shown here with the Arnold tongue [6].

The regimes of synchronisation can be visualised with the Arnold tongue [6] shown

in Fig. 2.2b, where the red region indicates the frequency locked regime, ∆F = 0,

for a range of coupling strength J and natural frequency differences ∆f .

Frequency locking accounts for the identical frequencies of the oscillators, but this

does not explain why Huygens heard simultaneous ‘ticks’. For this to occur, both

pendula must reach the same point in its motion (in this case, the point where

the mechanism audibly clicks) at the same time. This reveals that oscillators can

synchronise in different ways and we distinguish between these types of synchro-

nisation by introducing the concept of phase. The phase of a simple harmonic

oscillator ϕ grows uniformly with time and increases by 2π after each oscillation.

If the relative phase of any two oscillators φ = ϕ1 − ϕ2 becomes fixed, the system

exhibits synchronisation in the form of phase locking, as shown in Fig. 2.3a.

If both pendula swing in a similar manner, as depicted in Fig. 2.3b, the oscillators

would be described as being in phase with relative phase φ = 0. Oscillators that

oppose each other’s motion, shown in Figure 2.3c, are described as anti-phase with

φ = π. Huygens observed anti-phase synchronisation between his clocks, but a
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Figure 2.3: The position x of two synchronised pendula (red and blue) as they
oscillate in time t. The relative phase, φ = ϕ1−ϕ2, of two synchronised oscillators
can lock to any value, for example (a) φ = 0.6π. Two notable cases are that of
(b) in-phase ϕ1 = ϕ2 and (c) anti-phase ϕ1 = ϕ2 + π synchronisation.

range of relative phase relations are possible. This rather simple model of two

coupled pendula with locked phases has been generalised to explain a huge variety

of different systems.

It is important to note that synchronisation only occurs in oscillating systems that

are driven and damped in such a way that their motion has a well-defined ampli-

tude and free phase; systems of this kind are known as limit-cycle oscillators [86].

We will now turn our attention to how we describe synchronisation in quantum

systems.

2.1.2 Quantum Synchronisation

Though classical synchronisation has been understood for some time, the sys-

tematic study of synchronisation in quantum oscillators, outside the regime where

semiclassical approximations work well [23], is quite recent [61, 68, 72, 73, 118, 125].

This research has already uncovered many differences to the classical studies of

synchronisation [25, 61, 65, 66]. In quantum systems, motional energy of an oscil-

lator can be quantised into phonons and the position and velocity are described

by operators; phase, however, is not so easily translated. Many have attempted

to describe a quantum phase operator φ̂ and the endeavour proved to be rather

problematic. A historical review by Nieto [77] is particularly interesting along

with a review of the mathematical formalism by Gerry and Knight [38].
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Initial attempts by Dirac [29] assumed a hermitian φ̂ which was impossible to

achieve when considering the lower-bounded number operator and periodicity re-

quirement of an angle operator [38, 77]. Later, this problem was addressed by Pegg

and Barnett with a truncated Hilbert space with (non-physical) negative number

states [10, 11]. In a different approach, Susskind and Glogover proposed an expo-

nential operator whose eigenstates were phase states [110] |ϕ〉 =
∑∞

n=0 e
inϕ |n〉

(with |n〉 a Fock state) that could be used to define a phase distribution [2]

P (ϕ) = 1
2π
〈ϕ| ρ̂ |ϕ〉 where ρ̂ is the density matrix. This approach is particu-

larly fruitful as it produces phase distributions, also found with the Pegg-Barnett

approach [85], whilst avoiding the problem of defining a phase operator altogether.

Quantum mechanics introduces Heisenberg uncertainty to a system [46, 47], lead-

ing to a broadening of the relative phase, similar to a classical system with

noise [86]. Because of this, it is natural to seek to characterise synchronisation in

quantum systems with something like a probability distribution. There are a num-

ber of distributions that can be used to study synchronisation; we will focus on the

Wigner function and the relative phase distribution. Classical systems of coupled

limit-cycle oscillators typically relax to (or, in some cases, oscillate near) discrete

relative phase values [58, 86]. The relative phase distribution of two quantum

oscillators [9, 11, 25, 49, 66, 69] is defined by;

P (φ) =

∫∫ 2π

0

dϕ1dϕ2δ(ϕ1 − ϕ2 − φ)〈ϕ1, ϕ2 |ρ̂|ϕ1, ϕ2〉 (2.1)

=
1

2π
+

1

π
Re

[
∞∑
k=1

eikφ
∞∑

n,m=0

〈n+ k,m| ρ̂ |n,m+ k〉

]
, (2.2)

where φ = ϕ1 − ϕ2 is the relative phase, |ϕj〉 = (2π)−1/2
∑∞

n=0 e
iϕjn |n〉 is a phase

state of oscillator j, and |n,m〉 are the number states with n (m) phonons for

oscillator 1 (2).
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Figure 2.4: An illustrative example of the relative phase distribution P (φ). Un-
synchronised oscillators and produce (red line) a flat, uniform relative phase dis-
tribution with value 1

2π
. Two synchronised limit-cycle oscillators produce (blue

line) a distribution with peaks indicating a relative phase preference of 0 and π.

If two oscillators are unsynchronised, their phases are independent of each other

and so exhibit a uniform relative phase distribution, P (φ) = 1
2π

, as shown in red

in Fig. 2.4. The relative phase of two coupled limit-cycle oscillators is illustrated

in blue with a continuous distribution with maxima at 0 and π corresponding to

in-phase and anti-phase synchronisation respectively [25, 61, 104]. In fact, any

non-flat P (φ) reveals a connection between the phases and is thus an indication

that the oscillators are synchronised. A useful measure of synchronisation strength

based on the relative phase distribution (Eq. 2.2) is the visibility [49, 66];

V =
(Pmax − Pmin)

(Pmax + Pmin)
(2.3)

which quantifies the deviation from a flat distribution.

A particularly fruitful method of describing a quantum state is achieved by ex-

pressing the density matrix in terms of functions of coherent states [41];

|α〉 = e−
|α|2

2

∞∑
n=0

αn√
n!
|n〉 (2.4)

that have the property â |α〉 = α |α〉. The coherent state is a state of minimum
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uncertainty and can be thought of as the state with dynamics most similar to a

classical state.

Expressing the density matrix of a quantum oscillator system in terms of a complex

phase variable α allows us to visualise the oscillator state in phase-space with

quasi-probability functions such as the Husimi-Q and Wigner distributions [35,

50, 101]. Here, we will focus on the Wigner function as it has been used to

investigate phase synchronisation in coupled oscillator systems [61].

The Wigner function is a joint distribution for any canonically conjugate variables,

such as position x and momentum p,

W (x, p) =
1

2π~

∫ ∞
−∞

dx
〈
q +

x

2

∣∣∣ ρ̂ ∣∣∣q − x

2

〉
e
ipx
~ (2.5)

where
∣∣q ± x

2

〉
are the eigenstates of the position operator [38]. In what follows, we

will consider it in the form W (α) (sometimes written as W (α, α∗) or W (αr, αi))

and will visualise states of the system ρ̂ in phase-space with the real and imaginary

parts of the complex amplitude α = x+ip. A different change of variables α = reiϕ

and an integration over amplitude (r) reveals something similar to a phase (ϕ)

distribution PW (ϕ) =
∫∞

0
dr rW (r, ϕ). Furthermore, the Wigner function can be

calculated for a system of coupled oscillators to explore synchronisation. A two-

mode Wigner distribution can be calculated, W (α1, α2) with complex amplitudes

α1 and α2 corresponding to two subsystems. Then, by integrating out both am-

plitudes as well as the sum of the phases ϕ1 + ϕ2, something like a relative phase

distribution can be obtained PW (ϕ1 − ϕ2). Such a two-oscillator Wigner function

has been used to show that phase locking can be more robust in quantum models

than in classical models [61].

It is important to note that, as these distributions are calculated from the Wigner

function (a quasiprobability distribution that can become negative in quantum
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systems [61]), it cannot be considered as a true phase distribution and may behave

differently to classical intuition in the quantum regime. Because of this, we will

use the relative phase distribution calculated from phase states (in Eq. 2.2) to

quantify synchronisation in what follows. Additionally, the Wigner function will

be used to categorise the dynamical states of individual oscillators, as we discuss

in Sec. 2.2.2.

Many researchers have sought to understand the connection between synchroni-

sation and entanglement in coupled quantum oscillator systems [3, 25, 34, 60, 63,

72, 73, 100, 101, 118]. The most commonly used measure for entanglement in

the driven and damped systems that display synchronisation is the logarithmic

negativity [116];

EN(ρ̂) = log2||ρ̂TA||1, (2.6)

where ρ̂TA is the partial transpose (of a subsystem A) and ||�||1 denotes the trace

norm. However, this measure should not be thought of as a quantifier of entan-

glement strength, but instead merely a witness; if a bipartite system is entangled,

the logarithmic negativity will be nonzero.

Recent studies of coupled quantum systems have shown that synchronisation and

entanglement can both exist in the same system [60] and that synchronisation can

be a witness to entanglement survival in networks of oscillators [72]. Though the

two phenomena may be linked, they seem to describe different aspects of the syn-

chronised system [25]. However, systems displaying synchronisation can be devoid

of entanglement entirely [3, 73]. In continuous variable systems [14], calculat-

ing the phase and amplitude quadratures from canonical position and momentum

operators has also been used to indicate synchronisation [63, 73].

Additionally, entropic measures can reveal interesting features of coupled systems,

such as the mutual information I(ρ̂) = S(ρ̂1)+S(ρ̂2)−S(ρ̂), where the von Neuman
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entropy S(ρ̂) = −Tr[ρ̂ log ρ̂] is calculated for the system ρ̂ and the partially traced

subsystems ρ̂j = Trj[ρ̂] for j = 1, 2. Mutual information can indicate synchroni-

sation in any bipartite system such as coupled van der Pol oscillators and qubits

in cavities [3, 25]. Much like the logarithmic negativity, the mutual information

cannot be used as a synchronisation measure [40].

Much of the work on quantum synchronisation has involved simple models such

as the quantum van der Pol (QvdP) oscillator [61, 65, 66, 118] and spin-1 parti-

cles [57, 100, 101]. However, a range of other systems have also been considered

including atomic ensembles [122, 126] and optomechanical systems [68, 73, 120].

Significant efforts have also been devoted to proposing ways in which the be-

haviour could be probed in experiment using systems such as trapped ions [49, 61]

or superconducting circuits [78].

Depending on the system, quantum noise has been shown to suppress synchronisa-

tion [68] or to strengthen it [61]. Quantum anharmonic ocillators have more phase

locking and frequency locking resonances [65] than classical counterparts. Con-

versely, introducing quantisation to energy levels can completely suppress phase

locking leading to a synchronisation blockade [66]. Our research will focus on

oscillators that are not too dissimilar to the quantum van der Pol oscillator. We

will now explain the details of this paradigmatic model, starting with its classical

origins.

2.2 The van der Pol oscillator

Harmonic oscillators have played a pivotal role in the history of theoretical physics,

from the classical experiments of Galileo’s pendula [87] to the birth of quantum

mechanics with Planck’s black body radiation [88]. The most commonly studied

oscillator model that displays a limit-cycle, is the van der Pol (vdP) oscillator [4,
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115] due to its relative simplicity.

2.2.1 The classical van der Pol oscillator

The van der Pol (vdP) oscillator was devised by Balthasar van der Pol [4, 115]

while working on the first radios to explain the self-sustained oscillation of the

current of a triode circuit. An oscillator can be described as self-sustained if it

maintains a periodic motion with a stable amplitude and frequency. Physically,

this implies that it has access to a supply of energy as well as being subject to

damping. The mathematical simplicity of the vdP oscillator and the complexity

of the behaviours it exhibits has made it the paradigmatic nonlinear oscillator to

study self-sustained oscillations, also known as limit-cycles states [1, 86].

In this section, we will describe various methods that have been used to study the

vdP oscillator which we will later apply and adapt to our novel oscillator models.

The classical equation of motion for the van der Pol oscillator takes the form;

ẍ+ x+ ε̃
(
−R̃ + x2

)
ẋ = 0, (2.7)

where we work in dimensionless units of time with �̇ = d
dτ

= 1
ω0

d
dt

and ω0 is the nat-

ural frequency. This describes a harmonic oscillator with nonlinearity introduced

with strength ε̃ > 0; note that ε̃ = 0 recovers the equation for simple harmonic

motion. The vdP oscillator has a negative damping (or dissipative driving) term

(−ẋ), and a nonlinear damping term (x2ẋ), with relative strengths controlled by

R̃ > 0. Regimes in which the driving or damping term is dominant can therefore

be reached with R̃ > 1 or 1/R̃ > 1 respectively.

The vdP oscillator can be simplified by considering the weakly nonlinear regime

ε̃� 1. It is then useful to change our coordinate system to a complex amplitude

α = x+ iẋ, such that x = Re (α) = αr and ẋ = Im (α) = αi. Moving to a rotating
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frame using α̃ = αeiτ and dropping rapidly oscillating terms, which can be applied

in the limit of weak nonlinearities, means that Eq. 2.7 becomes

˙̃α ≈ α̃ε

(
R

2
− |α|2

)
, (2.8)

where we have rescaled ε = ε̃/8 and R = 8R̃.

Figure 2.5: Multiple trajectories of the classical vdP oscillator (Eq. 2.8) with a
range of (a) initial conditions α(t = 0), (b) nonlinearity strength ε, and (c) drive-
damp ratio R. (a) All trajectories eventually reach the same limit-cycle (yellow
curve) with fixed ε = 0.1 and R = 4. (b) The nonlinearity acts to deform the
limit-cycle from the circular orbit of a simple harmonic oscillator (ε = 1, 0.2, and
10−5 shown in blue, red, and yellow, respectively, with R = 2). (c) In the weakly
nonlinear regime (e.g. ε = 10−5), the limit-cycle is circular with radius determined
by
√
R/2 = 0.1, 1, and 2 shown in blue, red, and yellow, respectively.

Solving Eq. 2.8 numerically reveals the trajectories in Fig. 2.5a that eventually

reach a closed loop, regardless of the initial conditions and therefore indicate

self-sustained oscillations. This oscillatory path (the yellow curve in Fig. 2.5a)

is the limit-cycle of the vdP oscillator and has different forms depending on the

parameters in Eq. 2.8. Changing the strength of the nonlinearity ε affects the

shape of the limit-cycle, shown in Fig. 2.5b. As the nonlinearity is decreased,

the limit-cycle becomes almost circular and the amplitude of the oscillation |α|
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becomes stationary. In the weakly nonlinear limit, the amplitude depends only on

the ratio R, as shown in Fig. 2.5c; stronger driving (or weaker damping) leads to

larger amplitude limit-cycles.

To explain the system analytically in the weakly nonlinear regime, we explicitly

write the complex amplitude as α̃ = Aeiϕ such that Eq. 2.8 becomes equations of

motion for the (real) amplitude and phase;

Ȧ =
1

2A
(α̇α∗ + αα̇∗) = εA

(
R

2
− A2

)
(2.9)

ϕ̇ =
i

2A2
(α̇α∗ − αα̇∗) = −1. (2.10)

In the steady state, Ȧ = 0, Eq. 2.9 produces a stable solution of

A =

√
R

2
, (2.11)

which predicts the trajectories in Fig. 2.5c. Note that there is a zero amplitude

solution, A = 0, but it is unstable and therefore any perturbation grows. The

phase in Eq. 2.10 simply winds around at the natural frequency (dϕ
dt

= ω0ϕ̇ = −ω0),

similar to the trajectories in Fig. 2.5c.

This approximation accurately describes the dynamics found numerically in the

classical limit; the vdP model with weak nonlinearity is a self sustained oscillator

with a limit-cycle of fixed amplitude and freely oscillating phase.

2.2.2 The quantum van der Pol oscillator

This section will explain how to find a quantum counterpart to the van der Pol

oscillator [61, 65, 66, 118]. The criteria of a quantum van der Pol (QvdP) oscillator

is that it reproduces the same results as the classical van der Pol oscillator when

in the classical limit.
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In open quantum systems, a Lindbladian [64] (or Gorini-Kossakowski-Sudarshan-

Lindblad [43]) master equation is often used to describe the evolution of a density

matrix in the presence of an environment with which a system can exchange energy.

Such master equations can be derived from microscopic models [17].

Consider the Lindblad master equation describing two processes of energy ex-

change between an oscillator and its surroundings: single-phonon gain, or dis-

sipative drive, and two-phonon loss, or nonlinear damping, at rates κ1 and κ2,

respectively [35, 61, 64]

˙̂ρ = −i
[
Ĥ, ρ̂

]
+ 2κ1D[â†](ρ̂) + 2κ2D[â2](ρ̂), (2.12)

where natural units (~ = 1) will be used throughout. Details of how this dynamics

could be realised in a trapped ion system are given in [61]. The commutator in

Eq. 2.12 describes coherent evolution of the system under the Hamiltonian Ĥ =

ω0â
†â where ω0 is the natural frequency of the oscillator. The remaining terms

are Lindblad dissipators of the form D[Ĉ](ρ̂) = Ĉρ̂Ĉ† − 1
2

{
Ĉ†Ĉ, ρ̂

}
where Ĉ is

the jump operator. These processes describe the dissipative terms in the evolution

of the QvdP oscillator and correspond to the negative damping, or driving (with

â†), and nonlinear damping (with â2) terms of the vdP. The bosonic creation and

annihilation operators â and â† [13, 112] act on the Fock states |n〉

â |n〉 =
√
n |n− 1〉 (2.13)

â† |n〉 =
√
n+ 1 |n+ 1〉 (2.14)

and obey the commutation relation
[
â, â†

]
= 1. The Fock state |n〉 describes an

eigenstate of the number operator n̂ with n phonons and |0〉 is the vacuum state.

