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Abstract—Citizen Science is coming to the forefront of scientific
research as a valuable method for large-scale processing of data.
New technologies in fields such as astronomy or bio-sciences
generate tons of data, for which a thorough expert analysis
is no longer feasible. In contrast, communities of volunteers
coordinated by the Internet are showing a great potential in
completing such analysis in a reasonable time. However, this
approach brings uncertainty and the spread of biases within the
data, since amateur participants are usually non-experts on the
subject and count with variable skills and expertise. This means
lack of accuracy in results coming from Citizen Science projects.

This work presents a novel approach to handle uncertainty in
Citizen Science. We focus on leveraging this uncertainty in the
data pursuing a refinement of results. We distinguish between
two types of uncertainty: a first one due to the lack of consensus
between amateurs, and another one quantified by amateurs
themselves during the course of the project. We test our method
using the Galaxy Zoo, a project which aims for the labelling of
a huge dataset of galaxy images. Considering available expert
classifications to validate our experiments, the proposed method
is able to improve current accuracy and classify a greater number
of images.

I. INTRODUCTION

In these days, connectivity among people all around the
globe is boosting the emergence of a great potential for
tackling complex problems. Whereas in some cases this com-
plexity restricts the problem analysis to a set of experts, for
many others a novel approach is leveraging tiny efforts from a
huge amount of amateur people. We refer to Citizen Science
as the development of scientific research assisted by volunteers
from the general public [1]. Within a crowdsourcing context,
this practice is flourishing as a promising tool for problems that
entail the processing of huge volumes of data in the form of
high time-consuming tasks such as labelling of images, gath-
ering of environmental records, or transcription of handwritten
texts. In particular, the nascent discipline of astroinformatics
[2] is benefitting from the analysis of astronomical data in
multiple projects. However, Citizen Science outreach goes
beyond that particular application, covering problems in many
other fields such as ecology or bioinformatics [3].

Citizen Science has also been attracting the attention of data
science research along the past decade. From a practical point
of view, amateurs engaged in a Citizen Science project can
be regarded as a massive set of imperfect classifiers. Several

studies have reported the use of amateur-labelled data obtained
after the project closure, using an off-line approach. Most of
them have focused on the performance of Machine Learning
(ML) algorithms using this data [4], [5]. Recently, ML appli-
cations have also been implemented for the optimisation of
Citizen Science on-line platforms [6]. In this work, however,
we are focusing on an off-line approach, that is, the mining
of the Citizen Science data in order to improve the accuracy
reached by amateurs on themselves.

Despite all of this, Citizen Science arouses scepticism
within the scientific community [7]. Although it enables data
analysis at scales not possible to accomplish by professional
researchers on their own, the practice is not universally ac-
cepted as a valid method for scientific research [8]. The main
concern is the quality of the results, commonly questioned
because of the prevalence of biases and lack of accuracy [9].
Volunteers do not generally count with any background in
sciences or research, and depending on the difficulty of the
task and their expertise, amateur classifications broadly vary
in their level of confidence. Consequently, Citizen Science
data holds an intrinsic uncertainty, which can be alleviated
with appropriate analyses and the aid of expert knowledge
about the problem addressed in each case. In this work, we
begin to explore the use of fuzzy logic along with the help of
expert knowledge in order to embrace the uncertainty within
the Citizen Science data.

To date, fuzzy logic has provided good results for the
encapsulation of expert knowledge in several domains. Dif-
ferent works address this issue in the frame of Multi-criteria
Decision Making and Multi-expert Decision Making, when
there is available a set of choices and a variable range of
expert judgements [10], [11]. Nonetheless, to the best of our
knowledge, these approaches have not been applied to amateur
knowledge in Citizen Science projects. Unlike in Multi-expert
Decision Making, Citizen Science involves vast amounts of
data annotated by a great number of non-experts on the subject.

