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When analyzing important classes of complex interconnected systems, link directionality can hardly be
neglected if a precise and effective picture of the structure and function of the system is needed. If community
analysis is performed, the notion of “community” itself is called into question, since the property of having
a comparatively looser external connectivity could refer to the inbound or outbound links only or to both
categories. In this paper, we introduce the notions of in-, out-, and in-/out-community in order to correctly
classify the directedness of the interaction of a subnetwork with the rest of the system. Furthermore, we extend
the scope of community analysis by introducing the notions of in-, out-, and in-/out-pseudocommunity. They
are subnetworks having strong internal connectivity but also important interactions with the rest of the system,
the latter taking place by means of a minority of its nodes only. The various types of (pseudo-)communities
are qualified and distinguished by a suitable set of indicators and, on a given network, they can be discovered
by using a “local” searching algorithm. The application to a broad set of benchmark networks and real-world
examples proves that the proposed approach is able to effectively disclose the different types of structures above
defined and to usefully classify the directionality of their interactions with the rest of the system.
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I. INTRODUCTION

Networks are becoming more and more important for
modeling, analyzing, and controlling large-scale complex
systems [1–5]. The availability of effective methods and
algorithms is crucial to disclose their main structural features,
a fundamental step to understanding a number of static and
dynamic properties, such as functional roles, robustness to
failures, spreading dynamics, or collective behaviors.

One of the most studied problems concerning network
structure is community analysis, which is aimed at revealing
possible subnetworks (i.e., groups of nodes called communi-
ties, clusters, or modules) characterized by comparatively large
internal connectivity, namely whose nodes tend to connect
much more with the other nodes of the group than with the rest
of the network. A huge number of contributions have explored
the theoretical aspects of community analysis and proposed
a broad set of algorithms for community detection [6]. Most
notably, community analysis has revealed to be a powerful
tool for deeply understanding the properties of a number of
real-world complex systems in virtually any field of science,
including biology [7], ecology [8], economics [9], information
[10,11], and social sciences [12,13].

Despite the extremely large number of contributions on
community analysis in general, only limited effort has been
done on directed networks [14–18]. It is true that several
methods, naturally designed for undirected networks, lend
themselves to be automatically applied to directed networks
with no modifications (e.g., Ref. [19]) and that others can
be straightforwardly extended (e.g., Ref. [20]). But rarely the
very meaning of community is discussed in the new context,
although the link directionality calls into question basic notions
such as internal versus external connectivity of a subnetwork,
not to mention the effectiveness of algorithms which were not
purposely designed.
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Yet, when considering several classes of complex inter-
connected systems, directedness can hardly be neglected if
one wants to get a realistic picture of the structure and
functioning of the system. Examples can be found in many
fields, including biogenetics [21], neural sciences [22], natural
resource management [23], transportation systems [24], and
information sciences [25], just to name a few. The abundance
of real-world examples of directed networks has stimulated
theoretical developments, too, specifically those oriented to
highlighting the properties of this class of networks and con-
trasting them with those of the simpler undirected counterpart
(e.g., Refs. [26,27]). For all the above reasons, it follows that
community analysis in directed networks is an issue that still
needs to be explored in detail.

Several methods for community analysis are based on
information processing related to a random walker: examples
include Infomap [28], Linkrank [18], Stability [19], and
lumped Markov chains [29], among others. The standard
model is the following: at each (discrete) time step, the walker
which is in node i randomly selects one of the out-links
i → j with a probability proportional to the link weight and,
accordingly, follows the selected out-link to reach the neighbor
j . The induced notion of community is that of a subnetwork
with a large escape time, i.e., such that the walker at each step
has a large probability of remaining within the subnetwork.
If the network is directed, however, this approach introduces
a bias in that such a community has surely weak out-links
towards the rest of the network, but it might have strong
in-links, too, i.e., links with large weights pointing from the
outside towards the community. For example, think about the
network of trades among countries, where the weight of i → j

is the monetary value of the export from country i to country
j . According to the above standard notion, the countries of
a strongly significant community would export much more
within the community rather than outside. But this does not
exclude that they might have large import flows from the
outside, which is in contrast with the idea of a community
as a set weakly connected to the rest of the network. This
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calls for the new, distinct notions of out- and in-community:
The former is a subnetwork whose nodes direct most of their
out-strength to nodes lying within the community rather than
to the rest of the network, whereas the latter is such that nodes
receive most of their in-strength from within the community
rather than from the outside. A subnetwork with both features
will be denoted as in-/out-community.

The other new notion introduced by this paper is that of
pseudocommunity. Several case studies reveal the existence of
peculiar structures, namely “starlike” subnetworks, in which
most of the nodes direct most of their out-strength within
the subnetwork (often towards a single “central” node), but a
few of them (typically the “central” node only) mainly direct
their out-strength to the outside. Examples are found in the
worldwide air transportation network, where regional “hubs”
collect all the traffic originating from domestic airports and
forward it to the rest of the world, or in the trade web of
specific commodities, where a leading country monopolizes
the purchase of raw material from many producers and
exports finished products to the rest of the world (see Sec. V
for details on these and other examples). In a subnetwork
with such features, a random walker has a small escape
time due the large out-strength from the “central” node to
the outside: the subnetwork cannot therefore be qualified
as a (out-)community. Yet such a structure is worth being
revealed and classified, since it has a special form of strong
intraconnectivity: We will denote it as out-pseudocommunity.
An in-pseudocommunity will be a subnetwork where most of
the nodes receive most of their in-strength from the community
rather than from the rest of the network, but a few nodes have
instead a large in-strength from the outside. A subnetwork with
both features will be denoted as in-/out-pseudocommunity.

Two indicators will be used to quantify the out-properties of
a subnetwork S, namely the persistence probability αS and the
average internal strength βS . Their values will be used to pos-
sibly classify S as out-community or out-pseudocommunity.
Another two indicators α′

S and β ′
S will be used to quantify the

in-properties of S and to possibly classify it as in-community or
in-pseudocommunity. If we combine the in- and out-features,
namely we consider the value of the 4-tuple (αS,βS,α

′
S,β

′
S),

we discover that a directed network can contain eight different
nontrivial types of structures, i.e., subnetworks with peculiar
properties: out-community; in-community; in-/out-community;
out-pseudocommunity; in-pseudocommunity; in-/out-
pseudocommunity; in-pseudocommunity/out-community;
in-community/out-pseudocommunity. Each one of them
corresponds to a specific combination of in-/out- as well as
intra-/interconnectivity.

Having defined the types of structures we are interested in,
we need an algorithm to discover them in a given network. We
use a local approach, similar in spirit to a few recent proposals
[30–32], namely an algorithm that, starting from each node,
is aimed at finding the smallest (pseudo-)community which
is, at the same time, significant (as measured by the above
indicators) and locally maximal (i.e., it is worsened by any
further node inclusion). Differently from many community
analysis methods, this algorithm does not yield a partition
of the network, i.e., a node might be not included in any
structure. This seems perfectly reasonable, however, as it
is not uncommon to discover strongly connected groups

of nodes even in networks which, overall, do not possess
a definite clusterized structure. Forcing a partition in such
networks places side by side high- and low-quality clusters,
often without the capability of discriminating among them.
On the other hand, the above algorithm highlights significant
structures only and fully allows for overlapping, as one node
may belong to more than one (pseudo-)community. But there
is also a “second level” of overlapping, remarkably, since a
node could be at the same time part of structures of different
types, e.g., an out-community and an in-pseudocommunity,
sharing these memberships with different sets of partners (see
examples in Sec. V).

The paper is organized as follows. First, we formally
introduce and discuss the notions of in-/out-communities
and in-/out-pseudocommunities, illustrating them with the
help of simple networks. Then we propose an algorithm
for finding the eight types of structures in a given network.
Finally, to demonstrate the power of the method, we analyze a
large number of benchmark and real-world networks: Several
examples of the structures that are discovered are discussed
in detail, proving that the proposed methodology has the
capability of revealing structures undetected by previously
available approaches (e.g., pseudocommunities) or to classify
them more effectively (e.g., clarifying their role of in-, out-, or
in-/out-communities).

