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Abstract
Publicly provided health screening programmes tend to offer standardised screen-
ing for a fixed eligible population. Recently, the development of risk calculation
engines has introduced the potential for the stratification of screening based on
individuals’ risks of disease onset. This possibility raises practical, methodolog-
ical, and ethical challenges. To date, no such programme has been the subject
of an economic evaluation. In this thesis we present reason and basis for the
allocation of screening based on individual risk.

The research is conducted in the context of screening for diabetic eye disease
in the UK. Diabetic retinopathy is a common complication of diabetes that can
lead to blindness, substantial detriments to quality of life, and significant health
care resource use. Our study is linked to a programme of research that includes
a cohort study and randomised controlled trial in the city of Liverpool. We
review and further develop the evidence base to inform the evaluation of a risk-
based screening programme for diabetic eye disease. Specifically, we generate
new evidence on the costs and health outcomes associated with the screening and
treatment of diabetic retinopathy.

We report on a cross-sectional study of health-related quality of life for peo-
ple attending screening for diabetic retinopathy and find that people with pre-
symptomatic disease tend to report poorer quality of life than people with no
disease, with EQ-5D-5L index values of 0.733 on average compared with 0.787
for people with no disease. A meta-analysis of published health state utility val-
ues for diabetic eye disease shows a negative impact on health-related quality of
life before progression to blindness. Our meta-regression found a utility index
decrement of 0.024 for people with proliferative retinopathy.

The costs of screening are low at the individual level, estimated to be £32.03
in our costing study. But the overall budget impact of changes in the frequency
of screening can be significant. We analyse a large data set of hospital and
community screening activity to identify key treatment pathways for diabetic eye
disease. We find that these have changed in recent years, with the introduction
of more expensive interventions.

The evidence generated by our work is used to inform the development of a de-
cision analytic model. The model is designed to estimate the cost-effectiveness of
risk-based screening for diabetic eye disease, compared with current practice. We
find that risk-based screening is likely to be more cost-effective than standardised
screening programmes.

Evaluating a programme that allocates screening according to individuals’
levels of risk raises theoretical and ethical challenges. To this end, we develop a
simple framework for individualised cost-effectiveness analysis that can be used
to inform the design of a risk-based screening programme. We also explore the
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ethics of risk-based screening, developing the notion of screening need as distinct
from treatment need.

Risk-based screening is likely to be cost-effective in the context of diabetic
eye disease. The evidence presented in this thesis can be used to support the
evaluation of new programmes, which can be designed in order to optimise cost-
effectiveness using the methods that we describe. Such an approach is consistent
with equitable policy objectives.
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Chapter 1

The decision problem

Summary
This chapter introduces the decision problem that the thesis seeks to address;
namely, how to optimise the cost-effectiveness of risk-based screening for diabetic
retinopathy. We briefly describe the pathology of diabetic eye disease and current
practice in screening and treatment as it pertains to economic evaluation and
resource allocation decisions. Key concepts and definitions are introduced in this
chapter as they are to be interpreted and used throughout the thesis. We specify
the relevance of patient heterogeneity to the evaluation of screening generally
and to diabetic retinopathy specifically. The chapter introduces the notion of
individual risk estimation and highlights some of the recent changes that have
brought it to the fore. We outline the specific policy context in the UK and
the ways in which we seek to inform policy decisions. The work is aligned with
a National Institute for Health Research (NIHR) study — the ISDR study —
which is described in this chapter.

1
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1.1 Diabetic retinopathy

The number of people in the UK with diabetes is currently estimated to be
around 4.5 million, with global prevalence expected to reach one person in every
ten by 2040 [10]. Vision loss is one of many health complications associated with
diabetes. The majority of people with diabetes will have some degree of eye
disease within 20 years of diagnosis [11, 12]. Estimates suggest that around 1.5
million people in the UK [13], and almost 100 million worldwide [14], currently
have diabetic retinopathy.

There are two types of diabetic eye disease: retinopathy and maculopathy.
Retinopathy occurs when microaneurysms appear in the artery walls at the back
of the eye. Subsequent to this, abnormal new blood vessels can form in a process
known as neovascularisation. This stage of disease is commonly referred to as
proliferative diabetic retinopathy (PDR) and haemorrhaging in the fragile new
vessels can lead to blurred vision and dark spots. Retinopathy that affects the
macula is referred to as maculopathy. Maculopathy can occur in the early stages
of retinopathy, when blood vessels leak into the macular region, and can result
in rapid loss of vision. The term ‘diabetic retinopathy’ (DR) is often used as a
catch-all term for diabetic eye disease, and will be used as such throughout this
thesis. Figures 1.1 and 1.2 characterise the effect of PDR on vision1.

Disease progression in diabetic retinopathy is well understood, but is classified
in a variety of ways. Often, these classifications relate to whether the disease is
proliferative (PDR) or non-proliferative (NPDR). In the United States, the most
common classification system has five or six levels (no DR/mild NPDR/moder-
ate NPDR/severe NPDR/PDR/PDR with high-risk characteristics), as proposed

1Images courtesy of the National Eye Institute (CC0)

Figure 1.1: Normal vision Figure 1.2: Vision with PDR
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by the American Academy of Ophthalmology [15]. The National Health Service
(NHS) Diabetic Eye Screening Programme (NDESP) in the UK uses four levels
(no DR/background DR/pre-proliferative DR/PDR), categorised as R0, R1, R2,
and R3. Recently, the NDESP recommended the disaggregation of R3 gradings
into ‘active PDR’ (R3a) and ‘stable PDR’ (R3s), the latter corresponding to those
who have received successful treatment. The Early Treatment Diabetic Retinopa-
thy Study (ETDRS) used a more detailed grading system [16]. It is also possible
to classify disease based on outcome or management pathways; the Liverpool Di-
abetic Eye Study (LDES), for example, uses levels relating to screening, referral,
and treatment [17]. Other systems include the Scottish Diabetic Retinopathy
Grading Scheme, the Royal College of Ophthalmologists grading system, and
feature-specific grading.

The different levels defined by these grading systems can — to some extent —
be mapped to one another. Table 1.1 shows how different levels from a number
of key grading systems correspond. Maculopathy, which manifests as diabetic
macular oedema (DMO), has fewer classifications, with the later stages described
as clinically significant macular oedema (CSMO). The NDESP classifies gradings
as either M0 or M1 to indicate the absence or presence of maculopathy.

The earliest stages of DR are asymptomatic and do not require treatment,
though progression can be controlled with better diabetes management [18]. More
advanced stages of disease are known as sight-threatening diabetic retinopathy
(STDR) and require close monitoring by a hospital eye service. In many cases,
treatment should be provided to prevent visual impairment. Common treat-
ments include laser photocoagulation, injections into the eye, and surgery. It is
important to identify individuals who need treatment before any vision is lost, as
treatment cannot always reverse this process.

1.2 Screening

For some diseases, early treatment before symptoms develop can be beneficial.
Screening is a means of identifying individuals in the early stages of disease, or
those at increased risk of disease, who might benefit from early treatment or
preventive management. Screening services are somewhat unusual in health care
insofar as they involve intervention for an individual who is apparently in good
health or, at least, free of the disease for which they are receiving health care. All
screening interventions have the potential to cause harm and the possibility of no
benefit. It is therefore necessary to identify those individuals for whom screening
is likely to do more good than harm.

The extent to which a screening intervention can be deemed effective de-
pends on the effectiveness of treatment or care following a positive screen event.
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Whether or not an individual is likely to benefit from screening is therefore de-
pendent on their likelihood of having the disease and screening positive; there is
likely to be no substantive health benefit from screening negative.

Screening can be defined in a variety of different ways. The World Health
Organization (WHO) defines screening as:

“The presumptive identification of unrecognized disease or defect by
the application of tests, examinations, or other procedures which can
be applied rapidly. Screening tests sort out apparently well persons
who probably have a disease from those who probably do not. A
screening test is not intended to be diagnostic. Persons with positive
or suspicious findings must be referred to their physicians for diagnosis
and necessary treatment.” [19]

The WHO definition has several significant implications. Eligibility for screening,
by this definition, can include anybody without a particular diagnosed health
problem. Therefore, the entire population is potentially suitable for screening of
some sort. The WHO definition asserts that screening must be rapid and that
treatment or care must be available to justify screening. Thus, the health benefits
of treatment are fundamental to the value of screening; individuals should only
be screened and referred if they have an expected capacity to benefit from further
health care. This fits well with a perspective of cost-effectiveness optimisation,
as will be discussed later in this thesis.

The NHS in the UK defines screening in a similar way:

“Screening is a process of identifying apparently healthy people who
may be at increased risk of a disease or condition. They can then
be offered information, further tests and appropriate treatment to
reduce their risk and/or any complications arising from the disease or
condition.” [20]

The WHO definition refers to probability of disease being present, and the
NHS definition introduces the word risk. The notion of risk is central to the pro-
cess of screening and will be a key theme throughout this thesis. The NHS defines
screening as a means by which an individual’s risk of developing complications
associated with a disease might be reduced. The definition of screening adopted
in this thesis will fit with those of both the WHO and the NHS, incorporating
the following characteristics:

1. Applicable to individuals with:

(a) No disease,

(b) Asymptomatic disease, or
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(c) Unrecognised symptomatic disease.

2. Must provide information on an individual’s likelihood of having (or devel-
oping) the screened condition.

3. Treatment or care must be available for those who screen positive.

4. The natural history of the disease must be understood.

1.2.1 Evaluation of screening

A particular screening test can be evaluated on the basis of its ability to predict
the presence of disease. This is most commonly assessed using a value known as
the receiver operating characteristic (ROC). Usually, screening can result in one
of four outcomes; true positive (TP), false positive (FP), false negative (FN), or
true negative (TN), as shown in Table 1.2. The ROC, and thus the performance
of a screening test, is estimated in terms of the distribution of these four possible
outcomes within a population. Of key importance are the true positive rate
(TPR), also known as ‘sensitivity’, and the true negative rate (TNR), also known
as ‘specificity’. These are calculated as:

TPR = TP

TP + FN
(1.1)

TNR = TN

TN + FP
(1.2)

where TP , FP , FN and TN correspond to the number of people with each
screening outcome. In ROC analysis, a curve is constructed by plotting the TPR
against the false positive rate (FPR; 1− TNR) at a range of possible thresholds
for identifying a screen-positive event.

Traditionally, screening programmes that use particular screening tests have
been evaluated on the basis of clinical trials. The National Screening Committee
(NSC), which advises the government and NHS in the UK, states that “There
should be evidence from high quality randomised controlled trials that the screen-
ing programme is effective in reducing mortality or morbidity” [21]. Much work
has been done in the context of screening in terms of both economic evaluation
and the development of economic theory [22–24]. Such studies identify screening
as broadly amenable to standard approaches to clinical and economic evaluation.

Disease-positive Disease-negative
Test-positive True positive (TP) False positive (FP)
Test-negative False negative (FN) True negative (TN)

Table 1.2: Possible screening outcomes
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1.2.2 Screening for diabetic retinopathy

Screening for diabetic retinopathy satisfies the definitions of screening outlined
above [25]. The principal method of screening for diabetic retinopathy is by
digital fundus photography, in which photographs are taken of the back of the
eye. Trained graders can then examine these photos to identify the presence
of microaneurysms and other signs of disease. When taking the photographs,
mydriatic eye drops are usually used to dilate the pupils and allow for a higher
quality image. A more accurate examination is by slit lamp biomicroscopy, in
which an ophthalmologist can carry out a more detailed examination of the eye.

In the UK, the NSC established the NHS Diabetic Eye Screening Programme
(NDESP). Since 2007, all people with diabetes over the age of 12 have been eligible
for invitations to attend screening annually [26]. Annual recall was adopted on
the basis of expert opinion. The NDESP consists of 92 local programmes that
undertake screening in primary care. At screening appointments individuals have
their visual acuity assessed using logMAR charts and then high quality digital
photographs are taken of the back of the eyes after administering mydriatic eye
drops. The images are subsequently independently graded multiple times at a
grading centre by accredited technicians. If a patient is screened positive for
STDR they are referred to their local hospital eye service for further investigation
by slit lamp biomicroscopy. Recently, local programmes have begun to allocate
individuals to ‘digital surveillance’ whereby they are followed-up more regularly
than annually [27].

There is growing evidence that many individuals who attend screening annu-
ally are at low risk of developing STDR, and that these individuals could be safely
screened less frequently [28–37]. Furthermore, it is possible that individuals with
a higher level of risk might benefit from more regular screening [31, 35]. These
findings highlight the presence of heterogeneity in this context and have given
rise to calls for more nuanced approaches to screening for DR.

1.3 Heterogeneity

Screening programmes can improve people’s longevity and quality of life, and
can potentially be cost-saving for health services in the long run. However, it is
unlikely that all of these goals could be achieved in a publicly funded programme
without rationing and setting eligibility criteria. As such, screening programmes
tend to discriminate based on individuals’ characteristics, such as age and sex.
By identifying particular subgroups in which screening is expected to be cost-
effective, and others in which it is not, it is possible to implement limited use
criteria, whereby people must fall into particular subgroups in order to be eligible.

The challenge of capturing heterogeneity of treatment effects is a long standing
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issue [38]. In economic evaluations, the challenge is even more pronounced [39].
Accounting for patient heterogeneity is a means of improving outcomes, which
was rarely considered in economic evaluations until recently [40]. This may be
due to perceived difficulties in methodology or ethics. In recent years, the value
of accounting for patient heterogeneity has been more widely recognised. The
conduct of sub-group analyses in the context of cost-effectiveness analysis is now
routinely recommended [41].

Screening is one field in which efforts are being made to acknowledge hetero-
geneity and to differentiate care accordingly. It is now possible to use algorithms
to estimate an individual’s risk of disease onset, and the use of such tools has
become known as ‘predictive medicine’. There have been calls for individualised
screening [42] and assertions that, in the future, a greater emphasis must be
placed on risk-based screening [43]. In risk-based screening — as the term has
recently been used [44, 45] — individuals are only invited to attend screening if
their risk of disease onset is deemed sufficiently high. Such an approach offers
potential for improved outcomes and lower costs compared with standardised
programmes, but presents new challenges. This thesis focusses on individual risk
as a particular manifestation of patient heterogeneity.

1.3.1 Individual risk

If an individual is more likely to screen positive, it is more likely that their at-
tendance at screening will result in them receiving the intended benefits. An
individual’s likelihood of screening positive is dependent on their risk factors.
Advancements in our understanding of the causes and correlates of disease, and
improvements in routine data collection, mean that it is now possible, in many
cases, to estimate an individual’s risk of developing a disease or experiencing spe-
cific complications. There are an increasing number of risk calculation engines
(RCEs) becoming available that can facilitate this process [46–48]. These develop-
ments have implications for all areas and stages of treatment, but are particularly
pertinent to screening interventions. If an individual is at high risk of developing
a disease it is, prima facie, likely to be cost-effective to screen them, while if they
are not this is less likely. New developments in the quantification of risk factors
are therefore particularly relevant to the estimation of the cost-effectiveness of
screening interventions.

Current screening programmes implicitly consider risk by offering screening
to a limited section of the population. Age is a risk factor common across most
areas of health and disease. Similarly, males and females tend to have different
risk levels for disease, and some screening programmes are differentiated by sex,
or offered to only men or only women. It is clear that risk is a consideration in
the design of NSC screening programmes in the UK. Current programmes tend to
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consider only one or two risk factors when differentiating screening for different
individuals. These are usually general characteristics such as age or sex.

More individualised screening programmes are currently being proposed by
academics and decision-makers alike. Methods of economic evaluation, and par-
ticularly of decision analytic modelling, have enabled economists to make pre-
dictions about complex interventions and their outcomes. However, individual
risk is not routinely considered in the evaluation of screening programmes in an
explicit way. Modelling methods have yet to be harnessed for the purpose of
evaluating screening programmes that are able to considerably differentiate care
for individuals based on their level of risk. This thesis will present some ways
in which information about an individual’s risk can be used to enhance the cost-
effectiveness of screening programmes. We will demonstrate the importance of
this approach in the context of screening in terms of the potential for improved
health outcomes.

We use the word ‘risk’ in the sense of an individual’s hazard rate or hazard
function. That is, an individual with a given set of characteristics, at any moment
in time, can be ascribed a hazard rate representing the probability that an event
will occur. Mathematically this is derived as the limit of a number of events
occurring in a given unit of time, divided by the number of individuals at risk over
time. In order to estimate an individual’s hazard rate we use information collected
from relevant hazard ratios, the effect of which can be estimated by treating the
log of the hazard rate as a function of baseline hazard and explanatory variables.
Hazard ratios represent the estimated effect on an individual’s hazard rate of
various characteristics: i.e. risk factors. These are calculated using survival
analysis or time-to-event analysis, which often involves the use of proportional
hazard models informed by existing data and by expert opinion. Such models
can be used to estimate the probability that an individual will develop a given
disease within a given period of time within a given margin of error.

1.3.2 Individual risk and diabetic retinopathy

In the case of diabetic retinopathy, the risk of disease progression to a level
requiring treatment has been shown to be related to age, gender, duration of
diabetes [11, 12], severity of retinopathy [35, 36], HbA1c levels [18, 49–53], blood
pressure [53–56], blood lipid levels [57] and proteinuria [58]. A risk calculation
engine has been produced to estimate the risk of developing STDR at 1 year, 5
years, or 10 years for people in Iceland [34], based on eight risk factors. This
model has been validated in different populations [28, 59, 60], and other RCEs
are in development. Recently, a new RCE has been developed using data from
Liverpool, UK [61]. This RCE will be described in more detail below, as it plays
a crucial role in the research described in this thesis.
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The principal means by which DR screening can be differentiated according to
individual risk is by setting individualised screening recall periods. An individual
at high risk of developing STDR could be invited back to screening (following a
negative screening result) at an earlier point than an individual with a lower risk
of developing STDR. This thesis explores the practical and ethical implications
of using such an approach, and estimates the cost-effectiveness of a risk-based
screening programme for DR. The need for such research has been demonstrated
by recent policy developments in the UK.

1.4 Policy context

The provision of health care involves the distribution of scarce resources. Gov-
ernment budgets, and health spending specifically, are constrained. The same
applies to personal budgets of individuals. There is an imperative to achieve al-
locative efficiency by only funding screening programmes (and specific screening
tests) that can be demonstrated to represent good value for money.

There is also an imperative to achieve productive and technical efficiency
across and within existing screening programmes. The development of risk-based
screening for a disease such as DR represents a means of improving health out-
comes by altering eligibility within the programme, rather than by reallocating
funds to alternative services or introducing alternative inputs to health. This is
the principal driver for policy change within the NDESP.

1.4.1 Development of the NDESP

After a review of the evidence, the NSC recently recommended changes to the
NDESP such that: “For diabetics at low risk of sight loss, the interval between
screening tests should change from one year to two years. The current one year
interval should remain unchanged for the remaining people at high risk of sight
loss.” [62]

Similar developments can be seen internationally. Recently, the American
Diabetes Association issued a position statement recommending that:

“If there is no evidence of retinopathy for one or more annual eye
exams, then exams every 2 years may be considered. If any level of
diabetic retinopathy is present, subsequent dilated retinal examina-
tions for patients with type 1 or type 2 diabetes should be repeated at
least annually by an ophthalmologist or optometrist. If retinopathy is
progressing or sight-threatening, then examinations will be required
more frequently.” [63]
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The NSC recommendation signals a transition from standardisation to strat-
ification; a step in the development of the NDESP beyond a ‘one-size-fits-all’
approach. There are two aspects to this development.

The first aspect is the ability to identify heterogeneity in individual risk within
the population. Risk estimates may be identified at the level of:

1. the population;

2. subgroups defined by disease status;

3. subgroups defined by individual characteristics; or

4. the individual.

The second aspect is the capacity to differentiate screening recall with greater
precision. There are at least four levels to this:

1. a fixed interval for the whole population;

2. multiple fixed intervals, whereby individuals are allocated to one of several
fixed intervals;

3. variable intervals, whereby individuals can move between different intervals;
and

4. variable recall, whereby there are no pre-defined screening intervals.

In principle, each aspect may develop at a different pace. For example,
individual-level risk estimates may be used in a programme with multiple fixed
intervals. However, the value of identifying heterogeneity and the value of differ-
entiating screening are each dependent on the other, and so the two aspects are
likely to develop in tandem.

Four possible types of programme, relevant to the NDESP, are summarised
in Figure 1.3. These are defined in relation to the screening recall schedule. Ex-
amples are included for the basis of identifying eligible populations. We describe
these four programmes as standardised, stratified, individualised, and optimised.

Each transition between the stages shown in Figure 1.3 raises new questions re-
quiring research evidence. The NSC has identified several conditions that should
be met before stratified screening is introduced. This thesis seeks to inform
the development of screening beyond stratification to individualisation and op-
timisation, both specifically in the context of diabetic retinopathy and in the
development of screening pathways more broadly.

There are substantive differences between programmes that are standardised,
stratified, individualised, and optimised in practical, ethical, and analytical terms.
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Practical differences, particularly relating to greater differentiation in screen re-
call, are highlighted briefly in this chapter and in Chapter 5. Analytical differences
relating to the conduct of cost-effectiveness analysis are discussed in Chapter 8
and ethical issues are considered in Chapter 9.

In moving beyond a standardised programme, stratification must not be ar-
bitrary. There must be a strong basis on which to offer people differential care
depending on their allocation to a subgroup [40]. Therefore, a key challenge for
risk-based screening is to appropriately define limited use criteria; the grounds
on which people should or should not be invited to screening. Additionally, it
might also be possible to differentiate the frequency of screening based on risk.
Both individual risk and time are continuous and therefore infinitely divisible. As
such, an optimal screening programme could lie anywhere between the extremes
of no screening for anybody to constant screening for the entire asymptomatic
population. In this thesis we present a means of setting optimal criteria for risk-
based screening using cost-effectiveness analysis. We discuss some of the practical
and ethical challenges presented by such an approach and argue that risk-based
screening can improve the effectiveness, efficiency, and fairness of screening pro-
grammes.

1.4.2 Previous research

Several studies have considered the cost-effectiveness of alternative screening in-
tervals in the context of diabetic retinopathy. Most of these studies pre-dated
recent advances in risk calculation and were therefore not able to evaluate screen-
ing programmes that differed according to an individual’s level of risk [64–72].
Many of these studies indicated that screening intervals can be safely extended
under certain circumstances, achieving greater cost-effectiveness.

More recent studies have evaluated screening programmes that use estimates
of individual risk to differentiate screening recall. In this context, efforts have
been made to ‘optimise’ screening intervals for diabetic retinopathy. Aspelund
et al. developed a model based on a fixed number of diagnoses across screening
intervals [34]. Their model suggested that optimal screening intervals range from
6 to 60 months, dependent on an individual’s level of risk. Van der Heijden et al.
recently sought to validate Aspelund et al.’s model using Dutch data [59]. The
authors found that the model enabled a 23% reduction in screening frequency
compared with biennial screening, and a 61% reduction compared with annual
screening, and suggested that the use of such a model could help reduce the costs
of diabetes care. Mehlsen et al. adopted a similar method, using a fixed risk
margin of 0.5% chance of event [73]. They used multiple logistic regression to
find the optimal screening interval for low-risk diabetic retinopathy patients, and
found that screening intervals should be extended for most low-risk individuals.
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Using a discrete event simulation, Day et al. found that the risk of vision loss
increased as the screening interval was extended from 1 to 5 years [74], though
the authors assert that extending the interval from 1 to 2 years is safe.

These studies constitute important developments in our understanding of risk
in the context of screening for diabetic retinopathy, and they can be used to
inform screening programmes. However, while these studies are concerned with
optimisation problems, they are not concerned with the optimisation of cost-
effectiveness. Scanlon et al. recently sought to ‘optimise’ the screening interval in
terms of cost-effectiveness, but only within a restricted set of pre-specified options,
all of which might be suboptimal [30]. Specifically, they evaluated screening
intervals that were differed according to an individual’s allocation to a high-,
medium-, or low-risk group defined according to disease characteristics, rather
than according to an explicit estimation of their risk of disease onset.

No existing studies have evaluated the cost-effectiveness of a screening pro-
gramme that differentiates screening intervals according to estimates of individ-
ual risk. We are not aware of any such study in the context of either diabetic
retinopathy or any other disease area.

1.4.3 The ISDR study

The research on which this thesis reports was embedded within a wider pro-
gramme of quantitative and qualitative research: a National Institute for Health
Research (NIHR) Programme Grant for Applied Research (PGfAR) study, titled
‘Introducing personalised risk based intervals in screening for diabetic retinopa-
thy: development, implementation and assessment of safety, cost-effectiveness
and patient experience’ and known as the ISDR study [75]. The multidisci-
plinary collaboration and support that was facilitated by involvement with the
wider study represents a key strength of the research reported in this thesis.

The ISDR study was based at The Royal Liverpool and Broadgreen University
Hospitals NHS Trust (RLBUHT). Several workstreams make up the programme
of research, and each workstream relates to this thesis in a variety of ways. This
thesis relates primarily to work carried out to support Workstream D, but nec-
essarily draws on aspects from all other workstreams. As such, it is important to
provide a brief outline of the work undertaken in each workstream, and how it
relates to this thesis.

Workstream A: systematic review

The ISDR study was initially scheduled to complete a full systematic review of
the available evidence comparing variable interval and annual recall for screening
for diabetic eye disease. The review sought to elicit rates of visual impairment



1.4. POLICY CONTEXT 15

and treatment in order to inform the other workstreams. However, shortly af-
ter commencement of the study, a number of reviews were published by other
research groups. Completion of another full review was therefore deemed unnec-
essary. Nevertheless, two-way communication was maintained with the review
team to aid identification of relevant studies. In particular, disease incidence and
progression studies identified by the review team were utilised in the modelling
described in Chapter 7.

Workstream B1: data warehouse and data processing

Workstream B was made up of several components relating to data collation and
analysis. The success of the programme depended largely on the creation of a
data warehouse. This combined databases from primary care, hospital patient
management, and the screening programme, with patient records matched by
NHS Number. Workstream B1 was responsible for the data warehouse and for
the creation of data outputs to support other workstreams. Databases included
in the data warehouse and used in this study are as follows.

EMIS Web is an IT system used in general practice to maintain electronic
patient records. Data from EMIS are key to Workstream B2 because data from
other sources are all linked to EMIS records. However, data from EMIS are not
directly used in this thesis.

OptoMize is the system used by the screening programme and is provided
commercially by Digital Healthcare. It is used to record data at photographic
screening appointments in accordance with the standards set by the NSC. Op-
toMize was preceded by a system called ORION, from which similar data were
available. Screening appointment and outcome data were analysed to estimate
resource use and to inform event rates and transitions as used in the modelling
work described later in this thesis.

Diabolos is an internal Microsoft Access database used in the hospital eye
service. Data from slit lamp biomicroscopy assessments were recorded and stored
in Diabolos. These data were key for the analyses reported in this thesis as it is
these data that identify patients referred following a screen-positive result.

iPM is used to record patient activity across the RLBUHT hospital sites. It
includes information on patient appointments in addition to some demographic
data. For the purpose of this thesis, iPM was the primary source of information
about resource use associated with treatment for DR.
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Workstream B2: observational cohort study

Using data from the data warehouse, Workstream B2 consisted of an observa-
tional cohort study. The analysis sought to identify population-based estimates
of the frequency of a variety of outcomes including STDR and visual acuity. Fur-
thermore, it sought to provide information about risk factors in order to inform
future risk calculation estimates. It was initially hoped that findings from Work-
stream B2 could be incorporated into a model-based cost-effectiveness analysis
described later in this thesis. However, due to delays in the delivery of data, this
proved not to be possible.

Workstream B3: feature specific retinal grading

The purpose of Workstream B3 was to provide visual acuity data for the data
warehouse. This process involved the development of a graphical user interface to
be used in a clinic setting, which would also capture feature specific grading for
retinopathy and maculopathy; describing the presence of microaneursyms, retinal
thickening, and other characteristics. This work was not completed in time for
the data to be included in the analyses reported in this thesis.

Workstream C: risk calculation engine

The development of the risk calculation engine (RCE) is central to the develop-
ment of the cost-effectiveness analysis that is presented in this thesis. The RCE
was developed using a Markov model based on panel data from 2009 to 2014
from 11,808 people with diabetes registered with GP practices in Liverpool. The
RCE was designed to estimate risk of developing referable disease (that would
be considered a screen-positive event if detected) at 6, 12, and 24 months. The
development and testing of the RCE is described in detail elsewhere [61], with
the key features relating to the cost-effectiveness analysis described in this thesis.

A number of covariates were considered for inclusion from the available data.
Variables for inclusion needed to have less than 20% missing data, and multiple
imputation was used to replace data that were missing. Covariates were selected
in a two stage process by ranking them using the Wald statistic and then selecting
them using the corrected Akaike information criterion. The final model included
duration of (known) diabetes, HbA1c, age, systolic blood pressure, and total
cholesterol. The Markov model was defined in terms of four states: i) no DR, ii)
non-referable DR in one eye, iii) non-referable DR in both eyes, and iv) referable
disease. The model allowed for six transitions, with the fourth state being the
absorbing state.

The RCE estimates hazard rates that are used to inform transition rates in
the decision analytic model described in Chapter 7.
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Workstream D: health economics

Workstream D represented the health economics work for the ISDR study. An
economic evaluation alongside the ISDR trial (Workstream E) will be conducted
on its completion. Furthermore, a model-based analysis is used to evaluate the
cost-effectiveness of risk-based screening with a lifetime horizon, as described in
this thesis. Materials for the collection of resource use and quality of life data
were prepared for this purpose. This thesis describes much of the work conducted
for Workstream D.

Workstream E: randomised trial

From years 2 to 5 of the programme (for a duration of 42 months), a randomised
clinical trial was carried out. The trial is described in detail elsewhere [76], with
pertinent details outlined in this thesis. The study was based at Royal Liver-
pool University Hospital and six community screening centres in the Liverpool
Diabetic Eye Screening Programme. Trial participants (n=4,543) were people
with diabetes who were under the care of Liverpool clinical commissioning group
(CCG) and eligible for screening for diabetic retinopathy. The purpose of the
trial was to evaluate the safety and acceptability of a programme of variable in-
terval screening for diabetic eye disease, with attendance as the primary outcome.
Individuals were randomised to either current (annual) screening or risk-based
variable-interval screening. For those allocated to the risk-based programme, the
probability of them screening positive at 6, 12, and 24 months was estimated fol-
lowing a negative screening outcome using the RCE developed in Workstream C.
An acceptable risk threshold of 2.5% was established based on guidance from the
study’s patient and public involvement (PPI) group. This threshold was used to
allocate individuals to the longest recall of either 6, 12, or 24 months on the basis
of their risk level not exceeding 2.5%. Data were collected from trial participants
for the purpose of cost-effectiveness analysis, as described in Chapters 3 and 5.

Workstream F: perceptions of screening

Workstream F consisted of qualitative work in which interviews were conducted
with people with diabetes who do and do not attend screening and with health
professionals. This package of qualitative work enabled the collection of quality
of life data from hard to reach groups, though the data were not available in time
for reporting in this thesis.
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1.5 Research questions
The decision problem is multi-faceted. There is the more traditional decision
problem of determining whether or not screening should be risk-based or stan-
dardised. But there is also a more novel decision problem, which is to determine
how the risk-based screening programme should in the first place be defined.
These two questions are inextricably linked, both in general terms and in the
specific case of screening for diabetic retinopathy. The primary focus of this the-
sis is on the practical challenge of evaluating risk-based screening for diabetic
retinopathy. However, we also seek to establish the foundations for the evalua-
tion of more complex risk-based screening programmes that may be realised in
the near future. The thesis seeks to address both theory and practice, which are
captured by two key research questions:

1. Is risk-based screening for diabetic retinopathy likely to be cost-effective
compared with standardised screening?

2. How can individual risk be incorporated into cost-effectiveness analysis in
order to inform the allocation of screening?

The validity of these two questions — and their answers — depend upon
one another. The application of risk-based screening in practice depends on a
better understanding of the underlying principles, but the need for clear principles
is borne out of recent developments that make risk-based screening practically
possible. However, the practical possibility of risk-based screening does not imply
that it should be endorsed. Technical developments in the capacity to deliver
health care services can raise ethical questions. In order to answer our primary
questions, it is necessary to address a number of secondary research questions,
including:

• How have researchers previously evaluated the cost-effectiveness of inter-
ventions for diabetic retinopathy?

• How does diabetic retinopathy affect individuals’ health-related quality of
life?

• What are the costs of screening for diabetic retinopathy?

• What are the costs of treatment for diabetic retinopathy?

• How does individual risk relate to cost-effectiveness in the context of screen-
ing?

• Is there an ethical justification for allocating screening according to indi-
vidual risk?
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1.6 Thesis outline
The thesis is structured around the development of a decision analytic model
to evaluate the cost-effectiveness of risk-based screening for diabetic retinopathy.
Later in the thesis we introduce some novel explication of the theoretical basis
for a more sophisticated approach to the evaluation of risk-based screening, and
consider a new ethical framework in which to consider the policy implications.

Chapters 2 through 7 chart the development of the cost-effectiveness model.
Chapter 2 reviews previous literature that has used decision modelling to eval-
uate interventions for DR, for the purpose of guiding our choice of model struc-
ture. Chapter 3 presents a cross-sectional study of quality of life values in peo-
ple attending screening within the Liverpool screening programme and Chapter
4 presents a systematic review and meta-analysis of health state utility values
(HSUVs) for DR. The findings of these two chapters are used to inform the se-
lection of quality of life parameters for the model. Chapter 5 describes screening
pathways within the NDESP in order to understand the resource use involved,
and presents a costing study of screening. Chapter 6 presents an analysis of
treatment activity and pathways for people with DR in Liverpool in order to
estimate appropriate treatment cost parameters for the model. Building on these
preceding chapters, Chapter 7 presents the development and findings of a model-
based cost-effectiveness analysis of alternative screening programmes for diabetic
retinopathy. Chapter 8 introduces the concept of individualised cost-effectiveness
analysis (iCEA) and describes how this simple framework could be used to de-
termine an optimised risk-based screening programme. Chapter 9 outlines an
ethical basis for risk-based screening. Finally, Chapter 10 presents a discussion
of the findings presented in this thesis and some conclusions.
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Chapter 2

A review of model-based
economic evaluations in diabetic
retinopathy

Summary
A primary component of the thesis is the use of model-based economic evaluation.
It is important to consider alternative approaches to modelling disease progression
and treatment in diabetic retinopathy. In this chapter we describe a narrative
review of model-based economic evaluations in DR. We searched MEDLINE and
Embase and present our findings according to alternative model structures. De-
cision trees, cohort state transition models, and individual sampling models are
all identified. The findings of the review are used to inform the structure of the
model developed in this thesis, as reported in Chapter 7. We discuss some of
the shortcomings in existing modelling work and use these to inform the analyses
reported in subsequent chapters.

21
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2.1 Introduction
Decision analysis usually requires the evaluation of costs and outcomes beyond the
limited time horizon of a clinical trial. This can be particularly important when
key outcomes are observed in the more distant future. In the case of screening for
diabetic retinopathy, long-term costs and outcomes are important; most notably
in relation to the onset of severe visual impairment. Therefore, while the ISDR
study does include a randomised trial within which risk-based screening can be
evaluated, the cost-effectiveness analysis reported in this thesis will use decision
analytic modelling.

There are a variety of candidate approaches to modelling. Decision trees can
be used to evaluate decisions based on aggregate level probabilities and pay-offs.
They represent a simple approach to decision analysis based on the summation of
costs and outcomes associated with alternative scenarios, multiplied by the prob-
ability of each scenario in order to obtain expected values. Decision trees do not
incorporate any timing. It is possible to conduct simulated decision tree analyses
in order to obtain results as a statistical distribution, though such analyses are
uncommon.

State transition models — often described as ‘Markov’ models — have be-
come one of the most popular approaches to model-based economic evaluation
in health care. They can be used to simulate aggregate outcomes for a cohort
or for individuals. In a state transition model, each state is associated with
costs and outcomes and simulated individuals have a probability in each unit of
time (known as a Markov cycle) of transitioning from one state to another. The
Markov assumption is that the model is ‘memoryless’; an individual’s probability
of transition depends only on their current state. Most state transition models in
the context of economic evaluation in health care do not satisfy this assumption
and are therefore not strictly Markov models. For example, many models allow
transition probabilities to be a function of time. In a state transition model time
is usually discrete, meaning that individuals are not continuously observed and
instead transitions are only observed at fixed intervals. State transition models
can be based on fixed parameters (deterministic) or on statistical distributions of
inputs (probabilistic).

When a state transition model is based on an individual-level rather than
cohort-level simulation, it can be better described as an individual sampling model
(ISM). In this case, the analyst is freed from some of the restrictions of state
transition modelling and the model need not be defined only in terms of mutually
exclusive and collectively exhaustive states. ISMs can treat time as continuous
and estimate the time to events or transitions, rather than their probability of
occurring within a fixed time period.