In this paper, we propose an integrated use of data labelled
by amateurs in the course of a Citizen Science project. We
aim to provide a framework to handle uncertainty in the data
resulting from Citizen Science projects that maximises the
potential utility of Citizen Science outcomes for research. In
our experiments, we will focus on the first edition of the



Galaxy Zoo (GZ1) project [12], as the very first successful
implementation of Citizen Science using the Internet. GZ1
came up with morphological classifications for nearly a million
galaxies with the support of more than 200,000 amateur
participants. The proposed approach presents an innovative
refinement of the data by leveraging the inherent uncertainty
when multiple independent non-expert judgements come into
play. As a result, it is able to provide better classifications for
a greater number of galaxies, improving the results previously
obtained by professional astronomers. This is tested using
available expert classifications on a subset of the same images.

The paper is structured as follows. In Section II, we
introduce the background needed for the understanding of
the paper. In Section III we present our approach for the
refinement of Citizen Science data. Section IV presents the
whole experimental setting along with the discussion of re-
sults. Finally, in Section V we draw some conclusions and
outline possible directions for future work.

II. BACKGROUND

In this section, we extend the two main topics addressed
in the paper. First, we explain in more detail several aspects
involved in the development of Citizen Science projects and
review current trends in the specialised literature (Subsection
II-A). After this, we examine fuzzy logic as a promising
resource for research in the improvement of Citizen Science
data (Subsection II-B).

A. Citizen Science: A quick overview

Citizen Science is not a new practice. It is rooted more than
a century ago, when amateurs started making small contribu-
tions to the study of meteorology and ornithology with their
records. However, global communications have broadened the
different ways volunteers can aid today’s research, and Citizen
Science is being re-discovered by the scientific community.
Thousands of projects are engaging tons of individuals through
the Internet in collecting and/or analysing scientific data, with
support from multiple institutions from research and academia.
Among them, the Zooniverse1 project stands out as one of
the main platforms for the development and management of
Citizen Science projects. Currently, Zooniverse has more than
a million participants all over the world, engaged in more than
60 projects in topics such as space sciences, ecology, medicine
and the humanities [13]. All these efforts have led to the
publication of more than 250 scholarly articles2, validating the
help of Citizen Science as meaningful resource for research.

When a project is released, volunteers are invited to com-
plete a particular task, carrying out genuine data analysis
(Figure 1). This has traditionally involved the classification of
large collections of images related to some research problem.
Firstly, participants are normally taught to perform the required
task via a simple guide or tutorial. After this, they are

1http://www.zooniverse.org
2A complete list of publications can be found at http://www.zooniverse.org/

publications.

Fig. 1: General view of the Citizen Science workflow.

asked to classify the images, which are randomly displayed.
Participants must then choose between a set of categories, by
clicking on the web. These categories often include a set of
main classes, usually two or three, which are the target of
the classification problem. In addition, users are offered other
secondary categories. One of these, the Don’t Know (DK)
category, constitutes a first order measure of the uncertainty in
the classification of that particular image. This option ensures
every time an object is shown it obtains a vote from the
participant.

Several works have tackled Citizen Science as a phe-
nomenon, focusing on the main concerns this approach
presents to real research [1], [8], [14]. These studies analyse
the potential in the crowd, as a valuable resource for research
that should not be neglected by scientific community. This
depends on the development of adequate tools for fighting
against two main issues brought up by scientists: lack of
accuracy and proliferation of biases within Citizen Science
results [9]. To this aim, the validation of Citizen Science data
is a core aspect that has also been addressed [15].

Data science research applied to Citizen Science has mainly
been centred in the use of the resulting data. Off-line ap-
proaches offer the possibility of mining the whole datasets,
along with additional information regarding participants’ per-
formance, expert knowledge on the problem, and other related
statistics about the running of the project. Several works have
followed the replication of amateur classification skills by
using ML algorithms in off-line approaches. It has been shown
how ML classifiers are able to achieve comparable results
to those obtained by amateurs on themselves, when these
algorithms are trained with Citizen Science data [4], [5], [16].
On-line approaches have been recently developed as well,
aiming for the best interaction between humans and machines
through the running of Citizen Science projects [17]. These
approaches pursue to optimise the running of the project. This
is targeted using ML systems that enable a progressive train
of participants and a synergy between amateur classifications,
expert opinions, and automated classifiers [6].



