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THE UNIVERSITY OF NOTTINGHAM

Abstract

The Modular Compilation of Effects

by Laurence E. Day

The introduction of new features to a programming language often requires

that its compiler goes to the effort of ensuring they are introduced in a

manner that does not interfere with the existing code base. Engineers

frequently find themselves changing code that has already been designed,

implemented and (ideally) proved correct, which is bad practice from a

software engineering point of view.

This thesis addresses the issue of constructing a compiler for a source lan-

guage that is modular in the computational features that it supports. Util-

ising a minimal language that allows us to demonstrate the underlying

techniques, we go on to introduce a significant range of effectful features

in a modular manner, showing that their syntax can be compiled inde-

pendently, and that source languages containing multiple features can be

compiled by making use of a fold.

In the event that new features necessitate changes in the underlying rep-

resentation of either the source language or that of the compiler, we show

that our framework is capable of incorporating these changes with minimal

disruption. Finally, we show how the framework we have developed can be

used to define both modular evaluators and modular virtual machines.

http://www.cs.nott.ac.uk
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Chapter 1

Introduction

For as long as programs have been written, significant effort has gone into

the process of making it easier to do. Whilst the first programs were written

in machine code and executed directly by a processor, the evolution of

programming languages has both significantly increased the productivity

of programmers and the readability of their programs. One consequence of

this is the existence of an ever-widening semantic gap between the language

that a program is written in and its realisation in machine code. The tools

used in order to close this gap represent an important branch of software

engineering. We call such tools compilers, and the topics involved in their

development represent a microcosm of modern computer science.

1



Chapter 1. Introduction 2

1.1 An Aside: What Are Compilers?

Put simply, compilers translate programming languages. The general case

is that the source language – the language we compile from – is at a higher

level of abstraction than the target language we compile into (although

decompilers – which perform the reverse operation of ’abstracting’ low-

level code into a more human-readable form – are also common). With

this said, compilers that translate between high-level source languages do

exist, and are known as source-to-source compilers, or transpilers for short.

Whilst the history of compilation theory and implementation is a substan-

tial topic on its own, credit is generally given to Grace Hopper for creat-

ing the first compiler in 1952 whilst working on the UNIVAC project at

Remington Rand [Hop87]. However, the FORTRAN compiler of IBM –

released five years later by Backus et al [BBB+57] – is considered the first

compiler designed for a standalone source language. The motivation for

these projects was more pragmatic than anything else - machine code was

tedious to write by hand, and such code had to be rewritten for each new

architecture.

Whilst the introduction of the first generation of compilers undoubtedly

spared software writers from significant effort by way of code maintenance,

the code that they produced was often slower than manually-written, hand-

optimised machine code. To this end, the work of Frances Allen and John
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Cocke [All70, AC76, AC71] introduces some of the first optimising code

transformations such as common subexpression elimination and operator

strength reduction. Today, modern compilers can produce better quality

code than expert human programmers.

1.2 An Aside: How Are Compilers Constructed?

A typical compiler consists of multiple distinct phases. Whilst individ-

ual compilers can vary greatly in their internal workings, the overarching

themes of these phases – and their relationships – are given below:

Lexical Analysis

��
Syntax Analysis

��
Semantic Analysis

��
Intermediate Code Generation

��
Code Optimisation

��
Target Code Generation

It is not the purpose of this section to explain the complexities involved in

the manipulations and transformations that comprise an industrial strength
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compiler. For this, a number of seminal, comprehensive works are avail-

able [ASU86, App97, PJ87]. However, we briefly sketch out the primary

purpose of each phase below:

• Lexical Analysis: the lexer of a compiler steps through the textual

representation of a source program and produces a sequence of to-

kens, or lexemes, which comprise the individual syntactic components

of a program. For example, for C-like languages the lexer produces

a token corresponding to a separator when it encounters a plaintext

semicolon, and distinguishes between the reserved words of the lan-

guage and other strings used as variable identifiers when it encounters

alphabetic strings.

• Syntax Analysis: the parser of a compiler works in conjunction with

the lexer to produce the abstract syntax tree of the source program.

• Semantic Analysis: the typechecker performs static checks on

operands and variables within the program to avoid errors such as

trying to add a string to an integer. This phase also performs any

syntactic checks that do not fall within the remit of a parser, such

as ensuring that any occurrences of break occur within conditional

blocks.

• Intermediate Code Generation: generates an intermediate rep-

resentation (IR) of the source program that is suitable for further
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manipulation. The exact structure of an IR varies depending on the

language in question, but in general IRs need to be rich enough to

successfully capture the semantics of the source language whilst simul-

taneously being close enough to the target language so as to simplify

the final code generation phase.

• Code Optimisation: the optimiser of a compiler applies a series of

transformations to the IR in order to produce better target code. The

optimisation phase can run as a fixed-point computation: optimisa-

tions are repeatedly applied until no change is detected in the result-

ing code. As a result, optimisation can be the most time-consuming

task of a compiler.

• Target Code Generation: the final phase of a compiler produces

target code from the optimised IR. This phase deals with low-level

issues, such as register allocation and assignment of explicit jump

addresses.

1.3 Re-Envisioning Intermediate

Code Generation

The intermediate code generation phase can be viewed as the ‘middle-end’

of a compiler, with the collection of all phases occurring before it referred
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to as the front-end, and everything after as the back-end. If we assume

that the IR being used is universal these collections are composable, with

the existence of m front-ends and n back-ends giving rise to (m × n)

distinct compilers. In practice, however, this is not the case, with the

internal structure of various classes of IR differing greatly between com-

pilers (representative instances include RTL [DF80], SSA [CFR+91] and

CIL [NMRW02]).

We note that the analyses performed in the front-end generally exist to

guarantee the sound and well-formed nature of the syntax of a source pro-

gram. Further, they happen at a fairly high level, with the deepest analysis

taking place typically being static type inference.

1.4 What Does This Thesis Present?

This thesis presents a unique re-factorisation of the intermediate code gen-

eration phase of a compiler with a particular style of IR representation at

the middle-end, namely a stack-based sequence of low-level instructions.

We explore the idea that the intermediate code generation phase can be

constructed in a manner wherein said IR is modular in the features of the

source language: in particular, we will see that the necessary IR can be

derived for a given source language, and the amount of work required to
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implement the entire phase is reduced to defining the ‘compilation seman-

tics’ for each feature in isolation.

We present our implementation of this concept within the pure, statically-

typed functional language Haskell [HHPJW07]. More precisely, we present

an embedded compiler (i.e. the compiler is written in Haskell as a function)

that operates over domain-specific languages (DSLs) also defined within

Haskell. The word compiler is overloaded here; from this point onwards,

when we say ‘compiler’ we refer to the function performing the intermediate

code generation, ‘source language’ refers to the domain-specific language

representing the abstract syntax tree of a source program, and ‘target lan-

guage’ refers to the IR we are compiling into.

1.4.1 Contributions & Thesis Structure

The main contributions of this thesis are as follows:

• Chapter 5.1 shows how the usage of generalised algebraic datatypes

to model particular syntactic constructs permits the capture of exis-

tential type constraints in a clean and modular manner.

• Chapter 5.2 extends our compilation framework with syntactic sup-

port for both mutable state and variable binding via the lambda-

calculus, with support for two distinct evaluation schemes.
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• Chapter 5.3.1 examines the issue of effects that do not commute (e.g.

exceptions and mutable state), which may require a source program to

be compiled in different ways depending on the order in which effects

are manifested. We present three distinct techniques that can be used

to solve this concern, operating over both the type and function level.

• Chapter 6.1 gives our source language further expressive power by in-

troducing syntax supporting for-loops, while-loops, conditionals and

sequencing. As a consequence of this, we identify a potential class

of ill-formed program that can arise when programming imperatively

without sufficient safeguards. We eliminate this concern by refactor-

ing the source language as a typed variant of Johann and Ghani’s

fixpoint representation of generalised algebraic datatypes [JG08].

• Chapter 6.4.1 demonstrates the usage of Oliveira and Cook’s struc-

tured graphs [OC12] as the underpinning of a refined representation

of the target language, and show how the additional structure that

they provide allows the compilation of non-cyclic control structures in

a modular manner without code duplication. More importantly, this

new representation permits the modular compilation of cyclic control

structures, which we demonstrate by way of an extended example.

The ideas that we present first appeared in the following series of papers,

with the author of this thesis serving as the lead author for each paper:
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1. Laurence E. Day and Graham Hutton [DH11], “Towards Modular

Compilers for Effects”, in the Proceedings of the 12th International

Symposium on Trends in Functional Programming.

2. Laurence E. Day and Graham Hutton [DH13], “Compilation à la

Carte”, in the Proceedings of the 25th International Symposium on

the Implementation and Application of Functional Languages.

3. Laurence E. Day and Patrick Bahr [DB14], “Pick’n’Fix: Capturing

Control Flow in Modular Compilers”, in the Proceedings of the 15th

International Symposium on Trends in Functional Programming.

We highlight at this point that the initial idea to use structured graphs

when treating cyclic control structures is credited to Dr. Patrick Bahr, and

thank him for this substantial contribution. The remainder of the ideas

presented are those of the author himself.

The thesis is hereafter structured in the following way.

Chapter 2 frames the problem this thesis aims to solve by way of an ex-

tended example involving the extension of a minimal example with addi-

tional syntax implementing a new effect.

Chapter 3 provides a primer in the background theory required, together

with a review of existing literature on topics related to language semantics

and modelling computation.
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In Chapter 4, we lay the groundwork for our modular compilation frame-

work, introducing the notions of modular syntax for a small language, its

modular semantics, and a first attempt at a modular compilation function.

We extend this framework in Chapter 5, adding further expressive power by

way of new syntax supporting mutable state and the lambda calculus, and

refine the representation of the source language in order to better enforce

constraints upon individual syntax fragments. Furthermore, we present a

number of novel solution to the issues that arise when the modular syntax

of different effects interacts in unexpected ways.

In Chapter 6 we introduce the notions of control flow and conditionals,

and further refine the source language with a surface-level type system

in the presence of the various syntactic categories needed to eliminate a

particular class of ill-formed program that result. Following this, we turn

our attention to the representation of the target language, opting for a more

flexible approach better suited to cyclic programs.

Chapter 7 provides a thorough treatment of a modular implementation of

the semantics of the refined target language, by way of a virtual machine.

Finally Chapter 8 concludes the thesis by reflecting upon the overall work,

and by discussing several potential research avenues aimed at extending

the topics that have been presented throughout.



Chapter 2

Setting the Scene

In this chapter, we introduce the problem domain that we address in this

thesis by way of an extended example. Specifically, we detail the issues

that arise when we extend a domain-specific language (DSL) embedded in

Haskell with syntax associated with a new computational effect. We note

that a number of existing datatypes and functions associated with the DSL

require extension in order to accommodate the extension, either by altering

their type signatures or by introducing new constructors and definitions.

We recognise that this scenario is a classic example of the Expression Prob-

lem [Wad98], and position ourselves to present the fundamentals of our

solution framework in the next chapter.