Discrete event simulation (DES) is perhaps the most flexible but also well-
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defined approach to decision modelling, with a long history of development in the
field of operational research. DES models are structured around a set of possible
events that can occur. Individuals’ characteristics can be used to determine the
likelihood and time to occurrence of each event. Available resources (e.g. health
care staff) can be limited in order to create queues (e.g. of patients) within the
model.

The pros and cons of various approaches have been evaluated both broadly and
within the context of particular conditions [77–79]. In this chapter we describe
a narrative review designed to identify key studies adopting a variety of differ-
ent modelling methods. A review of modelling studies in the context of diabetic
retinopathy has not previously been conducted. As we did not seek to provide
a complete picture of this literature, a systematic review of all modelling studies
was deemed unnecessary. The narrative review will provide a better understand-
ing of the ways in which different approaches have been used and highlight the
advantages and disadvantages in this context. The findings of the review are
used to determine an appropriate modelling strategy to be pursued in subsequent
chapters.

2.2 Methods

Guidelines such as the Preferred Reporting Items for Systematic Reviews and
Meta-Analyses (PRISMA) were used to guide the methodology and reporting of
the review. PRISMA is not defined specifically for use in the review of economic
evaluations, but is largely applicable in order to ensure methodological rigour
and high reporting standards. However, for a narrative methodological review,
a number of items are not relevant and these will be highlighted throughout the
chapter as necessary. All stages of the review were conducted by a single reviewer.

2.2.1 Search strategy

The method of identification of studies was through a systematic search of the
literature. The search was designed to identify key studies employing a variety of
modelling methods. The search used the Ovid MEDLINE and Embase databases
and combined terms for diabetic retinopathy, cost-effectiveness analysis, and de-
cision modelling. No date or language restrictions were applied to the electronic
search, which included items indexed up to 14th September 2016. The search was
conducted on the basis of Medical Subject Headings (MeSH), as shown in Table
2.1.
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Search step Search terms
1 (Diabetic Retinopathy and Cost-Benefit Analysis).sh.

2

(Decision Support Techniques or Decision Trees or Markov
Chains or Computer Simulation or Models, Econometric or
Patient-Specific Modeling or Systems Analysis or Models,
Theoretical or Models, Economic).sh.

3 1 and 2

Table 2.1: Search strategy for MEDLINE and Embase in Ovid

2.2.2 Study eligibility

Included studies needed to be economic evaluations. Cost-benefit, cost-effectiveness,
and cost-utility analyses were all included. Studies must have employed decision
modelling methods. Specifically, they must not be limited to evaluation within
a trial setting or based solely on observed findings from a single study. This is
because an important aspect of the review is the identification of approaches to
incorporating data from multiple sources. It was expected that most of these
analyses would employ either decision trees, Markov or state transition models,
or event-based and agent-based simulations. The language of publication must
be English.

All types of publication were included if they reported on an economic eval-
uation using decision modelling. The population must be people either with or
at risk of diabetic retinopathy, of any demographic. No inclusion criteria were
employed regarding specific interventions or technologies, though models used to
evaluate screening are given particular attention in the discussion. The compara-
tor element of the ‘Population, Intervention, Comparison, Outcomes’ (PICO)
statement does not apply, as the purpose of the review is to identify methods
used rather than treatment effects. We excluded any study that did not describe
a decision analytic model or that was not available in English.

2.2.3 Data collection

Study selection

Studies were assessed for retrieval based on titles and abstracts. Articles were
rejected at this stage if it was clear that the study could not satisfy the inclusion
and exclusion criteria. Full texts were retrieved for studies not rejected at ab-
stract screening, and subsequently reviewed for satisfaction of the inclusion and
exclusion criteria. Reasons for exclusion were recorded. The number of records
identified, retrieved, screened, assessed, included, and excluded in the review are
summarised in a PRISMA flow diagram.
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Data extraction and management

Data were extracted and recorded in a spreadsheet. As the purpose of this nar-
rative review was to identify methodological practice, we extracted data relating
to the key features of the model structure and data, with reference to good prac-
tice guidelines [80]. In relation to the structure and the operation of the model,
we extracted information on i) comparators, ii) perspective, iii) model type, iv)
states / pathways, v) time horizon, and vi) cycle length. We also extracted data
regarding the sources of data for the key aspects of the model, namely: i) disease
progression, ii) costs and resource use, and iii) health state utility values (HSUVs,
if applicable). Information was also extracted regarding any i) uncertainty anal-
ysis and ii) validation that was conducted, as these could provide further insight
into the appropriateness of different methods in this context. Recently, there has
been discussion regarding the significance of different software for modelling [81–
84]. Therefore, we also extracted information regarding the software used for the
analysis. For additional context we also list the countries in reference to which
studies were conducted. Where information was missing, no attempt was made
to contact authors. Only information relating to the parts of the model(s) spe-
cific to retinopathy was extracted. Where models also simulated non-ophthalmic
complications of diabetes, these aspects of the studies were not reviewed.

Quality and relevance assessment

The same data collected for the methodological review — and in particular the
tendency to not report key information — can be used as an indicator of reporting
quality [80]. Studies that do not report the data intended for extraction, or that
provide limited details, can be judged to exhibit lower reporting quality. The
purpose of this review was to identify the nature of existing studies rather than
to make inferences about their findings based on judgements of their methodolog-
ical quality. A more pertinent consideration is the relevance of these studies to
our context, which is the evaluation of screening for diabetic retinopathy. There-
fore, our assessment focuses on the appropriateness of the modelling techniques
adopted, rather than the methodological quality of the studies overall. Attempts
at model validation — if reported — can demonstrate the appropriateness of the
modelling approach.

2.2.4 Data synthesis and presentation

Information extracted from studies is tabulated. The key purpose of the review
is to identify and characterise the use of alternative approaches to modelling in
diabetic retinopathy. Therefore, studies are presented according to the type of
modelling approach that they adopt. The classifications used are those specified
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in the taxonomy of model structures presented by Brennan and colleagues [85].
Where a particular piece of information is not relevant to a study — for

example, the source of HSUVs in a study that does not use quality-adjusted life
years — the item was recorded as not applicable (NA). Where an item is relevant
but the study fails to report it with clarity, we recorded this as not reported (NR).

2.3 Results
In this section we outline the studies identified by our literature search and sum-
marise their characteristics.

2.3.1 Study selection

The literature search in Embase and MEDLINE identified 37 citations, including
one duplicate [30, 65, 67, 86–118]. Of these 36 studies, four were excluded at title
and abstract screening either because they were not available in English [88, 89]
or reported on a study that did not include decision modelling [112, 116].

When full texts were assessed for eligibility, six were excluded because they
did not report modelling studies [86, 94, 95], focussed on non-diabetic eye disease
[102], or evaluated treatment for diabetes generally without specific attention to
retinopathy progression within the model [105, 115].

The review therefore included 26 eligible articles. Figure 2.1 shows a PRISMA
flow diagram of the citation screening procedure.

2.3.2 Study characteristics

The full data extraction is presented in Table A and Table B in the appendices.
Table A outlines information relating to the structure of the models reported in
the studies. Table B summarises the data used and any uncertainty analysis and
validation. In this chapter, findings are presented separately for studies adopting
each type of modelling approach, with key characteristics presented in tables.

Some studies did not self-identify as using a particular approach to modelling
and it was therefore necessary to infer from the manuscript the type of modelling
that was used. This was not always simple and so we highlight the studies that
may have been misidentified and outline the basis for our categorisation.

Decision trees

We identified six studies that described models classified as decision trees, as
shown in Table 2.2. Several studies did not provide a standard graphical repre-
sentation of a decision tree according to guidelines for their presentation [93, 98,
108, 114]. In these cases it was more difficult to clearly identify the pathways
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Figure 2.1: PRISMA flow diagram for review of decision models
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Study Events Software
Sculpher et al.
(1992) [114]

Screening outcomes NR

Sharma et al.
(2000) [93]

Treatment; complications TreeAge

Whited et al.
(2005) [97]

PDR; high-risk PDR; PRP; SVL TreeAge

Scotland et al.
(2007) [98]

No/mild DR; observable DR; technical
failures

TreeAge

Scotland et al.
(2010) [108]

No/mild DR; observable DR; technical
failures

TreeAge

Brady et al.
(2014) [101]

PDR; no PDR; no treatment; PRP;
vitrectomy with laser; vitrectomy with
membrane peel

TreeAge

Table 2.2: Decision trees. DR = diabetic retinopathy; NR = not reported; PDR
= proliferative diabetic retinopathy; PRP = panretinal photocoagulation; SVL
= severe vision loss.

and decisions being evaluated. In their 1992 paper, Sculpher et al. describe their
study as “using the data collected on observed single modality screening options
to model the results of potential options based on more complex strategies”, but
do not specify a particular modelling approach. No visual representation is pro-
vided, but the description of the model and its use of sample-level probabilities
makes it reasonably clear that the analysis is based on a decision tree. Scotland
et al. [108] reports on a secondary use of a previously developed model [98] and
its characteristics are therefore inferred from the earlier report.

Most of the studies evaluated alternative approaches to screening for DR [97,
98, 101, 108, 114]. Sharma et al. [93] evaluated the use of grid laser photocoagula-
tion for diabetic macular oedema (DMO). The events used to define the pathways
in the models varied, but most incorporated both disease progression and treat-
ment. Sharma et al. used disease progression estimates from the ETDRS study,
while the other models were based primarily on local data.

All studies that specified software used TreeAge [93, 97, 98, 101, 108]. Three
studies conducted both one-way and probabilistic sensitivity analyses [97, 98,
101], while two conducted one-way sensitivity analyses [93, 114] and another
conducted only probabilistic sensitivity analysis (PSA) [108]. None of the studies
discussed either the internal or external consistency of their findings or reported
any formal attempts at validation.
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Cohort state transitions

Cohort state transition models were used in 14 studies, making them by far
the most common approach identified by our review, as described in Table 2.3.
Several studies reported on evaluations of alternative screening strategies [30, 65,
67, 91, 96, 107, 113]. Some studies evaluated alternative treatment strategies [99,
109–111, 117], while others evaluated diabetes management interventions [90, 92,
96]. Dasbach et al. purport to evaluate biannual (twice a year) screening, but the
results suggest that they actually evaluated biennial (every two years) screening.

Study States / events Time
horizon

Cycle
length

Software

Dasbach
et al.
(1991)
[65]

Low-risk DR; high-risk
DR; treated; blind

Lifetime 1 year NR

Wu et al.
(1998)
[90]

No DR; any DR 10 years 1 year Microsoft
Excel

Crijns et
al. (1999)
[91]

no DR; DR excluding
both DMO and PDR;
PDR; adequate vision;
poor central and/or
peripheral vision;
blindness

Lifetime 3 months NR

Palmer et
al. (2000)
[92]

No DR; background DR;
PDR; blind

Lifetime 1 year IMIB
TOM

Vijan et
al. (2000)
[67]

No DR; DR1; DR2; DR3;
PDR; DMO; blind

Lifetime 1 year NR

Sharma et
al. (2001)
[110]

VA (G1-G5) Lifetime
(55 years)

1 year TreeAge

Polak et
al. (2003)
[96]

NR Lifetime 3 months NR

Mitchell
et al.
(2012)
[99]

VA (letters) 15 years 3 months NR
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Rachapelle
et al.
(2012)
[113]

No DR; non-STDR;
STDR; CSMO; blind from
DR

25 years 1 year TreeAge

Stein et
al. (2013)
[117]

VA (LogMAR) 25 years 1 year TreeAge

Pershing
et al.
(2014)
[111]

VA (1-6) Lifetime 1 month TreeAge

Kawasaki
et al.
(2015)
[107]

NPDR; severe NPDR;
PDR; high-risk PDR;
CSMO; blind

Lifetime
(50 years)

1 year TreeAge

Royle et
al. (2015)
[109]

Moderate NPDR; severe
NPDR; early PDR;
high-risk PDR; severe
PDR; CSMO; SVI;
treatment

30 years 6 months Microsoft
Excel

Scanlon et
al. (2015)
[30]

R0M0 gradings Lifetime 6 months Microsoft
Excel

Table 2.3: Cohort state transition models. CSMO = clinically-significant macular
oedema; DMO = diabetic macular oedema; DR = diabetic retinopathy; HR-
PDR = high-risk proliferative diabetic retinopathy; IMIB TOM = Institute for
Medical Informatics and Biostatistics Tools for Outcomes Modeling; NPDR =
non-proliferative diabetic retinopathy; NR = not reported; PDR = proliferative
diabetic retinopathy; STDR = sight-threatening diabetic retinopathy; SVI =
severe visual impairment; VA = visual acuity.

Most authors described their model as a “Markov model” [30, 65, 67, 90,
92, 99, 107, 109–111, 113, 117]. Those that didn’t were very unclear about the
structure of the model [91, 96]. These two studies may not have reported cohort
state transitions at all, though we inferred this from the descriptions. Both studies
describe models that simulated cohorts rather than individuals and, despite being
described as “continuous”, appear to use a three-month cycle. Crijns et al. [91]
specify disease states as being on an interval (0–1) scale, but thresholds are used
that seem to define discrete states.

The majority of studies defined states according to level of DR progression [30,
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65, 67, 91, 92, 107, 109, 113]. One study defined DR according to ‘risk’ level [65]
and another only considered a simple no DR / any DR outcome in the context
of a wider disease model for diabetes [90]. Some studies also (or alternatively)
incorporated visual acuity levels [91, 99, 110, 111, 117]. Polak et al. principally
discuss progression to vision loss, but are not clear about what other states or
events (if any) are included in the model [96].

Most studies adopted a lifetime horizon [30, 65, 67, 91, 92, 96, 110, 111],
though some restricted this to a fixed number of years that may not have seen
the model run until the cohort had all died [107, 110]. Other studies used time
horizons of 10 years [90], 15 years [99], 25 years [113, 117], or 30 years [109]. One
year was the most commonly used cycle length [65, 90, 92, 107, 110, 113]. For
some studies the cycle length used was not clearly stated but seemed to be one
year [67, 117]. Others used a cycle length of six months [30, 109], three months
[91, 96, 99] or one month [111].

The most frequently reported software used was TreeAge [107, 110, 111, 113,
117], followed by Microsoft Excel [30, 90, 109]. One study reported using the
Institute for Medical Informatics and Biostatistics (IMIB) Tools for Outcomes
Modeling (TOM) software [92]. Several studies did not specify the software used
[65, 67, 91, 96, 99].

Most models used disease progression rates taken from landmark studies, such
as the Diabetic Retinopathy Study (DRS) [65, 67], the Wisconsin Epidemiologic
Study of Diabetic Retinopathy (WESDR) [65, 91, 96, 99], the Diabetes Con-
trol and Complications Trial (DCCT) [90, 92], the Early Treatment Diabetic
Retinopathy Study (ETDRS) [67, 109], the Diabetic Retinopathy Vitrectomy
Study (DRVS) [110], and the Diabetic Retinopathy Clinical Research Network
(DRCRnet) [117]. Some derived their data from other published studies [107,
113], local data [30], or from expert opinion [111]. Most studies did not use
quality-adjusted life years as an outcome. Those that did generally used HSUVs
from a single published study [30, 107, 110, 111, 117] or from local data [99, 113].
Others derived utility values from multiple sources [109]. Some studies employed
mapping to identify HSUVs [90]. Vijan et al. only associated blindness with a
utility decrement using a HSUV of 0.69 [67].

Most studies conducted one-way sensitivity analysis [30, 65, 67, 92, 99, 107,
110, 111, 113, 117] or PSA [30, 67, 99, 107, 109, 111, 113, 117]. Some studies
did not report on any analysis of uncertainty [90, 91, 96]. Wu et al. [90] state
that their model had previously been validated and give some consideration to
the external consistency of their results. Pershing et al. [111] do not explicitly
investigate internal or external consistency, but calibrate their model to reflect
disease progression shown in external epidemiological data. The only study to
describe any formal attempt at assessing validity using external data is Kawasaki
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et al. [107].

Individual sampling models

Six studies used individual level simulations [87, 100, 103, 104, 106, 118], includ-
ing one discrete event simulation [104], as outlined in Table 2.4. Three of the
studies appeared to report different applications of the same decision model: the
Prospective Diabetes Retinopathy Simulation (PROPHET) model [87, 106, 118].
Only one of the studies described their model as having a Markov structure [100].

Most of the models were structured around the progression of DR and DMO
[87, 103, 104, 106, 118], while one study simulated patients with DMO and mod-
elled their level of VA [100]. Three studies explicitly adopted a lifetime horizon
[104, 106, 118], while two others did so implicitly by implementing 50-year [103]
and 60-year [87] time horizons. Dewan et al. [100] appear to have used a 10-year
horizon. Three studies used a one-year cycle length [87, 103, 106], while one
used two months [118] and another used one month [100]. The DES modelled
time continuously [104]. Half of the ISM studies did not specify what software
was used to develop the model. TreeAge [100], Microsoft Excel [103], and Turbo
Pascal [106] were each specified once.

Sources for disease progression estimates were principally the landmark stud-
ies, including WESDR [87, 106, 118], DRS [87], ETDRS [87, 103], and DCCT
or the Epidemiology of Diabetes Interventions and Complications (EDIC) trials
[103]. One study used local data [100] and the DES operated on the basis of
calibration with local prevalence estimates [104].

All studies reported on some form of sensitivity analysis, with most conducting
one-way sensitivity analyses [87, 100, 104, 106, 118] and some conducting PSA
[103, 104]. Some studies reported on validation attempts in terms of the internal
[103, 104] and external [100, 103] consistency of their results.

2.4 Discussion

This review included 26 articles published between 1989 and 2015. Many model-
based economic evaluations in diabetic retinopathy — including in the context of
screening — employ cohort state transition models. Most of these use a lifetime
horizon and cycle lengths of up to one year.

Most of the models identified in this narrative review were structured around
progression of DR. The studies classified disease progression in a variety of ways,
but most incorporated the distinction between NPDR and PDR. Several studies
modelled progression according to visual acuity, but this approach was primar-
ily adopted for studies that modelled specific cohorts that did not span disease
progression from onset to sight loss. Due to the well-defined (if inconsistent) na-



2.4. DISCUSSION 33

Study States / events Time
horizon

Cycle
length

Software

Javitt et
al. (1989)
[106]

Background DR;
DMO; PDR; SVL;
CAL

Lifetime 1 year Turbo
Pascal

Fendrick et
al. (1992)
[87]

Background DR;
DMO; PDR; SVL;
CAL

60 years 1 year NR

Javitt &
Aiello
(1996)
[118]

Background DR;
DMO; PDR; SVL;
CAL/blind

Lifetime 2 months NR

Dewan et
al. (2012)
[100]

VA 10 years 1 month TreeAge

Wolowacz
et al.
(2015)
[103]

PDR; blind 50 years 1 year Microsoft
Excel

Wu et al.
(2015)
[104]

No DR; NPDR; PDR;
DMO; blind

Lifetime
(100 years)

Continuous NR

Table 2.4: Individual simulation models. CAL = central acuity loss; DMO =
diabetic macular oedema; DR = diabetic retinopathy; NPDR = non-proliferative
diabetic retinopathy; NR = not reported; PDR = proliferative diabetic retinopa-
thy; SVL = severe vision loss; VA = visual acuity.
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ture of disease classification in DR, state transition models appear to represent
an appropriate basis for the simulation of disease progression. Furthermore, as
screening programmes operate on the basis of gradings that explicitly group peo-
ple according to disease level, state transition modelling can accurately represent
the relevant pathways. This is perhaps one reason why state transition modelling
was the most common method identified by our review.

Many of the studies used landmark epidemiological studies as a source for
disease progression rates. These studies were conducted many years ago and
may not be representative of current epidemiology, either because diabetes man-
agement has improved generally or because national screening programmes have
since been introduced.

None of the studies that used quality-adjusted life years as a health outcome
in their model identified health state utility values in a systematic way. Most
relied on estimates from single studies. It is not clear that these values are either
accurate or representative of the populations being modelled. We discuss the
role of health state utility values and quality-adjusted life years in more detail
in Chapter 3. Resource use data were also limited in many studies. Those that
sought to evaluate alternative screening programmes tended to assume consistent
progression to laser treatment. Modern treatment pathways are not represented
in many of the studies. We give further consideration to the appropriate modelling
of screening and treatment activity in Chapters 5 and 6.

Some studies — principally those published more than 10 years ago — did
not clearly describe the structure or operation of their models. Very few of the
studies included any validation, making it difficult to judge the appropriateness of
the various modelling approaches in this context. However, Kawasaki et al. [107]
provide some evidence to support the validity of cohort-based state transition
modelling in the evaluation of DR screening programmes. The review revealed
that TreeAge, which was used in 11 of the 26 studies identified, was the most
popular software package for modelling in this context. Being based on a pre-
programmed software package, these models may lack transparency [84, 119].

2.4.1 Strengths and limitations

We conducted the first review of model-based economic evaluations in diabetic
retinopathy and extracted many key details regarding the structure of models
and sources for parameters. Our findings facilitate a more informed development
process for the structure and parameterisation of a decision model.

There are several limitations to this review. We used a restricted search
strategy as our goal was not to identify all modelling studies but rather to provide
an overview. It is therefore possible that the studies identified in this review are
not representative of all modelling studies that have been conducted in DR. Some
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of the studies that we describe were conducted more than 20 years ago and use
software that is no longer available. As such, some of the studies may not be
relevant to the present analysis. The extent to which our review can inform the
development of a decision model is limited by the lack of validation attempts
reported in the existing literature.

2.4.2 Implications

Most of the models identified in our review adopted a cohort state transition
approach. The nature of disease progression and classification in DR lends itself
well to this model structure. Furthermore, we seek to evaluate a screening pro-
gramme and are therefore interested in outcomes at the population level. Many of
the studies identified in our review evaluated alternative screening programmes,
with several considering alternative screening intervals. Most of these used cohort
state transition modelling. One of these studies [30] formed part of the basis for
the recent NSC recommendation described in Chapter 1.

However, there may be analytical advantages to the use of an individual sam-
pling model. In this review, studies reporting ISMs were more likely to describe
validation attempts, and these tended to demonstrate validity of the models. Fur-
thermore, ISMs are far better able to account for patient heterogeneity, which is
key to the value of stratification. ISMs are therefore more likely to give externally
consistent results where individual risk is used to determine treatment pathways.

In the following chapters, we use the information collected in this review to
help guide the development of a new state transition model. The model will be
based around the NSC ‘R0M0’ classifications described in Chapter 1 and used
(either implicitly or explicitly) in a number of studies included in this review.
Having identified a variety of shortcomings in the evidence used to populate the
models described in this chapter, chapters 3 through 6 describe our efforts to
improve the available evidence for this purpose. Chapter 7 will combine all of
this information to guide the development and population of our own model-based
economic evaluation.
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Chapter 3

Quality of life and diabetic
retinopathy: a cross-sectional
study

Summary
As part of the ISDR randomised controlled trial, health-related quality of life data
were collected from people attending screening for diabetic retinopathy. In this
chapter we describe the data that were collected at baseline using the EQ-5D-
5L and HUI3 questionnaires. We discuss the relationship between health-related
quality of life and individuals’ level of retinopathy as determined at screening.
The study examines whether or not health state utility values differ according to
retinopathy level and explores some of the determinants of health-related qual-
ity of life in this population. On average, people with background retinopathy
reported lower health state utility values than people with no retinopathy. We
also find that HUI3 values tend to be lower than EQ-5D-5L values and that this
difference is associated with visual function. The chapter presents health state
utility values that can be used as parameters in future model-based economic
evaluations.

37
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3.1 Background

Health-related quality of life (HRQoL) has become a key outcome measure used in
the evaluation of health technologies. It captures a person’s quality of life in the
domain of health, where health is often defined in terms of the WHO definition
as “a state of complete physical, mental and social well-being and not merely
the absence of disease or infirmity” [120]. HRQoL is important because it is of
interest to patients, while physiological markers may lack significance and not
evidently impact on a person’s life. It also addresses heterogeneity in individuals’
responses to physiological changes, which may be detrimental to some people but
irrelevant to others. Thus, HRQoL captures the effects of changes in health to
the extent that they actually matter to patients.

It is possible to use either generic or condition-specific HRQoL measures.
For example, research could focus on vision-related quality of life. However,
in the context of economic evaluation and health technology assessment (HTA),
generic measures are usually preferred. This is because they are more informative
where decision makers have to make decisions across multiple disease areas. By
using a generic measure of health outcome it is meaningful to compare the cost-
effectiveness of treatments for diabetic retinopathy with — for example — breast
cancer screening.

3.1.1 QALYs

In order to inform resource allocation decisions, HTA agencies such as the Na-
tional Institute for Health and Care Excellence (NICE) prefer generic measure-
ment of health outcomes [121]. The quality-adjusted life year (QALY) is a well-
established measure of health outcome that incorporates both the quality of life
associated with health states and the amount of time spent in these health states.
The quality-adjustment aspect of QALY calculation generally requires the use of
a generic preference-based measure (PBM) of health outcome. NICE and other
HTA agencies identify QALYs as a preferred measure of health outcome [122].
An economic evaluation using QALYs is known as a cost-utility analysis because
it values health outcomes according to preferences. Preferences can be elicited
from the individual using a variety of methods including time trade-off, standard
gamble, and choice modelling.

It is possible to directly elicit preferences from individual patients within a
study. However, it is more common — and is recommended by NICE — that
preferences be elicited indirectly using generic PBMs. This form of estimation
involves a two stage process. First, a classification system is used in the form of
a questionnaire to elicit health state profiles of individuals. Second, a valuation
process is used to attach weighted values to each of these health state profiles. In
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Figure 3.1: Quality-adjusted life years associated with two hypothetical pathways

the UK and elsewhere a consensus has developed that HTA should be conducted
on the basis of societal values for these health states, rather than patients’ pref-
erences [123]. Societal values for health states are derived from a representative
sample of the general public. Values are scaled from 0 to 1, where 1 is ‘full health’
and 0 is a health state of equivalent value to being dead; negative values indicate
a health state worse than being dead. The resulting index value derived from
each possible health state defined by the classification system is referred to as the
health state utility value (HSUV). Figure 3.1 can be used to demonstrate how
QALYs are estimated using an area-under-the-curve approach. Area ‘A’ repre-
sents the number of QALYs associated with a control group, while area ‘A’ plus
area ‘B’ represents the number of QALYs associated with an intervention group.

Health state classification systems — also known as multi-attribute utility
instruments — generally include multiple domains that are selected such that
they provide adequate information to describe a full range of possible health
states. The domains define those aspects of life that are valuable and relevant to
health [124]. There are a variety of health state classification systems available for
use as generic PBMs; some of the most popular include the EQ-5D, SF-6D, HUI3,
AQoL, and QWB [125]. Some HTA agencies, including NICE, specify a preferred
health state classification system for use as a generic PBM. NICE recommend
use of the EQ-5D [121]. The EQ-5D, developed by the EuroQol Group [126],
is one of the most popular and most researched health state profile elicitation
questionnaires used in the UK context and across Europe. Domains used in the
EQ-5D were selected on the basis of a review of existing non-preference-based
HRQoL measures.
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The EQ-5D has five domains: i) mobility, ii) self-care, iii) usual activities, iv)
pain/discomfort, and v) anxiety/depression. Each of these domains is associated
with alternative levels of response. The original version of the EQ-5D (the EQ-
5D-3L) used three response levels. A newer version of the EQ-5D (the EQ-5D-5L)
uses five response levels [127]. For both versions, societal values have been elicited
from the general population using various techniques [128, 129]. The EQ-5D-5L
value set for England is based on a combination of time trade-off and discrete
choice tasks [130]. The EQ-5D-5L is still relatively new, but is seen to be preferred
to the EQ-5D-3L because of a reduced ceiling effect and a more even distribution
of responses [131, 132].

The EQ-5D is less dominant outside Europe, and alternative instruments are
available. Some researchers have preferred the Health Utilities Index Mark 3
(HUI3) to the EQ-5D and other classification systems in the context of vision
due to it having greater sensitivity to sight problems [133]. This is because
the HUI3 includes specific domains relating to sensory perception [134, 135].
Recently, this was identified as a key domain missing from the EQ-5D [136]. The
HUI3 was developed on a similar basis to the EQ-5D but with a greater focus
on impairment, consisting eight domains: i) vision, ii) hearing, iii) speech, iv)
ambulation, v) dexterity, vi) emotion, vii) cognition, and viii) pain. The index
scores can be estimated using a multi-attribute utility function based on Canadian
values. No UK values are currently available. While UK values are recommended
by NICE, exceptions have been made where HUI3 is deemed more appropriate
[137].

3.1.2 HRQoL and DR

Diabetic retinopathy is one of the most common causes of blindness and severe
vision loss [138, 139], which has a substantial negative impact on HRQoL [140–
143]. Effective and cost-effective preventive and remedial interventions are avail-
able for diabetic retinopathy [144, 145], which can prevent disease progression
and reduce the risk of vision loss and its impact on health-related quality of life
[143].

The major risk to health-related quality of life posed by the onset of diabetic
retinopathy is vision loss. When considering HRQoL it is important to distinguish
between vision loss in one eye or both eyes. People may be able to adapt well
to having good sight in only one eye, but less able to adapt to sight impairment
in both eyes. Therefore, the impact of vision loss in the better seeing eye may
be greater than the impact of vision loss in the worse seeing eye. Severe sight
impairment — often termed ‘blindness’ — can be defined in a variety of ways in
terms of visual acuity and reductions in the visual field, usually in relation to the
better seeing eye. The most extreme form of sight impairment is to have no light
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perception.
To have no light perception (in both eyes) has been associated with utility

values as low as 0.26 [146]. The purpose of screening for DR is to avoid vision
loss, and the availability of a comprehensive screening programme in the UK
means that the number of people progressing to vision loss is expected to re-
duce. However, diabetic retinopathy can still be associated with reductions in
visual acuity that may impact on health-related quality of life before progression
to blindness. It is therefore important to consider the utility associated with
these health states. In the NDESP, individuals are invited to screening before
symptoms develop and most should therefore not have experienced vision loss
and the associated decrement in HRQoL. Nevertheless, people attending screen-
ing for diabetic retinopathy have diabetes and this may be associated with a
reduced quality of life before the onset of retinopathy. Therefore, people with no
retinopathy cannot be assumed to be either in full health or to exhibit equivalent
health states to the general population.

Some people who attend screening for diabetic retinopathy may screen posi-
tive without any vision loss having occurred. These people may differ from those
who screen negative in ways that affect their quality of life. This may relate
directly or indirectly to their level of retinopathy or to other complications of
diabetes. Therefore, it may not be correct to assume that people with asymp-
tomatic retinopathy exhibit equivalent health states to people with no retinopa-
thy. It may be important that model-based economic evaluations are able to
differentiate between such people in order to accurately estimate the effects of
treatment, though there is a lack of evidence to inform this.

In Chapter 2 we reviewed model-based cost-effectiveness analyses of inter-
ventions for diabetic retinopathy. The review highlighted several limitations in
the evidence base. In the context of economic evaluation there is a tendency
for decision models to rely on single HSUV estimates from a small selection of
studies.

Of the 26 articles identified in the review of modelling studies, 15 made some
use of HSUVs. Several studies [93, 110, 111, 117] used HSUV estimates from a
series of small overlapping studies by a specific group of researchers [147–149].
Scanlon et al. [30] — whose model formed part of the basis for the NSC’s recent
policy recommendation regarding stratification — used values from a single study
([150]) with no justification. Furthermore, some studies only considered the utility
loss associated with blindness [67, 108, 118], which may not adequately represent
the effect of DR progression on quality of life.

Recent studies also describe limitations in the available evidence regarding
HSUVs associated with DR [109, 151]. In order to address some of the shortcom-
ings in the evidence base, we carried out two new studies of health-related quality
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of life in people with diabetic retinopathy. This chapter describes a cross-sectional
study conducted alongside the ISDR randomised controlled trial (RCT). Chapter
4 describes a synthesis of previously published HSUVs and the combination of
these with the data reported in this chapter. The chapters are presented in this
order due to the findings of the former being incorporated into the latter.

In this chapter, we seek to inform future decision analyses using findings from
a cross-sectional study in which we associate HSUVs with screening results. Both
the EQ-5D and the HUI3 have previously been used in the context of people
with diabetic retinopathy, and both have been used to show that people with
progressed DR have a lower HRQoL than people without [152]. However, no
study has yet compared EQ-5D and HUI3 values for a cohort of people attending
screening for DR. Furthermore, no study has yet reported index scores estimated
using the new EQ-5D-5L for a large sample of people either with or at risk of
developing diabetic retinopathy.

3.2 Methods

3.2.1 Data

Clinic sample

As described in Chapter 1, the ISDR study recruited 4,543 people to a randomised
controlled trial of risk-based variable-interval screening compared with annual
screening. From the beginning of trial recruitment, individuals were also recruited
for additional data collection as part of Workstream D. Target recruitment for a
convenience sample was at least 700 patients, as described in the trial protocol
[76].

Participants were recruited at screening attendance by a research nurse, and
the screening visit at which they enrolled in the study became their baseline visit
for the trial. At this baseline visit, usually following administration of mydriatic
eye drops, individuals in the health economics sample were asked to self-complete
a paper questionnaire. The questionnaire consisted of large print versions of the
EQ-5D-5L and the HUI3, as well as a set of questions relating to the costs of
attending screening, as described in Chapter 5. If participants were unable to
self-complete the questionnaire they were assisted by a research nurse, who could
complete the questionnaire on the participant’s behalf. All research nurses were
provided with a guidance document that contained appropriate script to aid both
self- and nurse-completion of the questionnaire. Whether or not the participants
self-completed the questionnaire was recorded, and any additional notes made by
the research nurse were also available.

Ethical approval was obtained from the Preston Research Ethics Committee
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for all data collection, and all participants gave written informed consent.

Screen-positive follow-ups

Individuals who were otherwise eligible, but who experienced a positive screen
event either at baseline or follow-up, were excluded from the trial. Most people
screen negative, so it was expected that few people with STDR would be included
in the sample described above. As such, we anticipated that our convenience
sample would provide limited information about quality of life for people who
screen positive. This group of patients may be the most likely to exhibit poorer
HRQoL due to the presence of DR or other complications of diabetes, so it was
deemed important to oversample this group. Therefore, an additional cohort was
recruited for HRQoL data collection.

When recruited to the trial, individuals were asked if they would consent
to be contacted by the research team after their involvement in the trial had
ended. This meant that — for those who consented — it was possible to approach
individuals excluded from the trial either at baseline or follow-up due to their
screening results. All individuals who were excluded from the trial at baseline
due to their screening outcome and who had consented to be contacted were
sent a questionnaire consisting of the EQ-5D-5L and HUI3 by post with a return
envelope. This group could include people screening positive for DR, exhibiting
non-diabetic eye disease, or those for whom images were ungradable.

ISDR data warehouse

The HRQoL data collected from trial participants were combined with data from
the ISDR data warehouse. This included screening outcome data from OptoMize.
Because questionnaires were collected at baseline screening attendance, HRQoL
data could be matched to subsequent grading and referral outcomes based on the
date of screening. The OptoMize database is described in more detail in Chapter
1. For the purpose of this chapter, we extracted data for those people from
whom HRQoL data were collected and associated their HRQoL questionnaire
responses with ‘R0M0’ gradings as recorded in OptoMize. For individuals who
screened positive (and who were therefore excluded from the trial), we replaced
photographic grading results with gradings recorded at their subsequent visit
to the hospital eye service. These data were recorded as part of the trial and
were less likely to be missing. In particular, they enabled us to use outcomes
data for people whose images were classified as ungradable at screening. Age is
likely to be an important confounding variable associated with both HRQoL and
retinopathy level, and so participants’ ages in years were also extracted from the
data warehouse.
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3.2.2 Analysis

We present and analyse our data in line with recent recommendations [153].
For the primary analysis, EQ-5D-5L index scores were estimated using the tariff
described by Devlin et al. [130], which was elicited using a combination of time
trade-off and discrete choice experiments in a representative sample of 996 adults
in England. Additionally, we present index values estimated using the EQ-5D-3L
mapping function, as recommended by NICE [154, 155]. HUI3 index scores were
estimated using the multiplicative multi-attribute utility function described by
Furlong et al. [135].

We report descriptive statistics for dimension-level and index-level responses
and distributions for both HRQoL measures. Results from the different cohorts
are reported separately to maintain the representativeness of the sample of people
attending screening. As outlined in Chapter 2, state transition models are often
based on retinopathy level. Therefore, in order to inform studies of this nature,
we report EQ-5D-5L and HUI3 index scores according to ‘R0M0’ gradings.

Health state utility data are invariably skewed, can be negative, and have an
upper limit of 1. Therefore, we performed a simple linear transformation to HSUV
scores and conducted generalised linear modelling to estimate the association
between screening outcome and EQ-5D-5L and HUI3 index scores. Selection of
the most appropriate distribution and link function was informed by the modified
Park test [156], implemented using the glmdiag program in Stata [157, 158], link
tests, and visual inspection of plotted predictions. To understand any effects
associated with different data collection methods, we included a dummy variable
to indicate whether the individual self-completed. This model took the form

HSUV di = β0 + β1Ri + β2Mi + β3Selfi + β4Agei + εi, (3.1)

whereHSUV di = (1−HSUVi), andHSUVi is the estimated index value (EQ-5D-
5L, EQ VAS, or HUI3) for individual i. Ri andMi are the individual’s retinopathy
and maculopathy levels according to the NDESP ‘R0M0’ grading system, Selfi

is a dummy variable equal to 1 if the individual self-completed and 0 if they did
not, Agei is the individual’s age in years at the time that the questionnaire was
completed and ε represents a random error term. Given the two distinct sampling
methods (i.e. in clinic or by post), cluster standard errors were estimated to
account for correlation within the groups.

