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Abstract

In the first part of the thesis, we generalize a construction by J Sheekey that

employs skew polynomials to obtain new nonassociative division algebras and

maximum rank distance (MRD) codes. This construction contains Albert’s

twisted fields as special cases. As a byproduct, we obtain a class of nonassociative

real division algebras of dimension four which has not been described in the

literature so far in this form. We also obtain new MRD codes.

In the second part of the thesis, we study a general doubling process (similar

to the one that can be used to construct the complex numbers from pairs of

real numbers) to obtain new non-unital nonassociative algebras, starting with

cyclic algebras. We investigate the automorphism groups of these algebras and

when they are division algebras. In particular, we obtain a generalization of

Dickson’s commutative semifields.

We are using methods from nonassociative algebra throughout.
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introduction

Division algebras over the real numbers and over finite fields have been

widely studied over the last century. For the former, it is well-known that

the dimension of a real division algebra must be 1, 2, 4 or 8 [34, 41] and a

rough classification of real division algebra according to the isomorphism type

of their derivation algebras was given by Benkart and Osborn [3]. Despite

progress made towards classifying real division algebras, the classification of

finite dimensional division algebras over a fixed base field is still an open

problem in algebra. A general solution to this problem would be a massive

undertaking at this time. One way to make progress towards a solution is

a brute force approach: we find new division algebras and determine their

structure. A useful method yielding new division algebras is the modification

of pre-existing constructions to obtain large families of division algebras. This

forms part of the motivation for the research done in this thesis and is a common

theme that appears throughout.

Alternatively, finite division algebras (also known as semifields) have been

investigated via a geometric approach through exploiting the connection between

semifields and projective planes [37], see the survey by Lavrauw and Polverino

in 2011 for a list of 28 such families [38], and exhaustive computer searches

have lead to the classification of semifields of some relatively small orders [15,

16]. In recent years, there has been an increased focus on division algebras over

Q and Qp due to their applications to space-time coding [18, 27, 50, 52].

Fundamentally, a general coding theory requires both a set equipped with a

distance metric and a closed subset of codewords. The most common example

of this is a set of vectors with entries in F2 and a distance function defined by

the Hamming metric [28]; other examples of codes include Gabidulin codes [23],

Reed-Solomon codes [53] and LDPC codes [24]. Gabidulin codes, also known

as rank metric codes, are defined by a subset C ⊂ Mn×m(Fq) equipped with a

rank distance function:

d(A,B) = rank(A−B)
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introduction

for all A,B ∈Mn×m(Fq). It is well known that

|C| ≤ qn(m−dC+1),

where dC is the minimum distance of the code; a rank metric code attaining this

bound is a maximum rank distance code. MRD codes have been studied due

to their applications in data transmission, such as in random linear network

coding (e.g. see [57]). Moreover, finite semifields appear as special cases of

MRD codes, contributing to an increased focus in the research of both these

areas over recent years.

Recently, skew polynomials have been successfully used in new constructions

of division algebras (in particular semifields) and linear codes [2, 4, 5, 22, 44,

47, 48], in particular of space-time block codes (STBCs) and maximum rank

distance (MRD) codes [49, 55, 56].

In the first half of this thesis, we generalize the construction presented in

[56], where it was only considered mostly using finite fields. We consider this

more generally over arbitrary fields in order to obtain division algebras and

generalized MRD codes of matrices with entries both in a non-commutative

algebra and a field. Our codes can be seen as generalizations of the classical and

generalized Gabidulin codes constructed in [23], resp., [55]. Rank distance codes

with entries from a noncommutative algebra have (to the best of the author’s

knowledge) never been previously considered. In addition to this, we obtain

a large family of division algebras which include generalisations of Albert’s

twisted fields (as studied in [46]).

Let D be a finite-dimensional division algebra over its center C, and σ an

automorphism of D of finite order n modulo inner automorphisms, i.e. σn = iu

for some inner automorphism iu(z) = uzu−1, u ∈ Fix(σ). Let R = D[t;σ]

(which includes the case that D = K is a cyclic field extension). For suitably

chosen monic irreducible f ∈ R = D[t;σ] with a bound in C(R), we construct

3
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both division algebras and MRD codes.

We consider the set

A = {d0 + d1t+ · · ·+ dlm−1t
lm−1 + νρ(d0)t

lm | di ∈ D} ⊂ D[t;σ].

When l = 1, this can yield division algebras. In particular, when l = 1 and

ν = 0 we obtain Petit algebras, denoted Sf (as first discussed in [44] and

subsequently named after the author). In every case, we relate A to a set of

matrices in Mk(Nucr(Sf )) and further explore how the rank of the matrices

relate to the polynomials used in the construction.

We first give an overview of some results regarding the norm of a skew

polynomial and subsequently employ these results to determine sufficient conditions

to obtain division algebras and MRD codes, both when D is a cyclic algebra

and K a field. We then determine the nuclei of the algebras we construct (more

generally, the idealisers of the code) via spread sets. We apply the result to

a worked example when K is cyclic extension of degree deg(f); in particular,

4-dimensional real division algebras are given as a special case.

We conclude with a brief look at the construction using a differential polynomial;

when ν = 0, we always obtain division algebras and MRD codes using this

construction. The division algebras constructed when ν = 0 are generalisations

of Petit algebras as studied in [8]. To the best of the author’s knowledge, the

MRD codes we obtain have not been described in this way before and may be

entirely new.

In the second half of this thesis, we present a generalised Cayley-Dickson

doubling process and obtain a strong result regarding when we obtain division

algebras. We consider one particular case of this doubling process, which is

when we take a doubling of a field. As a special case of this, we obtain

Dickson’s commutative semifields, which motivates a generalisation of Dickson’s

commutative construction using a central simple algebra. Dickson’s commutative

division algebras [20] have been widely studied over finite fields as they yield

a large class of proper finite semifields of even dimension: For any choice of

4
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c ∈ K \K2 and σ ∈ AutF (K) not equal to the identity, K ⊕K equipped with

the multiplication

(u, v)(x, y) = (ux+ cσ(vy),uy+ vx)

is a division algebra over F when F is a finite field. This construction was

additionally investigated in two papers by Burmester where K is a cyclic field

extension of degree n over a field of characteristic not 2 [9, 10], producing

2n-dimensional unital algebras over F . Further, Dickson [20] and Burmester

gave a necessary and sufficient condition for when the algebras constructed this

way are division algebras.

We explore this doubling process using a central simple algebra D/F . As D

is not commutative, we have multiple options for a possible generalisation of the

multiplication given in Dickson’s construction. Clearly, the unital F -algebras

we obtain this way are no longer commutative. This way we can now construct

large families of new division algebras of dimensions 2dimQ(D) over Q, which

most importantly have non-trivial nuclei, which might be used in future space-time

block coding. This construction has now been published in Communications in

Algebra [59].

Knuth recognised that Dickson’s commutative division algebras also appear

as a special case of another family of semifields [36]: A subalgebra L of a

division algebra S is called a weak nucleus if x(yz)− (xy)z = 0, whenever two

of x, y, z lie in L. Semifields which are quadratic over a weak nucleus are split

into two cases; Case I semifields contain Dickson’s construction as the only

commutative semifields of this type. Due to this, Case I semifields are also

called generalized Dickson semifields. Their construction is as follows: given

a finite field K = GF (pn) for some odd prime p, define a multiplication on

K ⊕K by

(u, v)(x, y) = (uv+ cα(v)β(y),σ(u)y+ vx),

for some automorphisms α, β, σ of K not all the identity automorphism and

c ∈ K \K2. This construction produces a proper semifield containing p2n

5
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elements. Further work on semifields quadratic over a weak nucleus was done

in [14, 25].

We introduce a doubling process which generalizes Knuth’s construction in

[36]: for a central simple associative algebra D/F or finite field extension K/F ,

we define a multiplication on the F -vector space D⊕D (resp. K ⊕K) as

(u, v)(x, y) = (ux+ cσ1(v)σ2(y),σ3(u)y+ vσ4(x))

for some c ∈ D× and σi ∈ AutF (D) for i = 1, 2, 3, 4 (resp. c ∈ K× and

σi ∈ AutF (K)). This yields an algebra of dimension 2 dimF (D) or 2[K : F ]

over F . Over finite fields, we show this construction is the same as the one

presented in [36] and yields examples of some Hughes-Kleinfeld, Knuth and

Sandler semifields (for example, see [17]). Hughes-Kleinfeld, Knuth and Sandler

semifield constructions were studied over arbitrary base fields in [7]. The

contents of this section has now appeared in Communications in Mathematics

[60].
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2.1 nonassociative division algebras

2.1 nonassociative division algebras

In the following sections, we always let F be a field. We will define an F -algebra

A as a finite dimensional F -vector space equipped with a (not necessarily

associative) bilinear map A×A→ A which is the multiplication of the algebra.

A is a division algebra if for all nonzero a ∈ A the maps La : A → A, x 7→ ax,

and Ra : A → A, x 7→ xa, are bijective maps. As A is finite dimensional, A is

a division algebra if and only if there are no zero divisors [54]. Finite division

algebras are also called (finite) semifields in the literature.

For all x, y, z ∈ A, the associator of x, y, z is given by

[x, y, z] := (xy)z − x(yz).

Define the left, middle and right nuclei respectively as

Nucl(A) = {a ∈ A | [a, y, z] = 0 for all y, z ∈ A},

Nucm(A) = {a ∈ A | [x, a, z] = 0 for all x, z ∈ A},

Nucl(A) = {a ∈ A | [x, y, a] = 0 for all x, y ∈ A}.

It is easily checked that these are all subalgebras of A. The intersection of the

left, middle and right nuclei is called the nucleus of A and is denoted

Nuc(A) = {x ∈ A | [x,A,A] = [A,x,A] = [A,A,x] = 0}.

For two algebrasA andB, any isomorphism f : A→ B maps Nuc(A) isomorphically

onto Nuc(B). Similar, define the commutator of A as

Comm(A) = {x ∈ A | xy = yx for all y ∈ A}.

The intersection of the nucleus and commutator of A yields the center of A and

is denoted Z(A). Every division ring is a division algebra over its center.

8



2.1 nonassociative division algebras

2.1.1 Nondegenerate forms

Let F have characteristic 0 or char(d) > d. A d-linear form over F is an

F -multilinear map θ : A× ...×A → F (d copies) such that θ(x1,x2, ...,xd) is

invariant under all permutations of its variables. Define a form of degree d over

F as a map N : A → F such that N(ax) = adN(x) for all a ∈ F , x ∈ A and

such that the map θ : A× ...×A→ F defined by

θ(x1,x2, ...,xd) =
1
d!

∑
1≤i1<...<il≤d

(−1)d−1N(xi1 + ... + xil)

(1 ≤ l ≤ d) is a d-linear form over F .

A form N : A→ F of degree d is called multiplicative if N(xy) = N(x)N(y)

for all x, y ∈ A and nondegenerate if we have N(x) = 0 if and only if x = 0.

Note that if N : A → F is a nondegenerate multiplicative form and A is a

unital algebra, it follows that N(1A) = 1F . Every central simple algebra of

degree d admits a uniquely determined nondegenerate multiplicative form of

degree d, called the norm of the algebra [35].

2.1.2 Isotopes

Denote the set of algebra structures on an F -vector space V by Alg(V ). Given

A ∈ Alg(V ), write xAy for the product of x, y ∈ V in the algebra (if not clear

from the context which multiplication is used).

For f , g,h ∈ Gl(V ) define the algebra A(f ,g,h), called an isotope of A, as V

with the multiplication

xA(f ,g,h)y = h(f(x)g(y)) x, y ∈ V .

If f = g and h = f−1, then A(f ,g,h) is isomorphic to A.

Remark 2.1.1. In general, properties such as a multiplicative identity or

commutativity are not preserved under isotopy. For example, we could define

a multiplication on C by

x ∗ y = xy

9



2.2 maximum rank distance codes

for all x, y ∈ C, so (C, ∗) = C(id, ,id). However unlike the complex numbers,

C(id, ,id) is neither commutative nor unital.

2.2 maximum rank distance codes

Let K be a field. A rank-metric code is a set C ⊂ Mn×m(K) equipped with a

rank distance function

d(A,B) = rank(A−B).

Define the minimum distance of C as

dC = min{d(A,B) | A,B ∈ C,A 6= B}.

For some subfield L ⊂ K, we say that C is L-linear if A+B ∈ C and λA ∈ C

for all A,B ∈ C and λ ∈ L.

Such a code must satisfy a Singleton-like bound: suppose C is L-linear, then

dimL(C) ≤ n(m− dC + 1)[K : L].

If K is a finite field, then this becomes

|C| ≤ |K|n(m−dC+1)

(see [43, Theorem 2]). If C attains the Singleton-like bound, we say that C is a

maximum rank distance code or an MRD-code. Over finite fields, MRD codes

were found to exist over every finite field [19]; these codes were rediscovered

by Gabidulin [23] independently. Due to this, they are often called Gabidulin

codes. In this thesis, we only consider rank-metric codes constructed with square

matrices; for ease of notation, the set of n× n matrices with entries in K is

denoted Mn(K).

More generally, we would like to define MRD codes with matrices in Mn(B)

for B ⊂ Nucr(A) a subalgebra of a finite-dimensional division algebra A, such

that A is free of finite rank as a right B-module. If B is not a field, more care

is needed to ensure the distance between elements is well defined.

10



2.2 maximum rank distance codes

Definition 2.2.1. Let A ∈ Mn(B). The column rank of a matrix A is the

dimension of the right B-module generated by the columns of A; similarly,

define the row rank of A as the dimension of the right B-module generated by

the rows of A.

When B is not a field, column rank and row rank do not always coincide.

Using the definition of column rank, we can define the distance between the

elements X,Y ∈ C as d(X,Y ) = colrank(X − Y ) and a minimum distance of

C as

dC = min{colrank(X − Y ) | X,Y ∈ C,X 6= Y }.

Such a code must also satisfy a Singleton-like bound:

Theorem 2.2.2. [43, Theorem 2 for finite fields] Let C ⊂Mn(B) be a rank-distance

code with minimum distance d. Then dimB(C) ≤ n(n− d+ 1).

Proof. Delete d− 1 columns from all codewords in C. Then all codewords in

C are distinct: suppose A,B ∈ C are such that they are equal when d − 1

columns are deleted. Then A and B only differ by at most d− 1 columns, so

colrank(A− B) ≤ d− 1 < d. This contradicts the minimum distance of C.

Hence the deletion of d− 1 columns does not change the size of C.

As this image of C lies in Mn×(n−d+1)(B), it follows that

dimB(C) ≤ n(n− d+ 1.)

If C attains this bound, we can rewrite this Singleton-like bound to determine

that any MRD-code has minimum distance

dC = n− 1
n
dimB(C) + 1.

We can now define our generalisation of maximum rank distance codes.

Definition 2.2.3. Let C ⊂ Mn(B) be an additively closed subset, where B ⊂

Nucr(A) a subalgebra of a finite-dimensional division algebra A, such that A is

free of finite rank as a right B-module. Define the distance between elements

11



2.2 maximum rank distance codes

X,Y ∈ C as d(X,Y ) = colrank(X − Y ) and let dC be the minimum distance

of C. If

dC = n− 1
n
dimB(C) + 1,

then C is a (generalised) MRD code.

Note that this new definition contains the traditional MRD codes as the

special case when B is a field. In this thesis, when we refer to MRD codes we

refer to this more general definition.

2.2.1 Constructing codes from division algebras

Let F be a field and A an F -algebra. For all a ∈ A, the left multiplication

La : A → A, x → ax, is an F -linear map and the set {La | a ∈ A} is an

F -vector subspace of the associative algebra EndF (A). Consider

L : A→ EndF (A), a 7→ La.

If A is a finite-dimensional division algebra then L is injective: La = Lb implies

ax = bx for all x ∈ A, hence (a− b)x = 0 for all x which yields a = b. After a

choice of an F -basis for A, we can embed EndF (A) into the algebra Matn(F ).

This way we get an embedding λ : A→Mn(F ), a 7→ La 7→Ma of vector spaces,

where Ma is the matrix representing La.

(Contrary to the situation for associative division algebras, this only embeds

the vector space A into the vector space Mn(F ), the algebra structure of A is

disregarded here, so this is not a left regular representation.)

Since A is a finite-dimensional division algebra, all non-zero elements of A are

invertible, hence all La with a 6= 0 are bijective and so all non-zero matrices in

λ(A) have non-zero determinant. If we use the set λ(A) to define a space-time

block code (STBC), then the difference of two distinct elements of λ(A) will

also lie in λ(A), hence have non-zero determinant. The linear codebook λ(A) is

thus fully diverse, because the rank of the difference of two distinct codewords

is maximal.

12



2.2 maximum rank distance codes

Borrowing the terminology of semifields, on the other hand, the spread set

of a finite-dimensional division algebra A over F of dimension n is also defined

as the set

C = C(A) = λ(A) = {La : a ∈ A} ⊆ EndF (A).

For all 0 6= a ∈ A, La is a bijective endomorphism, since A is a division algebra.

Moreover, C is a F -subvector space of EndF (A). Given an F -basis of A, each

La can be represented by a matrixMa ∈Mn(F ) computed with respect to that

basis, so that we obtain the matrix spread set of A,

C = C(A) = {Ma : a ∈ A} ⊆Mn(F )

of invertible matrices, where the difference of any two elements in it will again

be an invertible matrix, hence of maximum rank. This yields a linear MRD

code in Mn(F ).

This idea is not new: For space-time block coding, usually finite-dimensional

associative division algebras are considered as a vector space over some subalgebra

B (usually a subfield K) of an associative algebra A. Given a finite-dimensional

nonassociative F -algebra A with a subalgebra B, this is not always possible,

and we will need the following additional assumptions: Let B be a subalgebra

of A.

We need A to be a right B-module, i.e. we need

x(cd) = (xc)d for all x ∈ A, c, d ∈ B.

This is satisfied if B ⊂ Nucr(A). We also need A to be a right B-module of

finite rank.

Moreover, we need that La ∈ EndB(A). Now La ∈ EndB(A) is the same as

La(xα) = La(x)α for all α ∈ B, a,x ∈ A, that means we need a(xα) = (ax)α

for all α ∈ B, a,x ∈ A. This is satisfied if B ⊂ Nucr(A). Then

L : A→ EndB(A), a 7→ La

is a well-defined F -linear map.

13



2.2 maximum rank distance codes

So assume that B = Nucr(A) and consider A as a right B-module. It is free

of rank k. After a choice of a B-basis for A, we can embed the right B-module

EndB(A) into the module Mr(B). Thus we get a well-defined embedding

λ : A→Mr(B), a 7→ La 7→Ma

of F -vector spaces. Obviously, we have X ± Y ∈ λ(A) for all X,Y ∈ λ(A).

Thus we have constructed a linear codebook/ matrix spread set. Its elements

correspond to invertible endomorphisms.

2.2.2 Example

(cf. [50])

Let L/F0 be a cyclic Galois field extension of degree n with Gal(L/F0) = 〈σ〉,

and F/F0 be a cyclic Galois field extension of degree m with Gal(F/F0) = 〈τ〉.

Let L and F be linearly disjoint over F0 and let K = L⊗F0 F = L · F be the

composite of L and F over F0, with Galois group Gal(K/F0) = 〈σ〉 × 〈τ〉,

where σ and τ are canonically extended to K.

In the following, let (L/F0,σ, c) and (F/F0, τ , d) be two cyclic algebras

over F0, i.e. c ∈ L× and d ∈ F×. Suppose that D = (L/F0,σ, c)⊗F0 F =

(K/F ,σ, c) is an associative cyclic division algebra of degree d.

For x = x0 + ex1 + e2x2 + · · ·+ ed−1xd−1 ∈ D (xi ∈ K, 1 ≤ i ≤ d), and

τ ∈ Aut(K), L = Fix(τ ), define the L-linear map τ̃ : D → D via

τ̃ (x) = τ (x0) + eτ (x1) + e2τ (x2) + · · ·+ ed−1τ (xd−1).

If c ∈ L then

τ̃ (xy) = τ̃ (x)τ̃ (y) and λ(τ̃ (x)) = τ (λ(x))

for all x, y ∈ D, where for any matrix X = λ(x) representing left multiplication

with x, τ (X) means applying τ to each entry of the matrix.

Then for f(t) = tm − d ∈ R = D[t; τ̃−1],

Sf ∼= (L/F0,σ, c)⊗F0 (F/F0, τ , d).
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2.2 maximum rank distance codes

Sf is an associative algebra if and only if d ∈ F×0 and c ∈ F×0 . K is a subfield

of Sf of degree mn over F0 and K = L⊗F0 F ⊂ Nuc(Sf ).

Let {1, e, e2, . . . , en−1} be the standard basis of the L-vector space D0 and

{1, f , f2, . . . , fm−1} be the standard basis of the F -vector space D1. Sf is a

K-vector space with basis

{1⊗ 1, e⊗ 1, . . . , en−1 ⊗ 1, 1⊗ f , e⊗ f , . . . , en−1 ⊗ fm−1}.

Identify

Sf = K ⊕ eK ⊕ · · · ⊕ en−1K ⊕ fK ⊕ efK ⊕ · · · ⊕ en−1fm−1K.

An element in λ(Sf ) has the form

Y0 dτ (Yn−1) dτ2(Yn−2) . . . dτm−1(Y1)

Y1 τ (Y0) dτ2(Yn−1) . . . dτm−1(Y2)
... ... ...

Yn−2 τ (Yn−3) τ2(Yn−4) . . . dτm−1(Yn−1)

Yn−1 τ (Yn−2) τ2(Yn−3) . . . τm−1(Y0)


(1)

with λ(d) ∈ λ(D), Yi ∈ λ(D). That means, Yi ∈ Matn(K), and when the

entries in Yi are restricted to elements in L, Yi ∈ λ((L/F0,σ, c)) (multiplication

with d in the upper right triangle of the matrix means simply scalar multiplication

with d). If f is irreducible, the set λ(Sf ) is a linear MRD code of invertible

matrices inMmn(K). It is clearly linear by construction. Since all matrices are

invertible, it has minimum rank distance n (and is a fully diverse STBC).

When is f irreducible? For this we have the following result:

Theorem 2.2.4. [50] Let (F/F0, τ , d) be a nonassociative cyclic algebra of

degree m. Let D0 = (L/F0,σ, c) be an associative cyclic algebra over F0 of

degree n, such that D = D0 ⊗F0 F = (K/F ,σ, c) is a division algebra.

Assume m is prime and in case m 6= 2, 3, additionally that F0 contains a

primitive mth root of unity. Then

(L/F0,σ, c)⊗F0 (F/F0, τ , d)
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is a division algebra if and only if

d 6= zτ̃ (z) · · · τ̃m−1(z)

for all z ∈ D.
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A CONSTRUCTION OF NEW DIV IS ION ALGEBRAS AND

MRD-CODES EMPLOYING SKEW POLYNOMIAL R INGS
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3.1 skew polynomial rings

3.1 skew polynomial rings

3.1.1 Definitions

Let D be an associative division ring with centre C and σ be an automorphism

of D of finite order n modulo inner automorphisms and δ a σ-derivation. We

recall some definitions:

Definition 3.1.1. An automorphism σ ∈ Aut(D) has finite order modulo inner

automorphisms if there exists some n ∈ N and u ∈ D× such that σn(x) =

uxu−1 for all x ∈ D. Without loss of generality, we may assume that u ∈

Fix(σ).

When D = C (in other words, when D is a field), there are no non-identity

inner automorphisms so this definition collapses to considering automorphisms

with finite order.

Definition 3.1.2. Let σ ∈ Aut(D). Then δ : D → D is a σ-derivation if

δ(xy) = δ(x)y + σ(x)δ(y) for all x, y ∈ D. If σ is the identity automorphism,

we see tat this is the standard definition of a derivation of D.

The skew polynomial ring R = D[t;σ; δ] is the set of polynomials

a0 + a1t+ · · ·+ ast
s + . . .

with ai ∈ D, where addition is defined term-wise and multiplication by

ta = σ(a)t+ δ(a)

for all a ∈ D. For f = a0 + a1t+ · · ·+ ast
s with an 6= 0 define deg(f) = s

and put deg(0) = −∞. Then deg(fg) = deg(f) + deg(g). If δ = 0, we refer

to this algebra as a twisted polynomial rings; alternatively, if σ = id, we call

this a differential polynomial ring. When it is clear from the context, we will

simply denote these algebras as D[t;σ] and D[t; δ] respectively.
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3.1 skew polynomial rings

An element f ∈ R is irreducible in R if it is not a unit and it has no proper

factors, i.e if there do not exist g,h ∈ R with deg(g), deg(h) < deg(f) such

that f = gh.

R is a left and right principal ideal domain and there is a right division

algorithm in R: for all g, f ∈ R, g 6= 0, there exist unique r, q ∈ R with

deg(r) < deg(f), such that g = qf + r [33, p. 3 and Prop. 1.1.14]. This makes

R a right Euclidean domain. The terminology used here is the one used by

Petit [44] and Lavrauw and Sheekey [39]; it is different from Jacobson’s, who

calls this a left division algorithm.

Unlike standard polynomial rings, it is clear that R is non-commutative; in

fact, R is commutative if and only if σ = id and δ = 0. Let R = D[t;σ] and

define F = C ∩ Fix(σ). Then R has center

Z(R) = F [u−1tn] = {
k∑
i=0

ai(u
−1tn)i | ai ∈ F} ∼= F [x]

[33, Theorem 1.1.22].

Similarly, let R = D[t; δ] where C is a field of characteristic p (we allow

D = C).

Definition 3.1.3. Let δ be a derivation of D. Then the subring of D fixed by

δ is denoted Const(δ) = {c ∈ D | δ(c) = 0}. Additionally, we call δ an inner

derivation if there exists some a ∈ D such that δ(x) = ax− xa for all x ∈ D;

in this case, δ is denoted ida.

Suppose δ is a derivation of D, such that δ|C is algebraic with minimum

polynomial

g(t) = tp
e

+ c1t
pe−1

+ · · ·+ cet ∈ F [t]

of degree pe, where F = Const(δ)∩C. Then g(δ) = idd0 is an inner derivation

of D (specifically, idd0(x) = d0x− xd0 for all x ∈ D). W.l.o.g. we choose

d0 ∈ Const(δ), so that δ(d0) = 0 [33, Lemma 1.5.3]. Then R has center

Z(R) = F [x] = {
k∑
i=0

ai(g(t)− d0)
i | ai ∈ F}
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3.1 skew polynomial rings

with x = g(t)− d0. The two-sided f ∈ D[t; δ] are of the form f(t) = uc(t)

with u ∈ D and c(t) ∈ Z(R) [33, Theorem 1.1.32].

3.1.2 Petit algebras

Let f ∈ R = D[t;σ; δ] of degree m and modrf denote the remainder of right

division by f . There is a canonical map between skew polynomials of degree less

than m and the elements of the right R-module R/Rf = D[t;σ; δ]/D[t;σ; δ]f .

Moreover,

Rm = {g ∈ D[t;σ; δ] | deg(g) < m}

together with the usual addition and the multiplication

g ◦ h =


gh if deg(g) + deg(h) < m,

gh modrf if deg(g) + deg(h) ≥ m,

is a unital nonassociative ring denoted Sf . We will usually drop the ◦ notation

and simply use juxtaposition for multiplication in Sf . These algebras were first

introduced by Petit [44] and as such are called Petit algebras. We review some

of the properties of these algebras:

Theorem 3.1.4. [44, 58]

1. If Sf is not associative, then

Nucl(Sf ) = Nucm(Sf ) = D,

and

Nucr(Sf ) = {g ∈ R | deg(g) < m and fg ∈ Rf}.

2. Sf is associative if and only if f is right invariant; that is, Rf is a

two-sided ideal of R.

3. Comm(Sf ) = {∑m−1
i=0 cit

i | ∀i, ci ∈ Fix(σ) and dci = ciσ
i(d) for all d ∈

D}.
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3.2 the right nucleus of petit algebras

As a result of this, the right nucleus of Sf is precisely equal to the eigenring

of f .

3.2 the right nucleus of petit algebras

3.2.1 The right nucleus for irreducible f ∈ D[t;σ]

Unless stated otherwise, let D be an associative division algebra with center

C (we allow D = C so the following section also applies to K[t;σ] where

K is a field). Let σ be an automorphism of D of finite order n modulo inner

automorphisms, such that σn = iu for some inner automorphism iu(z) = uzu−1.

Recall that we may choose u ∈ Fix(σ) without loss of generality. We also

assume that n is the order of σ|C . Define R = D[t;σ] and F = C ∩Fix(σ); as

σ|C has order n, it follows that [C : F ] = n.

Definition 3.2.1. A polynomial f(t) ∈ R is bounded if there exists a nonzero

polynomial f∗ ∈ R such that Rf∗ is the largest two-sided ideal of R contained in

Rf . The polynomial f∗ is uniquely determined by f up to scalar multiplication

by nonzero elements of D and is called the bound of f .

In our case, every f ∈ R is bounded as D is a finite dimension central

simple algebra over C and σ has finite order modulo inner automorphisms [12,

Theorem 4].

Definition 3.2.2. Let f , g ∈ R. The greatest common right divisor of f and

g is denoted by (f , g)r and defined as Rf +Rg = R.(f , g)r (for example, see

[26, p.3]).

If (f , t)r = 1, then the bound lies in the centre of R [26, Lemma 2.11].

3.2.2 The minimal central left multiple of f ∈ D[t;σ]

Definition 3.2.3. For any bounded f ∈ R = D[t;σ] with a bound in Z(R), we

define the minimal central left multiple of f in R to be the unique polynomial of
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3.2 the right nucleus of petit algebras

minimal degree h = mzlm(f) ∈ Z(R) = F [u−1tn] such that h(t) = ĥ(u−1tn)

for some monic ĥ(x) ∈ F [x] and such that h = gf for some g ∈ R.

It seems clear from the above definition that the minimal central left multiple

is also a bound of f . We check that the above definition makes sense and our

claim about uniqueness is true:

Lemma 3.2.4. Let f ∈ R = D[t;σ] be bounded. If (f , t)r = 1, then the

minimal central left multiple exists and is unique. Additionally, the bound is

equal to the minimal central left multiple up to a scalar multiple from D.

Proof. Let f∗ be a bound of f . By definition, f∗ is unique up to scalar

multiplication by elements in D× and Rf∗ is the (unique) largest two-sided

ideal of R contained in the left ideal Rf . The assumption that (f , t)r = 1

implies that f∗ ∈ Z(R) [26, Lemma 2.11]) thus f∗ is the unique minimal

central left multiple of f up to some scalar.

From now on we assume that (f , t)r = 1 and that f is bounded. Note that

(f , t)r = 1 is equivalent to f having a non-zero constant term. If f is irreducible

and monic, we can relate the assumption that (f , t)r = 1 to the minimal central

left multiple of f :

Lemma 3.2.5. For irreducible monic f ∈ R, the following statements are

equivalent:

(i) (f , t)r = 1,

(ii) f(t) 6= t,

(iii) if h(t) = ĥ(u−1tn) denotes the minimal central left multiple of f , then

ĥ(x) 6= x.

Proof. (i) ⇐⇒ (ii): If (f , t)r 6= 1, then f has non-zero constant term. If

deg(f) ≥ 2, we can express f = f ′t for some f ′ of degree at least one; this

contradicts the irreducibility of f . Thus deg(f) = 1 and thus f = at for some

a ∈ D. As f is monic, it follows that f(t) = t. The reverse direction is trivial.

(ii) ⇐⇒ (iii): If f(t) = t, then ĥ(u−1tn) = u−1tn is a central left multiple of

f as h(t) = (u−1tn−1)t. Further, deg(ĥ(x)) = 1 so this must be the minimal
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3.2 the right nucleus of petit algebras

central left multiple of f . Conversely, suppose h(u−1tn) = u−1tn is the minimal

central multiple of some irreducible f ∈ R. If n = 1 and ĥ(u−1tn) = u−1t then

it is clear that f(t) = t. So we assume n > 1. Then there exists some g ∈ R

such that

u−1tn = gf .

Comparing constant terms, we have g0f0 = 0 where g0 and f0 are the constant

terms of g and f respectively.

Suppose f0 6= 0. Then as D is a division algebra, we have g0 = 0. In general,

the coefficient of tk is ∑
i+j=k

giσ
i(fj).

Comparing coefficients to tn, for all k < n this sum must equal zero.

For k = 1, we have

∑
i+j=1

giσ
i(fj) = g1σ(f0) + g0f1 = 0.