B. Fuzzy logic for decision making: A promising resource for
Citizen Science

Fuzzy logic deals with uncertainty in decision problems.
This is covered by a set of subjects that face the multiple forms
this uncertainty arises, depending on the nature of the problem,
and number and quality of decision makers. Eventually, an
aggregation method is required in order to combine individual
preferences or criteria into a final decision, which is expected
to take into consideration all individual contributions. Two of
the main decision making paradigms in fuzzy logic are Multi-
criteria Decision Making (MCDM) and Multi-expert Decision
Making (MEDM) [10], [18].

In MCDM we are concerned with finding the most adequate
choice when a set of predetermined alternatives is available.
A major issue with this kind of approach, however, is that
decision makers exhibit variations in their judgements. This
has been addressed via different applications, and consider-
ing Type-1 or Type-2 fuzzy sets [11]. In contrast, MEDM
problems tackle the encapsulation of expert knowledge, when
the set of experts exhibits variation in the decision-making
context. This problem has been thoroughly studied in medical
domains, when linguistic terms may have different meanings
for different experts, and their interpretations may also vary
depending on the environmental conditions or over time [10].

Research on these problems represents a valuable resource
for the improvement of Citizen Science outcomes. Most of
the time, amateur participants face MCDM settings depending
on the nature of the classification problem proposed. Addi-
tionally, MEDM approaches establish a proper context for the
aggregation of available expert knowledge to enhance amateur
classifications. Given this, here we consider the potential of
these fuzzy logic domains and lay out a preliminary study on
the use of uncertainty within amateur-labelled data.

III. A FUZZY APPROACH FOR CITIZEN SCIENCE

In this section we present our approach for handling the
uncertainty spread within the data collected in a Citizen
Science project. Hence, this is an off-line approach, as we take
the whole data obtained once the project has finished collecting
votes. We first introduce some basic notation for a clear
explanation of the method. After this, we present two types of
uncertainty proposed for the refinement of classifications using
amateur votes. Finally, we illustrate the approach considering
a binary classification problem as example.

Once the count of the amateur votes has finished, votes are
usually converted into scores by dividing the votes in each
category by the total number of votes received by the object.
Hence, being N = (n1, n2, ..., n|N |) the vote vector, with |N |
the number of categories in the problem, we get the score
vector X = (x1, x2, ..., x|N |) by computing xi = ni

M , with
M =

∑
ni and i ∈ {1, 2, ..., |N |}. Traditionally, the set of

score vectors has been employed to compute final classifica-
tions applying a threshold over the scores: the category which
score is greater or equal than the threshold is assigned to
the object. The advantage of this procedure is that we can

adjust the confidence in the labels. However, the selection
of the threshold is completely arbitrary, and all objects that
do not reach the threshold are thus labelled as uncertain.
This makes the classification ineffective as we require more
accurate results: the higher the threshold is, the larger is the
set of uncertain objects.

The main issue concerning the use of Citizen Science data
lies in the pervasive uncertainty when a group of people
has provided classifications about the same object. Moreover,
there is an additional variability in the total number of votes
received, M . Amateur judgements are not expected to agree,
and final labels thus depend on how this disparity is tackled.
The final aim of the method proposed here is to refine these
classifications by leveraging this lack of consensus among
Citizen Science participants. Our approach improves these
classifications in two ways: on the one hand, accuracy is
boosted with respect to the benchmark obtained by experts
on the problem. On the other hand, it provides classifications
for many objects relegated as uncertain so far.

We consider two types of uncertainty:

• In the first instance, we refer to inherent uncertainty (IU)
as the uncertainty in the classification due to inherent
variation in amateurs’ judgements. As it is explained
above (Section II), each amateur performs a vote (click)
according to his/her opinion about the object displayed
in the website at the time. Amateurs vote on their own
and, consequently, the final outcome consists of a record
of the clicks counted in each category. Depending on the
spread of this count of votes, we can say that the object
being classified holds more or less IU. Ideally, an object
with all votes grouped in one category holds the least
possible IU. Conversely, an object with the votes equally
split across all categories means the highest IU.