To establish whether the system produces the same results in the classical limit,
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we can employ a mean field (MF) theory approach to probe the large amplitude

regime [1, 24, 96]. Since we are working in the Schrödinger picture, we can find

an equation of motion for expectation values of operators with d
dt

〈
Ĉ
〉

= Tr
[
Ĉ ˙̂ρ
]
.

From Eq. 2.12, we find for the expectation value of operator â

d

dt
〈â〉 = κ1 〈â〉 − 2κ2

〈
â†â2

〉
(2.15)

In this case, the MF theory neglects correlations between operators and so in the

classical limit, we can replace the operator â with the complex amplitude α so

Eq. 2.15 becomes

dα

dτ
=
κ1

ω0

α

(
1− 2κ2

κ1

|α|2
)

(2.16)

where we have used τ = ω0t. This clearly maps onto Eq. 2.8 (with κ1

ω0
→ ε̃R

2

and 2κ2

κ1
= 1

R
) and therefore, the mean field limit of the QvdP oscillator (Eq. 2.12)

recovers the classical vdP oscillator in Sec. 2.2.1 with amplitude given by Eq. 2.11.

It is important to note that, in the QvdP model, the amplitude of the limit-

cycle corresponds to the square root of the average phonon number of the system

〈n̂〉 =
〈
â†â
〉

= |α|2 = A2. Thus, in the steady state, where ˙̂ρ = 0 and therefore

dα
dτ

= 0, the phonon number of the QvdP oscillator in the classical limit is given

by

〈n̂〉cl ≈
κ1

2κ2

, (2.17)

which from the correspondence principle, can be expected to apply when κ1 � κ2

so that 〈n̂〉 � 1.

Outside of the classical regime (for example κ2 � κ1), the QvdP oscillator retains

its limit-cycle and the phase remains free (the steady state of ρ̂ has no off-diagonals

in the number-state basis). In the extreme quantum limit, the QvdP oscillator
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can be truncated to the two lowest levels, and the steady state becomes [61]

ρ̂ −−−−→
κ2→∞

1

3
(2 |0〉〈0|+ |1〉〈1|) . (2.18)

The features of the limit-cycle are most clearly revealed by calculating the Wigner

distribution of the steady state density matrix of a QvdP oscillator. An undriven

QvdP oscillator, κ1 = 0, stays in the ground state |0〉〈0| with steady state Wigner

distribution shown in Fig. 2.6a. This is equivalent to the zero amplitude solution

A = 0 of the classical vdP in Sec. 2.2.1 with R = 0, a classical trajectory that

reaches this state is shown in black.

The Wigner distribution of Eq. 2.18 is shown in Fig. 2.6b revealing the existence of

a limit-cycle in the quantum limit of the QvdP oscillator: the peak in the Wigner

function occurs along a ring with fixed amplitude. The large amplitude limit-cycle

(see Eq. 2.17) of the strongly driven QvdP oscillator is shown in Fig. 2.6c with the

corresponding classical limit-cycle overlayed (see Eq. 2.11). Very similar states

are found above threshold for a conventional laser and we will refer to states like

that shown in Fig. 2.6b as lasing states in the following. Neither the classical nor

quantum calculations predict a preferred phase.

In the semiclassical regime, where the density matrix is tightly peaked around a

large (but finite) average phonon occupation number [25, 105], the strength of

phase synchronisation is found to be determined by a rate of phase diffusion in

the individual oscillators, with slower phase diffusion leading to stronger phase

preferences [25]. This is very similar to what is found in the case of noisy classical

oscillators [86]. In the following, we show how a phase diffusion rate can be derived

for the QvdP system in the semiclassical regime.

The phase distribution for a single oscillator (Eq. 2.2) can be written in the
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Figure 2.6: The Wigner distribution of steady states of the QvdP oscillator: (a)
the ground state |0〉〈0| reached with zero driving, (b) the limit-cycle in the quantum
limit (i.e. lasing state) given by Eq. 2.18, and (c) a large amplitude limit-cycle
in the classical regime. Trajectories of a classical analogue system are overlayed
showing (a) a decay to zero amplitude and (c) the large amplitude limit-cycle with
parameters chosen to match the quantum results.

form [11, 25, 38]

P (ϕ) =
1

2π
+

1

π
Re

[
∞∑
k=1

eikϕΦ(k)

]
(2.19)

with

Φ(k) =
∑
n

ρ(k)
n (2.20)

where ρ
(k)
n = 〈n| ρ̂ |n+ k〉. Although the behaviour is in general quite complex,

we obtain a simple approximate description in the semiclassical limit. The steady

state properties of this system are found by exploiting the purely dissipative form

of Eq. 2.12 in the interaction picture such that the dynamics of the diagonal and

off-diagonal parts of the density operator are decoupled [102, 105]. Therefore, the

master equation can be rewritten as a coupled set of equations

ρ̇(k)
n = −G(k)

n ρ(k)
n + A

(k)
n−1ρ

(k)
n−1 +B

(k)
n+2ρ

(k)
n+2 (2.21)
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where

G(k)
n =κ1 [(n+ 1) + (n+ k + 1)] + κ2 [n(n− 1) + (n+ k) (n+ k − 1)] (2.22)

A(k)
n =2κ1

√
(n+ 1) (n+ k + 1) = 2κ1n

√
1 +

1

n

√
1 +

k + 1

n
, (2.23)

B(k)
n =2κ2

√
n (n− 1) (n+ k) (n+ k − 1) (2.24)

=2κ2n
2

√
1− 1

n

√
1 +

k

n

√
1 +

k − 1

n
. (2.25)

In the semiclassical limit, i.e. the gain process is dominant over the loss κ1 � κ2,

the phonon number saturates to a large value (see Eq. 2.17) so that we can expand

the square roots in orders of 1
n

A(k)
n =κ1

[
2n+ (k + 2)− k2

4n
+

(k + 2) k2

8n2
+O

(
n−3
)]

(2.26)

B(k)
n =κ2

[
2n2 + 2 (k − 1)n− k +

k4 − 2k3 + k2 − 2k + 1

8n2
+O

(
n−3
)]

(2.27)

We make the assumption that n → 〈n̂〉 = κ1

2κ2
with the number distribution

strongly peaked about this value and neglect small quantities [25, 103, 105] which

leads to a simplified equation of motion for Φ(k) in Eq. 2.20 through using Eq. 2.21

Φ̇(k) =
∞∑
n=0

[
−G(k)

n + A(k)
n +B(k)

n

]
ρ(k)
n =

[
−3κ2k

2

4
+O

(
〈n̂〉−2)]Φ(k). (2.28)

Therefore, to leading order, the relaxation timescale for the kth component, Φ(k),

is simply proportional to 1/κ2. Finally, using the definition Eq. 2.19 and Eq. 2.28,

we find that within this approximation, the phase distribution obeys a diffusion

equation [25, 103]

Ṗ (ϕ) =
3κ2

4

∂2P (ϕ)

∂ϕ2
. (2.29)
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Hence, for the QvdP oscillator, increasing the phonon number by decreasing the

damping rate κ2 leads to slower diffusion of the phase and consequently synchro-

nisation effects are strengthened [61]. Similar results are also obtained for the

laser [105].

2.3 Summary

In this Chapter, we introduced the background material necessary to adapt a

classical description of synchronisation to be applicable to quantum systems. We

described the relevant concepts such as oscillation phase and amplitude as well as

phase-space trajectories and limit-cycles. We also outlined specific synchronisa-

tion measures including the relative phase distribution, Wigner distribution, and

visibility. Finally, we explained how to model quantum oscillators with phonon

operators and a master equation as well as mean-field methods which are used to

predict behaviour in classical limits.



Chapter 3

Quantum Synchronisation in

Trapped Ion Systems

3.1 Introduction

In this chapter, we theoretically investigate quantum synchronisation in a system

of two quantum harmonic oscillators, each coupled to a spin via a two-phonon

resonant interaction. The two oscillators, which are linearly coupled to each other

through a phonon exchange process, are cooled to the nonclassical, few phonon

regime. We show that such a model can be realised in a trapped ion system where

unprecedented control and accessible spin correlation measurements make it an

ideal candidate.

We find that increasing the driving strength of an oscillator allows it to transition

from a zero-phonon state to a lasing state via a bistable state. This bistability

in the phonon distribution is found by solving the respective quantum master

equation and via a mean field description. This is followed by an exploration

of quantum synchronisation between two such oscillators that have been weakly

coupled. The literature [49, 58, 61, 86] predicts that two oscillators driven to

25
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lasing states synchronise trivially such that their relative phase distribution has

peaks at 0 and π. However, we show that for our system, weakly driven and

therefore non-lasing oscillators first develop a nontrivial phase relation with phase

probability peaks at π
2

and 3π
2

. In the bistable region, the relative phase displays

peaks at both integers and half-integers of π. We investigate the origins of such

phase distributions through a variety of numerical and mean-field calculations.

Section 3.2 begins by introducing our coupled spin-oscillator model explaining the

connection to trapped ion systems and describing the master equation we use

to explore its properties, including the two-phonon resonance driving, dissipative

processes and linear coupling. Then, we show that the oscillators can be driven

to a bistable state in Sec. 3.3. In Sec. 3.4, we explore synchronisation between

weakly and strongly coupled, bistable oscillators through features of the Fourier

coefficients of the relative phase and reinforce the results with a mean field analysis.

Finally, we summarise our results and propose possible future work in Sec. 3.5.

3.2 Spin-oscillator model

Our study is based on a spin-oscillator model using a quantum master equation in

which the spins and phonons (vibrational quanta) of a quantum harmonic oscil-

lator are driven via an anti-Jaynes-Cummings [45] type two-phonon process (see

Fig. 3.1a).

3.2.1 Trapped ions

The coupled spin-oscillator system can be realised using cold trapped ions [21, 49]

(Fig. 3.1b). Consider an ion which is tightly confined in a Paul trap such that the

vibrational state is a ladder of evenly spaced energy levels typical of a harmonic
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(a) (b)

Figure 3.1: (a) The two-phonon resonance transition induced by a driving laser of
strength Ω that couples the n phonon ground state with the n+ 2 phonon excited
state. (b) Two identical harmonic oscillators with frequency ω0 are driven at a
strength Ω, cooled at a rate κ, undergo spontaneous emission at a rate γ, and are
linearly coupled with strength J .

potential. The vibrational term in the Hamiltonian is Ĥv = ω0â
†â, where ω0 is

the trapping frequency. The electronic state of each charged ion can be modelled

as a two-level system with a ground |g〉 and excited state |e〉. The electronic

Hamiltonian is then Ĥe = ωe
2
σ̂z, where ωe is the energy spacing and σ̂z = 2σ̂+σ̂−−1

is the Pauli spin matrix and σ̂− = |g〉〈e|.

3.2.2 Two-phonon driving

The electronic and vibrational states of the ions are coupled (Fig. 3.1a) by a

standing wave laser (see also [21]). The full Hamiltonian for the single ion, within

a frame rotating at the laser frequency (using a unitary transformation of Û =

e−itωlσ̂
z/2), is found to be

Ĥs = ω0â
†â+

∆

2
σ̂z +

Ω̃

2
cos

[
η
(
â† + â

)
+ χ

] (
σ̂+ + σ̂−

)
(3.1)

where ∆ = ωe− ωl, Ω̃ is the Rabi frequency set by the strength of the laser drive,

and χ accounts for the phase of the laser at the position of the ion. The Lamb-

Dicke parameter η = k(2mω0)−1/2 is defined for an ion of mass m in a trap of

frequency ω0 interacting with laser light of wavevector k. We explain in App. A
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that a detuning of ∆ = −2ω0 and the rotating wave approximation allows us to

reduce Eq. 3.1 to a two-phonon resonance Hamiltonian

Ĥ = −Ω

4

[(
â†
)2
σ̂+ + h.c.

]
, (3.2)

where the driving strength has been rescaled Ω = η2Ω̃. Note that similar methods

can produce a variety of different light-ion interactions, such as the single phonon

resonance Hamiltonian [49].

3.2.3 Two oscillators

We now consider two identical oscillators, with the Hamiltonian of the jth (j = 1, 2)

spin-oscillator subsystem in the interaction picture given by,

Ĥj = −Ω

4

[(
â†j

)2

σ̂+
j + â2

j σ̂
−
j

]
, (3.3)

where â†j (âj) and σ̂+
j (σ̂−j ) are phonon creation (annihilation) and spin raising

(lowering) operators of the jth ion. The driving strength Ω is assumed to be equal

for each spin-oscillator and couples the spin and phonon degrees of freedom as

shown in Fig. 3.1a.

The ions are coupled via the Coulomb interaction [52] which, to lowest order, leads

to an interaction between the phonons described by the Hamiltonian [49]

Ĥc = J
(
â†1â2 + â†2â1

)
, (3.4)

with coupling strength J . In addition, we take into account the dissipative pro-

cesses of the spin and phonon; each spin undergoes spontaneous emission at a rate

γ, and the phonons are cooled via an additional laser at a rate κ, which leads
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to damping [21]. Combining the coherent and dissipative interactions (phonon

damping due to the cooling laser and spontaneous emission from the excited elec-

tronic state at a rate γ), the dynamics of this coupled system is governed by a

Lindblad master equation

˙̂ρ = −i
[
Ĥ, ρ̂

]
+
∑
j

(
κL[âj](ρ̂) + γL[σ̂−j ](ρ̂)

)
, (3.5)

with the total Hamiltonian Ĥ =
∑

j=1,2 Ĥj + Ĥc.

3.3 Bistability of a single oscillator

Our work focuses on steady states of the system attained either through time

evolving the master equation for a sufficiently long period with a numerical inte-

gration method [27] or, for a small number of phonons, by direct diagonalisation

of the Lindbladian [75]. For convenience, we scale energy in units of γ and time

with 1/γ in the numerical calculation. In a critical region of the driving strength,

the phonon distribution of the oscillator exhibits a bistable configuration; a coex-

istence of a non-lasing and lasing state.

3.3.1 Numerical results

We start by characterising stationary states of individual oscillators through phonon

probability distributions Pn = 〈n| ˜̂ρ |n〉 where |n〉 is the number state with n

phonons and the reduced density matrix of the phonons is found by tracing over

all possible spin states ˜̂ρ = Trs[ρ̂].

We explore the relationship of different driving strengths Ω on the phonon distri-

bution Pn of the two-phonon driven oscillator in Fig. 3.2a. Without driving, the

stationary state is the ground state of the oscillator. Weakly driven oscillators
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Figure 3.2: (a) Phonon occupation probabilities Pn. As the driving strength Ω/Ωc

is increased, the oscillator transitions from a non-lasing state, to a bistable state,
and finally to a lasing state. The Pn distribution consequently has different forms
with a single sharp peak at n = 0 for low driving, a single, Gaussian peak at n > 0
for high driving, and coexistence of both at intermediate driving. Average phonon
number 〈n̂〉 from the numerical (dotted) and mean-field (solid) calculation are
shown; the mean-field calculation indicates that the mean phonon number jumps
from zero (not shown in the figure) to a non-zero value at the critical driving
Ωc. (b) The second moment µ2 (solid blue, Eq. 3.7) and Mandel-Q parameter Q
(dashed red, Eq. 3.6) are seen to rise significantly in the bistable region, where
there are 2 coexisting peaks in Pn (shaded region). Here κ/γ = 0.05.

remain near this state, with mean phonon number 〈n̂〉 ≈ 0. For strong driving,

the oscillator reaches a limit-cycle, i.e. the phonon lasing state [37, 55, 114]. In

the crossover region, the two states coexist and a bistability emerges.

This change in the phonon distribution is accompanied by a similar change in the

Wigner distributions, shown in Fig. 3.3. In the low (and zero) driving regime, the

oscillator exhibits a non-lasing state and the Wigner distribution has a single peak

at the centre (Fig. 3.3a). For the high driving, limit-cycle state, the distribution

is a ring (Fig. 3.3c). The emergence of the bistability at intermediate driving

strengths gives rise to both the central peak and an outer ring (Fig. 3.3b). It is
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important to note that the bistability only appears for the two-phonon resonance,

it is absent in cases of single-phonon resonance [49].
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Figure 3.3: The Wigner distribution plotted as a function of the real and imaginary
parts of the complex amplitude α for the phonons of a single oscillator at (a) low
driving (Ω/Ωc = 0.2), showing a non-lasing state, (b) critical driving (Ω/Ωc =
1.16), showing a bistability in the phonon number, and (c) high driving (Ω/Ωc =
6), showing a limit-cycle state (with κ/γ = 0.15).

We quantify the strength of the bistability with different measures such as simply

counting maxima in the phonon distribution and Wigner distribution or more

complicated statistical measures such as the Mandel-Q parameter or the second

moment, as shown in Fig. 3.2b. The simplest, a search for Pn with two maxima,

is shown as a shaded area and spans the transitional region. The Mandel-Q

parameter,

Q =
〈n̂2〉 − 〈n̂〉2

〈n̂〉
− 1, (3.6)

which is plotted in dashed orange has a peak around the transitional region. A

similar statistical quantity, the second moment,

µ2 =
〈
n̂2
〉
− 〈n̂〉2 , (3.7)

is also shown in solid blue and has a peak around Ωc. Both of these measures can

be used to quantify the departure of a distribution from Poissonian statistics as

would occur if a bimodality appears.
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3.3.2 Mean field theory

To understand how the system transitions from the zero-phonon number state to

the limit-cycle state, we consider a mean field (MF) approach. The equations of

motion that describe the expectation values of the system are calculated from the

master equation, Eq. 3.5, as shown in Sec. 2.2.2 for the QvdP oscillator. For the

trapped ion model, these are found to be

d

dt
〈n̂〉 =− κ 〈n̂〉+

iΩ

2

(〈(
â†
)2
σ̂+
〉
−
〈
â2σ̂−

〉)
, (3.8)

d

dt
〈â〉 =− κ

2
〈â〉+

iΩ

2

〈
â†σ̂+

〉
, (3.9)

d

dt

〈
σ̂−
〉

=− γ

2

〈
σ̂−
〉
− iΩ

4

〈(
â†
)2
σ̂z
〉
, (3.10)

d

dt
〈σ̂z〉 =− 2γ

〈
σ̂+σ̂−

〉
+
iΩ

2

(〈(
â†
)2
σ̂+
〉
−
〈
â2σ̂−

〉)
. (3.11)

Transient dynamics of a system can be interesting to explore, but a lot can be

understood by calculating the steady state of the system. This is achieved by

taking ˙̂ρ = 0 equivalent to setting the left hand side of Eqs. 3.8-3.11 to zero.