As g0 = 0 and f0 6= 0, this implies g1 = 0. Inductively, suppose gk = gk−1 =

... = g0 = 0 for k < n− 1. Then

∑
i+j=k+1

giσ
i(fj) = gk+1σ

k+1(f0) = 0 =⇒ gk+1 = 0.

Thus we conclude g = gnt
n for some gn ∈ D, yielding u−1tn = gnt

nf . Comparing

degrees, it follows that deg(f) = 0 which is a contradiction. So we must have

f0 = 0. As f is irreducible and monic, it follows that f(t) = t as claimed.

Proposition 3.2.6. If f is irreducible and bounded in R, and (f , t)r = 1,

with minimal central left multiple h(t) = ĥ(u−1tn). Then ĥ(x) is irreducible in

F [x].

Proof. By Lemma 3.2.4, the minimal central left multiple of f exists, so let

h = ĥ(u−1tn) be the minimal central left multiple of f . Suppose ĥ is reducible

in F [u−1tn]; that is, h = h1h2 for some hi = ĥi(u−1tn) ∈ F [u−1tn], such that

0 < deg(hi) < deg(h) for i = 1, 2. If f divides h1 on the right, this contradicts

the minimality of h. Moreover, as f is irreducible we conclude the greatest
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3.2 the right nucleus of petit algebras

common right divisor of f and h1 is 1. As R is a right Euclidean domain, there

exist p, q ∈ R such that

pf + qh1 = 1.

Multiplying everything by h2, we obtain pfh2 + qh = h2. As f is a right divisor

of h by definition, h = rf for some r ∈ R. Noting that h2 = ĥ2(u−1tn) lies in

Z(R), this yields

h2 = ph2f + qrf = (ph2 + qr)f .

This implies that h2 is a central left multiple of f of degree strictly less than h;

this also contradicts the minimality of h. Thus we conclude that ĥ(x) must be

irreducible in F [x].

We say that two polynomials f , g ∈ R are similar if R/Rf ∼= R/Rg as right

R-modules. Employing a result from [11], we can relate similar irreducible

polynomials to their minimal central left multiples:

Corollary 3.2.7. Let f , g be bounded and irreducible in R such that (f , t)r = 1

and (g, t)r = 1. Then mzlm(f) = mzlm(g) if and only if f , g are similar.

Proof. If f is bounded and irreducible, all elements similar to f admit the same

bound f∗ [11, Corollary 2, p.9]. So the bound of g is f∗. Thus by Lemma 3.2.4,

mzlm(g) = f∗ = mzlm(f). Conversely, suppose mzlm(f) = mzlm(g). Then

g is an irreducible divisor of mzlm(f). As all irreducible factors of mzlm(f)

are similar, it follows that g is similar to f .

In this section, we recall some results by Owen and Pumplün [42]:

Lemma 3.2.8. Suppose that h ∈ R is such that h = ĥ(u−1tn) for some monic

ĥ ∈ F [x] with either ĥ(x) = x, or such that h has nonzero constant term. Then

the quotient algebra R/Rh has center

Z(R/Rh) ∼= F [x]/(ĥ(x)).

Define Eĥ = F [x]/(ĥ(x)). This is a commutative algebra over F of dimension

deg(ĥ). If ĥ is irreducible in F [x], then Eĥ is a field extension of F of degree

deg(ĥ).
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3.2 the right nucleus of petit algebras

Lemma 3.2.9. Suppose that h ∈ R is such that h = ĥ(u−1tn) for some ĥ ∈

F [x], ĥ(x) 6= x, and such that ĥ is irreducible in F [x]. Then h generates a

maximal two-sided ideal Rh in R.

Proof. This is mentioned in [33, p. 16], we include a proof for the sake of the

reader. Assume that there exists some g ∈ R, such that Rg is a two-sided ideal

of R with Rh $ Rg. Assume without loss of generality that deg(g) < deg(h)

(otherwise simply reduce g modulo h and use the ideal generated by gmodr h

instead). Now g(t) = ĝ(u−1tn)ts for some ĝ ∈ Z(R) ∼= F [x], and some

non-negative integer s, e.g. [44] or [33]. Since Rh $ Rg, we have h = ag for

some a ∈ R. Moreover, ĥ has nonzero constant term, so that t does not divide

h, and so s = 0. Furthermore, since h and g lie in the center of R, a also lies in

the center of R, i.e. there exists â ∈ Z(R) = F [u−1tn] such that a = â(u−1tn).

It follows that ĥ(x) = â(x)ĝ(x). By assumption, ĥ is irreducible in F [x], and

Rg 6= Rh. This forces ĝ ∈ F , i.e. g ∈ F . Hence Rg = R and Rh is a maximal

two-sided ideal of R.

As h is the product of polynomials similar to f , intuition suggests a relation

between R/Rh and the Petit algebra Sf = R/Rf :

Theorem 3.2.10. [42] Let f ∈ R = D[t;σ] be monic and irreducible of degree

m such that f(t) 6= t, and let h = ĥ(u−1tn) be its minimal central left multiple.

Then Nucr(Sf ) is a associative division algebra over Eĥ = F [x]/(ĥ(x)) of

degree s = dn/k, where k is the number of irreducible factors of h in R, and

R/Rh ∼= Mk(Nucr(Sf )).

In particular, this means that deg(ĥ) = dm
s and deg(h) = km = dnm

s , and

[Nucr(Sf ) : F ] = s2 · dm
s

= dms.

Moreover, s divides gcd(dm, dn). If f is not right invariant, then k > 1 and

s 6= dn.

We know that [Sf : F ] = [Sf : C][C : F ] = d2m · n. Since Nucr(Sf ) is a

subalgebra of Sf , comparing dimensions we obtain that

d2mn = [Sf : F ] = [Sf : Nucr(Sf )] · [Nucr(Sf ) : F ] = k · dms,
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3.2 the right nucleus of petit algebras

that is [Sf : Nucr(Sf )] = k. If f is not right-invariant, then k > 1 and so we

derive s 6= dn looking at the degree of h.

Note that deg(h) = dnm is the largest possible degree of h.

Theorem 3.2.11. [42] Let f ∈ R = D[t;σ] be monic and irreducible of degree

m such that f(t) 6= t. Let h = ĥ(u−1tn) be its minimal central left multiple.

Suppose that gcd(m,n) = 1. Then s divides d, and f is not right invariant

unless n = 1. If d is prime then one of the following holds:

(i) Nucr(Sf ) ∼= Eĥ, dn = k, deg(ĥ) = dm and deg(h) = dnm. In particular,

then [Nucr(Sf ) : F ] = dm.

(ii) Nucr(Sf ) is a associative division algebra over Eĥ of degree d, n is the

number of irreducible factors of h in R, deg(h) = nm, deg(ĥ) = m and

[Nucr(Sf ) : F ] = d2m.

Theorem 3.2.12. [42] Let f ∈ R = D[t;σ] be monic and irreducible of degree

m such that f(t) 6= t. Let h = ĥ(u−1tn) be its minimal central left multiple.

Suppose that gcd(d,n) = 1 and that f is not right invariant. Then s = 1, or

s 6= 1 and s divides either d or n. Suppose additionally that d and n are prime.

Then one of the following holds:

(i) Nucr(Sf ) ∼= Eĥ, dn = k, deg(ĥ) = dm and deg(h) = dnm. In particular,

then [Nucr(Sf ) : F ] = dm.

(ii) Nucr(Sf ) is a associative division algebra over Eĥ of degree d, n is the

number of irreducible factors of h in R, deg(h) = nm, deg(ĥ) = m and

R/Rh ∼= Mn(Nucr(Sf )).

In particular, then [Nucr(Sf ) : F ] = d2m.

(iii) Nucr(Sf ) is a associative division algebra over Eĥ of degree n, d is the

number of irreducible factors of h in R, deg(ĥ) = dm/n, deg(h) = dm, and

[Nucr(Sf ) : F ] = n2/dm.

Note that case (iii) cannot happen if n does not divide dm or if dm does not

divide n2.

Corollary 3.2.13. [42] Suppose that n = 1, i.e. that σ is an inner automorphism

of D, and that d is prime. Let f ∈ R = D[t;σ] be monic and irreducible of
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3.2 the right nucleus of petit algebras

degree m, f(t) 6= t, and let h = ĥ(u−1t) be its minimal central left multiple.

Suppose that f is not right invariant. Then

Nucr(Sf ) ∼= Eĥ = F [x]/(ĥ(x))

is a field extension of degree dm.

If R = K[t;σ] for some finite field extension K/F , we obtain analogous

results by setting d = 1.

3.2.3 The minimal central left multiple of f ∈ D[t; δ]

Let R = D[t; δ] where C is a field of characteristic p (allowing D = C) and

define F = Const(δ)∩C. Let δ be a derivation of D such that δ|C is algebraic

with minimum polynomial

g(t) = tp
e

+ c1t
pe−1

+ · · ·+ cet ∈ F [t],

so g(δ) = idd0 is an inner derivation of D.

Similarly to Section 3.2.1, for every f ∈ R = D[t; δ] we define the minimal

central left multiple of f in R to be the unique polynomial of minimal degree

h ∈ Z(R) ∼= F [x] such that h = gf for some g ∈ R, and such that h(t) =

ĥ(g(t) − d0) for some monic ĥ(x) ∈ F [x]. As all polynomials in D[t; δ] are

bounded, every f ∈ R = D[t; δ] has a unique minimal central left multiple:

let f∗ be a bound of f . Then Rf∗ is the (unique) largest two-sided ideal of R

contained in the left ideal Rf and f∗ ∈ Z(R) up to some invertible element in

D. Thus f∗ is the unique minimal central left multiple of f up to some scalar.

Proposition 3.2.14. If f is irreducible in R with minimal central left multiple

h(t) = ĥ(g(t)− d0), then ĥ(x) is irreducible in F [x].

The proof is identical to the one of Proposition 3.2.6

Lemma 3.2.15. [33, p. 16] Suppose that h ∈ R is such that h = ĥ(g(t)− d0)

for some ĥ ∈ F [x], and such that ĥ is irreducible in F [x]. Then h generates a

maximal two-sided ideal Rh in R.

27
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Proposition 3.2.16. [32, Proposition 4] Let h(t) = ĥ(g(t) − d0) ∈ Z(R).

Then

Z(R/Rh) ∼= F [x]/F [x]ĥ(x).

Note that deg(h) = pedeg(ĥ). We define Eĥ = F [x]/F [x]ĥ(x).

Let f ∈ R = D[t; δ] be a monic and irreducible polynomial of degree m > 1

and let h(t) = ĥ(g(t)− d0) be its minimal central left multiple.

Theorem 3.2.17. Nucr(Sf ) is a associative division algebra over Eĥ = Z(R/Rh)

of degree s = dpe/k, where k is the number of irreducible factors of h in R, and

R/Rh ∼= Mk(Nucr(Sf )).

In particular, this means that deg(ĥ) = dm
s and deg(h) = km = dpem

s , and

[Nucr(Sf ) : F ] = s2 · dm
s

= dms.

Moreover, s divides gcd(dm, dpe). If f is not right invariant, then k > 1 and

s 6= dpe.

Proof. Since f is bounded it has a minimal central left multiple h, Sf is free of

finite rank as Nucr(Sf )-module and the dimension of Sf over F is md2pe.

We have h = gf for some g ∈ R by the definition of h. Since R is a principal

ideal domain, the irreducible factors hi of any factorization h = h1h2 · · ·hk of

h into irreducible polynomials are all similar as polynomials. In particular, this

means all irreducible factors of h have the same degree.

The minimal central left multiple h of an irreducible f ∈ R is a two-sided

maximal element in R in the terminology of [33]. Therefore R/Rh is a simple

Artinian ring with R/Rh ∼= Mk(Dh), where Dh
∼= I(hi)/Rhi and I(hi) =

{g ∈ R : hig ∈ Rhi} is the idealiser of Rhi [33, Theorem 1.2.19].

Since f is an irreducible divisor of h with h = gf for some g ∈ R, we obtain

that h = h1h2 · · ·hk−1f for some irreducible polynomials hi ∈ R of degree m,

Dh
∼= I(f)/Rf = Nucr(Sf ), and therefore

R/Rh ∼= Mk(Nucr(Sf )).
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3.2 the right nucleus of petit algebras

Since f is irreducible, Nucr(Sf ) is a division algebra. In particular, here h has

degree km, since all hi are similar and thus have the same degree m as f . We

know that R/Rh is a central simple algebra over its center Eĥ (which is a field)

and so Nucr(Sf ) is a associative division algebra over Eĥ of dimension s2.

Comparing the dimensions of R/Rh and Mk(Nucr(Sf )) over F it follows

that

d2 p2edeg(ĥ) = k2s2 [Eĥ : F ],

so that d2 p2e = k2s2, that is dpe = ks, so that s = dpe/k.

Since [Eĥ : F ] = dm
s we know that s divides dm. Since k = dpe

s we know that

s divides dpe. Furthermore, if we assume that f is not right invariant then Sf
is not associative so k > 1, which implies s 6= dpe.

We know that [Sf : F ] = [Sf : C]pe = d2m · pe. Since Nucr(Sf ) is a

subalgebra of Sf , comparing dimensions we obtain that

[Sf : Nucr(Sf )] = k.

If f is not right-invariant, again [Sf : Nucr(Sf )] = k > 1.

Theorem 3.2.18. Suppose that gcd(m, pe) = 1. Then s divides d, and f is

not right invariant. If d is prime then one of the following holds:

(i) Nucr(Sf ) ∼= Eĥ, dpe = k, deg(ĥ) = dm and deg(h) = dpem. In particular,

then [Nucr(Sf ) : F ] = dm.

(ii) Nucr(Sf ) is a associative division algebra over Eĥ of degree d, pe is the

number of irreducible factors of h in R, deg(h) = pem, deg(ĥ) = m and

[Nucr(Sf ) : F ] = d2m.

Proof. Since s divides gcd(dm, dpe) and we have gcd(m, pe) = 1 by assumption,

we know that s divides d. Moreover, then k > 1 as k = dn/s, thus f is not

right invariant. Assume d is prime so that s = 1 or s = d. If s = 1 then we

immediately get the assertion in (i), and s = d yields (ii) using that [Nucr(Sf ) :

F ] = [Nucr(Sf ) : Eĥ][Eĥ : F ] = d2deg(ĥ) = d2pe/pem = d2m.

Theorem 3.2.19. Suppose that gcd(d, pe) = 1 and that f is not right invariant.

Then s = 1, or s 6= 1 and s divides either d or pe.
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Suppose additionally that d is prime and e = 1. Then one of the following

holds:

(i) Nucr(Sf ) ∼= Eĥ, dp = k, deg(ĥ) = dm and deg(h) = dpm. In particular,

then [Nucr(Sf ) : F ] = dm.

(ii) Nucr(Sf ) is a associative division algebra over Eĥ of degree d, p is the

number of irreducible factors of h in R, deg(h) = pm, deg(ĥ) = m and

R/Rh ∼= Mk(Nucr(Sf )).

In particular, then [Nucr(Sf ) : F ] = d2m.

(iii) Nucr(Sf ) is a associative division algebra over Eĥ of degree p, d is the

number of irreducible factors of h in R, deg(ĥ) = dm/p, deg(h) = dm, and

[Nucr(Sf ) : F ] = p2/dm.

Note that case (iii) cannot happen if p does not divide dm or if dm does not

divide p2.

Proof. It is clear that s = 1, or s 6= 1 and s divides either d or pe. Suppose

additionally that d is prime, e = 1. Then the equation dp = ks in the proof of

Theorem 3.2.10, forces that either s = 1 and k = pd, or that s 6= 1 and then

d = k and p = s (or resp., d = s and p = k). As before, s = 1 yields (i).

If d = s 6= 1 and p = k then this implies (ii) employing that [Nucr(Sf ) : F ] =

[Nucr(Sf ) : Eĥ][Eĥ : F ] = d2deg(ĥ) = d2p/pm = d2m.

If d = k and p = s 6= 1 then this implies (iii) using that [Nucr(Sf ) : F ] =

[Nucr(Sf ) : Eĥ][Eĥ : F ] = p2deg(ĥ) = p2/dm. In particular, this case means

that deg(ĥ) = dm/p, which forces n to divide dm, as well as [Nucr(Sf ) : F ] =

p2/dm which in turn forces dm to divide n2.

3.3 construction of division algebras using f ∈ D[t;σ]

Let D be an associative division algebra of degree d over its center C = Z(D).

As in previous sections, we allow the possibility that d = 1 and D = C is a field.

Let σ be an automorphism of D of finite order n modulo inner automorphisms
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3.3 construction of division algebras using f ∈ D [t; σ ]

with σn(z) = uzu−1 for some u ∈ D×, where we will assume without loss of

generality that u ∈ Fix(σ). Then

Z(R) = F [u−1tn] ∼= F [x]

by [33, Theorem 1.1.22] and n is the order of σ|C . Every f is bounded.

Let f ∈ R = D[t;σ] be an irreducible monic polynomial of degree m, such

that f(t) 6= t. By Lemma 3.2.6, f has a minimal central left multiple h =

ĥ(u−1tn) which is irreducible in F [x].

Furthermore, Rh is a maximal two-sided ideal of R and thus we can construct

the associative quotient algebra Sh = R/Rh, which is simple over its centre

C(Sh) ∼= Eĥ by Lemma 3.2.8.

Lemma 3.3.1. For each z(t) = ẑ(u−1tn) ∈ F [u−1tn] with ẑ ∈ F [x], we have

z ∈ Rf if and only if z ∈ Rh.

Proof. As h = gf for some g ∈ R, each z ∈ Rh also lies in Rf .

Conversely, let z(t) = ẑ(u−1tn) ∈ F [u−1tn] with ẑ ∈ F [x] be such that

z ∈ Rf . Using the Euclidean division algorithm in F [x], there exist unique

q̂(x), r̂(x) ∈ F [x] such that

ẑ = q̂ĥ+ r̂,

where deg(r̂) < deg(ĥ) = s or r̂ = 0. If r̂ 6= 0, then r̂ = ẑ − q̂ĥ, i.e. we found

q(t) = q̂(u−1tn), r(t) = r̂(u−1tn) ∈ F [u−1tn], such that

r(t) = z(t)− q(t)h(t) ∈ Rf .

Let r̂′(x) = r−1
0 r̂(x) ∈ F [x], where r0 ∈ F× is the leading coefficient of r̂(x),

then r′(t) = r̂′(u−1tn) is monic by definition.

As r′(t) = r̂′(u−1tn) ∈ Rf , too, there exists a(t) ∈ R such that r′(t) =

a(t)f(t). Thus, r′(t) ∈ F [u−1tn] is a monic polynomial of degree less than s

which is right divisible by f . This contradicts the definition of h as the minimal

central left multiple of f . Thus we conclude that r = 0 and z = qh ∈ Rh, as

required.
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3.3 construction of division algebras using f ∈ D [t; σ ]

Let

Vf = {a+Rf : a ∈ R = D[t;σ]} = R/Rf

be the R-module defined by factoring out the maximal left ideal Rf and let

Ef = {z(t) +Rf : z(t) = ẑ(u−1tn) ∈ F [u−1tn]} ⊂ Vf .

Together with the multiplication

(x+Rf) ◦ (y+Rf) := (xy) +Rf

for all x, y ∈ F [u−1tn], Ef becomes an F -algebra.

Lemma 3.3.2. Ef = (Ef , ◦) is a field and isomorphic to Eĥ.

Proof. Clearly, Ef is a commutative associative ring with identity 1 +Rf ; we

only need to show that every non-zero element of Ef has an inverse in Ef .

Let z + Rf be a non-zero element of Ef . If deg(z) = 0, then z ∈ F× and

(z+Rf)−1 = z−1 +Rf . So suppose deg(z) > 0 and z(t) = ẑ(u−1tn) for some

ẑ(x) ∈ F [x]. By Lemma 3.3.1, ĥ(x) does not divide ẑ(x) in F [x]. Additionally,

ĥ is irreducible in F [x] so ẑ cannot divide ĥ in F [x]. Thus the greatest common

divisor of ẑ and ĥ in F [x] must be some k ∈ F× and that there exist some

non-zero q̂, p̂ ∈ F [x] such that

ẑp̂+ ĥq̂ = k.

Let p(t) = p̂(u−1tn), then zp− k ∈ Rh. By Lemma 3.3.1, this implies zp− k ∈

Rf , that means (z +Rf)(p+Rf) = k+Rf , i.e. (z +Rf)−1 = k−1p+Rf .

It is clear that F is a subfield of Ef embedded via the map F −→ F + Rf ,

k 7→ k + Rf for all k ∈ F . Thus Ef is isomorphic to a field extension of F .

Define a map G : Ef → Eĥ by

G(z +Rf) = z +Rh

for all z ∈ F [u−1tn].

Suppose z +Rf = z′ +Rf . Then z − z′ ∈ Rf and z − z′ ∈ Rh by Lemma

3.3.1. Thus we obtain z + Rh = z′ + Rh; that is, G(z + Rf) = G(z′ + Rf).
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3.3 construction of division algebras using f ∈ D [t; σ ]

So G is well-defined. Additionally, for any z +Rh ∈ Eĥ, it follows that G(z +

Rf) = z +Rh. Thus G is surjective.

To check injectivity, we note that G(x+ Rh) = 0 + Rf if and only if x ∈

Rf . Again by Lemma 3.3.1, this implies x ∈ Rh and so x+ Rh = 0 + Rh.

Furthermore, for all x, y ∈ F [u−1tn] we have

G(x+Rf)+G(y+Rf) = (x+Rh)+ (y+Rh) = (x+ y)+Rh = G(x+ y+Rf),

G(x+Rf)G(y+Rf) = (x+Rh)(y+Rh) = xy+Rh = G(xy+Rf),

yielding that G is an isomorphism of fields.

Let B = Nucr(Sf ). Then we have:

Proposition 3.3.3. Let k be the number of irreducible factors of h. Then

Vf is a right B-module of dimension k via the scalar multiplication given by

Vf ×B −→ Vf ,

(a+Rf)(z +Rf) = az +Rf ∈ Vf

for all z ∈ F [u−1tn] and a ∈ R. Thus, we can identify Vf with Bk via a

canonical basis.

Proof. In order to show that the scalar multiplication is well-defined, suppose

a+Rf = a′ +Rf and z = z′ for a, a′ ∈ R and z, z′ ∈ B. Then there exists

u, v ∈ R such that a′ = a+ uf and z′ = z + vf (as B ⊂ R/Rf), and we have

(a′ +Rf)z′ =a′z′ +Rf

=(az + avf + ufz + ufvf) +Rf

As z ∈ B, this implies fz = z′f for some z′ ∈ R so (az + avf + ufz +

ufvf) + Rf = az + (av + uz′ + ufv)f + Rf = az + Rf . Thus it follows

that (a′ +Rf)z′ = (a+Rf)z as required.

The remaining properties we require for scalar multiplication such as distributivity

follow from the multiplication in R. As Vf is a vector space of dimension d2mn

over F and B/F has dimension dms by Theorem 3.2.10 , it follows that Vf has
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3.3 construction of division algebras using f ∈ D [t; σ ]

dimension d2mn/dms = dn/s = k over B, where k is the number of irreducible

divisors of h in R.

In the special case where deg(ĥ) = dm, we see that

Nucr(Sf ) = Eĥ
∼= Ef

by Theorem 3.2.19. Under this assumption, h has exactly dn irreducible factors

in R, yielding the following corollary:

Corollary 3.3.4. Let deg(ĥ) = dm. Then Vf is a right Ef -vector space of

dimension dn via the scalar multiplication given by Vf ×Ef −→ Vf ,

(a+Rf)(z +Rf) = az +Rf ∈ Vf

for all z ∈ F [u−1tn] and a ∈ R. Thus, we can identify Vf with Ednf via a

canonical basis.

3.3.1 The construction of Sn,m,l(ν, ρ, f)

For some ν ∈ D× and ρ ∈ Aut(D), define F ′ = Fix(ρ) ∩ F . We assume in the

following that F/F ′ is finite-dimensional. Let k be the number of irreducible

factors of h(t) and s the degree of the right nucleus of Sf over Eĥ. We assume

f is not right-invariant which yields k > 1.

Let l < k = dn/s. Consider the set Sn,m,l(ν, ρ, f) = {a+ Rh | a ∈ A} ⊂

R/Rh, where

A = {a0 + a1t+ · · ·+ alm−1t
lm−1 + νρ(a0)t

lm : ai ∈ D} ⊂ D[t;σ].

Sn,m,l(ν, ρ, f) is a vector space over F ′ of dimension d2nm[F : F ′]. In particular,

Sn,m,1(ν, ρ, f) = {a+Rh | a ∈ A}, where

A = {a0 + a1t+ · · ·+ am−1t
m−1 + νρ(a0)t

m : ai ∈ D} ⊂ D[t;σ].
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3.3 construction of division algebras using f ∈ D [t; σ ]

Remark 3.3.5. In [56], this construction over Fq is denoted by Sn,m,l(ν, ρ,h).

Although this indicates that the set is a subspace of R/Rh, we change this

notation in order to reflect the polynomial f used in the construction. This

is because we are interested in expressing the multiplication of the algebras

explicitly, whereas previous work only considers the multiplication via semifield

spread sets.

Let La be the left multiplication map La(b+Rf) = ab+Rf for b+Rf ∈ Vf .

Note that La is B-linear, as we have a(xα) = (ax)α for all α ∈ B = Nucr(Sf ),

a,x ∈ Vf , and therefore La(xα) = La(x)α for all α ∈ B. Thus La ∈ EndB(Vf ).

Since l < k = dn/s, we have a well-defined map

L : Sn,m,l(ν, ρ, f)→ EndB(Vf ),

a+Rh 7→ La

To see that L is well-defined, let a, a′ ∈ A be such that a+ Rh = a′ + Rh.

Suppose a 6= a′. Then a+ Rh = a′ + Rh iff a− a′ ∈ Rh iff a− a′ = rh for

some r ∈ R. As a 6= a′, it follows that a−a′ 6= 0, so r 6= 0. Then taking degrees

on both sides, we have deg(a− a′) = deg(rh) ≥ deg(h) = dmn, but because

we assumed a and a′ to have degree less than or equal to lm, i.e. strictly less

than km = dmn/s, this is a contradiction. So a = a′ and La = La′ .

As EndB(Vf ) ∼= Mk(B), we can extend L to Mk(B) as follows: define

L : Sn,m,l(ν, ρ, f)→ EndB(Vf )→Mk(B),

a 7→ La 7→Ma,

whereMa is the matrix associated to the left multiplication map La with respect

to an B-basis of Vf .

For l < k, we denote the image of Sn,m,l(ν, ρ, f) in Mk(B) by

C(S) = {Ma | a ∈ Sn,m,l(ν, ρ, f)}.

As the dimension of C as a right B-module is equal to

dimB(Sn,m,l(ν, ρ, f)) = dimF (Sn,m,l(ν, ρ, f))
dimF (B)

=
d2nlmk

d2nm
= lk,
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3.3 construction of division algebras using f ∈ D [t; σ ]

Theorem 2.2.2 implies the minimum distance of C as a rank-metric code satisfies

lk ≤ k(k− dC + 1) ⇐⇒ dC ≤ k− l+ 1;

moreover, C is an MRD-code in Mk(B) if dC = k− l+ 1.

3.3.2 Division algebras over F ′

When l = 1, this construction can yield division algebras over F ′ via the set

Sn,m,1(ν, ρ, f); the actual construction of these algebras may be viewed by two

equivalent methods. Firstly, we directly define a multiplication on the F -vector

space

Rm = {g ∈ R : deg(g) < m}.

There is a natural bijection between Rm and A by a(t) 7→ a(t) + νρ(a0)tm for

all a(t) = ∑m−1
i=0 ait

i ∈ Rm. Define a multiplication ◦ : Rm ×Rm → Rm by

a(t) ◦ b(t) = (a(t) + νρ(a0)t
m)b(t) modr(f).

In this way, (Rm, ◦) can be viewed as a generalisation of Petit algebras [44] as

setting ν = 0 recovers the algebra Sf .

Example 3.3.6. Let m = 1, so f(t) = t− c for some c ∈ D. For some ν 6= 0

and ρ ∈ Aut(D), Sn,1,1(ν, ρ, f) = (D, ◦) has multiplication

x ◦ y =(x+ νρ(x)t)y)modrf

=xy+ νρ(x)σ(y)tmodrf

=xy+ νρ(x)σ(y)c

for all x, y ∈ D. If R = K[t;σ] for some field extension K/F , this is precisely

the multiplication of Albert’s twisted semifields as given in [1]. If R = D[t;σ]

for a associative division algebra D/C, we obtain generalisations of Albert’s

twisted fields which were studied in [46].

Now suppose x ◦ y = 0 for some non-zero x, y ∈ R1. This occurs if and only if

xy = −νρ(x)σ(y)c. Taking norms of both sides and cancelling ND/F ′(xy) from
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3.3 construction of division algebras using f ∈ D [t; σ ]

both sides, we obtain that ND/F ′(−νc) = 1. Thus Sn,1,1(ν, ρ, f) is a division

algebra if

ND/F ′(νc) 6= (−1)d
2n[F :F ′].

Alternatively, we can use C(S) ⊂ Mk(B) to define a multiplication on Bm.

As the dimension of D over F is d2n and the dimension of B is d2mn/k,

there exists an F -vector space isomorphism between Dm and Bk. It follows

that there similarly exists an isomorphism between G : Vf → Bk so, for each

a+Rf ∈ R/Rf , there exists some a ∈ Bk such that G(a+Rf) = a. Define

∗ : Bk ×Bk → Bk by

a ∗ b = Ma · b

for all a, b ∈ Bk, whereMa ∈ C(S) is the representation of the map La(t)+νρ(a0)tm ∈

EndB(Vf ) induced by G. (Each a ∈ Rm corresponds to a map La(t)+νρ(a0)tm .

As EndB(Vf ) ∼= Mk(B) and dim(Rm) = dim(C(S)), there is a canonical

bijection between La(t)+νρ(a0)tm and Ma.) As Ma is a representation of the

map La ∈ EndB(Vf ), it follows that (Bk, ∗) is isomorphic to R/Rf equipped

with the multiplication (a+ Rf)(b+ Rf) = La(t)+νρ(a0)tm(b+ Rf). Thus it

follows that (Rm, ◦) and (Bk, ∗) are isomorphic algebras by construction.

3.3.3 The rank of a matrix

We recall the definition of rank of a matrix:

Definition 3.3.7. Let A ∈ Mk(B). The column rank of a matrix A is the

dimension of the right B-module generated by the columns of A; similarly,

define the row rank of A as the dimension of the right B-module generated by

the rows of A. When B is a field, row and column rank are always equal and

is called the rank of a matrix.

A matrix in Mk(B) has (column) rank at most k; any matrix which attains

this bound is said to have attained full (column) rank. By definition of column

rank, a matrix attains full column rank if and and only if its columns are linearly

independent over B.
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For any Ma ∈ C(S), suppose there exists some non-zero x ∈ Bk such that

Ma · x = 0. Let ci ∈ Bk be the column vectors of Ma and xi ∈ B be the entries

of x, then

Ma · x = 0 ⇐⇒ c1x1 + · · ·+ ckxk = 0.

As x 6= 0, this implies there is a linear combination of the columns of Ma, i.e.

Ma does not have full column rank. Conversely if we assume Ma does not have

full column rank, there exists some non-zero x ∈ Bk such that Ma · x = 0.

Hence (Bk, ∗) is a division algebra if and only if every matrix in C(S) has full

column rank.

Lemma 3.3.8. Let R be a ring with no zero divisors. For all h ∈ Z(R), every

right divisor of h in R also divides h on the left.

Proof. Suppose γ is a right divisor of h. Then h = δγ for some δ ∈ R. As h

lies in the centre of R, we have δh = hδ = δγδ. This rearranges to

0 = δh− δγδ = δ(h− γδ).

As R contains no zero divisors and δ 6= 0, it follows that h = γδ.

Proposition 3.3.9. Let f ∈ D[t;σ] be irreducible and deg(ĥ) = km/n. Let

B = Nucr(Sf ). For all a+Rh ∈ R/Rh, we have

dimB(im(LA)) = k2 − k

m
deg(gcrd(a, ĥ(tn))).

Moreover, the column rank of Ma is equal to k− 1
mdeg(gcrd(a, ĥ(tn)).

Proof. By Theorem 3.2.10, R/Rh ∼= Mk(B) as Eĥ-algebras. Let Ψ : R/Rh→

Mk(B), Ψ(a+ Rh) = Ma, be such an isomorphism. For each A ∈ Mk(B),

define Annr(A) = {N ∈ Mk(B) : AN = 0}. It is clear that Annr(A) is the

kernel of the endomorphism LA : Mk(B)→Mk(B) defined by

LA : X 7→ AX.

