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Abstract 

Strategies to combat climate change focus on every industry and has led to 

government policies to reduce electricity generation through coal combustion. 

Switching to biomass provides an opportunity to use infrastructure constructed for 

coal combustion with carbon neutral fuels; however, the process of grinding 

biomass pellets as fuel in pulverised fuel combustion is not well known. 1% of 

energy generated at a power plant is utilised to achieve the required size for the fuel. 

Improvements in the understanding of biomass pellet milling could lead to 

optimisation of operating conditions and minimisation of energy consumption.  

The process could aid generators determine appropriate fuels and costs for each; 

this represents a potential opportunity to elongate the life of current power stations, 

which is more cost effective than construction of new biomass specific plants.  

This research has developed a population balance equation (PBE) model 

simulation to predict the output of biomass pellet grinding for Lopulco E1.6 mill 

and a Retsch PM100 planetary ball mill; this has never been published in literature. 

It has proven it can predict the output particle size distribution of a Lopulco E1.6 

mill, a scale model of an industrial mill, for biomass pellet PSD’s. It has shown that 

the simulation parameters can be based on axial and flexure deformation testing 

results, and that it can predict the PSD to within an average 88% accuracy against 

blind test. A novel technique in evaluating a PSD has been achieved using an 

overlapping coefficient, a measure better suited to PSD analysis than conventional 

model validation techniques. The PBE simulation has also shown that back 

calculating parameters can separate mill and material contributions when utilising a 

popularly used selection function and a breakage function developed in this 

research based on the Rosin-Rammler equation. This has been shown for the 

Lopulco mill and a lab scale planetary ball mill for axial and flexure deformation 

tests respectively. 

The research shows that emphasis should be placed on understanding 

classifier dynamics due to unexpected behaviour in the Lopulco mill experiments. 

Further conclusions show that energy consumption can be related to axial 

deformation energy that can be explained by the action of a Lopulco mill’s 

application of compressive force on and the orientation of pellets against the rollers.   
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Chapter 1 - Introduction 

1.1 Anthropogenic CO2 Emissions 

Global warming and climate change are concepts to which there is 

significant evidence, whereby human activity is affecting the climate and ecology of 

the planet. In the last IPCC report (Allen et al., 2014), significant evidence is 

presented to confirm this and projections of the necessary steps to slow and 

remediate the climate have been presented. Various gasses contribute to the effects 

of global warming based on their potential of trapping energy from the sun within 

the atmosphere; these gasses include but are not limited to: Halo-Carbons (CFCs, 

HCFCs and Ozone, O3), Nitrous-oxides, NOx, Carbon Monoxide, CO and one of 

the major contributors, Carbon Dioxide, CO2. These gasses have increased in 

production since combustion of fossil fuels became the driver for growth in 

industrial process and transportation needs. To decrease their production all aspects 

of their production require review.  

 

1.2 Grinding Processes and Pulverised Fuel 

Combustion 

It is estimated that  approximately 2% of the electricity generated on the 

planet is consumed by grinding processes (Napier-Munn, 2015).  This encompasses 

a variety of different industries that spans metallurgy, ore processing, cement 

manufacturing, food processing and many more. Of the electricity consumed in 

comminution, 41% is utilised in the grinding of coal and some other fuels (Napier-

Munn, 2015; World Coal Association, 2014) for the purposes of fuel preparation in 

pulverised fuel combustion, the most common technology used for electricity 

generation globally (International Energy Agency, 2014). As one of the most energy 

intensive activities in a power station, up to 1% of energy generated in the power 

plant is used to pulverise coal to the required size, therefore there is a great deal of 

emphasis placed on ensuring the process of grinding is as efficient as possible. 
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1.2.1 Process Overview 

 

 

Figure 1.1displays the process of pulverised fuel combustion for electricity generation, (World 
Coal Association, 2014). 

 

 

In PF combustion, crushed coal is conveyed via belt and ramp conveyors 

to the top of feed chutes. Once released, the fuel is fed under gravity into hoppers 

that lead either directly in to the mill or to other conveying mechanisms like screw 

feeders. Once in the milling chamber, the interaction of grinding media, mill walls, 

balls, rollers, flailing hammers etc. (see 1.4) interact with the fuel and cause breakage 

through several kinds of mechanisms (see chapter 2.6) to reduce the particles in 

size. In many systems, fans and heating elements create a primary hot air stream 

through the mill that serves two purposes; the first is to assist in lowering moisture 

content, the second is to sweep up particles that have reached a sufficiently small 

enough size to be carried away; for coal , the target size is for 75% of particles 

passing the classifier at below 75µm  and  less than 2% above 300µm (International 

Energy Agency, 2014). After passing the classification system the air fuel mix is 

transported to the boiler for combustion and completion of the electricity 

generation process as shown in figure 1.1.
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1.2.2 Industrial Mills 

There is a large variation on the type of mill used in different industries, 

even more so within the fuel preparation industry. Historically mills are selected 

and constructed depending upon which type of coal was the expected source at the 

plant when it was designed (Colechin, Malmgren, & Britain, 2005). A classification 

device also accompanies mills, for which there is again a large variation in design. 

This section provides a conceptual illustration and description of some of the 

technologies in use at the plants.  

Ball and Tube Mills 

 

 

Figure 1.2 displays the concept of ball and tube mill from the viewpoint of the end of the mill. The 
illustration is specific for a lab scale Bico ball mill however the function is the same, other than the 
scale, differences include the insert of wear plates along the circumference and grinding balls of 
uniform size.  

 

Ball and tube mills have fuel and replacement grinding media loaded 

through one end of the tube, either through screw feeders or gravity chutes 

mounted through the axis. The rotation of the tube rises the fuel and grinding media 

up to a level where they begin to fall in a cascading and cataracting motion. This 

action causes impact and compression upon the fuel that aids in reducing it in size 

before transport by the air flow to the classifiers. 
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Vertical Spindle Mills 

 

 

Figure 1.3 displays the concept of the vertical spindle mill, specifically a ring and roller Lopulco 
style mill. 

 

A table onto which fuel is unloaded rotates to cause the feed to move to the 

circumference due to centrifugal forces. Mounted on the edge of the table are the 

grinding media; either heavy duty tyres, concrete balls with a race or rollers (see 

figure 1.3). The grinding media are pushed down towards the table and either 

maintain a gap with the table (roller mills) or held against the table (ball and race). 

The feed is forced under the grinding media where it is compressed and crushed. 

As the size reduces the material is forced further to the edge and off the table and 

into the air flow to be carried to the classifier. 

 

Hammer Mills 

The mill consists of a central rotating core (that can be mounted 

horizontally or vertically), to which are fixed rows of swinging metal bars 

(hammers). As the central core rotates the hammers orientate to a radial position 

with centrifugal action. A serrated screen encloses the grinding chamber. Feed is 

also carried to the screen through centrifugal action and through impact and 

shearing forces between the screen and hammers, the feed is broken down in size. 

After falling through the serrated screen, the particles are picked up and carried off 

to the boiler in the primary air stream. 
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Figure 1.4 displays the concept of a hammer mill, whereby a rotating core swings flailing hammers 
to cause size reduction through shearing and abrasion. 
  

 

Classification Systems 

Classification systems provide a key role in ensuring that particle sizes are 

of the appropriate size to be combusted in the boiler of the power plant. The 

objective, is to screen the particles and return the particles that are rejected to the 

grinding media for further processing. As with mills, there is multitude of different 

classification systems that are available (Coulson, 1999) which are tailored to the 

specific application. Figure 1.5 displays a few examples of different classification 

mechanisms.   
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Figure 1.5 displays several variations for industrial classification processes; top right, whizzer blade 
classifier, top left, gravitational inertial air classifier, image source: 
http://www.metso.com/products/separation/gravitational-inertial-air-classifier, bottom left, 
perforated and serrated screen classifiers, image source: 
http://www.marksutton.co.nz/perforated_metal.htm, bottom right, rejecter blade design, image: 
http://www.sturtevantinc.com/products/product/whirlwind-air-classifier. 

 

Biomass as a Fuel Source 

Combustion of biomass as a fuel for electricity generation is attractive as, 

according to (Demirbas, 2004), “Biomass consumes the same amount of CO2 from 

the atmosphere during growth as is released during combustion” hence, omitting 

transportation and pellet production related emissions, biomass is considered to be 

a carbon neutral fuel source. The effect of substituting coal for biomass is the 

reduction of CO2 emissions from anthropogenic sources. Biomass includes all kinds 

of materials that were directly or indirectly derived not too long ago from 

contemporary photosynthesis reactions (Van Loo & Koppejan, 2007). It is also 

considered renewable if the fuel source is sustainably produced (Food and 

Agricultural Organization of the United Nations, 2004), so with adequate sources, 

biomass energy generation can be a carbon neutral renewable energy source. 

Use of biomass also provides opportunity that no other renewable source 

can match; utilising the current infrastructure in power plants with very little 

modification to accommodate the change, dry biomass can direct substitute coal 

http://www.metso.com/products/separation/gravitational-inertial-air-classifier
http://www.marksutton.co.nz/perforated_metal.htm
http://www.sturtevantinc.com/products/product/whirlwind-air-classifier
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and provide significant emission savings. This can be achieved via direct co-firing, 

either through dedicated biomass milling or co-milling; the latter has a limitation, a 

ratio of up to 10% on a mass basis is possible (Livingston, 2005). Downstream 

processes could have addition expense in the form of biomass burner modification 

or installation. Parallel co-firing, whereby the biomass combustion is used to 

preheat the steam before coal combustion is used to upgrade the steam to higher 

temperature and pressure; it is more expensive, due to the construction and 

installation of dedicated biomass milling and boiler equipment. Dedicated biomass 

power stations are possible; these options are often less desired due to long 

development times and significant cost. They do, however, offer opportunity to 

optimise design for biomass combustion (Colechin et al., 2005).  

 

1.3 Motivation for the Research and Research 

Objectives 

As many governments around the world have decided to act on the issue of 

climate change (see the Paris Agreement 2016) (UNFCCC, 2016), mechanisms for 

inducing the adoption of carbon free or neutral fuel sources have been implemented 

. For a comprehensive list one can be found at (IEA, 2013); as an example, in the 

UK, renewable obligation certificates whereby large scale electrical power 

generators are obliged to source increasing proportions of the electricity from 

renewable sources and are penalised if they do not meet the criteria (Ofgem, 2017) 

and Contracts for Difference, CfD, that provides long term revenue stabilisation 

for new and low carbon initiatives (Ofgem, 2017). Other initiatives have been 

enforced over greater territories, such as the Industrial Emissions Directive (IED), 

which supersedes the previous Large Combustion Plant Directive (LCPD), places 

a requirement on power stations to limit the emissions of certain gasses and 

particulate matter during generation; the former has led to the consequence that 

several power stations have had to close as conversion to enable clean generation 

has not been economically feasible.  Further to this, the UK government announced 

that they plan to cease unabated coal power generation by 2025 (Department of 

Business, 2016) that ends the use of many PF power stations in the UK for coal 

generation.  
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It then becomes apparent, that despite the legislation imposed by 

international agreements and government policy, options do exist to maintain the 

use of the power station by switching the fuel used. Conversions to biomass of 

some UK power stations has already been completed, (see chapter 2.4.3 for details) 

and, although many UK power stations are approaching or surpassed their life 

expectancy, the millions of pounds of infrastructure could still be used to provide 

electricity through combustion of biomass. The difficulty in doing so, is developing 

understanding of the handling, and preparation of biomass as a fuel source. 

Using biomass with the current infrastructure is by no means the most 

efficient method and is filled with difficulty due to the high variation in 

characteristics of biomass fuels. There is however, significant cost savings in doing 

so (Colechin et al., 2005; Livingston, 2013). To reliably predict the outcome of the 

biomass consumption requires in depth understanding as to output of the 

individual components of the power station. One such component is the power 

station mills, which as stated earlier, were often built for a local coal source. 

Therefore, to increase understanding of the biomass pellet grinding process, the 

Biomass and Fossil Fuel Research Alliance, BF2RA, instigated a research project 

under grant number 5, with the title “On Biomass Milling for Power Generation” 

(Williams, 2016). The research completed undertook experiments  with lab scale 

mills; a Retch PM100 planetary ball mill, a Bico ball and tube mill, a Retsch SM300 

cutting mill and a Lopulco E1.6 ring and roller mill. A variety of milling activity 

analysis was completed and is summarised in chapter 3.1.3 with an objective of 

characterising the link between the resulting product and energy consumed to 

achieve the result. Further analysis is completed to characterise a variety of biomass 

fuels. As a follow on from that project, this research has been commissioned to 

where possible utilise the previous research, determine appropriate methods and 

subsequently develop simulations of the biomass grinding process at the power 

station. The objective of which is to maximise biomass throughput, with the 

required product grade and to minimise the energy consumption in doing so. By 

increasing knowledge and developing simulations to aid decision makers, 

opportunity to make biomass combustion a more lucrative and cost-efficient 

process may encourage the generators to invest in biomass generated power. The 

benefit is that the mills will not need to be taken off-line to complete extensive 

trials, and possible downtime in cleaning and repair if a simulation helps to identify 
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the reaction of the mill to a fuel based on simple characteristics, which represents a 

cost saving. This would aid in reducing further anthropogenic CO2 emissions and 

help to maintain power generation capacity in the face of generation capacity 

reduction through plant closure. Additionally, since PF combustion is used 

worldwide, the research could be utilised extensively.   
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Chapter 2 - Literature Review 

2.1 Properties of Biomass 

 

Figure 2.1 displays the classification of biofuel sources by different characteristics source: (Food and Agricultural 

Organization of the United Nations, 2004) 

 
Biomass is classified in many ways, the Food and Agricultural Organization 

of the United Nations classifies biofuels as in figure 2.1; these classes are based on 

the source of the biomass with the terms direct, indirect and recovered used to 

identify the journey of the fuel to the end user, straight from the source, waste from 

processed material and material reclaimed at a product’s end of life respectively. 

Woody biomass includes the trees, bushes, and shrubs, including the bark root and 

leaf. It is characterised by the longer growing times and higher lignin content 

(Saidur, Abdelaziz, Demirbas, Hossain, & Mekhilef, 2011). Due to the lower levels 

of ash and volatiles, wood is more suitable for direct combustion (Jaya Shankar 

Tumuluru, Sokhansanj, Wright, Boardman, & Yancey, 2011). 

Herbaceous biomass, as defined by the European Standard EN 14961-1 

(Solid biofuels – Fuel specifications and classes Part 1: General requirements) is “… 

from plants that have a non-woody stem and which die back at the end of the 

growing season. It includes grains or seeds crops from food processing industry 

and their by-products such as cereal straw”. They often have higher percentages of 
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cellulose and hemicellulose compared to the lignin content. In addition, they have 

a quick growth rate. This has the effect that they have lower heating values 

compared to woody biomass and often have a higher content of elements and 

materials that are problematic for combustion (Bioenarea, 2012). Fruit biomass is 

the seeds or the section that holds seeds in the plant (Alakangas, 2010). 

2.1.1 Microstructure of Biomass 

Plant originating biomasses such as wood, energy crops or agricultural 

waste, have cell walls that consist of cellulose, hemicellulose, and lignin. Study into 

the differences between the numerous biomass species has been completed in 

literature (Demirbas, 2004; Demirbaş, 1997; Grammelis, 2010; Vassilev, Baxter, 

Andersen, Vassileva, & Morgan, 2012) and in other BF2RA literature reviews 

(Hussain, 2015; Jenkinson, 2012) to which the author would direct the reader for 

further information. The anisotropic growth of biomass is due to the shape and 

nature of the cell growth and the individual cells are joined through the middle 

lamella, this also has the consequence that when size reduction processes are 

completed on biomass the result is of larger fibrous final product.  

 

 

Figure 2.2 shows the configuration of wood tissues. A Adjacent cells. B cell wall layers. S1, S2, S3 secondary wall 

layers, P primary wall, ML middle lamella. C Distribution of lignin, hemicellulose, and cellulose in the secondary 
wall (Pérez, Munoz-Dorado, de la Rubia, & Martinez, 2002). 

 



 

12 
 

Cellulose provides the mechanical strength of the cell wall and chemical 

stability; during photosynthesis, solar energy is absorbed and stored as cellulose 

(Harmsen, Huijgen, Bermudez, & Bakker, 2010). Cellulose is a polysaccharide that 

forms chains, called elemental fibrils, consisting of several hundred to thousands of 

molecules linked together via hydrogen bonds and van der Waal forces (Pérez et 

al., 2002), creating the fibrous and tough plant structure (Lope, Phani, & Mahdi, 

2011). At each level in the cell wall the primary wall, S1, S2, S3, the microfibrils 

have different orientations. Cellulose comprises between 40 – 60% of the dry mass 

of biomass (Lope et al., 2011). The polymer structure is crystalline in nature (Lope 

et al., 2011).  

Hemicellulose is again a polysaccharide this time in a matrix structure. 

Whilst hemicellulose provides structure to the cell and contributes to between 20-

40% of the cell, the structures of the molecules are more random. It is amorphous 

and has less strength than cellulose (Lope et al., 2011), thus it can be broken down 

with lower energy levels. Lignin is a chemically complex compound that has no 

defined structure. It fills the gaps between the hemicellulose and cellulose (Lope et 

al., 2011), binding the polysaccharides and providing strength to the cell wall and 

plant structure (Chabannes et al., 2001). It requires more energy to breakdown 

lignin than required for cellulose or hemicellulose (Dutta, n.d.). It also exhibits 

thermosetting properties if heated and cooled (Van Dam, van den Oever, 

Teunissen, Keijsers, & Peralta, 2004) that aids in the pelletisation of biomass fuels. 

Plant cells are held together via the middle lamella, a material composed of pectin 

and lignin (Bailey, 1936). 

Moisture content plays a significant part in the combustibility of biomass, 

anything above 67% moisture content is considered to completely inhibit 

combustion, approaching that level requires more energy to vaporise the water 

(Bushnell, Haluzok, & Dadkhah-Nikoo, 1989). By having initially low moisture 

content, less of the input energy used in the combustion of the fuel is utilised in 

moisture evaporation and more energy can be recovered (Hanning et al., 2012). 

2.1.2 Biomass Properties 

Moisture Content 

In several studies the effects of moisture on the specific energy 

requirements required to mill biomass was investigated (Esteban & Carrasco, 2006; 
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Miguel Gil, Arauzo, & Teruel, 2013; M Gil, González, & Gil, 2008; Miao, Grift, 

Hansen, & Ting, 2011; Repellin, Govin, Rolland, & Guyonnet, 2010). All report 

that the requirements increase if the moisture content increases, as is displayed in 

figure 2.3. This is also reflected in the food processing industry (Bhandari, Bansal, 

Zhang, & Schuck, 2013). 

 

Figure 2.3 displays the difference in energy requirements necessary to grind Miscanthus and Switchgrass through 

various size screens, comparisons of the effect of moisture content is also made. Note ‘Air-dry’ has moisture content 
between 7-10%, source: (Miao et al., 2011). 

 

Biomass Species 

The species of plant that is ground also is a factor in the energy requirements 

necessary to grind biomass to the required size; again, the variation in one study is 

shown in figure 2.3. In several studies (Esteban & Carrasco, 2006; M Gil et al., 2008; 

Miao et al., 2011; J. S. Tumuluru, Tabil, Song, Iroba, & Meda, 2014) the energy 

requirements for different species has been reported; a detailed analysis of the 

reported literature is given in (Kratky & Jirout, 2011) along with the type of mill 

used in the process; this does however apply to the raw biomass and not pelletised 

biomass. 

2.1.3 Pre-Treatment of biomass  

Pre-treatment of biomass is used to change the fuel characteristics in such 

a way that it becomes more favourable for use. A few of the most common 

techniques are described below with a comment on how the pre-treatment method 
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can affect the milling process. These three also specifically aid grinding, although 

other pre-treatments are used for other reasons.  

Pelletisation 

Pelletisation is used in order to increase the bulk density of biomass (Uslu, 

Faaij, & Bergman, 2008); this aids in reducing transportation costs and increases 

the energy density of the fuel. In (Ryu et al., 2006) it is generalised that many 

biomass sources have a bulk density of less than 150 kg/m3 with and post-

pelletisation this can be over 600 kg/m3. Biomass particle size is reduced by an 

initial milling of the raw material (Van Loo & Koppejan, 2007). Following milling 

the product should be of a more uniform size and shape (Kallis, 2012), the surface 

area increases as a result of the milling facilitating inter-particle bonding 

(Sokhansanj, Mani, Bi, Zaini, & Tabil, 2005). The particles of biomass undergo 

compression that increases the interfacial forces, this causes interlocking of the 

fibres of the biomass (Tabil, Sokhansanj, & Tyler, 1997) in a pellet press. This can 

be supplemented by using other binding agents if necessary to improve the tensile 

strength of pellets (Razuan, Finney, Chen, Sharifi, & Swithenbank, 2011). In the 

work by Temmerman et al. (Temmerman, Jensen, & Hebert, 2013) experimental 

results conclude that the energy requirement in milling biomass pellets is lower than 

that of wood chip of the same species. The energy input into milling the pellets is 

used mostly in breaking the bonds caused by the pelleting process with little used 

in further particle comminution. This is a key point of note to the project as the 

mills we are modelling with have material provided in pellet form for most 

applications.  

Torrefaction 

Torrefaction is a mild form of pyrolysis. This usually takes place at 

temperatures of 200-300oC for about 30-60 minutes in an inert or low oxygen 

atmosphere. When applied to biomass, this produces a product that has material 

properties closely related to coal (Yan, Acharjee, Coronella, & Vásquez, 2009). The 

final product has a higher calorific value, up to increases of 1.46 times the original 

HHV values have been observed, e.g. willow in a raw form has a HHV of 19.609 

MJ/kg, torrefied at 290oC increases this to 28.611 MJ/kg (Chen, Cheng, Lu, & 

Huang, 2011); as given by Channiwala and Parikh the range for coal HHV is from 

21 MJ/kg to 35 MJ/kg (Channiwala & Parikh, 2002). Torrefied product is also 

hydrophobic, is more homogenous and has improved grindability (Dutta, n.d.; 
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Topell Energy, 2014; van der Stelt, Gerhauser, Kiel, & Ptasinski, 2011). Torrefied 

material can also be pelletised to create a product with higher bulk density.  

Steam Exploded 

Steam explosion is where the biomass is subjected to a high pressure 

environment in a temperature range of 180-230oC for a period of time, normally 

around 10 minutes (Lope et al., 2011). The release of the steam causes explosive 

decompression of the environment (Lavoie, Beauchet, Berberi, & Chornet, 2011) 

subsequently causing the rapid expansion of water in the biomass, degrading the 

cellulose, hemicellulose and lignin bonds (Avellar & Glasser, 1998). This creates 

biomass that has enhanced grindability and aids in pelletisation (Biswas, Yang, & 

Blasiak, 2011). 

2.2 Grindability of Biomass 

2.2.1 Grinding Theory 
To help build a model that can simulate the processes that occur in the mill 

it is important to understand what the particles are subject to. The key process in a 

mill is that of grinding. Application of the theory of grinding and the ability to 

incorporate the principles within a model will help to make a simulation that is more 

predictive and useful in understanding the interactions of the feed material and the 

mill in question. Grinding theory describes the process of material failure and their 

causes.   

As described in (Coulson, 1999) when a particle of material is subject to 

sudden impact the resulting progeny are in the order of a few large particles and a 

number of fine product particles, very few intermediate sized. Also if the impact 

force is increased the size of the larger fragments is reduced whereas the size of the 

fines is relatively unchanged. The conclusion of which is that the size of the large 

particles is related to the process of size reduction and the size of the fines is related 

to the internal structure of the material.  

Given the link to the internal structure of the material, grinding consists of 

two parts; opening any small fractures within the material and then creating new 

surface area of the material. The energy from impact on a particle induces a stress 

field on the particle (Green, 2008), as long as the stress remains, subject to the 

material properties size reduction will start, exploiting micro-cracks and flaws in the 
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material. The cracks grow both internally and on the surface until fracture occurs; 

all the time this causes the creation of new surface area. Thus, the link between 

energy and new surface area can be seen. In fracture mechanics the propagation of 

cracks proceeds via three modes as displayed in figure 2.3. 

 

Figure 2.4 showing modes of crack propagation, mode I: opening, mode II: in-plane shear, mode III: out-of-plane 

shear, source: (Schreurs, 2009). 

 

Two stages present themselves during size reduction processes (Coulson, 

1999); the grinding of the coarse material, where the flaws are exploited, followed 

by the second mode that develops at a particular size, this mode is characteristic of 

the material properties of the material and known as the persistent mode. Each 

machine used for size reduction will also have a grind limit at which point, 

continued processing yields little or no further grinding of the product.   

2.2.2 Fracture Mechanics of Biomass 

The anisotropic structure of wood creates three orthogonal planes of 

material symmetry, radial, tangential and longitudinal (Barrett, Haigh, & Lovegrove, 

1981). Strength and stiffness are great in the longitudinal direction and relatively 

low in the tangential and radial directions. This structural design contributes to the 

formation of natural cleavage planes and crack propagation typically occurs along 

the grain and makes it difficult to induce cracking across the grain. Due to this, 

characterisation of the propagation of cracks in wood via the three modes manifests 

via six different systems, identified by the letters t (tangential), l (longitudinal) and r 

(radial), as outline in figure 2.4. The first letter indicating the direction normal to 
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the crack surface and the second indicating the direction of propagation (Barrett et 

al., 1981). 

 

Figure 2.5 showing the principle systems of crack propagation in wood, source: (Barrett et al., 1981). 

 

2.2.3 Single Particle Fracture 

 

Figure 2.6 displays the factors affecting the breakage of a particle, source: (Green, 2008) 
 

The magnitude of the load, the manner, and the nature in which it is applied 

are critical factors in the fracture of a single particle (see figure 2.5). Insufficient 

load can cause only elastic deformation and once the load is removed the 
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deformation is reversed thus creating an inefficient utilisation of the input energy. 

If the load is not sufficient to overcome the elasticity of the particle, the energy is 

stored until the load is removed, at which point it will return to its previous state 

(Coulson, 1999) without completing any useful work. Plasticity in biomass is also 

very low, some species are totally lacking as described in the work by Maiti et. al. 

(Maiti, Dey, Purakayastha, & Ghosh, 2006). Additionally, pre-processed biomass 

undergoing drying processes, as most are for use as fuel, become hard and lose 

plasticity if they have it (Ryu, Finney, Sharifi, & Swithenbank, 2008); this is a 

favourable characteristic when grinding biomass as the input energy is consumed 

in comminution. For efficiency in the breakage mechanisms of a particle, is it useful 

to apply a load only just greater than the elasticity limit. Additionally, a greater rate 

of application of force results in the production of a higher number of fines and 

may be inefficient for the intended purpose of the product. A lower rate of 

application for a longer amount of time may be beneficial, however, this may not 

in some instances be sufficient to overcome any viscoelastic properties where a high 

rate is preferential.  

Single particle testing can be useful in that information about fracture 

mechanics and milling can be determined with a small amount of material (Meier, 

John, Wieckhusen, Wirth, & Peukert, 2009), avoiding the need for additional cost. 

It is possible to complete the tests via specialised machinery. The work by Vogel 

and Peukert (Vogel & Peukert, 2005) uses single particle breakage tests for 

establishing the parameters of the material constant and minimum breakage energy, 

later used for the modelling of two different impact mills.  

Furthermore in the work by Meier et al (Meier et al., 2009) the use of 

indentation testing on single particles is used for establishing the same material 

constants. These tests determine hardness, Young’s modulus and fracture 

toughness allowing the extrapolation of a brittleness index and subsequently a 

breakage probability function that is used to model the behaviour of impact milling. 

In a study on the resistance to impact milling of cement clinker by Genc and Benzer 

(Genc & Benzer, 2009), single particle fracture mechanisms were assessed via drop 

weight testing.  

Reviewing the literature, a conclusion drawn is that mechanical testing of 

biomass and biomass pellets could play a part in developing a more predictive 
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model for biomass milling. Determination of the breakage energies would be a key 

objective; additionally, it may be useful to study aspects such as the stress/strain 

curves through the application of forces to biomass material and pellets. The ability 

to correlate the behaviour of a material through simple testing such as these would 

be idealistic if their performance in a mill can be determined from them, alleviating 

the requirement for time consuming and potentially expensive experimentation.  

2.2.4 Particle Breakage Mechanisms 

Materials can be subjected to forces via several different modes during the 

process of size reduction. These are summarised as (Coulson, 1999; Green, 2008): 

• Impact – impact against a target, forces acting on the particle are normal to 

the plane of the rigid body.  

• Compression – The force is applied via slow compression between two 

planes or between a surface and impact with a target.  

• Attrition – when the normal force from impact is not large enough to affect 

the whole of the particle, however is large enough to affect a volume at the 

surface of a particle.  

• Shear/abrasion – caused by the scraping of fluid-particle interaction or 

particle-particle interaction.  

• Cutting – a variation in shearing whereby the opposing forces are applied 

acutely, the cutting implement generates stress in the object inversely 

proportional to the area over which the force is applied; therefore, a smaller 

area creates greater stress.  

 

It is noted in (Green, 2008) that when grinding certain materials 

problems are encountered when the material is ductile, and the grinding 

machinery is designed for brittle material, this is especially true when the 

breakage mode is primarily compressive or abrasive.  

2.2.5 Material Comminution Indexing 

There are many methods that have been devised in order to characterise 

and quantify the properties of materials in relation to their comminution; generally, 

the energy required to reduce the material to a target size. This section provides a 

summary of several of these methods that relate to the project. 

Bond Work Index 

The Bond Work index  (Bond, 1954) test procedure uses a small-scale 

locked cycle ball and tube mill and a screening process to simulate recirculating 
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condition of a full scale mill with classification (Prasher, 1987). The method is used 

to determine an index value, 𝑊𝐼, for a material which can subsequently contribute 

to a calculation of energy required, 𝑊, to produce 𝑑80 of the particles passing a 

target size (determined by the 𝑊𝐼 calculation) when starting with a feed size, 𝐹80, 

(see equation 2.1). The full process details can be found in (Prasher, 1987; Williams, 

2016; Williams et al., 2015).   

 𝑊 = 10𝑊𝐼 (
1

√𝑑80

−
1

√𝐹80

) (2.1) 

 

 The Bond Work Index process is targeted for application in ball and tube 

mills; Bond has a similar version for rod and tube mills. For different mills however, 

the application of the method is inappropriate. In (Williams et al., 2015) it is shown 

that the application of the BWI method still maintains its integrity with biomass 

materials. Shortcomings of the method are listed in (Prasher, 1987) and include 

aspects such as: not explicitly accounting for classifier effectiveness, variation in 

residence time; also for assuming specific energy is not a function of ball load, which 

is contrary to a known fact; not accounting for over/under filling; and causes of 

inefficiencies are not explored.  

Hardgrove Grindability Index 

The Hardgrove Grindability Index (HGI) is a method for determining the 

grindability of coal using a vertical spindle mill type mill; a ball and race laboratory 

mill. Small samples are ground within the mill for 60 revolutions. The sample is 

then sieved through a 200-mesh sieve (0.75µm) and the passing sample is weighed. 

The weight of the sample is compared to the US Department of Energy standard 

coal indices for determination of its own HGI (Coulson, 1999). 

For mills with similar grinding processes, such as vertical spindle mills, and 

ball and race mill, the HGI has proven to be a good reference point. When utilising 

the HGI index as a reference point for milling. Shortcomings with the use of the 

method in determining the correct mill and milling parameters to use are 

encountered. Scale effects and variation in commercial coal pulverising practices on 

occasion deviate from predictions based on the HGI references, additionally a 

variation in the type of mill used also displays deviation. Influences to the process 

include: unrepresentative coal, moisture content, size classification and recycle, 
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product sizing differences for modern pulverised coal (Coulson, 1999). Further to 

this, in (Williams et al., 2015) it is concluded that HGI does not correspond well 

when applied to biomass pellets. 

Other Grinding Index Systems 

Other grindability indexing methods have been developed however there 

are limitations in their application due to insensitivities to heterogeneous properties 

in materials, hence given the variation in biomass species and defining 

characteristics a suitable indexing system has proved difficult to develop 

(Bridgeman, Jones, Williams, & Waldron, 2010; Van Essendelft, Zhou, & Kang, 

2013). In tackling the problem Van Essendelft et al. (Van Essendelft et al., 2013) 

developed a Hybrid Work Index, combining the Resistance to Impact Milling 

(RIM) technique used to measure fungal decay in wood with the Bond Work Index 

technique. RIM is used to determine the mass of compromised integrity wood due 

to fungal decay but was theorised this could be applied to milled product.  

An adapted version of the HGI was used for analysis of grindability in 

biomass and torrefied biomass fuel in the paper by Bridgeman et al (Bridgeman et 

al., 2010). The adaptation used a volumetric measure of the fuel rather than a mass 

measure, and then calibrates the results with the standard HGI references.  

2.3 Particle Characterisation 

The objective of milling in the power sector is to reduce the particles to a 

size and shape that is suitable for pneumatic conveyance in a power station 

transport system and subsequently consistent combustion in a PF boiler. As seen 

in section 2.2.5 the energy consumption is linked to the degree of size reduction. It 

is therefore necessary to have methods of quantifying the size of the particles.  

2.3.1 Distribution Analysis 

As particulate systems consist of many particles as opposed to individuals, 

analysis methods often enact data reduction methods (Green, 2008). This comes in 

the form of particle size distributions and cumulative distribution (see figure 2.7). 

These provide broad data characterising the ranges of particle sizes resulting from 

the milling practices, thus identifying whether a desired range is achieved and the 

effectiveness of the mill in producing consistent product, e.g. narrower size 
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distributions. Much of the provided data for the project will be in this form, hence 

understanding how and why it presented in this manner is essential.  

 

 

Figure 2.7 shows an example of particle size distribution plots on normal (top) and logarithmic 
scales (bottom), source: (Green, 2008). 

 

Many different size distribution equations are used in comminution analysis. 

Two of the most prevalent in the mineral liberation are the Gates-Gaudin-

Schuhmann equation and the Rosin-Rammler equations. The latter of the two was 

designed specifically for coal and used extensively in the coal analysis and energy 

generating sector uses it almost entirely in the measurements of the fuel grade 

(Coulson, 1999; Prasher, 1987). 

Rosin-Rammler Distribution 

The particle size distributions, 𝑅(𝑑), is governed by the characteristic 

passing size, 𝑑′, and the characteristic spread parameter, 𝑛. The distribution is 

described by the cumulative density function (Brezani & Zelenak, 2010) as in 

equation 2.2. 

 𝑅(𝑑) = 100𝑒
−(

𝑑
𝑑′)

𝑛

 (2.2) 
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To determine values for 𝑑’ and 𝑛, linear regression of data to fit equation 

2.2 can be completed or linearisation techniques can be used by transformation to 

log-log plots. Details of how to complete such analysis is given in the paper by 

Brezáni and Zeleňák (Brezani & Zelenak, 2010). 

2.3.2 Methods of Particle Analysis 

Sieve Analysis 

 

Figure 2.8 (left) displays a laboratory mechanical sieving apparatus, source: 

http://www.retsch.com/dltmp/www/2058-1ca7f28fb7bb/brochure_sieving_en.pdf. (Left) displays the outline of 
the sieving technique, image source: http://www.scraptirenews.com/crumb.php#prettyPhoto/4/.  

 

One of the simplest techniques in particle size analysis is sieving (Coulson, 

1999). This can be achieved manually or using specialised equipment such as in 

figure 2.7 where the general principle is outlined. Sieves can be obtained for sizes 

ranging from very large through sub 50µm; the effectiveness of the sieve does 

diminish for sizes below 150 µm (Green, 2008). Sieve stacks often increase in size 

by approximate multiples of √2 (Prasher, 1987), this is based on the unit square of 

the sieve aperture having a maximum distance of a multiple of √2 . 

Image Analysis 

Whilst the standard for particle size analysis is a mass-based sieve analysis, 

other particle analysis techniques exist that offer more than measure of the 

minimum size to pass a screen aperture. In the paper, (Miguel Gil, Teruel, & 

Arauzo, 2014), biomass particle images are subjected to manipulation with 

MatLabTM image analysis techniques. Scanning electron microscopes where used in 

http://www.retsch.com/dltmp/www/2058-1ca7f28fb7bb/brochure_sieving_en.pdf
http://www.scraptirenews.com/crumb.php#prettyPhoto/4/
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with a back scattered electron mode to study particle morphology (Motte, Delenne, 

Rouau, & Mayer-Laigle, 2015) and showed this to be effective to 250 µm for 

determining particle size and shape. A Retsch CAMSIZER, which uses dynamic 

image analysis techniques has been used in several biomass particle analysis papers 

(Cardoso, Oliveira, Junior, & Ataíde, 2013; Göktepe, Umeki, & Gebart, 2016). This 

has been shown to be a good method based on the ability to capture and analysis 

the particles in a short space of time, providing both distribution size and shape 

data. Additionally, the samples can be passed through non-destructively, whereas 

SEM and other microscope technologies destroy or render the sample unusable.  

2.4 Milling Options in Power Stations 

2.4.1 Biomass Combustion Options 

Within pulverised fuel power stations there are different strategies that can 

be implemented that utilise biomass. Figure 2.9 provides an illustration of the 

possible options open to generators.  

 

Figure 2.9 outlining the processing routes biomass and coal can take for combustion in a pulverised fuel boiler, 

source: (Livingston, 2013). 

 

Co-milling (route 2 in figure 2.9) is sometimes practiced where the intention 

is for direct co-firing of biomass and coal (Livingston, 2005). The lower calorific 

value of biomass creates limitations in the ratio of biomass to coal that can be co-

milled. Firing through the existing coal mills can be achieved for up to 10% 

(Khorshidi, Ho, & Wiley, 2014; Lester, Gong, & Thompson, 2007; Livingston, 
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2005) of the mill capacity; approaching levels as high as 20% requires dedicated 

milling and burner systems. For torrefied biomass, as the characteristics are more 

like coal, this can be increased to as much as 40% (Khorshidi et al., 2014).  

