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ABSTRACT

This thesis investigates stochastic optimal control problems with discrete delay and

those with both discrete and exponential moving average delays, using the stochastic

maximum principle, together with the methods of conjugate duality and dynamic

programming.

To obtain the stochastic maximum principle, we first extend the conjugate duality

method presented in [2, 44] to study a stochastic convex (primal) problem with discrete

delay. An expression for the corresponding dual problem, as well as the necessary and

sufficient conditions for optimality of both problems, are derived. The novelty of our

work is that, after reformulating a stochastic optimal control problem with delay as a

particular convex problem, the conditions for optimality of convex problems lead to

the stochastic maximum principle for the control problem. In particular, if the control

problem involves both the types of delay and is jump-free, the stochastic maximum

principle obtained in this thesis improves those obtained in [29, 30].

Adapting the technique used in [19, Chapter 3] to the stochastic context, we consider

a class of stochastic optimal control problems with delay where the value functions are

separable, i.e. can be expressed in terms of so-called auxiliary functions. The technique

enables us to obtain second-order partial differential equations, satisfied by the aux-

iliary functions, which we shall call auxiliary HJB equations. Also, the corresponding

verification theorem is obtained. If both the types of delay are involved, our auxiliary

HJB equations generalize the HJB equations obtained in [22, 23] and our verification

theorem improves the stochastic verification theorem there.
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CHAPTER 1

INTRODUCTION

There are many real-world problems providing applications for stochastic optimal

control formulations. Typically, the stochastic processes involved in these problems

are Markovian and are described by stochastic differential equations (SDEs) which

involve controls. Such processes and equations are referred to as state processes and

state systems respectively in the context of stochastic optimal control theory. Then, the

so-called Markovian optimal control problem in which the aim is either minimize a cost

function or maximize a performance function. Applications include the quadratic loss

minimization problem in portfolio optimization and the optimal production planning

problem in economics. See, for example, [26] and [45, Chapter 2].

The topic of the present thesis concerns an extension of Markovian optimal control

problems to allow for time-time (or time-lag) effects. More explicitly, the state processes

are no longer Markovian. In finance, for example, although the efficient-market hy-

pothesis states that current prices of assets reveal all the necessary information from

the market (see [16, Section 1.2]), investors often take the historical performance of

assets into consideration and use past information in modelling the wealth processes

of portfolios. There exists a way to deal with this circumstance by using stochastic

differential delay equations (SDDEs), instead of the classical ones, to describe the evo-

lution of processes. Consequently, the corresponding portfolio optimization problem

becomes a so-called stochastic optimal control problem with delay (see [5]).

In the theory of stochastic optimal control, Markovian optimal control problems can

be solved by using either the stochastic maximum principle or dynamic programming
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(see [45, Chapters 3 & 4]). Therefore, in the remainder of the present chapter, we first

review these two approaches for the Markovian case and then briefly introduce some

generalizations for stochastic optimal control problems with delay that motivate the

results obtained in this thesis.

Markovian Optimal Control Problems

The (sufficient) stochastic maximum principle for Markovian optimal control prob-

lems involves a so-called Hamiltonian (function) and an adjoint (stochastic differential)

equation together with certain convexity/concavity conditions (see [45, Section 3.3]).

From the viewpoint of the characterization of SDEs, the adjoint equation is a (controlled)

classical backward stochastic differential equation (BSDE) first studied by Pardoux

and Peng in [32] and further developed by Karoui, Peng, and Quenez in [18]. The

advantage of applying the stochastic maximum principle is that an optimal control

can be verified via the maximizer of the Hamiltonian along with the corresponding

solutions of the adjoint equation and the controlled SDE (see [21]). This stochastic

maximum principle generalizes the original one for deterministic delay-free optimal

control problems studied by Pontryagin in the 1950s. More recently, Pontryagin’s work

has been further extended to the cases including Lévy jumps and/or regime-switching

diffusions (see [9, 15, 46]).

In another direction, Bismut in [2] demonstrates that the conjugate duality method

plays an important role in the study of the stochastic maximum principle for Markovian

optimal control problems. More precisely, Bismut applies the concept of conjugate con-

vex functions, which is developed by Rockafellar in [34, 35, 37, 38] for the deterministic

case, to study Markovian convex (primal) problems in the calculus of variations. The

corresponding dual problems are introduced (see [2, Definition II-1]) and the necessary

and sufficient conditions for optimality of both the primal and dual problems are ob-

tained (see [2, Theorem IV-2]). Then, as presented in [2, Section 5], Bismut reformulates

a Markovian optimal control problem as a particular convex problem and furthermore

uses the conditions for optimality of the convex problem to obtain certain necessary

conditions for optimality of the control problem, where the corresponding Hamiltonian

and adjoint equation are involved (see [2, Theorem V-1]).
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Unlike the stochastic maximum principle described above, the foundation for

applying the dynamic programming method is to investigate a family of Markovian

optimal control problems parameterized with different initial times and states. This

approach solves all the control problems in that family rather than a particular one.

More precisely, the Bellman principle (or dynamic programming equation), together

with the Itô formula and certain smooth conditions, leads to a second-order partial

differential equation (PDE) satisfied by the value function of the control problem.

This PDE is called the Hamilton-Jacobi-Bellman (HJB) equation (see [45, Section 4.3]).

The advantage of applying dynamic programming is that an optimal control can be

constructed in terms of a solution of the HJB equation. Such a method for obtaining an

optimal control is referred to as the stochastic verification theorem (or technique) in the

context of dynamic programming (see [45, Section 5.5]). The original development of

dynamic programming for the corresponding deterministic delay-free optimal control

problem was developed by Bellman in the early 1950s. Generalizing the deterministic

situation, Kushner in [20] obtains the corresponding results in the context of continuous-

time diffusion. More recently, Azevedo, Pinheiro, and Weber in [1] study dynamic

programming for Markovian optimal control problems including Lévy jumps and

regime-switching diffusions.

Although the stochastic maximum principle and the dynamic programming de-

scribed above have been developed separately and independently, there is a connection

between these two approaches. More precisely, solutions of the adjoint equations can

be expressed in terms of certain derivatives of sufficiently smooth solutions of the

corresponding HJB equations along with the corresponding optimal controls and state

processes (see [2, page 402] and [45, Chapter 5]). More recently, this connection for the

Markovian optimal control problems including Lévy jumps and/or regime-switching

diffusions has been studied in [9, 15, 46].

In this thesis, we shall generalize both the stochastic maximum principle and

dynamic programming with the help of the conjugate duality method for stochastic

optimal control problems with delay.

Stochastic Optimal Control Problems with Delay
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Some progress has been made on generalizing both the stochastic maximum princi-

ple and dynamic programming for stochastic optimal control problems with delay. See,

for example, [5, 6, 22, 23, 29, 30]. In particular, the types of delay considered in these

papers are either just discrete delay or both discrete and exponential moving average

delays.

Chen and Wu in [6] establish a stochastic maximum principle for stochastic optimal

control problems with discrete delay. The corresponding Hamiltonian and adjoint

equation are introduced in [6, page 1077]. Unlike the Markovian case, the adjoint

equation is an anticipated (or time-advanced) BSDE first studied by Peng and Yang in

[33] (see also [30, Section 5]). However, Chen and Wu in [6] do not consider further the

cases with exponential moving average delay.

A stochastic maximum principle for a certain type of stochastic optimal control

problems with both discrete and exponential moving average delays is obtained in

[29, 30]. However, the corresponding Hamiltonian functions and adjoint equations

in these two papers are different. In the former, the adjoint equation is a triple of

classical BSDEs with a restriction that one of the BSDEs needs to be identically zero.

On the other hand, the adjoint equation in the latter paper is a single anticipated BSDE

together with a Hamiltonian differing from the one introduced in the former. Note

that, from the viewpoint of characterization of stochastic optimal control problems,

those with just discrete delay can obviously be regarded as a special case of those with

both discrete and exponential moving average delays. However, as the argument in

the proof of [29, Theorem 2.2] shows, the stochastic maximum principle presented

there cannot be adapted to a model that only involves a discrete delay. Note also that,

although the restriction in [29] mentioned above does not appear in [30], the stochastic

maximum principle obtained in [30, Theorem 3.1] is not capable of dealing with control

problems where the terminal cost depends on the terminal value of an exponential

moving average delay.

Note that all the results concerning stochastic maximum principles obtained in

[6, 29, 30] are proved essentially by the results and techniques of stochastic calculus.

However, although the Hamiltonian and the adjoint equation together play central
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roles in defining the stochastic maximum principle, the results obtained in [6, 29, 30] do

not offer any derivation for the corresponding expressions of Hamiltonian and adjoint

equation. On the other hand, as stated in [2], the expressions for the Hamiltonian and

the adjoint equation for Markovian optimal control problems can be derived by the

conjugate duality method. Therefore, it is worth mentioning that such a conjugate

duality method has been generalized by Tsoutsinos and Vinter to study a deterministic

convex problem with discrete delay in [44]. The corresponding dual problem and

the conditions for optimality are obtained (see [44, page 171 & Theorem 2.2]) which

allow the authors to solve some deterministic optimal control problems with discrete

delay. Nevertheless, to the best of our knowledge, the corresponding results in the

context of stochastic convex problems with discrete delay and the relationship to the

corresponding stochastic maximum principle, which will be studied in the present

thesis, are new.

Regarding dynamic programming, Larssen in [22] obtains Bellman’s principle

of optimality for stochastic optimal control problems with delay, where the value

functions may depend on the initial paths of the state processes in a complicated way.

As noted in [23, Section 1], this causes difficulties to use the Itô formula to obtain HJB

equations except for some special cases. For example, Larssen and Risebro in [23] (see

also [22, page 668]) consider a class of stochastic optimal control problems with both

discrete and exponential moving average delays, where the value functions depend on

a certain weighted average of the initial paths. In particular, this allows them to use

the Itô formula given in [22, Lemma 5.1] to obtain HJB equations. Unfortunately, using

these HJB equations in the corresponding stochastic verification theorem requires that

solutions of the HJB equations are independent of a secondary variable corresponding

to discrete delay in the models. Such a requirement is not always fulfilled even when a

model involves only an exponential moving average delay (see [22, Lemma 5.1]). Note

that the result of the connection between the stochastic maximum principle in [29] and

the method of dynamic programming in [23] has been obtained in [41].

As noted in [23, Lemma 3.2], the argument for deriving the HJB equation cannot

be adapted to a model that only involves a discrete delay. In fact, the derivation of
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the HJB equation in [23] depends on the nature of the exponential moving average

delay (see also [13, 22]). On the other hand, it is worth pointing out that Kolmanovskiı̌

and Shaı̌khet in [19, Chapter 3] investigate a class of deterministic control problem

with discrete delay by introducing an auxiliary function, which only depends on the

two boundary points of the initial path, together with certain conditions to facilitate

the characterization of the value function (see [19, Definition 3.1.1]). This technique

allows them to obtain a first-order PDE satisfied by the auxiliary function. However, to

the best of our knowledge, this technique has not been applied to the corresponding

stochastic case.

Structure and Main Results of the Thesis

To address the restrictions of [6, 22, 23, 29, 30] mentioned above, our main results

are presented in three chapters:

• Chapter 2 investigates the conjugate duality method for stochastic convex prob-

lems with discrete delay extending those studied in [2, 44].

• Chapter 3 uses the results for the conjugate duality method obtained in Chapter

2 to improve the stochastic maximum principle for stochastic optimal control

problems with discrete delay and those with both discrete and exponential mov-

ing average delays. Our stochastic maximum principles not only recover that

obtained in [6], but also extend those studied in [29, 30].

• Chapter 4 adapts the technique used in [19, Chapter 3] to obtain second-order

PDEs, which are called auxiliary HJB equations, for a class of control problems

studied in Chapter 3, where the value functions are separable. These results

extend those studied in [22, 23].

The main results of each chapter are summarized below and we refer readers to the first

section in each of these three chapters for the corresponding detailed literature reviews.

Note that we only investigate minimization problems in the following chapters. With a

minor modification, the arguments and results obtained in this thesis can be adapted for

maximization problems. We also provide some potential future directions in Chapter 5

based on our current works.
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In Chapter 2, we investigate stochastic convex (primal) problems with discrete delay

by extending the approaches in [2, 44] mentioned above to obtain the corresponding

dual problems and the necessary and sufficient conditions for optimality of both

primal and dual problems. Unlike the corresponding deterministic case studied in

[44], the ’time’ cannot be reversed in the stochastic context as noted in [24, Section 1.1].

To overcome this difficulty, we apply the techniques of conditional expectations in

the characterization of the stochastic processes in the corresponding dual problems

and then apply the martingale representation theorem to identify those processes as

solutions to certain BSDEs.

In Chapter 3, we reformulate stochastic optimal control problems with just discrete

delay and those with both discrete and exponential moving average delays as specific

stochastic convex problems with discrete delay investigated in Chapter 2. This allows

us to use one of those conditions for optimality to derive the corresponding stochastic

maximum principles. In particular, the derivation of the associated Hamiltonian

functions and adjoint equations are provided. Note that, if only discrete delay is

involved, our result on the stochastic maximum principle is similar to the one obtained

in [6, Theorem 3.2] when the control in [6] does not depend on a discrete delay. On

the other hand, if both discrete and exponential moving average delays are involved,

our adjoint equations are described by a pair of BSDEs one of which is an anticipated

BSDE and the other is a classical BSDE. As mentioned above, these adjoint equations

are different from those in [29, 30] although our Hamiltonian is similar to the one

introduced in [29]. More importantly, the restriction mentioned in [29] is eliminated

and the results in [30] are improved to allow the terminal cost to depend on the terminal

value of the exponential moving average delay when the model there is jump-free.

In Chapter 4, we investigate a class of the control problems studied in Chapter 3,

where the value functions are separable, by adapting the technique of [19, Chapter 3]

mentioned above to introduce the so-called auxiliary function. The novelty of this

technique is that it allows us to apply the Itô formula to obtain second-order PDEs

satisfied by the auxiliary functions. Note that, if the model only involves a discrete delay,

our PDEs play a similar role to that of the classical HJB equations in the verification
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theorem of dynamic programming for Markovian optimal control problems. Thus, we

refer these PDEs as auxiliary HJB equations. If the model involves both discrete and

exponential moving average delays, our results generalize those obtained in [22, 23]

and, more importantly, eliminates the restriction there noted above for some special

cases. Finally, Chapter 4 provides the connection between the dynamic programming

method involving the auxiliary HJB equation with the stochastic maximum principle

obtained in Chapter 3.
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CHAPTER 2

CONJUGATE DUALITY METHOD IN STOCHASTIC

CONVEX PROBLEMS WITH DISCRETE DELAY

2.1 Introduction

To apply the techniques and results of conjugate duality to study the stochastic

maximum principles for stochastic optimal control problems with delay, this chapter

extends the conjugate duality method developed in [2, 44] to investigate stochastic

convex problems with discrete delay.

2.1.1 Literature Review

To access some basic results of the conjugate duality method, we first review this

method reported in [37] for a delay-free deterministic convex problem in the calculus

of variations. Afterward, we describe two known generalizations [2, 44] which inspire

the work of the present chapter.

The Delay-Free Deterministic Convex Problem

Rockafellar in [37] investigates the deterministic convex (primal) problem: for given

convex functions L and l, minimize

Φ (x) =
∫ T

0
L (t, x (t) , ẋ (t)) dt + l (x (0) , x (T)) (2.1.1)

among all Rn-valued absolutely continuous functions x on [0, T] with derivative ẋ

almost everywhere, where n is a positive integer and T ∈ (0, ∞) is the fixed time
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horizon. Note that, since it is absolutely continuous, x can be identified with (x(0), ẋ)

in the sense that

x (t) = x (0) +
∫ t

0
ẋ (s) ds, ∀t ∈ [0, T] (2.1.2)

(see [39, Theorem 6.11]). As presented in [37, Section 5], Rockafellar defines L∗ and l∗

as the conjugate convex functions of L and l in (2.1.1) respectively, a concept described

in his previous work [34], and then introduces the dual problem to (2.1.1): for such L∗

and l∗, minimize

Ψ (p) =
∫ T

0
L∗ (t, ṗ (t) , p (t)) dt + l∗ (p (0) ,−p (T)) (2.1.3)

among Rn-valued absolutely continuous functions p on [0, T], where ṗ is as defined

similarly to ẋ. Note that x̄ and p̄ are called optimal solutions for the primal problem

(2.1.1) and the dual problem (2.1.3) respectively if they achieve the corresponding

minimum of the two problems.

Using certain properties of conjugate convex functions described in [34], necessary

and sufficient conditions for optimality of the primal problem (2.1.1) and the dual

problem (2.1.3) are obtained in [37, Theorem 5]. In particular, x̄ and p̄ are optimal for

these two problems respectively with Φ(x̄) + Ψ( p̄) = 0 if and only if x̄ and p̄ satisfy

L (t, x̄ (t) , ˙̄x (t)) + L∗ (t, ˙̄p (t) , p̄ (t))− 〈 p̄ (t) , ˙̄x (t)〉 − 〈 ˙̄p (t) , x̄ (t)〉 = 0 (2.1.4)

for almost every t and

l (x̄ (0) , x̄ (T)) + l∗ ( p̄ (0) ,− p̄ (T)) + 〈 p̄ (T) , x̄ (T)〉 − 〈 p̄ (0) , x̄ (0)〉 = 0, (2.1.5)

where 〈·, ·〉 denotes the usual inner product in the Euclidean space Rn. This method for

obtaining conditions for optimality of both the primal and dual problems, involving

the relationship of conjugate duality between the convex functions, is referred to as the

conjugate duality method.

The Markovian Convex Problem

Bismut in [2] generalizes the above results to the stochastic context. More specifi-

cally, let m be an positive integer and write (Ω,F , P) for a complete probability space,

W for a standard m-dimensional Brownian motion (see [17, Definition 2.5.1]) and

10



F = {F (t)}t∈[0,T] for a filtration generated by W such that the usual conditions hold

(see [17, Definition 1.2.25]). Then, for given convex functions L and l, Bismut in [2]

minimizes

Φ (X) = E

[∫ T

0
L
(
t, X (t) , Ẋ (t) , HX (t)

)
dt + l (X (0), X (T))

]
(2.1.6)

among Rn-valued Itô processes X which can be identified with (X(0), Ẋ, HX) in the

sense that

X (t) = X (0) +
∫ t

0
Ẋ (s) ds +

∫ t

0
HX (s) dW (s), ∀t ∈ [0, T] (2.1.7)

(see [43, Definition 4.4.3]), where Ẋ and HX denote respectively the drift and diffusion

coefficients. Similarly to the approach for introducing the corresponding dual problem

in (2.1.3), Bismut in [2, page 389] defines L∗ and l∗ as the conjugate convex functions of

L and l in (2.1.6) respectively and then introduces the dual problem to (2.1.6). That is,

for such L∗ and l∗, minimizing

Ψ (P) = E

[∫ T

0
L∗
(
t, Ṗ (t) , P (t) , HP (t)

)
dt + l∗ (P (0),−P (T))

]
(2.1.8)

among Rn-valued Itô processes P, where P is identified with (P(0), Ṗ, HP) in the same

manner as X in (2.1.7) and (Ṗ, HP) is defined similarly to (Ẋ, HX).

Adapting the techniques applied in [37, Theorem 5], Bismut in [2, Theorem IV-2]

obtains certain necessary and sufficient conditions for optimality in which, similarly

to the deterministic case described by (2.1.4) and (2.1.5), X̄ and P̄ are optimal for the

primal problem (2.1.6) and the dual problem (2.1.8) respectively with Φ(X̄) +Ψ(P̄) = 0

if and only if X̄ and P̄ satisfy

L
(

t, X̄ (t) , ˙̄X (t) , HX̄ (t)
)
+ L∗

(
t, ˙̄P (t) , P̄ (t) , HP̄ (t)

)
−
〈

P̄ (t) , ˙̄X (t)
〉

−
〈

˙̄P (t) , X̄ (t)
〉
− 〈HP̄ (t) , HX̄ (t)〉 = 0, P⊗ Leb− a.s.

(2.1.9)

and
l (X̄ (0) , X̄ (T)) + l∗ (P̄ (0) ,−P̄ (T)) + 〈P̄ (T) , X̄ (T)〉

− 〈P̄ (0) , X̄ (0)〉 = 0, P− a.s.
(2.1.10)

Here P⊗ Leb denotes the Lebesgue measure on F ×B([0, T]), where we write B([0, T])

for the Borel σ-algebra on [0, T]. Note that the primal problem (2.1.6) and the dual
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problem (2.1.8), together with the conditions for optimality described by (2.1.9) and

(2.1.10), are similar to those offered in [37], except that the diffusion coefficients HX

and HP have been introduced. It is worth mentioning here that the theory in [2] also

allows one to consider an extra randomness in the model, related to a diffusion M, by

assuming that the corresponding filtration F be generated jointly by M and W (see also

[3, Section 3.8]). In particular, this will help us to introduce a regime-switching effect

into the model.

The Deterministic Convex Problem with Discrete Delay

In a different direction, Tsoutsinos and Vinter in [44] consider the deterministic

convex problem with discrete delay: for given convex functions L and l, minimize

Φ (x) =
∫ T

0
L (t, x (t) , x (t− δ) , ẋ (t)) dt + l (x (T)) (2.1.11)

among Rn-valued absolutely continuous functions x on [−δ, T] such that x(t) = ξ(t)

for every t ∈ [−δ, 0], where δ ∈ (0, T) and ξ is a given continuous function on [−δ, 0].

However, unlike the corresponding delay-free case, this primal problem also depends

on x(· − δ) which causes some difficulties. In particular, the corresponding dual

problem cannot be introduced in a similar fashion to the one in (2.1.3) by using the

corresponding conjugate convex functions L∗ and l∗ directly. However, as stated in

[37, Theorem 3], the conjugate convex function of the optimal value function, a concept

introduced in [38, page 2], associated with the primal problem (2.1.1) coincides with the

function Ψ defined by (2.1.3). Therefore, generalizing such a relationship into the time-

delay context, Tsoutsinos and Vinter in [44, Proposition 3.1] obtain the corresponding

dual problem as minimizing

Ψ (p, q) =
∫ T

0
L∗
(

t, ṗ (t)− q̇ (t + δ) I[0,T−δ] (t) , q̇ (t) , p (t)
)

dt

−
∫ T

0

〈
q̇ (t) , ξ (t− δ) I[0,δ] (t)

〉
dt−

∫ T

0
〈 ṗ (t) , ξ (0)〉 dt

+ l∗ (−p (T)) + 〈p (T) , ξ (0)〉

(2.1.12)

among Rn-valued absolutely continuous functions p and q on [0, T] such that q(0) = 0,

where IA denotes the indicator function of the set A.

Similarly to the conditions for optimality described by (2.1.4) and (2.1.5), Tsoutsinos

and Vinter in [44, Theorem 2.1 & 2.2] obtain that x̄ and ( p̄, q̄) are optimal solution of
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the primal problem (2.1.11) and the dual problem (2.1.12) respectively with Φ(x̄) +

Ψ( p̄, q̄) = 0 if and only if x̄ and ( p̄, q̄) satisfy

L (t, x̄ (t) , x̄ (t− δ) , ˙̄x (t)) + L∗
(

t, ˙̄p (t)− ˙̄q (t + δ) I[0,T−δ] (t), ˙̄q (t) , p̄ (t)
)

− 〈 ˙̄q (t) , x̄ (t− δ)〉 −
〈

˙̄p (t)− ˙̄q (t + δ) I[0,T−δ] (t), x̄ (t)
〉
− 〈 p̄ (t) , ˙̄x (t)〉 = 0

(2.1.13)

for almost every t and

l (x̄ (T)) + l∗ (− p̄ (T)) + 〈 p̄ (T), x̄ (T)〉 = 0. (2.1.14)

Note that the dual problem (2.1.12) and the conditions for optimality (2.1.13) and

(2.1.14) involve the extra variable q with q̇(·+ δ), where q̇ is as defined similarly to

ẋ. These time-advanced values will give rise to an issue when generalizing them to

the stochastic context in the present chapter. To resolve this issue, we shall apply

the techniques of conditional expectations at a certain stage in the derivation of the

corresponding dual problem.

2.1.2 Main Results and Structure of the Chapter

Motivated by the results in [2, 44] described above, we explore the conjugate duality

method to investigate the stochastic convex problem with discrete delay: for given

convex functions L and l, minimize

Φ (X) = E

[∫ T

0
L
(
t, X (t) , X (t− δ) , Ẋ (t) , HX (t)

)
dt + l (X (T))

]
(2.1.15)

among X which ranges through a certain family, to be specified in Section 2.3.1, of Itô

processes satisfying X(t) = ξ(t) for t ∈ [−δ, 0], where Ẋ, HX, ξ and δ are as defined

for (2.1.6) and (2.1.11). The corresponding dual problem is derived in Theorem 2.4.4

which generalizes (2.1.12) to the stochastic context, and the necessary and sufficient

conditions for optimality of the primal problem (2.1.15) and the dual problem are then

obtained in Theorem 2.5.2. Note that we could equivalently maximize Φ, if L and l in

(2.1.15) were concave, together with the concept of conjugate concave function (see [38,

page 18]). For example, replacing L and l in (2.1.15) by −L and −l.

The remainder of the chapter is organized as follows. Section 2.2 summarizes some

basic results on convex analysis reported in [34, 35, 37, 38] and Section 2.3 gives the
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detailed description of the primal problem (2.1.15). Generalizing the results in [44] to

the stochastic context and generalizing the results in [2] to involve a discrete delay,

Section 2.4 shows the derivation of the dual problem to (2.1.15). Then, the necessary and

sufficient conditions for optimality of both the primal and dual problems are obtained

in Section 2.5. Finally, extending the arguments in the preceding sections of this chapter,

Section 2.6 presents a stochastic convex problem in a general discrete delayed model

which will be used to obtain the stochastic maximum principle for stochastic optimal

control problems with both discrete and exponential moving average delays in the

following chapter.

2.2 Some Results on Conjugate Convex Functions

To apply the conjugate duality method, this section recalls some basic results of

conjugate convex functions taken from [34, 35, 37, 38].

The preliminary concept in the conjugate convex function is a pair of linear (or

vector) spaces associated with a specified duality pairing. Let X and Y be two linear

spaces. We define a bilinear map, denoted by� ·, · �, on these two spaces as follows:

for each y ∈ Y,

� ·, y� : x →� x, y� (2.2.1)

is a linear function on X and also, for each x ∈ X,

� x, · � : y→� x, y� (2.2.2)

is a linear function on Y (see [17, page 32]). If there exist compatible topologies

(specified below) with respect to� ·, · � on X and Y respectively, then the bilinear

map� ·, · � is called duality pairing, or simply pairing, associated with these spaces

(see [38, page 13]). Here, a topology on X (resp. Y) is called compatible with respect

to � ·, · � if it is a locally convex topology such that every linear function (2.2.1)

(resp. (2.2.2)) is continuous and every continuous linear function on X (resp. Y) can be

represented in the form of (2.2.1) (resp. (2.2.2)) for some y ∈ Y (resp. x ∈ X). Note that,

associated with the pairing, these two spaces X and Y are referred to as duality paired

linear spaces, or simply paired spaces. For example, Rn pairs with itself via the pairing
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given by the usual inner product in Rn, where the compatible topology is induced by

the Euclidean norm.

Following the convention given in [38, page 13], when we say that two linear spaces

are paired spaces, then a specific pairing is implied and these two linear spaces are

equipped with topologies compatible with that pairing automatically.

Suppose that X and Y are paired spaces associated with the specified pairing

� ·, · � and let F be an extended-real-valued convex function on X. Then, the

extended-real-valued function F∗ on Y, defined by

F∗ (y) = sup
x∈X

{� x, y� −F (x)} , (2.2.3)

is called the conjugate convex function of F. Similarly, the extended-real-valued func-

tion F∗∗ on X, defined by

F∗∗ (x) = sup
y∈Y

{� x, y� −F∗ (y)} , (2.2.4)

is called the conjugate convex function of F∗ and also referred to as bi-conjugate

of F, where F∗ and F∗∗ are always convex and lower semi-continuous on Y and X

respectively (see [37, page 189]). In the presence of convexity, if F is strictly greater

than −∞, not identically ∞, and is lower semi-continuous, then F = F∗∗ (see also [35,

page 51]). The following gives an example of such a F.

Note that, as mentioned in Section 2.1.2, we can similarly introduce the concept

of conjugate concave function if F is concave. Then the condition of lower semi-

continuity and the supremum in (2.2.3) and (2.2.4) are respectively replaced by upper

semi-continuity and infimum (see [38, page 18]).

Example 2.2.1. For simplicity, we set n = 1 and X = Y = R. Suppose that the

extended-real-valued convex function F is defined by

F (x) =


− log x, if x > 0,

∞, otherwise.

Then, it follows from (2.2.3) that the conjugate convex function F∗ of F is

F∗ (y) = sup
x∈R

{xy− F (x)} = sup
x∈R+

{xy + log x} (2.2.5)
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for y ∈ R. If y ≥ 0, letting x tend to ∞ on the right-hand-side of the second equality of

(2.2.5), we see that F∗(y) = ∞. Otherwise, to find an explicit expression for F∗, we take

the derivative, with respect to x, of the function xy + log x to see that the corresponding

derivative is zero if and only if x = −1/y. Moreover, since xy + log x is concave with

respect to x, the supremum in (2.2.5) is attained at x = −1/y so that, together with the

case of y ≥ 0,

F∗ (y) =


− 1− log (−y) , if y < 0,

∞, otherwise.

On the other hand, it follows from (2.2.4) that the corresponding bi-conjugate convex

function F∗∗ is

F∗∗ (x) = sup
y∈R

{xy− F∗ (y)} = sup
y∈R−

{xy + 1 + log (−y)} (2.2.6)

for x ∈ R. Similarly, if x ≤ 0, we obtain that F∗∗(x) = ∞. Otherwise, taking the

derivative, with respect to y, of the function within the bracket on the right-hand-side

of the second equality of (2.2.6), we see that the supremum in (2.2.6) is attained at

y = −1/x. This, together with F∗∗(x) = ∞ when x ≤ 0, verifies F∗∗ = F as F is strictly

greater than −∞, not identically ∞, and is lower semi-continuous.

2.3 The Stochastic Convex Problem with Discrete Delay

We continue to work with the fixed time horizon T ∈ (0, ∞), complete probability

space (Ω,F , P) and standard m-dimensional Brownian motion W introduced in Section

2.1.1. To include a regime-switching effect used in [8, 9, 10], we suppose that the

filtration F = {F (t)}t∈[0,T] here is generated jointly by W and α satisfying the usual

conditions, where α is a continuous time Markov chain with the finite state I =

{1, 2, . . . , d}, is independent of W, and its generator is defined by a d× d matrix g = (gij)

and where d is an positive integer. For i 6= j ∈ I, the counting process N and the

intensity process λ are respectively defined by

Nij (t) = ∑
0<s≤t

I{α(s_)=i} (t) I{α(s)=j} (t)

and

λij (t) = gij I{α(t)=i} (t)
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(see [9, Section 2]). Then, the set M = {Mij, i, j ∈ I} of canonical martingales of the

Markov chain α described in [9] (see also [10, 8]) is defined by

Mij (t) =


Nij (t)−

∫ t

0
λij (s) ds, if i 6= j,

0, otherwise,

for t ∈ [0, T].

In addition, adapting from [2, page 386], we introduce the following four spaces

which are frequently used throughout the present thesis:

L2(F (T); Rn) denotes the space of F (T)-measurable, Rn-valued random variables X

such that

E
[
|X|2

]
< ∞,

where | · | denotes the Euclidean norm and the norm on L2(F (T); Rn) is given by

‖X‖2 =
{

E
[
|X|2

]}1/2
;

L2∞
F ([0, T]; Rn) denotes the space of F (t)-progressively measurable (see [17, Defini-

tion 1.1.11]), Rn-valued stochastic processes X such that

E

[
ess sup
0≤t≤T

|X (t)|2
]
< ∞, (2.3.1)

where the norm on L2∞
F ([0, T]; Rn) is given by

‖X‖2∞ =

{
E

[
sup

0≤t≤T
|X (t)|2

]}1/2

;

L21
F ([0, T]; Rn) denotes the space of F (t)-progressively measurable, Rn-valued stochas-

tic processes X such that

E

[{∫ T

0
|X (t)|dt

}2
]
< ∞, (2.3.2)

where the norm on L21
F ([0, T]; Rn) is given by

‖X‖21 =

{
E

[{∫ T

0
|X (t)|dt

}2
]}1/2

;

L22
F ([0, T]; Rn×m) denotes the space of F (t)-progressively measurable, Rn×m-valued

stochastic processes H such that

E

[∫ T

0
|H (t)|2dt

]
< ∞,
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where the elements in the Euclidean space Rn×m are represented by n × m matri-

ces and so that |H(t)|2 is given by 〈H(t), H(t)〉 = tr(H>(t)H(t)), and the norm on

L22
F ([0, T]; Rn×m) is given by

‖H‖22 =

{
E

[∫ T

0
|H (t)|2dt

]}1/2

.

In what follows, we simply write the above spaces as L2, L2∞
F , L21

F , and L22
F respectively

if the domains and ranges of the members in those spaces are clear from the context

and, as above, suppress the ω in stochastic processes for notational simplicity, unless it

is necessary for clarity.

2.3.1 Identification of the Primal Variable

Fix δ ∈ (0, T) and let ξ ∈ C([−δ, 0]; Rn) be a given initial deterministic continuous

function. Then, since ξ is continuous on the closed interval [−δ, 0], we have

max
−δ≤t≤0

|ξ (t)|2 < ∞ (2.3.3)

(see [40, Theorem 4.15]).

Definition 2.3.1. For the given ξ ∈ C([−δ, 0]; Rn), write V1 for the space L21
F × L22

F

and identify (Ẋ, HX) ∈ V1 with the continuous F (t)-adapted stochastic process X :

Ω× [−δ, T]→ Rn,

X (t) =


ξ (t) , t ∈ [−δ, 0] ,

ξ (0) +
∫ t

0
Ẋ (s) ds +

∫ t

0
HX (s) dW (s) , t ∈ [0, T] .

(2.3.4)

Hereafter, we simply write X ∈ V1 to mean that X is identified with (Ẋ, HX) ∈

L21
F × L22

F via Definition 2.3.1. In particular, as noted in [8, Proposition 3.2.20], the

representation of X ∈ V1 is unique up to indistinguishability (see [17, Definition 1.1.3])

and also X implicitly depends on α through the filtration F. Moreover, we define Xδ

associated with X by

Xδ (t) = X (t− δ) , ∀t ∈ [0, T] .

Proposition 2.3.2. For X ∈ V1, we have that X, Xδ ∈ L2∞
F and X(T) ∈ L2.
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Proof. First, as noted in [45, Proposition 1.2.8], the continuity of X, together with being

F (t)-adapted, implies that X and Xδ are F (t)-progressively measurable. Also, it is

straightforward to see that X(T) is F (T)-measurable and

E
[
|X (T)|2

]
≤ E

[
sup

0≤t≤T
|X (t)|2

]
. (2.3.5)

On the other hand, separating the interval [−δ, T] into two disjoint intervals [−δ, 0]

and [0, T] and noting (2.3.1), we have that

E

[
sup
−δ≤t≤T

|X (t)|2
]
=E

[
sup
−δ≤t≤T

{∣∣∣X (t) I[−δ,0] (t) + X (t) I[0,T] (t)
∣∣∣2}]

≤2

{
sup
−δ≤t≤0

|ξ (t)|2 + E

[
sup

0≤t≤T
|X (t)|2

]}
,

(2.3.6)

where the ’ess’ in (2.3.1) has been relaxed since X is continuous. The first term on the

right-hand-side of the inequality of (2.3.6) is due to the representation (2.3.4) associated

with t ∈ [−δ, 0]. Similarly,

E

[
sup

0≤t≤T
|Xδ (t)|2

]
≤ E

[
sup
−δ≤t≤T

|X (t)|2
]

. (2.3.7)

Thus, it can be seen from (2.3.3), (2.3.5), (2.3.6) and (2.3.7) that, to prove the required

results, we only need to verify

E

[
sup

0≤t≤T
|X (t)|2

]
< ∞. (2.3.8)

Indeed, it follows from (2.3.4) that, for t ∈ [0, T],

|X (t)|2 ≤ 3

{
|ξ (0)|2 +

{∫ t

0

∣∣Ẋ (s)
∣∣ ds
}2

+

∣∣∣∣∫ t

0
HX (s) dW (s)

∣∣∣∣2
}

. (2.3.9)

Taking supremum over t ∈ [0, T] and then taking expectations on the both sides of

(2.3.9), we have that

E

[
sup

0≤t≤T
|X (t)|2

]
≤ 3

{
|ξ (0)|2 + E

[
sup

0≤t≤T

{∫ t

0

∣∣Ẋ (s)
∣∣ ds
}2
]

+ E

[
sup

0≤t≤T

∣∣∣∣∫ t

0
HX (s) dW (s)

∣∣∣∣2
]}

.

(2.3.10)

In particular, the second term within the bracket on the right-hand-side of (2.3.10) can

be re-expressed as

E

[
sup

0≤t≤T

{∫ t

0

∣∣Ẋ (s)
∣∣ ds
}2
]
= E

[{∫ T

0

∣∣Ẋ (s)
∣∣ ds
}2
]

(2.3.11)
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and, by Doob’s Maximal Inequality (see [17, page 14]), the last term of that equation

gives

E

[
sup

0≤t≤T

∣∣∣∣∫ t

0
HX (s) dW (s)

∣∣∣∣2
]
≤4E

[∣∣∣∣∫ t

0
HX (s) dW (s)

∣∣∣∣2
]

=4E

[∫ t

0
|HX (s)|2 ds

]
,

(2.3.12)

where the equality in (2.3.12) is due to the Itô isometry (see [43, Theorem 4.3.1]). Finally,

we get (2.3.8) by substituting (2.3.11) and (2.3.12) into the right-hand-side of (2.3.10),

and by noting that (Ẋ, HX) ∈ L21
F ×L22

F .

Note that, although the domain for X defined via Definition 2.3.1 is [−δ, T], for

simplicity, we shall in the following sections of this chapter to regard X as being in L2∞
F

since its path in [−δ, 0] is fixed by ξ.

2.3.2 The Primal Function and Problem

Let L : Ω× [0, T]×Rn ×Rn ×Rn ×Rn×m → R∪ {∞} and l : Ω×Rn → R∪ {∞}

be two given functions. Define functions IL on L2∞
F ×L2∞

F ×L21
F ×L22

F and Jl on L2

respectively by

IL (X, Y, Z, H) = E

[∫ T

0
L (t, X (t) , Y (t) , Z (t) , H (t)) dt

]
(2.3.13)

and

Jl (XT) = E [l (XT)] . (2.3.14)

Hereafter, as before, we suppress ω in functions for simplicity. To ensure that the

measurability in (2.3.13) and (2.3.14), and that IL and Jl are strictly greater than −∞,

not identically ∞, and are convex, as well as to be able to apply the conjugate duality

method to obtain the corresponding dual problem in the next section, we adapt the

assumptions given in [37, page 179] as follows.