II. COMMUNITIES AND PSEUDOCOMMUNITIES

Consider a directed, weighted network with nodes N =
{1,2, . . . ,n} and weight matrix W = [wij ], i.e., wij > 0
denotes the weight of the link i → j , which is set to 1
when the network is binary (i.e., unweighed), while wij = 0
if the link i → j does not exist. Denote by s in

i = ∑
j wji and

sout
i = ∑

j wij , respectively, the in- and out-strength of node
i, which reduce to the in- and out-degree if the network is
binary. We set wii = 0 for all i, namely we remove self-loops,
if any. This does not affect the internode connectivity, which
will be quantified by a pair of indicators that would otherwise
be distorted (see below).

A n-state discrete-time Markov chain can be associated to
the network in a standard fashion. For that, we denote by pij =
wij/s

out
i the probability that, at each time step, a random walker

which is in node i jumps to j , so the probability πi,t of finding
the walker in node i at time t is governed by πt+1 = πtP ,
with πt = (

π1,t π2,t . . . πn,t

)
and P = [pij ]. We assume, for

the moment, that the network is strongly connected [2,3] (we
will remove this assumption later). This implies that P is an
irreducible matrix, so the stationary probability distribution
π = πP is unique and strictly positive (πi > 0 for all i) [33]:
Its entry πi is the fraction of time steps spent by the random
walker, in the long run (t → ∞), on node i.

Let us denote by S the subnetwork formed by a subset NS ⊂
N of the nodes of the original network and by all the links of
the latter connecting pairs of nodes of S (induced subgraph).
Subnetworks are candidates to be (pseudo-)communities, so
we need a set of suitable indicators to quantify their features.

The first of such indicators is the persistence probability
αS : It is the probability that a random walker, which is in any
of the nodes of S at time t , remains in S at time t + 1. If we
assume that the Markov chain πt+1 = πtP is in the stationary
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FIG. 1. (Color online) (a) A subnetwork S with large persistence
probability αS (community) and (b) a subnetwork S with large
average internal strength βS but small persistence probability αS

(pseudocommunity). The values of pij = wij /s
out
i are shown on the

graph.

state π , then we have [29]

αS =
∑

i∈NS

πi

�S

∑

j∈NS

pij =
∑

i∈NS

πi

�S

∑

j∈NS

wij

sout
i

, (1)

where �S = ∑
i∈NS

πi is the aggregated stationary probability
of the subnetwork S. The persistence probability αS is a
measure of cohesiveness of S [indeed, the expected escape
time from S is (1 − αS)−1] and it proved to be an effective
tool for the structural analysis of networks [29,34]. As it is
apparent from (1), αS is a convex combination of the fraction
of the out-strength of the nodes of S that is directed within
S: The coefficient of the term i is the (normalized) stationary
probability πi , a well-known measure of centrality of node i

[3]. Figure 1(a) shows a five-node subnetwork where, due to
the balance of internal and external weights, a random walker
has a large probability of circulating for long before exiting:
indeed αS � 0.8, since 0.8 is the minimal value, over all five
nodes, of the fraction

∑
j∈NS

wij /s
out
i . Notice that the exact

value of αS cannot be computed without knowing π , hence, the
entire network. As we will discuss precisely in the following,
subnetworks qualified as communities will be characterized by
large values of αS . Notice that, having ruled out self-loops, αS

only depends on the internode connectivity.
Measuring the persistence probability alone may fail to

reveal some interesting structures in the network. The sub-
network S of Fig. 1(b) is a case in point: Due to the large
probability of escaping from the central node, αS is likely to
be small. Yet the structure appears to be definitely interesting
and worth revealing. We try to capture it by associating a
second indicator to S, which we call average internal strength
βS ,

βS = 1

nS

∑

i,j∈NS

pij =
∑

i∈NS

1

nS

∑

j∈NS

wij

sout
i

, (2)

where nS is the number of nodes of S. The quantity 0 � βS � 1
is simply the arithmetic mean, over the nodes of S, of the
fraction of the out-strength directed internally to S (we recall
that αS is a weighted mean of the same quantities). Thus βS

will be large when most of the nodes of S direct most of
their out-strength within S, although a few others could do the
opposite, yielding a small αS : This is the case of the subnetwork
of Fig. 1(b), which has βS = 0.84, whereas αS could be as
small as 0.2. We define pseudocommunity a subnetwork which

FIG. 2. (Color online) Each subnetwork S is mapped into a point
in the unit square of the (αS,βS) plane. Points ε close to the (1,1)
vertex are ε communities, whereas points ε close to the (0,1) vertex
are ε pseudocommunities.

has small αS but large βS . Indeed, it is not a community in the
usual sense (i.e., with strong intra- and weak interconnectivity)
but it has nonetheless a special form of strong intraconnectivity,
as most of the nodes have their most important connections
inside the subnetwork rather than outside. We will encounter
several pseudocommunities in the case studies of Sec. V.

Once αS and βS are defined, each subnetwork S can be
represented by a point in the unit square [0,1] × [0,1] of the
plane (αS,βS) (see Fig. 2). When this point falls close to one of
the vertices of the square, we have the most interesting cases
for the classification of S as follows:

(i) (αS,βS) → (1,1): most of the nodes of S, including
those with large centrality πi , direct internally most of their
out-strength: S is a community.

(ii) (αS,βS) → (0,1): most of the nodes of S, but not those
with largest centrality πi , direct internally most of their out-
strength: S is a pseudocommunity.

(iii) (αS,βS) → (1,0): βS → 0 reveals that most of the
nodes direct externally most of their out-strength (with the
exception of a few nodes where the centrality πi concentrates,
hence, αS → 1): as it is not cohesive, this subnetwork is
therefore not interesting for (pseudo-)community analysis (we
also anticipate that structures like this are never found in
real-world case studies).

(iv) (αS,βS) → (0,0): in this trivial case, S is a subnetwork
with no special properties.

In practice, a quality threshold ε > 0 is needed to analyze
and classify a concrete subnetwork: we will define S as an ε

community when

‖(αS,βS) − (1,1)‖∞ � ε, (3)

namely when αS � 1 − ε and βS � 1 − ε. Similarly, we will
define S as an ε pseudocommunity when

‖(αS,βS) − (0,1)‖∞ � ε, (4)

namely when αS � ε and βS � 1 − ε. Geometrically, con-
straints (3) and (4) define two square regions in the (αS,βS)
plane, close to the respective vertices of the unit square (Fig. 2).
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A. In- and out- (pseudo-)communities

The indicators so far introduced are biased on the properties
of out-connectivity of the subnetwork S. This is a consequence
of the definition of the random walk dynamics, which defines
pij as a function of the out-strength sout

i . In other words, αS and
βS try to capture whether the nodes of S “influence” mostly the
other nodes of S, rather than the rest of the network. Obviously,
it would equally be interesting to know whether they are also
mostly “influenced” by the other nodes of S rather than by
the external nodes. Since the network is directed, the two
properties are fully independent. Think, for example, about
the world trade network: The quantities αS and βS tell us
whether the countries of a given set export preferentially within
the set itself but give us no information on whether also the
import flow comes preferentially from countries of the same
set or from the outside. This calls for a definition of suitable
indicators of in-connectivity.

First, we rename αS and βS as out-persistence probability
and out-average internal strength, respectively. Now the most
natural way to define the corresponding in- indicators α′

S and
β ′

S is to reverse the direction of each link in the original network
and then to define the new indicators by using, on this new
network, the same definitions used above for αS and βS . This
means considering the network defined by the weight matrix
W ′ = WT , so the random walker dynamics is now governed
by the Markov matrix P ′ = [p′

ij ], with p′
ij = wji/s

in
i (notice

that P ′ �= P T ).
Revisiting now the definitions of the previous section, we

will say that S is an out-community when (αS,βS) → (1,1),
whereas it is an out-pseudocommunity when (αS,βS) → (0,1).
We will say that S is an in-community when (α′

S,β
′
S) → (1,1),

whereas it is an in-pseudocommunity when (α′
S,β

′
S) → (0,1).