As B is associative, LA is a right B-linear map: for all b ∈ B, X ∈ Mk(B),

LA(Xb) = A(Xb) = (AX)b = LA(X)b. By the Rank-Nullity Theorem for

free right B-modules of finite rank [31, ch. IV, Cor. 2.14], it follows that

k2 = dimB(im(LA)) + dimB(Annr(A)).
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We conclude

dimB(im(LA)) = k2 − dimB(Annr(A)).

Now for each b+Rh,MaMb = 0 if and only if Ψ(a+Rh)Ψ(b+Rh) = 0. As Ψ

is multiplicative, this is true if and only if Ψ((a+Rh)(b+Rh)) = 0. Thus we

conclude (a+Rh)(b+Rh) = 0. Hence it is clear that Annr(Ma) ∼= Annr(a),

where

Annr(a) = {b+Rh ∈ R/Rh : (a+Rh)(b+Rh) = 0 +Rh},

so dim(Annr(Ma)) = dim(Annr(a)).

Let γ = gcrd(a,h) so h = δγ for some δ ∈ R. As h ∈ Z(R) and R is a domain,

we also have h = γδ by Lemma 3.3.8. Let b ∈ R be the unique element such

that a = bγ. Then gcrd(b, δ) = 1, else γ is not the greatest common right

divisor of a and h.

Let v ∈ R. By the left Euclidean division algorithm, there exist unique u,w ∈ R

such that v = δu+ w where deg(w) < deg(δ) and gcld(w, δ) = 1. It follows

that

av =aδu+ aw

=bγδu+ bγw

=bhu+ bγw.

Thus it follows that av+Rh = bγw+Rh.

Suppose bγw ≡ 0 modrh. As gcrd(b, δ) = 1, there exist c, d ∈ R such that

cb+ dδ = 1 so

cbγ + dδγ = γ.

As δγ = h, this implies cbγ ≡ γ modrh. Hence

γw ≡ cbγw ≡ 0 modrh.

However, deg(w) < deg(δ) so deg(γw) < deg(γδ) = deg(h); due to this,

γw ≡ 0modrh implies that γw = 0. As γ 6= 0 and R is a domain, we conclude

that w = 0.
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Therefore, (a+Rh)(v +Rh) = 0 +Rh if and only if v = δu where deg(u) <

deg(γ). As δ is uniquely defined by a and h, every element of Annr(a) is

determined by u ∈ R such that deg(u) < deg(γ). Thus

Annr(a) ={v+Rh ∈ R/Rh |, (a+Rh)(v+Rh) = 0 +Rh}

={δu |u ∈ R, deg(u) < deg(γ)}

∼=Rdeg γ .

As {1, t, . . . , tdeg(γ)−1} is a D-basis for Rdeg γ , it follows that dimD(Annr(a)) =

deg(γ), so dimF (Annr(a)) = deg(γ)d2n. Since dimEĥ
(B) = s2 = d2n2/k2

and [Eĥ : F ] = km/n, we obtain dimF (B) = d2mn/k. Hence we conclude

that

dimB(Annr(a)) =
deg(γ)d2nk

d2mn
=

deg(γ)k
m

,

and so

dimB(im(LA)) = k2 − dimB(Annr(A)) = k2 − k

m
deg(γ).

Let ci and ri denote the columns and rows of A respectively and xi denote the

columns of X. Then computing the matrix using dot product notation we have

AX =


r1 · x1 . . . r1 · xk

... . . . ...

rk · x1 . . . rk · xk


The ith column of AX is equal to

r1 · xi
...

rk · xi

 = c1λ1 + · · ·+ ckλk

for some λj ∈ B. Hence the dimension of the B-vector space generated by the

ith column of AX is exactly the column rank of A. As there are k columns of

AX, it follows that that dimB(im(LA)) = k · colrank(A).

When deg(ĥ) = dm, we recall that B = Nucr(Sf ) is a field and we obtain

the following corollary:
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3.3 construction of division algebras using f ∈ D [t; σ ]

Corollary 3.3.10. [56, Proposition 7 for finite fields] Let f ∈ D[t;σ] and

deg(ĥ) = dm. For all a+Rh ∈ R/Rh, we have

rank(Ma) = dn− 1
m

deg(gcrd(a, ĥ(tn))).

As a result of this, (Bk, ∗) is a division algebra if and only if there are

no divisors of h in Sn,m,1(ν, ρ, f). More generally, Sn,m,l(ν, ρ, f) yields an

MRD-code in Mk(B) if and only if it contains no divisors of h of degree lm.

Theorem 3.3.11. Sn,m,l(ν, ρ, f) = {a+Rh | a ∈ A} ⊂ R/Rh, where

A = {a0 + a1t+ · · ·+ alm−1t
lm−1 + νρ(a0)t

lm : ai ∈ D}

yields an MRD-code if and only there are no elements g ∈ Sn,m,l(ν, ρ, f) of

degree lm which can be written as g =
∏l
i=1 fi, where fi is similar to f for all

i, i.e. there are no divisors of h of degree lm in A.

We can use the above Proposition 3.3.9 to determine some initial conditions

to obtain division algebras:

Corollary 3.3.12. Suppose that

A = {a0 + a1t+ · · ·+ am−1t
m−1 + νρ(a0)t

m : ai ∈ D} ⊂ R.

Let f be an irreducible monic polynomial of degree m.

(i) If a ∈ A is reducible, then a is not a left zero divisor in (Rm, ◦).

(ii) If ν = 0 then (Rm, ◦) is a division algebra over F ′, which for m ≥ 2 is a

(unital) Petit algebra.

(iii) If A does not contain any polynomial similar to f , then (Rm, ◦) is a division

algebra over F ′.

In order to find a more tractable condition to obtain division algebras and

MRD codes, we must determine what the divisors of h(t) look like. We follow

two techniques to do this: firstly, we consider the technique used in [56] which

employs semi-linear maps of R/Rf . The second method considers the norm

map in D(t;σ) as used in [13] to determine reducibility criteria for polynomials

in Fq[t;σ]. Both approaches were originally only considered for Fq[t;σ]; we give

generalisations to D[t;σ], where D is a associative division algebra as assumed

previously.
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3.4 semi-linear maps

Let R = D[t;σ] with all assumptions on D as stated previously and f ∈ R be

a monic irreducible polynomial of degree m. Left multiplication by t defines a

map

φf : R/Rf → R/Rf , φf (v) = tvmodrf

for all v ∈ R/Rf . This is a D-semi-linear map, as

φf (av) = σ(a)φf (v)

for all v ∈ R/Rf , a ∈ D. Identify R/Rf = D ⊕Dt ⊕ · · · ⊕Dtm−1 with

the free left D-module Dm with the basis β = {1, t, . . . , tm−1}. In particular,

this means we identify an m-tuple (v0, . . . , vm−1) = vβ with the polynomial

v =
∑m−1
i=0 vit

i. Via our identification between R/Rf and Dm, we can view φf

as a D-semi-linear map on Dm:

Lemma 3.4.1. φf : Dm → Dm is given by

φf (v0, . . . , vm−1) =(σ(v0), · · · ,σ(vm−1)) ·



0 1 . . . 0 0

0 0 . . . 0 0
... ... . . . ...

0 0 . . . 0 1

−a0 −a1 . . . −am−2 −am−1


=σ(vβ) ·Cf ,

where Cf is the companion matrix of f .

Proof. Let v ∈ R/Rf . Noting that φf (v) =
∑m−1
i=0 σ(vi)ti+1modrf , we see that

the only term of this sum that needs to be reduced modulo f is σ(vm−1)tm.

Upon right division by f , we obtain

σ(vm−1)t
m = −σ(vm−1)(a0 + a1t+ · · ·+ am−1t

m−1)modrf .

Thus we can map σ(vm−1)tm to Dm via

σ(vm−1)t
m 7→ (−σ(vm−1)a0,−σ(vm−1)a1, . . . ,−σ(vm−1)am−1).
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3.4 semi-linear maps

It follows that

φf (v) 7→ (−σ(vm−1)a0,σ(v0)− σ(vm−1)a1, . . . ,σ(vm−2)− σ(vm−1)am−1).

Computing σ(vβ) ·Cf yields exactly the same vector as required.

Remark 3.4.2. We use the definition of the companion matrix as defined in

[40, p. 4], which is transpose to the companion matrix used in [56]. Thus, the

analogous result in [56] is

φf (v
T
β ) = CTf · σ(vTβ ),

where vTβ is a column vector of length m. When f ∈ R = K[t;σ], it does not

matter which of the two matrices we use for the definition of φf : Km → Km,

as CTf · σ(vTβ ) = (σ(vβ) ·Cf )T , but for R = D[t;σ], this is no longer true.

Remark 3.4.3. In [40, Corollary 1.9], the companion matrix of f is used to

give an alternative description of the eigenring EndR(R/Rf) of the polynomial

f , as we have

EndR(R/Rf) ∼= Cσf := {B ∈Mm(K) | CfB = σ(B)Cf}.

This holds even when we take R = D[t;σ, δ] by letting Cσ,δ
f = {B ∈Mm(D) |

CfB = σ(B)Cf + δ(B)}.

Analogously, we may define an F -linear map

φnf : R/Rf → R/Rf , v 7→ tnvmodrf

for all v ∈ R. By definition, it follows that φnf = (φf )
n. Since

φnf (av) = σn(a)φf (v) = uau−1φf (v),

this map is D-linear if σn = id. As with φf , we can view φnf as a map on Dm:

Lemma 3.4.4. φnf : Dm → Dm is given by

φnf (vβ) = σn(vβ) · σn−1(Cf ) · · ·σ(Cf )Cf = σn(vβ) ·Af ,

where σ(Cf ) means that σ acts on each entry of Cf ∈Mm(D). If σn = id, φnf
is a D-linear map.

Proof. As φnf = (φf )
n, this follows from our identification in Lemma 3.4.1.
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3.4.1 The case for K[t;σ]

We consider the special case when d = 1, i.e. D[t;σ] = K[t;σ] for some field

extension K/F . Much of this was done in [56] but we include the results for

completion and comparison to the generalisation for d > 1. The work done

previously in the literature assumed that K was a finite field but the proofs

follow identically when we assume that deg(h) = mn. This follows since the

degree of h is always mn when K is a finite field.

Definition 3.4.5. Let E be a field. The minimal polynomial of a matrix

A ∈Mn(E) is the polynomialG(x) ∈ E[x] of lowest degree such thatG(A) = 0.

The characteristic polynomial of a matrix A ∈ Mn(E) is defined as χA(x) =

det(xI −A).

Theorem 3.4.6. (for finite fields K, cf. [56, Theorem 3]) The minimal central

left multiple of f is given by h(t) = ĥ(tn), where ĥ is equal to the minimal

polynomial of the matrix Af over F . If deg(h) = mn, e.g. if n is prime or

gcd(m,n) = 1, then the minimal polynomial of Af is equal to the characteristic

polynomial of Af .

Theorem 3.4.7. (for finite fields K, cf. [56, Theorem 4]) If deg(h) = mn,

then

NK/F (a0) = (−1)m(n−1)h0,

where a0 and h0 are the constant terms of f and h, respectively.

Theorem 3.4.8. (for finite fields K, cf. [56, Theorem 5]) If deg(h) = mn and

g is a monic divisor of h(t) = ĥ(tn) in R of degree ml, then

NK/F (g0) = NK/F (a0)
l.

3.4.2 The case for D[t;σ]

For d > 1, D is non-commutative by definition so the determinant of Af is

not well-defined in Mm(D). In order to generalise [56, Theorem 3], we restrict
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3.4 semi-linear maps

D to a associative division algebra containing a maximal splitting field E and

consider the left regular representation of D as follows:

If D is a central simple algebra of degree d and E is a subfield of D such that

[E : F ] = d, then E is a splitting field for D. Let {v1, v2, ..., vd} be a basis for D

over E. By [33, Theorem 1.6.17], there exists a representation ρ : D →Md(E)

by writing

via =
d∑
j=1

ρij(a)vj , 1 ≤ i ≤ d,

where ρ : D −→ Md(E) is an F -vector space monomorphism. As D is

associative, ρ is a multiplicative map.

Define Ãf = ρ(Af ) ∈Mm(Md(E)) = Mmd(E), where ρ is extended entry-wise

to matrices in Mm(D), i.e.

Ãf =



ρ(a11) . . . ρ(a1m)

ρ(a21) . . . ρ(a2m)
... . . . ...

ρ(am1) . . . ρ(amm)


.

Unless stated otherwise, we will assume that D is a cyclic algebra (E/C, γ, a)

with [E : C] = d. In addition to this, we place restrictions on σ: let σ have finite

order n > 1 and σ ◦ γ = γ ◦ σ. Note that the second assumption here implies

that σ|E ∈ Aut(E). These restrictions allow us to deduce some properties of

the minimal polynomial of Ãf :

Lemma 3.4.9. Suppose σ|E ∈ Aut(E) and σ ◦ γ = γ ◦ σ. Then the minimal

polynomial of Ãf lies in Fix(σ)[x].

Proof. Let G ∈ E[x] be the minimal polynomial of Ãf and G′ = σ(G). Then

0 = σ(G(Ãf )) = G′(σ(Ãf )),

where σ is extended entrywise to Mdn(E). So G′ is a polynomial identity for

σ(Ãf ).

Extend ρ : D → Md(E) to Mm(E) by applying ρ entry-wise. As ρ(σi(Cf )) is

a dm× dm matrix partitioned into d× d blocks for 0 ≤ i < n, ρ(σ(Cf ))ρ(Cf )
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3.4 semi-linear maps

can be similarly partitioned into d× d blocks where the (i, j)th submatrix of

ρ(σ(Cf ))ρ(Cf ) is given by

Cij =
∑
k

AikBkj ,

where Aik is the (i, k)th submatrix of ρ(σ(Cf )) and Bkj is the (k, j)th submatrix

of ρ(Cf ) [21, Theorem 1.9.6]. For all 1 ≤ i, j, k ≤ m, Aik = ρ(aik) and

Bkj = ρ(bkj) for some aik, bjk ∈ E so

AikBkj = ρ(aik)ρ(bkj) = ρ(aikbkj)

as ρ is multiplicative when restricted to E (we note that aik lies in E as σ|E ∈

Aut(E)). As ρ is additive, it follows that Cij = ρ(
∑
k aikbkj). As this is true

for each submatrix Cij of ρ(σ(Cf ))ρ(Cf ), it follows that ρ(σ(Cf ))ρ(Cf ) =

ρ(σ(Cf )Cf ) and

Ãf = ρ(σn−1(Cf ))...ρ(σ(Cf ))ρ(Cf ).

Note that σ(Af ) = Cfσ
n−1(Cf )...σ(Cf ), so σ(Ãf )ρ(Cf ) = ρ(Cf )Ãf .

By [6, Lemma 1, p.546], it follows that det(ρ(Cf )) = det((−1)mρ(f0)) 6= 0 so

we conclude ρ(Cf ) is invertible in Mmd(E). Thus σ(Ãf ) = ρ(Cf )Ãfρ(Cf )
−1,

i.e. σ(Ãf ) is similar to Ãf . Similar polynomials have the same minimal

polynomial so it follows that G is the minimal polynomial of σ(Ãf ). This

implies that G must divide G′. But G′ is monic and of the same degree as G,

so this can only occur if G′ = G. Hence G is fixed by σ.

As a consequence, if G ∈ C[x] then it follows that G ∈ F [x]. This is required

to show that G is equal to the minimal central left multiple of f :

Theorem 3.4.10. Suppose σ|E ∈ Aut(E) and σ ◦ γ = γ ◦ σ. Let f ∈ R be a

monic polynomial of degree m such that (f , t)r = 1. Then the following hold:

(i) G is the polynomial of lowest degree such that G(Af ) = 0.

(ii) Let σn = id and G ∈ C[x]. Then the minimal central left multiple h(t) =

ĥ(tn) of f , ĥ(x) ∈ F [x], satisfies that ĥ(x) is equal to the minimal polynomial

of the matrix Ãf .
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3.4 semi-linear maps

Proof. Let G =
∑k
i=0Gix

i be the minimal polynomial of Ãf ; that is, G is the

monic polynomial of lowest degree such that G(Ãf ) = 0. By Lemma 3.4.9, we

have G ∈ F [x].

(i) As ρ is F -linear, this yields that

0 = G(Ãf ) = G(ρ(Af )) = ρ(G(Af )),

which implies that G(Af ) = 0 as ρ is injective. So G annihilates Af . Further G

is the polynomial of lowest degree in F [x] that anihilates Af : Suppose H(x) ∈

F [x] is such that H(Af ) = 0 and deg(H) < deg(G). As ρ is F -linear, we have

0 = ρ(H(Af )) = H(ρ(Af )) = H(Ãf ),

so H annihilates Ãf . This contradicts the minimality of G.

(ii) We know that φnf (v) = σn(vβ) ·Af by Lemma 3.4.4. Since σn = id, we get

φnf (v) = vβ ·Af , and

0 =vβ ·G(Af )

=
k∑
i=0

Gi(vβ · (Af )i)

=
k∑
i=0

Gi((φ
n
f )
i(v))

=G((φnf )(v)).

Note that here vβ ·Af = σn(vβ) ·Af = φnf (v) (where we identify v with vβ),

because σn = id.

By identifying vβ with v ∈ R/Rf , we conclude that G(tn)v = 0 modrf .

Letting v = 1 yields G(tn) = 0 modrf , so f divides G(tn) on the right in R.

By the definition of minimal central left multiple and employing that G(tn) ∈

Z(R), this implies that ĥ(x) divides G(x) in F [x].

Conversely, for all v ∈ R/Rf ,

0 =vĥ(tn)modrf

=ĥ(tn)vmodrf

=ĥ(φnf )(v),
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3.4 semi-linear maps

so vβ · ĥ(Af ) = 0 for all vβ ∈ Dm. Hence we have ĥ(Af ) = 0. As G is

the minimal polynomial of Af , we conclude that G(x) divides ĥ(x) in F [x]:

suppose that a is the greatest common divisor of G and ĥ. Then there exist

p, q ∈ F [x] such that a = Gp+ ĥq, so

a(Af ) = G(Af )p(Af ) + ĥ(Af )q(Af ) = 0 + 0 = 0.

If a 6= G, it follows that deg(a) < deg(G) which contradicts the minimality of

G.

It follows that ĥ(x) = G(x) as required.

For the remainder of this section, we assume that σn = id, σ|E ∈ Aut(E)

and σ ◦ γ = γ ◦ σ. Note that if σ|E 6∈ Aut(E), it would be impossible to have

σ ◦ γ = γ ◦ σ unless γ = id. In addition to these assumptions, we also must

assume the minimal polynomial of Af lies in C[x] in order to employ Theorem

3.4.10.

Lemma 3.4.11. Let f ∈ R be a monic polynomial of degree m such that

(f , t)r = 1. If deg(ĥ) = dm, then ĥ(x) = p
Ãf

(x) = det(xI − Ãf ), the

characteristic polynomial of Ãf .

Proof. By Theorem 3.4.10, the minimal polynomial polynomial of Ãf is equal

to ĥ(x) ∈ F [x] under our assumptions. As the minimal polynomial divides the

characteristic polynomial, it follows that ĥ(x) divides p
Ãf

(x). Because both ĥ

and p
Ãf

are monic polynomials of degree dm in F [x], we conclude that they

must be equal.

If we now consider D to be a cyclic algebra (E/C, γ, a) and impose the

restrictions stated above, we can compute the characteristic polynomial of Af
and so the minimal central left multiple of f :

Theorem 3.4.12. Let D = (E/C, γ, a) be a cyclic algebra over C of degree d.

Let f =
∑m
i=0 fit

i ∈ E[t;σ] ⊂ R be monic and irreducible, such that (f , t)r = 1

and ĥ = mclm(f) has degree dm. Then

NE/F (f0) = (−1)dm(n−1)h0,
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3.4 semi-linear maps

where f0 and h0 are the constant terms of f and h respectively.

Proof. As deg(ĥ) = dm and G ∈ F [x] by Lemma 3.4.9, we have ĥ(x) =

det(xI − Ãf ) by Lemma 3.4.11. Hence the constant term of ĥ is equal to

det(−Ãf ) = (−1)dmdet(Ãf ).

Let ρ : D →Md(E) be left regular representation ofD. As rho is multiplicative,

it follows that

Ãf = ρ(Af ) = ρ(σn−1(Cf )) . . . ρ(Cf ).

If we assume σ and γ commute, then ρ(σ(Cf )) = σ(ρ(Cf )) and thus

det(Ãf ) = σn−1(det(ρ(Cf ))) . . . det(ρ(Cf )).

As fi ∈ E, we may calculate det(ρ(Cf )) by first evaluating the determinant

with entries in Md(E), then evaluating the determinant of the resulting d× d

matrix [6]. This yields

det(ρ(Cf )) = det((−1)m−1ρ(−f0)) = det((−1)mρ(f0)) = (−1)dmdet(ρ(f0)).

As f0 ∈ E, ρ(f0) ∈Md(E) is a d× d diagonal matrix given by

f0 0 . . . 0

0 γ(f0) 0
... . . .

0 0 . . . γd−1(f0)


so det(ρ(Cf )) = (−1)dmNE/C(f0). Thus it follows

det(Ãf ) = σn−1((−1)dmNE/C(f0)) . . . (−1)dmNE/C(f0) = (−1)dmnNC/F (NE/C(f0))

and we conclude that

h0 = (−1)dm+dmnNE/F (f0) = (−1)dm(n−1)NE/F (f0).

Corollary 3.4.13. Let D = (E/C, γ, a) be a cyclic algebra over C of degree

d.
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Let f =
∑m
i=0 fit

i ∈ E[t;σ] ⊂ R be monic and irreducible of degree m, such

that (f , t)r = 1. Let deg(ĥ) = dm and suppose that all the polynomials similar

to f lie in E[t;σ]. If g is a monic divisor of h in R of degree lm, then

NE/F (g0) = NE/F (a0)
l.

Proof. We know that h(t) = ĥ(tn), with ĥ(x) irreducible in F [x], since we

assume that f is irreducible and u = 1. Thus h is a t.s.m. element in

Jacobson’s terminology. Therefore the irreducible factors f1(t), . . . , fk(t) of

any decomposition of h(t) into irreducibles are all similar, and in fact are all

similar to f , as f must be one of them by the definition of h. Now g(t) is a

monic divisor of h. Thus we can decompose g(t) into a product of irreducible

factors and up to similarity the irreducible factors of g will be the same as

suitably chosen irreducible factors of h by [33, Theorem 1.2.9.]. Hence w.l.o.g.

g = f1f2 · · · fl, where the fi are irreducibles in R and fi is similar to f for

all i = 1, 2, . . . , l [33, Theorem 1.2.19]. Thus by Corollary 3.2.7, the minimal

central left multiple of each fi is equal to h. Since f is monic, we may assume

w.l.o.g. that all fi are monic.

By Theorem 3.4.12 and since all fi lie in E[t;σ] by our assumption, this

implies that NE/F (fi(0)) = (−1)dm(n−1)h0 = NE/F (a0). As the constant

term of g is equal to ∏li=1 fi(0) and the norm is multiplicative, we see that

NE/F (g0) =
l∏

i=1
NE/F (fi(0)) = [(−1)dm(n−1)h0]

l = (−1)ldm(n−1)hl0 = NE/F (a0)
l.

Although we obtain a generalisation of [56, Theorem 3] for D = (E/C, γ, a),

we have to implement the restrictions σ 6= id, σn = id, and σ ◦ γ = γ ◦

σ. In addition to this, we must assume that the minimal polynomial of Af
lies in C[x]. These assumptions, particularly the final assumption about the

minimal polynomial, mean that the above results could be difficult to use in

general examples. Due to this, we consider another method of determining the

reducibility of the minimal central left multiple of f .
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3.5 using the norm of a polynomial

We now consider using the norm of f(t) in order to deduce reducibility criteria

for the minimal central left multiple. The results in this section form part of

[51].

Let R = D[t;σ] and

D(t;σ) = {f/g | f ∈ D[t;σ], g ∈ C(D[t;σ]), g 6= 0}

be the ring of central quotients of D[t;σ]. Then x = u−1tn is a commutative

indeterminate over D. The center of D(t;σ) is

C(D(t;σ)) = Quot(C(D[t;σ])) = F (x),

where Quot(S) denotes the quotient field of an integral domain S. Note that

C(D(t;σ)) is a field. The ring D(x) of central quotients of D[x] is a subring

of D(t;σ).

D(t;σ) is a central simple F (x)-algebra, more precisely,

D(t;σ) ∼= (D(x), σ̃,ux)

is a cyclic generalized crossed product [29, Theorem 2.3]. Here, σ̃ denotes the

extension of σ to D(x) that fixes x [29, Lemma 2.1.].

Note that when regarding D(t;σ) as an F (x)-algebra, the choice of u is

lost: x depends on u, and different choices of u lead to different actions of

F (x) on D(t;σ). Here and in the following we thus assume that u is fixed and

x = u−1tn.

The algebra D(t;σ) has center F (x) and deg(D(t;σ)) = dn. In particular,

as D is a division algebra then D(t;σ) is also a division algebra [29, Theorem

2.2.]. The reduced norm N of (D(x), σ̃,ux) is a nondegenerate form of degree

dn over F (x).
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3.5.1 The norm of f(t)

As with in Section 3.4, we assume D is a associative division algebra over C

with a subfield E such that [E : C] = d.

Theorem 3.5.1. Let f ∈ D[t;σ]. Then:

(i) N(f) ∈ F [x],

(ii) f divides N(f).

The proof works similarly as the one of [33, Proposition 1.7.1]:

Proof. (i) We have [C : F ] = n, [D(x) : F (x)] = d2n, and [(D(x), σ̃,ut) :

F (x)] = d2n2. The set {1, t, . . . , tn−1} generates D[t;σ] over D[x]; since

C(D[t;σ]) = F [x] ⊂ D[x], the set {1, t, . . . , tn−1} also generates D(t;σ) over

D(x). Additionally, (D(x), σ̃,ut) is a central simple algebra of degree dn over

F (x) with subalgebra D(x). We regard (D(x), σ̃,ut) as a left module over its

noncommutative subalgebra D(x).

Furthermore, we have It|D(x) = σ, where It denotes the inner automorphism

It : f(x) 7→ tf(x)t−1, σ denotes the extension of σ to D(x) fixing x, and

D(x) ⊂ CD(t;σ)(D(x)). It therefore follows by [29, Lemma 1.27] that {1, t, . . . , tn−1}

is free over D(x), thus

D(t;σ) =
n−1⊕
i=0

D(x)ti.

Since

D[t;σ] =
n−1⊕
i=0

D[x]ti,

and tn = ux, every f ∈ R ⊂ (D(x), σ̃,ut) can be written as a linear combination

of 1, t, . . . , tn−1 with coefficients in D[x]. We therefore obtain a representation

ρ of (D(x), σ̃,ut) by matrices in Mn(D(x)) by writing

tif(t) =
n−1∑
j=0

ρij(f(t))t
j

for all f ∈ R ⊂ (D(x), σ̃,ut) and 0 ≤ i, j ≤ n− 1. Hence the matrix ρ(f(t))

has entries inD[x] for every f ∈ R. SinceD has a subfield E of degree d, we can

regard D as a left module over E. Let {v1, . . . , vd} be a basis for D over E(x).
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Then {v1, . . . , vd, v1t, . . . , vdt, . . . vdtn−1} is a basis of (D(x), σ̃,ut) = D(t;σ)

as a left module over E and we now analogously obtain a representation ρ of

(D(x), σ̃,ut) by matrices in Mdn(E(x)) with respect to that basis.

For f(t) ∈ R, the matrix ρ(f(t)) has entries in E[x], therefore it follows that

N(f(t)) = det(ρ(f(t))) ∈ E[x] ∩ F (x) = F [x].

(ii) Similarly as in (i), it can be shown that all the coefficients of the characteristic

polynomial of ρ(f(t)) are contained in F [x] (cf. also [45, Proposition, p.

295]). Define the reduced adjoint of f as f(t)] (as defined in [33, (1.6.12)]);

by definition, f(t)] ∈ R. Since N(f(t)) = f(t)f(t)] = f(t)]f(t), it follows

that f(t) divides N(f) in R.

Let f ∈ R = D[t;σ] have degree m and bound f∗. Since N(f) ∈ F [x] =

Z(R) is a left multiple of f by Lemma 3.5.1, we know that the bound f∗ divides

N(f) in R, so that deg(f∗) ≤ deg(N(f)).

Theorem 3.5.2. Let D be a division algebra which has a subfield E of degree

d. Then for any f ∈ D[t;σ] of degree m, N(f) has degree dm.

Proof. Write m = kn+ r for some 0 ≤ r < n. Substituting tn = ux, we obtain

f(t) = P0(x) + P1(x)t+ · · ·+ Pn−1(x)tn−1 ∈ D[x][t;σ] where

Pi(x) =


ai + · · ·+ ai+kn(ux)

k for i ≤ r,

ai + · · ·+ ai+(k−1)n(ux)
k−1 for i > r.

Computing the left regular representation of ρ : D[t;σ]→Mn(D(x)), we have

ρ(f(t)) =


Q1,1(x) · · · Q1,n(x)

... ...

Qn,1(x) · · · Qn,n(x)


for some Qi,j(x) ∈ D[x] satisfying

ti−1f =
n∑
j=1

Qij(x)t
j−1, 1 ≤ i ≤ n,
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[33, Proposition 1.6.9]. Moreover, it follows that

deg(Qi,j) =


deg(Pj−i) for i ≤ j,

deg(Pn+j−i) + 1 for i > j.

Comparing the above equation with the expressions for Pi(x), it follows that

deg(Qi,j) ≤



k− 1 for i ≤ j and j − i > r,

k for i ≤ j ≤ r+ i or j < i < n− r+ j,

k+ 1 for i > j and i− j ≥ n− r.

withQi,j(x) = σi−1(am)ukxk+ . . . for j− i = r andQi,j(x) = σi−1(am)uk+1xk+1 +

. . . for i− j = n− r.

This means the bottom left r× r minor of ρ(f(t)) has elements of degree at

most k+ 1 in lower triangular entries (including the diagonal which attains this

maximum degree) and the top right n− r×n− r minor of ρ(f(t)) has elements

of degree at most k− 1 in the upper triangular entries (excluding the diagonal

which has elements of exactly degree k). Every other element of ρ(f(t)) has

degree at most k.

As D has a subfield of degree d, there exists a left regular representation

ω : D →Md(E) which extends to D[x] by setting ω(x) = xId. The d× d block

matrices representing Qi,j(x) are inserted for every entry Qi,j(x) in ρ(f(t)) to

obtain a representation for D[t;σ] in Mdn(E[x]).

As ω is additive and ω(x) is a diagonal matrix, then

ω(σj(g(x))) = ω(σj(gk)u
k)(xId)k + · · ·+ ω(σj(g0))

for any polynomial g(x) =
∑k
i=0 gix

i ∈ D[x]. As we are computing the

determinant only to find the degree of N(f(t)), it is sufficient to only consider

the term of highest degree in Qi,j(x) and ignore all terms of lower degree.

We truncate Qi,j(x) at the highest term and apply ω to all the entries of the

matrix. To determine the term of highest degree, we expand the determinant

along the columns and consider only the portion of the determinant expansion

which yields the maximum possible degree. As ω(amuk) = ω(am)ω(u)k is
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invertible, there are no zero columns in ω(amuk) so it is always possible to find

an expansion of the matrix yielding the highest degree. Hence the degree of

N(f(t)) is at most

dr(k+ 1) + d(n− r)k = d(kn+ r) = dm.

We wish to show the coefficient of xdm in N(f(t)) is non-zero. Following the

expansion of ω ◦ ρ(f(t)) and ignoring any terms of degree less than dm, it

follows that the coefficient of xdm is equal to

±det(ω(amuk))det(ω(σ(amuk)) · · · det(ω(σn−r−1(amu
k))det(ω(σn−r(amuk+1)) · · ·

det(ω(σn−1(amu
k+1)).

As σ is an automorphism, it follows that det(ω(σi(amuk)) 6= 0 by our assumption

on ω(amuk). Thus it follows that the coefficient of xdm is non-zero and

deg(N(f(t)) = dm.

Example 3.5.3. We show the details of the above calculations for d = 2, n = 3

and m = 7; an actual computation of the matrix becomes difficult for arbitrary

d,n,m. For f(t) = a0 + a1t+ · · ·+ a7t7 ∈ D[t;σ], where we assume D has a

subfield E of degree d, and t3 = ux, it follows that ρ(f(t)) is equal to
a0 + a3ux+ a6u2x2 a1 + a4ux+ a7u2x2 a2 + a5ux

σ(a2ux+ a5u2x2) σ(a0 + a3ux+ a6u2x2) σ(a1 + a4ux+ a7u2x2)

σ2(a1ux+ a4u2x2 + a7u3x3) σ2(a2ux+ a5u2x2) σ2(a0 + a3ux+ a6u2x2)

 .