Assumption I. (i) L and l are not identically ∞; L is a lower semi-continuous

convex function on Rn ×Rn ×Rn ×Rn×m, for any (ω, t) ∈ Ω× [0, T], and l is a lower

semi-continuous convex function on Rn, for any ω ∈ Ω.

(ii) L is F ∗ ×B(Rn)×B(Rn)×B(Rn)×B(Rn×m)-measurable and l is F ×B(Rn)-

measurable, where we write F ∗ for the completion of F × B([0, T]) with respect to

P⊗ Leb.
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Assumption II. (i) There exist (X∗, Y∗, Z∗, H∗) ∈ L21
F × L21

F × L2∞
F × L22

F and a

R-valued F (t)-progressively measurable stochastic process v satisfying

E

[∫ T

0
|v (t)| dt

]
< ∞ (2.3.15)

such that, for any (x, y, z) ∈ Rn×3 and h ∈ Rn×m,

L (t, x, y, z, h) ≥ 〈x, X∗ (t)〉+ 〈y, Y∗ (t)〉+ 〈z, Z∗ (t)〉

+ 〈h, H∗ (t)〉 −v (t) , P⊗ Leb− a.s.
(2.3.16)

(ii) There exist X∗T ∈ L2 and a R-valued F (T)-measurable random variable ϑ

satisfying

E [|ϑ|] < ∞ (2.3.17)

such that, for any x ∈ Rn,

l (x) ≥ 〈x, X∗T〉 − ϑ, P− a.s. (2.3.18)

Assumption III. (i) There exist (X, Y, Z, H) ∈ L2∞
F × L2∞

F × L21
F × L22

F and a R-

valued F (t)-progressively measurable stochastic process τ satisfying

E

[∫ T

0
|τ (t)| dt

]
< ∞ (2.3.19)

such that

L (t, X (t) , Y (t) , Z (t) , H (t)) ≤ τ (t) , P⊗ Leb− a.s. (2.3.20)

(ii) There exist XT ∈ L2 and a R-valued F (T)-measurable random variable χ

satisfying

E [|χ|] < ∞ (2.3.21)

such that

l (XT) ≤ χ, P− a.s.

The novelty of Assumptions II & III is to ensure that the corresponding conjugate

convex functions of L and l, defined in the following section, satisfy the corresponding

Assumptions II & III as well (see Proposition 2.4.1).

21



Remark 2.3.3. As shown in [36, Corollary 5.1], Assumption I is satisfied if and on-

ly if L and l are both normal convex integrands, a concept introduced in [34, Sec-

tion 2]. More precisely, a function L is called a normal convex integrand provid-

ed, in the presence of (i) of Assumption I for L, there exists a countable collection

{(Xi, Yi, Zi, Hi)}i∈N+ , where Xi, Yi, Zi and Hi are F (t)-progressively measurable, such

that L(ω, t, Xi(ω, t), Yi(ω, t), Zi(ω, t), Hi(ω, t)) is F ∗-measurable and the following set

D (ω, t) ∩ {(Xi (ω, t) , Yi (ω, t) , Zi (ω, t) , Hi (ω, t))}i∈N+ (2.3.22)

is dense in the effective domain D(ω, t) of L for every (ω, t) ∈ Ω× [0, T], where

D (ω, t) =
{
(x, y, z, h) ∈ Rn ×Rn ×Rn ×Rn×m∣∣L (ω, t, x, y, z, h) < ∞

}
(2.3.23)

(see [37, page 180]). Similarly, with an appropriate modification, we can give the

corresponding definition of normal convex integrand for l.

Note that, it follows from [34, Corollary 5] that Assumption I, together with Remark

2.3.3, guarantees that, for every (X, Y, Z, H) ∈ L2∞
F ×L2∞

F ×L21
F ×L22

F and XT ∈ L2,

L(ω, t, X(ω, t), Y(ω, t), Z(ω, t), H(ω, t)) and l(ω, XT(ω)) are F ∗- and F -measurable

respectively as required.

Proposition 2.3.4. Under Assumptions I, II & III for the functions L and l, we have that

IL > −∞, Jl > −∞, that both IL and Jl are not identically ∞ and that both IL and Jl are

convex functions.

Proof. The proof applies the same techniques as the proof for the deterministic and

delay-free case described in [37, Proposition 1]. For the completeness, we give the

details as follows. Note that, in this proof, we only give the arguments for IL and, with

an appropriate modification, the corresponding arguments for Jl can be obtained in a

similar way.

First, by the definition of IL, its convexity follows directly from the convexity of L

under Assumption I. Moreover, we define a linear function L′ : Ω× [0, T]×Rn ×Rn ×

Rn ×Rn×m → R by

L′ (t, x, y, z, h) = 〈x, X∗ (t)〉+ 〈y, Y∗ (t)〉+ 〈z, Z∗ (t)〉+ 〈h, H∗ (t)〉 −v (t) ,
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where (X∗, Y∗, Z∗, H∗) and v are those in Assumption II (i) . Similarly to IL, we define

a function IL′ on L2∞
F ×L2∞

F ×L21
F ×L22

F by

IL′ (X, Y, Z, H) =E

[∫ T

0
L′ (t, X (t) , Y (t) , Z (t) , H (t)) dt

]
=E

[ ∫ T

0

{
〈X (t) , X∗ (t)〉+ 〈Y (t), Y∗ (t)〉+ 〈Z (t) , Z∗ (t)〉

+ 〈H (t) , H∗ (t)〉 −v (t)
}

dt
]

.

Then, the Hölder Inequality, together with (2.3.15), gives us that

IL′ (X, Y, Z, H) > −∞ (2.3.24)

for every (X, Y, Z, H) ∈ L2∞
F ×L2∞

F ×L21
F ×L22

F . Furthermore, by (2.3.16), we have that

IL (X, Y, Z, H) ≥ IL′ (X, Y, Z, H) which, together with (2.3.24), implies the conclusion

that IL > −∞. On the other hand, it follows from (2.3.19) and (2.3.20) that there exists

(X, Y, Z, H) ∈ L2∞
F ×L2∞

F ×L21
F ×L22

F such that

IL (X, Y, Z, H) ≤ E

[∫ T

0
|τ (t)| dt

]
< ∞,

where τ is as in Assumption III (i).

Now, for the given L, l, ξ, δ described above and for X ∈ V1 defined via Definition

2.3.1, we define a function Φ of X in terms of IL and Jl by

Φ (X) = IL
(
X, Xδ, Ẋ, HX

)
+ Jl (X (T)) . (2.3.25)

Since X = (1−λ)X1 +λX2 implies that Xδ = (1−λ)X1δ +λX2δ, Ẋ = (1−λ)Ẋ1 +λẊ2

and HX = (1− λ)HX1 + λHX2 for any λ ∈ [0, 1], the facts that Φ is strictly greater than

−∞, that it is not identically ∞, and that it is convex with respect to X follow directly

from Proposition 2.3.4. Then, building upon such a Φ, we define, in a similar fashion

to the stochastic convex problem (2.1.6) studied in [2], the stochastic convex problem

with discrete delay as stated by the following definition.

Definition 2.3.5. Suppose that Assumptions I, II & III hold. The function Φ on V1

defined by (2.3.25) is called a stochastic convex primal function with discrete delay.
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The stochastic convex primal problem with discrete delay associated with Φ is to find

X̄ ∈ V1 realizing

inf
X∈V1

Φ (X) , (2.3.26)

where X is identified with (Ẋ, HX) via Definition 2.3.1. We refer to the function Φ and

the problem (2.3.26) as the primal function and problem respectively. Any X ∈ V1,

such that Φ(X) < ∞, will be called a feasible solution. Moreover, any feasible solution

X̄ that achieves the infimum in (2.3.26) will be called an optimal solution of the primal

problem.

Note that this primal problem implicitly depends on α and that, if Φ is identically

∞, no X ∈ V1 will be regarded as an optimal solution. Comparing (2.3.26) with (2.1.6),

our primal function and problem in Definition 2.3.5 bear a similarity to (2.1.6) studied

in [2, Definition II-I]. However, the Xδ, introduced in (2.3.26), can be regarded as a

function of X. As noted in Section 2.1.1, the present of Xδ makes that the techniques

used in [2] for introducing the corresponding dual problem can no longer be applied

directly to our problem.

2.4 The Stochastic Convex Dual Problem

To overcome the difficulty mentioned above, this section introduces an optimal

value function corresponding to the problem (2.3.26) and then generalizes the tech-

niques used in [44, Proposition 3.1] for the corresponding deterministic case to derive

an explicit expression for the stochastic convex dual problem to (2.3.26).

2.4.1 Preliminaries

This subsection studies some properties of the conjugate convex functions L∗, l∗,

IL∗ and Jl∗ of L, l, IL and Jl in (2.3.25), which will be used to derive the dual problem in

Section 2.4.4.

For fixed (ω, t) ∈ Ω × [0, T] and ω ∈ Ω, let L∗ and l∗ be the conjugate convex

functions of L and l respectively in the sense of (2.2.3), i.e. L∗ and l∗ are respectively
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given by

L∗ (t, x∗, y∗, z∗, h∗)

= sup
(x,y,z,h)∈Rn×3×Rn×m

{〈(x, y, z, h) , (x∗, y∗, z∗, h∗)〉 − L (t, x, y, z, h)}
(2.4.1)

for (x∗, y∗, z∗, h∗) ∈ Rn×3 ×Rn×m and

l∗ (x∗) = sup
x∈Rn
{〈x, x∗〉 − l (x)} (2.4.2)

for x∗ ∈ Rn, where the associated pairings in (2.4.1) and (2.4.2) are described by the

usual inner products in the corresponding Euclidean spaces.

It follows from [34, Lemma 5], noting Remark 2.3.3, that L∗ and l∗ also satisfy

Assumption I. In fact, being a normal convex integrand is persevered under the

operation of conjugation. Therefore, as noted in Section 2.3.2, l∗(ω, X∗T(ω)) and

L∗(ω, t, X∗(ω, t), Y∗(ω, t), Z∗(ω, t), H∗(ω, t)) areF - andF ∗-measurable for every X∗T ∈

L2 and (X∗, Y∗, Z∗, H∗) ∈ L21
F × L21

F × L2∞
F × L22

F respectively. Moreover, L∗ and l∗

satisfy Assumptions II & III as stated by the proposition below.

Proposition 2.4.1. Assumptions II & III for the functions L and l described in Section 2.3.2

imply that the functions L∗ and l∗ also satisfy Assumptions II & III.

Proof. The proof applies the same techniques as the proof for the deterministic and

delay-free case described in [37, Theorem 2]. For the completeness, we give the details

as follows. Similarly to the proof of Proposition 2.3.4, we only give the arguments for

L∗ as the corresponding arguments for l∗ can be obtained in a similar way.

Under the given condition that L satisfies Assumption III (i) and L∗ is given by

(2.4.1),

L∗ (t, x∗, y∗, z∗, h∗)

≥ 〈X (t) , x∗〉+ 〈Y (t) , y∗〉+ 〈Z (t) , z∗〉+ 〈H (t) , h∗〉

− L (t, X (t) , Y (t) , Z (t) , H (t)) , P⊗ Leb− a.s.

for any (x∗, y∗, z∗, h∗) ∈ Rn×3 ×Rn×m, where X, Y ∈ L2∞
F , Z ∈ L21

F and H ∈ L22
F are

those in Assumption III (i). Then, using (2.3.20), we obtain that

L∗ (t, x∗, y∗, z∗, h∗) ≥ 〈X (t) , x∗〉+ 〈Y (t) , y∗〉+ 〈Z (t) , z∗〉

+ 〈H (t) , h∗〉 − τ (t) , P⊗ Leb− a.s.
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where τ is given in Assumption III (i), which gives the conclusion that L∗ satisfies

Assumption II (i). On the other hand, under the given condition that L satisfies

Assumption II (i), we obtain that

v (t) ≥ sup
(x,y,z,h)∈Rn×3×Rn×m

{
〈x, X∗ (t)〉+ 〈y, Y∗ (t)〉+ 〈z, Z∗ (t)〉

+ 〈h, H∗ (t)〉 − L (t, x, y, z, h)
}

=L∗ (t, X∗ (t) , Y∗ (t) , Z∗ (t) , H∗ (t)) , P⊗ Leb− a.s.

where (X∗, Y∗, Z∗, H∗) ∈ L21
F ×L21

F ×L2∞
F ×L22

F and v are given in Assumption II (i).

This implies that L∗ satisfies Assumption III (i).

To obtain the conjugate convex functions of IL and Jl , throughout this chapter,

we specify the following three paired spaces associated with the pairings given in [2,

Page 386] as follows. We pair L2 with itself via the pairing defined by

� XT, X∗T � = E [〈XT, X∗T〉] ; (2.4.3)

pair L22
F with itself via the pairing defined by

� H, H∗ � = E

[∫ T

0
〈H (t) , H∗ (t)〉 dt

]
; (2.4.4)

pair L21
F with L2∞

F via the pairing defined by

� X, X∗ � = E

[∫ T

0
〈X (t) , X∗ (t)〉 dt

]
. (2.4.5)

Now, similarly to the functions IL and Jl introduced in Section 2.3.2, we define

functions IL∗ on L21
F ×L21

F ×L2∞
F ×L22

F and Jl∗ on L2 respectively by

IL∗ (X∗, Y∗, Z∗, H∗) = E

[∫ T

0
L∗ (t, X∗ (t) , Y∗ (t) , Z∗ (t) , H∗ (t)) dt

]
and

Jl∗ (X∗T) = E [l∗ (X∗T)] .

As discussed above, L∗ and l∗ satisfy Assumptions I, II & III so that IL∗ > −∞, Jl∗ > −∞,

both IL∗ and Jl∗ are not identically ∞, and both IL∗ and Jl∗ are convex by Proposition

2.3.4. Consequently, it follows from [34, Theorem 2] that IL∗ and Jl∗ are the conjugate
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convex functions of IL and Jl respectively in the sense of (2.2.3), i.e. IL∗ and Jl∗ can be

respectively expressed by

IL∗ (X∗, Y∗, Z∗, H∗)

= sup
(X,Y,Z,H)∈L2∞

F ×L2∞
F ×L21

F ×L22
F

{
� (X, Y, Z, H) , (X∗, Y∗, Z∗, H∗)�

− IL (X, Y, Z, H)
}

(2.4.6)

for (X∗, Y∗, Z∗, H∗) ∈ L21
F ×L21

F ×L2∞
F ×L22

F and

Jl∗ (X∗T) = sup
XT∈L2

{E [〈XT, X∗T〉]− Jl (XT)} (2.4.7)

for X∗T ∈ L2, where the pairing in (2.4.6), between the spaces L2∞
F ×L2∞

F ×L21
F ×L22

F

and L21
F × L21

F × L2∞
F × L22

F induced directly from the pairings (2.4.4) and (2.4.5), is

described by

� (X, Y, Z, H) , (X∗, Y∗, Z∗, H∗)�

=E

[∫ T

0
{〈X (t) , X∗ (t)〉+ 〈Y (t) , Y∗ (t)〉+ 〈Z (t) , Z∗ (t)〉+ 〈H (t) , H∗ (t)〉} dt

]
.

2.4.2 The Optimal Value Function

Similarly to that for the corresponding deterministic case studied in [44, page 172],

we associate with the primal function to define a family of so-called perturbed functions

F on V1, parameterized by (aT, r, k) ∈ L2 ×L2∞
F ×L2∞

F , by

FaT ,r,k (X) = IL
(
X + r, Xδ + k, Ẋ, HX

)
+ Jl (X (T)− aT) . (2.4.8)

Compared with the perturbed functions used for the delay-free deterministic convex

problem in [2, Definition III-1] and for the stochastic delay-free convex problem in

[37, Section 7], the perturbed function F here depends on an extra parameter k to take

account of Xδ in IL. Note that F is a composition of Φ with an affine mapping so that

it is convex as the convexity is persevered under affine mappings. Note also that, by

Proposition 2.3.4, F is strictly greater than −∞ and is not identically ∞.

Now, building upon such a F, the family of perturbed optimization problems is to

find X̄ ∈ V1 realizing

inf
X∈V1

FaT ,r,k (X) ,
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which gives an optimal value function φ on L2 ×L2∞
F ×L2∞

F defined by

φ (aT, r, k) = inf
X∈V1

FaT ,r,k (X) . (2.4.9)

It can be seen from the relationship between F and Φ that

φ (0, 0, 0) = inf
X∈V1

F0,0,0 (X) = inf
X∈V1

Φ (X) . (2.4.10)

Proposition 2.4.2. The optimal value function φ defined by (2.4.9) is a convex function on

L2 ×L2∞
F ×L2∞

F .

Proof. Based on the definition of φ and the convexity of IL and Jl , for any aT, a′T ∈ L2,

r, r′ ∈ L2∞
F , k, k′ ∈ L2∞

F and X ∈ V1, we obtain that

φ
(
λaT + (1− λ) a′T, λr + (1− λ) r′, λk + (1− λ) k′

)
≤λ

{
IL
(
X + r, Xδ + k, Ẋ, HX

)
+ Jl (X (·, T)− aT)

}
+ (1− λ)

{
IL
(
X + r′, Xδ + k′, Ẋ, HX

)
+ Jl

(
X (·, T)− a′T

)}
,

where λ ∈ [0, 1]. Hence, we have

φ
(
λaT + (1− λ) a′T, λr + (1− λ) r′, λk + (1− λ) k′

)
≤λ inf

X∈V1
FaT ,r,k (X) + (1− λ) inf

X∈V1
Fa′T ,r′,k′ (X)

=λφ (aT, r, k) + (1− λ) φ
(
a′T, r′, k′

)
as required.

Since the optimal value function φ is convex, let φ∗ be the conjugate convex function

of φ, i.e. φ∗ is given by

φ∗ (a∗T, r∗, k∗)

= sup
(r,k,aT)∈L2∞

F ×L2∞
F ×L2

{� (aT, r, k) , (a∗T, r∗, k∗)� −φ (aT, r, k)}
(2.4.11)

for (a∗T, r∗, k∗) ∈ L2 ×L21
F ×L21

F , where the pairing, between spaces L2 ×L2∞
F ×L2∞

F

and L2 ×L21
F ×L21

F induced from (2.4.3) and (2.4.5), is given by

� (aT, r, k) , (a∗T, r∗, k∗)�

=E

[∫ T

0
〈(r (t) , k (t)) , (r∗ (t) , k∗ (t))〉 dt + 〈aT, a∗T〉

]
.

(2.4.12)
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Using φ∗, we introduce the following optimization problem to find (ā∗T, r̄∗, k̄∗) ∈ L2 ×

L21
F ×L21

F realizing

inf
(a∗T ,r∗,k∗)∈L2×L21

F ×L21
F

φ∗ (a∗T, r∗, k∗) . (2.4.13)

Then, the optimality of the primal problem (2.3.26) can be related to the solution of

(2.4.13). Indeed, by the relationship described by (2.4.10) between the optimal value

function φ and the primal problem (2.3.26), we set (aT, r, k) = (0, 0, 0) on the right-

hand-side of (2.4.11). Then, we see that

φ∗ (a∗T, r∗, k∗) ≥ −φ (0, 0, 0) = − inf
X∈V1

Φ (X)

for all (a∗T, r∗, k∗), which implies

inf
(a∗T ,r∗,k∗)∈L2×L21

F ×L21
F

φ∗ (a∗T, r∗, k∗) + inf
X∈V1

Φ (X) ≥ 0. (2.4.14)

If there exist (ā∗T, r̄∗, k̄∗) ∈ L2 ×L21
F ×L21

F and X̄ ∈ V1 such that the equality in (2.4.14)

holds, then

0 ≤ φ∗
(
ā∗T, r̄∗, k̄∗

)
+ Φ (X) = −Φ (X̄) + Φ (X) (2.4.15)

for X ∈ V1. Hence, (2.4.15) implies that X̄ is an optimal solution of the primal problem

(2.3.26). Note that, by the arguments above, the optimization problem (2.4.13) can be

regarded as a dual problem to (2.3.26). The reason for this claim will become clearer in

Sections 2.5 & 2.6.

As noted in [2, Definition III-1] and [2, Theorem III-1], the corresponding function

φ∗ for the stochastic delay-free case is expressed in terms of the corresponding IL∗

and Jl∗ in a similar manner to that for the corresponding primal function Φ given in

(2.1.6) in terms of IL and Jl . Unfortunately, the introduction of the extra parameter k∗ in

(2.4.11) to pair with k in (2.4.9), due to the variable Xδ introduced in the primal problem

(2.3.26), makes this no longer the case. In other words, we cannot use the approach

there to obtain the explicitly expression for φ∗.

2.4.3 Identification of the Dual Variable

Recalling that the dual variable p for the dual problem (2.1.12) to the deterministic

convex problem (2.1.1) is an absolutely continuous function. As noted in [44, Propo-

sition 3.1], p satisfies an ordinary differential equation with a given terminal value.
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Hence, p can be identified with (p(T), ṗ), in a similar manner of (2.1.2) to that for x in

the primal problem (2.1.11), as

p (t) = p (T)−
∫ T

t
ṗ (s) ds.

However, the ’time’ in the stochastic context cannot be reversed in general if stochastic

processes are required to be F (t)-adapted. To illustrate this, we borrow an example

from [24, Chapter 1] to consider the stochastic differential equation

dP (t) = 0, t ∈ [0, T] , (2.4.16)

where the drift and diffusion coefficients are zero. If this equation equips with the initial

value P(0) = p ∈ Rn, then the unique solution of (2.4.16) is P(t) ≡ p. On the other

hand, if it associates with a terminal value given by P(T) = PT ∈ L2, then the unique

solution of (2.4.16) is P(t) = PT for all t ∈ [0, T]. Unfortunately, it is not necessarily

F (t)-adapted, unless PT ∈ Rn is fixed.

To overcome this difficulty, we define V2 = L2 ×L21
F and apply the technique of

conditional expectation, which has been successfully used in the theory of backward

stochastic differential equation (BSDE), to characterize the continuous F (t)-adapted

stochastic process P by (PT, Ṗ) ∈ V2 in the sense that

P (t) = E

[
PT −

∫ T

t
Ṗ (s) ds

∣∣∣F (t)
]

, ∀t ∈ [0, T] (2.4.17)

(see [24, page 2]). Clearly, P(0) is a constant. On the other hand, unlike X identified

with (Ẋ, HX) via Definition 2.3.1, the identification described by (2.4.17) is implicitly.

It shows that P is the solution of a BSDE. This results in that P is identified with

(PT, Ṗ, HP, KP) ∈ L2 ×L21
F ×L22

F ×K22
F as stated by the following proposition, where

K22
F denotes the space of F (t)-progressively measurable stochastic processes KP(t) =

(K(1)
P (t), . . . , K(n)

P (t)) with the finite norm defined by

‖KP‖K
22 =

E

 d

∑
r=1

d

∑
i=1

d

∑
j=1
j 6=i

∣∣∣K(r)
ij (t)

∣∣∣2λij (t) dt




1/2

and where K(r)
P (t) = {K(r)

ij (t)}d
i,j=1 and K(r)

ij (t) ∈ R with K(r)
ii (t) = 0, dP⊗ dt-a.s. for

each i ∈ I (see [8, page 32]).
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Proposition 2.4.3. For P defined by (2.4.17), we have that P ∈ L2∞
F . Moreover, there exists

unique (HP, KP) ∈ L22
F ×K22

F such that, for t ∈ [0, T],

P (t) =PT −
∫ T

t
Ṗ (s) ds−

∫ T

t
HP (s) dW (s)

−
∫ T

t
KP (s) • dM (s), P− a.s.

(2.4.18)

where we have used the shorthand notation

KP (s) • dM (s) =


d

∑
i=1

d

∑
j=1
j 6=i

K(1)
ij (s) dMij (s), . . . ,

d

∑
i=1

d

∑
j=1
j 6=i

K(n)
ij (s) dMij (s)


>

.

Proof. It follows from a similar argument to that for the proof of Proposition 2.3.2, that

P is F (t)-progressively measurable. On the other hand, since P is defined by (2.4.17),

we have that

P (t) =E

[
PT −

∫ T

0
Ṗ (s) ds +

∫ t

0
Ṗ (s) ds

∣∣∣F (t)
]

=E

[
PT −

∫ T

0
Ṗ (s) ds

∣∣∣F (t)
]
+
∫ t

0
Ṗ (s) ds,

(2.4.19)

where the last term on the right-hand-side of the second equality of (2.4.19) is due to

the fact that
∫ t

0 Ṗ(s)ds is F (t)-measurable. Let

N (t) = E

[
PT −

∫ T

0
Ṗ (s) ds

∣∣∣F (t)
]

for t ∈ [0, T]. Then,

P (t) = N (t) +
∫ t

0
Ṗ (s) ds, ∀t ∈ [0, T] . (2.4.20)

In particular, N = {N (t)}t∈[0,T] is a square-integrable martingale with respect to the

filtration F = {F (t)}t∈[0,T] given in Section 2.3. Indeed, it follows from the Conditional

Jensen Inequality (see [43, Theorem 2.3.2 (v)]) and the law of total expectation (see [43,

page 72]) that, for t ∈ [0, T],

E
[
|N (t)|2

]
=E

[{
E

[
PT −

∫ T

0
Ṗ (s) ds

∣∣∣F (t)
]}2

]

≤E

[
E

[{
|PT|+

∫ T

0

∣∣Ṗ (s)
∣∣ ds
}2 ∣∣∣∣F (t)

]]

=E

[{
|PT|+

∫ T

0

∣∣Ṗ (s)
∣∣ ds
}2
]

≤2E

[
|PT|2 +

{∫ T

0

∣∣Ṗ (s)
∣∣ ds
}2
]

.
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Then, the square-integrability of N follows directly from the fact that (PT, Ṗ) ∈ V2.

Moreover, for any s ≤ t, we have

E [N (t) |F (s)] =E

[
E

[
PT −

∫ T

0
Ṗ (s) ds

∣∣∣F (t)
] ∣∣∣∣F (s)

]
=E

[
PT −

∫ T

0
Ṗ (s) ds

∣∣∣F (s)
]

=N (s) ,

where the second equality is due to the tower property of conditional expectation

(see [43, Theorem 2.3.2 (iii)]). This gives the conclusion that N is a square-integrable

martingale. Then, by the similar technique to that used in the proof of Proposition 2.3.2,

we see that

E

[
sup

0≤t≤T
|P (t)|2

]
≤ 2

{
E

[
sup

0≤t≤T
|N (t)|2

]
+ E

[{∫ T

0

∣∣Ṗ (t)
∣∣ dt
}2
]}

which gives the conclusion of P ∈ L2∞
F noting the square-integrability of N and

Ṗ ∈ L21
F .

Applying the martingale representation theorem (see [8, Theorem B.4.6]) to N on

the right-hand-side of (2.4.20), we obtain that there exists unique (HP, KP) ∈ L22
F ×K22

F

such that, for t ∈ [0, T],

P (t) =N (0) +
∫ t

0
Ṗ (s) ds +

∫ t

0
HP (s) dW (s)

+
∫ t

0
KP (s) • dM (s), P− a.s.

(2.4.21)

as the filtration F = {F (t)}t∈[0,T] is generated jointly by W and α. Furthermore, setting

t = T on the both sides of (2.4.21) and using the fact that P(T) = PT, we obtain the

following alternative expression for N (0),

N (0) =PT −
∫ T

0
Ṗ (s) ds−

∫ T

0
HP (s) dW (s)

−
∫ T

0
KP (s) • dM (s), P− a.s.

(2.4.22)

Then, (2.4.18) is obtained by substituting (2.4.22) into the right-hand-side of (2.4.21).

Hence, the identification of P in (2.4.17) is not equivalent to the one for X ∈ V1

described via Definition 2.3.1. This is different from the corresponding deterministic

case described in [44].

Following the convention for X, we write P ∈ V2 to mean that P is identified with

(PT, Ṗ) ∈ V2 in the sense of (2.4.17).
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2.4.4 Derivation of the Dual Problem

Having obtain the identification of P, this subsection generalizes the result in

[44, Proposition 3.1] for the corresponding deterministic case and obtains an explicit

expression for φ∗ as stated by the following theorem.

Theorem 2.4.4. Suppose that Assumptions I, II & III hold for the functions L and l. In

addition, for any given (a∗T, r∗, k∗) ∈ L2 ×L21
F ×L21

F , let (PT, Ṗ, Q̇) ∈ L2 ×L21
F ×L21

F be

defined by 
PT = a∗T,

Ṗ (t) = r∗ (t) + E
[
k∗ (t + δ) I[0,T−δ] (t)

∣∣F (t)
]

,

Q̇ (t) = k∗ (t) ,

(2.4.23)

where we identify P with (PT, Ṗ) ∈ V2 by (2.4.17). Then, the function Ψ on V2×L21
F , defined

by

Ψ
(

P, Q̇
)
=IL∗

(
Ṗ−E

[
Q̇ (·+ δ) I[0,T−δ] (·)

∣∣F (·)
]

, Q̇, P, HP

)
+ Jl∗ (−PT)

−E

[∫ T

0

〈
Q̇ (t) , ξ (t− δ) I[0,δ] (t)

〉
dt
]
+ E [〈PT, ξ (0)〉]

−E

[∫ T

0

〈
Ṗ (t) , ξ (0)

〉
dt
]

,

(2.4.24)

satisfies Ψ(P, Q̇) = φ∗(a∗T, r∗, k∗), where HP is specified by (2.4.18).

Proof. First, by the Conditional Jensen Inequality, the Fubini Theorem (see [39, page 416])

and the law of total expectation, we see that

E

[{∫ T

0

∣∣∣E [ k∗ (s + δ) I[0,T−δ] (s)
∣∣∣F (s)

]∣∣∣ dt
}2
]

=E

[{
E

[∫ T

0

∣∣∣k∗ (s + δ) I[0,T−δ] (s)
∣∣∣ ds
∣∣∣F (t)

]}2
]

≤E

[
E

[{∫ T

0

∣∣∣k∗ (s + δ) I[0,T−δ] (s)
∣∣∣ ds
}2∣∣∣F (t)

]]

=E

[{∫ T

0

∣∣∣k∗ (s + δ) I[0,T−δ] (s)
∣∣∣ ds
}2
]

≤E

[{∫ T

0

∣∣k∗ (s)∣∣ds
}2
]

.

(2.4.25)

Since k∗ ∈ L21
F , (2.4.25) implies that E

[
k∗(·+ δ)I[0,T−δ](·)|F (·)

]
∈ L21

F . Therefore, Ṗ

defined by (2.4.23) is in L21
F noting r∗ ∈ L21

F . Now, using the optimal value function
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φ and the perturbed function F respectively defined by (2.4.9) and (2.4.8), we can

re-express φ∗ as

φ∗ (a∗T, r∗, k∗)

= sup
(r,k,aT)∈L2∞

F ×L2∞
F ×L2

{
� (aT, r, k) , (a∗T, r∗, k∗)� − inf

(Ẋ,HX)∈V1

FaT ,r,k (X)

}

= sup
(Ẋ,HX)∈V1

(r,k,aT)∈L2∞
F ×L2∞

F ×L2

{
E

[∫ T

0
〈(r (t) , k (t)) , (r∗ (t) , k∗ (t))〉 dt

]
+ E [〈a∗T, aT〉]

− IL
(
X + r, Xδ + k, Ẋ, HX

)
− Jl (X (T)− aT)

}
.

(2.4.26)

Then, setting a′T = X(T)− αT, r′ = X + r and k′ = Xδ + k, (2.4.26) gives that

φ∗ (a∗T, r∗, k∗)

= sup
a′T∈L2

{
E
[〈

a′T,−a∗T
〉]
− Jl

(
a′T
)}

+ sup
(Ẋ,HX)∈V1

(r′ ,k′)∈L2∞
F ×L2∞

F

{
E

[∫ T

0

{〈
r′ (t) , r∗ (t)

〉
+
〈
k′ (t) , k∗ (t)

〉}
dt
]

+ E [〈X (T) , a∗T〉]− IL
(
r′, k′, Ẋ, HX

)
−E

[∫ T

0
{〈X (t) , r∗ (t)〉+ 〈Xδ (t) , k∗ (t)〉} dt

]}
.

(2.4.27)

To simplify this, we use the relationship between X and Xδ and re-express the last two

summands on the right-hand-side of (2.4.27) as

E

[∫ T

0
{〈X (t) , r∗ (t)〉+ 〈Xδ (t) , k∗ (t)〉} dt

]
=E

[ ∫ T

0

{〈
X (t) , r∗ (t) + k∗ (t + δ) I[0,T−δ] (t)

〉
+
〈

ξ (t− δ) I[0,δ] (t) , k∗ (t)
〉 }

dt
]

=E

[ ∫ T

0

{〈
X (t) , r∗ (t) + E

[
k∗ (t + δ) I[0,T−δ] (t)

∣∣F (t)
]〉

+
〈

ξ (t− δ) I[0,δ] (t) , k∗ (t)
〉 }

dt
]

.

(2.4.28)

To apply the Itô formula below, noting the definition of Ṗ in (2.4.23), we have used

the technique of conditional expectation in the above equation which will be clear in

(2.4.31). Now, we use the expression (2.4.18) for P and then apply the Itô formula to
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〈P(t), X(t)〉 to get

〈ξ (0) , P (0)〉

=E [〈X (T) , PT〉]−E

[∫ T

0

〈
Ẋ (t) , P (t)

〉
dt
]
−E

[∫ T

0

〈
X (t) , Ṗ (t)

〉
dt
]

−E

[∫ T

0
〈HX (t) , HP (t)〉 dt

]
,

(2.4.29)

where, as noted in Section 2.4.3, P(0) is a constant. Similarly, applying the Itô formula

to 〈P(t), ξ(0)〉, we re-express 〈ξ(0), P(0)〉 in (2.4.29) as

〈ξ (0) , P (0)〉 = −E

[∫ T

0

〈
ξ (0) , Ṗ (t)

〉
dt
]
+ E [〈ξ (0) , PT〉] . (2.4.30)

Then, replacing PT and Ṗ in (2.4.29) and in (2.4.30) by their definitions given in (2.4.23),

these two equations lead to

E

[∫ T

0

〈
X (t) , r∗ (t) + E

[
Q̇ (t + δ) I[0,T−δ] (t)

∣∣F (t)
]〉

dt
]

=E [〈X (T), a∗T〉 − 〈ξ (0) , a∗T〉]

−E

[ ∫ T

0

{ 〈
Ẋ (t) , P (t)

〉
+ 〈HX (t) , HP (t)〉

−
〈

ξ (0) , r∗ (t) + E
[

Q̇ (t + δ) I[0,T−δ] (t)
∣∣F (t)

]〉 }
dt
]

,

(2.4.31)

the left-hand-side of which is equal to the first term of the right-hand-side of the second

equality in (2.4.28). Finally, we substitute (2.4.28) into (2.4.27), using (2.4.31), (2.4.6)

and (2.4.7), to obtain

φ∗ (a∗T, r∗, k∗) = sup
(Ẋ,HX)∈L21

F ×L22
F

(r′ ,k′)∈L2∞
F ×L2∞

F

{
�
(
r′, k′, Ẋ, HX

)
,
(
r∗, Q̇, P, HP

)
� −IL

(
r′, k′, Ẋ, HX

)}

+ sup
a′T∈L2

{
� −a∗T, a′T � −Jl

(
a′T
)}

+ E [〈ξ (0) , a∗T〉]

−E

[∫ T

0

〈
ξ (0) , r∗ (t) + E

[
Q̇ (t + δ) I[0,T−δ] (t)

∣∣F (t)
]〉

dt
]

−E

[∫ T

0

〈
ξ (t− δ) I[0,δ] (t) , Q̇ (t)

〉
dt
]

=IL∗
(

Ṗ−E
[

Q̇(·+ δ)I[0,T−δ] (·)
∣∣F (·)

]
, Q̇, P, HP

)
+ Jl∗ (−PT)

+ E [〈PT, ξ (0)〉]−E

[∫ T

0

〈
Q̇ (t) , ξ (t− δ) I[0,δ] (t)

〉
dt
]

−E

[∫ T

0

〈
Ṗ (t) , ξ (0)

〉
dt
]

as required.
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Note that, although the relationship we obtained above between Ψ and φ∗ is similar

to that between the corresponding functions in the deterministic situation, our proof is

different from that in [44, Proposition 3.1]. In particular, in addition to the identification

of P mentioned early, we have resolved the anticipated (or time-advanced) issue for the

variable Q̇(t + δ) by the techniques of conditional expectation. Note also that, using

(2.4.23), we can re-express the pairing� (aT, r, k) , (a∗T, r∗, k∗) � given by (2.4.12) in

terms of (P, Q̇) ∈ V2 ×L21
F as

� (aT, r, k) ,
(

P, Q̇
)
�

=E

[∫ T

0

〈
Ṗ (t)−E

[
Q̇ (t + δ) I[0,T−δ] (t)

∣∣F (t)
]

, r (t)
〉

dt
]
+ E [〈PT, αT〉]

+ E

[∫ T

0

〈
Q̇ (t) , k (t)

〉
dt
]

,

(2.4.32)

where P is identified with (PT, Ṗ) ∈ V2 via (2.4.17). This generalizes the pairing for the

corresponding deterministic case described in [44, page 183]. Comparing (2.4.32) with

the pairing in the Markovian convex problems (see [2, page 394]), Q̇ is introduced here

to pair with k to allow Xδ in Φ. Then, using the pairing (2.4.32) and Theorem 2.4.4, we

can re-express Ψ(P, Q̇) given by (2.4.24) as follow

Ψ
(

P, Q̇
)
= sup

(r,k,aT)∈L2∞
F ×L2∞

F ×L2

{
�
(

P, Q̇
)

, (aT, r, k)� −φ (aT, r, k)
}

(2.4.33)

for (P, Q̇) ∈ V2 ×L21
F . Since IL∗ > −∞ and Jl∗ > −∞ by Proposition 2.3.4, we see that

Ψ is strictly greater than −∞ and is convex.

Definition 2.4.5. Ψ defined by (2.4.24) is called a stochastic convex dual function of Φ,

or simply dual function. Associated with Ψ, the stochastic convex dual problem of

the primal problem (2.3.26) over V2 ×L21
F , or simply dual problem, is to find (P̄, ˙̄Q)

realizing

inf
(P,Q̇)∈V2×L21

F

Ψ
(

P, Q̇
)

. (2.4.34)

where P is identified with (PT, Ṗ) using (2.4.17). Similarly to the primal problem

described in Definition 2.3.5, any pair (P, Q̇) ∈ V2 ×L21
F such that Ψ(P, Q̇) < ∞ will

be called a feasible solution. We shall call a feasible solution (P̄, ˙̄Q) which achieves the

infimum (2.4.34) an optimal solution of the dual problem.
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Note that, although we call Ψ the dual function to Φ, the space V2 ×L21
F on which

Ψ is defined is not the paired space, with respect to the pairing introduced in Section

2.4.1, to the space V1 on which Φ is defined on account of the fact that the convex

problems we study also depends Xδ.