Problems occur with the use of biomass due to its breakage behaviour and 

moisture content (Grammelis, 2010; Livingston, 2007). These include the particles 

causing unstable flames at the burners, variation in fuels requires different 

optimisation in the mills, some mills cannot process certain types of biomass (Lester 

et al., 2007). It has been noted that on vertical spindle mills, increased differential 

pressures have occurred (Livingston, 2007) due to the use of biomass. There are 

also safety concerns in that the hot air used to dry the coal could cause ignition of 

biomass which releases combustible volatile matter into the mill at temperatures 

lower than coal, indicating a need to modify the operating procedures (Livingston, 

2005).  

Route 1 in figure 2.9 requires modification; this seems to be more prevalent 

in vertical spindle mills and the modifications include reducing the internal volume 

of the coal mills in order to be suited to biomass fuel, installation of baffles in the 

mill to help maintain air flow in the mill (Livingston, 2012). Rotary inlet valves are 

installed at the fuel entry point and reduction in the mill throat size (where the pyrite 

spills over the grinding table in a vertical spindle mill when grinding coal) are used 

to create an air seal and aid in air flow within the mill respectively. Due to the lower 

combustion temperature of biomass, it is also necessary to reduce the temperature 

of the inlet air, which should also reduce outlet air temperature. Furthermore, in 

order to increase safety, changes to explosion suppression systems such as 

installation of systems to release chemicals like sodium bicarbonate (Montgomery, 

2013) have been introduced. Even with the modifications there are restrictions so 

that only certain possible fuel sources such as biomass pellets are suitable, few raw 

fuels are.  

 

2.4.2 Dedicated Biomass Combustion 

Dedicated biomass plants have been constructed and many more planned 

with generation capacities in excess of 100 MWe (Biomass Energy Centre, 2013). 

Polaniec Biomass Power Plant in Poland offers 205 MWe   (see: http://www.power-

technology.com/projects/polaniec-biomass-power-plant-poland/) and although 

http://www.power-technology.com/projects/polaniec-biomass-power-plant-poland/
http://www.power-technology.com/projects/polaniec-biomass-power-plant-poland/
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the project is no longer proceeding Drax Power in the UK had planned to build 

several 300 MWe power plants (see: 

http://processengineering.theengineer.co.uk/environment/drax-axes-new-

biomass-plans/1011957.article). When developed these standalone plants do not 

use pulverised fuel favouring circulating fluidised bed boiler designs that do not 

require such small particle sizes in the feedstock.  

 

2.4.3 Coal to Biomass Conversions 

Several examples of coal-to-biomass conversions include Ironbridge B; 

Foster Wheeler D9 tube and ball mills were used for coal grinding. Small scale trials 

where conducted with wood pellets; these proved the mills can grind them however 

energy output of the boiler was reduced due to the lack of throughput coupled with 

the lower energy density of biomass fuels. In order to increase material throughput, 

the mills where changed to hammer mills (Zwart, 2012) which proved far more 

effective on this particular issue. For the conversion at Fiddler’s Ferry power station 

Bühler DFZK2 hammer mills where installed for biomass grinding instead of using 

the Lopulco LM 45 ring and roller mills used for coal grinding, this is due to the 

rapid build-up of material on the grinding table of the mill that reduces output 

severely (Rigoni, 2012), again the hammer mills reduced the effect of this problem. 

Installation of hammer mills for the biomass fuel stream also took place in with the 

conversion at Drax power station, where they have previously ground coal with ball 

and race mills (Greensmith, 2013).  

2.5 Circuit Operation 

Depending on the application of the milling, operations can be completed 

as described as in table 2.1. Each different approach has a different application and 

scenario for when and where appropriate, as given in column 3 of table 2.1, the 

need for increased complexity is often a result of industrialisation of the process. 

With the option of circuit operation mills and in industrial practices it is important 

to know what effects these might have on the processes and final product they 

have.  

 

 

http://processengineering.theengineer.co.uk/environment/drax-axes-new-biomass-plans/1011957.article
http://processengineering.theengineer.co.uk/environment/drax-axes-new-biomass-plans/1011957.article
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Table 2.1 showing the different circuit operations usable in milling, source: adapted from (Coulson, 1999; Green, 

2008). 
Operation Description Application 

Batch 
 

 

• Small samples 

• Laboratory 

• No size control 

Open-cycle 

continuous 

 

 

• Industrial 

• No size control 

Closed-cycle 

continuous 

 

• Industrial 

• Size control 

 

2.6 Mills 

The breakage mechanisms that occur in a mill is dependent the working 

principles of the mill in question. There is a high variation in the design of milling 

machinery; the fundamentals of mill design include the application of the grinding 

mechanisms, such as a rotating grinding table interacting with weighted rollers 

creating compression in the particles, or a rotating tube vessel loaded with free to 

move grinding media creating impact, such as in a ball and tube mill. Appendix A 

provides a summary of some of the mills that are currently used in the power 

industry can be found, that provide correlation to mills used in the power industry 

or have application for the milling of biomass. Their working principles along with 

some comments on their operation are provided. Table 2.2 provides a summary of 

the breakage mechanisms in the various types of mill. 
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Table 2.2 showing the grinding mechanisms applicable to the type of mill. 

Mill Type 

Grinding Mechanism 

Compression Impact 
Abrasion/ 

Shear 
Attrition Cutting 

Tube and Ball ✓ ✓    

Tube and Rod ✓ ✓    

Ring and Roller ✓     

Ball and Race ✓     

Hammer  ✓ ✓ ✓  

Knife   ✓  ✓ 

Disk ✓  ✓   

Rotary     ✓ 

Roller ✓  ✓   

Centrifugal  ✓ ✓   

Planetary Ball ✓ 
 

   

 

The mechanism by which a mill breaks particles may be relevant in the 

project as certain biomass material may be comminuted more efficiently given a 

certain type of grinding mechanism. The ability to characterise and specify this 

within a model would increase its usefulness. 

2.7 Size Classification 

The milled product is often carried from the mill via a flow of air pumped 

through the mill or released in to a flow of air via gravity. The flow of air facilitates 

pneumatic conveyance of the fuel through (in certain circumstances) classification 

units and on to the PF boiler. An overview of particle size classification processes 

used in power station classification is given in table 2.3. Understanding of the effects 

of classifiers is important. In the literature it has been discussed that inefficient 

performance of classifier units, effects overall mill performance; notably the 

throughput and capacity of the circulating load of mills can be reduced, as well as 

the quality of the final product (Jankovic & Valery, 2013). Some diagrams of 

different classification systems are shown in chapter 1.2.2, in an industrial setting, 

almost all work on an elutriating air principle. Some operate through physical 

separation using spinning blades of some fashion, set to different angles of 

rotational velocities to determine the screening size; others using gravitational 

inertia separation to remove oversize particles, similar in principle to cyclone 

separators. 



 

29 
 

2.8 Safety Aspects of Mill Operation 

2.8.1 Dust Ignition 

The possibility of dust ignition is always present wherever dusts are 

produced, stored or processed and are considered explosive if there is a sufficient 

mix of the fuel dust and air (Abbasi & Abbasi, 2007). In the fuel preparation 

processes in a power station this will be relevant in the conveyance of the fuel to 

the mills, during comminution in the mills, the elutriated air flow from through the 

classifier and in the pneumatic conveyance processes from the mill to the boiler. 

The factors affecting the combustion of dust are described in the dust explosion 

pentagon (Kauffman, 1981) in fig 2.10. 

 

 

Figure 2.10 showing the factors affecting the combustion of dust particles, source: (Kauffman, 1981). 

 

The rapid combustion of fuel takes place once the fuel has been ignited in 

a gas stream, propagation of the flames will depend on several factors, importantly 

the nature of the dust, the particle size and the geometry of the environment 

(Abbasi & Abbasi, 2007). Described in the work (Abbasi & Abbasi, 2007), methods 

of ignition and strategies for prevention and damage control covering a broad range 

of industries is given; these include the coal, food processing, mineral processing 

and wood processing industries, all of which are applicable to this project.  

2.8.2 Design Features for Safe Operation 

Mill Inerting 

As outlined in (Abbasi & Abbasi, 2007), mill inerting can be used to 

eliminate the risk of combustion and therefore explosion in a mill. The principle is 
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that by milling in an inert gas, such as CO2 or nitrogen or more commonly steam, 

the lack of oxygen prevents combustion. The choice of gas would depend on the 

fuel and would require study to ensure that there are no undesired chemical 

reactions. Inerting can be complete or partial in the gas elutriating air stream, again 

depending on the conditions of the mill and fuel.  

Explosion Suppression 

Upon detection of a flame within the milling environment, explosion 

suppression can be used to prevent flame propagation by creating an inert 

atmosphere within the mill. The sudden injection of inert gas and the dowsing of 

flames via the release of chemicals such as sodium bicarbonate (Montgomery, 2013) 

are two such strategies used.  

Explosion Vents 

Many mill types can be made sufficiently strong to withstand an explosion 

of dust within, as is the case with some hammer and ball and tube mills; care of 

adjoining plate sections should be taken as the joints may not be as robust. 

However, for those that cannot, the installation of explosion vents is an option. 

The principle behind which is the release of pressure within the mill to protect it 

from reaching destructive levels (Abbasi & Abbasi, 2007). When designing 

appropriate vents, consideration of the unit geometry, initial pressure, temperature, 

dust concentration, turbulence and ignition source must be given.  

Start-Up and Shut-Down  

During the start-up and shutdown phases of a coal fired power station, there 

is a higher risk of explosion of fuel (Guo, Wang, Wei, & Zachariades, 2014; Jianlin, 

Jihong, & Shen, 2009). This is caused by the static deposits of fuel heating up over 

time, in addition the air to fuel ration is in the flammable range. Identification of 

the potential for fires in the mill is difficult to achieve. In the papers by Guo et al. 

(Guo et al., 2014) and Jianlin et al. (Jianlin et al., 2009) software programs are 

developed to help maintain and control mill variables to limit the potential for such 

events.  

2.9 Mill wear 

Wear of mill consumables, such as grinding media, mill liners and classifier 

rotor blades causes significant cost incurred due to the shutdown of mills when 

components require replacement (P. W. Cleary, 1998; Salzborn & Chin-Fatt, 1993). 
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The wearing of mill components also affects the efficiency of the mill; should the 

grinding elements not retain the correct concentricity, physical dimensions and 

contours affect the ability to grinding. This causes the residence time to increase in 

order to achieve the accepted particle size and has the consequence of increased 

power consumption. Another repercussion of worn grinding elements is that the 

product size also increases. 

The primary cause of wear is from the abrasive mechanisms acting on the 

grinding media and shells (Durman, 1988), also damage is caused from impact with 

sufficiently hard particles (Moore, Perez, Gangopadhyay, & Eggert, 1988). As well 

as the cost of the consumables and down time of the mills, the function can also be 

affected, such as variation in the flow patterns of the mill charge and the grinding 

processes (P. W. Cleary, 1998).  

Measures taken to minimise such wear on the mills consist of study into 

materials that provide resistance to the wear mechanisms. These include study into 

abrasion resistant steels, non-metallics such as natural rubber, polyurethane, 

ceramics, and alloyed cast irons (Durman, 1988; Salzborn & Chin-Fatt, 1993). 

 

2.10  Effects of Mill Operating Variables 

Operating parameters of mills, for example rotational speed, grinding media 

load, feed rates and load, and variation in grinding media etc. have a direct influence 

on the final product and energy consumption. Optimisation of the parameters 

would increase overall efficiency with potential to save on energy utilised in the 

grinding of biomass. In an evaluation of the operating conditions taken from 

various industries several key similarities are present.  

In multiple studies across several types of mill it has been determined that 

the particle size distributions reduce in mean size with increases of residence time 

in the mills (L. G. Austin, Luckie, & Shoji, 1982; L. G. Austin, Shah, Wang, 

Gallagher, & Luckie, 1981; Jindal & Austin, 1976; Meghwal & Goswami, 2014; 

Naik, Malla, Shaw, & Chaudhuri, 2013; Nath, Jiten, & Singh, 2010). In mills with 

tumbling grinding media, i.e. ball and tube, rod and tube, planetary ball mills etc. 

this follows an exponential decay to the mean particle size (Mandal, Mishra, Garg, 

& Chaira, 2014; Nath et al., 2010) suggesting a limit to size reduction. This occurs 
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for both brittle and fibrous material, i.e. both coal and biomass. In other mills this 

is not as clear based on different breakage mechanisms or by the removal of product 

under a certain size through internal classification, as is common on rotary, knife, 

hammer, vertical spindle and centrifugal mills.  

The operational speed of the mill, defined in revolutions per minute (RPM), 

also influences the mean particle size of the final product. It has been concluded 

from studies (L. G. Austin et al., 1981; Naik et al., 2013; Nath et al., 2010) that there 

is a direct relation to the finer particle size with increases in the operational speed, 

these studies are about ball and race, tube and ball (exponential size reduction), and 

rotary mills. In the case of tube and ball type milling it was determined by (Mandal 

et al., 2014) that there is a critical speed, defined as a percentage of the maximum 

operational speed of the mill, that is optimal for comminution. A speed that is too 

high or too low can affect size reduction efficiency as the cataracting motion that 

causes shearing and impact is diminished.  

The load in the mills is also linked to several characteristics of mills and final 

product. In (Naik et al., 2013), once the load within the knife mill built up to a 

certain volume, the primary grinding mechanism changed to attrition, rather than 

cutting, due to the lack of room to move in the mill and the shearing forces of 

friction causing breakage. The work by (L. G. Austin et al., 1981) determines that 

for a ball and race mill there is a peak load at which the maximum rate of breakage 

of particles is achieved.  

The variation in grinding media within the mills can also affects the final 

product. In the studies by (Mandal et al., 2014) and (L. G. Austin et al., 1981) both 

state that the increase of the number of grinding balls in a planetary ball mill and 

ring and race mills increase the rate of the breakage. Mandal also states with a higher 

ball to material weight ratio the product will be finer. However larger diameter balls 

produce a coarser product. In the study of hammer milling (Jindal & Austin, 1976), 

fatter and sharper hammer blades increased the rate of breakage of particles. In 

knife, centrifugal, hammer and other mills that incorporate internal classification all 

can control the passing particle maximum size, therefore with screen aperture 

decrease, the particle size decreases (M Gil et al., 2008; Meghwal & Goswami, 2014; 

Miao et al., 2011). The trade off with the decrease in screen size though is that 
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greater energy consumption is brought about through increased residence time or 

RPM. 

The mill feeding systems will vary based on the type of mill in use. In the 

study by Austin et al (L. G. Austin, Jindal, & Gotsis, 1979) into continuous grinding 

in a laboratory hammer mill, higher feed rates increased the hold up in the mill, 

their evaluation also concluded that only small increases in the feed rate could bring 

about instability in the operation of the mill, causing the maximum hold up of 

product in the mill to be exceeded. In agreement with Austin’s results an 

explanation of why this occurs is given in (Naik et al., 2013) who concluded with a 

knife mill that at higher feed rates the mechanisms of particle breakage changed 

from impacting forces to attrition. Furthermore, the particle size distribution of the 

product varied more, due to the attrition producing a higher proportion of fines. 

Hence the ability to control the feed rate is an important factor in the product 

quality and safety aspects of mill operation.  

Other milling attributes that affect the energy consumption of a mill are 

RPM, feed rate, mill load and grinding media charge (through the increase total mill 

load) (L. G. Austin et al., 1982; L. G. Austin et al., 1981; Magini, Iasonna, & Padella, 

1996; Mandal et al., 2014).  The product size requirement (through necessity for 

higher RPM or greater residence time) is also a factor and is linked to the creation 

of new surface area of the particles consistent with the energy laws for grinding 

(Meghwal & Goswami, 2014). 
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2.11 Modelling approaches 

 

Figure 2.11highlighting the hierarchy of modelling approaches, at the higher level more detail about milling is 

discovered but at the expense of computational time, source: Extracted from (Herbst & Fuerstenau, 1980). 

 
Modelling approaches are conveniently summarised in the paper by Herbst 

and Fuerstenau (Herbst & Fuerstenau, 1980) indicating a hierarchy based on the 

physical detail they contain and the experimental and computational difficulty 

associated with their usage; details of this are shown in figure 2.11. Complexity of 

a simulation is governed by the ability to account for properties of the feed material, 

the stress application environment existing in the mills and for the mathematical 

structure which would be required for the model.  

Identified by Herbst and Fuerstenau are the behaviours in the mill that need 

to be accounted for on an individual basis. These include: 

• Breakage kinetics: how the particles in the model break, linear breakage 

defines a directly proportional relationship between mill parameters, e.g. 

rotational speed, input energy etc. and the rate at which the particles are 

comminuted. Non-linear breakage considers the repercussions of other mill 

dynamics such as development of a particle bed cushioning impacts and 

absorbing some of the impact energy, thus the breakage may or may not 

occur. Here the rate of breakage will not fit a linear relationship.  

• Classification Behaviour: this is how the particles are assessed and how 

the decision is made for them to move on and exit the system. The classifier 
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behaviour would also govern the throughput of the mill and the circuit load 

of any milling process.  

• Transport Behaviour: the flow of particles into, through and out of the 

mill may also not be as straight forward a process in milling. A modelling 

approach would ideally handle how the particles behave in the mill and a 

transport function in a mill may govern the spatial movement of particles, 

thus enabling prediction of material build up in areas of the mill as well as 

complications in feed and exit of the mill.  

 

Whilst comminution modelling has been of considerable interest, much of 

the research completed has been for brittle materials that are generally 

homogeneous in nature and have a more crystalline structure than biomass. The 

practice of modelling biomass comminution has received very little research. Where 

studies have been completed, the studies have focused on relation to the energy 

laws and looked to upscale processing based on energy utilisation. As the primary 

focus of the project is to create a model that is as predictive as possible a review of 

modelling techniques is necessary to determine which will be most appropriate to 

use and can incorporate as many of the features of as identified by Herbst and 

Fuerstenau as possible.  

2.11.1 Empirical Modelling  

Energy Law Modelling 

For the purposes of milling several theories are in existence. The objective 

of these theories is to quantify the energy required for the breakage of particles of 

a given material. The theories in existence are encompassed in a differential 

equation proposed by Walker et. al. (Walker, Lewis, McAdams, & Gilliland, 1923) 

in equation 4.1; each of the separate laws has a different value for the exponent of 

the particle size variable in the denominator, see table 2.3.  

 

 
𝑑𝐸 = −𝐶

𝑑𝑋

𝑋𝑛
 (4.1) 
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Table 2.3 lists the energy laws and describes their differences. 

Energy Law 
Exponent 

Value 
Governing Philosophy 

Kick’s 

𝑬 = 𝑪𝑲𝒇𝒄 𝐥𝐨𝐠 (
𝑿𝑷

𝑿𝑭
) 

𝑛 = 1 Energy requirement is 

proportional to Kick’s 

coefficient (𝐶𝐾), it indicates 

the work required for a 10-

fold reduction in size (L. G. 

Austin, 1973).  

Rittenger’s 

𝑬 = 𝑪𝑹𝒇𝒄 (
𝟏

𝑿𝑷
−

𝟏

𝑿𝑭
) 

𝑛 = 2 Energy required for size 

reduction proportional to 

the new surface area created 

by the fracture of the 

particle (Temmerman et al., 

2013). 𝐶𝑅 is von Rittenger’s 

constant. 

Bond’s Law 

𝑬 = 𝟏𝟎𝟎𝑬𝒊 (
𝟏

√𝑿𝑷

−
𝟏

√𝑿𝑭

) 

𝑛 =
3

2
 

Energy required to grind a 

feedstock to 80% of the 

product passing 100 µm 

grade sieve (Green, 2008). 

𝐸𝑖 is the Bond Work Index. 

𝒇𝒄 – is the specific crushing 

strength of a material 

𝑋𝐹 – the size of the feed 

material 

𝑋𝑃 – the final 

product size 

 

It is the conclusion of a review paper on the subject of the power laws that 

“… these laws are empirical fits to the batch grinding data, and cannot be applied 

except as the crudest approximation to a continuous mill circuit with recycle”, 

hence for an overall model they may be of limited use (L. G. Austin, 1973). They 

have proven useful for in batch experimentation for determining the performance 

of grinding devices when difficulty has arisen in calculating the stresses on particles 

in them (Green, 2008); in general though, the energy laws have not been successful 

in practice, it is speculated that this is due to the inefficiency in transferring the 

input energy to the grinding mechanisms, most of the energy is converted to noise 

and heat through friction.  
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Despite the comment from Austin, development is still being pursued in 

developing energy-size reduction models in order to produce them so that up-

scaling to industrial application will be adequate (Morrell, 2004; Nomura & Tanaka, 

2011; Temmerman et al., 2013); these models are specific in their application, both 

to the type of mills used and the specific energy law that is used.  

Population Balance Equation Modelling 

As described by (Ramkrishna, 2000), “In the application of population 

balances,  one is more interested in the distribution of particle populations and their 

effect on the system behaviour”. Applied to the application of milling, the ability of 

the population balance equation methods (PBE) to describe the physical 

characteristics of the particulate system, e.g. mass, volume, size distribution, 

promotes its candidacy as a suitable modelling technique. Applied to the processes 

of particle size reduction the PBE method has been implemented extensively. Some 

early work on mineral processing has been completed by (L. G. Austin et al., 1979; 

Jindal & Austin, 1976; Klimpel & Austin, 1977) all of which apply the PBE method 

solved through ODE solvers. Matrix forms of the PBE are implemented in (Miguel 

Gil, Luciano, & Arauzo, 2015b; Herbst & Fuerstenau, 1980; Petrakis & Komnitsas, 

2017; Prasher, 1987) that all simplify the algorithms somewhat. The PBE method 

uses a back-calculation of parameters for governing functions, the selection and 

breakage functions, a process that requires nonlinear optimisation (Bilgili, Yepes, & 

Scarlett, 2006; Miguel Gil et al., 2015b; J. Kumar, Peglow, Warnecke, Heinrich, & 

Mörl, 2006; S. Kumar & Ramkrishna, 1996a, 1996b). except for all but the paper by 

Gil et. al., they deal with brittle material and form more spherical particles on 

impact. This leads to smooth curves and particle analysis results that are less 

affected by high aspect ratios. Other works look to increase the ability of the PBE 

to maintain information, through the moments of particle size distributions, these 

are maintained through different mathematical schemes such as Finite Element 

schemes(Mantzaris, Daoutidis, & Srienc, 2001b; Nicmanis & Hounslow, 1996, 

1998), Finite Volume schemes (J. Kumar et al., 2006; S. Kumar & Ramkrishna, 

1996a, 1996b), and direct quadrature method of moments (Daniele L Marchisio & 

Fox, 2005). They aim to preserve other information such as particle number as well 

as mass or volume conservation. Chapter 4.1 provides a fundamental formulation 

of the PBE method and subsequent method of solution used in this research.  
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Artificial Neural Networks 

Inspired by natural neurons, Artificial Neural Networks (ANN) is a method 

that is used when large data sets are available and is highly dependent on that data 

to cover the extremes of operation. With a suitable training process the data sets 

can use the data sets to generate an accurate model for the network (Shuiping, 

Hongzan, Zhichu, & Jianzhong, 2002). Input parameters for a process are 

multiplied by weightings constituting the contribution of the input to the model. 

ANN has been used in comminution modelling to generate models that have 

resulted in accurate non-linear models leading to the desired outputs. In 

comminution modelling ANN has been used in optimising electricity consumption 

based on operational conditions of the mills (H. Wang, Jia, Huang, & Chen, 2010), 

in addition the use with biomass milling based on variables, both of the mill and 

fuel properties, was used to characterise mill energy consumption (Miguel Gil et al., 

2013). Many of the implementations of ANN for grinding circuits focus on using 

neural networks to control the mill as opposed to building a predictive tool 

(Chelgani, Hower, Jorjani, Mesroghli, & Bagherieh, 2008; Stange, 1993). 

 The modelling methodology can also be used with other techniques to 

further optimise the comminution processes, such as in the work by (Shuiping et 

al., 2002) that couples the process with fuzzy logic to deal with the uncertainty and 

genetic algorithms to optimise the model once trained.  

Genetic Algorithm Optimisation (GA) 

The optimisation via the genetic algorithm method has been used in 

conjunction with other empirical modelling efforts (Farzanegan & Vahidipour, 

2009; Shuiping et al., 2002; Su, Wang, & Yu, 2010; Tang, Zhao, Zhou, Yue, & Chai, 

2010; H. Wang et al., 2010; Y. G. Zhang et al., 2002). The process of genetic 

algorithm optimisation is given in (Datta, 2011). The uses of the technique include 

optimising ball milling circuit simulators (Farzanegan & Vahidipour, 2009), 

optimisation of artificial neural network generated models (Shuiping et al., 2002; H. 

Wang et al., 2010) and for optimisation of mill parameters, mainly mill load (Su et 

al., 2010; Y. G. Zhang et al., 2002). 

The stochastic optimisation of a model uses a set of all potential solutions 

to the problem, then evaluates the performance of each candidate solution with 

respect to the objective (Pelikan, 2005). Continuous iterations and progeny 
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generation cause the convergence of the candidate solutions to a single solution 

whereby the fitness evaluation cannot be improved. 

The crossover stage of the GA processes takes two sets from the promising 

solutions, a combination of the two parent sets is then used as the progeny to be 

utilised in the next fitness evaluation. Mutation is used in genetic algorithms, based 

on a programmable probability function in the GA framework representing random 

change and diversity in the set, thus ensuring that parameter strings do not get too 

similar to each other and prevents fixation on a particular locus (Mitchell, 1998).  

2.11.2 Numerical Simulation Modelling 

Discrete Element Modelling 

 

 

Figure 2.12 provides an illustration of the principles of DEM, (P. W. Cleary, 2009). 
 

Developed by Cundall and Strack (Cundall & Strack, 1979), DEM is a 

numerical method for determining the behaviour of granular assemblies using 
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algorithms based on Newton’s second law of motion (Mishra & Rajamani, 1992). 

The modelling technique requires the resolution of inter-particle and particle-

boundary resolution. 

The use of DEM has been varied since its inception, including crowd 

dynamics (H. Singh et al., 2009; Smith et al., 2009), particle flow problems in 

hoppers (J. Li, Langston, Webb, & Dyakowski, 2004), pneumatics conveyance in 

pipes (Sakai & Koshizuka, 2009) and interaction with ground soil (Horner, Peters, 

& Carrillo, 2001) to name but a few. DEM has seen extensive use in modelling 

comminution (P. Cleary, 2001; Mishra & Rajamani, 1992; Weerasekara et al., 2013), 

usually, again for mineral processing of brittle materials or in mining. Use for 

biomass does has yet been considered due to the homogenous non-spherical shape 

for which complications are encountered in DEM and so in general using it to 

model milling could lead to quantitative drawbacks (P. W. Cleary, 2009). In DEM 

the shape of particles can be generated through the bonded particle method (BPM) 

that creates bonds between groups of spheres that represent the material 

characteristics. These spheres have to be arranged in different geometries (Mair & 

Abe, 2011). Other approaches use construction of ellipses, polygons or super-

quadratics and hyper-quadratics (P. W. Cleary, 2009; Džiugys & Peters, 2001; J. 

Wang, Yu, Langston, & Fraige, 2011). Modelling of complex geometries does 

present difficulties with the contact detection, force and torque calculation, 

extension to 3D and the bonding of particles as these can all become complicated 

and computationally expensive (Y. Wang & Mora, 2009).  

Comminution modelling in DEM can be achieved using a bonded particle 

method (BPM), with the particle bonds breaking when subjected to forces 

exceeding the mechanical bonding strength (Khanal, Schubert, & Tomas, 2007; 

Naik et al., 2013; Weerasekara et al., 2013). Alternative methods use a routine 

whereby when subjected to a force sufficient to break the particle it is removed and 

replaced by smaller progeny particles (Paul W Cleary, Prakash, Sinnott, Rudman, & 

Das, 2011; Delaney, Cleary, Sinnott, & Morrison, 2010). 

Finite Element Method (FEM) 

FEM uses functions to determine approximate solutions to variational 

problems with differential equation (Reddy, 1993). Complex domains are 

represented by collections of simple subdomains (the finite elements). Over each 
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element the functions are derived based on the idea that any continuous function 

can be represented by a linear combination of algebraic polynomials. The functions 

are derived using concepts from interpolation theory.  

There is no direct use of FEM in comminution that the author has been 

able to find in literature however the use of FEM in the scope of the project is 

suggested for modelling of other components that may arise. These include 

calculation of the effects of the fuel on the mill components as was investigate in 

(Jonsén, Pålsson, Tano, & Berggren, 2011). The wear on mill surfaces, breakage 

modelling of biomass fuels, material stress, strain, and breakage, has seen an 

extensive history of FEM modelling (Özcan, Bayraktar, Şahin, Haktanir, & Türker, 

2009; Sarris & Constantinides, 2013).  

Finite Volume Method (FVM) 

FVM is a discretised modelling technique for the solution of partial 

differential equations arising from the laws of conservation. It uses a volume 

integration formulation problems, partitioning a set of volumes into discrete 

equations (Long, 2013). It is often used as a technique in the solution of 

computational fluid dynamics (CFD) simulations.  

Whilst not used directly for comminution, it has been used to describe fluid 

motion in stirred bead milling (Graeme, 1999b) and for the elutriating air flow 

through a vertical spindle variation mill, a bowl mill, and accompanying classifier 

unit (Bhasker, 1999). 
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Smooth Particle Hydrodynamics (SPH) and Moving Particle Semi-Implicit Method (MPS) 

 

Figure 2.13 displays a liquid flow modelled with the SPH technique, image source: http://www.itm.uni-

stuttgart.de/research/pasimodo/video_gallery_de.php 

 

With SPH, assemblies of particles represent fluids. The particles hold the 

physical quantities such as velocity, pressure, mass and move according to the 

Lagrangian material velocity (Sun, Sakai, & Yamada, 2013). A smoothing kernel is 

used with the interpolation of SPH approximations and is related to the numerical 

stability. Uses of SPH extend beyond fluid mechanics, the dynamics of impact, 

fracture and fragmentation have also been studied using the method given in 

(Randles & Libersky, 1996). When SPH has been used to model action in a mill, it 

has been to model the liquid phases of wet milling (Paul W Cleary & Morrison, 

2012; Paul W Cleary, Sinnott, & Morrison, 2006; Jonsén¹, Häggblad, & Pålsson, 

2014). MPS is like SPH except it can only be used in the case of an incompressible 

fluid. The smoothing function is also different (Vorobyev, 2012).  

Hybrid Models 
Linking of modelling techniques can provide a way to overcome some of 

the shortcomings that individual methods have. This highlights alternative 

directions that the project can take. In several works, linking PBE to DEM models, 

allows the particle level detail to be integrated into the model. Different 

implementations have captured certain information such as, particle velocity and 

trajectories (Sen, Dubey, Singh, & Ramachandran, 2013). Also, the impact energies 

have been used to correlate to a specific breakage of particles (M. Capece, E. Bilgili, 

& R. Davé, 2014; Lee, Cho, & Kwon, 2010). The benefit of this approach over a 

http://www.itm.uni-stuttgart.de/research/pasimodo/video_gallery_de.php
http://www.itm.uni-stuttgart.de/research/pasimodo/video_gallery_de.php
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purely DEM approach is that the computational time and resources are 

considerably less (Sen et al., 2013). The interaction between the grinding media and 

mill liner for a rotating drum was also the motivation for a coupled DEM-FEM 

model by (Jonsén et al., 2011). Here it was chosen as FEM would better allow 

assessment of the response of the mill liner on the mill charge. The use of SPH and 

MPS to model the fluid phases in wet milling has been utilised in several studies 

(Paul W Cleary & Morrison, 2012; Paul W Cleary et al., 2006; Jonsén¹ et al., 2014; 

Jonsén et al., 2011; Sun et al., 2013; Yamada & Sakai, 2013).DEM was also used in 

conjunction with FVM in the paper by (Yamada & Sakai, 2013). DEM was used to 

model the particle motion in a rotating drum whilst the FVM was used to model 

the heat transfer between the drum, the gas and the balls in the drum.  

 Jonsén et al. used SPH, DEM and FEM in conjunction to model the milling 

components of slurry, charge and mill structure respectively(Jonsén¹ et al., 2014). 

The virtual comminution machine, targeted at reducing development and 

integration time of new machinery with accurate simulation, fully integrate two way 

coupling of DEM and SPH methods(Morrison & Cleary, 2008). The unified 

comminution model looks to utilise all of the unique features of the methods 

described to aid in the understanding of the milling processes (Powell, Govender, 

& McBride, 2008), figure 2.14 provides a representation of its working.  

 

Figure 2.14 displays the UCM model structure, source: (Powell et al., 2008). 
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2.12 Up-Scaling Methods 

Up-scaling simulations to model industrial scale mills based on simulations 

for laboratory mills has been achieved in a few different ways. Scale up based on 

the energy requirements has historically been one method for determining energy 

required to power industrial milling practices. Using the theories such as Bond’s 

law, upscaling has been achieved by the introduction of parameters that represent 

characteristics of the milling operation (Coulson, 1999), and to characterise the 

energy loss that is not attributed to the breakage of material in the mill (Tanaka, 

1972). Upscaling using these methods have not proven successful, primarily down 

to the collating of a ‘one-for-all’ variable related to the mill and milled material (L. 

G. Austin, 1973). Predicting the energy requirements, throughputs and product size 

distribution has been completed for the case of a high pressure grinding roll type 

mill (Daniel & Morrell, 2004) based on the physical parameters of the mill. For a 

ball mill, work towards a predictive energy map that could be used to upscale energy 

requirements has been completed (Magini et al., 1996), this map depends on the 

grinding media physical parameters. Both studies recognised that this method of 

upscaling became dependent on the feed material and whilst good correlation with 

validation data was achieved, the models are sensitive to accuracy of the parameters. 

Furthermore, the unforeseen mechanical influences, such as slippage of the rollers 

in the former paper also influenced the performance of the model calculations.  

Scale-up methodology experimentation was completed in (Iwasaki, 

Yabuuchi, Nakagawa, & Watano, 2010). Here the theory with ball milling is based 

on the principle that to achieve the same size fine product as achieved in the bench 

mark testing, the same impact energy per unit mass must be provided by the larger 

scale milling machinery. Using a DEM simulation, verified against observations of 

ball movement within the mill, they could extract impact energy information. This 

was based on a sectional area where the shear flow field within the grinding region 

was evaluated. With increases in the diameter of mill shell, the region of the shear 

flow field under scrutiny needed to be expanded and it is necessary to maintain 

similarity in the shear flow field. To maintain the shear flow field similarity, for a 

smaller mill it was necessary to increase the rotational speed to critical speed ratio 

due to larger diameter of grinding media to mill shell ratio in order to maintain 

validation.   
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In the work by Herbst and Fuerstenau (Herbst & Fuerstenau, 1980), 

development of a PBE technique is used for the up-scaling of laboratory ball mill 

to a commercial continuous closed circuit ball mill. Here they identify the breakage 

rate function to be independent of mill design and operating variables. 

Furthermore, the breakage distribution functions are invariant with the changes in 

the mill design and operating conditions. These two observations allow the 

prediction of optimal design based on laboratory testing. It has also allowed the 

study to account for transport and classification behaviour through the mill. More 

importantly it has allowed the study of deviation from the optimal conditions as the 

study indicates when assessing the efficiency of the classifier on the circulating load 

residence time. This highlighted the danger of using lumped parameter approaches 

for mill design, for example against the Bond Work Index method that assumes 

perfect classification and plug flow conditions.  

2.13 Literature Review Conclusions 

From reviewing the literature, it has been determined that any model that is 

to be taken forward for development will need to be adaptable to account for 

several parameters. These can be summarised as the fuel parameters and mill type 

and operating conditions. Fuel parameters would contain descriptive variables that 

contribute to understanding the required energy to break the fuel and how it breaks 

once exposed to that energy, i.e. specific breakage energy and breakage distribution. 

Previously studies in such regard have generally been applied to mineral processing 

and do not provide consideration for the cellular structure and anisotropic rigidity 

that is inherent with biomass material. Therefore, such characteristics may need to 

be considered. Milling parameters would be expected to contribute to a model that 

accounts for the energy transfer to the fuel. Furthermore, the mill design and 

breakage mechanisms would contribute to the efficiency of that energy transfer. 

This however could be different based on the interaction of the breakage 

mechanism and the biomass fuel type.  

When upscaling, it will become necessary to increase the complexity of the 

model to account for other milling factors. These will include circuit operation, 

accounting for fuel entering and leaving the system. Additionally, effects of the way 

in which this is facilitated should be considered, e.g. the pneumatic conveyance used 

with classifiers and the efficiency of the classifier. 
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Implementation of the model will also need to be carefully decided. It is 

clear from the literature that an empirical approach to modelling will yield benefits 

in a reasonable time scale, fully appreciated for industrial purposes. This will 

however only be possible with extensive experimental research and has very limited 

predictive ability when considering the variety of both biomass and mill type.  

The numerical method approach has scope to increase the understanding 

of the fundamentals of milling, specifically in terms of the material/grinding media 

interaction. Furthermore, the ability to model other aspects of particle behaviour, 

e.g. velocity, energy, mass, at the particle level is possible; this would aid in 

understanding the fundamentals and potentially modelling additional 

considerations of mill operation, such as how and why or where potential for dust 

explosion may occur. Drawbacks to such model development are the likelihood of 

extensive computational resources and computational time. One positive discovery 

regarding limiting the flaws in both approaches, that has been drawn out of the 

literature review, is the ability to couple multiple techniques, an empirical method 

with a numerical method, to compliment the shortfalls in any one individual 

technique. 
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Chapter 3 - Modelling Technique 

Evaluation and Ranking 

Whilst the milling of biomass material has been studied and grinding 

process simulations, in general have been devised and implemented, the specific 

application of a modelling technique to evaluate the comminution of biomass 

pellets has not been covered in detail. To select the most appropriate method, a 

framework for ranking techniques that could offer advances in predicting the results 

of biomass grinding has been created and implemented.  

