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1 Introduction

Decision making processes (e.g. in recommender systems) are often based
on data containing co—occurences (e.g., which items are often purchased
together) [6], ratings (e.g., zero stars to five stars) [1], or preferences (e.g.,
which option is preferred over which other options) [10]. In this paper
we consider decision making based on ratings. Normalized ratings can
be considered as membership values in the fuzzy set of suitable options.
For example, n of five stars may be mapped to a membership of u = n/5.
Based on such memberships a fuzzy decision making process [2] will
choose the option with maximum membership.

Often experts are not willing or not able to specify exact ratings but
only to specify intervals of ratings (e.g., between three and four stars, or
satisfaction between 60% and 80%), so the ratings contain uncertainty.
Intervals of ratings may be represented as intervals of memberships (e.g.,
u € [0.6,0.8]). Such interval ratings can be considered as interval-valued
fuzzy sets [4, 5] or interval type—2 fuzzy sets [7, 8, 14]. Interval type—2
fuzzy decision making [12] will choose the most suitable option based on
the individual membership intervals, taking into account the degree of
risk that the decision maker is willing to take.

Here we consider an interval type—2 fuzzy decision making approach
that employs a type reduction process [9] which maps each membership
interval (type—2) to a single membership value (type—1) and then chooses
the option with maximum membership. Several different methods for
type reduction have been proposed in the literature, for example the
Nie-Tan method (NT) [9], consistent linear type reduction (CLTR) [11],
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the uncertainty weight method (UW) [13], and consistent quadratic type
reduction (CQTR) [11].

This paper presents an experimental study comparing these four type
reduction methods to a decision making process using four alternatives.

2 Type Reduction Methods

Given an upper membership @ € [0, 1] and a lower membership u € [0, 1],
where u < @, the Nie-Tan method (NT) [9] is defined by the type
reduction formula that yields the membership

u+u
uNT=*2 (1)

The consistent linear type reduction (CLTR) [11] is defined by
UCLTR:(I~Q+(176L)~@ (2)

with a parameter a € [0, 1] that quantifies the degree of caution in the
decision making process. The uncertainty weight method (UW) [13] is
defined as

1
uow = 5 (u+7) - (1 +u(z) —a(z))* (3)
with the parameter o > 0. For easier comparison of the different methods

we set
« = atanh(a) (4)

so we can keep the parameter a € [0,1] and for a = 0 we have o« = 0
and for ¢ — 1 we have @ — oo. The consistent quadratic type reduction
(CQTR) [11] is defined as

ucQTR:a-g—i—(l—a)-ﬂ—(l—a)~(ﬂ—g)2 (5)

3 Experiments

In this section we will compare the four type reduction methods presented
in the previous section in experiments with a decision making process for
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four alternatives with the following membership values:

w € [0,1] (6)
uy € [0.55,0.95] (7)
us € [0.7,0.75] (8)
ug = 05 (9)

We want to emphasize at this point that the numerical values in these
experiments have a fuzzy and not a probabilistic character, so they
represent memberships, not probabilities [3]. So u1, an interval between
zero and one does not represent a lack of information that may be changed
after an experiment when further information is provided (e.g. about
the director of a movie or the recipe of a drink). Instead, an interval
between zero and one indicates a large uncertainty in the rating that is
between zero and one. And uy, a singleton membership of 0.5 does not
represent a 50% probability whether this option is desirable or not but a
50% degree of desirability. The membership intervals us and us are both
higher than 0.5, us has a higher uncertainty than ws, but us has a higher
average than ug.

Fig. 1 shows the results obtained for these data with the Nie-Tan (NT)
method. The three grey vertical bars in this plot represent the member-

Figure 1: Decision memberships for the ratings w;, ¢ = 1,...,4, obtained by the
Nie-Tan (NT) method.

ship intervals of the first three options, and the dash—dotted horizontal
line represents the membership of the fourth option. The four horizontal
lines (solid, dashed, dotted, and dash—dotted) represent the output of the
NT method. For the fourth option, the NT method yields the original
membership value. In this case, the input is type—1, so type reduction
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is not necessary. A type reduction operator with this property is called
type—1 consistent [11]. For the other three options, NT yields the average
of the intervals. The maximum of these averages is for us, so the decision
process will prefer option 3. In this decision the degree of uncertainty
of the different options is not taken into account. A cautious decision
maker may feel incomfortable that us has a lower membership of only
0.55 and might prefer us with a lower membership of 0.7. On the other
hand, a very risky decision maker may not be satisfied that us has an
upper membership of only 0.95 and might even prefer u; with an upper
membership of 1. The degree of risk that the decsion maker is willing to
take is taken into account in the three other type reduction methods.