Remark 2.4.6. If there is no delay in the model, corresponding to δ = 0, then the Xδ is

identical with X so that there exists a function L̂ : Ω× [0, T]×Rn ×Rn ×Rn×m → R∪

{∞} satisfying the corresponding Assumptions I, II & III such that L(ω, t, x, y, z, h) =

L̂(ω, t, x, z, h) holds. Furthermore, the corresponding optimal value function φ depends

only on (aT, r). Consequently, Theorem 2.4.4 gives that P = (PT, Ṗ) ∈ V2 is identical

with (a∗T, r∗). This implies that Ψ(P) = φ∗(a∗T, r∗), where Ψ : V2 → R ∪ {∞} is

described by

Ψ (P) =IL̂∗
(

Ṗ, P, HP
)
+ Jl∗ (−PT) + E [〈PT, ξ (0)〉]

−E

[∫ T

0

〈
Ṗ (t) , ξ (0)

〉
dt
]

.
(2.4.35)

Applying the same technique as that used in (2.4.30) to the last two terms on the

right-hand-side of (2.4.35), we see that

Ψ (P) = IL̂∗
(

Ṗ, P, HP
)
+ Jl∗ (−PT) + 〈P (0) , ξ (0)〉 .

In particular, the dual function given in (2.1.8) is recovered by the above equation with

the fixed initial value 〈P(0), ξ(0)〉.

2.5 Conditions for Optimality

We now study the crucial relationship between the primal problem (2.3.26) and

the dual problem (2.4.34) which leads the necessary and sufficient conditions for the

optimality of these two problems.

Proposition 2.5.1. For any X = (Ẋ, HX) ∈ V1 and (P, Q̇) ∈ V2 ×L21
F ,

Φ (X) + Ψ
(

P, Q̇
)
≥ 0. (2.5.1)

Note that (2.5.1) has been shown in (2.4.14) noting Ψ(P, Q̇) = φ∗(α∗T, r∗, k∗) obtained by

Theorem 2.4.4. In the following, we give an alternative proof for this inequality using

the expression (2.4.24) directly.
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Proof. Fix X ∈ V1 and (P, Q̇) ∈ V2 ×L21
F . Then, (2.3.25) and (2.4.24) together give that

Φ (X) + Ψ
(

P, Q̇
)

=IL∗
(

Ṗ−E
[

Q̇ (·+ δ) I[0,T−δ] (·)
∣∣F (·)

]
, Q̇, P, HP

)
+ IL

(
X, Xδ, Ẋ, HX

)
+ Jl∗ (−PT) + Jl (X (T)) + E [〈PT, ξ (0)〉]−E

[∫ T

0

〈
Ṗ (t) , ξ (0)

〉
dt
]

−E

[∫ T

0

〈
Q̇ (t) , ξ (t− δ) I[0,δ] (t)

〉
dt
]

.

(2.5.2)

Since IL∗ and Jl∗ are the conjugate convex functions of IL and Jl respectively, we have

IL∗
(

Ṗ−E
[

Q̇ (·+ δ) I[0,T−δ] (·)
∣∣F (·)

]
, Q̇, P, HP

)
≥E

[∫ T

0

〈
X (t) , Ṗ (t) + E

[
Q̇ (t + δ) I[0,T−δ] (t)

∣∣F (t)
]〉

dt
]

+ E

[∫ T

0

〈
Q̇ (t) , Xδ (t)

〉
dt
]
+ E

[∫ T

0

〈
P (t) , Ẋ (t)

〉
dt
]

+ E

[∫ T

0
〈HP (t) , HX (t)〉 dt

]
− IL

(
X, Xδ, Ẋ, HX

)
(2.5.3)

and

Jl∗ (−PT) ≥ −E [〈PT, X (T)〉]− Jl (X (T)) . (2.5.4)

Then, substituting (2.5.3) and (2.5.4) into the right-hand-side of (2.5.2), we obtain that

Φ (X) + Ψ
(

P, Q̇
)

≥E

[∫ T

0

〈
X (t) , Ṗ (t) + E

[
Q̇ (t + δ) I[0,T−δ] (t)

∣∣F (t)
]〉

dt
]
+ E

[∫ T

0

〈
P (t) , Ẋ (t)

〉
dt
]

+ E

[∫ T

0

〈
Q̇ (t) , Xδ (t)

〉
dt
]
+ E

[∫ T

0
〈HP (t) , HX (t)〉 dt

]
−E [〈PT, X (T)〉]

−E

[∫ T

0

〈
Q̇ (t) , ξ (t− δ) I[0,δ] (t)

〉
dt
]
+ 〈ξ (0) , P (0)〉 ,

where we have used (2.4.30). Moreover, substituting (2.4.29) into the right-hand-side

of the above inequality, we have

Φ (X) + Ψ
(

P, Q̇
)

≥E

[∫ T

0

〈
X (t) , Q̇ (t + δ) I[0,T−δ] (t)

〉
dt
]
+ E

[∫ T

0

〈
Q̇ (t) , Xδ (t)

〉
dt
]

−E

[∫ T

0

〈
Q̇ (t) , ξ (t− δ) I[0,δ] (t)

〉
dt
]

,

which gives (2.5.1) noting the relationship between X and Xδ.
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It is straightforward to see that (2.5.1) implies

inf
(P,Q̇)∈V2×L21

F

Ψ
(

P, Q̇
)
+ inf

X∈V1
Φ (X) ≥ 0. (2.5.5)

In particular, the equality in (2.5.1), as well as that in (2.5.5), is not satisfied in general.

In the following theorem, we use the techniques of stochastic calculus, together with the

relationship of conjugate convex functions between L and L∗, as well as that between l

and l∗, obtained in Section 2.4.1 to derive the necessary and sufficient conditions for

optimality of both the primal and dual problems. This generalizes those described

by (2.1.9) and (2.1.10) to the context of time-delay and generalises those described by

(2.1.13) and (2.1.14) to the stochastic context.

Note that Theorem 2.5.2 (iii) below plays an important role in obtaining the Hamil-

tonian and adjoint equation in the stochastic maximum principle for stochastic optimal

control problems with discrete delay in the next chapter.

Theorem 2.5.2. For any X̄ ∈ V1 and (P̄, ˙̄Q) ∈ V2 ×L21
F , the following three statements are

equivalent:

(i)

Φ (X̄) + Ψ
(

P̄, ˙̄Q
)
= 0. (2.5.6)

(ii) X̄ and (P̄, ˙̄Q) are optimal solutions of the primal problem (2.3.26) and the dual problem

(2.4.34), and also the equality in (2.5.5) is attained at X̄ and (P̄, ˙̄Q).

(iii)

L∗
(

t, ˙̄P (t)−E
[

˙̄Q (t + δ) I[0,T−δ] (t)
∣∣F (t)

]
, ˙̄Q (t) , P̄ (t) , HP̄ (t)

)
+ L

(
t, X̄ (t) , X̄δ (t) , ˙̄X (t) , HX̄ (t)

)
−
〈

˙̄Q (t) , X̄δ (t)
〉

−
〈

˙̄P (t)−E
[

˙̄Q (t + δ) I[0,T−δ] (t)
∣∣F (t)

]
, X̄ (t)

〉
−
〈

P̄ (t) , ˙̄X (t)
〉
− 〈HX̄ (t) , HP̄ (t)〉 = 0, P⊗ Leb− a.s.

(2.5.7)

and

l (X̄ (T)) + l∗ (−P̄T) + 〈P̄T, X̄ (T)〉 = 0, P− a.s. (2.5.8)

Proof. (i)⇔(ii): Suppose that (2.5.6) holds. Then, it follows from (2.5.1) that, for any

(P, Q̇) ∈ V2 ×L21
F ,

Φ (X̄) + Ψ
(

P, Q̇
)
= −Ψ

(
P̄, ˙̄Q

)
+ Ψ

(
P, Q̇

)
≥ 0,
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which implies that (P̄, ˙̄Q) is an optimal solution of the dual problem (2.4.34). The

conclusion that X̄ is an optimal solution of the primal problem (2.3.26) follows from

the argument at the end of Section 2.4.2 together with Theorem 2.4.4. Then, the fact

that the equality in (2.5.5) is attained at X̄ and (P̄, ˙̄Q) follows from (2.5.6).

Conversely, if X̄ and (P̄, ˙̄Q) are optimal to these two problems respectively, then

(2.5.6) follows by combining (2.5.1) with the assumption that the equality therein is

attained at X̄ and (P̄, ˙̄Q).

(i)⇔(iii): Suppose that (2.5.7) and (2.5.8) hold for the given X̄ and (P̄, ˙̄Q). Taking

the integral of the left-hand-side of (2.5.7) over [0, T], adding the left-hand-side of (2.5.8)

and then taking the expectation, we have (2.5.6) using the expressions (2.3.25) for Φ

and (2.4.24) for Ψ.

Conversely, it follows from the expressions (2.3.25) and (2.4.24) that (2.5.6) is equiv-

alent to the equality

E

[∫ T

0
A1 (t) dt

]
+ E [A2] = 0, (2.5.9)

where A1 is the stochastic process defined by the left-hand-side of (2.5.7) and A2 is

the random variable defined by the left-hand-side of (2.5.8). Since, for fixed (ω, t) ∈

Ω× [0, T], L∗ and l∗ are the conjugate convex functions of L and l respectively described

by (2.4.1) and (2.4.2), A1 and A2 are nonnegative. Then, the equality (2.5.9) implies that

A1(t) = 0, P⊗ Leb-a.s. and A2 = 0, P-a.s., so that both (2.5.7) and (2.5.8) hold.

2.6 A More General Model

The theory studied in the preceding sections can be extended to a more general

model. In this section, we concentrate on a case which will be used in Section 3.4

to derive the maximum principle for stochastic optimal control problems with both

discrete and exponential moving average delays.

The Primal Problem and Optimal Value Function

In addition to X ∈ V1, we identify (Ẏ, HY) ∈ V1 with the continuous F (t)-adapted

stochastic process Y : Ω× [0, T]→ Rn defined by

Y (t) = y0 +
∫ t

0
Ẏ (s) ds +

∫ t

0
HY (s) dW (s), ∀t ∈ [0, T] ,
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in a similar fashion as the identification of X with (Ẋ, HX) ∈ V1 via Definition 2.3.1,

where y0 ∈ Rn is a given constant. The functions La : Ω× [0, T]×Rn×Rn×Rn×Rn×

Rn ×Rn×m ×Rn×m → R ∪ {∞} and la : Ω×Rn ×Rn → R ∪ {∞} are modifications

of L and l given in Section 2.3.2, so that the corresponding ILa and Jla also depend

on (Y, Ẏ, HY) and Y(T) respectively. Moreover, we assume that La and la satisfy the

following assumptions which are modifications of Assumptions I, II & III in Section

2.3.2 due to the introduction of Y.

Assumption* I. (i) La and la are not identically ∞; La is a lower semi-continuous

convex function on Rn ×Rn ×Rn ×Rn ×Rn ×Rn×m ×Rn×m, for any (ω, t) ∈ Ω×

[0, T], and la is a lower semi-continuous convex function on Rn ×Rn, for any ω ∈ Ω.

(ii) La is F ∗ ×B(Rn)×B(Rn)×B(Rn)×B(Rn)×B(Rn)×B(Rn×m)×B(Rn×m)-

measurable and la is F ×B(Rn)×B(Rn)-measurable.

Assumption* II. (i) There exist (X∗, Y∗, Z∗, Z∗1 , Z∗2 , H∗1 , H∗2 ) ∈ L21
F × L21

F × L21
F ×

L2∞
F × L2∞

F × L22
F × L22

F and a R-valued F (t)-progressively measurable stochastic

process va satisfying (2.3.15) such that, for any (x, y, z, z1, z2) ∈ Rn×5 and (h1, h2) ∈

Rn×m ×Rn×m,

La (t, x, y, z, z1, z2, h1, h2)

≥ 〈x, X∗ (t)〉+ 〈y, Y∗ (t)〉+ 〈z, Z∗ (t)〉+ 〈z1, Z∗1 (t)〉+ 〈z2, Z∗2 (t)〉

+ 〈h1, H∗1 (t)〉+ 〈h2, H∗2 (t)〉 −va (t) , P⊗ Leb− a.s.

(ii) There exist (X∗T, Y∗T) ∈ L2 × L2 and a R-valued F (T)-measurable random

variable ϑa satisfying (2.3.17) such that, for any (x, y) ∈ Rn×2,

la (x, y) ≥ 〈x, X∗T〉+ 〈y, Y∗T〉 − ϑa, P− a.s.

Assumption* III. (i) There exist (X, Y, Z, Z1, Z2, H1, H2) ∈ L2∞
F × L2∞

F × L2∞
F ×

L21
F ×L21

F ×L22
F ×L22

F and a R-valued F (t)-progressively measurable stochastic pro-

cess τa satisfying (2.3.19) such that

La (t, X (t) , Y (t) , Z (t) , Z1 (t) , Z2 (t) , H1 (t) , H2 (t)) ≤ τa (t) , P⊗ Leb− a.s.
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(ii) There exist (XT, YT) ∈ L2 × L2 and a R-valued F (T)-measurable random

variable χa satisfying (2.3.21) such that

la (XT, YT) ≤ χa, P− a.s.

Now, under Assumptions* I, II & III for La and la, the corresponding stochastic

convex (primal) problem with discrete delay is to find a pair of (X̄, Ȳ) ∈ V1 ×V1

realizing

inf
(X,Y)∈V1×V1

Φa (X, Y) , (2.6.1)

where Φa is the primal function defined by

Φa (X, Y) = ILa

(
X, Y, Xδ, Ẋ, Ẏ, HX, HY

)
+ Jla (X (T) , Y (T)) . (2.6.2)

Similarly to Section 2.4.2, we define the corresponding optimal value function φa on

L2 ×L2 ×L2∞
F ×L2∞

F ×L2∞
F by

φa (a1, a2, r1, r2, k) = inf
(X,Y)∈V1×V1

Fa
a1,a2,r1,r2,k (X, Y) , (2.6.3)

where F is the perturbed function on V1 ×V1 expressed by

Fa
a1,a2,r1,r2,k (X, Y) =ILa

(
X + r1, Y + r2, Xδ + k, Ẋ, Ẏ, HX, HY

)
+ Jla (X (T)− a1, Y (T)− a2) .

The Dual Problem and Conditions for the Optimality

Adapting the techniques used in Section 2.4.3, in addition to P = (PT, Ṗ) ∈ V2, we

require another continuous F (t)-adapted stochastic process Pa to pair with Y ∈ V1,

where Pa : Ω× [0, T]→ Rn is identified with (Pa
T, Ṗa) ∈ V2 in the same sense to that P

is identified with (PT, Ṗ) using (2.4.17).

Note that, since the primal function (2.6.2) does not involve Yδ, the inclusion of

Pa in Ψa does not result in the dependence of Ψa on an additional Qa as was the case

for the inclusion of Q in Ψ. Then, we can generalize Theorem 2.4.4 to obtain the dual

function Ψa as follows.

Theorem 2.6.1. Suppose that Assumptions* I, II & III hold for the functions La and la. In

addition, for any given (a∗1 , a∗2 , r∗1 , r∗2 , k∗) ∈ L2 × L2 × L21
F × L21

F × L21
F , let (PT, Ṗ, Q̇) ∈
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L2 ×L21
F ×L21

F and (Pa
T, Ṗa) ∈ L2 ×L21

F be defined respectively by
PT = a∗1 ,

Ṗ (t) = r∗1 (t) + E
[
k∗ (t + δ) I[0,T−δ] (t)

∣∣F (t)
]

,

Q̇ (t) = k∗ (t) ,

and 
Pa

T = a∗2 ,

Ṗa (t) = r∗2 (t) ,

where we identify P and Pa respectively with (PT, Ṗ) ∈ V2 and (Pa
T, Ṗa) ∈ V2 using (2.4.17).

Then, the function Ψa on V2 ×V2 ×L21
F defined by

Ψa
(

P, Pa, Q̇
)
=IL∗a

(
Ṗ−E

[
Q̇ (·+ δ) I[0,T−δ] (·)

∣∣F (·)
]

, Ṗa, Q̇, P, Pa, HP, HPa

)
+ Jl∗a (−PT,−Pa

T)−E

[∫ T

0

〈
Q̇ (t) , ξ (t− δ) I[0,δ] (t)

〉
dt
]

−E

[∫ T

0

{〈
Ṗ (t) , ξ (0)

〉
+
〈

Ṗa (t) , y0
〉}

dt
]

+ E [〈PT, ξ (0)〉+ 〈Pa
T, y0〉]

(2.6.4)

satisfies Ψa(P, Pa, Q̇) = φ∗a (a∗1 , a∗2 , r∗1 , r∗2 , k∗), where φ∗a is the conjugate convex function of φa

defined by (2.6.3) and HP and HPa are specified by (2.4.18).

Building upon (2.6.4), the corresponding dual problem to (2.6.1) is to find (P̄, P̄a, ˙̄Q) ∈

V2 ×V2 ×L21
F realizing

inf
(P,Pa,Q̇)∈V2×V2×L21

F

Ψa
(

P, Pa, Q̇
)

. (2.6.5)

Based on the arguments used at the end of Section 2.4.1, we can obtain the relationship

between φ∗a and Φa in a similar fashion to (2.4.14) which, together with Ψa given by

(2.6.4), enables us to generalize Theorem 2.5.2 to obtain the following necessary and

sufficient conditions for the optimality.

Theorem 2.6.2. For any given (X̄, Ȳ) ∈ V1 ×V1 and (P̄, P̄a, ˙̄Q) ∈ V2 ×V2 ×L21
F , the

following three statements are equivalent:

(i)

Φa (X̄, Ȳ) + Ψa

(
P̄, P̄a, ˙̄Q

)
= 0.
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(ii) (X̄, Ȳ) and (P̄, P̄a, ˙̄Q) are optimal solutions of the primal problem (2.6.1) and the dual

problem (2.6.5) respectively, and

inf
(P,Pa,Q̇)∈V2×V2×L21

F

Ψa
(

P, Pa, Q̇
)
= − inf

(X,Y)∈V1×V1

Φa (X, Y) .

(iii)

L∗a
(

t, ˙̄P (t)−E
[

˙̄Q (t + δ) I[0,T−δ] (t)
∣∣F (t)

]
, ˙̄Pa (t) , ˙̄Q (t) , P̄ (t) , P̄a (t) ,

HP̄ (t) , HP̄a (t)
)
+ La

(
t, X̄ (t) , Ȳ (t) , X̄δ (t) , ˙̄X (t) , ˙̄Y (t) , HX̄ (t) , HȲ (t)

)
−
〈

˙̄Q (t) , X̄δ (t)
〉
−
〈

˙̄P (t)−E
[

˙̄Q (t + δ) I[0,T−δ] (t)
∣∣F (t)

]
, X̄ (t)

〉
−
〈

˙̄Pa (t) , Ȳ (t)
〉
−
〈

P̄a (t) , ˙̄Y (t)
〉
−
〈

P̄ (t) , ˙̄X (t)
〉
− 〈HX̄ (t) , HP̄ (t)〉

− 〈HP̄a (t) , HȲ (t)〉 = 0, P⊗ Leb− a.s. (2.6.6)

and
la (X̄ (T), Ȳ (T)) + l∗a (−P̄T,−P̄a

T) + 〈P̄T, X̄ (T)〉

+
〈

P̄a
T, Ȳ (T)

〉
= 0, P− a.s.

(2.6.7)

44



CHAPTER 3

STOCHASTIC MAXIMUM PRINCIPLE IN STOCHASTIC

OPTIMAL CONTROL PROBLEMS WITH DELAY

3.1 Introduction

Having obtained the results for conjugate duality in the previous chapter, in partic-

ular the conditions for optimality in Theorems 2.5.2 & 2.6.2, this chapter applies these

results to generalize the maximum principles studied in [6, 29, 30] for stochastic optimal

control problems with discrete delay and those with both discrete and exponential

moving average delays.

3.1.1 Literature Review

We first review some basic results for the stochastic maximum principle, together

with some techniques of conjugate duality carried out by Bismut in [2], mainly taken

from [45, Chapter 3], for Markovian optimal control problems. After that, we describe

three generalizations [6, 29, 30] of this approach in solving the stochastic optimal control

problems with delay.

The Markovian Optimal Control Problem

We continue to work with the fixed time horizon T ∈ (0, ∞), complete probability

space (Ω,F , P), standard m-dimensional Brownian motion W and filtration F =

{F (t)}t∈[0,T] generated by W. In addition, let U ⊂ Rr be a convex set throughout this

chapter, where r is an positive integer. For given functions b : [0, T]×Rn ×U→ Rn
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and σ : [0, T] × Rn ×U → Rn×m, let the continuous F (t)-adapted state process

X : Ω× [0, T] → Rn be described by the controlled stochastic differential equation

(SDE)
dX (t) = b (t, X (t) , u (t)) dt + σ (t, X (t) , u (t)) dW (t) , t ∈ [0, T] ,

X (0) = x0 ∈ Rn,
(3.1.1)

where u : Ω× [0, T] → U is an F (t)-adapted control (process) selected from a given

admissible control set U such that the controlled SDE (3.1.1) admits a unique strong

solution (see [17, Definition 5.2.1]) for every u ∈ U . For given functions G : [0, T]×

Rn ×U→ R and g : Rn → R, the cost function J is defined by

J (u) = E

[∫ T

0
G (t, X (t) , u (t)) dt

]
+ E [g (X (T))] , (3.1.2)

where the first and second terms on the right-hand-side of (3.1.2) are respectively

called the running and terminal costs. Then, the Markovian optimal control problem

associated with the state system (3.1.1) and the cost function (3.1.2) is to find ū ∈ U

realizing

inf
u∈U

J (u) . (3.1.3)

We shall call ū an optimal control. For notational simplicity, hereafter, we refer to this

general Markovian optimal control problem through the equation describing optimality,

i.e. we shall refer to the above Markovian optimal control problem and the definitions

therein as (3.1.3).

Instead of minimizing the cost function among u ∈ U directly, the (sufficient)

stochastic maximum principle says that ū is an optimal control if, under certain con-

cavity and convexity conditions on the Hamiltonian (function)H (given below) and g

respectively, ū maximizesH in the sense that, P⊗ Leb-a.s.

H (t, X̄ (t) , ū (t) , P̄ (t) , H̄ (t)) = max
u∈U
H (t, X̄ (t) , u, P̄ (t) , H̄ (t)) , (3.1.4)

whereH is defined by

H (t, x, u, p, h) = 〈p, b (t, x, u)〉+ 〈h, σ (t, x, u)〉 − G (t, x, u) ; (3.1.5)

X̄ is the unique strong solution of the controlled SDE (3.1.1) with u replaced by ū;

and (P̄, H̄) is the solution of the following controlled classical backward stochastic
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differential equation (BSDE) with (X, u) replaced by (X̄, ū)
dP (t) = −∂H

∂x
(t, X (t) , u (t) , P (t) , H (t)) + H (t) dW (t) ,

t ∈ [0, T] ,

P (T) = −∂g
∂x

(X (T)) .

(3.1.6)

Hereafter, the above controlled BSDE and (P, H) are respectively referred to as the

adjoint equation and the adjoint process in the context of the stochastic maximum

principle (see [45, Theorem 3.5.2]).

On the other hand, as noted in Chapter 1, the conjugate duality method has played

an important role in the study of stochastic maximum principles. Bismut in [2, Section 5]

reformulates the Markovian optimal control problem (3.1.3) with g(x) = 0 as a par-

ticular Markovian convex problem (2.1.6) by respectively defining the corresponding

convex functions L and l as

L (t, x, z, h) =


inf

u
G (t, x, u) , if u ∈ U such that

 z = b (t, x, u) ,

h = σ (t, x, u) ,

∞, otherwise,

and l(x, y) = 0. Then, the conditions for the optimality of convex problems given in

[2, Theorem IV-2] provides a way to derive the Hamiltonian (3.1.5) and the adjoint

equation (3.1.6) with − ∂g
∂x (X(T)) ≡ 0 (see [2, Theorem V-1]). More precisely, if there

exist X̄ and P̄ respectively identified with (X̄(0), ˙̄X, HX̄) and (P̄(0), ˙̄P, HP̄) in the sense

of (2.1.7) satisfying the necessary and sufficient condition described by (2.1.9) and

(2.1.10), then it is necessary that there exists a ū ∈ U realizing (3.1.3) with (ū, X̄, P̄)

satisfying

• X̄ is the unique strong solution of the controlled SDE (3.1.1) with u replaced by ū,

i.e. 
˙̄X (t) = b (t, X̄ (t) , ū (t)) ,

HX̄ (t) = σ (t, X̄ (t) , ū (t)) ;
P⊗ Leb− a.s.

• (P̄, HP̄) is the solution of the adjoint equation (3.1.6) with (X, u) replaced by

(X̄, ū) and P(T) ≡ 0;

• the maximizing equation (3.1.4) holds.
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However, Bismut in [2] does not investigate further the corresponding stochastic

maximum principle in the context of conjugate duality.

The Stochastic Optimal Control Problem with Discrete Delay

Generalizing the Markovian optimal control problem, if the model, comprising

the state system and cost function, involves a discretely delayed effect on the state

process, the corresponding control problem is referred to as a stochastic optimal control

problem with discrete delay. More specifically, for given functions b : [0, T]×Rn ×

Rn ×U→ Rn and σ : [0, T]×Rn ×Rn ×U→ Rn×m, we suppose that the continuous

F (t)-adapted state process X : Ω× [−δ, T] → Rn satisfies the controlled stochastic

differential delay equation (SDDE)
dX (t) = b (t, X (t) , Xδ (t) , u (t)) dt

+ σ (t, X (t) , Xδ (t) , u (t)) dW (t) , t ∈ [0, T] ,

X (t) = ξ (t) , t ∈ [−δ, 0] ,

(3.1.7)

where, as defined in the previous chapter, δ ∈ (0, T) is a given constant, ξ is the

continuous deterministic initial path for X and Xδ(t) = X(t− δ) for t ∈ [0, T]. The

admissible control space U here is as defined in a similar fashion to that in (3.1.3).

Moreover, the cost function Jd is defined by

Jd (u) = E

[∫ T

0
G (t, X (t) , Xδ (t) , u (t)) dt + g (X (T))

]
, (3.1.8)

where G : [0, T]×Rn ×Rn ×U→ R and g : Rn → R are given functions. Then, the

stochastic optimal control problem with discrete delay associated with the state system

(3.1.7) and the cost function (3.1.8) is to find ū ∈ U realizing

inf
u∈U

Jd (u) . (3.1.9)

As before, we shall refer to this control problem and the definitions therein as (3.1.9).

Some progress has been made on the stochastic maximum principle for this type of

control problems. For example, if the control problem considered in [6] is restricted to

(3.1.9) i.e. the model is independent of the discrete delayed control uδ, Chen and Wu in

[6, Theorem 3.2] establish a stochastic maximum principle, where the Hamiltonian and
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adjoint equation are introduced. Those are,

Hd (t, x, y, u, p, h) = 〈b (t, x, y, u) , p〉+ 〈σ (t, x, y, u) , h〉 − G (t, x, y, u) (3.1.10)

and 
dP (t) = −

{
∂Hd

∂x
(t) + E

[
∂Hd

∂y
(t + δ) I[0,T−δ] (t)

∣∣∣F (t)
]}

dt

+ H (t) dW (t) , t ∈ [0, T] ,

P (T) = −∂g
∂x

(X (T)) .

(3.1.11)

Here we have used the shorthand notation

∂Hd

∂x
(t) =

∂Hd

∂x
(t, X (t) , Xδ (t) , u (t) , P (t) , H (t)) (3.1.12)

and similarly for the partial derivative ∂Hd
∂y (t + δ). Note that the above adjoint equation

is an anticipated controlled BSDE which, comparing with (3.1.6), also depends on the

anticipated (or time-advanced) terms X(t + δ), P(t + δ) and H(t + δ). Nevertheless,

rather than deriving them, Chen and Wu in [6] just introduce the above Hamiltonian

and adjoint equation and then prove the corresponding stochastic maximum principle

by techniques of stochastic calculus. However, by merely stating them, they do not

consider further generalization as we do in this chapter.

Inclusion of an Exponential Moving Average Delay

Building upon the control problem (3.1.9), if the model also depends an exponential

moving average delay (specified below), the corresponding control problem is referred

to as having both discrete and exponential moving average delays. More precisely,

for given functions b : [0, T]×Rn ×Rn ×Rn ×U → Rn and σ : [0, T]×Rn ×Rn ×

Rn ×U → Rn×m, we suppose that the continuous F (t)-adapted state process X :

Ω× [−δ, T]→ Rn satisfies the controlled SDDE
dX (t) = b (t, X (t) , Xa (t) , Xδ (t) , u (t)) dt

+ σ (t, X (t) , Xa (t) , Xδ (t) , u (t)) dW (t) , t ∈ [0, T] ,

X (t) = ξ (t) , t ∈ [−δ, 0] ,

(3.1.13)

where ξ, Xδ and δ are defined as before and Xa denotes the exponential moving average

delay expressed by

Xa (t) =
∫ 0

−δ
eλrX (t + r) dr, λ > 0.
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For given functions G : [0, T]×Rn ×Rn ×Rn ×U → R and g : Rn ×Rn → R, the

corresponding cost function Jad is defined by

Jad (u) = E

[∫ T

0
G (t, X (t) , Xa (t) , Xδ (t) , u (t)) dt + g (X (T) , Xa (T))

]
(3.1.14)

where G and g are given functions. Then, the stochastic optimal control problem with

both discrete and exponential moving average delays associated with the state system

(3.1.13) and the cost function (3.1.14) is to find ū ∈ U realizing

inf
u∈U

Jad (u) , (3.1.15)

where the admissible control set U is defined similarly as before. Similarly, this control

problem and the definitions therein are referred to as (3.1.15).

As mentioned in Chapter 1, the authors of [29] and [30] use the stochastic maximum

principles for solving the control problem (3.1.15). However, the Hamiltonian functions

and the associated adjoint equations introduced there are very different. More explicitly,

Øksendal and Sulem in [29, Section 2] introduce a Hamiltonian as

Had (t, x, y, z, u, p, h)

= 〈b (t, x, y, z, u) , p1〉+ 〈σ (t, x, y, z, u) , h1〉 − G (t, x, y, z, u)

+
〈(

x− λy− eλδz
)

, p2

〉
,

(3.1.16)

where p = (p1, p2, p3)> and h = (h1, h2)>. Comparing this Hamiltonian with (3.1.5)

for the Markovian optimal control problem and with (3.1.10) for the stochastic control

problem with discrete delay respectively, the introduction of the last term on the right-

hand-side of (3.1.16) is due to the dependence on Xa (see [29, Lemma 2.1]). Then,

associated with (3.1.16), Øksendal and Sulem in [29] introduce the adjoint equations

defined by a triple of classical controlled BSDEs
dP1 (t) = −

∂Had

∂x
(t, X (t) , Xa (t) , Xδ (t) , u (t) , P (t) , H (t)) dt

+ H1 (t) dW (t) , t ∈ [0, T] ,

P1 (T) = −
∂g
∂x

(X (t) , Xa (t)) ,

(3.1.17)



dP2 (t) = −
∂Had

∂y
(t, X (t) , Xa (t) , Xδ (t) , u (t) , P (t) , H (t)) dt

+ H2 (t) dW (t) , t ∈ [0, T] ,

P2 (T) = −
∂g
∂y

(X (t) , Xa (t)) ,

(3.1.18)
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dP3 (t) = −

∂Had

∂z
(t, X (t) , Xa (t) , Xδ (t) , u (t) , P (t) , H (t)) dt,

t ∈ [0, T] ,

P3 (T) = 0.

(3.1.19)

Having introduced these Hamiltonian and adjoint equations, Øksendal and Sulem

in [29, Theorem 2.2] establish a stochastic maximum principle which requires P3 to

be identically zero. As noted in [29, Theorem 3.1], this imposes a restriction that the

model needs to satisfy certain conditions to ensure that the requirement is satisfied.

Clearly, the control problem (3.1.9) can be regarded as a special case of (3.1.15), for

example, by defining b, σ, G and g in (3.1.13) and (3.1.14) to be independent of Xa

and Xa(T) respectively. However, the stochastic maximum principle obtained in [29,

Theorem 2.2] cannot hold if the model just involves Xδ. In fact, as pointed out in

[29, Lemma 2.1], introduction of the Hamiltonian (3.1.16) and the adjoint equations

(3.1.17)-(3.1.19) depends on the involvement of Xa. In other words, the results obtained

in [29] do not imply those studied in [6].

On the other hand, if the model studied in [30] is jump-free, Øksendal, Sulem

and Zhang in [30, Theorem 3.1] provide a stochastic maximum principle for a special

case of the control problem (3.1.15), where g is independent of its second component

corresponding to Xa(T). The Hamiltonian in [30, page 574] is defined by

Had (t, x, y, z, u, p, h)

= 〈b (t, x, y, z, u) , p〉+ 〈σ (t, x, y, z, u) , h〉 − G (t, x, y, z, u) .
(3.1.20)

This Hamiltonian is described in a similar manner to (3.1.10) studied in [6], but is

different from (3.1.16) which, as mentioned before, has an extra term related to the

exponential moving average delay. Then, instead of a triple of classical BSDEs, the

authors associate the above Hamiltonian with the adjoint equation

dP(t) = −
{

E

[
∂Had

∂z
(t + δ) I[0,T−δ] (t) + eλt

∫ t+δ

t

∂Had

∂y
(s) e−λs I[0,T](s)ds

∣∣∣F (t)
]

+
∂Had

∂x
(t)

}
dt + H (t) dW (t) , t ∈ [0, T] ,

P (T) = −∂g
∂x

(X (T)) ,

(3.1.21)
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where we have used the shorthand notation

∂Had

∂x
(t) =

∂Had

∂x
(t, X (t) , Xa (t) , Xδ (t) , u (t) , P (t) , H (t))

and similarly for the partial derivatives ∂Had
∂z (t + δ) and ∂Had

∂y (t). If the model just

involves Xδ so that the Hamiltonian (3.1.20) is independent of y, then the term ∂Ha
∂y (t)

in (3.1.21) is identically zero. This implies that the above adjoint equation reduces to

(3.1.11). In other words, the corresponding stochastic maximum principle stated in [30,

Theorem 3.1] implies the one studied in [6, Theorem 3.2]. Unfortunately, although the

restriction in [29] mentioned above does not appear, the results obtained in [30] cannot

be applied if the terminal cost in (3.1.14) depends on Xa(T).

3.1.2 Main Results and Structure of the Chapter

To resolve the restrictions in [6, 29, 30] mentioned in Section 3.1.1, this chapter

studies stochastic maximum principles for both the control problems (3.1.9) & (3.1.15)

using the results of conjugate duality method obtained in Chapter 2. These results,

stated in Theorem 3.3.2 & 3.4.2 respectively, generalize the results of [2, Section 5]. If

the model just involves a discrete delay, the Hamiltonian and the adjoint equation

obtained here coincide with (3.1.10) and (3.1.11). If the model involves both discrete

and exponential moving average delays, then the corresponding Hamiltonian is similar

to (3.1.16) introduced in [29] but the adjoint equations are different from (3.1.17)-(3.1.19)

and (3.1.21) studied in [29, 30]. In particular, those restrictions are removed by our new

adjoint equations.

The remainder of the chapter is organized as follows. Section 3.2 generalizes

the technique in [2] to reformulate the control problem (3.1.9) to a particular convex

problem studied in the previous chapter. We also give a solvable example to describe

how the conditions for optimality given in Theorem 2.5.2 can be used to obtain an

optimal control. Then, under certain hypotheses, Section 3.3 applies those conditions

to obtain the stochastic maximum principle for that control problem. Furthermore,

modifying the arguments used in the preceding sections of this chapter, Section 3.4

applies the results obtained in Section 2.6 to establish the stochastic maximum principle

for the control problem (3.1.15). Finally, Section 3.5 discusses the extension to a regime-

52



switching model and gives a different proof for the stochastic maximum principle

obtained in Section 3.4.

3.2 Reformulation to a Convex Problem

To apply the results obtained in the previous chapter, this section adapts the tech-

nique in [2, Example II-3] to reformulate the stochastic optimal control problem with

discrete delay (3.1.9) as a particular stochastic convex (primal) problem with discrete

delay (2.3.26) as follows. Note that, we first assume that the filtration F is generated

only by W. The inclusion of a Markov chain α, i.e. a regime-switching model, will be

considered in Section 3.5.1.

For every t ∈ [0, T], (x, y, z) ∈ Rn×3 and h ∈ Rn×m, we define the set C =

C(t, x, y, z, h) by

C (t, x, y, z, h) =
{

u ∈ U
∣∣z = b (t, x, y, u) and h = σ (t, x, y, u)

}
, (3.2.1)

where b and σ are given in (3.1.7). Using C, we take the functions L and l in (2.3.25)

respectively to be

L (t, x, y, z, h) =


inf
u∈C

G (t, x, y, u) , if C 6= ∅,

∞, otherwise,
(3.2.2)

and

l (x) = g (x) , (3.2.3)

where G and g are given in (3.1.8). With L and l so defined, the control problem

(3.1.9) becomes a particular convex problem (2.3.26) provided Assumptions I, II & III

in Section 2.3.2 are satisfied.

3.2.1 An Example

The following example demonstrates that, if b and σ in (3.1.7) are both affine

functions of (x, y, u); and if G and g in (3.1.8) are convex with respect to (x, y, u)

and x respectively together with appropriate assumptions on the parameters of these

functions (specified below), then the stochastic convex problem with discrete delay
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(2.3.26) with L and l respectively defined by (3.2.2) and (3.2.3) satisfies Assumptions I,

II & III required in Definition 2.3.5.

Example 3.2.1. For simplicity, we set n = m = r = 1. Suppose that U = R and

U = L22
F ; that b and σ in (3.1.7) are given by

b (t, x, y, u) = a1x + b1y + c1u,

σ (t, x, y, u) = a2x + b2y + c2u,
(3.2.4)

where a1, a2, b1, b2, c1 and c2 are given constants; that G and g in (3.1.8) are given by

G (t, x, y, u) =
1
2

c3u2 and g (x) =
1
2

a3x2, (3.2.5)

where a3 and c3 are given positive constants. To simplify the following argument, we

suppose further that c1c2 6= 0. Note that, in general, the parameters (except for a3) in

the model can be certain continuous functions on [0, T].

(I) Preliminaries

First, we verify the existence of the unique strong solution of the controlled SDDE

(3.1.7) and the integrability of the cost function (3.1.8) with b, σ, G and g so defined.

For every (x, y, x′, y′) ∈ R4,

∣∣b (t, x, y, u)− b
(
t, x′, y′, u

)∣∣+ ∣∣σ (t, x, y, u)− σ
(
t, x′, y′, u

)∣∣
≤ (|a1|+ |a2|)

∣∣x− x′
∣∣+ (|b1|+ |b2|)

∣∣y− y′
∣∣ ,

(3.2.6)

which implies that b and σ are Lipschitz continuous (see [39, Section 1.6]) with respect

to (x, y) for each u ∈ U = R, where the Lipschitz constant is independent of (t, u).

Then, by [6, Theorem 2.2], the controlled SDDE admits a unique strong solution X for

every u ∈ L22
F satisfying X ∈ L22

F .