Prior to the development of the ranking framework a suitable level of 

knowledge is required regarding: the data available to hand on which to base the 

simulations, understanding as to the how comminution is achieved and the 

objectives of doing so in an industrial setting, and the constraints upon the research 

project. To this end the first stage is to acquire the relevant knowledge more than 

that obtained in the literature review. 

3.1 Data Analysis 

3.1.1 Literature 

The following survey of information on mill type, fuel type and 

comminution variables is a summary of 21 papers about biomass milling from 

various fields, such as agriculture, food, and fuel preparation. The survey is a 

quantitative analysis of the papers and of the three areas stated. All papers surveyed 

are summarised in appendix B of this thesis. The survey is a collection of papers 

that focus specifically on the grinding of biomass material. Plenty of literature is 

available on the study of biomass as a material however research into biomass for 

use in pulverised fuel combustion is rare hence the need to draw upon other sectors 

for information on practices and procedures and relate that knowledge to the 

context of what the research project is trying to achieve.  
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Mills 

 

Figure 3.1 displays the survey results for the types of mills used in published literature on biomass 
milling. 

 
From the analysis of the review of published literature for mills used to 

reduce biomass particle size there is a preference for hammer style mills, followed 

by the cutting mill type (figure 3.1). This is in no part a coincidence as the ductility 

in biomass leads a preference of cutting and shearing action when under 

comminution and inhibits effectiveness of compression and impact mechanism. 

Where mills with actions such as compression and impact are the main grinding 

mechanism, application is generally for biomass species with more anisotropic 

growth structures, e.g. some seed species (Too, Yusof, Chin, Talib, & Aziz, 2012), 

or where temperatures of the biomass is reduced to sub-zero temperatures in order 

to enhance grindability (Goswami & Singh, 2003). 

The shortcomings in the analysis is with regards to industrial size mills. In 

the survey only (Miao et al., 2011) uses an industrial scale mill; all others are 

laboratory scale or pilot scale. Literature on industrial scale milling of biomass could 

not be found beyond this. 
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Biomass Species and Form 

 

Figure 3.2 displays the biomass species and form of the biomass that has been used to study biomass 
milling in the literature surveyed. 

 

The biomass species within the literature (figure 3.2) is linked to the field of 

application for the paper. As comminution in the agriculture sector comes at such 

a high cost, constant research has been commissioned hence much of the literature 

comes from there and understanding as to the implications upon the research 

project can be gathered from this sector, however as biomass combusted in 

pulverised fuel heat and power systems arrives in pellet form, other factors should 

be considered. Only 1 of the papers surveyed contained information on biomass 
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pellet milling for an unspecified wood species (Tamura, Watanabe, Kotake, & 

Hasegawa, 2014). 

 

Independent Variables 

 

Figure 3.3 displays the survey results of the independent variables that are tested in 
literature based on the milling of biomass material. 
 

Figure 3.3 again shows only the 9 most frequent independent variables. 

Given the preference of hammer and cutting mills for biomass milling, it is 

unsurprising that screen size is the most frequent. The helpful aspect of the majority 

of papers concerning hammer and cutting type mills is that they follow the cycle 

milling process seen in power stations and the most frequent variables of screen 

size, angular velocity and feed rate are comparable with industrial practices. Milling 

time as a variable occurs in papers where batch milling takes place, likewise for mill 

load; whilst the context of the papers does not factor in continuous cycle milling 

practices in power station fuel preparation, they offer insight in to the analysis of 

particles and grinding efficiency measures.  
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Dependent Variables 

 

Figure 3.4 displays the most frequently collected dependent variables in published biomass milling 
literature. 

 

The survey results for the dependent variables (figure 3.4) reaffirm that 

particle size distributions and specific grinding energy are of prime importance. 

Further physical characteristics such as moisture content, bulk and absolute density 

are also popular measures. The bulk of statistics then transfers to the 

characterisation of particle size distribution features and what can be inferred from 

them. Figure 3.4 shows only the top 12 surveyed parameters; particle shape 

parameters such as circularity, sphericity and roundness are surveyed however are 

more infrequent. Other characteristics of a more fundamental nature are also 

obtained from further experiments such as, but not limited to, Ultimate analysis, 

Thermogravimetric analysis (TGA) and bomb calorimetry that provide the 

elemental composition, combustion relevant characteristics and heating values 

respectively. In appendix B, details of the papers and what they survey can be found.  
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3.1.2 Industrial Partner Information 

The following information is collection of the limited information available 

in literature, information available in the public domain and information shared by 

the members of the BF2RA who are involved either directly as generators or 

indirectly as equipment manufacturers. Information sourced from the latter 2 are 

because of the lack of published information on industrial scale mills. Appendix C 

includes a small survey presented to the BF2RA members for their response to 

enhancing understanding of the problems faced when milling in general.  

Mills 

Table 3.1 shows a list of mills in use at BF2RA member power stations and 

the fuel for which they are used to grind. Appendix A contains illustrations of a 

variety of mills along with details of their grinding mechanisms.  

Table 3.1 displays industrial milling manufacturers and models used or manufactured by BF2RA 
members for grinding different fuels. 

Manufacturer/ 
Model 

Type Fuel Grinding mechanism 

Babcock 10E Vertical Ball and Race Coal Compression/Abrasion 

Foster Wheeler 
D9 

Horizontal Ball and 
Tube 

Coal Impact/Abrasion 

Lopulco Vertical Spindle Ring 
and Roller 

Coal Compression/Abrasion 

Raymond Vertical Tyre Roller  Coal Compression 

Champion Horizontal Hammer Biomass Impact/Shearing 

Loesche Vertical Spindle Ring 
and Roller 

Biomass
/Coal 

Compression/Abrasion 

Andritz Horizontal Hammer  Biomass Impact/Shearing 

Bühler Horizontal and 
Vertical Hammer 

Biomass Impact/Shearing 

Christy-Turner Horizontal Hammer Biomass Impact/Shearing 

 

As with the survey results from the literature, there is a preference for the 

use of hammer mills for grinding of biomass. However, in literature the bulk of the 

fuel is in an unprocessed form, much of the material combusted in power stations 

arrives pelletised and grinding of the biomass pellets results in the unpacking of the 

densified pellet back into the particles used to form them. In conversation with the 

industrial partners, advice was given that whilst the observation stated above is 

largely true, some additional comminution does ensue. 
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Independent Variables 

Table 3.2 displays the indepenednet variables used by the industrial generators as controlled 
variables for milling.  

Independent Variable Association 

Primary air inlet temperature Mill 

Primary air flow rate Mill 

Pressure differential across the mill Mill 

Feed rate Mill 

Classification size (defined by screen size, classifier vane angle, 
separator speed, etc.) 

Mill 

Mill operating speed † Mill 

Moisture content (inlet) Fuel 

Bulk density Fuel 

Particle size (feed) Fuel 

Hardgrove Grindability Index (HGI) Fuel 
† In power stations mills generally have a set operating speed, however since the mills are often 
built to order the speed varies from one mill to the next hence should still be considered a 
variable for modelling purposes. 

 

Like in literature, variables (see tables 3.2 and 3.3) can be grouped in to mill 

operating conditions and the characteristics of the fuel; many of those variables are 

shared. The ones that are not, namely the primary air inlet temperature and primary 

air flow rate provide additional actions that are not captured in most laboratory 

milling. These include, the pneumatic conveyance of pulverised fuel to the boilers 

burners; the primary air also provides further moisture content release from the fuel 

(L. G. Austin et al., 1982). Lastly the air input contributes to the stoichiometric 

mixture required for the combustion of the fuel in the boiler of the power station. 

Dependent Variables 

Table 3.3 displays the dependent variables in relation to industrial milling practices. 

Dependent Variable Association 

Primary air outlet temperature Mill 

Pressure Differential across the mill Mill 

Energy consumption Mill 

Throughput Mill 

Particle size distribution Fuel 

Moisture content (product) Fuel 

Bulk density (product) Fuel 

 

Again, the dependent variables exhibit resemblance to the laboratory milling 

experiments. Energy consumption, throughput and particle size distribution are key 
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variables. Again, the other variables are constraints on the milling system that are 

designed to allow monitoring and influence the entire energy generation system. 

The monitoring of primary air temperature and pressure differential across the mill 

provides valuable information for the operating status of the mill load and 

throughput; higher mill pressure differential pressure indicates a higher mill load 

(Shoji et al., 1998). Moisture content of the product is also of importance as a higher 

level in the fuel will reduce the heat output from the boiler due to the energy 

required to evaporate it before combustion can initiate (van den Broek, Faaij, & van 

Wijk, 1996). 

3.1.3 Sister Project Experiment Information 

The BF2RA project, “On Biomass Milling for Power Generation” 

(Williams, 2016) completed an experimental research project with the objective of 

characterising biomass fuels and gathering insight in to the factors that affect the 

milled product and energy consumption in a variety of different mill types. The 

experimental analysis included a large amount of characterisation of thermal and 

mechanical properties of biomass as well as the results of milling experiments. This 

summary provides an overview of the milling experimental results that were 

available for use in this project.   

Mills 

Each of the mills used in the study (see table 3.4) were utilised due to their 

availability at the University of Nottingham. It should be noted that the mills used 

in the project, except for the Lopulco mill, do not simulate the industrial scale mills 

due to the difference in the grinding mechanisms, however each has similar 

attributes. The SM300 cutting mill is like a hammer mill in terms of the grinding 

mechanism. Additionally, they also have a screen surrounding and forming part of 

the grinding mechanisms as well as the closed cycle style of operation, due to the 

internal screen. The Lopulco E1.6 mill is a scale model of a Lopulco LM16 mill 

operating with 2 rollers instead of 3. The Bico ball mill is a mill designed to 

determine the BWI value for tested materials. It has a fixed rotational speed and no 

internal classification. The Bond work index includes a stage where undersize 

material is screened and removed outside of the milling environment and the mass 

removed is replaced with unmilled material. Through this a continuous closed cycle 
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process is simulated. The charge of grinding balls also varies in size, where as a 

Foster Wheeler D9 industrial mill uses balls of the same size as its grinding media. 

 

Table 3.4 displays the laboratory mills used within the sister project and variables that were tested 
as part of the experimental process. 

 Experimental Parameters 

Mill Type 
Circuit 

Operation 
RPM 

Feed 

Rate 

Classif-

ication 

Residence 

Time 

Material 

Retsch PM100 
Planetary ball 

Batch ✓ ✓
a  ✓

b ✓ 

Retsch SM300 
Cutting 

Closed cycle ✓ ✓ ✓  ✓ 

Lopulco E1.6 
Ring-Roller† 

Closed cycle     ✓ 

Bico 
Ball and tube‡ 

Closed cycle 
(simulated) 

    ✓ 

† Whilst the mill is capable of alternative feed rates, table speed and classifier variation, no time 
was left to investigate these, reducing the experiments to simply material variation. 
‡ For this mill, as it has a fixed speed and no internal classification, it was used in the context of 
the project for its purpose as a Bond Work Index (BWI) investigative resource only. 
a For the PM100 mill, no feed rate as such was investigated as it is a batch milling machine, 
however batch load was investigated in its place. 
b Residence time was measured through 2 parameters, standard time, but also through milling 
energy input, controlled by settings on the mill. 

 

 

Independent Variables 

As specified in table 3.5, the variables tested under the sister project include 

those similar in nature to those required by the industrial partners and those tested 

by other researchers and documented in literature. As specified in the table some 

constraints were observed in both the capability of the mills in question and as in 

the case of the Lopulco mill, the project simply ran out of time to complete more 

experiments. Further characterisation of the product of the milling includes the 

premilled volume. 
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Dependent Variables 

Table 3.5 displays the dependent variables for which experimental results have been collected within 
the scope of the sister project. 

Variable PM100 SM300 Lopulco Bico 

Bulk volume ✓ ✓ ✓  

Mass difference ✓ ✓ ✓  

Specific grinding energy ✓ ✓ ✓ ✓
b 

Particle size distribution ✓ ✓ ✓ ✓ 

Particle shape characteristics ✓ ✓ ✓ ✓ 

Throughput  ✓ ✓ ✓
c 

Grinding media temperature ✓ ✓
a   

Milled biomass temperature ✓    

Differential pressure   ✓  

Environmental temperature   ✓  

a The temperature of the SM300 experiment grinding media was determined via a thermal 
imaging camera in some instances. 
b The Bond work index process calculates a specific grinding energy requirement whereas the 
other mills the energy draw is measured.  
c The Bond index provides a simulated steady-state conditions and mass throughput can be 
calculated from this.  

 

The collection of the dependent variables is also consistent with the 

literature and the practices followed by the industrial partners. Where some of the 

mills have additional variables collected, they have been done so in an investigatory 

capacity as an alternative method to the standard approach and to see what insight 

might be gathered from doing so. Shape characteristics of the samples have 

measured using dynamic imaging processes that will be outlined in appendix F. 

Consistency in recording what look to be some of the key processes in milling in 

general have also been gathered where appropriate; mill throughput, particle size 

distribution and energy consumption are recorded throughout the experimental 

regime. 

3.1.4 Data Analysis Conclusions 

From analysis of milling literature, industrial information, and sister project 

experiments, it has been determined that the objective of any model should be to 

achieve the appropriate grade product with the minimum expenditure of energy, 

hence the key dependent variables should be as follows: 

• Throughput  

• Particle Size distribution (product) 

• Energy consumption  
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Wherever possible any model should be driven towards the output of these 

3. Had there been time remaining in the project, additional application to industrial 

milling could have focused on the areas of: 

• Mill differential pressure 

• Primary air temperature 

 

The dependent variables that should be used to drive the models, in order 

of importance as drawn out of the literature, are: 

1. Operational Speed 

2. Feed rate 

3. Screen aperture size (or classification parameters) 

4. Particle size distribution (Feed) 

5. Residence time (where applicable, mainly in used for lab-scale in 

certain mills) 

6. Moisture content  

7. Grindability (as determined by certain grindability indices)  

8. Primary Air inlet flow rate 

 

3.2 Evaluation Framework 

To compare different modelling techniques a method of evaluation has 

been determined that covers the key aspects of the project. This accounts for the 

needs of the industrial partners, the budgetary constraints, and the methods by 

which the modelling can be implement and validated. The following section 

provides a commentary on the key aspects and how each modelling technique is 

scored under this evaluation program. Points allocation for the different areas of 

the scorecard along with a description of criteria for the awarding of points is given 

in appendix D. 

3.2.1 Modelling Score Card Areas 

Ability to Model the Scenario 

This section is to assess the capability of the modelling technique to provide 

solutions to the key variables as identified in section 3.1.4. The score is based on 

the following: 
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1. How well the technique can model the key variables of the project: 

a. Particle size distribution 

b. Energy consumption 

c. Mill throughput 

d. Pressure differentials across the mill (industrial 

simulations) 

e. Air temperature differential (industrial simulations) 

2. The capability to model secondary features of milling; table 3.6 

displays the secondary variables of interest in a simulation of 

milling. 

 

Table 3.6 displays the secondary variables of interest to the research but not primary to the objectives 
of the project. 

Category Feature 

Physical environment  
Creation of the milling 
environment and its evolution as 
milling takes place 

Mill Geometry 

Grinding media geometry  

Temperature (gas) 

Pressure (gas) 

Motion 
As applied to the fuel, grinding 
media and air flow within the 
mill. The objective of which is to 
assess where and how 
comminution takes place. 

Mill Geometry 

Grinding media geometry  

Temperature (gas) 

Pressure (gas) 

Velocity 

Translation 

Rotation 

Contact forces (boundaries) 

Contact forces (inter-particle) 

Contact forces (grinding media) 

Entrance 

Exit 

Particle Properties 
The evolution of the particles 
whilst in the milling circuit 

Temperature (solids) 

Stresses 

Particle Geometry 

Fracture/breakage (single particle) 

Fracture/breakage (multi-particle) 
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Computational Requirements 

It is necessary to evaluate the technique in relation to the ease of 

implementation at the end user. Information for the likely run times and 

computational resources is required to appropriately evaluate implementation of 

the simulation. To this end the following assessments are made: 

1. What computational resources, beyond those of a standard 

desktop computer, are required to run the simulation based on the 

modelling technique under evaluation? 

a. The optimal scenario is a standard desktop computer 

b. Other considered cases are a high specification desktop 

computer or a something more powerful, e.g. high-

performance cluster (HPC) of which one is available at the 

University of Nottingham. 

2. How long is the simulation expected to last? 

a. The optimum case on agreement with the industrial 

partner is no longer than 7 hours for suitability for their 

use. Anything longer than this can be considered but 

scored lower.  

Software Availability  

If suitable software packages are not available through the university, 2 

options remain as to how to implement the modelling technique. These would be 

either to purchase appropriate software packages, incurring a cost against the 

research budget, or code the software directly; the latter of which increases the time 

required to develop the program. To this end, for this category the technique is 

scored on the following: 

1. Is software that is capable of facilitating the elements of the 

simulation available? 

a. Ideally the software should at least be able to fulfil 

modelling using the key variables, hopefully including 

some of the secondary.  

2. If a cost is required to obtain the software, how much will it be? 



 

60 
 

a. Budget concerns are on whether or not the university 

currently has any licenses available for the use of the 

software identified. If so whether a contribution to the 

licencing would be required from the project budget.  

b. If a license is not available from the University, the price 

would also dictate whether it could be purchased for use in 

the project.  

Dependency on Data 

As discussed in chapter 1.3, to take mills and boilers off-line to set up for 

experimental tests of new fuels and operating conditions is not a preferred option 

to a generator due to the cost implications of doing so; increased time in cleaning 

out mills and searching for optimal settings results in a loss of output and eventually 

income. The value of the simulation increases if a scheme can predict a mill 

behaviour based on training with a small data set. Therefore, the modelling 

technique will also be subject to evaluation for: 

1. The reliance on experimental investigation to provide the 

foundations of a simulation. 

2. Whether the simulation can predict sufficiently when based on 

physical principles that may relieve the need for experimental data.  

Ease of Validation 

Once a simulation has been created, the necessary step will be to validate 

the output. It is required that this be completed either using analytical solutions or 

for through experimental data. Therefore, analysis of the implemented technique 

requires sufficient and suitable data on which validation can take please, hence a 

technique will also be evaluated on: 

1. Whether the data is suitable to validate the variables for which the 

technique is utilised for. 

a. Scores in the evaluation are weighted to the primary 

variables of interest as opposed to the secondary.  

 

2. If not, how much additional experimental work would be required 

to collect the required data? 
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a. This would also include evaluation as to the complexity of 

the experimentation should it take place.  

 

Adaptability to Industrial Scale 

As the research is focused on answering a question posed by industrial 

partners the development of a simulation should be concerned with how it can be 

applied to industrial practices after development on laboratory condition 

simulations. As previously mentioned laboratory grinding can have significant 

differences from industrial milling beyond simply the scale of the operation. 

Techniques are therefore also evaluated on: 

1. If it is applicable for the industrial scale milling variables. 

 

2. What is the expected workload required in implementing a scale up 

simulation? 

3.3 Modelling Techniques 

From the literature search (chapter 2.11), table 3.7 lists the techniques that 

have been identified as potential candidates for the project due to varying 

capabilities to model the facets of milling. This section provides a review of each 

technique. Using the framework outlined in 3.2 each of the techniques has been 

evaluated and presented with a score. The techniques have been grouped 2 

categories, stochastic and numeric to differentiate the fundamental basis; driven by 

experimental testing and results and based on physical principles respectively.  

In addition to the techniques evaluated individually, some have also been 

assessed as a hybrid system. Used in such ways, the strengths of one technique aims 

to offset the limitations of another to create a better system. Potential hybrid 

systems are also listed in table 3.7. 
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Table 3.7 displays the modelling techniques that are considered for use under the research project.  

Method Type Method 

Stochastic Artificial Neural Networks (ANN) 

 Population Balance Methods (PBE) 

Numerical  Discrete Element Methods (DEM) 

 Finite Element Methods (FEM) 

 Finite Volume Methods (FVM) 

 Particle Finite Element Methods (PFEM) 

 Smoothed Particle Hydrodynamics (SPH) 

Hybrid PBE-DEM 

 FEM-DEM (where FEM analysis is on each discrete element)  

 DEM-FEM (where FEM analysis in on structures because of 
contact with discrete elements) 

 DEM-FVM 

 DEM-SPH 

 SPH-FEM 

 

3.3.1 Artificial Neural Networks 

General Theory 

ANN is based on the summation of weighted inputs to a system, being 

applied to an activation function to generate an output as in figure 3.5 and stated in 

equation 3.1. On occasion a bias is added to the output prior to summation and 

conveyance through the activation function. Activation functions themselves 

regulate the output to a range [0, 1]. 

 

 

Figure 3.5 displays the concept of an Artificial Neural Networks neuron complete with inputs, 
weights, bias, summation, activation function and output. 
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 𝑦 = 𝑓 (∑ 𝑥𝑖𝑤𝑖 + 𝑏𝑖
𝑖

) (3.1) 

 

Layers of neurons (sometimes known as perceptrons, see figure 3.6) add 

further manipulation to the model that help to refine the accuracy of the model; 

each layer has additional weights. Model evaluation via techniques such as Least 

Mean Squared (LMS) is completed and tolerances in errors determine the 

application of optimisation routines like Steepest Descent gradient search 

algorithms (Graupe, 2007).  

 

 

Figure 3.6 displays the architecture of artificial neural networks inclusive of input, 
hidden and output layers. 
 

Key Advantages as Applied to Biomass Milling 

• The application of ANN with milling is high and has the ability to 

work with every independent variable and produce response output 

again for every dependent variable as can be seen in literature using 

ANN with mill circuits (Ahmadzadeh & Lundberg, 2013; Miguel 

Gil et al., 2013; Pani & Mohanta, 2013; Shuiping et al., 2002; V. 

Singh, Banerjee, Tripathy, Saxena, & Venugopal, 2013; H. Wang et 

al., 2010).  
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• There are many methods, strategies and algorithms for solution of 

ANN’s, therefore accuracy could be improved if the problem 

requires a more compatible technique (Miguel Gil et al., 2013; 

Graupe, 2007; H. Wang et al., 2010). 

 

• Processing times for ANN’s are short and does not required large 

computational resources. Furthermore, the implementation can be 

achieved through software packages like MatLabTM’s Neural 

Network Toolbox or through PyPR, a free Python based pattern 

recognition program.  

 

Key Disadvantages as Applied to Biomass Milling 

• Optimisation of the functions that are designed to help train the 

ANN have the potential to optimise to local minima values that 

cause error in the results. 

 

• ANN requires a substantial amount of experimental data on which 

to train a good performing model; furthermore, data needs to be 

widely distributed to cover the range of variable values to be 

accurate in the extremes of the ranges.  

 

• Too many layers in the ANN can result in overtraining. The 

network learns the patterns of the data set; this results in a lack of 

generality due to a model developed so precisely for the training 

data, that when presented with a blind test, would fail (Gardner & 

Dorling, 1998). 

 

Scorecard Assessment Conclusions 

Using the assessment method as outlined in section 3.2 with the comments 

already made the following scorecard has been produced and scores allocated for 

the ANN method. Further justification for the scores attributed to the method are 

as follows:  
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1. Validation of the simulation is easily achieved with blind test data 

however inference of secondary variables of interest may not be 

possible due to the simulation being highly dependent on the 

training data which may not be available in some cases.  

 

2. Upscaling and simulation changes will require significant changes 

and potentially redesign with each new application, whether that be 

mill, fuel or scale.  

 
Table 3.8 displays the scorecard for the Artificial Neural Network method. 

Ranking Category Score 

Modelling the Scenario 3 

Computational Requirements 5 

Software and Coding 5 

Data dependency 1 

Model validation 3 

Industrial scale-up 3 

 

 

3.3.2 Population Balance Equation Method 

General Theory 

The PBE technique is built of a foundation of conservation. These 

quantities generally are for mass and volume where milling practices are employed. 

The breakage (specifically) PBE equation can be seen in 3.2; this describes the rate 

of change of a distribution (𝑓(𝑥)). The first term on the right had size of equation 

3.2 describes the death rate of the quantity out of size 𝑥, whilst the second describes 

the birth rate of size 𝑥 from all greater sizes, 𝑦.   

 

 
𝑑𝑓(𝑥, 𝑡)

𝑑𝑡
= −𝑠(𝑥)𝑓(𝑥, 𝑡) + ∫ 𝑏(𝑥, 𝑦)𝑠(𝑦)𝑓(𝑦, 𝑡)𝑑𝑦

∞

𝑥

 (3.2) 

 

The birth and death rates are governed by a selection function, 𝑠(𝑥), that 

describes the probability of breakage in any given time interval and a breakage 

function, 𝑏(𝑥), that describes the distribution of the progeny from a quantity 𝑦. 
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Key Advantages as Applied to Biomass Milling 

• There many different methods of solution of the partial and 

ordinary differential equation forms of the PBE that have different 

degrees of accuracy dependent on the application (Mantzaris, 

Daoutidis, & Srienc, 2001a; Mantzaris et al., 2001b; Mantzaris, 

Daoutidis, & Srienc, 2001c; Daniele L Marchisio & Fox, 2005; 

Daniele L. Marchisio, Vigil, & Fox, 2003; Nicmanis & Hounslow, 

1996, 1998; Ramkrishna, 2000). 

 

• For particle assemblies, the PBE’s can be discretised conveniently 

into a set of n coupled ODE’s governing each particle size class 

(Herbst & Fuerstenau, 1980); this is analogous of standard mass 

oversize sieve analysis that is used in the measure particle 

assemblies.   

 

• Computational times for simulations, subject to the method 

employed to find the solution, is below the defined requirement in 

section 3.2 (Klimpel & Austin, 1977).  

 

• Whilst there are software packages that can provide a base for a 

PBE simulation, such as ANSYS® Fluent’s PBE module, 

development of self-developed code would be straightforward in 

any programming language.   

 

Key Disadvantages as Applied to Biomass Milling 

• Use of PBE’s in literature has often relied on optimisation of the 

selection and breakage functions against experimental data which 

optimises based on the fuel, mill type and mill operating parameters. 

Thus, limiting the use of a simulation to a specific application; 

advances in material characterisation experiments are attempting to 

mitigate this (Miguel Gil, Luciano, & Arauzo, 2015a; Koka & Trass, 

1987).  
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• Computational resource requirement and time is proportional to the 

discretisation of the spatial domain and seeking a more accurate 

solution on high resolution grids could lead to increases.  

 

• PBE’s whilst applicable to many aspects of milling, PSDs, air flow, 

mass transport, etc. the output is of an empirical nature and will not 

provide information on fundamental concepts of grinding.  

 

Scorecard Assessment Conclusions 

In conjunction with the assessment of the technique made above the 

justification for the scorecard results are: 

1. It is expected that the scale up for industrial purposes will be based 

on volume, mass throughput etc. increases and the technique should 

be equally applicable and require only minor amendments to the 

simulation.  

 

2. Software is available through the university at a small license 

contribution cost however program development is applicable as 

well. 

 

3. Validation of all the primary variables of concern is possible; PSDs 

and mass throughput are inherent in the method, energy 

consumption has been linked with PBE in literature (Gao, 

Forssberg, & Weller, 1996; Otwinowski, 2006; Stamboliadis, 2007). 

Coupled PBEs also have the potential to model the airflow and 

pressures throughout a mill, based on previous applications to fluid 

dynamics (Daniele L Marchisio & Fox, 2005; Daniele L. Marchisio 

et al., 2003).  
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Table 3.9 displays the scorecard results for PBE methods. 

Ranking Category Score 

Modelling the Scenario 3 

Computational Requirements 5 

Software and Coding 4 

Data dependency 2 

Model validation 4 

Industrial scale-up 4 

 

3.3.3 Discrete Element Method 

General Theory 

Developed by Cundall and Strack (Cundall & Strack, 1979), DEM is a 

numerical method for determining the behaviour of granular assemblies using 

algorithms based on Newton’s second law of motion (Mishra & Rajamani, 1992). 

Each body is subject to finite rotations and displacements as governed by the 

equations: 

 𝑚𝑖

𝑑𝒗𝑖

𝑑𝑡
= ∑(𝒇𝑐,𝑖𝑗 + 𝒇𝑑,𝑖𝑗) + 𝑚𝑖𝒈

𝑘𝑖

𝑗=1

 (3.3) 

   

And: 

 𝐼𝑖

𝑑𝝎𝑖

𝑑𝑡
= ∑(𝑴𝑡,𝑖𝑗 + 𝑴𝑛,𝑖𝑗 + 𝑴𝑟,𝑖𝑗)

𝑘𝑖

𝑗=1

 (3.4) 

 

Table 3.10 displays the nomenclature for equations 3.3 and 3.4. 

Description of Variable Key 

The mass of particle 𝒊 𝑚𝑖 

The moment of inertia for particle 𝒊 𝐼𝑖 

Translational velocity of particle 𝒊 𝒗𝑖 

Rotational velocity or particle 𝒊 𝝎𝑖 

Gravitational force of particle 𝒊 𝑚𝑖𝒈 

Number of particles interacting with a particle 𝒊 𝑘𝑖 

Elastic force between particles 𝒊 and 𝒋 𝒇𝑐,𝑖𝑗 

Viscous damping force between particles 𝒊 and 𝒋 𝒇𝑑,𝑖𝑗 

Tangential torque acting on 𝒊 by 𝒋 𝑴𝑡,𝑖𝑗 

Normal force when the normal does not pass through the particle centre 𝑴𝑛,𝑖𝑗 

Torque as a result of rolling friction between particles 𝒊 and 𝒋  𝑴𝑟,𝑖𝑗 
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Movement of the elements results in the need to resolve collisions between 

elements and boundaries of the domain. The two steps to achieve this requires 

contact detection and collision resolution algorithms. Once resolved the vector 

forces and particle movement can then be applied before the next pass through the 

process.  

 

 
Figure 3.7 displays the process flow algorithm of DEM. 

 

In the interests of modelling grinding processes various strategies have been 

employed to model the physical phenomenon. Two such approaches are shown in 

figure 3.8, a particle package and replacement method (Delaney et al., 2010), and 

particle bonded method (Abe & Mair, 2005). 

 

 

Figure 3.8 displays the 2 stated methods of breakage modelling in DEM, particle packing and 
replacement (left), and the bonded particle method (right). 
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Key Advantages as Applied to Biomass Milling 

• DEM has the capability to produce results for many of the variables 

of interest, particle size, mass throughput; the exceptions to which 

are the system and gas phase physical properties (da Cunha, de 

Carvalho, & Tavares, 2013; Iwasaki et al., 2010; Lee et al., 2010; 

Naik et al., 2013; Rosenkranz, Breitung-Faes, & Kwade, 2011; A. 

Sato, Kano, & Saito, 2010); this increases the usefulness to develop 

understanding as to the fundamental physics of grinding processes.  

 

• Due to the physical modelling nature many of the independent 

variables can be directly modelled (Alizadeh, Bertrand, & Chaouki, 

2014; da Cunha et al., 2013; Iwasaki et al., 2010; Lee et al., 2010; S. 

D. Liu, Zhou, Zou, Pinson, & Yu, 2014; Mishra, 2003; Naik et al., 

2013; Rosenkranz et al., 2011; A. Sato et al., 2010; J. Wang et al., 

2011).  

 

• Domain geometry can be constructed with elements from the DEM 

regime set with defined laws (Naik et al., 2013). Alternatively many 

software packages have the ability to import directly from computer 

aided design (CAD) software files or devised within the software 

itself, e.g. PFC v5 (Itasca Consulting Group, 2017).   

 

• Numerous strategies are available to improve contact detection; 

common plane, fast common plane, neighbour search and more 

(Dawei, Erfan, Youssef, & Jamshid, 2006; G Nezami, MA Hashash, 

Zhao, & Ghaboussi, 2006; S. D. Liu et al., 2014; Nezami, Hashash, 

Zhao, & Ghaboussi, 2004; Tijskens, Ramon, & Baerdemaeker, 

2003). Additionally multiple techniques for collision resolution are 

available (da Cunha et al., 2013; Dabeet, Wijewickreme, & Byrne, 

2014) all of which can be trialled to achieve accuracy and improve 

computational time.  
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Key Disadvantages as Applied to Biomass Milling 

• Modelling non-spherical shapes in DEM increases complexity of 

contact detection, collision resolution and rotational translation 

algorithms that all contribute to increased processing time (Favier, 

Abbaspour-Fard, Kremmer, & Raji, 1999).  

 

• Whilst various strategies have been implemented to decrease 

processing time, e.g. reduced order modelling (Boukouvala, Gao, 

Muzzio, & Ierapetritou, 2013) and GPU execution (Ono, 

Nakashima, Shimizu, Miyasaka, & Ohdoi, 2013), execution time can 

be far beyond the modelled time (H. Li, McDowell, & Lowndes, 

2014; Ono et al., 2013). 

 

Scorecard Assessment Conclusions 

Further to the advantages and disadvantages listed earlier in the chapter, the 

following statements about DEM should be made: 

1. There are several DEM software packages available, such as 

EDEMTM (EDEM Simulation, 2017)and PFC (Itasca Consulting 

Group, 2017). The cost for academic licenses is approximately £6k 

to £12k depending on the type of license available.  

 

2. Upscaling to industrial size milling simulations would most likely be 

unfeasible given the time taken for simulations to run completely 

however small subsections could be modelled as a snapshot of what 

is happening in a full-scale mill.  

 

3. Most methods of validation for DEM simulations are replicating the 

circumstances with observational experiments (Fraige, Langston, & 

Chen, 2008; Höhner, Wirtz, & Scherer, 2014). Due to the volatility 

in grinding the ability to directly observe the experiments is unlikely 

and validation would be by inference from the output particle size 

distributions.  
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Table 3.11 displays the scorecard results for DEM. 

Ranking Category Score 

Modelling the Scenario 4 

Computational Requirements 2 

Software and Coding 2 

Data dependency 3 

Model validation 4 

Industrial scale-up 2 

 

 

3.3.4 Finite Element Method 

General Theory 

The finite element method uses the variational (or weak) form of a partial 

differential equation to solve boundary value problem over a finite domain (𝛺). The 

transformation is a consequence of applying Green’s Theorem and application of 

boundary conditions for the problem. Equation 3.5 shows the variational form of 

a reaction diffusion equation. 𝛺 is discretised into elements consisting of nodes and 

edges of various geometries (see figure x.9), defined on a functional space, 𝐻1(𝛺).  

 

 

∫ ∇𝑢 ∙ ∇𝑣 + 𝑐 ∫ 𝑢𝑣
𝛺𝛺

=  ∫ 𝑓𝑣 + ∫ 𝑔1𝑣,         ∀𝑣 ∈ 𝐻Γ𝐷

1 (𝛺)
Γ𝑁𝛺

 
(3.5) 

 

To determine the scalar functions, 𝑢, at each node of the elements a simple 

weighting function, 𝑣, is trialled to approximate the complex function of the actual 

solution. Boundary values, Γ, provide the conditions at the boundaries of the 

domain; various types of boundaries exist in numerical analysis of which Neumann, 

𝑁, and Dirichlet, 𝐷, are represented in equation 3.5. These specify the derivative of 

the solution on the boundary and the value on the boundary itself respectively.  
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Figure 3.9 displays how domains are discretised in finite element simulations, here the stresses on 
a tumbling ball and tube type mill liner are simulated (Jonsén, Pålsson, & Häggblad, 2012). 

 

Key Advantages as Applied to Biomass Milling 

• Finite element modelling could provide insight into many secondary 

variables of interest in milling; these include the air flow and 

pressures in the mills (F. Liu et al., 2015), stresses on mill 

components and material (Khennane, Khelifa, Bleron, & Viguier, 

2014; Munjiza & John, 2002; Özcan et al., 2009; Rousseau, Frangin, 

Marin, & Daudeville, 2009; Zhou, Liu, Tang, Cao, & Chi, 2014) and 

wear on mill components (Forsström, Lindbäck, & Jonsén, 2014; 

Jonsén¹ et al., 2014; Jonsén et al., 2012; Jonsén, Pålsson, Stener, & 

Häggblad, 2014; Jonsén et al., 2011; Jonsén, Stener, Pålsson, & 

Häggblad, 2015; Zhou et al., 2014). 

 

• Complex geometries can be easily defined as well as different 

material conditions (Khennane et al., 2014), so flexibility in the 

simulations is possible. 

 

• As a numerical approach the accuracy in the simulation can be 

increased by refined grids and multigrid techniques. (Ralston & 

Rabinowitz, 2001). 

 

• There are many different software packages available for FEM and 

FEA (finite element analysis) available through the university such 
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as COMSOL Multiphysics®, ANSYS® Structural, SIMULIA 

Abaqus, and open source packages like KRATOS Multiphysics. 

 

Key Disadvantages as Applied to Biomass Milling 

• FEM is highly developed for structural analysis problems and is 

widely used for such purposes. However for the problems of 

fracture and crack propagation it can be cumbersome (Dolbow & 

Belytschko, 1999). This is due to the necessity to re-mesh the 

domain following a crack or fracture. 

 

• As FEM is a Eularian numerical method it solves PDE’s in the 

continuous phase space, hence the method, whilst good for 

modelling the stress and fracture of objects, each object is its own 

self-contained domain, for grinding processes application to each 

particle would be impractical and the technique does not model one 

of the primary variables of concern, the PSD or energy 

consumption in grinding.  