But obviously each subnetwork should be contemporarily
characterized by its in and out attributes. To get a complete
picture, thus, we have to associate the 4-tuple (αS,βS,α

′
S,β

′
S)

to S and assess whether it is close to special vertices or edges
of the unit tesseract, i.e., the unit hypercube [0,1]4. As a matter
of fact, by extending the discussion of the previous section we
arrive at the definition of eight possible types of structures
of interest for (pseudo-)community analysis (summarized in
Fig. 3) as follows:

(αS,βS,α
′
S,β

′
S) → (1,1,−,0): out-community

(αS,βS,α
′
S,β

′
S) → (−,0,1,1): in-community

(αS,βS,α
′
S,β

′
S) → (1,1,1,1): in-/out-community

(αS,βS,α
′
S,β

′
S) → (0,1,−,0): out-pseudocommunity

(αS,βS,α
′
S,β

′
S) → (−,0,0,1): in-pseudocommunity

(αS,βS,α
′
S,β

′
S) → (0,1,0,1): in-/out-pseudocommunity

(αS,βS,α
′
S,β

′
S) → (1,1,0,1): in-pseudocommunity/out-com-

munity

(αS,βS,α
′
S,β

′
S) → (0,1,1,1): in-community/out-pseudoco-

mmunity.

In the above list, a dash indicates that the value of the
corresponding quantity is irrelevant since, as discussed above,
S has no out-relevance [respectively, in-relevance] when the
pair (αS,βS) [respectively, (α′

S,β
′
S)] tends either to (0,0) or to

(1,0).

FIG. 3. (Color online) A projection of the unit tesseract, i.e., the
unit hypercube [0,1]4. (Pseudo-)communities are found when the
4-tuple (αS,βS,α

′
S,β

′
S) is close to one of the four vertices or to one

of the four edges highlighted in the figure (I = in, O = out, C =
community, P = pseudocommunity).

We point out that, in the above definitions (and throughout
the paper), the slash symbol denotes that both qualifiers
apply. Thus, for instance, “in-/out-community” means that
S is both “in-community” and “out-community,” and “in-
pseudocommunity/out-community” means that S is both “in-
pseudocommunity” and “out-community.”

Finally, we say that S is an ε “structure”, where the
term “structure” denotes one of the eight types of (pseudo-)
communities above defined, if (αS,βS,α

′
S,β

′
S) has (max-)

distance φS not larger than ε from the relevant vertex or edge
of the unit hypercube, i.e.,

ε out-community:
φoc

S = ‖(αS,βS,α
′
S,β

′
S) − (1,1,−,0)‖∞ = max{1 − αS,

1 − βS,β
′
S} � ε

ε in-community:
φic

S = ‖(αS,βS,α
′
S,β

′
S) − (−,0,1,1)‖∞ = max{βS,1 − α′

S,

1 − β ′
S} � ε

ε in-/out-community:
φioc

S = ‖(αS,βS,α
′
S,β

′
S) − (1,1,1,1)‖∞ = max{1 − αS,

1 − βS,1 − α′
S,1 − β ′

S} � ε

ε out-pseudocommunity:
φ

op
S = ‖(αS,βS,α

′
S,β

′
S) − (0,1,−,0)‖∞ = max{αS,

1 − βS,β
′
S} � ε

ε in-pseudocommunity:
φ

ip
S = ‖(αS,βS,α

′
S,β

′
S) − (−,0,0,1)‖∞ = max{βS,α

′
S,

1 − β ′
S} � ε

ε in-/out-pseudocommunity:
φ

iop
S = ‖(αS,βS,α

′
S,β

′
S) −,(0,1,0,1)‖∞ = max{αS,1 − βS,

α′
S,1 − β ′

S} � ε

ε in-pseudocommunity/out-community:
φ

ipoc
S = ‖(αS,βS,α

′
S,β

′
S) − (1,1,0,1)‖∞ = max{1 − αS,

1 − βS,α
′
S,1 − β ′

S} � ε

ε in-community/out-pseudocommunity:
φ

icop
S = ‖(αS,βS,α

′
S,β

′
S) − (0,1,1,1)‖∞ = max{αS,

1 − βS,1 − α′
S,1 − β ′

S} � ε.

It is worthwhile to mention that our φS’s generalize and
extend, in many directions, previous proposals for quantifying
the cohesiveness of S. With reference to undirected binary
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networks, Radicchi et al. [35] defined community in a weak
sense a set S of nodes whose connections within S are
more than those outside S: a very mild requirement for a
baseline level of significance. It can easily be verified that
this corresponds to αS > 0.5. Equivalent notions (e.g., the
normalized cut of S, Ref. [6], p. 92) are used by traditional
graph partition techniques or, more recently, by local commu-
nity detection algorithms [36]. Our generalization operates in
many directions. First, we extend the scope of application to the
general case of directed, weighted networks and, consequently,
we separately assess the in- and out- cohesiveness of S.
Second, we introduce a new indicator, βS , which is truly
independent of αS and, as such, allows us to enhance the
analysis of the internal versus external link balancing. Third,
we allow a flexible selection of the quality (i.e., cohesiveness)
of (pseudo-)communities through ε, instead of having it rigidly
fixed as in the above-recalled definition. In this respect, it is
natural to set ε not larger than 0.5 to generalize the notion
of community in a weak sense (e.g., for in-/out-communities,
accepting that φS > 0.5 could mean αS < 0.5). This means
that φS � 0.5 is a minimal requirement for significance, which
can, however, possibly be strengthened by fixing lower values
of ε. In the following (Secs. IV and V) we will see that fixing
ε does not affect the (pseudo-)community detection procedure
but allows a selection a posteriori among the set of identified
(pseudo-)communities.

B. Nonconnected networks

So far we have assumed the strong connectedness of the
network, namely the existence of a directed path i → j for any
node pair (i,j ). This guarantees that πi is univocally defined
and positive for any node i, which is necessary to have αS

well defined for any possible subnetwork S. Several real-world
networks turn out not to have this property, and restricting the
analysis to the sole strongly connected component could lead
to overlooking interesting structures. Consider, for instance,
the subnetwork S of Fig. 4: We would spontaneously tend
to classify it as an out-pseudocommunity, since the escape
time of a random walker is surely small but, on the other
hand, four nodes of five direct all their out-strength within
the subnetwork itself. Indeed, βS = 0.8, but αS is not defined
since �i∈Sπi = 0. Or consider again Fig. 4 but reverse all the
directions: Then almost all nodes receive all their in-strength

FIG. 4. (Color online) A subnetwork S with zero aggregated
stationary probability (�i∈Sπi = 0): The persistence probability αS

cannot be defined.

from inside S, but here the random walk dynamics is not
even well defined because there are nodes with no out-links
(“dangling nodes”).

The simplest way to cope with this issue is to adopt the well-
known approach used in the PageRank computation [3,37],
namely to virtually transform the network into a strongly
connected one by introducing a teleportation mechanism that,
at each time step, with probability 1 − γ moves the random
walker towards a node uniformly chosen. This approach has
several drawbacks, however, which can be summarized in a
strong sensitivity to γ [37]. Here we adopt a recent proposal,
denoted unrecorded link teleportation [38], which modifies
the standard scheme in two aspects: first, the probability of
being teleported to node i is proportional to the out-strength
sout
i (this is essentially equivalent to selecting a link at random

instead of a node); second, only steps along original links, and
not teleportations, are recorded in the transitions rate among
nodes. As extensively verified on benchmark and real-world
networks [38], this computational scheme proves dramatically
robust in our framework, namely when the random walker
dynamics is at the basis of a community detection method.

The procedure is as follows (see Ref. [38] for detailed
motivations and analysis). First, the preference vector is
defined as v = (sout

1 sout
2 . . . sout

n )/
∑

i s
out
i , and possible zero

rows of P (corresponding to dangling nodes, i.e., sout
i = 0) are

replaced by v, to have a well-defined random walk dynamics.
Then, the dynamics with teleportation is defined by a Markov
matrix P̃ = [p̃ij ] defined by

p̃ij = γpij + (1 − γ )v[i], (5)

where v[i] is obtained from v by letting vi = 0 (to avoid
self-loops) and renormalizing to have sum 1. The stationary
distribution π , to be used together with P in computing the
persistence probabilities (1), is finally given by π = π̃P ,
where π̃ = π̃ P̃ is the stationary solution of the dynamics
with teleportation (5). To summarize, if the original network
is strongly connected, we let γ = 1, leaving it unaltered.
Otherwise, we set γ to the standard value 0.85 [37]: As
extensively verified in Ref. [38] and confirmed by our
experiments, the results of community detection are largely
insensitive to rather broad variations of γ in the neighborhood
of this value.