Truncating the polynomials in the matrix at the highest terms and applying

ω : D →M2(E), we have
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ω(a6u2x2) ω(a7u2x2) ω(a5ux)

ω(σ(a5u2)x2) ω(σ(a6u2)x2) ω(σ(a7u2)x2)

ω(σ2(a7u3)x3) ω(σ2(a5u2)x2) ω(σ2(a6u2)x2)



=



a
(1,1)
1,1 x2 a

(1,2)
1,1 x2 a

(1,1)
1,2 x2 a

(1,2)
1,2 x2 a

(1,1)
1,3 x a

(1,2)
1,3 x

a
(2,1)
1,1 x2 a

(2,2)
1,1 x2 a

(2,1)
1,2 x2 a

(2,2)
1,2 x2 a

(2,1)
1,3 x a

(2,2)
1,3 x

a
(1,1)
2,1 x2 a

(1,2)
2,1 x2 a

(1,1)
2,2 x2 a

(1,2)
2,2 x2 a

(1,1)
2,3 x2 a

(1,2)
2,3 x2

a
(2,1)
2,1 x2 a

(2,2)
2,1 x2 a

(2,1)
2,2 x2 a

(2,2)
2,2 x2 a

(2,1)
2,3 x2 a

(2,2)
2,3 x2

a
(1,1)
3,1 x3 a

(1,2)
3,1 x3 a

(1,1)
3,2 x2 a

(1,2)
3,2 x2 a

(1,1)
1,3 x2 a

(1,2)
3,3 x2

a
(2,1)
3,1 x3 a

(2,2)
3,1 x3 a

(2,1)
3,2 x2 a

(2,2)
3,2 x2 a

(2,1)
1,3 x2 a

(2,2)
3,3 x2


,

for some a(i,j)k,l ∈ E for i, j ∈ {1, 2} and k, l ∈ {1, 2, 3}. Then the determinant

of the above matrix is equal to

a
(1,1)
3,1 x3

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

a
(1,2)
1,1 x2 a

(1,1)
1,2 x2 a

(1,2)
1,2 x2 a

(1,1)
1,3 x a

(1,2)
1,3 x

a
(2,2)
1,1 x2 a

(2,1)
1,2 x2 a

(2,2)
1,2 x2 a

(2,1)
1,3 x a

(2,2)
1,3 x

a
(1,2)
2,1 x2 a

(1,1)
2,2 x2 a

(1,2)
2,2 x2 a

(1,1)
2,3 x2 a

(1,2)
2,3 x2

a
(2,2)
2,1 x2 a

(2,1)
2,2 x2 a

(2,2)
2,2 x2 a

(2,1)
2,3 x2 a

(2,2)
2,3 x2

a
(2,2)
3,1 x3 a

(2,1)
3,2 x2 a

(2,2)
3,2 x2 a

(2,1)
1,3 x2 a

(2,2)
3,3 x2

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

− a(2,1)
3,1 x3

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

a
(1,2)
1,1 x2 a

(1,1)
1,2 x2 a

(1,2)
1,2 x2 a

(1,1)
1,3 x a

(1,2)
1,3 x

a
(2,2)
1,1 x2 a

(2,1)
1,2 x2 a

(2,2)
1,2 x2 a

(2,1)
1,3 x a

(2,2)
1,3 x

a
(1,2)
2,1 x2 a

(1,1)
2,2 x2 a

(1,2)
2,2 x2 a

(1,1)
2,3 x2 a

(1,2)
2,3 x2

a
(2,2)
2,1 x2 a

(2,1)
2,2 x2 a

(2,2)
2,2 x2 a

(2,1)
2,3 x2 a

(2,2)
2,3 x2

a
(1,2)
3,1 x3 a

(1,1)
3,2 x2 a

(1,2)
3,2 x2 a

(1,1)
1,3 x2 a

(1,2)
3,3 x2

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
+ . . .

where other terms of the expansion would yield terms of lower degree. Continuing
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the expansion along the next column and only considering terms of highest

degree, we obtain

a
(1,1)
3,1 a

(2,2)
3,1 x6

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

a
(1,1)
1,2 x2 a

(1,2)
1,2 x2 a

(1,1)
1,3 x a

(1,2)
1,3 x

a
(2,1)
1,2 x2 a

(2,2)
1,2 x2 a

(2,1)
1,3 x a

(2,2)
1,3 x

a
(1,1)
2,2 x2 a

(1,2)
2,2 x2 a

(1,1)
2,3 x2 a

(1,2)
2,3 x2

a
(2,1)
2,2 x2 a

(2,2)
2,2 x2 a

(2,1)
2,3 x2 a

(2,2)
2,3 x2

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

− a(2,1)
3,1 a

(1,2)
3,1 x6

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

a
(1,1)
1,2 x2 a

(1,2)
1,2 x2 a

(1,1)
1,3 x a

(1,2)
1,3 x

a
(2,1)
1,2 x2 a

(2,2)
1,2 x2 a

(2,1)
1,3 x a

(2,2)
1,3 x

a
(1,1)
2,2 x2 a

(1,2)
2,2 x2 a

(1,1)
2,3 x2 a

(1,2)
2,3 x2

a
(2,1)
2,2 x2 a

(2,2)
2,2 x2 a

(2,1)
2,3 x2 a

(2,2)
2,3 x2

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
+ . . .

= (a
(1,1)
3,1 a

(2,2)
3,1 − a

(2,1)
3,1 a

(1,2)
3,1 )x6

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

a
(1,1)
1,2 x2 a

(1,2)
1,2 x2 a

(1,1)
1,3 x a

(1,2)
1,3 x

a
(2,1)
1,2 x2 a

(2,2)
1,2 x2 a

(2,1)
1,3 x a

(2,2)
1,3 x

a
(1,1)
2,2 x2 a

(1,2)
2,2 x2 a

(1,1)
2,3 x2 a

(1,2)
2,3 x2

a
(2,1)
2,2 x2 a

(2,2)
2,2 x2 a

(2,1)
2,3 x2 a

(2,2)
2,3 x2

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
+ . . . .

Comparing this to the matrix in terms of ω, it follows that this is equal to

det(ω(σ2(a7u
3))x6

∣∣∣∣∣∣∣
ω(a7u2x2) ω(a5ux)

ω(σ(a6u2)x2) ω(σ(a7u2)x2)

∣∣∣∣∣∣∣+ . . . .

Repeating this with the remaining block matrices, it follows that we have

N(f(t)) = det(ω(σ2(a7u
3))det(ω(σ(a7u

2))det(ω(a7u
2))x14 + terms of lower degree.

We can now relate the norm of f to its minimal central left multiple:

Corollary 3.5.4. If deg(h) = dmn, then ĥ(x) = αN(f) for some α ∈ D×,

where α is equal to

±det(ω(amuk))det(ω(σ(amuk)) · · · det(ω(σn−r−1(amu
k))det(ω(σn−r(amuk+1)) · · ·

det(ω(σn−1(amu
k+1)).

i.e. N(f) is equal to the bound of f .
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3.5.2 Determining divisors of N(f) in D[t;σ]

We can use the method used in the proof of Theorem 3.5.2 to determine both

the lead and constant term of N(f(t)) in some cases. For small d, n and

m, we could compute the determinant of this matrix by hand for any D and

polynomial f , given the representation ω : D → Md(E), as shown in Example

3.5.3. However, for larger examples the huge determinant calculations are too

time-consuming to be practical. Instead, we restrict to a specific case D and

f ∈ R to obtain some more general results.

From now on, we assume that

D = (E/C, γ, a) is a cyclic algebra over C of degree d,

σ|E ∈ Aut(E) such that γ ◦ σ = σ ◦ γ and u ∈ E.

Then σ|E has order n. Write m = kn+ r for some 0 ≤ r < n.

Theorem 3.5.5. For f(t) = a0 + a1t+ · · ·+ amt
m ∈ E[t;σ] ⊂ D[t;σ], we

have

N(f(t)) = NE/F (a0) + · · ·+ (−1)dr(n−1)NE/F (am)NE/C(u)
mxdm.

Proof. The proof follows similarly to the proof of Theorem 3.5.2. As the

entries of ρ(f(t)), Qi,j(x) ∈ D[x], are determined by the relation ti−1f =∑n
j=1Qij(x)t

j−1, 1 ≤ i ≤ n, it follows that

ρ(f(t)) =



P0(x) P1(x) · · · Pn−1(x)

σ(Pn−1(x))ux σ(P0(x)) · · · σ(Pn−2(x))
... . . . ...

σn−m(Pr(x))ux
. . . σn−m(Pr−1(x))

... . . . ...

σn−1(P1(x))ux σn−1(P2(x))ux · · · σn−1(P0(x))


,

where Pi(x) ∈ E[x] for all i. Let {v1, . . . , vd} be a canonical basis for D as a

left E-module. Then

{v1, . . . , vd, v1t, . . . , vdt, . . . vdtn−1}
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is a basis of (D(x), σ̃,ut) as a left module over E(x) and we now analogously

obtain a representation ρ of (D(x), σ̃,ut) by matrices in Mdn(E(x)) with

respect to that basis. This representation is given by an nd × nd matrix

obtained as follows:

Let ω be the representation ofA inMd(E) which is extended to a representation

ofA[x] inMd(E[x]) by setting ω(x) = xId. The d×d block matrices representing

the entries of ρ(f(t)) are inserted for every entry of the previous n× n matrix

(cf. for instance [45, p. 298]) with σ extended to Md(E) by acting entry-wise.

For all a ∈ E, the matrix ω(a) ∈Md(E) is a d× d diagonal matrix given by

a 0 . . . 0

0 γ(a) 0
... . . .

0 0 . . . γd−1(a)


.

As a consequence, we note that ω(aix) = ω(ai)ω(x) = ω(ai)(xId) and ω(aiaj) =

ω(ai)ω(aj) for all ai, aj ∈ E. We extend ω to a representation ofMn(D), where

ω ◦ ρ(f(t)) is equal to



ω(P0(x)) ω(P1(x)) · · · ω(Pn−1(x))

ω(σ(Pn−1)(x))ω(u)xId ω(σ(P0(x))) · · · ω(Pn−2(x))
... . . . ...

ω(σn−m(Pr(x)))ω(u)xId
. . . ω(σn−m(Pr−1(x)))

... . . . ...

ω(σn−1(P1(x)))ω(u)xId ω(σn−1(P2(x)))ω(u)xId · · · ω(σn−1(P0(x)))


.

Hence ω ◦ ρ(f(t)) is a dn× dn matrix in Mdn(E[x]).

As the ω(σj(Pi(x))) are pairwise commutative matrices, we may calculate

the determinant of ω ◦ ρ(f(t)) by first evaluating the n× n determinant with

entries in Md(E), then evaluating the resulting d× d matrix which has entries

in E [6, Lemma 1, p. 546]. Thus we obtain det(ω ◦ ρ(f(t))) = det(H), where

H =ω(P0(x))σ(ω(P0(x))) . . . σ
n−1(ω(P0(x))) + . . .

+(−1)r(n−r)ω(Pr(x))σ(ω(Pr(x))) . . . σn(ω(Pr(x)))ω(u)r(xId)r.
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As each ω(Pi(x)) is a diagonal matrix in Md(E) for all 0 ≤ i ≤ n− 1, H is the

diagonal matrix in Md(E) given by the entries

Hii =γ
i−1[P0(x)σ(P0(x)) . . . σ

n−1(P0(x)) + . . .

+(−1)r(n−1)Pr(x)σ(Pr(x)) . . . σ
n−1(Pr(x))u

r]xr.

Hence

det(H) =
d∏
i=1

γi−1[P0(x)σ(P0(x)) . . . σ
n−1(P0(x)) + . . .

+(−1)m(n−1)Pr(x)σ(Pr(x)) . . . σ
n−1(Pr(x))u

rxr)].

We obtain the constant term of N(f(t)) by substituting x = 0. Thus the

constant term equals

d∏
i=1

γi−1(a0σ(a0) . . . σ
n−1(a0)) =

n∏
i=1

σi−1(a0γ(a0) . . . γ
d−1(a0)),

since γ commutes with σ. As a0 ∈ E, this is equal to ∏ni=1 σ
i−1(NE/C(a0)) =

NC/F (NE/C(a0)) = NE/F (a0). Similarly, the leading term of N(f(t)) is given

by the leading term of

d∏
i=1

γi−1[(−1)r(n−1)Pr(x)σ(Pr(x)) . . . σ
n−1(Pr(x))u

rxr],

which is given by

d∏
i=1

γi−1[(−1)r(n−1)amσ(am) . . . σ
n−1(am)u

r(ux)knxr)]

=(−1)dr(n−1)

 d∏
i=1

γi−1(amσ(am) . . . σ
n−1(am))

NE/C(u)
kn+rxd(kn+r)

since u ∈ E. As σ and γ commute and am ∈ E, we can express this as

(−1)dr(n−1)
[
n∏
i=1

σi−1(amγ(am) . . . γ
d−1(am))

]
NE/C(u)

kn+rxd(kn+r)

=(−1)dr(n−1)
[
n∏
i=1

σi−1(NE/C(am))

]
NE/C(u)

kn+rxd(kn+r)

=(−1)dr(n−1)NC/F (NE/C(am))NE/C(u)
kn+rxd(kn+r).

As kn+ r = m, this implies the assertion.
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Remark 3.5.6. As σ ◦ γ = γ ◦ σ, it follows that

σ(NE/C(u)) = σ(
d∏
i=1

γi−1(u)) =
d∏
i=1

γi−1(σ(u)).

Because u ∈ Fix(σ), we conclude that

σ(NE/C(u)) =
d∏
i=1

γi−1(u) = NE/C(u),

so NE/C(u) ∈ C ∩ Fix(σ) = F . This confirms that N(f(t)) ∈ F [x] in this

case as expected.

Hence we obtain the following results:

Corollary 3.5.7. Let D = (E/C, γ, a) be a cyclic algebra over C of degree

d such that u ∈ E and γ ◦ σ = σ ◦ γ. Let f(t) = a0 + a1t+ · · ·+ amt
m ∈

E[t;σ] ⊂ D[t;σ] be a polynomial such that (f , t)r = 1 and deg(h) = dmn.

Then

N(f) = (−1)dr(n−1)NE/F (am)NE/C(u)
mĥ

and

NE/F (a0) = (−1)dr(n−1)NE/F (am)NE/C(u)
mh0,

where h0 denotes the constant term of ĥ.

Corollary 3.5.8. Let D = (E/C, γ, a) be a cyclic algebra over C of degree

d such that u ∈ E and σ ◦ γ = γ ◦ σ. Let f =
∑m
i=0 ait

i ∈ E[t;σ] ⊂ R be

monic and irreducible of degree m, such that (f , t)r = 1. Let deg(ĥ) = dm

and suppose that all the polynomials similar to f lie in E[t;σ]. If g is a monic

divisor of h in R of degree lm, then

NE/F (g0) = NE/F (a0)
l = (−1)dr(n−1)lNE/C(u)

lmhl0.

We note that these are analogous conditions to the ones obtained via semi-linear

maps; however, we no longer have to assume that σn = id. In addition to this,

we were previously restricted by the intractable condition that the minimal

polynomial of Af must lie in C[x]. The method of using the norm of D(t;σ) is

significantly less restrictive and could even be used for any division algebra D

with a maximal subfield E (not only for cyclic algebras), as shown in Example

3.5.3.
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3.5.3 The case for K[t;σ]

This approach also recovers the results of Section 3.4.1 when R = K[t;σ].

Theorem 3.5.9. Let f(t) = a0 + a1t+ · · ·+ amt
m have degree m. Then

N(f(t)) = NK/F (a0) + · · ·+ (−1)m(n−1)NK/F (am)x
m.

This is the generalized and corrected version of [33, Proposition 1.7.1 (ii)],

which stated (−1)mnNK/F (am)x
m for the leading term, and also required m <

n. Furthermore, our proof fixes a small mistake in the proof of [13, Lemma

2.1.15].

Proof. Write f(t) = a0 + a1t+ · · ·+ amt
m as f(t) = P0(x) + P1(x)t+ · · ·+

Pn−1(x)tn−1 with Pi(x) ∈ K[x]. We can use verbatim the same proof as given

in [13, Lemma 2.1.15] to obtain the matrix in Mn(K[x]) representing the left

multiplication ρ(f(t)) with respect to the basis 1, t, . . . , tn−1: we have

ρ(f(t)) =



P0 Xσ(Pn−1) · · · Xσn−1(P1)

P1 σ(P0) · · · · · ·
... . . . ...

. . .
. . .

... . . . Xσn−1(Pn−1)

Pn−1 · · · · · · σn−1(P0)



.

ThusN(f(t)), which is the determinant of this matrix, has as constant term the

constant term of P0(x)σ(P0(x)) · · ·σn−1(P0(x)), which is a0(x)σ(a0(x)) · · ·σn−1(a0(x)) =

NK/F (a0). There are unique integers k, r, 0 ≤ r ≤ n− 1, such that we can

write m as m = kn+ r. In the sum giving the determinant of this matrix, the

term of highest degree is

(−1)m(n−1)Pr(x)σ(Pr(x)) · · ·σn−r−1(Pr(x))σ
n−r(Pr(x)) · · ·σn−1(Pr(x))X

r.

It has degree m = k(n− r) + (k+ 1)r = kn+ r as polynomial in x. (The proof

of [13, Lemma 2.1.15] forgot to include the factor (−1)m(n−1) here.) Therefore
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3.6 conditions to obtain division algebras and mrd codes

N(f(t)) has as highest term the highest term of this sum. The highest term is

thus given by (−1)m(n−1)amσ(am) · · ·σn−1(am) = (−1)m(n−1)NK/F (am).

Corollary 3.5.10. Let f ∈ R be monic and irreducible of degree m such that

(f , t)r = 1 and deg(ĥ) = m . If g is a monic divisor of h in R of degree lm,

then

NE/F (g0) = NE/F (a0)
l = (−1)m(n−1)lNE/F (am)

lhl0.

3.6 conditions to obtain division algebras and mrd codes

We apply the results about the minimal central left multiple via the norm of

f(t) to determine some conditions to obtain division algebras.

3.6.1 For D[t;σ] where D is a cyclic algebra

We recall when we obtain generalised maximum rank distance codes, as determined

in Theorem 3.3.11.

Theorem 3.6.1 (Theorem 3.3.11). Sn,m,l(ν, ρ, f) = {a+Rh | a ∈ A} ⊂ R/Rh,

where

A = {a0 + a1t+ · · ·+ alm−1t
lm−1 + νρ(a0)t

lm : ai ∈ D}

yields an MRD-code if and only there are no elements g ∈ Sn,m,l(ν, ρ, f) of

degree lm which can be written as g =
∏l
i=1 fi, where fi is similar to f for all

i, i.e. there are no divisors of h of degree lm in A.

We note that this always holds if ν = 0. When ν 6= 0, the results obtained

about divisors of h in the previous sections allow us to improve this statement.

Using the results about the norm of (D(x), σ̃,ux), we have the following:

Theorem 3.6.2. (for f ∈ K[t;σ], K a finite field, cf. [56, Theorem 7]) Let

D = (E/C, γ, a) be a cyclic division algebra over C of degree d such that

σ|E ∈ Aut(E) and γ ◦ σ = σ ◦ γ. Suppose that σn(z) = u−1zu with u ∈ E.
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3.6 conditions to obtain division algebras and mrd codes

Let f(t) = a0 + a1t+ · · ·+ tm ∈ E[t;σ] ⊂ R = D[t;σ] be monic irreducible,

(f , t)r = 1, and let the minimal central left multiple h of f have deg(h) = dmn.

Suppose that all monic fi similar to f lie in E[t;σ]. Then the set

Sn,m,l(ν, ρ, f) = {a+Rh | a ∈ A} ⊂ R/Rh,

where

A = {a0 + a1t+ · · ·+ alm−1t
lm−1 + νρ(a0)t

lm : ai ∈ D},

defines an F ′-linear MRD code in Mdn(Eĥ) with minimum distance dn− l+ 1,

l < dn, if one of the following holds:

(i) ν = 0

(ii) ν 6∈ E and ρ|E ∈ Aut(E).

(iii) ν ∈ E, ρ|E ∈ Aut(E) and

NE/F ′(ν)NE/F ′(a0)
l 6= 1.

This is equivalent to NE/F ′(ν)NF/F ′((−1)dlm(n−1)NE/C(u)
lmhl0) 6= 1.

Note that our global assumption that σn(z) = u−1zu for all z ∈ D, so that

σn(e) = u−1eu = e for all e ∈ E, forces (σ|E)n = id.

Proof. Let C be the code defined by Sn,m,l(ν, ρ, f). AsA has dimension d2nml[F :

F ′] over F ′, this implies that C ⊂ Mdn(Eĥ) has dimension d2nml[F : F ′]

over F ′. The Singleton-like bound implies that the largest possible minimum

distance of C is equal to dn− l + 1, so Sn,m,l(ν, ρ, f) defines an MRD-code if

the set A does not contain a divisor of h of degree lm.

Suppose that A contains a divisor g of h of degree lm. If ν = 0, this is a

contradiction as deg(g) ≤ lm− 1. So assume ν 6= 0. Let gmtm be the highest

coefficient of g, so that g−1
m g is a monic divisor of h. Then g−1

m g = f1 . . . fl for

some irreducible fi ∈ D[t;σ] similar to f . Without loss of generality, we may

assume all fi are monic (as g−1
m g is monic). Additionally, as fi are similar to f

and all monic polynomials similar to f lies in E[t;σ] by assumption, it follows

that g−1
m g ∈ E[t;σ]. Suppose ν 6∈ E and ρ(E) ⊂ E. Since the coefficients of

the gi all lie in E we have gm 6= νρ(g0) which yields a contradiction, and so
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3.6 conditions to obtain division algebras and mrd codes

there is no divisor g of h in A.

Suppose that ν ∈ E× and ρ(E) ⊂ E. By Theorems 3.5.8 and since g−1
m g lies

in E[t;σ], this implies

NE/F (g
−1
m g0) = (−1)dlm(n−1)NE/C(u)

lmhl0 = NE/F (a0)
l,

and in particular, that g0 and gm are both non-zero. Since g ∈ A, we also have

gm = νρ(g0).

Suppose that ν ∈ E× and ρ(E) ⊂ E. Substituting gm = νρ(g0) into the above

equation yields

NE/F (g0) = NE/F (a0)
lNE/F (νρ(g0)).

Applying NF/F ′ to both sides implies that

NE/F ′(g0) = NF/F ′(NE/F (a0)
l)NE/F ′(νρ(g0)).

NowNE/F ′(ρ(g0)) = NE/F ′(g0), so we can cancel the non-zero termNE/F ′(g0)

to obtain 1 = NE/F ′(a0)lNE/F ′(ν).

Corollary 3.6.3. (for f ∈ K[t;σ], K a finite field, cf. [56, Theorem 7]) Let

D = (E/C, γ, a) be a cyclic division algebra over C of degree d such that

σ|E ∈ Aut(E) and γ ◦ σ = σ ◦ γ. Suppose that σn(z) = u−1zu with u ∈ E.

Let f(t) = a0 + a1t+ · · ·+ tm ∈ E[t;σ] ⊂ D[t;σ] be irreducible, (f , t)r = 1,

and let deg(h) = dmn. Suppose that all monic fi similar to f lie in E[t;σ].

Then Sn,m,1(ν, ρ, f) is a division algebra over F ′, if one of the following holds:

(i) ν = 0.

(ii) ν 6∈ E and ρ|E ∈ Aut(E).

(iii) ν ∈ E× and ρ|E ∈ Aut(E), such that

NE/F ′(a0)NE/F ′(ν) 6= 1.

This is equivalent to NE/F ′(ν)NF/F ′((−1)dm(n−1)NE/C(u)
mh0) 6= 1.

This follows from Theorem 3.6.2 by setting l = 1.
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3.6.2 For K[t;σ]

Theorem 3.6.4. (for f ∈ K[t;σ], K a finite field, cf. [56, Theorem 7]) Define

B = Nucr(Sf ). Then the set

Sn,m,l(ν, ρ, f) = {a+Rh | a ∈ A} ⊂ R/Rh,

where

A = {a0 + a1t+ · · ·+ alm−1t
lm−1 + νρ(a0)t

lm : ai ∈ K}

defines an F ′-linear MRD code in Mk(B) with minimum distance k − l + 1,

l < k, if one of the following holds:

(i) ν = 0.

(ii) deg(h) = mn and ν ∈ K such that

NK/F ′(ν)NK/F ′(a0)
l 6= 1.

In this case, the algebra S(ν, ρ,h) defines an F ′-linear MRD-code in Mn(Eĥ)

with minimum distance n− l+ 1.

The proof follows analogously to Theorem 3.6.2, employing Theorem 3.5.10

to attain the result in (ii).

Corollary 3.6.5. (for f ∈ K[t;σ], K a finite field, cf. [56, Theorem 7]) Define

B = Nucr(Sf ). Then B is a division algebra and the algebra Sn,m,1(ν, ρ, f) is

a division algebra if one of the following holds:

(i) ν = 0.

(ii) deg(h) = mn and ν ∈ K such that

NK/F ′(ν) 6= 1/NK/F ′(a0).

In this case, the algebra Sn,m,1(ν, ρ, f) defines an F ′-linear MRD-code inMn(Eĥ)

with minimum distance n.
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3.7 nuclei and code parameters

3.7.1 Characterizing nuclei via spread sets

Let C = C(A) = {La : a ∈ A} ⊆ EndF (A), where La is the left multiplication

map in A, be the spread set of an F -algebra A. It is well-known that isotopic

semifields have isomorphic nuclei. We define the left, respectively, right idealisers

of C as

Il(C) = {Φ ∈ EndF (A) : ΦC ⊆ C}, respectively, Ir(C) = {Φ ∈ EndF (A) : CΦ ⊆ C}.

The centraliser of C is C(C) = {Φ ∈ EndF (A) : ΦM = MΦ ∀M ∈ C}.

Lemma 3.7.1. For a division algebra A over F , we have the following F -algebra

isomorphisms:

(i) Nucl(A) ∼= {La : a ∈ Nucl(A)} ⊆ EndF (A),

(ii) Nucm(A) ∼= {La : a ∈ Nucm(A)} ⊆ EndF (A),

(iii) Z(A) ∼= {La : a ∈ Z(A)} = {Ra : a ∈ Z(A)} ⊆ EndF (A)

This generalizes [56, Proposition 5].

Proof. Since A is a division algebra, L : A→ EndF (A), a 7→ La, is injective.

(i) Restricting L to Nucl(A) yields an F -linear monomorphism with image

{La : a ∈ Nucl(A)} ⊆ EndF (A). For all a, b ∈ Nucl(A), x ∈ A,

Lab(x) = (ab)x = a(bx) = La(Lb(x))

as a ∈ Nucl(A). Hence L(ab) = Lab = La ◦Lb = L(a)L(b), so L restricted to

Nucl(A) is multiplicative. Thus Nucl(A) ∼= {La : a ∈ Nucl(A)}. (ii) follows

as (i) by restricting L to Nucm(A).

(iii) Restricting L to Z(A) yields an F -linear monomorphism with image {La :

a ∈ Z(A)}. As a ∈ Z(A) commutes with all of A, it follows that La = Ra for all

a ∈ C(A). Moreover, as Z(A) ⊂ Nucl(A) it follows that L restricted to Z(A) is

multiplicative by (i). Thus Z(A) ∼= {La : a ∈ Z(A)} = {Ra : a ∈ Z(A)}.
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Lemma 3.7.2. For a division algebra or unital algebra A over F , [Nucr(A) :

F ] = [{Ra : a ∈ Nucr(A)} : F ].

Proof. Consider the map given by right multiplication with a ∈ Nucr(A),

R : Nucr(A) → EndF (A), R(a) = Ra. This is an F -linear vector space

homomorphism with image {Ra : a ∈ Nucr(A)} ⊆ EndF (A). By our assumptions,

it is injective. Thus Nucr(A) ∼= {Ra : a ∈ Nucr(A)} as F -vector spaces.

Theorem 3.7.3. (cf. [56, Proposition 5] for finite fields) Let A be a unital

division algebra and C be the spread set of A. Let C∗ be the the spread set

associated to the opposite algebra Aop. Then

Nucl(A) ∼= Il(C), Nucm(A) ∼= Ir(C), Nucr(A) ∼= C(C∗), C(A) ∼= Il(C)∩C(C).

The proof from [56] holds verbatim.

Let now R = D[t;σ, δ] and f ∈ R be a monic irreducible polynomial of

degree m. Suppose that D is a division algebra of degree d over its center

C. Then the algebras S = Sn,m,l(0, ρ, f) are unital Petit algebras, whose

structure is already well known [44]. In this case, Nucl(S) = Nucm(S) = D,

Nucr(S) = {g ∈ Rm | fg ∈ Rf} is the eigenspace of f , and if S is not

associative then Z(S) = {d ∈ D | dg = gd for all g ∈ S}. Moreover, we have

C ∩ Fix(σ) ∩Const(δ) ⊂ Z(S).

The above results can now be applied to determine the nuclei and center of

the algebras S = Sn,m,l(ν, ρ, f).

3.7.2 Application to our construction

Theorem 3.7.4. Let R = D[t;σ] and deg(h) = dmn. Suppose l ≤ dn/2, n > 1

and lm > 2. Let S = Sn,m,l(ν, ρ, f) and C be the image of S in EndEf
(Vf ),

that means the corresponding matrix code lies in Mn(Eĥ). If ν 6= 0, we have

(i) Il(C) ∼= {g0 ∈ D : g0ν = νρ(g0)} ⊂ D (in particular, Il(C) ∼= Fix(ρ) if

ν ∈ C),

(ii) Ir(C) ∼= Fix(ρ−1 ◦ σlm) ⊂ D,
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(iii) C(C) ∼= Eĥ, Z(C) ∼= F ′.

If ν = 0, we have

(iv) Il(C) ∼= D, Ir(C) ∼= D,

(v) C(C) ∼= Eĥ, Z(C) ∼= F .

Much of the proof works identically to the proof of [56, Theorem 9]; we

sketch the proof to highlight the main differences in this more general case.

The lm = 2 case has to be considered separately, and we can only solve that

when F = R.

Proof. Let C = {La ∈ EndEf
(Vf ) | a ∈ A ⊂ R/Rh} be the image of Sn,m,l(ν, ρ,h)

in EndEf
(Vf ) ⊂ EndF (Vf ). In the following, we identify each element in

EndF (Vf ) with the element g ∈ S that induces it.

Analogously to the proof of [56, Theorem 9], {g ∈ Il(C) : deg(g) ≤ lm} =

{g0 ∈ D : g0ν = νρ(g0)}. If ν = 0, then 1 ∈ C so Il(C) ⊂ C so all g ∈ Il(C)

have degree at most lm.

Consider ν 6= 0. To check there are no elements g ∈ Il(C) of degree higher than

lm, we follow the approach of [56, Theorem 9] and consider gt mod ĥ(u−1tn).

Recalling deg(h) = dm, we have h(t) = (u−1tn)dm+ · · · = u−dm[tn+h′dm−1t
(dm−1)n+

· · ·+ h′0] so

gt mod h(t) =
dmn−1∑

i=0
gi−1t

i

− gdmn−1u
dm

dm−1∑
j=0

h′jt
nj

 .

As g ∈ Il(C), this implies gt mod h ∈ C, so for all i ∈ {lm+ 1, . . . , dmn− 1},

we have

gi−1 =


0 for i 6≡ 0 mod n

gdmn−1u
dmh′i/n for i ≡ 0 mod n

(2)

where h′i/n = 0 if i/n is not an integer. It suffices to show that gdmn−1 = 0 and

thus deg(g) ≤ lm− 1. As lm > 2, this follows verbatim from [56, Theorem 9].

The same holds for Ir(C) following Sheekey’s proof with the appropriate

amendments made for D[t;σ]. The results for C(C) and Z(C) hold verbatim

from [56, Theorem 9].
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Theorem 3.7.5. Let R = K[t;σ] and deg(h) = mn. Suppose l ≤ n/2, n > 1

and lm > 2. Let S = Sn,m,l(ν, ρ, f) with ν 6= 0 and C be the image of S in

EndEf
(Vf ), so that the corresponding matrix code lies in Mn(Eĥ). Then

(i) Il(C) ∼= Fix(ρ) ⊂ K, Ir(C) ∼= Fix(ρ−1 ◦ σlm) ⊂ K,

(ii) C(C) ∼= Eĥ, Z(C) ∼= F ′.