Since G and g are continuous functions and u ∈ L22
F , to see the integrability of the

cost function, we only need to show that X(T) ∈ L2. Using the relationship between X

and Xδ, we see that

E

[∫ T

0
|Xδ (t)|2 dt

]
= E

[∫ T−δ

−δ
|X (t)|2 dt

]
=
∫ 0

−δ
ξ2 (t) dt + E

[∫ T−δ

0
|X (t)|2 dt

]
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≤ δ max
t∈[−δ,0]

ξ2 (t) + E

[∫ T−δ

0
|X (t)|2 dt

]
,

which gives that Xδ ∈ L22
F by noting both (2.3.3) and the fact that X ∈ L22

F . Since b is

continuous with respect to (x, y, u), b(t, X(t), Xδ(t), u(t)) is continuous F (t)-adapted

(see [39, Proposition 3.7]). On the other hand, it follows from (3.2.6) and from the

triangle inequality that

E

[∫ T

0
|b (t, X (t) , Xδ (t) , u (t))|2 dt

]
≤4E

[∫ T

0

{
a2

1 |X (t)|2 + b2
1 |Xδ (t)|2

}
dt
]
+ 2c2

1E

[∫ T

0
|u (t)|2 dt

]
.

This implies that b(·) = b(·, X(·), Xδ(·), u(·)) is square-integrable by noting (X, Xδ, u) ∈

L22
F ×L22

F ×L22
F . Similarly, σ(·) = σ(·, X(·), Xδ(·), u(·)) is also square-integrable. Fur-

thermore, by the Cauchy-Schwarz Inequality (see [39, page 142]),

E

[{∫ T

0
|b (t, X (t) , Xδ (t) , u (t))| dt

}2
]

≤E

{{∫ T

0
|b (t, X (t) , Xδ (t) , u (t))|2 dt

} 1
2
{∫ T

0
1dt
} 1

2
}2

=TE

[∫ T

0
|b (t, X (t) , Xδ (t) , u (t))|2 dt

]
< ∞,

(3.2.7)

which gives b(·) ∈ L21
F by noting (2.3.2). Hence, the strong solution X of the controlled

SDDE is identified with (b(·), σ(·)) ∈ V1 via Definition 2.3.1 and then the conclusion

of X(T) ∈ L2 follows from Proposition 2.3.2.

(II) Verifying Assumptions I, II & III

It follows from (3.2.3) and (3.2.5) that l is given by

l(x) =
1
2

a3x2. (3.2.8)

Apparently, it is strictly greater than −∞, not equal to ∞ and is a convex continuous

function. Moreover, since it is continuous and is independent of ω ∈ Ω, l is F ×B(R)-

measurable, so that l satisfies Assumption I (see [39, Proposition 3.3]). Similarly, it

follows from (3.2.2), (3.2.4) and (3.2.5) that L is obtained by

L (t, x, y, z, h) =


c3

2c2
1
(z− a1x− b1y)2 , if (x, y, z, h) ∈ D,

∞, otherwise,
(3.2.9)
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where

D =
{
(x, y, z, h) ∈ R4∣∣c2 (z− a1x− b1y) = c1 (h− a2x− b2y)

}
.

It is easy to see that L is not equal to ∞ identically and, when it is finite, L is continuous

so that it is lower semi-continuous. Moreover, D is a convex set and L defined by (3.2.9)

is a quadratic function for (x, y, z, h) ∈ D with a positive coefficient c3/(2c2
1), so that

L is a convex function with respect to (x, y, z, h). Furthermore, since it is independent

of (ω, t) ∈ Ω× [0, T], L is a normal convex integrand using [34, Lemma 1]. Hence, L

satisfies Assumption I by noting Remark 2.3.3.

Clearly, L and l defined by (3.2.9) and (3.2.8) are bounded below. Hence, they satisfy

Assumption II.

Define (Ẋ, HX) ∈ V1 by
Ẋ (t) = b (t, X (t) , Xδ (t) , u (t)) ,

HX (t) = σ (t, X (t) , Xδ (t) , u (t)) ,

where X is the strong solution of the controlled SDDE (3.1.7) with b and σ so defined.

Moreover, as noted in (3.2.1), C
(
t, X(t), Xδ(t), Ẋ(t), HX(t)

)
is not empty P⊗ Leb-a.s.

which implies that

L
(
t, X (t) , Xδ (t) , Ẋ (t) , HX (t)

)
≤3c3

2c2
1

{∣∣Ẋ (t)
∣∣2 + a2

1 |X (t)|2 + b2
1 |Xδ (t)|2

}
.

Taking τ to be 3c3
2c2

1
{
∣∣Ẋ(t)

∣∣2 + a2
1 |X(t)|2 + b2

1 |Xδ(t)|2}, we see that τ satisfies (2.3.19)

by noting that (X, Xδ, u) ∈ L22
F × L22

F × L22
F obtained in part (I) so that L satisfies

Assumption III. Similarly, we take χ to be a3X2(T)/2 which satisfies (2.3.21) by noting

that X(T) ∈ L2 obtained in part (I). Thus, l satisfies Assumption III.

Since Assumptions I, II & III hold, the control problem (3.1.9), where b, σ, G and

g are respectively defined by (3.2.4) and (3.2.5), can be reformulated to the convex

(primal) problem (2.3.26) as

inf
X∈V1

E

[∫ T

0

c3

2c2
1

(
Ẋ (t)− a1X (t)− b1Xδ (t)

)2 dt +
1
2

a3X2 (T)
]

, (3.2.10)
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subject to, P⊗ Leb-a.s.

c2
(
Ẋ (t)− a1X (t)− b1Xδ (t)

)
= c1 (HX (t)− a2X (t)− b2Xδ (t)) ,

where X is identified with (Ẋ, HX) = (b(·), σ(·)) ∈ V1 via Definition 2.3.1. Then, the

control u can be re-expressed in terms of X ∈ V1 as

u(t) =
1
c1

(
Ẋ(t)− a1X(t)− b1Xδ(t)

)
. (3.2.11)

Since X, Xδ ∈ L2∞
F and Ẋ ∈ L21

F , u ∈ U = L22
F .

(III) Deriving the Dual Problem

For P identified with (PT, Ṗ) ∈ V2 using (2.4.17), it follows from (2.4.2) and from

the terminal term in the dual function (2.4.24) that

l∗ (−PT) = sup
x∈R

{−PTx− l (x)} = sup
x∈R

{
−PTx− 1

2
a3x2

}
=

P2
T

2a3
.

On the other hand, it follows from (2.4.1) and (2.4.24) that

L∗
(

t, Ṗ (t)−E
[

Q̇ (t + δ) I[0,T−δ] (t)
∣∣F (t)

]
, Q̇ (t) , P (t) , HP (t)

)
= sup

(x,y,z,h)∈R4

{
x
(

Ṗ (t)−E
[

Q̇ (t + δ) I[0,T−δ] (t)
∣∣F (t)

])
+ yQ̇ (t) + zP (t)

+ hHP (t)− L (t, x, y, z, h)
}

= sup
(x,y)∈R2

{
x
(

Ṗ (t)−E
[

Q̇ (t + δ) I[0,T−δ] (t)
∣∣F (t)

])
+ yQ̇ (t)

+ (a1x + b1y) P (t) + (a2x + b2y) HP (t)
}

+ sup
u∈R

{
u (c1P (t) + c2HP (t))−

1
2

c3u2
}

(3.2.12)

for (P, Q̇) ∈ V2×L21
F . To find the explicit expression for L∗, we first take the derivatives,

with respect to x and y respectively, of the function within the first bracket on the right-

hand-side of the second equality of (3.2.12). Then, the corresponding derivatives are

zero if and only if
Ṗ (t) = E

[
Q̇ (t + δ) I[0,T−δ] (t)

∣∣F (t)
]
− a1P (t)− a2HP (t) ,

Q̇ (t) = −b1P (t)− b2HP (t) .
(3.2.13)
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Since the function within the first bracket on the right-hand-side of the second equality

of (3.2.12) is linear in (x, y), the value for the corresponding supremum is zero if

(3.2.13) holds otherwise it is ∞ identically. Moreover, as u(c1P(t) + c2HP(t))− c3u2/2

is concave with respect to u, the second supremum on the right-hand-side of the second

equality of (3.2.12) is attained at

u =
1
c3

(c1P (t) + c2HP (t)) . (3.2.14)

Hence,

L∗
(

t, Ṗ (t)−E
[

Q̇ (t + δ) I[0,T−δ] (t)
∣∣F (t)

]
, Q̇ (t) , P (t) , HP (t)

)
=


1

2c3
(c1P (t) + c2HP (t))

2 , if (3.2.13) holds,

∞, otherwise.

Therefore, the dual problem to (3.2.10) is to find (P, Q̇) ∈ V2 ×L21
F realizing

inf
(P,Q̇)∈V2×L21

F

{
E

[∫ T

0

1
2c3

(c1P (t) + c2HP (t))
2 dt
]
+ E

[
1

2a3
P2

T

]
+ ξ (0)E [PT]−E

[∫ T

0
Q̇ (t) ξ (t− δ) I[0,δ] (t)dt

]
− ξ(0)E

[∫ T

0
Ṗ (t)dt

]}
,

(3.2.15)

subject to (3.2.13), where P is identified with (PT, Ṗ) ∈ V2 using (2.4.17) and HP is

specified by (2.4.18). Note that, by (3.2.14), the control u can be re-expressed in terms

of P ∈ V2 as

u (t) =
1
c3

(c1P (t) + c2HP (t)) . (3.2.16)

Since (P, HP) ∈ L2∞
F ×L22

F , u ∈ U = L22
F .

(IV) Applying Theorem 2.5.2 (iii)

To apply Theorem 2.5.2 (iii), we see that if X̄ ∈ V1, identified with ( ˙̄X, HX̄) ∈

L21
F × L22

F , and (P̄, ˙̄Q) ∈ V2 × L21
F , where P̄ is identified with (P̄T, HP̄) ∈ L2 × L22

F ,

satisfy, P⊗ Leb-a.s.

c2

(
˙̄X (t)− a1X̄ (t)− b1X̄δ (t)

)
= c1 (HX̄ (t)− a2X̄ (t)− b2X̄δ (t)) ,

˙̄P (t) = E
[

˙̄Q (t + δ) I[0,T−δ] (t)
∣∣F (t)

]
− a1P̄ (t)− a2HP̄ (t) ,

˙̄Q (t) = −b1P̄ (t)− b2HP̄ (t) ,
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and 
X̄ (T) = − 1

a3
P̄T,

1
c1

(
˙̄X (t)− a1X̄ (t)− b1X̄δ (t)

)
=

1
c3

(c1P̄ (t) + c2HP̄ (t)) ,

then the two equalities (2.5.7) and (2.5.8) are satisfied. It follows from (3.2.11) and

(3.2.16) that the associated control ū is expressed by

ū (t) =
1
c3

(c1P̄ (t) + c2HP̄ (t)) or
1
c1

(
˙̄X (t)− a1X̄ (t)− b1X̄δ (t)

)
. (3.2.17)

Therefore, X̄ and (P̄, ˙̄Q) are optimal solutions of the primal problem (3.2.10) and the

dual problem (3.2.15) respectively. This implies that the control ū given by (3.2.17) is

an optimal control of the stochastic control problem with discrete delay (3.1.9) with

b, σ, G and g defined by (3.2.4) and (3.2.5).

3.2.2 The General Case

For b, σ, G and g, to ensure that the stochastic optimal control problem with discrete

delay (3.1.9) can be formulated as a stochastic convex problem with discrete delay

(2.3.26), we make the following hypotheses.

Hypothesis I. U is a nonempty convex compact subset of Rn. The functions b and

σ are continuous with respect to (t, u) ∈ [0, T]×U; and are Lipschitz continuous with

respect to (x, y) ∈ Rn×Rn with the Lipschitz constant independent of (t, u). Moreover,

there exists a constant C1 > 0 such that

|b (t, 0, 0, u)|+ |σ (t, 0, 0, u)| ≤ C1, ∀(t, u) ∈ [0, T]×U.

Hypothesis II. The functions G and g are continuous. Moreover, g is convex and

there exist constants C2 ∈ R and C3 > 0 such that
C2 ≤ G (t, x, y, u) ≤ C3

(
1 + |x|2 + |y|2

)
, ∀t ∈ [0, T] , x, y ∈ Rn, u ∈ U,

C2 ≤ g (x) ≤ C3

(
1 + |x|2

)
, ∀x ∈ Rn.

These hypotheses ensure that the control SDDE (3.1.7) admits a unique strong

solution and the cost function (3.1.8) is integrable for every u ∈ U . More importantly,

the following propositions show that, under the above hypotheses, if L is a convex
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function as required in Assumption I (i), then L and l defined by (3.2.2) and (3.2.3)

satisfy Assumptions I, II & III.

Proposition 3.2.2. Under Hypotheses I & II, the functions L and l defined by (3.2.2) and

(3.2.3) satisfy Assumption I provided L is convex with respect to (x, y, z, h).

Proof. It follows from Hypothesis II and (3.2.3) that l is a continuous convex function

and is not equal to ∞. Similarly to the argument used in part (II) of Example 3.2.1, l is

F ×B(Rn)-measurable so that l satisfies Assumption I.

As noted in [2, page 393], the continuity of b, σ, G and g under Hypotheses I & II

guarantees that L is lower semi-continuous. To show L is a normal convex integrand,

let {(xi, yi, vi)}i∈N+ be a countable collection which is dense in Rn ×Rn ×U (see [39,

Section 9.6]). Note that such a collection exists since Euclidean and compact metric

spaces are separable (see [39, Theorem 9.24]). Using this collection, for every t ∈ [0, T],

we define the collections {zi(t)}i∈N+ and {hi(t)}i∈N+ respectively by

zi (t) = b (t, xi, yi, vi) and hi (t) = σ (t, xi, yi, vi) . (3.2.18)

Then, {zi(t)}i∈N+ and {hi(t)}i∈N+ are dense in the ranges of b(t, ·) and σ(t, ·) re-

spectively by the continuity of b and σ under Hypothesis I so that the collection

{(xi, yi, zi(t), hi(t))}i∈N+ is dense in the effective domain D(ω, t) defined by (2.3.23)

for every (ω, t) ∈ Ω× [0, T]. Let {(Xi, Yi, Zi, Hi)}i∈N+ be a countable collection, where

Xi, Yi, Zi and Hi are F (t)-progressively measurable stochastic processes satisfying

Xi(ω, t) ≡ xi, Yi(ω, t) ≡ yi, Zi(ω, t) ≡ zi(t) and Hi(ω, t) ≡ hi(t). Moreover, it follows

from (3.2.1) and (3.2.18) that Ci = Ci (t, Xi(ω, t), Yi(ω, t), Zi(ω, t), Hi(ω, t)) is not empty

for each i ∈N+ which implies that the countable collection

{(Xi (ω, t) , Yi (ω, t) , Zi (ω, t) , Hi (ω, t))}i∈N+ (3.2.19)

is a subset of D(ω, t) for every (ω, t) ∈ Ω× [0, T]. Therefore, {(Xi, Yi, Zi, Hi)}i∈N+ is a

countable collection required in Remark 2.3.3 such that (3.2.19) is dense in (2.3.22) for

each (ω, t) ∈ Ω× [0, T].

Furthermore, for each i ∈ N+, let {u(i)
j }j∈N+ be a countable collection of F (t)-

progressively measurable stochastic processes such that {u(i)
j (ω, t)}j∈N+ is dense in
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Ci for every (ω, t) ∈ Ω× [0, T]. Such a collection exists since Ci is a nonempty subset

of U ⊂ Rr, and rational numbers are countable and dense in R. Then, as noted in [2,

page 393], we have

L (t, Xi (ω, t) , Yi (ω, t) , Zi (ω, t) , Hi (ω, t))

= inf
j∈N+

G
(

t, Xi (ω, t) , Yi (ω, t) , u(i)
j (ω, t)

)
by the continuity of G. Then, L(t, Xi(ω, t), Yi(ω, t), Zi(ω, t), Hi(ω, t)) is the pointwise

infimum of a countable family of measurable functions so that it is F ∗-measurable (see

[12, page 71]). Therefore, under the given condition that L is convex with respect to

(x, y, z, h), L is a normal convex integrand. Hence, it satisfies Assumption I by noting

Remark 2.3.3.

Proposition 3.2.3. Under Hypotheses I & II, the functions L and l defined by (3.2.2) and

(3.2.3) satisfy Assumptions II & III.

Proof. By Hypothesis II, G and g are bounded below, which implies that L and l are

bounded below. Hence, L and l satisfy Assumption II.

Fix û ∈ U . Similarly to the argument used in part (I) of Example 3.2.1, Hypothesis

I implies that the corresponding SDDE (3.1.7) admits the unique strong solution X̂

with X̂, X̂δ ∈ L22
F . Now, for such (X̂, û), we define stochastic processes ˙̂X and HX̂

respectively by 
˙̂X (t) = b

(
t, X̂ (t) , X̂δ (t) , û (t)

)
,

HX̂ (t) = σ
(
t, X̂ (t) , X̂δ (t) , û (t)

)
,

which implies that, for any (ω, t) ∈ Ω× [0, T],

Ĉ = C
(

t, X̂ (t) , X̂δ (t) , ˙̂X (t) , HX̂ (t)
)
6= ∅. (3.2.20)

On the other hand, it follows from the triangle inequality and Hypothesis I that, there

is a constant C > 0 such that∣∣b (t, X̂ (t) , X̂δ (t) , û (t)
)∣∣ ≤ ∣∣b (t, X̂ (t) , X̂δ (t) , û (t)

)
− b (t, 0, 0, û (t))

∣∣
+ |b (t, 0, 0, û (t))|

≤C
(∣∣X̂ (t)

∣∣+ ∣∣X̂δ (t)
∣∣)+ C1.

61



This gives that

E

[∫ T

0

∣∣b (t, X̂ (t) , X̂δ (t) , û (t)
)∣∣2 dt

]
≤4C2E

[∫ T

0

{∣∣X̂ (t)
∣∣2 + ∣∣X̂δ (t)

∣∣2} dt
]
+ 2TC2

1

so that ˙̂X belongs to L22
F . Similarly, we have HX̂ ∈ L22

F . Similarly to (3.2.7), we also have

that ˙̂X ∈ L21
F by the Cauchy-Schwarz Inequality. Hence, X̂ is identified with ( ˙̂X, HX̂)

via Definition 2.3.1. Then, by Proposition 2.3.2, we have that X̂(T) ∈ L2. Since the

set Ĉ defined by (3.2.20) is not empty and since Hypothesis II holds, noting (3.2.2) and

(3.2.3), we have that

L
(

t, X̂ (t) , X̂δ (t) , ˙̂X (t) , HX̂ (t)
)

= inf
u∈Ĉ

G
(
t, X̂ (t) , X̂δ (t) , u

)
≤ C3

(
1 +

∣∣X̂ (t)
∣∣2 + ∣∣X̂δ (t)

∣∣2) , P⊗ Leb− a.s.

and

l
(
X̂ (T)

)
= g

(
X̂ (T)

)
≤ C3

(
1 +

∣∣X̂ (T)
∣∣2) , P− a.s.

Then, taking τ and χ in Assumption III to be C3(1 + |X̂(t)|2 + |X̂δ(t)|2) and C3(1 +

|X̂(T)|2) respectively, we see that τ and χ satisfy (2.3.19) and (2.3.21) respectively since

X̂, X̂δ ∈ L22
F and X̂(T) ∈ L2. Therefore, L and l satisfy Assumption III.

In the following example, we demonstrate that there exists a control problem (3.1.9)

such that the corresponding b, σ, G and g satisfy Hypotheses I & II, where at least one

of b and σ is not an affine function of (x, y, u).

Example 3.2.4. For simplicity, we set n = m = r = 1. Suppose that U = [0, 2π]; that b

and σ in (3.1.7) are given by
b (t, x, y, u) = sin (x + y + u) ,

σ (t, x, y, u) = y;
(3.2.21)

and that G and g in (3.1.8) are given by

G (t, x, y, u) = |x + sin (x + y + u)| and g (x) = x2. (3.2.22)

For every x, y, x′, y′ ∈ R, it follows from (3.2.21) that∣∣sin (x + y + u)− sin
(
x′ + y′ + u

)∣∣+ ∣∣y− y′
∣∣

≤
∣∣x− x′

∣∣+ 2
∣∣y− y′

∣∣ , ∀u ∈ [0, 2π] ,
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which implies that b and σ so defined are Lipschtiz continuous. It is easy to see

that b(t, 0, 0, u) and σ(t, 0, 0, u) are bounded. Hence, b and σ satisfy Hypothesis I. On

the other hand, similarly to Example 3.2.1, G and g so defined are continuous and

are bounded below. Moreover, it follows from (3.2.22) that g is convex satisfying

g(x) = x2 ≤ c(1 + x2) for any c ≥ 1 and that G satisfies

|x + sin (x + y + u)| ≤ |x|+ 1 ≤ 3
2
(
x2 + y2 + 1

)
.

Thus, Hypothesis II holds. Now, the set C is defined by

C (t, x, y, z, h) = {u ∈ [0, 2π] | z = sin (x + y + u) and h = y}

and C(t, x, y, z, h) 6= ∅ if and only if |z| 6 1 and y = h. This gives that

L (t, x, y, z, h) =


|x + z| , if |z| 6 1 and h = y,

∞, otherwise.
(3.2.23)

Similarly to part (II) of Example 3.2.1, the effective domain in (3.2.23) is convex so

that it is easy to see that L is a convex function with respect to (x, y, z, h). Hence, by

Propositions 3.2.2 & 3.2.3, the control problem (3.1.9) with b, σ, G and g so defined can

be reformulated as the convex problem (2.3.26) with L and l respectively defined by

(3.2.2) and (3.2.3).

To end this subsection, we turn our attention to the convexity of L. The following

proposition illustrates that it holds at least under certain conditions on b, σ and G in

(3.1.7) and (3.1.8) respectively.

Proposition 3.2.5. LetHd : [0, T]×Rn ×Rn ×U×Rn ×Rn×m → R be defined by

Hd
(
t, x, y, u, p, hp

)
= 〈b (t, x, y, u) , p〉+

〈
hp, σ (t, x, y, u)

〉
− G (t, x, y, u) . (3.2.24)

IfHd is concave with respect to (x, y, u), then the function L defined by (3.2.2) is convex with

respect to (x, y, z, h).

Proof. Let

L̃ (t, x, y, z, h)

= inf
u∈U

 sup
(p,hp)∈Rn×Rn×m

{
〈z, p〉+

〈
h, hp

〉
−Hd

(
t, x, y, u, p, hp

)} .
(3.2.25)
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Then, the expression (3.2.24) forHd gives

L̃ (t, x, y, z, h)

= inf
u∈U

{
G (t, x, y, u) + sup

(p,hp)∈Rn×Rn×m

{
〈z− b (t, x, y, u) , p〉

+
〈

hp, h− σ (t, x, y, u)
〉 }}

.

(3.2.26)

For C = C(t, x, y, z, h) as defined in (3.2.1), if C = ∅, then

(z− b (t, x, y, u) , h− σ (t, x, y, u)) 6= (0, 0)

and so the supremum in (3.2.26) is ∞, which implies that L̃ = ∞. Otherwise, L̃(t, x, y, z,

h) = inf
u∈C

G (t, x, y, u). Hence, L̃ = L, where L is defined by (3.2.2).

Now, sinceHd is linear with respect to (p, hp),

〈z, p〉+
〈

h, hp
〉
−Hd

(
t, x, y, u, p, hp

)
is convex with respect to (u, p, hp). Then, the order of the supremum and the infimum

on the right-hand-side of (3.2.25) can be exchanged (see [35, Corollary 37.2.2]) so that

L (t, x, y, z, h) = sup
(p,hp)∈Rn×Rn×m

{
〈z, p〉+

〈
h, hp

〉
− Ĥd

(
t, x, y, p, hp

)}
, (3.2.27)

where Ĥd(t, x, y, p, hp) = sup
u∈U

Hd
(
t, x, y, u, p, hp

)
. Then, given any constant ε > 0, we

can find u, u′ ∈ U associated with (x, y) and (x′, y′) respectively such that

Ĥd
(
t, x, y, p, hp

)
− ε ≤ Hd

(
t, x, y, u, p, hp

)
and

Ĥd
(
t, x′, y′, p, hp

)
− ε ≤ Hd

(
t, x′, y′, u′, p, hp

)
.

Then, by taking weighted sum of above inequalities and noting thatHd is concave with

respect to (x, y, u), we have

λĤd
(
t, x, y, p, hp

)
+ (1− λ) Ĥd

(
t, x′, y′, p, hp

)
− ε

≤λHd
(
t, x, y, u, p, hp

)
+ (1− λ)Hd

(
t, x′, y′, u′, p, hp

)
≤Hd

(
t, λx + (1− λ) x′, λy + (1− λ) y′, λu + (1− λ) u′, p, hp

)
≤Ĥd

(
t, λx + (1− λ) x′, λy + (1− λ) y′, p, hp

)
,
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where λ ∈ [0, T]. This implies that Ĥd is concave with respect to (x, y) since the above

inequalities hold for every ε > 0. Consequently, for every x, x′, y, y′, z, z′ ∈ Rn and

h, h′ ∈ Rn×m, it follows from (3.2.27) that

L
(
t, λx + (1− λ) x′, λy + (1− λ) y′, λz + (1− λ) z′, λh + (1− λ) h′

)
≤ sup
(p,hp)∈Rn×Rn×m

{ 〈
λz + (1− λ) z′, p

〉
+
〈
λh + (1− λ) h′, hp

〉
− λĤd

(
t, x, y, p, hp

)
− (1− λ) Ĥd

(
t, x′, y′, p, hp

) }
≤λ sup

(p,hp)∈Rn×Rn×m

{
〈z, p〉+

〈
h, hp

〉
− Ĥd

(
t, x, y, p, hp

)}
+ (1− λ) sup

(p,hp)∈Rn×Rn×m

{〈
z′, p

〉
+
〈

h′, hp
〉
− Ĥd

(
t, x′, y′, p, hp

)}
=λL (t, x, y, z, h) + (1− λ) L

(
t, x′, y′, z′, h′

)
,

as required.

3.3 A Stochastic Maximum Principle

Since the control problem (3.1.9) can be reformulated as a particular convex problem

(2.3.26), this section first generalizes [2, Theorem V-1] to derive certain necessary

conditions for optimality of the control problem, where the corresponding Hamiltonian

and adjoint equation are involved. Then, using these Hamiltonian and adjoint equation,

we give an alternative proof for the corresponding sufficient stochastic maximum

principle using the results of conjugate duality obtained in chapter 2.

3.3.1 Derivation of the Hamiltonian and Adjoint Equation

In what follows, if F : [0, T]×Rn → R is a continuously differential function, the

partial derivative ∂F
∂x represents the vector ( ∂F

∂x1
, ∂F

∂x2
, . . . , ∂F

∂xn
)>. For the control problem

(3.1.9), we define the processes (P, HP) ∈ L2∞
F ×L22

F by the adjoint equation
dP (t) = −

{
∂Hd

∂x
(t) + E

[
∂Hd

∂y
(t + δ) I[0,T−δ] (t)

∣∣∣F (t)
]}

dt

+ HP (t) dW (t) , t ∈ [0, T] ,

P (T) = −∂g
∂x

(X (T)) ,

(3.3.1)
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whereHd is the Hamiltonian defined by (3.2.24) with certain necessary differentiability

condition (specified below); and the shorthand notation ∂Hd
∂x (t), as well as ∂Hd

∂y (t), is

defined as that in (3.1.12). Note that this adjoint equation is a controlled anticipated

BSDE. Note also that, recalling (3.1.10) and (3.1.11), these Hamiltonian and adjoint

equation coincide with those introduced in [6]. Rather than introducing them as that

in [6], the following theorem uses Theorem 2.5.2 (iii) to derive these Hamiltonian and

adjoint equation.

Theorem 3.3.1. Assume that Hypotheses I & II hold and that the function L defined by (3.2.2)

is convex with respect to (x, y, z, h). In addition, assume that b, σ, G and g in (3.1.7) and

(3.1.8) are continuously differentiable with respect to (x, y) and x respectively. Suppose that

X̄ ∈ V1 and (P̄, ˙̄Q) ∈ V2 ×L21
F satisfy (2.5.7) and (2.5.8), where the function l is defined by

(3.2.3). Then, there exists a ū ∈ U realizing (3.1.9) with (ū, X̄, P̄) satisfying

(i) X̄ is the strong solution of the controlled SDDE (3.1.7) with u replaced by ū;

(ii) (P̄, HP̄) solves the adjoint equation (3.3.1) with (X, Xδ, u) replaced by (X̄, X̄δ, ū), where

HP̄ is specified by P̄ via (2.4.18);

(iii) P⊗ Leb-a.s.,

Hd (t, X̄ (t) , X̄δ (t) , ū (t) , P̄ (t) , HP̄ (t))

=max
u∈U
Hd (t, X̄ (t) , X̄δ (t) , u, P̄ (t) , HP̄ (t)) .

(3.3.2)

Proof. First, it follows from (2.5.7) that

L∗
(

t, ˙̄P (t)−E
[

˙̄Q (t + δ) I[0,T−δ] (t)
∣∣F (t)

]
, ˙̄Q (t) , P̄ (t) , HP̄ (t)

)
=
〈

X̄ (t) , ˙̄P (t)−E
[

˙̄Q (t + δ) I[0,T−δ] (t)
∣∣F (t)

]〉
+
〈

X̄δ (t) , ˙̄Q (t)
〉
+
〈

˙̄X (t) , P̄ (t)
〉
+ 〈HX̄ (t) , HP̄ (t)〉

− L
(

t, X̄ (t) , X̄δ (t) , ˙̄X (t) , HX̄ (t)
)

, P⊗ Leb− a.s.

(3.3.3)

where ( ˙̄X, HX̄) ∈ L21
F ×L22

F is identified with X̄ via Definition 2.3.1 and where HP̄ ∈ L22
F

is specified by P̄ via (2.4.18). On the other hand, L∗ is the conjugate convex function of

L so that

L∗
(

t, ˙̄P (t)−E
[

˙̄Q (t + δ) I[0,T−δ] (t)
∣∣F (t)

]
, ˙̄Q (t) , P̄ (t) , HP̄ (t)

)
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= sup
(x,y,z,h)∈Rn×3×Rn×m

{〈
x, ˙̄P (t)−E

[
˙̄Q (t + δ) I[0,T−δ] (t)

∣∣F (t)
]〉

+
〈

y, ˙̄Q (t)
〉

+ 〈z, P̄ (t)〉+ 〈h, HP̄ (t)〉 − L (t, x, y, z, h)
}

(3.3.4)

for (ω, t) ∈ Ω× [0, T]. Then, using expression (3.2.2) for L, we see that the left-hand-

side of (3.3.4) can be re-expressed, in terms of b, σ and G, as

L∗
(

t, ˙̄P (t)−E
[

˙̄Q (t + δ) I[0,T−δ] (t)
∣∣F (t)

]
, ˙̄Q (t) , P̄ (t) , HP̄ (t)

)
= sup

(x,y)∈Rn×Rn
max
u∈U

{〈
x, ˙̄P (t)−E

[
˙̄Q (t + δ) I[0,T−δ] (t)

∣∣F (t)
]〉

+
〈

y, ˙̄Q (t)
〉

+ 〈b (t, x, y, u) , P̄ (t)〉+ 〈σ (t, x, y, u) , HP̄ (t)〉

− G (t, x, y, u)
}

.

(3.3.5)

Now, for the given X̄ and (P̄, ˙̄Q), since U is compact given in Hypothesis I, (3.3.3) and

(3.3.5) together imply that it is necessary that there exists a ū ∈ U such that ( ˙̄X, HX̄) is

expressed as 
˙̄X (t) = b (t, X̄ (t) , X̄δ (t) , ū (t)) ,

HX̄ (t) = σ (t, X̄ (t) , X̄δ (t) , ū (t)) ,
P⊗ Leb− a.s. (3.3.6)

and that the ’sup max’ on the right-hand-side of (3.3.5) is attained at (X̄(t), X̄δ(t), ū(t)),

P⊗ Leb-a.s. Given that Hypotheses I & II are satisfied and that L defined by (3.2.2) is

convex, using Propositions 3.2.2 & 3.2.3, the control problem (3.1.9) can be reformulated

as the convex problem (2.3.26) with L and l so defined. By Theorem 2.5.2 (iii), X̄ is an

optimal solution of the convex problem. Hence, (3.3.6) implies that ū is an optimal

control of the control problem and that X̄ is the corresponding strong solution of the

controlled SDDE (3.1.7), i.e. ū realizes (3.1.9) and (i) holds.

Since the ’sup max’ on the right-hand-side of (3.3.5) is attained at (X̄(t), X̄δ(t), ū(t)),

(3.3.3) and (3.3.5) further imply that

〈b (t, X̄ (t) , X̄δ (t) , ū (t)) , P̄ (t)〉+ 〈σ (t, X̄ (t) , X̄δ (t) , ū (t)) , HP̄ (t))

− G (t, X̄ (t) , X̄δ (t) , ū (t))

=max
u∈U

{
〈b (t, X̄ (t) , X̄δ (t) , u) , P̄ (t)〉+ 〈σ (t, X̄ (t) , X̄δ (t) , u) , HP̄ (t)〉

− G (t, X̄ (t) , X̄δ (t) , u)
}

, P⊗ Leb− a.s.

(3.3.7)
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and 〈
X̄ (t) , ˙̄P (t)−E

[
˙̄Q (t + δ) I[0,T−δ] (t)

∣∣F (t)
]〉

+
〈

X̄δ (t) , ˙̄Q (t)
〉

+ 〈b (t, X̄ (t) , X̄δ (t) , ū (t)) , P̄ (t)〉+ 〈σ (t, X̄ (t) , X̄δ (t) , ū (t)) , HP̄ (t))

− G (t, X̄ (t) , X̄δ (t) , ū (t))

= sup
(x,y)∈Rn×Rn

{〈
x, ˙̄P (t)−E

[
˙̄Q (t + δ) I[0,T−δ] (t)

∣∣F (t)
]〉

+
〈

y, ˙̄Q (t)
〉

+ 〈b (t, x, y, ū (t)) , P̄ (t)〉+ 〈σ (t, x, y, ū (t)) , HP̄ (t)〉

− G (t, x, y, ū (t))
}

, P⊗ Leb− a.s.

(3.3.8)

In particular, using the expression (3.2.24) forHd, (3.3.7) implies that (iii) holds.

Under the given condition that b, σ and G are continuously differentiable with

respect to (x, y), we take the derivatives, with respect to x and y, of the function within

the bracket on the right-hand-side of (3.3.8). Then, the fact that the supremum is

attained at (X̄(t), X̄δ(t)), P⊗ Leb-a.s. implies that

˙̄P (t) =−
(

∂

∂x
b (t, X̄ (t) , X̄δ (t) , ū (t))

)>
P̄ (t)

−
m

∑
j=1

(
∂

∂x
σ(j) (t, X̄ (t) , X̄δ (t) , ū (t))

)>
H(j)

P̄ (t)

+
∂

∂x
G (t, X̄ (t) , X̄δ (t) , ū (t))

+ E
[

˙̄Q (t + δ) I[0,T−δ] (t)
∣∣F (t)

]
, P⊗ Leb− a.s.

(3.3.9)

and
˙̄Q (t) =−

(
∂

∂y
b (t, X̄ (t) , X̄δ (t) , ū (t))

)>
P̄ (t)

−
m

∑
j=1

(
∂

∂y
σ(j) (t, X̄ (t) , X̄δ (t) , ū (t))

)>
H(j)

P̄ (t)

+
∂

∂y
G (t, X̄ (t) , X̄δ (t) , ū (t)) , P⊗ Leb− a.s.

(3.3.10)

where σ = (σ(1), σ(2), . . . , σ(m)) and HP̄ = (H(1)
P̄ , H(2)

P̄ , . . . , H(m)
P̄ ). Hereafter, the partial

derivative ∂b
∂x denotes the n× n-matrix ( ∂bi

∂xj
) and similarly for the partial derivatives ∂b

∂y ,

∂σ(j)

∂x and ∂σ(j)

∂y . Using the expression (3.2.24) for Hd again, (3.3.9) and (3.3.10) together

give that

˙̄P (t) =− ∂Hd

∂x
(t, X̄ (t) , X̄δ (t) , ū (t) , P̄ (t) , HP̄ (t))

−E
[

˙̄Q (t + δ) I[0,T−δ] (t)
∣∣F (t)

]
, P⊗ Leb− a.s.

(3.3.11)
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and

˙̄Q (t) =
∂Hd

∂y
(t, X̄ (t) , X̄δ (t) , ū (t) , P̄ (t) , HP̄ (t)) , P⊗ Leb− a.s. (3.3.12)

Furthermore, replacing ˙̄Q in (3.3.9) and using (3.3.10) give that

˙̄P (t) = −E

[
∂H̄d

∂y
(t + δ) I[0,T−δ] (t)

∣∣F (t)
]
− ∂H̄d

∂x
(t) , P⊗ Leb− a.s. (3.3.13)

where we have used the shorthand notation

∂H̄d

∂x
(t) =

∂Hd

∂x
(t, X̄ (t) , X̄δ (t) , ū (t) , P̄ (t) , HP̄ (t))

and similarly for the partial derivative ∂H̄d
∂y (t + δ).

Similarly to the above argument, it follows from (2.5.8) that, for the given X̄ ∈ V1

and (P̄, ˙̄Q) ∈ V2 ×L21
F ,

l∗ (−P̄T) = 〈−P̄T, X̄ (T)〉 − l (X̄ (T)) , P− a.s. (3.3.14)

On the other hand, since l∗ is the conjugate convex function of l, we have

〈−P̄T, X̄ (T)〉 − g (X̄ (T)) = sup
x∈Rn
{〈x,−P̄T〉 − g (x)} , P− a.s. (3.3.15)

Thus, (3.3.14) and (3.3.15) together imply that the supremum on the right-hand-side of

(3.3.15) is attained at X̄(T), P-a.s. Then, under the given condition that g is continuously

differentiable with respect to x, we take the derivative, with respect to x, of the function

within the bracket on the right-hand-side of (3.3.15). Then, the fact that the supremum

is attained at X̄(T), P-a.s. implies that

P̄T = −∂g
∂x

(X̄ (T)) , P− a.s. (3.3.16)

Now, since P̄ is identified with (P̄T, ˙̄P) ∈ V2 via (2.4.17), (3.3.13) and (3.3.16) give

that, for all t ∈ [0, T],

P̄ (t) =− ∂g
∂x

(X̄ (T)) +
∫ T

t

{
E

[
∂H̄d

∂y
(s + δ) I[0,T−δ] (s)

∣∣F (s)
]
+

∂H̄d

∂x
(s)
}

ds

−
∫ T

t
HP̄ (s) dW (s), P− a.s.