• Different than the IU, we refer to measured uncertainty
(MU) as the uncertainty determined itself by amateurs
every time they vote the object by clicking on the DK
category. Citizen Science projects that tackle classifica-
tion problems typically have such category. These votes
represent a direct measure of the uncertainty in the
classification of the object, and it is independent of the
spread in the count of votes measured by IU. As a result,
an object with zero DK votes holds the least possible MU.
In contrast, an object with all its votes in such category
shows the greatest MU possible.

Our model takes as input the whole set of scores as well
as the count of votes, that is, X and N vectors for each
object in the dataset. Through our experiments, we also apply
a threshold in order to obtain final classifications. However,
we consider both IU and MU to insert modifications into the
scores and end up classifying more objects. These modifica-
tions are developed in two main stages, as follows.

The first stage aims to remove the noise due to secondary
categories, so that the application of a threshold does not
consider the minority classes and DK votes. It tackles the IU



by a usual normalisation of the main scores. For instance, in
a binary classification problem, let X = (x1, x2) be the score
vector containing the two main scores, the normalised score
vector Z = (z1, z2) is calculated as shown in Equation 1.

zi =
xi∑
xi
, for i ∈ {1, 2} (1)

This normalisation assures that z1 + z2 = 1, amending the
vagueness induced by DK votes and other secondary cate-
gories that might lower the main scores. This mostly occurs
in undefined objects with many DK votes and prone to be
annotated as uncertain.

The second stage aims to aggregate the information con-
tained in the DK votes. It thus tackles the MU by introducing
a shift in the previous normalised score vector Z (Equation
1). This shift is computed using the DK votes owned by the
object, nDK , which is weighted using the mean of DK votes
across the whole set of examples, µDK . These two measures
are combined as shown in Equation 2, using two additional
parameters, α and β, to be adjusted empirically using the
original scores.

ε =
α · µDK

β + nDK
(2)

The shift (ε) is aggregated to the normalised scores so that the
normalisation is preserved, that is, they remain adding the unit.
Considering again a binary classification problem, with Z =
(z1, z2) the normalised score vector obtained from Equation
1, the new shifted score vector W = (w1, w2) is calculated
as indicated in Equation 3, with ε obtained in Equation 2.{

w1 = z1 + ε
w2 = z2 − ε

(3)

The novelty of this approach lies in two aspects. Firstly, the
normalisation of the scores (Equation 1) turns fuzzy the uncer-
tainty in the classification due to lack of agreement between
amateurs. One object with X = (1, 0) or X = (0, 1) exhibits
the greatest confidence in belonging to classes represented by
x1 or x2 scores, respectively. On the contrary, objects with
X = (0.5, 0.5) show the least confidence and greatest IU.
Secondly, the consideration of MU allows for an aggregation
of information about the uncertainty in the classification held
in DK votes, by modifying the original scores (Equations 2 and
3). In this case, one object with xDK = 1.0 holds the greatest
possible MU, higher as nDK takes larger values. Conversely,
objects with xDK = 0.0 present zero MU.

IV. CASE STUDY

In this section we present the case study chosen for the
testing of our proposal: the first edition of the Galaxy Zoo
(GZ1) project. We firstly present the specific features of GZ1
(Subsection IV-A), concerning the running of the project and
available data. Then, we introduce two experts catalogues that
allow for the evaluation of both amateur classifications and the
proposed approach (Subsection IV-B). After this, we explain

Fig. 2: View of GZ1 classification scheme, with the six categories
used in the project: Spiral (three sub-categories at the top), Elliptical
(middle), Star / Don’t Know (bottom left), and Merger (bottom right).

the experiments carried out to test our method (Subsection
IV-C). Finally, we summarise and discuss the obtained results
(Subsection IV-D).

A. Galaxy Zoo

The GZ1 project, launched in July 2007, brought the
morphological classification of galaxies to a great number
of amateurs engaged in making a significant contribution to
the astrophysical research [16]. An application was made
available on-line3, and registered participants were able to
classify galaxy images taken from the Sloan Digital Sky
Survey4, one of the main collections of astronomical images
compiled to date. The project concentrated all efforts in
helping astronomers disentangle the bimodality observed in
galaxy morphologies, which divides the population between
elliptical and spiral galaxies. The launch of the project was
very successful, and after a period of six months over 100,000
volunteers had completed more than 40 million classifications
for a sample of nearly 900,000 galaxy images [12].