If ν = 0, we have

(iii) Il(C) ∼= K, Ir(C) ∼= K,

(iv) C(C) ∼= Eĥ, Z(C) ∼= F .

Again, the proof is analogous to the one of [56], Theorem 9. We note that it

does not use the fact that for finite fields the right nucleus of Sf is Eĥ. It only

uses that R/Rh has center Eĥ.

Theorems 3.7.4 and 3.7.5 generalize [56, Theorem 9], which was proved for

finite fields only. The following results generalize [56, Corollary 1], which was

proved for semifields, and follow as direct consequences of the above theorems:

Corollary 3.7.6. Let R = D[t;σ] and deg(h) = dmn. Suppose n > 1, m > 2

and S = Sn,m,1(ν, ρ, f) with ν 6= 0 be a division algebra. Then

(i) Nucl(S) ∼= {g0 ∈ D : g0ν = νρ(g0)} ⊂ D,

(ii) Nucm(S) ∼= Fix(ρ−1 ◦ σm) ⊂ D,

(iii) Z(S) ∼= Fix(ρ) ∩ F = F ′.

(iv) dimF ′Nucr(S) = dimF ′(Eĥ) = deg(ĥ)[F : F ′] = [F : F ′]dm.

In particular, we have Nucl(S) = Fix(ρ) ⊂ D, if ν ∈ C.

Corollary 3.7.7. Let R = K[t;σ] and deg(h) = mn. Suppose that n > 1,

m > 2 and that S = Sn,m,1(ν, ρ, f) is a division algebra with ν 6= 0. Then

(i) Nucl(S) ∼= Fix(ρ) ⊂ K,

(ii) Nucm(S) ∼= Fix(ρ−1 ◦ σm) ⊂ K,

(iii) Z(S) ∼= Fix(ρ) ∩ F = F ′.

(iv) dimF ′Nucr(S) = dimF ′(Eĥ) = deg(ĥ)[F : F ′] = [F : F ′]m.
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3.8 examples of division algebras and mrd codes

3.8.1 K = F (θ) and f(t) = tn − θ

Let K = F (θ) be an extension of prime degree n. Choose f(t) = tn − θ, then

f is an irreducible polynomial in K[t;σ]. Note that we know the following:

• f(t) = t3− θ ∈ K[t;σ] is irreducible if and only if θ 6= σ2(z)σ(z)z for all

z ∈ K.

• Suppose F contains a primitive nth root of unity. Then f(t) = tn − θ ∈

K[t;σ] is irreducible if and only if θ 6= σn−1(z) · · ·σ(z)z for all z ∈ K.

Define

h(t) = (tn − θ)(tn − σ(θ)) · · · (tn − σn−1(θ)) = (tn)n + · · ·+ (−1)nNK/F (θ).

As tn − σi(θ) ∈ K[tn], the factors of h(t) are commutable and h(t) ∈ K[tn].

Since

σ(h(t)) = (tn − σ(θ)) · · · (tn − σn−1(θ))(tn − θ) = h(t),

we know that h(t) ∈ Fix(σ)[t] = F [t] so h(t) ∈ F [t] ∩K[tn] = F [tn] = Z(R).

Hence h(t) = ĥ(tn) with ĥ(x) = xn + · · ·+ (−1)nNK/F (θ) ∈ F [x]. As n is

prime, the minimal central left multiple of f must have degree deg(f) = n

in F [x] by Theorem 3.2.10 (taking d = 1); thus indeed h(t) = mclm(f) and

hence ĥ(x) = xn + · · ·+ (−1)nNK/F (θ) is an irreducible polynomial in F [x].

Ef = {z +Rf : z ∈ F [tn]} is generated (as a field) by

{1+Rf , tn+Rf , t2n+Rf , . . . , tn(n−1)+Rf} = {1+Rf , θ+Rf , θ2 +Rf , . . . , θn−1 +Rf}

over F . As K is generated by {1, θ, . . . , θn−1}, there is a canonical isomorphism

Ef −→ K, a+Rf 7→ a. It is clear that {1 +Rf , t+Rf , . . . , tn−1 +Rf} is an

Ef -basis for Vf .
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Let a = a0 + a1t+ · · ·+ aln−1t
ln−1 + νρ(a0)tln ∈ Sn,n,l(ν, ρ, f). In order to

determine Ma, we consider how Laiti
acts on the basis elements of Vf . As left

multiplication is distributive, i.e. La+b(x) = La(x) + Lb(x), it follows that

La =
ln∑
i=0

Laiti
,

where aln = νρ(a0). For each i, let i = kn+ i0 for some i0 < n. Then the left

multiplication map Laiti
acts on each basis element of Vf as follows:

Laiti
(1 +Rf) =ait

i0θk +Rf = (ti0 +Rf)(σn−i0(ai)θ
k +Rf)

Laiti
(t+Rf) =ait

i0+1θk +Rf = (ti0+1 +Rf)(σn−i0−1(ai)θ
k +Rf)

... ...

Laiti
(tn−i0 +Rf) =ait

k(n+1) +Rf = aiθ
k+1 +Rf = (1 +Rf)(aiθ

k+1 +Rf)

Laiti
(tn−i0+1 +Rf) =ait

k(n+1)+1 +Rf = aitθ
k+1 +Rf = (t+Rf)(σ(ai)θ

k+1 +Rf)

... ...

Laiti
(tn−1 +Rf) =ait

i0−1θk+1 +Rf = (ti0−1 +Rf)(σn−i0+1(ai)θ
k+1 +Rf).

Thus we obtain a matrix representing Laiti
, given by

Maiti =



0 · · · 0 σn−i0(ai)θk 0 · · · 0

0 · · · 0 0 σn−(i0+1)(ai)θk · · · 0
...

. . . . . .
...

0
. . . σ(ai)θk

aiθ
k+1 . . . 0

0
...

. . . . . .
...

0 · · · σn−(i0−1)(ai)θk+1 0 0 · · · 0



.

As Ma =
∑n
i=0Maiti

, we obtain Ma = (mi,j)i,j where

mi,j =



[
∑l−1
p=0 σ

n+1−i(apn)θp] + σn+1−i(νρ(a0))θl for i = j,

[
∑l−1
p=0 σ

n+1−i(apn+(i−j))θ
p] for i > j,

[
∑l
p=1 σ

n+1−i(apn+(i−j))θ
p] for i < j.
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This yields C(S) = {Ma | ak ∈ K for k = 0, 1, . . . , ln− 1} ⊂ Mn(K) as a

matrix spread set of a ln2[F : F ′]-dimensional F ′-algebra. By Theorem 3.6.4,

this yields an MRD code when

NK/F ′(ν)NK/F ′(θ)
l 6= 1.

If l = 1, we obtain Ma = (mi,j)i,j where

mi,j =



σn+1−i(a0) + σn+1−i(νρ(a0))θ for i = j,

σn+1−i(ai−j) for i > j,

σn+1−i(an+i−j)θ for i < j.

The algebra associated to this spread set will be a division algebra if

NK/F ′(θ)NK/F ′(ν) 6= 1.

In particular, for ν = 0 this condition is satisfied for any irreducible f(t) =

tn − θ. This is the well known result that for every irreducible f the Petit

algebra Sf is a division algebra and so are all its isotopes.

For m,n > 2, Corollary 3.7.7 yields

Nucl(S) = Nucm(S) = Fix(ρ) ⊂ K,

C(S) = F ′, dimF ′Nucr(S) = [F : F ′]m.

3.8.2 Real division algebras of dimension 4

Over a finite field F , all division algebras of dimension 4 over F which have F as

their center and a nucleus of dimension 2 over F , can be constructed as algebras

Sn,m,1(ν, ρ, f) for suitable parameters [56]. Let us now look at the division

algebras we obtain with our construction over R. Let ĥ(x) = x2 + b2 ∈ R[x].

Then h(t) = ĥ(t2) is the minimal central left multiple of f(t) = t2− bi ∈ C[t; ],

as h(t) = t4 + b2 = (t2 + bi)(t2 − bi).

For all b ∈ R, f(t) = t2 − bi is irreducible in C[t; ]. For every irreducible

f(t) = t2− bi, and ν ∈ C such thatNC/R(ν) 6= 1
b2 , we obtain a four-dimensional
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real division algebra S = S2,2,1(ν, ρ, f) and an MRD code given by its matrix

spread set

C(S) =
{z0 + νρ(z0)bi z1bi

z1 z0 + νρ(z0)bi

 | z0, z1 ∈ C

}
,

where ρ is either the identity or the complex conjugation and ν ∈ C.

As mentioned in Theorem 3.7.2, [56, Theorem 9] cites results from the

literature to deal with the case when lm = 2. These are only valid over finite

fields, but we can extend Theorem 3.7.2 to R:

Theorem 3.8.1. Let R = C[t; ] and f(t) = t2 − bi ∈ R. Suppose S =

S2,2,1(ν, ρ, f) is a division algebra for some ν 6= 0 and ρ ∈ AutR(C). Then

(i) Nucl(S) = Nucm(S) = Fix(ρ),

(ii) Z(S) = R,

(iii) dimR(Nucr(S)) = dimR(R[t2]) = 2.

Proof. Since f(t) = t2 − bi ∈ R we have h(t) = t4 + b2 ∈ R[t2]. Suppose

g+Rh ∈ Il(C) for some g(t) = g0 + g1t+ g2t2 + g3t3 ∈ R. Then ga ∈ S(ν, ρ, f)

for all a ∈ S. Direct and laborious computation yields g2 = 0, g3 = −g1ν, and

νρ(g0a0− b2g1νa1) = g0νρ(a0) + g1a1. This is satisfied for all a0, a1 ∈ C if and

only if νρ(g0) = g0ν and g1 = νρ(b2g1ν).

Suppose g1 6= 0. Taking norms, we have

NC/R(g1) = NC/R(ν
2b2g1).

This simplifies to NC/R(νb)
2 = 1. As NC/R(a) ≥ 0 for all a ∈ C, it follows that

NC/R(νb) = 1; as S is a division algebra, this is a contradiction by Theorem

3.4.8. Hence g1 = 0 so g = g0 and it follows that Nucl(S) = Fix(ρ).

The computations for Ir(C) follow analogously and Z(C) and C(C) follow

from the proof of [56, Theorem 4]. We obtain the final result on the nuclei

using Theorem 3.7.3 to relate the idealisers and centraliser of C to the nuclei of

the algebra S.

If ν = 0, then NC/R(ν) = 0 and we will obtain algebras isotopic to real Petit

division algebras; this is true for any choice of irreducible f(t) = t2 − bi. If

ν 6= 0, any choice of f(t) also yields division algebras by Theorem 3.6.5.
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For example, if we let f(t) = t2− bi we obtain division algebras for all ν ∈ C

such that NC/R(ν) 6= 1/b2.

If ν 6= 0 and S is a division algebra, it follows that

Nucl(S) = Nucm(S) =


C, if ρ = id

R, if ρ =

C(S) = R,

dimR(Nucr(S)) = 2.

Since Nucr(S) is a two-dimensional division algebra over R, it is an Albert

isotope of C and can be found in the classification given in [30, Theorem 1]:

C( , ), C(1+L(v) , ), C( ,1+L(v) ), C(1+L(v) ,1+L(w) ), with v,w ∈ C suitably

chosen.

Note that the four-dimensional algebras in the first class are all isotopes of

nonassociative quaternion algebras.

3.9 constructing algebras using f ∈ D[t; δ]

We now briefly consider the same construction using differential polynomial

rings. Let D be a finite-dimensional division algebra over its center C and C a

field of characteristic p. Let R = D[t; δ], where δ is a derivation of D, such that

δ|C is algebraic with minimum polynomial g(t) = tp
e
+ c1tp

e−1
+ · · ·+ cet ∈

F [t] of degree pe, with F = C ∩ Const(δ). Then g(δ) = idd0 is an inner

derivation of D. W.l.o.g. we choose d0 ∈ F , so that δ(d0) = 0 [33, Lemma

1.5.3]. Then

C(D[t; δ]) = F [x] = {
k∑
i=0

ai(g(t)− d0)
i | ai ∈ F}

with x = g(t)− d0. The two-sided f ∈ D[t; δ] are of the form f(t) = uc(t)

with u ∈ D and c(t) ∈ Z(R) [33, Theorem 1.1.32]. All polynomials f ∈ R are

bounded.
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3.9.1 The minimal central left multiple of f ∈ D[t; δ]

For every f ∈ R = D[t;σ], the minimal central left multiple of f in R is defined

to be the unique polynomial of minimal degree h ∈ Z(R) = F [x] such that

h = gf for some g ∈ R, and such that h(t) = ĥ(g(t)− d0) for some monic

ĥ(x) ∈ F [x]. For any f ∈ R = D[t; δ], the bound f∗ is the unique minimal

central left multiple of f up to some scalar.

Lemma 3.9.1. Let f ∈ R = D[t; δ], then the minimal central left multiple of

f exists and is unique. It is equal to f∗ up to a scalar multiple in D×.

Proof. Let f∗ be a bound of f . Then f∗ is unique up to scalar multiplication

by elements in D× and Rf∗ is the largest two-sided ideal of R contained in

the left ideal Rf . Since f∗ is two-sided, we know that f∗(t) = dc(t) for some

c(t) ∈ Z(R) and d ∈ D×. So assume w.l.o.g. that f∗ ∈ Z(R). The rest of the

proof is identical to the one of Lemma 3.2.4.

From now on let f ∈ R = D[t; δ] be a monic irreducible polynomial of degree

m and let h(t) = ĥ(g(t)− d0) be its minimal central left multiple. Then ĥ(x)

is irreducible in F [x] and h generates a maximal two-sided ideal Rh in R [33,

p. 16]. We have

Z(R/Rh) ∼= F [x]/F [x]ĥ(x)

[32, Proposition 4], deg(h) = pedeg(ĥ), and define Eĥ = F [x]/F [x]ĥ(x).

Recall that Sf is defined as the set Rm = {g ∈ D[t; δ] | deg(g) < m} together

with the usual addition and the multiplication

g ◦ h =


gh if deg(g) + deg(h) < m,

gh modrf if deg(g) + deg(h) ≥ m.

Theorem 3.9.2. [42] Nucr(Sf ) is a associative division algebra over Eĥ =

Z(R/Rh) of degree s = dpe/k, where k is the number of irreducible factors of

h in R, and

R/Rh ∼= Mk(Nucr(Sf )).
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In particular, this means that deg(ĥ) = dm
s , deg(h) = km = dpem

s , and

[Nucr(Sf ) : F ] = s2 · dm
s

= dms.

Moreover, s divides gcd(dm, dpe). If f is not right invariant, then k > 1 and

s 6= dpe.

We know that [Sf : F ] = [Sf : C]pe = d2m · pe. Since Nucr(Sf ) is a

subalgebra of Sf , comparing dimensions we obtain that [Sf : Nucr(Sf )] = k.

If f is not right-invariant, again [Sf : Nucr(Sf )] = k > 1.

3.9.2 The construction with f ∈ D[t; δ]

Define B = Nucr(Sf ). As f is irreducible, ĥ is irreducible. For each z(t) =

ẑ(g(t) − d0) ∈ F [g(t) − d0] with ẑ ∈ F [x], we have z ∈ Rf if and only if

z ∈ Rh. Let

Vf = {a+Rf | a ∈ R = D[t; δ]} = R/Rf

be the R-module defined by factoring out the maximal left ideal Rf and let

Ef = {z(t) +Rf | z(t) = ẑ((g(t)− d0)) ∈ F [(g(t)− d0)]}.

Together with the multiplication (x + Rf) ◦ (y + Rf) = (xy) + Rf for all

x, y ∈ F [(g(t)− d0)], Ef is a field extension of F of degree deg(ĥ) isomorphic

to Eĥ. Let k be the number of irreducible factors of h. Then Vf is a right

B-module of dimension k via the scalar multiplication given by Vf ×B −→ Vf ,

(a+Rf)(z +Rf) = az +Rf ∈ Vf for all z ∈ F [(g(t)− d0)] and a ∈ R. We

identify Vf with Bk via a canonical basis.

Lemma 3.9.3. For each z(t) = ẑ(g(t)− d0) ∈ F [g(t)− d0] with ẑ ∈ F [x], we

have z ∈ Rf if and only if z ∈ Rh.

Lemma 3.9.4. Ef = (Ef , ◦) is a field and isomorphic to Eĥ. Thus Ef is a

field extension of degree deg(ĥ).

77



3.9 constructing algebras using f ∈ D [t; δ ]

Proposition 3.9.5. Let k be the number of irreducible factors of h. Then

Vf is a right B-module of dimension k via the scalar multiplication given by

Vf ×B −→ Vf ,

(a+Rf)(z +Rf) = az +Rf ∈ Vf

for all z ∈ F [(g(t)− d0)] and a ∈ R. Thus, we can identify Vf with Bk via a

canonical basis.

All the proofs of the above results are identical to their analogues using

D[t;σ].

For some ν ∈ D× and ρ ∈ Aut(D), define F ′ = Fix(ρ)∩F . We assume from

now on that F/F ′ is finite-dimensional. Let k be the number of irreducible

factors of h(t), and s the degree of the right nucleus of Sf over Eĥ. We assume

f is not right-invariant which yields k > 1.

Let l < k = dpe/s. Define the set Spe,m,l(ν, ρ, f) = {a+ Rh | a ∈ A} ⊂

R/Rh, where

A = {a0 + a1t+ · · ·+ alm−1t
lm−1 + νρ(a0)t

lm | ai ∈ D} ⊂ D[t; δ].

Spe,m,l(ν, ρ, f) is a vector space over F ′ of dimension d2pem[F : F ′]. We identify

each element of Spe,m,l(ν, ρ, f) with a map in EndB(Vf ) as follows: For each

a ∈ Spe,m,l(ν, ρ, f) let La : Vf → Vf be the left multiplication map La(b +

Rf) = ab + Rf . La is a B-linear map. Let Ma be the matrix in Mk(B)

representing La with respect to an B-basis of Vf . As before, we will denote the

image of S = Spe,m,l(ν, ρ, f) in Mk(B) by

C(S) = {Ma | a ∈ Spe,m,l(ν, ρ, f)}.

For l = 1, this construction again yields algebras over F ′. As with D[t;σ],

we can relate Spe,m,1(ν, ρ, f) to Rm = {g ∈ R | deg(g) < m} endowed with the

multiplication

a(t) ◦ b(t) = (a(t) + νρ(a0)t
m)b(t) modr(f).
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Example 3.9.6. Let R = D[t; δ] and f(t) = t+ c for some c ∈ D. For some

ν 6= 0 and ρ ∈ Aut(D), Spe,1,1(ν, ρ, f) = (D, ◦) has multiplication

x ◦ y =(x+ νρ(x)t)y)modrf

=xy+ νρ(x)yt+ νρ(x)δ(y)modrf

=xy+ νρ(x)(δ(y)− yc)

for all x, y ∈ D. Suppose y ∈ F×. As F ⊂ Const(δ), it follows that x ◦ y =

xy − νρ(x)yc = (x − νρ(x)c)y for all x, y ∈ D, Hence if x = νρ(x)c for

some x ∈ D, (D, ◦) is not a division algebra. Moreover, if [D : F ′] is finite

dimensional and ND/F ′(νc) = 1 then (D, ◦) is not a division algebra. This

gives us hope that there may be a analogous result to the one given in Example

3.3.6, i.e. (D, ◦) is a division algebra if and only if ND/F ′(νc) 6= 1.

Proposition 3.9.7. Let f ∈ D[t; δ] be irreducible and deg(h) = km. Let

B = Nucr(Sf ). For all a+Rh ∈ R/Rh, we have

dimB(im(LA)) = k2 − k

m
deg(gcrd(a, ĥ(g(t)− d0))).

Moreover, the column rank of Ma is equal to k− 1
mdeg(gcrd(a, ĥ(g(t)− d0)).

Corollary 3.9.8. Let f ∈ D[t; δ] and deg(h) = dmpe. For all a+Rh ∈ R/Rh,

we have rank(Ma) = dpe − 1
mdeg(gcrd(a, ĥ(g(t)− d0))).

The proofs are again analogous to the case where R = D[t;σ]. Consequently,

we obtain the following result:

Theorem 3.9.9. Spe,m,l(ν, ρ, f) is a division algebra if and only if there are

no divisors of h in Spe,m,1(ν, ρ, f). More generally, Spe,m,l(ν, ρ, f) yields an

MRD-code if and only if it contains no divisors of h of degree lm.

Recall that for B a non-commutative division ring, we define MRD codes

in Mk(B) by d(A,B) = colrank(A− B) for all A,B ∈ Mk(B). The above

theorem can be rewritten equivalently into two cases:

Theorem 3.9.10. Spe,m,l(ν, ρ, f) yields an MRD-code if and only there are no

elements g ∈ Spe,m,l(ν, ρ, f) of degree lm which can be written as g =
∏l
i=1 fi,
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where fi is similar to f for all i. Thus if ν = 0, Spe,m,l(ν, ρ, f) is an MRD

code with minimum distance k− l+ 1.

Corollary 3.9.11. Let f be an irreducible monic polynomial of degree m.

Suppose that A = {a0 + a1t+ · · ·+ am−1tm−1 + νρ(a0)tm : ai ∈ D} ⊂ R.

(i) If a ∈ A is reducible, then a is not a left zero divisor of Spe,m,1(ν, ρ, f).

(ii) If ν = 0 then (Rm, ◦) is a division algebra over F ′, which for m ≥ 2 is a

(unital) Petit algebra.

(iii) If A does not contain any polynomial similar to f , then (Rm, ◦) is a division

algebra over F ′.

3.9.3 The norm of f ∈ D[t; δ]

Unless otherwise specified, let D be a associative division algebra over C with

C a field of characteristic p. We also suppose D has a maximal subfield E

of degree d and R = D[t; δ]. Define the ring of central quotients of R as

D(t; δ) = {f/g | f ∈ R, g ∈ Z(R)}, with centre C(D(t; δ)) = Quot(Z(R)) =

F (x), where x = g(t) = d0. Let δ̃ be the extension of δ to D(x) such that

δ̃ = idt|D(x). Then D(t; δ) is a central simple F (x)-algebra, more precisely

we have D(t; δ) ∼= (D(x), δ̃, d0 + x), i.e. D(t; δ) is a generalized differential

algebra.

Let N be the reduced norm of D(t; δ). For all f ∈ R, N(f) ∈ F [x] and f

divides N(f). We give an analogue of Theorem 3.5.2 for D[t; δ]:

Theorem 3.9.12. Let D have a subfield E of degree d and let ω : D →Md(E)

be the left regular representation of D. Then for any f ∈ R of degree m,

N(f) = ±det(ω(am))p
e

xdm + . . .

In particular, N(f) has degree dm.

The proof follows analogously to the proof of Theorem 3.5.2.
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Corollary 3.9.13. Let D = (E, δ0, a) be a differential algebra, δ|E be a derivation

on E, and let f ∈ D[t; δ] be monic with coefficients in E. Then N(f(t)) =

±xdm + . . . .

Proof. Through direct computations of the left regular representation of D, we

see that for each a ∈ E, ω(a) is a lower triangular matrix with each entry on

the lead diagonal equal to a. Hence the result follows analogously to Theorem

3.5.5.

As the bound of f has degree dm in F [x], it follows that N(f) is equal to

the bound of f . Thus if deg(ĥ) = dm, we conclude that ĥ(x) = αN(f) for

some α ∈ D×.

3.9.4 The norm of f ∈ K[t; δ]

Consider the special case where d = 1, i.e. R = K[t; δ] for some field extension

K/F .

Theorem 3.9.14. (i) For all f ∈ R we have N(f) ∈ F [x] and f divides N(f).

(ii) If f(t) = a0 + a1t+ · · ·+ amt
m ∈ R = K[t; δ] has degree m, then

N(f(t)) = (−1)m(pe−1)ap
e

mx
m + . . . .

Proof. (i) By an analogous argument as given in the proof of Proposition 3.5.1,

the set {1, t, . . . , tpe−1} is a basis for (K(x), δ̃,x) over K(x). We obtain a

representation ρ of A by matrices in Mpe(K[x]) by writing

ti−1a =
pe∑
j=1

ρij(a)t
j−1, 1 ≤ i ≤ pe

for each a ∈ R, where ρij(a) is the (i, j)th entry of ρ(a). Thus det(ρ(f(t))) ∈

K[x] ∩ F (x) = F [x]. This shows that N(f) ∈ F [x] as claimed in [33, p.31].

Similarly, it can be shown that all the coefficients of the characteristic polynomial

of ρ(f(t)) are contained in F [x] (cf. also [45, Proposition, p. 295]) and thus

f(t)] ∈ R by [33, (1.6.12)]. Since N(f(t)) = f(t)f(t)] = f(t)]f(t) [33,
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(1.6.13)], it follows that f(t) divides N(f).

(ii) Write m = kpe + r for integers k, r with 0 ≤ r < pe. Let x = g(t) =

tp
e
+ g0(t). Substituting tpe

= x− g0(t), we obtain f(t) = P0(x) + P1(x)t+

· · ·+ Ppe−1(x)tp
e−1 ∈ K[x][t;σ] for some Pi(x) ∈ K[x] with

deg(Pi(x)) ≤


k for i ≤ r,

k− 1 for i > r.

and Pr(x) = amX
k + . . . . We obtain the matrix

ρ(f(t)) =


Q1,1(x) · · · Q1,pe(x)

... ...

Qpe,1(x) · · · Qpe,pe(x)


for some Qi,j(x) ∈ K[x], where

deg(Qi,j) =


deg(Pj−i) for i ≤ j,

deg(Ppe+j−i) + 1 for i > j.

Comparing the above equation with the expressions for Pi(x), it follows that

deg(Qi,j) ≤



k− 1 for i ≤ j and j − i > r,

k for i ≤ j ≤ m0 + i or j < i < pe − r+ j,

k+ 1 for i > j and i− j ≥ pe − r.

with Qi,j(x) = amx
k + . . . for j − i = r and Qi,j(x) = amx

k+1 + . . . for

i− j = pe − r.

This means the bottom left r × r minor of ρ(f(t)) has elements of degree at

most k + 1 in lower triangular entries (including the diagonal which attains

this maximum degree) and the top right pe − r × pe − r minor of ρ(f(t)) has

elements of degree at most k − 1 in the upper triangular entries (excluding

the diagonal which has elements of exactly degree k). Every other element of

ρ(f(t)) has degree at most k.
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We follow a similar technique as in Proposition 3.5.9. To determine the

lead coefficient of N(f(t)) = det(ρ(f(t))), we see that the highest term of

det(ρ(f(t))) is the leading term of

(−1)r(p
e−1)

pe−r∏
i=1

Qi,r+i ·
pe∏

i=pe−r+1
Qi,r+i−pe .

By directly computing ti−1f(t) =
∑pe

j=1Qi,j(x)t
j−1, 1 ≤ i ≤ pe, we determine

that for 1 ≤ i ≤ pe − r, Qi,r+i(x) = amx
k + . . . , and for pe − r + 1 ≤ i ≤ pe,

Qi,r+i−pe(x) = amx
k+1 + . . . . Hence, we have

N(f(t)) = (−1)r(p
e−1)ap

e

mX
k(pe−r)+(k+1)r + . . .

= (−1)r(p
e−1)ap

e

mX
m + . . .

Now m(pe − 1) = (kpe + r)(pe − 1) = kpe(pe − 1) + r(pe − 1). But pe(pe − 1)

is always even, so (−1)m(pe−1) = (−1)kpe(pe−1)(−1)r(pe−1) = (−1)r(pe−1).

We note that this actually implies that N(f(t)) = ap
e

mx
m + . . . : if p is odd,

(−1)m(pe−1) = 1. If p is even, we note that C has characteristic p = 2 so in

fact −1 = 1.

Remark 3.9.15. The constant term in Theorem 3.9.14 is much more difficult

to compute. With R = K[t; δ], consider the following examples:

1. Let pe = 5, f(t) = t4 + a for some a ∈ K×, and g(t) = t5 + t. Computing

ρ(f(t)) yields

a 0 0 0 1

δ(a) + x a− 1 0 0 0

δ2(a) 2δ(a) + x a− 1 0 0

δ3(a) 3δ2(a) 3δ(a) + x a− 1 0

δ4(a) 4δ3(a) 6δ2(a) 4δ(a) + x‘ a− 1


.

83



3.9 constructing algebras using f ∈ D [t; δ ]

Setting x = 0 and taking the determinant of ρ(f(t)) gives the constant

term of N(f(t)); in this case, we obtain that the constant term is equal

to

a5 − 4a4 + a3[6 + δ4(a)]− a2[4 + 3δ4(a) + 8δ(a)δ3(a) + 6δ2(a)2]

+ a[1 + 3δ4(a) + 12δ2(a)216δ(a)δ3(a) + 36δ(a)2δ2(a)]

− [δ4(a) + 8δ(a)δ3(a) + 6δ2(a)2 + 36δ(a)2δ2(a) + 24δ(a)4].

2. Let pe = 5, f(t) = t5 + g1t+ a for some a ∈ K×, and g(t) = t5 + g1t.

We see that ρ(f(t)) is a lower triangular matrix with determinant

N(f(t)) = (x+ a)5 = x5 + 5ax4 + 10a2x3 + 10a3x2 + 5a4x+ a5,

so the constant term is simply a5.

The second example above motivates a family of special cases where N(f(t))

can be easily computed in its entirety:

Proposition 3.9.16. Let R = K[t; δ] with centre F [x] ∼= F [g(t)]. For f(t) =

g(t) + a for some a ∈ K, N(f(t)) = (x+ a)p
e.

Proof. Following the proof of Proposition 3.9.14, we substitute x = g(t) so

f(t) = x + a ∈ K[x][t; δ]. Computing the left regular representation ρ :

K[t;σ]→Mpe(K[x]), it follows that ρ(f(t)) is a lower triangular matrix where

each diagonal entry is equal to x+ a. As the determinant of a triangular matrix

is the product of its diagonal entries, the result follows.

3.9.5 Obtaining division algebras and MRD codes

Theorem 3.9.17. Spe,m,l(ν, ρ, f) yields an MRD-code inMk(B) with minimum

distance k− l+ 1 if and only there are no divisors of h in Spe,m,l(ν, ρ, f). This

occurs if:

(i) ν = 0,

(ii) there are no elements g ∈ Spe,m,l(ν, ρ, f) of degree lm which can be written

as g = ∏l
i=1 fi, where fi is similar to f for all i.
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Recall that when l = 1, this is the same as determining when Spe,m,1(ν, ρ, f)

yields a division algebra.

Corollary 3.9.18. Spe,m,l(ν, ρ, f) yields an MRD-code inMdpe(Eĥ) with minimum

distance dpe− l+ 1 if and only there are no divisors of h in Spe,m,l(ν, ρ, f). This

occurs if:

(i) ν = 0,

(ii) there are no elements g ∈ Spe,m,l(ν, ρ, f) of degree lm which can be written

as g = ∏l
i=1 fi, where fi is similar to f for all i.

As a consequence of this, Spe,m,l(0, ρ, f) always yields an MRD-code in

Mk(B). When ν 6= 0, we may consider N(f(t) as before. There is more

work to be done in this area, e.g. to determine the constant term of N(f(t)) in

all cases, but small cases may be done via direct computation as shown above.

However, we may generally say the following:

Proposition 3.9.19. Let f be monic irreducible of degree m. If g is a divisor

of h, then g is divisor of N(f(t)). Hence Spe,m,l(ν, ρ, f) yields an MRD-code

if there are no divisors of N(f(t)) of degree lm in Spe,m,l(ν, ρ, f).

Once a division algebra or MRD code is obtained, the nuclei of the algebras

and the parameters of the codes still need to be calculated. This would form

the focus of some future research, in order to determine whether the division

algebras we obtain may be isomorphic to those obtained via some other method.
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4
A GENERAL ISAT ION OF DICKSON ’ S DOUBL ING

PROCESS

4.1 a generalized cayley-dickson doubling process

In the second half of the thesis, we now consider a new family of constructions

which arise from the following construction:

Definition 4.1.1. Let F be a field and S an F -vector space which becomes

an F -algebra via the multiplications ∗i, i = 1, 2, 3, 4. Define the generalized

(orthogonal) Cayley-Dickson doubling Cay(S, ∗1, ∗2, ∗3, ∗4) = S ⊕ S via

(u, v)(u′, v′) = (u ∗1 u′ + v ∗2 v′,u ∗3 v′ + v ∗4 u′)

for all u,u′, v, v′ ∈ S.