Note that we have used the result of Proposition 2.4.3, where the last term on the right-

hand-side of (2.4.18) is equal to zero identically since the filtration F here is generated

only by W. Therefore, (P̄, HP̄) forms a continuous F (t)-adapted solution of the adjoint

equation (3.3.1) with (X, Xδ, u) replaced by (X̄, X̄δ, ū) so that (ii) holds.
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Note that ˙̄Q, which pairs X̄δ in the corresponding dual problem, has now been

replaced by (3.3.10). As a consequence, the corresponding adjoint equation (3.3.1)

depends on the future value of (P̄, HP̄) based on the current information F (t) via

conditional expectation.

3.3.2 A Sufficient Condition

Recall that, in addition to Hypotheses I & II, if the Hamiltonian Hd satisfies the

concavity condition described in Proposition 3.2.5, then the function L defined by (3.2.2)

is convex. Therefore, with an appropriate modification, the proof of Theorem 3.3.1 can

be reversed to give a sufficient stochastic maximum principle as stated by the following

theorem.

Theorem 3.3.2. In addition to Hypotheses I & II, we assume further that b, σ, G and g in

(3.1.7) and (3.1.8) are continuously differentiable with respect to (x, y) and y respectively

satisfying

E

[ ∫ T

0

{ ∣∣∣∣ ∂b
∂xi

(t, X (t) , Xδ (t) , u (t))
∣∣∣∣2 + ∣∣∣∣ ∂σ

∂xi
(t, X (t) , Xδ (t) , u (t))

∣∣∣∣2
+

∣∣∣∣ ∂G
∂xi

(t, X (t) , Xδ (t) , u (t))
∣∣∣∣2
}

dt +
∣∣∣∣∂g
∂x

(X (T))
∣∣∣∣2
]
< ∞,

(3.3.17)

where xi = x, y; and that the Hamiltonian Hd given by (3.2.24) is concave with respect to

(x, y, u). Let ū ∈ U , X̄ be the strong solution of the controlled SDDE (3.1.7) with u replaced by

ū, and (P̄, HP̄) ∈ L2∞
F ×L22

F be a solution of the adjoint equation (3.3.1) with (u, X) replaced

by (ū, X̄). If (ū, X̄, P̄, HP̄) satisfies (3.3.2), then ū is an optimal control of the stochastic optimal

control problem with discrete delay (3.1.9).

Proof. For the given ū, X̄ and (P̄, HP̄), we define P̄T, ˙̄P and ˙̄Q respectively by (3.3.16),

(3.3.11) and (3.3.12). By the Cauchy-Schwarz Inequality, the fact that (P̄, HP̄) ∈ L2∞
F ×

L22
F and (3.3.17) together imply that P̄T ∈ L2, ˙̄P ∈ L21

F and ˙̄Q ∈ L21
F .

It follows from (2.4.18) and from the uniqueness of the martingale representation

theorem that P̄ is identified with (P̄T, ˙̄P) ∈ V2 via (2.4.17) as required in the proof of

Theorem 3.3.1. On the other hand, for the given ū and X̄, we define ˙̄X and HX̄ by (3.3.6).

Then, by a similar argument to that used in the proof of Proposition 3.2.3, we have,
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under Hypothesis I, that ˙̄X ∈ L21
F and HX̄ ∈ L22

F and that X̄ is identified with ( ˙̄X, HX̄)

via Definition 2.3.1.

Under Hypothesis II that g is convex, P̄T so defined attains the supremum on the

right-hand-side of (3.3.15) which implies that (3.3.14) holds, where the function l is

defined by (3.2.3). On the other hand, under the given conditions thatHd is concave

with respect to (x, y) and that (ū, X̄, P̄, HP̄) satisfies the maximizing equation (3.3.2), we

obtain that (3.3.8) and (3.3.7) hold. This implies that the ’sup max’ on the right-hand-

side of (3.3.5) is attained at (X̄, X̄δ, ū), P⊗ Leb-a.s. Therefore, (3.3.3) holds with ( ˙̄X, HX̄)

so defined, where the function L is defined by (3.2.2). Now, by Propositions 3.2.2, 3.2.3

& 3.2.5, the control problem (3.1.9) can be reformulated as the convex problem (2.3.26)

with L and l so defined. Moreover, the two equalities in Theorem 2.5.2 (iii) are satisfied,

which gives that X̄ is an optimal solution of the convex problem. Hence, the control ū,

corresponding to X̄, is an optimal solution to the control problem.

In the remainder of this subsection, we give an example to illustrate how to use the

stochastic maximum principle described by Theorem 3.3.2 to obtain an optimal control

of the control problem (3.1.9).

Example 3.3.3. Similarly to Example 3.2.1, we set m = n = r = 1 and suppose that

U = R and U = L22
F . Consider the control problem (3.1.9) with b, σ and G respectively

defined by (3.2.4) and (3.2.5); and with g defined by g(x) = a3x for some constant

a3 ∈ R. Note that we have seen in part (I) of Example 3.2.1 that the corresponding

controlled SDDE admits a unique strong solution X for every u ∈ U = L22
F satisfying

X(T) ∈ L2 holds. Then,

E [|g (X (T))|] = |a3|E [|X (T)|] ≤ 1
2

(
a2

3 + E
[
|X (T)|2

])
< ∞, (3.3.18)

which gives the integrability of the corresponding cost function. On the other hand, it

is easy to see that (3.3.17) holds for this problem.

(I) Reformulation

We have seen in part (II) of Example 3.2.1 that the corresponding function L in this

example satisfies Assumptions I, II & III. On the other hand, it follows from (3.2.3)
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that the corresponding function l is defined by l(x) = g(x) = a3x. It is a convex

continuous function, not identically ∞ and, as discussed in part (II) of Example 3.2.1, is

F ×B(R)-measurable. Hence, l satisfies Assumption I. Moreover,

l (x) = g (x) = a3x ≥ a3x− c, ∀c ∈ R+,

for every x ∈ R. Thus, taking ϑ to be c, we see that ϑ satisfies (2.3.17) as required so

that l satisfies Assumption II (ii). Furthermore, motivated by (3.3.18), we take χ to be

(a2
3 + |X(T)|2)/2 which satisfies (2.3.21). Hence, although b, σ, G and g here do not

fully satisfy Hypotheses I & II, L and l so defined satisfy Assumptions I, II & III which,

as noted in the proof of Theorem 3.3.2, fulfils the prerequisite as did by Hypotheses I &

II in Propositions 3.2.2 & 3.2.3.

(II) The Solution of the Adjoint Equation

It follows from (3.2.24) that the HamiltonianHd is given by

Hd
(
t, x, y, u, p, hp

)
= (a1x + b1y + c1u) p + (a2x + b2y + c2u) hp −

1
2

c3u2,
(3.3.19)

which is linear in (x, y) and is quadratic with respect to u. Since the coefficient of u2 is

negative,Hd is concave with respect to (x, y, u). Then, it follows from (3.3.1) that the

associated adjoint equation for this control problem is
dP (t) = −

{
E
[
{b1P (t + δ) + b2HP (t + δ)} I[0,T−δ] (t)

∣∣F (t)
]

+ a1P (t) + a2HP (t)
}

dt + HP (t) dW (t) , t ∈ [0, T] ,

P (T) = −a3.

(3.3.20)

Write

F (P (t) , HP (t) , P (t + δ) , HP (t + δ))

=a1P (t) + a2HP (t) + E
[
{b1P (t + δ) + b2HP (t + δ)}

∣∣F (t)
]

.
(3.3.21)

Then, (3.3.20) can be re-expressed in terms of F as

dP (t) = −F (P (t) , HP (t) , P (t + δ) , HP (t + δ)) dt + HP (t) dW (t) ,

t ∈ [0, T] ,

P (T) = −a3 and P (t) ≡ 0, t ∈ (T, T + δ] ,

HP (t) ≡ 0, t ∈ [T, T + δ] ,

(3.3.22)
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where the indicator function in (3.3.20) has been replaced by the stated terminal values

for P and HP respectively.

Due to the property of conditional expectation with respect to F (t) in (3.3.21),

we see that F(P(t), H(t), P(t + δ), H(t + δ)) is F (t)-measurable for every t ∈ [0, T]

and every (P, H) ∈ L22
F × L22

F . On the other hand, for every p, p′.h, h′ ∈ R and

P, P′, H, H′ ∈ L22
F ,

∣∣F (p, h, P (t + δ) , H (t + δ))− F
(

p′, h′, P′ (t + δ) , H′ (t + δ)
)∣∣

≤ |b1|E
[∣∣P (t + δ)− P′ (t + δ)

∣∣ ∣∣F (t)
]
+ |b2|E

[∣∣H (t + δ)− H′ (t + δ)
∣∣ ∣∣F (t)

]
+ |a1|

∣∣p− p′
∣∣+ |a2|

∣∣h− h′
∣∣

and F(0, 0, 0, 0) = 0 so that the conditions (H1) and (H2) given in [33, page 882]

are satisfied. Furthermore, by [33, Theorem 4.2] (see also [6, Theorem 2.1]) and [6,

Remark 2.1], the anticipated BSDE (3.3.22), i.e. the adjoint equation (3.3.20), admits a

unique solution (P̄, HP̄) ∈ L2∞
F ×L22

F within the interval [0, T].

(III) Applying Theorem 3.3.2

Taking the derivative, with respect to u, of the function on the right-hand-side

of (3.3.19), we see that the corresponding derivative is zero if and only if u = (c1 p +

c2hp)/c3. Moreover, since the HamiltonianHd given by (3.3.19) is concave with respect

to u, it implies that, if

ū (t) =
1
c3

(c1P̄ (t) + c2HP̄ (t)) , (3.3.23)

then u ∈ U = L22
F , since (P̄, HP̄) ∈ L2∞

F × L22
F , and the corresponding maximizing

equation (3.3.2) holds. Hence, by Theorem 3.3.2, ū defined by (3.3.23) is an optimal

control of the control problem.

To calculate ū, we adopt the backward induction algorithm offered in [6, 30] to

obtain (P̄, HP̄) numerically as follows.

Step 1. Suppose that t ∈ [T − δ, T]. Then, in this interval, (P̄, HP̄) is the unique

solution of the classic BSDE
dP̄ (t) = −{a1P̄ (t) + a2HP̄ (t)} dt + HP̄ (t) dW (t) , t ∈ [T − δ, T] ,

P̄ (T) = −a3.
(3.3.24)
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Moreover, as noted in [6, page 1079], we see that P̄ satisfies the ordinary differential

equation (ODE) 
dP̄ (t) = −a1P̄ (t) dt, t ∈ [T − δ, T] ,

P̄ (T) = −a3,

and HP̄(t) ≡ 0 for t ∈ [T − δ, T].

Step k. Moving backward to the interval [T− (k + 1)δ, T− kδ], where k ∈N+ such

that T− (k + 1)δ ≥ 0. Since HP̄(t + δ) ≡ 0 and the evolution of P̄(t + δ) is known from

Step k− 1, we have
dP̄ (t) = −

{
a1P̄ (t) + a2HP̄ (t) + E

[
b1P̄ (t + δ)

∣∣F (t)
]}

dt

+ HP̄ (t) dW (t) , t ∈ [T − (k + 1) δ, T − kδ] ,

P̄ (T − kδ) is known from Step k− 1,

which is also a classical BSDE. Similarly to Step 1, P̄ satisfies the ODE
dP̄ (t) = −{b1P̄ (t + δ) + a1P̄ (t)} dt, t ∈ [T − (k + 1) δ, T − kδ] ,

P̄ (T − kδ) is known from Step k− 1,

and HP̄(t) ≡ 0 for t ∈ [T − (k + 1)δ, T − kδ]. Note that the above ODEs can be solved

numerically using the Euler method (see [7, Chapter 10]).

Using the above backward induction algorithm, Figure 3.1 below gives an example

of such a P̄ and the corresponding optimal control ū. Note that, since HP̄(t) ≡ 0, it is

not necessary to specify the parameters a2, b2 and c2 in this case.

3.4 Inclusion of the Exponential Moving Average Delay

In addition to the discrete delay, the results and techniques obtained in the preceding

sections of this chapter can be extended to include an exponential moving average

delay together with the results obtained in Section 2.6.

Recalling that the stochastic optimal control problem with both discrete and expo-

nential moving average delays is to find ū ∈ U realizing

inf
u∈U

Jad (u) , (3.4.1)
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Figure 3.1: Evolution of P̄ and ū with parameters T = 10, δ = 0.5, ξ(t) = t + 1 for
t ∈ [−δ, 0], a1 = a3 = 1, b1 = −2, c1 = −1 and c3 = 3.

where the state system is given by

dX (t) = b (t, X (t) , Xa (t) , Xδ (t) , u (t)) dt

+ σ (t, X (t) , Xa (t) , Xδ (t) , u (t)) dW (t) , t ∈ [0, T] ,

Xa(t) =
∫ 0

−δ
eλrX (t + r) dr, λ > 0,

X (t) = ξ (t) , t ∈ [−δ, 0] ;

(3.4.2)

the admissible control set U is as defined in a similar fashion to that in (3.1.3) such that

the above controlled SDDE admits a unique strong solution for every u ∈ U ; and the

cost function Jad is given by

Jad (u) = E

[∫ T

0
G (t, X (t) , Xa (t) , Xδ (t) , u (t)) dt + g (X (T) , Xa (T))

]
. (3.4.3)

To use the results of conjugate duality obtained in Section 2.6, we introduce the

continuous F (t)-adapted state process Y : Ω× [0, T] → Rn such that Y(t) = Xa(t).

Moreover, by [14, Lemma 2.1] (see also [29, Lemma 2.1]), the dependence of Xa can be

removed by reformulating the controlled SDDE (3.4.2) as the higher-dimensional one

with respect to Z = (X, Y):
dX (t) = b (t, X (t) , Y (t) , Xδ (t) , u (t)) dt

+ σ (t, X (t) , Y (t) , Xδ (t) , u (t)) dW (t) , t ∈ [0, T] ,

X (t) = ξ (t) , t ∈ [−δ, 0] ,

(3.4.4)
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dY (t) =

{
X (t)− λY (t)− e−λδXδ (t)

}
dt, t ∈ [0, T] ,

Y (0) =
∫ 0

−δ
eλsξ (s) ds.

(3.4.5)

Then, the controlled SDDE (3.4.4)-(3.4.5) for Z = (X, Y) is equivalent to the original

controlled SDDE (3.4.2) for X. In particular, (3.4.5) is independent of Yδ and its diffusion

coefficient is zero.

Reformulation to a Convex Problem

Adapting the technique of the reformulation used in Section 3.2, we link the control

problem (3.4.1) to a particular convex problem (2.6.1) as follows. For every t ∈ [0, T],

x, y, z, zx ∈ Rn and hx ∈ Rn×m, we define the set Cad = Cad(t, x, y, z, zx, hx) by

Cad (t, x, y, z, zx, hx)

=
{

u ∈ U
∣∣zx = b (t, x, y, z, u) and hx = σ (t, x, y, z, u)

}
.

Then, using Cad, we take the functions La and la in (2.6.1) respectively to be

La
(
t, x, y, z, zx, zy, hx, hy

)

=


inf

u
G (t, x, y, z, u) , if Cad 6= ∅ and

 zy = x− λy− e−λδz,

hy = 0,

∞, otherwise,

(3.4.6)

and

la (x, y) = g (x, y) . (3.4.7)

To ensure that the control problem can be reformulated to the convex problem with

La and la so defined, so that we can apply the conditions for optimality obtained in

Theorem 2.6.2, we suppose that b, σ, G and g in (3.4.2) and (3.4.3) respectively satisfy

the hypotheses below. These are necessarily modified from Hypotheses I & II in Section

3.2.2 due to the inclusion of Xa.

Hypothesis* I. U is a nonempty convex compact subset of Rr. The functions b and

σ are continuous with respect to (t, u) ∈ [0, T]×U; and are Lipschitz continuous with

respect to (x, y, z) ∈ Rn×3. Moreover, there exists a constant C1 > 0 such that

|b (t, 0, 0, 0, u)|+ |σ (t, 0, 0, 0, u)| ≤ C1, ∀ (t, u) ∈ [0, T]×U.
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Hypothesis* II. The functions G and g are continuous. Moreover, g is convex and

there exist constants C2 ∈ R and C3 > 0 such that
C2 ≤ G (t, x, y, z, u) ≤ C3

(
1 + |x|2 + |y|2 + |z|2

)
, ∀t ∈ [0, T] , x, y, z ∈ Rn, u ∈ U,

C2 ≤ g (x, y) ≤ C3

(
1 + |x|2 + |y|2

)
, ∀x, y ∈ Rn.

Similarly to Propositions 3.2.2 & 3.2.3, we see that Hypotheses* I & II ensure that,

if La is convex with respect to (x, y, z, zx, zy, hx, hy), La and la satisfy Assumptions* I, II

& III presented in Section 2.6. Note that, following a similar argument to that in the

proof of Proposition 3.2.3, we obtain that the controlled SDDE (3.4.4)-(3.4.5) admits a

unique strong solution Ẑ = (X̂, Ŷ) along with û ∈ U satisfying (X̂, Ŷ) ∈ L2∞
F ×L2∞

F .

Moreover, we define ( ˙̂X, HX̂) and ( ˙̂Y, HŶ) respectively by
˙̂X (t) = b

(
t, X̂ (t) , Ŷ (t) , X̂δ (t) , û (t)

)
,

HX̂ (t) = σ
(
t, X̂ (t) , Ŷ (t) , X̂δ (t) , û (t)

)
,

and 
˙̂Y (t) = X̂ (t)− λŶ (t)− e−λδX̂δ (t) ,

HŶ (t) ≡ 0.
(3.4.8)

This gives that

Ĉad = Cad

(
t, X̂ (t) , Ŷ (t) , X̂δ (t) , ˙̂X (t) , HX̂ (t)

)
6= ∅

so that, together with (3.4.8) and Hypothesis* II,

La

(
t, X̂ (t) , Ŷ (t) , X̂δ (t) , ˙̂X (t) , ˙̂Y (t) , HX̂ (t) , HŶ (t)

)
= inf

u∈Ĉad

G
(
t, X̂ (t) , Ŷ (t) , X̂δ (t) , u

)
≤C3

(
1 +

∣∣X̂ (t)
∣∣2 + ∣∣Ŷ (t)

∣∣2 + ∣∣X̂δ (t)
∣∣2) , P⊗ Leb− a.s.

Then, following a similar argument to τ in the proof of Proposition 3.2.3, we see that La

satisfy Assumption* III (i).

The Hamiltonian and Adjoint Equation

Regarding the control problem (3.4.1), we define a Hamiltonian Had : [0, T] ×

Rn ×Rn ×Rn ×U×Rn ×Rn ×Rn×m ×Rn×m → R in a similar fashion to (3.1.16)
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considered in [29] as

Had
(
t, x, y, z, u, p, r, hp, hr

)
= 〈b (t, x, y, z, u) , p〉+

〈
σ (t, x, y, z, u) , hp

〉
− G (t, x, y, z, u)

+
〈(

x− λy− e−λδz
)

, r
〉

.

(3.4.9)

Similarly to the argument used in Section 3.3.1, this Hamiltonian and the associated

adjoint equations (specified below) can be derived by using Theorem 2.6.2 (iii) as stated

by the following theorem.

Theorem 3.4.1. Assume that Hypotheses* I & II hold and that the function La defined by

(3.4.6) is convex with respect to (x, y, z, zx, zy, hx, hy). In addition, assume that b, σ, G and

g in (3.4.2) and (3.4.3) are continuously differentiable with respect to (x, y, z) and (x, y)

respectively. Suppose that (X̄, Ȳ) ∈ V1 ×V1 and (P̄, P̄a, ˙̄Q) ∈ V2 ×V2 × L21
F together

satisfy (2.6.6) and (2.6.7), where la is defined by (3.4.7). Then, there exists a ū ∈ U realizing

(3.4.1) with (ū, X̄, P̄, P̄a) satisfying

(i) Z̄ = (X̄, Ȳ) is the unique strong solution of the controlled SDDE (3.4.4)-(3.4.5) with u

replaced by ū;

(ii) (P̄, HP̄) and (P̄a, HP̄a) are solutions of the adjoint equations with (X, Y, Xδ, u) replaced

by (X̄, Ȳ, X̄δ, ū):
dP (t) = −

{
∂Had

∂x
(t) + E

[
∂Had

∂z
(t + δ) I[0,T−δ] (t)

∣∣∣F (t)
]}

dt

+ HP (t) dW (t) , t ∈ [0, T] ,

P (T) = −∂g
∂x

(X (T) , Y (T))

(3.4.10)


dPa (t) = −∂Had

∂y
(t) dt + HPa (t) dW (t) , t ∈ [0, T] ,

Pa (T) = −∂g
∂y

(X (T) , Y (T)) ,
(3.4.11)

where HP̄ and HP̄a are respectively specified by P̄ and P̄a via (2.4.18). Here we have used

the shorthand notation

∂Had

∂x
(t) =

∂Had

∂x
(t, X (t) , Y (t) , Xδ (t) , u (t) , P (t) , Pa (t) , HP (t) , HPa (t))

and similarly for the partial derivatives ∂Had
∂z (t + δ) and ∂Had

∂y (t);

78



(iii) P⊗ Leb-a.s.,

Had (t, X̄ (t) , Ȳ (t) , X̄δ (t) , ū (t) , P̄ (t) , P̄a (t) , HP̄ (t) , HP̄a (t))

=max
u∈U
Had (t, X̄ (t) , Ȳ (t) , X̄δ (t) , u, P̄ (t) , P̄a (t) , HP̄ (t) , HP̄a (t)) .

(3.4.12)

The proof of the above theorem uses the essentially same techniques as that for

the proof of Theorem 3.3.1. For example, let L∗a be the conjugate convex function of La.

Then, satisfying (2.6.6) implies that it is necessary that there exists a ū ∈ U such that

the ’sup max’ in

L∗a
(

t, ˙̄P(t)−E
[

˙̄Q(t + δ)I[0,T−δ](t)
∣∣F (t)] , ˙̄Pa(t), ˙̄Q(t), P̄(t), P̄a(t), HP̄(t), HP̄a(t)

)
= sup

(x,y,z)∈Rn×3
max
u∈U

{〈
x, ˙̄P (t)−E

[
˙̄Q (t + δ) I[0,T−δ] (t)

∣∣F (t)
]〉

+
〈

y, ˙̄Pa (t)
〉

+
〈

z, ˙̄Q (t)
〉
+ 〈b (t, x, y, z, u) , P̄ (t)〉+ 〈σ (t, x, y, z, u) , HP̄ (t)〉

+
〈(

x− λy− e−λδz
)

, P̄a (t)
〉
− G (t, x, y, z, u)

}
,

is attained at (X̄, Ȳ, X̄δ, ū), P⊗ Leb-a.s. Similarly, satisfying (2.6.7) implies that the

supremum in

l∗a (−P̄T,−P̄a
T) = sup

(x,y)∈Rn×2
{〈x,−P̄T〉+ 〈y,−P̄a

T〉 − g (x, y)}

is attained at (X̄(T), Ȳ(T)), P-a.s. Then, similarly to the argument to that for the proof

of Theorem 3.3.1, the above two equations enable us to obtain the adjoint equations

(3.4.10)-(3.4.11) and the maximizing equation (3.4.12).

Although the Hamiltonian (3.4.9) is similar to (3.1.16), the above adjoint equations

are different from (3.1.17)-(3.1.19) introduced in [29]. Instead of a triple of classical

BSDEs, the adjoint equations (3.4.10)-(3.4.11) are coupled BSDEs, where (3.4.10) is an

anticipated BSDE expressed in a similar fashion to (3.3.1) for the stochastic optimal

control problem with discrete delay and (3.4.11) is a classical BSDE expressed in a

similar fashion to (3.1.6) for Markovian optimal control problems.

A Stochastic Maximum Principle

Similarly to Theorem 3.3.2, reversing the arguments in the proof of Theorem 3.4.1,

we obtain a stochastic maximum principle for the control problem (3.4.1) as stated by

the following theorem.
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Theorem 3.4.2. In addition to Hypotheses* I & II, we assume further that b, σ, G and g in

(3.4.2) and (3.4.3) are continuously differentiable with respect to (x, y, z) and (x, y) respectively

satisfying

E

[ ∫ T

0

{ ∣∣∣∣ ∂b
∂xi

(t, X (t) , Y (t) , Xδ (t) , u (t))
∣∣∣∣2 + ∣∣∣∣ ∂σ

∂xi
(t, X (t) , Y (t) , Xδ (t) , u (t))

∣∣∣∣2
+

∣∣∣∣ ∂G
∂xi

(t, X (t) , Y (t) , Xδ (t) , u (t))
∣∣∣∣2
}

dt

]

+ E

[∣∣∣∣ ∂g
∂xi

(X (T) , Y (T))
∣∣∣∣2
]
< ∞, (3.4.13)

where xi = x, y, z; and that the Hamiltonian Had given by (3.4.9) is concave with respect to

(x, y, z, u). Let ū ∈ U , Z̄ = (X̄, Ȳ) be the unique strong solution of the controlled SDDE

(3.4.4)-(3.4.5) with u replaced by ū, and (P̄, HP̄) ∈ L2∞
F ×L22

F and (P̄a, HP̄a) ∈ L2∞
F ×L22

F be

solutions of the adjoint equations (3.4.10) and (3.4.10) with (u, X, Y) replaced by (ū, X̄, Ȳ). If

(ū, X̄, Ȳ, P̄, HP̄, P̄a, HP̄a) satisfies (3.4.12), then ū is an optimal control of the stochastic optimal

control problem with both discrete and exponential moving average delays (3.4.1).

The proof of Theorem 3.4.2 uses the essentially same techniques as the proof of

Theorem 3.3.2 for the stochastic optimal control problem with discrete delay. In partic-

ular, the concavity condition imposed onHad ensures that La is convex with respect to

(x, y, z, zx, zy, hx, hy) as required in the reformulation to the corresponding convex prob-

lem. More precisely, following a similar argument to that in the proof of Proposition

3.2.5, La can be re-expressed in term ofHad as

La
(
t, x, y, z, zx, zy, hx, hy

)
= sup
(p,r,hp,hr)∈Rn×Rn×Rn×m×Rn×m

{
〈zx, p〉+

〈
hx, hp

〉
+
〈
zy, r

〉
+
〈

hy, hr
〉

− Ĥad
(
t, x, y, z, p, r, hp, hr

) }
,

(3.4.14)

where Ĥad
(
t, x, y, z, p, r, hp, hr

)
= sup

u∈U

Had(t, x, y, z, u, p, r, hp, hr). Then, under the giv-

en condition that Had is concave with respect to (x, y, z, u), we see that La in (3.4.14)

is a convex function. This, together with Hypotheses* I & II, ensures that the control

problem (3.1.15) can be reformulated as the convex problem (2.6.1) with La and la so

defined as required for the proof of Theorem 3.4.2.
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If the controlled SDDE (3.4.2) and the cost function (3.4.3) are independent of

Xa, then the corresponding Hamiltonian and adjoint equations coincide with those

obtained in Section 3.3 for the control problem with discrete delay. Hence, our results

in Section 3.3 become a special case of those for the control problem (3.4.1).

Comparing the above results with those obtained in [29, Theorem 2.2] and [30,

Theorem 3.1], Theorem 3.4.2 does not require any adjoint process to be identically zero

and also allows g in (3.1.14) to depend on y corresponding to Y(T) = Xa(T). This

enables us to remove the restrictions in [29, 30] mentioned in Section 3.1.1 which will

become clear by the example below.

Example 3.4.3. For simplicity, we set m = n = r = 1. Suppose that U = R and

U = L22
F as in Examples 3.2.1 & 3.3.3; that b and σ in (3.4.2) are given by

b (t, x, y, z, u) = a1x + f1y + b1z + c1u,

σ (t, x, y, z, u) = a2x + f2y + b2z + c2u;
(3.4.15)

and that G and g in (3.4.3) are given by

G (t, x, y, z, u) =
1
2

c3u2 and g (x, y) = a3x + f3y, (3.4.16)

where a1, a2, a3, b1, b2, c1, c2, c3 are as given in Example 3.3.3 and f1, f2, f3 ∈ R are given

constants. By the techniques used in part (I) of Example 3.2.1, the controlled SDDE

(3.4.4)-(3.4.5) with b and σ so defined admits a unique strong solution and the cost

function (3.4.3) with G and g so defined is integrable for any u ∈ U = L22
F .

Combining the arguments used in part (II) of Example 3.2.1 and part (I) of Example

3.3.3, we see that this control problem can be reformulated as the convex problem (2.6.1)

with La and la respectively defined by (3.4.6) and (3.4.7), where Assumptions* I, II & III

are satisfied.

It follows from (3.4.9) that

Had
(
t, x, y, z, u, p, r, hp, hr

)
= (a1x + f1y + b1z + c1u) p + (a2x + f2y + b2z + c2u) hp −

1
2

c3u2

+
(

x− λy− e−λδz
)

r,

(3.4.17)
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which is linear in (x, y, z) and is quadratic with u, where the coefficient of u2 is negative,

so that it satisfies the concavity condition required in Theorem 3.4.2. This particularly

gives the convexity of La. The adjoint equations (3.4.10)-(3.4.11) for this control problem

are expressed by

dP (t) = −
{

a1P (t) + Pa (t) + a2HP (t)

+ E

[{
b1P (t + δ)− e−λδPa (t + δ)

+ b2HP (t + δ)
}

I[0,T−δ] (t)
∣∣∣F (t)

]}
dt

+ HP (t) dW (t) , t ∈ [0, T] ,

P (T) = −a3,

(3.4.18)


dPa (t) = −{ f1P (t)− λPa (t) + f2HP (t)} dt + HPa (t) dW (t) ,

t ∈ [0, T]

Pa (T) = − f3.

(3.4.19)

This can be regarded as a higher-dimensional anticipated BSDE with respect to (R, HR),

where R = (P, Pa) and HR = (HP, HPa). Then, as for (3.3.20), these adjoint equations

admit a unique solution (R, HR) ∈ L2∞
F ×L22

F . Taking the derivative, with respect to u,

ofHad given by (3.4.17), we obtain that, ū given by

ū (t) =
1
c3

(c1P̄ (t) + c2HP̄ (t)) , (3.4.20)

achieves the maximum in (3.4.12), where (P̄, HP̄) and (P̄a, HP̄a) are the solutions of the

adjoint equations (3.4.18)-(3.4.19) with u replaced by ū. We also have ū ∈ L22
F since

(P̄, HP̄) ∈ L2∞
F ×L22

F . Therefore, by Theorem 3.4.2, ū is an optimal control of the control

problem.

Note that this control problem usually cannot be solved using the results either

of [30, Theorem 3.1] or of [29, Theorem 2.2] as, for the former, g in (3.4.16) needs to

be independent of y corresponding to Xa(T) and, for the latter, the parameters in

the model need to satisfy certain constraints. More precisely, for the latter case, the

parameters in (3.4.15) and (3.4.16) need to satisfy

f3e−λδ = b1a3, b1 6= 0 and
e−λδ f1

b1
− λ = a1 + b1eλδ. (3.4.21)

82



Then,

ū (t) = − a3c1

c3
e(a1+b1eλδ)(T−t), ∀t ∈ [0, T] . (3.4.22)

This is due to one of the adjoint processes in [29, Theorem 2.2] needs to be identically

zero. If we set the parameters f1 and f3 to satisfy the conditions (3.4.21), Figure

3.2 gives an example of such (P̄, P̄a) and ū using the backward induction algorithm

described at the end of Section 3.3.2, where HP̄ ≡ HP̄a ≡ 0. The solid and dash lines

in Figure 3.2 (c) respectively represent the corresponding results using (3.4.20) and

(3.4.22). By increasing the accuracy, for example, Figure 3.2 (d) shows a segment part

of this comparison. It implies that the numerical discrepancy can be narrowed down

to any fixed ε > 0 so that these two stochastic maximum principles give numerically

indistinguishable results for this control problem if the parameters in the model satisfy

the conditions (3.4.21). On the other hand, Figure 3.3 gives another example of such

(P̄, P̄a) and ū where, in particular, the conditions (3.4.21) are not satisfied.

3.5 Discussion

3.5.1 Extension to Regime-Switching Models

Using the Markov chain α and the associated canonical martingales M described

in Chapter 2, the results obtained in the preceding sections of this chapter can also be

extended to involve regime-switching. Note that this subsection only investigates the

stochastic optimal control problem with both discrete delay and regime-switching. It

can be generalized to include Xa with an appropriate modification.

Suppose that the filtration F is generated jointly by W and α. Let b : [0, T]×Rn ×

Rn ×U× I → Rn and σ : [0, T]×Rn ×Rn ×U× I → Rn×m be two given functions

and the continuous F (t)-adapted state process X : Ω× [−δ, T]→ Rn be described by

the controlled SDDE with regime-switching
dX (t) = b (t, X (t) , Xδ (t) , u (t) , α (t)) dt

+ σ (t, X (t) , Xδ (t) , u (t) , α (t)) dW (t) , t ∈ [0, T] ,

X (t) = ξ (t) , t ∈ [−δ, 0] , α (0) = i0 ∈ I,

(3.5.1)

83



Figure 3.2: Evolution for P̄, P̄a and ū with parameters T = 5, δ = 0.2, λ = 0.1
ξ(t) = t + 1 for t ∈ [−δ, 0], a1 = a3 = 1, b1 = −2, c1 = −1 and c3 = 3; f1 and f3 are
given by using (3.4.21).

where α, i0 are as defined in Section 2.3. For given functions G : [0, T]×Rn ×Rn ×

U× I→ R and g : Rn × I→ R, the cost functional Jα
d is given by

Jα
d (u) = E

[∫ T

0
G (t, X (t) , Xδ (t) , u (t) , α (t)) dt + g (X (T) , α (T))

]
. (3.5.2)

Then, the so-called stochastic optimal control problem with both discrete delay and

regime-switching associated with the state system (3.5.1) and the cost function (3.5.2)

is to find u ∈ U realizing

inf
u∈U

Jα
d (u) . (3.5.3)

where the admissible control set U is defined in a similar fashion to that in (3.1.9). It is

straightforward to see that, if I = {i0}, then the above control problem reduces to the

one with discrete delay.
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Figure 3.3: Evolution for P̄, P̄a and ū with parameters T = 5, δ = 0.2, λ = 0.1,
ξ(t) = t + 1 for t ∈ [−δ, 0], a1 = a3 = 1, b1 = −2, c1 = −1 and c3 = 3; f1 = 1 and
f3 = 2.

Adapting the method used in Section 3.2, we reformulate the control problem

(3.5.3) to a particular convex problem (2.3.26) as follows. For every (ω, t) ∈ Ω× [0, T],

x, y, z ∈ Rn and h ∈ Rn×m, we define the set Cα = Cα(t, x, y, z, h, α(t)) by

Cα (t, x, y, z, h, α (t))

=
{

u ∈ U
∣∣z = b (t, x, y, u, α (t)) and h = σ (t, x, y, u, α (t))

}
.

Using Cα, we take L and l respectively to be

L (ω, t, x, y, z, h) =


inf

u∈Cα
G (t, x, y, u, α (t)) , if Cα 6= ∅,

∞, otherwise,

and

l (ω, x) = g (x, α (T)) .
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Following a similar argument to that used in Section 3.2.2, L and l so defined satisfy

Assumptions I, II & III given in Section 2.3.2 under certain hypotheses on b, σ, G and g

which can be necessarily modified from Hypotheses I & II. Moreover, by the similar

techniques as those used in Theorems 3.3.1 & 3.3.2, we can derive a stochastic maximum

principle for the control problem (3.5.3) described in a similar fashion to Theorem 3.3.2,

where the Hamiltonian is given by

Hα
d
(
t, x, y, u, p, hp, i

)
= 〈b (t, x, y, u, i) , p〉+

〈
hp, σ (t, x, y, u, i)

〉
− G (t, x, y, u, i) ,

and the adjoint equation is given by

dP (t) = −
{

∂Hα
d

∂x
(t) + E

[
∂Hα

d
∂y

(t + δ) I[0,T−δ] (t)
∣∣∣F (t)

]}
dt

+ HP (t) dW (t) + KP (t) • dM (t) , t ∈ [0, T] ,

P (T) = −∂g
∂x

(X (T) , α (T)) .

(3.5.4)

Note that the last term on the right-hand-side of the first equation of (3.5.4) is due to

the results in Proposition 2.4.3. Note also that these Hamiltonian and adjoint equation

and the associated stochastic maximum principle generalize those studied in [9] to the

corresponding discrete delay context.

3.5.2 A Stochastic Calculus Approach

In this subsection, we use the Hamiltonian (3.4.9) and the adjoint equations (3.4.10)-

(3.4.11) to offer a stochastic maximum principle as stated by the following theorem,

which is in a similar fashion to those studied in [6, 9, 15, 25, 29, 30, 46], and prove it by

some techniques of stochastic calculus.

Theorem 3.5.1. Suppose that the controlled SDDE (3.4.2) admits a unique strong solution

and the cost function (3.4.3) is integrable for each u ∈ U . In addition, assume that b, σ, G

and g in (3.4.2) and (3.4.3) are continuously differentiable with respect to (x, y, z) and (x, y)

respectively, satisfy (3.4.13) and

E

[ ∫ T

0

{ ∣∣∣∣ ∂b
∂u

(t, X (t) , Xa (t) , Xδ (t) , u (t))
∣∣∣∣2 + ∣∣∣∣∂σ

∂u
(t, X (t) , Xa (t) , Xδ (t) , u (t))

∣∣∣∣2
+

∣∣∣∣∂G
∂u

(t, X (t) , Xa (t) , Xδ (t) , u (t))
∣∣∣∣2
}

dt

]
< ∞.
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Let ū ∈ U , X̄ be the unique strong solution to the controlled SDDE associated with ū, and

(P̄, HP̄) ∈ L2∞
F × L22

F and (P̄a, HP̄a) ∈ L2∞
F × L22

F be solutions of the adjoint equations

(3.4.10)-(3.4.11) associated with (ū, X̄) such that, for any u ∈ U and the unique strong

solution X of the controlled SDDE associated with u,

E

[ ∫ T

0

{ ∣∣∣H>P̄ (t) (X̄ (t)− X (t))
∣∣∣2 + ∣∣∣H>P̄a (t) (X̄a (t)− Xa (t))

∣∣∣2
+
∣∣∣(σ̄ (t)− σ (t))> P̄ (t)

∣∣∣2}dt
]
< ∞,

(3.5.5)

where we have used the shorthand notation

σ̄ (t) = σ (t, X̄ (t) , X̄a (t) , X̄δ (t) , ū (t)) ,

σ (t) = σ (t, X (t) , Xa (t) , Xδ (t) , u (t)) .

If the Hamiltonian Had given by (3.4.9) satisfies the condition that, for every t ∈ [0, T],

Had(t, x, y, z, u, P̄(t), P̄a(t), HP̄(t), HP̄a(t)) is concave with respect to (x, y, z, u), P − a.s.

and if (3.4.12) holds, then ū is an optimal control of the stochastic optimal control problem with

both discrete and exponential moving average delays (3.4.1).