11
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2.1 Building From The Ground Up

Consider a simple language Expr comprising integer values and binary addi-

tion, for which we can give a denotational semantics by means of a function

that evaluates an expression to an integer value (we make the assumption

here that expressions are both finite and everywhere well-defined):

data Expr = Val Int | Add Expr Expr

eval :: Expr -> Int

eval (Val n) = n

eval (Add x y) = eval x + eval y

Alternatively, expressions can be compiled into a sequence of low-level in-

structions to be operated upon by a virtual machine, whose behaviour is

defined as a (small-step) operational semantics. We can compile an expres-

sion to a list of operations as follows:

type Code = [Op]

data Op = PUSH Int | ADD

comp :: Expr -> Code

comp c = comp’ c []
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comp’ :: Expr -> Code -> Code

comp’ (Val n) c = PUSH n : c

comp’ (Add x y) c = comp’ x (comp’ y (ADD : c))

Note that the above compiler is defined in terms of an auxiliary function

comp’ which accepts an additional Code argument playing the role of a

continuation, thereby avoiding the use of the append operator (++) and

enabling simpler proofs as in Chapter 13 of [Hut07]. We execute the Code

resulting from the above on a (partial) virtual machine operating over a

Stack:

type Stack = [Item]

data Item = INT Int

exec :: Code -> Stack

exec c = exec’ c []

exec’ :: Code -> Stack -> Stack

exec’ [] s = s

exec’ (PUSH n : c) s = exec’ c (INT n : s)

exec’ (ADD : c) s = let (INT y : INT x : s’) = s in

exec’ c (INT (x + y) : s’)
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The correctness of the abovementioned compiler can now be captured by

stating that the result of evaluating a finite expression is equivalent to first

compiling and then executing it, and then selecting the topmost value on

the stack. This can be expressed in diagrammatic form as follows:

Expr

comp

��

eval // Int

Code

head ◦ exec

==

We make explicit at this point that we do not consider infinite source

expressions to be well-typed for the purposes of this thesis.

2.2 Adding A New Effect

Suppose now that we wish to extend our language with a new effect, in

the form of exceptions. We consider what changes will need to be made to

the language syntax, semantics, compiler and virtual machine as a result

of this extension. First of all, we extend Expr with two new constructors:

data Expr = Value Int | Add Expr Expr

| Throw | Catch Expr Expr

The newly introduced Throw constructor corresponds to an uncaught ex-

ception, while Catch is a handler construct that returns the value of its
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first argument unless it is an uncaught exception, in which case it returns

the value of its second argument instead.

From a semantic point of view, adding exceptions to the language requires

changing the result type of the evaluation function from Value to Maybe

Value in order to accommodate potential failure when evaluating expres-

sions, noting that whilst the original eval function has result type Int,

it can implicitly be seen as being wrapped in an Identity monad: an

idea that we shalll explore in later chapters. In turn, we must rewrite the

semantics of values and addition accordingly, and define an appropriate se-

mantics for throwing and catching (once again abusing Haskell syntax for

the purposes of defining our denotational semantics):

eval :: Expr -> Maybe Value

eval (Val n) = return n

eval (Add x y) = eval x >>= \n ->

eval y >>= \m ->

return (n + m)

eval (Throw) = mzero

eval (Catch x h) = eval x ‘mplus‘ eval h

In the above code, we exploit the fact that Maybe is monadic, as we will

see in Chapter 3.3.2. In particular, because Maybe is also a monoid — a

structure with an associative binary operation and an identity element —
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we make use of the monoidal methods mzero, corresponding to failure, and

mplus, for sequential choice. Finally, in order to compile exceptions we

must introduce new stack instructions to the virtual machine, and extend

the compiler accordingly:

data Op = PUSH Int | ADD | THROW

| MARK Code | UNMARK

comp’ :: Expr -> Code -> Code

comp’ (Val n) c = PUSH n : c

comp’ (Add x y) c = comp’ x (comp’ y (ADD : c))

comp’ (Throw) c = THROW : c

comp’ (Catch x h) c = MARK (comp’ h c)

: comp’ x (UNMARK : c)

Intuitively, THROW is an operation that throws an exception, MARK makes a

record on the stack of the handler code to be executed should the first ar-

gument of a Catch expression fail, and UNMARK indicates that no uncaught

exceptions were encountered in the most recent Catch-block and that the

topmost handler code on the stack can be removed. Note that the accu-

mulator c plays a key role in the compilation of Catch, being used in two

places to represent the code to be executed after the current compilation.

Also note, however, that this leads to explicit code duplication!
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Because we now need to keep track of handler code on the stack as well

as integer values, we must also extend the Item datatype and the virtual

machine to cope with both the new operations and the potential for failure:

data Item = INT Int | HAN Code

exec :: Code -> Maybe Stack

exec c = exec’ c []

exec’ :: Code -> Stack -> Maybe Stack

exec’ [] s = return s

exec’ (PUSH n : c) s = exec’ c (INT n : s)

exec’ (ADD : c) s = let (INT y : INT x : s’) = s in

exec’ c (INT (x + y) : s’)

exec’ (THROW : _) s = unwind s

exec’ (MARK h : c) s = exec’ c (HAN h : s)

exec’ (UNMARK : c) s = let (v : HAN _ : s’) = s in

exec’ c (v : s’)

The auxiliary unwind function used in the above implements the process of

invoking handler code in the case of a caught exception, by executing the

topmost Code record on the stack, and failing if no such record exists:

unwind :: Stack -> Maybe Stack
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unwind [] = mzero

unwind (INT _ : s) = unwind s

unwind (HAN h : s) = exec’ h s

2.3 The Problem At Hand

As the reader can appreciate, extending such a simple source language with

constructors which enable additional expressive power (which we will refer

to as an ‘effect’ from this point onwards) can result in multiple changes to

existing code being required. For our example in particular, we needed to

extend three datatypes (Expr, Op and Item), change the return type and

existing definition of three functions (eval, exec and exec’), and extend

the definition of all functions involved.

The need to modify and extend existing code for each new effect we wish

to introduce to our language is clearly at odds with the desire to structure

a compiler in a modular manner, and raises a number of problems. Im-

portantly, unless there is familiarity with the workings of all aspects of the

language rather than just the feature being added, changing existing code

that has already been designed, implemented and (ideally) proved correct

is bad practice from a software engineering point of view.
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At this point, however, we should clarify our intentions towards the usage

of the word ‘modular’ throughout the rest of this thesis. Firstly, when

we refer to a modular language, we refer to the syntax for the various

effects it supports being defined in a manner such that we are capable

of selecting the language that contains precisely the expressive power we

desire. Whilst languages can also be modularised along the axes of static

vs dynamic semantics, we will not explore this idea further here. Secondly,

when we refer to a modular compiler, we allude to a very high-level ‘black

box’ that accepts a source language expression and produces corresponding,

lower-level code according to a dynamic/execution semantics, with the box

itself constructed from several smaller boxes, with each one entirely self-

contained and responsible for translating the constructors associated with

a particular effect.

One might wonder why we have chosen to explore this problem domain

by defining compilers for embedded DSLs (i.e. languages defined within

Haskell itself) in a modular (as we have circumscribed the word) manner.

We have made this choice because it is an ideally rich source topic from

which to draw interesting and complex problems, concerning both extensi-

bility and the interaction of common effects. With this in mind, we present

an initial – rudimentary – solution in Chapter 4, which we will then refine

and extend throughout the remainder of the thesis.

One final point to be made here is that whilst Haskell serves as a reasonable
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vehicle for modelling what happens on a virtual machine, a real virtual ma-

chine wouldn’t be implemented in Haskell! A more realistic choice would be

C, however the translation between the two is fairly straightforward, mod-

ulo a more formal treatment of the instruction set and addressing modes.



Chapter 3

Background Knowledge

As mentioned previously, we have chosen Haskell as the implementation

language for the work we will present throughout this thesis. However,

Haskell – as a pure language – is well-known in the wider programming

community for its approach to implementing side-effects [Jon01]. Given

that the meaning of a source program is often derived from the effects that

it invokes, it is particularly important that we review the techniques that

Haskell uses to manifest impurity.

This chapter consists of two halves: a primer and a literature review. The

primer presents reviews of the major approaches to defining the seman-

tics of programs, the fundamentals of category theory as a formalism, and

the usage of functors and monads (both category-theoretic constructs) in

Haskell to implement side-effects. The intended audience for the primer

21
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(especially as far as monads are concerned) is the functional programming

community with prior experience in using monads to structure their pro-

grams, however the references provided throughout Chapter 3.4.1 serve as

a rigorous introduction for the non-FP reader. The literature review that

follows places this thesis in its wider context, discussing relevant work pub-

lished on the various characterisations of computation, compilation and

proving correctness, and defining programming constructs in a modular,

extensible manner.

3.1 Semantics

When we talk about what a program ‘does’ or ‘means’, we are often refer-

ring to its semantics. There are multiple ways in which we can specify the

underlying meaning of a program, and each has their appropriate use-cases.

In this section we present the fundamentals of the two main approaches to

defining the semantics of a program: denotational and operational.

3.1.1 Denotational Semantics

The denotational semantics of a language, as originally investigated by

Scott and Strachey in the 1960s [SS71], is defined as a mapping from a

program to a mathematical object which captures the essential meaning of
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the program. We read JxK as the denotation of program x. Candidates

for the set of denotations (the semantic domain) vary widely, but as a rule

require the ability to differentiate between the ‘amount’ of information car-

ried by a program [SHLG94]. In general, a denotational semantics should

be compositional : that is, the meaning of a program phrase should only

be constructed as a function of the meaning of its subphrases (however, as

we shall see in Chapter 6, this need not always be the case!). To illustrate

with an example – that uses Haskell syntax rather than Haskell itself, as we

don’t want anything infinite at this point – , consider the following simple

language:

data Basic = Value Int | Add Basic Basic

We can define a denotational semantics for Basic as follows, mapping into

the set of integer values Z:

J K :: Basic → Z

J Value n K = n

J Add x y K = J x K + J y K

In the above, the semantics of a Value constructor is simply the associated

integer, and in turn the semantics of an Add is the sum of the denotations

of the two argument expressions.
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3.1.2 Operational Semantics

In contrast to the denotational approach of constructing a single inter-

pretation function, a language can also be given an operational semantics

by describing the syntax-directed behaviour of individual constructs of a

language via inference rules which detail the desired transitions. An op-

erational semantics can be given in one of two forms: either structural (or

small-step, as developed by Plotkin [Plo81]), or natural (big-step, as devel-

oped by Kahn [Kah87]), and the key difference between these is whether a

transition details a single computational step or a complete evaluation.

Recalling the Basic datatype introduced in the previous subsection, we

define the rules for the structural operational and natural semantics for

illustration. Note that we use the metavariables n1, n2, . . . to range over

integer values, (+) for integer addition, and a1, a2 over terms in Basic:

Structural Operational Semantics Rules
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(Value n)⇒ Value n
(S1)

Add (Value n) (Value m)⇒ Value (n + m)
(S2)

a1 ⇒ a′1
Add a1 a2 ⇒ Add a′1 a2

(S3)

a2 ⇒ a′2
Add (Value n) a2 ⇒ Add (Value n) a′2

(S4)

Natural Semantics Rules

(Value n)⇒ Value n
(N1)

a1 ⇒ Value n1 a2 ⇒ Value n2

Add a1 a2 ⇒ Value (n1+n2)
(N2)

Inference rules with no premisses (S1, S2 and N1) are referred to as axioms.