Solving these equations, we find the stationary solutions,

〈n̂〉 =
iΩ

2κ

(〈(
â†
)2
σ̂+
〉
−
〈
â2σ̂−

〉)
, (3.12)

〈â〉 =
iΩ

κ

〈
â†σ̂+

〉
, (3.13)〈

σ̂−
〉

=− iΩ

2γ

〈(
â†
)2
σ̂z
〉
, (3.14)

〈σ̂z〉 =
κ

γ
〈n̂〉 − 1. (3.15)

We simplify these relations by factorising the expectation value of two operators

via a mean field approximation, e.g.
〈
ÂB̂
〉
≈
〈
Â
〉〈

B̂
〉

.

There is a trivial solution that follows immediately from Eq. 3.12 by considering
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the case of 〈σ̂−〉 = 0; the zero-phonon solution

〈n̂〉0 = 0. (3.16)

More solutions are found by substituting Eq. 3.15 and the complex conjugate of

Eq. 3.13 into Eq. 3.14 to find

〈
σ̂−
〉

=− iΩ

2γ

〈
â†
〉
〈â〉∗ 〈σ̂z〉 ,

=− iΩ

2γ

〈
â†
〉(
−iΩ
κ
〈â〉
〈
σ̂−
〉)(κ

γ
〈n̂〉 − 1

)
,

(3.17)

where the star denotes the complex conjugate. Since this approach approximates

〈n̂〉 =
〈
â†â
〉
≈
〈
â†
〉
〈â〉, we can rewrite Eq. 3.17 as a quadratic equation

− Ω2

2γ2

[
〈n̂〉2 − γ

κ
〈n̂〉+

2γ2

Ω2

] 〈
σ̂−
〉

= 0. (3.18)

In the case of 〈σ̂−〉 6= 0, Eq. 3.18 leads to the quadratic

〈n̂〉2 − γ

κ
〈n̂〉+

2γ2

Ω2
= 0 (3.19)

with two non-zero solutions

〈n̂〉± =

√
2γ

Ωc

1±

√
1−

(
Ωc

Ω

)2
 , (3.20)

where Ωc = 2
√

2κ is the critical driving strength at which Eq. 3.20 becomes

real, and therefore physical. We expect this result to be most accurate in the

large phonon number regime, where the oscillator behaves rather classically. This

regime is reached with large driving strengths Ω� Ωc such that Eq. 3.20 predicts
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a nonzero phonon number of

〈n̂〉cl =
2
√

2γ

Ωc

=
γ

κ
. (3.21)

Comparing the mean field results with the numerics in Sec. 3.3.1 reveals that the

peaks in the Pn distribution follows the mean field solutions 〈n̂〉0 and 〈n̂〉+ in

both the low and high driving regimes, respectively (See Fig. 3.2). Furthermore,

the bistable region coincides with the transition predicted by the critical driving

strength Ωc. The numerical results seem to avoid 〈n̂〉− altogether; this is explained

through linear stability analysis.

3.3.3 Linear stability analysis of mean field solutions

To understand which of the three mean field solutions are stable, linear stability

analysis is used [71]. If a state is stable, a small perturbation will be countered

by a decay back to the state, and if unstable, the perturbation will grow resulting

in an evolution away from the state. We construct the Jacobian D for Eq. 3.9,

Eq. 3.10, and their complex conjugates,

D =



−κ
2

iΩ
2
〈σ̂+〉 0 iΩ

2

〈
â†
〉

− iΩ
2
〈σ̂−〉 −κ

2
− iΩ

2
〈â〉 0

− iΩκ
4γ

〈(
â†
)3
〉

− iΩ
4

(
3κ
γ

〈(
â†
)2
â
〉
− 2

〈
â†
〉)

−γ
2

0

iΩ
4

(
3κ
γ

〈
â†â2

〉
− 2 〈â〉

)
iΩκ
4γ
〈â3〉 0 −γ

2


,

(3.22)

and evaluate its eigenvalues for each steady state; negative (positive) real parts

of eigenvalues indicate stability (instability) (if Re[λi] = 0, higher order analysis

is required). We find that 〈n̂〉− is never stable, 〈n̂〉0 is always stable, and 〈n̂〉+

is stable for Ω ≥ Ωc; therefore, the mean field analysis predicts a bistability for
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Ω ≥ Ωc. In contrast, the full master equation calculation (see Fig. 3.2) produces

Pn distributions with two peaks, and therefore suggests the system is bistable, for

a small range of Ω ≈ Ωc. Although the zero-phonon solution is always stable in the

mean field calculation, increasing Ω drives the system to large phonon numbers

and the peak at n = 0 disappears.

3.4 Synchronisation of coupled oscillators

Now that we have an understanding of the bistability found in the phonon state

of the two-phonon resonantly driven spin-oscillator, we can begin to explore the

synchronisation effects that emerge when two oscillators are coupled together by

the Hamiltonian Ĥc (Eq. 3.4).

A key finding of this work is that two coupled, bistable oscillators (Fig. 3.3b)

display interesting and unusual behaviour in their relative phase distribution. In

particular, the maximal values of the phase probability are centred at π
2

and 3π
2

for

very weak driving, and shift to 0 and π in the lasing regime. Additionally, all four

peaks exist simultaneously in an intermediate region. This is in sharp contrast to

monostable systems [49], where the phase preference at 0 and π in the lasing state

appears immediately from the flat distribution of the undriven, non-lasing state.

3.4.1 Relative phase distribution

As discussed in Sec. 2.1.2, coupled limit-cycle oscillators typically display a pref-

erence for one or more relative phase values [58, 86]. The behaviour of the relative

phase, φ = ϕ1 − ϕ2, for the coupled spin-oscillator system is described by the
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probability distribution [9, 11, 25, 49, 66, 69];

P (φ) =
1

2π
+

1

π
Re

[
∞∑
k=1

Fke
ikφ

]
, (3.23)

where

Fk = Re

[
∞∑

n,m=0

〈n+ k,m| ˜̂ρ |n,m+ k〉

]
(3.24)

are the Fourier coefficients, ˜̂ρ = Trs[ρ̂] is the reduced density matrix for the

phonons of both oscillators after tracing out the spins, with phonon number states

|k, l〉.

As discussed in Sec. 2.1.2, two unsynchronised oscillators exhibit a uniform relative

phase distribution. Therefore, any non-flat P (φ) reveals a connection between the

phases and is thus an indication that the oscillators are synchronised. The strength

of the synchronisation is characterised by the magnitude of the deviation from a

flat distribution with the visibility defined in Eq. 2.3.

We start with a situation where the two oscillators are weakly coupled. In this

regime, the properties of the Pn distribution will only be slightly affected by the

presence of the coupling. Figure 3.4a shows the relative phase distribution P (φ) for

weakly coupled (J/γ = 0.03) oscillators for a range of driving strengths around the

bistability transition. It is clear that the phase distribution is almost completely

flat in the limit of small Ω. When we increase the driving, non-trivial structures

appear in the phase distribution. These structures are often smooth curves with

two peaks that correspond to the system developing two phase preferences as a

consequence of synchronisation.

As shown in Fig. 3.4b (solid black), the visibility first increases to a maximal value

then decreases to zero at Ω/Ωc ≈ 0.8, where Ωc is the critical driving strength

found in Sec. 3.3.2. Further increasing Ω, V increases again to a second local
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Figure 3.4: (a) The relative phase distribution 2πP (φ) for two coupled oscillators
for a range of driving strengths spanning a range that includes the bistability (with
J/γ = 0.03, κ/γ = 0.15). (b) The visibility V (black solid), the dominant Fourier
coefficient F2 (orange dashed), and the second relevant Fourier coefficient F4 (cyan
dotted) which has a small positive value. (c) The relative phase distributions for
low (Ω = 0.7Ωc, red dotted), intermediate (Ω = 0.815Ωc, black solid), and high
(Ω = 0.9Ωc, blue dashed) driving. These driving strengths are highlighted in the
panel above with a red square, black circle, and blue triangle, respectively. Also
included is the relative phase distribution for two asymmetrically driven oscillators
(see Sec. 3.4.3, magenta dash-dot), with Ω1/Ωc = 0.5 and Ω2/Ωc = 2 .

maximum. Upon closer inspection, we find that these two local maxima in the

visibility correspond to different relative phase distributions. The relative phase

has peaks at π
2

and 3π
2

for low driving strengths and 0 and π for large driving
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strengths. When driven around the critical point, where the visibility nears 0, all

four peaks are present (0, π
2
, π, and 3π

2
).

To understand what determines the form of the relative phase distribution, we

consider the individual Fourier coefficients of Eq. 3.23. Figure 3.4b shows that

at zero-driving, all of the Fourier coefficients are zero, leading to a flat relative

phase distribution. Note that the form of the coupling term (Eq. 3.4) ensures that

the odd Fourier coefficients, Fodd, are zero for any driving strength. F2 (orange

dashed) dominates for the majority of the non-zero driving strengths leading to the

π-periodicity of the relative phase seen in Fig. 3.4c (red dotted and blue dashed).

The sign of F2 dictates the position of the peaks before (red square) and after (blue

triangle) the bistability. Though F4 (dotted cyan in Fig. 3.4b) is always small, it

becomes the dominant term as F2 passes through zero (black circle). This results

in a relative phase distribution with a π
2
-periodic structure, shown as the solid

black curve in Fig. 3.4c.

The zero driving result, a flat distribution, is expected for ground state oscillators.

We are also not surprised by the high driving results, with relative phase peaks

of 0 and π, as in this regime the ions driven strongly enough to be described

as coupled limit-cycle oscillators [25, 61, 104]. These results are well understood

and are derived with a mean field calculation in Sec. 3.4.2. The low driving

features, however, are unexpected and cannot be explained through simple mean

field arguments. Similar relative phases, of π
2

or 3π
2

, are observed for the case of a

non-lasing state being driven by a lasing state, as explained with asymmetrically

driven oscillators in Sec. 3.4.3. Though the complexity of the trapped ion system

makes it difficult to draw any conclusions from this result.

In the low driving region, the full Wigner distribution of the uncoupled ion (Fig. 3.5a)

suggests an almost ground state oscillator. However, exploring the components of



3.4. SYNCHRONISATION OF COUPLED OSCILLATORS 39

(a) (b) (c)

5

Figure 3.5: The Wigner distributions for one of the oscillators with extremely
low driving strength (Ω = 0.1Ωc) obtained using (a) the full density matrix ρ̂,
(b) the excited state projection 〈e, e| ρ̂ |e, e〉, and (c) the ground state projection
〈g, g| ρ̂ |g, g〉.

this Wigner distribution reveals a more complex story. The excited state projec-

tion (〈e, e| ρ̂ |e, e〉, Fig. 3.5b) shows that the bistability exists for arbitrarily low

driving strengths. Though the excited state contribution is small compared to the

ground state contribution (〈g, g| ρ̂ |g, g〉, Fig. 3.5c), it seems to have a significant

effect on the relative phase distribution. For this reason, there may be certain

similarities between the bistable state and an oscillator operating in the low driv-

ing regime. However, the negativity in the Wigner distribution projections make

the results difficult to interpret and any attempt to find concrete parallels would

require a simpler model than the trapped ion.

3.4.2 Mean field theory for high driving

The location of the peaks in the relative phase distribution P (φ) for strongly driven

oscillators can be accurately predicted by a mean field approach, as has been

studied previously to describe the coupling of two limit-cycles [25, 61, 104]. Here,

we explain the relative phase values of 0 and π for the coupled, limit-cycle trapped

ions with mean field arguments. For the coupled spin-oscillator system described
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by Eq. 3.5, equations of motion for the spin operators follow from Eq. 3.10,

d

dt

〈
σ̂−j
〉

= −γ
2

〈
σ̂−j
〉
− iΩ

4

〈(
â†j

)2

σ̂zj

〉
. (3.25)

for each oscillator, j ∈ {1, 2}. The phonon Eq. 3.9, however, becomes a pair of

coupled equations, due to the form of Eq. 3.4

d

dt
〈âj〉 = −κ

2
〈âj〉+

iΩ

2

〈
â†jσ̂

+
j

〉
− iJ 〈âk〉 , (3.26)

where k 6= j. For each oscillator, 〈âj〉 =
√
nje

iϕj , where nj and ϕj are the classical

number and phase variables for the jth oscillator, respectively.

We can then study the dynamics of the relative phonon number n = n1 − n2 and

relative phase φ = ϕ1 − ϕ2 of the two oscillators by considering approximations.

For the strongly driven, but weakly coupled, system, we expect the two oscillators

to be in lasing states (limit-cycles) such that the total phonon number N = n1+n2

can be approximated as a constant and much larger than the relative phonon

number N � n. In this regime, with the substitution nj =
〈
â†j âj

〉
, we find

equations of motion for the relative quantities

ṅ ≈− κn− 2NJ sinφ, (3.27)

φ̇ ≈2J

N
n cosφ. (3.28)

Weakly coupled oscillators (small J) produce low phonon numbers in each os-

cillator and, consequently, a low relative phonon number. Therefore, the phase

(Eq. 3.28) can be seen to relax far slower than the phonon number (Eq. 3.27). This

separation of timescales between ṅ and φ̇, allows us to substitute the steady state

value of the relative phonon number, nss = −2NJ
κ

sinφ, into Eq. 3.28. Rewriting
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it as an effective potential [58], dφ
dt

= −∂U(φ)
∂φ

, produces

U(φ) =
J2

κ
cos 2φ+ const. (3.29)

The minima of this potential, and thus the steady values of the relative phase,

are found to be 0 and π. This result accurately predicts the location of the high

driving peaks in P (φ) (Fig. 3.4). This solution only holds under the assumption

of a limit-cycle and is therefore unable to describe the low driving peaks.

3.4.3 Asymmetrically coupled oscillators

To understand how phase preferences of π
2

and 3π
2

can arise outside the limit-

cycle regime, we consider the coupled dynamics of two oscillators with asymmetric

driving Ω1 6= Ω2. In the extreme case of heavily asymmetric driving, Ωj � Ωk

(where j ∈ {1, 2} and k 6= j), this results in a non-lasing oscillator coupled

to a limit-cycle oscillator. Numerical results for this system reveal relative phase

distributions with a single peak at either π
2

or 3π
2

, as shown in magenta in Fig. 3.4c

(where Ω1 � Ω2).

For the asymmetrically driven oscillators, we can use similar methods to those

used in Sec. 3.4.2 to derive equations for the phases (defined in 〈âj〉=
√
nje

iϕj),

ϕ̇j = −J
√
nk
nj

cos (ϕ1 − ϕ2) , (3.30)

for oscillators j ∈ {1, 2} and k 6= j, where we explicitly allow for unequal driving,

Ω1 6= Ω2. We then find an equation of motion for the relative phase φ = ϕ1 − ϕ2

(with n = n1 − n2 and N = n1 + n2),

φ̇ = ϕ̇1 − ϕ̇2 = J
n1 − n2√
n1n2

cosφ. (3.31)
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We now consider the case where the jth oscillator is given a stronger driving

Ωj � Ωk and is therefore driven to the limit-cycle state, nj � nk. This allow us

to approximate Eq. 3.31 as

φ̇ ≈ −(−1)j
√

nj
N − nj

cosφ (3.32)

where the jth oscillator is in the limit-cycle state, revealing and effective potential

of the form

Uj(φ) = (−1)jJ

√
nj

N − nj
sinφ+ const. (3.33)

If the second oscillator is more strongly driven (j = 2), then Eq. 3.33 has a

minimum at, and consequently reveals a fixed point phase of 3π
2

; in the opposite

scenario (j = 1) a phase of π
2

is found. Though these values are the same as those

found for weakly (symmetrically) driven oscillators, there is no obvious reason why

we would be able to use such an argument outside of the asymmetrically driven

regime.

3.4.4 Strong coupling

The peculiar 4-peak synchronisation feature present in the critical driving regime

(black curve in Fig. 3.4c) is rather small, compared to the low and high driving

features (red and blue curves in Fig. 3.4c). To increase the signal to allow for

the features to be more readily detected, one would naturally try increasing the

coupling strength, J . Figure 3.6a shows the Pn curves for the strongly coupled

(J/γ = 0.5) system. The bistability now appears at a higher driving strength

and, instead of a combination of a lasing state and a non-lasing state, we find two

lasing states (blue triangles).