 

Scorecard Assessment Conclusions 

Justification for the scores in the assessment of FEM, alongside those 

already discussed are: 

1. Computational requirements are high in FEM and proportional to 

the resolution in the grid, however some of the software available is 

able to run on the university HPC and optimised for local parallel 

execution on a high specification machine.  

 

2. Validation of simulations, which would be for secondary variables 

since FEM is not of use for primary, would be based on collecting 

much more experimental data that has not formed the basis of 

much of the experimental work collected by the sister project.  
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3. Scaling up simulations for industrial application would require 

complete overhaul of geometries for industrial scale mills; this task 

could prove to be difficult to adequately represent and validate. 

Additionally, this would be time consuming to branch out to more 

than one type of mill.  

Table 3.12 displays the scorecard for the FEM. 

Ranking Category Score 

Modelling the Scenario 2 

Computational Requirements 3 

Software and Coding 3 

Data dependency 3 

Model validation 1 

Industrial scale-up 2 

 

3.3.5 Finite Volume Method 

General Theory 

The finite volume method is often used for the basis of computational fluid 

dynamics modelling and again uses the weak integral form of partial differential 

equations on which to formulate a discrete representation of the domain for a 

problem. Again, these discretisations are represented by polyhedral elements (called 

cells), in many problems. Where as in FEM the line segments of the polyhedral 

discretisation are the target of the solutions, in FVM the volume contained within 

the cell is the focus of the solution. Three approximations are made for the 

discretisations:  

• An approximation of the function 𝑢 ≈ 𝑢ℎ. 

 

• An approximation for the domain Ω ≈ {𝑏𝑖 ∈ ℬ, 𝑖 = 1: 𝑀} where 𝑀 is the 

number of cells of the domain and 𝑏𝑖 is a volume element. 

 

• An approximation for the flux through a boundary of a cell, 𝜕𝑏𝑖, in the 

normal direction, 𝒏, from the boundary 
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Figure 3.10 displays the concept of the finite volume method. 
 

Key Advantages as Applied to Biomass Milling 

• As with FEM, pressure, gas, temperature, and fluids can be 

modelled in mills with FVM (Blecher, Kwade, & Schwedes, 1996; 

Graeme, 1999a; Liying & Chundong, 2011; Takeuchi, Nakamura, 

Iwasaki, & Watano, 2012). 

 

• Complex geometries can be modelled adequately with the suitable 

discretisation of the domain. Accuracy of the simulation can be 

increased with changes in number of control volumes and shapes 

of the volumes (Maire & Breil, 2012; Takeuchi et al., 2012). 

 

• Again, there is a mature and robust selection of software available 

for the implementation of FVM, some available through the 

university and some externally, e.g. MatLabTM PDE Toolbox, 

ANSYS® Fluent and KRATOS Multiphysics.  

 

Key Disadvantages as Applied to Biomass Milling 

• As with FVM the scope of the main variables of interest are not 

represented well by FVM and implementation of the scheme would 
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be on the continuous phase variables (air flow, pressure, heat 

transport) only.  

 

• Implementing FVM for secondary variables again has the 

complexity that for a mill, the geometry can be very complex that 

would require refined grid, hence increasing processing time.  

 

 

Scorecard Assessment Conclusions 

As detailed above and with the same justifications for the scores as in 

section 3.3.4 for the FEM method, the following scores are awarded.  

Table 3.13 displays the scorecard for FVM. 

Ranking Category Score 

Modelling the Scenario 2 

Computational Requirements 3 

Software and Coding 3 

Data dependency 3 

Model validation 2 

Industrial scale-up 3 
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3.3.6 Particle Finite Element Method 

General Theory 

 

Figure 3.11 displays a representation as how PFEM works, detailing the meshing, 
solution, and updating of nodal position in the process (E Oñate et al., 2011). 
 

PFEM uses a set of particles to represent an assembly, at each time step the 

particles act as nodes in a finite element grid and it solves the domain using FEM. 

As figure 3.11 suggests after the finite element solution in that time step has been 

solved the particle points are adjusted based on the physics of the system and 

translated accordingly. The mesh for the finite element solution is then recreated. 

This provides a key advantage over a normal FEM simulation, as the domain for 

solution can change shape, and/or split into 2 or more separate domains for 

solution (Carey, Mason, Barbosa, & Scott, 2014; Kakuda, Hayashi, & Toyotani, 

2014; Zhu, 2014; Zhu & Scott, 2014). Additionally, non-linear problems can be 

solved with a large time step and still obtain stable accurate and fast solutions 

(Idelsohn, Marti, Becker, & Oñate, 2014). 
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Key Advantages as Applied to Biomass Milling 

• Using multi-phase flow abilities of PFEM various aspects of milling 

can be modelling concurrently, such as the air flow, pressure and 

temperature changes as well as the bulk flow of particles in the mill 

(Cante et al., 2014).  

 

• There are a few software packages on offer for the technique, Marc 

by MSC Software, an advanced nonlinear simulation solution and 

Kratos Multiphysics. 

 

Key Disadvantages as Applied to Biomass Milling 

• Elements of milling such as fracture and grinding of a particulate 

assembly would not be possible as PFEM still operates with an 

Eularian continuum numerical method for the solution, and would 

be more applicable to the bulk flow within a mill (Cante et al., 2014). 

This limits the simulation to only 1 of the key variables of interest 

despite the ability to model a few of the secondary variables.  

 

• Due to the need to update and translate each particle at each time 

step the computational requirements becomes more expensive in 

general than for a FEM simulation.  

 

Scorecard Assessment Conclusions 

In conjunction with the advantages and disadvantages given for PFEM the 

following statements also contribute to the final scores for the technique: 

1. Computational requirements could be considerable, subject to how 

refined a mesh might be and how many particles would be required 

to adequately represent the system.  

 

2. Validation of the modelling may not be possible on the bulk flow in 

some milling systems due to batch processing requirements and 
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closed systems. On mills where throughput is measurable this would 

be possible but may require additional monitoring systems. 

 

3. Upscaling to industrial processes would be based on a scaling of 

geometry to compensate for the size of mills in industry. The 

numerical technique may require additional nodes and grid 

refinement that would increase computational time.  

 

Table 3.14 displays the scorecard for PFEM. 

Ranking Category Score 

Modelling the Scenario 2 

Computational Requirements 2 

Software and Coding 2 

Data dependency 3 

Model validation 1 

Industrial scale-up 1 

 

 

3.3.7 Smoothed Particle Hydrodynamics Method 

General Theory 

SPH is a method that has an association with finite elements whereby a 

scalar function 𝐹(𝑟) is smoothly interpolated with the function, 𝑊(𝒓, ℎ), where 𝒓 

is a positional vector and 𝒉 a characteristic width of the system. Through this 

interpolation, the system can be represented by the average value of the 

neighbouring particles and is described in its discrete form by equation 3.6, 𝑠 

represents the smoothed interpolant function. A representation of the scheme is 

given in figure 3.12. 

 
𝐹𝑠(𝒓) ⋍ ∑

𝑚𝑗

𝜌𝑗
𝑗

𝐹𝑗𝑊(𝒓 − 𝒓𝒋, ℎ) (3.6) 
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Figure 3.12 displays a representation of the smoothed particle hydrodynamics method. 
 

Key Advantages as Applied to Biomass Milling 

• Again the technique has been and can be applied to many aspects 

of milling, such as the fluid phases, air flow, pressures, heat transfer; 

in addition to that, breakage has also been modelled in SPH (Paul 

W. Cleary, 2015; Das & Cleary, 2010; Deng, Liu, Wang, Ge, & Li, 

2013; Ganzenmüller, 2015; Harrison, Cleary, Eyres, Sinnott, & 

Lundin, 2014; Simon M. Harrison et al., 2014; Jonsén et al., 2012; 

Jonsén et al., 2015; Pramanik & Deb, 2015; Schörgenhumer, 

Gruber, & Gerstmayr, 2013; Zhou et al., 2014). 

 

• A few mature software packages are available commercially, 

ANSYS® Fluent, and LS-Dyna both available at cost.  

 

• Whilst unable to simulate the geometries with the method itself, the 

software packages have the ability to import and use CAD generated 

boundaries of the control domain and hence replicate the milling 

environments.  

Key Disadvantages as Applied to Biomass Milling 

• The operational conditions under which SPH has to be constrained 

can have considerable effect on the accuracy of the simulation, such 

as the smoothing length to particle spacing ratio and if the particles 

have an uneven distribution (Deng et al., 2013). 
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• To adequately model the scenario of comminution in a simulation, 

as in other works that considers similar mechanisms (Simon M. 

Harrison et al., 2014), many particles would be necessary for each 

and every biomass pellet, hence the computational time for 

increased particles could be extensive (Schörgenhumer et al., 2013). 

This would be further exacerbated by upscaling to industrial 

simulations.  

 

Scorecard Assessment Conclusions 

Additional justification for the conclusions of the scorecard include the 

following: 

1. It is expected that significant computational resources would be 

required for SPH, however restriction on the use of HPC’s in the 

software could prohibit use to just a single high specification 

computer.  

 

2. Again, model validation for SPH would be based on post milling 

study of the PSD and throughput. Energy calculations, like with 

DEM can be collected and compared to energy consumption.  

 
Table 3.15 displays the scorecard for SPH. 

Ranking Category Score 

Modelling the Scenario 2 

Computational Requirements 2 

Software and Coding 2 

Data dependency 3 

Model validation 1 

Industrial scale-up 1 

 

3.3.8 Hybrid Modelling Techniques in Literature 

The list of hybrid models in relation to milling are extensive and 

summarised in table 3.16. The general strategy of coupling techniques is to alleviate 

the challenges of the computationally heavier technique. The combined score for 

each hybrid system is evaluated in appendix F. 
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Table 3.16 displays examples in literature of hybrid modelling techniques.  

Purpose of technique coupling Reference 

Micro DEM simulations are used to determine the 
selection and breakage parameter values for a 
PBE simulation.  

(M. Capece et al., 2014; M. 
Capece, E. Bilgili, & R. N. 
Davé, 2014; M. Capece, 
Davé, & Bilgili, 2015) 

Even smaller DEM simulations are used, and an 
ANN technique is used to learn the appropriate 
parameters for selection and breakage functions 
of PBE.  

(Barrasso, Tamrakar, & 
Ramachandran, 2014) 

FEM is used to examine the stresses on the 
individual DEM particles in a simulation. 

(Munjiza & John, 2002; E. 
Oñate & Rojek, 2004) 

DEM particles are used and when impacting a 
containment vessel, the stresses on the vessel are 
evaluated.  

(Forsström et al., 2014; 
Jonsén¹ et al., 2014; Jonsén 
et al., 2012; Jonsén et al., 
2014; Jonsén et al., 2011; 
Jonsén et al., 2015) 

DEM is used to model the particle flow and FVM 
is used to model the fluid phase of the simulations.  

(Schmidt & Nikrityuk, 2011; 
Takeuchi et al., 2012). 

SPH is used to simulation fluid phases in wet 
milling and coupled with DEM for the solid 
phases.  

(Paul W. Cleary, 2015; 
Jonsén et al., 2014; Jonsén et 
al., 2015) 

DEM is used to model the rock fragments and 
SPH is used to model a pressurised gas injected 
into the rock to facilitate explosion.  

(Fakhimi & Lanari, 2014) 

 

 

3.4 Model Ranking Results 

Following the implementation of the modelling technique evaluation and 

ranking, the following course of action has been taken: 

• Implementation of a PBE simulation to provide quick answers to 

industrial partner questions regarding the performance of biomass 

fuels in mills. 

 

• Implementation of DEM with a view for coupling the technique 

with PBE to overcome computational requirements for a full DEM 

simulation whilst still allowing study into the fundamentals of 

grinding using DEM. 
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Figure 3.13 displays the final total scores from the model technique evaluation process. 
 

Based on the scores in figure 3.13 a few comments can be made about the 

different techniques; for a graphical presentation of the results in all areas please 

see appendix E – Model Ranking Scores.  

Scores for the techniques of ANN and PBE are high in comparison to the 

other techniques. The ability of the two techniques in modelling the scenario 

coupled with the minimal computational requirements and processing times makes 

both techniques competitive. PBE scores higher in that to decouple the need for 

extensive milling experiments, progress has been made which means there would 

be an expected lower dependency on data to formulate the simulation. 

For the numerical simulation techniques, whilst all are reduced in the 

category of computational requirements, all can simulate different aspects of the 

milling process. Except for DEM, none model the key variables of interest 

completely; hence why DEM was selected. Additionally, model validation is 

difficult as the mills are not viewable from the inside, many implementations would 

require additional experimentation other than those considered under the sister 

project.   
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Hybrid models are ranked high in modelling the scenario category and 

marginally higher in computational requirements. As discussed previously this is 

based on the ability to model some other aspect of the milling process or speed up 

the execution of a simulation in general. The strongest contender is the PBE-DEM 

hybrid as it still encapsulates all the variables of interest and helps develop 

understanding of the fundamentals whilst offsetting the main detractor from DEM 

somewhat. Therefore, long term goals for the project should be to develop a PBE-

DEM linked simulation.   
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Chapter 4 - The Population 

Balance Equation Method 

4.1 General Theory 

4.1.1 Background 

The population balance method is focused on describing the evolution of 

particulate systems. As in general particulate systems contain significant numbers 

of particles, it is often more convenient to simulate the behaviour of the population 

rather than the individual.  

In the scope of applications of PBE systems, the evolution of the 

population’s characteristics can focus on a broad range of properties. The 

framework of the PBE method properties of the particulate system can focus on 

the external location of particles in a domain, as well as the ‘internal’ state; the latter 

can be any properties that can be quantified (S. Kumar & Ramkrishna, 1996a). In 

the context of the project the primary focus is associated with the internal state of 

the particles.  

The internal state of PBE simulation often focuses on density quantities, 

namely, number, volume, or mass; literature about grinding and fuel preparation 

focuses on the relevant quantities of mass and volume. The foundation of the 

method is as in equation (4.1) whereby as individual particle sizes can take an infinite 

number of differences the entire population at any time can be captured through 

the integration over a domain, Ω.  

 
𝑁(𝑥, 𝑡) =  ∫ 𝑛(𝑥, 𝑡)𝑑𝑥

Ω

 (4.1) 

 

If 𝑛(𝑥, 𝑡) is considered the actual number of particles in each unit volume, 

V, of space, an average number density 𝑓(𝑥, 𝑡) in a unit volume such that 

integration over infinitesimally small volumes (equation 4.2) can recover the 

number of particles so long as 𝑓(𝑥, 𝑡) is a sufficiently smooth function.   
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𝑛(𝑥, 𝑡) =  ∫ 𝑑𝑉

V

𝑓(𝑥, 𝑡) (4.2) 

 

The number density becomes of more use, as through the moments of a 

distributions, other characteristics can be determined based on what the quantity 𝑥 

represents. For example, using 𝑥 as a representative of volume size within a 

distribution, then the actual volume can be calculated with the first moment of a 

distribution, the volume class size multiplied by the density, i.e. 𝑥 𝑓(𝑥, 𝑡).  

Consider now that 𝒙, is a vector that represents a range of different regions, 

then transport through the regions is a description of our particulate system with 

time. The regions have flux through their respective boundaries and the number 

density of each region changes based on equation 4.3. 

 𝑑

𝑑𝑡
∫ 𝑓(𝒙, 𝑡)𝑑𝑥 =  𝑋̇

𝑏

𝑎

(𝑎, 𝑡)𝑓(𝑎, 𝑡) − 𝑋̇(𝑏, 𝑡)𝑓(𝑏, 𝑡) (4.3) 

 

By transposing equation 4.3 so that the right hand side is equal to 0 and 

absorbing the flux term into the integral, as as long as all functions are sufficiently 

smooth, the solution of the integral is trivial and therefore the integrand must equal 

0 which leads to equation 4.4 (S. Kumar & Ramkrishna, 1996a).  

 𝜕

𝜕𝑡
𝑓(𝒙, 𝑡) + 

𝜕

𝜕𝑥
(𝑋̇(𝒙, 𝑡)𝑓(𝒙, 𝑡)) = 0 (4.4) 

 

4.1.2 The Breakage Population Balance Method 

From equation 4.4, population balance equation methods can be applied to 

many different areas of research. The equation describes the rate of change of the 

density of a quantity, the first term on the left is the progression with time, and the 

second is the progression because of growth processes, such as nucleation. In the 

process of modelling breakage events, this term is redundant, as no such process 

occurs in particle breakage phenomenon. We do however have different events, a 

source term from which particles can be born into the specific 𝑥 class from other 

classes and a sink term whereby particles can leave a class; therefore, another term, 

𝐻(𝑥, 𝑡), which encompasses sink and sources terms is added to equation 4.4. These 
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can include, birth by agglomeration from smaller particles, and breakage from larger 

particles, additionally death from agglomeration, particles moving out of the region 

to larger ones and from breakage to smaller particle regions. At the sizes considered 

for biomass fuel preparation, agglomeration does not need to be considered for the 

simulation as the effects would be minimal.  

Taking this into account the population balance equation, 4.4 is appended 

to accommodate birth and death processes (see equations 4.5-4.6).  

 𝜕

𝜕𝑡
𝑓(𝒙, 𝑡) = 𝐻(𝑥, 𝑡) (4.5) 

 

Where: 

 
𝐻(𝑥, 𝑡) =  ∫ 𝑠(𝑦)𝑏(𝑥, 𝑦)𝑓(𝑦, 𝑡)𝑑𝑦 − 𝑠(𝑥)𝑓(𝑥, 𝑡)

∞

𝑥

 (4.6) 

 

The first term on the right-hand side encompasses the entrance into the size 

class of 𝑥 from all classes, where the size is larger than that under evaluations, i.e. 

𝑦 > 𝑥. And the second term is the sink term from the current size, 𝑥. When 

applying the breakage population balance equation (BPBE), to problems where 

conservation of, for example, mass and volume are present, this leads to 2 

important concepts given in equation 4.7, 4.8 and 4.9. 

 
∫ 𝑏(𝑥, 𝑦)𝑑𝑥

𝑦

0

= 1 (4.7) 

 
 𝑏(𝑥, 𝑦) = 0,    𝑥 > 𝑦 (4.8) 

 
 

∫ 𝑥𝑏(𝑥, 𝑦)𝑑𝑥
𝑦

0

= 𝑦 (4.9) 

 

From these constraints and the integration of 4.6 into 4.5 gives the final 

form of the continuous BPBE. This can be solved in a several different ways that 

are discussed in chapter 4.1.3 where an overview was provided.  
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4.1.3 Method of Solution 

In various literature there are a few techniques have been used that would 

suit the purposes of the problem. The differences of the schemes are in how the 

problem is posed. In some of the works developed over the last 20 years, 

investigations of breakage have included solution via Monte Carlo techniques 

(Kostoglou, Dovas, & Karabelas, 1997; Mishra, 2000), direct quadrature methods 

of moments (Daniele L. Marchisio et al., 2003), a range of different fixed pivots and 

cell averaged techniques (J. Kumar et al., 2006; S. Kumar & Ramkrishna, 1996a, 

1996b). Most of the techniques revolve around dividing the domain of interest into 

sections and solving over that section for an amount of time. These fit grinding 

processes well as analysis of the resultant progeny is usually analysed through 

discrete measure, e.g. sieving, and represented as a discrete cumulative distribution. 

To this end a discretised method, using matrices can be employed (Bilgili & Scarlett, 

2005a, 2005b; Bilgili et al., 2006; Maxx Capece, Bilgili, & Dave, 2011; Miguel Gil et 

al., 2015b; Herbst & Fuerstenau, 1980), where each row and column represent the 

different size classes. In such a case the integrals in the population balance equation 

can be replaced with summations over the range (equation 4.9), a change in notation 

is implemented here, 𝑖 and 𝑗 represent size classes, 𝑠, 𝑏, 𝑓 and 𝑡 represent the 

selection function at size 𝑖, breakage function of size class 𝑗 in to 𝑖, the quantity at 

size 𝑖 and time respectively. 

 𝑑𝑓𝑖

𝑑𝑡
=  ∑ 𝑠𝑗𝑏𝑖,𝑗𝑓𝑗

𝐼

𝑗=𝑖

− 𝑠𝑖𝑓𝑖 (4.9) 

 

From 4.9, enacting a forward difference scheme in the time domain leads 

to equation 4.10. 

 

𝑓𝑖(𝑡 + ∆𝑡) = (1 − ∆𝑡𝑠𝑖)𝑓𝑖(𝑡) + ∆𝑡 ∑ 𝑠𝑗𝑏𝑖𝑗𝑓𝑗(𝑡)

𝑖−1

𝑗=𝑖

 (4.10) 

 

From here, calculation of the whole system can be represented as matrices. 

To do so requires that each the of selection and breakage functions take the form 

of a 𝑛 × 𝑛 matrix where n is the number of size classes. The selection matrix 
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becomes a diagonal matrix, and the breakage matrix either an upper or lower 

triangular matrix, subject to the order of the size classes in the simulation.  

Selection function: (

𝑠1,1 … 0
⋮ ⋱ ⋮
0 … 𝑠𝑛,𝑛

) (4.11) 

 

 

Breakage function: (

𝑏1,1 … 𝑏1,𝑛

⋮ ⋱ ⋮
0 … 𝑏𝑛,𝑛

) (4.12) 

 

This leads to the convenient construction of a matrix form of the BPBE as 

in equation 4.13.  

 

 𝑭(𝑡+∆𝑡) = (𝑰 − ∆𝑡𝑺 + ∆𝑡𝑩𝑺)𝑭(𝑡) (4.13) 

 

With successive multiplication at each interval ∆𝑡 the progression at any 

time can be calculated. And based on the value of ∆𝑡, the matrix form can be 

evaluated as equation 4.14, where k is the number of steps given by 𝑡𝑚𝑎𝑥/∆𝑡. 

 

 𝑭(𝑡) = (𝑰 − ∆𝑡𝑺 + ∆𝑡𝑩𝑺)𝑘𝑭(0) (4.14) 

 

Under batch conditions this method has been used to calculate the solution. 

Additionally, as has been completed in other literature, the solution to the series of 

ordinary differential equations as in equation 4.10 can be computed, and in literature 

most frequently with MatLabTM ODE45 or ODE115 functions. Using the matrix 

method though seems to give as high an accuracy as any ODE solved solution 

(Petrakis & Komnitsas, 2017).   
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4.2 Selection and Breakage Functions 

The selection and breakage functions of the simulation have a key role in 

defining the how evolution of the particle size distribution progress with time. Each 

plays a specific role in the equation. The selection function, provides a rate of 

change based on a condition of 𝑥; in the context of the project, this is a rate of 

breakage for particles of size 𝑥. The breakage function describes the distribution of 

the quantity that is broken down. Subject to how the PBE simulation is targeted as 

mentioned in 4.1.1, the constraints on the breakage function for conserved 

quantities are as in equations 4.7 through to 4.9. Again, in the context of the project, 

the selection function also has a constraint whereby the rate of breakage at each 

time interval cannot exceed 1, i.e. 𝑠(𝑥) ≤ 1. Generally, in the case of comminution 

the rate of breakage is to reduce as the size of 𝑥 decreases. As part of the study in 

chapter 3, a set of breakage and selection functions were collected that form part 

of the study completed in this research. Chapter 7, tables 7.1 and 7.2 provide details 

of the selection and breakage functions used within this project. Within the matrix 

PBE model the breakage function is expressed as a cumulative distribution, 𝐵𝑖,𝑗,  

which when calculated requires the transformation into a discrete fraction, hence 

equation 4.15. 

 

 𝑏𝑖,𝑗 = 𝐵𝑖,𝑗 − 𝐵𝑖−1,𝑗 (4.15) 

 

Here 𝑖 and 𝑗 represent the size the particle is going to, 𝑖, and the particle 

coming from, 𝑗. 

 

4.3 Simulation Implementation 

4.3.1 Method Validation 

Initial development of the population balance for batch processes was 

developed that satisfies the numerical scheme outlined. As a test case to ensure the 

developed simulation is providing accurate solutions to problems the data from 

(Petrakis & Komnitsas, 2017) will be used due to the similarity of the simulation. 

As the achieved accuracy is to within 99.9% of the experimental data in that 



 

92 
 

literature, should the model constructed here achieve the same level it can be taking 

as achieving appropriate solutions to the problem and valid for use in the research.  

4.3.2 Parameter Back Calculation Method  

It will become necessary to alter the individual parameters of the breakage 

and selection functions during the research so that the parameters can be correlated 

with the output of the mills and identify how the operational and material 

characteristics influence the simulation. Optimisation to back calculate these 

parameters was completed using the ‘fmincon’ routine in MatLabTM. This process 

completes non-linear optimisation of the parameters when there are constraints 

with the parameters. ‘fmincon’ comes with several different settings. For this 

research, after initial tests higher accuracy was found using an ‘interior-point’ 

algorithm as detailed (Byrd, Hribar, & Nocedal, 1999). As an objective function to 

minimise, the overlapping coefficient, OVL, has been employed in favour of 

measures of accuracy, such as linearising the particle distributions through log-log 

plots of the Rosin-Rammler distribution, whereby to ensure fits, data must be 

trimmed from either end to ensure calculation for the log-log axis before R2, or 

employing other tests which are not suited to the non-linear nature of a PSD.  The 

optimisation routine has several parameters that are set to terminate optimisation 

when specific conditions are met. In this work the tolerances are set to the standards 

of the MatLabTM fmincon function except for changes in the objective function, 

‘TolFun’, which was set to halt when the change was less than 10-4; trials with 

smaller tolerances, e.g. 10-6 proved more time consuming, yet provided little or no 

gain in accuracy.  

 

4.4 The Overlapping Coefficient 

As mentioned 4.3.2, various measures of accuracy can be used in evaluating 

the model, however standard measures, such as R2, are unsuitable for non-linear 

systems. In other literature, the researchers have linearised the particle size 

distributions with logarithmic transforms in order to compare distributions which 

often omits the top and bottom of a distribution in order to fulfil the 

transformation. As an alternative, the Overlapping Coefficient, OVL, is used to 

assess particle size distributions and variance between them. The basis of the theory 
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is that for two distinct probability density functions, 𝑔(𝑥) and ℎ(𝑥), the OVL 

coefficient is 1 if and only if 𝑔(𝑥) = ℎ(𝑥), otherwise the value is in the interval [0, 

1] where the value gives an indication as to how close the distributions are to one 

another; this is calculated as in equation 4.16 whereby with discrete data the integral 

can be replaced with a summation over the range. Figure 4.1 displays the concept 

of the OVL principle. When used as an objective function for the ‘fmincon’ 

MatLabTM optimisation routine, the actual target function to minimise is 1-OVL .  

 

 𝑂𝑉𝐿 = ∫ min {𝑔(𝑥), ℎ(𝑥)}𝑑𝑥
∞

0

 (4.16) 

 

 

Figure 4.1 displays the concept of the overlapping coefficient, which is used in comparing 
distributions and as an objective function for optimisation. 

 

4.5 Steady-State Simulations 

 

Figure 4.2 displays the concept of the steady state PBE model. 
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Steady state simulations are used as representations of the continuous 

throughput mills more applicable to an industry milling setting. The application of 

the PBE can be implemented through iterations of the scheme until the input flow 

rate matches the output as symbolised in equation 4.17 and represented in figure 

4.2. At steady state there would be no change in the PSD within the mill and 

product flow rate out should match the flow rate into the mill. A residence time 

parameter 𝜃 is an unknown within the model.  

 
 1

𝜃
 (𝑓𝑖𝑛 − 𝑓𝑜𝑢𝑡) + ∑ 𝑠𝑗𝑏𝑖,𝑗𝑓𝑗

𝐼

𝑗=𝑖

− 𝑠𝑖𝑓𝑖 = 0 (4.17) 

 

Due to the unknown residence time the simulation is iterated to a steady 

state, whereby the residence time is encapsulated into an input and exit rate of the 

mill. Therefore 4.17 becomes as in 4.18. 

 

 ℱ𝑖𝑓0 − 𝐶𝑖𝑓ℎ + ∑ 𝑠𝑗𝑏𝑖,𝑗𝑓𝑗

𝐼

𝑗=𝑖

− 𝑠𝑖𝑓𝑖 = 0 (4.18) 

 

Where ℱ𝑖 is the input or feed rate and 𝐶𝑖 the output rate, in to and out of 

the mill respectively at each size interval 𝑖. 𝐶𝑖 is governed by a classification function 

a probabilistic function that gives the likelihood of a particle of size 𝑖 passing the 

classifier.   

Steady state conditions are considered to have been reached when a recycle 

rate, ℛ, in the previous iteration matches the current recycle rate, ℛ’  to within a 

certain tolerance as shown in figure 4.2. Using the back-calculation method 

described in 4.3.2 the resultant PSD can be optimised to meet experimental 

conditions.  
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4.6 Simulation Experimental Process 

The following method explains the process of numerical simulations and 

process used to extract the factors that affect how a mill responds when the 

operational conditions are changed and the changes in material. 

4.6.1 Domain Separation 

As mentioned previously, as grinding experiments are naturally analysed 

through discrete size intervals, the domain of results is already separated out. The 

separation is often coarse due to the practicalities of particle size analysis through 

physical separation methods, such as sieving which usually uses intervals where the 

next size is a multiple of √2 to the previous. In general, more accurate numerical 

calculations can be achieved through increasing the number of intervals in the size 

domain so that ∆𝑥 → 0. However, when using a numerical scheme that has many 

more intervals than those of experimental results, information is lost in the 

reconstitution of a coarser grid. A number of works have stated that it is possible 

to achieve highly accurate solutions using coarser separations and non-linear grid 

separation is seemingly handled well by PBE methods subject to the method of 

solution (S. Kumar & Ramkrishna, 1996b; Petrakis & Komnitsas, 2017). Therefore, 

in the following research the particle size domain over which calculation of the 

discrete size intervals takes place is set to match that of the experimental work to 

which it is attempting to optimise too and predict.  

4.6.2 Feed generation 

Input material generation is created where possible to match that of the 

different materials used in this project. Several species of biomass pellets are used 

and material properties have been recorded, specifically the mean pellet diameter 

and length along with their respective standard deviations. In each simulation feed 

is generated using MatLabTM’s ‘normrnd’ function to generate 106 individual 

elements with normally distributed minimum chord diameters, 𝑑𝑐_𝑚𝑖𝑛, using the 

information of the mean and standard deviation information. Once generated the 

particles are used to create a probability distribution to be used as the initial 

distribution of each simulation.  
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4.6.3 Optimised Selection and Refinement 

The process by which the back calculation of parameter values and zoning 

in on the optimal model conditions would take the following steps: 

• Selection and Breakage Function 

o Optimise each experimental run against each combination 

of selection and breakage function, (20 combinations), to 

maximise OVL (note: the optimisation function will look to 

minimise 1-OVL) 

 

o Frequency plot the occurrence of each selection and 

breakage model combination, determine the most popular; 

where results are close determine 2nd and 3rd preferential 

models and include in the frequency plot.  

 

• Optimise selected selection and breakage function combination 

against training data.  

o Evaluate the parameter data to look for trends related to 

changes in the experiment conditions.  

 

o If no relations seem present, alter the initial starting 

parameter values and run the optimisation again.  

 

o If still no relation moves to the next most frequent SB 

combination.  

 

• Where possible relationship with each parameter, constrain others 

where no relation seems to exist.  

o When so doing ensure that the possible relationships are 

maintained.  

 

o Ensure that overall accuracy of the simulation can be 

maintained within significant levels.  
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o If relationships fail, or accuracy drops below acceptable 

levels consider alternative amendments, or multi-

independent variable reliance.  

 

• If relationships between parameter values and independent 

variables materialise develop model and blind test. 

o Use data unused in the training of the model to evaluate the 

accuracy.  

o If accuracy is too low, review and repeat process.  

 

By using this process, the objective is that the model can be quantified 

against the material and operating conditions. If successful it may lead to the 

possibility of establishing a more predictable PBE simulation that may reduce the 

need for extensive experimental runs. As material characteristics would be easier to 

analyse and quantify the effects they have on set milling conditions they will be 

analysed first.  
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Chapter 5 - Experimental 

Methodology 

This chapter discusses the experimental methods used throughout the 

research. It covers areas form the analysis methods used for the particle analysis, 

energy analysis and mass throughput. Additionally, for the Lopulco mill how the air 

flow through the mill was measured and collected to obtain data for some of the 

secondary variables of interested as highlighted in chapter 3.1.4. The chapter also 

includes a section on the experimental results taken from the sister project “On 

Biomass Milling for Power Generation” (Williams, 2016). 

5.1 General Analysis Methods 

5.1.1 Particle Analysis 

Particle analysis on the product of milling experiments and material 

characterisation experiments has been carried out in 2 ways. The first has been via 

mass-based sieve analysis to give mass fractions of the particle size distributions. 

The second is through dynamic image analysis. Figure 5.1 displays the effective 

range of several particles analysis techniques.  

 

Figure 5.1 displays the particle size ranges for which various particle analysis techniques are 
effective. 

 

5.1.2 Mass Fraction Oversize Sieve Analysis 

Mass fraction over size analysis is completed with 20 cm diameter sieves 

from by Retsch Technology following the BS EN ISO 17827-2:2016 standard. 
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Following trials on milled biomass material it was found that 15 minutes was 

sufficient time to fulfil the standard guideline of achieve below 0.3% change per 

minute between sequential sieves for all biomass pellet species. Analysis is carried 

out using sieve sizes: (3350µm, 2360µm, 1700µm, 1180µm, 1000µm, 850µm, 

600µm, 300µm, 150µm). The sieves are stacked in descending order on a Retsch 

Technology AS200 sieve shaker, set to intermittent pulsed sieving, each pulse 

occurring for 10 seconds before a 3 second settling break; this method was used on 

the recommendation of Retsch Technology.  The masses are measured using an 

Ohaus Pioneer balance measured to nearest 0.01g representing a ±0.005g potential 

error.  

5.1.3 Volume Fraction Undersize Dynamic Analysis 

Dynamic image analysis is achieved using a Retsch Technology Camsizer® 

P4 that conforms to the BS ISO 13322-2:2006 standard. The technology uses two 

30 frames per second cameras, with a resolution 1.3 megapixel each, one of the 

cameras is zoomed in on a region at the top centre of the viewable area. Particles 

traverse along a vibratory feeder and allowed to drop between the cameras and a 

back lit screen into a collection receptacle. The cameras capture images are analysed 

for size and shape parameters (see appendix F for definitions used as part of this 

thesis), producing distributions on a volume basis. The range of particle recognition 

is from 30 µm through to 30 mm. Both cameras analyse all particles captured in 

each image. The zoom camera is used to give a statistically based likely number of 

the smallest particles that are not captured by the basic camera. The CAMSIZER 

reports particle sizes to the nearest µm down to the minimum of its capability, 

representing a margin of error of ±0.5 µm with every reading. The shape parameters 

are subject to this margin of error, additionally shape characteristics are calculated 

by the CAMSIZER to 8 decimal places; they are reported to 2 within this work.  
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Figure 5.2 displays the concept of the CAMSIZER P4 and how it captures and analyses particle 
information. 

 

5.1.4 Energy Consumption Data Logging 

Energy consumption was recorded whilst the mills were in use by an 

ElComponent SPC Pro data logger by ElComponent Ltd. The data collected 

includes the current, voltage and phase angle at 1 second intervals to calculate total 

power, 𝑃. Data is processed with accompanying software. Specific effective energy 

(Ee), i.e. energy consumption per unit mass relative to the idle energy consumption 

(idle power, 𝑃𝐼), is calculated using equation 5.1 (V. S. R. Bitra et al., 2009; 

Gravelsins & Trass, 2013). Further information is contained in (Williams, 2016) on 

the technical aspects of how the energy meter works. The data logger reports the 

power consumption to the nearest Watt. Potential error is therefore ±0.5 W. 

 𝐸𝑒 = ∫
𝑃

𝑚
𝑑𝑡

𝑡

0

− ∫
𝑃𝐼

𝑚
𝑑𝑡

𝑡

0

 (5.1) 

   

5.1.5 Mass Output Analysis 

Output Rate 

Tracking the output of mass from a mill has been achieved using an Ohaus 

PA4202C, self-calibrating top pan balance, with a maximum capacity of 4kg and 

precision to 0.01g. The balance was connected to a laptop running the Ohaus DAS 

(data acquisition software). Through this, mass can be recorded at set time intervals 

greater than 1 second.  The balance was used to track output from several mills 

during experimentation (figure 5.4). The potential error in the measurements is 

±0.005g. 



 

101 
 

Residence Time 

Using the information about the feed rates and output rates, a residence 

time for each experimental run will be calculated based on difference in time from 

when 50% of the feed load has been fed into the mill and when 50% of the feed 

has exited the mill.  

 

5.2 Lopulco E1.6 Mill 

5.2.1 Mill 

The E1.6 Lopulco Mill is a laboratory scale ring and roller mill (see figure 

5.3). Table 5.1 displays the dependent and independent variables for the 

experiment. The objective of the experiments was to create a set of results on a mill 

similar in operation to those used in industrial milling and investigate how the 

independent variables (mill settings) effect the dependent variables. These 

experiments are to be used in conjunction with the material study carried out in the 

sister project, (Williams, 2016).   

 

 

Figure 5.3 displays pictures of the Lopulco E1.6 mill used in the project and based at the 
University of Nottingham. 
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The mill and monitoring equipment was set up as in figure 5.4 and include 

the pressure and temperature information tapping points (see table 5.2 for 

equipment details). Figure 5.5 provides a close-up schematic of a pressure tap with 

transducer arrangement used to collect pressure and to calculate airflow through 

the mill via the differential pressure transducer at the venture tube.  

 

Table 5.1 displays the independent and dependent variables for the Lopulco mill experiments.  