Proof. Fix u ∈ U . If X is the corresponding strong solution of the controlled SDDE

(3.4.2), then

Jad (ū)− Jad (u) =E

[ ∫ T

0

{
G (t, X̄ (t) , X̄a (t) , X̄δ (t) , ū (t))

− G (t, X (t) , Xa (t) , Xδ (t) , u (t))
}

dt
]

+ E [g (X̄ (T) , X̄a (T))− g (X (T) , Xa (T))] .

(3.5.6)

Under the given condition that g is convex and is continuously differentiable with

respect to (x, y), the terms within the second bracket on the right-hand-side of (3.5.6)

give us that

E [g (X̄ (T) , X̄ (T))− g (X (T) , Xa (T))]

≤E

[〈
(X̄ (T)− X (T)) ,

∂g
∂x

(X̄ (T) , X̄a (T))
〉

+

〈
(X̄a (T)− Xa (T)) ,

∂g
∂y

(X̄ (T) , X̄a (T))
〉 ]

.

(3.5.7)

Now, applying the Itô formula to 〈(X̄(t)− X(t)), P̄(t)〉 for t ∈ [0, T], we have

〈(X̄ (T)− X (T)) , P̄ (T)〉
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=−
∫ T

0

{〈
(X̄ (t)− X (t)) ,

∂H̄ad

∂x
(t) + E

[
∂H̄ad

∂z
(t + δ) I[0,T−δ] (t)

∣∣∣F (t)
]〉

−
〈

P̄ (t) ,
(
b̄ (t)− b (t)

)〉
− 〈HP̄ (t) , (σ̄ (t)− σ (t))〉

}
dt

+
∫ T

0
〈P̄ (t) , (σ̄ (t)− σ (t)) dW (t)〉+

∫ T

0
〈(X̄ (t)− X (t)) , HP̄ (t) dW (t)〉,

where
∂H̄ad

∂x
(t) =

∂Had

∂x
(t, X̄ (t) , X̄a (t) , X̄δ (t) , ū (t) , P̄ (t) , P̄a (t) , HP̄ (t) , HP̄a (t)) ,

b̄ (t) =b (t, X̄ (t) , X̄a (t) , X̄δ (t) , ū (t)) ,

b (t) =b (t, X (t) , Xa (t) , Xδ (t) , u (t)) ,

and similarly for the partial derivatives ∂H̄ad
∂z (t + δ) and ∂H̄ad

∂y (t). Then, taking expecta-

tions on the both sides of the above equation and noting the terminal value in (3.4.10),

the second term on the right-hand-side of (3.5.7) becomes

E

[〈
(X̄ (T)− X (T)) ,

∂g
∂x

(X̄ (T) , X̄a (T))
〉]

=E

[ ∫ T

0

{〈
(X̄ (t)− X (t)) ,

∂H̄ad

∂x
(t)
〉
+

〈
(X̄δ (t)− Xδ (t)) ,

∂H̄ad

∂z
(t)
〉

−
〈

P̄ (t) ,
(
b̄ (t)− b (t)

)〉
− 〈HP̄ (t) , (σ̄ (t)− σ (t))〉

}
dt
]

.

(3.5.8)

Here, we have used the fact that

E

[∫ T

0
〈P̄ (t) , (σ̄ (t)− σ (t)) dW (t)〉+

∫ T

0
〈(X̄ (t)− X (t)) , HP̄ (t) dW (t)〉

]
= 0

due to (3.5.5), and we have applied the relationship between X and Xδ to make the

following simplification

E

[∫ T

0

〈
(X̄ (t)− X (t)) , E

[
∂H̄ad

∂z
(t + δ) I[0,T−δ] (t)

∣∣∣F (t)
]〉

dt
]

=E

[∫ T

0

〈
(X̄δ (t)− Xδ (t)) ,

∂H̄ad

∂z
(t)
〉

dt
]

.

Similarly, applying the Itô formula to 〈(X̄a(t)− Xa(t)), P̄a(t)〉 for t ∈ [0, T] and then

taking expectations, the third term on the right-hand-side of (3.5.7) becomes

E

[〈
(X̄a (T)− Xa (T)) ,

∂g
∂y

(X̄ (T) , X̄a (T))
〉]

=E

[ ∫ T

0

{〈
(X̄a (t)− Xa (t)) ,

∂H̄ad

∂y
(t)
〉

−
〈

P̄a (t) ,
{ (

X̄ (t)− λX̄a (t)− eλδX̄δ (t)
)

−
(

X̄ (t)− λX̄a (t)− eλδX̄δ (t)
) }〉}

dt
]

.

(3.5.9)
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On the other hand, using the expression (3.4.9) forHad, the first term on the right-hand-

side of (3.5.6) can be re-expressed as

E

[∫ T

0
{G (t, X̄(t), X̄a(t), X̄δ(t), ū(t))− G (t, X(t), Xa(t), Xδ(t), u(t))} dt

]
=E

[ ∫ T

0

{
−
{
Had (t, X̄(t), X̄a(t), X̄δ(t), ū(t), P̄(t), P̄a(t), HP̄(t), HP̄a(t))

−Had (t, X̄(t), X̄a(t), X̄δ(t), u(t), P̄(t), P̄a(t), HP̄(t), HP̄a(t))
}

+
〈

P̄ (t) ,
(
b̄ (t)− b (t)

)〉
+ 〈HP̄ (t) , (σ̄ (t)− σ (t))〉

+
〈

P̄a (t) ,
{ (

X̄ (t)− λX̄a (t)− eλδX̄δ (t)
)

−
(

X̄ (t)− λX̄a (t)− eλδX̄δ (t)
) }〉}

dt
]

.

(3.5.10)

Substituting (3.5.8), (3.5.9) and (3.5.10) into the right-hand-side of (3.5.6), we get

Jad (ū)− Jad (u)

≤E

[ ∫ T

0

{{
Had (t, X̄ (t) , X̄a (t) , X̄δ (t) , u (t) , P̄ (t) , P̄a (t) , HP̄ (t) , HP̄a (t))

−Had (t, X̄ (t) , X̄a (t) , X̄δ (t) , ū (t) , P̄ (t) , P̄a (t) , HP̄ (t) , HP̄a (t))
}

+

〈
(X̄ (t)− X (t)) ,

∂H̄ad

∂x
(t)
〉
+

〈
(X̄a (t)− Xa (t)) ,

∂H̄ad

∂y
(t)
〉

+

〈
(X̄δ (t)− Xδ (t)) ,

∂H̄ad

∂z
(t)
〉}

dt
]

,

which implies

Jad (ū)− Jad (u) ≤ E

[∫ T

0

〈
(ū (t)− u (t)) ,

∂H̄ad

∂u
(t)
〉

dt
]
= 0

for any u ∈ U , where the last equality follows from (3.4.12). Hence, ū ∈ U is an optimal

control of the control problem (3.4.1).

Note that, to apply the conjugate duality method, some conditions in Theorem 3.4.2

are stronger than those in Theorem 3.5.1. In particular, the concavity condition imposed

on the Hamiltonian in the former needs to be satisfied for each (p, hp) ∈ Rn ×Rn×m.

However, in practically, it seems impossible to verify that the corresponding concavity

condition in the latter for almost every (ω, t) ∈ Ω× [0, T]. On the other hand, to use the

techniques of stochastic calculus in the proof, Theorem 3.5.1 requires more integrability

conditions than Theorem 3.4.2 does.
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CHAPTER 4

THE AUXILIARY HJB EQUATION IN STOCHASTIC

OPTIMAL CONTROL PROBLEMS WITH DELAY

4.1 Introduction

This chapter turns our attention to improving the method of dynamic programming

studied in [22, 23] for stochastic optimal control problems with discrete delay and those

with both discrete and exponential moving average delays.

4.1.1 Literature Review

We first summarize some basic concepts and results of dynamic programming in

Markovian optimal control problems taken mainly from [45, Chapter 4]. Then, we

describe some known generalizations [22, 23] for this method to stochastic optimal

control problems with delay which motivate our work in this chapter.

Similarly to Chapter 3, let (Ω,F , P) be a complete probability space on which

W = {W(s)}s∈[0,T] is a m-dimensional standard Brownian motion where T ∈ (0, ∞)

is the given deterministic terminal time, and write F = {F (s)}s∈[0,T] for the filtration

generated by W.

The Markovian Optimal Control Problem

Recalling that the method of dynamic programming for solving a Markovian op-

timal control problem is to vary its initial times and states to obtain a family of such

control problems. By the Bellman principle of optimality, one can establish a relation-
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ship among these control problems via a partial differential equation (PDE), which

is called the Hamilton-Jacobi-Bellman (HJB) equation. Then, rather than solving a

particular control problem, one uses the HJB equation to solve all the control problems

in that family (see [45, Section 4.3]).

For every t ∈ [0, T], to put the Markovian optimal control problem (3.1.3) in-

to a framework suitable for applying the method of dynamic programming, we let

{Ft(s)}s∈[t,T] denote the filtration generated by {W(s)−W(t)|s ∈ [t, T]} such that the

usual conditions hold, and let U [t, T] consist of all u|[t,T], where u : Ω× [0, T]→ U ⊂

Rr belongs to the admissible control set U as defined in (3.1.3) and u|[t,T] denotes the

restriction of u to [t, T]. Note that {Ft(s)}s∈[t,T] is independent of {F (s)}s∈[0,t) since

{W(s)−W(t)|s ∈ [t, T]} is independent of {W(s)|s ∈ [0, t)}. Note also that, condition-

ing on F (t), u|[t,T] is {Ft(s)}s∈[t,T]-adapted for u ∈ U . Then, we associate the control

problem with a family of cost functions with various starting times and initial values

via conditional expectation:

J (u; t, x) = Et,x
[∫ T

t
G (s, Xu (s) , u (s)) ds + g (Xu (T))

]
, (4.1.1)

where G and g are as defined in (3.1.2); Xu denotes the unique strong solution of

the controlled SDE (3.1.1); Et,x denotes the expectation with respect to the law of

Xu, conditioning on F (t) with Xu(t) = x ∈ Rn; and u ∈ U [t, T]. It is easy to see

that J(u; 0, x0) = J(u) and J(u; T, x) = g(x) which is independent of u, where J(u) is

defined by (3.1.2).

As the independence between {Ft(s)}s∈(t,T] and {F (s)}s∈[0,t], it follows that, condi-

tioning F (t) with Xũ(t) = x, Xũ(s) is equal to Xu(s) in law for s ∈ [t, T], where ũ ∈ U ,

u = ũ|[t,T] and Xu satisfies
dXu (s) = b (s, Xu (s) , u (s)) ds + σ (s, Xu (s) , u (s)) dW (s) , s ∈ [t, T] ,

Xu (t) = x ∈ Rn.
(4.1.2)

Here b and σ are given functions as those defined in (3.1.1). Accordingly, we have

associated the Markovian optimal control problem (3.1.3) with a family of control

problems described by

inf
u∈U [t,T]

J (u; t, x) (4.1.3)
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with different starting times t ∈ [0, T] and initial values x ∈ R, where the state system

and the cost function are respectively given by (4.1.2) and (4.1.1).

Define a function V : [0, T]×Rn → R by

V (t, x) = inf
u∈U [t,T]

J (u; t, x) , (t, x) ∈ [0, T]×Rn. (4.1.4)

This is called the value function of the Markovian optimal control problem (3.1.3) (see

[45, page 178]). In particular, V(0, x0) is the optimal value of the control problem. As

noted above, to obtain the HJB equation, we use the Bellman principle of optimality.

That is, for any t̂ ∈ [t, T], the value function V satisfies

V (t, x) = inf
u∈U [t,T]

Et,x

[∫ t̂

t
G (s, Xu (s) , u (s)) ds + V

(
t̂, Xu (t̂))] , (4.1.5)

where Xu is the strong solution of the controlled SDE (4.1.2) (see [45, Theorem 3.3]).

The above equation is also referred to as the dynamic programming equation. It can

be seen from (4.1.4) that (4.1.5) tells us that if ū is optimal on the interval [t, T] with

the initial value x, then it must be optimal on [t̂, T] with the initial state Xū(t̂) (see [45,

page 160]). Furthermore, if V is sufficiently smooth,

lim
t̂→t+

1
t̂− t

{
Et,x [V (t̂, Xu (t̂))]−V (t, x)

}
(4.1.6)

can be expressed in terms of V by using the Itô formula. This, together with (4.1.5),

implies that V solves the second-order PDE, i.e. the HJB equation,

∂V
∂t

(t, x) + inf
u∈U
G
(

t, x, u,
∂V
∂x

(t, x) ,
∂2V
∂x2 (t, x)

)
= 0,

(t, x) ∈ [0, T)×Rn,

V (T, x) = g (x) , x ∈ Rn,

(4.1.7)

where G is given by

G (t, x, u, p, q) = G (t, x, u) + 〈p, b (t, x, u)〉+ 1
2

tr
(

σσ> (t, x, u) q
)

. (4.1.8)

The function G is called the generalized Hamiltonian (function) which is different

from the HamiltonianH defined by (3.1.5) in the context of the stochastic maximum

principle.
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The advantage of applying the dynamic programming method is that an optimal

control ū ∈ U [t, T] can be constructed via a solution of the HJB equation. More precisely,

suppose that the HJB equation (4.1.7) admits a solution V̄, where the corresponding

infimum is attained at a B([0, T] ×Rn)-measurable function u0(t, x) for all (t, x) ∈

[0, T]×Rn. Then, as noted in [45, Section 5.5.1], ū defined by

ū (s) = u0 (s, X̄ (s)) , ∀s ∈ [t, T] ,

is an optimal control of the control problem (4.1.3) and also V̄ coincides with the value

function, where X̄ denotes the strong solution of the controlled SDE (4.1.2) with u in

b(s, x, u) and σ(s, x, u) replaced by u0. The above procedure for obtaining such a ū is

called the stochastic verification technique.

As mentioned in Chapter 1, there is a connection between the stochastic maximum

principle and dynamic programming for Markovian optimal control problems: the

adjoint process may be expressed in terms of the derivatives of the value function

together with the corresponding optimal control and the solution of the controlled SDE.

More explicitly, suppose that V̄ is a solution of the HJB equation (4.1.7) so that, by the

stochastic verification technique mentioned above, one can obtain an optimal control

ū ∈ U [t, T] and that V̄ coincides with the value function defined by (4.1.4). Then, the

pair (P̄, HP̄) defined by
P̄ (s) = −∂V̄

∂x
(s, X̄ (s)) ,

HP̄ (s) = −
∂2V̄
∂x2 (s, X̄ (s)) σ (s, X̄ (s) , ū (s)) ,

∀s ∈ [t, T] , (4.1.9)

satisfies the adjoint equation (3.1.6) with the initial time 0 replaced by t and (X, u) re-

placed by (X̄, ū), where X̄ is the strong solution of the controlled SDE (4.1.2) associated

with ū (see [2, page 402] and [45, Chapter 5]).

The Stochastic Optimal Control Problems with Delay

Extending the Markovian optimal control problem to the time-delay context, Larssen

in [22] first considers a stochastic optimal control problem involving general delay. For

every t ∈ [0, T], write X[t−δ,t] for the path segment of X from t− δ to t composed with

the shift operator s→ s + t for s ∈ [−δ, 0]. That is,

X[t−δ,t] (s) = X (t + s) , s ∈ [−δ, 0] , (4.1.10)
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where δ ∈ (0, T). To use the dynamic programming, similarly to that for Markovian

optimal control problems, Larssen in [22, page 661] obtains the associated family of

control problems described as follows.

For (t, ξ) ∈ [0, T]×C([−δ, 0]; Rn) and given functions b : [0, T]×C([−δ, 0]; Rn)×

U → Rn and σ : [0, T]× C([−δ, 0]; Rn)×U → Rn×m, let F (s)-adapted continuous

state process Xu : Ω × [t − δ, T] → Rn be described by the controlled stochastic

differential delay equation (SDDE)
dXu (s) = b

(
s, Xu

[s−δ,s], u (s)
)

ds + σ
(

s, Xu
[s−δ,s], u (s)

)
dW (s) ,

s ∈ [t, T] ,

Xu (s) = ξ (s− t) , s ∈ [t− δ, t] ,

(4.1.11)

where u is selected from a given admissible control set U [t, T] defined in a similar

fashion to that for the Markovian optimal control problem. For given functions

G : [0, T] × C([−δ, 0]; Rn) ×U → R and g : C([−δ, 0]; Rn) → R, the cost function

Jgd (u; t, ξ) is defined by

Jgd (u; t, ξ) = Et,ξ
[∫ T

t
G
(

s, Xu
[s−δ,s], u (s)

)
ds + g

(
Xu
[T−δ,T]

)]
, (4.1.12)

where, in a similar sense to the conditional expectation Et,x in (4.1.1) together with the

argument related to Xũ and Xu for Markovian optimal control problems, Et,ξ denotes

the conditional expectation with respect to the law of the strong solution Xu of the

controlled SDDE (4.1.11); and u ∈ U [t, T].

Then, for given (t, ξ) ∈ [0, T]×C([−δ, 0]; Rn), the stochastic optimal control prob-

lem with delay, associated with the state system (4.1.11) and the cost function (4.1.12),

is to find ū ∈ U [t, T] realizing

inf
u∈U [t,T]

Jgd (u; t, ξ) . (4.1.13)

Note that the stochastic optimal control problem with discrete delay and that with both

discrete and exponential moving average delays studied in the previous chapter can be

regarded as special cases of the above problem. As for (4.1.4), Larssen in [22, page 662]

defines the corresponding value function by

V (t, ξ) = inf
u∈U [t,T]

Jgd (u; t, ξ) , (t, ξ) ∈ [0, T]×C ([−δ, 0] ; Rn) . (4.1.14)
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Note that V(T, ξ) = inf
u∈U [t,T]

Jgd (u; T, ξ) = g(ξ). Larssen in [22, Theorem 4.2] obtains

the dynamic programming equation expressed by

V (t, ξ) = inf
u∈U [t,T]

Et,ξ

[∫ t̂

t
G
(

s, Xu
[s−δ,s], u (s)

)
ds + V

(
t̂, Xu

[t̂−δ,t̂]

)]
, (4.1.15)

where t̂ ∈ [t, T] and Xu denotes the strong solution of the controlled SDDE (4.1.11).

Unlike in the above Markovian case, the value function V here may depend on the

entire initial path ξ in a complicated way which causes certain difficulty in solving this

problem. More precisely, it is generally difficult to apply the Itô formula to express the

corresponding limit (4.1.6) in terms of V in a similar way to that for Markovian optimal

control problems except for some special cases.

For example, Larssen and Risebro in [23] (see also [5] and [22, Section 5]) study a

stochastic optimal control problem with both discrete and exponential moving average

delays, where they assume that the corresponding value function V depends on ξ only

through x(ξ) = ξ(0) and y(ξ) =
∫ 0
−δ eλrξ(r)dr satisfying

V (t, ξ) = V (t, x (ξ) , y (ξ)) (4.1.16)

for (t, ξ) ∈ [0, T]×C([−δ, 0; Rn]). If the function V on the right-hand-side of (4.1.16) is

sufficiently smooth, this hypothesis allows the authors to apply the Itô formula given

in [22, Lemma 5.1] to obtain the HJB equation

∂V
∂t

(t, x, y) +
〈

∂V
∂y

(t, x, y) ,
(

x− λy− e−λδz
)〉

+ inf
u∈U
Gad

(
t, x, y, z, u,

∂V
∂x

(t, x, y) ,
∂2V
∂x2 (t, x, y)

)
= 0,

(t, x, y, z) ∈ [0, T)×Rn×3,

V (T, x, y) = g (x, y) , (x, y) ∈ Rn×2,

(4.1.17)

where the generalized Hamiltonian Gad is defined by

Gad (t, x, y, z, u, p, h)

= 〈p, b (t, x, y, z, u)〉+ 1
2

tr
(

σσ> (t, x, y, z, u) h
)
+ G (t, x, y, z, u) .

Unfortunately, the stochastic verification technique associated with the HJB equation

(4.1.17) has a restriction: the solution V̄ of the HJB equation, if it exists, is required to

be independent of z due to the hypothesis (4.1.16). This is not easily satisfied even
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when the model is independent of Xδ corresponding to z since the second term on the

left-hand-side of the first equation in (4.1.17) is due to the dependence on Xa (see [22,

Lemma 5.1]). It is worth mentioning that Pang and Hussain in [31] try to eliminate

this restriction by increasing the time-delay in the exponential moving average delay,

defining

X̃a (s) =
∫ 0

−∞
eλrX (s + r) dr, ∀s ∈ [t, T] .

This type of time-delay is referred to as completed memory of exponential moving

average delay in [31]. Then, Pang and Hussain impose a similar hypothesis on the

corresponding value function to the one described by (4.1.16) with y(ξ) replaced by∫ 0
−∞ eλrξ(r)dr. This allows them to obtain a HJB equation described in a similar manner

to (4.1.17), where the corresponding second term on the left-hand-side of the first

equation in (4.1.17) is
〈

∂V
∂y (t, x, y) , (x− λy)

〉
(see [31, Lemma 2.2]). Then, if the model

only depends on X̃a, the solution (if it exists) of the corresponding HJB equation is

generally independent of z.

Note that the techniques for deriving the HJB equation (4.1.17) cannot be adapted

to solve the stochastic optimal control problem with discrete delay since the hypothesis

(4.1.16) is not valid if the model is independent of Xa. On the other hand, it is worth

pointing out that Kolmanovskiı̌ and Shaı̌khet in [19, Chapter 3] first introduce a function

V which satisfies V(t, x, y) = V0(t, x) + V1(t, y) and then study the method of dynamic

programming for a class of deterministic optimal control problems with discrete delay,

where the value function V can be expressed in terms of V . This allows them to obtain

the following first-order PDE

∂V
∂t

(t, x, y) + inf
u∈U

{〈
∂V0

∂x
(t, x) +

∂V1

∂y
(t + δ, x) , b (t, x, y, u)

〉
+ G (t, x, y, u)

}
= 0, (t, x, y) ∈ [0, T)×Rn×2,

V (T, x, y) = g (x) , x ∈ Rn.

(4.1.18)

Note that, although the above PDE is solved by V rather than the value function V, it

plays a similar role to the classical HJB equation which allows the authors to construct

an optimal control (see [19, Theorem 3.1.2]). However, to the best of our knowledge,
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the generalization of the PDE (4.1.18) to the corresponding stochastic case has not been

investigated in the academic literature.

Having obtained the HJB equation (4.1.17), the connection with the stochastic

maximum principle involving the adjoint equations (3.1.17)-(3.1.19) studied in [29] for

stochastic optimal control problems with both discrete and exponential moving average

delays has been carried out by Shi in [41, Theorem 3.1]. That is, if P̄ = (P̄1, P̄2, P̄3)> and

H̄ = (H̄1, H̄2)> are defined by
P̄1 (s) = −

∂V̄
∂x

(s, X̄ (s) , X̄a (s)) ,

H̄1 (s) = −
∂2V̄
∂x2 (s, X̄ (s) , X̄a (s)) σ (s, X̄ (s) , X̄a (s) , X̄δ (s) , ū (s)) ,


P̄2 (s) = −

∂V̄
∂y

(s, X̄ (s) , X̄a (s)) ,

H̄2 (s) = −
∂2V̄
∂x∂y

(s, X̄ (s) , X̄a (s)) σ (s, X̄ (s) , X̄a (s) , X̄δ (s) , ū (s)) ,

and

P̄3 (s) = −
∂V̄
∂z

(s, X̄ (s) , X̄a (s)) = 0 (4.1.19)

for s ∈ [t, T], where V̄ is a solution of (4.1.17), then (P̄, H̄) solves (3.1.17)-(3.1.19) with

(X, u) replaced by (X̄, ū). Here, (X̄, ū) is obtained in a similar way to that for the above

Markovian case. In particular, it can be seen from (4.1.19) that the requirement that

P̄3(t) ≡ 0 discussed in Section 3.1.1 coincides with the requirement of independence of

z for V̄ mentioned above. Since we have obtained the new adjoint equations (3.4.10)-

(3.4.11) in Section 3.4, we wonder whether there exists an HJB equation to connect with

those in a similar fashion to the above.

4.1.2 Main Results and Structure of the Chapter

This chapter investigates the method of dynamic programming for a class of sto-

chastic optimal control problems with discrete delay and those with both discrete and

exponential moving average delays, where the value functions are separable specified

in Definition 4.3.1. We adapt the technique in [19, Chapter 3] mentioned above to obtain

the so-called auxiliary HJB equations for the control problems in Theorems 4.3.3 & 4.6.2

and the stochastic verification theorems in Theorems 4.4.1 & 4.6.3 respectively. If the
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model just involves a discrete delay, the auxiliary HJB equation plays a similar role to

the HJB equation (4.1.7) for Markovian optimal control problems. If the model involves

both types of delays, our auxiliary HJB equation not only generalizes the HJB equation

(4.1.17) studied in [22, 23] but also removes the restriction there for some special cases.

The connections with the stochastic maximum principles presented in Theorems 3.3.2

& 3.4.2 are obtained in Theorems 4.5.1 & 4.6.5 respectively.

The reminder of the chapter is organized as follows. Section 4.2 puts the stochastic

optimal control problem with discrete delay into a suitable framework for applying

the dynamic programming method. Section 4.3 obtains the auxiliary HJB equation

for the control problem, where the value function is separable. Section 4.4 states

and proves the verification theorem. To demonstrate how to use the auxiliary HJB

equation to find an optimal control, a solvable example is provided. The connection

with the corresponding stochastic maximum principle studied in the previous chapter

is obtained in Section 4.5. Section 4.6 extends the results to include the exponential

moving average delay.

4.2 The Stochastic Optimal Control Problem with Discrete

Delay

We continue to work with the deterministic terminal time T, probability space

(Ω,F , P), Brownian motion W and filtration F = {F (s)}s∈[0,T] introduced in Section

4.1.1. Recalling the stochastic optimal control problem with discrete delay studied in

Chapter 3 as follows.

For given functions b : [0, T] ×Rn ×Rn ×U → Rn and σ : [0, T] ×Rn ×Rn ×

U → Rn×m, let X : Ω× [−δ, T] → Rn be the continuous F (s)-adapted state process

satisfying the controlled SDDE
dX (s) = b (s, X (s) , Xδ (s) , u (s)) ds

+ σ (s, X (s) , Xδ (s) , u (s)) dW (s) , s ∈ [0, T] ,

X (s) = ξ0 (s) , s ∈ [−δ, 0] ,

(4.2.1)

where δ ∈ (0, T), ξ0 ∈ C([−δ, 0]; Rn) and u : Ω× [0, T]→ U ⊂ Rr is an F (s)-adapted
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control selected from a given admissible control set U , which is defined as before,

such that the controlled SDDE (4.2.1) admits a unique strong solution for every u ∈ U .

Moreover, for given functions G : [0, T]×Rn ×Rn ×U→ R and g : Rn → R, the cost

function Jd is defined by

Jd (u) = E

[∫ T

0
G (s, X (s) , Xδ (s) , u (s)) ds + g (X (T))

]
. (4.2.2)

Then, the stochastic optimal control problem with discrete delay associated with the

state system (4.2.1) and the cost function (4.2.2) is to find ū ∈ U realizing

inf
u∈U

Jd (u) . (4.2.3)

To ensure that, for any ξ0 ∈ C([−δ, 0]; Rn) and u ∈ U , the controlled SDDE (4.2.1)

admits a unique strong solution Xu and the cost function Jd is integrable, we consider

the following two hypotheses.

Hypothesis III. The functions b and σ are continuous with respect to (t, u) ∈

[0, T] ×U and are Lipschitz continuous with respect to (x, y) ∈ Rn ×Rn with the

Lipschitz constant independent of (t, u) ∈ [0, T]×U.

Hypothesis IV. The functions G and g are continuous such that, for any ξ0 ∈

C([−δ, 0]; Rn) and u ∈ U ,

E

[∫ T

0
|G (s, Xu (s) , Xu

δ (s) , u (s))| ds + |g (Xu (T))|
]
< ∞.

Note that the differences compared with Hypotheses I & II are due to that we do not

need to transfer the control problem to a convex problem.

For any (t, ξ) ∈ [0, T]× C([−δ, 0]; Rn), using a similar argument for Markovian

optimal control problems described in Section 4.1.1, we associate the control problem

(4.2.3) with a family of cost functions with different starting times and initial paths via

conditional expectation:

Jd (u; t, ξ) = Et,ξ
[∫ T

t
G (s, Xu (s) , Xu

δ (s) , u (s)) ds + g (Xu (T))
]

, (4.2.4)

where Et,ξ denotes the expectation with respect to the law of Xu, conditioning on

F (t) with X[t−δ,t] = ξ, and u ∈ U [t, T]. Then, comparing (4.2.4) with (4.2.2), we have

Jd(u; 0, ξ0) = Jd(u) and

Jd (u; T, ξ) = g (ξ (0)) ,
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which is independent of u. It follows from the independence between {Ft(s)}s∈(t,T]

and {F (s)}s∈[0,t] that, conditioning F (t) with Xũ
[t−δ,t] = ξ, Xũ(s) is equal to Xu(s) in

law for s ∈ [t, T], where ũ ∈ U , u = ũ|[t,T] and Xu satisfies
dXu (s) = b (s, Xu (s) , Xu

δ (s) , u (s)) ds

+ σ (s, Xu (s) , Xu
δ (s) , u (s)) dW (s) , s ∈ [t, T] ,

Xu (s) = ξ (s− t) , s ∈ [t− δ, t] ,

(4.2.5)

Note that, if the controlled SDDE (4.2.1) admits a unique strong solution Xũ, then Xũ

is a continuous process so that Xũ
[t−δ,t] is F (t)-measurable and, given F (t), Xũ

[t−δ,t] is

determined and lies in C([−δ, 0]; Rn). Note also that, under Hypotheses III & IV, the

controlled SDDE (4.2.5) has a unique strong solution and the cost function (4.2.4) is

integrable for any ξ ∈ C([−δ, 0]; Rn) and u ∈ U [t, T]. Hence, similarly to (4.1.3), we

have associated the stochastic optimal control problem with discrete delay (4.2.3) with

a family of control problems

inf
u∈U [t,T]

Jd (u; t, ξ) (4.2.6)

with different starting times t ∈ [0, T] and initial paths ξ ∈ C([−δ, 0]; Rn), where the

state system and the cost function are respectively given by (4.2.5) and (4.2.4).

Similarly to that in Markovian optimal control problems, we define the value

function V : [0, T]×C([−δ, 0]; Rn)→ R by

V (t, ξ) = inf
u∈U [t,T]

Jd (u; t, ξ) , (t, ξ) ∈ [0, T)×C ([−δ, 0] ; Rn) . (4.2.7)

In particular, V(0, ξ0) is the optimal value for the control problem (4.2.3). Since the

control problem (4.2.6) can be regarded as a special case of (4.1.13), we can rewrite the

dynamic programming equation (4.1.15) as

V (t, ξ) = inf
u∈U [t,T]

Et,ξ

[∫ t̂

t
G (s, Xu (s) , Xu

δ (s) , u (s)) ds + V
(

t̂, Xu
[t̂−δ,t̂]

)]
(4.2.8)

for any (t, ξ) ∈ [0, T]× C([−δ, 0]; Rn) and any t̂ ∈ [t, T]. Note that the above value

function V generally depends on the initial path ξ in a complicated way which makes

the control problem (4.2.6) less easily solvable. As discussed in Section 4.1.1, it is

usually difficult to apply the classical Itô formula to the above dynamic programming
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in a similar way to that for Markovian optimal control problems and the hypothesis in

[23], described by (4.1.16), is not valid in this context. Thus, the results of [23] cannot

be applied to our control problem.

4.3 The Auxiliary HJB Equation

To overcome the difficulty mentioned in the previous section, this section first

adapts the technique used in [19, Chapter 3] to introduce a so-called auxiliary function

for a class of stochastic optimal control problems with discrete delay, where the value

functions are separable as stated by the definition below, and then generalizes the PDE

(4.1.18) to the stochastic context.

Let C1,2([0, T]×Rn) be the space of continuous functions F : [0, T]×Rn → R such

that the partial derivatives ∂F
∂t and ∂2F

∂xi∂xj
for i, j ∈ {1, 2, . . . , n} exist and are continuous.

Definition 4.3.1. The value function V for the stochastic optimal control problem with

discrete delay (4.2.3) is called separable if there are two functions V0,V1 ∈ C1,2([0, T]×

Rn), with V1(T, ·) ≡ 0, such that, for any (t, ξ) ∈ [0, T]×C([−δ, 0]; Rn),

V (t, ξ) =V0 (t, ξ (0)) + V1 (min {t + δ, T} , ξ (0))

−
∫ min{t+δ,T}

t

∂V1

∂s
(s, ξ (s− δ− t)) ds.

(4.3.1)

If V is separable, we call

V (t, x, y) = V0 (t, x) + V1 (t, y) ,

an auxiliary function of V.

Note that, if the value function V of the control problem (4.2.3) is separable, we can

also re-express (4.3.1) as

V (t, ξ) = V (t, ξ (0) , ξ (−δ)) + C (t, ξ (· − t)) , (4.3.2)

where
C (t, ξ (· − t)) =V1 (t + δ, ξ (0))− V1 (t, ξ (−δ))

−
∫ t+δ

t

∂V1

∂s
(s, ξ (s− δ− t)) ds,

(4.3.3)
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and where we have taken V1(t, x) ≡ 0 for all t > T for notational simplicity. Note also

that, for a given separable value function V, the functions V0 and V1 are not unique.

More precisely, if V0 and V1 satisfy (4.3.1), then V0 + F and V1 − F also satisfy (4.3.1)

for any continuously differentiable function F on [0, T] with F(T) = 0. Nevertheless,

the function C(t, ξ(· − t)) corresponding to V1 − F is identical to that corresponding to

V1, i.e. it is invariant with respect to the change from V1 to V1 − F. On the other hand,

the auxiliary function V is uniquely defined. Indeed, if Ṽ is also an auxiliary function

of V, then there is a continuously differentiable function F with F(T) = 0, such that

Ṽ(t, x, y) = Ṽ0(t, x) + Ṽ1(t, y) = V(t, x, y) + F(t). One may take Ṽ0(t, x) = V0(t, x) and

Ṽ1(t, y) = V1(t, y) + F(t). Since C(t, ξ(· − t)) is invariant with respect to the change

from V1 to Ṽ1, the expression (4.3.2) for V in terms of V and Ṽ implies that V = Ṽ . In

the following section, we shall give certain conditions to guarantee that the control

problem (4.2.6) admit an auxiliary function.

When the value function V is separable, although it generally still depends on the

entire initial path ξ, we are able to express the limit (4.3.4) (see below) in terms of

the auxiliary function V . As noted in Section 4.1.1, the expression for the limit (4.1.6)

in Markovian optimal control problems plays an important role in deriving the HJB

equation from the dynamic programming equation.

Lemma 4.3.2. Assume that Hypotheses III & IV hold. Suppose that the value function V

for the stochastic optimal control problem with discrete delay (4.2.3) is separable associated

with an auxiliary function V(t, x, y) = V0(t, x) + V1(t, y). Then, for any (t, ξ) ∈ [0, T]×

C([−δ, 0]; Rn) and u ∈ U [t, T],

lim
t̂→t+

1
t̂− t

{
Et,ξ

[
V
(

t̂, Xu
[t̂−δ,t̂]

)]
−V (t, ξ)

}
, (4.3.4)

where t̂ ∈ [t, T], can be expressed as

∂V
∂t

(t, ξ (0) , ξ (−δ))

+

〈(
∂V0

∂x
(t, ξ (0)) +

∂V1

∂y
(t + δ, ξ (0))

)
, b (t, ξ (0) , ξ (−δ) , u (t))

〉
+

1
2

tr
(

σσ> (t, ξ (0) , ξ (−δ) , u (t))
(

∂2V0

∂x2 (t, ξ (0))

+
∂2V1

∂y2 (t + δ, ξ (0))
))

,

(4.3.5)
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where Xu
[t̂−δ,t̂] is defined by (4.1.10) with t replaced by t̂ and Xu is the strong solution of the

controlled SDDE (4.2.5).

Proof. For simplicity of notation, we extend the domain of V1 to [0, T + δ]×Rn such

that V1(t, ·) ≡ 0 for t > T.

Fix u ∈ U [t, T] and t̂ ∈ [t, T], and write Xu for the corresponding strong solution of

the controlled SDDE (4.2.5). Then, by (4.3.1), the term within the bracket in (4.3.4) can

be rewritten as

Et,ξ
[

V
(

t̂, Xu
[t̂−δ,t̂]

)]
−V (t, ξ)

=
{

Et,ξ [V0
(
t̂, Xu (t̂))]− V0 (t, ξ (0))

}
+
{

Et,ξ [V1
(
t̂ + δ, Xu (t̂))]− V1 (t + δ, ξ (0))

}
+

{∫ t+δ

t

∂V1

∂s
(s, ξ (s− δ− t)) ds−Et,ξ

[∫ t̂+δ

t̂

∂V1

∂s
(s, Xu

δ (s)) ds

]}
.

(4.3.6)

Applying the Itô formula to V0(s, Xu(s)) for s ∈
[
t, t̂
]
, we obtain that

V0
(
t̂, Xu (t̂))− V0 (t, ξ (0))

=
∫ t̂

t

{
∂V0

∂s
(s, Xu (s)) +

〈
∂V0

∂x
(s, Xu (s)) , b (s)

〉
+

1
2

tr
(

σσ> (s)
∂2V0

∂x2 (s, Xu (s))
)}

ds

+
∫ t̂

t

〈
∂V0

∂x
(s, Xu (s)) , σ (s) dW (s)

〉
,

(4.3.7)

where we have used the shorthand notation

b (s) = b (s, Xu (s) , Xu
δ (s) , u (s)) ,

σ (s) = σ (s, Xu (s) , Xu
δ (s) , u (s)) .

(4.3.8)

Then, taking conditional expectations Et,ξ on the both sides of (4.3.7), we see that the

terms within the first pair of brackets on the right-hand-side of (4.3.6) can be expanded

in the form as

Et,ξ [V0
(
t̂, Xu (t̂))]− V0 (t, ξ (0))

=Et,ξ
[ ∫ t̂

t

{
∂V0

∂s
(s, Xu (s)) +

〈
∂V0

∂x
(s, Xu (s)) , b (s)

〉
+

1
2

tr
(

σσ> (s)
∂2V0

∂x2 (s, Xu (s))
)}

ds
]

.

(4.3.9)
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Similarly, application of the Itô formula to V1(s + δ, Xu(s)) for s ∈ [t, t̂] gives the

following expansion of the terms which the second pair of brackets on the right-hand-

side of (4.3.6):

Et,ξ [V1
(
t̂ + δ, Xu (t̂))]− V1 (t + δ, ξ (0))

=Et,ξ

[ ∫ t̂

t

{
∂V1

∂s
(s + δ, Xu (s)) +

〈
∂V1

∂y
(s + δ, Xu (s)) , b (s)

〉

+
1
2

tr
(

σσ> (s)
∂2V1

∂y2 (s + δ, Xu (s))
)}

ds

]
.