Even in this generality, we can determine some properties about the algebras

we obtain:

Lemma 4.1.2. A = Cay(S, ∗1, ∗2, ∗3, ∗4) has an identity element 1A = (1S , 0)

if and only if 1S is the identity element in (S, ∗1), a left identity in (S, ∗3), and

a right identity in (S, ∗4).

Proof. Suppose A has an identity element 1A = (u, v). Then for all x, y ∈ S

(u, v)(x, y) = (x, y),

which implies u ∗1 x+ v ∗2 y = x and u ∗3 y+ v ∗4 x = y, and

(x, y)(u, v) = (x, y),
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4.1 a generalized cayley-dickson doubling process

which similarly implies x ∗1 u+ y ∗2 v = x and x ∗3 v+ y ∗4 u = y.

If x = 0, this implies v ∗2 y = 0 for all y ∈ S, so we must have v = 0. Thus we

obtain

u ∗1 x = x ∗1 u = x

for all x ∈ S, so u is the identity element of S = (S, ∗1).

Further, we have u ∗3 y = y for all y ∈ S, so u is a left identity of (S, ∗3).

Similarly we have y ∗4 u = y for all y ∈ S, so u is a right identity of (S, ∗4).

Conversely, suppose 1S is the identity in (S, ∗1), a left identity in (S, ∗3), and

a right identity in (S, ∗4) and define 1A = (1S , 0). Then we have

(1S , 0)(u, v) = (1S ∗1 u, 1S ∗3 v) = (u, v)

and

(u, v)(1S , 0) = (u ∗1 1S , v ∗4 1S) = (u, v),

so 1A is a identity element in A.

Definition 4.1.3. Let f ∈ Gl(S) and S be an algebra with a nondegenerate

multiplicative norm N = NS . Then f is a similarity of N if, for all u ∈ S,

N(f(u)) = aN(u) for some a ∈ F×. If a = 1, f is called an isometry of

N . Denote the set of similarities and isometries of N as S(N) and O(N),

respectively.

Using similarities we can restrict our construction to simplify it. Let S =

(S∗1) be an associative unital division algebra with nondegenerate multiplicative

norm N = NS and (S, ∗i) = (S, ∗1)(fi,gi,hi) an isotope of (S, ∗1) such that

fi, gi,hi are similarities of N . So for all u ∈ S, we have N(fi(u)) = aiN(u),

N(gi(u)) = biN(u) and N(hi(u)) = ciN(u) for some ai, bi, ci ∈ F×, i = 2, 3, 4.

Lemma 4.1.4. Let S = (S, ∗1) be an associative unital algebra and (S, ∗i) =

(S, ∗1)(fi,gi,hi) be isotopes of S such that fi, gi,hi are similarities of N . If

A = Cay(S, ∗1, ∗2, ∗3, ∗4) has an identity, a3b3c3 = a4b4c4 = 1F .
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4.1 a generalized cayley-dickson doubling process

Proof. Suppose 1A = (1S , 0) is an identity element in A. Then by Lemma 4.1.2

1S is a left identity in (S, ∗3); that is, 1S ∗3 u = u for all u ∈ S. This can be

expressed as

h3(f3(1S) ∗1 g3(u)) = u

for all u ∈ S. Taking norms of both sides we have

a3b3c3N(u) = N(u)

for all u ∈ S. If we let u = 1S , this yields N(u) = 1F . Hence we obtain

a3b3c3 = 1F .

Similarly, as 1S is a right identity in (S, ∗4) we have u ∗4 1S = u for all u ∈ S.

This can be expressed as

h4(f4(u) ∗1 g4(1S)) = u

for all u ∈ S. Taking norms of both sides we have

a4b4c4N(u) = N(u)

for all u ∈ S. If we let u = 1S , we obtain a4b4c4 = 1F .

Theorem 4.1.5. Let S = (S, ∗1) be an associative unital division algebra with

a nondegenerate norm N = NS of degree d and (S, ∗i) = (S, ∗1)(fi,gi,hi) an

isotope of (S, ∗1) such that fi, gi,hi are similarities of N . So for all u ∈ S,

we have N(fi(u)) = aiN(u), N(gi(u)) = biN(u) and N(hi(u)) = ciN(u) for

some ai, bi, ci ∈ F×, i = 2, 3, 4. Then A = Cay(S, ∗1, ∗2, ∗3, ∗4) is a division

algebra if

a2a3b2b3c2c3a
−1
4 b−1

4 c−1
4 6∈ N(S×)2.

Proof. Suppose

(0, 0) = (u, v)(u′, v′) = (u ∗1 u′ + v ∗2 v′,u ∗3 v′ + v ∗4 u′)

for some u, v,u′, v′ ∈ S such that (u, v) 6= (0, 0) 6= (u′, v′). This is equivalent

to

u ∗1 u′ + v ∗2 v′ =0, (3)

u ∗3 v′ + v ∗4 u′ =0. (4)
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4.1 a generalized cayley-dickson doubling process

Assume v′ = 0. Then by (3), u ∗1 u′ = 0, so u = 0 or u′ = 0 as (S, ∗1) is

division. As (u′, v′) 6= (0, 0), we must have u′ 6= 0 so u = 0. Then by (4),

v ∗4 u′ = 0 which implies v = 0 or u′ = 0. This is a contradiction.

Assume v′ 6= 0. By (4),

v ∗4 u′ = −u ∗3 v′.

As N(v′) 6= 0, we obtain that N(v′)−1 ∈ F . Taking norms we have

a4b4c4N(v)N(u′) = (−1)da3b3c3N(u)N(v′)

=⇒ N(u) = (−1)da−1
3 b−1

3 c−1
3 a4b4c4N(v)N(u′)N(v′)−1.

Similarly taking norms of (3), we obtain

N(u)N(u′) = (−1)da2b2c2N(v)N(v′). (5)

Substituting our expression for N(u) into (5), we have

0 =N(u)N(u′)− (−1)da2b2c2N(v)N(v′)

=(−1)d(a−1
3 b−1

3 c−1
3 a4b4c4N(v)N(u′)N(v′)−1)N(u′)− (−1)da2b2c2N(v)N(v′)

=(−1)dN(v)[(N(u′)N(v′)−1)2 − a2b2c2a3b3c3a
−1
4 b−1

4 c−1
4 ]. (6)

If N(v) = 0, it follows that v = 0 (as N is nondegenerate) so by (3) u ∗1 u′ = 0

implies u′ = 0 (else (u, v) = (0, 0)). By (6),

a2b2c2a3b3c3a
−1
4 b−1

4 c−1
4 = 0 6∈ F×.

So N(v) 6= 0. Then (N(u′)N(v′)−1)2 = a2b2c2a3b3c3a
−1
4 b−1

4 c−1
4 . Hence

a2b2c2a3b3c3a
−1
4 b−1

4 c−1
4 ∈ N(S×)2.

Applying this result with Lemma 4.1.4 gives an immediate corollary.

Corollary 4.1.6. Let A = Cay(S∗1, ∗2, ∗3, ∗4) be unital. Then A is a division

algebra if a2b2c2 6∈ N(S×)2.
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4.1 a generalized cayley-dickson doubling process

4.1.1 Applying this construction to a field extension

Let K be a finite separable field extension of F and N be the reduced norm of

K/F . The similarities and isometries of N are given by

S(N) = K×oAutF (K)

and

O(N) = ker(N)oAutF (K),

respectively [62].

Using this classification of the similarities of N , for any field extension K we

can easily construct all isotopes K(f ,g,h) such that f , g,h ∈ S(N). Define

(K, ∗) = K(f ,g,h) such that f , g,h ∈ S(N). Then f(x) = aσ(x), g(x) = bθ(x)

and h(x) = cφ(x) for some a, b, c ∈ K× and σ, θ,φ ∈ AutF (K). Hence the

multiplication in (K, ∗) can be written as

x ∗ y =h(f(x)g(y))

=cφ(aσ(x)bθ(y))

=cφ(ab)φ(σ(x)θ(y)),

where juxtaposition of elements indicates the usual multiplication in K.

Let d = cφ(ab), σ1 = φ ◦ σ, and σ2 = φ ◦ θ. Then we can express the

multiplication in (K, ∗) as

x ∗ y = dσ1(x)σ2(y)

for some d ∈ K× and σ1,σ2 ∈ AutF (K).

Starting with an algebraic field extension, this means that we can write our

generalised Cayley-Dickson doubling as follows:

LetA = Cay(K, ∗1, ∗2, ∗3, ∗4) be the F -vector spaceK⊕K with the multiplication

(u, v)(x, y) = (ux+ d2σ21(v)σ22(y), d3σ31(u)σ32(y) + d4σ41(v)σ42(x))

for some d2, d3, d4 ∈ K× and σ1i,σ2i ∈ AutF (K) for i = 2, 3, 4.

This scenario covers all possible cases of our construction when doubling a finite

separable field extension.
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4.1 a generalized cayley-dickson doubling process

Proposition 4.1.7. A is a division algebra if N(d2d3d
−1
4 ) 6∈ N(K×)2.

Proof. In (K, ∗i), we have N(xy) = N(x ∗i y) = N(diσi1(x)σi2(y)) for all

x, y ∈ K. As N is multiplicative, this implies N(xy) = N(di)N(x)N(y) for all

x, y ∈ K. Thus by Theorem 4.1.5, A is a division algebra if

N(d2)N(d3)N(d4)
−1 = N(d2d3d

−1
4 ) 6∈ N(K×)2.

Lemma 4.1.8. A is unital if and only if the multiplication in A can be written

as

(u, v)(x, y) = (ux+ d2σ1(v)σ2(y),σ3(u)y+ vσ4(x))

for some d2 ∈ K× and σi ∈ AutF (K) for i = 1, 2, 3, 4.

Proof. Let 1K be the multiplicative identity in K. Then 1K is a left unit in

(K, ∗3) if and only if we have 1K ∗3 x = x for all x ∈ K. That is,

d3σ31(1K)σ32(x) = x

for all x ∈ K. As σ31(1K) = 1K , we must have d3σ32(x) = x for all x ∈ K.

If x ∈ F , then σ32(x) = x, which implies d3 = 1. Thus we conclude that

σ32(x) = x for all x ∈ K, so σ32 = idK .

Similarly, 1K is a right unit in (K, ∗4) if and only if we have x ∗4 1K = x for

all x ∈ K. That is,

d4σ41(x)σ42(1K) = x

for all x ∈ K. As σ42(1K) = 1K , we must have d4σ41(x) = x for all x ∈ K. If

x ∈ F , σ41(x) = x, which implies d4 = 1. Thus it follows that σ41(x) = x for

all x ∈ K, so σ41 = idK .

By Lemma 4.1.2, A is unital if and only if 1K is a left unit in (K, ∗3) and a right

unit in (K, ∗4), and so the result follows after relabelling the automorphisms.

In order to simplify our computations we will only consider unital algebras

for the rest of this section. We will denote these unital algebras by

Cay(K, d2,σ1,σ2,σ3,σ4).
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4.1 a generalized cayley-dickson doubling process

Corollary 4.1.9. Let A = Cay(K, d2,σ1,σ2,σ3,σ4). Then A is a division

algebra if N(d2) 6∈ N(K×)2.

Proof. This follows as a consequence of Lemma 4.1.7 and Lemma 4.1.8.

4.1.2 Examples of semifields

Let F be a finite field and let A = Cay(K, d2,σ1,σ2,σ3,σ4). Under certain

conditions, our construction gives examples of semifields which are discussed in

the literature [17].

Example 4.1.10. Let σ ∈ AutF (K) and µ, η ∈ K×. Knuth gave four multiplications

on K ⊕K in [36] which give semifields when xσ(x) + µx − η = 0 has no

solutions in K. For elements x, y,u, v ∈ K, define the four multiplications on

K ⊕K as follows:

Kn1 : (u, v)(x, y) = (ux+ ησ(y)σ−1(v), yu+ vσ(x) + µσ(y)σ−1(v)),

Kn2 : (u, v)(x, y) = (ux+ ησ−1(y)σ−2(v), yu+ vσ(x) + µyσ−1(v)),

Kn3 : (u, v)(x, y) = (ux+ ησ−1(y)v, yu+ vσ(x) + µyv),

HK : (u, v)(x, y) = (ux+ ησ(y)v, yu+ vσ(x) + µσ(y)v).

We refer to the semifields defined by the first three multiplications as Knuth

semifields and the last multiplication as Hughes-Kleinfeld semifields.

Our generalised Cayley Dickson construction gives the subclass of each of these

semifields where µ = 0.

Example 4.1.11. Let [K : F ] = 2 and let c ∈ K \K2. Let σ1 = σ3 = σ ∈

AutF (K) be a nontrivial automorphism and σ2 = σ4 = id. Then A is a Sandler

semifield with multiplication given by

(u, v)(x, y) = (ux+ cσ(v)y,σ(u)y+ vx).
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4.1 a generalized cayley-dickson doubling process

Generally, let σ be an automorphism of K which fixes a subfield F0, with

[K : F0] = m. Sandler semifields are defined as an F -vector space with basis

1,λ,λ2, ...,λm−1 with multiplication defined by

(λix)(λjy) = λiλjσj(x)y

for all x, y ∈ K. Further we have λiλj = λi+j for i + j < m and λiλj =

λ(i+j)modmδ for i+ j ≥ m, where δ ∈ K is not a root of any polynomial of

degree less than m over F0. Our construction can only be used to construct

Sandler semifields for m = 2; in fact, all Sandler semifields with m = 2 can be

constructed this way.

Example 4.1.12. Let F have characteristic not 2. Let d2 ∈ K× \K2, σ4 = id

and σ1,σ2,σ3 ∈ AutF (K) be not all the identity automorphism. Then A is a

generalised Dickson semifield with multiplication given by

(u, v)(x, y) = (ux+ d2σ1(v)σ2(y),σ3(u)y+ vx)

for all u, v,x, y ∈ K[36]. Knuth also referred to these semfields as Case I

semifields quadratic over a weak nucleus. All generalised Dickson semifields

have this form and as such can be obtained by our doubling process. In the

special case where σ1 = σ2 = σ ∈ AutF (K) is a nontrivial automorphism and

σ3 = id, A is a commutative Dickson semifield [20] with multiplication given

by

(u, v)(x, y) = (ux+ d2σ(vy),uy+ vx).

Hughes-Kleinfeld, Knuth and Sandler semifield constructions were studied

over arbitrary base fields in [58]. Dickson’s commutative semifield construction

was introduced over finite fields in [20] and considered over any base field of

characteristic not 2 when K is a finite cyclic extension in [9].

We use Dickson’s construction of commutative semifields and Knuth’s subsequent

generalized semifields to motivate a new construction using central simple

algebras. We will first consider Dickson’s construction where K is an arbitrary
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4.2 a doubling process using finite field extensions

finite extension in Section 4.2 to expand the results given in [9, 10, 20] and

further generalise this construction to central simple algebras in Section 4.3.

This results of Sections 4.2 and 4.3 have now been published and can be found

in [59]. Additionally, we consider Knuth’s construction of Case I semifields

extended to a doubling of central simple algebras in Section 4.4. This construction

is the subject of [60].

4.2 a doubling process using finite field extensions

4.2.1 The construction process

Let K be a finite separable field extension of F of degree n. For some c ∈ K×

and σ ∈ AutF (K), we define a multiplication on the F -vector space K ⊕K by

(u, v)(x, y) = (ux+ cσ(vy),uy+ vx)

for all u, v,x, y ∈ K. Under this multiplication,K⊕K is a unital nonassociative

ring which we denote by D(K,σ, c). Note that D(K, id, c) is isomorphic to a

quadratic field extension of K when c ∈ K \K2 and that D(K, id, c) ∼= K ×K

when c ∈ (K×)2. Due to this, we will only consider σ 6= id. Note that F is

canonically embedded into D(K,σ, c) via the map F 7→ F ⊕ 0. Similarly, we

will denote any subalgebras of the form E ⊕ 0 simply by E.

Clearly D = D(K,σ, c) is commutative. Over finite fields, it is known that

when σ 6= id, then Nucl(D) = Nucr(D) = Fix(σ) and Nucm(D) = K [17,

p.126]. This is also true for any arbitrary field and is easily checked.

Theorem 4.2.1. Let D = D(K,σ, c) with σ ∈ AutF (K) a non-trivial automorphism.

Then we have Nucl(D) = Nucr(D) = Fix(σ) and Nucm(D) = K. In particular,

this yields Nuc(D) = Fix(σ) and Z(D) = Fix(σ).

Clearly all subfields E of K are subalgebras of D(K,σ, c). Additionally, if E

is a subfield of K such that c ∈ E× and σ |E ∈ AutF (E), then D(E,σ |E , c) is

a subalgebra of D(K,σ, c). Moreover, if L = Fix(σ) and c ∈ L×, then L⊕ L
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4.2 a doubling process using finite field extensions

under the product of D is an associative subalgebra of D(K,σ, c).

4.2.2 Division algebras

Dickson [20] gave a sufficient condition for D(K,σ, c) to be a nonassociative

division algebra when F is an infinite field and K/F is a cyclic extension.

Burmester further showed this was also a necessary condition [9, Theorem

1]. If we assume K/Fix(σ) is cyclic, [9, Theorem 1] extends naturally to our

construction:

Theorem 4.2.2. Let F be an infinite field and L = Fix(σ). If AutL(K) = 〈σ〉,

then D(K,σ, c) is a division algebra over F if and only if NK/L(c) 6= NK/L(a
2)

for all a ∈ K.

The proof is analogous to the proof of [9, Theorem 1]. As it uses [1, Theorem

5, p.200], we require that F is not a finite field.

If K/Fix(σ) is not a cyclic extension, this result does not necessarily hold.

However, we can directly compute a different necessary and sufficient condition

for D(K,σ, c) to be a division algebra:

Theorem 4.2.3. D(K,σ, c) is a division algebra if and only if

c 6= r2sσ(s)−1t−1σ(t)−1

for all r, s, t ∈ K×.

Proof. Suppose D(K,σ, c) is not a division algebra. Then there exist nonzero

elements (u, v), (x, y) ∈ K⊕K such that (u, v)(x, y) = (0, 0). This is equivalent

to the simultaneous equations

ux+ cσ(vy) =0, (7)

uy+ vx =0. (8)

If v = 0, (8) becomes uy = 0, so either u = 0 or y = 0. However, u must be

non-zero, else (u, v) = (0, 0) which is a contradiction, so we must have y = 0.
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Additionally, (7) gives ux = 0. As u is non-zero, this implies x = 0 and so

(x, y) = (0, 0) which is again a contradiction.

So let v 6= 0. As K is a field, we have v−1 ∈ K and hence we obtain x =

−uyv−1 from (8). Now if y = 0, this implies that x = 0 which contradicts the

assumption that (x, y) 6= (0, 0). Substituting this into (7), we get −u2yv−1 +

cσ(vy) = 0, which rearranges to give c = u2yσ(y)−1v−1σ(v)−1.

Conversely, suppose c = r2sσ(s)−1t−1σ(t)−1 for some r, s, t ∈ K×. Consider

the elements (r, t) and (−rst−1, s). Both elements are nonzero but satisfy

(r, t)(−rst−1, s) = (−r2st−1 + r2sσ(s)−1t−1σ(t)−1σ(ts), rs− rst−1t) = (0, 0).

Hence D(K,σ, c) is not a division algebra.

Corollary 4.2.4. If NK/F (c) 6= NK/F (a)
2 for all a ∈ K×, then D(K,σ, c) is

a division algebra.

Proof. Suppose D(K,σ, c) is not a division algebra. By Theorem 4.2.3, there

exists some r, s, t ∈ K× such that c = r2sσ(s)−1t−1σ(t)−1. Taking norms of

both sides of the equation we obtain NK/F (c) = NK/F (r
2sσ(s)−1t−1σ(t)−1).

As the norm is multiplicative and NK/F (x) = NK/F (σ(x)), this yields

NK/F (c) = NK/F (r
2)NK/F (s)NK/F (s

−1)NK/F (t
−1)2,

which simplifies to NK/F (c) = NK/F ((rt
−1)2) = NK/F ((rt

−1))2.

We could also note that Corollary 4.2.4 follows as a corollary from Theorem

4.1.5.

Corollary 4.2.5. If c is a square in K, then D(K,σ, c) is not a division

algebra.

Proof. In the notation of Theorem 4.2.3, let s = t = 1. Then if c = r2 for some

r ∈ K, then D(K,σ, c) is not a division algebra.

Remark 4.2.6. (i) Let F = R and K = C. As every element of C is a

square, no real division algebras arise as a result of this construction.
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(ii) Similarly if F is a finite field of characteristic 2, we also do not obtain any

division algebras: again, every element is a square, so D(K,σ, c) is not a

division algebra by Corollary 4.2.5.

Although there are no real division algebras or division algebras over F2q for

any q ∈N, it is easy to find large examples of division algebras over Q and Qp

using this construction. This is particularly relevant due to their use in space

time block coding, as mentioned in the introduction of this thesis (see [52] for

an example). We give some examples of rational and p-adic division algebras

now:

Example 4.2.7. (i) Let F = Q andK = Q(
√
a) for some a ∈ Q \Q2. Then

we obtain NK/Q(x+ y
√
a) = x2− y2a for all x, y ∈ Q. If we let c = y

√
a

for any y ∈ Q×, this yields NK/Q(c) = −y2a 6∈ Q2, so we conclude that

D(K,σ, c) is a division algebra of dimension 4 over Q.

(ii) Let F = Qp and K = Qp(α) be a quadratic field extension of Qp. Thus

K is equal to one of Qp(
√
p), Qp(

√
u) or Qp(

√
up), where u ∈ Zp \Z2

p. If

p ≡ 1 (mod 4), it follows that −α2 6∈ Q2
p and thus for all y ∈ Qp, we have

NK/Qp(yα) = −y2α2 6∈ Q2
p. Hence, D(K,σ, yα) is a division algebra of

dimension 4 over Qp.

Remark 4.2.8. If F is a finite field of odd characteristic, we can see that

Corollary 4.2.5 is also a necessary condition for D(K,σ, c) to be a division

algebra. This was originally proved in [9, Theorem 1’] but can also be obtained

as a consequence of Theorem 4.2.3:

If F = Fps and K = Fpr is a finite extension of F , it is known that AutF (K)

is cyclic of order r/s and is generated by φs, where φ is defined by the Frobenius

automorphism φ(x) = xp for all x ∈ K. Over a finite field of odd characteristic,

we thus have

σ(x)x = φt(x)x = xp
st

x = xp
st+1

for some t ∈ Z. As p is odd, pst + 1 = 2n for some n ∈ Z and so we can write

σ(x)x = x2n = (xn)2 for all x ∈ K. A similar argument shows that σ(x)x−1 is
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4.2 a doubling process using finite field extensions

a square for all x ∈ K. Hence over finite fields of odd characteristic, Theorem

4.2.3 yields that D = D(K,σ, c) is a division algebra if and only if c is not a

square in K.

4.2.3 Isomorphisms

For the rest of the section, we will assume that F has characteristic not 2

unless stated otherwise and that σ ∈ AutF (K) is a non-trivial automorphism.

Burmester [9] computed the isomorphisms of commutative Dickson algebras

D(K,σ, c) when K is a cyclic extension of F . The notation originally used in

[9] differs from ours; for clarity, we rephrase his result in our notation:

Theorem 4.2.9 ([9], Theorem 2). Let K be a cyclic field of degree n over F

and let AutF (K) = 〈σ〉. Then D(K,σi, c) ∼= D(K,σj , d) if and only if i = j,

and if there exists an integer 0 6 k < n and an element x ∈ K such that

d = x2σk(c).

In order to generalise this result, we first note the following two lemmas:

Lemma 4.2.10. Let D(K,σ, c) and D(L,φ, d) be two commutative Dickson

algebras over F . If Fix(σ) 6∼= Fix(φ), then D(K,σ, c) 6∼= D(L,φ, d) for any

choice of c ∈ K× and d ∈ L×.

Proof. Suppose D(K,σ, c) ∼= D(L,φ, c). As any isomorphism must map the

centre of D(K,σ, c) to the centre of D(L,φ, c), this implies Fix(σ) ∼= Fix(φ).

Lemma 4.2.11. Let σ ∈ AutF (K) and φ ∈ AutF (L). If there exists an

F -isomorphism τ : K → L such that τ ◦ σ = φ ◦ τ , then τ |Fix(σ): Fix(σ) →

Fix(φ) is an F -isomorphism.

Proof. For all x ∈ Fix(σ), it follows that

φ ◦ τ (x) = τ ◦ σ(x) = τ (x),
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4.2 a doubling process using finite field extensions

so τ (x) ∈ Fix(φ). Hence we conclude that im(τ |Fix(σ)) ⊆ Fix(φ). To show

that in fact im(τ |Fix(σ)) = Fix(φ), we note that for any y ∈ Fix(φ) there

exists x ∈ K such that τ (x) = y. As τ (x) ∈ Fix(φ), this implies τ ◦ σ(x) =

φ ◦ τ (x) = τ (x), thus x ∈ Fix(σ) and it follows that

im(τ |Fix(σ)) = Fix(φ). This is sufficient to show that τ |Fix(σ): Fix(σ) →

Fix(φ) is an F -isomorphism.

Theorem 4.2.12. Let K and L be two finite field extensions of F and D =

D(K,σ, c) and D′ = D(L,φ, d) be two commutative Dickson algebras over F .

Then G : D → D′ is an isomorphism if and only if G has the form

G(x, y) = (τ (x), τ (y)b)

for some F -isomorphism τ : K → L such that:

(i) φ ◦ τ = τ ◦ σ,

(ii) there exists b ∈ L× such that τ (c) = dφ(b2), i.e. τ (c)d−1 is a square in

L×.

Proof. Suppose G : D → D′ is an F -isomorphism. Then G maps the middle

nucleus of D to the middle nucleus of D′, so we must have K ∼= L. This means

G restricted to K must be an isomorphism which maps K to L; that is, G |K=

τ : K → L is an isomorphism of fields and we conclude G(x, 0) = (τ (x), 0) for

all x ∈ K. Additionally, by Lemma 4.2.10 we see that Z(D) ∼= Z(D′) under

G. Thus, it follows that τ restricted to Fix(σ) must yield an isomorphism from

Fix(σ) to Fix(φ). Let G(0, 1) = (a, b) for some a, b ∈ L. This implies

G(x, y) = G(x, 0) +G(0, 1)G(y, 0) = (τ (x) + aτ (y), τ (y)b).

As G is multiplicative, it follows that G((0, 1)2) = G(0, 1)2 which holds if and

only if (a, b)(a, b) = (τ (c), 0). From this, we obtain the equations a2 + dφ(b2) =

τ (c) and 2ab = 0. As L does not have characteristic 2, this implies either

a = 0 or b = 0. If b = 0, then G(x, y) = (τ (x) + τ (y)a, 0) and so G is not

surjective. This is a contradiction, as G is an isomorphism and hence is bijective
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by definition. Thus we obtain a = 0 and dφ(b2) = τ (c).

Finally, as G is multiplicative this yields G(u, v)G(x, y) = G((u, v)(x, y)) for

all u, v,x, y ∈ K. Computing both sides of this equation, we get

(τ (ux) + dφ(τ (vy)b2), τ (uy)b+ τ (vx)b) = (τ (ux+ cσ(vy)), τ (uy+ vx)b)

for all u, v,x, y ∈ K, which implies dφ(τ (vy)b2) = τ (cσ(vy)). After substituting

the condition dφ(b2) = τ (c), we are left with φ(τ (vy)) = τ (σ(vy)) for all

v, y ∈ K; that is, φ ◦ τ = τ ◦ σ.

Conversely, let G : K ⊕K → L⊕ L be defined by G(x, y) = (τ (x), τ (y)b) for

some F -isomorphism τ : K → L satisfying the conditions stated in the theorem

above. It is easily checked that this is an F -linear bijective map between vector

spaces. We only need to check that the map is multiplicative. Then we have

G(u, v)G(x, y) = G((u, v)(x, y)) for all u, v,x, y ∈ K if and only if it follows

that dφ(τ (vy)b2) = τ (cσ(vy)). As dφ(b2) = τ (c) and φ ◦ τ = τ ◦ σ, this is

satisfied for all v, y ∈ K. Further, by Lemma 4.2.11 this certainly maps the

centre of D to the centre of D′. Thus we conclude that G : D → D′ is an

F -algebra isomorphism.

Corollary 4.2.13. Let D = D(K,σ, c) and D′ = D(K,φ, d) be two commutative

Dickson algebras over F . Then G : D → D′ is an F -algebra isomorphism if

and only if G has the form

G(x, y) = (τ (x), τ (y)b)

for some τ ∈ AutF (K) such that:

(i) φ ◦ τ = τ ◦ σ,

(ii) there exists b ∈ K× such that τ (c) = dφ(b2), i.e. τ (c)d−1 is a square in

K×.

Corollary 4.2.14. Suppose AutF (K) is an abelian group. If σ 6= φ, then

D(K,σ, c) 6∼= D(K,φ, d) for any choice of c, d ∈ K×.
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Corollary 4.2.15. For all c ∈ K×, we have D(K,σ, c) ∼= D(K, τ ◦ σ ◦

τ−1, τ (c)) for each τ ∈ AutF (K) and D(K,σ, c) ∼= D(K,σ,σ(b2)c) for each

b ∈ K×.

Proof. This is clear employing the isomorphisms G(x, y) = (τ (x), τ (y)) and

G(x, y) = (x, b−1y), respectively.

When K is a finite field of odd characteristic, τ (c)d−1 is a square if and only

if either both c and d are squares or both are non-squares in K. Due to this,

we obtain the following well-known result from Theorem 4.2.12:

Corollary 4.2.16 ([9], Theorem 2’). Let F be a finite field of odd characteristic

and K be a finite extension of degree n. Let D = D(K,σ, c) and D′ =

D(K,φ, d) be division algebras. Then D ∼= D′ if and only if σ = φ. Hence up

to isomorphism, there are exactly n commutative Dickson semifields of order

p2n.

Over an arbitrary field however, it is possible that D(K,σ, c) 6∼= D(K,σ, d)

for some c, d ∈ K as we cannot guarantee that there exists b ∈ K such that

σ(b)2 = τ (c)d−1. Let us now consider F = Qp for p 6= 2 as an example. We

employ the following well-known result, giving the proof for completion:

Lemma 4.2.17. Let K/Qp be a finite field extension for p 6= 2 with uniformizer

π ∈ OK , where OK is the valuation ring of K. ThenK×/(K×)2 = {1,u, π,uπ}

for some u ∈ OK \O2
K .

Proof. Every element of K× can be written as uπn for some n ∈ Z and u ∈

O×K . Then x ∈ K× is a square if and only if x = u2π2n for some n ∈ Z

and u ∈ O×K . Thus we see that K×/(K×)2 ∼= O×K/(O×K)2 × F2. Note the

residue field of OK is the finite field Fpe for some e ∈ N. Thus it follows that

O×K/(O×K)2 ∼= Fpe/(Fpe)2 ∼= F2, as p is an odd prime. Hence we conclude

K×/(K×)2 ∼= F2×F2; a complete set of coset representatives is thus given by

{1,u, π,uπ} for some u ∈ OK \O2
K .
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4.2 a doubling process using finite field extensions

Corollary 4.2.18. For each finite field extension K/Qp such that AutQp(K) is

an abelian group, there are at most 3
∣∣∣AutQp(K)

∣∣∣ non-isomorphic commutative

Dickson division algebras of the kind D(K,σ, c).

Proof. As in Corollary 4.2.16, we see that D(K,σ, c) ∼= D(K,φ, d) if and

only if σ = φ and there exists some τ ∈ AutQp(K) and b ∈ K× such that

τ (c)d−1 = σ(b2). Such b ∈ K exists if and only if τ (c)d−1 is a square in

K. If we assume that D(K,σ, c) and D(K,σ, d) are division algebras, c, d are

certainly not squares in K and so must lie in non-identity cosets of K×/(K×)2.

It is clear that τ (c) must lie in the same coset as c. Considering the images

of τ (c) and d−1 in the quotient group K×/(K×)2, it follows that τ (c)d−1 is

a square in K× if and only if c and d lie in the same coset of K×/(K×)2.

As there are 3 non-trivial cosets, we conclude there are at most 3
∣∣∣AutQp(K)

∣∣∣
non-isomorphic commutative Dickson division algebras.