Independent Variables Dependent Variables 

Feed Rate Product PSD 

Mill Table Speed Mass output rate 

Classifier Vane Angle Air flow 

Product Input (1 kg) Calculated residence time 

 Mill energy consumption 

 Milling chamber differential pressure 

 Inlet air temperature 

 Outlet air temperature 

 Ambient temperature 

 Ambient humidity 

 

 

Figure 5.4 displays the set up for the Lopulco mill experiments including, mass output, temperature 
and pressure tapping points. 
 

The mill has several adjustable parameters; these are digital controls for the 

mill table speed, mill screw feeder speed and manual adjustment of 16 classifier 

vanes. In the experiments these were set by measurement with a protractor as 
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closely to the desired angle as possible, using an upward angle measure from the 

horizontal plane (see figure 5.6). The classifier unit is itself fixed to the mill table 

and rotates at the same speed as the mill table.  

 

Table 5.2 displays the sensors used for the Lopulco milling experiments.  

Label Manufacturer/Model Use 

PT1, PT2, 
PT3 

OMRON MEMS 2SMPP Gauge Pressure Transducer 

PDT4 Freescale Semiconductor 
MPX10DP 

Differential Pressure 
Transducer 

TT1, TT2, 
TT3, TT4 

T-type  Temperature thermocouple 

Data 
Logger1 

Campbell Scientific CR23X 
Micrologger 

Transducer and thermocouple 
signal detection and logging 

Ambient 
Data 
Logger1 

Lascar Electronics UK EL-
USB-1 

Ambient temperature and 
humidity 

Energy data 
logger1 

ElComponent SPC Pro Energy consumption 
 

At mill 
output  

Ohaus Pioneer PA4202C 
balance 

Mass output 

1 Devices not shown on the diagram 

 

 

 

Figure 5.5 displays the close-up schematic of the pressure transducer mounting on the Lopulco mill. 
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5.2.2 Air Flow Rates 

To measure the mass airflow rates through the mill, a differential pressure 

transducer was set up to span the inlet and constriction tappings of a Venturi tube, 

PDT4 on figure 5.4, built in to the air recycling pipe of the Lopulco mill. As the air 

flow rates were a secondary objective of the project and because of the limitation 

of the CR23X data logger allowing only mean, maximum and minimum readings 

from the transducers every minute, the results of the air flow rates are not focused 

on too much in this research. Inclusion is for illustrative purposes only, therefore 

adherence to the standard BS ISO 5167-3,4 was not observed. Gauge pressure 

transducers were also utilised for monitoring the mill to ensure problem free 

running during experiments only; figure 5.5 provides an illustration as to set up of 

the pressure transducers. Air flow rates were calculated using the pressure 

differential value at PDT4 of figure 5.4 and converted by using the Bernoulli 

equation (5.2) of constant streamlines. Table 5.3 gives the internal diameters and 

heights of the respective pressure tappings of the Venturi tube. The differential 

pressure transducer used has a measurement error of approximately ±0.3 kPa which 

equates to about ±0.002 ms-1. 

 

 𝐼 = 𝑃 +
1

2
𝜌𝑣2 + 𝜌𝑔ℎ (5.2) 

 

 𝑄 = 𝑣𝑖𝐴𝑖 (5.3) 

 

 𝑄 = √

2∆𝑃
𝜌 + 2𝑔∆ℎ

(
1

𝐴2
−

1
𝐴1

)
⁄  (5.4) 

 

Table 5.3 displays the Venturi tube specification from the Lopulco E1.6 mill 

PDT4 Venturi Tube Tap Point Height (m) Inner Diameter (m) 

Inlet 1.185 0.05625 

Neck 1.055 0.03125 
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Figure 5.6 displays a representation of the adjustable vanes on the Lopulco mill classifier system; 
(upper) the rotating core, (lower) individual vanes. 

 

5.2.3 Experimental Design 

Due to the expected curvature in the response of the mills dependent 

variables a full factorial experimental design with at least 3 levels of the independent 

variables would have been preferred however constraints existed within the project. 

To complete the experiments an appropriate experimental design was required that 

satisfied the constraints of: 

1. Limited time with the Lopulco mill. 

2. Limited time for the assistance in completing the experiments. 

3. Limited quantities of the raw biomass pellets that were initially supplied 

to the sister project. 

4. Limited research budget to purchase more biomass pellets.  

To capture the expected non-linear relationship of the independent 

variables with the dependent variables of the mill whilst minimising the number of 

experimental runs required,  the experimental design followed a Response Surface 

Central Circumscribed (CCC) design  (NIST/SEMATECH, 2013); this method was 

selected to draw out the non-linear relationship of the independent variables with 

the dependent variables, the embedded factorial design that is augmented by the 

extreme ‘star-points’ set at a multiple of α = 1.682 that of the distance between the 

high and low points from the centre point of the experimental conditions (see figure 



 

106 
 

5.7), and the ability of the method to provide high quality predictions in detecting 

curvature whilst scaling back the number of experiments required. Each 

experimental condition was repeated 3 times except at the centre point where more 

results are required in a CCC design;18 results would be preferential however due 

to the limitations this was scaled back to 9 repeats. Using Minitab software an order 

for experimental runs was obtained so that noise from environmental variables was 

minimised. The mill settings for the experiments are listed in table 5.4. 

 

 

Figure 5.7 displays the central composite circumscribed experimental design philosophy. 
 

Table 5.4 displays the experimental settings used in the Lopulco mill experiments. 

Independent Variable 
Lower Star 

Point 

Low 
Factorial 

Point 
Centre 
Point 

High 
Factorial 

Point 
Upper Star 

Point 

Feeder speed (g s-1) 3.63 6.32 10.17 14.02 16.71 

Table Speed (RPM) 175 202 242 282 309 

Classifier vane angle (o) - 20 55 90 - 

Target run fuel load (kg) 1.00 

 

The mill speed is set by the mill and verified by high speed video capture 

using a reflective paint on the mills core and is correct to within ±1 RPM. The feed 

rate has been determined by trial runs of the feeder prior to the experiments and 

has a potential error in the delivery rate of ±1 g s-1, however the mill feeding is 

sometimes variable in delivery if pellets become jammed, hence constant 

monitoring is required. The classifier vane angles are set manually and are 

dependent on both the protractor accuracy stated as accurate to ±0.5o but is also 

more susceptible to operator error than any other part of the experimental set up.  
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The experimental process is as follows. The pellets are loaded into the feed 

hopper. Once the mill fan, rotatory airlock, screw feeder and grinding table are up 

and running at the required setting, the trap on the hopper is release. The pellets 

fall into the screw feeder and are conveyed and dropped onto the grinding table. 

Centrifugal action and the table rotation transports the pellets to the rollers whereby 

friction cause them to be gripped, pulled between, and compressed by the rollers 

and table. Once the particles are small enough, the circulating air will pick them up 

and carry them to the classifier. The classifier will reject particles if they cannot pass 

it and are returned to the grinding table for a repeat of the process. Particles passing 

the classifier are carried to a cyclone separator where up they are removed from the 

air stream and fall to the air lock valve whilst the air circulates back to the fan.  

 

5.3 Material Characterisation 

Investigations into the material properties of different biomass pellets is to 

be carried out to pursue the possibility of linking the characteristics to the 

performance of the pellet in the mill. The objective is to correlate the performance 

of fuels and their measurable output (see 5.1.1, particle analysis for details) with the 

output of material testing. If there is a correlation, the hope is that with this 

information, a PBE simulation could use a material linked parameter upon which 

to predict how the mill may perform.  

5.3.1 Sister Project Characterisation Summary 

As part of the sister project, characterisation of different biomass pellets 

was completed also. The characterisation was performed on the fuel biomass pellets 

through mechanical strength testing (Williams, 2016) in an axial, diametric and 

flexure setup. The results are collated in chapter 7.2.2 and appendix H as a 

comparison to some of the characterisation completed within the experiments of 

this research project. The tests completed under the sister project that have been 

used in the analysis of this project are: 

• Quasi Mechanical Strength (see figures 5.8, 5.9 and 5.10) tests in 

the axial, diametric and flexure arrangements on an Instron 

Mechanical 5969 testing machine: this determined the compressive 

resistance of each material between 2 plates, the first of which is 
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fixed in position beneath the test sample, and the second, a driver 

plate applying force until the load gives way. The samples were 

tested in the axial and diametric orientations and through a 3-point 

bending arrangement for the flexure analysis. The output of the 

Instron machine are stress-strain curves that are used to calculate 

Young’s modulus and then converted to the units of MJ m-3 via the 

machines software to remain consistent with this work. 

• Particle Density testing; a technique that takes the mass of a 

sample, then measures the volume displacement in deionised water. 

A calculation of 𝜌 = 𝑚/𝑣 is then used to collect the density.  The 

density is reported in units of g cm-3.  

 

Figure 5.8 displays the axial orientation Instron mechanical testing arrangement. 
 

 

 

Figure 5.9 displays the diametric orientation Instron mechanical testing arrangement. 
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Figure 5.10 displays the flexure Instron mechanical testing arrangement. 
 

5.3.2 Skeletal Density Measurements 

Helium pycnometery is completed using an AccuPyc 1340 gas pycnometer, 

to determine the skeletal density of the pellets. A 10cc receptacle is loaded with 

biomass pellet. 20 purge cycles with He are used to measure the differences in 

pressure between the sample chamber and a reference chamber of known volume 

and pressure; He is used as the molecules are small enough to penetrate open pores 

in the pellet. Maintaining a constant temperature and within the sealed chamber, 

the ideal gas law is used to determine the volume of the sample before a density 

measurement is calculated with knowledge of the mass. The average of the 20 cycles 

is used. As moisture on the surface of the sample can influence the results a 

reference sample that has been dried is used for comparison and the differences 

were negligible in comparison the measured samples (Webb, 2001).  

5.3.3 Surface Area Analysis via Kr Gas Adsorption 

Using Micrometrics ASAP2420, surface area measurements were calculated 

based on the isotherm output from experiments using a range of biomass pellets 

(the Eucalyptus, Miscanthus, Sunflower, microwave torrefied and Brites wood 

pellets) to correlate the material mechanical testing properties and milling output 

with the surface area. The adsorbate used was krypton, selected to target filling the 

void space within the macroscale cracks and fissures in the biomass pellets, which 

are because of the pellet manufacturing process rather than penetrating the pores 

contained in the natural growth structures of biomass. The hypothesis of which 

relates to classical breakage theory of crack exploitation.  The experiments, for 

which each sample was completed in triplicate, followed the procedure outlined in 

the paper (Wood et al., 2016); samples are loaded into glass tubes and sealed before 
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degassing under vacuum at 80oC for 48 hours to remove moisture and other 

adsorbed gases. Using Kr, isotherms were collected from 0.07-0.25 relative 

pressure, (p/p0), at -195.85oK. The specific Kr isotherms were then determined by 

fitting the Kr isotherms and application of the Brunauer-Emmett-Teller method 

equation for determination of surface area of each pellet.  

5.4 Statistical Analysis and Error 

The analysis of the experimental data consists of calculating the mean 

results from multiple runs where possible. In a minor number of cases some of the 

information was not collected due to malfunctions in the data logger or the logging 

software from the balance used. In such cases the mean was calculated on the data 

available. Further analysis includes calculation of the standard deviation of multiple 

results where possible. On graphical presentation of results error bars are included 

and represent 1 standard deviation from the mean result. Margins of error in the 

measurement of both the independent and dependent variables are either listed in 

the columns or the notes attached to the various tables of results in Appendix I; 

these are generally to a certain precision of significant figures or decimal places. In 

some instance percentage of error may be listed.  

5.5 Conclusion 

In this chapter the methods used to analyse the output of the experimental 

results has been given, this includes general methods that have been used across the 

entirety of the experiments, the Lopulco mill and Single Impact Testing results   as 

details in chapters 6 and 8 respectively.  The experimental process of the Lopulco 

mill has also been discussed, as well as the material characterisation techniques that 

determine density and surface area of the biomass pellets prior to grinding. A 

summary of the experimental data taken from the sister project has also been 

described.  
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Chapter 6 - Experimental Results 

The following chapter discusses the results obtained from the Lopulco 

milling experiments undertaken. This includes analysis of the reaction to changes 

in the independent variables, mill table speed, feed rate and classifier vane angle. It 

focuses on the analysis of the key dependent variables of product particle size 

distribution, energy consumption and mass throughput. The analysis also includes 

the reaction of the mill to different biomass species pellets, Eucalyptus wood, 

Miscanthus grass and a Microwave Torrefied wood pellet. The correlations sought 

and presented here include the correlation of the mill output with experimental data 

obtained through this research and that of the sister project. The latter section of 

the chapter completes a material study to obtain any correlation between the 

deformation testing completed by the sister project and other characterisation 

techniques completed in this research.  

6.1 Lopulco Ring and Roller Mill 

Using a standard fuel, Balcas Brites wood pellets, investigations into the 

response of the mill and the product were assessed reviewing several key areas; 

particle size and shape, energy consumption, mill throughput. The summary data 

here can be used in conjunction with the mean run data in appendix I that lists all 

the mean experimental run data.  

As a summary of all the experiments the following statements on particle 

measure can be said: 

• All samples have a coefficient of gradation and coefficient of 

uniformity that suggest that all particle distributions through the 

experimental regime are well graded with a good mix of particles of 

all size ranges.  

• The kurtosis, Kg, of all PSD’s all show platykurtic tendencies.  

• All PSD’s have a slight left shift to the curve identified by the 

inclusive graphic skewness, KI > 0. 

• The Volumetric Relative Span of all results lies in the range of (2.0, 

2.6) indicating that the PSD’s are varied.  
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• The uniformity index, UI, of all PSD’s are in the range of (6.0, 14.0) 

indicating the small particles are substantially lower than the large 

particles, on average there is a ratio of 10:1. 

 

For the ensuing analysis, PSD’s are evaluated at the Rosin-Rammler 

characteristics, 𝑑’ and 𝑛, as well as at the percentiles d25, d50, d75 for variation in the 

trends observed at 𝑑’. To evaluate the other primary aspects for concern in the 

process of milling, evaluation of mass throughput by way of mass output rates and 

estimated residence time is conducted, and lastly there is an evaluation of the 

specific effective energy, Ee, for each experimental condition and material type.  

Correlation fits have been assessed for linear and exponential fits to each 

characteristic analysis, with the best fit shown on the figures. Quadratic fits were 

considered however due to the fit being based on the star-points of the CCC 

experimental design, a quadratic fit would fit the 3 points perfectly and hence not 

really reveal the usefulness of the information.   
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6.1.1 Initial Observations 

 

Figure 6.1 displays the relation between the residence time and the specific effective energy. It shows 
that there is no relation between the two. The triangular data points represent the star points of the 
CCC DoE regime.  

 

The specific effective energy is a characteristic of each fuel, it is expected 

that this should not vary too much beyond the attributed figure. However, if the 

material is held up in the mill there may be a correlation leading to increased energy 

consumption and therefore a higher Ee. As can be seen in figure 6.1, this does not 

seem to be the case and other factors are influencing the energy consumption, as in 
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this mill the Ee is intrinsically a product of the mill table motor and the energy draw 

to maintain rotational speed. Should sufficient quantities of feed material be present 

between the roller and mill table, friction induced by the pressure exerted in the 

downward force by the roller mounting spring and the material, can cause a 

reduction in the speed of the table. The table motor reacts and draws more power 

to overcome the additional friction forces and maintain the mill table speed. This is 

viewable in figures 6.13 and 6.14 where material is fed into the mill the 

instantaneous energy consumption can be seen to increase. 

 

 

Figure 6.2 displays the feed rate against the output rate of the milling experiments to highlight that 
using the experimental mill, it becomes difficult to achieve a steady state experiment. 

 

One of the aims where possible was to achieve particle size distributions 

from a continuous throughput mill. Ideally the results would show a steady state 

operation. In figure 6.2 the experimental feed rates are plotted with the mill output 

for the experiments where the output rates were collected and shows that a steady 

state was not achieved, however a reasonable data set was generated. There are 

several reasons why this may have been so. Given the logarithmic curve on figure 

6.2 though the likely case is that the maximum grinding rate of the mill is too low 
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to cope sufficiently with the higher feed rate. This is likely linked to the size and 

volume of the Lopulco E1.6 mill. This causes the milling chamber to continue to 

fill up and instead of moving the material under the rollers, it moves to parts of the 

mill where comminution does not take place.  

6.1.2 Response to Mill Table speed 

This section evaluates the change in the output of the mill based on the 

variation of the mill table speed and all graphs here are based on variation in this. 

The analysis focuses on the particle size distribution, mass throughput then energy 

consumption.  

 

Particle Characteristics 

 

Figure 6.3 displays the Rosin-Rammler characteristic size parameter with variation in mill speed 
for the Lopulco milling experiments. It shows there seems to be either no or a quadratic relationship.  
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Figure 6.4 displays the Rosin-Rammler spread parameter with variation in mill table speed for 
the Lopulco mill experiments. Again, it shows that there is no or a possible quadratic relationship.  

 

 

Figure 6.3 indicates that there is very little variation in the products 𝑑’ when 

the mill speed is changed. There is possibly a possible quadratic relationship as can 

be seen with the change in mill speed at the extremes through the centre point of 

the experimental range. This is somewhat obscured by the large variance in the 

experimental results of repeated runs. The Rosin-Rammler distribution spread 

parameter, 𝑛, similarly suggests a possible quadratic relationship (see figure 6.4) and 

indicates that there is a wider spread of particles at the centre point, 242 RPM, of 

the experimental range. This pattern is exhibited throughout the particle size range 

and is not limited to only the Rosin-Rammler characteristic parameters; it was 

observed at particle sizes, 𝑑25, 𝑑50 and 𝑑75. A high standard deviation throughout 

the results is clouding the recognition of clear trends.  
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Mass Throughput 

 

Figure 6.5 displays the variation in residence time with mill speed for the Lopulco milling 
experiments. It shows that there is little variation except where other parameters are factored into 
the argument. 

 

 

Figures 6.5 and 6.6 show that potentially there is an effect on the residence 

time, however this is not necessarily based on mill speed. As the range seems small, 

except for 1 result (90o vane angle at 0.014 kg s-1 and 282 RPM), evidence suggests 

this is more to do with the classifier vane angle in conjunction with the mill speed. 

Further to this the effect on the output rates with the speed, is again, seemingly 

affected by the classifier vane angle in conjunction with the speed.  



 

118 
 

 

Figure 6.6 displays the variation in mass output of the Lopulco mill experiments with the mill 
speed. Here it shows that the mass output is likely a product of the mill speed with the classifier 
vane angle.  
 

 

Specific Effective Energy 

 

Figure 6.7 displays the Specific Effective Energy consumption attributed to the Brites wood pellets 
with varying mill speed. Whilst mill speed seems to have little effect on the result there is high 
variation in between experimental repeats. 
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As seems to be the case with the mill speed variable, still no clear relation 

between the mill speed and Ee is present. The effect of mill speed through the centre 

point experimental conditions, where the smallest particles seem to be generated, 

(see figure 6.3) and the lowest residence times are observed (see figure 6.5), also 

shows a peak energy consumption indicating that more of the input energy has been 

consumed by the mill in actual comminution as apposed frictional losses (see figure 

6.7). The conditions here could be closer to ideal for the application of the energy 

input of the mill to the grinding of the fuel. Mill speed seems to have a higher 

influence on the energy consumption when the classifier vane is at 90o. At this angle, 

the higher speeds help to decrease energy consumption.  

 

6.1.3 Response to Change in Feed Rate 

The following section of this chapter analysis the output of the mill when 

the feed rate has been changed. Again, it assesses the product particle size 

distributions, energy consumption and mass throughput with all graphs displaying 

the variation of each with changes in the feed rate. 

 

Particle Characteristics 

 

Figure 6.8 displays the Rosin-Rammler characteristic size parameter with variation in feed rate 
for the Lopulco milling experiments, again showing the potential quadratic relationship.  
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Figure 6.9 displays the variation of the Rosin-Rammler characteristic spread parameter with feed 
rate. It shows again a possible quadratic relationship. 

 

 

Again, the effect of the feed rate does not seem to be highly influential with 

the particle size characteristics beyond that of general experimental error; again, 

though the error could be hiding the relation which could be representative of an 

optimal in the feeding rate midrange. Again, similar patterns occur in the d25, d50 

and d75, which indicates that the PSD is affected similar throughout the particle 

sizes. 

Mass Throughput 

During the experimental process, some of the data for the mass output was 

lost at the extremes of the experimental range, hence why there are no error bars 

on the lowest and highest feed rate, due to time constraints these could not be 

repeated. 
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Figure 6.10 displays the residence time variation with feed rate in the Lopulco mill experiments. 
Only small variation is observed that could be a consequence of experimental error. Outside effects 
of high mill speed and a fully open classifier shows signs of a greater effect.  

 

 

 

Figure 6.11 displays the variation in mass output rate with feed rate. As there was no one to one 
relationship, there are indications that steady-state conditions were not achieved. 

 

Increasing the feed rate shows an upwards trend in the residence time, 

suggesting that the presence of more material inhibits transport though the mill.  
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The mass output rate increases with increasing feed rate, this however could simply 

be a consequence of the presence of more material and a quick throughput. 

However, this is also contrary to observation of marginal increase in the residence 

time.   

Specific Effective Energy 

 

Figure 6.12 displays the Specific Effective Energy to mill the pellets at varying feed rates into the 
mill. A decaying exponential relationship is observed in increasing feed rates.  

 

Energy requirements seem to be higher when the mill is fed at slower rates, 

this could be indicative of the action of material particle-particle interactions, 

friction between the materials particles may lead to a more efficient pulling apart of 

the material than that of the grinding elements. The rollers in the mill are made 

from aluminium and the table is made of steel, both surfaces are relatively smooth. 

As the biomass is broken down by the mill, dust is released that coats all areas of 

the mill but importantly the mill rollers and table, as well as smaller particles. The 

increased presence of the smaller particles and dust when the mill is fed at higher 

rates, could be helping the rollers and table grip the biomass particles and pull them 

into the comminutions zones, under each roller, more effectively than when there 

is less material present at the lower feeding rates. This suggests that different 

material used on covering the grinding elements could also increase the efficiency 

of grinding. Reviewing the running data from the mill for 2 of the experimental 

runs (figures 6.13, for 202 RPM, feed rate of 0.014kg s-1 at a 90o vane angle, and 
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figure 6.14, for 202 RPM, feed rate of 0.006kg s-1 at a 90o vane angle) shows that 

there is a prolonged period of energy consumption that accounts for the higher 

consumption when the feed rate is low, approximately 65 more seconds of low 

energy consumption above the base line (marked as ‘Observed end of grinding: ‘ 

on figures 6.13 and 6.14). Air flow rates are not as consistent, as shown by the larger 

variation from the mean at each minute interval (the red lines on figures 6.13 and 

6.14). This could all be explained by the lack of the extra material being there to 

provide the abrasive grinding mechanism between particles, which are then rejected 

by the classifier and returned to the table for further grinding. The slower 

dissipation of temperatures in figure 6.14 in comparison to the quick rise and fall in 

figure 6.13 (the yellow line), suggest that grinding is taking place even at the latter 

time periods of figure 6.14 which also suggests the presence of continued recycle.  

 

 

 

Figure 6.13 displays the running energy consumption, mass throughput, air flow and temperature 
for the 3rd experimental run of conditions whereby, feed rate: 0.014 kg s-1, mills speed: 202 RPM 
and the classifier vane is 90o. 
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Figure 6.14 displays the 1st experimental run energy consumption, air flow and mill outlet air 
temperature for the running conditions of feed rate: 0.006 kg s-1, mill speed: 202 RPM and 
classifier vane angle: 90o. 

 

 

6.1.4 Response to Change in Classifier Vane Angle 

Particle Characteristics 

 

Figure 6.15 displays the variation in the Rosin-Rammler characteristic size variation with the 
classifier vane. The correlation seems strong as expected however it seems to in a contrary relation 
to that which was expected. 
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Figure 6.16 displays the variation in the Rosin-Rammler characteristic spread parameter with the 
classifier vane. The graph shows a narrower spread at smaller angles as expected, yet there is much 
higher spread of results with a fully open classifier vane. 

 

 

The classifier vane angle seems to have a significant effect on the particle 

size, as expected. The effect seems to be directly in contrast to that expectation with 

lower particle sizes observed throughout the PSD achieved when the classifier 

vanes are fully open and higher when at only a 20o angle. A narrow spread (𝑛) of 

particle sizes is observed at a narrower angle, this is following the expectation. The 

90o angle however shows non-linear trends and could be dependent on other 

factors. One such possibility could be due to the concept outlined in figure 6.17. 
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Figure 6.17 displays the concept of how the fully open classifier vane in the Lopulco mill might 
allow larger particles through when at narrow angles and reject them when fully open. 
 

 

Streamline of the air flow through the mill are likely not to be vertical from 

the base of the mill chamber to the exit. This hypothesis of what is happening 

supports the CFD experiments completed in the research by Bhambare et. al. whose 

CFD simulations of a ring-roller mill at an industrial scale shows an acute angled 

streamline of the air flow (Bhambare, Ma, & Lu, 2010). With all the elements in the 

mill and the friction on the air flow caused by the mill table, the streamlines may be 

at angles that are better suited by the shallower angle of the vane (right of figure 

6.17). Larger particles may have a greater chance of being knocked out of the air 

stream in the wider vane angle (figure 6.17, left). This does highlight that custom-

made functions may be more appropriate for modelling rather than a general, one 

model fits all; this also leads to the conclusion that experiments with the classifier 

would be required to create a system model.  
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Mass Throughput 

 

Figure 6.18 displays the variation in the residence time with classifier vane angle. It shows a 
consistent time except when the classifier is fully open, and a vast elongation when coupled with a 
fast mill speed. 

 

 

 

Figure 6.19 displays the variation in the mass output rate with classifier vane angle. It displays 
the only small variation until the vane angle is fully open at which point it seems to significantly 
slow the output when the speeds are high.  

 



 

128 
 

The effect of the classifier on residence time seems constant when the mill 

speed and feed rate are held constant, see figure 6.18, and variation looks to be 

dependent on other factors; feed rate shows to be more influential in these results 

which supports the conlusion of figures 6.5 and 6.10. At 90o, the combination of 

angle and mill speed significantly affects the residence time (again supporting figure 

6.5 and 6.10. This is reflected by a much lower mass throughput when the speed is 

also high signifying the classifier is impeding mass output, see figure 6.19. This 

supports the theory that the classifier, with the 90o angle, is an inhibiter to particle 

passing.  

 

Specific Effective Energy 

 

Figure 6.20 displays the variation in the specific effective energy with the classifier vane angle. It 
reinforces the evidence that material is staying in the mill longer with the fully open classifier and 
subsequently being milling for longer.  

 

The response on the energy consumption shows that there is an upward 

trend as the classifier vane opens from the 20o to the 90o. This reinforces some of 

the other observations of elongated residence time and lower mass output at the 

90o vane angle and provides reasons why there is a smaller output product size as 

the material has more energy focused on size reduction because of higher rejection 

rates from the classifier than at narrower angles.   
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6.1.5 Response to Fuel Type 

Material variation in the mill is studied to see if there is a correlation between 

the material characteristics of the biomass fuel and the measures by which we are 

assessing the performance of the mill in grinding the fuel to the required product 

grade. This section looks to correlate the deformation energies, axial, diametric and 

flexure, taken from the sister project (detailed in table 6.1) with the product size, 

energy consumed in the transport of the material through the mill. Only 3 of the 

fuels, Eucalyptus, Microwave Torrefied and Miscanthus were available for the 

Lopulco experiments and where used in the deformation testing by the sister 

project.  

Table 6.1 displays the deformation enerngies in the various orientations taken from the sister 
project for the biomass pellets used in the material variation Lopulco rxperiments. 

Material Diametric 
(MJ m-3) 

Axial 
(MJ m-3) 

Flexure 
(MJ m-3) 

Eucalyptus 74.70 30.10 0.24 

Microwave Torrefied 46.00 13.90 0.17 

Miscanthus 47.80 28.30 0.21 

 

Particle Characteristics 

 

Figure 6.21 displays the variation in the Rosin-Rammler characteristic size with material axial 
deformation energy. The figure alludes to a possible relation.  
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Unexpectedly a relationship seems to exist between axial deformation 

energy requirements and the Rosin-Rammler spread parameter (𝑛) as seen in figure 

6.23, this could be due to how the rollers grip and crush the pellets, and the roller’s 

load being applied inconsistently across the pellet, as opposed to diametric 

deformation energy requirements, that has the load in the test applied evenly along 

the length (see figure 6.24). A similar but less clear correlation can be seen in the 

Rosin-Rammler characteristic particle size (figures 6.21 and 6.23). Additionally, 

more abrasion may occur rather than compression on the pellets with a higher 

resistence to deformation.  This could cause more intra-particle friction which is 

also an abrasion mechanisms, creating smaller more consistent progeny particles at 

later phases of breakage. Furthermore, if the axial deformation energy is high this 

suggests a tighter packing of the pellet when formed that leads to the higher mass 

of particles in the pellet that when released, increase the probability of this action. 

Understandably, flexure energy also seems to have some correlation with the 

particle spread parameter, 𝑛 (see figure 6.24, in terms of the particle size though, it 

shows little correlation (figure 6.22).  

 

 

Figure 6.22 displays the variation in Rosin-Rammler characteristic size with flexure deformation 
energy. Here the relation seems to have far less relevance on the output.  
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Figure 6.23 displays the variation in the Rosin-Rammler characteristic spread parameter with 
axial deformation. Here a strong correlation seems to exist.  

 

  

 

Figure 6.24 displays the variation in the Rosin-Rammler characteristic spread parameter with 
flexure deformation. Here again strong correlation seems to exist however it is not as strong as in 
figure 5.23. 
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Mass Throughput 

 

Figure 6.25 displays the residence time variation with axial deformation energy. A strong 
relationship seems present with this.  
 

 

 

Figure 6.26 displays the variation in residence time with flexure deformation energy. Here 
again the relationship looks likely but not as strong as the axial deformation.  
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Figure 6.27 displays a conceptual diagram that explain how the axial 

deformation energy may correlate more to the product of milling with a ring and 

roller type mill than the other orientations from the material deformation testing.  

 

 

Figure 6.27 displays a conceptual diagram showing how axial deformation energy may provide 
better correlations with the product of milling over diametric deformation energy. 

 

Evidence suggests that there is a correlation between the flexure 

deformation energy and residence time. In the other logical measure of deformation 

energy, diametric, which would seemingly be the way in which pellets would align 

with the grinding media in the mill, however no correlation seems present. Mass 

throughput is unaffected by the change in material.  
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Specific Effective Energy 

 

Figure 6.28 displays the flexure deformation energy variation with the specific effective energy. The 
results suggest that flexure energy provides good correlation in this regard. 

 

All the deformation energy measures seem to have a reasonable relation 

with Ee, however the strongest is observed with flexure deformation energy. This 

is not unexpected given that all measures are resistance to compression, the mill 

operates in much the same way. In relation to the other observations here flexure 

has proved to also provide a reasonable correlation with the products of mill 

however axial seems more appropriate. The flexure test requires 3 points of 

application of forces. In the mill, it is assumed 2 from the mill table and roller 

however flexure energy could show that the interaction of other particles provides 

a pivot upon which flexure deformation could ensue.  

6.2 Material Characterisation 

As possible relationships seem to exist between the deformation energies 

and that of the performance in the Lopulco mill, further characterisation with even 

more fundamental tests were also completed. The deformation energy test, whilst 

looking to be useful may be only a small reduction in the experimental work 

required to complete milling trials and therefore may not be an advantage, relating 

the materials to less time consuming and more repeatable methods could alleviate 
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the experimental trials even further. Hence relationship was investigated between 

the deformation energies and the various other tests completed either in the sister 

project or through this one, see table 6.1 for details of the sources of the 

experiments.  

 

Table 6.2 displays which tests were carried out as part of which project; this one, “Modelling of 
Biomass Milling” or the sister project, “On Biomass Milling for Power Generation”. 

Modelling of Biomass Milling On Biomass Milling for Power Generation 

Skeletal Density Particle Density 

Surface Area Deformation Energy 

 

 

Several cross correlations have been observed to establish if this can be 

completed. Initial review shows that there may be some evidence of relation to the 

measured surface area and the axial deformation that builds upon the research 

already completed.  

It is estimated that a lower surface area would indicate a more densely 

packed pellet and as it is expected that the lignin bonds of the pellets is where any 

deformation is focused, lower surface area would be correlated with a stronger 

pellet. This does not necessarily seem to be the case. Tested against the axial and 

diametric orientations shows that these differ. This could be due to the structure 

within the pellets; if particles are layered and packed in with the fibres orientated to 

span the diameter, axial compression would initially only close the volumes, 

somewhat like a spring. In contrast, application of the diametric compression would 

exploit those free space voids to squeeze them apart. This could be an explanation 

as to why the pellets increase in axial deformation when the surface area increases 

and reduces in the diametric orientation. The effect of skeletal density seems to be 

consistent with expectations that the pellet requires more energy in the axial 

orientation, however not in the diametric, which shows, albeit unconvincingly with 

the variation in the deformation testing results, that density seems to decrease the 

deformation energy required. This could be explained by increased lamination like 

formation of the pellet which shows anisotropic fracture mechanisms; somewhat 

like that of raw biomass yet in the alternative orientation. Further tests with micro-

computerised tomography or something similar would show this.  
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Figure 6.29 displays the variation in the deformation energies with surface area. As no relation 
with flexure is observed the error bars have been omitted. A reasonable correlation between the 
surface area and axial deformation energy is present.  

 

 

Figure 6.30 displays the deformation energy variation with skeletal density. Here potential 
relationships may exist with the diametric and axial deformation energies. 
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Figure 6.31 displays the variation in deformation energy with the variation in the particle density. 
 

Despite some of the analysis showing potential correlation to the three 

measures investigated, the data does not look enough to draw definitive 

conclusions. So, the data will not be used in modelling efforts however it could be 

potential lines of investigation in any future work.  

 

6.3 Conclusions 

The first concluding note is that, despite attempts to do so, a steady state in 

the milling experiments could not be achieved. This is believed to be a problem 

with the hopper size of the mill and the lack of ability to continuously feed in 

material. Further to this it may be that the range on the mill table speeds may also 

not be sufficient to grind the material quantity at rates that support a steady input-

output flow rate. The consequence is that data is not available upon which to model 

exact steady state data and allowance in any model prediction should include this as 

any error analysis.  

The variation in Ee cannot be attributed to the residence time of the 

experimental run and must relate to some other factor. With this mill, the vane 

angle in conjunction with the mill speed affects the residence time and the Ee of 
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each run. Mill speed does, when in conjunction with a large classifier aperture, 

appear to affect the mass throughput and residence time. This is likely to be largely 

due to the classifiers rotation being fixed to the table speed along with the relation 

depicted in figure 6.17. 

Mill speed seems to have little influence on the final particle size. This could 

be due to the pellet phenomenon, whereby the pellets are broken into the pre-

pelletised state, coupled with the inability of this mill to adequately grinding the 

pellets further. There is subtle evidence to suggest that the interaction of mill speed 

and feed rate together is influencing the output product size through a complex 

relation based on both. As opposed to each affecting it individually.  There may be 

evidence to suggest with this type of mill, that mill load may help increase the 

efficiency of grinding through improved comminution between material 

interactions as opposed to grinding element-material interaction. This could mean 

that the selection of the material for the lining of grinding media play a strong role 

in efficiency. An in-depth study of classifiers may be required for a greater in depth 

understanding as to how they work and what their optimal conditions are. This is 

concluded based on the seemingly counter intuitive behaviour of the classifier in 

these experiments. This is likely to be classifier type dependent. Due to this, for 

modelling efforts, a specific classification function, dependent on mill speed and 

counter to the expected behaviour should be developed; additionally, for each type 

of classifier study and development of its behaviour may be necessary before 

accurate models can be produced.  

Basing modelling efforts on deformation energy looks as though it may 

have potential. Strong correlations to the axial deformation seems as though there 

may be a basis by which small scale material testing could provide insight into the 

performance of the mill. The data from the deformation testing has a large standard 

deviation, hence a large degree of error in a model could be present however if a 

more consistent material testing procedure is found this could be improved. In the 

meantime, though the axial deformation energy, where potential application has 

been explained, may prove suitable for modelling purposes.  

It should be noted that an issue with the results is the high level of variation 

in results of the same conditions. Despite efforts to limit this, it is still large. The 

limitations placed on the design of experiment made increasing the number of 
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experimental runs impossible. The range of the experiment independent variables 

was a practical limitation of the mill; trial runs of the mill showed that if mill speed 

was too low or the combinations of conditions contributed to the mill chamber 

becoming too full, the mill would grind to a halt. Setting the range took several 

trials. The significance of this is that it shows that there is a balance to be found 

between the independent variables. Post experimental analysis suggests that a full 

factorial experiment would significantly improve the quality of the conclusions, and 

possibly at 4 levels rather than 3 to ensure the non-linear results of the dependent 

variables. Furthermore, the number of repeats for each experiment should be 

increased to reduce the variance in the experimental results; the higher number at 

the centre point shows that the results do become more consistent with more 

repeats. The variation could be due to a few reasons. The scale of the mill for which, 

in comparison to industrial scale mills, the grinding media to material ratio is low. 

This means the ability of the material to counter the objective of the mills is quite 

high, e.g. jam between roller and mounting arm, fall of the table before ground. 

Therefore, it is believed that modelling efforts of the future should be focused on 

industrial data, whereby the capacity and experimental run data would be much 

more consistent.  In an industrial setting, the full-scale mills are less susceptible to 

issues with the size of the pellets in comparison to the feeding mechanisms or 

grinding media as they are much larger relative to the pellets. Additionally, the mills 

operate for hours if not days or months at a time with continuous feeding. This 

means that will little disruption to the process, the product sample can be collected 

from the mill outlet air stream and continuous energy samplings can be taken. By 

increasing the number of readings, the variance that is exhibited in the lab scale 

could be significantly reduced, leading to improved models.    
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Chapter 7 - Population Balance 

Modelling Results 

7.1 Model Validation 

7.1.1 Discretised Matrix PBE 

A simulation using the scheme outlined in chapter 4 has been created. 