We additionally conducted pairwise comparison between the EQ-5D-5L and
HUI3 at the individual level in order to identify which groups of people responded
differently to the two measures. Given the importance of vision in this context,
we give further consideration to the vision domain of the HUI3. All analyses were
conducted using Stata 15 [159].



3.3. RESULTS 45

Clinic sample Postal sample
Sample size 868 73
Self-completion
Yes 573 (66%) 73 (100%)
No 271 (31%) 0 (0%)
Missing 24 (3%) 0 (0%)
Age in years
Under 20 2 (0%) 1 (1%)
20–40 42 (5%) 3 (4%)
40–60 320 (37%) 10 (14%)
60–80 453 (52%) 46 (63%)
Over 80 51 (6%) 11 (15%)
Age missing 0 (0%) 2 (3%)
Age (mean [SD]) 62 [13] 69 [14]
R0M0 gradings (worse eye)
R0M0 674 (78%) 51 (64%)
R1M0 157 (18%) 13 (16%)
R1M1 11 (1%) 8 (10%)
R2M0 3 (0%) 3 (4%)
R2M1 1 (0%) 0 (0%)
R3M0 0 (0%) 0 (0%)
R3M1 1 (0%) 0 (0%)
Missing 21 (2%) 3 (4%)

Table 3.1: Sample characteristics

3.3 Results

3.3.1 Data

Recruitment could not be stopped immediately upon reaching our target sample
of 700 due to administrative processing, and Workstream D over-recruited with
868 people asked to complete the HRQoL questionnaire at baseline. Two people
who were eligible chose not to participate. Characteristics of the sample are
shown in Table 3.1. The median (and mean) age in years of the clinic sample was
62 (range 17–90), and 66% self-completed. Due to an administrative error, 23
participants (2.6%) did not receive the first page of the HUI3 questionnaire, which
contained the ‘vision’ and ‘hearing’ domains. These data can safely be assumed
to be missing completely at random, as the printing error was not related to
recruitment centre, time, or any individual participant characteristics.

In January 2017, 214 postal questionnaires were dispatched to individuals
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Figure 3.2: Distribution of R0M0 gradings

excluded from the trial at baseline, of which 80 (37%) were returned. For the
purpose of the regression analyses, postal responses were assumed to have been
self-completed. Seven individuals appeared in both samples. We excluded these
individuals’ postal data from our analyses. All seven reported different health
states at each time point.

Figure 3.2 shows the distribution of R0M0 classifications in the two samples.
In the clinic sample, 78% of those screened were graded as having no retinopathy
or maculopathy, and 18% were graded as having background retinopathy without
maculopathy. Gradings in the postal sample included a higher proportion with
early stages of retinopathy, but nobody with PDR.

3.3.2 Domain-level responses

In the clinic sample, 823 (95%) participants fully completed all parts of the EQ-
5D-5L and 735 (85%) completed all parts of the HUI3. Even excluding the 23
participants for whom the first page was missed, the ‘vision’ domain of the HUI3
had the highest rate of non-completion or unclear responses. Table 3.2 shows the
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Response level
Dimension 1 2 3 4 5 6 Missing

EQ-5D-5L
Mobility 51% 15% 17% 15% 0% NA 2%
Self-care 74% 9% 9% 4% 1% NA 2%
Usual activities 56% 15% 14% 10% 3% NA 2%
Pain/discomfort 42% 20% 19% 13% 4% NA 2%
Anxiety/depression 66% 14% 12% 5% 1% NA 2%

HUI3
Vision 28% 56% 3% 2% 1% 0% 10%
Hearing 72% 10% 6% 3% 1% 0% 8%
Speech 91% 4% 2% 0% 0% NA 2%
Ambulation 60% 17% 11% 5% 2% 0% 5%
Dexterity 79% 14% 2% 2% 1% 0% 2%
Emotion 65% 21% 9% 3% 1% NA 2%
Cognition 67% 8% 17% 4% 2% 0% 2%
Pain 39% 26% 15% 12% 7% NA 1%

Table 3.2: Domain-level responses to EQ-5D-5L and HUI3 in the clinic sample.
HUI3 = Health Utilities Index Mark 3; NA = not applicable.

distribution of domain-level responses, including missing data, for the 868 trial
participants. For most domains, on both questionnaires, the majority of people
reported to have no problems (level 1). Exceptions included ‘pain/discomfort’ on
the EQ-5D-5L and ‘pain’ on the HUI3. Few people reported more severe states
(levels 4, 5, or 6). Importantly, most people identified as a level 2 on the ‘vision’
domain of the HUI3, with only 6% of respondents indicating that their vision was
not fully corrected by glasses.

Of complete responses, 251 unique states were observed from the EQ-5D-5L,
with 31% of respondents reporting no problems. From the HUI3, 387 unique
states were observed, with 11% reporting no problems.

3.3.3 Index values

Across both samples, including incomplete cases, the mean EQ-5D-5L index score
was 0.774, compared with 0.697 for the HUI3. Individuals whose subsequent
screening outcome was R1 (background retinopathy) in at least one eye had a
lower HRQoL on average than individuals with R0 (no retinopathy), for both the
EQ-5D-5L and HUI3 index. Median self-assessed health from the EQ-5D visual
analogue scale (EQ VAS) was similar across groups, at 80 across all samples.

Table 3.3 shows mean index scores and their standard deviations for the EQ-
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Figure 3.3: Distribution of index values for R0 and R1

5D-5L and HUI3 and for the EQ VAS, grouped by retinopathy grading, for clinic
sample cases with complete HRQoL data (n=709). The results in Table 3.3
suggest that people with background retinopathy report poorer HRQoL than
people with no retinopathy. For example, the mean EQ-5D-5L score was 0.787
for people with no retinopathy and 0.733 for people with background retinopathy.
Due to the small numbers of respondents, we are not able to infer anything about
the effect of PDR on HRQoL.

We additionally considered the potential for differences between people with
background retinopathy in either one eye or both eyes, because bilateral back-
ground disease may be associated with other factors that influence HRQoL. How-
ever, index values were approximately equal in each group. For example, across
both samples, mean EQ-5D-5L index values were 0.724 for people with back-
ground retinopathy in one eye, and 0.721 for people with background retinopathy
in both eyes.

Figure 3.3 shows density distributions for EQ-5D-5L and HUI3 index values
for people with no retinopathy and people with background retinopathy. Clearly,
any difference in index values between people with no retinopathy and people with
background retinopathy is subtle. However, the distributions do highlight a ten-
dency for people with background retinopathy to report lower values, especially
for HUI3.
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The results of the regression analyses — combining both samples — are shown
in Table 3.4. For consistency, EQ VAS scores were rescaled from 0–100 to a 0–1
scale. Formal tests indicated that the most appropriate model used a Poisson
family distribution with log link, and visual inspection of plotted predictions
supported this choice. It was necessary to collapse the small number of R2 and R3
observations in order to achieve model convergence. The inclusion of age-squared
improved model fit. Due to the linear transformation, results relate to decrements
in index values. Thus, a positive coefficient corresponds to a negative marginal
effect on health-related quality of life. The coefficients represent the ratio effect
of a unit change in that variable on the log of the mean utility decrement. For
example, a coefficient associated with R1 of 0.099 shows that the mean HSUV
decrement associated with R1 would be e0.099 = 1.104 times that of the decrement
associated with R0.

Due to the small number of people graded as R2, R3, or M1, we cannot
meaningfully interpret the effect of these states on HSUVs. However, we can
interpret the effect of R1. Our findings show that both EQ-5D and HUI3 index
scores were, on average, lower for people with background retinopathy when com-
pared with people with no retinopathy. The difference was statistically significant
within a 99% confidence interval for the HUI3 index value. The marginal effect
of background retinopathy on HRQoL (compared with having no retinopathy),
derived from the model, was a decrement of 0.024 for the EQ-5D-5L index, 0.035
for the EQ-5D-3L mapped values, and 0.067 for the HUI3. Across all indices,
self-completion of the questionnaire was positively associated with HRQoL.

3.3.4 Pairwise comparison

We estimated Pearson’s correlation coefficient for the EQ-5D-5L index and HUI3
index to be 0.867, indicating a relatively strong positive relationship. Figure 3.4
shows a Bland-Altman plot, which presents the average of individuals’ EQ-5D-
5L and HUI3 index values plotted against the difference between them. The
graph also plots the average difference (dashed green line) and upper and lower
limits of agreement (coloured area). The plot was generated using the batplot
command in Stata [160]. The figure demonstrates that, on average, the EQ-5D-
5L was associated with higher index values than the HUI3, and that there was
a lot of variation in values across the scale. The (95%) limits of agreement were
differences of -0.224 and +0.373.

Our findings suggest that the HUI3 may be sensitive to differences in retinopa-
thy level where the EQ-5D-5L is not. A Wilcoxon signed-rank test indicated
that HUI3 index values were lower than EQ-5D-5L index values across different
retinopathy gradings. We conducted a (normal) linear regression analysis, with
the same independent variables outlined in equation 3.1, to investigate whether
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Figure 3.4: Bland-Altman plot for EQ-5D-5L and HUI3 index values. HUI3 =
Health Utilities Index Mark 3

retinopathy level was an important driver of the difference between the two in-
dex scores (EQ-5D-5L index minus HUI3 index). The mean individual-level dif-
ference between EQ-5D-5L and HUI3 values was 0.011 greater for people with
background retinopathy. This corresponded to a greater HRQoL decrement on
the HUI3 relative to the EQ-5D-5L. However, this finding was not statistically
significant.

The distribution of responses for the vision domain of the HUI3 were simi-
lar for R0 and R1 groups. Of those people with no retinopathy, 30% reported
no problems on the vision domain of the HUI3, while 64% reported a level 2.
Of those people with background retinopathy (R1), 32% reported no problems
on the vision domain and 59% reported a level 2. Around 8% of people with
background retinopathy and no maculopathy reported a level 3 or worse, while
for people with no retinopathy around 6% reported a level 3 or worse. Table
3.5 shows mean index scores for individuals with complete data reporting each
level of response on the vision domain of the HUI3. These findings show that
the difference between EQ-5D-5L scores and HUI3 scores is positively associated
with a person’s level of visual impairment. This suggests that the HRQoL im-
pacts of more advanced vision limitations, that can be included in HUI3 state
descriptions, are not fully represented by EQ-5D index values. Therefore, the
slightly greater number of people with background retinopathy reporting more
serious vision problems partly explains the difference in HRQoL, despite it being
unlikely that retinopathy is the cause of any vision problems.
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Vision domain n EQ-5D-5L HUI3 EQ-5D-5L - HUI3
Mean (SD) Mean (SD) Mean (SD)

1 233 0.831 (0.247) 0.792 (0.276) 0.038 (0.141)
2 485 0.774 (0.268) 0.697 (0.288) 0.077 (0.143)
3 26 0.541 (0.294) 0.411 (0.296) 0.130 (0.171)
4 20 0.614 (0.265) 0.359 (0.263) 0.255 (0.196)
5 10 0.442 (0.374) 0.137 (0.288) 0.305 (0.240)
6 0 NA NA NA

Table 3.5: Index scores by HUI3 ‘vision’ domain level. SD = standard deviation;
HUI3 = Health Utilities Index Mark 3; NA = not applicable.

3.4 Discussion

This study has provided health state utility values for people attending screening
for diabetic retinopathy. We found evidence that individuals with background
retinopathy tend to report being in poorer health than people with no retinopathy.

A key finding of our analysis is that the HUI3 and EQ-5D-5L can provide
divergent HSUVs, and that the difference between them might systematically
relate to individual characteristics. This means that any measure of relative effect
could differ depending on the choice of instrument. As such, it is important to
consider and justify the choice of HRQoL measure in this setting.

The HSUVs identified for our sample are lower than those reported in previous
studies [151, 161]. For example, Lloyd et al. reported mean values of 0.83 and
0.81 for EQ-5D (3L) and HUI3 indices in people with no retinopathy [150], while
for our clinic sample the figures are 0.795 and 0.718 respectively.

Our findings support the notion that the HUI3 may be more sensitive to
differences in health states in the context of vision-related disorders. However,
the completion rate for the HUI3 was substantially lower than that for the EQ-
5D-5L and non-completion was particularly common for the vision domain of the
HUI3. This may be due to the greater complexity of the HUI3 domain descriptors
and implies a trade-off in the use of the HUI3 in terms of data quality. Use of the
HUI3 may result in more specific information at the cost of poorer completion.
Further research is warranted to understand why respondents refuse or struggle
to provide usable responses to HUI3 questions, particularly the vision domain.

As identified in Chapter 2, some previous model-based economic evaluations
of screening for DR have treated screen-negative populations as homogeneous in
terms of their health-related quality of life. Our findings in this chapter challenge
that assumption, as individuals with background retinopathy exhibit a lower
HRQoL than people with no retinopathy even when controlling for age. The
estimated difference of 0.067 in the HUI3 index may exceed a minimally important
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difference (see, for example, for the EQ-5D-5L [162]). Assuming that these groups
are homogeneous may lead to inaccurate cost-effectiveness estimates. Despite it
being unlikely that people in either of these groups have experienced any vision
loss due to retinopathy, our findings suggest that the difference in HRQoL is at
least partly explained by differences in visual function. It is also possible that the
risk (rather than experience) of sight loss associated with background retinopathy
influences people’s self-reported HRQoL. The mechanism by which this operates
remains unclear.

Our analysis focussed on heterogeneity in terms of disease level, but it may
also be important to consider other forms of heterogeneity. For instance, age is an
important determinant of HRQoL independent of retinopathy disease state. Self-
completion of questionnaires was associated with higher values. This is suggestive
of better functional capacity, though may reflect other contextual individual-
level factors, including the fact that participants in the clinic sample would have
received mydriatic eye drops. There is scope for further work to understand
sources of heterogeneity in HSUVs in this population.

3.4.1 Strengths and limitations

This chapter describes the largest UK-based collection of HSUVs from people at-
tending screening for diabetic retinopathy, and the first to use the EQ-5D-5L and
to make direct comparison with the HUI3. The study had a high response rate
and our approach to recruitment should ensure that the sample studied is repre-
sentative of people attending screening for diabetic eye disease in Liverpool, UK.
As such, our findings will be valuable to future model-based economic evaluations
of interventions for DR.

There are some limitations to this study. While we collected health state
utility data from a variety of people participating in screening for DR, there
are some groups that we did not sample. In particular, we were not able to
obtain data from people not attending screening. Furthermore, we did not collect
sufficient data from individuals who screened positive to make assertions about
the impact of proliferative retinopathy and maculopathy on HRQoL. We also did
not collect information from people in receipt of treatment. Some treatments
could be detrimental to HRQoL in the short term due to their invasive nature
[163].

Our results may have been affected by the context in which data were col-
lected from the clinic sample – that is, at a screening attendance. Respondents
completed the questionnaire at the most opportune time, which was usually fol-
lowing receipt of mydriatic eye drops, which affect vision and can be unpleasant.
We are not able to identify whether individuals completed the questionnaire be-
fore or after receiving eye drops. It is possible that receipt of eye drops may
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explain some of the heterogeneity in responses, which we are unable to capture,
particularly between the clinic sample and the postal sample.

Our statistical model is based on gradings in the worse eye. Evidence suggests
that vision affects quality of life more strongly in accordance with better seeing
eye [164]. Therefore, we might expect the level of disease in the worse eye to be
indicative of the impact of diabetes and other health problems rather than vision.

3.4.2 Implications

We have identified some important dynamics in the HRQoL of people attending
screening for diabetic retinopathy, which haven’t previously been discussed in the
literature. People with background retinopathy tend to report poorer HRQoL
than people with diabetes who exhibit no signs of retinopathy. Therefore, it may
be important to distinguish between individuals with no retinopathy and those
with background retinopathy, in terms of HRQoL, when developing model-based
cost-effectiveness analyses of screening programmes. These findings will inform
the development of the cost-effectiveness model described later in this thesis.

Future research should investigate the determinants of HRQoL in people at-
tending screening for diabetic retinopathy, and the interplay between retinopathy
level and visual function. We also found evidence that the EQ-5D-5L is likely
to provide more complete HRQoL data in this population, compared with the
HUI3. Researchers should further explore the reasons for this and consider its
implications when formulating data collection strategies.

Informed by the findings of this study, the model described in Chapter 7
distinguishes between people with background retinopathy and people with no
retinopathy, in terms of HRQoL. The point estimates identified in this study are
used in Chapter 4 and ultimately to guide the identification of model parameters
in Chapter 7.
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Chapter 4

Quality of life and diabetic
retinopathy: a systematic review
and meta-analysis

Summary
People with diabetic retinopathy tend to have lower levels of health-related qual-
ity of life than individuals with no retinopathy. Strategies for screening and
treatment have been shown to be cost-effective. In order to reduce the bias in
these cost-effectiveness estimates, systematic reviews of health state utility values
(HSUVs) are recommended for health technology assessment and the development
of decision analytic models. However, most models adopt a single source and are
therefore susceptible to biased estimates. A synthesis of HSUVs for disease states
in diabetic retinopathy has not previously been carried out. We conducted a sys-
tematic review of studies reporting HSUVs for people with diabetic retinopathy,
in correspondence with disease progression. MEDLINE, Embase, EconLit, and
other databases were searched to identify relevant articles. Data from included
studies were extracted and subsequently synthesised using linear mixed effects
modelling meta-regression, incorporating our findings from Chapter 3. Reported
disease severity classifications were mapped to a four-level grading scale for di-
abetic retinopathy. The search identified 1,472 unique citations, from which 41
studies were included for analysis. Far more articles were identified than in pre-
vious reviews. In light of this we discuss appropriate methods for searching and
screening citations to identify HSUVs. The findings from our meta-regression
can be used by analysts to identify relevant HSUVs for model-based evaluations
of interventions for diabetic retinopathy. We discuss the role of meta-analysis
in estimating parameters for model-based economic evaluation with a view to
informing best practice.

57
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4.1 Background
When a new technology is developed, an economic evaluation is often conducted
to determine whether it is cost-effective. It is common for such economic evalu-
ations to require decision modelling, where evidence is synthesised to determine
long-term costs and health outcomes. In order to minimise bias in these decision
analyses, it is crucial that the process of selecting the evidence for the model is
robust, transparent, and systematic [165]. This is stipulated as a requirement by
the National Institute for Health and Care Excellence (NICE), which publishes
guidance for the NHS based on the clinical and cost-effectiveness evidence for
health technologies [166].

As outlined in Chapter 3, NICE and other HTA agencies identify quality-
adjusted life years (QALYs) as their preferred outcome measure. In order to
estimate QALYs in a decision modelling framework, it is usually necessary to
specify health state utility values (HSUVs) that can be associated with states or
events within the model. It has been identified that many submissions to NICE
do not satisfy their requirements with regard to the transparent and systematic
selection of HSUVs [137]. A growing number of systematic reviews are being
carried out to inform better selection of HSUVs [151, 167–186], with some syn-
thesising the data using meta-analysis [168–171, 173, 174, 176, 177, 181, 183–
185]. Such an approach is increasingly being seen as an important step in the
process of a model-based economic evaluation [187]. However, meta-analysis is
still seldom used to identify HSUV parameters for decision modelling. There is
debate about the proper use of meta-analysis in this context [188], and so this
thesis seeks to contribute to this debate and to inform the development of best
practice.

Chapter 2 identified that many existing modelling studies in the context of
diabetic retinopathy do not select HSUVs in a systematic and transparent way.
Some researchers choose HSUVs based on estimated visual acuity levels, rather
than on the disease state itself [116, 151]. It is unclear whether or not the effect of
visual acuity on HSUVs is consistent across different visual disorders [161]. Any
given level of visual acuity may be associated with different levels of health-related
quality of life because of the diverse impacts of disease on vision. Furthermore,
the prevalence of comorbidities and concurrent health problems may differ across
visual disorders. Therefore, such an approach is unlikely to be valid in accurately
estimating the impact of an intervention on health-related quality of life. Most
modelling studies in the context of DR differentiate between health states based
on the stages of disease progression, and appropriate HSUVs for these disease
states need to be identified.

We carried out a systematic review and meta-analysis in order to identify
HSUVs associated with different levels of diabetic retinopathy, as reported in the
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literature. The principal aim of this chapter is to identify HSUVs for use in the
model described in Chapter 7. However, our findings will be informative to the
development of other models. Although our focus is upon HSUVs associated with
specific stages of disease progression in DR, we also review HSUVs associated with
visual function in people with DR. The meta-analysis is carried out with a view
to enabling modellers to estimate the most appropriate HSUVs with which to
populate their models. This chapter as such reports on several aims of the thesis:

1. To provide a narrative overview of published studies reporting HSUVs for
diabetic retinopathy.

2. To derive pooled estimates for HSUVs that correspond to disease states
based on the most commonly used disease classification systems.

3. To quantify the effects on reported HSUVs of differences in study design.

4. To map reported values to a consistent grading scale for use in a modelling
study.

4.2 Methods
Guidelines such as the PRISMA statement [189] are not wholly applicable to the
review, though we developed our methods in line with published recommendations
[190–194] where appropriate. The Patient, Intervention, Comparison, Outcome
(PICO) question is not usually applicable to reviews of HSUVs [187]. For example,
this review does not focus on a specific intervention or comparator. Furthermore,
it is also necessary to define additional requirements; for example, it is important
to define which HSUV elicitation methods will be included.

The protocol for this study was registered with a database of prospectively reg-
istered systematic reviews (PROSPERO; registration number: CRD42014012891)
and published before commencement of the review [3].

4.2.1 Search strategy

Our search was necessarily broad due to inconsistency in the nature and reporting
of studies that include HSUVs. Databases for searching included MEDLINE,
Embase, Web of Science, Cost-Effectiveness Analysis Registry, Centre for Reviews
and Dissemination Database, and EconLit. Specific pre-defined thesaurus terms
for HSUVs do not exist, though broader terms may apply. Our search used
general, instrument-specific, and method-specific terms, which were combined
with terms for diabetic retinopathy. Diabetic retinopathy is a term which is used
to describe progressive retinal changes (for example no DR/background DR/pre-
proliferative DR/PDR) but is also used broadly to cover diabetic retinopathy and
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maculopathy. We include studies that report HSUVs for maculopathy. Given that
HSUVs are often reported as secondary outcomes, it was deemed likely that they
would not be mentioned in titles or abstracts. As such it was necessary to carry
out full text searches. The search terms used for Ovid (including MEDLINE and
Embase) are outlined in Table 4.1. No date or language restrictions were applied
to the electronic searches.

4.2.2 Study eligibility

Inclusion criteria

Studies of any design were included, and it was expected that all could be cate-
gorised as either clinical decision analyses or outcomes studies. Clinical decision
analysis studies include randomised controlled trials and economic evaluations,
while outcomes studies are those designed specifically to elicit HSUVs.

Studies must have used a recognised method of direct (for example, standard
gamble or time trade-off) or indirect (for example, EQ-5D or Health Utilities
Index) utility assessment. HSUVs from visual analogue scales, mapping algo-
rithms, and expert opinion were also included. The language of publication must
be English.

All types of publication (both full publications and abstracts) were included.
The population included is people with diabetic retinopathy or those attend-
ing screening for diabetic retinopathy. There are no inclusion criteria relating
to specific interventions or technologies. The comparator element of the PICO
statement does not apply. The studies must report either mean or median HSUVs
and these must be related either to visual function or disease states specific to
diabetic retinopathy. Such disease states are likely to be based on the grading sys-
tems described in Table 1.1, though studies adopting other retinopathy grading
systems were included.

Exclusion criteria

We excluded editorials, reviews, and meta-analyses that do not report original
data. Studies that report data from health state classification systems but do not
estimate HSUVs were also excluded.

4.2.3 Data collection

Study selection

Studies were initially assessed for retrieval based on titles and abstracts. It was
expected that many titles and abstracts would not mention HSUVs, despite their
inclusion. Indeed, it has been reported that rejecting studies based on title and
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Step Search term
1 exp diabetic retinopathy/
2 (diabetic retinopathy or stdr or dmo or dme).af.
3 diabet$.af.

4
(maculopathy or macular edema or macular oedema or csmo or
csme).af.

5 3 and 4
6 1 or 2 or 5
7 exp quality adjusted life year/
8 quality adjusted life$.af.
9 disability adjusted life$.af.
10 (daly$ or qaly$ or qald$ or qale$ or qtime$).af.
11 hsuv.af.
12 health status/
13 health state.af.

14
(sf6d or sf 6d or short form 6d or shortform 6d or sf six d or sfsixd or
shortform six d or short form six d).af.

15
(euroqol or euro qol or euro-qol or eq5d$ or eq 5d$ or eq-5d$ or
rosser).af.

16 (hql or hqol or hrqol or hrql).af.
17 (healthy years equivalent or hye$).af.
18 (hui or hui1 or hui2 or hui3).af.
19 (15d or 15 d).af.
20 aqol$.af.
21 addqol$.af.
22 disutilit$.af.
23 (qwb or wellbeing or well-being or well being).af.
24 (standard gamble or sg).af.
25 (time trade off or time trade-off or time tradeoff or tto).af.
26 (person trade off or person trade-off or person tradeoff or pto).af.
27 (visual analogue scale or vas).af.
28 exp quality of life/
29 (quality adj2 life).af.
30 (cost utility or cost-utility or cua).af.

31
7 or 8 or 9 or 10 or 11 or 12 or 13 or 14 or 15 or 16 or 17 or 18 or 19
or 20 or 21 or 22 or 23 or 24 or 25 or 26 or 27 or 28 or 29 or 30

32 6 and 31

Table 4.1: Ovid search terms
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abstract can result in lost citations when reviewing HSUVs [190]. Articles were
rejected based on the title and abstract only if it was clear that the study could
not have recorded the necessary data for inclusion. Full texts were retrieved for
studies not rejected at abstract screening. These were assessed for satisfaction of
the inclusion and exclusion criteria. Reasons for exclusion were recorded. The
number of records identified, retrieved, screened, assessed, included, and excluded
in the review, and reasons for exclusions, are summarised in a PRISMA flow
diagram [189].

After commencing the review, we found that studies could not easily be ex-
cluded based on title or abstract and that the screening process therefore had a
very low specificity. Title and abstract screening was therefore abandoned and
full text screening was conducted for all records identified in order to streamline
the process. All screening of abstracts and full texts was conducted by a single
reviewer.

Data extraction and management

Data were extracted using an electronic data extraction form and automatically
recorded in a spreadsheet. The data extraction form is included in Appendix C.
A separate form was completed for each reported HSUV as studies could include
different sub-populations; for example, from different countries. Based on previ-
ous reviews of HSUVs (cited above), we recorded the following information for
each study: first author, publication year, study title, publication name, study de-
sign, interventions/comparators, sample size, and the number of separate HSUVs
reported in the paper. For each reported HSUV we recorded: point estimate
type (mean/median), reported HSUV, measure of variance type (standard devia-
tion/variance), reported variance statistic, retinopathy state, maculopathy state,
grading system used, visual function measurement method, visual acuity, sam-
ple size, country, age range, other sample specifics, valuation method, valuation
source, value set country, upper anchor, lower anchor, administration method,
study arm, and treatment status. Where data were reported for individuals
without retinopathy — for example, for those attending screening — these data
were also recorded. The data extraction form was successfully piloted on three
pre-identified studies. All data extraction was conducted by a single reviewer.

After commencing the data extraction it became clear that it would be valu-
able to extract some additional information, namely: whether the retinopathy or
visual function level was defined by the better eye or worse eye. This information
was also extracted.
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Rank Data components
1 Direct utility assessment for the specific study from a sample

either:
(a) of the general population
(b) with knowledge of the disease(s) of interest
(c) of patients with the disease(s) of interest
Indirect utility assessment from specific study from patient sample
with disease(s) of interest, using a tool validated for the patient
population

2 Indirect utility assessment from a patient sample with disease(s) of
interest, using tool not validated for the patient population

3 Direct utility assessment from a previous study from a sample
either
(a) of the general population
(b) with knowledge of the disease(s) of interest
(c) of patients with the disease(s) of interest
Indirect utility assessment from previous study from patient
sample with disease(s) of interest, using a tool validated for the
patient population

4 Unsourced utility data from previous study - method of elicitation
unknown

5 Patient preference values obtained from a visual analogue scale
6 Delphi panels, expert opinion

Table 4.2: Cooper quality ranking for HSUV data [195]

Quality and relevance assessment

Standard means of assessing quality in systematic reviews are not appropriate
for reviews of HSUVs, as they may be at odds with the quality of the evidence
reported. For example, though randomised controlled trial data may be the ‘gold
standard’ for capturing treatment effects, such a study design may be inferior
when eliciting HSUVs due to low external validity or lack of relevance. There
is limited guidance for assessing the methodological quality of studies reporting
HSUVs. As a starting point, we use the hierarchy of data sources presented by
Cooper and colleagues [195] to rank studies from 1 to 6, as shown in Table 4.2.
In order to enable researchers to judge the quality of the study, our data extrac-
tion form additionally recorded: study sample size, inclusion/exclusion criteria,
response rates, loss to follow-up, missing data, and the Cooper rank. Reporting
quality is not formally assessed, but will be indicated by the completeness of the
data extraction for each study.
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The relevance of studies to particular research questions may be more im-
portant than quality. For example, the extent to which a study’s results can
be used to satisfy the NICE reference case may be crucial. Furthermore, the
determinants of relevance may differ for future users of the review. Our data ex-
traction form recorded information that will enable users of the review to judge
the relevance of the reported HSUV, namely information on interventions/com-
parators, inclusion/exclusion criteria, country, age range, other sample specifics,
valuation method, and valuation source. There is currently no accepted gener-
alisable method for assessing the relevance of HSUVs for a particular study. As
such, these data are summarised qualitatively.

4.2.4 Data synthesis and presentation

All HSUVs and the characteristics of their associated studies were tabulated.
Saramego et al. identify that quantitative synthesis of aggregate preference-based
HSUVs is limited by i) between-study heterogeneity in instruments used, ii) the
value set used to quantify utilities, and iii) the models used to approximate scores
for health states [192]. Furthermore, a previous review, which reviewed HSUVs
associated with different visual acuity levels in diabetic retinopathy, found vari-
ation in the methods of elicitation [151]. It is important to measure the effect
of these methodological differences on HSUV estimates, and meta-regression is
a way of achieving this. Our prior knowledge of the literature suggested that
our review would provide sufficient data to carry out an analysis of this kind. A
meta-regression model can also facilitate the prediction of expected HSUVs for a
given set of study characteristics.

The data synthesis included our findings from Chapter 3. For the most com-
monly used retinopathy grading systems, HSUVs were pooled, with observations
weighted by the inverse of the variance of the mean HSUV, such that:

Yi = yi(
ni

σ2
i

) (4.1)

where yi is the observed average HSUV and Yi the weighted average when ni

is the number of respondents and σ2
i the observed variance of yi. In order to

address the limitations of HSUV synthesis previously identified [192], we used
linear mixed-effects modelling to account for fixed and random effects associated
with between-study heterogeneity. This methodology is consistent with previous
studies [168, 183]. The model allowed for random variation on three levels: i)
variation between mean HSUVs across studies, ii) variation between mean HSUVs
across groups of individuals within studies, and iii) error variation. Studies tend to
report multiple HSUVs from overlapping samples, so the meta-regression adopted
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a hierarchical approach such that:

Yijk = β0 +
∑

h

βhxhijk + vk + ujk + εijk (4.2)

where Yijk is the weighted mean of the ith HSUV of the jth group being estimated
for study k, xijk are the variables used to explain the between study heterogeneity,
vk is the random effects term of study i, ujk is the random effects term for the
jth group of study k, and εijk is the random error term with fixed variance to be
estimated.

Predictor variables were generated to include retinopathy state, maculopa-
thy state, publication year, study design, country, valuation method, valuation
source, and administration method. We explored the inclusion of other covari-
ates and used a stepwise procedure of model selection in order to reduce the
likelihood of errors. We tested for heteroscedasticity associated with the inclu-
sion of particular predictor variables. Covariates were only included where the
existing evidence suggested that an association with the HSUV outcome might
exist. We estimated variance inflation factors to test for collinearity, and any
strongly correlated variables were removed or collapsed where possible. Selection
of variables to be included in xijk in the final model was informed by the Akaike
information criterion. The base case was — as far as possible — matched to the
NICE reference case (for example, using EQ-5D values) [166]. If a study did not
have sufficient data for inclusion in the model, the data were assumed missing
completely at random and the study was dropped from the model.

We additionally mapped values to a disease state classification with four lev-
els of retinopathy and two levels of maculopathy. The mapped value for each
HSUV was recorded using the data extraction sheet and the mapping of the
states was subsequently agreed with a clinician. We used the same regression
methods described above to pool values based on these classifications. We es-
timated the intraclass correlation coefficient associated with studies classified in
this way when no moderators were included, in order to quantify the heterogene-
ity associated with such an approach. Publication bias was not a concern in the
review, as HSUVs are usually used as a secondary outcome and therefore should
not influence the likelihood of publication.

All analyses were conducted in Stata 15 and the meta-regression used the
gllamm package [196].
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4.3 Results

4.3.1 Study selection

After deduplication, 1,472 unique studies were identified. Figure 4.1 shows a
PRISMA flow diagram. Full-text screening was carried out for the full set to
review for inclusion and exclusion criteria. Full texts for a small number of
studies could not be retrieved via the Internet. However, titles and abstracts for
all of these studies were screened and it was determined that they were not likely
to contain relevant data. 1,415 studies were excluded on the basis of the criteria
outlined above, and data extraction was conducted on 57 articles. At this stage,
16 studies were excluded due to missing data, principally because the studies only
reported mean utility decrements or regression coefficients from which absolute
estimates could not be derived [197–212]. The meta-analysis therefore included
41 studies plus our findings from Chapter 3.

4.3.2 Study characteristics

Table D in the appendices lists the key characteristics of the 41 studies included
in the meta-analysis. Of these, 36 were outcomes studies and five were clinical
evaluations. The sample sizes of the studies varied greatly, from 68 to 20,705. A
variety of retinopathy grading systems were used, but only 12 studies explicitly
differentiated between different levels of retinopathy. A majority of the studies
incorporated visual acuity in the definition of states, with nine studies reporting
values based only on vision states without any distinct classification of retinopathy
levels.

4.3.3 Study findings

The studies identified by the review together reported 317 average HSUVs with
a combined number of observations of almost 70,000; a far greater number than
anticipated. HSUVs from all studies are therefore not presented in this thesis.

Table 4.3 shows the range of HSUVs reported for each classification of disease
reported across studies. VAS values reported on a 0–100 interval are rescaled to
0–1. Tables 4.4 to 4.6 show the range of HSUVs reported for each classification
of visual acuity, where values are converted to a decimal for consistency where
necessary. Tables 4.3 and 4.4 highlight the range of classifications and groupings
that are used in the published literature and— where more than one study reports
values — the between-study heterogeneity associated with average HSUVs. For
example, average observed values for people with PDR ranged from 0.520–0.931,
while HSUVs for people with DMO ranged from 0.547–0.860. Tables 4.5 and
4.6 show results where only better- or worse-eye VA is available, for clarity of
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PRISMA Flow Diagram

Records identified
in database searches
Ovid (MEDLINE,
Embase) = 1,896
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CRD = 98
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records removed

1,472 full-text articles
assessed for eligibility

57 articles in-
cluded in review
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in meta-analysis

Chapter 3
1 record
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Figure 4.1: PRISMA flow diagram for review of HSUV values
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presentation. These results show that while HSUV estimates based on level of
disease tend to be associated with worse seeing eye, HSUV estimates based on
visual acuity tend to be associated with better seeing eye.

Table 4.7 shows the unweighted mean average HSUV associated with alter-
native elicitation techniques for mapped R0M0 values. All methods fail to show
a gradual decline in HRQoL associated with progression of DR. Only blindness
and proliferative retinopathy are shown to consistently have a large negative as-
sociation with HRQoL. Generally speaking, direct elicitation techniques — such
as standard gamble and time trade-off — appear to provide higher values than
indirect methods such as the EQ-5D.

4.3.4 Meta-analysis

A large number of studies reported median rather than mean values. Therefore,
in order to increase the number of studies included in the regression analysis, a
normal distribution was assumed and medians, interquartile ranges, and confi-
dence intervals were used to generate a weighted mean for studies that did not
report mean values.

Generally, the R0M0 mapping was not associated with strong intraclass cor-
relation (ICC). For retinopathy, good intraclass correlation was found between
samples within studies, but only fair agreement between studies. For maculopa-
thy, agreement was poor at both levels.