We refer to the application of operational semantic rules to an expression

as the execution of the expression [Hut10] (assuming that the application

of existing operations such as integer addition is automatic), in contrast

with its evaluation with respect to a denotational semantics. The imple-

mentation of an operational semantics is frequently referred to as a virtual

machine, and we will see this term heavily used throughout this thesis.
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3.2 Category Theory

Category theory is a mathematical tool used to capture the essence of

interactions between mathematical objects with common structure [Pie91].

Within the scope of this thesis, being able to precisely describe generic

structure of mathematical objects is important, and so we give a brief

introduction to the key concepts within this section. Whilst there are

several ways to characterise a category, here we define a category C to be:

1. A collection Cob of objects, denoted by metavariables X, Y, . . .

2. A collection Car of morphisms between the objects of Cob (also some-

times called arrows). For example, f : X→ Y is a morphism between

objects X and Y, provided both objects are defined in the collection

Cob. We denote morphisms with metavariables f, g, . . .

3. A pair of functions dom and cod defined over morphisms from Car,

detailing the domain and codomain of a given morphism (taking the

view of morphisms as functions); e.g. given f : X→ Y, then we have

dom(f ) = X, cod(f ) = Y.

Furthermore, a category must adhere to the following:

1. For all objects C, there is an associated morphism idC : C→ C.

2. For all morphisms f : B→ C, idC ◦ f = f = f ◦ idB.
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3. For all morphisms f and g where the domain of g matches the codomain

of f, there is an associated morphism (g ◦ f ) : dom(f ) → cod(g).

4. For all morphisms f, g and h of the appropriate type, it must be the

case that (f ◦ g) ◦ h = f ◦ (g ◦ h).

Categories can represent a vast array of mathematical structures, depending

on the choice of Cob and Car. For instance, the category Grp has groups

as objects and group homomorphisms as morphisms, and the category Set

has sets as objects and total functions as morphisms.

Further, in some categorical instances, particular objects can be denoted

as being special in one way or another. We call an object X ∈ Cob initial

if for all other objects Y ∈ Cob, there is a unique morphism i : X → Y.

Similarly, we call X terminal if there is a unique morphism t : Y → X.

For instance, within the category Set, the empty set ∅ is initial and any

one element set {x} is terminal; i.e. iSet : Cob → ∅ and tSet : Cob → {x}

∀ x ∈ Cob.

Adding further abstraction to this notion of common mathematical struc-

ture, the category Cat can be constructed with (small) categories as objects

and structure-preserving constructs known as functors as elements of Car.

Given two categories C and D, a functor F between them must obey the

following conditions:
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1. For all objects X of the source category C, there is a corresponding

object F (X) in the target category D.

2. For all morphisms f : X → Y of the source category C, there is a

morphism F (f ) : F (X) → F (Y) in the target category D such that:

(a) For all objects A of the source category C, F (idA) = idF(A).

(b) For all morphisms f : X → Y and g : Y → Z in the source

category C, there is a morphism F (g ◦ f ) = F (g) ◦ F (f ) in the

target category D.

Given a functor F : C → C over a category C (which we refer to as an

endofunctor), we call a pair (A, α) with an object A ∈ Cob and an arrow

α : FA → A ∈ Car an F-algebra on F. In the category F-Alg with F -

algebras as objects, we define the morphism h between (A, f ) and (B, g)

as the morphism making the below diagram commute:

FA

f

��

F(h) // FB

g

��
A

h
// B

The most important definition we introduce in this section is that of a

catamorphism. We define a catamorphism on f to be the unique mor-

phism h between an initial algebra (A, in) and any other F -algebra (B, f ).

This is also referred to as a functorial fold, and we will see it heavily used

throughout the remainder of the thesis.
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3.3 Computational Effects Using Monads

We have mentioned several times that it is tricky to manifest effectful com-

putation in Haskell as a direct result of its purity. In this subsection, we

show how the concept and usage of monads allows us to write programs

that indirectly simulate effects (in that we avoid the need to painstakingly

thread the appropriate data structures through a ‘monad-free’ program).

More specifically, we give the categorical definition of monads as a specific

type of augmented functor, show how this concept can be implemented in

Haskell (and why the Haskell definition of monads uses a ‘non-canonical’

choice of methods), and how monads thus implemented can be used to

define effectful language semantics.

3.3.1 Monads in Category Theory

Given a category C, we define a monad on C to be an endofunctor T

that comes equipped with two ‘morphisms between morphisms’ (known as

natural transformations), namely η : 1C → T (where 1C is the identity

functor on C) and γ : T 2 → T. A monad thus equipped must meet

the conditions laid out by the two diagrams below, with the underlying

intuition given in Chapter 3.3.2:
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T 3

γT

��

Tγ // T 2

γ

��
T 2

γ
// T

T

Tη

��

ηT // T 2

γ

��
T 2

γ
// T

3.3.2 Implementing Monads in Haskell

To reiterate, at this point we consider monads to be endofunctors aug-

mented with two natural transformations which obey ‘appropriate’ laws [Mog89].

In order to understand the implementation of monads in Haskell [Wad92],

we must first consider the implementation of functors.

Functors in Haskell

We have introduced functors as structure-preserving morphisms between

the objects and morphisms of categories. In Haskell, the Functor typeclass

captures this notion as follows:

class Functor f where

fmap :: (a -> b) -> f a -> f b

That is to say, an instance of a Haskell Functor is a type constructor f

which can have its associated datatype mapped over via fmap. We require

fmap to adhere to two laws:
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1. fmap idX = idf(X)

2. fmap (g ◦ f ) = fmap g ◦ fmap f

By way of example, consider the following instantiation of a polymorphic

binary tree as a Functor:

data Tree a = Leaf a | Node Tree Tree

instance Functor Tree where

fmap f (Leaf n) = Leaf (f n)

fmap f (Node l r) = Node (fmap f l) (fmap f r)

An intuitive view of a functor is that of a container, the contents of which

can have functions applied to them. The shape of this container can vary

widely, but the core functionality remains.

Introducing Monads

The categorical notion of monad can be represented in Haskell via the

following datatype, with η renamed to return and γ to join:

class Functor m => Monad m where

return :: a -> m a

join :: m (m a) -> m a
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The join method characterises what it means to ‘be’ a monad:

1. join ◦ fmap join = join ◦ join

2. join ◦ fmap return = join ◦ return = id

3. join ◦ fmap (fmap f ) = fmap f ◦ join

However, prior to GHC 7.10 1, Haskell did not enforce the requirement

that all monads are functors – disqualifying the usage of fmap –, using the

following formulation instead:

class Monad m where

return :: a -> m a

(>>=) :: m a -> (a -> m b) -> m b

The above two definitions of monads are equivalent, with join and (>>=)

being related by the following equations:

1. fmap f m = m >>= (return ◦ f )

2. join n = n >>= id

3. m >>= f ≡ join (fmap f m)

1The work within this thesis was developed using GHC 7.8.3.
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The formulation in terms of return and (>>=) is the one that shall be

used throughout this thesis. Moreover, we require that return and (>>=)

adhere to the ‘monad laws’ of identity and associativity:

1. return x >>= f ≡ f x

2. m >>= return ≡ m

3. (m >>= f ) >>= g ≡ m >>= (λx → f x >>= g)

For example, the Maybe datatype can be instantiated as a monad which is

used to model exceptions:

data Maybe a = Just a | Nothing

instance Monad Maybe where

return x = Just x

Nothing >>= f = Nothing

Just x >>= f = f x

Monadic Semantics

As we shall see shortly, Moggi’s original 1989 paper [Mog89] utilised monads

in order to structure denotational semantics, and Wadler expanded on this

idea to produce modular interpreters in 1992 [Wad92]. Liang and Hudak
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continued this line of work, developing the notion of modular monadic

semantics in 1998 as a structured denotational semantics, revolving around

monads and monad transformers as the key descriptive mechanism [Lia98].

As we have seen, a monad in Haskell is a type constructor m with methods:

return :: a -> m a

(>>=) :: m a -> (a -> m b) -> m b

Using these methods, it can be shown that a language can be given a

denotational semantics that is parameterised by a monad encapsulating the

result type. The modular monadic semantics for a language L supporting

addition can be given in the following way:

eval :: Monad m => L -> m Int

eval (Add x y) = eval x >>= \n1 ->

eval y >>= \n2 ->

return (n1 + n2)

Depending on the choice of monad m, the concrete semantics that result may

differ, hence the usage of the term ’modular’ in this context. For example,

observe the return and (>>=) definitions for the monads representing state

and environment respectively:
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type m a = \s -> (a, s) -- Mutable State

return x = \s -> (x, s)

x >>= f = \s -> let (u, t) = x s in (f u) t

type m a = Env -> a -- Environment

return x = \e -> x

x >>= f = \e -> f (x e) e

With this style of language specification, those features (i.e. data con-

structors) of a language which do not require the abstraction required by

a monad are simply ‘lifted’ into one by way of return and (>>=), whilst

those that do require the monad are free to make full usage of any oper-

ations that its presence enables, a concept which we will explore fully in

Chapter 4.

3.4 Associated Literature

In this section, we present a survey of the existing work that is most relevant

to our work on the modular compilation of effects. These papers have been

loosely grouped into subcategories to maintain coherence, and is current as

of December 2014. For each paper, the major contributions are introduced

and any particularly interesting or relevant concepts are explained.
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3.4.1 Monads As Computation

In this section, we examine the work credited with both identifying and pop-

ularising the idea of modelling computational effects using monads within

both the category theory and functional programming communities.

Computational Lambda-Calculus and Monads, Eugenio Moggi (1989)

[Mog89]: Moggi’s 1989 paper was the first to investigate the idea that ef-

fectful computation can be modelled using category theory. The primary

notion is that a program can be seen as a morphism between an object A

of values of type A and an object T B of computations of type B, where T

is a monad which captures the side-effects that the computation may con-

tain. This type of morphism belongs to the Kleisli category CT constructed

from a base category C, with identity and composition morphisms given

by the natural transformations associated with T as defined in Chapter 3.2.

For example, in the category Set, the monad TND for nondeterminism is

defined with T A = P(A), ηA(a) = {a} and γA(X) = ∪X.

The paper goes on to discuss the interpretation of simple computations

within Kleisli categories, and the conditions which must be met to extend

the set of terms which can be interpreted. For example, to interpret lambda-

terms the underlying monad must be extended to a strong monad via an

additional natural transformation. The main contribution of the paper is

the concept of λc−models over a category C (where such a model is a strong
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monad with T-exponentials) and the formal system λc – the computational

lambda calculus – which is sound and complete over λc-models, capable of

establishing the categorical equivalence of terms written within it.