The relative phase distributions in Fig. 3.6b and 3.6c are not exactly the same as
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in the weak coupling case. One difference being that the peaks are now orders

of magnitude larger, as was the desired outcome. A second difference is that the

driving strength at which the system transitions between synchronous regimes is

shifted higher, as might be expected since the Pn is also shifted. Figure 3.6d makes

it clear why the 4-peak feature is so much larger; the F4 Fourier coefficient (dotted

cyan), which is almost negligible in the weak coupling case, is now of comparable

magnitude to the, still dominant, F2 coefficient (dashed orange).
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Figure 3.6: (a) Phonon state occupation probabilities for low (red squares),
bistable (black circles), and high (blue triangles) driving of the strongly coupled
oscillators, where κ/γ = 0.15, J/γ = 0.5. (b) The relative phase distribution,
P (φ) for a range of driving strengths spanning the bistability. (c) The relative
phase distribution for low driving (red dotted), intermediate driving (black solid),
and high driving (blue dashed). (d) The visibility V (black solid), F2 Fourier
coefficient (orange dashed), F4 (cyan dotted), the spin correlation Cxx = C(σx1 , σ

x
2 )

(magenta dash-dot).
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3.4.5 Spin covariance

Direct detection any of the relative phase features we have discussed is rather

difficult with current technology and requires the complicated process of imaging

the phonon state of an oscillator [20, 62]. To circumvent this issue, we can exploit

the spin degree of freedom; important information about the phonon state can

be inferred from a measurement of the spin state [49]. Due to the strong corre-

lations between the spin and phonon degrees of freedom of each oscillator, a spin

measurement can provide a signature of synchronisation in the phonon state. The

covariance of two operators is calculated with

C(σα1 σ
α
2 ) = 〈σα1 σα2 〉 − 〈σα1 〉 〈σα2 〉 . (3.34)

Figure 3.6d shows that the Cxx = C(σx1σ
x
2 ) (magenta dash-dot) has a qualitative

similarity to F2 (orange dash). This suggests that we can predict the relative

phase of the coupled oscillators from the spin measurement; a negative (positive)

Cxx predicts the relative phase peaks at π
2

and 3π
2

(0 and π).

To understand the connection between spin and phase, we utilise the mean field

approach in Eq. 3.14 to reveal a functional phase dependence of the spin expecta-

tion value,
〈
σ̂−j
〉
∝ i

〈(
â†j

)2
〉
∝ ie−2iϕj , and consequently,

〈
σ̂xj
〉
∝ sin 2ϕj. Based

on the fact that we find spin-phase correlations, e.g. C(σ̂x, â2) 6= 0, we make the

ansatz that this proportionality applies not only to these expectation values, but

also to the expectation values of products of operators

σ̂x1 σ̂
x
2 ∝ cos (2 (ϕ1 − ϕ2)) + cos (2 (ϕ1 + ϕ2)) , (3.35)

which depends on the sum and difference of the phases. We then calculate the

correlations using this ansatz and taking an average over the steady state relative



3.5. CONCLUSION 45

phase distribution in Eq. 3.23 (note that the corresponding “total phase distribu-

tion” is flat and the contribution from the phase-sum vanishes) to find

C (σx1σ
x
2 ) ∝

∫
dφ cos(2φ) P (φ) = F2, (3.36)

where F2 is the second Fourier coefficient (orange dashed), reinforcing its signifi-

cance in contributing to the relative phase distribution.

3.5 Conclusion

We introduced a novel spin-oscillator system driven with a two-phonon resonant

interaction that can be prepared in a bistable state. The model can be realised

with highly controllable trapped-ions where the phonon state of the oscillators

can be inferred from spin measurements. The high driving regime produces a

relative phase preference of 0 and π which corresponds to coupled limit-cycles,

as seen in the literature. New results were found in the low driving regime by

decomposing the relative phase distribution into Fourier components. In this

regime, the coupled ions display a relative phase distribution with peaks at π
2

and 3π
2

or, for driving strengths that produce a bistability; 0, π
2
, π, and 3π

2
. The

relative phases of π
2

and 3π
2

were also observed in asymmetrically driven oscillators

that are described by the coupling of a limit-cycle oscillator with a non-lasing

oscillator. The Wigner function resolved on the ion state revealed structures that

might be associated with bistability in the limit of weak driving, but the negativity

in this regime meant that the results were hard to interpret. Though the results

suggest a possible link between the two scenarios, the complexity of the oscillator-

spin system does not let us draw any clear conclusions. This led us to propose

a simpler oscillator-only model that undergoes bistability and is discussed in the
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following chapter.



Chapter 4

321 Oscillator

The interesting synchronisation features of the previous chapter arose from the

two-phonon drive. The readily realisable but complicated framework of trapped

ions may have initially been well motivated, but proved rather unideal both in

terms of computationally probing higher driving regimes and fully understanding

the phenomena. This motivated us to devise a new model that was still based

around a two-quanta drive, in the hopes of again producing a bistable state, but

this time we would focus on mathematical simplicity so as to develop a deeper

insight into phase synchronisation patterns. In this chapter, we introduce the 321

oscillator: a minimal model without the complexity of a spin degree of freedom

but with the two-phonon gain that drives a bistability. Without the spins, we are

able to access a much larger region of the oscillator state-space.

Our model involves only dissipative processes in which phonons (quanta) are lost

or gained, ensuring that an isolated oscillator never has a preferred phase. The key

ingredient of the model responsible for generating bistability is the two-phonon

gain process. This is balanced by two channels of phonon loss in which either a

single phonon or three phonons are annihilated in the oscillator. Hence, we refer

to it as the 321 model. Different dynamical states of the oscillator are achieved

47
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by tuning the relative sizes of the gain and loss rates. Dominant loss leads to

the low occupation number regime, dominant gain leads to a limit-cycle, and an

intermediate region produces a bistability. In many ways, the model is a logical

extension of the much studied Quantum van der Pol (QvdP) oscillator in Sec. 2.2.2

which combines one-phonon gain and two-phonon loss [61, 65, 66, 118]. The QvdP

oscillator, however, only ever displays a limit-cycle whose size depends on the ratio

of loss and gain rates.

We begin this chapter with an introduction to the 321 model in Sec. 4.1. Next,

we look at the steady state and dynamical properties of a single 321 oscillator in

Secs. 4.2-4.4. Then, in Sec. 4.5, we investigate in detail the phase synchronisation

that occurs when two of the bistable model oscillators are coupled via a weak

exchange process. This leads to a rich range of behaviour in the relative phase

distribution with a different pattern of phase preferences emerging depending on

the underlying dynamical states of the oscillators.

4.1 Model

Our oscillator model, the 321 oscillator, involves three dissipative processes, as

illustrated in Fig. 4.1a. A two-phonon gain process with rate κ2 drives the oscil-

lator to higher phonon numbers, whilst a one-phonon loss process damps it at a

rate κ1; an additional three-phonon loss process at rate κ3 is included to stabilise

the system ensuring that it has a steady state for any strength of the gain.

The master equation for a single 321 oscillator in the interaction picture is given

by [35, 61, 64]

˙̂ρ = Lρ̂ = κ1D[â](ρ̂) + κ2D
[(
â†
)2
]

(ρ̂) + κ3D
[
â3
]

(ρ̂), (4.1)
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Figure 4.1: Reproduced from Jessop et al. [53]. (a) The three dissipative processes
of the oscillator: two-phonon gain, single-phonon loss, and three-phonon loss, at
rates κ2, κ1, and κ3, respectively. (b) Steady state properties as a function of κ1/κ2

for fixed κ3 = κ2 × 10−2. The colour scale shows the phonon-number distribution
Pn (for n > 0), with the average phonon number 〈n〉 calculated numerically (white
line), location of the peak in Pn away from n = 0 where it exists (black line), and
the mean-field prediction n+ (grey diamonds), superposed. Large phonon number
states are occupied when the gain is sufficiently large (black cross), the fixed
point state is predominantly occupied if the loss dominates (black circle), and a
bimodal distribution appears in an intermediate region (black star). Also shown
is the second moment µ(2) (magenta line). The corresponding Wigner functions,
W(αr, αi), are for (c) limit-cycle (κ1/κ2 = 100.5), (d) bistability (κ1/κ2 = 101.25)
and (e) fixed point (κ1/κ2 = 102).
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where â is the oscillator lowering operator and we have defined D[Ĉ](ρ̂) = Ĉρ̂Ĉ†−
1
2
{Ĉ†Ĉ, ρ̂}. The key feature of the 321 oscillator is the two-phonon gain in the

second term. Our model makes an interesting contrast with the QvdP oscilla-

tor [61, 118]in Eq. 2.12, where one-phonon gain is balanced by two-phonon loss.

The presence of this nonlinear gain process in our model leads to important fea-

tures such as bistability, not seen for the QvdP.

The steady state properties are readily found by exploiting the fact that the system

is purely dissipative, so that the dynamics of the diagonal and off-diagonal matrix

elements of the density operator in the number (Fock) basis are decoupled [102,

105]. The master equation can be rewritten as a set of k equations

ρ̇(k) =M(k)ρ(k), (4.2)

where ρ
(k)
n = 〈n| ρ̂ |n+ k〉, with |n〉 the n-th number state, and M(k) a matrix.

For the diagonal elements ρ
(0)
n = Pn, writing out Eq. 4.1 explicitly leads to the

coupled set of equations for the probability distribution

Ṗn =−
[
κ1n+ κ2 (n+ 1) (n+ 2) + κ3n (n− 1) (n− 2)

]
Pn

+ κ1 (n+ 1)Pn+1 + κ2n (n− 1)Pn−2 (4.3)

+ κ3 (n+ 1) (n+ 2) (n+ 3)Pn+3.

In the steady state, the off-diagonal terms ρ(k 6=0) all go to zero and the eigenvector

of M(0) with zero eigenvalue gives the Pn distribution.
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4.2 Steady state properties

4.2.1 Overview

The steady state of the oscillator can be characterised by the behaviour of the

Pn distribution along with the Wigner distribution [35], W(αr, αi). Figures 4.1b-e

show how the state of the system evolves as the ratio κ1/κ2 is changed for a small

(fixed) value of κ3/κ2. When the nonlinear gain dominates (κ1/κ2 � 1) the oscil-

lator is driven to large phonon numbers with an almost Gaussian Pn distribution

centred at a value 〈n̂〉 =
∑

n nPn � 1 (see Fig. 4.1b). The corresponding Wigner

distribution exhibits a ring of maxima (Fig. 4.1c), we classify this as a limit-cycle

(LC) state, as it has a well-defined average amplitude, but no preferred phase [61].

In the opposite limit of dominant loss (κ1/κ2 � 1), the oscillator is damped to

the lowest phonon number states, leading to a sharp peak in the Pn distribution

at n = 0. In this regime, the Wigner distribution displays a single maximum at

the origin (Fig. 4.1e) and we call this a fixed point (FP) state. In between these

limits, we find bistability (B) where features from both the LC and FP states can

be found in the Wigner distribution (see Fig. 4.1d) and two peaks of similar size

feature in the Pn distribution [98].

The bimodality of the Pn distribution is captured by a sharp peak in the sec-

ond moment [76] µ(2) = 〈n̂2〉 − 〈n̂〉2, as shown in magenta in Fig. 4.1b. The

distributions with the highest values of µ(2) are found to be those with the most

pronounced bistability, i.e. with two peaks of comparable area that are separated

by a significant gap.
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4.2.2 Mean-field theory

We use a standard mean-field (or semiclassical) approach to understand the ori-

gin of the stationary states. Two physically relevant mean-field solutions for the

average phonon number are found: a zero phonon solution n0 = 0 corresponding

to the fixed point, and a nonzero solution

n+ =
κ2

3κ3

[
1 +

√
1− 3κ1κ3

κ2
2

]
(4.4)

corresponding to the limit-cycle. Linear stability analysis reveals that the zero

phonon solution n0 is always stable yet the nonzero solution n+ is only real and

stable for the parameters

3κ1κ3 < κ2
2. (4.5)

As such, the mean-field approach predicts a region of bistability associated with

the coexistence of two stable solutions in the parameter regime defined by Eq. 4.5.

These predictions are compared with the behaviour of the Pn distribution in

Fig. 4.1b. The n+ solution (grey diamonds) agrees remarkably well with the

location of the peak away from n = 0 that develops in the Pn distribution (solid

black line).

It is important to note that the results shown here (in Eq. 4.4 and Eq. 4.5) are

not unique to this approach. The mean-field (or semiclassical) calculation we

employ involves breaking the correlations between operators, such that
〈
ÂB̂
〉
→〈

Â
〉〈

B̂
〉

. We choose to make this break when the equation of motion is in a

form with the fewest number of separate expectation values simply because this

“least terms” method most accurately predicts the results found numerically. In

the following, we outline how this works out in detail before going on to describe

an alternative approach that employs normal ordering.
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Least terms variant

An equation of motion for the expectation value of the annihilation operator,

d
dt
〈â〉 = Tr

[
â ˙̂ρ
]
, is found from the master equation (Eq. 4.1)

d

dt
〈â〉 = −κ1

2
〈â〉+ κ2

〈
â2â†

〉
− 3κ3

2

〈(
â†
)2
â3
〉
. (4.6)

In this method, the expectation values in Eq. 4.6 are left intact, e.g.
〈
â2â†

〉
is

not normal ordered (in which case it would be 2 〈â〉+
〈
â†â2

〉
). We then make the

substitution of 〈â〉 =
(〈
â†
〉)∗

= reiϕ where r =
√
n and ϕ are classical number

and phase variables, respectively. This allows us to rewrite Eq. 4.6 as

ṙ + irϕ̇ =
1

2

(
−κ1r + 2κ2r

3 − 3κ3r
5
)

(4.7)

which, evaluating the real and imaginary parts separately, finds φ̇ = 0 and

ṙ = −r
2

(
3κ3r

4 − 2κ2r
2 + κ1

)
. (4.8)

The steady state solutions can be found by evaluating ṙ = 0 and rearranging for

r. This calculation produces three possible steady state solutions for the phonon

number n = r2; the trivial zero phonon solution n0 = 0 and two nonzero solutions

from the quadratic formula

n± =
κ2

3κ3

[
1±

√
1− 3κ1κ3

κ2
2

]
, (4.9)

the stable branch then becomes Eq. 4.4.

Since these solutions correspond to an observable (the average phonon number),

the parameter regimes in which they are physical can be found by constraining
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each solution to be both positive and real. The stability of the solutions can be

determined through consideration of the Jacobian, Jij = ∂ẋi
∂xj

, where stability is

indicated by the condition that Re
[
J |nss

]
< 0.

The negative branch of the nonzero phonon solution n− is never both physical

and stable whereas the zero phonon solution n0 is always stable. The positive

branch of the nonzero phonon solution n+ is stable only when it is physical; i.e.

for 3κ1κ3 < κ2
2. This mean-field calculation results in two stable solutions for

the average phonon number and therefore a predicted bistability in the phonon

number for the parameters where n+ is stable.

Normal ordered variant

An alternative approach is to carry out the mean-field calculation after ensuring

the operators in the expectation values are normal ordered. We rearrange any

product of bosonic creation â and annihilation â† operators using the commutation

relation [â, â†] = 1 to ensure that the â† operators always precede â. The normal

ordering of an operator Ô (which is an arbitrary product of bosonic annihilation

and creation operators) is denoted as :Ô :. In our mean-field calculation, this leads

to a rearrangement of the second expectation value in Eq. 4.6,

: â2â†: = : â(â†â+ 1): = : ââ†â : + â = (â†â+ 1)â+ â = â†â2 + 2â (4.10)

so that the correlations are broken when the equation of motion is of the form

d

dt
〈â〉 = −κ1

2
〈â〉+ κ2

(
2 〈â〉+

〈
â†â2

〉)
− 3κ3

2

〈(
â†
)2
â3
〉
. (4.11)

Using this approach is equivalent to assuming the system is in a coherent state;

i.e. the normal-ordered expectation values are
〈(
â†
)j

(â)k
〉

= 〈α|
(
â†
)j

(â)k |α〉 =
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α∗jαk. Continuing the calculation, we find

ṙ + irφ̇ = −3κ3

2
r5 + κ2r

3 +
(

2κ2 −
κ1

2

)
r (4.12)

which, evaluating the real and imaginary parts separately, leads to φ̇ = 0 and

ṙ =

[
−3κ3

2
r4 + κ2r

2 +
(

2κ2 −
κ1

2

)]
r, (4.13)

with steady state solutions n0 = 0 and

n± =
κ2

3κ3

[
1±

√
1 +

3κ3 (4κ2 − κ1)

κ2
2

]
. (4.14)

As before, the negative branch of the nonzero phonon solution n− is never both

physical and stable. The zero phonon solution n0, however, is found to be stable

only for κ1

κ2
> 4. The positive branch of the nonzero phonon solution n+ is now

stable for κ1

κ2
< 4 + κ2

3κ3
. This means that with this particular mean-field approach,

there is a predicted bistability in the phonon number for the parameter regime

0 <
3κ3

κ2

(
κ1

κ2

− 4

)
< 1. (4.15)

This approach is not used in the following simply because it is less accurate at

predicting the location of the nonzero peak in the number distribution, Pn, where

it exists.

4.3 Phase diagram

Classifying the oscillator state as either FP, B, or LC, based on the corresponding

Wigner function, can produce a ‘phase diagram’ shown with µ(2) in Fig. 4.2a and
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Figure 4.2: Reproduced from Jessop et al. [53]. Steady state behaviour of (a) the
second moment µ(2) and (b) average occupation number 〈n〉 overlaid with bound-
aries between the fixed point (FP), limit-cycle (LC), and bistable (B) regimes
obtained by analysing the peaks in the radial Wigner distribution W (r = |α|).
The FP-B boundary (upper dashed curve) agrees well with the appearance of the
stable nonzero mean field solution, n+ (see Eq. 4.4, full line). The LC-B bound-
ary is shown using two different approaches: the dotted line indicates where the
peak at the origin of the Wigner function disappears entirely, whilst the (lower)
dashed line indicates the edge of a bistable region in which the Wigner peak at the
origin remains non-negligible in size. The second moment is maximal within the
bistable region where the corresponding LC contains a large occupation number
(i.e. κ2 � κ3), elsewhere it is rather smooth. The average phonon number dis-
tribution 〈n〉 is largest deep within the LC regime (red), and lowest for the fixed
point regions (white), but does not provide any direct indication of bistability.

average occupation number in Fig. 4.2b. The three states seem very distinct when

considering examples such as Fig. 4.1c-e, and they clearly possess very different

features. However, deciding on the boundary where one state transitions to an-

other is far from simple and requires careful treatment so as to produce meaningful

boundaries.