(4.3.10)

In particular, using the relationship between X and Xδ, we re-express the first term of

the right-hand-side of (4.3.10) as

Et,ξ

[∫ t̂

t

∂V1

∂s
(s + δ, Xu (s)) ds

]

=Et,ξ

[∫ t̂+δ

t+δ

∂V1

∂s
(s, Xu (s− δ)) ds

]

=Et,ξ

[∫ t̂

t

∂V1

∂s
(s, Xu

δ (s)) ds

]
+ Et,ξ

[∫ t̂+δ

t̂

∂V1

∂s
(s, Xu

δ (s)) ds

]

−
∫ t+δ

t

∂V1

∂s
(s, ξ (s− δ− t)) ds.

Thus, substituting (4.3.9) and (4.3.10), as well as using the above equality, into the

right-hand-side of (4.3.6), we obtain that

Et,ξ
[

V
(

t̂, Xu
[t̂−δ,t̂]

)]
−V (t, ξ)

=Et,ξ

[ ∫ t̂

t

{〈(
∂V0

∂x
(s, Xu (s)) +

∂V1

∂y
(s + δ, Xu (s))

)
, b (s)

〉
+

1
2

tr
(

σσ> (s)
(

∂2V0

∂x2 (s, Xu (s)) +
∂2V1

∂y2 (s + δ, Xu (s))
))

+
∂V
∂s

(s, Xu (s) , Xu
δ (s))

}
ds

]
.

(4.3.11)

Finally, dividing by t̂− t on the both sides of (4.3.11) and letting t̂→ t+, we have the

required equation (4.3.5), where the existence of the limit follows from the continuity

of b and σ described in Hypothesis III.

With the result of Lemma 4.3.2, we derive a PDE solved by the auxiliary function V

of the value function for the control problem (4.2.3) as follows.
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Theorem 4.3.3. Assume that the conditions of Lemma 4.3.2 hold. Then, the auxiliary function

V(t, x, y) = V0(t, x) + V1(t, y) of the value function for the stochastic optimal control problem

with discrete delay (4.2.3) is a solution of the following terminal value problem of the second-

order PDE:

∂V
∂t

(t, x, y)

+ inf
u∈U
Gd

(
t, x, y, u,

∂V0

∂x
(t, x) +

∂V1

∂y
(t + δ, x) ,

∂2V0

∂x2 (t, x)

+
∂2V1

∂y2 (t + δ, x)
)
= 0, (t, x, y) ∈ [0, T)×Rn×2,

V (T, x, y) = V0 (T, x) = g (x) , x ∈ Rn,

(4.3.12)

where Gd : [0, T]×Rn ×Rn ×U×Rn × Sn → R is given by

Gd (t, x, y, u, p, q)

= 〈p, b (t, x, y, u)〉+ 1
2

tr
(

σσ> (t, x, y, u) q
)
+ G (t, x, y, u) ,

(4.3.13)

and where Sn denotes the space of n× n symmetric matrices.

As (4.3.12) is a PDE solved by the auxiliary function V , rather than the value

function, and is expressed in a similar form to the HJB equation (4.1.7) for Markovian

optimal control problems (see [45, Chapter 4]), we shall call it the auxiliary HJB equation

for the control problem (4.2.3), where the function Gd defined by (4.3.13) is referred to

as the corresponding generalized Hamiltonian.

Note that the proof below uses essentially the same technique as that for the

Markovian case described in [45, Proposition 3.5]. For completeness, we give the

details as follows.

Proof. Fix (t, x, y) ∈ [0, T] ×Rn ×Rn and u ∈ U (i.e. value for a control). Let ξ ∈

C([−δ, 0]; Rn) be a path such that x = ξ (0) and y = ξ (−δ); v ∈ U [t, T] be the control

such that v(t) ≡ u; and Xv be the corresponding strong solution of the controlled SDDE

(4.2.5) with u replaced by v.

It follows from the dynamic programming equation (4.2.8) that

V (t, ξ) ≤ Et,ξ

[∫ t̂

t
G (s, Xv (s) , Xv

δ (s) , v (s)) ds + V
(

t̂, Xv
[t̂−δ,t̂]

)]
,
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where t̂ ∈ [t, T]. Then, dividing by t̂− t on the both sides of the above inequality, we

obtain that

0 ≤ 1
t̂− t

Et,ξ

[∫ t̂

t
G (s, Xv (s) , Xv

δ (s) , v (s)) ds

]

+
1

t̂− t

{
Et,ξ

[
V
(

t̂, Xv
[t̂−δ,t̂]

)]
−V (t, ξ)

}
.

(4.3.14)

Rewriting the value function V on the right-hand-side of the above inequality in terms

of the auxiliary function V , and then letting t̂ → t and using (4.3.5) for the limit, we

obtain that

0 ≤∂V
∂t

(t, x, y) + G (t, x, y, u)

+

〈(
∂V0

∂x
(t, x) +

∂V1

∂y
(t + δ, x)

)
, b (t, x, y, u)

〉
+

1
2

tr
(

σσ> (t, x, y, u)
(

∂2V0

∂x2 (t, x) +
∂2V1

∂y2 (t + δ, x)
))

.

(4.3.15)

This gives that

0 ≤∂V
∂t

(t, x, y) + inf
u∈U
Gd

(
t, x, y, u,

∂V0

∂x
(t, x) +

∂V1

∂y
(t + δ, x) ,

∂2V0

∂x2 (t, x)

+
∂2V1

∂y2 (t + δ, x)
)

.
(4.3.16)

On the other hand, it follows from the dynamic programming equation (4.2.8) that, for

any sufficiently small ε > 0, we can find a vε ∈ U [t, T] such that

V (t, ξ) + ε
(
t̂− t

)
≥Et,ξ

[∫ t̂

t
G
(

s, Xvε
(s) , Xvε

δ (s) , vε (s)
)

ds

]

+ Et,ξ
[

V
(

t̂, Xvε

[t̂−δ,t̂]

)]
.

(4.3.17)

Then, as that for (4.3.14) and (4.3.15), we divide by t̂− t on the both sides of (4.3.17) to

get the following inequality

ε ≥ 1
t̂− t

Et,ξ

[∫ t̂

t
G
(

s, Xvε
(s) , Xvε

δ (s) , vε (s)
)

ds

]

+
1

t̂− t

{
Et,ξ

[
V
(

t̂, Xvε

[t̂−δ,t̂]

)]
−V (t, ξ)

}
,

which, letting t̂→ t and using (4.3.5), implies that

ε ≥∂V
∂t

(t, x, y) + G (t, x, y, u)

+

〈(
∂V0

∂x
(t, x) +

∂V1

∂y
(t + δ, x)

)
, b (t, x, y, u)

〉
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+
1
2

tr
(

σσ> (t, x, y, u)
(

∂2V0

∂x2 (t, x) +
∂2V1

∂y2 (t + δ, x)
))

≥∂V
∂t

(t, x, y) + inf
u∈U
Gd

(
t, x, y, u,

∂V0

∂x
(t, x) +

∂V1

∂y
(t + δ, x) ,

∂2V0

∂x2 (t, x)

+
∂2V1

∂y2 (t + δ, x)
)

.

Finally, combining the above inequalities with (4.3.16), we obtain (4.3.12), where the

boundary condition follows immediately from the definitions of both the value and

auxiliary functions given in (4.2.7) and Definition 4.3.1 respectively.

If δ = 0, Xδ is identical with X. Under the conditions given in Theorem 4.3.3

with δ = 0, the corresponding C (t, ξ (· − t)) defined by (4.3.3) is identically zero.

Consequently, there exists a function V̂ : [0, T]×Rn → R such that V̂(t, x) = V(t, x, x)

which coincides with the value function given by (4.1.4). Then, noting Definition 4.3.1,

the corresponding auxiliary HJB equation and generalized Hamiltonian coincide with

(4.1.7) and (4.1.8) respectively.

4.4 A Stochastic Verification Theorem

As mentioned in Section 4.1.1, the stochastic verification technique for Markovian

optimal control problems offers one way to construct an optimal control ū ∈ U [t, T]

via a solution of the HJB equation (4.1.7). For the stochastic optimal control problem

with discrete delay (4.2.3), although we do not in general have an HJB equation that

the value function V satisfies, it is possible to have the following stochastic verification

theorem in terms of auxiliary functions when V is separable.

Theorem 4.4.1. Assume that Hypotheses III & IV hold. Suppose that there exist V̄0, V̄1 ∈

C1,2([0, T]×Rn) with V̄1(T, ·) ≡ 0 such that

V̄ (t, x, y) = V̄0 (t, x) + V̄1 (t, y)

satisfies the auxiliary HJB equation (4.3.12). Then, for any (t, ξ) ∈ [0, T]×C([−δ, 0]; Rn),

Jd (u; t, ξ) ≥ V̄ (t, ξ (0) , ξ (−δ)) + C̄ (t, ξ (· − t)) (4.4.1)

for all u ∈ U [t, T], where C̄ (t, ξ (· − t)) is given by (4.3.3) with V1 replaced by V̄1. Moreover,

if there exists a B([0, T]×Rn×2)-measurable function u0 : [0, T]×Rn ×Rn → U such that
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the infimum in (4.3.12) is attained at u0(t, x, y) for all (t, x, y) ∈ [0, T]×Rn ×Rn in the

sense that

Gd

(
t, x, y, u0 (t, x, y) ,

∂V̄0

∂x
(t, x)

+
∂V̄1

∂y
(t + δ, x) ,

∂2V̄0

∂x2 (t, x) +
∂2V̄1

∂y2 (t + δ, x)
)

= inf
u∈U
Gd

(
t, x, y, u,

∂V̄0

∂x
(t, x)

+
∂V̄1

∂y
(t + δ, x) ,

∂2V̄0

∂x2 (t, x) +
∂2V̄1

∂y2 (t + δ, x)
)

,

(4.4.2)

where Gd is defined by (4.3.13), then the control ū, defined by

ū (s) = u0 (s, X̄ (s) , X̄δ (s)) , ∀s ∈ [t, T] , (4.4.3)

is an optimal control of the stochastic optimal control problem with discrete delay (4.2.6),

where X̄ denotes the strong solution of the controlled SDDE (4.2.5) with u in b(s, x, y, u) and

σ(s, x, y, u) replaced by u0.

Proof. As before, for notational ease, we extend the domain of V̄1 to [0, T + δ]×Rn

such that V1(t, ·) ≡ 0 for t > T.

Fix u ∈ U [t, T] and ξ ∈ C([−δ, 0]; Rn), and write Xu for the corresponding strong

solution of the controlled SDDE (4.2.5). Then, it follows from the condition that

V̄(t, x, y) = V̄0(t, x) + V̄1(t, y) that

Et,ξ [V̄ (t̂, Xu (t̂) , Xu
δ

(
t̂
))]
− V̄ (t, ξ (0) , ξ (−δ))

=
{

Et,ξ [V̄0
(
t̂, Xu (t̂))]− V̄0 (t, ξ (0))

}
+
{

Et,ξ [V̄1
(
t̂, Xu

δ

(
t̂
))]
− V̄1 (t, ξ (−δ))

}
,

(4.4.4)

where t̂ ∈ [t, T]. The terms in the first pair of brackets on the right-hand-side of (4.4.4)

can be expanded by (4.3.9) with V0 replaced by V̄0. For the terms within the second

pair of brackets on the right-hand-side of (4.4.4), we write

E
[
V̄1
(
t̂, Xu

δ

(
t̂
))]
− V̄1 (t, ξ (−δ))

=
{

Et,ξ [V̄1
(
t̂, Xu

δ

(
t̂
))]
− V̄1 (t + δ, ξ (0))

}
+
{
V̄1 (t + δ, ξ (0))− V̄1 (t, ξ (−δ))

}
.

(4.4.5)
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Applying the Itô formula to V̄1(s, Xu
δ (s)) for s ∈

[
t + δ, t̂

]
and using the relationship

between X and Xδ, we have

V1
(
t̂, Xu

δ

(
t̂
))
− V1 (t + δ, ξ (0))

=
∫ t̂−δ

t

{
∂V1

∂s
(s + δ, Xu (s)) +

〈
∂V1

∂y
(s + δ, Xu (s)) , b (s)

〉

+
1
2

tr
(

σσ> (s)
∂2V1

∂y2 (s + δ, Xu (s))
)}

ds

+
∫ t̂−δ

t

〈
∂V1

∂y
(s + δ, Xu (s)) , σ (s) dW (s)

〉
=
∫ t̂

t

{
∂V1

∂s
(s, Xu

δ (s)) +
〈

∂V1

∂y
(s + δ, Xu (s)) , b (s)

〉
I[t,t̂−δ] (s)

+
1
2

tr
(

σσ> (s)
∂2V1

∂y2 (s + δ, Xu (s))
)

I[t,t̂−δ] (s)

}
ds

+
∫ t̂−δ

t

〈
∂V1

∂y
(s + δ, Xu (s)) , σ (s) dW (s)

〉
−
∫ t+δ

t

∂V̄1

∂s
(s, ξ (s− δ− t)) ds,

(4.4.6)

where we have used the shorthand notation b(s) and σ(s) given by (4.3.8). Then, taking

conditional expectations Et,ξ on the both sides of (4.4.6), we have that

Et,ξ [V̄1
(
t̂, Xu

δ

(
t̂
))]
− V̄1 (t + δ, ξ (0))

=Et,ξ

[ ∫ t̂

t

{
∂V1

∂s
(s, Xu

δ (s)) +
〈

∂V1

∂y
(s + δ, Xu (s)) , b (s)

〉
I[t,t̂−δ] (s)

+
1
2

tr
(

σσ> (s)
∂2V1

∂y2 (s + δ, Xu (s))
)

I[t,t̂−δ] (s)

}
ds

]

−
∫ t+δ

t

∂V̄1

∂s
(s, ξ (s− δ− t)) ds.

This allows us to rewrite the right-hand-side of (4.4.5) as

Et,ξ [V̄1
(
t̂, Xu

δ

(
t̂
))]
− V̄1 (t, ξ (−δ))

=Et,ξ

[ ∫ t̂

t

{
∂V̄1

∂s
(s, Xu

δ (s)) +
〈

∂V̄1

∂y
(s + δ, Xu (s)) , b (s)

〉
I[t,t̂−δ] (s)

+
1
2

tr
(

σσ> (s)
∂2V̄1

∂y2 (s + δ, Xu (s))
)

I[t,t̂−δ] (s)

}
ds

]

+
{
V̄1 (t + δ, ξ (0))− V̄1 (t, ξ (−δ))

}
−
∫ t+δ

t

∂V̄1

∂s
(s, ξ (s− δ− t)) ds.

(4.4.7)
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Now, substituting (4.4.7) and the corresponding (4.3.9) into the right-hand-side of (4.4.4)

and then letting t̂ = T, we obtain that

Et,ξ [V̄0 (T, Xu (T))
]
− V̄ (t, ξ (0) , ξ (−δ))− C̄ (t, ξ (· − t))

=Et,ξ

[ ∫ T

t

{
∂V̄
∂s

(s, Xu (s) , Xu
δ (s))

+

〈{
∂V̄0

∂x
(s, Xu (s)) +

∂V̄1

∂y
(s + δ, Xu (s))

}
, b (s)

〉
+

1
2

tr
(

σσ> (s)
{

∂2V̄0

∂x2 (s, Xu (s))

+
∂2V̄1

∂y2 (s + δ, Xu (s))
})}

ds

]
,

(4.4.8)

where the indicator function in (4.4.7) is eliminated since V̄1(t, ·) ≡ 0 for all t ≥ T.

Furthermore, rearranging the terms in (4.4.8) and using the expression (4.3.13) for Gd,

we have that

V̄ (t, ξ (0) , ξ (−δ)) + C̄ (t, ξ (· − t))

=Et,ξ
[∫ T

t
G (s, Xu (s) , Xu

δ (s) , u (s)) ds + V̄0 (T, Xu (T))
]

−Et,ξ

[ ∫ T

t

{
∂V̄
∂s

(s, Xu (s) , Xu
δ (s))

+ Gd

(
s, Xu (s) , Xu

δ (s) , u (s) ,
∂V̄0

∂x
(s, Xu (s))

+
∂V̄1

∂y
(s + δ, Xu (s)) ,

∂2V̄0

∂x2 (s, Xu (s))

+
∂2V̄1

∂y2 (s + δ, Xu (s))
)}

ds

]
.

If V̄ is a solution of the auxiliary HJB equation (4.3.12), then we have V0(T, x) = g(x)

so that, noting (4.2.4), the above equation is equivalent to

V̄ (t, ξ (0) , ξ (−δ)) + C̄ (t, ξ (· − t))

=Jd (u; t, ξ)

−Et,ξ

[ ∫ T

t

{
∂V̄
∂s

(s, Xu (s) , Xu
δ (s))

+ Gd

(
s, Xu (s) , Xu

δ (s) , u (s) ,
∂V̄0

∂x
(s, Xu (s)) (4.4.9)

+
∂V̄1

∂y
(s + δ, Xu (s)) ,

∂2V̄0

∂x2 (s, Xu (s))
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+
∂2V̄1

∂y2 (s + δ, Xu (s))
)}

ds

]
.

This implies that

V̄ (t, ξ (0) , ξ (−δ)) + C̄ (t, ξ (· − t))

≤Jd (u; t, ξ)

−Et,ξ

[ ∫ T

t

{
∂V̄
∂s

(s, Xu (s) , Xu
δ (s))

+ inf
u∈U
Gd

(
s, Xu (s) , Xu

δ (s) , u,
∂V̄0

∂x
(s, Xu (s))

+
∂V̄1

∂y
(s + δ, Xu (s)) ,

∂2V̄0

∂x2 (s, Xu (s))

+
∂2V̄1

∂y2 (s + δ, Xu (s))
)}

ds

]

so that

Jd (u; t, ξ) ≥ V̄ (t, ξ (0) , ξ (−δ)) + C̄ (t, ξ (· − t)) ,

giving the conclusion (4.4.1).

Since u0 is Borel-measurable with values in U, Hypothesis III implies that the

functions b(t, x, y, u0(t, x, y)) and σ(t, x, y, u0(t, x, y)) are also B([0, T] × Rn×2 ×U)-

measurable. Then, the corresponding controlled SDDE (4.2.5) admits a unique strong

solution (see [6, Theorem 2.2]). Hence, the control ū given by (4.4.3) is in U [t, T].

Furthermore, substituting ū described by (4.4.3), as well as the corresponding strong

solution X̄ of (4.2.5), into the right-hand-side of (4.4.9) and noting (4.4.2), we have

V̄ (t, ξ (0) , ξ (−δ)) + C̄ (t, ξ (· − t))

=Jd (ū; t, ξ)

−Et,ξ

[ ∫ T

t

{
∂V̄
∂s

(s, X̄ (s) , X̄δ (s))

+ Gd

(
s, X̄ (s) , X̄δ (s) , ū(s),

∂V̄0

∂x
(s, X̄ (s))

+
∂V̄1

∂y
(s + δ, X̄ (s)) ,

∂2V̄0

∂x2 (s, X̄ (s))

+
∂2V̄1

∂y2 (s + δ, X̄ (s))
)}

ds

]
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=Jd (ū; t, ξ)

−E

[ ∫ T

t

{
∂V̄
∂s

(s, X̄ (s) , X̄δ (s))

+ inf
u∈U
Gd

(
s, X̄ (s) , X̄δ (s) , u,

∂V̄0

∂x
(s, X̄ (s))

+
∂V̄1

∂y
(s + δ, X̄ (s)) ,

∂2V̄0

∂x2 (s, X̄ (s))

+
∂2V̄1

∂y2 (s + δ, X̄ (s))
)}

ds

]

=Jd (ū; t, ξ) ,

where the last equality is due to the fact that V̄ is a solution of the auxiliary HJB equation

(4.3.12). By (4.4.1), we have that Jd (ū; t, ξ) ≤ Jd (u; t, ξ) for every u ∈ U [t, T] which

implies that ū is an optimal control of the control problem (4.2.6).

One of the immediate consequences of Theorem 4.4.1 is that, if one can find a

solution V̄ of the auxiliary HJB equation (4.3.12) and the associated u0 as required in

Theorem 4.4.1, then the equality in (4.4.1) holds with respect to ū given by (4.4.3). This

offers the sufficient conditions for the existence of auxiliary function as stated by the

following corollary.

Corollary 4.4.2. Assume that Hypotheses III & IV hold. If there exist V̄0, V̄1 ∈ C1,2([0, T]×

Rn) with V̄1(T, ·) ≡ 0 such that V̄ (t, x, y) = V̄0 (t, x) + V̄1 (t, y) satisfies the auxiliary HJB

equation (4.3.12); and the associated infimum is attained at a B([0, T]×Rn×2)-measurable

function u0(t, x, y) for all (t, x, y) ∈ [0, T]×Rn ×Rn in the sense of (4.4.2), then

V (t, ξ) = Jd (ū; t, ξ) = V̄ (t, ξ (0) , ξ (−δ)) + C̄ (t, ξ (· − t))

for any (t, ξ) ∈ [0, T] × C([−δ, 0]; Rn), where C̄ (t, ξ (· − t)) is given by (4.3.3) with V1

replaced by V̄1 and ū is given by (4.4.3). Hence, V̄ is an auxiliary function of the value function

for the stochastic optimal control problem with discrete delay (4.2.3).

4.4.1 An Example

Although we do not have conditions which guarantee the existence of a solution of

the auxiliary HJB equation (4.3.12), the following provides an example to demonstrate
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the existence of auxiliary function.

For simplicity, we set m = n = r = 1. Suppose that U = R and U = L22
F ; that b and

σ in (4.2.5) are given by
b (s, x, y, u) = a1x + c1u,

σ (s, x, y, u) =
(
a2x2 + b2y2 + p

) 1
2 ,

(4.4.10)

where a1, a2, b2 and p are given constants such that a2, b2 ≥ 0 and p > 0; and that G and

g in (4.2.4) are given by

G (s, x, y, u) =
1
2
(
c3u2 + a3x2 + b3y2) and g (x) =

1
2

a4x2, (4.4.11)

where a3, a4, b3 and c3 are given constants such that c3 > 0. Note that, since the

corresponding Hamiltonian given by (3.2.24) is not concave with respect to (x, y, u)

if a3 and b3 are negative, neither the conjugate duality method described in Theorem

2.5.2 nor the stochastic maximum principle described in Theorem 3.3.2 can be applied

to this problem.

(I) Verifying Hypotheses III & IV

Clearly, the functions b, σ, G and g defined by (4.4.10) and (4.4.11) are continuous

with respect to (t, x, y, u) and x respectively. Moreover, it has been seen in Examples

3.2.1 & 3.3.3 that b is Lipschitz continuous. On the other hand, for every x, x′, y, y′, u ∈

R, we obtain that∣∣σ (t, x, y, u)− σ
(
t, x′, y′, u

)∣∣
≤
∣∣σ (t, x, y, u)− σ

(
t, x′, y, u

)∣∣+ ∣∣σ (t, x′, y, u
)
− σ

(
t, x′, y′, u

)∣∣
≤ a2√

a2

∣∣x− x′
∣∣+ b2√

b2

∣∣y− y′
∣∣ ,

where the second inequality is due to the fact that the derivatives of σ, with respect

to x and y, are bounded by a2/
√

a2 and b2/
√

b2 respectively. This indicates that σ is

Lipschitz continuous with respect to (x, y) so that Hypothesis III is satisfied. Applying

the technique used at the beginning of Example 3.2.1, the controlled SDDE (4.2.1) with

b and σ so defined admits a unique strong solution X for every ũ ∈ U = L22
F with

X, Xδ ∈ L22
F . This implies that the corresponding controlled SDDE (4.2.5) admits a
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unique strong solution Xu satisfying Xu, Xu
δ ∈ L22

Ft
([t, T]; R) for every u ∈ U [t, T] =

L22
Ft
([t, T]; R), where L22

Ft
([t, T]; R) is defined in a similar fashion to L22

F in Section 2.3.

Also, similarly to Example 3.2.1, the cost function (4.2.2) with G and g so defined is

integrable.

(II) Applying Theorem 4.4.1

It follows from (4.3.12) that the auxiliary HJB equation for the control problem

(4.2.6) with b, σ, G and g so defined is

∂V
∂t

(t, x, y)

+ inf
u∈U

{
1
2
(
a3x2 + b3y2 + c3u2)+(∂V0

∂x
(t, x) +

∂V1

∂y
(t + δ, x)

)
(a1x + c1u)

+
1
2

(
∂2V0

∂x2 (t, x) +
∂2V1

∂y2 (t + δ, x)
) (

a2x2 + b2y2 + p
) }

= 0,

(t, x, y) ∈ [0, T)×R2,

V (T, x, y) = V0 (T, x) =
1
2

a4x2, x ∈ R.
(4.4.12)

To find a solution V̄(t, x, y) = V̄0(t, x) + V̄1(t, y) of the above auxiliary HJB equation,

we suppose that V̄0(t, x) and V̄1(t, y) take the form

V̄0 (t, x) =
1
2
(

A (t) x2 + C (t)
)

and V̄1 (t, y) =
1
2

B (t) y2, (4.4.13)

where A, B and C need to be determined, and satisfy the condition that A, B and

C are R-valued continuously differentiable functions on [0, T] with B(T) = 0. For

simplicity of notation, as those in the proofs of Lemma 4.3.2 and Theorem 4.4.1, we

extend the domain of B to [0, T + δ] such that B(t) = 0 for t > T. Substituting V̄ defined

by (4.4.13) into (4.4.12) and taking the derivative, with respect to u, of the function

within the bracket on the left-hand-side of the first equation of (4.4.12), we see that the

corresponding derivative is zero if and only if

u = − c1

c3
(A (t) + B (t + δ)) x. (4.4.14)

Then, taking the function u0 in Theorem 4.4.1 to be −c1 (A (t) + B (t + δ)) x/c3, we see

that u0 satisfies the required conditions since A and B are continuously differentiable

and the function within the bracket on the left-hand-side of the first equation of (4.4.12)

is convex with respect to u.
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Define a control ū via u0 as

ū (s) = − c1

c3
(A (s) + B (s + δ)) X̄ (s) , ∀s ∈ [t, T] , (4.4.15)

where X̄ is the unique strong solution of the corresponding controlled SDDE (4.2.5)

with u in (4.4.10) replaced by u0. Note that such a ū is in U [t, T] = L22
Ft
([t, T]; R) since

X̄ ∈ L22
Ft
([t, T]; R) and A and B are continuous. By Theorem 4.4.1, ū described by

(4.4.15) is an optimal control of the control problem.

(III) Solving the Auxiliary HJB Equation

Substituting (4.4.13) and u0 obtained by (4.4.14) into the auxiliary HJB equation

(4.4.12), we see that A, B and C satisfy

dA
dt

(t) x2 +
dB
dt

(t) y2 +
dC
dt

(t)

=

{
c2

1
c3

(A (t) + B (t + δ))2 − (2a1 + a2) (A (t) + B (t + δ))− a3

}
x2

− {(A (t) + B (t + δ)) b2 + b3} y2 − p (A (t) + B (t + δ)) .

(4.4.16)

Then, comparing the corresponding coefficients of x2 and y2 on the both sides of (4.4.16),

we see that (4.4.16) is satisfied if A and B solve the system of ordinary differential

equations (ODEs):

dA
dt

(t) =
c2

1
c3

(A (t) + B (t + δ))2

− (2a1 + a2) (A (t) + B (t + δ))− a3, t ∈ [0, T] ,

A (T) = a4;

(4.4.17)


dB
dt

(t) = − (A (t) + B (t + δ)) b2 − b3, t ∈ [0, T] ,

B (t) = 0, t ∈ [T, T + δ] ;
(4.4.18)

where the terminal values are derived from those in (4.4.12); and that C satisfies

C (t) =
∫ T

t
p (A (s) + B (s + δ)) ds, ∀t ∈ [0, T] . (4.4.19)

Note that, since the function F(x, y) = c2
1(x + y)2/c3 − (2a1 + a2)(x + y)− a3 corre-

sponding to the terms on the right-hand-side of the first equation of (4.4.17) is not

Lipschitz continuous with respect to (x, y), this system of ODEs only admits a local

solution ([4, Theorem 2.8.1]).

We summarize the above by the following theorem.
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Theorem 4.4.3. If the system of ODEs (4.4.17)-(4.4.18) admits a solution (A, B), then

V̄(t, x, y) = V̄0(t, x) + V̄1(t, y) described by (4.4.13) is the solution of the auxiliary HJB

equation (4.4.12), where C is obtained by (4.4.19), and the control ū described by (4.4.15) is

optimal to the stochastic optimal control problem with discrete delay (4.2.6), where b, σ, G and

g are respectively defined by (4.4.10) and (4.4.11).

(IV) The Backward Induction Algorithm

It is generally difficult to find an analytic solution of the above system of ODEs.

Hence, we solve it numerically using a similar backward induction algorithm to the

one given in Example 3.3.3, as follows.

Step 1. Suppose that t ∈ [T − δ, T]. Then, B(t + δ) ≡ 0 and the ODE (4.4.17)

becomes 
dA
dt

(t) =
c2

1
c3

A2 (t)− (2a1 + a2) A (t)− a3, t ∈ [T − δ, T] ,

A (T) = a4.

This allows us to obtain A(t) in [T − δ, T]. Then, B(t) for t ∈ [T − δ, T] is obtained by

the ODE (4.4.18) in which A(t) is already obtained and B(t + δ) ≡ 0.

Step k. Moving backward to the interval [T− (k + 1)δ, T− kδ], where k ∈N+ such

that T − (k + 1)δ ≥ 0. Note that B(t + δ) is already known by Step k− 1. Then, the

corresponding numerical solutions for A(t) and B(t) are obtained in a similar way to

Step 1.

Using the above backward induction algorithm, Figures 4.1 & 4.2 below give an

example of such A, B and C and the corresponding pair (X̄, ū) respectively, where a3

and b3 are negative.

4.5 Connection with the Stochastic Maximum Principle

Having studied the dynamic programming method for the stochastic optimal

control problem with discrete delay (4.2.3), this section investigates its connection with

the stochastic maximum principle obtained in Section 3.3.
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Figure 4.1: Evolution of A, B and C with parameters T = 2, δ = 0.1, a1 = 3, a2 =
2, a3 = −3, a4 = 2, b2 = 2, b3 = −3, c1 = −3, c3 = 2 and p = 4.

Let C1,3([0, T] ×Rn) be the space of continuous functions F : [0, T] ×Rn → R

such that the partial derivatives ∂2F
∂t∂xi

and ∂3F
∂xi∂xj∂xk

, for i, j, k ∈ {1, 2, . . . , n}, exist and

are continuous. To explore such a connection, in addition to Hypotheses III & IV, we

assume further in this section the following hypothesis.

Hypothesis V. The functions b, σ and G are continuously differentiable with respect

to (x, y) ∈ Rn×Rn; the function g is continuously differentiable with respect to x ∈ Rn;

and U = Rr.

Theorem 4.5.1. Assume that Hypotheses III, IV & V hold. Suppose that there are V̄0, V̄1 ∈

C1,3([0, T]×Rn) with V̄1(T, ·) = 0 such that V̄(t, x, y) = V̄0(t, x) + V̄1(t, y) is a solution

of the auxiliary HJB equation (4.3.12). Suppose further that the infimum of (4.3.12) is attained

at a B([0, T]×Rn×2)-measurable function u0 in the sense of (4.4.2). Let ū be the optimal

control defined by (4.4.3) and X̄ be the strong solution of controlled SDDE (4.2.5) with u in
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Figure 4.2: Evolution of X̄ and ū with parameters T = 2, δ = 0.1, ξ(t) = t + 1 for
t ∈ [−0.1, 0], a1 = 3, a2 = 2, a3 = −3, a4 = 2, b2 = 2, b3 = −3, c1 = −3, c3 = 2 and
p = 4.

b(s, x, y, u) and σ(s, x, y, u) replaced by u0. Then, for any (t, ξ) ∈ [0, T]× C([−δ, 0]; Rn),

(P̄, HP̄) defined by

P̄i (s) = −
{

∂V̄0

∂xi
(s, X̄ (s)) +

∂V̄1

∂yi
(s + δ, X̄ (s))

}
,

Hij
P̄ (s) = −

n

∑
k=1

{
∂2V̄0

∂xi∂xk
(s, X̄ (s)) +

∂2V̄1

∂yi∂yk
(s + δ, X̄ (s))

}
× σkj (s, X̄ (s) , X̄δ (s) , ū (s)) ,

∀s ∈ [t, T] , (4.5.1)

where i ∈ {1, 2, . . . , n} and j ∈ {1, 2, . . . , m}, satisfies

dP̄ (s) = −
{

∂H̄d

∂x
(s) + E

[
∂H̄d

∂y
(s + δ) I[t,T−δ] (s)

∣∣∣F (s)
]}

ds

+ HP̄ (s) dW (s) , s ∈ [t, T] ,

P̄ (T) = −∂g
∂x

(X̄ (T)) .

(4.5.2)

where the HamiltonianHd is given by (3.2.24); and

∂H̄d

∂x
(s) =

∂Hd

∂x
(s, X̄ (s) , X̄δ (s) , ū (s) , P̄ (s) , HP̄ (s))

and similarly for the partial derivative ∂H̄d
∂y (s + δ).
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Proof. Under the conditions that V̄(t, x, y) = V̄0(t, x) + V̄1(t, y) solves the auxiliary HJB

equation (4.3.12), we have

0 =
∂V̄
∂t

(t, x, y) + G (t, x, y, u0 (t, x, y))

+

〈(
∂V̄0

∂x
(t, x) +

∂V̄1

∂y
(t + δ, x)

)
, b (t, x, y, u0 (t, x, y))

〉
+

1
2

tr
(

σσ> (t, x, y, u0 (t, x, y))
(

∂2V̄0

∂x2 (t, x) +
∂2V̄1

∂y2 (t + δ, x)
))

.

(4.5.3)

In addition, since u0 attains the infimum in (4.3.12) in the sense of (4.4.2) and U = Rr,

we obtain that the derivative, with respect to u, of the function on the right-hand-side

of (4.5.3) vanishes at u = u0(t, x, y). Then, for any t̂ ∈ [t, T], differentiating the both

sides of (4.5.3) with respect to xi and then evaluating at (t, x, y) = (t̂, X̄(t̂), X̄δ(t̂)), we

have that

∂2V̄0

∂t∂xi

(
t̂, X̄

(
t̂
))

=− ∂G
∂xi

(
t̂, X̄

(
t̂
)

, X̄δ

(
t̂
)

, ū
(
t̂
))

−
n

∑
j=1

{(
∂2V̄0

∂xi∂xj

(
t̂, X̄

(
t̂
))

+
∂2V̄1

∂yi∂yj

(
t̂ + δ, X̄

(
t̂
)))

bj
(
t̂, X̄

(
t̂
)

, X̄δ

(
t̂
)

, ū
(
t̂
))

+

(
∂V̄0

∂xj

(
t̂, X̄

(
t̂
))

+
∂V̄1

∂yj

(
t̂ + δ, X̄

(
t̂
))) ∂bj

∂xi

(
t̂, X̄

(
t̂
)

, X̄δ

(
t̂
)

, ū
(
t̂
)) }

− 1
2

n

∑
j=1

n

∑
k=1

{
∂3V̄0

∂xi∂xj∂xk

(
t̂, X̄

(
t̂
))

+
∂3V̄1

∂yi∂yj∂yk

(
t̂ + δ, X̄

(
t̂
))}

(4.5.4)

×
{

m

∑
r=1

(
σjrσkr

) (
t̂, X̄

(
t̂
)

, X̄δ

(
t̂
)

, ū
(
t̂
))}

−
m

∑
r=1

n

∑
j=1

{
n

∑
k=1

{(
∂2V̄0

∂xj∂xk

(
t̂, X̄

(
t̂
))

+
∂2V̄1

∂yj∂yk

(
t̂ + δ, X̄

(
t̂
)))

× σkr
(
t̂, X̄

(
t̂
)

, X̄δ

(
t̂
)

, ū
(
t̂
)) }∂σjr

∂xi

(
t̂, X̄

(
t̂
)

, X̄δ

(
t̂
)

, ū
(
t̂
)) }

,

where, for the last summation on the right-hand-side of (4.5.4), we have used the fact

that

1
2

n

∑
j=1

n

∑
k=1

{(
∂2V̄0

∂xj∂xk

(
t̂, X̄

(
t̂
))

+
∂2V̄1

∂yj∂yk

(
t̂ + δ, X̄

(
t̂
)))

× ∂

∂xi

(
m

∑
r=1

(
σjrσkr

) (
t̂, X̄

(
t̂
)

, X̄δ

(
t̂
)

, ū
(
t̂
)))}
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=
m

∑
r=1

n

∑
j=1

{
n

∑
k=1

{(
∂2V̄0

∂xj∂xk

(
t̂, X̄

(
t̂
))

+
∂2V̄1

∂yj∂yk

(
t̂ + δ, X̄

(
t̂
)))

× σkr
(
t̂, X̄

(
t̂
)

, X̄δ

(
t̂
)

, ū
(
t̂
)) }

×
∂σjr

∂xi

(
t̂, X̄

(
t̂
)

, X̄δ

(
t̂
)

, ū
(
t̂
)) }

.

Similarly, differentiating the both sides of (4.5.3) with respect to yi, evaluating at

(t, x, y) = (t̂ + δ, X̄(t̂ + δ), X̄(t̂)) and then taking the conditional expectation with

respect to F (t̂), we have that

∂V̄1

∂t∂yi

(
t̂ + δ, X̄

(
t̂
))

=−E

[
∂G
∂yi

(
t̂ + δ, X̄

(
t̂ + δ

)
, X̄
(
t̂
)

, ū
(
t̂ + δ

))
+

n

∑
j=1

{
∂V̄0

∂xj

(
t̂ + δ, X̄

(
t̂ + δ

))
+

∂V̄1

∂yj

(
t̂ + 2δ, X̄

(
t̂ + δ

))}
×

∂bj

∂yi

(
t̂ + δ, X̄

(
t̂ + δ

)
, X̄
(
t̂
)

, ū
(
t̂ + δ

))
(4.5.5)

+
m

∑
r=1

n

∑
j=1

{
n

∑
k=1

{
∂2V̄0

∂xj∂xk

(
t̂ + δ, X̄

(
t̂ + δ

))
+

∂2V̄1

∂yj∂yk

(
t̂ + 2δ, X̄

(
t̂ + δ

))}
× σkr

(
t̂ + δ, X̄

(
t̂ + δ

)
, X̄
(
t̂
)

, ū
(
t̂ + δ

))
×

∂σjr

∂yi

(
t̂ + δ, X̄

(
t̂ + δ

)
, X̄
(
t̂
)

, ū
(
t̂ + δ

)) }∣∣∣∣F (t̂)
]

.