In this project people were asked to classify galaxies
into one of six categories: Elliptical, Clockwise Spiral, Anti-
clockwise Spiral, Edge-on Spiral, Star / Don’t Know and
Merger, paying special attention to Elliptical and Spiral as the
two main classes (Figure 2). Colour images of 423x423 pixels
were shown to amateur participants, setting a universal image
scaling for all objects in order to ensure that all classifications
were made on a similar basis. Each galaxy ended up with a
mean number of ∼38 independent classifications (votes), with
a standard deviation of ∼14 votes. This data was conveniently
analysed by a team of experts to evaluate the influence of
different biases in the classification. This analysis resulted in
a study completed by Bamford et al. [19] which developed a
correction of the scores in favour of elliptical classifications.
This debiasing of the scores was intended to prevent blurred

3The original GZ1 portal is maintained at http://zoo1.galaxyzoo.org.
4http://www.sdss.org



images of spiral galaxies to be classified as elliptical, for which
the three spiral sub-types were added in a combined spiral
score, which we will refer to as Spiral score from now on.

After the project had finished collecting votes in 2009, the
GZ1 data was compiled in a set of csv files that was made
publicly available5. These csv files contain the ID of the galaxy
in the SDSS database, its location in the sky, total number of
votes for the galaxy, original scores for all categories, and debi-
ased scores for the two main categories: Elliptical and Spiral.
Furthermore, there are classifications computed by the team
of experts, using the debiased scores. These classifications,
the so-called GZ1 flags, were computed applying a threshold
of 0.8 over the debiased scores. This means that any galaxy
with Elliptical or Spiral debiased score equal or greater than
0.8 were labelled as being elliptical or spiral, respectively, and
uncertain in any other case. However, the debiasing needed an
additional parameter6 for its implementation, which was not
available for the whole GZ1 dataset. As a result, the debiasing
and GZ1 flags were only computed for a subset consisting of
667,944 galaxies, which we will refer to as GZ1 subset from
now on.

B. Expert validation

Two expert catalogues were originally used by the GZ1
team in order to evaluate amateurs’ performance [12]. On
the one hand, the MOSES expert catalogue [20] contains
16,516 galaxies included in the GZ1 subset, and classified by
professional astronomers as elliptical. On the other, the Longo
expert catalogue [21] agglutinates 25,190 galaxies labelled
as spiral by another set of experts and included in the GZ1
subset as well. Nonetheless, it is remarkable that there is an
overlapping between both expert catalogues. This concerns
141 galaxies, which are removed for the consistency of results.
After this correction, we consider the joint expert catalogue,
which is composed of 41,424 galaxies from the GZ1 subset.
We refer to this sample as validation subset. This subset plays
a fundamental role as the available expert knowledge about
the GZ1 project. It allows us to perform an expert validation
as a ground truth needed for the testing of the experiments.

In what follows, we use two metrics for the validation of
results: Accuracy (Acc) and Rejection Rate (RR). Acc tells
about the proportion of proper classifications with respect
to the total number of classified objects. The RR, instead,
is computed taking the proportion of non-classified objects
(uncertain) with respect to the sample size. Considering both
measures, the validation subset permits an evaluation of GZ1
flags (Table I), which provides a benchmark for subsequent
trials (Table II).

This form of expert validation implies the consideration of
GZ1 classifications as a binary classification problem, with
Elliptical and Spiral regarded as negative and positive classes,
respectively. Under this view, Merger and Star / Don’t Know

5http://data.galaxyzoo.org
6This is the redshift, a fundamental measure in astrophysics that works as

an indicator of the distance to the galaxy.

MOSES Longo Joint
Present in GZ1 subset 16,375 25,049 41,424
Correctly flagged 4,181 20,385 24,566
Incorrectly flagged 1,040 26 1,066
Flagged as uncertain 11,154 4,638 15,792

TABLE I: Expert validation of GZ flags using MOSES (second
column) and Longo (third column) expert catalogues separately
and the joint catalogue (fourth column), after removing the 141
overlapped galaxies.