Validation of the technique has been completed against results from literature using 

the same scheme as in (Petrakis & Komnitsas, 2017) along with the results for 

grinding experiments published in this paper. The BPBE simulation is validated 

using selection function 4, and breakage function 5 in table 7.1 and 7.2 respectively.  

The exact parameter values obtained in the validating paper could not be 

matched, however the parameters were still optimised to within a high level of 

accuracy; details are given table 7.1. This could be a result of unspecified settings in 

the optimisation routine in MatLabTM or to the objective function, however they 

advise an R2 correlation of 0.999 to linearised Rosin-Rammler distributions; using 

the OVL method similar accuracy is reported here (see figure 7.1 and table 7.2). 

The ability to optimise to the experimental results proves the scheme is capable of 

optimising to a PSD and is therefore determined as suitable for use.  

  
Figure 7.1 displays the validation of the Matrix BPBE model against publicised results for the 
same scheme. 
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Table 7.1 displays the selection functions used in the population balance equation simulations. 

Selection Function Function Code Reference Notes on parameters 

𝑆𝑖 =  (
𝑥𝑖

𝜇
)

𝛼

 
S1 Function designed by the researcher.  

 

𝜇, 𝛼 – fitted parameters 

𝑆𝑖 = 1 − 𝑒
−(

𝑥𝑖
𝜇

)
𝛼

  
S2 Function designed by the researcher.  

 

𝜇, 𝛼 – fitted parameters 

𝑆𝑖 = 𝐴 (
𝑥𝑖

𝑥0
)

𝛼

 
S3 (Bilgili & Scarlett, 2005b; Maxx Capece et al., 2011; 

Klimpel & Austin, 1977; Kumar Akkisetty, Lee, Reklaitis, 

& Venkatasubramanian, 2010; Petrakis & Komnitsas, 

2017) 

𝑥0 - largest size class 

𝐴 – Fitted parameter in the interval 

[0,1] 

 𝛼 - Fitted parameter in the interval  

𝑆𝑖 = 𝐴 (
𝑥𝑖

𝑥0
)

𝛼 1

1 + (
𝑥𝑖

𝜇 )
Λ 

S4 (L. Austin et al., 1976; Klimpel & Austin, 1977; Petrakis & 

Komnitsas, 2017) 

𝑥0 - largest size class 

𝐴, Λ, 𝜇, 𝛼 – fitted parameters 
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Table 7.2 displays the breakage functions used in the population balance equation simulations. 

Breakage Function Function 

Code 

Reference Notes on parameters Notes on use 

𝐵𝑖,𝑗 = 1 − 𝑒
−(

𝑑𝑖
𝛽𝑑𝑗

)

𝛾

 

B1  𝛾, 𝛽 – fitted 

parameters 

Defined by the researcher based on Rosin-

Rammler distribution for particle breakage.  

 

Note: this is a cumulative distribution, for 

the implementation of the model a 

difference discrete integration is used in the 

form of: 

𝐵𝑖,𝑗 = 𝑏𝑖,𝑗 − 𝑏𝑖+1,𝑗 

𝑏𝑖𝑗 = 𝜙 (
𝑑𝑖

𝑑𝑗
)

𝛾

+ (1 − 𝜙) (
𝑑𝑖

𝑑𝑗
)

𝛽

 
B2 (Bilgili & Scarlett, 

2005b; Maxx Capece et 

al., 2011; Klimpel & 

Austin, 1977; Kumar 

Akkisetty et al., 2010; 

Lee, Klima, & Saylor, 

2012; Mazzinghy, 

𝜙 -  a constant for 

normalised breakage 

systems and a value 

between [0,1];  

𝛾 ≥ 𝛽 ≥ 0  – fitted 

parameters with a 

relation of  

Note: this is a cumulative distribution, for 

the implementation of the model a 

difference discrete integration is used in the 

form of: 

𝐵𝑖,𝑗 = 𝑏𝑖,𝑗 − 𝑏𝑖+1,𝑗 
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Schneider, Alves, & 

Galéry, 2015; 

Verkoeijen, A. Pouw, 

M. H. Meesters, & 

Scarlett, 2002) 

𝑏𝑖,𝑗 =
1

2
(1 + tanh 

𝑑𝑖 − 𝑑𝑛

𝑑𝑛
) (

𝑑𝑗

𝑑𝑖
)

𝛽

 

 

 

 

B3 (Miguel Gil et al., 

2015b; Vogel & 

Peukert, 2005) 

𝑑𝑛 – is a minimum 

size class considered.  

𝛽 – fitted parameter 

 

In literature 𝛽 is lined to material minimum 

breakage energy and mill speed where used.  

 

Note: this is a cumulative distribution, for the 

implementation of the model a difference 

discrete integration is used in the form of: 

𝐵𝑖,𝑗 = 𝑏𝑖,𝑗 − 𝑏𝑖+1,𝑗 

 

(
𝑑𝑖

𝑑𝑗
)

𝛽

 
B4 (Frances & Liné, 2014) 𝛽 – experimentally 

fitted to the data 

Note: this is a cumulative distribution, for the 

implementation of the model a difference 

discrete integration is used in the form of: 

𝐵𝑖,𝑗 = 𝑏𝑖,𝑗 − 𝑏𝑖+1,𝑗 
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𝑏𝑖𝑗 =
1 − 𝑒

−
𝑑𝑗

𝑑𝑖

1 − 𝑒−1
 

B5 (Broadbent & Callcott, 

1956; Petrakis & 

Komnitsas, 2017) 

Broadbent and Calcott 

model requires no fitting 

of parameters for the 

breakage however 

assumes that no 

variation in how the 

material breaks.  

Note: this is a cumulative distribution, for the 

implementation of the model a difference 

discrete integration is used in the form of: 

𝐵𝑖,𝑗 = 𝑏𝑖,𝑗 − 𝑏𝑖+1,𝑗 
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Table 7.3 displays the optimisation values to which the optimisation process back calculated the 
parameter values to. Included is a measure of the time taken to complete the back calculation and 
for providing a solution when handed a set of values. 

OVL A 𝜶 
𝝁 

(mm) 
𝚲 

Time for 

Optimisation 

(seconds) 

Time for 

Solution 

(seconds) 

0.992 0.839 0.818 3000 2.143 8.534 0.168 

  

7.2 Batch Process Model 

Experimental results from the sister project using a Retsch PM100 are used 

to compare a simulation with experimental results for a batch process. The results 

are from an experiment whereby 100ml of biomass material was placed in a 500ml 

steel bowl along with 8, 30mm diameter steel balls and. The mill was then set going 

for 3 minutes at a speed of 300 RPM before the load was extracted and the particle 

size assessed. Five different biomass species selected from those described in 

appendix H were used: Eucalyptus, Microwave Torrefied, Miscanthus, Mixed 

Wood and Sunflower pellet. Figure 7.2 displays a top down view of how a planetary 

ball mill grinding mechanism works.  

 

Figure 7.2 displays a top down conceptual diagram of the motion of a PM100 planetary ball mill. 
Material is only loaded into a grinding vessel with 8 stainless steel grinding balls that follow similar 
motion to that indicated. Loaded material is ground between the balls and the grinding vessel walls 
as well as through interactions with other material in there.  
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7.2.1 Determining Appropriate Selection and Breakage 

Functions, Batch Processing 

Following the process outlined in chapter 4.7.3, initial optimisation to 

determine the optimal combination of selection and breakage function to use 

determined which of the functions was most appropriate to use in the simulations 

for the Batch system model. In figure 7.3 an example of the results of initial 

optimisation is shown for Eucalyptus pellet experimental runs and highlights the 

optimal model for this species. Such surveys were carried out for all biomass pellet 

species as listed above.  

 

Figure 7.3 displays the OVL values for the initial back calculation of the parameter values for 
all the selection and breakage functions when trained against experimental runs for Eucalyptus 
wood pellets. 

 

As table 7.1 shows, selection function 3 with breakage function 1 (S3, B1) 

appears in the top 3 performing models for 4 of the biomass species. Any model 

involving breakage function 3 performed poorly; this is believed to be a result of 

the constraints imposed on the parameter of the breakage function that are used to 

make the option a viable breakage function. Table 7.2 shows the output of the first 

optimisation run.  
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Table 7.4 displays the initial optimisation optimal models, along with the second and third ranked 
model for each biomass species.  

Biomass Pellet Species Optimal 
Model 

OVL 2nd Best OVL 3rd Best OVL 

Eucalyptus S4, B1 0.948 S2, B1 0.945 S4, B4 0.942 

Microwave Torrefied S4, B1 0.964 S1, B1 0.931 S3, B1 0.920 

Miscanthus S3, B1 0.964 S4, B1 0.938 S4, B2 0.930 

Mixed Wood S2, B5 0.911 S4, B5 0.911 S3, B1 0.910 

Sunflower S3, B1 0.937 S4, B4 0.932 S4, B2 0.931 

 

 

Figure 7.4 displays the frequency chart for the selection and breakage function combinations when 
optimised against the PM100 planetary ball mill experiments for raw biomass species. Included 
are the average OVL scores for the combinations of high frequency. 

 

As the model S3, B1 performs the best and the average OVL is still 

reasonable in comparison to the best performing model combination (S4, B1) on 

an individual basis, this combination was chosen to proceed with the modelling 

efforts to determine the effect of material on the modelling parameters.  
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7.2.2 Extracting Material Differences, Batch Simulations 

Continuing with the process of back calculation, the initial optimisation 

against all materials with the selected combination (S3, B1, see tables 7.1 and 7.2), 

produced reasonable OVL scores in the interval (0.91, 0.97). The ensuing study into 

the variation in the four parameters showed low standard deviations in parameters 

A and β. Hence an assumption was created that these, as they show low variation 

when the machine parameters are unchanged and only the material has changed, 

may be parameter values linked to the mill; constraint narrowing should then focus 

on reducing these parameters to constants. 

 

Figure 7.5 displays the parameter values for the 4 parameters of the selection and breakage 
combination S3, B1 to indicate the variance and why when studying the material difference effect 
on the parameters it was concluded to peruse parameters α and γ as material parameters.  

 

Trials of fixed values for these two were completed to establish relations 

between α and γ based entirely on the material. Using deformation energy test 

results completed under the sister project, a basis of comparison was used to 

develop a relation between material characteristics and the values of the selection 

and breakage function parameters α and γ. Table 7.3 lists the values extracted from 

the sister project for the different mechanical deformation testing which have been 

used in this analysis to investigate the link of the material characterisation and the 

product of the mill.  
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Table 7.5 displays the deformation energies in the different axis for each of the biomasses used in 
in the PM100 batch milling trials. 

Material Diametric 
(MJ m-3) 

Axial 
(MJ m-3) 

Flexure 
(MJ m-3) 

Eucalyptus 74.70 30.10 0.24 

Microwave Torrefied 46.00 13.90 0.17 

Miscanthus 47.80 28.30 0.21 

Mixed Wood 79.70 12.50 0.38 

Sunflower 38.70 44.90 0.38 

Steam Exploded  50.2 31.0 0.5 

 

In the paper (Petrakis & Komnitsas, 2017) it suggested that parameter A in 

selection function S4, which is very similar in form to S3, is machine dependent and 

in the context of S3, the rate of breakage for the largest size class as opposed to a 

selected size, which this research adds evidence to.  β did not follow the anticipated 

trend and influenced the optimisation of α and γ; this suggests that β is linked to 

the material, and as a relation could not be attained for all 5 it must be concluded 

that β is linked to both the material and the mill. As it seems that β is linked to both 

the material and mill,  constraints on its value were still imposed to limit its effect 

on the optimisation process and imposed to a range considered reasonable and in 

line with the other materials from the material variation experiments. The objective 

was still to provide a linear link to α and γ, whilst maintaining a reasonable degree 

of accuracy. A linear relationship was sought to create a a simple model if possible 

that links the material deformation energy required to break the pellets with the 

parameters of the selection and breakage functions. Figure 7.6 displays the OVL 

scores through the steps of altering the constraints on β to achieve a linear relation 

in α and γ. 
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Figure 7.6 displays the evolution of the average OVL scores as changes to the optimisation 
constraints were imposed. It displays how independent OVL accuracy is sacrificed for the ability 
to improve the model for all species. 

 

Analysis into the material variation assessment of α, β and γ provides 

evidence to the possibility of a linear relationship between α and γ with the 

deformation energy required to break the pellets through a 3-point flexure test (see 

chapter 5.3.1). Variation in how the model optimises suggests that although the 

simulations can find a link there may be other effects that may need to be 

considered that would require additional experimentation now.  
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Figure 7.7 displays the study of the relation between the parameter α and the material deformation 
energy tests completed within the sister project regime. The final observations suggest a relation to 
the flexure deformation energy for this mill. Due to the strong relationship, it was hypothesised that 
that α may be material linked.  

 

 

Figure 7.8 displays the final relationship observations between the deformation energies for each 
material with the initial optimised β parameter. It shows that there is not clear relation and why 
the decision to suggest β might be a machine linked parameter.  
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Figure 7.9 displays the final relationship between γ and the material deformation energies. Again, 
it shows a link between it and the flexure energy and reason to suggest that it is material linked. 

 

Figures 7.7 through 7.9 show the relationships between α, β and γ and the 

3 variations of deformation testing energies. It shows that the parameters α and γ 

seem to have strong correlations with flexure deformation energy requirements. 

Alignment as in figure 7.10 or similar between grinding balls and material load could 

be the cause of why the perceived relationship exists.  
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Figure 7.10  displays the concept of how the flexure deformation may be linked to 

the grinding mechanism in a planetary ball mill. 

The schematic in figure 7.10 is a partial representation of a top down view 

for the grinding vessel of the PM100 with a grinding ball and biomass pellet. The 

application of the forces replicating those of a 3-point flexure deformation test (see 

figure 5.10) are also shown to highlight the similar breakage mechanism that could 

exist with this mill and the flexure deformation testing. From the analysis of figures 

7.7 and 7.9 a relationship for calculating a value for α and γ linked to the flexure 

deformation energy requirements have been determined as in equations 7.1 and 7.2. 

 𝛼 =
𝐸𝑓 − 0.11

0.29
 (7.1) 

   

 𝛾 =
0.58 − 𝐸𝑓

0.11
 (7.2) 

 

Having extracted relationships between the flexure deformation energy and 

the parameter values as calculated in equations 7.1 and 7.2 and inserting them into 

B1, an attempt at blind testing was made with a steam exploded pellet which proved 

unsuccessful. The use of the relationship for γ displayed a limitation in the theory. 

As γ → 1, the exponential term in the breakage model begins to move towards 

𝑒𝑥𝑝(−1)  =  0.63. The breakage function then resolves to a value less than 1 

which causes the simulation to calculate the mass output lower than the mass input. 

In most cases this is not a problem as when γ →  ∞, the term exp[-(1/βγ)] → 0 and 

the losses become negligible. However, where flexure deformation energy 

requirements are in the extreme, such as with the steam exploded pellet, the model 

may be inappropriate as it displays this mass losing behaviour. Unfortunately, no 
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other data using another material was available with sufficient results to attempt a 

2nd blind test.  

 

7.3 Lopulco Milling Modelling 

7.3.1 Classifier Function 

The Lopulco mill as described in chapter 5.2 is a continuous throughput 

closed circuit mill, comprising of automated feeding through the screw feeder, 

grinding and classification of product and product output. To this end a routine 

that allows product to be removed is required and needs to provide of the true 

classification process. 

For development of a classification function that recreates what is 

happening with the mill, the following conclusions must be considered: 

1. The mill classifier behaves inversely to what is expected, i.e. a 

smaller particle size is seen with wider open vanes; a decaying 

exponential relationship is observed. 

2. As expected, a narrower particle size distribution is created with 

narrower vane angles; again, a decaying exponential relationship is 

observed.  

3. The effect of mill speed, which is linked to the rotational speed of 

the classifier, lessens the rate of decay in the exponential governing 

particle size. 

To achieve this a simple model was created that fits the form of equation 

(7.3) designed to give a probability of passing based on particle size. The 

experimental results for the Rosin-Rammler d’ and n parameters against classifier 

vane angle, 𝑣, where variation with mill speed, 𝜔, is also indicated, results were used 

to create an empirical relation for 𝜅 and Γ. Using Microsoft Excel’s solver add-in, 

a basic optimisation for functions to govern them both was created and is given in 

equations 7.4 through 7.6.  

 
𝐶𝑖 = exp [− (

𝑥𝑖

Γ
)

𝜅

] (7.3) 

 



 

155 
 

 

 𝜅 = 1.6 exp(−0.002567𝑣) (7.4) 

 

 Γ = 1000 exp(−0.003346𝑣𝜉) (7.5) 

 

 𝜉 = −0.0002𝜔2 + 0.94𝜔 − 10.61 (7.6) 

 

It should be noted, that this empirical fit is proprietary to the mill in 

question and suggests that further study in to how classifiers of each type effect the 

product of mill. Additionally, there is an order of error in the function that requires 

further research. With the model used in this study a Chi-squared goodness of fit 

test was completed that provided a p-value of 0.071 determining the model is 

statistically significance at the 0.1 level which represents a 10% error rate in the 

model prediction.  

7.3.2 Material Differences  

In the first instance, the evaluation of the model as applied to the different 

biomass species has been conducted. The initial investigations followed the same 

principle as those for the batch testing and an analysis of different fuels as applied 

to different combinations of selection and breakage functions. Following initial 

optimisation S4, B1 proved to be the optimal model with 7 of 9 test cases achieving 

a higher OVL score with this combination. The only other model selected as the 

primary model was S3, B1. In the initial run of all biomasses optimised to S4, B1, 

whilst OVL scores were generally high, there seemed to be no clear start point for 

evaluating how the material affected the model parameters. Additionally, the 

optimisation of 6 parameters when many aspects are uncontrolled, coupled with a 

reasonably performing alternative model, a decision to not proceed with model S4, 

B1 was made. Tests were completed with S3, B1 which has already shown potential 

to extract the differences.  
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Figure 7.11 displays the frequency of the optimum selection and breakage models across the 
different biomass species when used under the material study for the steady state simulation. 

 

Figure 7.13 and figure 7.14, the initial optimisation results with S3, B1. Even 

at the initial step several possible relationships emerged. These were between β and 

γ, and the axial and flexure deformation energies, which is consistent with some of 

the experimental results presented in chapter 6.  No relationship was clear in 

parameters A and α.  
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Figure 7.12 displays the relationship observations between β and the various deformation energies. 
Here a strong relation was initially observed between the axial and parameter β. 

 

 

Figure 7.13 displays the initial relations between the parameter γ and the various deformation 
energies. Here a strong correlation was observed between γ and both the axial and flexure energies. 
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7 successive step changes to the constraints imposed on the model, 

designed to maintain these relationships whilst constraining A and α were taken. 

Provided the OVL scores stayed reasonably high, the change was accepted. The 

step changes can be seen in figure 7.14 along with new constraints that were applied 

at the various steps.  

 

Figure 7.14 displays the progression of the OVL scores as constraints on the modelling parameters 
increased. It shows that the reduction in the model accuracy was manageable. 

 

Whilst there is a reduction in the Miscanthus OVL accuracy, there is an 

overall gain in the Microwave Torrefied accuracy and the Eucalyptus stays constant 

throughout. Despite the loss in the Miscanthus simulations, the OVL still remains 

in relation to the overall OVL scores for which, all lie in the range of 0.87 to 0.96 

by the end of the parameter setting process.  
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Figure 7.15 displays the relationships between β and the deformation energies after the 7 steps of 
optimisation, whilst the relationship is not as strong as it was initially there is still good evidence 
to use it as a potential model. 

 

 

Figure 7.16 displays the relationship between the parameter γ and the deformation 

energies after 7 steps in optimising. 
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Progressing in such a manner to the final step, provided models based on 

material constants for β (see figure 7.16) and γ (see figure 7.17). The former has 

potentially more error (circa 39% as interpreted by the R2 correlation) and as with 

the experiments at the batch process could indicate a small link with the machine 

characteristics. Table 7.4 summarises the data and models obtained for from the 

study.  

 

Table 7.6 displays the values of the selection and breakage model parameters established after the 

optimisation programme for material differences has been completed. 𝑥 indicates the axial 
deformation energy.  

A α β γ 

0.7 0.12215 β = 0.0305𝑥 − 0.405 γ = 3.293 − 0.007𝑥 

 

7.3.3 Operational Difference 

Using a standard pellet, Brites wood pellets, operational effects of the mill 

were studied. Brites pellets have an axial deformation energy of 37.8MJ m-3 which 

was tested in the sister project, with a standard deviation of 16.5 MJ m-3 and 

implemented using the models for β and γ as given in table 7.5. The data used to 

train the model included the data from extreme points and centre point from the 

experimental process as outlined in chapter 5.2. Where some of the repeat 

experimental runs showed high deviation from the other 2 runs at the same 

conditions, the data was excluded from the model training process. By excluding 

these results, overall accuracy was improved when blind tested against the corner 

point experimental conditions from the CCC DoE.  

 

Table 7.7 displays the initial optimisation values for the operational differences study into the 
parameters for the selection and breakage model S3, B1 as was as the initial constraints on them.  

 A α β γ 

Initial Parameter Values 0.7 0.12215 0.7479 3.0265 

Initial Parameter Limits 0.1 – 1.0 0.01 – 5.0 0.7479 3.2065 
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Using the same S3, B1 model, simulation output is evaluated against the 

runs from the operational condition experimental results. Using the values from 

table 7.5 for A and α as initial parameter values, and the models for β and γ, the 

initial optimisation of back calculated parameters for A and α began.  

Initial optimisation over A and α only to see variation in the model due to 

milling operational conditions provided immediate potential relations in both A and 

α (figure 7.18). Whilst the initial results showed promise in identifying some 

relationships, the average OVL was below 0.70, therefore a relaxation on the 

constraints of β, where potential errors in the material modelling were identified, 

was made.  

 

Figure 7.17 displays the relationships of the mill speed to the S3, B1 PBE model parameters after 
initial optimisation over A and α. 
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Figure 7.18 displays the relationships between the feed rate and the S3, B1 model after the initial 
optimisation over A and α. 

 

The relaxation on the β due to the potential error in the materials effect 

study of 39% from the model value improved overall OVL scores to between 0.87 

and 0.93. A relationship was still maintained between A and feed rate, as well as 

between α and the mill speed. In the process, no further relationships between the 

parameters were observed. While β stays almost constant (β = 0.5277) throughout 

the runs, this is lower than the expected value given in table 7.5 with a 29.4% 

reduction in the value; it is however within the 39% error estimate in the model that 

was deermined from chapter 7.3.2 figure 7.16.  Further optimisation steps were in 

attempts to negate the relaxation on the constraints in β at step 1, yet this only 

resulted in significantly reduced accuracy (See figure 7.21).  
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Figure 7.19 displays the relationships between the mill speed and the S3, B1 parameter values 
after the first step in optimisation over A and α. There is still a strong relationship between α and 
the mill speed. Beta remains at a constant value but lower than predicted.  

 

 

Figure 7.20 displays the relationships between the feed rate and the S3, B1 parameter values after 
the first step in optimisation over A and α. Here the relationship with feed rat and A persists. 
Beta remains constant as before.  
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Figure 7.21 displays the OVL values as optimisation progression pushed beyond 1st step, OVL's 
significantly reduce as optimisation is squeezed beyond the 1st step, hence why the 1st step was used 
as the model. 

 

From completion of the material and operational studies a potential semi-

empirical model has been developed that accounts for the operational conditions 

of the Lopulco E1.6 mill and material characteristics of the pellets in question. The 

relationships are outlined in table 7.6. The next section will discuss blind testing of 

the model and assess its performance.  

Table 7.8 displays the various model relationships that have been found for the S3, B1 population 
balance model.  

Parameter Model Independent Variable (𝒙)  

𝑨 = 𝟏𝟔. 𝟖𝟑𝒙 + 𝟎. 𝟑𝟑 Feed Rate (7.5) 

𝜶 = 𝟒. 𝟒𝟗 × 𝟏𝟎−𝟓𝒙 + 𝟎. 𝟎𝟐𝟕𝟑 Mill Table Speed (7.6) 

𝜷 = (𝟎. 𝟎𝟑𝟎𝟓𝒙 − 𝟎. 𝟒𝟎𝟓), ±𝟐𝟗. 𝟔% Axial Deformation Energy (7.7) 

𝜸 = 𝟑. 𝟐𝟗𝟑 − 𝟎. 𝟎𝟎𝟕𝒙 Axial Deformation Energy (7.8) 
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7.4 Blind Testing of the Steady State Model 

7.4.1 Blind Testing Operational Conditions 

In the experimental analysis of the Lopulco E1.6 mill, 7 experimental 

settings out of 15 have been used to train the model, (23 runs including repeats). In 

the experimental regime there are a remaining 24 runs at the ‘corner points’ of the 

CCC experimental design that have been used as blind tests for the developed 

model. Using the model as given in table 1.6 for the S3, B1 combination, specifically 

with the 29.6% reduction in β as per the optimisation for operational conditions, 

blind testing was complete on the corner point experimental runs.  Table 7.7 

displays the statistics of the blind test results. It shows that the model is accurate to 

within a large margin of error however considering the factors of the variance in 

the axial deformation tests and the experimental results, this was to be expected. 

What it does show, is that the concept of using the axial deformation testing for 

this style of mill, an abrasive, compressive breakage mechanism seems to be suitable 

to base simulations on.  

Table 7.9 displays the overall statistics of the operational conditions blind tests. 

Statistical Measure OVL Score 

Mean 0.883 

Standard Deviation 0.024 

Max 0.919 

Min 0.822 

 

Upon review of the simulations where the OVL scores were lowest, there 

did not seem to be a specific set of conditions where the model produced low 

accuracy results. This suggests that the model used is sufficient and where OVL 

scores are low, this can be attributed to the individual experimental results being 

highly variable.   

Table 7.10 displays the accuracy of the simulation because of the operational conditional settings. 
The model is unaffected by operational conditions. 

Operational Condition Setting Average OVL 

Feed Rate 0.006 0.884 

Feed Rate 0.014 0.883 

Mill Speed 282 0.883 

Mill Speed 202 0.883 

Classifier Vane Angle 20 0.879 

Classifier Vane Angle 90 0.889 
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Figure 7.22 displays the worst case fit to the experimental results in the blind test, feed rate: 0.014 
kg s-1, mill speed, 202 RPM and the classifier vane angle of 20o. The OVL on the blind test was 
0.82. 

 

 

Figure 7.23 displays the best case fit to the experimental results in the blind test, feed rate: 0.014 
kg s-1, mill speed, 282 RPM and the classifier vane angle of 90o. The OVL on the blind test was 
0.92. 
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As a general comment on the model, there is a trend to the results that 

slightly over predicts the large particle product and under predicts the fine particles 

as can be seen in figure 7.23. The only exception is when the feed rate and the mill 

speed high, at which point the production of fines only is under estimated figure 

7.24. This could be a consequence of the classification function producing too tight 

a distribution and would need to be investigated further. As this is a proprietary 

function, it would require a separate study for every classifier.  

 

7.4.2 Blind Testing Materials 

As the conditions of β were altered because of the model development to 

account for the operational conditions show a last test was made to review the 

accuracy against a different biomass species, Eucalyptus pellet was chosen. The 

statistics of the simulations against the 3 repeats of the experiment are provided in 

table 7.9. Similar observations can be seen in the material study, whereby there is 

an under prediction in fines.  

Table 7.11 displays the overall statistics of the blind test on Eucalyptus after reconfiguring the 
model to account for operational conditions. 

Statistical Measure OVL Score 

Mean 0.897 

Standard Deviation 0.019 

Max 0.923 

Min 0.878 

 

7.5 Conclusions 

Correlations with material characteristics were observed for both the batch 

processing model on the PM100 planetary ball mill, in this case with the flexure 

deformation energy, and the steady-state Lopulco mill model with axial 

deformation energy requirements. The correlations with the different deformation 

energy testing results is likely due to the different breakage mechanisms that occur 

in each mill type.  

Accuracy levels are not high; however, they are still optimistic with an 

average blind test accuracy of 88%. The most likely reasons for this are the accuracy 

in experimental results for the Lopulco mill, and the mechanical testing. Any BPBE 
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model will require to be tailored to the individual mill as highlighted in the 

experimental section with the development of the classification process however 

other methods could be implemented to study other elements, such as a Hardgrove 

grindability testing machine apparatus could be employed to study breakage rates 

under different volumes, or residence times.  

A process which is quick to implement, requires relatively small number of 

experiments, and low computational resources has been developed that could be 

applied to any type of mill. The primary selection and breakage functions, S3 and 

B1, seem reasonable to be used in completing modelling simulations. B1, which was 

developed and tested by the researcher, has limitations to its use highlighted by the 

batch case when parameters exceed constraints with the equation, however if the 

parameter γ is set to greater than 3, which is reasonable; issues arise when γ → 1.
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Chapter 8 - Single Impact Testing 

and a Master Curve Population 

Balance Model 

8.1 Background 

Vogel and Peukert (Vogel & Peukert, 2003) began with the problem that 

the machine used in grinding and the materials interact in a complex way subject to 

the mill operational conditions and the material properties. In their paper, they 

develop a theory that could help to understand and model the process intuitively. 

By traversing several fields, starting with similarity of the breakage patterns in 

progressive breakage events, through fracture mechanics and on to evaluation of 

grinding performance, they arrive at a theory of a master curve for breakage 

probability, equation 8.1. The equation looks to associate kinetic impact energy, 

𝑊𝑚,𝑘𝑖𝑛, applied by an impact mill to the particle size of 𝑑, and evaluate the resulting 

probability of breakage, 𝑠(𝑑), should the particle in question have a minimum 

threshold energy, 𝑊𝑚,𝑚𝑖𝑛, required to break it.  

 

 𝑠(𝑑) = 1 − exp[−𝑓𝑚𝑎𝑡𝑘𝑑(𝑊𝑚,𝑘𝑖𝑛 − 𝑊𝑚,𝑚𝑖𝑛)] (8.1) 

 

The parameter 𝑓𝑚𝑎𝑡 , is interpreted as a material property that is independent 

of particle shape and 𝑘 represents the weakening of particles based on successive 

impacts. Within the theory, 𝑓𝑚𝑎𝑡 with 𝑑𝑊𝑚,𝑚𝑖𝑛, which is product of the particle 

size with the minimum threshold energy, should encompass all aspects of the 

material characteristic.  

The work has been received well in many notable publications (Miguel Gil 

et al., 2015a, 2015b; Karinkanta, Illikainen, & Niinimäki, 2013; Vogel & Peukert, 

2005). Specifically, these publications have been focused on impact mills. The 

application of this breakage rate function to compression and abrasion mills has 

not been tested. In this research the model was applied on the assumption that the 

breakage event by the rollers of the Lopulco mill is treated as a short compression 
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event. Additionally, and primarily why the investigation took place was due to the 

need to establish a more consistent material testing results to drive a developed 

PBE model. Since the output of the master curve experimentation is a probability 

of breakage, the results can be used directly as a selection function in a PBE 

simulation.   

8.1.1 Experimental Process 

The Breakage Rate (Selection) Function 

The objective of the experimental procedure is to determine 𝑊𝑚,𝑚𝑖𝑛 and 

𝑓𝑚𝑎𝑡 for each material. 30g of biomass pellet is fed into an impact mill, 1 particle at 

a time. The mill was set up in a simple way to allow 1 impact event only. This is 

verified audially as the particles are passed through the mill during the experiment. 

After the sample passed through the mill, the progeny particles were collected, and 

particle analysis completed. This experiment used a Retsch ZM200 as seen in figure 

8.1. The mill has a diameter of 9.8 cm rotor beater with 12 triangular teeth; these 

are where the impact with the biomass pellets will occur. The mill has varying 

rotational speeds between 6,000 rpm and 16,000 rpm.  

 

Figure 8.1 displays a Retsch ZM200 mill, set up with no screen so that particles when passed 
through experience only 1 impact before size analysis is completed. 

 

The mill was set up with no screen to ensure that the particles only 

experienced 1 impact each time they are passed through the mill, hence the 

experiment is known as Single Impact Testing (SIT). Breakage analysis compared 

with energy input is correlated by passing particles through the mill multiple times, 

represented by 𝑘. As the rpm of the mill is known, the input energy, 𝑊𝑚,𝑘𝑖𝑛,  could 

be calculated as in equation 8.2, however in the literature (Miguel Gil et al., 2015a; 
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Vogel & Peukert, 2003) the mass parameter is taken as 1 kg hence a reduction to 

equation 8.3. 

 𝑊𝑚,𝑘𝑖𝑛 =
1

2
𝑚𝑣2 (8.2) 

 
 

𝑊𝑚,𝑘𝑖𝑛 =
1

2
𝑣2 (8.3) 

 

Analysis of the progeny particles was completed by sieve analysis for a mass 

basis result consistent with the experiments completed by other literature. The 

particle size distributions were collected as per the sieve size ranges given in chapter 

5. As the theory states 𝑊𝑚,𝑚𝑖𝑛 is independent of size a top size is used as the target 

size in the experiments, this is a 4750μm sieve. Additionally, the CAMSIZER P4 

results were collected to test the assumption of no shape influence. Due to the 

nature of biomass having anisotropic structure, one theory that this experimental 

setup can test is the potential for different energy requirements in different axis of 

the biomass particles. This was tested by comparing the output of the CAMSIZER 

P4 PSD evaluation at maximum, 𝑑𝐹𝑒_𝑚𝑎𝑥, and minimum chord diameters, 𝑑𝑥𝑐_𝑚𝑖𝑛, 

which are only obtainable with such dynamic particle analysis methods.  

𝑓𝑚𝑎𝑡 and 𝑊𝑚,𝑚𝑖𝑛 were then determined by non-linear least squares fitting 

of equation 8.1 to the data collected; this was completed using MatLabTM’s 

‘lsqnonlin’ function. For 𝑊𝑚,𝑚𝑖𝑛 the plot is of the unbroken mass proportion of 

the material feed with each experiment against the particle size (𝑑), with input 

energy, 𝑘𝑑𝑊𝑚,𝑘𝑖𝑛, 𝑘 is included in order to compound the energy under which a 

particle has been exposed for multiple impacts. By plotting these results and fitting 

an equation of the form 𝐸 = 1 − 𝑒𝑥𝑝[𝑘𝑑𝑊𝑚,𝑘𝑖𝑛] to the data, the intercept of the 

abscissa with the model provides the minimum energy threshold,  𝑊𝑚,𝑚𝑖𝑛. Once 

the threshold value has been determined the results breakage probability can be 

plotted against 𝑘𝑥(𝑊𝑚,𝑘𝑖𝑛 − 𝑊𝑚,𝑚𝑖𝑛), where k, the number of impacts, is the 

number of times the sample is passed through the ZM200 mill. Again, fitting the 

curve of equation 8.1 with the data provides the value of 𝑓𝑚𝑎𝑡 . 
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The Breakage (Distribution) Function 

The breakage mechanism used with the SIT experimental process is 

fundamentally different from that with the Lopulco E1.6 mill, however an 

investigation will be completed to confirm how the material test compares with 

others. If a relation can be observed with the leading material test, the axial 

deformation as observed in chapter 5 a relation could be extrapolated and tested 

against the Lopulco mill data. If successful implementation of the relation can be 

substituted into breakage function 1 (repeated in equation 8.4) in the PBE 

simulation. 

 

 𝑏𝑖,𝑗 = 1 − exp [− (
𝑑𝑖

𝛽𝑑𝑗
)

𝛾

] (8.4) 

 

The SIT PBE Method 

The modelling method proposed is similar the matrix BPBE as outlined in 

chapter 4.6 for the steady state model. The key difference the way the SIT model 

works is in tracking the number of breakage events that each volume quantity at 

each size class undergoes. For this reason, the particle size distribution, 𝑓(𝑑), 

becomes a 𝑚 × 𝑘 matrix where 𝑚 is the size class, and 𝑘 the number of impacts 

the particle size distribution in that column has undergone. The output of the mill 

is a summation over the rows of the product matrix.  

With the Lopulco mill, the baseline energy input provided into the mill is 

not necessarily the energy transferred to the pellet in the breakage event of the 

compression between the mill table and mill rollers due to the potential energy in 

the springs holding the mill roller in place. Unfortunately, this was unknown and 

dismantling of the mill to determine this was not possible. To extrapolate a value 

for this, optimisation over a multiplier on the minimum mill table speed kinetic 

input energy, as calculated via equation 8.3, added to the kinetic energy operated at 

the mill speed as defined in each experiment. The optimisation, would again take 

place over the 30 of the experimental regime and tested, should it be successful, 

against the remaining 17 runs of the experiments. An input multiplier will be 

allowed to range between 1 and 15.  
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Materials 

In these experiments, 3 different biomass species were trialled, all of which 

were used for the Lopulco mill experiments, these are the Brites wood pellets, the 

Miscanthus grass pellet and the Microwave Torrefied pellets. These were selected 

to test the theory and provide a basis of comparison the modelling already 

completed with three very different biomass species. To minimise variation, pellets 

of approximately 15 mm in length were selected however the other features of the 

biomass pellets are as previously specified in the research.  