Under the conditions that V̄0, V̄1 ∈ C1,3([0, T]×Rn), we apply the Itô formula to P̄i

defined by the first equation of (4.5.1) to get

dP̄i (s) =−
{{

∂2V̄0

∂xi∂s
(s, X̄ (s)) +

∂2V̄1

∂yi∂s
(s + δ, X̄ (s))

}
+

n

∑
j=1

{
∂2V̄0

∂xi∂xj
(s, X̄ (s)) +

∂2V̄1

∂yi∂yj
(s + δ, X̄ (s))

}
× bj (s, X̄ (s) , X̄δ (s) , ū (s))

+
1
2

n

∑
j=1

n

∑
k=1

{
∂3V̄0

∂xi∂xj∂xk
(s, X̄ (s)) +

∂3V̄1

∂yi∂yj∂yk
(s + δ, X̄ (s))

}
(4.5.6)

×
{

m

∑
r=1

(
σjrσkr

)
(s, X̄ (s) , X̄δ (s) , ū (s))

}}
ds

−
n

∑
j=1

{
∂2V̄0

∂xi∂xj
(s, X̄ (s)) +

∂2V̄1

∂yi∂yj
(s + δ, X̄ (s))

}
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×
m

∑
r=1

σjr (s, X̄ (s) , X̄δ (s) , ū (s)) dWr (s) .

Then, the substitution of (4.5.4) and (4.5.5) into the first bracket on the right-hand-side

of (4.5.6) leads to

dP̄i (s)

=−
{
− ∂G

∂xi
(s, X̄ (s) , X̄δ (s) , ū (s)) +

n

∑
j=1

P̄i (s)
∂bj

∂xi
(s, X̄ (s) , X̄δ (s) , ū (s))

+
m

∑
r=1

n

∑
j=1

Hij
P̄ (s)

∂σjr

∂xi
(s, X̄ (s) , X̄δ (s) , ū (s))

+ E

[
− ∂G

∂yi
(s + δ, X̄ (s + δ) , X̄ (s) , ū (s + δ))

+
n

∑
j=1

P̄i (s + δ)
∂bj

∂yi
(s + δ, X̄ (s + δ) , X̄ (s) , ū (s + δ))

+
m

∑
r=1

n

∑
j=1

Hij
P̄ (s + δ)

∂σjr

∂yi
(s + δ, X̄ (s + δ) , X̄ (s) , ū (s + δ))

∣∣∣∣F (s)]}ds

+
m

∑
r=1

Hir
P̄ (s) dWr (s) ,

which coincides with (4.5.2) by noting the expression (3.2.24) forHd, where the terminal

value for P̄ follows immediately from that for the auxiliary HJB equation (4.3.12)

together with (4.5.1).

By Corollary 4.4.2, the function V̄ required in Theorem (4.5.1) is an auxiliary function

of the value function V for the control problem (4.2.3). Hence, (4.5.1) generalizes (4.1.9)

for Markovian optimal control problems and shows that the adjoint process (4.5.2) can

be expressed in terms of the auxiliary function together with the corresponding optimal

control and the solution of the controlled SDDE.

In the reminder of this section, we give an example to verify the result obtained in

Theorem 4.5.1.

Example 4.5.2. We revisit the control problem studied in Example 3.3.3. Recalling that

m = n = r = 1, U = R and U = L22
F ; that b and σ are given by

b (s, x, y, u) = a1x + b1y + c1u,

σ (s, x, y, u) = a2x + b2y + c2u,
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and that G and g are given by

G (s, x, y, u) =
1
2

c3u2 and g (x) = a3x,

where a1, a2, a3, b1, b2, c1, c2 ∈ R and c3 > 0 are given constants. Note that, following

the arguments used in Examples 3.3.3 & 3.2.1, Hypotheses III, IV &V are satisfied for

this problem.

(I) Applying Dynamic Programming

It follows from (4.3.12) that the auxiliary HJB equation for this control problem is

expressed by

∂V
∂t

(t, x, y)

+ inf
u∈U

{
1
2

c3u2 +

(
∂V0

∂x
(t, x) +

∂V1

∂y
(t + δ, x)

)
(a1x + b1y + c1u)

+
1
2

(
∂2V0

∂x2 (t, x) +
∂2V1

∂y2 (t + δ, x)
)
(a2x + b2y + c2u)2

}
= 0,

(t, x, y) ∈ [0, T)×R2,

V (T, x, y) = V0 (T, x) = a3x, x ∈ R.

(4.5.7)

Noting the terminal value in (4.5.7), we suppose that a solution V̄(t, x, y) = V̄0(t, x) +

V̄1(t, y) of the auxiliary HJB equation (4.5.7) can be expressed in the form

V̄0 (t, x) = C (t) + A (t) x and V̄1 (t, y) = B (t) y, (4.5.8)

where A, B and C are as defined similarly to those in (4.4.13). Then, applying the

technique used in part (II) of Section 4.4.1, we see that the functions u0 required in

Theorem 4.4.1 is described by

u0 (t, x, y) = − c1

c3
(A (t) + B (t + δ)) (4.5.9)

which gives an optimal control

ū (s) = − c1

c3
(A (s) + B (s + δ)) , ∀s ∈ [t, T] ,

of the control problem (4.2.6) with b, σ, G and g so defined. It is easy to see that ū is in

U [t, T] = L22
Ft
([t, T]; R) since A and B are continuous. To obtain A, B and C, similarly to

part (III) of Section 4.4.1, substituting (4.5.8) and u0 obtained by (4.5.9) into the auxiliary
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HJB equation (4.5.7), we see that V̄ defined by (4.5.8) is a solution of (4.5.7) if A and B

satisfy the system of ODEs:
dA
dt

(t) = − (A (t) + B (t + δ)) a1, t ∈ [0, T] ,

A (T) = a3,
(4.5.10)


dB
dt

(t) = − (A (t) + B (t + δ)) b1, t ∈ [0, T] ,

B (t) = 0, t ∈ [T, T + δ] ;
(4.5.11)

and if

C (t) = −
∫ T

t

c2
1

2c3
(A (s) + B (s + δ))2 ds, ∀t ∈ [0, T] .

Unlike (4.4.17)-(4.4.18), the above system of ODEs admits a unique solution since

the function F(x, y) = −(x + y)a for a = a1, b1, corresponding to the terms on the

right-hand-side of the first equation of (4.5.10) and (4.5.11) respectively, is Lipschitz

continuous with respect to (x, y). As for (4.4.17)-(4.4.18), this system of ODEs can be

solved numerically by the backward induction algorithm presented in part (IV) of

Section 4.4.1.

Figure 4.3 below gives an example of such A, B and C and the corresponding

optimal control ū with b, σ, G and g so defined, where the parameters are the same as

those in Example 3.3.3. Note that, since ∂2V̄0
∂x2 (t, x) + ∂2V̄1

∂y2 (t + δ, x) ≡ 0 under (4.5.8), σ

in this case can be any function which satisfies Hypothesis III.

(II) Comparing with the Stochastic Maximum Principle.

For V̄0 (t, x) = C (t) + A (t) x and V̄1 (t, y) = B (t) y, the conditions required in

Theorem 4.5.1 are satisfied. Then, applying Theorem 4.5.1 and setting t = 0, we see

that the pair (P̄, HP̄) defined by
P̄ (t) = − (A (t) + B (t + δ)) ,

HP̄ (t) ≡ 0,
t ∈ [0, T] ,

satisfies the adjoint equation (3.3.20) obtained in Example 3.3.3. Figure 4.4 below gives

an example of such a P̄ and compares it with the numerical result shown in Figure

3.1. Note that, by increasing the accuracy, Figure 4.4 (b) shows a segment part of

this comparsion which indicates that the numerical discrepancy between these two

methods for this case can be narrowed down to any fixed ε > 0.
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Figure 4.3: Evolution of A, B, C and ū with parameters T = 10, δ = 0.5, ξ(t) = t + 1
for t ∈ [−δ, 0], a1 = a3 = 1, b1 = −2, c1 = −1 and c3 = 3.

4.6 Inclusion of the Exponential Moving Average Delay

Similarly to the extension studied in Section 3.4, we can generalize the results

obtained in the preceding sections of this chapter to take exponential moving average

delays into consideration.

(I) The Control Problem

We continue to work with (Ω,F , P), W and F = {F (s)}s∈[0,T] introduced in Section

4.1.1, and recall the stochastic optimal control problem with both discrete and expo-

nential moving average delays studied in Section 3.4 as follows. For given functions

b : [0, T]×Rn ×Rn ×Rn ×U → Rn and σ : [0, T]×Rn ×Rn ×Rn ×U → Rn×m, let

the F (s)-adapted continuous state process X : Ω× [−δ, T]→ Rn be described by the

controlled SDDE
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Figure 4.4: Evolution of P̄ respectively obtained by the dynamic programming (DP)
and the stochastic maximum principle (SMP) with parameters T = 10, δ = 0.5, ξ(t) =
t + 1 for t ∈ [−δ, 0], a1 = a3 = 1, b1 = −2, c1 = −1 and c3 = 3.



dX (s) = b (s, X (s) , Xa (s) , Xδ (s) , u (s)) ds

+ σ (s, X (s) , Xa (s) , Xδ (s) , u (s)) dW (s) , s ∈ [0, T] ,

Xa (s) =
∫ 0

−δ
eλrX (s + r) dr, λ > 0,

X (s) = ξ0 (s) , s ∈ [−δ, 0] ,

(4.6.1)

where ξ0, δ and Xδ are as defined before and the control u is selected from the given

admissible control set U as defined in a similar sense to that in (4.2.3). Moreover, for

given functions G : [0, T]×Rn ×Rn ×Rn ×U → R and g : Rn ×Rn → R, the cost

function Jad is defined by

Jad (u) = E

[∫ T

0
G (s, X (s) , Xa (s) , Xδ (s) , u (s)) dt + g (X (T) , Xa (T))

]
. (4.6.2)

Then, the stochastic optimal control problem with both discrete and exponential moving

average delays, associated with the state system (4.6.1) and the cost function (4.6.2), is

to find ū ∈ U realizing

inf
u∈U

Jad (u) . (4.6.3)

Similarly to Hypotheses III & IV, we make the following two hypotheses to ensure

that, for any ξ0 ∈ C([−δ, 0]; Rn) and u ∈ U , the controlled SDDE (4.6.1) admits a

unique strong solution Xu and the cost function Ja is integrable.
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Hypothesis* III. The functions b and σ are continuous with respect to (t, u) ∈

[0, T]×U and are Lipschitz continuous with respect to (x, y, z) ∈ Rn ×Rn ×Rn with

the Lipschitz constant independent of (t, u) ∈ [0, T]×U.

Hypothesis* IV. The functions G and g are continuous such that, for any ξ0 ∈

C([−δ, 0]; Rn) and u ∈ U ,

E

[∫ T

0
|G (s, Xu (s) , Xu

a (s) , Xu
δ (s) , u (s))| ds

]
+ E [|g (Xu (T) , Xu

a (T))|] < ∞.

To apply dynamic programming, we use a similar argument used for the discrete

delay case to associate the control problem (4.6.3) with a family of control problems with

different starting times and initial paths. That is, for any (t, ξ) ∈ [0, T]×C([−δ, 0]; Rn),

to find ū ∈ U [t, T] realizing

inf
u∈U [t,T]

Jad (u; t, ξ) , (4.6.4)

where the state system is given by
dXu (s) = b (s, Xu (s) , Xu

a (s) , Xu
δ (s) , u (s)) ds

+ σ (s, Xu (s) , Xu
a (s) , Xu

δ (s) , u (s)) dW (s) , s ∈ [t, T] ,

Xu (s) = ξ (s− t) , s ∈ [t− δ, t] ,

(4.6.5)

and the cost function Jad(u; t, ξ) is given by

Jad (u; t, ξ) =Et,ξ
[∫ T

t
G (s, Xu (s) , Xu

a (s) , Xu
δ (s) , u (s)) ds

]
+ Et,ξ [g (Xu (T) , Xu

a (T))] .

(4.6.6)

Note that, following the corresponding argument used for the discrete delay case,

Xu is equal to Xũ in law for s ∈ [t, T], where ũ ∈ U , u = ũ|[t,T] and Xũ is the strong

solution of the controlled SDDE (4.6.1) with u replaced by ũ. Note also that, for any

ξ ∈ C([−δ, 0]; Rn), Jad(u; 0, ξ0) = Jad(u) and

Jad(u; T, ξ) = g
(

ξ (0) ,
∫ 0

−δ
eλrξ (r) dr

)
,

which is independent to u. Then, similarly to (4.1.14) and (4.2.7), the corresponding

value function V : [0, T]×C([−δ, 0]; Rn)→ R is defined by

V (t, ξ) = inf
u∈U [t,T]

Jad (u; t, ξ) , (t, ξ) ∈ [0, T)×C ([−δ, 0] ; Rn) .
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(II) The Auxiliary HJB Equation

As mentioned in Section 4.1.1, it is generally difficult to apply the classical Itô

formula to the dynamic programming equation

V (t, ξ) = inf
u∈U [t,T]

Et,ξ
[ ∫ t̂

t
G (s, Xu (s) , Xu

a (s) , Xu
δ (s) , u (s)) ds

+ V
(

t̂, Xu
[t̂−δ,t̂]

) ]
, ∀t̂ ∈ [t, T] ,

in a similar way to that for Markovian optimal control problems to get the correspond-

ing HJB equation and also, under the hypothesis (4.1.16), the HJB equation (4.1.17)

has a restriction. Thus, similarly to Section 4.3, we investigate a class of the control

problems described by (4.6.3), where the value function V is separable in a similar

sense to that in Definition 4.3.1.

Hereafter, let C1,2,1([0, T]×Rn×2) be the space of continuous functions F : [0, T]×

Rn ×Rn → R such that the partial derivatives ∂F
∂t , ∂2F

∂xi∂xj
and ∂F

∂yi
, for i, j ∈ {1, 2, . . . , n},

exist and are continuous.

Definition 4.6.1. The value function V for the stochastic optimal control problem with

both discrete and exponential moving average delays (4.6.3) is called separable if

there are two functions V0 ∈ C1,2,1([0, T] ×Rn×2) and V1 ∈ C1,2([0, T] ×Rn), with

V1(T, ·) ≡ 0, such that, for any (t, ξ) ∈ [0, T]×C([−δ, 0]; Rn),

V (t, ξ) =V0

(
t, ξ (0) ,

∫ 0

−δ
eλrξ (r) dr

)
+ V1 (min {t + δ, T} , ξ (0))

−
∫ min{t+δ,T}

t

∂V1

∂s
(s, ξ (s− δ− t)) ds.

(4.6.7)

If V is separable, we call

V (t, x, y, z) = V0 (t, x, y) + V1 (t, z) ,

an auxiliary function of V.

Similarly to the discrete delay case, we can rewrite (4.6.7) as

V (t, ξ) = V
(

t, ξ (0) ,
∫ 0

−δ
eλrξ (r) dr, ξ (−δ)

)
+ C (t, ξ (· − t)) ,

where C (t, ξ (· − t)) is defined by (4.3.3) with respect to V1 above and, for a given

separable value function V, the auxiliary function V is uniquely. Furthermore, having

127



introduced the auxiliary functions, we can re-express the corresponding limit (4.3.4) in

terms of the auxiliary function in a similar fashion to (4.3.5). This allows us to obtain

the auxiliary HJB equation as follows.

Theorem 4.6.2. Assume that Hypotheses* III & IV holds. Suppose that the value function V for

the stochastic optimal control problem with both discrete and exponential moving average delays

(4.6.3) is separable associated with an auxiliary function V(t, x, y, z) = V0(t, x, y) + V1(t, z).

Then, V satisfies the second-order PDE:

∂V
∂t

(t, x, y, z) +
〈

∂V0

∂y
(t, x, y) ,

(
x− λy− e−λδz

)〉
+ inf

u∈U
Gad

(
t, x, y, z, u,

∂V0

∂x
(t, x, y) +

∂V1

∂z
(t + δ, x) ,

∂2V0

∂x2 (t, x, y)

+
∂2V1

∂z2 (t + δ, x)
)
= 0, (t, x, y, z) ∈ [0, T)×Rn×3,

V (T, x, y, z) = V0 (T, x, y) = g (x, y) , (x, y) ∈ Rn×2,

(4.6.8)

where Gad : [0, T]×Rn ×Rn ×Rn ×U×Rn × S→ R is given by

Gad (t, x, y, z, u, p, h)

=G (t, x, y, z, u) + 〈b (t, x, y, z, u) , p〉+ 1
2

tr
(

σσ> (t, x, y, z, u) h
)

.
(4.6.9)

The proof of Theorem 4.6.2 uses the essentially same techniques as those in the

proofs of both Lemma 4.3.2 and Theorem 4.3.3. The main difference is that, instead

of (4.3.7), we apply the Itô formula given in [22, Lemma 5.1] to V0(s, Xu(s), Xu
a (s)) for

s ∈ [t, t̂] to obtain

V0
(
t̂, Xu (t̂) , Xu

a
(
t̂
))
− V0

(
t, ξ (0) ,

∫ 0

−δ
eλrξ (r) dr

)
=
∫ t̂

t

{
∂V0

∂s
(s, Xu (s) , Xu

a (s)) +
〈

∂V0

∂x
(s, Xu (s) , Xu

a (s)) , b (s)
〉

+

〈
∂V0

∂y
(s, Xu (s) , Xu

a (s)) ,
(

Xu (s)− λXu
a (s)− e−λδXu

δ (s)
)〉

+
1
2

tr
(

σσ> (s)
∂2V0

∂x2 (s, Xu (s) , Xu
a (s))

)}
ds

+
∫ t̂

t

〈
∂V0

∂x
(s, Xu (s) , Xu

a (s)) , σ (s) dW (s)
〉

, ∀t̂ ∈ [t, T] ,

(4.6.10)

where we have used the shorthand notation b(s) and σ(s) defined in a similar manner

to (4.3.8). Note that the third term on the right-hand-side of (4.6.10) leads to the second
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term on the right-hand-side of the first equation of (4.6.8). Note also that if V is

independent of z, corresponding to the case where V1 is a function defined on [0, T] and

so C (t, ξ (· − t)) = 0, the value function V reduces to the one which satisfies (4.1.16).

Then, since V1 only depends on t, the corresponding auxiliary HJB equation (4.6.8)

reduces to (4.1.17) obtained in [22, 23].

(III) Stochastic Verification Theorem

Similarly to Theorem 4.4.1, we have the following stochastic verification technique

for the control problem (4.6.3).

Theorem 4.6.3. Assume that Hypotheses* III & IV hold. Suppose that there exist V̄0 ∈

C1,2,1([0, T]×Rn×2) and V̄1 ∈ C1,2([0, T]×Rn) with V̄1(T, ·) ≡ 0 such that

V̄ (t, x, y, z) = V̄0 (t, x, y) + V̄1 (t, z)

satisfies the auxiliary HJB equation (4.6.8). Then, for any (t, ξ) ∈ [0, T]×C([−δ, 0]; Rn),

Ja (u; t, ξ) ≥V̄
(

t, ξ (0) ,
∫ 0

−δ
eλrξ (r) dr, ξ (−δ)

)
+ C̄ (t, ξ (· − t)) ,

for all u ∈ U [t, T], where C̄ (t, ξ (· − t)) is given by (4.3.3) with V1 replaced by V̄1. Moreover,

if there exists a B([0, T]×Rn×3)-measurable function u0 : [0, T]×Rn ×Rn ×Rn → U

such that the infimum in (4.6.8) is attained at u0(t, x, y, z) for all (t, x, y, z) ∈ [0, T]×Rn ×

Rn ×Rn in the sense that

Gad

(
t, x, y, z, u0 (t, x, y, z) ,

∂V̄0

∂x
(t, x, y)

+
∂V̄1

∂z
(t + δ, x) ,

∂2V̄0

∂x2 (t, x, y) +
∂2V̄1

∂z2 (t + δ, x)
)

= inf
u∈U
Gad

(
t, x, y, z, u,

∂V̄0

∂x
(t, x, y)

+
∂V̄1

∂z
(t + δ, x) ,

∂2V̄0

∂x2 (t, x, y) +
∂2V̄1

∂z2 (t + δ, x)
)

,

(4.6.11)

where Gad is defined by (4.6.9), then the control ū, defined by

ū (s) = u0 (s, X̄ (s) , X̄a (s) , X̄δ (s)) , ∀s ∈ [t, T] , (4.6.12)

is an optimal control of (4.6.4), where X̄ denotes the strong solution of the controlled SDDE

(4.6.5) with u in b(s, x, y, z, u) and σ(s, x, y, z, u) replaced by u0.
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Similarly to Corollary 4.4.2, the above theorem also illustrates that if the auxiliary

HJB equation (4.6.8) admits a solution V̄ (t, x, y, z) = V̄0 (t, x, y) + V̄1 (t, z) and if u0

attains the infimum in (4.6.8) in the sense of (4.6.11), then V̄ must coincide with the

auxiliary function of the value function for the control problem (4.6.3).

The following example demonstrates how to use Theorem 4.6.3 to find an optimal

control. Note that this control problem cannot be solved using the HJB equation

(4.1.17) obtained in [22, 23]. In fact, as σ below depends on z corresponding to Xδ, the

conditions given in [23, Theorem 5.1] cannot be applied to this problem.

Example 4.6.4. As before, we set m = n = r = 1. Suppose that U = R and U = L22
F ;

that b and σ in (4.6.5) are given by
b (s, x, y, z, u) = a1x + c1u,

σ (s, x, y, z, u) =
(
a2x2 + b2z2 + p

) 1
2 ,

which are same as those in (4.4.10); that G and g in (4.6.6) are given by
G (s, x, y, z, u) =

1
2
(
c3u2 + a3x2 + b3z2)+ f3y,

g (x, y) =
1
2

a4x2 + a5x + f4y,

where a1, a2, a3, a4, b2, b3, c1, c3, p are as given in Section 4.4.1 and a5, f3, f4 are given

constants. By the technique used in part (I) of Section 4.4.1, we see that Hypotheses* III

& IV are satisfied.

It follows from (4.6.8) that the auxiliary HJB equation for this control problem is

given by

∂V
∂t

(t, x, y, z) +
(

x− λy− e−λδz
) ∂V0

∂y
(t, x, y)

+ inf
u∈U

{
1
2
(
c3u2 + a3x2 + b3z2)+ f3y +

(
∂V0

∂x
(t, x, y) +

∂V1

∂z
(t + δ, x)

)
(a1x + c1u)

+
1
2

(
∂2V0

∂x2 (t, x, y) +
∂2V1

∂z2 (t + δ, x)
) (

a2x2 + b2z2 + p
) }

= 0,

(t, x, y, z) ∈ [0, T)×R1×3,

V (T, x, y, z) = V0 (T, x, y) =
1
2

a4x2 + a5x + f4y, (x, y) ∈ R1×2.
(4.6.13)

Adapting the technique used in part (II) of Section 4.4.1, we suppose that a solu-

tion V̄ (t, x, y, z) = V̄0 (t, x, y) + V̄1 (t, z) of the above auxiliary HJB equation can be
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expressed in the form
V̄0 (t, x) =

1
2

A1 (t) x2 + A2 (t) x + B (t) y + D (t) ,

V̄1 (t, y) =
1
2

C1 (t) z2 + C2 (t) z,
(4.6.14)

where A1, A2, B, C1, C2 and D are R-valued continuously differentiable functions on

[0, T] needing to be determined with Ci(T) = 0 for i = 1, 2. As before, for simplicity

of notation, we extend the domain of Ci to [0, T + δ] by defining Ci(t) = 0 for t > T.

Now, substituting (4.6.14) into the auxiliary HJB equation (4.6.13) and then, following

the argument used in part (II) of Section 4.4.1 for deriving (4.4.15), we obtain that an

optimal control described by

ū (s) =− c1

c3
((A1 (s) + C1 (s + δ)) X̄ (s))

− c1

c3
(A2 (s) + C2 (s + δ)) , ∀s ∈ [t, T] ,

where X̄ is the strong solution of the controlled SDDE (4.6.5) with respect to ū as

specified in Theorem 4.6.3. Following the argument used at the end of part (II) of

Section 4.4.1, ū ∈ U [t, T] = L22
Ft
([t, T]; R).

Similarly to Theorem 4.4.3, we obtain that if A1, A2, B, C1 and C2 are solved by the

systems of ODEs

dA1

dt
(t) =

c2
1

c3
(A1 (t) + C1 (t + δ))2

− (2a1 + a2) (A1 (t) + C1 (t + δ))− a3, t ∈ [0, T] ,

A1 (T) = a4,

dA2

dt
(t) =

c2
1

c3
(A1 (t) + C1 (t + δ)) (A2 (t) + C2 (t + δ))

− a1 (A2 (t) + C2 (t + δ))− B (t) , t ∈ [0, T] ,

A2 (T) = a5,
dB
dt

(t) = λB (t)− f3, t ∈ [0, T] ,

B (T) = f4,
dC1

dt
(t) = − (A1 (t) + C1 (t + δ)) b2 − b3, t ∈ [0, T] ,

C1 (t) = 0, t ∈ [T, T + δ] ,
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dC2

dt
(t) = e−λδB (t) , t ∈ [0, T] ,

C2 (t) = 0, t ∈ [T, T + δ] ,

and if

D (t) =
1
2

∫ T

t

{
(A1 (s) + C1 (s + δ)) p− c2

1
c3

(A2 (s) + C2 (s + δ))

}
ds, ∀t ∈ [0, T] ,

then V̄ (t, x, y, z) described by (4.6.14) is a solution of the auxiliary HJB equation (4.6.13).

Figures 4.5 & 4.6 below give an example of such A1, A2, B, C1, C2 and D and the corre-

sponding pair (X̄, ū) respectively.

Figure 4.5: Evolution of A1, A2, B, C1, C2 and D with parameters T = 2, δ = 0.2,
ξ(t) = t + 1 for t ∈ [−0.2, 0], λ = 2, a1 = 4, a2 = 1, a3 = −3, a4 = 2, a5 = 3, b2 = 2, b3 =
−3, c1 = −3, c3 = 3, f3 = 7, f4 = −2 and p = 2.

(IV) Connection with the Stochastic Maximum Principle

To explore the connection with the stochastic maximum principle obtained in

Section 3.4, similarly to Hypothesis V, we assume the following hypothesis holds in

what follows of this section.

Hypothesis* V. The functions b, σ and G are continuously differentiable with re-

spect to (x, y, z) ∈ Rn×3; the function g is continuously differentiable with respect to

(x, y) ∈ Rn×2; and U = Rr.

132



Figure 4.6: Evolution of X̄ and ū with parameters T = 2, δ = 0.2, ξ(t) = t + 1 for
t ∈ [−0.2, 0], λ = 2, a1 = 4, a2 = 1, a3 = −3, a4 = 2, a5 = 3, b2 = 2, b3 = −3, c1 =
−3, c3 = 3, f3 = 7, f4 = −2 and p = 2.

Let C1,3,3([0, T]×Rn×2) be the space of continuous functions F : [0, T]×Rn×Rn →

R such that the partial derivatives ∂2V̄0
∂t∂xi

, ∂2V̄0
∂xi∂yj

, ∂2V̄0
∂yi∂yj

, ∂2V̄0
∂t∂yi

, ∂3V̄0
∂xi∂xj∂yk

and ∂3V̄0
∂xi∂xj∂xk

, for

i, j, k ∈ {1, 2, . . . , n}, exist and are continuous.

Theorem 4.6.5. Assume that Hypotheses* III, IV & V hold. Suppose that there are V̄0 ∈

C1,3,3([0, T]×Rn×2) and V̄1 ∈ C1,3([0, T]×Rn) with V̄1(T, ·) ≡ 0 such that V̄ (t, x, y, z) =

V̄0 (t, x, y) + V̄1 (t, z) is a solution of the auxiliary HJB equation (4.6.8). Suppose further that

the infimum of (4.6.8) is at a B([0, T]×Rn×3)-measurable function u0 in the sense of (4.6.11).

Let ū be the optimal control defined by (4.6.12) and X̄ be the strong solution of (4.6.5) with u in

b(s, x, y, z, u) and σ(s, x, y, z, u) replaced by u0. Then, for any (t, ξ) ∈ [0, T]×C([−δ, 0]; Rn),

(P̄, HP̄) and (P̄a, HP̄a) are respectively defined by

P̄i (s) = −
{

∂V̄0

∂xi
(s, X̄ (s) , X̄a (s)) +

∂V̄1

∂zi
(s + δ, X̄ (s))

}
,

Hij
P̄ (s) = −

n

∑
k=1

{
∂2V̄0

∂xi∂xk
(s, X̄ (s)) +

∂2V̄1

∂zi∂zk
(s + δ, X̄ (s) , X̄a (s))

}
× σkj (s, X̄ (s) , X̄a (s) , X̄δ (s) , ū (s)) ,
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and 
P̄a

i (s) = −
∂V̄0

∂yi
(s, X̄ (s) , X̄a (s)) ,

Hij
P̄a (s) = −

n

∑
k=1

∂2V̄0

∂yi∂xk
(s, X̄ (s) , X̄a (s)) σkj (s, X̄ (s) , X̄a (s) , X̄δ (s) , ū (s)) ,

for s ∈ [t, T], where i ∈ {1, 2, . . . , n} and j ∈ {1, 2, . . . , m}, satisfy

dP̄ (s) = −
{

∂H̄ad

∂x
(s) + E

[
∂H̄ad

∂z
(s + δ) I[t,T−δ] (s)

∣∣∣F (s)
]}

ds

+ HP̄ (s) dW (s) , s ∈ [t, T] ,

P̄ (T) = −∂g
∂x

(X̄ (T) , Ȳ (T)) ,
dP̄a (s) = −∂H̄ad

∂y
(s) ds + HP̄a (s) dW (s) , s ∈ [t, T] ,

P̄a (T) = −∂g
∂y

(X̄ (T) , Ȳ (T)) .

where the HamiltonianHad is given by (3.4.9); and

∂H̄ad

∂x
(s) =

∂Had

∂x
(s, X̄ (s) , X̄a (s) , X̄δ (s) , ū (s) , P̄ (s) , P̄a (s) , HP̄ (s) , HP̄a (s))

and similarly for the partial derivatives ∂H̄ad
∂z (s + δ) and ∂H̄ad

∂y (s);

4.6.1 Discussion

The novelty of Theorem 4.6.3 is that we do not require the solution of the auxiliary

HJB equation to be independent of z although V̄0 does. In particular, this allows us to

improve the results in [22, 23, 41].

To show this, we consider the following simple stochastic optimal control problem

with both discrete and exponential moving average delays. Note that this control

problem usually cannot be solved using the HJB equation (4.1.17) unless the parameters

satisfy certain conditions (specified below). For simplicity, we set m = n = r = 1 and

suppose that U = R and U = L22
F ; that b in (4.6.5) is given by

b (s, x, y, z, u) = a1x + f1y + b1z + c1u;

that σ (s, x, y, z, u) in (4.6.5) is a function satisfying Hypothesis* III; and that G and g in

(4.6.6) are given by

G (s, x, y, z, u) = c3u2/2 and g (x, y) = a3x + f3y,
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where a1, a3, b1, c1, c3, f1 and f3 are as given in Example 3.4.3. By the argument used in

Example 3.4.3, we see that Hypotheses* III & IV are satisfied for this problem.

(I) Using the HJB equation (4.1.17)

Similarly to Example 4.6.4, since σ depends on z and u, the conditions given in [23,

Theorem 5.1] cannot be applied here. If σ(s, x, y, z, u) = a2x + f2y, where a2 and f2 are

given constants, then [23, Theorem 5.1] gives that if

f3e−λδ = b1a3, f2 = eλδa1b1 and e−λδ f1 − λb1 = a1b1 + b2
1eλδ, (4.6.15)

the corresponding HJB equation admits a solution V̄(t, x, y). Note that b1 in (4.6.15)

must be nonzero otherwise the model is Markovian. On the other hand, by the tech-

nique used in [41, page 27], V̄(t, x, y) has the form

V̄ (t, x, y) = P (t) x + Q (t) y + R (t) , (4.6.16)

where P and Q satisfy the system of ODEs:
dP
dt

(t) = −a1P (t)−Q (t) , t ∈ [0, T] ,

P (T) = a3,
(4.6.17)


dQ
dt

(t) = − f1A (t) + λQ (t) , t ∈ [0, T] ,

Q (T) = f3;
(4.6.18)

and

R (t) = −
∫ T

t

c2
1

2c3
P2 (s) ds, ∀t ∈ [0, T] .

In particular, since V̄(t, x, y) described by (4.6.16) is required to be independent of z, P

and Q need to satisfy

e−λδQ (t) = b1P (t) , ∀t ∈ [0, T] .

Consequently, as noted in [41, Theorem 4.2], the parameters in the model satisfy

f3e−λδ = b1a3, b1 6= 0 and
e−λδ f1

b1
− λ = a1 + b1eλδ, (4.6.19)

which are less restrictive than those in (4.6.15), and the corresponding optimal control

is expressed by

ū (s) = − a3c1

c3
e(a1+b1eλδ)(T−s), ∀s ∈ [t, T] .
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(II) Using the Auxiliary HJB equation (4.6.8)

Adapting the techniques used in part (I) of Example 4.5.2 and Example 4.6.4, we

see that V̄ (t, x, y, z) = V̄0 (t, x, y) + V̄1 (t, z) with V̄0 (t, x, y) = A (t) x + B (t) y + D (t)

and V̄1(t, z) = C (t) z is a solution of the auxiliary HJB equation (4.6.8) with b, σ, G and

g so defined, where A, B and C satisfy the system of ODEs:
dA
dt

(t) = − (A (t) + C (t + δ)) a1 − B (t) , t ∈ [0, T] ,

A (T) = a3,
dC
dt

(t) = − (A (t) + C (t + δ)) b1 + e−λδB (t) , t ∈ [0, T] ,

C (T) = 0, t ∈ [T, T + δ] ,
dB
dt

(t) = − (A (t) + C (t + δ)) f1 + λB (t) , t ∈ [0, T] ,

B (T) = f3;

and where D is obtained by

D (t) = −
∫ T

t

c2
1

2c3
(A (s) + C (s + δ))2 ds, ∀t ∈ [0, T] .

As for (4.5.10)-(4.5.11), the above system of ODEs always admits a unique solution

(A, B, C) and can be solved numerically by the backward induction algorithm described

in part (IV) of Section 4.4.1. Then, applying Theorem 4.6.3, the corresponding optimal

control ū, specified by (4.6.12), is

ū (s) = − c1

c3
(A (s) + C (s + δ)) , ∀s ∈ [t, T] ,

In particular, if the parameters in the model satisfy (4.6.19), then we see that the above

system of ODEs recover (4.6.17)-(4.6.18), so that A(t) = P(t), B(t) = Q(t), C(t) = 0

and D(t) = R(t) for t ∈ [0, T]. Therefore, our results improve those in [22, 23, 41] for

this problem.
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CHAPTER 5

CONCLUSION

This thesis resolves some restrictions in using both the stochastic maximum princi-

ple and dynamic programming for stochastic optimal control problems with discrete

delay and those with both discrete and exponential moving average delays where

we have applied the conjugate duality method for deriving the stochastic maximum

principle instead of pure stochastic calculus.

We first study a stochastic convex problem with delay referred to as the primary

problem and then obtain the expression for the corresponding dual problem. This

generalizes the results obtained in [2, 44] into the stochastic case with delay. Moreover,

using the conjugate duality method, we get the conditions for optimality for these

problems which, by linking stochastic optimal control problem with delay with a par-

ticular type of convex problem, allows us to derive the stochastic maximum principle.

In particular, the corresponding adjoint equations and Hamiltonian are derived instead

of introduced. Furthermore, if the stochastic optimal control problem involves both

the types of delay and is jump-free, the stochastic maximum principle obtained in this

thesis improves those obtained in [29, 30]. More importantly, our approach of using the

conjugate duality method unifies the Hamiltonian and the associated adjoint equations

involved in the stochastic maximum principle for stochastic optimal control problems

with either just discrete delay or with both discrete and exponential moving average

delays: those for the former are a special case for the latter. The results in this part of

the thesis are going to appear in the journal of Advances in Applied Probability.

On the other hand, we adapt the technique used in [19, Chapter 3] to the stochastic
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context which enables us to consider a class of stochastic optimal control problems

with delay, where the value functions are separable that they can be expressed in terms

of auxiliary functions. This enables us to obtain the auxiliary HJB equation which

plays a similar role in the framework of dynamic programming as the classical HJB

equation does in the Markovian case. In particular, if both the types of delay are

involved, our auxiliary HJB equations generalize the HJB equations obtained in [22, 23]

and our verification theorem improves the stochastic verification theorem there. Note

that our approach of introducing the auxiliary function not only unifies the auxiliary

HJB equations involved in the dynamic programming for stochastic optimal control

problems with either just discrete delay or with both discrete and exponential moving

average delays, but also has certain connections to our stochastic maximum principles.

This work has been submitted to SIAM Journal on Control and Optimization.

5.1 Future Research

Although this thesis only considers the stochastic optimal control problems where

the model depends on the delayed term of state processes, it is straightforward to

generalize our results to the case where the model also depends on the delayed terms

of controls. Now, we introduce the following future directions which are much more

challenging to investigate.

Restrictions for Using Auxiliary HJB Equations

As discussed in Section 4.6.1, we do require V0 to be independent of z when we

consider the stochastic optimal control problem with both discrete and exponential

moving average delays. This still causes certain restrictions for using the corresponding

auxiliary HJB equation in applications. Hence, we wonder whether there exists a way

to resolve this requirement.

PDEs Versus Anticipated BSDEs

It can be seen from Theorem 4.5.1 that the linear anticipated BSDE with respect

to (P, HP) corresponding to the adjoint equation can be solved by the solution of the

PDE corresponding to the auxiliary HJB equation. On the other hand, the general (i.e.

nonlinear) classical BSDEs can be solved by the solution of a second-order PDE which
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is known as the Feynman-Kac formula (see [18, Proposition 4.3]). This plays a crucial

role in obtaining numerical solutions of classical BSDEs (see [11]). Hence, we wonder

whether there exists a type of PDE which can be connected to general anticipated

BSDEs which, more importantly, will motivate us to investigate the corresponding

numerical techniques for solving anticipated BSDEs. This has not been studied in the

academic literature.

Stochastic Recursive Optimal Controls with Delay

Shi, Xu and Zhang in [42] study the stochastic recursive optimal control problems

with both discrete and exponential moving average delays by both the stochastic

maximum principle and dynamic programming. In addition to the state process X

satisfying the controlled SDDE (4.6.1), the recursive case involves a pair of stochastic

processes (Y, Z) which is described by the controlled BSDE
− dY (t) = G (t, X (t) , Xa (t) , Xδ (t) , Y (t) , Z (t) , u (t)) dt

− Z (t) dW (t) , t ∈ [0, T] ,

Y (T) = g (X (T) , Xa (T)) ,

where G and g are given functions. Then, the aim of the so-called stochastic recursive

optimal control problem with both discrete and exponential moving average delays is

to find a ū minimizing the cost function

J (u) = −Y (0) =−E

[ ∫ T

0
G (t, X (t) , Xa (t) , Xδ (t) , Y (t) , Z (t) , u (t)) dt

+ g (X (T) , Xa (T))
]

.

As the adjoint equations and the HJB equation in this paper are generalized from [29]

and [23] respectively, they have similar restrictions mentioned before as the classical

control problems with delay do. Thus, we wonder whether our approaches are still

valid in this context.

Stochastic Differential Games with Delay

We may generalize our approaches to study a stochastic differential game with

delay which essentially can be regarded as a control problem with a higher-dimensional

control. After that, it might allow us to concern some applications in finance, such as

risk minimization problems (see [27]).
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