C. Examples

The toy network of Fig. 5(a) was proposed by Rosvall and
Bergstrom [28] to highlight the different results obtained by
their Infomap method (based on random walk dynamics) and
by modularity optimization on directed networks [16]. The
former approach identifies the four-node “ring” subnetworks
(e.g., {1,2,3,4}) as the most significant ones, due to their larger
escape time, whereas the latter prefers four-node “inter-ring”
subnetworks (e.g., {1,2,7,8}) because of the larger internal
weight. Our classification, which is based on random walk
dynamics, too, consistently favors the “ring” subnetworks
(φioc

S = 0.33) over the “inter-ring” ones (φioc
S = 0.42) if they

are assessed as in-/out-communities.
If we reverse the direction of half of the “inter-ring”

links [Fig. 5(b)], we obtain that two of the “ring” sub-
networks ({1,2,3,4} and {9,10,11,12}) have rather large
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FIG. 5. (Color online) Five networks designed to clarify the definitions and properties of communities and pseudocommunities. In (a) and
(b), “inter-ring” links have a weight that is double that of “intraring” links. Network (a) has four in-/out-communities (the four-node “ring”
subnetworks). Network (b), which has four links reversed with respect to (a), has two in-communities ({1,2,3,4} and {9,10,11,12}) and two
out-communities ({5,6,7,8} and {13,14,15,16}). In (c) and (d), nodes can be classified as “leaders” (nodes 1, 7, 13, 19) and “followers.”
Leader-leader links have a weight that is 20 times larger than that of leader-follower and follower-leader links. Network (c) has four in-/out-
pseudocommunities (the four leader-followers subnetworks). Network (d), where leader-followers links have been removed in one direction, has
two in-pseudocommunities ({1,2, . . . ,6} and {19,20, . . . ,24}) and two out-pseudocommunities ({7,8, . . . ,12} and {13,14, . . . ,18}). In (e), link
7 → 1 has a weight that is 20 times larger than that of all the others. The network has an in-community/out-pseudocommunity ({7,8, . . . ,12})
and an in-pseudocommunity/out-community ({1,2, . . . ,6}).

out-connectivity but no in-connectivity, while the other two
({5,6,7,8} and {13,14,15,16}) have opposite properties. As a
consequence, the former can be qualified as in-communities
(they have φic

S = 0.33, while φoc
S and φioc

S are as large as
0.96 and 0.67, respectively) and the latter as out-communities.
To find significant in-/out-communities in this network, we
must glue together two “rings”: for example, {1,2, . . . ,8} has
φioc

S = 0.18 (while, e.g., {1,2,3,4} alone has φioc
S = 0.67).

The networks of Figs. 5(c) and 5(d) are instead proposed to
highlight the different forms of pseudocommunity. In Fig. 5(c),
the four subnetworks of the type “leader + followers” (e.g.,
node 1 with {2,3,4,5,6}) can be classified as significant in-/out-
pseudocommunities. Indeed, they have large average internal
strength βS = β ′

S = 0.85 but small persistence probability
αS = α′

S = 0.14 (thus φ
iop
S = 0.15), because of the large

weight of the link connecting the leader with the rest of the
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network. In Fig. 5(d), where the links between the leader
and followers are removed in one direction, two of these
subnetworks ({1,2, . . . ,6} and {19,20, . . . ,24}) become in-
pseudocommunities, with φ

ip
S = 0.19, while the others become

out-pseudocommunities.
Finally, the network of Fig. 5(e) highlights the two hybrid

types of structure. Due to the large weight of the link 7 → 1
escaping from the right-hand half (nodes {7,8, . . . ,12}), this
latter subnetwork has small αS = 0.33, although βS is as
large as 0.87. It is therefore an out-pseudocommunity but,
at the same time, it is strongly cohesive from the in- point
of view, since α′

S = 0.91, β ′
S = 0.97. Thus φ

icop
S = 0.33,

which qualifies the subnetwork as a rather significant in-
community/out-pseudocommunity. The opposite takes place on
the left-hand half of the network (nodes {1,2, . . . ,6}), which
has φ

ipoc
S = 0.33 and is therefore worth being qualified as an

in-pseudocommunity/out-community.

D. Undirected networks

Although this paper is essentially focused on directed
networks, as they potentially display the richest and most
interesting structures, the same classifications and methods
can be applied to undirected networks as well. In this case,
obviously, the distinction between in- and out-structures no
longer exists. More precisely, the symmetry W = WT implies
W ′ = W and P ′ = P . As a consequence, for any given
subnetwork S we have αS = α′

S and βS = β ′
S : The subnetwork

is simply qualified by the pair (αS,βS) rather than by a 4-tuple
of indicators. Thus only two types of ε structures are possible
(see Fig. 2) as follows:

ε community:
φc

S = ‖(αS,βS) − (1,1)‖∞ = max{1 − αS,1 − βS} � ε

ε pseudocommunity:
φ

p

S = ‖(αS,βS) − (0,1)‖∞ = max{αS,1 − βS} � ε.

III. FINDING (PSEUDO-)COMMUNITIES

In the previous sections, we described how to classify
a subnetwork S on the basis of the associated 4-tuple
(αS,βS,α

′
S,β

′
S), and we defined eight types of nontrivial

subnetworks (“structures”). Here we consider the problem of
finding such structures in a given network.

We propose a semilocal searching algorithm to find the
structures of a given type—the algorithm can be adapted to
search for each different type of structure simply by using
the relevant distance function φS among those previously
defined. As we will see shortly, the algorithm is local in the
sense that it starts from a given node and considers a set of
larger and larger neighborhoods. In this respect, it is similar
to several recently published “local” methods of community
analysis (e.g., Refs. [30,31]). However, it is not fully local
because the assessment of each of these subnetworks requires
evaluating the persistence probabilities αS , α′

S , which depend
on the stationary probability π : computing the latter requires
knowing, in general, the entire network structure (i.e., the
Markov matrix P ). We point out that a few methods have been
proposed aimed at obtaining, on the basis of local information
only, a reliable approximation of the πis of a given subnetwork

(e.g., Refs. [39,40]). These methods could be integrated in our
approach to obtain a fully local algorithm. Here we do not
explore this aspect, as it falls out of the scope of this paper,
and we will assume to know all the πis that are needed.

Given a node i, we denote by Ci,d a d neighborhood of i,
namely a subnetwork containing i and at least one node at the
shortest-path length d from i but none at a shortest-path length
larger than d (here the shortest paths are considered on the
symmetrized, binary network, i.e., by disregarding direction
and weight of the links). As above defined, the quantity φCi,d

is associated to the subnetwork: It is the distance of the related
4-tuple from the relevant vertex or edge of the unit hypercube.
Let 
i,d = {Ci,d} be the set of all d neighborhoods of i and let

�i,d = min
Ci,d∈
i,d

φCi,d
(6)

be the least distance within this set: It is attained by C∗
i,d ,

which is therefore the best d neighborhood. The aim of our
local optimization is to find

d∗ = min d s.t. �i,d+1 > �i,d, (7)

namely the smallest neighborhood of i that can only be
worsened if enlarged. We denote the best d∗ neighborhood
by C∗

i,d∗ .
A word of comment on problem (7). Starting from d = 0

(node i alone) and considering larger and larger d neighbor-
hoods, the quantity �i,d starts from �i,0 = 1 and displays
(at least initially) a decreasing trend. Despite such a trend,
typically, �i,d is not strictly monotone but may have one or
more minima (this is consistent with the behavior of other
indicators used in local community analysis [31,32]): problem
(7) picks the first of these minima, meaning that we are
mostly interested in finding structures which are small yet
well cohesive (as measured by φ) and locally maximal (i.e.,
they are worsened by any further node inclusion).