The results of our main model, using weighted means with our assumption
about median values as described above, are shown in Table 4.8. The model
includes 198 HSUVs from 87 subgroups from 25 studies (including our findings
from Chapter 3), based on a sum total of 21,570 observations. The final model —
the selection of which was informed by the AIC — included mapped retinopathy
state, whether or not the state related to blindness, whether the study was an
outcomes study or clinical evaluation, whether the state being valued was a pa-
tient’s own or hypothetical, whether the valuation source was patients or a public
sample, the valuation method, and the mode of administration. Other variables
were judged not to add enough information to warrant inclusion. Few studies
reported both maculopathy and retinopathy level. When included in our main
model, maculopathy did not demonstrate a statistically significant effect. It was
on the basis of this and of the weak ICC that maculopathy was excluded from
the model. The reference case for the model was a state with no retinopathy
and no blindness in either eye, collected by face-to-face interview in an outcomes
study, whereby individuals assessed their own health state using EQ-5D with
index values estimated on the basis of public valuation.

The mean HSUV for the reference case was 0.699. R1 and R2 retinopathy
states were associated with effects in the expected (negative) direction, but were
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Better eye Worse eye Lower estimate Upper estimate
Mean Source Mean Source

1.00 1.00 .600 [226] .930 [226]
.80–1.00 <.50 .850 [147] .900 [147]
.80–1.05 <.50 .840 [227]
.50–1.00 <.10 .810 [228] .980 [228]
.40–.67 <.50 .780 [147, 227] .920 [147]
.25–.40 <.10 .760 [228] .910 [228]
<.29 <.50 .780 [227]
.20–.33 <.50 .780 [147] .840 [147]
.13–.20 <.10 .700 [228]
.05–.10 <.5 .640 [147] .710 [147]
<.10 <.10 .550 [113] .670 [228]
blind <.50 .590 [147] .700 [147]
blind blind .200 [229] .760 [229]

Table 4.4: VA groups, both eyes

not statistically significant within a 95% confidence interval. R3 (PDR) was
associated with a 0.024 decrement to HRQoL, while blindness in at least one eye
was associated with a decrement of 0.172. Clinical evaluations within the model
were predicted to report HSUVs 0.157 lower on average, while collection of data
by telephone was associated with a slightly higher reported HSUV.

Most alternative HSUV elicitation methods were associated with important
differences in mean values. Values derived using the 15D, SF-6D, standard gam-
ble, or VisQoL, were higher than the EQ-5D index, while visual analogue scale
and time trade-off values tended to be lower. In general, methodological choices
were more important predictors of HSUVs than disease states.

Figure 4.2 plots observed values against those predicted by the model, with
observations weighted by the sample size associated with each estimate. The plot
highlights the limitations of the predictive model. Several small samples, as well
as some medium-sized samples, reported values far from those predicted by the
model.

4.4 Discussion

We conducted an extensive review of the literature, identifying 57 articles suitable
for data extraction, with 41 ultimately included in a meta-analysis in addition
to our study reported in Chapter 3. Studies varied greatly in terms of their
reporting of HSUVs and the underlying health states with which they were as-
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Better eye Lower estimate Upper estimate
Mean Source Mean Source

1.00 .860 [230]
1.05–2.00 .860 [99]
>.80 .800† [164] .881 [231]
.80–1.00 .910 [232]
.80–2.00 .762 [152] .830 [152]
.67–1.00 .738 [150] .860 [99]
>.67 .990† [224]
<.67 .860 [232] .990† [224]
>.50 .660† [217] .780† [223]
<.50 .760† [223]
.50–.67 .800 [230]
.42–.63 .813 [99]
.40–.67 .786 [231]
>.33 .980† [224]
.33–.50 .300 [150] .750 [150]
.32–.63 .758 [152] .840 [152]
<.32 .730† [164]
.26–.40 .802 [99]
<.25 .610 [150] .700 [150]
.20–.40 .770 [230]
.20–.33 .728 [231]
.17–.33 .950† [224]
.17–.25 .770 [99]
<.17 .880† [224]
.13–.25 .530 [152] .850 [152]
.10–.25 .630 [216]
.10–.16 .760 [99]
<.10 .400 [152] .810 [214]
.07–.10 .681 [99]
.05–.10 .520 [150] .730 [231]
0–.06 .547 [99]

Table 4.5: VA groups, better eye only. †median
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Worse eye Lower estimate Upper estimate
Mean Source Mean Source

.80–2.00 .760 [152] .820 [152]

.67–2.00 .860 [222]
<.50 .540 [227]
.32–.63 .778 [152] .900 [152]
.25–2.00 .722 [233] .780 [233]
.13–.25 .675 [152] .810 [152]
.10–.25 .763 [233] .800 [233]
<.10 .390 [152] .770 [233]
0–.06 .550 [222]
blind .380 [219] .740 [226]

Table 4.6: VA groups, worse eye only

Figure 4.2: Observed versus fitted HSUVs for the model. The diagonal line
indicates equivalence. The areas of the circles are weighted by the study sample
size.
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R0M0 R1M0 R2M0 R3M0 R1M1 R2M1 R3M1 Blind
EQ-5D .760 .700 .753 .739 .772 - .626 .501
index (.014) (.027) (.037) (.036) (.011) (-) (.048) (.086)

[31] [12] [4] [9] [24] [0] [5] [7]
EQ .709 .639 .703 .762 .720 - .624 .584
VAS (.019) (.063) (-) (.006) (.018) (-) (.047) (.029)

[20] [5] [1] [4] [8] [0] [4] [4]
HUI3 .736 .830 - .845 .827 - .553 .443

(.047) (.025) (-) (.021) (.020) (-) (.100) (.038)
[15] [3] [0] [4] [3] [0] [4] [4]

15D .889 .781 .826 .826 - - - -
(.077) (-) (-) (.105) (-) (-) (-) (-)
[2] [1] [1] [2] [0] [0] [0] [0]

SF-6D .757 .774 .775 .745 - - - -
(-) (.023) (.005) (.015) (-) (-) (-) (-)
[1] [3] [2] [2] [0] [0] [0] [0]

SG .808 - - .843 - - .698 .603
(.076) (-) (-) (.047) (-) (-) (.023) (.044)
[4] [0] [0] [4] [0] [0] [12] [9]

TTO .817 .807 .787 .763 .847 - - .560
(.016) (.014) (.049) (.018) (.022) (-) (-) (.043)
[28] [6] [3] [30] [3] [0] [0] [11]

Any .775 .739 .787 .775 .773 - .648 .525
(.011) (.019) (.025) (.013) (.010) (-) (.024) (.026)
[110] [34] [12] [56] [39] [0] [25] [41]

Table 4.7: Mean (standard error) [n] unweighted scores associated with R0M0
states
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Coef. 95% CI
Intercept 0.699 0.689 – 0.708
R0 Reference
R1 -0.001 -0.009 – 0.006
R2 -0.002 -0.014 – 0.011
R3 -0.024 -0.047 – -0.001
Not blind Reference
Blind in at least one eye -0.172 -0.201 – -0.142
Outcomes study Reference
Clinical evaluation -0.157 -0.181 – -0.133
Own health state Reference
Hypothetical health state -0.030 -0.063 – 0.003
Public valuation Reference
Patient valuation 0.087 0.070 – 0.103
EQ-5D index Reference
15D 0.111 0.099 – 0.124
EQ VAS -0.133 -0.144 – -0.122
HUI3 -0.025 -0.082 – 0.031
QWB-mapped -0.007 -0.034 – .020
SF-6D 0.056 0.042 – 0.070
SG 0.091 0.051 – 0.131
TTO -0.056 -0.085 – -0.027
VAS -0.582 -0.628 – -0.535
VisQoL 0.301 0.292 – 0.311
Face-to-face interview Reference
Phone 0.087 0.072 – 0.102
Various methods 0.022 -0.002 – 0.046

Table 4.8: Main model meta-regression results
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sociated. Meta-regression identified small and uncertain effects associated with
early stages of disease, but a large utility decrement of 0.172 associated with
blindness. Methodological features of the studies were very important in explain-
ing variation in HSUVs between studies.

It is common for modelling studies to use utility values from a single study
deemed to be most relevant. Guidelines state that the choice of utility values
should be transparent and systematic. However, systematic reviews are not com-
mon practice and this may result in biased estimates of cost-effectiveness. By
reporting all available HSUVs alongside study characteristics, modellers will be
able to select the most appropriate values. Furthermore, the results of the meta-
regression will enable the estimation of HSUVs based on specific criteria, such as
those that match the NICE reference case.

A number of reviews have previously been published that identified HSUVs
associated with DR. While Poku et al. identified four studies [151], and Tosh et
al. identified two [161], we identified and described 41. Both of these reviews had
a broader scope, including other visual disorders. However, for the purpose of
informing parameter selection in decision modelling, it is important that all avail-
able information is considered. Reviews that exclude the vast majority of relevant
studies are not a sufficient basis for the transparent and systematic selection of
HSUVs for model parameters. We believe that the far-reaching, comprehensive,
and inclusive nature of our review provides an important lesson for future re-
views of HSUVs. We recommend that future reviews conduct full-text searches,
full-text screening, and a pre-specified review methodology. Several studies were
identified in Web of Science, highlighting the importance of searching databases
other than MEDLINE and Embase.

We identified a fundamental challenge in the pooling of HSUVs associated
with diabetic retinopathy, and that is the incompatibility of estimates based on
visual acuity and estimates based on level of disease. The former tends to be
reported in relation to the better seeing eye and the latter in terms of the worse
affected eye. Sight and disease level in each eye might only be weakly correlated,
and it is therefore not possible to pool such values within a single model when
studies do not report both.

The published protocol for this study was the first of its kind to be published,
and the first to be registered prospectively. By creating a public record of the
intended review process it is possible to maintain transparency in the process of
selecting parameters to be used in decision analytic models of health technologies.
We hope that this approach will become standard practice as part of the modelling
process.
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4.4.1 Strengths and limitations

The review described in this chapter is by far the largest of its kind conducted
in the context of diabetic retinopathy. Furthermore, the far-reaching review
and description of studies provides a wealth of information not previously read-
ily available in the literature. The summarised findings and the results of the
meta-analysis make our study the best source for HSUV parameters for diabetic
retinopathy. We also provide new evidence regarding the importance of method-
ological choices, both in primary HSUV elicitation studies and subsequent evi-
dence synthesis.

Our study has a number of limitations. For the review reported in this chap-
ter, all screening and data extraction was conducted by a single reviewer, which
may be associated with some bias. There are also several limitations relating to
our meta-analysis. First, a high proportion of studies were not included in our
final meta-regression model, which may have introduced bias. This is principally
because many studies did not report all of the required data. Second, we were
not able to include maculopathy as a predictor in the model, which limits the ap-
plicability of our findings. This is because few studies reported both retinopathy
level and maculopathy level. Third, we were not able to construct an alterna-
tive model based on visual acuity, which would have been informative. This is
because of widespread inconsistency in the definition of subgroups according to
visual acuity. Fourth, our attempt to overcome heterogeneity in disease classifica-
tion by coercing values into R0M0 states is open to criticism. It should be noted,
however, that meta-regression would not be feasible without employing such an
approach. Fifth, our model specification did not account for the censoring (at 1)
associated with HSUVs. However, the model did not predict any values greater
than 1 or less than zero. Finally, it could be argued that our meta-regression
model had limited predictive capability.

4.4.2 Implications

Our findings with regard to the impact of DR progression on HRQoL are, per-
haps, unsurprising. People graded as having retinopathy at R1 or R2 levels,
without maculopathy, shouldn’t be experiencing any symptoms associated with
the disease. However, as posited earlier in this thesis, it is possible that people
with more progressed disease may have correlated characteristics that do impact
HRQoL. We found that this dynamic was not sufficiently strong to indicate sta-
tistically significant differences in HRQoL between the pre-symptomatic stages
of disease. It may therefore be justifiable to model pre-symptomatic disease as
homogeneous in terms of HRQoL. However, in order to more accurately reflect
reality, we would nevertheless recommend using differential values for different
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levels of retinopathy, within their observed variance.
Future research on HSUVs associated with diabetic retinopathy should con-

sider the need to disaggregate utility values by both disease level and visual acuity
and for both better eye and worse eye. At present, there is limited research on
the importance of these factors in determining HRQoL for people with diabetic
retinopathy.

Our study also has several implications beyond the context of diabetic retinopa-
thy. There is some debate about the use of meta-analysis to identify HSUVs for
model-based economic evaluation. A key question regards whether the purpose
of such analyses is to identify ‘true’ values or ‘best’ values. Our modelling helps
to demonstrate that the former simply cannot be done. The model demonstrated
that methodological choices were more important in the determination of HSUVs
than disease progression. Therefore, unless consensus can be achieved with re-
gard to the correct method of utility elicitation, ‘true’ HSUVs for health states
can never be estimated. Rather, we see the meta-regression approach as a basis
for the prediction of the best possible values to include in a decision model. Val-
ues derived from a meta-analysis are better in the sense that any bias associated
with single study estimates is likely to be diminished and a clearer understand-
ing of the uncertainty associated with mean values can be obtained. Thus, we
see meta-regression of HSUVs as a means of reducing bias and of increasing the
representativeness of chosen parameters. Furthermore, it can be used to reveal
the impact of alternative methodological choices and model assumptions.

Researchers ought to dedicate more time to the consideration of the trade-off
in meta-analysis of HSUVs between minimising bias and increasing representa-
tiveness or relevance. In this context, whether or not different HSUV measures
should be pooled remains an open question. For example, an analyst may have to
choose between synthesising a small number of highly relevant values (say, from
the EQ-5D index) or a large number of less-relevant values (say, from HUI3, TTO,
and other methods), and this choice involves a trade-off. In this study we adopted
an exploratory approach in the hope that blanket coverage of all published values
can be more informative for future research.

It is important to consider the likely effect of using different HSUV values,
either from a single study or from a meta-regression. We recommend that further
research be conducted to assess the importance to decision making of using HSUV
parameters from meta-analyses compared with single study estimates.

The primary purpose of this chapter was to provide parameter estimates for
utilities associated with retinopathy, to be used in our model described in Chapter
7. We can use the coefficients and confidence intervals shown in Table 4.8 as
parameters in our model.
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Chapter 5

The cost of screening

Summary
Current unit costs for diabetic eye screening in England do not exist. This creates
uncertainty in the evaluation of alternative screening programmes. In the research
reported in this chapter, we sought to estimate the average cost of screening in the
Liverpool Diabetic Eye Screening Programme and to provide data on the resource
use associated with different aspects of the programme. Resource use associated
with the grading of photographs was obtained from the screening programme
and used to estimate staff and capital costs. A time study conducted at screening
clinics was used to estimate the duration of photographic screening and associated
staff costs. Information about capital and consumables and programme staff
costs was obtained through meetings with programme staff. Data on personal
expenses were collected from a cohort of trial participants. Top-down and bottom-
up costings were calculated using activity levels, ingredient costs, and the total
programme budget. The top-down estimate for the mean cost of a screening
appointment was £33.61. The bottom-up estimate was £32.03 per screening
episode. The additional cost to society associated with productivity losses and
travel costs was £8.62. The attendance rate was 63% and we estimated a cost per
non-attendance of £15.97. Our study can be used to guide estimates applicable
to other settings.

79
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5.1 Background

In England, around 2.5 million people are invited to attend screening for diabetic
retinopathy and of these around 2 million attend each year [234]. Considering
the size of the population that is invited to attend screening, it is important to
obtain precise and accurate estimates of the cost per screening attendance and to
understand potential sources of heterogeneity. In evaluating alternative screen-
ing strategies, small differences in the estimate of the mean cost per visit could
translate to large differences in the estimated incremental cost. Imprecise esti-
mates cannot provide a clear picture of the associated budget impact. However,
there has to date been limited research into the cost of screening for diabetic eye
disease in the UK.

NHS Reference Costs listed an average unit cost of diabetic retinal screening
of £33 in 2009/10 [235] and of £31 in 2010/11 [236], which corresponds to around
£37 and £34 at 2017 prices. Reference costs are no longer provided for diabetic
eye screening services. The screening programme has changed in a number of
ways since reference costs were published, and the activity used to calculate these
figures may not even be representative of screening as carried out at the time,
due to the limited number of sites reporting activity. At 1997 prices, James et
al. estimated the cost per attendance to be £26.25 (£38.10 in 2017 prices) [237].
Scanlon et al. recently cited an unpublished microcosting study that identified a
cost of £33 per person screened [30]. Yeo et al. report on the patient-borne costs
of attending screening, such as parking, public transport fares, child care costs,
and lost earnings [238]. There are no recently published estimates of the cost
of screening from the perspective of the NHS, and limited information available
regarding the wider societal costs.

In the final quarter of 2015, the national average uptake of screening was 83.6%
[239]. It is therefore important to estimate costs associated with non-attendance.
This could prove crucial in estimating the cost-effectiveness of alternative screen-
ing programmes, which could influence attendance rates.

5.1.1 Costing methods

Cost estimation is an important part of any economic evaluation, as the choice
of cost estimates can be a key determining factor in cost-effectiveness results.
The goal is to identify average costs associated with alternative strategies in or-
der to estimate expected cost-effectiveness per individual. There are a variety of
methods adopted by health economists for the purpose of costing health care pro-
grammes. Alternative methods can be broadly characterised as adopting either
a ‘bottom-up’ or a ‘top-down’ approach.

Top-down costing involves the use of unit costs or block funding to estimate
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average costs. For example, in the case of diabetic eye screening, the total cost of
running the programme reported by the Department of Health and Social Care
could be divided by the number of screening episodes to provide an average. This
could be done at either a local or national level. Arguably, top-down costing is
the most accurate approach, as it captures costs incurred at all levels of the
organisation. However, top-down costs provide little or no information about
sources of variation and cannot provide precise estimates of the costs associated
with particular activities.

Bottom-up costing involves attaching separate estimates to each distinguish-
able component of resource use. For the case of diabetic eye screening this could
include separate costs for cameras, eye drops, staff time, and clinic overheads.
This approach is often referred to as micro-costing and can additionally be used
to collect individual-level data in order to provide information about variability
and uncertainty. Micro-costing also facilitates generalisability to other settings, as
the component costs can be included, excluded, or altered as necessary. However,
this approach demands far more of a researcher’s time.

The key consideration in deciding what mix of top-down and bottom-up cost-
ing to adopt is how accurate and precise the estimates need to be. If an individual
cost estimate is not likely to influence the results of a cost-effectiveness analy-
sis then it need not be identified with great accuracy or precision. Chapter 2
highlighted that many model-based studies used fixed estimates for the cost of
screening, with little evidence to support their accuracy or precision. In the eval-
uation of risk-based screening, a key source of divergence between the alternatives
being considered is the frequency of screening. Therefore, the magnitude of any
difference in costs will depend on the unit cost of screening. While it would
be possible to evaluate the marginal cost (or saving) of additional (or fewer)
screening attendances, it is important to estimate average costs for the purpose
of cost-effectiveness analysis. As such, we judged it important to identify more
accurate and precise costs for photographic screening than are currently available,
including fixed costs associated with running the screening programme.

In this chapter we seek to address the paucity of information available re-
garding the cost of screening, in order to inform the parameters for our model
described in Chapter 7. We conducted a costing study with collection and analy-
sis of primary and secondary data on resource use and costs. Data were collected
using a variety of methods, including i) primary data collection from ISDR trial
participants, ii) extracts from the ISDR data warehouse, iii) a time study con-
ducted within screening clinics, and iv) meetings with staff within the screening
programme and NHS England. We sought to estimate the cost of screening from
a health service and societal perspective.
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5.2 Methods
The bottom-up costing exercise involves four steps:

1. Specification of the processes associated with photographic screening and
identification of the relevant pathways.

2. Measurement of resource use associated with each pathway.

3. Estimation of the unit cost associated with each item of resource use.

4. Estimation of average total cost associated with screening pathways.

In order to identify all relevant costs associated with screening, we use a number
of different methods and sub-studies. Each is described in turn below.

5.2.1 Definition of the process

The full screening pathway is described in a flow diagram produced by Public
Health England, and a simplified version is reproduced in Figure 5.1 [27]. The
process can be summarised as consisting of 8 key steps:

1. Individual is identified as having diabetes,

2. Individual is sent an invitation to screening,

3. Individual attends screening clinic,

4. Individual receives VA assessment and dilatation,

5. Photographs are taken of the individual’s retinas,

6. Photographs are graded a number of times (as per Figure 5.1),

7. Individual is informed of outcome,

8. Individual is referred back to screening or to the hospital, as necessary.

Each rectangular process node shown in Figure 5.1 is associated with resource
use. We have numbered these from P1 to P6 to facilitate our description of the
results. These screening and follow-up pathways were clarified through discussion
with senior clinicians and clerical staff in the Liverpool Diabetic Eye Screening
Programme (LDESP).

Individuals whose photographic images are graded as referable to the hospital
eye service are invited to attend for an examination using slit lamp biomicroscopy.
Broadly speaking, because patients are referred to hospital management, this can
be considered outside of the remit of the screening programme. Individuals with
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Figure 5.1: NDESP patient flow
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ungradable images may be referred to the hospital eye service for assessment
within the remit of the screening programme, but this tends to be funded sep-
arately by Public Health England. In this analysis of the cost of screening, we
focus on photographic screening and assume slit lamp biomicroscopy examina-
tions to lie outside of this scope. Furthermore, we do not consider aspects of
the screening programme that are conducted at the national level, which might
include training and quality assurance processes.

In the context of this study, it is also necessary to cost an alternative screening
programme not represented in current practice. The process of risk stratification
using the ISDR RCE — as it would be conducted in practice — also required
identification. This was achieved through conversation with the data scientists
and clinicians engaged in its development and use. There are a number of stages
involved in the process of individualising eye screening for people with diabetes.
The process is shown in Figure 5.2. In practice, this process is appended to that
shown in Figure 5.1 for all individuals referred back to routine screening.

For individuals receiving risk-based screening intervals, the risk calculation
engine is used to generate the required screening interval. This information is
fed into the screening software (OptoMize). OptoMize automatically generates a
letter to the patient informing them of the screening result and their next planned
review date within 3 weeks of the screening appointment. Thus, the invitation
process is equivalent to annual screening except in its frequency.

5.2.2 Data

Data were collected from multiple sources. In this section we describe the resource
use data that we collected and the sources that were used to estimate unit costs.

ISDR data warehouse

Data for screening appointments since 2006 were available in the data warehouse
maintained as part of the ISDR study. These data included information about
attendance and non-attendance at screening visits and records of grading activity.
For this analysis, we focussed on the most recent complete calendar year for which
data were available, which was 2016.

Data associated with all screening appointments scheduled to take place dur-
ing 2016 were extracted from the data warehouse. These included the date of
the screening appointment and, for each grading that was conducted, the grad-
ing date, type, and outcome. Individual-level attendance data (including non-
attendance) were only available for appointments arranged in earlier years, up to
June 2015. Therefore, data from the first quarter of 2013 to the second quarter
of 2015 were used to estimate attendance rates and assumed to be applicable to
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2016.

Time study of screening

A time study of screening was conducted through a single full-day visit to each
of the seven participating screening sites in Liverpool. Data were recorded in
a spreadsheet, which included the time (to the nearest minute) at which the
following events occurred:

1. Patient enters the clinic,

2. Screener calls patient for VA assessment and dilatation,

3. Patient returns to waiting room,

4. Screener calls patient for photography,

5. Patient returns to waiting room,

6. Patient exits the clinic.

The time study provides information to facilitate the estimation of screeners’
time use. Furthermore, the research facilitated a clearer understanding of usual
practice in screening clinics with regard to non-attendance and barriers to effi-
ciency, to which we return in the Discussion. The time study did not capture
screeners’ travel time.

Cross-sectional study of the cost of screening attendance

We developed a bespoke questionnaire designed to elicit information about per-
sonal and societal costs associated with individuals’ attendance at screening. As
part of the ISDR RCT, individuals who were included in the health economics
subsample (as introduced in Chapter 3) were asked to complete the questionnaire
at their baseline screening attendance.

The ‘ISDR Visit Questionnaire’ [240] (provided in Appendix E) included 10
questions:

1. Which modes of transport did you use in travelling to and from the centre
today?

2. If using public transport or taxi, what is the total cost of your return travel?

3. If travelling by car, how many miles is your return journey?

4. If travelling by car, what is the total cost of parking?

5. How much time did you spend in total on this visit, including preparation,
travel time and attending?
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6. Are you currently in employment?

7. Did you take time off work to attend today?

8. Did a friend, family member or any other person assist you in attending
your appointment today?

9. Did they take time off work to do so?

10. How much time did they spend helping you to attend this visit?

Participants were asked to self-complete these questions as applicable, and
asked to provide a best estimate if they were unsure. Participants who were not
able to self-complete the questionnaire were assisted by a research nurse, who
could complete the questionnaire on the participant’s behalf. A script was pre-
pared to assist research nurses in administering the questionnaire. The question-
naire and script were submitted — and accepted — for inclusion in the Database
of Instruments for Resource Use Measurement [241]. Whether or not the partici-
pant self-completed was recorded, along with the date of the visit. All data were
subsequently transferred to the electronic case report form (eCRF) and subjected
to consistency and validation checks.

LDESP data

Additional resource use estimates, including capital, consumables, overheads, and
staff time, were obtained from screening programme staff and supported by lo-
cal internal data sources. We obtained the asset register from the RLBUHT
finance department and assessed requisitions. These data enabled the estimation
of ingredient costs not available from other routinely collected local data or from
national sources.

Unit costs

Unit cost estimates for health care resource use, including staff costs, were derived
from the Unit Costs of Health and Social Care 2017 [242]. Where specified, prices
paid by RLBUHT were used in place of unit costs, including VAT if applicable.

5.2.3 Analysis

We estimated costs accruing through each process in the screening pathway (as
per Figure 5.1). Each cost is categorised according to whether it is borne by i)
the NHS, ii) the patient, or iii) society. For each category, cost estimates are
summed to estimate an average cost per screening attendance in 2017 prices.
Where required, the CCEMG-EPPI-Centre Cost Converter was used to inflate
prices [243].
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Number of observations Full data set 2016
Individuals 22,253 12,841
Screening attendances 130,264 13,068
Non-attendances 18,867 -
Gradings (all) † 234,418 18,624
Primary gradings 159,444 13,058
Secondary gradings 54,723 4,178
Arbitration gradings 10,834 251
Referral outcome gradings‡ 9,376 1,137

Table 5.1: Summary of OptoMize screening and grading data. †Older data in-
clude some redundant grading types. ‡Includes ophthalmology gatekeeper.

We used grading data from the data warehouse (2006-2016) to estimate the
number of gradings associated with different pathways according to the level
of disease identified. We conducted count regressions to predict the number of
gradings associated with each R0M0 screening outcome, using negative binomial
regression models to predict the number of gradings per screening attendance
and variation according to final agreed R0M0 grading and year and month of
the screening appointment. Thus, we are able to estimate the average resource
use per screening attendance, for the whole population and according to different
grading results.

Non-attendance is perceived to be an important source of inefficiency in the
NDESP. We used data from the data warehouse to estimate the attendance rate
in each month of available data and estimate the proportion of costs that may be
attributable to non-attendance.

5.3 Results

5.3.1 Data summaries

ISDR data warehouse

Table 5.1 shows counts from OptoMize for the full data set (dating back to 2006)
and for the calendar year 2016. These data show that, in 2016, the total number
of screening attendances was more than one per person. This highlights the
tendency for a small group of people to be invited back to screening at an interval
of less than 12 months, even within the current fixed interval programme.
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Duration (in minutes) Mean SD Range
Total for visit 32.70 11.77 13.11–83.01
Dilatation 4.58 2.56 2.18–15.29
Photography 3.30 1.93 0.00–8.74
Screener time 7.50 2.94 2.18–13.11

Table 5.2: Screening centre time study results. SD = standard deviation.

Time study of screening

Table 5.2 shows the findings from the time study conducted through visits to
the screening clinics. Information was collected on 104 screening attendances.
Eighty one (78%) participants attended screening on a day on which recruitment
to the ISDR trial was taking place and three participants were also attending
for optical coherence tomography (OCT; another imaging technique). Both of
these factors may have extended the duration of visits. Four participants (two
couples) attended screening with another individual, which reduced the amount
of the screener’s time used (and explains the apparent discrepancy in Table 5.2
in the total screener time). A duration of zero could be recorded for photography
where the procedure lasted less than one minute.

Cross-sectional study of the cost of screening attendance

Table 5.3 shows the findings from the cross-sectional study of screening attenders.
Eight hundred and sixty eight people were asked to complete the visit question-
naire. There were very few missing data. Around half of the sample were able to
self-complete. Around half travelled to their appointment by car, on average a 4.7
mile round-trip, and nobody had to pay for parking. Those travelling by public
transport (around a third) paid on average £6.30. A third of the sample reported
being in employment, and half of these reported taking time off work to attend
their appointment. Around half of respondents received assistance from a friend,
family member, or other individual, but only 13% of assistants were reported
to have taken time off work. In total, people reported on average spending 90
minutes in attending their appointment. Assistants spent on average 65 minutes.

LDESP data

Given the current climate of tendering of NHS-provided services in England,
information relating to the cost of screening in Liverpool is now deemed to be
commercially sensitive. This meant that it was difficult to obtain precise and
complete cost estimates from the LDESP for the purpose of this research. It also
means that we are not at liberty to fully report costs that relate to the operation
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Variable Mean/proportion (SD)
Self completion
Yes 52.30%
No 44.93%
Missing 2.76%
Mode of transport
Car 49.42%
Taxi 13.48%
Bus/Train 23.85%
Hospital transport 1.27%
Bicycle/on foot 10.71%
Other 0.12%
Missing 1.15%
Public transport cost
For all (n=856) £1.36 (3.03)
Where > £0 (n=185) £6.30 (3.38)
Miles driven
Where > 0 (n=422) 4.72 (3.94)
In employment
Yes 33.53%
No 65.21%
Missing 1.27%
Time off work
Yes (for all) 17.51%
Yes (if in employment, n=291) 52.23%
No 81.45%
Missing 1.04%
Received assistance
Yes 48.27%
No 50.23%
Missing 1.50%
Assistant took time off work
Yes (for all) 6.80%
Yes (if receiving assistance, n=419) 13.60%
No 92.17%
Missing 1.04%
Time spent on visit (minutes) 90.40 (116.13)
Assistant’s time spent
For all 31.83 (51.29)
Of those receiving assistance (n=403) 64.74 (57.59)

Table 5.3: Results from the ISDR Visit Questionnaire. SD = standard deviation.
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Staff band Basic pay† Oncosts‡ Overheads FTEs LDESP costs
Administration and management
2 £16,850 £3,572 £5,718 3 £78,420
3 £18,777 £4,114 £6,409 1 £29,300
4 £21,417 £4,856 £7,356 1 £33,629
5 £25,735 £6,069 £8,905 0.2 £8,142
6 £31,989 £7,826 £11,148 1.2 £61,156
8a £45.428 £11,603 £15,969 0.3 £21,900
Subtotal £232,546
Screening
3 £18,777 £4,114 £6,409 0.6 £17,580
4 £21,417 £4,856 £7,356 2.8 £94,161
5 £25,735 £6,069 £8,905 0.9 £36,638
6 £31,989 £7,826 £11,148 0.05 £2,548
Subtotal £150,927
Grading
4 £21,417 £4,856 £7,356 1.2 £40,355
5 £25,735 £6,069 £8,905 0.9 £36,638
6 £31,989 £7,826 £11,148 0.55 £28,030
8a £45,428 £11,603 £15,969 0.1 £7,300
Subtotal £112,323
Total £495,796

Table 5.4: LDESP staff costs. FTEs = full-time equivalents; LDESP = Liverpool
Diabetic Eye Screening Programme. †Based on mean average across all NHS staff
groups. ‡National Insurance contributions plus 14.3% employer’s superannuation
contribution.

of the LDESP. As such, some of the data are necessarily presented here in a
summarised or otherwise aggregated form, and some figures are approximated.

The LDESP employs staff to handle invitations, call and recall, and follow-up
non-attenders. Pre- and post-clinic administration relating to slit lamp biomi-
croscopy follow-up is also handled by the programme in Liverpool, such as com-
pletion of Diabolos data. Table 5.4 lists the staff employed by the programme in
2016-2017, grouped by NHS pay band and according to role relating to admin-
istration and management, screening, or grading. Screening and grading were
performed mainly by screener-graders with some senior clinical arbitration sup-
ported by an administration and management team.

In addition to standard NHS Trust overheads, the screening programme also
pays for interpreter services. Non-English-speaking patients are called to the
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Item* Unit purchase cost (2016) Life in years
Digital camera (x3) £18,518.02 10
Docking units £17,301.06 10
Eye screening system £18,290.32 10
Furniture £12,127.94 10
IT equipment £15,259.04 7
Monitors etc £17,390.43 7
New camera and elevation table £15,526.80 10
Computer hardware £1,144.89 7

Table 5.5: LDESP asset register data. *As listed.

hospital and have a particularly high DNA rate. A sign language service is also
made available in the community screening clinics.

Key capital items for the screening programme include cameras and a server
to store images. These also require maintenance contracts. Table 5.5 shows a
selection of capital costs derived from the LDESP asset register. Table 5.5 shows
the number of years of life expected, as recorded in the asset register. However,
most of the equipment lasts much longer. Anecdotally, cameras are known to last
for as long as 20 years if maintained.

5.3.2 Health service costs

For the year 2016-2017, based on the total LDESP budget (£562,466) and the
total number of attended diabetic eye screening appointments (16,736) reported
in annual Public Health England (PHE) key performance indicator (KPI) data,
the mean average cost per screening attendance in Liverpool was £33.61. In this
section, we summarise the ingredients to this health service cost.

Our time study showed that the duration of screening attendance, dilatation,
and photography was relatively consistent. Dilatation took on average 4.6 minutes
and photography took on average 3.3 minutes. Accounting for those couples
who received screening simultaneously, the total time required of a screener for
dilatation and photography was on average 7.5 minutes, as shown in Table 5.2.
Thus, we infer that the average contact time for staff conducting photographic
screening is 7.5 minutes.

On average, there were 1.4 gradings for every 1 photographic screening ap-
pointment attended. The negative binomial regression model showed that both
retinopathy and maculopathy grading result and the year and month in which
screening took place influenced the number of gradings conducted. Table 5.6
presents the incidence rate ratios (IRR) compared with an agreed R0M0 grading
of no disease. From these results we can assert that higher retinopathy or posi-
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Predictor IRR 95% CI
R1 1.841 1.825 – 1.857
R2 1.964 1.894 – 2.037
R3 1.330 1.231 – 1.436
M1 1.220 1.196 – 1.245
Year 0.963 0.962 – 0.964
Month 0.998 0.997 – 0.999

Table 5.6: Negative binomial regression of grading count. CI = confidence inter-
val; IRR = incidence rate ratio.

tive maculopathy grades are associated with a greater number of gradings being
conducted. For example, a grading of R2 is associated with a rate of grading
occurrence 1.964 times greater than that of an R0 grading. This means that
for every 1 grading that takes place for R0 outcomes, 1.964 take place for R2
outcomes. These findings are to be expected, as positive screen results are re-
ferred for further grading and arbitration. The predictors relating to the year
and month in which screening took place demonstrate that year-on-year (and
month-on-month) fewer gradings are being conducted per screening attendance.

Information on attendance and non-attendance was available for 51,099 ap-
pointments, of which 36.92% were not attended. Attendance data were also as-
sociated with the clinic location. Figure 5.3 shows the quarterly attendance rate
for the seven current screening locations in Liverpool. On the basis of the whole
sample, the Jeffreys 95% confidence interval was estimated as 36.49%–37.33%.
No clear time trend was identified, so we used the total rate of 36.92% in our
estimates. Here, the attendance rate refers to non-attendance for each invitation,
rather than the LDESP operational definition of uptake as an individual who
attends following multiple invitations, as reported in the KPI.

Table 5.7 summarises the estimated average cost per screening attendance
associated with each part of the screening pathway, as denoted by P1-P6 in
Figure 5.1, for the year 2016/17. The average cost to the NHS of an appointment
that was attended was £26.14.

We also estimate the cost per non-attendance. This is based on several as-
sumptions: i) that all programme costs are equally divisible across invitations,
regardless of whether the appointment is attended; ii) that staff contact time as-
sociated with photographic screening can be reallocated for non-attendances, but
that non-contact time cannot; and iii) that the cost of cameras and equipment
is not reduced by non-attendance. Based on these assumptions, the average cost
of an appointment that is not attended is £15.97. Given an attendance rate of
63.08%, this implies a cost per screening episode of £32.03.
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Figure 5.3: Quarterly non-attendance rate for seven screening clinics in Liverpool
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Item Total cost Cost per
attendance

Cost per non-
attendance

(n=16,736) (n=6,179)
Programme costs (P1)
Staff (including oncosts) £232,546 £10.15 £10.15
Stationary £2,928 £0.13 £0.13
IT £22,025 £0.96 £0.96
Subtotal £257,499 £11.24 £11.24
Photography (P2)
Staff contact time £53,723 £3.21 £0.00
Staff non-contact time £97,204 £4.24 £4.24
Cameras and equipment £11,284 £0.49 £0.49
Medical consumables £4,052 £0.24 £0.00
Subtotal £166,263 £8.19 £4.73
Non-NHS costs
Patient-borne costs £42,342 £2.53 £0.00
Productivity loss £101,922 £6.09 £0.00
Grading (P3-P6)
Staff £112,323 £6.71 £0.00
Total NHS cost £536,085 £26.14 £15.97
Total societal cost £680,349 £34.76 £15.97

Table 5.7: Health care costs for 2016/17. †Programme costs include the costs of
invitations.
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Risk stratification

Based on our experience in the ISDR research programme, we estimate that a risk-
based screening programme will require 0.2 FTE administrator, probably based
at the local CCG. We also expect that each screening programme will require
a database manager. There may be additional costs associated with software
— some of which will be sunk costs associated with setting up the risk-based
programme — and additional capital in terms of computers.