The Essence of Functional Programming, Philip Wadler (1992)

[Wad92]: Following Moggi’s discovery that effectful computation can be

modelled using monads, Wadler began to investigate the application of

monads to structure functional programs. The paper begins by discussing

the changes that an interpreter written in a pure functional language would

require to support a number of effects, and contrasts these changes to the

fact that an impure interpreter would need no such restructuring. Following

on from this, an interpreter for a language Term based upon the lambda-

calculus is introduced in Haskell, and the functional characterisation of

monads is established. It is then shown how the ‘standard’ interpreter is

extended in order to support individual additional features, ranging from

exception handling to nondeterminism. For each extension, the underlying

monad M and associated methods unitM and bindM are redefined to support

the feature in question, and the parts of the interpreter that are associated

with the feature identified and changed appropriately. Further, the changes

which need to be made to the interpreter such that it uses the call-by-name

evaluation scheme – instead of call-by-value – are discussed in depth.

At this point, the monad laws are introduced, and it is discussed how

the laws can alternatively be formulated using unitM and the monadic
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operations mapM and joinM, and that these two sets of laws necessarily

follow from each other. The laws are then used to prove that binary addition

is associative in any monadic interpreter.

The paper goes on to contrast the monadic style of programming used in

the interpreter and its extensions to continuation-passing style (CPS). To

this end, the continuation monad is introduced and used to structure the

interpreter for the original Term language: it is observed that the resulting

interpreter is similar to that which utilised the identity monad. Indeed,

it is recognised that a suitable monad allows a monadic interpreter to be

translated into a CPS interpreter – and vice-versa – by choosing a suitable

answer space. However, there is a difference between monads and CPS

concerning the degree of ‘control’ allowed in a datatype: for example, CPS

cannot provide an ‘error escape’ for a language with exceptions.

Finally, it is noted that some syntactic sugar may go some way to aiding the

comprehension of programs written in a monadic style – a ‘letM’ construct

for a monad M is proposed –, an observation eventually realised in the form

of do-notation.

Monads For Functional Programming, Philip Wadler (1992) [Wad95]:

Building upon the work described in the previous paper, this paper identi-

fies further application areas for monads within functional programs. The

first half of the paper re-introduces the ‘monadification’ of an interpreter
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extended with various features. This version differs, however, in that the

full non-monadic definition of the interpreter for each feature is given first,

pointing out the common structure of each variation before generalising

this pattern and revisiting each feature, defining its monadic counterpart.

This approach makes explicit the benefit that the monadic style provides

when function redefinition is required. For each feature, a number of sam-

ple expressions are evaluated to clarify the interpreter semantics, a notable

omission from the original paper.

It is then observed that whilst the use of monads so far has been limited

to describing existing features more effectively, they can also be used to

aid in the definition of new features. To demonstrate, the following two

sections treat (respectively) the implementation of an efficient in-place ar-

ray update and the use of monads to construct recursive descent parsers.

In the former, monads of state transformers are introduced as a way to

transform and read arrays, with the fact that monads are represented as

abstract datatypes ensuring the single-threadedness of the array (a crucial

condition for updating an array safely). The latter identifies that parsers

themselves form a monad, and concepts such as sequencing, alternation,

filtering and iteration of such monadic parsers are defined and discussed.
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3.4.2 Alternative Characterisations Of Computation

Whilst this thesis is heavily reliant on Haskell’s use of monads and monad

transformers to model computational effects, these are not the only tech-

niques available. In this section we survey papers which seek to provide

alternate characterisations of effectful computation.

Computational Effects & Operations: An Overview, Gordon Plotkin

and John Power (2002) [PP04]: The commonly held view of operations

associated with computational effects (i.e. inEnv, callcc etc) is that they

are derived from an underlying monad T. However, there is a diametric view

wherein the operations themselves are taken as primitive, and a monad is

derived using the operations as constraints. This latter approach is referred

to as the algebraic theory of effects, and makes use of Lawvere theories :

collections of all equations that hold for a particular algebraic structure.

More specifically, countable Lawvere theories are used, meaning that the

operations and equations comprising the theory form a countable set.

The main notion of this paper is that a description of an effect can be given

as a countable Lawvere theory freely generated by its associated algebraic

operations [PP01], with a correspondence existing between the theory’s

morphisms and said operations. A number of examples are given in the

paper, including nondeterminism and partiality, amongst others. We note

that whilst commutative product Lawvere theories can be constructed from
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subtheories subject to adherence to commutativity laws (which would allow

for arbitrary orderings of effects: more on this in Chapter 5.3.1), Haskell

cannot enforce these laws at present (under GHC 7.8.4).

Handlers of Algebraic Effects, Gordon Plotkin and Matija Pretnar

(2009) [PP09]: In a sense, the algebraic operations which characterise an

effect can be seen as dual to the concept of computational effect handlers:

the former can be viewed as constructors for an effect, and the latter as

deconstructors that manifest an effect. Moreover, common constructs such

as exception handlers are not algebraic operations [PP03]. This paper

introduces the notion of a handler construct for arbitrary algebraic opera-

tions, and shows how a generalisation of the exception-handling construct

of Benton and Kennedy [BK01] permits an algebraic treatment.

The underlying concept is that the handling of a computation corresponds

to a homomorphism (a structure-preserving map), the domain of which

is generated by the algebraic theory of the effects involved. The paper

presents a logic for the handling of algebraic effects and a call-by-push-

value calculus [PP08, Lev06] to formalise the ideas presented throughout.

Programming and Reasoning with Algebraic Effects and Depen-

dent Types, Edwin Brady (2013) [Bra]: The previous paper presents for-

malisms which underpin the work on constructing handlers for algebraic

effects, however these formalisms are defined over sets and functions, with
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the understanding that the concepts generalise in a straightforward man-

ner to richer domains. This paper explicitly demonstrates this claim, im-

plementing the handlers of algebraic effects within the general-purpose,

dependently-typed functional programming language Idris [Bra13].

The notion of algebraic effects is implemented as a domain specific lan-

guage (DSL) called Effects. This DSL makes use of the dependent types

available in Idris in two essential ways: firstly by implementing a type-level

check that the effect which we are invoking a handler for is indeed present in

a source program, and secondly keeping relevant resources (data associated

with effects) up-to-date throughout the lifetime of a program.

3.4.3 Compilation & Correctness

In this section we survey a selection of papers associated with both the

techniques utilised in the compilation of languages and methods of proving

such compilation techniques to be semantically correct. We acknowledge at

this point that the term ‘modular compiler’ can mean a great many things,

with the axes upon which measures of modularity are obtained differing

from one paper to the next. We point out such differences where they arise

throughout.

Monad Transformers And Modular Interpreters, Sheng Liang, Paul

Hudak and Mark Jones (1995) [LHJ95a]: This paper is considered the
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genesis of the usage of the monad transformer technique within Haskell, fo-

cussing upon the notion of using composable building blocks corresponding

to individual computational features to form programming language inter-

preters. The data constructors and supported operations expected of a

number of effects are introduced, alongside the monad transformers needed

to implement them.

The source languages which result from this modularised approach are rep-

resented as a domain sum (implemented using an OR operator). The main

interpreter function is defined as a method of a constructor class, which each

sublanguage must be an instance of. What follows is a thorough discussion

of the complications which arise when lifting certain monad transformers –

more precisely, their operations – through each other. Two monad trans-

former laws detailing the conditions which the transformer method lift

must satisfy, and the concept of a natural lifting of operations along a

monad transformer is introduced. A natural lifting enforces the implicit

constraint that a program not utilising a certain language feature behaves

in the same manner if that feature is removed.

It is observed that if – categorically – a monad cannot compose with all

other monads, a monad transformer variant cannot be defined for the fea-

ture it models. For example, the list monad can only compose with com-

mutative monads, as discovered by Jones and Duponcheel [JD93]. As such,

there is no monad transformer modelling nondeterminism. Due to this, we
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must often define a base monad to which transformers are applied. The pa-

per goes on to discuss how certain monad transformers can be implemented

by others: the examples given include environments modelled using the

state monad transformer, and exceptions modelled using the continuation

transformer. To conclude, a number of ‘difficult’ liftings – in the sense that

the resulting semantics may be unclear – are given.

Modular Compilers Based On Monad Transformers, William L.

Harrison and Samuel Kamin (1998) [HK98a]: Extending the work de-

scribed above on using monad transformers to develop modular interpreters,

this paper seeks to apply the same techniques to compiler construction.

Such a compiler is constructed via a combination of compiler blocks, where

a single compiler block is defined by the equations defining the ‘compilation

semantics’ of an effect, and the monad transformers – and associated meth-

ods – needed to implement the effect. Given the monadic, CPS semantics

of a feature, its compilation semantics are obtained via pass separation, the

introduction of intermediate data structures with monad transformers.

The main result of the paper is the construction of a modular compiler

for an Algol-like imperative language. The target language is a machine-

language represented using appropriate combinators (popblock, push etc),

an approach which takes advantage of the monadic structure of compilation

semantics. Separate to this final result, the compilation of two languages

supporting simple expressions and control flow is demonstrated, followed by
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their combination. The paper concludes by discussing a number of issues

which may arise, such as metavariable scoping and recursion.

Compilation as Metacomputation: Binding Time Separation in

Modular Compilers, William L. Harrison and Samuel Kamin (1998)

[HK98b]: This paper builds upon the authors’ previous work by observing

that metacomputations (computations which produce computations) arise

naturally in the compilation process. Compiler metacomputations can be

obtained by compiling the static aspects of a program – such as code gener-

ation – into a computation which contains the dynamic aspects, i.e. stack

manipulation. This staging of a program can be implemented using two

monads – a static and dynamic monad – constructed via monad trans-

former. It is claimed that the composition of these two monads gives the

correct domain for a modular compiler utilising staging.

Several of the compiler blocks from the previous paper are re-introduced,

and the structure of the metacomputations produced by each is given. In

each instance, the staging monads Comp and Exec are described via the op-

erations which must be supported, and therefore which monad transformers

must be used to construct them. The construction of these staging monads

using transformers simplifies the combination of building blocks. Given the

staging monads for any two compiler blocks, the staging monads for their

combination are constructed using each of the monad transformers associ-

ated with the originals. Presuming that the specification of two languages
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are described by sets of equations, the specification of their combination is

simply their set union.

Modular Compilers and their Correctness Proofs, William L. Harri-

son (2001) [Har01]: Harrison’s doctoral thesis focusses the problem of mod-

ular compilation in the sense discussed by the previous two papers, via the

construction and verification of reusable compiler building blocks (RCBBs)

for various features of a source language. Demonstrations – and implemen-

tations – of the compilation of programs supporting various combinations

are given, including static/dynamic scoping of variables, control flow and

imperative features. Two distinct approaches to developing RCBBs are pro-

posed, namely as metacomputations – defined previously – and as monadic

code generators, with the same target language as considered in his prior

work [HK98a].

The examples and discussion relating to the metacomputational approach

correspond strongly with that in the previous paper, mainly concerning the-

orems relating the standard and compilation semantics of languages. The

alternative approach – compilation using monadic code generators (MCGs)

– defines an MCG as a function compile :: Source → m Target for

each feature, parameterised over a monad m – this approach being more

closely related to that of our own research. The same features used as ex-

amples for the metacomputational approach are reused here, with MCGs

for each introduced and explained in detail. The thesis then presents a
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case study of a source language Exp supporting exceptions, imperative fea-

tures, blocks, booleans and control flow structure. The compiler for this

language is verified correct by formulating and proving relations between

the standard and compilation semantics of metacomputations and MCGs.