There is a very clear boundary between the fixed point and bistable regimes where

the second distinct peak appears far from the origin. This phenomenon is easily

captured by the mean-field prediction (solid line from Eq. 4.4) over a wide range

of parameters and only fails when phonon numbers become small where the two
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peaks become indistinguishable.

The transition between the limit-cycle and bistable regimes, however, is far more

subtle and the location of the boundary is heavily affected by how we choose to

define each state. Along with the upper bound from the mean-field prediction,

we use two more methods to define the boundaries of the bistable regime that

we believe allows us to produce a meaningful phase diagram. The first method

uses an analytic result and acts as an absolute limit (dotted line), below which

the state is certainly a limit-cycle. However, labelling any state above this bound

as bistable would be inaccurate as many of the technically bimodal distributions

include a fixed-point “peak” that is orders of magnitude smaller than the limit-

cycle peak. To filter out states with negligible peaks and to produce a more

meaningful definition for what should be considered a bistable state, we propose

a bistability contrast and require that a state only be labelled bistable if this

quantity is above a certain threshold. We now explain our approach in detail in

the following two subsections.

4.3.1 Peak at origin

The criterion for bistability in the oscillator that we use is the coexistence of

two peaks in the Wigner function, one at the origin and another at a nonzero

radius [67]. Since the Wigner distribution is radially symmetric, the gradient at

the origin must be zero and therefore we can ascertain if the origin is a maximum

by analysing the second derivative. We utilise an analytic form of the Wigner

distribution as a function of the density operator in the number basis ρnm =

〈n| ρ̂ |m〉 [39];

W (r, θ) =
2

π
e−2r2

∞∑
m,n=0

(−1)n
√
n!

m!
ei(m−n)θ(2r)m−nLm−nn

(
4r2
)
ρnm (4.16)
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where Lkn are the associated Laguerre polynomials. The density matrix of the

321 oscillator is diagonal so ρnm = δnmPn, leading to a radial Wigner distribution

which is a function of the probability distribution Pn [39]

W (r) =
2

π
e−2r2

∞∑
n=0

(−1)nPnLn
(
4r2
)
, (4.17)

where Ln = L0
n are the Laguerre polynomials.

As we are considering the function at the origin r = 0, we can expand the Laguerre

polynomials in orders of r and safely neglect high order terms Ln (4r2) = 1−4r2 +

O (r4). The approximated Wigner function near r = 0 is then

W (r) ≈ 2

π
e−2r2

∞∑
n=0

(−1)nPn
(
1− 4r2n

)
(4.18)

and the second derivative evaluated at the origin is

W ′′(r)|r=0 = − 8

π

∞∑
n=0

(2n+ 1)(−1)nPn, (4.19)

shown in Fig. 4.3. The form of the Wigner distribution at the origin can then be

easily calculated from the sign of Eq. 4.19: a negative (positive) second derivative

indicates a maximum (minimum).

This calculation can be used to determine the parameter regime where there is

technically a maximum in the Wigner distribution at the origin, acting as an

absolute limit for the existence of a bistability (at the LC-B boundary), shown as

a dotted black line in Fig. 4.3a. Using this criterion as an actual boundary for the

bistable regime, however, would be unwise. The Wigner function at the origin is
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calculated from Eq. 4.17 to be

W (r = 0) =
2

π

∞∑
n=0

(−1)nPn (4.20)

and is shown on a log scale in Fig. 4.3c. This approach leads to a very large bistable

region (non-white region in Fig. 4.3a) as it includes negligibly small peaks in the

Wigner function.

4.3.2 Bistability contrast

To quantify just how small the second peak gets, and to produce meaningful crite-

ria for what makes a state bistable, we must first define a quantifier of bistableness.

We propose a measure called the bistability contrast that would consider distribu-

tions with similar peak sizes to be “more bistable” than those with comparatively

negligible peaks. We would then be able to “filter out” the distributions with a

small peak by altering our definition of a bistability to be dependent on contrast.

We explicitly define the bistability contrast as

C = min (W0,W+)−W− (4.21)

which compares the smaller of the two local maxima of the Wigner function, W0 at

the origin and W+ away from the origin, with the minimum value between them,

W−.

Figure 4.3a shows this contrast plotted using a logarithmic scaling over the region

where two peaks exist. We note that the Wigner function was found to be pos-

itive throughout. The plot shows that, whilst the FP-B boundary is very sharp

(especially for κ2 � κ3), the LC-B boundary is extremely diffuse. There exists a

large region of bimodal distributions where the peak at the origin is far too small
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Figure 4.3: Reproduced from Jessop et al. [53]. Steady state phase diagram with
the contrast of the bistability with a log scale and a series of contours at 10−[18:2].
The white regions indicate Wigner functions with only a single maximum, for
example; (blue cross) a fixed-point (ci) has a single peak at r = 0 and (green
cross) a limit-cycle (ciii) has a single peak at r ≥ 0. The sign of (b) the second
derivative of the Wigner distribution at r = 0 is used to determine if there is a
maximum at the origin; i.e. a stable, n0 = 0 solution (κ3 = κ2 × 10−1.5) and the
locus where W

′′|r=0 = 0 is shown with the dotted line. The contrast is defined
in Eq. 4.21 and an example is shown (red cross) for a strong bistability (cii) with
a contrast of C ≈ 10−2. The solid black line shows the mean-field boundary
(Eq. 4.5).
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to play a meaningful role in affecting the system’s behaviour. It makes sense to

set the LC-B boundary at a point where the peak at the origin becomes small,

rather than disappearing entirely. The choice of this limit will always be somewhat

arbitrary. We decided on a boundary that agrees well with the peak in the second

moment: C = 0.0001, as seen in Fig. 4.2a.

4.4 Dynamics

So far, only the steady state of the 321 oscillator has been discussed, we now

turn our focus to the dynamics. To build an informative picture of the dynamics

of the bistable state, we examine the key timescales in the system by looking

at eigenvalues of the Liouvillian. To get additional insights into the dynamics,

individual quantum trajectories are explored, using a quantum jump or Monte-

Carlo wavefunction method [89].

4.4.1 Metastability

Preliminary time evolution of the 321 oscillator revealed a slowing of its relaxation

to the bistable state, a feature often associated with metastability [79]. In order

to understand whether the bistability found in the steady states of the system is

accompanied by metastability, manifest in this system by a slow switching between

the two coexisting states, we consider the eigenvalues of the Liouvillian with largest

real part [70, 79, 97].

The largest eigenvalue of the matricesM(k) in Eq. 4.2, λ
(k)
1 , can be used to obtain

the slowest timescale associated with the dynamics of ρ(k), τk = −1/Re
[
λ

(k)
1

]
,

examples of which are shown in Fig. 4.4a.

The k = 0 case, τ0, describes the relaxation of the diagonal elements and can
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Figure 4.4: Reproduced from Jessop et al. [53]. (a) The slowest timescales τk
of the oscillator for k = 0, 1, 2 with κ3 = κ2 × 10−2 and (b) the metastability
M (Eq. 4.22) plotted on a logarithmic scale. The phase boundaries obtained
using Wigner functions (dashed lines) and the mean field calculation (full line)
are shown.

become very large for certain κ1/κ2 values. The other timescales, τ1,2, describe

the relaxation of the phase preference of the system. Though they never approach

the peak values of τ0 and display no signature of the bistability, they do vary

significantly as the system evolves from FP to LC, becoming orders of magnitude

larger for the latter.

In this system, the emergence of a single very slow timescale signals metastabil-

ity [70]. The metastability of the system can be calculated from the ratio of the

largest (least negative) eigenvalues

M =
Re
[
λ

(0)
2

]
Re
[
λ

(0)
1

] . (4.22)

M is much larger than unity when there is a wide separation of timescales. The

behaviour of M is shown in Fig. 4.4b, where a rough, if somewhat arbitrary,

threshold for metastability M = 10 is shown in white. Although the region where
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M is large is much smaller than the bistable region in Fig. 4.2, it does match up

well with the peak in µ(2).

4.4.2 Quantum jump trajectories

We can get more of an insight into the dynamical properties of the system by

looking at quantum jump trajectories obtained by unravelling the master equa-

tion [89]. The system is evolved in time with a non-Hermitian Hamiltonian and, at

each time step, a quantum jump (the 1-phonon loss, 2-phonon gain, or 3-phonon

loss process) may occur with a certain probability.

The wavefunction |ψ(t)〉 is evolved from t → t + δt according to a randomly

generated number c which determines whether a jump process occurs or the state is

instead evolved by the non-hermitian Hamiltonian ĤMC = − i
2

[
κ1â

†â+κ2â
2
(
â†
)2

+

κ3

(
â†
)3
â3
]
. Each jump process occurs at a probability dependent on the evolution

timestep and expectation value of that operator at that time, e.g. the probability

that the two-phonon gain process
(
â†
)2

occurs is p2 = κ2 〈ψ(t)|
(
â†
)2 |ψ(t)〉 δt.

Repeating this process for many time steps produces a trajectory of the dynamics.

A sufficient number of such trajectories will average to the steady state of the

system.

The properties of typical trajectories for the different dynamical states of the

system are illustrated in Fig. 4.5. The FP oscillator has a very low phonon number

and so all jump processes are heavily suppressed, seen as a low activity (i.e. low

rate of jump events) shown in blue in Fig. 4.5, especially the three-phonon loss.

The LC has a large number of phonons and so all processes are likely, shown in red

in Fig. 4.5, with the the single-phonon loss being slightly reduced in comparison to

the other two. In the bistable regime, green in Fig. 4.5, the oscillator can be seen

to spend a period of time exhibiting one level of activity before switching to the
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Figure 4.5: Reproduced from Jessop et al. [53]. Sample quantum trajectories
for each of the oscillator states illustrating the frequency of the different jump
processes for (top) limit-cycle (κ1 = κ2 × 101/2), (middle) bistable (κ1 = κ2 ×
105/4), and (bottom) fixed-point (κ1 = κ2 × 107/4) states (with κ3 = κ2 × 10−7/4

throughout).The individual jump processes involving one-phonon loss (rate κ1),
two-phonon gain (rate κ2), and three-phonon loss (rate κ3) are indicated. The
bistable oscillator can be seen to flip intermittently between LC-like and FP-like
behaviour. In the FP state, the one-phonon loss jumps occur in pairs soon after
each two-phonon gain jump (see magnified portion of the lower panel).

other. The system continues to switch between these distinct regimes indefinitely,

never settling in one state or the other. This intermittency in the dynamics of the

trajectories provides clear evidence of metastability in the system [70].

4.5 Synchronisation of two coupled 321 oscilla-

tors

We now explore how phase ordering occurs when two identical 321 oscillators

are coupled via a phonon exchange interaction of the form [49, 61, 118] ĤJ =

J
(
â†1â2 + â1â

†
2

)
with subsequent dynamics described by the master equation

˙̂ρ = −i
[
ĤJ , ρ̂

]
+
∑
j=1,2

Lj ρ̂, (4.23)
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Figure 4.6: Reproduced from Jessop et al. [53]. (a) The predominantly π-periodic
relative phase distribution of the two-oscillator system with weak coherent cou-
pling (J/κ2 = 10−2) and three-phonon loss κ3 = κ2 × 10−1, spanning the three
motional states (FP, B, and LC) calculated with perturbation theory. Weak single-
phonon loss (κ1 < κ2) produces the case of coupled limit-cycles and has peaks at
0 and π. As the single-phonon loss rate is increased, the pattern vanishes then
reappears with peaks at π

2
and 3π

2
. Very strong single-phonon loss (κ1 � κ2) sup-

presses synchronisation. (b) The dominant Fourier coefficient F2 (red), explained
in Eq. 3.23, that accounts for the π-periodic form and whose sign determines the
peak position. The fourth Fourier coefficient F4 (blue) is the next largest, though
is negligible in comparison for all parameter regimes except for the region in which
F2 ≈ 0 where a four-peak, π

2
-periodic distribution can be observed.

where the subscript j denotes the first or second oscillator and the dissipation

terms follow from Eq. 4.1.

By considering a relatively weak coupling strength, the phonon state can be as-

sumed to be predominantly determined by κ1, κ2, and κ3, as with the uncoupled

oscillator. The phase of each oscillator, however, is expected to be strongly af-

fected by the coupling process and a nontrivial relative phase distribution is indeed

produced. As the Pn transitions from limit-cycle to bistability to fixed point (by

increasing the loss rates, κ1 or κ3), the relative phase distribution changes from

having peaks at 0 and π to π
2

and 3π
2

, as seen in Fig. 4.6a. The relative phase

of 0 and π for the coupled limit-cycles (LHS of Fig. 4.6a) are expected [61] and

can be predicted by a simple mean field argument (see Sec. 3.4.2). The peaks at
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Figure 4.7: Reproduced from Jessop et al. [53]. (a) F2/J
2 and (b) F4/J

4, the
two most dominant Fourier coefficients of the relative phase distribution scaled
with coupling strength (Eq. 3.23) showing the parameter regimes that have a π-
periodic form where positive F2 (red) produces peaks at 0 and π and negative
F2 produces peaks at π

2
and 3π

2
. When F2 switches from positive to negative, it

travels through zero and the small but nonzero F4 becomes the dominant term
producing a π

2
-periodic relative phase distribution with peaks at 0, π

2
, π, and 3π

2
.

π
2

and 3π
2

for the coupled fixed point oscillators (RHS of Fig. 4.6a), however, are

unusual, but as we have seen do arise for the bistable coupled ion system discussed

in Chapter 3.

Solving the coupled system numerically is computationally taxing but possible

with sufficient state space truncation. To avoid this limitation, perturbation the-

ory can be used to accurately describe the system in the limit of weak coupling

strength and can probe parameter regimes that drive the system to far larger

phonon numbers, leading to the results shown in Fig. 4.7 (see App. B).

To try and understand the origin of the peaks that appear at π
2

and 3π
2

, we can

exploit the fact that they already start to appear in the regime where 〈n〉 is very

low (i.e., κ1/κ2 � 1). Hence, we can take the perturbation theory further (see

App. B), and derive analytic results by truncating the system to the lowest 3 states

(maximum phonon number of N = 2). This results in a relative phase distribution
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of the form

P (φ) =
1

2π
+ S cos 2φ (4.24)

where the sign of S, and therefore the relative phase preference, simply depends

on the state of both oscillators

sgn(S) = sgn
(
P

(1)
1 P

(2)
1 − P (1)

0 P
(2)
2

)
. (4.25)

An oscillator with a thermal distribution would obey P2/P1 = P1/P0 and so two

thermal oscillators would be unsynchronised P (φ) = 1
2π

. The vdP oscillator driven

with a single phonon process only ever produces states with P2P0 < P 2
1 which

results in the usual phase preference of 0 and π [61], these states are also accessible

by the 321 oscillator. Producing a negative S value is impossible for a thermal

or vdP oscillator thus they will never achieve a relative phase preference of π
2

and 3π
2

. The two-phonon gain process in the 321 oscillator, however, generates

a large population in the third state (n = 2) by bypassing the second (n = 1)

which allows for the production of states where P2P0 > P 2
1 . This specific phonon

distribution produces a negative S value in Eq. 4.25 and thus a relative phase

distribution in Eq. 4.24 with peaks at π
2

and 3π
2

. This relative phase distribution

was found in the coupled ions in Chapter 3. With the 321 oscillator model, we

were able to carry out a much more detailed analysis that revealed the relative

phase preference of π
2

and 3π
2

is caused by the two-phonon gain process and that

this can be achieved without the cumbersome spin degree of freedom of the ions.

The simplicity of the 321 oscillator has allowed us to determine that the interesting

phase distributions of bistable oscillators is directly due to the two-phonon gain,

a far stronger conclusion than was possible with the ion system in Chapter 3.

As shown in Chapter 3, we find that the periodic nature of the relative phase
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distribution allows for the Fourier decomposition shown in Eq. 3.24. The Fodd

are always zero and, in general, the Fk terms become negligibly small as k is

increased. The distribution is predominantly π-periodic, this is seen in Fig. 4.6b

with a dominant F2 term (blue). The position of the two peaks is determined

by the sign of F2. As F2 passes through zero, the normally negligible F4 term

becomes dominant and a π
2
-periodic distribution is observed. The relative phase

distribution can then be succinctly displayed for the full parameter space as shown

in Fig. 4.7. A positive F2 (red Fig. 4.7a) corresponds to relative phase peaks at 0

and π. The parameter regime with negative F2 (blue Fig. 4.7a), however, shows

a relative phase preference of π
2

and 3π
2

. The F4 term (Fig. 4.7b) is normally

3 orders of magnitude smaller than F2 and so only becomes significant in the

small parameter regime where F2 passes through zero. F4 is always positive and

therefore produces a relative phase distribution with peaks at 0, π
2
, π, and 3π

2
.

Interestingly, the peak in F4 is most pronounced (and the change between positive

and negative F2 values is most rapid) in the metastable region.

Curiously, in the limit-cycle regime (κ1 < κ2), synchronisation is seen to weaken

as κ3 is reduced (see Fig. 4.7) and the phonon number is increased (see Fig. 4.2b).

This is in contrast to the QvdP oscillator in which the synchronisation effects are

enhanced by increasing phonon number, as shown in Eq. 2.28. This can be ex-

plained by realising that the synchronisation strength depends sensitively on the

rate of phase diffusion in the oscillator [25, 105]. In our system, the phase diffu-

sion can be shown to increase with increasing drive strength (see App. C) which

explains why the phase locking is in fact weakened by larger phonon numbers.
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4.6 Conclusion

We have introduced a simple oscillator model with a two-phonon gain process bal-

anced by one- and three-phonon losses that can be used to engineer a bistable os-

cillator state. The bistability occurs when the gain/loss rates are tuned between a

large phonon, limit-cycle regime and a low occupation number, fixed state regime.