The exact solution of problem (7) is computationally unfea-
sible, in general, since the number of possible d neighborhoods
increases very rapidly with d. To get a reasonable suboptimal
solution, we use a heuristic, greedy procedure that is similar
in spirit to others proposed for local community analysis
[30–32]. Starting from node i, we build a sequence of sets
{i} = Di,1 ⊂ Di,2 ⊂ . . . ,Di,m ⊂ . . . by adding one node at a
time, m being therefore the number of nodes in the set. We
denote by dm the maximum shortest-path length from i to the
nodes of Di,m, and we compactly write φi,m for φDi,m

. To pass
from Di,m to Di,m+1, we consider for possible insertion all the
nodes in the “external boundary” BDi,m of Di,m, i.e., all nodes
/∈ Di,m but with at least one neighbor in Di,m, and we select
among them the node which keeps φi,m+1 as small as possible,
namely the node j attaining the minimum [41] in

φi,m+1 = min
j∈BDi,m

φDi,m∪{j}. (8)

We stop at the first minimum m = m of φi,m, namely when

φi,m < φi,m−1 and φi,m < φi,m+1, (9)

and we take dm and Di = Di,m as our approximations, respec-
tively, of d∗ and C∗

i,d∗ [the optimal solution of problem (7)].
For each one of the eight types of structure, the above

algorithm possibly yields a subnetwork Di for each starting
node i, which will be qualified as an ε structure provided φi =
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φDi
� ε (see Supplemental Material [42]). Not necessarily,

one may want to explore the neighborhood of all nodes i,
especially if the network is very large—one could only focus
on the nodes to which she or he is most interested in, for
a specific application, or on those which are most important
according to some centrality measure (although, depending
on the adopted measure, the most central nodes might tend
to lie between communities and not at their core [43,44]). In
any case, some of the structures Di could overlap, meaning
that some nodes are at the same time members of a few
significant subnetworks. Most notably, some nodes could be
at the same time part of structures of different types, e.g.,
an out-community and an in-pseudocommunity, sharing these
memberships with different sets of partners.

A. Pruning the set of (pseudo-)communities

The output of the above algorithm is a list of subnetworks
D1,D2, . . ., each qualified by the corresponding φi value.
In practice, it turns out that many Dis have a Dj which is
coincident: This happens, typically, when we start from nodes
i,j belonging to the same rather strong (i.e., with small φi)
(pseudo-)community. In other cases, one observes two Dis
that differ by just a very small fraction of their nodes: This
often happens when the starting nodes are at the periphery of
the same (pseudo-)community. In some other cases, two Dis
are found that are distinct but have an important, nontrivial
overlap.

We complement the searching algorithm with a postpro-
cessing pruning procedure, aimed at simplifying the set of
(pseudo-)communities by removing duplications but also,
given a user-specified threshold, those Dj which are suffi-
ciently similar to another subnetwork Di . More specifically,
we use the Jaccard index to quantify the similarity between
(pseudo-)communities,

Jij = |Di ∩ Dj |
|Di ∪ Dj | , (10)

and we construct a binary similarity matrix M by letting
Mij = 1 if and only if Jij � ν, where 0 < ν � 1. We interpret
M as the adjacency matrix of an undirected, binary meta-
network, of which we detect the maximal cliques (we use
Bron-Kerbosch algorithm [45]), corresponding to sets of
(pseudo-)communities, of the original network, which are
pairwise similar. Then, for each clique, we keep the Di with
minimal φi (i.e., the most cohesive one) and prune the others.
The result is, in general, a shorter list D1,D2, . . ., on which
we apply recursively the same procedure. We stop when, in a
recursion step, no pruning occurs.

Note that setting ν = 1 implies that only duplicate sub-
networks are eliminated, whereas, in general, the smaller the
ν, the smaller the number of (pseudo-)communities surviving
after pruning. We will see in the next sections that, although the
final number of (pseudo-)communities is often rather sensitive
to ν < 1, the “quality” of the community detection procedure,
suitably quantified, turns out to be robust over a fairly wide
interval of ν.

IV. TESTS ON BENCHMARK NETWORKS

The above-described method has been tested on a set
of benchmark networks with diversified features, having a
community structure that is known a priori. The aim is to
prove that the method is able to correctly recover the existing
community structure to a fairly large extent, so to trust its
effectiveness in the application to real-world networks (Sec. V)
where the “true” structure is obviously unknown. It must
be noticed that the most authoritative benchmark networks
proposed to date in the literature (we will use LFR benchmarks
[46,47]), be they directed or not, are designed to contain
in-/out-communities only. We are not aware of benchmark
networks considering directionality in communities (although
the issue is briefly touched in Ref. [47]), not mentioning
the notion of pseudocommunity, so we will limit our tests
to discovering in-/out-communities. The issue of generating
synthetic benchmark networks containing all the types of
structure appears to be far from trivial, and we leave it as
a suggestion for future research.

The list D1,D2, . . . resulting from the above-described
method might form a partition or cover [6] or, instead, include
only a portion of the network. It has to be compared with
the benchmark clustering, namely another list B1,B2, . . .,
which, in turn, might define a partition, a cover, or none
of them. Thus the correspondence between the results and
the benchmark can be assessed neither by standard indicators
that compare partitions, such as the variation of information
[48] or the normalized mutual information [49], nor by their
generalization to covers [36]. We follow an approach [50,51]
which adapts to community analysis the two well-known
indicators of recall and precision, routinely used in information
retrieval and classification tasks [52]. We say that the node pair
(i,j ) is coupled by the list D1,D2, . . . (respectively, B1,B2, . . .)
if (i,j ) appears in the same subnetwork Dk (respectively,
Bk) for at least one k. Then we denote by recall (Rec) the
fraction of node pairs coupled by B1,B2, . . . that are also
coupled by D1,D2, . . . and by precision (Prec) the fraction
of node pairs coupled by D1,D2, . . . that are also coupled by
B1,B2, . . .. These two quantities are typically combined in a
single indicator, the so-called F measure, ranging from 0 to 1
and taking value 1 if and only if the two lists D1,D2, . . . and
B1,B2, . . . are perfectly coincident as follows:

F = 2
Rec · Prec

Rec + Prec
. (11)

A. LFR benchmarks: Undirected networks

LFR benchmarks [46] are a class of synthetically generated
networks, purposely designed for testing community detection
algorithms. They allow heterogeneity in the distributions of
node degrees and community sizes, which are taken as power
laws with given exponents τ1 and τ2, respectively. In addition,
the network is defined by prescribing n, 〈k〉, and a mixing
parameter μ such that each node shares a fraction 1 − μ of its
links with the other nodes of its own community and a fraction
μ with the rest of the network. We first consider undirected,
binary networks with n = 1000, 〈k〉 = 20, τ1 = 2, τ2 = 1, and
μ = 0.25 (the latter implying well-separated communities).
We produce 10 different network instances: The number of
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(a) (b)

(c) (d)

FIG. 6. (Color online) Tests on LFR undirected networks. Above, μ = 0.25. (a) The in-/out-communities found by starting the algorithm
from all nodes (red triangles) and those selected by the pruning procedure with ν = 0.1 (blue circles) for one of the network instances. (b) The
F measure obtained by comparing the planted partition with the list of in-/out-communities obtained by our method, as a function of the pruning
parameter ν (red dots). The horizontal (blue) line is obtained by comparing the planted partition with the one obtained by max-modularity.
Both curves are obtained by averaging over 10 network instances. Below (c) and (d): same as in (a) and (b) but with μ = 0.5.

built-in communities turns out to range from 35 to 43, and the
size of each community from 10 to 77 nodes.

Figure 6(a) displays, for one of the network instances, the
size versus φ distribution of the 348 distinct subnetworks found
by the algorithm starting from all 1000 nodes. Figure 6(b)
shows that the outcome of the pruning procedure is largely
insensitive to ν and that the results favorably compare to
the partition obtained by max-modularity (we used Louvain
algorithm [53]). Specifically, in Fig. 6(a) we also highlight the
in-/out-communities selected by pruning with ν = 0.1: The 37
communities of the planted partition are perfectly recovered
(F = 1). As expected, the φ values concentrate around the
value of μ = 0.25 (notice that μ prescribes the internal versus
external link balance for each single node, while αS and βS are
related to the same balance but for the whole subnetwork S),
while the sizes are spread, by construction, over a fairly large
interval.