Certain conditions must be met in order to combine blocks to form a com-

piler for a non-trivial language, called linking conditions. The two linking

conditions illustrated in the thesis relate imperative features to expressions,

and control flow to booleans. To conclude, the notion of observational pro-

gram specification is developed, a parametric monadic specification making

minimal assumptions about the monad associated to a MCG, which proves

useful in the verification process described.

Compiling Exceptions Correctly, Graham Hutton and Joel Wright

(2004) [HW04]: Surprisingly, despite the amount of research into compil-

ers within functional programming, correctness proofs for compilers dealing

with non-standard features have been slow to emerge. To this end, this pa-

per seeks to address this issue for exceptions, traditionally viewed as an

advanced topic in compilation theory. The paper opens with the Haskell

definition of a small language Expr consisting of integer values and addition,

alongside an evaluator, compiler (targeting a stack-based list of instructions

as the IR, as will be seen throughout this thesis) and virtual machine op-

erating over it. The conditions for correctness are stated and proved for a
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general stack via induction, alongside a lemma detailing how code can be

split up and executed in steps without affecting the result.

Expr is then extended with constructors enabling simple notions of excep-

tion throwing and handling, alongside extensions to the datatypes repre-

senting code. As a result, the evaluator, compiler and virtual machine

are extended with new function definitions and edited where necessary to

reflect the new semantics. A second proof of generalised compiler correct-

ness relating to this extended language is given. Finally, in order to bring

results more in line with ‘realistic’ languages, Expr is altered to include

label jumps, and – instead of marking a stack with compiler handler code –

makes reference to address locations. This final compiler is proved correct

via a number of inductively proved lemmas concerning issues such as the

monotonicity of address allocation.

Compiling Concurrency Correctly: Cutting Out The Middle Man,

Liyang Hu and Graham Hutton (2010) [HH09]: Traditionally, compiler cor-

rectness for concurrent languages is proved by translating from both the

source and target languages into an intermediate π-calculus (a formal sys-

tem giving semantics to concurrent computations) and then proving equiv-

alence via bisimulation. However, this method is overly complicated, re-

quiring several extra layers of formalism, and this paper describes a simpler

technique. Taking the same approach as the previous paper discussed, a

language Zap of integer values and addition is defined, and – using Agda –
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given an operational semantics involving actions and labels which permits

a simple notion of nondeterminism.

As nondeterminism introduces the possibility of sets of result values, the

semantics of the compiler and virtual machine are given as a relation –

rather than a set-valued function – coupled with a notion of weak bisimi-

larity (ignoring silent actions). The compiler correctness statement for Zap

is formulated in terms of weak bisimilarity between two combined seman-

tics expressions – the pairing of a Zap expression and a virtual machine –

and proved in Agda. It has since been observed that this theorem captures

precisely the same notion of compiler correctness as that of the compiler

for exceptions discussed in the previous paper.

The Zap language is then extended to support explicit concurrency by fork-

ing expressions into new threads, resulting in the language Fork. The com-

piler is extended, new actions and labels are introduced, and the notion of

a ‘thread soup’ as a list of concurrent threads is formalised. Finally, Fork

is proved correct in a general setting using Agda.

A Formally Verified Compiler Back-End, Xavier Leroy (2009) [Ler09]:

A large portion of the literature regarding compiler correctness considers

a variation on the lambda calculus as the choice of source language. How-

ever, compiler correctness is possible for languages capable of producing
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critical software, as demonstrated by Leroy in this journal paper. Tak-

ing a significant subset of the C language (Cminor) as the source language,

and targeting PowerPC assembly code, a Coq-verified compiler Compcert is

presented. It is observed that the semantic preservation property of a com-

piler can be established by proving the forward simulation for safe programs

property, which states that both the source and target programs produce

the same ‘set’ of observable behaviours, with no behaviour classified as be-

ing ‘incorrect’. We also require that the target language is deterministic,

but since Compcert targets assembly code – deterministic by design –, only

the forward simulation property requires attention.

The paper then discusses each stage of the compilation process using Com-

pcert in detail. Each stage performs a different task, beginning with con-

verting a source program from Cminor – for which a full semantics is given

– to CminorSel, a language making use of a processor-specific set of opera-

tors. Further stages address issues such as light optimisations (e.g. constant

propagations) and register allocation. At each stage, semantic preservation

is proved, and detailed semantics of intermediate languages (of which there

are several) are given. The possibility of retargeting Compcert is also dis-

cussed, and shown to be possible by retargeting the ARM instruction set.

First-Class Syntax, Semantics, and their Composition, Marcos Viera
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(2012) [Vie12]: When describing extensible programming languages, a fre-

quently used technique is that of attribute grammars, a formalism pro-

scribing attributes to grammar productions, producing an abstract syntax

tree with attribute information in the nodes [Joh87]. These attributes can

be either inherited (passed down a tree, such as environments), or syn-

thesised (passed up a tree, such as previously computed results). Viera’s

PhD thesis shows how a programming language can be implemented by

composing attribute grammar fragments corresponding to individual as-

pects of the desired language, with the type system of the implementation

language – Haskell – guaranteeing that conflicting compositions are not

permitted. Parsers for these languages can be constructed on-the-fly in a

similar manner. Throughout, it is shown how a compiler can be incremen-

tally constructed for the imperative language Oberon0 [Mö93].

3.4.4 Modular Semantics

In this section, we survey papers which develop techniques which allow for

a greater degree of control in language definition and effectful computation.

Modular Denotational Semantics for Compiler Construction, Sheng

Liang and Paul Hudak (1996) [LH96]: Extending the author’s previous

work introducing monad transformers [LHJ95b], this paper aims to derive

compilers from modular interpreters which are based on modular monadic
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semantics. Firstly, examples are given defining the standard semantics of

a number of language features in terms of effectful operations, referred to

here as primitive monadic combinators.

It is observed that since a modular monadic semantics is no more than a

structured denotational semantics, the monad laws described earlier can be

used to β-reduce – and optimise – source programs. However, it is noted

that program fragments utilising primitive monadic combinators such as

inEnv cannot be β-reduced as they do not feature in the monad laws. To

overcome this issue, the environment monad is axiomatised via four laws

(e.g. inner environments supercede outer environments) and these are used

to further simplify programs.

Lifting of Operations in Modular Operational Semantics, Mauro

Jaskelioff (2009) [Jas09]: Jaskelioff’s doctoral thesis addresses the lifting

of operations through monad transformers in a uniform manner. The thesis

begins by explaining why this is necessary, identifying a number of issues

with the current monad transformer framework of Haskell [Gil14], such as

the shadowing of operations wherein two applications of the same monad

transformer result in one transformer being inaccessible.

Operations are defined to be mappings on the category of monoidal cate-

gories, and classified as either H-algebraic, first-order or algebraic depend-

ing on their structure. It is then demonstrated how several examples of
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such operations can be lifted in a canonical manner, and where several

such liftings are possible, that they coincide. Key to this is the classifica-

tion of a monad transformer as being monoidal, functorial or covariant (or

potentially none of these).

The theory developed is then implemented in Haskell in the form of the

Monatron library [Jas11]. Monatron differs from the mtl library in that

it distinguishes between multiple classes of monad transformer. Detailed

examples are given, most notably for the exceptions monad. Here, the

associated methods throw and handle are separated and lifted using the

appropriate techniques for their algebraic class. Monatron is used exten-

sively throughout the final two chapters, firstly in developing a modular

interpreter for a language supporting processes, conditional arithmetic and

exceptions using the à la carte technique, and secondly in implementing a

modular operational semantics based upon work by Turi [TP97].

Semantic Lego, David Espinosa (1995) [Esp95]: Espinosa’s doctoral the-

sis presents Semantic Lego (SL), a “language for describing languages” –

implemented in Scheme – designed to build interpreters from component

specifications. The theory of stratification (splitting a monad into ‘levels’)

is introduced: for example, the monad T1(A) = S → A × S is considered

to be on a higher level than T2(A) = A × S due to the extra argument of

type S. Stratified levels can then be combined using stratified monad trans-

formers, classified as either top, bottom or around transformers according
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to their structure. Two examples are the bottom exception transformer

F(T)(A) = T(A + X), and the top environment transformer F(T)(A) =

Env → T(A).

SL divides a language semantics into two parts, a computation ADT and

a language ADT. The former represents the actual semantics, the latter

grammatical syntax, and it is the former which is implemented using strat-

ification. An SL interpreter for a Scheme-like language is developed, with

examples of the resulting semantics when considering the various orderings

of nondeterminism and continuations.

A Modular Monadic Action Semantics, Keith Wansborough and John

Hamer (1997) [WH97]: Action semantics [Mos96] and modular monadic se-

mantics (MMS) [Lia98] are two existing approaches to defining semantics

in a modular manner. These two semantic approaches differ in their under-

lying formalisms, and both styles suffer from issues regarding extensibility

and accessibility: an action semantics cannot easily be extended to de-

scribe new features, and MMS uses syntax which can be confusing to the

layman. This paper proposes merging the best of both styles, resulting in

modular monadic action semantics (MMAS): an action semantics wherein

combinators are described via MMS as opposed to SOS.

This change enables the extensibility that action semantics lacks: if a fea-

ture cannot be described with action notation (e.g. continuations) then we
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implement that feature via MMS instead. As MMS is itself no more than a

structured denotational semantics, the usual methods for reasoning about

programs – e.g. β-reduction – therefore apply. However, unaddressed issues

remain: the underlying type-class system is that of Haskell, rather than the

unified algebra foundations underpinning action semantics [Mos89], and

some operations have their semantics altered as a result - for example,

MMAS provides a ‘lesser’ implementation of non-deterministic choice than

its action semantic counterpart.

3.4.5 Extensible Constructs

In this final section of our literature review, we present related work on the

topic of defining programming language constructs in a manner that – by

construction – renders them easy to extend.

Monads, Zippers and Views: Virtualising the Monad Stack, Tom

Schrijvers and Bruno C. D. S. Oliveira (2011) [SO11]: As we have ob-

served, a number of problems exist when lifting operations through a con-

crete monad stack. One problem we have not yet mentioned is that modi-

fying the stack may result in the need to alter existing code to ensure that

invocations to the lift operation refer to the correct transformers. This

paper describes two techniques for ‘virtualising’ a monad which has been

constructed using transformers: namely, the notions of monad zippers and
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monad views, which generalise to create structural and nominal masks. A

monad zipper is a transformer which ignores a prefix of a monad stack

using operations ↑ – a ‘lift’ of sorts – and ↓, an inverse which has no typ-

ical equivalent. These operations allow methods associated with a monad

transformer to be called without using lift to bypass other instances of

the same transformer. A monad view is a monad morphism which allows

for different versions of the monad stack to be presented to distinct parts

of a computation.