For the purpose of our calculations, we estimate staff costs of £40,000 per year.
Thus, for the year 2016/17, in which 22,915 invitations were sent, the cost per
invitation would be an additional £1.75. Fixed recall or stratified-recall screening
programmes can be managed centrally, where individualised programmes may
not be. Roll-out of a risk-based screening programme may therefore involve some
form of localisation, which may require additional costs.

5.3.3 Societal costs

The greatest proportion of respondents travelled by car and nobody had to pay
for parking. For those travelling by car, we estimated the average cost to be £2.36
(assuming a cost of £0.50 per mile). For those travelling by public transport —
excluding people with free travel — the average cost of fares was £6.30. This
corresponds to an average personal travel cost of £2.53 per attendance.

Assuming a national average wage and hours worked, the average productivity
loss for an invitee who took time off work was £26.08. The average productivity
loss for an assistant was £23.74. The total productivity loss associated with this
time, averaged across the whole sample, was £6.09 per attendance, as shown in
Table 5.7.

5.4 Discussion

Our analysis of the ingredient costs summed to £32.03 per screening episode in
2016/17, including the costs incurred from non-attendance. We estimate that
each appointment attended incurs an average cost of £26.14, while each appoint-
ment not attended incurs an average of £15.97. Costs associated with personal
expense and productivity losses are small, but these should be included when
evaluating screening programmes with large eligible populations and major bud-
get impacts. An additional cost of £8.62 per visit equates to a societal burden
of more than £20 million in the UK.

We have identified important sources of heterogeneity in the average cost of
screening. In particular, the costs incurred vary according to the initial grad-
ing outcome. Considering wider societal costs, an important determinant is the
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amount of time required to attend screening, and whether a friend, family mem-
ber, or carer attended to assist.

Our estimate of the average cost of screening is comparable to previous es-
timates from the UK and implies an improvement in productivity over time, at
least in the LDESP (n.b. national estimates of around £33 in 2010 and £31 in
2011). Estimates of the average cost of screening from other countries are also
similar [244–246]. In future, a budget impact analysis should also be conducted
from both a local programme-level perspective as well as from a national perspec-
tive. This could inform the most appropriate and cost-effective implementation
strategy.

We have provided up-to-date estimates of the costs associated with screening
for sight-threatening diabetic retinopathy, based on data from a programme in
England. Our study is the first to estimate the cost associated with appointments
not attended and further provides data on societal costs. The results provide vital
information to guide the development and evaluation of screening programmes
for diabetic retinopathy.

5.4.1 Strengths and limitations

There are several strengths to this study, which should be noted. We analysed
a large and comprehensive dataset on screening and grading activity, enabling
us to produce robust estimates of resource use. Our analysis and results were
prepared with input from screening programme staff and members of the ISDR
Patient and Public Engagement Group, ensuring an accurate representation of
current practice. The key strength of our study is that the disaggregation of costs
facilitates the application of our results to other settings.

There are several limitations to our work. Though the estimates were similar,
our approach was not able to fully account for the top-down estimate of £33.61,
which could be due to missing or inaccurate data. We are not able to provide
estimates of uncertainty or variability associated with the average cost of screen-
ing because most of our data are not recorded at the level of individual patients
or photographs. Furthermore, we relied on ‘top-down’ costing methodologies for
some of the ingredient costs. In particular, we were not able to disaggregate the
costs associated with staff time in running the programme. Our estimate of the
cost associated with an appointment that is not attended may be an inaccurate
estimate as a result of this. More research is required to understand the extent
to which clinics are able to efficiently overbook screening sessions and the pro-
ductivity of screeners in these circumstances. Participants in the cross-sectional
study were asked to estimate the total time that they spent on their visit before
it was complete. Participants may have tended to over- or under-estimate the
total time that they would spend on the visit. It is likely that the participants
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will have had many previous visits to the same clinic for the same purpose, yet
there may have been recall bias in the estimates they provided.

It is possible that our findings are not representative, due to specific character-
istics of the organisation of the LDESP and the population it serves. The ISDR
trial commenced on 11th November 2015, and persisted throughout our data col-
lection, which may have inflated resource use. Furthermore, on 2nd February
2015, LDESP adopted a two-image photographic screening protocol having pre-
viously taken four images. The resource implications of this are unknown. The
current climate of tendering in the NHS, with competition from private providers,
meant that certain data were considered commercially sensitive and that we could
not report certain aspects of our work in full detail. Our analysis also excluded
any expenditure realised at the national level as part of the NDESP.

Our estimated costs for a risk-engine-based approach to individualised screen-
ing recall may not apply to other settings where screening programmes are less
well-established or require more significant changes to facilitate implementation.
There are a variety of alternative implementation models for risk-based screening,
which might include i) a fixed, standard risk engine to be used in all settings; ii) a
general approach to risk engine development that operates separately within each
programme; or iii) the identification of a key ‘hub’ for risk engine development
and administration. The cost implications of each of these alternatives should be
addressed by future research.

5.4.2 Implications

In the specific case of screening for diabetic retinopathy, Scotland and Bryan
[247] have highlighted the importance of ‘technology management’ – that is, the
continuing evaluation of technologies throughout their life cycle. In this context,
top-down costings can become redundant and uninformative. By providing a
set of disaggregated costings and resource use estimates, our findings can inform
changes in service delivery, including changes in the frequency of screening recall.
Our results can be used alongside estimates of the costs of new technologies, such
as automated grading [108], to predict the cost of future programmes. Further-
more, revised cost estimates can be produced to predict the economic impact of
sociodemographic changes, including increases in the prevalence of diabetes. Our
estimates can also be used to inform tendering processes in the UK, to ensure
that potential providers quote costs fully with reference to the screening pathway.

A priority for decision-makers is to ensure that screening programmes are
run efficiently. Patients who do not attend appointments (around 37%) may
represent a substantial opportunity cost to the health service, despite efforts to
limit the waste of resources. Previous studies have assumed that non-attendance
is associated with the same cost as attendance (e.g. [248]), which is not realistic.
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Costs associated with personal travel expense and productivity losses are rel-
atively small. Nevertheless, these could be considered when evaluating screening
programmes with large eligible populations and substantial budget impacts. Fu-
ture research should explore the extent to which personal expenses may act as a
barrier to attendance in countries where screening is free at the point of use.

Our findings facilitate the estimation of an average cost – to the NHS and
to society – of an invitation to screening that depends on i) whether or not the
invitee attends, and ii) the grading result for the photographs. These estimates
can be used as parameters in a decision model, meaning that the model can
incorporate the cost implications of alternative programmes with respect to their
impact on attendance rate and on the casemix of screening attenders in terms of
the level of disease present. We use the findings from this chapter in Chapter 7
to model the costs associated with variable-interval screening.
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Chapter 6

The cost of treatment

Summary
The purpose of this chapter is to estimate the costs of treatment for diabetic
retinopathy in Liverpool, UK. We investigated costs for three key groups of pro-
cedures: laser, intravitreal injections, and vitrectomy. In addition to these three
key treatment types for diabetic retinopathy, we also identified cost estimates
for hospital appointments and follow-up within the screening pathway. Having
identified recommended treatment and follow-up pathways from clinical practice
guidelines, we used local data from a hospital patient management system to
ascertain common procedure codings for the relevant treatments. The data in-
clude inpatient and outpatient procedures for more than 20,000 individuals, with
93,086 inpatient admissions and 690,818 outpatient appointments. We estimated
the frequency of alternative treatment pathways and of specific procedures for
people who screened positive. We find that laser is the most common procedure
in our data set, but that intravitreal injections are increasingly included in treat-
ment pathways. Based on national unit costs, we estimated the monthly costs
incurred through procedures both related and unrelated to diabetic retinopathy.

101
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6.1 Introduction
In the evaluation of a risk-based screening programme (or indeed any form of
screening) it is crucial to take into consideration the costs of follow-up treatment
for people who screen positive. As described in Chapter 1, the purpose of risk-
based screening is to improve the identification process such that more people
are able to benefit from early intervention. As such, a risk-based screening pro-
gramme — compared with a standardised programme — could exhibit differential
resource use and costs associated with treatment in the long run. Furthermore,
the incremental cost of screening compared with no screening is often very low,
while the incremental cost of treatment may be very high. Therefore, it is possible
for treatment costs to be the dominant driver in any long-term cost differences
between alternative screening strategies. This chapter sets out work designed to
elucidate treatment pathways for people with diabetic retinopathy, and to es-
tablish estimates of the cost of treatment for use in a decision model for the
evaluation of risk-based screening.

There are a variety of effective treatments available for diabetic retinopa-
thy and maculopathy, as described in management guidelines produced by The
Royal College of Ophthalmologists [249]. Panretinal photocoagulation (PRP)
laser therapy is a well-established and effective treatment for proliferative dia-
betic retinopathy [250]. There are different types of lasers and settings that can
be used for treatment and different methods including central or peripheral PRP
[251]. Side effects of laser can include pain, vitreous haemorrhage, and a reduction
in a patient’s visual field.

Intravitreal injections are an increasingly popular alternative or complemen-
tary treatment to laser, as new delivery systems are developed. The use of anti-
vascular endothelial growth factor (anti-VEGF) — also known as antiangiogenic
drugs — and intravitreal steroids is supported for maculopathy [252, 253]. There
is also evidence that anti-VEGF treatment is effective for retinopathy [254].

In some cases with specific indications, it may be appropriate to carry out
vitrectomy surgery, whereby parts of the vitreous can be removed. There are
also management strategies that can limit the progression of retinopathy, such as
blood pressure control [255].

All treatments may be used in conjunction with others and patients’ treatment
pathways can vary. In England, people are referred for hospital assessment fol-
lowing a screen-positive result. It is at this stage that a decision about treatment
can be made by an ophthalmologist.

There are no up-to-date studies on treatment patterns for people with dia-
betic eye disease in the UK, or the costs associated with alternative pathways.
As risk-based screening programmes are developed, it will become important to
understand the treatment patterns associated with different screening pathways.
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This chapter reports on research with several specific aims:

1. to identify key treatment pathways associated with diabetic retinopathy,

2. to estimate the frequency of alternative treatments, and

3. to obtain cost estimates for the different treatment pathways.

6.2 Methods

6.2.1 Data

Our analyses were conducted using data from the ISDR data warehouse. Sec-
ondary care data from iPM consists of inpatient data and outpatient appoint-
ments as detailed below. All people with diabetes registered with general practi-
tioners in Liverpool were eligible for inclusion in the data warehouse.

We were also able to link iPM data with screening programme data from
Diabolos, which records slit lamp biomicroscopy appointments and outcomes.
These data facilitate the identification of people who have ‘true positive’ screening
outcomes.

Inpatient data

The inpatient data include dates of admission and discharge for each individual
who was admitted to hospital over the period. Following each admission, any
number of procedures can take place and all of these procedures are recorded.
Where an individual’s location in the hospital has changed — for example, if
they move wards — the duration can be further subdivided into episodes. Pro-
cedures are defined as either primary or secondary, with secondary procedures
additionally given a sort order. For each procedure event, the date it took place
is recorded. Each procedure event is also associated with a procedure code and
the corresponding description. Each event is associated with a patient reference
number, which can be linked to the other databases within the ISDR data ware-
house.

Outpatient data

Outpatient data record four levels of coding — location code, clinic code, session
code, and primary procedure code — each with their corresponding description.
Each event is associated with a date and a patient identifier. Whether or not the
patient attended the appointment is also recorded.
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Coding

For the purpose of estimating activity levels relating to treatment, the key vari-
ables for this analysis are the various codings. The meaning of these codes is not
self-evident and additional research was necessary to determine how they ought
to be interpreted.

Location codes identify the place in the hospital that an outpatient appoint-
ment is due to take place. Clinic codes are related to the location code but are
more specific and can change over time. Session codes relate to specific clini-
cians’ activity. All outpatient data should be associated with a location code, a
clinic code, and a session code, but these codes are not applicable for inpatient
data. Procedure codes are central to our analysis of treatment activity. Both
inpatient and outpatient data record procedures using the OPCS Classification
of Interventions and Procedures version 4 (OPCS-4) [256].

In order to determine a list of relevant procedures, we extracted all OPCS-4
codes and also the frequency that each occurred in the data set. The current ver-
sion of the OPCS-4 consists of more than 9,000 different codes. In collaboration
with a clinical expert from the ISDR team, each code that occurred at least once
in the dataset was reviewed and determined as being either relevant to diabetic
eye disease or not. Additionally, each treatment was categorised based on how
likely it was that the treatment was directly related to diabetic eye disease.

In practice, coding staff select codes based on clinical notes. Laterality codes
should always be used on any procedure on a paired organ (such as the eyes),
sequenced after the main procedure code and never in a primary position. An
increasingly important procedure in DR is injections, which often involves the
use of high-cost drugs. Codes for drugs such as Lucentis (ranibizumab) should
be assigned as a secondary procedure to the injections code.

Data quality

It is important to identify what data might be missing and why. We therefore
investigated missing and bad data. In general, we cannot know if data are missing
as the events could simply not have been recorded. We have reason to believe
(from personal communication with NHS Trust staff) that data recording may
have improved over time, and so looking at the changes in the frequency of ad-
missions, episodes, and procedures per person over time could be informative. It
is also possible that coding behaviour may change with financial year boundaries
as changes are made to the NHS Payment by Results system. In the early years
of coding (2008–2010), it was possible to code procedures more liberally and so
procedures may appear more frequent.
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Label Description Included OPCS-4 codes
Laser Laser procedures C82.1, C82.5, C82.6, C82.8,

C82.9
IVT Intravitreal treatments C79.4, C89.1, C89.2, C89.3
VR Vitrectomy-related

procedures
C54.3, C54.6, C54.8, C79.2,
C79.3, C79.5, C79.6, C79.7,
C79.8, C79.9, C80.1, C80.2,
C80.3, C80.4, C80.8, C80.9,
C81.1, C81.2, C82.2, C85.1,
C85.2, C85.5, C89.8, C89.9

Invest Diagnostic
investigations

C86.5, C87.1, C87.2, C87.3,
C87.4, C87.5, C87.8

Cataract Cataract-related codes C64.7, C71.1, C71.2, C71.3,
C71.8, C72.9, C73.1, C73.2,
C73.3, C73.4, C73.9, C74.3,
C75.1, C75.2, C75.3, C75.4,
C75.8, C77.6, C77.8, C79.1

Glaucoma Glaucoma-related codes C01.2, C03.2, C52.2, C54.5,
C59.2, C60.1, C60.5, C60.6,
C60.8, C61.2, C61.4, C61.5,
C62.2, C62.3, C64.8, C65.3,
C65.4, C66.2, C66.3, C66.4,
C66.5, C69.1

Table 6.1: Procedures related to diabetic retinopathy

6.2.2 Identification of treatment pathways

We are principally interested in laser, injection, and vitrectomy treatments. These
are the main recommended treatment strategies for people who screen positive
for diabetic eye disease. Through a series of meetings with clinical and clerical
staff at RLBUHT, a list of OPCS codes of relevance to diabetic retinopathy was
identified. This list was categorised into procedures relating to laser, injections,
vitrectomy, and other procedures related to — but not specifically for — the
treatment of DR, as shown in Table 6.1. In addition to the procedure codes,
a set of clinic codes (specific to RLBUHT) were used to identify those hospital
appointments that related to the hospital eye service.

The iPM data were merged with data from Diabolos that indicated whether
or not a person had a positive disease state classification following a slit lamp
biomicroscopy examination and, if so, the date at which this was recorded. Our
analyses of treatment pathways focus on people who have screened positive and
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the treatments that they received in the years immediately following the positive
screening outcome.

6.2.3 Analysis of treatment frequency

In order to understand the costs associated with treatment for diabetic retinopa-
thy, it is necessary to identify the level of resource use associated with alternative
treatment pathways. We recorded the total frequency of all OPCS codes and re-
viewed common procedures to ensure that no important treatments were missed.
The number of times that OPCS procedure codes from the Laser, IVT, and VR
categories were used in each month of available data was plotted in order to
identify broad trends in treatment behaviour. The same was done for each code
within each category.

We identified the number of times that people who had screened positive
received each relevant intervention in the years immediately following their slit
lamp biomicroscopy examination.

6.2.4 Treatment costing

Unit costs were attached to OPCS codes by cross-referencing with Healthcare
Resource Group (HRG) codes listed in NHS Reference Costs. For all injection
procedures we further assumed that Lucentis was used in all instances at a cost of
£551.00 per vial [257]. HRG costs were estimated for all relevant procedures, and
totals and averages were tallied for each procedure. We estimated the average
total cost incurred in a week in which a relevant treatment was received.

6.3 Results

6.3.1 Data description

Inpatient data

The inpatient data included information on 14,341 individuals with 93,086 ad-
missions, 74,052 episodes, and 80,822 procedures. All admissions were associated
with an admission date and a discharge date. All episode reference numbers were
associated with an admission, and each had a start date and end date. There
were 21,721 admissions that were not associated with any episodes or procedures.
All procedure codes were associated with a date, a sort code, an episode, and an
admission. All episodes had one or more procedures associated with them.

The ISDR data warehouse includes 22,091 individuals in total, meaning that
65% were represented in the iPM inpatient data and therefore implying that
35% of individuals were not admitted to an RLBUHT hospital during the period
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Figure 6.1: iPM inpatient activity

covered by the data. Of all admissions recorded, 23% did not include any proce-
dures. It is likely that the majority of this ‘missingness’ in the inpatient data is
an accurate non-observation, where patients had not been admitted or received
a procedure. While there may be some data quality issues at play we are unable
to identify these.

Figures 6.1 and 6.2 show monthly admission, episode and procedure activity
over time, in absolute numbers and as a rate per patient. Figure 6.2 shows that
inpatient activity appears to level-out from January 2013 onwards, which we
interpret as indicative of full adoption of current coding practices. Our analysis
therefore focusses on data from 2013–2016 inclusive, as identified by red reference
lines in Figure 6.1 and Figure 6.2.

Outpatient data

Outpatient data included 20,830 individuals with 690,818 appointments. All
appointments were associated with a date and a description of attendance or non-
attendance. 88% of appointments were not associated with any procedure codes.
Figure 6.3 shows the number of appointments and the number of procedures over
time, with the same reference period specified above.
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Figure 6.2: iPM inpatient activity per patient

Figure 6.3: iPM outpatient activity
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6.3.2 Pathways

The most recent full calendar year of data available from Diabolos was for 2012.
The number of people receiving biomicroscopy in the year 2012 was 816, of which
246 screened positive. Table 6.2 shows six treatment pathways observed in the
cohort in the four years following a positive slit lamp biomicroscopy exam: i)
laser only, ii) injections only, iii) both laser and injections, iv) both laser and
vitrectomy, v) laser, injections, and vitrectomy, and vi) hospital follow-up only.

It is clear that laser is still the dominant treatment strategy for people who
screen positive for diabetic retinopathy and receive intervention within four years
of screening positive. However, a large majority of people did not receive any
procedures within our main classifications within the first four years. All people
who did not receive a procedure attended the hospital eye service at least once
within one year of their positive screen result.

6.3.3 Resource use

Figure 6.4 shows the monthly frequency of laser, IVT, and vitrectomy procedures
over the full period of data, with the same four-year period identified as previously.
This graph clearly shows that there is high month-on-month variability in the
frequency of laser and vitrectomy procedures carried out, though no obvious trend
of change year-on-year. The number of injections, on the other hand, shows a
steady increase.

Table 6.3 shows the number of procedures observed in the data for people
who have screened positive, in the four years following a screen-positive result,
for the whole sample (n=246) and per recipient of that treatment. On average, a
person who receives laser in the first year following a screen-positive will receive
2.83 laser procedures, while a person who receives injections will receive 1.63
injections procedures. Within four years, a person who receives injections will
on average have received 3.79 injections procedures, while a person who receives
laser will receive 3.21 laser procedures. No glaucoma-related procedures were
observed.

6.3.4 Costs

Table 6.4 shows the average monthly costs incurred by someone who receives a
laser, IVT, or VR procedure, or attends the HES (without receiving a procedure)
in a given month. The mean ‘relevant’ cost is the sum of costs associated with the
subset of procedures listed in Table 6.1, while the mean ‘total’ cost is derived from
the sum of costs for all possible procedures received in that month. The most
notable finding is that intravitreal injections are associated with much higher
costs than laser. However, it is also clear that, despite a low unit cost, hospital
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One year
Intervention Count Per recipient Per screen-positive
Laser 68 2.83 0.28
IVT 13 1.63 0.05
VR 1 1 0.00
HES 863 3.98 3.51
Invest 62 1.19 0.25
Cataract 9 1.28 0.04

Two years
Intervention Count Per recipient Per screen-positive
Laser 85 2.93 0.35
IVT 30 3 0.12
VR 3 1.5 0.01
HES 1191 5.62 4.84
Invest 73 1.33 0.30
Cataract 9 1.29 0.04

Three years
Intervention Count Per recipient Per screen-positive
Laser 102 3.09 0.41
IVT 43 3.91 0.17
VR 3 1.5 0.01
HES 1502 7.19 6.11
Invest 94 1.42 0.38
Cataract 12 1.20 0.05

Four years
Intervention Count Per recipient Per screen-positive
Laser 125 3.21 0.51
IVT 53 3.79 0.22
VR 5 1.25 0.02
HES 1794 8.84 7.29
Invest 120 1.64 0.49
Cataract 13 1.18 0.05

Table 6.3: Intervention counts for screen-positives
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Figure 6.4: Monthly DR treatment frequencies

n† Relevant Total
Procedure Mean SD Mean SD
Laser 948 £207.23 134.51 £235.77 296.68
IVT 1,282 £748.39 101.70 £763.36 135.11
VR 112 £283.73 250.12 £299.38 269.78
HES 46,320 £27.09 120.86 £44.84 249.63

Table 6.4: Total costs per treatment month. SD = standard deviation. †n =
person-months

attendances without treatment incur a greater cost in aggregate due to their high
frequency.

6.4 Discussion
We interrogated a large dataset from a hospital’s patient management system,
which was linked to screening programme data. Our findings show that the
majority of people who receive treatment will receive laser procedures. However,
the use of injections is increasing over time and people who receive injections —
on average — receive more procedures and incur greater costs than people who
receive laser.

The trends in treatment pathways that we have observed are likely to be rep-
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resentative of wider developments in the UK and elsewhere [258]. This change
has arisen due to the development of new therapies and more robust evidence to
support their use [259, 260]. Intravitreal injections are being recommended as a
standard treatment choice in many health care settings [63, 261, 262]. There is
little quantitative evidence available on the adoption of injections at a national
level in recent years, though some studies have identified an increase in the adop-
tion of injections for the treatment of diabetic retinopathy in specific groups (e.g.
[263])

6.4.1 Strengths and limitations

A key strength of our analysis is that it includes all people with diabetes who
have attended an RLBUHT hospital between 2006 and 2017. This provides real
world data without selection effects often involved in observational studies. OPCS
codes change over time, so it is not possible to determine a definitive list of codes
that do or do not relate to a particular disease. Nevertheless, a strength of our
study is that we were able to work with clinical and clerical staff to ensure that
our analyses identified key treatments.

It is a significant shortcoming of our work that the screening outcome data
and treatment data did not sufficiently overlap chronologically to allow for an
analysis of the most up-to-date treatment pathways. The relatively low number
of people progressing to laser within four years of screening positive may be an
artefact of this.

Our dataset was also limited insofar as outpatient appointments were only
associated with a primary procedure code. This means that we were not able to
attribute costs to secondary codes. As a result, our cost estimates are likely to
be lower than actual hospital costs. For the case of injections, which can involve
expensive drugs that would be coded in a secondary position, assuming no drug
costs would have resulted in a substantial underestimate of costs. Therefore, we
assumed the cost of Lucentis, which is one of several therapeutics available in
the NHS. On balance, we expect that this would have resulted in an overesti-
mate of the cost of injections because hospitals are able to negotiate prices for
branded medicines such as Lucentis, which are considered commercially sensitive
and therefore not available to us.

We found that there is very limited guidance — either nationally or locally
— around the coding of ophthalmology procedures, which hampered the inter-
pretation of our data.
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6.4.2 Implications

The findings of this study have several important implications for model-based
cost-effectiveness analysis. We identified that multiple pathways are significant
in the population of people who screen positive for diabetic eye disease. It is
not appropriate to assume that everybody within a model receives a standard
treatment. Some model-based cost-effectiveness analyses have done this in the
past (see, for example, [264] and [265]). Furthermore, it cannot be assumed that
patients only receive one type of procedure after screening positive. For instance,
we identified people who received both laser and IVT, or laser and vitrectomy.

Our analyses showed that many people do not receive any relevant hospital
procedures within the first four years after screening positive. Thus, models
should not (as some have [107, 266]) assume that people are immediately referred
for treatment. It is notable that the key driver of costs can be attendances
at the hospital eye service without the receipt of any procedures. Thus, it is
important that decision models accurately estimate the frequency and cost of
hospital attendances, and that good quality data are available to provide such
estimates.

We found that costs unrelated to DR in the month in which treatment was
received did not, on average, change the magnitude of costs significantly. How-
ever, the inclusion of unrelated costs introduced a great deal of uncertainty into
the estimate of average costs. Given our extended process of reviewing proce-
dure codes, it seems reasonable to assert that this additional uncertainty simply
represents the addition of noise to the data. Based on our findings, we would
recommend that analysts exclude unrelated costs unless there is good reason to
believe that they may relate to the intervention being evaluated.

The pathways identified by the analyses presented in this chapter are used in
the design of the structure of the decision model described in Chapter 7. The
estimates of treatment frequencies and costs are used as parameters in our model
and could be used in future by other model developers.



Chapter 7

The cost-effectiveness of
risk-based screening for diabetic
retinopathy: development of a
decision model

Summary
This chapter describes the development of a decision analytic cost-effectiveness
model to evaluate a risk-based screening programme for diabetic retinopathy.
We designed a state-transition-based individual sampling model that incorpo-
rated key screening and treatment pathways. We compare the variable-interval
risk-based screening programme being evaluated in the ISDR trial with annual
screening (current practice) and with a stratified biennial screening programme.
The model incorporates the ISDR risk calculation engine and its structure is
based around the states defined by the screening programme’s disease grading
system. The parameters for the model are drawn from earlier chapters of this
thesis and from published literature. The model went through several iterations.
Ultimately, the simulation proved too computationally demanding to execute
within the time horizon of this project and we describe results from a reduced
simulation. Our findings indicate that the ISDR risk-based screening programme
is cost-saving and outcome-improving compared with current practice. There is a
high level of uncertainty due to between-patient heterogeneity and random vari-
ation in parameter values and event probabilities. We provide recommendations
for modelling in the context of risk-based screening.
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7.1 Background

Current practice in screening for diabetic eye disease in the UK involves people
with diabetes over the age of 12 being invited for screening annually. This pro-
gramme has been in place since 2007. In Chapter 1 we outlined proposed changes
to the NHS Diabetic Eye Screening Programme (NDESP) and other alternative
forms of screening programme that might be introduced in the future. Chapters
3 through 6 provided new evidence regarding the possible costs and outcomes
of screening for diabetic retinopathy (DR). In this chapter, we draw together
this evidence and — taking lessons from previous studies identified in Chapter
2 — develop a model to evaluate the cost-effectiveness of alternative screening
programmes.

Photographic screening has clearly been demonstrated to be effective through
the identification of people who would benefit from early treatment for diabetic
eye disease. By receiving treatment early, people can avoid the sight loss that
can result from proliferative diabetic retinopathy. The prevalence of diabetes
in England is growing and predicted to increase to 9.7% by 2035 [267]. This is
creating pressure on screening programmes around the country and has lead to
calls for improving the efficiency of screening for diabetic eye disease.

Recently, there have been several studies published that have shown that most
people without any retinopathy are at a very low risk of developing referable eye
disease within one year. Many have suggested that the use of extended screening
intervals (beyond one year) for low-risk people could reduce resource use without
risk to patients. Some analyses have evaluated the implications of extending the
screening interval for diabetic retinopathy [30, 107]. All have demonstrated that
screening intervals of more than one year are likely to be cost-effective – at least
for groups at lower risk.

Our focus is on the evaluation of risk-based screening, which we introduced in
Chapter 1. In Chapter 8 we further explore the role of cost-effectiveness analysis
in the context of risk-based screening. In this chapter we describe the development
of a decision model to evaluate three alternative screening programmes that are
currently being considered for implementation in the UK.

7.1.1 Development of the model

The model described in this chapter has been through several iterations and un-
dergone complete rebuilding and redesign. Here, we briefly outline the gestation
of the model from its initial conception to its current form.

As described in Chapter 2, numerous model-based analyses have been pub-
lished to evaluate the cost-effectiveness of alternative strategies for screening for
diabetic retinopathy. Furthermore, studies have been published that simulate out-
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comes associated with alternative screening strategies but do not consider costs.
In line with the majority of model-based economic evaluations reported in this
context, we set out to develop a state transition model using a cohort simulation.
This model was completed and designed to evaluate annual screening (current
practice) compared with the programme being evaluated in the ISDR trial and
another alternative programme that involved people with background retinopa-
thy being screened every year and people with no retinopathy being screened
every two years. The combination of policy developments and a review of the
findings of our model encouraged us to take an alternative approach.

In January 2016 — subsequent to the first version of our model being com-
pleted — the NSC published a new recommendation [62]. It recommended that
screening for people with a low risk of sight loss should be extended to two
years. The definition of ‘low risk’ applies to people who have had two consecutive
screening results showing no retinopathy. Thus, an important new comparator
— distinct from those included in our model — was being considered by policy-
makers. The initial design of our model did not allow for differential pathways
according to multiple historic screening outcomes (i.e. two consecutive results of
no retinopathy). We therefore judged it necessary to adapt our model to evaluate
the new programme being recommended by the NSC. This required a structural
overhaul to the model.

Having completed the cohort model that evaluated the new NSC recommen-
dation, and prepared results, it became clear that the findings were not ade-
quately reflecting the benefits of risk-based screening. This is because the value
of risk-based screening relies on the fact that risk profiles change over time, and
risk-based screening is able to detect these changes in risk profiles. Thus, the
modelling of fixed cohorts that are defined only in terms of their disease state
became untenable. Rather, it became clear that the model would need to incorpo-
rate the risk calculation engine and thus model progression, costs, and outcomes
at the individual level. This change did not require revisions to the structure of
the model, but rather to its operation.

In line with previous research (see Chapter 2), the model was developed in
Microsoft Excel. This was ideal for the cohort model and was feasible for the
implementation of individual-level simulations. However, the risk calculation en-
gine is computationally expensive and Microsoft Excel was not capable of making
the necessary computations. This chapter therefore describes the limitations of
Microsoft Excel in this context.
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7.2 Methods

7.2.1 Setting

The context for the analysis is the Liverpool Diabetic Eye Screening Programme.
We discuss the generalisability of our findings later in the chapter. In Liverpool,
eligibility for the screening programme is identified through GP practices. Peo-
ple are invited to attend a screening clinic at one of seven local health centres.
Screening is carried out by trained screeners and involves the capture of two dig-
ital photographs, as described in greater detail in Chapter 5. For the purpose of
the NDESP, ‘R0M0’ gradings for retinopathy grading and a maculopathy grading
are recorded, as defined in Chapter 1.

7.2.2 Comparators

We evaluated three alternative policies: i) annual screening (current practice),
ii) biennial screening for people with no retinopathy at two consecutive atten-
dances and annual screening for everybody else, and iii) ISDR stratification, as
implemented in the ISDR trial.

Annual

Annual screening represents current practice in England. All people with diabetes
over the age of 12 are invited to attend screening annually. In Liverpool, there
is some deviation from this standard, and some people are invited to attend
screening after six months. However, this practice varies and there is no empirical
basis on which to reliably model this form of personalisation. Thus, we assume
that everybody in the ‘Annual’ pathway is invited to attend screening once every
year.

Biennial

Recently, the UK National Screening Committee recommended a stratified screen-
ing programme based on historic screening outcomes. The NSC recommended
that people with background retinopathy should continue to be invited to screen-
ing every year. The recommendation specifies a low-risk group, defined as people
whose screening outcome shows no presence of disease at two consecutive visits.
This low-risk group is recommended to be invited to screening every two years.

This recent recommendation has not been implemented in practice, but rep-
resents an important comparator for current practice. Previous modelling work,
which constituted part of the basis for the NSC’s recommendation, has compared
the cost-effectiveness of such a biennial programme with current practice and
shown it to be cost-effective.
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Figure 7.1: Risk calculation engine Markov model structure

ISDR

The ISDR programme uses the risk calculation engine (RCE), which is reported
in more detail elsewhere [61]. The RCE was based on a Markov model, as shown
in Figure 7.1.

The RCE uses individuals’ characteristics to estimate the probability that
they will screen positive at 6, 12, or 24 months. Using a 2.5% risk threshold,
which was identified through work with patient representatives, the RCE allocates
individuals, following a negative screen result, to either 6-, 12-, or 24-month
recall, according to the longest recall period at which the individual’s risk does
not exceed 2.5%.

The structure of the RCE Markov model, and its parameters, are built into
the decision analytic model reported in more detail below.

7.2.3 Model structure

The model structure was primarily determined by the grading system used by
the NDESP. However, guidance and inspiration was also drawn from previously
published models described in Chapter 2.

We developed a microsimulation state transition (‘semi-Markov’) model based
on diabetic retinopathy disease states, as identified through photographic screen-
ing, with time- and event-dependant transition probabilities. The patient-level
simulation (an individual sampling model) tracks individuals’ characteristics through
time, so that their changing risk of disease onset could be used to determine their
pathways through the model. The simulation incorporates both disease states
and events that determine individuals’ pathways through the model, which are
observed in discrete units of time. Parameters used in the analysis are drawn
from both published literature and local data.

Disease states

Disease progression in diabetic retinopathy is well understood, but inconsistently
defined. The primary purpose of our model was to inform NDESP policy. There-
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M0 M1
R0 R0M0: no retinopathy NA
R1 R1M0: background retinopathy R1M1: background retinopathy

with maculopathy
R2 R2M0: pre-proliferative retinopa-

thy
R2M1: pre-proliferative retinopa-
thy with maculopathy

R3 R3M0: proliferative retinopathy R3M1: proliferative retinopathy
with maculopathy

Table 7.1: Description of R0M0 states. NA = not applicable.

fore, disease progression was defined in the terms used by the NDESP, namely,
‘R0M0’ gradings. These are described in Table 7.1. Recently, the NSC introduced
a distinction between R3a (proliferative retinopathy) and R3s (stable treated
DR). This distinction is not explicitly included in our model’s disease states but
is represented through differential event pathways, as described below. Levels of
visual acuity are not explicitly modelled except for progression to severe vision
loss, which we define as visual acuity below 6/60 (Snellen) and refer to as ‘Blind’.

In order to account for the biennial programme described above, we imple-
mented a tunnel state for R0M0 gradings to which individuals transition when
they have a consecutive R0M0 grading. Thus, we label states as ‘R0M0 [2]’ if the
individual has received at least two consecutive no disease gradings and ‘R0M0
[1]’ if they have received only one no disease grading or haven’t yet been screened.

The model states were further expanded to account for individuals who had
background retinopathy in either one eye or both eyes. This is an important
distinction because individuals with background retinopathy in both eyes have
been shown to be at greater risk of progressing to sight-threatening diabetic
retinopathy. Practically, this distinction was also important because it ensured
that the pre-referral disease states in the decision model could be easily mapped
to the disease states of the RCE Markov model. We labelled disease states as
‘R1M0 [R0M0]’ for people with background retinopathy in one eye and ‘R1M0
[R1M0]’ for people with background retinopathy in both eyes. The structure of
our disease model is shown in Figure 7.2.

It is possible for retinopathy levels to regress as well as progress. This can
occur as a result of treatment but also — particularly in the early stages of the
disease — as a result of good glycaemic control. Therefore our model allows for
progression and regression across all states, except from blindness and death. This
corresponds to 22 possible transitions between disease states, plus transitions to
and from the ‘R0M0 [2]’ tunnel state, plus eight possible transitions to blindness
and nine possible transitions to death. The R0M0 and R1M0 states shown in
Figure 7.2 correspond to states used within the RCE. All descriptions shown in
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Figure 7.2: State transition model disease states

Figure 7.2 correspond to the individual’s retinopathy and maculopathy state in
their worse eye, except for the two R1M0 states, which specify retinopathy level
in both eyes.