Fig. 2 shows the results obtained with the consistent linear type reduction
(CLTR) method. CLTR is a parametric method with the parameter

wof L e L I U

i i a

Figure 2: Decision memberships for the consistent linear type reduction (CLTR)
method.

a € [0,1]. The left plot of Fig. 2 shows the results for a = 0, where CLTR
always yields the maximum of each interval, with a maximum for option
1. The middle plot of Fig. 2 shows the results for ¢ = 1, where CLTR
always yields the minimum of each interval, with a maximum for option 3.
The right plot of Fig. 2 shows the results for all a € [0, 1] that are plotted
along the horizontal axis. So, in contrast to the left and middle plots, the
right plot does not display the four different options on the horizontal
axis but a. The four different options are represented by the four different
curves: solid for option 1, dashed for option 2, dotted for option 3, and
dash—dotted for option 4. For very small values of a < 0.0833 the solid
curve is on top, so the risky decision is option 1. For a € [0.0833,0.5714]
the dashed curve is on top, so the medium risk decision is option 2. And
for large a > 0.5714 the dotted curve is on top, so the cautious decision is
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option 3. Option 1, the option with complete uncertainty is chosen in the
risky decision here. In many applications this is not desirable. Instead,
options with complete uncertainty should often be completely ignored. A
type reduction operator with this property ignores indifference [11]. The
two remaining type reduction operators, UW and CQTR both ignore
indifference.

Fig. 3 shows the results obtained with the uncertainty weight (UW)
method. Again, the left plot shows the results for a = 0, the middle plot

Figure 3: Decision memberships for the uncertainty weight (UW) method.

shows the results for a = 1, and the right plot shows the results for all
a € [0,1]. For option 1 (solid curve) we always obtain zero membership,
so complete indifference is ignored, as pointed out above. For a = 0 we
obtain memberships at the mean of each interval. In the limit for a — 1
all memberships approach zero, which appears counter—intuitive. For
small a < 0.074 the dashed curve is on top (option 2), and for larger
a > 0.074 the dotted curve is on top (option 3). For large a > 0.661
the dashed curve (option 2) falls below the dash—dotted curve (option
4) so the option uy = 0.5 would be preferred over uy € [0.55,0.95]
although all values of us are higher than us. Also this behaviour seems
counter—intuitive.

Fig. 4 shows the results obtained with the consistent quadratic type
reduction (CQTR) method. Again we always obtain membership zero for
option 1 (solid curve), so complete indifference is ignored. For a = 1 we
obtain the memberships of the bottom of each interval. For a < 0.2208
the dashed curve is on top and for a > 0.2208 the dotted curve is on top,
so for low degrees of caution option 2 is chosen, and for high degrees
of caution option 3 is chosen. The dash—dotted curve (option 4) is
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Figure 4: Decision memberships for the consistent quadratic type reduction (CQTR)
method.

always below the dotted curve (option 3), which matches the intuitive
expectation.

4 Conclusions

In this paper we have considered decision making processes based on
interval ratings. Each rating is represented as an interval of memberships
in the set of suitable options. Type reduction methods are used to convert
the membership intervals to crisp memberships, and then the option with
the highest membership is chosen.

We have considered four different type reduction operators from the
literature: the Nie-Tan method (NT), consistent linear type reduction
(CLTR), the uncertainty weight method (UW), and consistent quadratic
type reduction (CQTR). All four type reduction operators were applied
in experiments with four alternatives with different degrees of utility and
different degrees of uncertainty.

The experiments have shown that

e NT does not consider the degree of uncertainty and is not able
to take into account the degree of risk that the decision maker is
willing to take.

e CLTR prefers an option with maximum uncertainty, if the risk level
is high enough.

6 Proc. 28. Workshop Computational Intelligence, Dortmund, 29.-30.11.2018



e UW prefers an option with a completely certain rating over a more
uncertain option although the uncertain rating is always better
than the certain one.

e CQTR is the only one of these four type reduction operators that
is able to take into account the risk in the decision process, that
ignores indifference, and that does not prefer a crisp membership
over an interval of higher memberships.

Based on these results we would recommend CQTR as a type reduction
method for risk sensitive decision makers.
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