We cannot say for certain that we attain this bound, as this would assume

that there exists a suitable c ∈ K× in each non-trivial coset of K×/(K×)2

such that D(K,σ, c) is a division algebra for each σ ∈ AutQp(K). However,

if we can find some c ∈ K× that satisfies the conditions of Corollary 4.2.4

from each coset of K×/(K×)2, this is sufficient to show that there are exactly

3
∣∣∣AutQp(K)

∣∣∣ non-isomorphic commutative Dickson division algebras. For an

arbitrary field F , we conclude the following analogously:

Corollary 4.2.19. Suppose K/F is a finite field extension such that AutF (K)

is an abelian group and there exists c ∈ K× such that NK/F (c) 6= NK/F (a
2)

for all a ∈ K. Then there are at least |AutF (K)| non-isomorphic commutative

Dickson division algebras over F of the form D(K,σ, c).

4.2.4 Automorphisms

The automorphisms of commutative Dickson algebras were computed in [9]

when K is a finite cyclic field extension. We consider the subset

J(c) = {τ ∈ AutF (K) | X2 − τ (c)c−1 = 0 has solutions in K} ⊂ AutF (K),
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introduced in [9].

Lemma 4.2.20. J(c) is a subgroup of AutF (K).

Proof. Clearly the identity automorphism is contained in J(c), as 0 = X2 −

cc−1 = X2 − 1 always has the solutions X = ±1.

Let τ ,φ ∈ J(c). Then τ (c)c−1 = a2 and φ(c)c−1 = b2 for some a, b ∈ K×. It

follows that

φ ◦ τ (c)c−1 = φ(a2c)c−1 = φ(a2)b2cc−1,

so X2 − φ ◦ τ (c)c−1 = 0 has the solutions X = ±φ(a)b. This implies φ ◦

τ ∈ J(c). Finally, for each τ ∈ J(c) we have τ−1(c)c−1 = τ−1(a−1)2, so

τ−1 ∈ J(c).

WhenK is a cyclic extension, there exist 2 |J(c)| automorphisms ofD(K,σ, c):

Theorem 4.2.21. (i) [[9], Theorem 3 in our notation] Let K be a cyclic

extension of F . Then there exist 2 |J(c)| automorphisms of D(K,σ, c),

each of which is given by

G(x, y) = (τ (x), τ (y)bi)

for each τ ∈ J(c), where bi ∈ K are such that σ(bi) are the two solutions

of X2 − τ (c)c−1 = 0 for i = 1, 2.

(ii) [[9], Theorem 3’ in our notation] Let F be a finite field of odd characteristic

and K be a finite extension of degree n. Then there exists 2n automorphisms

of D = D(K,σ, c), each of which is given by

G(x, y) = (τ (x), τ (y)bi)

for each τ ∈ AutF (K), where bi ∈ K are such that σ(bi) are the two

solutions of X2 − τ (c)c−1 = 0 for i = 1, 2.

We now compute the automorphisms when K is an arbitrary finite field

extension. We continue to assume that σ 6= id.
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Theorem 4.2.22. All automorphisms G : D(K,σ, c) → D(K,σ, c) are of the

form

G(u, v) = (τ (u), τ (v)b)

for some τ ∈ AutF (K) such that τ and σ commute and b ∈ K× satisfying

τ (c) = cσ(b2). Further, all maps of this form with τ ∈ AutF (K) and b ∈ K×

satisfying these conditions yield an automorphism of D.

Proof. Let D = D(K,σ, c). Suppose that G ∈ AutF (D). As automorphisms

preserve the nuclei of an algebra, G restricted to K must be an automorphism

of K. As G is F -linear we obtain F ⊂ Fix(G |K) and so in fact G |K∈ AutF (K).

Let G |K= τ ∈ AutF (K), so we have G(x, 0) = (τ (x), 0) for all x ∈ K.

Let G(0, 1) = (a, b) for some a, b ∈ K. Then we have

G(x, y) = G(x, 0) +G(0, 1)G(y, 0) + (τ (x) + aτ (y), τ (y)b).

As G is multiplicative, we must also have G((0, 1)2) = G(0, 1)2 which holds if

and only if

(a, b)(a, b) = (τ (c), 0).

From this, we obtain the equations a2 + cσ(b2) = τ (c) and 2ab = 0. As K does

not have characteristic 2, this implies that either a = 0 or b = 0. If b = 0, then

G(x, y) = (τ (x) + τ (y)a, 0) and so G is not surjective. This is a contradiction,

as G is an automorphism. Thus a = 0 and we obtain cσ(b2) = τ (c).

Finally, as G is multiplicative we have G(u, v)G(x, y) = G((u, v)(x, y)) for all

u, v,x, y ∈ K. Computing both sides of this equation, we get

(τ (ux) + cσ(τ (vy)b2), τ (uy)b+ τ (vx)b) = (τ (ux+ cσ(vy)), τ (uy+ vx)b)

for all u, v,x, y ∈ K, which implies that cσ(τ (vy)b2) = τ (cσ(vy)). After

substituting the condition cσ(b2) = τ (c), we are left with σ(τ (vy)) = τ (σ(vy))

for all v, y ∈ K; that is, τ and σ must commute.

Conversely, let G : D → D be a map defined by G(x, y) = (τ (x), τ (y)b) such

that τ and σ commute and τ (c) = cσ(b2). It is easily checked that G is F -linear,

bijective, additive and multiplicative. Hence G is an F -algebra automorphism

of D.
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Corollary 4.2.23. There is a subgroup of AutF (D) isomorphic to

{τ ∈ AutF (K) | τ (c) = c and τ ◦ σ = σ ◦ τ}.

Proof. By Theorem 4.2.22, all automorphisms of D are of the form G(x, y) =

(τ (x), τ (y)b), such that τ and σ commute and b ∈ K× satisfies τ (c) = cσ(b2).

If we let b = 1, we obtain a subgroup of AutF (D) such that τ and σ commute

and τ (c) = c.

The subset of AutF (K) containing all the automorphisms ofK which commute

with σ ∈ AutF (K) is called the centralizer of σ in AutF (K) and is denoted by

C(σ) = {τ ∈ AutF (K) | τ ◦ σ = σ ◦ τ}.

This subset forms a subgroup of AutF (K), so J(c) ∩C(σ) is also a subgroup

of AutF (K). We get the following generalisation of [9, Theorem 3]:

Theorem 4.2.24. There are exactly 2 |J(c) ∩C(σ)| automorphisms of D(K,σ, c),

each of which is given by

G(x, y) = (τ (x), τ (y)bi)

for each τ ∈ J(c)∩C(σ), where bi ∈ K× is chosen such that σ(bi) are the two

solutions of X2 − τ (c)c−1 = 0 for i = 1, 2.

Proof. By Theorem 4.2.22, G is an automorphism of D(K,σ, c) if and only if

G(u, v) = (τ (u), τ (v)b) for some τ ∈ C(σ) and b ∈ K× such that σ(b)2 =

τ (c)c−1. We can find such b ∈ K× if and only if τ ∈ J(c). Denote the solutions

of X2 − τ (c)c−1 = 0 by σ(b1) and σ(b2). Thus G is an automorphism of

D(K,σ, c) if and only if G(u, v) = (τ (u), τ (v)bi) for each τ ∈ J(c) ∩ C(σ),

where bi ∈ K are such that σ(bi) are the two solutions of X2− τ (c)c−1 = 0 for

i = 1, 2.

Corollary 4.2.25. If AutF (K) is abelian, then D(K,σ, c) has exactly 2 |J(c)|

automorphisms.

Proof. This follows immediately from Theorem 4.2.24 after noting that C(σ) =

AutF (K).
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Corollary 4.2.26. If c ∈ F×, then D(K,σ, c) has exactly 2 |C(σ)| automorphisms.

Proof. As c ∈ F×, for all τ ∈ AutF (K) we have

0 = X2 − τ (c)c−1 = X2 − cc−1 = X2 − 1,

which always has the solutions X = ±1. This yields J(c) = AutF (K). The

result then follows from Theorem 4.2.24.

As J(c) ∩C(σ) forms a subgroup of AutF (K), we know that |J(c) ∩C(σ)|

must divide |AutF (K)|. Due to this, we can easily determine the exact size of

the automorphism group of D(K,σ, c) in certain cases.

Corollary 4.2.27. If K is a field extension of prime degree p over F , J(c) is

equal to either {id} or AutF (K). Further, |AutF (D(K,σ, c))| ∈ {2, 2p}.

Proof. Let [K : F ] = p for some prime p. Then AutF (K) is necessarily cyclic

and hence abelian. As |AutF (K)| = p, we must have |J(c)| ∈ {1, p} and so

J(c) = {id} or J(c) = AutF (K). The remainder of the result follows from

Corollary 4.2.25.

Corollary 4.2.28. If F = Qp for p 6= 2, then J(c) = AutQp(K) and∣∣∣AutQp(D(K,σ, c))
∣∣∣ = 2 |C(σ)| .

Proof. As τ (c) and c−1 clearly lie in the same coset of K×/(K×)2, it follows

that τ (c)c−1 ∈ K2 for all τ ∈ AutQp(K). We conclude that J(c) = AutQp(K)

and thus
∣∣∣AutQp(D(K,σ, c))

∣∣∣ = 2 |C(σ)| by Theorem 4.2.24.

Generally it is difficult to actually calculate J(c), so we instead bound the

size of AutF (D(K,σ, c)). We already have an upper bound as a consequence

of Theorem 4.2.22. All the elements of AutF (K) which act as the identity on

c form a subgroup of AutF (K) called the isotropy group of c, denoted by

AutF (K)c = {τ ∈ AutF (K) | τ (c) = c}.

By Corollary 4.2.23, there is a subgroup of AutF (D(K,σ, c)) which is isomorphic

to C(σ) ∩ AutF (K)c. This allows us to bound the size of the automorphism

group of D(K,σ, c) from below:
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Theorem 4.2.29. There are between 2 |C(σ) ∩AutF (K)c| and 2 |C(σ)| automorphisms

of D(K,σ, c).

Proof. It is clear that J(c)∩C(σ) is a subgroup of C(σ). Each τ ∈ C(σ) can be

used to construct at most 2 automorphisms of D(K,σ, c) corresponding to the

two possible solutions of X2 − τ (c)c−1 = 0, so we have |AutF (D(K,σ, c))| 6

2 |C(σ)| .

Additionally, each τ ∈ C(σ) ∩AutF (K)c can be used to construct the maps

(x, y) 7→ (τ (x),±τ (y)). It follows from Theorem 4.2.22 that these are automorphisms

of D(K,σ, c), so 2 |C(σ) ∩AutF (K)c| 6 |AutF (D(K,σ, c))|.

Wene [61] derived an alternative description of the automorphism group of

D(K,σ, c) when K is a finite field, in terms of inner automorphisms. An

automorphism θ of D(K,σ, c) is an inner automorphism if there exists m ∈

D(K,σ, c) with left inverse m−1
l such that

θ(x) = (m−1
l x)m

for all x ∈ D(K,σ, c). The proof given in [61, Theorem 18] holds verbatim

for any finite field extension, yielding a sufficient condition for the existence of

(nontrivial) inner automorphisms of a commutative Dickson algebra:

Theorem 4.2.30 ([61], Theorem 18). Let D(K,σ, c) be a division algebra.

Denote λ = (0, 1). Then

Φ(x, y) = [λ−1
l (x, y)]λ = (σ(x),σ(y))

defines an inner automorphism of D(K,σ, c) if and only if σ(c) = c.

4.2.5 The group structure of AutF (D)

By Theorem 4.2.22, we know that all the 2 |C(σ) ∩ J(c)| automorphisms of D

are of the form G(u, v) = (τ (u), τ (v)b) for some τ ∈ C(σ) ∩ J(c) and b ∈ K×

such that σ(b)2 = τ (c)c−1. Note that this final condition is equivalent to

b ∈ K× being a solution of

X2 − σ−1(τ (c)c−1) = 0.
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We will denote the solutions of this polynomial by bτ ,1 and bτ ,2. As the

characteristic of F is not 2, it is clear that bτ ,2 = −bτ ,1.

Lemma 4.2.31. Let bτ ,1, bτ ,2 be the two solutions of X2 − σ−1(τ (c)c−1) = 0

and suppose τn = id. Then bτ ,iτ (bτ ,i)τ2(bτ ,i)...τn−1(bτ ,i) = ±1.

Moreover, if n is odd, we have bτ ,iτ (bτ ,i)τ2(bτ ,i)...τn−1(bτ ,i) = 1 for i = 1 or

i = 2, but not both.

Proof. As in the proof of Lemma 4.2.20, if bτ and bφ are solutions of X2 −

σ−1(τ (c)c−1) = 0 and X2 − σ−1(φ(c)c−1) = 0 respectively then the equation

X2 − σ−1(φ ◦ τ (c)c−1) = 0

has the solutions X = ±φ(bτ )bφ. Similarly the equationX2−σ−1(τ2(c)c−1) =

0 has the solutions X = ±τ (bτ )bτ , the equation X2 − σ−1(τ3(c)c−1) = 0 has

the solutions X = ±τ (bτ2)bτ = τ2(bτ )τ (bτ )bτ , and so on. Hence we see that

for i = 1, 2

bτ ,iτ (bτ ,i)τ
2(bτ ,i)...τn−1(bτ ,i)

is a solution of X2 − σ−1(τn(c)c−1) = 0. As τn = id, we also conclude that

the solutions of

0 = X2 − σ−1(τn(c)c−1) = X2 − σ−1(cc−1) = X2 − 1

are X = ±1 and so bτ ,iτ (bτ ,i)τ2(bτ ,i)...τn−1(bτ ,i) = ±1. As bτ ,2 = −bτ ,1, we

have

bτ ,2τ (bτ ,2)τ
2(bτ ,2)...τn−1(bτ ,2) = (−1)nbτ ,1τ (bτ ,1)τ

2(bτ ,1)...τn−1(bτ ,1).

If n is odd, this implies that

bτ ,2τ (bτ ,2)τ
2(bτ ,2)...τn−1(bτ ,2) = −bτ ,1τ (bτ ,1)τ

2(bτ ,1)...τn−1(bτ ,1)

and the result follows.

Theorem 4.2.32. For all D(K,σ, c), we have

AutF (D(K,σ, c)) ∼= (C(σ) ∩ J(c))×F2.
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Proof. As C(σ) ∩ J(c) is a finite group, there exists a minimal generating set

{τ1, ..., τm}. Let τ be an element of this generating set and let bτ ,i (i = 1, 2)

be the two roots of X2 − σ−1(τ (c)c−1). As J(c) is a finite group, τn must be

equal to the identity for some n > 1. By Lemma 4.2.31, this implies

bτ ,iτ (bτ ,i)τ
2(bτ ,i)...τn−1(bτ ,i) = ±1

for i = 1, 2. If n is odd, relabel the roots such that bτ ,1 satisfies

bτ ,1τ (bτ ,1)τ
2(bτ ,1)...τn−1(bτ ,1) = 1

and bτ ,2 satisfies

bτ ,2τ (bτ ,2)τ
2(bτ ,2)...τn−1(bτ ,2) = −1.

Henceforth, we will denote bτ ,1 = bτ . Now let φ ∈ C(σ)∩ J(c). As {τ1, ..., τm}

generates C(σ) ∩ J(c), φ can be expressed as a product of the τi. Due to this,

we can construct the roots of X2−σ−1(φ(c)c−1) = 0 from the bτi . For example,

if φ = τi ◦ τj then we obtain

bφ = bτiτi(bτj ).

This method can be applied recursively to construct the roots ofX2−σ−1(τ (c)c−1) =

0 for all τ ∈ C(σ) ∩ J(c).

We can now express all automorphisms ofD in the formG(u, v) = (τ (u),±τ (v)bτ )

for some τ ∈ J(c)∩C(σ) and bτ as defined above. Define a map Φ : AutF (D)→

(J(c) ∩C(σ))×F2 by

Φ(G) = (τ ,±1).

This map is well-defined due to the careful labelling of roots ofX2−σ−1(τ (c)c−1) =

0. It is easy to see that it gives an isomorphism between groups.

Corollary 4.2.33. If F = Qp, then AutQp(D(K,σ, c)) ∼= C(σ)×F2.

Proof. This follows from Corollary 4.2.28.

Thus it is sufficient to consider the subgroups of AutF (K), C(σ) and J(c), in

order to determine the structure of the automorphism groups of these algebras.
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4.3 using dickson’s doubling process with central simple algebras

4.3 using dickson’s doubling process with central simple

algebras

Let B be an associative division algebra over F . Let σ ∈ AutF (B) be a

non-trival automorphism and c ∈ B×. As B is not commutative, we can

generalise the classical Dickson multiplication on the F -vector space B ⊕B in

three ways:

• (u, v) ◦ (x, y) = (ux+ cσ(vy),uy+ vx),

• (u, v) ◦ (x, y) = (ux+ σ(v)cσ(y),uy+ vx),

• (u, v) ◦ (x, y) = (ux+ σ(vy)c,uy+ vx).

We denote the F -vector space B⊕B endowed with each of these multiplications

by D(B,σ, c), Dm(B,σ, c) and Dr(B,σ, c), respectively. If c ∈ F×, the three

constructions are identical. All three constructions yield unital nonassociative

algebras over F and are canonical generalisations of the commutative construction

defined by Dickson.

Lemma 4.3.1. (i) Let D = D(B,σ, c) or D = Dr(B,σ, c). Then Comm(D) =

F ⊕ F .

(ii) Let D = Dm(B,σ, c). If c ∈ F×, then Comm(D) = F ⊕ F . Otherwise,

Comm(D) = F .

Proof. (i) We only show the proof for D(B,σ, c) as the proof for Dr(B,σ, c)

follows identically. Let (u, v) ∈ Comm(D). Then for all x ∈ B, we have

(u, v)(x, 0) = (x, 0)(u, v).

This is equivalent to ux = xu and vx = xv. This holds for all x ∈ B if and

only if both u and v lie in the centre of B. Hence Comm(D) ⊆ F ⊕F . It

is easily checked that all elements of F ⊕ F are contained in Comm(D).

Hence Comm(D) = F ⊕ F .
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(ii) Let (u, v) ∈ Comm(D). Then for all x ∈ B, we have (u, v)(0,x) =

(0,x)(u, v). This is equivalent to σ(v)cσ(x) = σ(x)cσ(v) and ux = xu.

The second equation implies that u ∈ Z(B) = F . If c 6∈ F , then the

first equation is only satisfied for all x ∈ B when v = 0, which yields

Comm(D) = F .

If c ∈ F×, we have Dm(B,σ, c) = D(B,σ, c) and so by (i), we obtain

that Comm(D) = F ⊕ F .

Theorem 4.3.2. Let D = D(B,σ, c). Then

• Nucl(D) = {k ∈ B | cσ(k) = kc} ⊂ B,

• Nucm(D) = B,

• Nucr(D) = Fix(σ).

In particular,

Nuc(D) = Fix(σ) ∩ {k ∈ B | cσ(k) = kc} = {k ∈ Fix(σ) | ck = kc}

and Z(D) = F .

Proof. We will show the proof for the left nucleus. The calculations for the

middle and right nucleus are obtained similarly.

Suppose (k, l) lies in the left nucleus for some k, l ∈ B. Then for all x ∈ B, we

must have

((k, l)(0, 1))(x, 0) = (k, l)((0, 1)(x, 0)).

Computing both sides of this it follows that

(cσ(l)x, kx) = (cσ(lx), kx).

As σ is a non-trivial automorphism of B, this is true for all x ∈ B if and only

if l = 0. Thus we only need to consider elements of the form (k, 0) for k ∈ B.

Now (k, 0) ∈ Nucl(D) if and only if we obtain

((k, 0)(u, v))(x, y) = (k, 0)((u, v)(x, y))
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for all u, v,x, y ∈ B. Computing both sides of this, this yields

(kux+ cσ(kvy), kuy+ kvx) = (kux+ kcσ(vy), kuy + kvx).

This is satisfied for all u, v,x, y ∈ B if and only if cσ(k) = kc. Hence we have

that

Nucl(D) = {(k, 0) | k ∈ B such that cσ(k) = kc}.

As the centre is the intersection of the nucleus and the commutator, this yields

Z(D) = (Fix(σ) ∩ {k ∈ B | cσ(k) = kc} ∩ F )⊕ 0 = F ⊕ 0.

Similarly, we can calculate the left, middle and right nuclei and centre of

Dr(B,σ, c) and Dm(B,σ, c):

Theorem 4.3.3. Let D = Dr(B,σ, c). Then

• Nucl(D) = Fix(σ),

• Nucm(D) = B,

• Nucr(D) = {k ∈ B | cσ(k) = kc} ⊂ B.

In particular, Nuc(D) = {k ∈ Fix(σ) | ck = kc} and Z(D) = F .

Theorem 4.3.4. Let D = Dm(B,σ, c). Then

• Nucl(D) = Fix(σ),

• Nucm(D) = {k ∈ B | σ(k)c = cσ(k)} ⊂ B,

• Nucr(D) = Fix(σ).

In particular, Nuc(D) = {k ∈ Fix(σ) | ck = kc} and Z(D) = F .

Note that if c ∈ F×, the three algebras we obtain are identical as noted earlier.

In this case, the left and right nuclei are equal to Fix(σ) and the middle nucleus

is equal to B. However if c 6∈ F , we obtain at least 2 non-isomorphic algebras

from the construction:

Corollary 4.3.5. Let c ∈ B \ F×. Then
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4.3 using dickson’s doubling process with central simple algebras

• D(B,σ, c) 6∼= Dm(B,σ, c),

• Dm(B,σ, c) 6∼= Dr(B,σ, c).

If c does not commute with all elements of Fix(σ), then D(B,σ, c) 6∼= Dr(B,σ, c).

Proof. Since automorphisms preserve each of the left, middle and right nuclei,

if D(B,σ, c) ∼= Dm(B,σ, c) this implies that {k ∈ B | σ(k)c = cσ(k)} = B.

As c 6∈ F , we can find k ∈ B such that σ(k) does not commute with c so this

is never true. An identical argument shows that Dm(B,σ, c) 6∼= Dr(B,σ, c).

Finally, we see that D(B,σ, c) ∼= Dr(B,σ, c) occurs only if Fix(σ) = {k ∈ B |

kc = cσ(k)}. Let x ∈ Fix(σ). We have x ∈ {k ∈ B | kc = cσ(k)} if and only

if cx = xc.

Similarly, if we take an element y ∈ {k ∈ B | kc = cσ(k)}, it lies in Fix(σ)

if and only if cy = yc. Thus the left nuclei of the two algebras are equal only

when c commutes with all of Fix(σ). Otherwise, we must have D(B,σ, c) 6∼=

Dr(B,σ, c).

Similarly to the algebras we obtained from doubling a field extension, any

F -subalgebra of B appears as a subalgebra of D(B,σ, c), Dm(B,σ, c) and

Dr(B,σ, c). Additionally, if E ⊂ B is such that c ∈ E× and σ |E∈ AutF (E),

then D(E,σ |E , c) (resp. Dm(E,σ |E , c) and Dr(E,σ |E , c)) is a subalgebra of

D(B,σ, c) (resp. Dm(B,σ, c) and Dr(B,σ, c)). In particular, this yields the

following:

Theorem 4.3.6. If c ∈ K× for some separable field extension K/F contained

in B such that σ |K= φ ∈ AutF (K), then D(K,φ, c) is a commutative Dickson

subalgebra of D(B,σ, c), Dm(B,σ, c) and Dr(B,σ, c).

Theorem 4.3.7. (i) D = D(B,σ, c) is a division algebra if and only if c 6=

rt−1rsσ(s−1t−1) for all r, s, t ∈ B×.

(ii) Dm(B,σ, c) is a division algebra if and only if c 6= σ(t)−1rt−1rsσ(s)−1

for all r, s, t ∈ B×.
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(iii) Dr(B,σ, c) is a division algebra if and only if c 6= σ(s−1t−1)rt−1rs for

all r, s, t ∈ B×.

Proof. (i): Suppose that D is not a division algebra. Then there exist nonzero

elements (u, v), (x, y) ∈ B⊕B such that (u, v)(x, y) = (0, 0). This is equivalent

to the simultaneous equations

ux+ cσ(vy) =0, (9)

uy+ vx =0. (10)

If v = 0, then (10) becomes uy = 0, so either u = 0 or y = 0. However, u

must be nonzero, else (u, v) = (0, 0) which is a contradiction, so we must have

y = 0. Additionally, (9) gives ux = 0. As u is nonzero, this implies x = 0 and

so (x, y) = (0, 0) which is again a contradiction.

So let v 6= 0. As B is an associative division algebra, we have v−1 ∈ B and

hence we obtain

x = −v−1uy

from (10). Now if y = 0, this implies that x = 0 which is a contradiction to

(x, y) 6= (0, 0). Substituting this into (9), we get

−uv−1uy+ cσ(vy) = 0,

which rearranges to give c = uv−1uyσ(y)−1σ(v)−1.

Conversely, suppose c = rt−1rsσ(s)−1σ(t)−1 for some r, s, t ∈ K×. Consider

the elements (r, t) and (−t−1rs, s). Both elements are nonzero but satisfy

(r, t)(−t−1rs, s) =(−rt−1rs+ rt−1rsσ(s)−1σ(t)−1σ(ts), rs− tt−1rs)

=(0, 0).

Hence D is not a division algebra.

The proofs of (ii) and (iii) follow almost identically to (i).

Corollary 4.3.8. If c ∈ (B×)2, then D(B,σ, c),Dm(B,σ, c), and Dr(B,σ, c)

are not division algebras.

Proof. This follows from setting s = t = 1 in Theorem 4.3.7.
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Corollary 4.3.9. Let NB/F : B → F be the nondegenerate multiplicative norm

form on B. The algebras D = D(B,σ, c), Dm(B,σ, c), Dr(B,σ, c) are division

algebras if

NB/F (c) 6= NB/F (a)
2

for all a ∈ B.

Proof. This follows analogously to Corollary 4.2.4.

Example 4.3.10. (i) Let F = Q and B = (a, b) be a quaternion division

algebra over Q with a, b > 0. For all x ∈ B×, we see that NB/Q(x)
2 > 0;

as a consequence, D(B,σ, c) is a division algebra for any c ∈ B× such

that NB/Q(c) < 0. For example, if we pick c = c1i+ c2j for some ci ∈ Q

not both zero, then

NB/Q(c) = −c21a− c22b < 0,

so D(B,σ, c) is a division algebra.

(ii) Let F = Qp and B = (u, p) be the unique quaternion division algebra

over Qp for some u ∈ Zp \ (Zp)2 with basis {1, i, j, k} where i2 = u,

j2 = p and k = ij = −ji. Then for all c ∈ B, it follows that

NB/Qp(c) = x2 − y2u− z2p+w2up

for some x, y, z,w ∈ Qp. As up is not a square in Qp, for any c ∈ B such

that NB/Qp(c) = w2up we conclude that D(B,σ, c) is a division algebra

over Qp.

4.3.1 Isomorphisms

The results and proofs from Section 4.2 regarding isomorphisms and automorphisms

of commutative Dickson algebras generalise almost identically toD(B,σ, c) and

Dr(B,σ, c), as the middle nuclei of these algebras are equal to B. First note

the following result:
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Lemma 4.3.11. Let D = D(B,σ, c), D′ = D(B′,φ, d) be two Dickson algebras

over F . If there exists an F -isomorphism τ : B → B′ such that τ ◦ σ = φ ◦ τ

and τ (c) = db2 for some b ∈ F×, then τ |Nucl(D): Nucl(D) → Nucl(D′) is an

F -isomorphism.

Proof. As with the proof of Lemma 4.2.11, we only need to show that

Im(τ |Nucl(D)) = Nucl(D′).

First, consider x ∈ Nucl(D). It follows that x must satisfy cσ(k) = kc.

Applying τ to both sides of the equation and substituting in the condition

on τ (c), we obtain

db2τ (σ(k)) = τ (k)db2.

As b ∈ F×, we can cancel this from both sides. After substituting τ ◦ σ = φ ◦ τ ,

this yields dφ(τ (k)) = τ (k)d and thus τ (k) ∈ Nucl(D′). Hence

Im(τ |Nucl(D)) ⊆ Nucl(D′).

In order to show equality, we follow an analogous process to the one in the

proof of Lemma 4.2.11.

It is clear that the above proof also holds when considering the right nucleus

of Dr(B,σ, c), as this is equal to the left nucleus of D(B,σ, c). We will always

assume that B,B′ are central simple division algebras over F . We now give a

proof of the generalisation of Theorem 4.2.12:

Theorem 4.3.12. Let D = D(B,σ, c) and D′ = D(B′,φ, d) be F -algebras.

Then G : D → D′ is an isomorphism if and only if G has the form

G(x, y) = (τ (x), τ (y)b)

for some F -isomorphism τ : B → B′ such that φ ◦ τ = τ ◦ σ and τ (c) = db2

for some b ∈ F×.

Proof. Suppose G : D → D′ is an F -isomorphism. Then G maps the middle

nucleus of D to the middle nucleus of D′, so by Theorem 4.3.2 this implies
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B ∼= B′. This means G restricted to B must be an isomorphism which maps to

B′; that is, G |B= τ : B → B′, so this yields G(x, 0) = (τ (x), 0) for all x ∈ B.

Let G(0, 1) = (a, b) for some a, b ∈ B′. Then we have G(x, y) = G(x, 0) +

G(0, 1)G(y, 0) = (τ (x)+aτ (y), τ (y)b), andG(x, y) = G(x, 0)+G(y, 0)G(0, 1) =

(τ (x) + τ (y)a, bτ (y)). This implies that a, b ∈ Z(B′) = F .

As G is multiplicative, it follows that G((0, 1)2) = G(0, 1)2 which holds if and

only if (a, b)(a, b) = (τ (c), 0). From this, we obtain the equations

a2 + dφ(b2) = τ (c), ab+ ba = 0.

Since we established that a, b ∈ F , this simplifies to a2 + db2 = τ (c) and

2ab = 0. As F does not have characteristic 2, this implies that either a = 0 or

b = 0. If b = 0, then G(x, y) = (τ (x) + τ (y)a, 0) and so G is not surjective.

This is a contradiction, as G is an isomorphism. Thus a = 0 and we obtain

db2 = τ (c).

Finally, as G is multiplicative it follows that G(u, v)G(x, y) = G((u, v)(x, y))

for all u, v,x, y ∈ K. Computing both sides of this equation, we get

(τ (ux)+dφ(τ (v)bτ (y)b), τ (uy)b+ τ (v)bτ (x)) = (τ (ux+ cσ(vy)), τ (uy+ vx)b)

for all u, v,x, y ∈ K. As b ∈ F , this implies db2φ(τ (vy)) = τ (cσ(vy)). After

substituting the condition τ (c) = dφ(b2), we conclude φ ◦ τ = τ ◦ σ.

Conversely, let G : B ⊕B → B′⊕B′ be defined by G(x, y) = (τ (x), τ (y)b) for

some F -isomorphism τ : B → B′ such that φ ◦ τ = τ ◦ σ and τ (c) = db2 for

some b ∈ F×. By Lemma 4.2.11 and Lemma 4.3.11, we see that G maps the

nuclei of D isomorphically to the nuclei of D′. Thus, it is easily checked that

this G gives an F -algebra isomorphism from D to D′.

Theorem 4.3.13. Let D = Dr(B,σ, c) and D′ = Dr(B′,φ, d) be F -algebras.

Then G : D → D′ is an isomorphism if and only if G has the form

G(x, y) = (τ (x), τ (y)b)

for some F -isomorphism τ : B → B′ such that φ ◦ τ = τ ◦ σ and τ (c) = db2

for some b ∈ F×.
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Proof. The proof is analogous to Theorem 4.3.12, as the middle nuclei of

Dr(B,σ, c) and Dr(B′,φ, d) are equal to B and B′ respectively. Due to this, we

can construct the isomorphisms in the same way as in the previous proof.

Corollary 4.3.14. Let D = D(B,σ, c) (resp. Dr(B,σ, c)) and D′ = D(B,φ, d)

(resp. Dr(B,φ, d)) be F -algebras. Then G : D → D′ is an isomorphism if and

only if G has the form

G(x, y) = (τ (x), τ (y)b)

for some F -isomorphism τ ∈ AutF (B) such that φ ◦ τ = τ ◦ σ and τ (c) = db2

for some b ∈ F×.

Corollary 4.3.15. If c ∈ F× and d ∈ B× \F , then D(B,σ, c) is not isomorphic

to any of D(B,σ, d), Dm(B,σ, d) or Dr(B,σ, d).

Proof. IfD(B,σ, c) is isomorphic to one ofD(B,σ, d) orDr(B,σ, d), by Corollary

4.3.14 there must exist some b ∈ F× such that c = db2. This implies d = cb−2 ∈

F×, which is a contradiction.