Event pathways

In addition to disease states and pathways, individuals’ progression through the
model also depends on a series of events. It is important to include these event
processes in the model in order to fully account for costs and to adjust progression
rates as appropriate. These events differ depending on whether the person is
in screening or in follow-up. All individuals are in the screening programme,
except for those who have experienced a screen-positive event and are therefore
in follow-up and may receive treatment. However, those who receive treatment
that is successful may be referred back to the screening programme. Therefore,
our model allows for individuals to be in either screening or follow-up whether
they have received treatment or not.

Event pathways differ depending on whether a person is in screening or follow-
up. Event pathways (but not their probabilities) are assumed to be equivalent for
patients regardless of whether or not they have previously received treatment. It
is the conclusion of the event pathways that determines whether a person moves
between screening or follow-up states and pre-treatment or post-treatment states.

People in screening may or may not attend a screening appointment. If they
do, this could be associated with several standard screening outcomes and may re-



122 CHAPTER 7. DECISION MODEL

sult in either referral to the hospital eye service for follow-up or back to screening.
Figure 7.3 shows the event pathways for people in screening.

Those in follow-up may or may not attend an appointment in any one cycle.
If they do attend an appointment then they may or may not receive a treatment.
In either case, they may or may not be referred back to screening. There are three
key treatments for diabetic retinopathy — laser, injections, and vitrectomy — as
described in Chapter 6. Each possible treatment is incorporated as a transition
event for those individuals in follow-up. Figure 7.4 shows the event pathways for
people in follow-up.

Individuals who go on to receive treatment are subject to different progression
rates. Therefore, it is necessary to divide the model further based on the stages
of the treatment pathway. Our model allows for individuals to be in one of four
groups of patients: i) those in screening who have not received treatment, ii) those
in screening who have previously received treatment, iii) those in follow-up who
have not yet received treatment and iv) those in follow-up who have previously
received treatment.

The comparators for our analysis — as described above — are similarly in-
cluded as an additional event process, applied to all people whose screening out-
come is negative and who are referred back to screening. These event pathways
are outlined in Figure 7.5.

Operation

The model was developed using Microsoft Excel (version 1907 for Office 365).
The model was designed to run over a lifetime horizon, with simulations running
for each person until they died within the model, at which point the simulation
moved on to the next patient. The model operates on a monthly cycle, with
transitions and events occurring at the end of each cycle. A monthly cycle was
adopted in order to allow for flexibility in the screening recall period and to mirror
the monthly analyses reported in Chapter 6. Both costs and quality-adjusted life
years (QALYs) were discounted at 3.5%. For the present analysis, costs were
evaluated from an NHS perspective.

7.2.4 Data

Several packages of work within the ISDR programme are used to inform the
modelling study presented in this chapter, with multiple data sources that are
described in more detail in earlier chapters.
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Figure 7.4: Follow-up event pathways

Figure 7.5: Intervention pathways. RCE = risk calculation engine.

Baseline characteristics

The model is set-up to simulate a random sample of 10,000 people with non-
referable disease. Individuals are randomly drawn (with replacement) from a
sample of 8,111 screening attendances in Liverpool, England, with complete data
in 2013. Each individual’s lifetime pathway is simulated under each comparator
before the model moves on to the next randomly selected individual. The baseline
sample was extracted from the ISDR clinical data warehouse. The characteristics
of the sample are shown in Table 7.2.

Model parameters

The model principally relies on a set of baseline disease progression rates that
would be observed without early intervention. Progression between the pre-
referral disease states of R0M0 and R1M0 are determined by the risk calcula-
tion engine, as is progression to the first stages of referable disease (R2M0 and
R1M1). Table 7.3 describes the hazard rates provided by the RCE, according to
baseline Markov state. In order to estimate individual risk (r) in each cycle (t),
it is necessary to compute the matrix exponential as described by Eleuteri et al.
[61], such that

r(t) = exp(Qt0.9) (7.1)
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Parameter Mean (SD)
Markov state
1 (R0M0) 78.54%
2 (R1M0[R0M0]) 14.02%
3 (R1M0[R1M0]) 7.45%
Male 58.00%
Age in years 63.65 (12.41)
Duration of diabetes in years 7.28 (5.33)
HbA1c 54.24 (15.58)
Total cholesterol 4.15 (0.98)
Systolic blood pressure 131.11 (14.10)

Table 7.2: Baseline cohort characteristics. SD = standard deviation.

where

Q =


−λ11 λ12 0 0
λ21 −λ21 − λ23 − λ24 λ23 λ24

0 λ32 −λ32 − λ34 λ34

0 0 0 0

 (7.2)

Microsoft Excel does not have a function to compute the matrix exponential.
Therefore, we computed the terms in their power series up to 25, at which point
we found their sum to approximately converge to the exponential.

Disease progression rates for individuals with referable disease were derived
from the literature, as shown in Table 7.4.

Additionally, all individuals within the model have a baseline risk of severe
vision loss and of death. National life tables for England were used to elicit age-
and sex-specific mortality rates for each cycle of the model, and standardised
mortality ratios for people with diabetes and for people with diabetes who are
blind, as shown in Table 7.5. Estimates for the risk of vision loss in this population
for reasons other than retinopathy or maculopathy were not available, so we
assumed this to be a rare (1/100,000) event.

The progression rates in Table 7.4 and Table 7.5 are revised if an individual
receives treatment. The model is designed to be flexible, allowing for the inclusion
of treatments that impact retinopathy or maculopathy progression and regression
at all levels. However, we only included treatment effects for which estimates were
available in the literature, as shown in Table 7.6. The duration of effect for laser
is assumed to be 12 months and for injections it is assumed to be 6 months.
After these durations, unless another treatment is received, individuals revert to
their baseline level of risk. Vitrectomy is assumed to only be indicated for people
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Treatment benefit Risk ratio* SE* Distribution Source
Laser
Retinopathy progression 0.490 0.069 Beta [250]
SVL due to R3 0.460 0.158 Beta [250]
SVL due to M1 0.500 Deterministic [275]
SVL due to R3M1 0.460 0.158 Beta Assumed
Injections
SVL due to R3 0.087 0.194 Beta [254]
Maculopathy progression 0.329 Deterministic [276]
SVL due to M1 0.250 0.077 Beta [277]
SVL due to R3M1 0.250 0.077 Beta Assumed

Table 7.6: Risk ratios associated with treatment. SE = standard error; SVL =
severe vision loss.

who have experienced vision loss and to have no consequences for the progression
of disease represented in the model. Photographic screening is assumed to have
a sensitivity of 0.878 and a specificity of 0.861, based on estimates provided by
Scanlon et al. [273]. Slit lamp biomicroscopy is assumed to have a sensitivity of
0.760 and a specificity of 0.950 [274].

Treatment costs and frequencies are derived from the estimates presented in
Chapter 6. The costs of attendance and non-attendance at screening, and the
rate of attendance, are derived from the estimates presented in Chapter 5. The
per-cycle cost of blindness was based on previous estimates [278]. Health state
utility values are derived from Chapter 4.

7.2.5 Analysis

We used the model to estimate the cost-effectiveness of the ISDR risk-based
screening programme compared with annual or biennial screening programmes.
For the purpose of probabilistic sensitivity analysis, the model was set-up to
run 1,000 Monte Carlo simulations to generate a cost-effectiveness plane. The
Monte Carlo simulations characterise the uncertainty arising from three sources:
i) random variation in the occurrence of probabilistic events, ii) uncertainty in
parameter values, and iii) baseline characteristics, as each simulation randomly
selects its sample.

7.3 Results

Due to the computational intensity of the model, we were unable to complete the
simulations as planned. Figure 7.6 shows the front page of the model, with our
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Per person ISDR vs annual ISDR vs biennial biennial vs annual
Incremental cost -£258 -£95 -£163
Incremental QALYs 0.288 0.008 0.280
ICER dominates dominates dominates

Table 7.7: Cost-effectiveness of alternative screening programmes. ICER = in-
cremental cost-effectiveness ratio; QALY = quality-adjusted life year.

desired inputs and the estimated duration of the simulation, which is in excess of
12 years. This estimate is derived from a moderately high specification personal
computer (with a quad-core central processing unit and 16 gigabytes of random
access memory). We return to this issue in the Discussion. Here, we describe the
results of a probabilistic model with five simulations of 200 patients, which took
16 hours to complete.

At first use, in the ISDR trial, the RCE allocated 10.7% of people to 6-month
recall, 8.6% to 12-month recall, and 80.7% to 24-month recall when using the 2.5%
threshold. This meant that the annual cost of screening was reduced, though over
time the proportion of the cohort being recalled at 24 months declined.

Mean incremental costs and QALYs are shown in Table 7.7. Over the lifetime
duration of the simulation, stratified screening according to the ISDR recall allo-
cation cost less on average than annual screening and biennial screening. This is
primarily driven by the reduced number of screening episodes overall. On aver-
age, the simulations indicated the strong dominance of ISDR recall over biennial
screening, and strong dominance of biennial screening over annual screening.

Based on these estimates, for a cohort of 10,000 people, ISDR screening would
save around £2.6 million compared with annual screening. Compared with bien-
nial screening, the individualised programme would save around £0.9 million. In
terms of QALYs, risk stratification was superior on average to either annual or
biennial screening. For a cohort of 10,000, individualised screening would result
in 2,877 additional QALYs compared with annual screening and 76 additional
QALYs compared with biennial screening. This could be due to the benefits of
early intervention delaying severe vision loss for those high risk people allocated
to a 6-month recall. However, the magnitude of QALY gains relative to annual
screening is likely due to the random occurrence of greater mortality in the annual
screening pathways.

There is a high level of uncertainty in these overall findings. Table 7.8 shows
total costs, total QALYs, and the proportion of people going blind within each
of the five simulations. Within this small number of simulations, all comparators
were identified as least costly and most effective in at least one simulation.

By running several reduced-size simulations, we were able to anecdotally ob-
serve a lot of variation and uncertainty. A high level of variation between in-
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Simulation 1
Annual Biennial ISDR

Mean SD Mean SD Mean SD
Total cost £253.54 364.48 £378.52 1,401.35 £256.92 419.82
QALYs 4.65 5.46 5.09 6.03 4.82 5.79
Blind 0.00% 0.00 0.50% 0.07 0.00% 0.00

Simulation 2
Annual Biennial ISDR

Mean SD Mean SD Mean SD
Total cost £221.98 240.86 £229.15 277.83 £210.31 269.81
QALYs 4.66 4.55 4.73 4.73 4.51 4.56
Blind 0.00% 0.00 0.00% 0.00 0.00% 0.00

Simulation 3
Annual Biennial ISDR

Mean SD Mean SD Mean SD
Total cost £682.83 5,686.35 £724.90 6,549.64 £310.08 538.14
QALYs 4.11 4.75 4.59 4.78 4.97 5.95
Blind 1.00% 0.10 1.00% 0.10 0.00% 0.00

Simulation 4
Annual Biennial ISDR

Mean SD Mean SD Mean SD
Total cost £754.61 7,375.78 £251.19 368.07 £328.19 966.78
QALYs 4.37 5.12 4.83 5.59 4.98 5.48
Blind 0.50% 0.07 0.00% 0.00 0.50% 0.07

Simulation 5
Annual Biennial ISDR

Mean SD Mean SD Mean SD
Total cost £681.29 5,982.11 £194.67 285.56 £198.00 307.98
QALYs 4.04 4.35. 3.99 4.70 3.99 4.70
Blind 1.00% 0.10 0.00% 0.00 0.00% 0.00

Table 7.8: Costs and outcomes from five simulations. Highlighted cells represent
the lowest cost and highest outcomes within each simulation. SD = standard
deviation; QALY = quality-adjusted life year.
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dividual patients meant that re-runs of the deterministic model, with random
samples of patients, produced highly variable results. In running small numbers
of Monte Carlo simulations, we observed high levels of uncertainty in both costs
and QALYs over the lifetime horizon.

To demonstrate the between-patient uncertainty, Table 7.9 shows determin-
istic results for a random sample of ten individuals. There is high variation in
both costs and QALYs, and in the comparator associated with the lowest cost or
greatest number of QALYs for each individual.

To demonstrate the within-patient uncertainty, Table 7.10 shows ten simu-
lations for one individual (a 55 year-old man with no retinopathy at baseline).
Even within this small simulation, all comparators are observed at least twice to
be either the least costly or most effective option for this individual.

7.4 Discussion
We found that individualised risk-based screening may be associated with lower
costs and improved outcomes compared with annual screening. However, we
identified a high level of uncertainty and were not able to fully explore this due
to the intractability of our model.

Our tentative findings are broadly in agreement with previous studies. In one
of the earliest studies modelling the cost-effectiveness of alternative recall periods,
Vijan et al. found support for biennial rather than annual screening [67]. More
recently, Scanlon et al. found that low-risk individuals should be screened only
every five years, while higher risk individuals could be screened every two or three
years [30].

Many previous studies have advocated personalisation on the basis of risk fac-
tors, yet an economic evaluation of individualised screening for diabetic retinopa-
thy has not previously been carried out. Some previous studies have questioned
the practicality of allocating screening according to personal characteristics [116].
However, this has now been demonstrated as feasible through the ISDR trial [279].
The evaluation of such a programme is now therefore timely.

7.4.1 Strengths and limitations

We developed a flexible decision model with the capacity to simulate complex
screening pathways. The model was designed to evaluate individualised risk-based
screening with different risk thresholds for screening recall. The development
process was thorough and included input from a range of stakeholders, including
clinicians, statisticians, mathematicians, and patients. As described in earlier
chapters of this thesis, we generated new evidence where candidate parameters
for our model would be lacking in the published literature.
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Annual Biennial ISDR
Simulation Cost QALYs Cost QALYs Cost QALYs
1 £42 1 £26 0 £94 5
2 £164 2 £136 5 £1,345 8
3 £58 2 £52 1 £42 1
4 £64 3 £16 0 £94 4
5 £42 1 £190 2 £52 1
6 £364 9 £591 9 £110 5
7 £316 7 £52 1 £52 2
8 £132 5 £246 9 £248 7
9 £162 5 £362 7 £84 4
10 £471 10 £272 9 £138 0

Table 7.10: Probabilistic cost-effectiveness results for a single individual. High-
lighted cells represent the lowest cost and highest outcomes within each simula-
tion. QALY = quality-adjusted life year.

The complexity of our model, which ultimately rendered it inexecutable, was
justified by the level of variation that we anecdotally observed in running reduced
simulations. A simpler model, such as that which we initially developed, would
not be capable of generating meaningful estimates of the cost-effectiveness of
risk-based screening.

While this model was not able to evaluate the cost-effectiveness of risk-based
screening compared with alternative programmes, its structure and operational
assumptions constitute a strong basis for the construction of a model in a more
efficient programming environment.

We were not able to complete the simulations as planned, due to the limita-
tions of Microsoft Excel for making complex calculations. This means that our
results, which are based on a greatly reduced simulation, do not provide a robust
estimate of the cost-effectiveness of individualised screening compared with an-
nual or biennial screening. Clearly, this is the main limitation of our modelling
work. However, there are others that should be noted.

The only differentiation of care in our model was according to individual risk
of disease onset. It is possible that treatment effectiveness may differ according
to risk. There is scope to differ treatment effectiveness or costs according to risk
within the model, but there may be ethical concerns associated with this.

Our approach to modelling did not allow for an accurate characterisation of
changes in visual acuity over time. Incremental changes in vision are likely to
impact on individuals’ health-related quality of life. Therefore, if changes in visual
function within retinopathy disease states are related to the choice of screening
programme, our model will provide biased results. Bias may also arise in our
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model due to the way in which the matrix exponential was approximated. In
some cases, the power series may not have converged to the exponential, which
would result in poorer estimations of individual risk.

7.4.2 Implications

Our study has highlighted some of the challenges associated with the evaluation
of risk-based screening using decision modelling. Markov models are a popular
approach to the development of risk calculation engines. This lends itself well to
the development of a decision analytic state transition model for its evaluation.
However, we encountered difficulties in this approach.

It is impractical to evaluate the use of a RCE in screening using cohort state
transition methods. This is because of the inherent heterogeneity in the nature of
the time dependency of state transition rates. Specifically, the rate of transition
from state A to state B is not only a function of previous states but of previous
events and of individual characteristics.

Treatment is the primary basis for transition rate adjustment. The probabil-
ity of receiving treatment is contingent on both previous disease progression and
whether or not the individual is screened, which in turn is dependent on indi-
vidual characteristics. The effectiveness of risk-based screening, compared with
standardised recall, depends on the right people being referred to treatment. This
means that it is important to identify which patients, as opposed to just what
proportion of patients receive treatments. So, in practice, a cohort state transi-
tion model cannot adequately identify whether a reduced screening interval would
result in earlier treatment for a high risk person or a low risk person.

Decision analytic state transition models are commonly built using Microsoft
Excel spreadsheet software. Despite the fact that use of a Markov model in the
development of the RCE supported methodological consistency in the decision
modelling approach, we found that Microsoft Excel was not suitable for our needs.

Great effort was expended in trying to rationalise the simulation and improve
the efficiency of the Visual Basic code. Several changes were made to the oper-
ation of the model for the sole purpose of increasing efficiency. These included
the automatic termination of simulations once a person died, rather than running
the model over a fixed time horizon, and preventing Microsoft Excel from recal-
culating cells unnecessarily. The full simulation Visual Basic script is provided
in Appendix F. These changes brought significant efficiency savings, as the first
version of the model was estimated to take 458 years to complete.

Our planned analysis required the model to simulate in excess of one billion
cycles, which would be demanding for any software or programming language.
However, the failure of our model was not due simply to the sheer number of
simulations. The major computational burden of the model was the need to
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repeatedly estimate the exponential of a matrix, which could not be rationalised
any further. Our research has demonstrated that it is not feasible to incorporate
a risk calculation engine into a decision analysis in Microsoft Excel if the risk
calculation engine requires the computation of a matrix exponential.

Using a spreadsheet as the basis for modelling was also problematic in light
of recent policy changes. We found our model to lack the necessary flexibility to
allow for the simple incorporation of an alternative comparator.

It is not possible to derive clear policy implications from the research reported
in this chapter. Despite the inconclusiveness of our modelling work, there is now a
substantial evidence base supporting the extension of screening intervals beyond
one year for people with diabetes at low risk of developing STDR. However, the
optimum means by which to identify those of low or high risk, and appropriate
methods for evaluation, are still under development.
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Chapter 8

Individualised cost-effectiveness
analysis

Summary
In this chapter, we argue that the evaluation of risk-based screening justifies
a new perspective on cost-effectiveness analysis. To support the development
of risk-based screening, we outline a simple framework for individualised cost-
effectiveness analysis (iCEA). The basis for iCEA in risk-based screening is de-
fined on the grounds of the relationship between individual risk of disease onset
and the cost-effectiveness of screening. The framework can be used to estimate
an optimal risk threshold for screening eligibility at the population level or the
optimal recall period for an individual with a given level of risk. We present a
stylised example in order to demonstrate the value and implications of the use of
iCEA in risk-based screening for diabetic retinopathy.

139
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8.1 The development of screening and CEA
Risk-based screening involves the differentiation of care according to individual
risk. This is implicitly because of — and justified by — heterogeneity in the
cost-effectiveness of screening for individuals with different levels of risk of disease
onset. The ISDR study is concerned with using information about an individual’s
risk to differentiate the frequency of recall for screening for diabetic retinopathy.
A possible outcome in the near future is that individuals will be stratified into a
number of groups based on their level of risk as estimated by a risk calculation
engine. This type of programme was evaluated in Chapter 7 and the potential for
this type of risk-based screening to be cost-effective compared with standardised
screening was demonstrated. We can also conceive of taking this further. As
outlined in Chapter 1, screening programmes could be truly individualised on a
per-person basis and specifically tailored to the individual. In this chapter we
consider the role of cost-effectiveness analysis in this context and the method-
ological adjustments that may be necessary. Chapter 9 then explores some of the
ethical challenges that arise as a consequence.

We adopt the view that the purpose of cost-effectiveness analysis is not sim-
ply to evaluate that which can be observed in two or more pre-defined groups,
but to directly inform that which might be considered for evaluation. That is,
cost-effectiveness analysis (CEA) should not only be used to determine whether
a particular group of individuals should or should not receive an intervention.
Rather, CEA should be able to address the decision problem of who should re-
ceive an intervention.

As screening moves from standardisation through to stratification and indi-
vidualisation (as introduced in Chapter 1), it is important to consider whether
our approaches to cost-effectiveness analysis should adapt. For all approaches,
standardised CEA could be used. For example, a stratified programme could be
compared with a standardised programme in the context of a clinical trial, with
comparison of costs and consequences in aggregate. However, most economic eval-
uations that inform health technology assessment (HTA) are now model-based
and therefore not confined to that which can be evaluated within a trial. This
is an important point when we consider that risk-based screening could vary in
practice from constant screening for the entire asymptomatic population to no
screening for anybody ever. It is impossible to evaluate every potentially cost-
effective iteration of a risk-based screening programme within an observational
study. However, decision modelling methods may offer the means of evaluating
this level of differentiation. If so, the efficiency of screening programmes might
be improved by taking into account the heterogeneous effects of individualised
screening.

In this section we outline the basis for differentiating CEA in the context of
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the different stages of screening programme development.

8.1.1 Standardised CEA

Standardised screening is amenable to standardised CEA. Traditionally, screen-
ing programmes have been evaluated along the lines of randomised controlled
trials (RCTs), in which a fixed group of people are randomised to either receive
screening or not. Indeed, the NSC’s terms of reference state that, “There should
be evidence from high quality randomised controlled trials that the screening
programme is effective in reducing mortality or morbidity” [280]. Model-based
analyses might use observational data comparing those who have received screen-
ing with those who have not. In this case, standardised CEA is also appropriate.

Such analyses take the population that is or ought to be eligible (or considered
for eligibility) for screening as given and fixed. The defining characteristic of
standardised CEA is that it estimates cost-effectiveness at the aggregate. It takes
the average costs and outcomes observed in a ‘treatment’ group (e.g. those in
receipt of screening) and compares them with a ‘control’ group (e.g. those not in
receipt of screening) in order to estimate incremental costs and outcomes. These
estimates can then be used to calculate a measure of cost-effectiveness known as
the incremental cost-effectiveness ratio (ICER). This can be shown algebraically
as

ICER = C1 − C0

E1 − E0
, (8.1)

where C1 and E1 are the costs and outcomes observed in the treatment group
and C0 and E0 are the costs and outcomes observed in the control group.

A difficulty associated with the ICER approach is that it gives results in
the form of a ratio, which can be challenging to analyse statistically. A simple
extension is the net benefit approach, which can express cost-effectiveness in
terms of either net health benefit (NHB) [281] or net monetary benefit (NMB)
[282] as

NHB = (E1 − E0)− (C1 − C0)/λ, or (8.2)
NMB = λ(E1 − E0)− (C1 − C0), (8.3)

where λ is the willingness to pay for a unit of the outcome (E). A simple decision
rule can then be employed such that the intervention is only provided if it provides
a positive net benefit; for example, where NMB > 0. Clearly, an added difficulty
of this approach is that the decision maker must know λ [283]. Though this may
in practice be a difficulty, in principle a decision maker should know the value of
λ in a given context as part of a more sophisticated decision rule [284].
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In the context of screening for diabetic retinopathy, standardised CEA has
been used to evaluate a variety of screening procedures including systematic vs
opportunistic screening [237], alternative screening strategies [285], and auto-
mated grading [98].

8.1.2 Stratified CEA

The standardised approach to CEA — and, indeed, the standardised approach
to screening — is only appropriate where there is no substantial amount of het-
erogeneity. Where there is heterogeneity, failing to take account of it may lead
to systematically inefficient resource allocation decisions [39]. In the context of
recurrent screening programmes, a simple basis for stratification might be on the
basis of disease progression. For example, in diabetic eye screening, individuals
with some signs of non-referable disease might be recalled to screening with more
frequency than individuals with no signs of disease. Risk-based screening might
be based on risk cohorts, such as low-, medium-, and high-risk subgroups. In
this case, limited use criteria can be determined using stratified cost-effectiveness
analysis, as developed by Coyle et al. [286].

Stratified CEA estimates the cost-effectiveness of an intervention within sub-
groups, such that

ICERi = C1i − C0i

E1i − E0i

, (8.4)

where ICERi is the within-subgroup cost-effectiveness for sub-group i. E1i and
E0i are the outcomes for subgroup i in the treatment group and the comparator
group respectively, and C1i and C0i are the costs for subgroup i in the treatment
group and the comparator group respectively.

Practically, stratified CEA does not require any major adjustment to the form
of standard clinical and economic evaluation. Its principal requirement is that
data must be available from a sufficiently large sample to detect differences in
costs and outcomes within subgroups, and that those alternative interventions can
be tested within subgroups. Subgroups might be defined in terms of individual
characteristics such as age or sex, and many stratified cost-effectiveness analyses
are conducted on this basis.

Both standardised and stratified CEA are based on sample means and may be
the product of a number of possible prognoses and treatment pathways. Stratified
CEA allows for a revised net benefit decision rule, such that

TNB =
∑

i

NBi ∀i where NBi > 0 (8.5)
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whereNBi is the net benefit within subgroup i and TNB is the total net monetary
benefit. That is, limited use criteria can be defined such that the intervention
should only be provided to those subgroups in which net benefit exceeds zero.

There is a growing recognition that economic evaluation should take hetero-
geneity into account and conduct stratified analyses [287, 288], including in the
context of screening specifically [289].

There are some examples in the literature of cost-effectiveness analyses of
screening programmes that take account of individuals’ risk factors. These stud-
ies implicitly adopt a stratified CEA approach. Using a Markov model to evalu-
ate colorectal cancer screening, Dan et al. found that selective screening, based
primarily on an individual’s age, was more effective than standardised screen-
ing [290]. Similarly, Lansdorp-Vogelaar et al. found a small benefit associated
with individualised colonoscopy screening [291]. Also using decision modelling
methods, Round et al. found that the most cost-effective screening method for
gestational diabetes mellitus depended on a woman’s individual risk of disease
[292]. Similarly, Aus et al. found that screening intervals for prostate cancer
should be individualised based on prostate-specific antigen levels [293].

When using stratified CEA, it is unlikely that a large number of sub-groups
could be analysed. Stratified analyses can therefore fail to fully account for het-
erogeneity due to the often broad nature of subgroups, and this may lead to
suboptimal decisions [294]. This is because the evaluation of each group requires
the availability of incremental cost and outcome estimates and, as the number
of subgroups within the population increases, the size of these subgroups dimin-
ishes. This is likely to result in parameters derived from small populations that
will introduce high levels of uncertainty.

There is an additional limitation to stratified CEA in the context of risk-based
screening, relating to the definition of the subgroups. Subgroup risk thresh-
olds might be determined on the basis of various factors such as acceptability,
safety, affordability, or cost-effectiveness. Indeed, risk estimates now inform clin-
ical decision-making in many contexts. However, to define clinically meaningful
subgroups based on individual risk is a difficult task.

The probability of disease onset that an individual faces could vary infinitely
between zero and one, and a risk calculation engine could be developed that is
able to estimate risk with a level of precision that approaches infinity. Given
the ratio scale properties of individual risk, we do not believe it to be intuitively
possible to determine meaningful risk subgroups. Any threshold between low-,
medium-, or high-risk will at best be imprecise in its association with treatment
benefit. It is possible that very similar people (i.e. either side of a threshold)
may receive very different care, while very different people (i.e. at the extremes
of a risk group) may receive the same care.
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The application of clinically meaningless risk thresholds has ethical implica-
tions that are discussed in Chapter 9. In the following section, we demonstrate
a means of identifying optimality within an individualised risk-based screening
programme that does not require arbitrary definition of subgroups.

8.1.3 Individualised CEA

Personalisation is increasingly recognised as an important part of health care,
and economists are beginning to develop means of incorporating it in to eco-
nomic evaluation. Often termed ‘precision medicine’, the differentiation of care
on the basis of individuals’ characteristics has been identified as having the po-
tential to confer benefits to patients as well as cost savings [295]. However, there
has been very limited discussion of the methodological implications for economic
evaluation of individualised health care. Here, we introduce a simple framework
for individualised cost-effectiveness analysis (iCEA). The notion of iCEA has been
briefly discussed in earlier work [296–298], but the theoretical and practical basis
for such an approach has never been described.

Individualised cost-effectiveness analysis involves the estimation of expected
costs and outcomes (and their combination) at the individual level, rather than
the aggregate for a population or subgroup. It can be implemented as a general-
isation of stratified CEA. Individualised CEA involves the use of stratified CEA
under two real-world conditions. Firstly, in individualised CEA the number of
potential subgroups tends to infinity, such that

lim
i→∞

(8.6)

Secondly, the size of subgroups tends to 1, such that

lim
Ni→1

(8.7)

where Ni is the size of subgroup i.
Both standardised and stratified CEA involve the estimation of incremental

costs and effects based on the difference in the sample mean of two groups. They
depend on — or at least assume the possibility of — observation of a counter-
factual. This counterfactual will usually be based on a randomised controlled
trial. Individualised CEA cannot satisfy this requirement because of the two
conditions outlined above. One can never observe the counterfactual costs and
outcomes where the sample size is equal to one, and therefore cannot estimate
incremental effects using traditional approaches. On this basis, the fundamen-
tal problem of causal inference cannot be addressed and iCEA appears to be
impossible in practical terms. However, as we outline below, the use of further
assumptions enables the analyst to operationalise an iCEA approach.
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8.2 The nature of individualisation

The presence of uncertainty has become central to the estimation of cost-effectiveness,
and estimates are usually made on the basis of expected values within a frame-
work of decision analysis. This notion is maintained in iCEA, which does not
preclude the consideration of mutually exclusive prognoses for an individual. For
instance, in the context of screening, any individual might screen positive or neg-
ative and the outcome cannot be predetermined. In this section we outline the
means by which CEA can be individualised and the basis for individualisation
according to risk.

8.2.1 Individualisation factors

Whether or not an intervention is cost-effective for an individual is determined
by innumerable factors whether biological, social, or behavioural. The relevant
effects of all of these can be summarised according to the top-level factors that
inform the decision of whether or not an intervention is deemed cost-effective.
These are:

• Probabilities,

• Costs,

• Outcomes, and

• Willingness to pay.

Each of these might be heterogeneous across individuals. The net monetary
benefit of an intervention for individual i might thus be estimated as1

NMBi = λi(E1i − E0i)− (C1i − C0i) (8.8)

Individuals are defined by an infinite number of characteristics. Some of these
will be observable and will influence the expected costs and outcomes associated
with a treatment. The relationship between individual characteristics and the
four factors of cost-effectiveness can be estimated and used to predict the expected
cost-effectiveness of treatment for an individual.

It may be possible in some cases that, with a large enough sample and little
heterogeneity, the expected cost-effectiveness of treatment could be estimated for

1Willingness to pay for the outcome of interest is not generally considered to be a source
of heterogeneity and such considerations are often dispatched to the realm of equity analy-
sis. Equation 8.8 clearly shows that such simple interpersonal ‘equity’ concerns can easily be
considered a matter of efficiency analysis.
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each individual and all relevant determinants accounted for. Though this seems
unlikely.

Randomised trials are not likely to be large enough to elicit such relationships.
Regardless, randomised controlled trials cannot observe a true counterfactual
and are thus subject to the ‘fundamental problem of causal inference’ [299]. It
may therefore be necessary to use non-randomised observational data from large
cohorts to elicit the individual-level determinants of costs and outcomes.

Although the challenge of observing the counterfactual remains, economists
have developed a suite of methods that seek to support causal inference. There
are now methods by which incremental costs and effects might be estimated for
each individual. The analyst might for example use conditional average (CATE)
or person-centred (PeT) treatment effects [300]. Widely used regression-based
approaches to CEA could prove valuable in carrying out individualised CEA
[301].

Conceptually, CATE aligns with stratified CEA insofar as they estimate treat-
ment effects conditional on an individual exhibiting a specific characteristic, which
might be the basis for inclusion in a subgroup. For example, CATE could esti-
mate effects for men and effects for women. The development of PeT effects has
focussed on evaluating the role of individual preferences and ‘passive personalisa-
tion’ [302, 303]. The purpose of PeT effects are to provide estimates that account
for all observed and unobserved heterogeneity and selection into treatment. They
could therefore, in principle, be used to inform a multi-factorial individualisation
whereby all factors — probabilities, costs, outcomes, and willingness to pay —
vary at the individual level.

The use of aggregate data from epidemiological or other observational studies
is common in economic evaluation in health care, often being used for parameters
in decision analytic models. It would be possible to carry out multi-factorial iCEA
using aggregate level data. For example, multiple trials may have been carried out
which might demonstrate a relationship between outcomes and age, and between
costs and employment status. These relationships could be incorporated into
an iCEA using either CATE or PeT effects to predict cost-effectiveness at the
individual level. Only limited work has been done to incorporate econometric
analyses into CEA, and the development of such tools and their incorporation
into iCEA is beyond the scope of this thesis.

In some cases, it may be desirable to individualise CEA on the basis of a single
factor. This may be due to practical or ethical reasons. In this case, only one
factor is assumed to vary across individuals and to determine cost-effectiveness at
the individual level. In this thesis we focus on the single factor of individual risk,
which is a probability within the estimation of cost-effectiveness. In Chapter 1
we outlined the relevance of this factor to screening programmes. In Chapter 9
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we present an argument that unifactorial iCEA is an equitable approach to the
optimisation of risk-based screening.

Central to this approach is the link between individual risk of disease onset
and the cost-effectiveness of screening for that disease, which has been implicitly
recognised in practice but not explicitly outlined in the academic literature. Below
we demonstrate the nature of this relationship and present a basis on which to
use iCEA in risk-based screening.

8.2.2 The relationship between individual risk and cost-
effectiveness

Within screening programmes, an individual’s screening outcome is not random;
the probability of screening positive is dependent on a set of (observed or un-
observed) risk factors. Through analysis of these risk factors it is now possible,
in many cases, to estimate an individual’s risk of developing a disease within a
given period of time. If we seek to maximise an individual’s (expected) health,
the extent to which a screening programme can be beneficial depends on the ef-
fectiveness of treatment or care following a true positive screening result. If an
individual is more likely to screen positive — assuming they are identified early
enough — it is more likely that they will receive the intended benefits of screen-
ing. As such, it is clear that individuals with different risk levels will experience
heterogeneous benefits from screening.

The expected incremental costs and outcomes of screening, at the individual
level, are dependent on at least two binary probabilities; whether the individual
has a given disease and whether they are screened positive or negative. Account-
ing for the specificity (true negative rate) and sensitivity (true positive rate) of
the screening test, this means that there will be four possible outcomes for an
individual who is screened and two for an individual who is not. Figure 8.1 shows
these six possible screening pathways, which are generalisable to most screening
programmes.

For a given population or individual, ICER calculations in the evaluation of
screening interventions are dependent upon at least three probabilities, i) the
probability of a positive disease state, ii) the false negative rate and, iii) the false
positive rate. For the screening intervention in Figure 8.1, the probability of each
pathway for the individual, depending on whether they are screened or not, is:
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Prob(1) = r(1− β) (8.9)
Prob(2) = rβ (8.10)
Prob(3) = α(1− r) (8.11)
Prob(4) = (1− r)(1− α) (8.12)
Prob(5) = r (8.13)
Prob(6) = 1− r (8.14)

where r is the probability that the disease (e.g. STDR) is present, α is the false
positive rate and β is the false negative rate of the screening intervention. The
probability that an individual has the disease (r) corresponds to the incidence
or prevalence of the disease (depending on the nature of the intervention) in the
population being considered for screening. In clinical trials, r is only observed at
the sample level. In modelling studies, r is usually estimated at the population
level. Our primary assertion in this chapter is that, given recent developments in
the estimation of risk, r can be estimated for an individual. This would be in the
form of a hazard rate, as described in Chapter 1 and implemented in Chapter 7.

In practice, the values derived from equations 8.9–8.14 may not be known,
but they are nevertheless the underlying probabilities in defining an individual’s
pathway. The expected incremental cost of screening (C1i−C0i) and the expected
incremental effect (E1i−E0i) are dependent on these probabilities. As such, C1i,
C0i, E1i, and E0i are defined as:

C1i =
4∑

k=1
(Prob(k)× C(k)) (8.15)

C0i =
6∑

k=5
(Prob(k)× C(k)) (8.16)

E1i =
4∑

k=1
(Prob(k)× E(k)) (8.17)

E0i =
6∑

k=5
(Prob(k)× E(k)) (8.18)

where k = 1, 2 . . . 6 are the possible pathways shown in Figure 8.1.
In order to clearly demonstrate the relationship between individual risk and

the cost-effectiveness of screening, we adopt three simplifying assumptions:

1. A true positive outcome (i.e. Pathway 1 in Figure 8.1 and Equation 8.9) is
the only outcome of value.

2. Individual risk is equal to the true probability that disease is present.
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3. Individualisation can be based only on individual risk (ri), such that the
cost of screening (CS) and the benefit of a true positive screening outcome
(ES) is constant across individuals.