Together, these notions permit the construction of a masking language

which allows parts of a monad stack to either be hidden or have their

access restricted at a point of usage. Structural masks are defined using

primitives � and �. To demonstrate, the mask (� ::: � ::: �) hides the

second layer of the monad stack. Using different combinations of structural

masks, several permutations of a single concrete stack can be presented

when needed, eliminating the need for lifting. Nominal masks, in contrast,

‘tag’ each layer of a monad stack with a singleton type, distinguishing

between multiple instances of transformers without the usage of lift.

Datatypes à la Carte, Wouter Swierstra (2008) [Swi08]: this paper de-

scribes a solution to the ‘expression problem’ [Wad98] – described in Chap-

ter 2 – and forms a crucial part of the foundations for this thesis, and

will be explored in depth in Chapter 4 – using techniques for construct-

ing datatypes and functions in a modular manner by combining several
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previously known results. The leading example is an evaluation function

over a simple language consisting of integers and addition. The core idea

is that a datatype can be represented as the least fixpoint of a coproduct

of functors – which represent constructor signatures –, and functions over

such datatypes can be represented as categorical algebras.

Following a discussion of how certain well known monads (e.g. identity and

Maybe) are free monads – essentially trees parameterised over a functor –,

the paper demonstrates how both the state monad and certain aspects of

the IO monad can be emulated in the à la carte style by implementing a

simple calculator with memory for storing and recalling values.

Open Data Types and Open Functions, Andres Loh and Ralf Hinze

(2006) [LH06]: This paper presents an alternative approach to solving the

expression problem in Haskell, with the key mechanism being that of a

novel syntactic extension to Haskell, in contrast to the à la carte technique

which makes use of existing language features and compiler pragmas. In

this approach, datatypes and functions that we may yet extend with new

constructors or patterns are flagged with the open keyword. Extensions to

either functions or datatypes can then be included anywhere in a source pro-

gram, not just at the point of definition, with the final definitions grouped

together at compile-time by a Haskell preprocessor.

One consequence of the fact that open functions can have their patterns
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dispersed throughout a source program is that the usual first-fit approach

that Haskell takes to pattern matching is no longer appropriate. For exam-

ple, if the default case for an open function appears at the top of a source

file, the function is effectively closed, with no other definitions reachable.

In response to this, open functions make use of best-fit left-to-right pattern

matching instead (in which the most specific match is the one chosen, with

wildcards less specific than explicit metavariables etc), rendering the order

in which open function definitions appear irrelevant.

Parametric Compositional Datatypes, Patrick Bahr and Tom Hvitved

(2011): The aforementioned datatypes à la carte technique presents a par-

ticularly elegant solution to the expression problem in Haskell. However,

the insights it reveals are of limited applicability outside the setting of

the problem itself. Previous work by the authors of this paper [BH11]

has sought to extend the à la carte approach in the form of compositional

datatypes (CDTs). The CDT framework supports wider functionality for

recursion and mutually recursive datatypes. However, CDTs cannot imple-

ment variable bindings due to issues concerning α-equivalence.

This issue is resolved by merging the à la carte technique with a parame-

terised variant of higher order abstract syntax (HOAS). HOAS represents

variable bindings in a source language by using the binding mechanism

of the metalanguage. However, this combination of methods cannot sup-

port recursion over abstract syntax trees, as data constructors which are
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defined in this way are not functors. The solution posed by this paper in-

volves changing the signature representation to that of difunctors [MH95],

and altering the structure of terms to that of a free monad. This combina-

tion of compositional datatypes and HOAS forms a technique referred to

as parametric compositional datatypes (PCDTs).

The paper shoes how monadic computations can be implemented using

both CDTs and PCDTs, before discussing term algebras – algebras defined

with carrier Fix f for some signature f – and term homomorphisms, func-

tions of type ∀ a. f a → Context g a for some free monad Context. It is

then demonstrated how these algebras and homomorphisms can compose,

and concludes by introducing monadic term homomorphisms and shows

how mutually recursive datatypes and generalised algebraic datatypes can

be constructed using PCDTs.

Extensible Effects: An Alternative to Monad Transformers, Oleg

Kiselyov (2013) [KSS13]: The monad transformer framework is not without

its issues, as we have alluded to when discussing the work of Jaskelioff

above and will explore in detail in Chapter 5. An alternative approach

developed around the time that monad transformers were introduced is that

of extensible denotational language specifications (EDLS) [CF94], wherein

an effect is viewed as a request to an external, inflexible ‘authority’ which

interprets the request and either permits it and returns an appropriate

continuation, or declines and aborts. This paper by Kiselyov improves
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upon both the monad transformer and EDLS approaches by introducing

an extensible ‘bureaucracy’ as part of the user program which consists of

partial authorities (which correspond to algebraic handlers) that can either

execute a request for pass the request to the appropriate authority. In

conjunction with this, a type-and-effect system is introduced as an open

union of effects: a handler will remove its associated effect from the union

during execution in order to both accurately track the current state of a

program, and guarantee that no ‘dangling effects’ exist in a program.

3.5 Justifying This Thesis’ Position

TODO: COMPLETE THIS

– discussed monads quite heavily – despite alternatives to monads, still

the most well-understood/mainstream way to simulate effects [vs handler-

s/algebraic theories] – monads appear in several semantic models, so we

won’t be working with tools that are ’ill-defined’ in nature – we choose to

parameterise over the datatype itself via datatypes a la carte [but why!?] –

demonstrating the stack based representation of IR just for clarity rather

than anything more complex [like RTL], however there’s work done on, for

example, modular Hoopl – continuing the work on splitting a compiler into
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small, isolatable pieces in the style of Hutton, with the future goal of in-

dividual correctness proofs – open datatypes are promising advances, and

once open datatypes become available in GHC it’ll be fun to tinker with.



Chapter 4

Modular Compilers:

Initial Steps

Now that we are familiar with the problem domain, we can begin to put

together an initial framework that allows for the specification of compila-

tion schemes between tree-based source languages and stack-based target

languages, with each such scheme independent to the others by design. In

this chapter, we will discuss how this can be done in Haskell by exploiting

the typeclass system, and also how functors – as a core example of the

typeclass system in action – allow for language syntax to be defined in a

modular manner. We begin this chapter, however, with a discussion of how

Haskell makes use of multiple side-effects within a single monad.

62
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4.1 Modular Effects

In the previous chapter, we saw an example of the concept of computa-

tional effects being modelled using monads. Whilst each monad normally

corresponds to a single effect, since most languages support more than one

effect the issue of how to combine monads quickly arises. In this section,

we briefly review the approach based upon monad transformers [LHJ95b].

4.1.1 Monad Transformers in Haskell

In Haskell, monad transformers have the following definition:

class (Monad m, Monad (t m)) => MonadT t where

lift :: m a -> t m a

Intuitively, a monad transformer is a type constructor t which, when ap-

plied to a monad m, produces a new monad (t m). Monad transformers are

required to satisfy two laws:

1. lift ◦ returnM = return(T M)

2. lift (m >>= k) = lift m >>= (lift ◦ k)

The lift operation associated with every monad transformer is used to

convert values in the base monad m to the new monad (t m). By way
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of example, the following table summarises five common computational

effects, their monad transformer types, and corresponding implementations:

Effect Transformer Type Implementation

Exceptions ErrorT m a m (Maybe a)

State StateT s m a s → m (a, s)

Environment ReaderT r m a r → m a

Logging WriterT w m a m (a, w)

Continuations ContT r m a (a → m r) → m r

The general strategy is to ‘stratify’ the required effects, by starting with

a base monad – often the Identity monad – and applying the appropri-

ate transformers. There are some constraints regarding the ordering; for

example, certain effects can only occur at the innermost level and certain

effects do not commute [LHJ95b] (topics which we discuss in detail in Chap-

ter 5.3.1), but otherwise effects can be ordered in different ways to reflect

different intended interactions between the features of the language.

To demonstrate the concept of monad transformers, we will examine the

transformer for exceptions in more detail. Firstly, its type constructor is

declared in the following manner:

newtype ErrorT m a = E { runE :: m (Maybe a) }
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Note that (ErrorT Identity) is equivalent to the Maybe monad. We can

now declare ErrorT as a member of both the Monad and MonadT classes:

instance Monad m => Monad (ErrorT m) where

return a = E $ return (Just a)

(E m) >>= f = E $ do v <- m

case v of

Nothing -> return Nothing

Just a -> runE (f a)

instance MonadT ErrorT where

lift m = E $ m >>= \v -> return (Just v)

In addition to the general monadic operations, we would also like access

to other primitive operations related to the particular effect that we are

implementing. In this case, we would like to be able to throw and catch

exceptions, and we can enable this by having the relevant operations defined

as methods of an error monad class :

class Monad m => ErrorMonad m where

throw :: m a

catch :: m a -> m a -> m a

We instantiate ErrorT as a member of this class as follows:
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instance Monad m => ErrorMonad (ErrorT m) where

throw = E $ return Nothing

x ‘catch‘ h = E $ do v <- runE x

case v of

Nothing -> runE h

Just a -> return v

More importantly, we can also declare monad transformers to be members

of effect classes other than their own. Indeed, this is the primary purpose

of the lift operation. For example, consider the state monad transformer:

newtype StateT s m a = S { runS :: s -> m (a, s) }

instance Monad m => Monad (StateT s m) where

return x = S $ \s -> return (x, s)

(S g) >>= f = S $ \s -> do (x, t) <- g s

runS (f x) t

instance MonadT (StateT s) where

lift m = S $ \s -> m >>= \x -> return (x, s)

We can extend StateT such that it supports exception handling by instan-

tiating it as a member of the error monad class as follows:
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instance ErrorMonad m => ErrorMonad (StateT s m) where

throw = lift . throw

x ‘catch‘ h = S $ \s -> runS x s ‘catch‘ runS h s

In this manner, a monad that is constructed from a ‘base’ monad using

a number of transformers comes equipped with the associated operations

for all of the constituent effects with necessary liftings handled automati-

cally, with the caveat that they have to be manually implemented for any

combinations one wishes to use, which can lead to boilerplate.

4.1.2 Monad Transformers Categorically

The foundations on which Haskell is built dictate that the notion of monad

that we have described above is not quite its categorical equivalent, but

rather a strong monad [Mog89]. For the sake of completeness, we will

address the core categorical definitions involved in this subsection.

To do so, we must first introduce the notion of a monoidal category. A

category C is monoidal if it is equipped with a notion of tensor product; that

is to say, an associative bifunctor (that is, a functor taking two arguments)

ζ : C × C → C that has a unique object I ∈ Cob, which acts as both a

right and left identity.



Chapter 4. Initial Steps 68

A monad (T, η, γ) within such a monoidal category is strong if it is equipped

with a natural transformation tA,B : ζ (A × TB) → T (ζ (A × B)).

Finally, given categories C and D, an adjunction between them consists of:

1. A left adjoint functor F : C ← D.

2. A right adjoint functor G : C → D.

3. A natural transformation φ : homC(F−,−)→ homD(−, G−)

4. A counit natural transformation ε : FG→ 1C

5. A unit natural transformation η : 1D → GF

The natural transformation φ is defined in terms of hom-sets. More specif-

ically, homC(X, Y) is the collection of morphisms between X, Y ∈ Cob.