Quantum jump simulations reveal trajectories with intermittent activities in the

bistable regime, signalling that the bistable state is also metastable.

The relative phase distribution of two coherently coupled 321 oscillators displays

a rich pattern of behaviours that are dependent on the phonon state of the oscilla-

tors. When strongly driven, the coupled oscillators have the usual, predominantly

π-periodic distribution with peaks at 0 and π as found for coupled van der Pol

oscillators. If, instead, the loss process dominates, phase peaks are found at π
2

and 3π
2

. Between these two regimes, where the bistability arises, the distribution

is shown to become π
2
-periodic.

In the limit-cycle regime, mean-field theory tells us that the form of the relative

phase distribution is determined by the form of the coupling between the oscil-

lators, as found in classical models. The phase distribution in the fixed-point

regime, however, is determined by the form of the nonlinear gain/loss terms which

determines the number distribution. In our model, the two-phonon gain process

produces a fixed-point number distribution that results in preferred phases π
2

and

3π
2

, something not seen for thermal distributions or QvdP oscillators.

Our goal in this work was to explore the properties of the relative phase distri-

bution and its connection to the underlying oscillator dynamics in the simplest

possible model system displaying limit-cycles and bistability. The 321 oscillator

proved to be both considerably simpler than the trapped ion model in Chapter 3,

allowing us to carry out more accurate analysis and explore a greater parameter
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range, whilst still being able to display the bistable state we aimed to study.



Chapter 5

Synchronisation in spin-1

networks

The last two chapters focused on oscillators that can occupy a large number of

energy levels and so can accurately describe large amplitude oscillations. However,

simulations of such systems require state spaces that can become computationally

expensive, limiting our research to a maximum of two coupled oscillators. In this

chapter, we will instead look at minimising the size of the Hilbert space of the

system undergoing limit-cycle oscillations to facilitate research on synchronisation

in larger networks of coupled oscillators.

Recent studies have concluded that the smallest quantum system capable of sus-

taining a limit-cycle and subsequently synchronise is a spin-1 oscillator [100, 101].

This, however, remains an area of controversy [84]. Nevertheless, spin-1 oscillators

are certainly a useful platform to study synchronisation in the quantum regime

and, in fact, map directly to a QvdP oscillator deep in this limit [57]. Addition-

ally, this model has been recently realised experimentally in chains of trapped

ions [22, 106], nitrogen-vacancy centres [109], and noisy intermediate-scale quan-

tum computers [56].

71
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In this chapter, we aim to study how synchronisation manifests in different net-

works of coupled spin-1 oscillators. In Sec. 5.1, we describe the limit-cycle in

the context of the spin-1 oscillator and explain how to visualise the state with

the Husimi-Q function. Section 5.2 will introduce interactions between oscillators

along with a minimal synchronisation measure that proves particularly applicable

to spin-1 networks. We begin Sec. 5.3 by studying two coupled oscillators and

find a rich variety of synchronisation features, including a relative phase prefer-

ence between identical oscillators, contradicting recent work [100]. Adding a third

oscillator to the system allows us to compare features of an all-to-all coupled net-

work to a chain geometry. Surprisingly, we find a strengthening of the next-nearest

neighbour synchronisation in the chain network. Working with larger networks,

of 4 and 5 spins, we study the effects of increasing system size as well as compare

all-to-all, chain, and ring geometries. We find simple, but exact, equations to de-

scribe the relative phase distributions between each pair of oscillators in networks

of varying geometry and size.

5.1 The spin-1 oscillator

The spin-1 oscillator is in stark contrast to the trapped ion model in Chapter 3,

whose complexity often meant we had to rely on slow numerical integration meth-

ods to reach the steady state. As we simplified that model to the 321 oscillator in

Chapter 4, we will simplify our system again, rather extremely. Since the spin-1

oscillator consists of just three energy levels, |−〉, |0〉, and |+〉, we are able to

model networks of multiple coupled oscillators with ease. Interestingly, this model

can describe a van der Pol oscillator operating deep in the quantum regime [57].

For these reasons, the spin-1 oscillator network is both an exciting leap and a

natural progression of our previous research.
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5.1.1 The smallest limit-cycle

Though some work has been carried out on the synchronisation of spin-1
2

qubits [56],

we will follow the rationale of Ref. [100] and work with the spin-1 oscillator due to

its well defined limit-cycle and direct correspondence to the QvdP oscillator (see

Chapter 2). To understand the states of the spin-1 oscillator, we utilise a pseudo-

probability function, as we did in previous chapters. Recent research on the spin-1

oscillator has employed the Husimi-Q function as a phase portrait [57, 100, 101];

we will follow suit. The Husimi-Q function is found by extending the Bloch sphere

to accommodate a third energy level [57, 100, 101]. Spin coherent states [7, 93]

follow from a two-angle rotation of the extremal state

|θ, ϕ〉 = e−iϕŜ
z

e−iθŜ
y |+〉

=
1

2
(1 + cos θ)e−iϕ |+〉+

1√
2

sin θ |0〉+
1

2
(1− cos θ)eiϕ |−〉 (5.1)

with σ̂z = |+〉〈+| − |−〉〈−| and σ̂y = 1i (|−〉〈+| − |+〉〈−|).

The Husimi-Q function (Eq. 5.2) for the spin-1 oscillator is then a sphere defined

by θ and ϕ

Q(θ, ϕ) =
3

4π
〈θ, ϕ| ρ̂ |θ, ϕ〉 , (5.2)

with θ ∈ [0, π] and ϕ ∈ (−π, π]. We visualise the distribution with the Winkel

tripel earth projection [42], much like a map of the globe, where θ runs from the

north to the south pole, 0 to π, and ϕ from west to east, −π to π.

A selection of states of the oscillator, |−〉〈−|, |0〉〈0|, and |+〉〈+|, are illustrated

in Fig. 5.1a-c, respectively. The Husimi-Q function for the |0〉〈0| state is found

analytically from Eq. 5.2,

Q0(θ, ϕ) =
3

8π
sin2 θ (5.3)
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Figure 5.1: The Husimi-Q function, Eq. 5.2, acting as a phase portrait of the
(a) |−〉〈−|, (b) |0〉〈0|, and (c) |+〉〈+| states represented using the Winkel tripel
earth projection [42]. For ρ̂ = |0〉〈0|, it takes the form in Eq. 5.3 showing a ϕ
independence and a maximal value of θ = π

2
. (d) The dissipative processes (see

Eq. 5.5) that drive our spin-1 oscillator from the extremal states, |+〉 and |−〉, to
the limit-cycle state |0〉, at rates γd and γg, respectively.

and is shown in Fig. 5.1b. This state is independent of ϕ and is maximal at θ = π
2
,

forming a ring structure around the equator which is reminiscent of the undefined

phase and stable amplitude of the classical limit-cycle. Taking the freely rotating

angle ϕ to be the phase of the spin-1 oscillator, we find our limit-cycle state which

is analogous to those of larger oscillators (see Sec. 2.2.2 and Chapters 3 and 4).

For other two states, |±〉〈±|, the Husimi-Q function has the form

Q±(θ, ϕ) =
3

16π
(cos θ ± 1)2 . (5.4)

These are also independent of ϕ, but lie on the poles of the sphere (at θ = 0 and

π, respectively) where ϕ becomes undefined. Therefore, we cannot associate a

meaningful phase to the extremal states consequently they cannot form a limit-

cycle state.

Next, we devise an open system dynamics that will relax to our spin-1 limit-cycle

state |0〉〈0|. The state must be stabilised to perturbations without the introduction

of a phase preference (see Sec. 2.1). This is achieved with the dissipation channels

shown in Fig. 5.1d which independently relax populations in the extremal states,

|±〉, to the limit-cycle with gain and damping rates γg and γd, respectively. The

master equation that governs these dynamics is ˙̂ρ = Lρ̂ in the interaction picture,
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with the Lindblad superoperator

Lρ̂ =
1

2

(
γgD

[
σ̂+σ̂z

]
ρ̂+ γdD

[
σ̂−σ̂z

]
ρ̂
)
, (5.5)

where σ̂ are the spin-1 raising and lowering operators σ̂± = |0〉〈∓| + |±〉〈0| and

σ̂z = |+〉〈+| − |−〉〈−|. To quantify the extent to which the state of our system

deviates from the limit-cycle in what follows, we use a deformation measure [57]

pmax = max
s∈{−,0,+}

∣∣ 〈s| (ρ̂− |0〉 〈0|) |s〉 ∣∣. (5.6)

This measure calculates the maximum change of populations 〈s| ρ̂ |s〉, where s ∈

{−, 0,+}, of the state ρ̂ from the limit-cycle state, |0〉〈0|, and can be thought of

as a simplified fidelity [54].

The phase distribution of a state of the system can be found by integrating the

Husimi-Q function (Eq. 5.2) over the angle θ [101]

p(ϕ) =

∫ π

0

dθ sin θ Q(θ, ϕ)− 1

2π
. (5.7)

Note that for the unsynchronised system, this measure vanishes; the true prob-

ability would be a flat distribution at P (ϕ) = 1
2π

that obeys
∫ 2π

0
dϕP (ϕ) = 1,

as was the case in previous chapters. However, the constant term included in

Eq. 5.7 shifts this distribution to p(ϕ) = P (ϕ) − 1
2π

= 0 for the limit-cycle with

no preferred phase.

Although the steady state Q-function is independent of γg and γd, the way in

which the oscillator reacts to perturbations is determined by the ratio of these

rates R = γg/γd.
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5.2 Coupled spin-1 oscillators

In this Section, we consider networks of coupled spin-1 oscillators. We start by

discussing coherent coupling between spins and then show how synchronisation

can be observed with a relative phase distribution calculated from a two-spin

Husimi-Q function. We analyse the set of relative phase distributions of each pair

of oscillators to explore how synchronisation manifests in a variety of network

geometries and sizes.

5.2.1 Coupling geometries

We consider a set of N spin-1 oscillators coupled via a coherent interaction [100].

The dynamics of this network is described by the master equation

˙̂ρ =
N∑
j=1

(
Lj ρ̂− i

N∑
k>j

[
Ĥjk, ρ̂

])
, (5.8)

where the dissipation term Lj for each oscillator j follows from Eq. 5.5 and the

exchange Hamiltonian between the jth and kth oscillator is

Ĥjk =
εjk
2

(
Ŝ+
j Ŝ
−
k + h.c.

)
, (5.9)

where εjk are the (real) elements of the coupling matrix and we now use operators

Ŝαj that are the spin-1 operators σ̂α acting on the jth oscillator in the network.

As the coupling strength between two spins can be engineered to be distance

dependent, the coupling matrix can be thought of in terms of the geometry of the

network, i.e. the oscillators close enough to each other have nonzero coupling of

the form Eq. 5.9. We consider three equilateral network geometries, schematics of

which are illustrated in Fig. 5.2, which we label chain, ring, and all-to-all.
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Figure 5.2: (a) The coloured links defining different network geometries with (b)
associated coupling matrix in Eq. 5.9 for the three geometries that we consider
for our network of N spin-1 oscillators. A chain configuration couples oscilla-
tors (a) linked by red lines with (b) nonzero coupling strengths shown in red,
εj,j+1 > 0, ∀ j. A ring geometry is a chain with the additional (a) blue link that
closes the loop and so (b) the blue coupling term is nonzero ε1N . The all-to-all
geometry couples each oscillator with every other oscillator and is shown with
(a) the red, blue, and green lines and consequently (b) the red, green, and blue
nonzero coupling strengths, εj,k, ∀ j < k.

Including only couplings between oscillators j and j+ 1 (red lines) creates a chain

geometry, where the only nonzero elements of the coupling matrix are on the first

off-diagonal εj,j+1 6= 0. A ring geometry adds one more link to the chain, between

the first and Nth oscillator (blue line) ε1N 6= 0. Finally, the all-to-all network

couples every oscillator with every other oscillator (red, blue and green lines),

filling the upper triangle of the coupling matrix εjk 6= 0 where k > j.

5.2.2 Husimi-Q relative phase distribution

There are many quantities that we could analyse to explore synchronisation in

a network of coupled spins. In previous chapters, we have concentrated on the

relative phase distribution; for two weakly coupled spin-1 oscillators, this is often

π- or 2π-periodic, as shown in Fig. 5.3a. If we aim to explore networks of many

spins, though, attempting to analyse a collection of distributions, one for each pair

of oscillators, would be difficult; a simpler measure is required.

We previously described the visibility (Eq. 2.3), a single value parameter, shown for
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Figure 5.3: (a) Relative phase distributions (scaled with visibility) of two weakly
coupled (ε = 0.1) spin-1 oscillators. (b) The visibility (Eq. 2.3) of distributions
for a range of coupling strengths ε. (c) Husimi-Q functions of both oscillators
with (ci) R1 = R2 = 1, (cii) R1 = R2 = 10, and (ciii) R1 = R−1

2 = 10 which
correspond to the curves in (a) and (b) in solid black, dashed blue, and dotted
red, respectively.

a range of coupling strengths in Fig. 5.3b. However, the visibility only measures the

strength of the synchronisation, and loses all information on the phase preference.

The Husimi-Q function (see Eq. 5.2) can analytically describe the phase of each

of the oscillators, as shown in Fig. 5.3c. The problem is that we are interested

in the relative phase; additionally, this measure is even more complicated than

the relative phase distribution. We now show that we can find a simple form of

the relative phase distribution by integrating a two-spin version of the Husimi-Q

function.

The Husimi-Q function (Eq. 5.2) for a pair of oscillators j and k [100]

Q(θj, θk, ϕj, ϕk) =

(
3

4π

)2

〈θj, θk, ϕj, ϕk| ρ̂jk |θj, θk, ϕj, ϕk〉 , (5.10)

where the two spin coherent state |θj, θk, ϕj, ϕk〉 = |θj, ϕj〉 ⊗ |θk, ϕk〉 is obtained

from Eq. 5.1. The reduced density matrix ρ̂jk describe any pair of oscillators by
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tracing out the remaining N − 2 spins

ρ̂jk = Trjk[ρ̂]. (5.11)

We then substitute the relative phase, φ = ϕj−ϕk where the subscripts are inferred

through context, into Eq. 5.10. By then integrating over all other angles, we find an

analytical expression for the relative phase distribution Pjk = P (φ) = P (ϕj − ϕk)

(see App. D for details)

Pjk =− 1

2π
+

∫ 2π

0

dϕk

∫ π

0

dθj

∫ π

0

dθk sin θj sin θkQ(θj, θk, φ+ ϕk, ϕk) (5.12)

=π

(
3

16

)2 (
〈σ̂+ ⊗ σ̂−〉 e−iφ + 〈σ̂− ⊗ σ̂+〉 eiφ

)
+

1

8π

( 〈
σ̂2

+ ⊗ σ̂2
−
〉
e−2iφ +

〈
σ̂2
− ⊗ σ̂2

+

〉
e2iφ
)
. (5.13)

=π

(
3

16

)2 〈
Ŝ+
j Ŝ
−
k

〉
e−iφ +

1

8π

〈
Ŝ+
j Ŝ

+
j Ŝ
−
k Ŝ
−
k

〉
e−2iφ + c.c.. (5.14)

Note that Eq. 5.14 is written in terms of Ŝ operators that act on the full density

matrix ρ̂ and not the tensor product of two σ operators that act on the reduced

density matrix ρ̂jk. This means that the relative phase distribution between two

spins can be calculated directly from the full density matrix of the network. A

similar technique has been used in the context of harmonic oscillators [25, 49] and

can be calculated with a different scaling by truncating to the lowest 3 states [53].

By rewriting the exponentials in Eq. 5.13 in trigonometric form, we arrive at an

analytical equation for the relative phase distribution between any two oscillators

j and k

Pjk = Arjk cosφ+ Aijk sinφ+Br
jk cos 2φ+Bi

jk sin 2φ (5.15)
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with complex Fourier coefficients

Ajk = Arjk + iAijk =2π

(
3

16

)2 〈
Ŝ+
j Ŝ
−
k

〉
, (5.16)

Bjk = Br
jk + iBi

jk =
1

4π

〈(
Ŝ+
j Ŝ
−
k

)2
〉
. (5.17)

This result is particularly useful for two reasons. The Fourier coefficients in

Eq. 5.17 can be calculated directly from the full density matrix without requir-

ing a partial trace which greatly speeds up computation times. Also, the relative

phase distribution in Eq. 5.15 can be fully characterised by four real numbers (per

oscillator) which allows us to visualise a full parameter space of distributions in

a small number of figures. The value these Fourier coefficients take is determined

by the ratio of the individual oscillator rates Rj = γgj /γ
d
j , the geometry of the

network, and the coupling strengths εjk (j 6= k).

This Fourier coefficient form of the relative phase distribution is similar to our

calculations in previous chapters but proved far simpler in the spin-1 case. With

this simple but exact measure, we go beyond the recent work on spin-1 oscillators

that utilised first order perturbation theory [57], and find novel synchronisation

regimes.

5.3 Spin-1 networks

Having established techniques to measure the synchronisation of a pair of spin-

1 oscillators within an N -spin network, we start analysing networks. We will

describe the relative phase distributions by analysing the behaviour of A12 and

B12, revealing a rich variety of synchronisation regimes. We will also explore

entanglement and the limit-cycle deformation in these regimes. Increasing the

number of oscillators in the network then allows us to explore the effect network
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geometry has on the synchronisation.