Table 8.1 shows the expected costs and outcomes associated with each path-
way under these assumptions. The expected incremental cost and effect of screen-
ing is estimated by

C1 − C0 =
4∑

k=1
(Prob(k)× C(k))−

6∑
k=5

(Prob(k)× C(k)) (8.19)

E1 − E0 =
4∑

k=1
(Prob(k)× E(k))−

6∑
k=5

(Prob(k)× E(k) (8.20)

Simplified, and using the expressions shown in Table 8.1, these expressions
allow for an ICER to be estimated for an individual as

ICERi = CS

(1− β)riES

(8.21)

where CS is the cost of screening, β is the false negative rate of the screening
test, ri is the risk of disease onset for individual i and ES represents the value
(here assumed equal to 1) of a true positive screening outcome. This expression
can be presented in terms of net monetary benefit as

NMBi = λ(1− β)riES − CS (8.22)

Here we assume a true positive screen (ES) to be beneficial and fixed across
individuals with different risk levels. CS only includes the cost of screening; any
cost associated with risk estimation and the cost of treatment are not included.
Under our assumptions, the costs and outcomes in Pathway 3 and Pathway 4 are
equivalent, meaning that the false positive rate (α) does not influence the ICER.
This means that the relationship between individual risk (r) and the expected
incremental benefit of screening is positive and linear. Similarly, if we assume
that the cost of screening is positive and constant across risk levels, a higher
level of risk (ceteris paribus) will be associated with a lower ICER. As such, the
relationship between an individual’s risk of developing a disease and the expected
cost-effectiveness of screening them must be positive. Under the assumptions used
in this example, the cost-effectiveness of screening monotonically increases with
risk.

Note that equations 8.21 and 8.22 are not necessarily generalisable, and could
simplify to different expressions if the cells in Table 8.1 were changed. For ex-
ample, a negative effect could be associated with a false positive result. It is
the process of defining them that is generalisable. They are presented only to
illustrate the relationship between the variables under our assumptions.
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8.3 Optimising risk-based screening
The expressions presented can be used to individualise screening decisions in at
least two ways: i) by setting an optimal threshold for screening; above which an
individual is offered screening and below which they are not and ii) by setting
an optimal recall period for each individual. These approaches are equivalent in
theory, if not in practice.

8.3.1 Setting a threshold

The use of risk-based thresholds and patient stratification is well-established [304].
However, the potential to allocate variable screening on an individualised basis is
a new development. We can use the net benefit approach to estimate whether, at
a given level of willingness to pay per true positive screening, it is cost-effective
to screen an individual with a given level of risk. In order to do this, we need
simply solve equation 8.22 for ri where net monetary benefit equals zero, such
that

ri = −CS

λ(β − 1)ES

(8.23)

For our example, in which the net benefit of screening monotonically increases
in risk, equation 8.23 indicates the minimum level of risk at which individuals
should be screened, and thus defines a threshold.

In an optimised programme, the time to next screen would be decided follow-
ing each negative screening outcome, rather than a screening frequency defined at
an arbitrary time point. The results of the screening test can be used to inform a
revised estimate of an individual’s risk level. The incremental cost-effectiveness
of subsequent screens can be characterised in the same way as the first; the de-
cision process is the same, but the inputs may have changed. The relationship
rationalises to that already discussed.

8.3.2 Allocating recall

For some programmes it will be more useful to estimate an optimal recall pe-
riod for an individual at a given point in time, rather than to define a minimum
level of risk for population screening. In order to achieve this, it is first neces-
sary to decide on the lowest practical screening interval; a clinic may have the
administrative capacity to recall individuals on a weekly, monthly or yearly ba-
sis. Maintaining our earlier assumptions, and assuming that individuals’ hazard
ratios are estimated based on a time at risk (T ) of one year and that screening
clinics are capable of recalling individuals for screening on a weekly basis, we can
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estimate the recall time at which net monetary benefit becomes positive. This is
simply a matter of estimating the cost-effectiveness of screening an individual at
various periods of recall, accounting for the fact that risk increases in time. The
optimal recall period, in terms of cost-effectiveness, can be found by solving for
NMB = 0 at any given level of individual risk. The optimal recall period for an
individual with risk r can be established in three steps:

1. Assuming a constant average rate of disease onset, convert the individual’s
estimated level of risk to an instant rate using the formula = − ln(1−r)

T
,

2. Convert the individual’s instant rate back to the risk associated with the
minimum feasible interval (f) using the formula r̂ = 1− exp−r p

T/f ,

3. Select the recall period (p) such that net monetary benefit is at its lowest
possible positive value, where r is replaced with r̂.

Because r ∼ r̂, the risk threshold associated with the optimal recall period
will be approximate to that found at the programme level.

8.3.3 A simulated example

We present a stylised application of our framework for the optimisation of risk-
based screening using aggregate data relating to the NDESP. We use reported
figures from a CEA of systematic photographic screening compared with oppor-
tunistic screening [237], though we assume that the study compared systematic
screening with no screening for the sake of the demonstration. We assume that
attendance in the study was 100% (in fact, only four in every five people attended
screening). The primary outcome is cost per true positive screen. These exam-
ples are simplified, and as such the findings are not designed to inform policy.
Rather, they demonstrate the potential value of using such an approach for the
optimisation of risk-based screening.

Table 8.2 shows figures provided by James et al. [237] for screening for diabetic
retinopathy, which we use to populate Equation 8.22. The CEA is individualised
based on the single factor of individual risk of disease onset, in the way described
above. In order to demonstrate the iCEA approach — including probabilistic
sensitivity analysis (PSA) — we use the parameters in Table 8.2 to simulate 100
sets of net benefit estimates for individual risk values from 0 to 1 and willingness
to pay threshold values from £0–500.

Figure 8.2 shows the resulting relationship between individual risk and the
cost-effectiveness of screening when the parameters in Table 8.2 are used to pop-
ulate Equation 8.21. Only risk levels up to 0.1 and ICERs up to £5,000 are shown.
We can see that the higher the level of individual risk, the lower the resulting cost
per true positive screening result. From Figure 8.2 it is clear that in this example
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Mean Standard error
α 0.49 0.016
β 0.02 0.003
CS £21.00 2.000*
ES 1.00† NA
ICER £209.00 NA

Table 8.2: Example model parameters. * Assumed. †The outcome is true positive
screening result.
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Figure 8.2: The relationship between individual risk and cost-per-outcome

the cost-effectiveness of screening is very sensitive to differences in individual risk
when risk is very low. This is primarily because we have not accounted for er-
rors in the estimation of risk, thus implying almost perfect identification of those
likely to benefit from screening.

Figure 8.2 highlights that, for a given level of willingness to pay threshold,
there will be a corresponding minimum level of risk at and above which it is
cost-effective to screen an individual, and below which the expenditure would
not be deemed cost-effective. To our knowledge, no previous attempts have been
made to estimate this figure, either in the context of DR or any other type of
screening. Figure 8.2 therefore demonstrates the potential for optimality in risk-
based screening. For a given set of cost and outcome estimates, and for a given
willingness to pay, there is likely to be a level of risk at which the net benefit of
screening becomes positive.

We can use the net benefit approach to estimate whether, at a given level of
willingness to pay per true positive screening result, it is cost-effective to screen
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Figure 8.3: The relationship between individual risk and net benefit

an individual with a given level of risk. Figure 8.3 shows the relationship between
individual risk and net benefit. Here, for the purpose of the demonstration, we
present willingness to pay values for a true positive screening outcome of £100,
£200, and £300. As can be seen in Equation 8.22, the slope is defined by the
willingness to pay and the intercept, in our case, is defined by the cost.

As described above, by solving for r at our assumed λs, we obtain the mini-
mum level of risk at which individuals should be screened. Where λ = £100, the
minimum level of individual risk is 0.214. At £200 and £300 the thresholds are
0.107 and 0.071, respectively. James et al. find that, for systematic DR screening,
the incremental cost per true positive is £209 [237]. Where λ = £209, it would
be cost-effective to screen anybody with a risk level of 0.103 or higher. This
assumes that the time period used in the estimation of the hazard rate matches
the screening interval.

DR screening can also be varied in terms of the frequency of its administra-
tion, with people offered individualised recall periods depending on their level
of risk. Figure 8.4 shows the expected net benefit associated with alternative
recall periods for individuals with risk levels of 0.05, 0.1 and 0.2. In this ex-
ample, λ = £209, T = 1, and f = 52. The optimal recall period, in terms of
cost-effectiveness, can be found by solving for NMB = 0 at any given level of
individual risk. The relationship that this produces is shown in Figure 8.5

Figures 8.2–8.5 show deterministic relationships. Using the PSA it is possible
to demonstrate a relationship between individual risk, willingness to pay per
true positive screening outcome, and the probability of cost-effectiveness. The
resulting three-dimensional cost-effectiveness acceptability surface is shown in
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Figure 8.6: Cost-effectiveness-risk-acceptability surface

Figure 8.6.

8.4 Discussion

The relationships presented in this chapter are intuitive. The higher an individ-
ual’s level of risk, the more likely it is that they will screen positive and therefore
benefit as intended from the screening programme. This means that the expected
cost per outcome for an individual with a high risk is low, while for those at a
low risk it may be very high.

Decision modelling techniques are routinely used in the evaluation of screening
programmes, as demonstrated in Chapter 2. We believe that it is these methods
that offer the best opportunities for the incorporation of individual risk data into
iCEA. However the acceptability of such an approach, to patients and clinicians,
is still to be demonstrated.

The framework that we have set out is by no means revolutionary and is,
implicitly, how many analysts think about stratified cost-effectiveness analyses.
However, the application to risk-based screening is timely and novel. We have
demonstrated a simple basis on which to design a risk-based screening programme
that seeks to maximise efficiency.

The evaluation of precision medicine and the application of iCEA may be
perceived to be highly demanding of data. Yet we have demonstrated that,
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with a few defensible assumptions, an optimal risk-based screening regime can
be identified. Decision-makers need only know the average expected costs and
benefits of a true positive screening outcome.

Nevertheless, our simplifying assumptions do introduce limitations. Screen-
ing programmes may involve more complex pathways than those described in this
chapter. Decision-makers might also value outcomes other than a true positive
screening result. For instance, most screening programmes seek to minimise false
positives. More fundamentally, one might expect systematically different costs
and outcomes for people at different levels of risk. This would mean that the ex-
pressions provided in this chapter would not identify optimal thresholds or recall
periods. Furthermore, the process of optimally setting recall periods does not ac-
count for expected attendance. If an individual is expected not to attend, it may
be optimal to invite them for recall at an earlier date based on the expectation
that they will not attend.

In this chapter, we have presented a simple framework for individualised cost-
effectiveness analysis and demonstrated how this can form the basis for setting
optimised risk-based screening programmes. This would involve inviting people
at high risk to attend screening more regularly than people with low risk, on
the basis that this is cost-effective. Policy-makers should consider the appro-
priateness of such an approach and future research should explore its feasibility
and acceptability. In Chapter 9, we consider whether such an approach could be
justified on ethical grounds.



Chapter 9

The ethics of risk-based screening

Summary
The potential to differentiate the provision of screening based on individuals’
risks of disease onset raises methodological challenges, as described in earlier
chapters. In this chapter, we identify the ethical issues that it might also raise.
In particular, we consider fairness criteria generally accepted for the allocation of
health care resources in the UK. We argue that the allocation of screening based
on individual risk is justifiable within standard ethical frameworks, focussing on
the role of need as the basis for resource allocation. This requires some important
redefinition of need as it relates to screening (rather than treatment). We explore
the implications of allocating screening based on what we term ‘screening need’
and consider the role of individual risk in this process.

159
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9.1 Introduction
In the preceding chapters we have demonstrated the potential to differentiate
screening according to individual risk, on the basis of expected cost-effectiveness
at the individual level. However, as outlined in Chapter 8, cost-effectiveness
analysis to date has been conducted on the basis of aggregate incremental costs
and effects at the population or sample level. An ethical basis for individualised
cost-effectiveness analysis (iCEA) in the context of risk-based screening has not
previously been outlined.

The need for such ethical inquiry is made clear by the simple assertion that in
some situations iCEA might not be expected to be ethical. For example, iCEA
could be used to indicate that a person should not receive treatment because they
are of an age at which their life expectancy is not sufficient to justify a particular
life-saving treatment, despite being part of a patient group for which treatment
is cost-effective in the aggregate and despite the possibility that the individual’s
realised outcome may be cost-effective. Such a scenario may reasonably be judged
to be ethically problematic, even if not self-evidently unjust. Indeed, many ethical
arguments against the QALY-maximisation approach to resource allocation fail
in reference to real-world scenarios precisely because cost-effectiveness analyses
are conducted at the aggregate [305, 306]. Government guidance on evaluation
in the UK states that:

“On grounds of equity in appraisal QALY values. . . are based on aver-
age values from representative samples of the population (who differ
in their incomes, preferences, age, states of health and other circum-
stances). These values are used when analysing and planning the pro-
vision of assets, goods and services at a population or sub-population
level.” [307]

By abandoning the safety of evaluation in the aggregate, iCEA becomes vulner-
able to criticism on ethical grounds.

We will consider the specific case of iCEA with respect to individual risk in
the context of risk-based screening. At present, this is one of very few feasible
applications of an iCEA approach to economic evaluation and thus worthy of
special consideration.

Screening programmes are increasingly moving from a ‘one-size-fits-all’ design
towards stratification and individualisation. Such programmes may involve the
use of a risk calculation engine (RCE) to estimate individual risk of disease onset
and to determine screening eligibility or allocation. There are a number of clinical
areas in which such developments are taking place. Recently, in the UK, the Na-
tional Screening Committee (NSC) has recommended that people with diabetes
identified as being at low risk of sight loss be invited to screening after 2 years
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rather than annually, while those not identified as such should continue to be
screened every year. This represents a form of risk stratification. Similarly, The
American Cancer Society recommends annual breast screening for women aged
45-54, but biennial screening for women aged 55 and older. It has been suggested
that, in the future, stratification will be further tailored to the individual [43].

Some commentators have proposed that risk-based screening might be eth-
ically preferable. For example, in the case of prostate cancer screening, risk
stratification has been described as “perhaps the most ethical approach” [308].
However, most of the arguments in favour of risk stratified screening have — to
date — focussed on the maximisation of benefit and minimisation of harm, as
have debates about the ethics of screening more generally [309, 310]. This leaves
other ethical challenges unconfronted and does not outline a clear ethical basis on
which to determine screening eligibility within a risk-based programme. It can be
taken as given that risk stratified screening could result in greater benefit and/or
reduced harm, as well as reduced expenditure, by targeting screening at those
more likely to benefit. Indeed, this is why such programmes are being proposed.
However, we do not accept that this potential for health benefit is a sufficient
justification of risk stratified screening on ethical grounds.

In this chapter, we argue that risk stratification can be used to allocate
screening according to need, allowing for egalitarian, prioritarian, or utilitar-
ian allocations as preferred by decision-makers. We discuss the notion of need
in this context, presenting the case for a reconceptualisation of individual need
for screening as likelihood of benefit. Screening need — as described below —
represents a practical basis for resource allocation that can result in a fairer
and non-discriminatory allocation of resources. The discussion does not apply
to the specific ethical challenges associated with particular screening possibilities
— especially prenatal screening for genetic disorders — and relates primarily to
established screening programmes provided by national health services. In such
cases, an affordable stratification process could improve technical efficiency and
allocate resources more equitably.

9.2 Screening need (as distinct from treatment
need)

There is no consensus on the most appropriate definition of need in the context
of health care. In this chapter we focus on need as capacity to benefit, which is
a widely accepted interpretation in health care. In relation to Bradshaw’s tax-
onomy, we are principally interested in normative need and to a lesser extent
comparative need; felt need and expressed need are not the subject of this dis-
cussion. A popular interpretation of health care need in resource allocation is as
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‘capacity to benefit from cost-effective care’ [311]. In England, the NHS seeks
to make health care available according to need, and makes decisions according
to guidance from the National Institute for Health and Care Excellence (NICE).
As this guidance is based in large part on cost-effectiveness, we may understand
capacity to benefit from cost-effective care to be the principal notion of need
operating in UK policy-making.

People are only determined to ‘need’ health care if it might be expected to
improve their health, and therefore have a capacity to benefit in this sense. This
is because health is the source of moral weight in this discussion; nobody ‘needs’
ineffective health care, even if they demand it. Likewise, people are not gener-
ally said to need health care for purposes other than health gain. As such, the
concept of need in health care is inextricably linked to the potential for health
improvement (or prevention of ill health). Such improvements are the result of
treatment, which is why we discuss people needing particular treatment for par-
ticular diseases. Here we provide basis for understanding need for screening in a
different way.

9.2.1 The purpose of screening

Screening differs from treatment and other preventive care in a number of ways,
and it is the combination of these factors that calls for a reinterpretation of need
in this context.

Screening is of no direct health benefit. This makes it difficult to define screen-
ing need in terms of necessity [312]. For a person with a life threatening disease
for which curative treatment is available, that treatment might reasonably be said
to be necessary. In this sense, treatment is needed. However, if in the current
health care context a person is only likely to be offered the treatment following a
positive screening outcome, it does not follow that screening is necessary. This is
because screening could — in principle — be bypassed with no loss of treatment
benefit.

There is no capacity for additional benefit from screening beyond that which
results from (early) treatment. Only that which directly addresses the individ-
ual’s (potential) health shortfall should be considered to be necessary. Accounting
for all context-specific indirect determinants of the receipt of care plainly renders
‘necessity’ as meaningless. The individual’s ability to get dressed, their willing-
ness to leave the house, and the availability of hospital-bound public transport
cannot be said to be needed in terms of ‘necessity’ – there are substitutes. The
necessity of screening can only be derived through the insistence of screening as
part of an effective treatment pathway.

At the individual level, whether or not screening could lead to health benefits
is unknown before screening takes place. That is, if a person has a screen-negative
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disease state it is not possible for them to experience health benefits. Rather,
screening serves to identify people who could and who could not benefit from
treatment. Therefore, individuals will necessarily be eligible for screening despite
having zero capacity for health benefit. This limits the usefulness of ‘capacity
to benefit’ as an interpretation of screening need when screening eligibility is
determined at the individual level, as may be the case in risk-based screening. At
the individual level, capacity for health benefit is unknown until after screening
has taken place. Then, capacity for health benefit from screening is dependent
on a true positive screening outcome, generally characterised in a binary way.
Thus, there will be people who attend screening who do not have a need for
treatment and yet might still have been considered in need of screening. Need for
screening should therefore be understood as an instrumental capacity to benefit
that is intermediate and only partially related to the notion of treatment need.
An individual with no capacity to benefit from treatment might still reasonably
be judged to need screening while that capacity to benefit remains unknown.

Though subject to limitations, the interpretation of need as capacity to ben-
efit from cost-effective care is pertinent to screening. Need cannot simply be
understood as an absence of something. Current ill health cannot be used to
define need, either at the level of the individual or the population. Furthermore,
an interpretation that allows for some potential health benefit to be foregone
(while maintaining equitability) is necessary because screening is delivered to
asymptomatic individuals. It would not be efficient to allocate screening to the
majority who stand to gain extremely small potential benefits from screening due
to a very low probability of disease onset. Such an approach would be unethical if
this — as it would under a fixed health budget — deprived others of cost-effective
care.

Need for screening involves a comparison of what might occur in the future
(with and without health care) rather than a comparison of current states. This is
in the context of an unknown capacity to benefit at the individual level. To have a
capacity to benefit from screening, an individual needs to have the characteristics
necessary to achieve a true positive screening outcome. Screening need should
therefore be understood as the likelihood of this being the case – as likelihood of
benefit.

9.2.2 Disaggregating need

By allocating screening according to incidence (or prevalence) of disease in a given
population, need is only estimated in the aggregate. Screening programmes are
(and will continue to be) increasingly targeted at individuals rather than popu-
lations. To use Geoffrey Rose’s aetiological distinction [313], we are increasingly
able to allocate screening according to determinants of individual cases. To under-
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stand need at the individual level and to go ‘beyond the mean’ is preferable both
in terms of efficiency and equity, as discussed in the remainder of this chapter.

In their classic principles of screening, Wilson and Jungner incorporated the
requirement that effective treatment be available for those screening positive [19].
We interpret this to mean effective in the aggregate. The current discussion relates
to existing screening programmes and disregards the possibility that a screening
programme might exist without effective follow-up. One implication of this is
that — where we do not have information about individual risk of disease onset
— the existence of a screening programme creates an apparent unmet need in the
entire asymptomatic population. This is because although the population average
risk level (incidence) may be sufficient to allow for cost-effective screening, many
people may have a very small probability of screening positive. The majority of
the population are likely to have no capacity to benefit from screening. This is
not a useful understanding of individual need and cannot inform a fair or efficient
allocation of resources. By disaggregating need it is possible to allocate screening
only to those deemed to have a (sufficient) need for it.

9.2.3 Quantifying individual need

In order to inform resource allocation decisions, both treatment need and screen-
ing need require quantification. As discussed in more detail below, we focus here
on the achievement of technical efficiency within a screening programme. We are
not concerned with allocation to different populations or with treatments beyond
the screening process.

Treatment need should be quantified in terms of a measure of health benefit,
such as quality-adjusted life years (QALYs). However, as outlined above, capacity
to benefit in these terms remains unknown at the individual level for a population
eligible for screening. The purpose of screening is not to satisfy this need but to
assess it; screening is a means of obtaining more information about a person’s
health state. An individual’s intermediate capacity to benefit from screening
should therefore be understood as the likelihood that they will have a true positive
screening outcome following a screening procedure.

Risk calculation engines can be designed to estimate individual risk in a num-
ber of ways; for example, lifetime risk of disease onset or the probability of a
positive screen event. Such estimates should be understood as approximations of
an individual’s screening need.

Where a screening programme exists (and effective follow-up is available), in-
dividuals might have a low or a high need for screening. This can be determined
independently of the magnitude of health benefits associated with treatment fol-
lowing a positive screen. For example, an individual estimated to have a 10% risk
of disease onset (within a given time frame) has a greater screening need than an
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individual with a 2% risk of disease onset. This is independent of the magnitude
of health benefit associated with treatment, and only requires that some health
benefit is possible. Following screening, it could be that the individual identified
as having a 2% risk needs treatment and the individual at 10% risk does not. This
does not undermine the fact that — at the point at which screening eligibility
was determined — the higher risk individual had a greater need for screening.

This example highlights the importance of information in the determination
of need and that the available information not only determines the magnitude
of need (e.g. in relation to the level of risk) but also the provision to which
that need relates (i.e. screening or treatment). The example demonstrates that
screening need can be estimated in isolation from capacity for health benefit
from treatment, and that the two may not align in interpersonal comparisons.
This characteristic of screening need has a number of advantages, as we will now
discuss.

9.3 Screening need and technical efficiency

The consideration of technical efficiency invokes a number of specific ethical view-
points, particularly utilitarian and welfarist approaches. However, this discussion
does not presuppose the appropriate distribution of resources for screening and
seeks only to provide a basis on which to define the appropriate distribution: in
terms of screening need. For example, a prioritarian approach may be adopted by
allocating disproportionately greater resources to those with the greatest screen-
ing need (i.e. at highest risk).

We assume the context of determining need to be that of high-level resource
allocation decisions, rather than determinations at the physician or patient level.
Furthermore, our discussion relates to questions of efficiency within a risk-based
screening programme and not the evaluation of alternative screening procedures.
The ideas expressed may only translate partially to other contexts. Within a
risk-based screening programme, a threshold level of risk could be defined based
on the minimum level of screening need necessary to justify screening (in terms of
cost-effectiveness). This kind of risk-based screening programme would allocate
screening to all people with capacity to benefit from cost-effective care. That is,
those with a risk level below the threshold are not sufficiently likely to screen
positive to justify screening.

9.3.1 More with less

Individualised risk-based screening could be more efficient and more equitable
than either a standardised programme or a stratified programme.
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Discrimination in health care lacks a clear definition. In the context of priority
setting, allocating care on the basis of capacity to benefit has been characterised
as discriminatory [314]. We reject this interpretation and rather define discrimi-
nation as the allocation of health care according to personal characteristics that
are unrelated to an individual’s level of need.

As previously explained, the determination of an individual’s level of need is
dependent on the information available. Risk-based screening provides an oppor-
tunity to make decisions on the basis of a more accurate estimation of need. In
this context, using specific personal characteristics as the basis for allocating care
may be judged to be discriminatory where they would not previously. This can
be illustrated by an example.

Consider a screening programme with a minimum age threshold of 65 years.
This threshold is determined by studies showing that screening and treatment
is — on average — only cost-effective for over-65s. Whatever the disease, it is
unlikely that age is the only risk factor. If RCEs are available, it is probable
that there are many identifiable pairs of 60 year olds and 70 year olds who have
equivalent levels of risk. The 60 year olds likely have a greater life expectancy
and therefore a greater capacity to benefit from treatment. There is no apparent
basis — either ethical or economic — for determining that the 70 years olds
should have a greater right to screening than the 60 year olds (as they would
in this example) if their risk is demonstrably equivalent. Each has the same
screening need, while the ineligible party may have a greater capacity to benefit
from treatment. This example reflects the case of the NHS abdominal aortic
aneurysm screening programme. If individuals’ risk of abdominal aortic aneurysm
could be estimated, an age-based threshold for eligibility might reasonably be
deemed discriminatory.

As well as having the potential to be less discriminatory, risk-based screening
also has the potential to make screening programmes more efficient. Individu-
als with a very low probability of screening positive have a very low need for
screening, while those with a high probability have a high need. Those with no
probability of screening positive, even if there may be other tangential unintended
benefit (for example screening people without diabetes for diabetic eye disease),
have no need for the screening in question.

In a risk-based screening programme, it would be possible to allocate screening
to all people who have a sufficiently high level of risk to justify screening. If the
current budget is maintained, this would lead to a greater number of true positive
screening outcomes and therefore the achievement of improved health outcomes.
It may also be possible to reduce the budget by carrying out fewer unnecessary
screening tests.
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9.3.2 Limitations as a basis for efficient allocation

There are a number of conditions that must hold in order for risk-based screening
to achieve improvements in technical efficiency. First, there must be sufficient
heterogeneity in the risk of disease onset. Second, the risk calculation engine
must be sufficiently accurate. Third, the individualisation process must be af-
fordable. Finally, there must not be unintended consequences of individualisation
(for example, impact on attendance rates) that could undermine technical effi-
ciency. If these conditions do not hold, the usefulness of this approach is limited.
Context-specific research will be necessary to determine whether screening need
can be used as a basis for efficient allocation of resources.

The simple identification of screening need as individual risk does not address
the question of how much need ought to be met. In practice this question will
be what ought the threshold level of risk be? This discussion relates to decisions
made within a screening programme, rather than decisions between screening
programmes. Because the health impact of screening is entirely dependent on
the effectiveness of treatment — and the individual that could benefit from that
treatment — the distinction between screening need and treatment need cannot
be applied so simply to decisions about to which screening programme resources
should be allocated. In terms of achieving efficiency, the distinction can be used to
achieve technical efficiency; that is, achieving the same outcome (a given number
of true positive screen events) with fewer resources (fewer screening episodes). It
is less informative for questions of productive efficiency — for example, whether
to use a different type of screening test or add a reminder service — or allocative
efficiency – for example, whether to screen for diabetic eye disease or for bowel
cancer.

9.4 Fairness of allocation based on screening need

Justice and fairness are paramount concerns, but the way in which relevant cri-
teria ought to apply in screening differs to the ways they ought to apply to
treatment. High-level resource allocation decisions do not routinely consider in-
dividuals’ characteristics, and decisions are made based on aggregate estimates
of cost-effectiveness. This approach avoids some forms of discrimination (ex-
cept, most notably, in allocations between interventions for specific socioeconomic
groups) and is adopted by NICE in England [315]. Screening programmes do not
adhere to this condition and routinely — and explicitly — discriminate based
on personal characteristics. Herein lies an implicit acknowledgement of a moral
distinction between screening need and treatment need, though there has to date
remained a lack of coherent criteria for rationing.

‘Need’ invokes distributional considerations that limit the use of a ‘capacity to
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benefit’ interpretation of need. If the allocation of resources was based on capacity
to benefit from them then it is possible (perhaps probable) that resources would
be allocated in a way that was not deemed fair. A crude example is that the rich
may have a greater capacity to benefit from treatment due to being better able
to convert health care into health and thus greater resources might be allocated
to the diseases of the rich in a way deemed to be unfair. However, as implicitly
acknowledged by NSC screening programmes in England, these distributional
concerns should not apply to screening as they should to treatment.

9.4.1 ‘NICE’ discrimination

One of the principal concerns when designing risk-based screening programmes
should be to avoid discrimination, despite the apparent widespread use of discrim-
inatory criteria in existing screening programmes. By discrimination we refer to
the practice of reducing or otherwise altering individuals’ access to the benefits
of health care according to their personal characteristics. Possible bases for dis-
crimination include race, gender, age, and lifestyle choices. These personal char-
acteristics may or may not bear relation to the effectiveness or cost-effectiveness
of treatment. The important point is that discrimination occurs when access to
health care differs because of these factors, despite the potential for these groups
to gain the intended benefits. For example, it may be considered discriminatory
to refuse breast screening to women over 60 simply because they have a reduced
capacity to benefit due to a shorter life expectancy than younger women.

It would not be considered discriminatory to refuse to offer diabetic eye screen-
ing to people without diabetes, even if unintended benefits (for example identi-
fication of other non-diabetic eye diseases) are possible. This is because people
without diabetes have zero likelihood of screening positive and therefore zero
screening need.

Allocation of screening according to individual risk is non-discriminatory. The
probability that an individual will screen positive is a supra-personal characteris-
tic that should not hold moral weight with regard to the allocation of health care
resources. Individual characteristics or behaviours might influence their level of
risk, but the characteristics themselves are not directly being used to determine
eligibility. It has also been suggested that risk-based allocations of resources may
be just in terms of Norman Daniels’s prudential lifespan account [316, 317]. That
is, people may be more likely to choose to have preventive measures available to
them — for example, by buying insurance — if their risk is high [318].

Screening need can be determined independently of health effect, which is the
source of moral weight [319]. In order to maintain non-discriminatory allocations
of resources, eligibility for risk-based screening should only be on the basis of
screening need. Decision-makers should not bear the same moral responsibility
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to provide screening to all those with unmet treatment need, because the role of
screening is to provide information rather than direct health improvement. At
the individual level, this information only holds value if a person screens positive.

Risk stratification has been characterised as profiling when it has the potential
to result in less equitable outcomes [320]. So long as the conditions outlined above
hold true, stratification of screening based on individual risk can only result in
fairer allocations of resources. As such, risk stratification in screening should
not be characterised as profiling. Horizontal equity is improved as individuals
with equivalent screening need receive equivalent care, while vertical equity is
improved by the proper reallocation of resources according to screening need.

9.4.2 Non-Pareto improvements

If screening allocation is determined exclusively on the non-discriminatory basis of
individual risk, proportionality can be maintained in the distribution of expected
health care. That is, the expected health benefit of screening can be equal across
all those who are offered screening. In this sense, both equality of outcome and
equality of opportunity are achieved.

However, to move to a screening programme of this nature from current screen-
ing programmes will necessarily result in non-Pareto improvements. That is, some
people who are currently eligible for screening will no longer be eligible. Some
of these people will forego health benefits as a result. While Pareto-optimality
has been identified as a very limited ethical basis for the allocation of resources,
it remains a practical and ethical challenge to deprive people of health care for
which they might previously have been eligible.

9.5 Discussion
Screening programmes are beginning to acknowledge the potential value of strat-
ification using risk calculation engines. There are important ethical implications
of this and further investigation is required. Individual risk should be understood
as an approximation of an individual’s need for screening, and as such screening
should be allocated on this basis. To allocate resources in this way is entirely
within the currently accepted ethical rules governing such decisions. These de-
pend on the specialness of health care, explanations of which, it is worth noting,
have been questioned [321].

The purpose of screening, whether risk-based or otherwise, is to provide infor-
mation in order to make better treatment allocation decisions. It may be possible
to go so far as to identify a moral difference between treating the ill as opposed
to treating the potentially ill, and characterising screening need as an example of
the latter. The generalisability of our approach to other preventive care settings
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may rely on such a distinction, though we consider this to be beyond the scope
of this thesis. Nevertheless, such a distinction is not necessary for the purposes
of identifying who should and who should not be screened for a given disease in
order to achieve technical efficiency, which is the current policy challenge.

Risk-stratified screening programmes raise additional ethical issues, including
data privacy concerns and the need to obtain adequate consent [322]. These will
will require consideration alongside screening need. It is also important to con-
sider that risk assessment — even if performed automatically without additional
human interaction — might loosely be considered to be some form of interven-
tion, and perhaps a form of screening in itself. Therefore, there may be further
ethical challenges to consider in this regard.

Policy-makers should give greater consideration to the current ethical basis
for screening programmes. It is notable that the ethical basis for the allocation of
resources in screening programmes in the UK is not clearly specified. Recognition
of the underlying principles currently adopted will inform the appropriateness
of allocating resources on the basis of screening need in the way that we have
proposed.

Future research should evaluate the extent to which individual risk of disease
onset can be accurately and cost-effectively estimated in the context of specific
screening programmes, and consideration should be given to other ethical chal-
lenges associated with risk-based screening.



Chapter 10

Discussion and conclusions

Summary

The way in which health screening programmes are organised is changing. In
the near future, screening will cease to be a one-size-fits-all service, with both
eligibility for screening and the nature of screening being altered according to
individuals’ characteristics. This change is being driven by both demand-side and
supply-side pressures. On the demand side, the incidence of chronic and long-term
illnesses such as diabetes, cancer, heart disease, and dementia, is growing. On
the supply side, more sophisticated analytical tools, greater computing power,
and more extensive data collection create the potential for precision medicine.
Together, these pressures make individualised screening programmes both more
attractive and more feasible.

These new possibilities present new challenges, some of which we sought to
address in the research reported in this thesis. In particular, the basis for set-
ting risk thresholds — above which an individual should be invited to screening
and below which they should not — needs to be defined, creating a plethora of
practical, theoretical, methodological, and ethical challenges.

The NHS Diabetic Eye Screening Programme has become a test bed for more
sophisticated screening allocation, with the conduct of the ISDR study. It is
possible that the NDESP could become the world’s first national individualised
risk-based universal screening programme. Thus, it is an ideal context in which
to conduct our research and consider the broader decision problem of risk-based
screening.

In this final chapter, we briefly summarise the key findings from our research,
what the study has contributed, and what this means for research, policy, and
future work in this area.

171
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10.1 Summary of findings
The first study reported in this thesis was a review of model-based economic eval-
uations in diabetic retinopathy. We found that cohort state transition modelling
was the most popular approach. We also saw that models tended to be built
using TreeAge software. The structures of models used to evaluate interventions
for diabetic retinopathy are inconsistent. Two key groups were observed – models
based on visual acuity and models based on the level of retinopathy. Further-
more, within each of these groups there is a wide range of states that form the
foundation of model structures.

We found that some models implemented unrealistic assumptions about the
nature of disease progression or treatment pathways. These limitations are prob-
ably borne out of the data that are available to analysts. The selection of pa-
rameters, especially health state utility values, is rarely systematic. There is also
a reliance on baseline disease progression rates from landmark studies conducted
decades ago. This is not easy to overcome because it is no longer possible (in the
UK, for instance) to observe disease progression in a population that does not
receive screening.

In light of some of the limitations identified in the evidence base, we designed
several new studies to collect cost and outcomes data that can be used in model-
based economic evaluations. We collected new data on health-related quality
of life from people attending screening for diabetic retinopathy. In this study,
we found evidence that individuals with background retinopathy tend to report
poorer health-related quality of life than people with no retinopathy. This is
likely to relate to factors other than retinopathy, though some of the difference
could be explained by responses to vision-related questions on the HUI3.

We found that the HUI3 was more sensitive than the EQ-5D-5L to the dif-
ferences between people with and without background retinopathy. In general,
the HUI3 constituted a more sensitive scale in this cohort. However, the HUI3
resulted in poorer quality data, with a relatively high level of missingness. This
is presumably because the HUI3 questionnaire is longer than the EQ-5D-5L, with
more complicated descriptors.

Model-based economic evaluations in diabetic retinopathy should identify
health state utility values in a systematic way, informed by all available evi-
dence. To support this ambition, we conducted a meta-analysis of published
values. We found a great deal of inconsistency in HSUV studies with respect to
the groups being assessed. As with model-based economic evaluations, there was
a conflict between HSUVs derived from groups defined in terms of their level of
disease and groups defined in terms of their level of visual acuity. And, again,
there were many alternative groupings within these categories. A further chal-
lenge was that some studies reported values related to the better-seeing eye while
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others reported values related to the worse-seeing eye. This inconsistency made
it difficult to pool values. We found a small and statistically insignificant impact
associated with background and pre-proliferative DR. The impact of PDR and of
being blind was larger and statistically significant. Our model also demonstrated
the importance of methodological choices in determining HSUVs, and that these
choices can provide more explanatory power than disease level.

Our research also provided new estimates for resource use and costs associated
with the screening and treatment of diabetic retinopathy. Prior to this study, up-
to-date estimates of the cost of screening were not available. Our costing study
found that the average cost of an appointment in Liverpool is £32.03. We also
estimated that the cost of an attended appointment is £26.14, while the cost of a
non-attendance is £15.97. If a societal perspective is adopted, there are further
costs incurred by the patient and through productivity losses, which together sum
to £8.62 per appointment attended.