In Ref. [46] it is discussed how the performance of
community detection algorithms deteriorates when μ increases
(i.e., communities become less isolated). To analyze this
situation, we generate another set of 10 benchmark networks
by increasing μ to 0.5: The resulting networks turn out to have
from 34 to 44 communities, with sizes ranging from 10 to 73
nodes. Notice that we are generating low-quality clusters, due
to the large μ: Actually, they are even on the edge of meeting
the requirement of “community in a weak sense” according to

Ref. [35]. In other words, the cluster structure of the network
is feeble, which is the reason for the rather low performance of
community detection tools documented in Ref. [46]. It turns
out that, in this difficult situation, the performance of our
method is more sensitive to the pruning parameter ν than above
[see Fig. 6(d)]. Nonetheless, the results are definitely better
than those obtained by max-modularity if sufficiently small
ν values are adopted. Furthermore, differently than applying
max-modularity, each (pseudo-)community is equipped with
its φ value that quantifies its (low) quality.

B. LFR benchmarks: Directed networks

We move now to directed networks, which are more
properly the topic of this paper. LFR benchmarks of this
type can be obtained by an extension of the basic procedure,
as described in Ref. [47]. We set the network parameters to
(we refer to Ref. [47] for their detailed definition) n = 1000,
〈k〉 = 25, τ1 = 2, and τ2 = 1. We generated two different sets
(each composed of 10 instances) of networks, differentiated by
the value of the mixing parameter, which is set to μ = 0.3 and
μ = 0.6, respectively. The results of the analysis, summarized
in Fig. 7, show that in both cases our procedure is able
to recover the planted partitions better than max-modularity
and, notably, that the results are practically insensitive to the
pruning parameter ν.
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(a)

(b)

FIG. 7. (Color online) Tests on LFR directed networks. The
figure reports the F measure obtained by comparing the planted
partition with the list of in-/out-communities obtained by our method
as a function of the pruning parameter ν (red dots). The horizontal
(blue) line is obtained by comparing the planted partition with the one
obtained by max-modularity. Both curves are obtained by averaging
over 10 network instances. (a) μ = 0.3; (b) μ = 0.6.

C. LFR benchmarks: Directed networks with overlaps

A further extension of the LFR benchmarks allows us to
create networks with overlapping communities (i.e., some of
the nodes belong to two or more communities), a situation
where community detection is obviously more difficult [47].
We tested our algorithms both on undirected and directed
networks (10 instances for each class) with n = 1000, 〈k〉 =
20, τ1 = 2, τ2 = 1, and μ = 0.1, with planted partitions (or
covers, more precisely) having 50% of the nodes belonging
simultaneously to two communities. We compared our results
with those obtained with the clique percolation method [54],
one of the most popular algorithms to analyze community
structure with overlaps. We obtained a very strong agreement
between the planted partition and the results of our method
(Fig. 8), with a performance superior to clique percolation for
undirected networks and essentially equivalent in the directed
case. Once again, we point out the strong insensitivity to the
pruning parameter ν.

(a)

(b)

FIG. 8. (Color online) Tests on LFR networks with overlapping
communities. The figure reports the F measure obtained by compar-
ing the planted partition with the list of in-/out-communities obtained
by our method as a function of the pruning parameter ν (red dots). The
horizontal (blue) lines are obtained by comparing the planted partition
with those obtained by the clique percolation method [54] for three
values of the clique size k (a further increase of k deteriorates the
performance). All curves are obtained by averaging over 10 network
instances, with 50% of the nodes belonging to two communities.
(a) Undirected networks; (b) directed networks.

D. Benchmark protein-protein interaction network

We now analyze a real-word network, more precisely, a
protein-protein interaction network, which has two distinctive
features. First, a biologically based (i.e., not derived from
network modeling) benchmark list of trusted communities
(protein complexes) is available. Second, this list is neither
a partition nor a cover, namely part of the network is not
included in any of the benchmark communities. The network
implements the interaction database prepared as described in
Ref. [55] and postprocessed as in Ref. [56] to preserve only
significant interactions. It has 990 nodes and 4687 interactions
(undirected weighted links). The benchmark, prepared by
MIPS [57], contains 59 communities (if restricted to the
postprocessed network), ranging from 6 to 34 nodes (all
clusters with smaller size are purposely not considered, and
we will do the same in our analysis). Benchmark communities
do not overlap, and their union include 628 nodes over 990.
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(a) (b)

FIG. 9. (Color online) Tests on a protein-protein interaction network. (a) The in-/out-communities found by starting the algorithm from all
nodes (red triangles) and those selected by the pruning procedure with ν = 0.1 (blue circles). (b) The F measure obtained by comparing the
benchmark communities with the list of in-/out-communities obtained by our method as a function of the pruning parameter ν (red dots). The
horizontal solid (blue) line is obtained by comparing the benchmark communities with those obtained by the clique percolation method [54]
for clique size k = 6 (it is the best performance obtained for k from 3 to 7). The horizontal dashed (green) line is the performance obtained by
max-modularity.

As expected, the performance of max-modularity is very
poor (Fig. 9), as it is a method that artificially forces a
network partition (i.e., all nodes must belong to a community).
Local methods, on the contrary, can potentially obtain much
better results: Figure 9(b) shows that our method obtains
a performance comparable with that of clique percolation.
But, in addition, it quantifies the quality of each in-/out-
community by means of the φ value [Fig. 9(a)]. We note,
incidentally, that a few of the benchmark communities are
actually small subnetworks disconnected from the giant
component (they have φS = 0, since αS = βS = α′

S = β ′
S =

1 for an isolated subnetwork) and that they are perfectly
recovered by our method, which is able to manage a net-
work with such features thanks to the teleportation scheme
(Sec. II B).

E. Erdős-Rényi networks

In random Erdős-Rényi networks, links should be ho-
mogeneously distributed, by definition, and, consequently,
there should not be any (pseudo-)communities. It is well
known, however, that this is true on average, whereas a
specific network instance may display clusters produced by the
randomicity in the distribution of links (e.g., Ref. [6]). These
clusters, however, are expected to vanish as density increases,
i.e., as the network tends, in the limit, to a complete one. In
this situation, a community detection method should be able to
reveal the low quality of clusters, when existing, and to detect
a rapidly vanishing number of them when density increases.

Our method possesses these agreeable properties. We
analyzed directed Erdős-Rényi networks with different sizes
and densities. The typical outcome is that displayed in

(a) (b)

〉〈

FIG. 10. (Color online) Tests on directed Erdős-Rényi networks. (a) The in-/out-communities found by starting the algorithm from all
nodes (red triangles) and those selected by the pruning procedure with ν = 0.1 (blue circles) for a network instance with n = 1000, 〈kout〉 = 10.
(b) The number of ε in-/out-communities, with ε = 0.5, detected by our method before (green squares) and after pruning (ν = 0.1) (red
triangles), and the number of communities detected by max-modularity (blue circles). Each point is an average over 10 network instances with
n = 200.
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Fig. 10(a), where we show the size versus φ distribution of
the in-/out-communities that are identified on a 1000-node
network with rather small density (〈kout〉 = 10). After pruning,
36 in-/out-communities are detected. Their φ value, however,
is always larger than 0.7, revealing a very low cohesiveness
(see again Sec. II A). Following the approach of Ref. [49],
we systematically analyzed a set of directed Erdős-Rényi
networks with increasing density, counting the number of ε

in-/out-communities, with ε = 0.5, detected by our method.
As summarized in Fig. 10(b), such a number falls rapidly
to zero, as it should be for a consistent method [49]. Notice
that, on the contrary, max-modularity continues to detect a
non-negligible number of clusters, without providing any tool
to assess their individual quality.

V. RESULTS ON REAL-WORLD NETWORKS

The above described method (searching algorithm plus
pruning procedure) has been applied to a number of real-world
networks, which are described in detail (with notes on the
data sources) in the Supplemental Material [42]. For each
network, the algorithm has been repeatedly used, starting from
all nodes i = 1,2, . . . ,n, to discover the eight different types of
structures. We point out that, in the technical implementation
[58], two additional computational parameters are available
to the analyst, namely the maximum allowable (pseudo-
)community size nmax (�n) and the stopping parameter r (�0).
They are described in detail in the Supplemental Material [42],
where we also discuss how they can help the analyst in tuning
the algorithm selectivity or in speeding up computations.
Here we only point out that, both for the tests on benchmark
networks (Sec. IV) and for those on real-world networks (this
section), the two above parameters were inactive, i.e., they
were set at their default value (nmax = n, r = 0).