Accuracy 0.9584
Rejection Rate 0.3812

TABLE II: Evaluation of GZ1 flags, using the joint expert catalogue
over the validation subset.

categories are considered as secondary classes that, in fact, do
not count with any form of expert validation. However, our
approach aims to improve final classifications by leveraging
information contained in DK votes.

C. Experimental setting

We carry out two sets of experiments to test the adequacy
of our proposed method. In the first set, we check the use of
the IU to improve final classifications obtained from amateur
votes, previously named as vote vector N. To this aim, we
firstly calculate the normalised score vector Z for each galaxy
in the validation subset as shown in Equation 1. In GZ1,
Elliptical and Spiral7 categories constitute the main classes,
covering the greatest part of the votes; Merger category works
as the rare class, and Star / Don’t Know category (DK votes)
accounts for the MU.

After a normalisation of the debiased scores, we apply a
series of thresholds in order to obtain final classifications:
galaxies with Elliptical or Spiral normalised score greater or
equal than the threshold are labelled as being elliptical or
spiral, respectively. In any other case, the galaxy is annotated
as uncertain and counts as not classified. We apply a set
of thresholds over the scores, from 0.5 to 1.0 using 0.1
steps ([0.5-1.0]). With these cuts, we can check the trade-off
between Acc and RR measures as we make more stringent the
confidence over the data, that is, as we diminish the IU across
the examples.

Figure 3 summarises the results of the first trial. We use
the joint expert catalogue (Table I) to validate the results and
calculate the Acc-RR measures. Each threshold in the [0.5-
1.0] interval produces one Acc-RR point in the chart. We also
evaluate the debiased scores before the normalisation in order
to visualise the improvement provided by the normalisation of
the scores. The set of points is presented in Table III as well.

The second set of experiments implements the use of MU.
Before presenting the new trial with the shifted scores, we
firstly explore the spread of MU within the validation subset.
The mean number of DK votes is nDK = 1.13, with a standard
deviation of σDK = 1.83. The greatest DK value within the

7Recall that we are referring to Spiral as the aggregation of original
Clockwise, Anti-clockwise and Edge-on categories.
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Fig. 3: Test using IU: the chart shows Acc-RR points generated
by the application of [0.5-1.0] thresholds, from left to right, over
debiased (blue squares) and normalised (red dots) scores. We use the
joint expert catalogue as ground truth to validate the classifications.

Debiased Normalised
Threshold Acc RR Acc RR

1.0 0.9986 0.8638 0.9974 0.7618
0.9 0.9938 0.5255 0.9921 0.3858
0.8 0.9863 0.3316 0.9826 0.2195
0.7 0.9757 0.2041 0.9706 0.1222
0.6 0.9626 0.1130 0.9556 0.0568
0.5 0.9434 0.0402 0.9350 0.0008

TABLE III: Set of Acc-RR points after the application of [0.5-
1.0] thresholds, over debiased (left columns) and normalised (right
columns) scores. We use the joint expert catalogue as ground truth
to validate the classifications.

validation subset is 35, and there are 21,374 galaxies for which
nDK = 0 and consequently MU is zero as well. However, the
spread of MU across the rest of the sample shows a continuous
distribution throughout the validation subset (Figure 4).

Now we take the normalised scores previously obtained in
the first trial and apply the shift presented in Equations 2 and
3, obtaining by this way the shifted score vector W for each
galaxy in the validation subset. In this case study, we adopt
the values α = −0.13 and β = 0.8 (Equation 2), which are
empirically found after running several tests with the original
scores. Once again, we apply the same series of thresholds
to get final classifications. As in the first trial, if the shifted
scores do not reach the threshold, the galaxy is labelled as
uncertain and counts as not classified.

Figure 5 presents the results of the second trial. As before,
the validation is carried out using the joint expert catalogue so
that each threshold in [0.5-1.0] generates one Acc-RR point in
the chart. This time, we include the debiased and normalised
scores along with the shifted scores. This set of points is also
presented in Table IV.
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Fig. 4: Distribution of DK votes across the validation subset in
logarithmic scale. The maximum value is 35, with nDK = 1.13
and σDK = 1.83.
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Fig. 5: Test using MU: the chart shows Acc-RR points generated
by the application of [0.5-1.0] thresholds, from left to right, over
debiased (blue squares), normalised (red dots), and shifted (green
triangles) scores. We use the joint expert catalogue as ground truth
to validate the classifications.