Less formally, an adjunction can be described as a relationship between con-

structs. For instance, monads are adjunctions over categories. More impor-

tantly, the majority of the monad transformers which we utilise throughout

this thesis – state, exceptions, writer and reader – can be shown to be ad-

junctions over monads themselves [Wad12].

We provide the information above out of a belief that having formal defi-

nitions for commonplace constructs is never a bad thing. However, to keep

the remainder of the thesis accessible to those outside of category theory,

we do not make further use of the concepts discussed herein.
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4.2 Modular Syntax & Semantics

The previous chapter made the observation that adding extra constructors

to a datatype often requires the modification of existing code. In this sec-

tion, we will first review the modular approach to datatypes and functions

put forward by Swierstra [Swi08], known as the datatypes à la carte tech-

nique, and show how it can be used to obtain modular syntax and semantics

for our simple expression language.

4.2.1 Datatypes À La Carte

The underlying structure of an algebraic datatype in Haskell – such as

Expr from Chapter 2.1 – can be captured by a constructor signature. We

can define distinct signature functors for the arithmetic and exceptional

components of the Expr datatype as follows:

data Arith e = Val Int | Add e e

data Except e = Throw | Catch e e

These definitions capture the non-recursive aspects of expressions, in the

sense that Val and Throw have no subexpressions, whereas Add and Catch

have two apiece. We declare both Arith and Except as Haskell functors:
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instance Functor Arith where

fmap _ (Val n) = Val n

fmap f (Add x y) = Add (f x) (f y)

instance Functor Except where

fmap _ Throw = Throw

fmap f (Catch x h) = Catch (f x) (f h)

For any functor f, its induced recursive datatype, Fix f, is defined as the

least fixpoint of f. In Haskell, this is implemented as follows [MH95]:

newtype Fix f = In (f (Fix f))

For example, Fix Arith is the language of integers and addition, while Fix

Except is the language comprising throwing and catching exceptions. We

shall see shortly how these languages can be combined.

Of particular importance is the name of the data constructor associated

with this least fixpoint construct, namely In, which we notice is the same

name given to the morphism associated with a categorical initial algebra

(recall Chapter 3.2) . This is no coincidence, as it is appears when defining

the fold operator [MFP91] used to write functions over Fix f [Swi08]:

fold :: Functor f => (f a -> a) -> Fix f -> a

fold f (In t) = f (fmap (fold f) t)
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The parameter of type (f a→ a) is the f-algebra, which can be intuitively

viewed as a directive for processing each constructor of a functor. Given

such an algebra and a value of type Fix f, the fold operator exploits both

functional and recursive characteristics of Fix to process recursive values.

The aim now is to take advantage of the above machinery to define a dy-

namic semantics for our expression language in a modular fashion. Such a

semantics will have type Fix f→ m Value for some functor f that captures

the syntactic structure of the source language, monad m that captures the

computational effects that are required by the source language, and seman-

tic domain Value that captures the notion of fully evaluated results. To

define functions of the requisite type using fold, we require an evaluation

algebra, which notion we capture by the following typeclass definition:

class (Monad m, Functor f) => Eval f m where

evalAlg :: f (m Value) -> m Value

Using this typeclass, we can now define algebras corresponding to the se-

mantics for both the arithmetic and exception components:

instance Monad m => Eval Arith m where

evalAlg (Val n) = return n

evalAlg (Add x y) = x >>= \n ->

y >>= \m -> return (n + m)
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instance ErrorMonad m => Eval Except m where

evalAlg (Throw) = throw

evalAlg (Catch x h) = x ‘catch‘ h

There are three important points to note about the above instantiations.

First of all, the semantics for arithmetic have now been completely sepa-

rated from the semantics for exceptions, in particular by way of two sep-

arate instance declarations. Secondly, the semantics are parametric in the

underlying monad, and can hence be used in multiple differing contexts.

And finally, the operations that the underlying monad must support are

explicitly qualified by class constraints, e.g. in the case of Except the

monad must be an ErrorMonad. These latter two points generalise the

work of Jaskelioff [Jas09] from a fixed monad to an arbitrary one support-

ing the required operations, resulting in a clean separation of the semantics

of individual language components.

With this machinery in place, we can now define a general evaluation func-

tion of the desired type by folding an evaluation algebra:

eval :: Eval f m => Fix f -> m Value

eval = fold evalAlg
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Note that this function is both modular in the syntax of the source language

and parametric in the underlying monad. However, at this point we are

only able to take the fixpoints of Arith or Except, not both. We need a

way to combine signature functors, which is naturally done by taking their

coproduct (or disjoint sum) [LHJ95b], noting that at this point we only

consider the potential for a single ‘recursive knot’, namely the variable e.

In Haskell, the coproduct of two functors can be defined as follows:

data (f :+: g) e = Inl (f e) | Inr (g e)

instance (Functor f, Functor g) => Functor (f :+: g) where

fmap f (Inl x) = Inl (fmap f x)

fmap f (Inr y) = Inr (fmap f y)

We can now define the coproduct of evaluation algebras:

instance (Eval f m, Eval g m) => Eval (f :+: g) m where

evalAlg (Inl x) = evalAlg x

evalAlg (Inr y) = evalAlg y

The general evaluation function can now be used to give a semantics to

languages with multiple features by simply taking the coproduct of their

signature functors. Unfortunately, there are three problems with this ap-

proach. First of all, the need to include fixpoint and coproduct tags (In,
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Inl and Inr) in values is cumbersome unless we have a parser available. For

example, if we wished to manually enter the concrete expression 1 + 2 with

type Fix (Arith :+: Except) (for smoke testing purposes, perhaps), it

would be represented as follows:

In (Inl (Add (In (Inl (Val 1)) (In (Inl (Val 2))))))

Secondly, the extension of an existing syntax with additional operations

(i.e. extending a language from type Fix (Arith :+: Except) to Fix

(State :+: Arith :+: Except)) requires the modification of existing

tags — Inl would need to be replaced by (Inl . In . Inr) for ex-

ample — which breaks modularity. And finally, Fix (f :+: g) and Fix

(g :+: f) are isomorphic as languages, but require different values to be

tagged in different ways. In the next two subsections, we will describe how

the datatypes à la carte technique resolves these concerns.

4.2.2 Smart Constructors

Given the concerns just described, it would be helpful to have a way of

automating the injection of values into expressions such that the appro-

priate sequences of fixpoint and coproduct tags are prepended. This can

be achieved using the concept of a subtyping relation on functors, which

can be formalised in Haskell by the following class declaration, wherein inj

injects a value from a subtype into a supertype.
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class (Functor sub, Functor sup) => sub :<: sup where

inj :: sub a -> sup a

We can now define instance declarations to ensure that f is a subtype of

any coproduct containing f, via the following declarations:

instance f :<: f where

inj = id

instance f :<: (f :+: g) where

inj = Inl

instance (f :<: h) => f :<: (g :+: h) where

inj = Inr . inj

We note that an overlap occurs between the second and third instances,

however this is not a problem in practice so long as right associativity is

guaranteed via the use of an infixr declaration on (:+:).

Using this notion of subtyping, we can define an injection function:

inject :: (g :<: f) => g (Fix f) -> Fix f

inject = In . inj
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We use inject to define smart constructors which bypass the need to tag

values when embedding them in expressions (using the SC suffix to differ-

entiate between smart constructors and the methods of the ErrorMonad

class):

val :: (Arith :<: f) => Int -> Fix f

val n = inject (Val n)

add :: (Arith :<: f) => Fix f -> Fix f -> Fix f

add x y = inject (Add x y)

throwSC :: (Except :<: f) => Fix f

throwSC = inject (Throw)

catchSC :: (Except :<: f) => Fix f -> Fix f -> Fix f

catchSC x h = inject (Catch x h)

Note the constraints stating that f must have the appropriate subtype

functor; for example, in the case of val, f must support arithmetic.

4.2.3 Putting It All Together

We can now define language syntax in a modular manner. Using smart

constructors, we can define values within languages given as fixpoints of
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coproducts of signature functors. For example:

ex1 :: Fix Arith

ex1 = val 18 ‘add‘ val 24

ex2 :: Fix Except

ex2 = throwSC ‘catchSC‘ throwSC

ex3 :: Fix (Arith :+: Except)

ex3 = throwSC ‘catchSC‘ (val 1337 ‘catchSC‘ throwSC)

The types of these expressions can be generalised using the subtyping rela-

tion, but for simplicity we have given fixed types above (the most general

type we can obtain with no available information is Eval f m => Fix f).

In turn, the meaning of such expressions is given by our modular semantics:

> eval ex1 :: Identity Value

> 42

> eval ex2 :: Maybe Value

> Nothing

> eval ex3 :: Maybe Value

> Just 1337
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Note the usage of explicit typing judgements to determine the resulting

monad. Whilst we have used Identity and Maybe above, any monad

satisfying the required constraints can be used, as illustrated below:

> eval ex1 :: Maybe Value

> Just 42

> eval ex2 :: [Value]

> []

One final point to make in this chapter is that the modular abstract syntax

we have introduced is currently single-sorted : that is to say, we cannot

differentiate between the purposes of expressions. This is quite limiting,

and we shall see how this can be generalised in Chapter 6.2.1.

4.3 Modular Compilation Algebras

With the techniques described in the previous two sections within this chap-

ter, we can now construct a modular compiler for our expression language.

First of all, we define the Code datatype of Chapter 2.1 in a modular man-

ner as the coproduct of signature functors corresponding to the arithmetic

and exceptional operations of the virtual machine:
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data ARITH e = PUSH Int e | ADD e

data EXCEPT e = THROW e | MARK Code e | UNMARK e

data NULL e = NULL

type Code = Fix (ARITH :+: EXCEPT :+: NULL)

In the above, by defining the Op datatype (see Chapter 2.1) as a fixpoint, we

have combined Op and Code into a single type defined using Fix, allowing

code to be processed using the datatypes à la carte technique; note that

NULL now plays the role of the empty list. More importantly, perhaps, is

the fact that the handler argument to MARK has explicit type Code rather

than the general type e. Our justification for doing this — rather than

declaring that both arguments have type e — is that we wish to differen-

tiate between the ‘types’ of subexpression that these two arguments will

have without introducing bifunctors [MFP91]. More precisely, the recursive

subexpressions of a signature – those of type e in the underlying functor

– have their type specified by the compilation algebra, and we will shortly

observe that this type is not compatible with the obvious type for handler

subexpressions.

The desired type for our compiler is Fix f→ (Code→ Code), for some sig-

nature functor f characterising the syntax of the source language. To define

such a compiler using the generic fold operator, we require an appropriate

compilation algebra, which notion we define as follows:
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class Functor f => Comp f where

compAlg :: f (Code -> Code) -> (Code -> Code)

In contrast with evaluation algebras, no underlying monad is utilised in the

above definition, because the compilation process itself does not involve the

manifestation of effects within the program itself being compiled (compiler

implementations are themselves often stateful, but we are concerned only

with the effects that a source program invokes). We can now define algebra

instances for both the arithmetic and exceptional aspects of our modular

compiler as follows:

instance Comp Arith where

compAlg (Val n) = pushc n

compAlg (Add x y) = x . y . addc

instance Comp Except where

compAlg (Throw) = throwc

compAlg (Catch x h) = \c -> h c ‘markc‘ x (unmarkc c)

Similarly to the evaluation algebras defined in Chapter 4.2.1, note that

these definitions are modular in the sense that the two language features

are being treated completely separately from each other. We also observe

that because the carrier of the algebra is a function, the notion of appending

code in the case of the Add constructor corresponds to function composition.
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Returning to the issue of the EXCEPT signature briefly, recall our claim that

the handler argument to the MARK constructor breaks modularity. As we

can now see, this argument, being of type Code, will act as the alternative

code continuation in the event that an exception is thrown. However, were

we to declare this argument as a recursive subexpression of type e, the

compilation algebra would impose the type Code→ Code. This would then

require us to provide an initial continuation to the composition (h ◦ c)

when executing the resulting code, which we have no sensible candidate for.