The results of the analysis are summarized in Tables I
and II, where two different values of the quality threshold
are used, namely ε = 0.5 and 0.25. We recall that selecting
significant structures with ε = 0.5 can be considered as a
generalization of the notion of “community in a weak sense”
put forward by Radicchi et al. [35] and should be regarded as a
baseline for significance; ε = 0.25 represents a much stricter
quality requirement. Notice that, since ε acts a posteriori,
the (pseudo-)communities in Table II are trivially a subset of
those in Table I: Our aim is simply to show how the number of
structures decreases when a more restrictive requirement on
cohesiveness is set up.

First, we note that all eight types of structures
are actually found in the analyzed pool of networks
(although in-pseudocommunities/out-communities and in-
communities/out-pseudocommunities, which are compara-
tively rarer, are not found—with one exception only—in the
most restrictive parameter setting). Second, the number of
structures that are identified dramatically decreases as the
quality threshold becomes more stringent, meaning that the
(pseudo-)communities span a broad range of φ values (we
will discuss some examples in the following): The network
analyst should therefore take special care in selecting the value
of ε, as it reflects her or his subjective requirements on the
subnetwork cohesiveness. In our code implementation, she or
he is graphically supported by size versus φ plots, which aids in

interactively selecting a proper quality threshold. Third, in
most networks, in-, out-, and in-/out-communities coexist,
proving that their distinction is indeed crucial, although over-
looked, in the literature to date. The same holds for the various
types of pseudocommunities which, although never studied be-
fore, appear to be ubiquitous in directed networks, i.e., they are
found in all analyzed cases. Finally, pruning strongly simplifies
the set of (pseudo-)communities, as already put in evidence.

In the following, we discuss a few of the structures that
have been found in order to highlight the effectiveness of
the methodology. We mostly restrict ourselves to the cases of
Table II, namely the most significant, and we consider only
those (pseudo-)communities that remained after pruning.

The world trade network, which models the international
transactions among countries, has been deeply studied in
recent years with the tools of network analysis, disclosing
a number of interesting features (e.g., Refs. [59–62]). If
we consider the “total” network (Wtn), where the flows of
all economic sectors are summed up, our method discovers
two in-/out-communities. They are large clusters (98 and 78
countries, respectively, with φioc = 0.21 and 0.24), which
roughly correspond to Europe plus part of Africa, on one
side, and America plus Asia plus the other part of Africa,
on the other side. The two blocs have a moderate overlap
(10 countries of minor economic importance) and, together,
cover almost the entire network (more details on this case
study, with a remark about the robustness of results, are in the
Supplemental Material [42]).

The picture is less trivial if we restrict our analysis to the
flows of specific commodities (as classified by the United
Nations SITC standard). We consider, for example, the
trade flows of “leather, leather manufactures, and dressed
furskins” (Wtn61) and “office machines and automatic
data-processing machines” (Wtn75). The corresponding
networks are much less dense than the total one, and flows
are often organized around leading countries. A few examples
are in Fig. 11 [63]. In Wtn61 we find, among others, an
important out-pseudocommunity (φop = 0.16, starting node
Nigeria) centered on Italy, which imports raw materials from
a number of countries and exports (semi-)finished goods to
the rest of the network [Fig. 11(a)]. Furthermore, Italy is the
only node in common with another structure (although less
significant, φipoc = 0.31, and thus not included in Table II,
starting node Serbia) which overlaps with the former. It is
an in-pseudocommunity/out-community [Fig. 11(b)] which
includes many important European countries (e.g., France
and Germany) where products of this sector circulate with
low boundary outflow (out-community) and where only a few
countries, in practice only Italy, import significantly from the
outside (in-pseudocommunity).

Many examples of significant (pseudo-)communities are
found in the Wtn75 network, too. The main actors of the
23-node in-community (φic = 0.21, starting node Philippines)
of Fig. 11(c) are China and Japan, but a few other Asian
highly developed and/or developing economies, e.g., South
Korea, Malaysia, and Singapore, are included. Being an
in-community, this subnetwork (which also contains major
countries such as Russia and Australia) proves to be self-
sufficient in this commodity sector but able to significantly
export worldwide. An example of in-pseudocommunity is in
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TABLE I. A summary of the results of (pseudo-)community analysis on the pool of real-world networks, with quality threshold ε = 0.5. For
each network, n is the number of nodes after isolated nodes have been removed. For each type of structure (OC to ICOP), the table reports the
number of ε structures found (distinct but possibly overlapping) and [in brackets] their number after pruning with ν = 0.5. See Supplemental
Material [42] for details on network data.

Network n OC IC IOC OP IP IOP IPOC ICOP

Wtn 183 26[4] 40[7] 10[2] 105[32] 109[36] 115[26] 27[10] 30[11]
Wtn61 218 22[8] 59[11] 6[1] 146[27] 134[38] 164[25] 25[13] 70[11]
Wtn75 226 37[4] 12[4] 2[1] 123[22] 165[36] 161[45] 36[4] 12[7]
Ownership 141 18[11] 25[6] 9[5] 30[21] 86[39] 24[23] 20[10] 8[6]
Airports 2939 443[226] 379[171] 583[268] 1103[607] 1320[648] 1714[663] 585[230] 647[286]
Leadership 32 9[5] 12[8] 12[5] 22[14] 12[11] 11[7] 6[4] 14[11]
Prison 67 20[17] 19[18] 17[14] 20[14] 33[24] 21[15] 17[15] 10[7]
Little Rock 183 9[3] 73[2] 5[2] 118[19] 137[11] 41[9] 8[2] 30[6]
St. Marks 49 21[5] 21[4] 2[1] 26[14] 34[9] 16[8] 13[5] 18[4]
St. Martin 45 21[2] 21[2] 1[1] 28[9] 34[13] 17[7] 21[3] 20[11]
Ythan 135 54[2] 49[2] 0[0] 83[14] 102[30] 49[16] 65[2] 53[13]
Neural 297 12[4] 41[21] 7[4] 205[38] 129[57] 60[34] 9[3] 54[24]
E. Coli 418 1[1] 11[8] 3[2] 33[25] 270[69] 87[28] 1[1] 23[7]
S. Cerevisiae 688 81[19] 35[12] 18[8] 125[43] 461[77] 69[17] 37[10] 12[5]
Political blogs 1224 179[5] 81[29] 59[4] 816[105] 764[178] 248[47] 145[17] 20[8]
Japanese 2704 28[11] 114[21] 62[7] 2150[276] 2221[233] 1190[237] 159[16] 190[16]
Netscience 1461 n.a. n.a. 214[190] n.a. n.a. 503[447] n.a. n.a.
Ppi 990 n.a. n.a. 128[94] n.a. n.a. 333[213] n.a. n.a.

Fig. 11(d) (φip = 0.16, starting node Grenada), in which many
of the countries of Central America and the Caribbean get most
of their import flow from the US, which, on the other hand,
imports mostly from the rest of the world.

In the Ownership network, nodes represent the companies
listed in the Italian stock exchange, and the weight wij is the
percentage of the shares of company j owned by i. Typically,
ownership networks display a bow-tie structure [64] and, as a
consequence, they hardly admit partitions formed by signifi-

cant communities, as this would require the existence of many
subnetworks with strong internal cohesiveness (e.g., large per-
sistence probability). For that, community analysis has mostly
been carried out on the undirected (i.e., symmetrized) network,
highlighting the relationships between companies regardless of
their direction [9]. Yet “who owns whom” is obviously crucial
information in many respects. On the directed network, our
searching algorithm discovers a rather cohesive in-community
(φic = 0.28, starting node Data Service) with 22 companies,

TABLE II. A summary of the results of (pseudo-)community analysis on the pool of real-world networks, with quality threshold ε = 0.25.
For each network, n is the number of nodes after isolated nodes have been removed. For each type of structure (OC to ICOP), the table
reports the number of ε structures found (distinct but possibly overlapping) and [in brackets] their number after pruning with ν = 0.5. See
Supplemental Material [42] for details on network data.