5.3.1 Two oscillators

The smallest network, consisting of just two oscillators, can only be coupled in one

unique geometry where the coupling matrix in Eq. 5.9 includes a single, nonzero

term ε12 = ε. Nevertheless, the spectrum of synchronisation features found is

incredibly rich. By tuning the system parameters, the peaks of the relative phase

distribution can be moved to any value, i.e. any desired relative phase preference

can be engineered in the coupled spin-1 system. Generally, the relative phase

distribution is 2π-periodic, though π-periodic regimes are also found.

As synchronisation effects are perturbative [86] and appear for arbitrarily small

coupling strengths, we again begin in the limit of weak coupling ε = 0.1 and

vary the gain/damp rates Rj = γgj /γ
d
j for each of the two oscillators j = 1, 2.

To ensure that the coupling can be considered weak, we will observe the states

of the oscillators to check if the interaction is perturbative. Analysing the real

and imaginary parts of the Fourier coefficients Eq. 5.17 reveals Ar12, B
i
12 = 0 for

any choice of parameters which is a consequence of the form of the interaction

in Eq. 5.9 following the same reasoning as in Chapter 4 (see App. B). A12 is

therefore purely imaginary and, as shown in Fig. 5.4a, reaches magnitudes of

max(|A12|) ≈ 3× 10−2. Similarly, B12 is purely real, positive definite, and reaches

magnitudes of max(|B12|) ≈ 10−3, as shown in Fig. 5.4b. These results reduce the

relative phase distribution in Eq. 5.15 to

P12 = Ai12 sinφ+ |Br
12| cos 2φ (5.18)

for the two weakly coupled spin-1 oscillators. Note that the modulus sign in

Eq. 5.18 is to emphasise that the cos 2φ will never invert since Br
12 is positive
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definite.

Figure 5.4: The nonzero Fourier coefficients (a) Ai12 and (b) Br
12 that determine

the relative phase distribution of two weakly coupled (ε = 0.1), spin-1 oscillators.
(c) The relative phase distributions corresponding to the parameters indicated by
a black cross (R1 = R2 = 1), blue plus (R1 = R2 = 10), and red star (R1 =
10, R2 = 1). (d) The logarithmic negativity (Eq. 2.6) acting as an entanglement
witness and (e) the limit-cycle deformation measure Eq. 5.6 with contours at
pmax = 0.1 (black, also shown on other figures), 0.01 (grey), and 0.001 (white). (f)
For the identical oscillator case (R = R1 = R2), the synchronisation strength (Br

12

red) and entanglement Eq. 2.6 (blue) are shown to appear before the limit-cycle
deformation Eq. 5.6 (black) is large. The strongly deformed regime pmax ≥ 0.1 is
highlighted in grey.

Figures 5.4a and b show that arbitrarily chosen R1 and R2 generally leads to

|A12| � |B12| and therefore Eq. 5.18 simplifies to P12 = Ai12 sinφ which is 2π-

periodic a peak at −π
2

or π
2

for positive or negative Ai12, respectively. For example,

the parameters R1 = 10 and R2 = 1 (red star) produce a distribution with Ai12 =
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−0.01, shown in the bottom panel of Fig. 5.4c, and a relative phase preference

of π
2
. Exchanging the two oscillators, R1 ↔ R2, simply changes the sign of A12

leading to a relative phase preference of −π
2
.

There are some notable regions in Fig. 5.4a where the 2π-periodic term passes

through zero (white area) and |A12| � |B12|, where the relative phase distribution

becomes π-periodic, P12 = |Br
12| cos 2φ. Since B12 ≥ 0, this regime always exhibits

a relative phase preference of 0 and π. Interestingly, identical oscillators R1 = R2

fall into this regime; a somewhat overlooked case if only first order synchronisation

effects are measured [60, 61]. Two examples are shown in the top and middle

panels of Fig. 5.4c (with parameters indicated by the black cross and blue plus,

respectively) where the choice of parameters only changes the amplitude of the

relative phase distribution and not the location of its peaks. It is important to

note that the visibility (Eq. 2.3) of the identical oscillator distributions (black and

blue) in Fig. 5.4c are at least two orders of magnitude smaller than those possible

with R1 6= R2 (red).

We find entanglement in this network (see Sec. 2.1.2) in similar regions that pro-

duce strong synchronisation effects, shown in Fig. 5.4d, possibly indicating a link

between the two phenomena. However, the logarithmic negativity reaches its max-

imum in a parameter regime with particularly weak synchronisation (R1 = R2 ≈

0.44). This result supports the view that entanglement and synchronisation are

not necessarily tightly linked (see Sec. 2.1.2) and, in this system, we cannot use

entanglement as a synchronisation measure.

The limit-cycle deformation Eq. 5.6 is shown in Fig. 5.4e with contours at 10%

(solid), 1% (dashed), and 0.1% (dotted) deformation. The first contour is also

included on the other phase diagrams to suggest a boundary at which the limit-

cycles of each oscillator are significantly damaged by the coupling. Figure 5.4f
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shows that the synchronisation (red) and entanglement (blue) generation for the

identical oscillators R = R1 = R2, i.e. the diagonal of Figs. 5.4a-d, as well as the

deformation (black). Though all three quantities grow in the same region, syn-

chronisation and entanglement are seen to appear before the limit-cycle becomes

significantly deformed (grey region indicates pmax ≥ 10−1).

Figure 5.5: Two coupled spin-1 oscillators with the second dissipation ratio fixed
to R2 = 1. The nonzero Fourier coefficients (a) Ai12 and (b) Br

12 that determine
the relative phase distribution in Eq. 5.18. (c) The entanglement (logarithmic
negativity) and (d) limit-cycle deformation measures are also included. All figures
have the contour of 10% deformation in black.

Next we turn our attention to the impact of the coupling strength on the two-
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spin system. Figure 5.5 shows Ai12, B
r
12, EN , and pmax as a function of the

coupling strength, ε, and the oscillator ratio R1 while keeping the other fixed at

R2 = 1. The results are similar to Fig. 5.4, Ar12, B
i
12 = 0 and Br

12 ≥ 0, thus the

predicted relative phase distribution is of the form Eq. 5.18. Unlike the previous

case (Fig. 5.4a), however, there is no symmetry along the diagonal of Fig. 5.5a.

This is because ε and R1 control the rates of a coherent exchange process and

a dissipative relaxation process, respectively, therefore we do not expect a 1:1

correspondence. Again, Ai12 dominates for the majority of parameter choices, but

there exist regimes where B12 dominates (e.g., the line where R1 = 1 = R2).

The logarithmic negativity, Eq. 2.6, is shown in Fig. 5.5c. Again, entanglement

is predicted for the synchronised regimes, but is maximal for identical oscillators

with ε ≈ 0.15 where synchronisation is weak. All four figures include the contour

indicating 10% limit-cycle deformation (solid black line) with the full range of

values shown in Fig. 5.5d.

Finally, we focus on the case of two identical oscillators and vary the coupling

strength ε and the common oscillator ratio R = R1 = R2. Although other param-

eter regimes produce a larger synchronisation effect, this regime is particularly

interesting as previous research stopped at first order perturbation effects [100]

and so failed to identify the features we measure. As found in the previous two

cases, the normally dominant (in most R1 6= R2 regimes) A12 is zero for any choice

of ε and R. Therefore, only one term in Eq. 5.13 is nonzero, the positive definite

Br
12, which takes the values shown in Fig. 5.6a and results in a relative phase

distribution of

P12 = |Br
12| cos 2φ (5.19)

with relative phase preference of 0 and π.

The logarithmic negativity, Eq. 2.6, shows (see Fig. 5.6b) that the emergence of
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Figure 5.6: (a) The only nonzero Fourier coefficient Br
12 of the relative phase dis-

tribution Eq. 5.19 of two identical spin-1 oscillators, with common oscillator ratio
R = R1 = R2 coherently coupled with strength ε. (b) The logarithmic negativ-
ity (entanglement witness) showing some correspondence with the emergence of
synchronisation, though certainly not identical. The solid line indicates the 10%
limit-cycle deformation contour (Eq. 5.6).

synchronisation is often accompanied by entanglement and both appear in regimes

where the limit-cycle is relatively well preserved (the black line shows the 10%

deformation contour). However, we again find that entanglement cannot be used

as a measure of synchronisation as the two measures are far from identical.

Now that we have an understanding of the features of coupled spin-1 oscillators,

we increase the size of the network.

5.3.2 Three oscillators

Introducing a third spin-1 oscillator allows us to begin exploring how network

geometry affects synchronisation. We will now have three relative phase distri-

butions to analyse, P12, P23, and P13 (by tracing out the third, first, and second

oscillator, respectively). Though, in principal a network consisting of N oscilla-

tors will have N oscillator ratios and (N − 1)! coupling strengths, we simplify

the problem and reduce this to just two system parameters. First, we consider
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identical oscillators by defining a single common oscillator ratio Rj = R ∀ j. This

regime is particularly interesting to us as the small synchronisation features found

between two identical oscillators may develop into more significant effects with

the introduction of more oscillators. Secondly, we restrict the networks to have

equidistant nodes, i.e. every nonzero coupling strength (defined by the geome-

try of the network) between each pair of oscillators takes the same value ε. This

aids us in reducing the number of unique results brought about by the inherent

symmetries of the equilateral geometries. A network of three oscillators can be

configured in the two geometries shown in Fig. 5.7.

Figure 5.7: The (a) all-to-all (or ring), and (b) chain geometries of the three spin-1
oscillator network. The coloured lines indicate which of the oscillators are directly
coupled by the interaction Hamiltonian in Eq. 5.9. The only nonzero terms in the
coupling matrix are (a) the upper triangle (ε12 = ε23 = ε13 = ε) or (b) the first off
diagonal (ε12 = ε23 = ε).

The simplest equilateral geometry to consider is a network with all-to-all coupling

(in this case, equivalent to the ring network), shown in Fig. 5.7a, where each node

is coupled to every other node with the same strength. This geometry leads to an

inherent symmetry in the network where each oscillator should behave identically,

thus producing identical Ajk and Bjk values ∀ j, k.

Varying the oscillator ratio R and coupling strength ε reveals that a network of

three identical spin-1 oscillators are able to strongly synchronise with a symmetric
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relative phase distribution

Pjk = Ar12 cosφ+ |Br
12| cos 2φ (5.20)

for any pair of oscillators j < k. We do indeed find the expected symmetry and

therefore only show one pair of coefficients Ar12 and Br
12 in Fig. 5.8. An important

result is immediately found in the nonzero Ar12 component, shown in Fig. 5.8a,

which contrasts the results of the two identical spin-1 oscillators where this value

was always 0. A rich range of different regimes can be found, including cases where

peaks in the relative phase distribution occur at 0 (dominant Ar12 > 0, e.g. plus),

π (dominant Ar12 < 0, e.g. cross), 0 and π (dominant Br
12 > 0, e.g. star), though

many other values are possible when both terms contribute significantly. Not

only do we find synchronisation between the identical oscillators, but the visibility

(Eq. 2.3) is comparable to that found in the system of just two oscillators, even

with very different gain/loss ratios R1 � 100R2, shown in Fig. 5.5. We again

find that the synchronisation and entanglement (Fig. 5.8d) emerge in the system

before the limit-cycles deform significantly (Fig. 5.8e). Though, as usual, they do

not follow precisely the same pattern.

The other possible geometry of the N = 3 network is the chain, where we remove

the third coupling term ε13 = 0, as shown in Fig. 5.7b. We now expect a symmetry

between P12 and P23 and possibly a different P13 distribution.

We find a relative phase distribution between nearest neighbours

P12 = P32 = Ai12 sinφ+ |Br
12| cos 2φ (5.21)

with the behaviour of the coefficients shown in Fig. 5.9a-b, and between the next-
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Figure 5.8: The nonzero Fourier coefficients (a) Ar12 = Ar23 = Ar13 and (b) Br
12 =

Br
23 = Br

13 of the relative phase distribution Eq. 5.20 between any two spin-1
oscillators in a three spin-1, all-to-all (or ring) network with common dissipation
ratios R and coupling strengths ε. (c) Example relative phase distributions for
parameters given by (black solid curve) star, (red dashed curve) plus, and (blue
dotted curve) star. Also shown is (d) the logarithmic negativity Eq. 2.6 which
predicts entanglement when EN > 0 ∀ ε, R and (e) the limit-cycle deformation
Eq. 5.6 with contour at 0.1.
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Figure 5.9: Three spin-1, chain coupled network. The nonzero Fourier coefficients
(a) Ai12 = −Ai23, (b) Br

12 = Br
23, (c) Ar13, (d) Br

13. (e) Shows example relative phase
distributions (black solid curve) P12, (red dashed curve) P23, and (blue dotted
curve) P13 of two spin-1 oscillators with common dissipation ratios R and coupling
strengths ε with parameters indicated with (ei) a cross, (eii) a star, and (eiii) a
plus. The entanglement (Eq. 2.6) between (fi) nearest neighbours E12

N = E23
N , and

(fii) chain ends E13
N , along with (fiii) the largest limit-cycle deformation in the

network (Eq. 5.6) with contour at 0.1.
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nearest neighbours

P13 = [|Ar13| cosφ+ |Br
13| cos 2φ] (5.22)

with coefficients’ behaviour shown in in Fig. 5.9c-d. Again, the neighbouring

identical oscillators have comparable synchronisation strength to the non-identical

oscillator case. Surprisingly, synchronisation in the N = 3 network is stronger

between the ends of the chain than between neighbouring spins with maximum

visibilities, from Eq. 2.3, max (V13) > max (V12, V23), despite not being directly

coupled. This reveals that the geometry of the network has a profound effect on

the dynamics and suggests that synchronisation effects can be altered and even

amplified by intelligent engineering.

5.3.3 Larger networks

With a network of 4 oscillators or more, all three configurations are possible, as

shown in Fig. 5.10; an (a) all-to-all, (b) ring, or (c) chain network. As we consider

larger and larger networks, we expect the number of Fourier coefficients to quickly

become unmanageable and the results will be harder to interpret. Regardless of

Figure 5.10: Schematic of an N = 4 network configured with (a) all-to-all, (b) ring,
or (c) chain geometry. The coloured lines indicate which oscillators are directly
coupled; just the red lines for the chain, add the blue line for the ring, and finally
include the green lines for the all-to-all.
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the number of spins, however, we still expect only one, unique set of Ajk and Bjk

complex values in the all-to-all network, due to the inherent symmetries of the

system.

Figure 5.11: The only unique, nonzero Fourier components (a) Aj,k = A12 and (b)
Bj,k = B12 for the four spin-1, all-to-all network. Each pair of oscillators has the
same relative phase distribution, Eq. 5.23, with peaks at either φ = 0 or at 0 and
π, depending on which component dominates. Also shown are (c) the logarithmic
negativity and (d) limit-cycle deformation with contour at 0.1.

Again, we find strong synchronisation between each pair of oscillators in the all-

to-all network, with relative phase distribution

Pjk = [|Ar12| cosφ+ |Br
12| cos 2φ] , (5.23)

with terms shown in Fig. 5.11. The relative phase distribution in Eq. 5.23 reaches
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a maximum visibility with max(Ar12) ≈ 0.1 and is symmetric with a peak at 0 and,

in regimes when Br
12 is large, another peak at π.

Figure 5.12: The four spin-1, ring coupled network has a relative phase distribution
between two neighbouring oscillators (Eq. 5.24) with nonzero Fourier coefficients
(a) Ar12 and (b) Br

12. Between next-nearest neighbours, the relative phase distri-
bution is given by Eq. 5.25 with (c) Ar13 and (d) Br

13.

Considering the N = 4 network with ring geometry (Fig. 5.10b) leads to symmetric

distributions between each pair of oscillators that depend on the distance between

them. The nearest neighbour oscillators have a relative phase

Pj,j+1 = [Ar12 cosφ+ |Br
12| cos 2φ] (5.24)

with values of the coefficients behaving as shown in Fig. 5.12a-b. The next-nearest
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neighbours, however, have a relative phase

Pj,j+2 = [|Ar13| cosφ+ |Br
13| cos 2φ] (5.25)

with the behaviour of the coefficients shown in Fig. 5.12c-d. Again, we find the

strongest synchronisation between next-nearest neighbours, even though they are

not directly coupled.

Figure 5.13: Four spin-1, chain coupled network. There are many nonzero Fourier
components corresponding to many different relative phase distributions Pjk in
Eq. 5.15.
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As we begin exploring more complex networks, such as the N = 4 chain in

Fig. 5.10c, the reduction in symmetry works in tandem with the increased size

to substantially inflate the number of terms in Eq. 5.13 required to describe the

relative phases of the oscillators. There are so many different distributions in the

4-spin chain that analysing all the Fourier coefficients in Fig. 5.13 makes it difficult

to see the wood for the trees.

In the following we focus on what seem to be the most important features. The

visibilities (Eq. 2.3), estimated by simply reading off Fourier component magni-

tudes in Fig. 5.13, tell us that synchronisation is strongest between next-nearest

neighbours (between oscillator j and j+ 2), where Ar13 and Ar24 can be larger than

0.1. A qualitative statement we can make for the chain is that there is still a

symmetry between the first and last oscillators, as was the case for 3 oscillators

(see Fig. 5.9a-d), so that P12 = P43.

Figure 5.14: Five spin-1, all-to-all coupled network. Any two oscillators have
identical relative phase distributions (Eq. 5.23) with peaks at either 0 or 0 and π,
depending on which of the two nonzero components, (a) Ar12 or (b) Br

12, dominates.

Five spins can also be arranged in the three scenarios of Fig. 5.10, though the set of

relative phase distributions for the chain network becomes too large to interpret.

The all-to-all coupling produces similar results to the four spin network, with

identical relative phase distributions (given by Eq. 5.23) with coefficients that
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have slightly smaller values than the 4-spin case, as shown in Fig. 5.14. We expect

that increasing the number of oscillators in the all-to-all network will always result

in a relative phase distribution defined by Eq. 5.23 with strengths reducing with

network size.