D. Discussion of results

Through the two sets of experiments, the new Acc-RR
points provided represent a better trade-off with respect to
those ones obtained from original scores. In the following, we
extract the most representative results from the two sets of
experiments, in accordance with the plots and tables showed
above:

• The IU test (Figure 3) shows an overall improvement
of the RR marks, considering Acc-RR points of equal
threshold. This tendency is easier to observe in the
tabulated values (Table III): RR measures obtained using
normalised scores systematically outperform those ones



Shifted
Threshold Acc RR

1.0 0.9967 0.7382
0.9 0.9911 0.3028
0.8 0.9885 0.2109
0.7 0.9800 0.1267
0.6 0.9655 0.0529
0.5 0.9461 0.0

TABLE IV: Set of Acc-RR points after the application of [0.5-1.0]
thresholds over shifted scores. We use the joint expert catalogue as
ground truth to validate the classifications.

using debiased scores. This difference reaches the maxi-
mum with a 0.9 threshold, improving the RR in nearly a
14%, this is, classifying around 5,800 galaxies previously
tagged as uncertain. The other great achievement is the
RR obtained with the 0.5 threshold: this cut is equivalent
to picking the greatest score. However, for 35 galaxies in
the validation subset X = Z = (0.5, 0.5), and IU takes
the maximum. This first stage is unable to disentangle
this disparity, which will be corrected using the MU
in the second stage. The Acc values get worse with
the normalisation of the scores, if we consider Acc-RR
points of equal threshold. These differences are bigger
as the threshold gets smaller. One possible explanation
can be that the relaxation of the threshold introduces
more noisy examples for which the IU outweighs amateur
votes, that is, the normalisation lowers the scores so that
both are too close to 0.5, and this turns random the final
classifications. This issue is partially improved with the
use of MU as well.

• The distribution of MU within the validation subset
(Figure 4) calls for an employment of this information
obtained from amateurs’ clicks and never taken into
consideration before. The wide variability throughout
the data along with the fact that more than 48% of
the galaxies hold DK votes, clearly indicate that the
consideration of MU is able to boost final classifications,
as it is effectively shown through the second set of
experiments.

• The MU test (Figure 5), in contrast, outperforms both RR
and Acc marks obtained with debiased and normalised
scores for 0.5, 0.6, 0.7 and 0.8 thresholds. These marks
represent the best trade-off in Acc-RR measures provided
by the proposed approach. Nonetheless, the Acc-RR
points for 0.9 and 1.0 thresholds do not obtain better
marks with respect to the debiased and normalised scores.
These results may indicate a worse behaviour of the
approach as the IU diminishes, that is, with examples
that hold a great consensus.

V. CONCLUSIONS AND FURTHER WORK

In this paper, we have proposed a novel fuzzy-based use of
widespread uncertainty within Citizen Science data. Its main
achievement is to handle two different types of uncertainty

prevalent to this sort of data: the first one is the so-called
inherent uncertainty, and it is due to the lack of consensus
across Citizen Science participants; the second one is referred
to as measured uncertainty, and it is included within the set of
amateur votes itself. Using these two measures, our method
provides new score vectors that have shown a considerably
improvement in final classifications. To test our approach, we
have taken a representative project as case study: the Galaxy
Zoo. Two sets of experiments addressing the two types of
uncertainty, respectively, have demonstrated that the proposed
approach is able to enhance the accuracy and rejection rate
measures in classifications obtained by the application of a set
of thresholds. This means better classifications in accordance
with experts and a lower amount of uncertain galaxies.

As future work, we aim to extend this approach to other
scenarios involving classification problems with more than
two main classes. In such problems, the normalisation of the
score vectors must generate another vector accounting for the
inherent uncertainty, and not a single measure as occurs in
binary classification. Therefore, the shifting of these vectors
will entail more complex analyses. We also plan to study
the use of the new score vectors presented here as input to
a machine learning classifier. Finally, we aim to study the
potential of traditional fuzzy approaches for the addition of
information regarding either experts’ or amateurs’ individual
performances.
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