Network n OC IC IOC OP IP IOP IPOC ICOP

Wtn 183 0[0] 0[0] 10[2] 0[0] 0[0] 0[0] 0[0] 0[0]
Wtn61 218 0[0] 0[0] 6[1] 92[6] 24[4] 0[0] 0[0] 0[0]
Wtn75 226 0[0] 3[2] 0[0] 10[4] 60[2] 0[0] 5[1] 0[0]
Ownership 141 0[0] 1[1] 0[0] 0[0] 39[8] 0[0] 0[0] 0[0]
Airports 2939 0[0] 0[0] 108[58] 3[3] 10[4] 568[134] 0[0] 0[0]
Leadership 32 0[0] 0[0] 2[2] 0[0] 0[0] 0[0] 0[0] 0[0]
Prison 67 0[0] 0[0] 2[2] 0[0] 0[0] 0[0] 0[0] 0[0]
Little Rock 183 3[2] 27[1] 1[1] 9[1] 89[5] 7[1] 0[0] 0[0]
St. Marks 49 0[0] 4[1] 2[1] 0[0] 2[2] 0[0] 0[0] 0[0]
St. Martin 45 0[0] 2[1] 1[1] 0[0] 2[2] 0[0] 0[0] 0[0]
Ythan 135 0[0] 30[1] 0[0] 17[2] 48[10] 4[1] 0[0] 0[0]
Neural 297 0[0] 3[3] 2[1] 145[23] 2[1] 0[0] 0[0] 0[0]
E. Coli 418 0[0] 0[0] 0[0] 0[0] 165[21] 0[0] 0[0] 0[0]
S. Cerevisiae 688 0[0] 0[0] 0[0] 0[0] 282[28] 0[0] 0[0] 0[0]
Political blogs 1224 3[2] 7[5] 56[2] 152[9] 257[26] 0[0] 0[0] 0[0]
Japanese 2704 0[0] 0[0] 6[1] 1793[108] 1886[90] 419[30] 0[0] 0[0]
Netscience 1461 n.a. n.a. 151[133] n.a. n.a. 5[5] n.a. n.a.
Ppi 990 n.a. n.a. 83[73] n.a. n.a. 1[1] n.a. n.a.
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FIG. 11. (Color online) Examples of (pseudo-)communities in the world trade networks. (a) Wtn61: A out-pseudocommunity organized
around Italy, which imports raw materials and exports (semi-)finished goods to the rest of the network. (b) Wtn61: An in-pseudocommunity/out-
community which overlaps with the former through Italy. (c) Wtn75: An in-community including many Far East highly developing economies.
(d) Wtn75: An in-pseudocommunity of Central American and the Caribbean countries importing from the US.

including a few of the most important Italian financial groups
[Fig. 12(a)]. It is a coalition of companies which, by means
of cross-shareholdings and other forms of alliances (e.g.,
board interlocks), strategically controls most of the Italian
economic system. The characterization of this subnetwork
as an in-community reveals that shares of these companies
owned by outside firms are negligible. On the contrary, the
companies of this set surely own significant shares at the
outside: otherwise, this subnetwork would be qualified as out-
community, too, whereas αS turns out to be as small as 0.25. On
the same network, a few in-pseudocommunities are disclosed,
too. A typical example (φip = 0.17, starting node Banco Desio
Brianza) is in Fig. 12(b): It contains two leaders, namely
IntesaSanPaolo and Assicurazioni Generali (two of the major
Italian financial institutions), and a few minor companies for
which the leaders are practically the only shareholders among
the companies listed at the stock exchange. The whole picture
of the in-communities and in-pseudocommunities found in this
network is displayed in Fig. 13. The identified structures span
a rather broad range both in size and cohesiveness φ, with a
nontrivial relationship among the two variables. Notice that
a few of the (pseudo-)communities are very small (pairs or
triads of nodes) and could safely be removed from the total
count.

A few types of significant structures are found in the
worldwide Airports network, too. As one can expect, the
most cohesive communities correspond to regional (i.e., local)
transportation systems, namely peripheral subnetworks well
connected internally but with just a few routes to and from the

FIG. 12. (Color online) Examples of (pseudo-)communities in
the Ownership network. (a) An in-community including the most
important Italian financial institutions. (b) An in-pseudocommunity,
where the “leader” companies are the only shareholders of the
“follower” companies.
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(a)

(b)

FIG. 13. (Color online) The in-communities (a) and
in-pseudocommunities (b) found in the Ownership network
by starting the algorithm from all nodes (red triangles) and those
selected by the pruning procedure with ν = 0.1 (blue circles). The
horizontal (green) lines mark the values ε = 0.5 and 0.25 of the
quality threshold used in Tables I and II, respectively.

outside. Figure 14(a) shows one of the in-/out-communities
with the smallest φioc value (0.085, starting node Rampart),
which refers to Alaska. In-/out-pseudocommunities are rather
common, too, and they are typically organized as a starlike
subnetwork, with a number of minor (peripheral) airports
connected to an international hub. A clarifying examples is
in Fig. 14(b) (φiop = 0.087, starting node Ataturk Istanbul):
Twelve Turkish airports are uniquely connected to Istanbul
airport, which, on the contrary, has as many as 157 connections
with the remaining nodes of the worldwide network.

We close this section with an undirected, weighted net-
work, namely the so-called Netscience, which describes the
collaborations (up to 2006) between scholars in network
science [65]. Due to its well-pronounced modular structure,
this graph has become a standard for community analysis
methods. Indeed, our searching algorithm reveals the existence
of a number of significant communities, with sizes ranging (in
the most restrictive parameter setting, see Table II) from 3 to
30 nodes. They correspond to research groups or established
cooperations, with a few overlaps between them: An example
is displayed in Fig. 15(a), where a 22-node and a 6-node

FIG. 14. (Color online) Examples of (pseudo-)communities in
the Airports network. (a) An in-/out-community corresponding to
a regional transportation system. (b) An in-/out-pseudocommunity,
with a number of minor (peripheral) airports connected to an
international hub.

FIG. 15. (Color online) Examples of (pseudo-)communities in
the Netscience network. (a) Two overlapping communities (shared
nodes Castellano and Vilone are in orange). (b) A pseudocommunity,
where a “leader” with many collaborations has only one or few
coauthorships with a small group of scholars.
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(a)

(b)

FIG. 16. (Color online) The communities (a) and pseudocommu-
nities (b) found in the Netscience network by starting the algorithm
from all nodes (red triangles) and those selected by the pruning
procedure with ν = 0.1 (blue circles). The horizontal (green) lines
mark the values ε = 0.5 and 0.25 of the quality threshold used in
Tables I and II, respectively.

subnetwork (both with φc = 0.14, starting nodes Vespignani
A. and Parisi D.) have 2 nodes in common. As far as
pseudocommunities are concerned, in this type of network

they typically identify single scholars, or small groups, with
just one coauthorship with a leading author, who has instead
a large number of collaborations with the rest of the network
[see Fig. 15(b) for an example, φp = 0.22, starting node Porter
M.]. The complete size versus φ picture of the identified
(pseudo-)communities is in Fig. 16. We report that if we
restrict the analysis to the 379-node connected component
(as is usually done in the literature), the F measure obtained
by comparing our in-/out-communities with those found by
max-modularity is as large as F = 0.95. Indeed, all node pairs
coupled by our method are also coupled by max-modularity.
The converse is not true, however, since max-modularity is
constrained to get a partition, so a few nodes are unnaturally
forced to belong to a community. In our setting, instead, about
7% of nodes are not included in any in-/out-community.

VI. CONCLUSIONS

Directed networks, namely complex interconnected sys-
tems with asymmetric interactions, are ubiquitous in a number
of fields in science and technology. We find them, just to
mention a few examples, in economics and finance (trade
relationships at the country level or share ownerships among
companies), in ecology (prey-predator interactions in a food
web), in biology (transcriptional regulatory networks or neural
networks), and in information science (WWW or citation
networks). As the link directionality strongly affects the
structural properties and functioning of the system, it becomes
crucial to fully consider its role when communities are sought
for. To this aim, we revisited the notion of community—a
subnetwork mildly connected to the rest of the system—by
distinguishing whether the isolation is related to the in-
and/or out-flow. Besides, we introduced the new notion of
pseudocommunity to capture notable structures which are
often found in applications. The detailed analysis of many
real-world networks demonstrated that distinguishing among
in-, out-, and in-/out-(pseudo-)communities is crucial to fully
interpret the role and function of important subnetworks.
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