Treatment for DR can involve a variety of pathways, with most including laser
procedures. We found that many people do not receive treatment within the first
four years after screening positive. Because of this, routine attendance at the
hospital eye service is likely to be a key driver of costs rather than the provision
of treatments. Our analyses show that, while laser is still the dominant treatment
strategy, the use of intravitreal injections is growing. We also show that people
who receive injections receive more procedures than people who receive laser,
with injections being associated with a higher cost per person.

We developed a new decision analytic model to evaluate the cost-effectiveness
of alternative screening programmes for diabetic retinopathy. This model incor-
porated the ISDR risk calculation engine and maintained flexibility while repre-
senting the complexity of disease and treatment pathways within DR. The model
was too computationally expensive within the capabilities of Microsoft Excel and,
as a result, the model could not be run to its desired specification. A reduced
simulation showed that individualised risk-based screening may be cost-saving
and outcome-improving compared with current practice.

Within the context of the ISDR study, and the decision model designed to
evaluate it, a threshold level of risk was set at 2.5%. This was determined on
the basis of acceptability by the patient group involved in the study. We con-
ceived that this threshold could instead be set on the basis of cost-effectiveness.
To support this process, we outlined a simple framework for individualised cost-
effectiveness analysis. We demonstrated that it is possible to estimate an optimal
threshold under some simplifying assumptions. This framework can be used to
estimate a programme-level threshold or to estimate a recall period for an indi-
vidual based on their risk of disease onset.

If we can set a threshold for screening eligibility on the basis of individual risk
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then the question is raised of whether we should. To this end, we outlined the
concept of ‘screening need’ and argued that the output of risk calculation engines
constitutes an approximation of this. Risk-based screening is justifiable on the
grounds that it allocates screening according to need in a way that is in line with
current practice in the allocation of treatment. Further, it is more easily justified
than current screening programmes, which discriminate on the basis of personal
characteristics.

10.2 Contributions of this thesis

In addition to the findings of this thesis contributing to the evidence base, we
have made numerous novel contributions to the literature, which will be valuable
to the research community. These can be broadly categorised as relating to the
curation of existing evidence, the generation of new data, the development of
theory, and the development of methodology.

10.2.1 Curation

The review and synthesis of published literature and data is an important part of
evidence generation. As part of our research, we conducted two literature reviews,
one of decision models and one of health state utility values. We extracted and
organised a large amount of information from these studies, which will be of value
to other researchers in future. For example, researchers can browse our findings
from Chapter 4 to identify the most suitable HSUVs for their context. Without
the information provided by our study, researchers would need to conduct their
own review. This curation thus constitutes a valuable contribution to the research
community.

10.2.2 New data

Our research involved the creation of new data, relating to the costs and out-
comes of screening and treatment for DR. A large sample of people attending
screening for diabetic retinopathy completed questionnaires about their health-
related quality of life and costs associated with their visit. In both cases, these
new data serve to fill a gap in the evidence base that could prove informative to
future evaluative research.

10.2.3 Theory

Risk-based screening is a novel area of research and, as such, has nascent theo-
retical foundations. Our work has strengthened the theory underlying risk-based
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screening in practice and provided grounds for its support. Specifically, we justi-
fied risk-based screening in terms of its capacity to improve the cost-effectiveness
of existing screening programmes. This assertion requires some adjustment to our
understanding of cost-effectiveness analysis, as outlined in this thesis. We also
opened a conversation about the ethics of risk-based screening and developed the
notion of screening need as an ethical basis for its implementation in the UK.

10.2.4 Methodology

Our work has furthered several distinct areas of methodology. By comparing
EQ-5D-5L and HUI3 data in this population, we identified several methodological
issues and demonstrated the importance of the choice of HRQoL instrument. Our
systematic review of HSUVs was at the forefront of methodological development
with respect to literature searching, data extraction and synthesis, and modelling
methods. This work has already informed recommendations in this space [188,
323, 324]. At the time of the research, we were not aware of any decision analytic
models that incorporate a (separately developed) risk calculation engine into
their structure and operation. Our work provides numerous lessons for analysts
working in this area and seeking to develop new methods in this context. We
have also provided a practical method for the identification of thresholds in risk-
based screening. This methodology requires further development and testing but
constitutes a foundation for the definition of risk-based screening programmes in
the future.

10.3 Implications

10.3.1 For research

A theme running through our research is the importance of methodological choices.
With respect to the elicitation of health state utility values, our findings suggest
that researchers should be cautious of using the HUI3 in this context due to poor
completion rates. Our systematic review of HSUVs highlighted the importance of
research design. It is unlikely that consensus will ever be reached on the most ap-
propriate methodology for eliciting HSUVs in this context. Therefore, it is very
important that researchers give careful consideration to the methods adopted.
This applies both to the creation of new HSUV estimates and the selection of
estimates to be used as parameters in a decision model.

Our research showed that identifying costs can be particularly challenging
in a climate of tendering within a publicly-funded health care system, where
information is considered commercially sensitive. Nevertheless, we demonstrated
the potential value of disaggregating costs. In particular, a bottom-up costing
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methodology facilitated the estimation of a cost of non-attendance, which has
not previously been available. Such estimates can be informative in the design of
services and this highlights the value in this research beyond simply identifying
a more precise or accurate estimate of the headline figure. Our research showed
that both screening and treatment pathways have changed over time in a way
that impacts on cost estimates. It is therefore important that researchers use
up-to-date information in evaluative studies.

Cohort simulations are the most popular approach to modelling in the eval-
uation of interventions for diabetic retinopathy. However, cohort simulations
should not be used when evaluating risk-based screening programmes. This is
because the value of risk-based screening lies in the distinction between indi-
viduals. Where models rely on the simulation of a cohort, individuals within
the cohort cannot be adequately differentiated by different states or pathways in
a way that would be feasible. Furthermore, models that seek to incorporate a
complex risk calculation engine should not be built in Microsoft Excel due to the
software’s mathematical limitations. We highlighted a great deal of inconsistency
in the modelling methods used in the context of DR. Diabetic eye disease would
be a good candidate for the development of a reference model (see, for example,
[325]), which incorporates both disease progression and visual acuity and which
is built in a flexible programming language that allows for the incorporation of
risk calculation engines.

Individualised cost-effectiveness analysis is theoretically feasible in the con-
text of risk-based screening. The framework should be tested in a variety of
settings to better understand the assumptions necessary to design optimised risk-
based screening programmes. Both economists and ethicists should consider the
implications of risk-based screening and the application of individualised cost-
effectiveness analysis in this context.

10.3.2 For policy

The successful conduct of the ISDR trial demonstrates that risk-based screening
can be feasible. However, its practicality in other settings, particularly beyond
screening for diabetic eye disease, needs to be explored. For such a programme
to be practical, key infrastructure including data systems and research capacity
will need to be in place. We have framed risk-based screening as part of a process
of the development of screening from a one-size-fits-all service to one that is
optimised on the basis of individual risk. Policy-makers should consider this
supposed policy trajectory and its implications in different contexts.

We have demonstrated that risk-based screening is likely to be cost-effective in
the context of diabetic retinopathy. We have also argued that risk-based screening
could improve the fairness of screening programmes in the UK. Policy-makers
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should consider the extent to which our reasoning aligns with current policy
objectives.

The ISDR study, and hence most of the data used to generate the findings
reported in this thesis, are specific to Liverpool, England. The population studied
may not be representative of the wider UK or international population. Accord-
ing to the Public Health Outcomes Framework, life expectancy and healthy life
expectancy — for both men and women in Liverpool — are both in the lowest
25th percentile for England. There is a high level of unemployment and a large
gap in the employment rate between those with a long-term health condition and
the overall employment rate. Furthermore, across all areas in England, Liverpool
exhibits the lowest proportion of adults meeting the recommended ‘5-a-day’ con-
sumption of fruit and vegetables. Rates of physical activity are low with only
13.2% of people utilising outdoor space for exercise or health reasons, compared
with an English average of 17.9%. However, the rate of recorded diabetes (6%) is
similar to the average for England (6.4%). The rate of sight loss due to diabetic
retinopathy in Liverpool is around 2.2% according to the Public Health Outcomes
Framework for England. Such factors need to be considered when generalising
our findings to other settings.

We were unable to identify certain local arrangements as part of our research.
These may prove important in determining whether risk-based screening is cost-
effective. Decision-makers at the national and local level need to work together
to understand regional heterogeneities and how these could affect the efficiency
and fairness of screening services.

10.4 Conclusion

This thesis has explored the potential for risk-based screening in the context
of diabetic retinopathy. People with diabetic retinopathy report lower levels of
health-related quality of life, with a major impact associated with severe sight
loss. Screening can prevent or postpone sight loss and thus benefit patients. By
estimating individuals’ risks of disease onset, it is possible to identify people who
are most likely to benefit from intervention. Using this information, resources can
be reallocated in a risk-based screening programme such that people with higher
risk are prioritised over people with lower risk. This reallocation of resources
can improve outcomes by identifying disease earlier and providing effective early
intervention. Risk-based screening can also be cost-saving if a high proportion
of people are found to be at low risk and have their screening eligibility limited
accordingly. An optimised risk-based screening programme can be designed on
the basis of cost-effectiveness. We have demonstrated that risk-based screening
could improve outcomes and save costs in the context of diabetic retinopathy and
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that this represents a fair and equitable policy.
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Study and
country

Comparators Perspective Model
type

States / events Time
horizon

Cycle
length

Software

Javitt et al.
(1989) [106]
USA

Screening, follow-up and
treatment as
recommended; no
screening or treatment

Government ISM Background DR; DMO;
PDR; SVL; CAL

Lifetime 1 year Turbo
Pascal

Dasbach et
al. (1991)
[65] USA

Alternative screening
modalities
(ophthalmoscopy;
nonmydriatic fundus
photography; mydriatic
fundus photography) at
alternative intervals
(biannual* ; annual)

Government CST Low-risk DR; high-risk
DR; treated; blind

Lifetime 1 year NR

Fendrick et
al. (1992)
[87] Sweden

Annual screening; no
screening

NR ISM Background DR; DMO;
PDR; SVL; CAL

60 years 1 year NR
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Sculpher et
al. (1992)
[114] UK

GP ophthalmoscopy;
ophthalmic optician
ophthalmoscopy;
non-mydriatic
photography;
ophthalmoscopy +
non-mydriatic
photography; selective
referral of high-risk
people

Societal DT Screening outcome
(true/false
positive/negative)

NR NA NR

Javitt and
Aiello
(1996) [118]
USA

Systematic screening
and treatment; no
screening

Health
insurer

ISM Background DR; DMO;
PDR; SVL; CAL/blind

Lifetime 2 months NR

Wu et al.
(1998) [90]
USA

Intensive treatment;
conventional treatment

HMO CST No DR; any DR 10 years 1 year Microsoft
Excel
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Crijns et al.
(1999) [91]
The
Netherlands

Alternative screening
frequencies

NR CST No DR; DR excluding
both DMO and PDR;
PDR; adequate vision
(<20/40); poor central
and/or peripheral
vision (20/40 or worse,
at least 20/200);
blindness (less than or
equal to 20/200)

Lifetime 3 months NR

Palmer et
al. (2000)
[92]
Switzerland

Conventional/intensive
insulin therapy with no
screening; annual
screening with treatment

Health
insurer

CST No DR; background
DR; PDR; blind

Lifetime 1 year IMIB
TOM

Sharma et
al. (2000)
[93] USA

Grid laser therapy; no
laser

Insurer DT Treatment;
complications

40 years NA TreeAge

Vijan et al.
(2000) [67]
USA

Alternative screening
intervals

Third party
payer

CST No DR; DR1; DR2;
DR3; PDR; DMO;
blind

Lifetime NR NR

Sharma et
al. (2001)
[110] USA

Early or deferred
vitrectomy

Insurer CST Visual acuity (G1–G5) Lifetime
(55 years)

1 year TreeAge
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Polak et al.
(2003) [96]
The
Netherlands

Standard/intensive
glycaemic control;
alternative screening
intervals

NR CST NR Lifetime 3 months NR

Whited et
al. (2005)
[97] USA

Digital
teleophthalmology;
ophthalmoscopy

Government DT PDR; high-risk PDR;
PRP; SVL

1 year NA TreeAge

Scotland et
al. (2007)
[98]
Scotland

Manual grading;
automated grading

NHS DT No/mild DR;
observable DR;
technical failures

1 year NA TreeAge

Scotland et
al. (2010)
[108]
Scotland

Manual grading;
automated grading

NR DT NR 20 years NA NR

Dewan et
al. (2012)
[100] USA

Sham injection + laser;
ranibizumab + prompt
laser; ranibizumab +
deferred laser;
triamcinolone + deferred
laser

Payer ISM NR 10 years 1 month TreeAge
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Mitchell et
al. (2012)
[99] UK

Laser; ranibizumab;
laser + ranibizumab

Healthcare
payer

CST BCVA <26 letters;
BCVA 26–35; BCVA
36-45; BCVA 46–55;
BCVA 56–65; BCVA
66–75; BCVA 76–85;
BCVA 86–100

15 years 3 months NR

Rachapelle
et al.
(2013) [113]
India

No screening; alternative
screening frequencies
(once-in-a-lifetime;
twice-in-a-lifetime;
5-yearly; 3-yearly;
2-yearly; annual)

Provider;
societal

CST No DR; non-STDR;
STDR; CSMO; Blind
from DR

25 years 1 year TreeAge

Stein et al.
(2013) [117]
USA

FLP; FLP +
ranibizumab; FLP +
bevacizumab; FLP +
triamcinolone

NR CST 20/25; 20/32–20/40;
20/50–20/63;
20/80–20/100;
20/125–20/160; 20/200

25 years 1 year TreeAge

Brady et al.
(2014) [101]
USA

Tele-ophthalmology
screening; no screening

Payer DT PDR; no PDR; no
treatment; PRP;
vitrectomy with laser;
vitrectomy with
membrane peel

NR NA TreeAge
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Pershing et
al. (2014)
[111] USA

Laser; intraocular
triamcinolone;
anti-VEGF; laser +
triamcinolone; laser +
anti-VEGF

Societal CST VA 1-6 Lifetime 1 month TreeAge

Kawasaki
et al.
(2015) [107]
Japan

Screening programme;
no screening programme

Payer CST NPDR; severe NPDR;
PDR; high-risk PDR;
CSMO (high VA; low
VA); stabilised DR
(high VA; low VA);
blind

Lifetime
(50 years)

1 year TreeAge

Royle et al.
(2015) [109]
UK

Early PRP for NPDR;
current practice

NHS + PSS CST Moderate NPDR;
severe NPDR; early
PDR; HR-PDR; severe
PDR; (with/without
CSMO; with/without
treatment);
SVI/blindness

30 years 6 months Microsoft
Excel
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Scanlon et
al. (2015)
[30] UK

Alternative screening
recall periods (6; 12; 24;
36; 60 months)

NHS + PSS CST R0M0|R0M0;
R1M0|R0M0;
R1M0|R1M0;
R2/3M0|R0/1M0;
R2/3M0|R2/3M0;
RxM0|RxM1;
RxM1|RxM1

Lifetime 6 months Microsoft
Excel

Wolowacz
et al.
(2015) [103]
UK

Hypothetical NHS + PSS ISM PDR; blind 50 years 1 year Microsoft
Excel

Wu et al.
(2015) [104]
China

No screening; alternative
screening intervals (1–5
years)

Healthcare DES No DR; NPDR; PDR;
DMO; blind

Lifetime
(100
years)

Continuous NR

Table A.1: Details of the modelling structures. DT = decision tree; CST = cohort state transition; ISM = individual sampling model;
DES = discrete event simulation. * Dasbach et al. [65] purport to evaluate biannual screening, but the results imply that they evaluated
biennial screening
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Study Disease
progression

Costs / resource
use

Health outcomes Uncertainty
assessment

Validation

Javitt et al. (1989)
[106] USA

WESDR Medicare
reimbursement

NA One-way NR

Dasbach et al.
(1991) [65] USA

DRS; WESDR Local data NA One-way NR

Fendrick et al.
(1992) [87] Sweden

DRS; ETDRS;
WESDR

NR NA One-way NR

Sculpher et al.
(1992) [114] UK

Local data NHS
reimbursement

NA One-way NR

Javitt and Aiello
(1996) [118] USA

WESDR Medicare
reimbursement

NR One-way NR

Wu et al. (1998) [90]
USA

DCCT Local HMO Local data with
mapping

NR External

Crijns et al. (1999)
[91] The Netherlands

WESDR “official medical
charges”

NA NR NR

Palmer et al. (2000)
[92] Switzerland

DCCT Swiss tariffs NA One-way NR

Sharma et al. (2000)
[93] USA

ETDRS Medicare
reimbursement

Literature (single
study)

One-way NR

Vijan et al. (2000)
[67] USA

DRS; ETDRS Medicare
reimbursement

Literature
(blindness only,
single study)

One-way; PSA NR
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Sharma et al. (2001)
[110] USA

DRVS Medicare
reimbursement

Literature (single
study)

One-way NR

Polak et al. (2003)
[96] The Netherlands

WESDR “medical charges” NA NR NR

Whited et al. (2005)
[97] USA

Literature Assumed NA One-way; PSA NR

Scotland et al.
(2007) [98] Scotland

Local data Assumed NA One-way; PSA NR

Scotland et al.
(2010) [108] Scotland

Local data Assumed Literature PSA NR

Dewan et al. (2012)
[100] USA

Local data Medicare NA One-way External

Mitchell et al.
(2012) [99] UK

WESDR Reference costs Trial One-way; PSA NR

Rachapelle et al.
(2013) [113] India

Literature Local data Local TTO One-way; PSA NR

Stein et al. (2013)
[117] USA

DRCRnet Medicare
reimbursement and
expenditures

Literature (single
study) [148]

One-way; PSA NR

Brady et al. (2014)
[101] USA

Local data Medicare fee
schedule

NA One-way SA; PSA NR
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Pershing et al.
(2014) [111] USA

Expert opinion Medicare
reimbursement and
expenditures

Literature (single
study)

One-way; PSA None (calibration
of disease
progression)

Kawasaki et al.
(2015) [107] Japan

Literature NR Literature (single
study)

One-way; PSA External

Royle et al. (2015)
[109] UK

ETDRS Expert opinion;
reference costs;
literature

literature Multi-way; PSA NR

Scanlon et al. (2015)
[30] UK

Local data Local data Published
literature (single
study)

One-way; PSA NR

Wolowacz et al.
(2015) [103] UK

DCCT/EDIC;
ETDRS

NHS Reference
Costs 2008-9 +
assumptions

CORE PSA Internal and
external

Wu et al. (2015)
[104] China

Prevalence
calibration

Local data Literature One-way, two-way;
PSA

Internal
calibration with
epidemiological
data

Table B.1: Details of the data sources, uncertainty analysis and validation
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Study characteristics
Fill in this part of the form once for each study

*Required

1. First author surname *

2. Publication year *

3. Article title *
 

 

 

 

 

4. Publication name *
e.g. "Diabetologia"

5. Study design
Mark only one oval.

 Clinical decision analysis (e.g. RCT)

 Outcomes study

 Other: 

6. Interventions / comparators
if appropriate

7. Study sample size
Total across all groups

8. Inclusion / exclusion criteria
 

 

 

 

 



9. Response rates
 

 

 

 

 

10. Loss to follow-up
 

 

 

 

 

11. Missing data
What percentage of data were missing and how did the author(s) address this?
 

 

 

 

 

12. Total number of HSUVs reported in paper

HSUV specifics
Fill in this part of the form once for each separately reported HSUV

13. Reported HSUV point estimate type
Mark only one oval.

 Mean

 Median

14. Reported HSUV *

15. Reported measure of variance type
Mark only one oval.

 Standard deviation

 Variance

 Other: 

16. Reported variance statistic



17. Retinopathy state *
as described in the study

18. Maculopathy state
as described in the study

19. Grading system
The retinopathy grading system to which this HSUV relates
Mark only one oval.

 NHS Diabetic Eye Screening Programme (NDESP)

 American Academy of Ophthalmology (AAO)

 Early Treatment Diabetic Retinopathy Study (ETDRS)

 Liverpool Diabetic Eye Study (LDES)

 Scottish Diabetic Retinopathy Grading Scheme (SDRGS)

 Royal College of Ophthalmologists (RCO)

 Other: 

20. Visual function measurement method
Mark only one oval.

 LogMAR

 Snellen

 Other: 

21. Visual acuity/function level

22. Sample size
For reported HSUV

23. Sample country

24. Sample age range

25. Other sample specifics
 

 

 

 

 



26. Valuation method *
Direct or indirect methods
Mark only one oval.

 Standard gamble

 Time trade-off

 Person trade-off

 Discrete choice experiment

 EQ-5D

 HUI3

 SF-6D

 15D

 Mapping algorithm

 Visual analogue scale

 Other: 

27. Valuation source
Mark only one oval.

 Patients

 Public

 Other: 

28. Cooper rank
Refer to Cooper et al (2005)
Mark only one oval.

 1

 2

 3

 4

 5

 6

29. Value set country

30. Upper anchor
Mark only one oval.

 "full health"

 Other: 

31. Lower anchor
Mark only one oval.

 "worst health state imaginable"

 "dead"

 Other: 



Powered by

32. Administration method
Select all that apply
Tick all that apply.

 Face-to-face interview

 Telephone

 Web

 Self-complete

 Proxy

 Other: 

33. Study arm
if applicable
Mark only one oval.

 Treatment

 Control

 Other: 

34. Treatment status
if applicable
Mark only one oval.

 Pre-treatment

 Post-treatment

 Other: 

35. Mapped R0M0 value
Mark only one oval.

 R0M0

 R0M1

 R1M0

 R1M1

 R2M0

 R2M1

 R3M0

 R3M1
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Citation Country Sample
size

HSUVs
reported

Retinopathy states Vision states Valuation
methods

Brown (1999)
[227]

USA 325 5 Any DR BCVA (worse eye): ≤
20/40, BCVA (better
eye): 86–20/25,
20/30–20/50, 20/70,
20/200–20/400

TTO

Brown et al.
(1999) [147]

USA 100 10 Any DR BCVA (better eye):
20/20–25/25,
20/30–20/50,
20/60–20/100,
20/200–20/400, CF-HM

TTO, SG

Brown et al.
(2000) [232]

USA 310 2 Any DR BCVA (better eye):
20/20–20/25, ≤ 20/30

TTO

Brown et al.
(2002) [230]

USA 617 4 Any DR BCVA (better eye):
20/20–25/25,
20/30–20/40,
20/50–20/100, ≤ 20/200

TTO

Chin et al.
(2008) [326]

USA 473 1 NA Blind (both eyes) TTO

Coffey et al.
(2002) [327]

USA 2,048 4 NA Unilateral blindness,
bilateral blindness

QWB-SA
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da Mata et al.
(2016) [328]

Brazil 346 2 No DR, any DR NA EQ-5D
index

Fenwick et al.
(2012) [223]

Australia 577 6 ETDRS / AAO (worse
eye): 13-15 / 10/20, 20
/ 30, 31-41 / 40

≥ 6/12, ≤ 6/12 EQ-5D
index

Fenwick et al.
(2012) [224]

Australia 203 9 ETDRS / AAO (worse
eye): 13-15 / 10/20, 20
/ 30, 31-41 / 40, 51
60-80 / 50

BCVA (better eye): ≥
0.18, 0.18–0.3, 0.3–0.48,
0.48–0.78, ≤ 0.78

VisQoL
index

Godshalk et al.
(2008) [329]

USA 247 3 Any DR NA TTO

Gonder et al.
(2014) [233]

Canada 145 6 DMO BCVA (worse eye):
20/10–20/80,
20/80–20/200, ≤ 20/200

EQ-5D
index, EQ
VAS

Hannula et al.
(2014) [215]

Finland 216 2 No or NPDR, PDR NA 15D

Heintz et al.
(2012) [152]

Sweden 152 108 No DR, BR, PDR,
DMO, blind

BCVA (worse eye):
20/10–20/25,
20/32–20/63,
20/80–20/160, ≤ 20/200

HUI3,
EQ-5D
index, EQ
VAS, TTO

Huang et al.
(2006) [330]

USA 519 1 NA Both eyes: blind TTO
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Huang et al.
(2007) [219]

USA 701 2 Symptomatic, blind Worse eye: blind TTO

Javanbakht et
al. (2012) [213]

Iran 3,472 4 No DR, any DR NA EQ-5D
index, EQ
VAS

Knudsen et al.
(2011) [222]

NR NR 2 DMO BCVA (worse eye):
100–76, 25–0

NR

Kontodimopoulos
et al. (2010)
[331]

Greece 319 6 No DR, any DR NA EQ-5D
index,
SF-6D
index, 15D

Kontodimopoulos
et al. (2013)
[332]

Greece 85 2 NPDR, PDR NA 15D

Lee et al. (2008)
[226]

USA 434 8 NA perfect vision, unilateral
blindness, bilateral
blindness

SG

Lloyd et al.
(2008) [150]

UK 321 33 No DR, any DR BCVA (better eye):
6/6–6/9, 6/12–6/18,
6/24–6/36, 6/60–6/120,
CF-HM

SG, EQ-5D
index, EQ
VAS, HUI3
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Lloyd et al.
(2013) [333]

Multinational 235 4 DMO NA EQ-5D
index, EQ
VAS

Loftus et al.
(2011) [221]

Multinational 260 6 Any DM NA EQ-5D
index

Mitchell et al.
(2012) [99]

Multinational 345 8 DMO BCVA (better eye):
100-86, 85-76, 75-66,
65-56, 55-46, 45-36, 35-26,
25-0

EQ-5D
index

Morgan et al.
(2006) [334]

Wales 4,502 1 Any DR NA EQ-5D
index

Ohsawa et al.
(2003) [229]

Japan 68 2 NA Both eyes: blind SG, VAS

Papadopoulos et
al. (2009) [335]

Greece 183 4 No DR, any DR NA EQ-5D
index, EQ
VAS

Polack et al.
(2015) [216]

India 249 11 Worse eye: No DR,
mild/moderate NPDR,
severe NPDR / PDR,
blind

Both eyes: ≤ 6/60 TTO,
EQ-5D
index

Rachapelle et al.
(2013) [113]

India 249 4 No DR, NPDR, STDR,
blind

≤ 6/60 TTO
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Sakamaki et al.
(2006) [220]

Japan 220 4 Fukuda: ≥ A1, No DR NA EQ-5D
index, EQ
VAS

Sakthong et al.
(2008) [336]

Thailand 303 6 No DR, any DR NA EQ-5D
index

Scanlon et al.
(2014) [164]

Multinational 289 3 DMO BCVA (better eye): ≥ 80,
≤ 60

EQ-5D
index

Sharma et al.
(2003) [231]

Canada 221 5 Any DR BCVA (better eye): ≥
6/7.5, 6/9–6/15,
6/18–6/30, 6/60–6/120,
CF-NLP

TTO

Smith et al.
(2005) [217]

USA 155 4 Worse eye: NPDR,
PDR

BCVA (better eye): ≥
20/40, ≤ 0/40

EQ-5D
index

Sullivan &
Ghushchyan
(2016) [218]

USA 20,705 4 No DR, PDR/CSMO Worse eye: blind EQ-5D
index
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Szabo et al.
(2010) [228]

Canada 98 11 NA BCVA (better eye):
current vision,
20/20-20/40, 20/50-20/80,
20/100-20/160, 20/200 /
CS<21, BCVA (worse
eye): current vision,
>20/200 / CA≥ 21,
<20/200 / CS<21

TTO

Tung et al.
(2005) [214]

Taiwan 406 4 Worse eye: No DR,
NPDR, PDR, blind

≤ 6/60 (blind) TTO

Venkataraman
et al. (2013)
[225]

Singapore 2,601 6 ETDRS: 31 / 63, 41 /
64, 51 / 64, 31 / 63, 41
/ 64, 51 / 64

NA SF-6D
index

Wu et al. (1998)
[90]

USA 143 6 No DR, any DR NA QWB
(SF-36
mapping)

Yeo et al.
(2012) [238]

Wales 621 2 NA (screening
attenders)

NA EQ-5D
index, EQ
VAS

Yeo et al.
(2012) [337]

Wales 198 2 NA (screening
attenders)

NA EQ-5D
index, EQ
VAS

Table D.1: Details of health state utility values
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ISDR Study WS E. A Randomised Controlled Trial. Visit questionnaire Version v2.0 24/01/2014 

Visit questionnaire 

     

Patient E Number 

     

Randomisation Number 

(leave blank at baseline - can be applied after randomisation) 

      

 

Did the patient self-complete?: Yes / No 

 

 

 

This questionnaire is only to be completed by the individual on their first visit to the 

site. 

y y y y 

Patient date of birth 

d d m m 

y y y y 

Date of visit 

d d m m 

   

Patient initials 



 

ISDR Study WS E. A Randomised Controlled Trial. Visit questionnaire Version v2.0 24/01/2014 

We would now like to ask you about your visit to the clinic. If you are unsure about 

an answer, please provide your best estimate. 

1. Which modes of transport did you use in travelling to and from the centre 

today? 

Car  Taxi  Bus / train Hospital transport  Bicycle / on foot  

Other____________________ 

2. If using public transport or taxi, what is the total cost of your return travel? 

£__________          Not applicable  

3. If travelling by car, how many miles is your return journey? 

__________miles         Not applicable  

4. If travelling by car, what is the total cost of parking? 

£__________          Not applicable  

5. How much time did you spend in total on this visit, including preparation, 

travel time and attending? 

__________hours __________minutes 

6. Are you currently in employment?      

Yes  No  

7. Did you take time off work to attend today?    

Yes  No          Not applicable  

8. Did a friend, family member or any other person assist you in attending 

your appointment today?        

Yes  No  

9. Did they take time off work to do so?     

Yes  No          Not applicable  

10. How much time did they spend helping you to attend this visit? 

__________hours __________minutes     Not applicable  
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Appendix F

Decision model VBA code

Sub Full_Simulation ()

Dim a, b, c

Dim shPatA As Worksheet , shRes As Worksheet , shSim As Worksheet , shRan As
Worksheet , shChA As Worksheet , shChB As Worksheet , shChI As Worksheet ,
shPatS As Worksheet , shMod As Worksheet

Set shPatA = ThisWorkbook . Worksheets (" Patient attributes ")
Set shPar = ThisWorkbook . Worksheets (" Parameters ")
Set shRes = ThisWorkbook . Worksheets (" Results ")
Set shSim = ThisWorkbook . Worksheets (" Simulation ")
Set shRan = ThisWorkbook . Worksheets (" Random numbers ")
Set shChA = ThisWorkbook . Worksheets (" Chain_Annual ")
Set shChB = ThisWorkbook . Worksheets (" Chain_Biennial ")
Set shChI = ThisWorkbook . Worksheets (" Chain_ISDR ")
Set shPatS = ThisWorkbook . Worksheets (" Patient sample ")
Set shMod = ThisWorkbook . Worksheets (" Model set -up")

Application . ScreenUpdating = False
Application . Calculation = xlCalculationManual
Application . DisplayStatusBar = False
Application . EnableEvents = False

’ Delete results from ’Results ’
shRes . Range ("G5: AG1004 "). ClearContents

indexE = 0

Do While indexE < Range (" Sim_probs ")

a = Now ()

’ Delete simulations from ’Simulation ’
shSim . Range ("B7: K1175 "). ClearContents

indexI = 0

Do While indexI < Range (" Sim_patients ")

shRan . Calculate
shPar . Calculate

’ Delete patient characteristics in ’Patient attributes ’
shPatA . Range ("C3:C15"). ClearContents
’ Delete patient characteristics in ’Chain_Annual ’
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shChA . Range ("E56:L56"). ClearContents
’ Delete risk and transitions in ’Chain_Annual ’
shChA . Range ("AQ57: CG1256 "). ClearContents
’ Delete risk and transitions in ’Chain_Biennial ’
shChB . Range ("AQ57: CG1256 "). ClearContents
’ Delete risk and transitions in ’Chain_ISDR ’
shChI . Range ("AQ57: CG1256 "). ClearContents

Application . Calculate

’ Assign patient characteristics from ’Patient sample ’ to ’Chain_Annual
’

P = Application . WorksheetFunction . RandBetween (1, 8111)

shChA . Range ("E56:L56"). Value = shPatS . Range ("A2"). Offset (P, 0). Resize
(1, 8). Value

shChA . Calculate

indexA = 0

Do While shChA . Range (" CJ1260 "). Value = 0

shRan . Calculate

’ Assign patient characteristics from ’Chain_Annual ’ to ’Patient
attributes ’

shPatA . Range ("C3:C15"). Value = Application . Transpose ( shChA . Range ("
E56"). Offset (indexA , 0). Resize (1, 13). Value )

shPatA . Calculate

’ Assign risk and transitions from ’Patient attributes ’ to ’
Chain_Annual ’

shChA . Range ("AQ57"). Offset (indexA , 0). Resize (1, 43). Value =
Application . Transpose ( shPatA . Range ("C16:C58"). Value )

shChA . Calculate

indexA = indexA + 1

Loop

’ Assign pay -offs and patient ID from ’Chain_Annual ’ to ’Simulation ’

shSim . Range ("B7"). Offset (indexI , 0). Resize (1, 4). Value = shChA . Range ("
CK1260 : CN1260 "). Value

indexB = 0

Do While shChB . Range (" CJ1260 "). Value = 0

shRan . Calculate

’ Assign patient characteristics from ’Chain_Biennial ’ to ’Patient
attributes ’

shPatA . Range ("C3:C15"). Value = Application . Transpose ( shChB . Range ("
E56"). Offset (indexB , 0). Resize (1, 13). Value )

shPatA . Calculate
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’ Assign risk and transitions from ’Patient attributes ’ to ’
Chain_Biennial ’

shChB . Range ("AQ57"). Offset (indexB , 0). Resize (1, 43). Value =
Application . Transpose ( shPatA . Range ("C16:C58"). Value )

shChB . Calculate

indexB = indexB + 1

Loop

’ Assign pay -offs and patient ID from ’Chain_Biennial ’ to ’Simulation ’
shSim . Range ("F7"). Offset (indexI , 0). Resize (1, 3). Value = shChB . Range ("

CL1260 : CN1260 "). Value

indexC = 0

Do While shChI . Range (" CJ1260 "). Value = 0

shRan . Calculate

’ Assign patient characteristics from ’Chain_ISDR ’ to ’Patient
attributes ’

shPatA . Range ("C3:C15"). Value = Application . Transpose ( shChI . Range ("
E56"). Offset (indexC , 0). Resize (1, 13). Value )

shPatA . Calculate

’ Assign risk and transitions from ’Patient attributes ’ to ’
Chain_ISDR ’

shChI . Range ("AQ57"). Offset (indexC , 0). Resize (1, 43). Value =
Application . Transpose ( shPatA . Range ("C16:C58"). Value )

shChI . Calculate

indexC = indexC + 1

Loop

’ Assign pay -offs and patient ID from ’Chain_ISDR ’ to ’Simulation ’

shSim . Range ("I7"). Offset (indexI , 0). Resize (1, 3). Value = shChI . Range ("
CL1260 : CN1260 "). Value

indexI = indexI + 1

Loop

Application . Calculate

’ Assign results from ’Simulation ’ to ’Results ’

shRes . Range ("G5"). Offset (indexE , 0). Resize (1, 2). Value = Application .
Transpose ( shSim . Range ("C3:C4"). Value )

shRes . Range ("I5"). Offset (indexE , 0). Resize (1, 2). Value = Application .
Transpose ( shSim . Range ("D3:D4"). Value )

shRes . Range ("K5"). Offset (indexE , 0). Resize (1, 2). Value = Application .
Transpose ( shSim . Range ("E3:E4"). Value )

shRes . Range ("M5"). Offset (indexE , 0). Resize (1, 2). Value = Application .
Transpose ( shSim . Range ("F3:F4"). Value )
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shRes . Range ("O5"). Offset (indexE , 0). Resize (1, 2). Value = Application .
Transpose ( shSim . Range ("G3:G4"). Value )

shRes . Range ("Q5"). Offset (indexE , 0). Resize (1, 2). Value = Application .
Transpose ( shSim . Range ("H3:H4"). Value )

shRes . Range ("S5"). Offset (indexE , 0). Resize (1, 2). Value = Application .
Transpose ( shSim . Range ("I3:I4"). Value )

shRes . Range ("U5"). Offset (indexE , 0). Resize (1, 2). Value = Application .
Transpose ( shSim . Range ("J3:J4"). Value )

shRes . Range ("W5"). Offset (indexE , 0). Resize (1, 2). Value = Application .
Transpose ( shSim . Range ("K3:K4"). Value )

shRes . Range ("Y5"). Offset (indexE , 0). Resize (1, 9). Value = shSim . Range ("L3:T3
"). Value

Application . Calculate

indexE = indexE + 1

b = Now ()
c = (b - a) / Range (" Sim_patients ")
shMod . Range ("C12") = c

Loop

Application . Calculation = xlCalculationAutomatic
Application . ScreenUpdating = True
Application . DisplayStatusBar = True
Application . EnableEvents = True

ThisWorkbook . Close Savechanges := True

End Sub
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