 

8.2 Experimental Results 

8.2.1 Master Curve 

 

Figure 8.2 displays the single impact testing results for Brites wood pellets, shown are the results 
from sieve analysis, CAMSIZER P4 analysis for minimum and maximum chord, along with 
the fitted master curve models; standard deviations in the models signified by the dotted lines. 
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Following the implementation of the Master Curve technique to the 3 biomass 

pellet species several observations can be drawn out. As in figure 8.2, the dynamic 

particle analysis seems to provide results that are like the sieving technique using 

the 𝑑𝑐_𝑚𝑖𝑛 characteristic. This is to be expected due to its close relation to the 

principles of sieving. The 𝑓𝑚𝑎𝑡 parameter seems to be affected by the brittleness of 

the material, this is shown in literature and as in this research as can be seen with 

the Microwave Torrefied pellet results.  In this case the 𝑓𝑚𝑎𝑡 parameter increases, 

and the master curve has a steeper gradient. With the 𝑑𝐹𝑒_𝑚𝑎𝑥 measure, the curve 

is shallower, this is most likely the effect of the aspect ratio of the material however 

this does raise a question as to the validity of the independence from size and shape 

of 𝑓𝑚𝑎𝑡 . The experiments do show though that there is very little difference, 

regardless as to which measure is used between the 𝑊𝑚,𝑚𝑖𝑛 parameters. For all 3 

measures, the values are consistent within the order of 1 standard deviation from 

the mean. The only pellet to deviate from this is the Microwave Torrefied pellet 

that showed a considerable difference when based on 𝑑𝐹𝑒_𝑚𝑎𝑥, figure 8.3 

summarises the results.  

 

Figure 8.3 displays the 𝑓𝑚𝑎𝑡 and 𝑥𝑊𝑚,𝑚𝑖𝑛 results for the single impact tests completed on 3 

different biomass pellet species. The assessment shows the results from the mass based sieve analysis 
and the volume based CAMSIZER P4 dynamic particle analysis. 
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To judge the result, a comparison has been completed with the results in 

the literature from which the theory came. The results seem reasonable with similar 

materials. This can be seen in figure 8.4 where the sieve related 𝑓𝑚𝑎𝑡 and Wm,min 

collected in this research are compared. This comparison also corroborates the 

observation that more brittle materials have a higher 𝑓𝑚𝑎𝑡 value.  

 

 

Figure 8.4 displays the materials used in this research in context with the literature from  (Vogel 
& Peukert, 2003) and (Miguel Gil et al., 2015b). The patterned bars are the results from this 
research. All results here are presented on mass basis from sieve analysis.  
 

8.2.2 Comparison with Material Characterisation Tests 

Several comparisons with the deformation energy analysis completed under 

the sister project shows how 𝑓𝑚𝑎𝑡 and Wm,min relate with them. Figures 8.5 and 8.6 

show the correlations. Wm,min, shows reasonable correlation with all orientations 

of deformation testing, much more strongly in the flexure test. This could be due 

to the high-speed impact on the pellet under the SIT resisted only with localised 
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resistance in the region of the impact, which is like the flexure test and has an almost 

1:1 correlation with it. The axial and diametric tests resist through the structure of 

the pellet.  𝑓𝑚𝑎𝑡 shows some correlation with the axial orientation deformation 

testing, stronger than that with the Wm,min; the other 2 deformation tests showed 

no such correlation.  

Using the information from figure 8.5, equation 7.8 can be redefined in 

terms of the Wm,min, so that the details can be used in a simulation (see equation 

8.6).  

 𝛾 = 3.293 − (0.827
𝑊𝑚,𝑚𝑖𝑛

⁄ ) (8.6) 

 

 

Figure 8.5 displays the correlation of the minimum breakage energy 𝑊𝑚,𝑚𝑖𝑛 from the single 

impact testing correlated to the deformation energy results from the sister project for the 3 materials 
tested in the SIT regime. 
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Figure 8.6 displays the correlation of fmat to the deformation energies in the various orientations. 
 

8.3 Simulation Results 

The application of the PBE simulation using the results of the SIT 

experiments provided an initial OVL accuracy of 0.514, significantly less accurate 

than those of the PBE simulations discussed in chapter 7.  In order to improve 

accuracy several iterations of the simulation were completed, each time reducing 

the iteration calculation step in order to increase accuracy. After two successive 

iterations in reducing this the simulation results increased to a maximum OVL of 

0.66. The steps taken can be seen in table 8.1. Examples of the simulation PSD 

prediction against the experimental results can be seen in figure 8.7 and a summary 

of the simulation results is given in table 8.2. As this method seemed to be less 

accurate than those in chapter 7 the SIT method PBE simulation was discontinued.  
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Figure 8.7 displays the Single Impact Testing PBE based simulations against the experimental 
results for a Lopulco E1.6 mill experiment results, 0.006 kg s-1, 202 RPM, 90o vane angle. 
  

Table 8.1 displays the improvements in accuracy of the Single Impact Testing based Population 
Balance Equation simulation with reductions in the iteration step size. 

Iteration Step Size Average OVL Optimal Multiplier 

1.0 0.514 2.59 

0.2 0.647 1.57 

0.1 0.659 1.57 

 

Table 8.2 displays the statistics of the OVL results for the SIT PBE simulation training. 

Average Minimum Maximum 

0.66 0.48 0.74 

 

Overall the results significantly overpredict the finer size production of the 

biomass particles. This is due to the high rates of breakage created by selection 

function base equation and the required base energy to overcome limits of the 

function. Together this causes an over estimation of the degree of breakage at each 

step.  
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8.4 Conclusions 

As a material characterisation method, the SIT experiments provide 

significantly less variation than the deformation testing, therefore application to 

milling in general is encouraged. This does have limitation. Application to mills of 

similar input energy magnitude and breakage mechanisms would be consistent with 

the theory yet mills with vastly different mechanisms show that it cannot be 

implemented directly. 

Observations show that a link between SIT minimum threshold energy with 

flexure energy consumption, and possibly with the axial deformation seems likely 

however this requires further comparison to more pellets to be confirmed. This can 

be explained by the application of breakage mechanism acting on a small area of 

the pellet, such as the flexure point on the flexure deformation energy test or on 

the smaller area of the pellet top in the axial deformation testing.  

Application of the SIT technique is currently not feasible for the Lopulco 

mill type. With the potential to verify the relationships between the axial and flexure 

deformation tests, and the single impacting testing, there may be options for use 

subject to a deeper investigation to characterise the relationships between them; 

implementation of which could be achieved as the axial deformation has been in 

chapter 7. This could help to reduce the error in the simulation.  
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Chapter 9 - Conclusions and 

Future Work 

9.1 Objectives 

The objective of the project was to build a simulation for the grinding of 

biomass pellets using where possible the data from the experimental work 

completed by the research of the sister project, “On Biomass Milling for Power 

Generation” (Williams, 2016). If optimisation of the biomass pellet milling proves 

successful, power generators may choose to adopt biomass as a potential fuel 

through efficiency savings and gains that can be made through producing electricity 

with renewable and carbon neutral fuel sources. The simulation was to focus on the 

key areas of concern in order of replicating a product particle size distribution, 

ensuring a mass throughput (where appropriate) and simulating energy 

consumption. Furthermore, the model should be developed to be as intuitive as 

possible and be driven with as little experimental data as possible. 

9.2 Modelling Review 

The conclusions here build upon the literature already published and other 

research completed by the sister project. The first of such conclusions is that the 

population balance equation, PBE, method, has proven to be a versatile method 

for prediction of particulate assemblies and their evolution. The technical review in 

chapter 3 provides analysis of other techniques, yet with this approach simulations 

can be generated for the entire scenario of comminution.  The advantages of PBE 

methods over interpolation of experimental results is the ability to extract the 

contribution of the mill and materials in question. This research has also shown that 

the PBE method can be trained based on relatively small amounts of experimental 

data that provides very good representations of what is happening.   

A second modelling approach was identified, the discrete element method, 

DEM, that has the potential to develop understanding of the fundamentals of 

milling. The computational resources and time are where DEM has the 

disadvantage over the PBE simulation method. As experimentation became 

necessary for the research and application of the PBE method, the project was 

unable to incorporate a DEM model. 
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9.3 The Population Balance Equation Method 

This project has implemented a PBE method, tested and reviewed a 

catalogue of selection and breakage functions; it has, within known limits, 

developed and implemented a function designed by the researcher based on the 

Rosin-Rammler equation (breakage function 1) that has proven to fit the 

distributions with greater accuracy than others for this application. The breakage 

function shows consistent accuracy with different types of mills which enables a 

similar PBE structure to be applied across the variation of mill types. It has shown, 

that when applied to different mill types the parameters may not vary based on the 

same condition. For example, batch milling with a planetary ball mill, parameter β 

in the S3, B1 model was dependent on the machine and the material whereas in the 

Lopulco ring and roller mill, it varied with material only.  

The PBE method was implemented and a simulation developed that 

predicted the experimental particle size distribution in blind tests to within a 

minimum accuracy of 82% and on average to 88%. Given the error in the material 

deformation project and the variation which seemed inherent in the Lopulco mill 

results this seems reasonable. Increases in the material testing result accuracy would 

aid this as more experimental results could help reduce the variation and 

consequently improve the model. Extraction of machine and material contributions 

were successfully identified for the Lopulco mill. This shows that the process of 

back calculation was applicable and useful in determining the contributions of each 

component for the ring and roller type mill. Attempts for a planetary ball mill were 

taken as far as the experimental study results allowed and showed that it too was 

possible however different parameters were dependent on different components.  

The application of material characterisation to drive the PBE method 

simulation has been shown to be possible for the Lopulco and Planetary ball style 

mills. High variation in the test used, deformation testing, limits the current scope 

of the research to certify this conclusion. Other potential tests, such as the single 

impact testing in chapter 8 show that material testing can be improved however 

application to certain mil types may not be directly possible.  
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9.4 Experimental  

From the experimental research here, results have shown that to develop a 

simulation biomass grinding intricate details need to be available on the functioning 

of the classifier specific to the mill. As shown in the project, the classifier unit on 

the Lopulco mill behaved contrary to expectations and required a custom 

classification function be developed based on the experimental data.  

The research has shown a correlation to axial deformation energy and the 

product, throughput, and energy consumption of the Lopulco mill. Initial 

expectations for this were correlations to diametric energy, however it is theorised 

that axial may be more appropriate due to the alignment of the pellets with the 

rollers, and how the rollers function in gripping the pellets. Application of the 

deformation energy is not across the full length of the pellet, rather a section of the 

length, more consistent with axial deformation energy levels. 

Further to this, there is an observed efficiency gain by increasing feed rate 

into the mill. This is possibly due to the frictional forces present between the pellet 

and the grinding elements not being sufficient to cause movement under the 

grinding roller. Presence of more material encourages appropriate alignment and 

coatings on the grinding media increase frictional forces. Non-linear grinding 

kinetics would suggest this is limited to a maximum capacity which was 

undetermined in this research. 

The single impact testing also showed that material characterisation for 

biomass pellets can be completed with a lower variance in the results. The limitation 

is that this cannot be directly applied to Lopulco style mills, presumably ball and 

tube mills and possibly other types that are not based on an impact grinding 

mechanism. However, there may be correlations to other characterisation tests as 

shown in chapter 8 that imply application of the SIT experimental Wm,min parameter 

can be used to drive other style mill simulations.  

9.5 Recommendations for Future work 

Initial recommendations for future work would be to work on increasing 

the accuracy of the experimental results. Limitations on the project were linked to 

the quantity and scale of the experimental operations, additionally the variation in 

material testing. Finding alternative material characterisation tests would be one 
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such improvement. As with the SIT experiments a similar, more controlled 

experiment for ring and roller type mills would make a characterisation test more 

applicable to the Lopulco mill and other vertical spindle mills. Understanding of 

the breakage kinetics of the biomass pellets would significantly improve a PBE 

simulation. 

Additionally, the size of the pellets relative to the lab-scale mills could also 

influence the accuracy of the experimental results. Recommendations would be to 

take the experiments and base the model on results from industrial scale mills; 

longer running times and quantity of mass throughput would aid in producing 

consistent experimental results.  

Energy consumption is expected to be related to the degree of 

comminution, energy coupling modelling would be the next focus of future work. 

As a model that showed reasonable predictability was not developed until late on, 

this could not be completed. Furthermore, the accuracy of the model would 

influence the results of any energy coupled routine.  

Non-linear grinding effects should also be considered in the model. These 

however would be hard to test with the Lopulco milling experiments. Initial 

development of such a model would be better suited to batch processes to 

understand the interaction of mill volume with grinding mechanism in a controlled 

way before implementation on steady state simulations, or even unsteady state. 

Specifically, for Lopulco style mills, use of such equipment as a HGI testing mill 

could help improve understanding of material properties and interaction with this 

style of grinding media, additionally build upon the knowledge required to facilitate 

non-linear grinding effects.  

Further research into the classifier systems is possibly the most important 

research required; it has been shown to be important in this research and believed 

to be a necessary component for a rigorous development of a PBE simulation. 

Unexpected behaviour observed displays a need for greater understanding of 

classifier dynamics. For elutriated air classification, the majority of which is found 

in industry the study of biomass particles in the air stream and with the component 

of a classification system should also be investigated.   
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With computers becoming more powerful and some impressive 

developments in software, DEM modelling of biomass would also aid in developing 

selection and breakage function parameters and driving the PBE simulation. 

Additionally, some of the observations in relation to the pellet and grinding media 

interactions that are hypothesised as the reasons why certain material characteristics 

seem to correlate with the output of milling, could be verified with small scale DEM 

simulations. Implementation of anisotropic biomass characteristics, and non-

spherical shapes could be approximated in a bonded particle method DEM 

simulation until better non-spherical element modelling can be achieved.  
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Appendix A: Mill Types 

 

The following appendix provides an overview of some of the mills that are 

in operation within the current coal pulverising structure as well as some other 

designs used in the industries identified for investigation due to possible application 

to biomass milling. It is by no means a complete itinerary of milling equipment. 
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 Breakage Modes Parameters Specification notes Product grading 

Hammer 

 

 

• Impact 

• Shearing/abrasion 

• Attrition 

• RPM 

• Screen Size 

• Feed rate 

• Hammer shape 

• Free swinging or fixed 
hammer options 

• Hammer mounting 
angle (fixed hammers) 

• Hammer-screen 
clearance 

• Hammer mills have internal 
classification as standard so 
no need to include closed 
circuit operation 

• Gravity loaded operation via 
hopper and/or gravity shoot. 

• Feed discharge into 
pneumatic conveyance 
streams for industrial 
application. 

>125 µm 

achievable 

depending on 

the screen 

aperture. 

Grinding Principle: 

Feed material is fed under gravity into the milling chamber. The rotating shaft rotates the hammers in the mill. The hammers provide the impacting force 

on the feed material through contact with the arms or the hammer head. Shearing Forces apply to material trapped between the head and the screen. 

 

 



 

II 
 

Manufacturers • West Salem: http://westsalem.com/machines/wsm-hammermills/ 

• Andritz: http://www.andritz.com/fb-215-gb-hammermill.pdf 
 

• Retsch: 
http://www.retsch.com/api/?action=product_pdf&productId=87&id=2296508&L=0&userId=&site=retsch&print_langua
ge=0&print_info=1&print_image=1&print_images=1&print_examples=1&print_advantages=1&print_features=1&print_vi
deolink=1&print_principle=1&print_orderinfo=1 

• Bühler: http://www.buhlergroup.com/global/en/products/hammer-mill-dfzc.htm#.VETa8PldWwt 

• Christy Turner: http://www.christy-turner.com/products/hammer-mills/ 

• CPM: http://www.cpm.net/index.php?option=com_product&task=view&id=1&Itemid=26 
 

References (L. G. Austin et al., 1979; Miguel Gil & Arauzo, 2014; Temmerman et al., 2013; G. Wang, Zhao, Li, Li, & Wang, 2012) 

 

 

 

 

 

 

 

http://westsalem.com/machines/wsm-hammermills/
http://www.andritz.com/fb-215-gb-hammermill.pdf
http://www.retsch.com/api/?action=product_pdf&productId=87&id=2296508&L=0&userId=&site=retsch&print_language=0&print_info=1&print_image=1&print_images=1&print_examples=1&print_advantages=1&print_features=1&print_videolink=1&print_principle=1&print_orderinfo=1
http://www.retsch.com/api/?action=product_pdf&productId=87&id=2296508&L=0&userId=&site=retsch&print_language=0&print_info=1&print_image=1&print_images=1&print_examples=1&print_advantages=1&print_features=1&print_videolink=1&print_principle=1&print_orderinfo=1
http://www.retsch.com/api/?action=product_pdf&productId=87&id=2296508&L=0&userId=&site=retsch&print_language=0&print_info=1&print_image=1&print_images=1&print_examples=1&print_advantages=1&print_features=1&print_videolink=1&print_principle=1&print_orderinfo=1
http://www.buhlergroup.com/global/en/products/hammer-mill-dfzc.htm#.VETa8PldWwt
http://www.christy-turner.com/products/hammer-mills/
http://www.cpm.net/index.php?option=com_product&task=view&id=1&Itemid=26
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 Breakage Modes Parameters Specification notes Product grading 

Ball and Tube (Rod and Tube) 

 

 

• Impact 

• Compression 

• RPM 

• Ball charge  

• Ball size 

• Feed rate 

• Lifters (optional) 

• Liner Friction 

• Alternative grinding 
media can be rods 

• Batch or circuit operation  

• Closed or Open Cycle 
Circuits 

• Circuit operation can be used 
with air sweeping or internal 
classification on one end of 
the mill 

• Air sweeping often has dual 
use of heating the fuel to 
reduce moisture content 

• Lifters on the interior of the 
mill is optional, in coal 
comminution these are not 
often used 

• Mixtures of ball sizes is 
optional 

>20 µm 

 

Grinding Principle: The rotation of the containment tube causes the lifting of the grinding media and feed material; the RPM and liner friction defines 

the height reached. At a point the material and grinding media will lose contact and fall back in on itself. 

 

 



 

IV 
 

Manufacturers • Metso 
o http://www.metso.com/miningandconstruction/mm_grin.nsf/WebWID/WTB-041124-2256F-

8A711?OpenDocument#.U_31D_ldX_E 

• Alstom Power 
o http://www.alstom.com/power/coal-oil/mills-pulverisers/tube/ 

• Babcock Power Services Group 
o http://www.babcockpower.com/pdf/RPI-TO-0010.pdf 

 

References: (Coulson, 1999; Erdem & Ergün, 2009; Green, 2008; Jankovic & Valery, 2013; Kalala, Breetzke, & Moys, 2008; Powell, Weerasekara, 

Cole, LaRoche, & Favier, 2011) 

 

http://www.metso.com/miningandconstruction/mm_grin.nsf/WebWID/WTB-041124-2256F-8A711?OpenDocument#.U_31D_ldX_E
http://www.metso.com/miningandconstruction/mm_grin.nsf/WebWID/WTB-041124-2256F-8A711?OpenDocument#.U_31D_ldX_E
http://www.alstom.com/power/coal-oil/mills-pulverisers/tube/
http://www.babcockpower.com/pdf/RPI-TO-0010.pdf
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 Breakage Modes Parameters Specification notes Product grading 

Disc Mill 

 

• Compression  

• Shearing 

• Disk separation  

• RPM 

• Feed rate 

• Batch or continuous cycles  

• Open or closed cycle 
operation  

• Integration of classification 
through use of pneumatic 
conveyance system is possible 

 

< 100 µm 

Grinding Principle: Compression and shearing forces acting between two rotating disks, rotation causes feed material to be centrifugally transferred to 

the disk periphery where grinding disks set with a gap depending on the product requirement. The grinding disks can come with radial toothing.   
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Manufacturers: • Fritsch 
o http://www.asi-team.com/asi%20team/fritsch/Fritsch%20data/pulverisette13.pdf 

• Neue Herbold 
o http://www.directindustry.com/prod/neue-herbold-maschinen-u-anlagenbau-gmbh/disc-mills-

50063-396385.html 

• Pallmann 
o http://www.pallmann.eu/language/upload/pdf/PMM__Masterbatch_EN.pdf 

• Retsch 
o http://www.retsch.com/products/milling/disc-mills/dm-200/function-features/ 

References:  

http://www.asi-team.com/asi%20team/fritsch/Fritsch%20data/pulverisette13.pdf
http://www.directindustry.com/prod/neue-herbold-maschinen-u-anlagenbau-gmbh/disc-mills-50063-396385.html
http://www.directindustry.com/prod/neue-herbold-maschinen-u-anlagenbau-gmbh/disc-mills-50063-396385.html
http://www.pallmann.eu/language/upload/pdf/PMM__Masterbatch_EN.pdf
http://www.retsch.com/products/milling/disc-mills/dm-200/function-features/
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 Breakage Modes Parameters Specification notes Product grading 

Knife Mill 

 

Source: (M. Zhang et al., 2012) 

• Cutting  

• Shearing 

• Blade separation 

• RPM 

• Feed rate 

• Internal classification  

• Variable screen sizes  

• Blade clearance 

• Batch processes available 

• More regularly applied to 
circuit operation 

• Closed circuit operation 
based on the use of 
internal classification 

 

> 250 µm 

Grinding Principle: When the material gets trapped between the knives and the cutting bar the material is cut. Material that has is now small enough to 

pass through the sieve does so; any product larger than the sieve size is recirculated and milled further. 
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Manufacturers: • Retsch 
o http://www.retsch.com/products/milling/cutting-mills/sm-100/function-features/ 

• Thomas Scientific 
o http://www.thomassci.com/wileymill 

References: (V. S. P. Bitra et al., 2009; Miao et al., 2011; F. Nasaruddin et al., 2012; M. Zhang et al., 2012) 

 

http://www.retsch.com/products/milling/cutting-mills/sm-100/function-features/
http://www.thomassci.com/wileymill
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 Breakage Modes Parameters Specification notes Product grading 

Planetary Ball Mill 

 

 

Source: (A. Sato et al., 2010) 

• Impact 

• Compression 
 

• RPM 

• Grinding Ball size 

• Grinding ball charge 

• Ball-Fill ratio 

• Grinding chamber 
diameter and volume. 

 

 

• Batch operation 

• Limited number of 
continuous open cycle 
systems in operation 

• Machinery can often contain 
multiple vials 

• Mainly used in laboratory 
testing  

> 1 µm 

Grinding Principle: The mill consists of a rotating plate attached to which are cylindrical vials that are fixed to the plate in a manner that allows them to 

rotate. As the main plate rotates the vials rotate themselves in a direction opposite to that of the main plate. Grinding media and charge in the vials are 

subjected to centrifugal forces that alternate in relative directions as to the main plate rotates. Charge that is caught between the gridning media and vial is 

subject impacting forces. 
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Manufacturers: • Leotec 
o http://leotecltd.com/upload/medialibrary/8a3/8a3564a0d224b1bf6759d642509d18d7.pdf 

• Retsch 
o http://www.retsch.com/products/milling/ball-mills/ 

References:   (Mandal et al., 2014; Rosenkranz et al., 2011; A. Sato et al., 2010) 

http://leotecltd.com/upload/medialibrary/8a3/8a3564a0d224b1bf6759d642509d18d7.pdf
http://www.retsch.com/products/milling/ball-mills/
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 Breakage Modes Parameters Specification notes Product grading 

Rotary Mill 

 

Source: 

http://www.brabender.com/english/food/pr

oducts/sample-preparation/grinding/rotary-

mill.html 

• Cutting • Feed rate 

• RPM 

• Internal classification 

• Sieve screen size 

• Variable knife 
protrusion 

 

 

• Hopper fed or gravity 
loaded 

• Batch operation 

• Could be adapted to open 
cycle continuous operation 

• Mainly used in laboratory 
operations 

 

> 500 µm 

achievable 

depending on 

the screen 

aperture. 

Grinding Principle: The material is fed through the top of the mill and cut between knife blades on the mill shell and blades at the tips of the impellers 

on the rotor. Product milled to the required size will pass the sieve; larger particles will be recirculated for further milling. 

 

http://www.brabender.com/english/food/products/sample-preparation/grinding/rotary-mill.html
http://www.brabender.com/english/food/products/sample-preparation/grinding/rotary-mill.html
http://www.brabender.com/english/food/products/sample-preparation/grinding/rotary-mill.html
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Manufacturers: • Brabender  
o http://www.brabender.com/english/food/products/sample-preparation/grinding/rotary-mill.html 

References:  

 

 

 

 

 

 

 

 

 

 

 

http://www.brabender.com/english/food/products/sample-preparation/grinding/rotary-mill.html
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 Breakage Modes Parameters Specification notes Product grading 

Centrifugal Mill 

 

 

Source: (Silva & Xavier, 2011) 

• Impact  

• Shearing 

• Rotor teeth number 

• Rotor teeth size 

• Sieve aperture size 

• Feed rate 

• Batch operation 

• Open cycle operation via 
hopper and feed system and  

• More situated to lab scale 
milling with small samples. 

• Various designs may have 
different grinding media.  

 

 

 < 40µm 

achievable 

depending on 

the screen 

aperture. 

Grinding Principle:  

Centrifugal acceleration throws the material outwards with high energy impacting the wedge-shaped rotor teeth that is moving at high speed. The shearing of 

particles then occurs between the rotor and the fixed ring sieve.  
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Manufacturers: • Retsch 
o http://www.retsch.com/api/?action=product_pdf&productId=5&id=2296508&L=0&userId=&site=retsch&print_language

=0&print_info=1&print_image=1&print_images=1&print_examples=1&print_advantages=1&print_features=1&print_video
link=1&print_principle=1&print_orderinfo=1 

References (Silva & Xavier, 2011) 

http://www.retsch.com/api/?action=product_pdf&productId=5&id=2296508&L=0&userId=&site=retsch&print_language=0&print_info=1&print_image=1&print_images=1&print_examples=1&print_advantages=1&print_features=1&print_videolink=1&print_principle=1&print_orderinfo=1
http://www.retsch.com/api/?action=product_pdf&productId=5&id=2296508&L=0&userId=&site=retsch&print_language=0&print_info=1&print_image=1&print_images=1&print_examples=1&print_advantages=1&print_features=1&print_videolink=1&print_principle=1&print_orderinfo=1
http://www.retsch.com/api/?action=product_pdf&productId=5&id=2296508&L=0&userId=&site=retsch&print_language=0&print_info=1&print_image=1&print_images=1&print_examples=1&print_advantages=1&print_features=1&print_videolink=1&print_principle=1&print_orderinfo=1
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 Breakage Modes Parameters Specification notes Product grading 

Ball and Race Mill 

 

Source: (L. G. Austin et al., 1981) 

 

• Compression • Number of grinding 
balls 

• Size of the grinding 
media 

• RPM 

• Feed rate 

• Small scale batch processing 
units available  

• Continuous open cycle and 
closed cycle operations via air 
classification  

• Mills are fed via gravity chute 

• A variant on this mill is used 
to Hardgrove Grindability 
Indexing  

• Some variation in design 
whereby compression is 
generated via centrifugal 
action on the balls instead of 
being held and rotated by the 
upper race ring. 

>76 µm 

Grinding Principle: The fuel is fed through the centre on to a rotating table. Centrifugal action throws the fuel out to race where the grinding media, large 

grinding balls, grinds the fuel. The ground material passes over the rim of the table where it is swept by air flowing at high velocity carrying it to the 

classifying unit, oversized particles are returned to the rotating table for further comminution. 

 



 

XVI 
 

Manufacturers: • Williams Patent Crusher and Pulveriser Co. 
o http://www.retsch.com/api/?action=product_pdf&productId=5&id=2296508&L=0&userId=&site=retsch&p

rint_language=0&print_info=1&print_image=1&print_images=1&print_examples=1&print_advantages=1&pr
int_features=1&print_videolink=1&print_principle=1&print_orderinfo=1 

• Alstom India Ltd. 
o http://www.alstom.org/Global/Power/Resources/Documents/Brochures/mills-ball-race-mill.pdf 

 

References:  (L. G. Austin et al., 1982; L. G. Austin et al., 1981) 

  

 

 

 

 

 

 

 

 

http://www.retsch.com/api/?action=product_pdf&productId=5&id=2296508&L=0&userId=&site=retsch&print_language=0&print_info=1&print_image=1&print_images=1&print_examples=1&print_advantages=1&print_features=1&print_videolink=1&print_principle=1&print_orderinfo=1
http://www.retsch.com/api/?action=product_pdf&productId=5&id=2296508&L=0&userId=&site=retsch&print_language=0&print_info=1&print_image=1&print_images=1&print_examples=1&print_advantages=1&print_features=1&print_videolink=1&print_principle=1&print_orderinfo=1
http://www.retsch.com/api/?action=product_pdf&productId=5&id=2296508&L=0&userId=&site=retsch&print_language=0&print_info=1&print_image=1&print_images=1&print_examples=1&print_advantages=1&print_features=1&print_videolink=1&print_principle=1&print_orderinfo=1
http://www.alstom.org/Global/Power/Resources/Documents/Brochures/mills-ball-race-mill.pdf
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 Breakage Modes Parameters Specification notes Product grading 

Ring and Roller 

 

Source: (Shoji et al., 1998) 

• Compression • Number of 
grinding rollers 

• RPM 

• Feed rate 
 

• Continuous open cycle 
and closed cycle operations 
via air classification  

• Mills are fed via gravity 
chute 

• Variation in the design is a 
bowl mill where the ring is 
shaped like a bowl 

>75 µm 

Grinding Principle: The fuel is fed through the centre on to a rotating table. Centrifugal action throws the fuel out to race where the grinding media, large 

grinding rollers, grinds the fuel. The ground material passes over the rim of the table where it is swept by air flowing at high velocity carrying it to the 

classifying unit, oversized particles are returned to the rotating table for further comminution. 
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Manufacturers: • Alstom Power Steam Auxiliary Components Mills Group 
o http://www.alstom.com/power/coal-oil/mills-pulverisers/bowl/ 

• Loesche 
o http://www.loesche.com/en/products/dry-grinding-plants/technology/modul-concept/ 

References:  (K. Sato et al., 1996; Shoji et al., 1998) 

 

 

 

 

 

 

 

 

 

 

http://www.alstom.com/power/coal-oil/mills-pulverisers/bowl/
http://www.loesche.com/en/products/dry-grinding-plants/technology/modul-concept/
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 Breakage Modes Parameters Specification notes Product grading 

Roller 

 

Source: http://blog.insta-

pro.com/tag/roller-mills/ 

• Compression 

• Shearing 

• Roller separation 
distance 

• Feed rates 

• Roller diameter and 
length 

• Rollers may have teeth 

• Teeth may be aligned 
in synchronous 
rotation or opposing 
rotation 

• RPM  

• Mainly open cycle operation 

• Not often used on coal more 
for the food processing 
industry 

• Gravity chute and hopper fed 

• Roller separation is a method 
of internal classification 

• They are not great for fine 
grinding or consistent particle 
distributions 

>250 µm 

Grinding Principle: 

The raw material is fed between two or more motor driven rollers. As they material passes between them it is compressed and the stress propagation causes 

cracking and breakage of the material. This continues until the product is fine enough to pass between the roller separation distances.  

 

 

http://blog.insta-pro.com/tag/roller-mills/
http://blog.insta-pro.com/tag/roller-mills/
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Manufacturers: • Alvan Blanch 
o http://www.alvanblanchgroup.com/roller-mills-rv-range 

• Renn Mill Center Inc. 
o http://www.rennmill.com/grain-processing/rollermills/standard/ 

References:  (G. M. Campbell, Bunn, Webb, & Hook, 2001; Grant M. Campbell et al., 2012; G. M. Campbell & Webb, 2001) 

 

  

 

 

http://www.alvanblanchgroup.com/roller-mills-rv-range
http://www.rennmill.com/grain-processing/rollermills/standard/
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Appendix B: Modelling Technique 

Evaluation and Ranking Analysis Paper 

Summary 

The following appendix provides a table for papers listed that contributed 

to the analysis of literature used in chapter 3. These papers aided in development 

of the model ranking evaluation and scorecard. This included determining the 

appropriate variables to focus on, highlight key conclusions that did not need to be 

investigated more, and highlight where the gaps in the literature were.  
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No. Reference Mills Manufacturer Scale Independent 

Variables 

Materials Dependent Variables Objective of Paper 

1 (Oyedeji & 

Fasina, 2017) 

Hammer Bell Co. 

10HBLPK 

Pilot • Drying – 
grinding 
sequence 

• Loblolly 
pine chips 

• Moisture 
Content 

• Drying energy 
consumption 

• Specific grinding 
energy 

• PSD 

• Aspect Ratio 

• Bulk Density 

• Tap Density 

• Flow index 

• Compressibility 
Index 

 

Determine an 

optimal drying-

grinding sequence for 

grinding of wood 

pine for combustion.  

2 (Bitra et al., 

2011) 

Cutting  H.C. Davis 

Sons Mfg. 

Co., Inc.: 

Medium • Screen 
Size 

• Wheat straw • PSD 

• Rosin-Rammler 
Char 

• Geometric mean 
& SD 

• Percentiles: 
10,50,90 

Determine the effect 

of different mill 

operating conditions 

on cut size of wheat 

straw 
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• Mass relative 
span 

3 (V. S. R. Bitra et 

al., 2009) 

Hammer Schuttle 

Buffalo 

Lab • Angular 
velocity 

• Hammer 
mounting 
angle 

• Switch grass 

• Wheat straw 

• Corn Stover 

• PSD 

• Specific grinding 
energy  

• Rosin-Rammler 
Char 

• Uniformity index 
(D5:D95) 

• Size guide: 
Median x100 

• Geometric mean 
& SD 

Study the effect of 

mill settings on cut 

size and energy 

consumption 

4 (Doroodchi, 

Zulfiqar, & 

Moghtaderi, 

2013) 

Ball Bico-Braun Lab • Time 

• Blend 
ratio 

• Lithgow 
coal 

• Eucalyptus 
chip 

• PSD: sieve and 
malvern 

• Apsect ratio 

• Circularity 

• Roundness  

• Sphericity 

Study into 

coal/biomass blends 

in lab and pilot scale 

mills 

5 (Miao et al., 

2011) 

Hammer 

Cutting 

Hammer 

David Bradley 

(hammer mill 

1) 

Retsch 

SM2000 

Industry 

Lab 

Lab 

• Type 

• Screen 
size 

• Miscanthus 
grass 

• Switchgrass 

• Willow 
chips 

• Energy cane 

• PSD 

• Geometric mean 
& SD 

• Absolute density 

• Particle surface 
area 

Investigate 

relationships between 

comminution energy 

consumption and 
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Retsch SK100 • Ratio of 
comminution 

• Specific grinding 
energy  

resulting particle 

physical properties 

6 (Mani, Tabil, & 

Sokhansanj, 

2004) 

Hammer N/A Pilot • Screen 
size 

• Wheat straw 

• Barley straw 

• Corn stover 

• Switchgrass 

• PSD 

• Moisture content 

• Bulk density 

• Absolute density 

• Heating value 

• Ash content 

• Geometric mean 
& SD 

• Specific grinding 
energy 

Measure and 

compare handling 

related physical 

properties of biomass 

with respect to 

grinding and particle 

size. 

7 (Tamura et al., 

2014) 

Ball 

Vertical 

Roller 

Vibratory 

N/A Lab 

Lab 

Lab 

• Type 

• Grinding 
media 

• Speed 

• Time 

• Cedar chip 

• Pinus bark 

• Wood pellet 

• PSD 

• Specific grinding 
energy 

Study three different 

pulverisation 

methods, understand 

the continuous 

grinding 

phenomenon 

8 (Womac et al., 

2007) 

Cutting 

Hammer 

N/A Lab 

Lab 

• Speed 

• Screen 
size 

• Switchgrass 

• Corn stover 

• Wheat straw 

• PSD 

• Specific grinding 
energy 

To develop a 

common-platform 
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Disk 

 

Lab  • Geometric mean 
& SD 

instrument system for 

determining product 

and energy efficiency 

of rotary mills 

9 (M Gil et al., 

2008) 

Duplex 

(hammer

s and 

strikers) 

Hammer 

N/A  • Screen 
size 

• Type 

• Batch or 
continuo
us cycle 

• Process 
variation 

• Corn stover 

• Pine chips 

• PSD 

• Specific grinding 
energy 

• Bulk density 

Evaluation of milling 

energy requirements 

for biomass residues 

in a pilot plant for co-

firing 

10 (V. S. P. Bitra et 

al., 2009) 

Cutting H.C. Davis 

Sons Mfg. 

Co., Inc 

Lab • Speed 

• Feed rate 

• Screen 
size 

 

• Switchgrass • PSD 

• Rosin-Rammler 
Char 

• Geometric mean 
& SD 

• Percentiles: 
10,50,90 

• Mass relative 
span 

• Skewness 

• Kurtosis 

Study to the product 

of knife milled 

switchgrass with 

different mill 

operating conditions 
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• Uniformity index 
(D5:D95) 

• Size guide: 
Median x100 

• Coefficient of 
uniformity 
(D60/D10) 

• Coefficient of 
gradation: 
(D30

2/D10xD60) 

11 (Esteban & 

Carrasco, 2006) 

Hammer  Lab • Screen 
size 

• Process 

• Poplar chip 

• Pine chip 

• Pine bark 

• Moisture 

• Bulk density 

• PSD 

• Arithmetic mean 

• Ratio of 
comminution 

• Specific grinding 
energy 

Finding the optimal 

for obtaining the 

desired PSD and 

minimal energy from 

the milling of 3 

biomass species 

12 (Kobayashi et al., 

2008) 

Vibratory 

Cutting 

 Lab 

Lab 

• Time 

• Media 

• Moisture 
content 

• Spruce 
shavings 

• PSD 

• Aspect ratio 

• Crystallinity 

Study pulverisation 

methods in for wood 

powder creation 

14 (J. S. Tumuluru 

et al., 2014) 

Hammer 

Chopper 

Glen Mills 

Inc. 