Finally, if Dm(B,σ, d) ∼= D(B,σ, c), then the middle nuclei of the two algebras

must be isomorphic; that is, B ∼= {k ∈ B | σ(k)d = dσ(k)}. This is satisfied if

and only if d ∈ F×, contradicting our assumption.

Note that we cannot use an analogous proof to the one in Theorem 4.3.12 to

determine the isomorphisms of Dm(B,σ, c), as the middle nucleus is not equal

to B. We obtain some weaker results:

Lemma 4.3.16. If Fix(σ) 6∼= Fix(φ), then Dm(B,σ, c) 6∼= Dm(B′,φ, d) for any

choice of c ∈ B× and d ∈ B′×.

Proof. IfDm(B,σ, c) ∼= Dm(B′,φ, d), the left nucleus ofDm(B,σ, c) is mapped

isomorphically to the left nucleus of Dm(B′,φ, d). By Lemma 4.3.4, this implies

Fix(σ) ∼= Fix(φ).

Theorem 4.3.17. Let D = Dm(B,σ, c) and D′ = Dm(B′,φ, d) be F -algebras.

If τ : B → B′ is an F -isomorphism such that φ ◦ τ = τ ◦ σ and τ (c) = db2

for some b ∈ F×, there is an isomorphism G : D → D′ given by G(x, y) =

(τ (x), τ (y)b) for all x, y ∈ B.
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Proof. Clearly this is an F -vector space isomorphism from B ⊕B to B′ ⊕B′

as it is additive, bijective and F -linear. To show this map is multiplicative and

thus an F -algebra isomorphism, we consider G(u, v)G(x, y) = G((u, v)(x, y)).

This is equivalent the equations

τ (u)τ (x) + φ(τ (v)b)dφ(τ (y)b) = τ (ux+ σ(v)cσ(y)),

τ (u)τ (y)b+ τ (v)bτ (x) = τ (uy+ vx)b.

As b ∈ F×, this is equivalent to simply considering

φ(τ (v))db2φ(τ (y)) = τ (σ(v))τ (c)τ (σ(y)).

Substituting τ (c) = db2, we conclude that this is satisfied for all v, y ∈ B as

we assumed φ ◦ τ = τ ◦ σ. Hence G : D → D′ is a F -algebra isomorphism.

4.3.2 Automorphisms

Theorem 4.3.18. Let D = D(B,σ, c) (resp. D = Dr(B,σ, c)). All automorphisms

G : D → D are of the form

G(u, v) = (τ (u), τ (v)b)

for some τ ∈ AutF (B) such that τ ∈ C(σ) and b ∈ F× satisfying τ (c) = cb2.

Further, all maps of this form with τ ∈ AutF (B) and b ∈ F× satisfying these

conditions yield automorphisms of D.

Proof. Suppose that G : D → D is an F -automorphism. Then G restricts to

an automorphism of the middle nucleus of D. This means that G restricted to

B must be an automorphism of B; that is, G |B= τ ∈ AutF (B), so we have

G(x, 0) = (τ (x), 0) for all x ∈ B.

Let G(0, 1) = (a, b) for some a, b ∈ B. Then we have

G(x, y) = G(x, 0) +G(0, 1)G(y, 0) = (τ (x) + aτ (y), τ (y)b),

and G(x, y) = G(x, 0) +G(y, 0)G(0, 1) = (τ (x) + τ (y)a, bτ (y)). This implies

that a, b ∈ Z(B′) = F .
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As G is multiplicative, we must also have G((0, 1)2) = G(0, 1)2 which holds

if and only if (a, b)(a, b) = (τ (c), 0). From this, we obtain the equations a2 +

cφ(b2) = τ (c) and ab + ba = 0. Since we have a, b ∈ F , this simplifies to

a2 + cb2 = τ (c) and 2ab = 0. As F does not have characteristic 2, this implies

either a = 0 or b = 0. If b = 0, then G(x, y) = (τ (x) + τ (y)a, 0) and so G

is not surjective. This is a contradiction, as G is an automorphism. Thus we

conclude a = 0 and cb2 = τ (c).

Finally, as G is multiplicative we have G(u, v)G(x, y) = G((u, v)(x, y)) for all

u, v,x, y ∈ K. When D = D(B,σ, c), this yields

(τ (ux)+ cσ(τ (v)bτ (y)b), τ (uy)b+ τ (v)bτ (x)) = (τ (ux+ cσ(vy)), τ (uy+ vx)b)

for all u, v,x, y ∈ K. As b ∈ F , this implies we must have cb2σ(τ (vy)) =

τ (cσ(vy)). After substituting the condition τ (c) = cφ(b2), we get σ ◦ τ = τ ◦ σ.

This follows almost identically for Dr(B,σ, c).

Conversely, let G : B ⊕B → B ⊕B be defined by G(x, y) = (τ (x), τ (y)b) for

some F -automorphism τ : B → B such that σ ◦ τ = τ ◦ σ and τ (c) = cb2

for some b ∈ F×. It is easily checked that this in fact gives an F -algebra

automorphism of D.

Corollary 4.3.19. Let D = D(B,σ, c) (resp. D = Dr(B,σ, c)). There is a

subgroup of AutF (D) isomorphic to

{τ ∈ AutF (B) | τ (c) = c and τ ◦ σ = σ ◦ τ}.

In order to describe the number of automorphisms ofD(B,σ, c) andDr(B,σ, c),

we introduce a slightly different version of the group J(c):

JF (c) = {τ ∈ AutF (B) | X2 − τ (c)c−1 = 0 has solutions in F} ⊂ AutF (B).

Similarly to J(c), this forms a subgroup of AutF (B). The proof of this follows

identically to the proof of Theorem 4.2.20.

Theorem 4.3.20. There are exactly 2 |JF (c) ∩C(σ)| automorphisms of D(B,σ, c)

(respectively Dr(B,σ, c)), each of which is given by the automorphisms G(x, y) =

(τ (x), τ (y)bi) for each τ ∈ JF (c) ∩ C(σ), where bi ∈ F are the two solutions

of X2 − τ (c)c−1 = 0 for i = 1, 2.
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Proof. The proof follows analogously to the proof of Theorem 4.2.24, apart from

requiring that bi ∈ F×. This is due to the constraints determined in Theorem

4.3.18.

Corollary 4.3.21. If c ∈ F×, then there are exactly 2 |C(σ)| automorphisms of

D(B,σ, c), each of which is given by the automorphisms G(x, y) = (τ (x),±τ (y))

for each τ ∈ C(σ).

Proof. This follows similarly to Corollary 4.2.26.

An integral part of the proof given in Theorem 4.3.18 is that one of the nuclei

of these algebras must be equal to B and so any automorphism of D(B,σ, c)

must restrict to an automorphism of B. For Dm(B,σ, c) with c 6∈ F×, B is not

equal to any of the nuclei so we cannot make this deduction. However, if we

assume that an automorphism of Dm(B,σ, c) restricts to an automorphism of

B, then it must be of the same form as the automorphisms of the other Dickson

algebras:

Theorem 4.3.22. Let D = Dm(B,σ, c) and suppose G is an automorphism

which restricts to an automorphism of B. Then

G(u, v) = (τ (u), τ (v)b)

for some τ ∈ AutF (B) such that τ ∈ C(σ) and b ∈ F× satisfying τ (c) = cb2.

Proof. The proof follows analogously to Theorem 4.3.18 as G restricts to an

automorphism of B.

4.4 generalized dickson algebras

We now consider a generalisation of Knuth’s construction. Let D be a central

simple associative division algebra of degree n over F with nondegenerate

multiplicative norm form ND/F : D → F . Given σi ∈ AutF (D) for i = 1, 2, 3, 4

and c ∈ D×, define a multiplication on the F -vector space D⊕D by

(u, v)(x, y) = (ux+ cσ1(v)σ2(y),σ3(u)y+ vσ4(x)).
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Recall that we denote the F -vector space endowed with this multiplication

by Cay(D, c,σ1,σ2,σ3,σ4). We can also define an analogous multiplication on

K⊕K for a finite field extensionK/F for some c ∈ K× and σi ∈ AutF (K). We

similarly denote these algebras by Cay(K, c,σ1,σ2,σ3,σ4). This yields unital

F -algebras of dimension 2 dimF (D) and 2[K : F ] respectively. When σ4 = id,

our multiplication is identical to the one used in the construction of generalized

Dickson semifields. For every subalgebra E ⊆ D such that c ∈ E× and σi |E=

φi ∈ AutF (E) for i = 1, 2, 3, 4, it is clear that Cay(E, c,φ1,φ2,φ3,φ4) is a

subalgebra of Cay(D, c,σ1,σ2,σ3,σ4).

Theorem 4.4.1. (i) If ND/F (c) 6= ND/F (a)
2 for all a ∈ D×, then

Cay(D, c,σ1,σ2,σ3,σ4) is a division algebra.

(ii) If K is separable over F and NK/F (c) 6= NK/F (a)
2 for all a ∈ K×, then

Cay(K, c,σ1,σ2,σ3,σ4) is a division algebra.

This follows analogously to Theorem 4.1.5.

Remark 4.4.2. If F = Fps and K = Fpr is a finite extension of F , then

AutF (K) is cyclic of order r/s and is generated by φs, where φ is defined by the

Frobenius automorphism φ(x) = xp for all x ∈ K. ThenA = Cay(K, c,σ1,σ2,σ3,σ4)

is a division algebra if and only if c is not a square in K. The proof of this is

analogous to the one given in [36, p. 53].

Although it appears that we obtain some additional semifields from the

doubling process that were not considered in [36], we show that this is not

the case:

Theorem 4.4.3. Let D and D′ be two central simple F -algebras (respectively,

K and L finite field extensions of F ) and g,h : D → D′ be two F -algebra

isomorphisms. Let AD = Cay(D, c,σ1,σ2,σ3,σ4) and BD′ = Cay(D′, g(c)b2,φ1,φ2,φ3,φ4)

for some b ∈ F× (resp. AK = Cay(K, c,σ1,σ2,σ3,σ4) and

BL = Cay(L, g(c)φ1(b)φ2(b),φ1,φ2,φ3,φ4) for some b ∈ K×). If

φi = g ◦ σi ◦ h−1 for i = 1, 2, (11)

φi = h ◦ σi ◦ g−1 for i = 3, 4, (12)

122



4.4 generalized dickson algebras

then the map G : A → B, G(u, v) = (g(u),h(v)b−1) defines an F -algebra

isomorphism.

Proof. We show the proof in the central simple algebra case. It follows analogously

when we take field extensions K and L. Clearly G is F -linear, additive and

bijective. It only remains to show thatG is multiplicative; that is, G((u, v)(x, y)) =

G(u, v)G(x, y) for all u, v,x, y ∈ D. First we have

G(u, v)G(x, y) =(g(u),h(v)b−1)(g(x),h(y)b−1)

=(g(u)g(x) + g(c)b2φ1(h(v)b
−1)φ2(h(y)b

−1),

φ3(g(u))h(y)b
−1 + h(v)b−1φ4(g(x)))

=(g(ux) + g(c)φ1(h(v))φ2(h(y)), [φ3(g(u))h(y) + h(v)φ4(g(x))]b
−1).

It similarly follows that

G((u, v)(x, y)) =G(ux+ cσ1(v)σ2(y),σ3(u)y+ vσ4(x))

=(g(ux+ cσ1(v)σ2(y)),h(σ3(u)y+ vσ4(x))b
−1)

=(g(ux) + g(c)g(σ1(v))g(σ2(y)), [h(σ3(u))h(y) + h(v)h(σ4(x))]b
−1).

By (11) and (12), we obtain equality and thus G is an F -algebra isomorphism.

Corollary 4.4.4. Let g,h ∈ AutF (D) (resp. AutF (K)) and b ∈ F× (resp.

b ∈ K×). Let BD = Cay(D, g(c)b2,φ1,φ2,φ3,φ4)

(resp. BK = Cay(K, g(c)φ1(b)φ2(b),φ1,φ2,φ3,φ4) for some b ∈ K×). If

φi = g ◦ σi ◦ h−1 for i = 1, 2,

φi = h ◦ σi ◦ g−1 for i = 3, 4,

then the map G : A → B, G(u, v) = (g(u),h(v)b−1) defines an F -algebra

isomorphism.

Corollary 4.4.5. Every generalised Dickson algebra AD = Cay(D, c,σ1,σ2,σ3,σ4)

is isomorphic to an algebra of the form Cay(D, c,σ′1,σ′2,σ′3, id) (analogously for

the algebras AK).
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Proof. Consider the mapG : D⊕D → D⊕D defined byG(u, v) = (u,σ−1
4 (v)).

By Theorem 4.4.3, this yields the isomorphism

Cay(D, c,σ1,σ2,σ3,σ4) ∼= Cay(D, c,σ1 ◦ σ4,σ2 ◦ σ4,σ−1
4 ◦ σ3, id).

This confirms that when K is a finite field, every algebra obtained from this

construction is isomorphic to a generalized Dickson semifield. Thus, for finite

fields the results given in [36] can be translated across to this construction via

the isomorphism given in Corollary 4.4.5. This motivates the investigation of

analogue results for the construction with both an associative division algebra

D/F and a finite field extension K/F in the following sections, which have not

been considered previously.

4.4.1 Commutator and nuclei

Unless otherwise stated, we will write AD = Cay(D, c,σ1,σ2,σ3, id) and AK =

Cay(K, c,σ1,σ2,σ3, id) without loss of generality; if σ4 6= id, we may use

Corollary 4.4.5 to obtain an isomorphic algebra Cay(D, c,σ′1,σ′2,σ′3, id).

Proposition 4.4.6. If σ1 = σ2 and σ3 = id, Comm(AD) = F ⊕ F and AK
is commutative. Otherwise, Comm(AD) = F ⊕ S, where S = {v ∈ D | yv =

vσ−1
1 ◦ σ2(y) and σ3(y)v = vy}, and Comm(AK) = Fix(σ3)⊕ 0 ⊆ K.

Proof. We compute this only forAD as the computations forAK follow analogously.

By definition, (u, v) ∈ Comm(AD) if and only if for all x, y ∈ D, (u, v)(x, y) =

(x, y)(u, v). This is equivalent to

ux+ cσ1(v)σ2(y) =xu+ cσ1(y)σ2(v), (13)

σ3(u)y+ vx =σ3(x)v+ yu, (14)

for all x, y ∈ D. If y = 0 and x 6= 0, the first equation implies u ∈ Z(D) = F ;

if x = 0 and y 6= 0, we must have v ∈ D satisfies σ1(v)σ2(y) = σ1(y)σ2(v).
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If we let y ∈ F , then we have σ1(v) = σ2(v). If we use this condition in (13),

we see that v ∈ D must satisfy yv = vσ−1
1 ◦ σ2(y) for all y ∈ D. Under these

assumptions on u and v, (13) is satisfied for all x, y ∈ D. Similar deduction

yields that (14) is satisfied for all x, y ∈ D if and only if σ3(x)v = vx.

Remark 4.4.7. If Comm(AK) 6⊆ K, then σ1 = σ2 and σ3 = σ4 = id by

Lemma 4.4.6. Hence, every such algebra is isomorphic to the generalisation of

commutative Dickson algebras as defined in [59].

Proposition 4.4.8. (i) Suppose that at least one of the following holds:

• σ2 6= id,

• σ1 6= σ2 ◦ σ3,

• σ1 6= σ3 ◦ σ2.

Then Nucl(AD) = {(x, 0) ∈ D ⊕D | σ1 ◦ σ3(x) = c−1xc} ⊆ D ⊕ 0 and

Nucl(AK) = Fix(σ1 ◦ σ3)⊕ 0 ⊆ K ⊕ 0.

(ii) Suppose that at least one of the following holds:

• there exists some x ∈ D (resp. K) such that σ1 ◦ σ3(x) 6= c−1xc,

• σ2 6= id,

• for all v ∈ D, there exists some x ∈ D (resp. K) such that

σ3(c)σ3(σ1(x))σ3(σ2(v)) 6= xcσ1(v).

Then Nucm(A) = Fix(σ−1
3 ◦ σ−1

2 ◦ σ1)⊕ 0 for both A = AD and A = AK .

(iii) Suppose that at least one of the following holds:

• there exists some x ∈ D (resp. K) such that σ1 ◦ σ3(x) 6= c−1xc,

• σ1 6= σ2 ◦ σ3,

• for all y ∈ D, there exists some x,x′ ∈ D (resp. K) such that

σ3(c)σ3(σ1(x))x′y 6= xcx′σ2(y).

Then Nucr(A) = Fix(σ2)⊕ 0 for both A = AD and A = AK .
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Proof. (i) First consider all elements of the form (k, 0) for k ∈ D. Then (k, 0) ∈

Nucl(AD) if and only if we have ((k, 0)(u, v))(x, y) = (k, 0)((u, v)(x, y)) for

all u, v,x, y ∈ D. Computing this directly, we obtain the equations

kux+ cσ1(σ3(k)v)σ2(y) =kux+ kcσ1(v)σ2(y),

σ3(ku)y+ σ3(k)vx =σ3(k)σ3(u)y+ σ3(k)vx.

These hold for all u, v,x, y ∈ D if and only if cσ1 ◦ σ3(k) = kc, i.e. we

have σ1 ◦ σ3(k) = c−1kc. The same calculations yield that this holds for all

u, v,x, y ∈ D if and only if σ1 ◦ σ3(k) = k.

The associator is linear in each component, so we have [(k,m), (u, v), (x, y)] =

[(k, 0), (u, v), (x, y)] + [(0,m), (u, v), (x, y)]. It is clear that is (k, 0), (0,m) ∈

Nucl(AD), then (k,m) ∈ Nucl(AD). Conversely, suppose (k,m) ∈ Nucl(AD).

As [(k,m), (u, v), (x, y)] = 0 is satisfied for all u, v,x, y ∈ D, we consider x =

u = 0; from this, we obtain cσ1(σ3(k)v)σ2(y) = kcσ1(v)σ2(y) must be satisfied

for all v, y ∈ D. Comparing this with the computations for ((k, 0)(u, v))(x, y) =

(k, 0)((u, v)(x, y)), we see that these conditions are identical. So (k,m) ∈

Nucl(AD) implies (k, 0) ∈ Nucl(AD). As [(0,m), (u, v), (x, y)] = [(k,m), (u, v), (x, y)]−

[(k, 0), (u, v), (x, y)] and Nucl(AD) is closed under addition, it is clear that

(0,m) ∈ Nucl(AD). Thus it follows that (k,m) lies in the left nucleus if and

only if (k, 0) and (0,m) are both also in the left nucleus. Thus to show that

there are no other elements in the left nucleus, it suffices to check that there

are no elements of the form (0,m), m ∈ D, in Nucl(AD).

If (0,m) ∈ Nucl(AD), then for all u, v,x, y ∈ D we have ((0,m)(u, v))(x, y) =

(0,m)((u, v)(x, y)). This holds for all u, v,x, y ∈ D if and only if

cσ1(m)[σ2(v)x+ σ1(u)σ2(y)] = cσ1(m)[σ2(v)σ2(x) + σ2(σ3(u))σ2(y)],

σ3(cσ1(m)σ2(v))y = mcσ1(v)σ2(y).

Whenm = 0, this is satisfied for all u, v,x, y ∈ D. Ifm 6= 0, we consider various

elements of D in order to determine some conditions on the σi. For example,

substituting v = x = 0 and y = 1 yields that σ1(u) = σ2(σ3(u)) for all u ∈ D;

i.e. σ1 = σ2 ◦ σ3. Via other similar choices of u, v,x and y, we obtain the
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additional conditions that σ1 = σ3 ◦ σ2 and σ2 = id. Under these assumptions,

we see that there may exist some m 6= 0 such that ((0,m)(u, v))(x, y) =

(0,m)((u, v)(x, y)) for all u, v,x, y ∈ D.

(ii) and (iii) follow analogously: we first determine all elements of the form

(k, 0) in Nucm(A) and Nucr(A) respectively. As the associator is linear in the

each component, it then suffices to look at the elements of the form (0,m). As

in (i), we determine these conditions by considering various elements of D.

Corollary 4.4.9. AK is associative if and only if AK = Cay(K, c,σ, id,σ, id)

for some σ ∈ AutF (K) such that σ2 = id and c ∈ Fix(σ). That is, AK is a

quaternion algebra over Fix(σ).

As the center of A is defined as Z(A) = Comm(A) ∩Nucl(A) ∩Nucm(A) ∩

Nucr(A), we see that Z(AK) ⊆ K unless σ1 = σ2 = σ and σ3 = σ4 =

σ−1. If AK = Cay(K, c,σ,σ,σ−1,σ−1) for some σ ∈ AutF (K), then AK is a

commutative, associative algebra.

4.4.2 Isomorphisms

In certain cases, the maps defined in Theorem 4.4.3 and Corollary 4.4.4 are the

only possible isomorphisms between two algebras constructed via our generalised

Cayley-Dickson doubling:

Theorem 4.4.10. Let AK = Cay(K, c,σ1,σ2,σ3, id) and BL = Cay(L, c′,φ1,φ2,φ3, id).

Suppose that G : AK → BL is an isomorphism that restricts to an isomorphism

g : K → L. Then G is of the form G(x, y) = (g(x), g(y)b) such that φi ◦ g =

g ◦ σi for i = 1, 2, 3 and some b ∈ L× such that g(c) = c′φ1(b)φ2(b).
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Proof. Suppose G is an isomorphism from AK to BL such that G |K= g : K →

L is an isomorphism. Then for all x ∈ K, we have G(x, 0) = (g(x), 0). Let

G(0, 1) = (a, b) for some a, b ∈ L. As G is multiplicative, this yields

G(x, y) =G(x, 0) +G(σ−1
3 (y), 0)G(0, 1)

=(g(x), 0) + (g(σ−1
3 (y)), 0)(a, b)

=(g(x) + g(σ−1
3 (y))a,φ3(g(σ

−1
3 (y)))b),

and

G(x, y) =G(x, 0) +G(0, 1)G(y, 0)

=(g(x), 0) + (a, b)(g(y), 0)

=(g(x) + g(y)a, bg(y)).

It follows that either φ3 ◦ g ◦ σ−1
3 = g or b = 0. However, if b = 0 this would

imply that G was not surjective, which is a contradiction to the assumption

that G is an isomorphism. Thus it follows that φ3 ◦ g ◦ σ−1
3 = g. Additionally,

we have either g ◦ σ−1
3 = g or a = 0.

Consider G((0, 1)2) = G(0, 1)2. This gives (a2 + c′φ1(b)φ2(b),φ3(a)b+ ba) =

(g(c), 0). As we have established that b 6= 0, this implies that φ3(a) = −a. If

a 6= 0, we obtain g ◦σ−1
3 = g. Substituting this into the condition φ3 ◦ g ◦σ−1

3 =

g, we conclude that φ3 = id. This contradicts φ3(a) = −a. Thus we must

in fact have a = 0 and G(x, y) = (g(x), g(y)b) where φ3 ◦ g = g ◦ σ3 and

g(c) = c′φ1(b)φ2(b). Computing G(u, v)G(x, y) = G((u, v)(x, y)) gives the

remaining conditions.

As the isomorphism defined in Corollary 4.4.5 restricts to an automorphism

of K, Corollary 4.4.5 can be employed in conjugation with the above result

to determine isomorphisms when σ4 6= id or φ4 6= id. The proof of Theorem

4.4.10 does not hold when we consider the algebras AD, as we rely heavily on

the commutativity of K.

Corollary 4.4.11. Suppose that G : AK → BK is an isomorphism that

restricts to an automorphism g of K. Then G is of the form G(x, y) =
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(g(x), g(y)b) such that φi ◦ g = g ◦ σi for i = 1, 2, 3 and some b ∈ K× such

that g(c) = c′φ1(b)φ2(b).

If Nucl(A) = Nucl(B) = K, all isomorphisms from A→ B must restrict to

an automorphism of K; similar considerations are true for restrictions to the

middle and right nuclei. It follows that we can determine precisely when two

such algebras are isomorphic by Corollary 4.4.11.

Corollary 4.4.12. Suppose that G : AK → BK is an isomorphism that

restricts to an automorphism of K. If K is a separable extension of F , we

must have NK/F (cc
′−1) = NK/F (b

2) for some b ∈ K×.

Proof. SupposeG : AK → BK is an isomorphism that restricts to an automorphism

of K. By Theorem 4.4.11, we have g(c) = c′φ1(b)φ2(b). Applying norms to

both side, we obtain

NK/F (g(c)) = NK/F (c
′φ1(b)φ2(b)).

As K is a separable extension of F , it follows that NK/F (g(x)) = NK/F (x)

for all x ∈ K, g ∈ AutF (K). This yields NK/F (c) = NK/F (c
′b2). As c′ ∈ K×

and NK/F is multiplicative, we conclude that NK/F (cc
′−1) = NK/F (b

2).

Example 4.4.13. Let F = Qp (p 6= 2) and K be a separable extension of Qp.

It is well known that (Q×p )2/Qp = {[1], [u], [p], [up]} for some u ∈ Zp \Z2
p. If

NK/F (c) and NK/F (c
′) do not lie in the same coset of (Q×p )2/Qp, there does

not exist an isomorphism that restricts toK such that Cay(K, c,σ1,σ2,σ3,σ4) ∼=

Cay(K, c′,φ1,φ2,φ3,φ4) by Corollary 4.4.12.

4.4.3 Automorphisms

Theorem 4.4.14. Let g ∈ AutF (D) (resp. AutF (K)) such that g commutes

with σ1,σ2,σ3 and let b ∈ F× (resp. b ∈ K×) such that g(c) = b2c (resp. g(c) =

σ1(b)σ2(b)c). Then the map G : A → A defined by G(u, v) = (g(u), g(v)b) is

an automorphism of AD (resp. AK).
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This is easily checked via some long calculations.

Theorem 4.4.15. Suppose that at least one of Nucl(AK), Nucm(AK), Nucr(AK)

is equal to K. Then G : AK → AK is an automorphism of AK if and only if G

has the form stated in Theorem 4.4.14.

Proof. LetA = AK . SupposeG ∈ AutF (A) and Nucl(A) = K. As automorphisms

preserve the nuclei of an algebra, G restricted to Nucl(A)must be an automorphism

of K; that is, G |K= g ∈ AutF (K) and so we have G(x, 0) = (g(x), 0) for all

x ∈ K.

If Nucl(A) 6= K, by our assumptions one of Nucm(A) or Nucr(A) are equal to

K. In either case, we can use an identical argument by restrictingG to Nucm(A)

or Nucr(A) respectively. As automorphisms preserve the nuclei of an algebra,

G restricted to Nucm(A) (respectively Nucr(A)) must be an automorphism of

K. Let G(0, 1) = (a, b) for some a, b ∈ K. Then

G(x, y) =G(x, 0) +G(σ−1
3 (y), 0)G(0, 1)

=(g(x) + g ◦ σ−1
3 (y)a,σ3 ◦ g ◦ σ−1

3 (y)b),

and also

G(x, y) =G(x, 0) +G(0, 1)G(y, 0)

=(g(x) + g(y)a, g(y)b)

for all x, y ∈ K. Hence we must have g ◦ σ−1
3 (y)a = g(y)a for all y ∈ K, which

implies either σ3 = id or a = 0. Additionally we have σ3 ◦ g ◦ σ−1
3 (y)b = g(y)b.

If b = 0, this would imply G(x, y) = (g(x) + g(y)a, 0), which is a contradiction

as it implies G is not surjective. Thus we must in fact have σ3 ◦ g ◦ σ−1
3 (y) =

g(y) for all y ∈ K.

Now we consider G((0, 1)2) = G(0, 1)2. This gives (a, b)(a, b) = (g(c), 0),

which implies

a2 + cσ1(b)σ2(b) =g(c),

σ3(a)b+ ba =0.
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If σ3 6= id, we already know that a = 0. On the other hand if σ3 = id, we

obtain 2ab = 0. As K has characteristic not 2 and b 6= 0, this implies a = 0.

In either case, we obtain cσ1(b)σ2(b) = g(c) and G(u, v) = (g(u), g(v)b) with

σ3 ◦ g = g ◦ σ3.

Finally we consider G(u, v)G(x, y) = G((u, v)(x, y)) for all u, v,x, y ∈ K. We

obtain (g(u), g(v)b)(g(x), g(y)b) = (g(uv + cσ1(v)σ2(y)), g(σ3(u)y + vx)b)

which gives the equations

cσ1(g(v)b)σ2(g(y)b) =g(c)g(σ1(v)σ2(y)),

σ3(g(u))g(y)b+ g(y)g(x)b =g(σ3(u)y+ vx)b.

As g ◦ σ3 = σ3 ◦ g, the second equation holds for all u, v,x, y ∈ K. Substituting

g(c) = cσ1(b)σ2(b) into the first equation, we obtain σ1(g(v))σ2(g(y)) =

g(σ1(v))g(σ2(y)) for all v, y ∈ K. This implies σ1 ◦ g = g ◦ σ1 and σ2 ◦ g = g ◦

σ2. Hence if G is an automorphism of A we must have G(u, v) = (g(u), g(v)b)

for some g ∈ AutF (K) such that g ◦ f = f ◦ g for f = σ1,σ2,σ3 and some

b ∈ K× such that g(c) = σ1(b)σ2(b)c.

Corollary 4.4.16. Suppose that at least one of Nucl(AK), Nucm(AK), Nucr(AK)

is equal to K and AutF (K) = 〈σ〉. Then G : AK → AK is an automorphism

of AK if and only if G(u, v) = (σi(u),σi(v)b) for some i ∈ Z and b ∈ K×

satisfying σi(c) = cσα2(b)σβ2(b).

In the case when doubling an associative division algebra, we obtain a partial

generalisation of Theorem 4.4.15. Recall that we assumeAD = Cay(D, c,σ1,σ2,σ3, id).

Lemma 4.4.17. Let G ∈ Aut(AD) be such that G |D= g ∈ AutF (D). Then

there must exist some a, b ∈ D, b 6= 0, such that for all y ∈ D,

ag(y) = g ◦ σ−1
3 (y)a,

bg(y) = σ3 ◦ g ◦ σ−1
3 (y)b.
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Proof. Suppose G |D= g ∈ AutF (D). Then for all x ∈ D, we obtain G(x, 0) =

(g(x), 0). Let G(0, 1) = (a, b) for some a, b ∈ D. It now follows that

G(x, y) =G(x, 0) +G(σ−1
3 (y), 0)G(0, 1)

=(g(x) + g ◦ σ−1
3 (y)a,σ3 ◦ g ◦ σ−1

3 (y)b),

and also

G(x, y) =G(x, 0) +G(0, 1)G(y, 0)

=(g(x) + ag(y), bg(y)).

Setting these two equivalent expressions for G(x, y) equal to each other yields

the result. Note that if b = 0, G would no longer be surjective, which would

contradict our assumption that G ∈ Aut(AD).

Theorem 4.4.18. Let G ∈ Aut(AD) be such that G |D= g ∈ AutF (D). If

σ3 = id, then G : AD → AD must have the form as stated in Theorem 4.4.14.

Proof. Suppose G |D= g ∈ AutF (D). Substituting σ3 = id into Lemma 4.4.17,

we see that G(0, 1) = (a, b) for some a, b ∈ D such that

ag(y) = g(y)a, bg(y) = g(y)b.

This is satisfied for all y ∈ D if and only if a, b ∈ F and so G(x, y) = (g(x) +

g(y)a, g(y)b). The remainder of this proof follows almost exactly the same to

Theorem 4.4.15:

Now we consider G((0, 1)2) = G(0, 1)2. This gives (a, b)(a, b) = (g(c), 0),

which implies

a2 + cσ1(b)σ2(b) =g(c)

ab+ ba = 0.

As a, b ∈ F , the second equation is equivalent to 2ab = 0. As F has characteristic

not 2, this implies a = 0 or b = 0. If b = 0, G would not be surjective, which

contradicts our assumption that G is an isomorphism. Thus we must have

a = 0 and so we obtain g(c) = cb2 and G(u, v) = (g(u), g(v)b).
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Finally we consider G(u, v)G(x, y) = G((u, v)(x, y)) for all u, v,x, y ∈ D. We

obtain (g(u), g(v)b)(g(x), g(y)b) = (g(uv+ cσ1(v)σ2(y)), g(uy+ vx)b), which

gives the equations

cσ1(g(v)b)σ2(g(y)b) =g(c)g(σ1(v)σ2(y)),

g(u)g(y)b+ g(y)g(x)b =g(uy+ vx)b.

After substituting cb2 = g(c), we conclude that this is satisfied for all x, y,u, v ∈

D if and only if we have σ1 ◦ g = g ◦ σ1 and σ2 ◦ g = g ◦ σ2.

For σ4 6= id, this is equivalent to assuming that σ3 = σ4.
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