Figure 5.15: Relative phase distributions for the five spin-1 ring network, between
two neighbouring oscillators have the form Eq. 5.24 with (a) Ar12 and (b) Br

12.
Next-nearest neighbours have a different distribution of Eq. 5.25 with (c) Ar13 and
(d) Br

13.

Similarly, the N = 5 ring has the same relative phase distributions as the N = 4

ring (Eqs. 5.24-5.25) but with positive definite Ar12 and the Fourier coefficients in

this case are shown in Fig. 5.15.

The strength of the nearest and next-nearest neighbour synchronisation is shown

in Fig. 5.16, in blue and red respectively. The synchronisation strength for each ge-
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ometry initially grows with increasing network size N , before dropping or plateau-

ing. Some networks, such as the N = 4 chain in Fig. 5.16b and the N = 3 and 4

chains in Fig. 5.16c, show stronger synchronisation for (red) next-nearest neigh-

bours compared to (blue) nearest neighbours.

Figure 5.16: The maximum magnitude Fourier coefficient Ajk or Bjk of (blue) the
nearest neighbours, k = j + 1, and (red) next-nearest neighbours, k = j + 2, for
networks of N spin-1 oscillators in (a) all-to-all, (b) ring, and (c) chain geometries.

5.4 Conclusion

In this chapter, we developed exact relations that describe the relative phase

distributions between pairs of spin-1 oscillators in large networks. We gained a

deep understanding of how synchronisation emerges in a large variety of networks

through use of a novel form of the relative phase distribution that makes a pre-

viously cumbersome data set far more manageable. We derived an analytic form

of the relative phase distribution that depends on only two complex values. This

was used to show that two identical spin-1 oscillators do synchronise, though very

weakly.
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Increasing the size of the network to include 3 oscillators strengthens synchroni-

sation and showed differences resulting from geometry choice. In a 3-spin chain,

we found that synchronisation between the uncoupled ends was stronger than be-

tween the directly coupled neighbours. This synchronisation strengthening for

next-nearest neighbours was also found in some of the larger ring and chain net-

works. We also presented exact equations for the relative phase distributions

for every network size and geometry and found a single form that describes any

all-to-all network of more than 3 oscillators.

Future work could tackle larger networks and a comparison might be made to

the limit of many spins with a mean field argument. More complex geometries

or regimes of non-identical oscillators could also be considered, though this would

increase the number of parameters which tends to increase the number of results

making interpretation difficult. Another direction could be to explore different

types of coupling; for example, we only consider real coupling strengths, we expect

that imaginary or complex coupling strengths would produce different synchroni-

sation features.



Chapter 6

Summary

Chapters 1 and 2 outline the structure of the thesis and introduce the theoretical

concepts and measures that were developed in previous studies of synchronisation

that we would utilise in our research with novel models.

In Chapter 3, we began exploring quantum synchronisation beyond the usual

limit-cycle regime by first focussing on a trapped ion system that was driven to

a bistable state via a novel two-phonon resonant interaction. The high driving

regime produces a relative phase preference of 0 and π which corresponds to cou-

pled limit-cycles, as seen in the literature. New results were found in the low

driving regime where a relative phase distribution with peaks at π
2

and 3π
2

was

observed. Furthermore, for intermediate driving strengths that produced a bista-

bility, 4-peaked distributions were found (with maxima at 0, π
2
, π, and 3π

2
). Similar

relative phase distributions were produced by the coupling of a limit-cycle oscil-

lator with a non-lasing oscillator, but a clear link between the two scenarios was

difficult to find due to the complexity of the system. This motivated us to develop

a simplified model that still produced the interesting relative phase features of the

trapped ion system that would allow us to explore how the features originated.

In Chapter 4, we introduced the 321 oscillator; a simple oscillator model with a
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two-phonon gain process balanced by one- and three-phonon losses that developed

a bistable oscillator state. Quantum jump simulations revealed trajectories with

intermittent activities in the bistable regime, signalling that the bistable state is

also metastable. The relative phase distribution of two coherently coupled 321

oscillators displayed similar features to those found in the trapped ion model.

Specifically, we showed that the preferred phases of π
2

and 3π
2

originated from

particular phonon number distributions that could only develop due to the two-

phonon driving process. The 321 oscillator proved to be both considerably simpler

than the trapped ion model, allowing us to carry out more accurate analysis and

explore a greater parameter range, whilst still being able to display the bistable

state we aimed to study.

In Chapter 5, we moved our attention away from pairs of bistable oscillators and

instead explored larger networks of significantly smaller, spin-1 oscillators. We

gained a deep understanding of how synchronisation emerges in a large variety of

networks through use of a novel relative phase measure that makes a previously

cumbersome data set far more manageable. We derived an analytic form of the

relative phase distribution and with it found weak synchronisation between two

identical spin-1 oscillators. We explored the effects of network size and geometry

on the synchronisation developing between pairs of spins for chain, ring, and all-

to-all networks of various sizes. An interesting strengthening of synchronisation

was observed between next-nearest neighbours (compared to nearest neighbours)

in chain and ring networks.



Appendix A

Two-phonon resonant driving

The novel two-phonon resonance Hamiltonian in our model is derived from the

interaction of the trapped ion with a standing wave laser (Eq. 3.1). Working in

the Lamb-Dicke regime [121] assumes that the confining potential of the ion is

tight η � 1. This allows us to expand the cos in Eq. 3.1 in orders of η and remove

negligible terms. We then move to a rotating frame with the unitary operator

Û = eit(ω0â†â+ ∆
2
σ̂z). Appropriately choosing the laser detuning ∆ = −2ω0 and ion

position χ = 0 reveals the Hamiltonian

Ĥ =
Ω

2
(cosχ cos kq̂ − sinχ sin kq̂) (A.1)

=
Ω

4

{[
2 + η2

((
â†
)2
e2iω0t + â2e−2iω0t + 2â†â

)]
cosχ

− 2η
(
â†eiω0t + âe−iω0t

)
sinχ

}(
σ̂+ei∆t + σ̂−e−i∆t

)
(A.2)

with rescaled driving strength Ω = η2Ω̃. This Hamiltonian is of the anti-Jaynes-

Cummings type, as the phonon gain accompanies spin excitation. However, by

this precise design, the interaction involves the creation (and annihilation) of two

phonons simultaneously.
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Appendix B

Perturbation theory for coupled

321 oscillators

B.1 General Method

Perturbation theory provides a convenient method of calculating the way in which

the relative phase distribution behaves for weak coupling. The steady state of

the uncoupled (J = 0), two 321-oscillator system (Eq. 4.23) only has diagonal

terms. Treating the coupling as a perturbation [57, 66] allows us to calculate the

terms in the first off-diagonal as a function of the uncoupled oscillator terms. Each

subsequent off-diagonal can, in turn, be calculated from the previous ones [25].

Writing Eq. 4.23 in the number state basis, with ρ
(p)
n,m = 〈n+ p,m| ρ |n,m+ p〉,

leads to a set of simultaneous equations

ρ̇(p)
n,m =iJ∆(p)

n,m −
(
G(p)
n +G(p)

m

)
ρ(p)
n,m

+ A
(p)
n+1ρ

(p)
n+1,m +B

(p)
n−2ρ

(p)
n−2,m + C

(p)
n+3ρ

(p)
n+3,m

+ A
(p)
m+1ρ

(p)
n,m+1 +B

(p)
m−2ρ

(p)
n,m−2 + C

(p)
m+3ρ

(p)
n,m+3, (B.1)
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with

∆(p)
n,m =−

√
(n+ 1)(m+ p)ρ

(p−1)
n+1,m +

√
(m+ 1)(n+ p)ρ

(p−1)
n,m+1

−
√
n(m+ p+ 1)ρ

(p+1)
n−1,m +

√
m(n+ p+ 1)ρ

(p+1)
n,m−1, (B.2)

G(p)
n =

1

2

{
κ1(2n+ p) + κ2

[
(n+ p+ 1)(n+ p+ 2) + (n+ 1)(n+ 2)

]
+ κ3

[
(n+ p)(n+ p− 1)(n+ p− 2) + n(n− 1)(n− 2)

]}
, (B.3)

A
(p)
n+1 =κ1

√
(n+ 1)(n+ p+ 1), (B.4)

B
(p)
n−2 =κ2

√
n(n− 1)(n+ p)(n+ p− 1), (B.5)

C
(p)
n+3 =κ3

√
(n+ 1)(n+ 2)(n+ 3)(n+ p+ 1)(n+ p+ 2)(n+ p+ 3). (B.6)

In the steady state, this reduces to sets of simultaneous equations with the coupling

term, ∆
(p)
n,m, linking together terms with different p-values. The zeroth-order terms

are the diagonal (p = 0) elements, the uncoupled probabilities ρ
(0)
n,m = PnPm, which

necessarily sum to unity. The first-order terms are obtained by substituting the

zeroth-order terms into the expression for ∆
(p)
n,m, leading to nonzero contributions

for p = 1. This process is continued to higher order in J recursively.

The first-order terms obey the relation ρ
(1)
m,n = −ρ(1)

n,m and hence sum to zero [25],

which means that they make no contribution to the relative phase distribution

(Eq. 2.2) since it depends on sums of the off-diagonal elements. The sum of the

p = 2 terms, however, is real and finite and so does contribute resulting in a π-

periodic relative phase distribution. Continuing to higher orders, we find that all

of the odd-p terms sum to zero, and so only the even-p sums contribute to the

relative phase distribution. In particular, the p = 4 terms, lead to a π/2-periodic

contribution which can dominate the phase distribution when the π-periodic terms

vanish.



B.2. LOW OCCUPATION-NUMBER REGIME 104

B.2 Low Occupation-Number Regime

This calculation can be simplified and solved analytically in the limit of very low

phonon numbers. We proceed by assuming only the lowest three phonon states

are appreciably occupied, i.e. Pn>2 = 0, and hence truncate the state space to

include only |0〉, |1〉, and |2〉. Due to the size of the Hilbert space, only a single

term contributes to the relative phase distribution, P (φ) = 1
2π

+ 1
π
Re
[
e2iφρ

(2)
0,0

]
. In

the steady state, Eq. B.1 with p = 2 leads to

ρ
(2)
0,0 =

−iJ
√

2

κ1 + 7κ2

ρ
(1)
1,0, (B.7)

using the relation ρ
(1)
m,n = −ρ(1)

n,m. Equation B.1 with p = 1 gives

ρ
(1)
1,0 =

iJ
√

2 (P 2
1 − P0P2)

2κ1 + 13κ2

. (B.8)

This results in the relative phase distribution

P (φ) =
1

2π
+

2J2 (P 2
1 − P0P2) cos 2φ

π (κ1 + 7κ2) (2κ1 + 13κ2)
. (B.9)

This is a π-periodic distribution with the position of the peaks determined by the

steady state of the uncoupled oscillators. The two-phonon driving in our model

ensures P2P0 > P 2
1 , which leads to peaks at π

2
and 3π

2
.



Appendix C

Phase diffusion of a 321 oscillator

In this Appendix, we return to the case of a single oscillator and obtain an estimate

for the phase diffusion rate in the semiclassical limit where phonon numbers are

large. The strength of synchronisation of limit-cycles was shown to increase with

phonon number in Sec. 2.2.2 for the QvdP oscillator. To study how the phase of

our 321 oscillator diffuses with time, we again consider the single oscillator phase

distribution with Eq. 2.19 and quantify the amount of phase coherence with Φ(k)

(Eq. 2.20) and, this time, scale our master equation

L(·) = D
[(
â†
)2
]
(·) + γD[â](·) + ΓD

[
â3
]
(·), (C.1)

with γ = κ1/κ2 and Γ = κ3/κ2. It is important to note that we scale time with

the κ2, the two-phonon gain rate (in the QvdP oscillator, κ2 is the two-phonon

loss rate).
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Written in the Fock basis,

ρ̇(k)
n =−G(k)

n ρ(k)
n + A

(k)
n+1ρ

(k)
n+1 +B

(k)
n−2ρ

(k)
n−2 + C

(k)
n+3ρ

(k)
n+3 (C.2)

G(k)
n =

1

2

{
(n+ k + 1) (n+ k + 2) + (n+ 1) (n+ 2) + γ (2n+ k)

+ Γ
[

(n+ k) (n+ k − 1) (n+ k − 2) + n (n− 1) (n− 2)
]}

(C.3)

A(k)
n =γ

√
n (n+ k) (C.4)

B(k)
n =

√
(n+ 1) (n+ 2) (n+ k + 1) (n+ k + 2) (C.5)

C(k)
n =Γ

√
n (n− 1) (n− 2) (n+ k) (n+ k − 1) (n+ k − 2). (C.6)

From Eq. C.2, it is trivial to show that

Φ̇(k) =
∞∑
n=0

(
−G(k)

n + A(k)
n +B(k)

n + C(k)
n

)
Φ(k). (C.7)

We can obtain a simple approximate description in the semiclassical limit, γ =

κ1/κ2 � 1 and and Γ = κ3/κ2 � 1, where the density matrix is tightly peaked

around a large average phonon occupation number 〈n〉 � 1 [25, 105]. We expand

the square-roots appearing in Eqs. C.4-C.6, treating 〈n〉−1 together with Γ and γ
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as small quantities [25, 103, 105] to find

G(k)
n =

5 〈n〉2

3
+ (γ + 2k + 1) 〈n〉+

(
10

3
+

3k2

2
+
γk

2
− k

2

)
+

(
k3

3
− k2 +

2k

3

)
1

〈n〉
(C.8)

A(k)
n = γ

[
〈n〉+

k

2
− k2

8 〈n〉
+

k3

16 〈n〉2
+O

(
〈n〉−3)] (C.9)

B(k)
n =

[
〈n〉2 + (k + 3) 〈n〉+

(
3k

2
+ 2

)
− k2

8 〈n〉2
+O

(
〈n〉−3)] (C.10)

C(k)
n = Γ

[
2 〈n〉2

3
+ (k − 2) 〈n〉+

(
k2

4
− 2k +

4

3

)
+

(
2k

3
− k2

4
− k3

24

)
+O

(
〈n〉−3)] . (C.11)

This leads to the simplified equation for the 321 oscillator

Φ̇(k) = κ2

[
−5

4
k2 +O

(
〈n〉−1 ,Γ, γ

)]
Φ(k). (C.12)

Hence, to leading order, the relaxation timescale for the k-th component, Φ(k), is

simply proportional to κ−1
2 , τLCk κ2 ≈ 4

5k2 . The slowest timescales τk associated

with the matricesM(k) in Eq. 4.2 are shown to plateau in the limit of κ1/κ2 � 1

and κ3/κ2 � 1 in Fig. 4.4a. Numerically, we find τ1κ2 ≈ 0.8 and τ2κ2 ≈ 0.2 in

this regime, matching up very well with τLC1 and τLC2 , respectively. Finally, using

the definition Eq. 2.19 and Eq. C.12, we see that within this approximation the

phase distribution obeys a diffusion equation [25, 103]

Ṗ (φ) =
5κ2

4

∂2P (φ)

∂φ2
. (C.13)

Larger phonon numbers 〈n〉, from a larger drive strength κ2, results in faster phase

diffusion and therefore a weakening of synchronisation. This is very different to
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the QvdP oscillator (in Sec. 2.2.2) or the laser [105], where larger phonon/photon

numbers lead to weaker phase diffusion and hence stronger synchronisation.



Appendix D

Analytic form of spin-1 relative

phase distribution

In this appendix, we derive the analytical form of the relative phase distribution of

two spin-1 oscillators in Eq. 5.13 from the two-spin Husimi-Q function in Eq. 5.10.

First, we write out a simplified form for the spin coherent state

|θj, ϕj〉 = Aje
−iϕj |+〉+Bj |0〉+ Cje

iϕj |−〉 , (D.1)

where Aj, Bj, and Cj follow from Eq. 5.1 with θ → θj. Explicitly writing the two-

spin coherent state, |θ1, θ2, ϕ1, ϕ2〉 = |θ1, ϕ1〉⊗|θ2, ϕ2〉 with the change of variables

ϕ1 = φ+ ϕ2 yields

|θ1, θ2, φ+ ϕ2, ϕ2〉 =A1A2e
−iφe−2iϕ2 |++〉+ A1B2e

−iφe−iϕ2 |+0〉+ A1C2e
−iφ |+−〉

+B1A2e
−iϕ2 |0+〉+B1B2 |00〉+B1C2e

iϕ2 |0−〉 (D.2)

+ C1A2e
iφ |−+〉+ C1B2e

iφeiϕ2 |−0〉+ C1C2e
iφe2iϕ2 |−−〉 .
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To derive the relative phase distribution in Eq. 5.13, it is easiest to carry out the

ϕ2 integral first. This leaves only terms that are independent of ϕ2, since

∫ 2π

0

dϕ2 e
inϕ2 =


2π, if n = 0

0, otherwise,

(D.3)

which reduces the number of terms significantly. The integrals over both θ1 and

θ2 are trivial, and result in three sets of terms: the probabilities on the diagonal,

the e±iφ terms, and the e±2iφ terms. The probabilities sum to unity and cancel

with the − 1
2π

in Eq. 5.13. The φ dependent terms produce the relative phase

distribution

P (φ) =π

(
3

16

)2(
〈−0| ρ |−+〉+ 〈0−| ρ |−0〉+ 〈+0| ρ |0+〉+ 〈+−| ρ |00〉

)
eiφ

+
1

8π
〈+−| ρ |−+〉 e2iφ + c.c. (D.4)

where c.c. is the complex conjugate. This can then be rewritten in terms of the

spin-1 operators which recovers Eq. 5.13.
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