Lab • Screen 
size 

• Barley straw 

• Wheat straw 

• Oat straw 

• Specific grinding 
energy  

• Moister content 

Focuses on the 

relation between 
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• Canola 
straw 

• Bulk density 

• Tapped density 

• Absolute density 

• Geometric mean 
& SD 

• Porosity 

• Hausner Ratio 

• Carr index 

grinding energy and 

physical properties of 

biomass  

15 (Adapa, Tabil, & 

Schoenau, 2011) 

Chopper 

Hammer 

 Lab • Screen 
size 

• Feed rate 

• Barley straw 

• Wheat straw 

• Oat straw 

• Canola 
straw 

• PSD 

• Geometric mean 
& SD 

• Specific grinding 
energy  

• Moister content 

• Bulk density 

• Absolute density 

Evaluation of the 

difference in non-

treated and steam 

exploded biomass 

straws is investigated 

16 (Too et al., 2012) Cutting Dickson 

DFT-150 

Lab • Time 

• Load 

• Star anise 

• Cinnamon 

• Coriander 

• PSD 

• Moisture 

• Absolute density 

• Arithmetic mean 

• Throughput 
efficiency 

• Ratio of 
comminution 

Study the effect of 

load and time on 

grinding statistics 
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• Rate of 
comminution 

17 (Miguel Gil & 

Arauzo, 2014) 

Hammer  Lab • Moisture 
content 

• Feed size 

• Target 
size 

• Angular 
velocity 

• Poplar 

• Corn stover 

• PSD 

• Geometric mean 
& SD 

• Skewness 

• Kurtosis 

• Rosin-Rammler 
Char 

• Mass relative 
span 

• Coefficient of 
uniformity 
(D60/D10) 

• Coefficient of 
gradation: 
(D30

2/D10xD60) 

• Uniformity index 
(D5:D95) 

• Percentiles: 
10,50,90 

Determine the 

influence of biomass 

conditions and mill 

operating condition 

on the final product 

size 

18 (Z. Ghorbani, 

Masoumi, & 

Hemmat, 2010) 

Hammer  Lab • Screen 
size 

• Alfalfa • Specific grinding 
energy 

• PSD 

• Geometric mean 
& SD 

Investigate grinding 

energy and with 

screen sizes and 
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• Moisture content relation to Kick, von 

Rittenger and Bond 

19 (Goswami & 

Singh, 2003) 

Disk Ukani Lab • Feed rate  

• Temperat
ure 

• Cumin 
seeds 

• PSD 

• Ratio of 
comminution 

• Specific grinding 
energy 

Investigate feed rates 

and feed 

temperatures of 

cumin grinding 

20 (F Nasaruddin et 

al., 2012) 

Cutting Dickson 

DFT-150 

Lab • Load 

• Time 

• Cardamo
m seed 

• Clove seed 

• Cumin 
seed 

• PSD 

• Rate of 
comminution 

• Size reduction 
efficiency 

Investigation in to 

the effect of grinding 

time and load on 

particle product 

21 (Zahra 

Ghorbani, 

Masoumi, 

Hemmat, & Seifi, 

2013) 

Hammer   • Feed size 

• Screen 
size 

• Alfalfa • PSD 

• Specific grinding 
energy 

• Geometric mean 
& SD 

• Bulk density 

Determining the 

correlation coefficient 

between physical and 

mechanical properties 

of grinding 
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Appendix C: Modelling Technique 

Evaluation and Ranking Industrial 

Partner Survey 

 

This appendix is a copy of the survey issued to the BF2RA members and 

documents their response to the survey questions. The survey was designed to 

determine how the members put into action the key findings of the literature review 

and helped to shape the model ranking evaluation and scorecard.  

1. I would like to compile a list of mills in use by the members of the 

BF2RA to include details such as type, use, location and size (defined by 

throughput); the objective of which is to know where to focus the 

modelling efforts going into the model development stage.  

a. Could the members provide me with that?  

b. When do you think that would be available? 

 

“Coal Plant at Ratcliffe uses Babcock 10E mills (vertical spindle mill, ball 

and ring). Throughput of each mill is approx. 35 tonnes/hour. 8 mills per unit 

installed, of which 6 required in service at full load (2 spare). 

Ball mills are installed at Cottam and Eggborough (Foster Wheeler D 9 

pressurised, horizontal ball mills). 

Mills at West Burton, Fiddlers Ferry have Lopulco mills installed which are 

vertical spindle. 

Other mills which have been used in the power industry include the Raymond 

roller mills. 

For biomass firing hammer mills are generally used which can be of the 

horizontal or vertical type, with number of manufacturers in the market place. In 

addition, Losche mills have been used at Avedoere and Amager plants for milling 

biomass which are of the vertical roller type. Throughputs for the mills vary considerable 
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with fuel type and generally trials are undertaken before mills are selected for a particular 

application. 

Biomass hammer mills installed at Fiddlers Ferry (two DFZK2 vertical 

hammer mills are installed) and Drax are of the Buhler vertical spindle design. 

Amer 8 has horizontal hammer mills (Christy, Briton 960). 

For the Ironbridge biomass conversion project 10 hammer mills installed per 

unit, approx. 23 tonnes per hour each. 

Companies that produce mills for biomass, but not limited to, include Christy 

Turner, Andtriz, Losche and CPM. Further details of the biomass mills can be 

obtained from the manufacturer’s web sites.” 

 

2. Likewise, for the different source fuels used by the members, I appreciate 

this is likely to change often though. Again: 

a. Could the members provide a list1? 

b. When would this be available? 

c. How often do these changes and what determines the change in 

fuel? The following is a list of assumptions in this matter. 

i. Seasonal growth patterns, for example, olives are harvested 

for about 4 months of the year from late October through 

to Jan.  

ii. Storage capability – enhanced by initial pre-treatment; 

pelletisation, torrefaction, etc.  

iii. Crop yield. 

iv. Susceptibility to environmental conditions. 

v. Cost.   

 

                                                 

1 It is recognised that members may not want to share details of the materials used 

and strategies in place to protect their own interest, whilst the information would 

be useful for determining key focuses of the modelling project, the project will not 

be detrimentally affected by the absence of this information.  
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“Coal Plant: Ratcliffe fires both indigenous and import coals. 

Typical biomass fuels that have been available in large quantities include wood 

pellet, palm kernels, olive pellets and olive cake. However, a number of other fuels such 

as willow, Miscanthus and straw have been tested in a number of power plants. A list 

of fuels of interest to the BF2RA members was sent 10th February 2014. 

Biomass Plant: Ironbridge fires wood pellets. Different product specifications 

are available known as I1, I2 and I3.” 

 

3. To establish what practices are used in industry already I would like to 

compile a database of what is used.  

a. Can the members provide me with a list of techniques, 

methodologies, or processes by which they are determining milling 

parameters within their operations already? 

i. Info on this is also requested on the practices for coal if 

possible.  

 

Coal Plant: Coal throughput is controlled by flow rate of primary air (higher 

flow means more coal is carried out of the mill). The level of coal in the mill is monitored 

by mill differential pressure and is controlled by adjusting the feeder speed, which delivers 

coal from the bunker to the mill table. In a vertical spindle mill, coal is recirculated 

around the mill via a classifier: undersize material is carried out of the mill while 

oversize material is recirculated for further grinding. 

The coal mill also has to dry raw coal. Typically, around 2/3rds of the coal 

moisture is evaporated and carried out of the mill with the PA/PF stream. Outlet 

temperature is typically 70-85oC, and inlet temperature is typically 180 – 250oC 

(depending on coal moisture and throughput). 

The PA/PF ratio is maintained under a fuel-rich condition during steady-

state operation, (typically the PA/PF ratio is 1.3 to 2 on a mass basis and depends 

on the mill type). This reduces the risk of fires/explosions. However, during start-up 

and shut-down the PA/PF ratio passes through the explosive range. 
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The Coal Quality Impact models that are used include the calculation of the 

following parameters: 

• Mill throughput and number of mills required in service. This is 

dependent on coal NCV, moisture content and HGI. 

• Pulverised fuel (PF) grind quality (relative to a baseline value) – 

there is a trade-off between mill throughput and grind quality. 

• Mill power demand. 

• Mill heat balance, i.e. whether there is sufficient hot primary air from 

the air heaters to dry the coal (the lowest acceptable PA/PF outlet 

temperature is ~60-65oC) 

• Mill wear rates and mill maintenance demands (i.e. component 

replacement costs). 

Biomass Plant: biomass throughput in some cases is controlled by mill feeder 

speed, which takes fuel from an intermediate hopper. This hopper is replenished from 

the main fuel bunker via another feeder. There is no fuel recirculation within the hammer 

mill, but only undersize material passes through the screens and onwards to the boiler 

(via being fed into the primary air stream). 

The most important parameters regarding mill performance monitoring are: 

• Biomass throughput and grind quality (particle size distribution). 

The hammer mills primarily break-up the pellets into the original 

particles, but there is some additional comminution. 

• Mill wear rate: hammers wear out relatively quickly and require 

replacement. 

• Mill power demand. Mill power is known to change depending on 

level of hammer wear, as well as due to mill throughput, moisture 

content and inlet particle size. 

In general, full scale milling trials are undertaken with the design biomass fuel 

in order to be able to select a mill and screen size, for the correct throughput, whilst 
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giving the required fuel grading. As for coal, the fuel properties such as NCV determine 

the throughput required from the mill with the moisture content and inlet particle 

size/properties affecting the mill performance. Most hammer mill applications utilise 

ambient air for transport of the milled fuel to the boiler.”
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Appendix D: Modelling Technique 

Evaluation and Ranking Scorecard 

 

This appendix documents the scorecard applied to the evaluation of the 

modelling techniques that were considered for review in chapter 3 of this thesis. 

The scorecard describes the sections under which each was evaluated and the 

scoring criteria for each score. 
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Score Definition for rank in the corresponding Category 

Modelling the Scenario Application to the modelling 
variables is assessed. Priority is 
given to the techniques ability to 
model the primary variables of 
investigation with further bonus 
points for the capability to 
account for secondary variables.  

1 The technique is capable of modelling just a few secondary 
interest variables and no primary interest variables.  

2 The technique is capable of modelling a few primary variables, 
potential application for some secondary interest variables.  

3 The technique is capable of modelling all primary interest 
variables 

4 The technique is capable of modelling all primary interest 
variables, potential application for some secondary interest 
variables 

5 The technique is capable of modelling all primary interest 
variables, application to several secondary interest variables 
available 

Computational Requirements The expected computational 
requirement for implementation 
of the modelling technique s 
assessed and a score awarded 
based on the deviation from the 
desired implementation: desired 
is defined as able to run on a 
standard desktop computer with 
computational time of less than 7 
hours.  

1 Requires more than 7 hours real time processing with parallel 
processing on high end resources, i.e. UoN's High 
Performance Cluster. 

2 Requires more than 7 hours real time processing on a high 
specification computer. 

3 Requires a less than 7 hours real time processing on a high 
specification computer 

4 Requires more than 7 hours real time processing on a standard 
desktop computer 

5 Requires less than 7 hours real time processing on a standard 
desktop computer 
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Software and Coding The desirable trait is that suitable 
software for implementing the 
technique is available from within 
the university with no associated 
cost or obtainable with little or 
no cost externally. Deviation 
from this is considered in the 
direction of availability and 
increase in price. Program 
development is considered less 
preferable due to the time it takes 
to develop the core code and user 
interface.  

1 No software is available and would require program 
development. 

2 Software is available at significant cost and the university has 
no appropriate software already. 

3 Software is available at significant cost; the university already 
has suitable software that requires contribution.  

4 Software is available at little or no cost or the university already 
has access to appropriate software that requires a contribution. 

5 Software is available with minimal or no cost or the university 
has software available for use already.  

Data dependency The ideal scenario is one whereby 
the physical aspects of milling are 
modelled directly and a 
simulation of the milling practices 
can be used to generate results 
and optimisation. Reductions 
from the ideal increase the 
reliance on data to determine the 
model parameters, therefore 
making the simulation less 
predictive.  

1 The  technique relies wholly on direct milling experimental 
results to determine the model 

2 The technique requires some direct milling experiments to 
determine the model however further elements can be 
determined from material characterisation. 

3 The technique can be driven from physical principals and data 
provided from material characterisation 

Model validation In general validation will come 
from comparison with 

1 There is no way to validate the results of the simulation 
without significant design and implementation of experiments.  
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experimental results however 
given the nature of the a mill 
environment, experimental result 
may not be available, requiring 
extra work to obtain or they may 
not be obtainable based on the 
facilities at hand. 'significant 
redesign' is defined as, for 
validation, experimental results 
would require extensive planning 
and research into how to validate 
the variables, additionally access 
to the appropriate apparatus for 
the required period is an 
unknown factor.  

2 The model can be validated against key variables with the aid 
of some additional experimentation 

3 The model can be validated against key variables with results 
readily available, secondary interest variables requires extensive 
design and implementation of experiments.  

4 The model can be validated against key variables with results 
readily available, secondary interest variables requires some 
additional experimentation 

5 The model can be validated against key and secondary variables 
with results readily available 

Industrial scale-up This category relates to the 
adaptability of the modelling 
technique when industrial scale-
up becomes necessary to advance 
the project. Considerations that 
are required are whether the 
modelling technique is 
appropriate to facilitate the 
modelling of industrial scale 
millings measurable dependent 
variables. Furthermore an 

1 The application of the modelling technique is inappropriate to 
industrial scale milling. Use of alternative modelling techniques 
would be required.  

2 The modelling technique has application potential to industrial 
scale milling however significant overhaul of the model 
program would be required to accommodate the measurable 
industrial dependent variables.  

3 The modelling technique is directly applicable to industrial 
scale modelling however adaptation to accommodate the 
industrial variables would require significant model changes.  
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assessment as to scale of work 
necessary to alter the program in 
order to facilitate this is made.  

4 The modelling technique is directly applicable to industrial 
scale milling covering all the measurable independent variables 
with minor modification of the program to accommodate this.  

5 The technique is directly transferable and applicable to industry 
scale modelling of mills (minor alterations based on the 
industrial independent variables are tolerated).  
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Appendix E: Modelling Technique 

Evaluation and Ranking Results 

 

This appendix provides the results of the modelling technique evaluation 

and scoring process. Here you will find the tables that allocate each score to the 

technique in a fashion outlined in appendix D. The table of scores lists the 

techniques in isolation and scores for hybrid implementations of the technique.  
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  ANN PBM DEM FEM PFEM FVM SPH 
PBM-
DEM 

FEM-
DEM 

DEM-
FEM 

DEM-
FVM 

DEM-
SPH 

SPH-
FEM 

Modelling the Scenario 3 3 4 2 2 2 2 4 5 5 5 4 2 

Computational Requirements 5 5 2 3 2 3 2 3 2 2 2 2 3 

Software and Coding 5 4 2 3 2 3 2 3 2 2 2 2 3 

Data dependency 1 2 3 3 3 3 3 3 3 3 3 3 3 

Model validation 3 4 4 1 1 2 1 4 4 4 4 3 1 

Industrial scale-up 3 4 2 2 1 3 1 3 1 3 3 1 1 

               

Totals  20 22 17 14 11 16 11 20 17 19 19 15 13 
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Appendix F: Particle Characteristics 

 

This appendix lists the different methods of partical characterisation and 

their governing equations/methods of analysis. In practice most of these are 

calculated directly by the CAMSIZER as detailed in chapter 5.1.3. The tables are 

split into 3 section, particle size distribution analysis, measures of particle size and 

measures of particle shape.  

 

 

 

Measure of particle size distribution 

dispersion 
Definition 

Coefficient of gradation, used 

in conjunction with 𝑪𝒖 to 

determine if all size classes in a 

particle size distribution are 

suitably represented. 

 

𝐶𝑔 =  
𝑑30

2

𝑑10𝑑60
 

 

Coefficient of uniformity, 

values less than 4 are considered 

uniformly graded and the particle 

sizes are similar. 

𝐶𝑢 =  
𝑑60

𝑑10
 

Inclusive graphic skewness, 

shows the deviation of the 

distribution from a normal bell 

curve, 𝑲𝑰 = 𝟎 indicates a normal 

curve, 𝑲𝑰 > 𝟎 indicates a left 

shift in the curve, 𝑲𝑰 <0 

Κ𝐼

= (
(𝑑16 + 𝑑84 − 2𝑑50)

2(𝑑84 − 𝑑16)
)

+  (
(𝑑5 + 𝑑95 − 2𝑑50)

2(𝑑95 − 𝑑5)
) 
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indicates a right shift in the 

distribution curve. 

Kurtosis, is a measure of the 

peakedness of a distribution, 

𝚱𝒈 = 𝟑 indicates ‘normal’ 

mesokurtic, 𝚱𝒈 < 𝟑 indicates a 

wider, platykurtic distribution, 

𝚱𝒈 > 𝟑, indicates narrower, 

leptokurtic distribution. 

Κ𝑔 =
𝑑95 − 𝑑5

2.44(𝑑75 − 𝑑25)
 

Relative span, (mass, 𝒎 or 

volume, 𝒗), is a measure of how 

varied a PSD is, the smaller the 

number the less varied the 

distribution is: CAMSIZER P4 

obtained for volume measure 

𝑅𝑆𝑣 =
𝑑90 − 𝑑10

𝑑50
 

Uniformity Index, is the ratio of 

the extreme sizes in the PSD, 100 

indicates particles are the same 

size, 50 indicates the small 

particles are half the size of the 

large: CAMSIZER P4 obtained 

𝑈𝐼 = 100
𝑑5

𝑑90
 

Coefficient of variation, is the 

standard deviation of the size 

distribution divided by the 

median size: Not currently used. 

𝐶𝑣 = 50
𝑑84 − 𝑑16

𝑑50
 

 

 

 



 

XLIV 
 

 

Measure of particle size Definition 

𝒑𝒕𝒉  % passing size – 

PSD: CAMSIZER P4 

obtained 

𝑑𝑝, determined by interpolation 

between PSD points from a measured 

distribution. 

𝒑𝒕𝒉 % passing size - 

calculated: CAMSIZER 

P4 obtained 

𝑑𝑝 = 𝑑′ [− ln (1 −
𝐹(𝑑)

100
)]

1
𝑛⁄

 

Geometric mean diameter, 

between size classes, used as a 

precursor for determining the 

geometric mean for the particle 

size distribution. 

𝐷̅𝑖 = √𝑑𝑖 ∙ 𝑑𝑖−1 

Geometric mean diameter, 

distribution where 𝑴𝒊 indicates 

the % fraction at size class 𝒊 

(mass, 𝒎 or volume, 𝒗) 

𝐷𝑔𝑚 = exp [
∑ 𝑀𝑖 ln(𝐷̅𝑖)

∑ 𝑀𝑖
] 

Geometric standard deviation 

alternative to the whole system, 

calculated from the ratio of high 

to low particle size fractions 

𝑆𝑔𝑚𝑝
= √

𝑑84

𝑑16
 

Geometric standard deviation 

of the high regions of the particle 

size distribution 

𝑆𝑔𝑚ℎ
=

𝑑84

𝑑50
 

Geometric standard deviation 

of the low region of the particle 

size distribution 

𝑆𝑔𝑚𝑙
=

𝑑50

𝑑16
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Geometric standard deviation, 

calculated based on the geometric 

mean diameter between size 

classes. 

𝑆𝑔𝑚𝑤
= exp [

∑(𝑀𝑖(ln  𝑑𝑖 − ln 𝐷̅𝑖))
2

∑ 𝑀𝑖
] 

Martin diameter, 𝒅𝑴𝒂 is 

the minimum bisecting 

diameter separating 50% 

of the projection area: 

CAMSIZER P4 obtained 

 

 

 

 

Maximum Feret 

diameter, 𝒅𝑭𝒆, is the 

longest diameter through 

a particle projection: 

CAMSIZER P4 obtained 

 

 

 

Maximum Stretched 

Length, 𝒅𝑺𝒕𝒓𝒆𝒕𝒄𝒉 is a 

measure of the length of 

the projection when 

stretched out to eliminate 

curvature: CAMSIZER 

P4 obtained 

𝑑𝑠𝑡𝑟𝑒𝑡𝑐ℎ =  
𝐴

𝑑𝑀𝑎_𝑚𝑖𝑛 
 

Minimum chord 

diameter, 𝒅𝒄.  

analogous to sieve 

analysis, minimum size 

passing, is the minimum  

of the maximum 

diameters in each 

orientation of the particle: 

CAMSIZER P4 obtained 
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Rosin-Rammler 

cumulative distribution 

function: CAMSIZER P4 

obtained 

𝑅(𝑑) = 100 [1 − exp [− (
𝑑

𝑑′
)

𝑛

]] 

Rosin-Rammler 

distribution function 
𝑟(𝑑) = (

𝑛

𝑑′
) (

𝑥

𝑑′
)

𝑛−1

exp [− (
𝑑

𝑑′
)

𝑛

] 

Size Guide Number, is the 

diameter of the median particle 

size, (note: 𝒅𝟓𝟎 is expressed in 

mm): CAMSIZER P4 obtained 

𝐶𝑆𝐺𝑁 = 100𝑑50 

 

 

 

Measure of Particle Shape Definition 

Aspect ratio, the ratio of 

the length to the breadth 

of a particle: CAMSIZER 

P4 obtained 

𝜓𝐴𝑅 =
𝑑𝑐_𝑚𝑖𝑛

𝑑𝐹𝑒_𝑚𝑎𝑥
 

Circularity, ratio of area 

equivalent diameter to 

perimeter equivalent 

diameter: CAMSIZER P4 

obtained 

𝜓𝑐 =
4𝜋𝐴

𝑃2
=

𝑑𝑒𝑣

𝑃2
 

Operational sphericity, 

ratio of a volume 

equivalent diameter, to 

the circumscribed 

diameter of the particle: 

CAMSIZER P4 obtained 

𝜓𝑜𝑝 =
𝜋−

1
3(6𝑉)

1
3

𝑑𝐹𝑒_𝑚𝑎𝑥
=

𝑑𝑒𝑣

𝑑𝐹𝑒_𝑚𝑎𝑥
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Roundness, measure of 

the radii of ‘corners’ in 

the particle to an 

inscribed maximum circle 

within the particle: 

CAMSIZER P4 obtained 

 

  

𝜓𝑅 =
∑ 𝑟𝑖

𝑛
𝑖=1

𝑛𝑅𝐼
 

 

 

Sphericity, volume based 

surface area 

calculation/area of 

particle projection: Not 

currently used. 

𝜓𝑠 =  
𝜋

1
3(6𝑉𝑝)

2
3

𝐴𝑝
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Appendix G: Overlapping Coefficient 

Calculation MatLabTM Script 

 

This script was created and used in the research for calculating the 

Overlapping Coefficient between two probability distribution functions. The script 

is implemented in the MatLabTM and uses several built in MatLabTM functions for 

interpolating distributions where the size classes are not the same and the maximum 

and minimum function.  

 

function OVL = ovlfit(ExpPSD,SimPSD,eSize,sSize) 
  

% OVL provides a measure of assessment for  

% probability frequency  

% distributions that is separate from the  

% other methods in that comparison 

% of non-linear data can be easily  

% achieved.  
  

uMax    = max(max(eSize),max(sSize)); 

uMin    = min(min(eSize),min(sSize)); 

nGrd    = uMin:1:uMax; 
  

exIn    = interp1(eSize,ExpPSD,nGrd,'pchip'); 

siIn    = interp1(sSize,SimPSD,nGrd,'pchip'); 
  

exIn    = exIn./sum(exIn); 

siIn    = siIn./sum(siIn); 
  

OVLdiff = min(exIn,siIn);  

OVL     = sum(OVLdiff); 
  
  

end 
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Appendix H: Biomass Materials Used in 

the Research 

 

This appendix provides data relating to the different biomass fuel 

pellets used in this research. The first table lists the characteristics 

determined through this research whilst the second table displays the 

information collected from the sister project. Each provides a different way 

to characterise the biomass pellets.  
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      Single Impact Testing (Sieve Results) 
TGA Moisture 

Content (%), SIT 
Samples 

Material 
Mean Surface 
Area (cm2 g-1) 

σSA 
Particle 

Density (g 
cm-3) 

Mean Skeletal 
Density (g cm-3) 

σskel 
fmat   (J m 

kg-1) 
σfmat Wm,min σWm,min 

Mean Moisture 
Content (%) 

σmc 

Uncertainty in 
Measurement 

±0.00005 - ±0.00005  ±0.00005 - ±0.0005  - ±0.0005 - ±0.005 - 

Brites Wood 0.1334 0.0117 1.2920 1.5001 0.0073 0.297 0.031 0.301 0.016 7.26 0.21 

Eucalyptus 0.2736 0.0098 1.202 1.5104 0.0090 - - - - - - 

Miscanthus 0.2720 0.0182 1.188 1.5287 0.0094 0.225 0.029 0.202 0.014 6.71 0.27 

Mixed Wood 0.1156 0.0187 1.202 1.4756 0.0056 - - - - - - 

Microwave 
Torrefied 

0.2148 0.0090 1.107 1.5160 0.0192 0.695 0.080 0.189 0.006 3.85 0.1 

Sunflower 0.3230 0.0658 1.139 1.5237 0.0364 - - - - - - 
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 Mechanical Testing Deformation energy    

Material Diametric (MJ m-3) σdia 
Axial   

(MJ m-3) 
σaxl 

Flexure (MJ 
m-3) 

σflx 
Bulk 

Density 
(kg m-3) 

Pellet 
Length 
(mm) 

Pellet 
Diameter 

(mm) 

Uncertainty in Measure ±0.05 - ±0.05  ±0.0005  ±0.5 ±0.005 ±0.005 

Brites Wood 119.7 17.6 37.8 16.5 0.334 0.18 626 19.05 6.10 

Eucalyptus 74.7 41.1 30.1 9.2 0.242 0.118 667 17.42 8.39 

Miscanthus 47.8 18.8 28.3 11.16 0.210 0.114 667 19.73 6.29 

Mixed Wood 79.7 3.7 12.5 6.26 0.380 0.191 667 21.07 8.40 

Microwave 
Torrefied 

46 40.9 13.9 7.5 0.170 0.109 667 18.22 5.76 

Sunflower 38.7 17.4 44.9 26.3 0.380 0.329 500 14.16 8.62 
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Appendix I: Lopulco Experiment Mean 

Results 

This appendix provides the mean result tables for the Lopulco experiments. 

The analysis includes the general running experiment details, mass output, energy 

consumption etc. Additionally, all the particle characterisation characteristics, 

calculated from the CAMSIZER analysis are given, with results for the particle 

measure techniques listed in appendix F. The results are split between the 

operational condition variation experiments completed with Brites wood pellets 

and the Material Variation experiments completed with Eucalyptus wood pellets, 

Miscanthus grass pellets and a Microwave Torrefied wood pellet.  
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Operational Variation Experiments 

 

  

Feed Rate (kg s-1) 
Mill Speed 

(rpm) 

Classifier 
Vane Angle 

(o) 

Input mass 
(kg to 1 

d.p) 

Output 
mass (kg 
to 1 d.p) 

Specific 
Effective 
Energy 

(kWh t-1 to 
2 d.p) 

Output 
Rate (kg s-1 

to 4 d.p) 

Residence Time (s 
to 1 d.p) 

Uncertainty in Measure 

±0.00001 ±1 ±0.5 ±0.00005 ±0.00005 ±0.005 ±0.000005 ±0.005 

0.0102 242 20 1000.3 977.5 24.23 0.0096 69.0 

0.0102 242 55 1000.1 978.7 22.29 0.0080 72.2 

0.0102 242 90 1000.1 967.6 13.85 0.0081 72.1 

0.0102 309 55 1000.0 955.2 15.37 0.0074 73.6 

0.0102 175 55 1000.2 948.8 17.11 0.0084 71.8 

0.0140 282 20 1000.4 933.1 17.93 0.0084 71.8 

0.0140 282 90 1000.5 949.7 28.28 0.0060 85.8 

0.0140 202 20 1000.4 953.8 27.60 0.0062 83.4 

0.0140 202 90 1000.3 970.1 27.60 0.0051 89.2 

0.0167 242 55 1000.2 967.6 17.17 0.0067 78.6 

0.0036 242 55 1000.3 985.1 16.72 0.0036 58.5 

0.0063 282 20 1000.4 974.0 41.28 0.0036 58.5 

0.0063 282 90 1000.4 974.0 41.28 0.0036 58.5 

0.0063 202 20 1000.3 993.4 42.60 0.0062 63.3 

0.0063 202 90 1000.3 1061.1 18.29 0.0060 51.5 
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Feed Rate (kg 
s-1) 

Mill Speed 
(rpm) 

Classifier 
Vane Angle 

(o) 

D bar 
(µm) 

Sigma D 
bar (µm) 

d’ (µm) n             
(- to 2 d.p) 

SGN 
(- to 0 
d.p) 

Dgm (µm) Sgmw 
(µm 
to 2 
d.p) 

Sgml 
(µm 
to 2 
d.p) 

Sgmh (µm 
to 2 d.p) 

Sgmp (µm 
to 2 d-p) 

Uncertainty in Measure 

±0.00001 ±1 ±0.5 ±0.5 ±0.5 ±0.5 ±0.00005 - ±0.5 - - - - 

0.0102 242 20 832 604 910 1.39 70 602 2.36 2.71 1.99 2.32 

0.0102 242 55 911 678 983 1.43 75 660 2.30 2.54 2.06 2.29 

0.0102 242 90 895 655 968 1.46 75 657 2.22 2.49 2.02 2.24 

0.0102 309 55 830 612 897 1.45 70 610 2.22 2.59 1.98 2.26 

0.0102 175 55 787 598 846 1.39 66 567 2.36 2.73 2.02 2.35 

0.0140 282 20 724 583 769 1.29 59 503 2.58 2.94 2.11 2.49 

0.0140 282 90 747 621 784 1.31 59 518 2.55 2.86 2.14 2.47 

0.0140 202 20 752 621 791 1.29 60 519 2.59 2.94 2.14 2.50 

0.0140 202 90 827 636 879 1.45 68 604 2.26 2.64 2.02 2.30 

0.0167 242 55 881 626 948 1.56 74 671 2.04 2.46 1.96 2.19 

0.0036 242 55 877 615 949 1.55 74 667 2.08 2.53 1.96 2.21 

0.0063 282 20 864 628 942 1.38 73 628 2.42 2.91 2.02 2.42 

0.0063 282 90 883 631 966 1.40 75 648 2.41 2.90 2.01 2.40 

0.0063 202 20 903 627 990 1.49 77 679 2.17 2.63 1.96 2.26 

0.0063 202 90 917 626 1001 1.59 79 705 1.97 2.34 1.92 2.12 
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Feed Rate (kg s-1) 
Mill Speed 

(rpm) 

Classifier 
Vane Angle 

(o) 

d5 
(µm) 

d10 
(µm) 

d16 
(µm) 

d25 
(µm) 

d30 
(µm) 

d50 
(µm) 

d60 
(µm) 

d75 
(µm) 

d84 
(µm) 

d90 
(µm) 

d95 
(µm) 

d99 
(µm) 

Uncertainty in Measure 

±0.00001 ±1 ±0.5 ±0.5 ±0.5 ±0.5 ±0.5 ±0.5 ±0.5 ±0.5 ±0.5 ±0.5 ±0.5 ±0.5 ±0.5 

0.0102 242 20 104 177 259 377 441 700 848 1131 1402 1675 2068 2695 

0.0102 242 55 122 201 292 413 479 742 905 1215 1532 1864 2372 2979 

0.0102 242 90 127 205 296 417 481 737 895 1191 1492 1804 2277 2971 

0.0102 309 55 119 189 271 384 444 691 835 1105 1370 1658 2100 2846 

0.0102 175 55 105 169 242 349 407 651 793 1058 1310 1569 1982 2876 

0.0140 282 20 87 139 198 291 345 583 722 989 1227 1482 1897 2763 

0.0140 282 90 93 147 207 301 354 588 729 1004 1256 1538 1989 3060 

0.0140 202 20 91 144 204 299 354 595 736 1014 1267 1566 2010 3011 

0.0140 202 90 130 196 266 371 430 675 814 1088 1355 1660 2111 3156 

0.0167 242 55 165 239 315 422 484 734 879 1166 1428 1716 2154 3037 

0.0036 242 55 163 235 312 420 481 737 882 1163 1434 1711 2123 2917 

0.0063 282 20 126 191 266 383 450 724 879 1177 1457 1739 2139 2830 

0.0063 282 90 133 202 279 401 472 746 902 1207 1483 1762 2166 2869 

0.0063 202 20 149 225 307 432 502 767 920 1227 1496 1773 2170 2885 

0.0063 202 90 165 249 338 460 524 779 925 1229 1494 1769 2166 3003 

 

 

 



 

LVI 
 

Feed Rate 
(kg s-1) 

Mill 
Speed 
(rpm) 

Classifier 
Vane 

Angle (o) 

RSV 
(- to 

2 d.p) 

UI   
(- to 

2 d.p)  

CU    
(- to 2 
d.p) 

Cg    
(- to 2 
d.p) 

KI        
(- to 2 
d.p) 

Kg      
(- to 2 
d.p) 

psi c     
(- to 2 
d.p) 

psi AR 
(- to 2 
d.p) 

psi op   
(- to 2 
d.p) 

psi R    
(- to 2 
d.p) 

psi symm 
(- to 2 
d.p) 

Uncertainty in Measure 

±0.00001 ±1 ±0.5 - - - - - - - - - - - 

0.0102 242 20 2.13 5.95 4.80 1.30 0.30 1.06 0.39 0.51 0.59 0.04 0.73 

0.0102 242 55 2.24 6.35 4.52 1.27 0.36 1.15 0.43 0.50 0.56 0.06 0.75 

0.0102 242 90 2.17 6.93 4.38 1.26 0.35 1.14 0.43 0.50 0.56 0.06 0.75 

0.0102 309 55 2.13 7.00 4.47 1.25 0.33 1.12 0.42 0.50 0.56 0.05 0.74 

0.0102 175 55 2.16 6.47 4.78 1.24 0.33 1.09 0.41 0.50 0.56 0.05 0.74 

0.0140 282 20 2.31 5.63 5.19 1.18 0.35 1.06 0.40 0.49 0.52 0.04 0.73 

0.0140 282 90 2.37 5.83 5.00 1.17 0.38 1.10 0.39 0.49 0.52 0.04 0.72 

0.0140 202 20 2.39 5.70 5.16 1.18 0.37 1.10 0.39 0.50 0.53 0.03 0.72 

0.0140 202 90 2.19 7.67 4.46 1.19 0.35 1.13 0.41 0.50 0.53 0.04 0.73 

0.0167 242 55 2.04 9.27 4.03 1.15 0.34 1.10 0.44 0.49 0.47 0.04 0.75 

0.0036 242 55 2.03 9.17 4.21 1.16 0.33 1.08 0.44 0.49 0.47 0.04 0.75 

0.0063 282 20 2.16 6.93 5.17 1.27 0.32 1.04 0.43 0.50 0.52 0.05 0.75 

0.0063 282 90 2.13 7.07 5.13 1.29 0.31 1.03 0.44 0.50 0.53 0.05 0.75 

0.0063 202 20 2.04 7.97 4.49 1.27 0.31 1.04 0.45 0.50 0.52 0.06 0.76 

0.0063 202 90 1.97 8.87 3.83 1.21 0.31 1.07 0.44 0.49 0.51 0.06 0.76 

 



 

LVII 
 

Material Variation Experiments 

Material 
Input mass 

(kg to 1 
d.p) 

Output 
mass (kg 
to 1 d.p) 

Specific 
Effective 
Energy 

(kWh t-1 to 
2 d.p) 

Output Rate 
(kg s-1 to 4 

d.p) 

Residence 
Time (s 
to 1 d.p) 

Uncertainty in Measure 

 ±0.00005 ±0.00005 ±0.005 ±0.000005 ±0.005 

Eucalyptus 1001 970 12.09 0.007 72 

Microwave Torrefied 1000 1003 6.66 0.008 56 

Miscanthus 1000 995 8.70 0.011 73 

 

 

Material 

D bar 
(µm) 

Sigma D 
bar (µm) 

d’ (µm) n             
(- to 2 d.p) 

SGN    
(- to 0 
d.p) 

Dgm 
(µm) 

Sgmw  
(µm to 2 

d.p) 

Sgml   
(µm to 2 

d.p) 

Sgmh  
(µm to 2 

d.p) 

Sgmp  
(µm to 2 

d-p) 

Uncertainty in Measure 

 ±0.5 ±0.5 ±0.5 ±0.00005 - ±0.5 - - - - 

Eucalyptus 706 517 759 1.50 58 528 2.06 2.40 2.02 2.21 

Microwave Torrefied 310 215 333 1.73 26 243 1.91 2.11 1.86 1.98 

Miscanthus 989 689 1079 1.53 83 753 1.95 2.34 2.01 2.17 

Material d5 (µm) d10 (µm) d16 (µm) d25 (µm) d30 (µm) d50 (µm) d60 (µm) d75 (µm) d84 (µm) d90 (µm) d95 (µm) d99 (µm) 

Uncertainty in Measure 



 

LVIII 
 

 - - - - - - - - - - - - 

Eucalyptus 121 180 241 327 377 578 698 943 1169 1403 1755 2455 

Microwave Torrefied 72 97 124 160 179 261 309 403 486 576 709 1069 

Miscanthus 174 260 350 474 539 822 995 1350 1653 1955 2356 3197 

 

   

Material RSV (-) UI (-) CU (-) Cg (-) KI (-) Kg (-) psi c (-) 
psi AR 

(-) 
psi op (-) psi R (-) 

psi symm 
(-) 

Uncertainty in Measure 

 - - - - - - - - - - - 

Eucalyptus 2.12 8.27 3.88 1.13 0.36 1.09 0.50 0.49 0.42 0.04 0.77 

Microwave 
Torrefied 1.84 12.33 3.18 1.07 0.33 1.07 0.64 0.50 0.42 0.11 0.81 

Miscanthus 2.07 8.67 3.82 1.12 0.34 1.02 0.42 0.42 0.36 0.05 0.73 
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