Given our previously stated desire to avoid the usage of bifunctors, we must

therefore provide an explicitly typed argument. We claim that this breaks

modularity as things stand, as this reliance on a closed datatype leaves

no room for extensibility even if we redefine the type of the compilation

argument. We will see how we can solve this issue with stricter constraints

and existentials at the type level in Chapter 5.1.

The smart constructors pushc, addc and so on can be defined as follows:

pushc :: Int -> Code -> Code

pushc n c = inject (PUSH n c)

addc :: Code -> Code

addc c = inject (ADD c)
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The other smart constructors are defined similarly. Finally, we can now

define a general compilation function of the desired type by folding a com-

pilation algebra, with an initial accumulator empty:

comp :: Comp f => Fix f -> Code

comp e = comp’ e empty

comp’ :: Comp f => Fix f -> (Code -> Code)

comp’ e = fold compAlg e

empty :: Code

empty = inject NULL

For example, applying comp to the expression ex3 = throw ‘catch‘ (val

1337 ‘catch‘ throw) produces the following Code, in which the fixpoint

and coproduct tags In, Inl and Inr have been removed for readability:

MARK (MARK (THROW NULL) (PUSH 1337 (UNMARK NULL)))

(THROW (UNMARK NULL))

4.4 Towards Modular Machines

What remains to complete our framework at this stage is the construc-

tion of a modular virtual machine which can execute code produced by the
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modular compiler defined in the previous section. We note that whilst a

non-modular (or universal) virtual machine is also a viable candidate to

target, we wish to explore the degree to which our treatment of datatypes

and functions can accommodate all phases of our framework. We can now

redefine the underlying Stack datatype of Chapter 2.1 in a modular man-

ner, however the boilerplate code required to implement the appropriate

execution algebras quickly becomes prohibitive. For this reason, we delay

the implementation of modular virtual machines until Chapter 7.

4.5 Chapter Summary

At the end of each chapter from this one forwards, we will conclude with

a section describing the general state of affairs of the framework we are

developing to tackle the problem domain (as presented in Chapter 3), as

well as explicitly identifying those tasks which we deferred treatment of

until ‘later on in the thesis’:

In this chapter we have:

• Identified how the syntax of an embedded language can be written

in a modular manner via signature functors, coproducts and least

fixpoints.
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• Identified how functions can be written over such modular syntax by

applying an appropriate algebra to a fixpoint using a catamorphism.

• Shown how the notion of a subtyping relation on signature functors

allows for the definition of constructors which derive the correct place-

ment of a value within a modular source expression.

• Described how the semantics of a modular language defined using

these techniques can be defined polymorphically over any monad sup-

porting the requisite constraints and typeclass memberships.

• Defined a compilation scheme for our modular source language, map-

ping into a predefined modular target language, an approach which

breaks modularity, as extending the chosen source would require edit-

ing the definition of the chosen target. A more elegant treatment

would be to allow the algebra to target any language which meets the

minimum requirements in terms of supported instructions. We treat

this topic in the next chapter.



Chapter 5

Modular Compilers: Further

Refinements

At this point, we have established the fundamentals of our solution to the

problem introduced in Chapter 3: we can define the syntax of a source

language as a combination of signature functors describing the data con-

structors associated with particular computational features, we can de-

fine interpreters over languages which are parameterised over the requisite

monad class needed to define their semantics, and we can define compilation

schemes between the syntax of a source language and the instructions for

a stack-based target language in an independent manner. In each of these

cases, the underlying functorial representation can be exploited to combine

multiple definitions into a single compound instance. The upshot of using

85
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this approach is that a new feature can be defined and given a semantics

and compilation scheme before being folded into the existing definition with

no need for recompilation of code.

At this stage however, the expressiveness of our source language is limited

to arithmetic and exception handling, and we determine the target language

which we compile into in advance. In this chapter we introduce modular

variants of the untyped λ-calculus and mutable state, describe how we can

generalise the language we compile into to a parametrically polymorphic

variant by making use of generalised algebraic datatypes (GADTs), and also

how the combination of effects which can interact in noncanonical ways can

be compiled into the appropriate instruction sets by way of three distinct

parameterisation techniques. We begin with the most pressing issue at

present, namely the generalisation of the target language for the compiler.

5.1 Generalised Algebraic Datatypes

In our initial presentation of the compilation typeclass (Chapter 4.3), the

function comp targets a datatype Code that is constructed using the modu-

lar syntax techniques we introduced in Chapter 4. Recall both the definition

of Code and that of the exception signature functor EXCEPT:

type Code = Fix (ARITH :+: EXCEPT :+: NULL)
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data EXCEPT e = THROW e | MARK Code e | UNMARK e

As suggested when it was originally defined, there are issues regarding

the definition of the MARK constructor. Whilst the target language Code

is indeed modular, note that it is explicitly defined as a type synonym,

predetermining the features of the target language. The usage of such a

concrete type in the MARK constructor breaks precisely the modularity in

the definition of the target language that we are trying to obtain. That is to

say, if we decide to extend the source language with an additional feature,

we need to declare a new type synonym consisting of the subsignatures of

Code, in addition to the target signature associated with the feature being

introduced. This new synonym must then be given to the MARK constructor

and recompiled. Recall from the previous chapter our claim that we cannot

simply replace the occurrence of Code in MARK with the variable e, due to

the type of the compilation algebra:

compAlg :: f (Code -> Code) -> Code -> Code

We again highlight (as in Chapter 4.3) that typing the handler parameter

as Code→ Code would be incorrect due to the need to then provide suitable

initial continuations to said handlers at the point of execution. Similarly,

due to the modular nature of individual language signatures, were the ar-

gument to MARK to be polymorphic in the form (Fix h), a compile-time
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error arises, as there is no way for GHC to infer the correct type for h since

nothing is known about its component signatures. A potential solution is

to extend the EXCEPT signature as follows:

data EXCEPT h e = THROW e | MARK (Fix h) e | UNMARK e

However, turning the underlying functor h into a parameter in this manner

essentially means that every language that makes use of EXCEPT now needs

to explicitly refer to the overall functor h that captures all of the desired

language features, which again breaks modularity. One approach to resolv-

ing this would be to impose a class constraint on the signature itself in the

following manner:

data Functor h => EXCEPT e = THROW e | MARK (Fix h) e

| UNMARK e

Unfortunately, as of GHC version 7.2.1 this is no longer possible using

the algebraic datatypes of Haskell1. The solution to the deprecation of

this feature is to define those signatures which contain constructors requir-

ing constraints (such as MARK) as generalised algebraic datatypes (GADTs),

permitting individual constructors to be typed explicitly with their own

class constraints. For example, consider the GADT representation of the

non-modular variant of Expr as originally presented in Chapter 3:

1The pragma that allowed this – -XDatatypeContexts – was deprecated at this point,
being widely considered a misfeature. The listed constraints were not actually enforced!
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data Expr e where

Val :: Int -> Expr Int

Add :: Expr Int -> Expr Int -> Expr Int

Throw :: Expr e

Catch :: Expr e -> Expr e -> Expr e

Note that this representation enables a level of type-safety that was pre-

viously unavailable. For example, consider the Add constructor, which

dictates that only subexpressions which represent an Int can be added

together. Whilst this type-safety is a desirable feature to have, we are

primarily utilising GADTs to leverage existential types into our frame-

work. By describing constructors as methods associated with a type, we

can now impose constraints on individual constructors without affecting the

datatype as a whole (and therefore achieve what the -XDatatypeContexts

pragma was designed to do). Using this idea, the signature functor for

exception handling in the target language can be redefined as follows:

data EXCEPT e where

THROW :: e -> EXCEPT e

MARK :: Functor h => Fix h -> e -> EXCEPT e

UNMARK :: e -> EXCEPT e

By using GADTs to define EXCEPT, we have made two significant improve-

ments over the original definition. Firstly, by abstracting over the syntax
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of the target language we have avoided the need to refer to an explicitly

defined type synonym – i.e. Code – that must be edited whenever the

source language is changed, and secondly we have placed a constraint on

the argument h without including this constraint in the top-level defini-

tion of EXCEPT (and thereby constraining the other constructors similarly).

We note that a more informative constraint for MARK would be one that

indicated that the functor h is indeed a valid target signature (i.e. can

be ‘compiled into’), however since instances of EXCEPT – and indeed, all

other target signatures – are produced by well-formed source programs, we

choose to leave the constraint as loose as possible.

This reformulation suggests that our modular compiler need not target

a particular language defined in advance, but rather any language which

contains the appropriate instructions. The modular counterpart of the

compilation function comp should have type Fix f → Fix g → Fix g, for

signature functors f and g that characterise the syntax of the source and

target languages respectively. Furthermore, to supply an initial value for

the accumulator (the second argument), we require that NULL (correspond-

ing to the empty code fragment or the ‘empty list’, to serve as an initial

accumulator) is a component of g. Putting this all together, we redefine

the compilation typeclass as follows:

data NULL e = NULL
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class (Functor f, NULL :<: g) => Comp f g where

compAlg :: f (Fix g -> Fix g) -> Fix g -> Fix g

We can now instantiate the compilation algebras for Arith and Except

using the subtype relation to constrain the target signature functor g to

any language which supports the required signatures (where push, add,

throw etc. are smart constructors):

instance (ARITH :<: g) => Comp Arith g where

compAlg (Val n) = push n

compAlg (Add x y) = x . y . add

instance (EXCEPT :<: g) => Comp Except g where

compAlg (Throw) = throw

compAlg (Catch x h) = \c -> mark (h c) (x (unmark c))

The resulting modular compilation function is obtained by folding the com-

pilation algebra over an empty accumulator emptyC as follows:

emptyC :: (NULL :<: g) => Fix g

emptyC = inject NULL



Chapter 5. Further Refinements 92

comp :: Comp f g => Fix f -> Fix g

comp x = fold compAlg x emptyC

In the next section, we show how to extend the modular source language

with support for variable binding, and in particular the role that GADTs

play in defining its modular semantics.

5.2 The Untyped λ-Calculus

The ability to abstract over variables in the body of a function is a near-

universal feature in programming languages, and in this section we will

introduce variable binding into our modular framework using the untyped

lambda calculus of Church [Chu36]. We will begin by formally introducing

the notation and reduction-rules of the lambda calculus, before moving on

to our treatment of a modular representation within our framework.

5.2.1 A Formal Treatment Of The λ-Calculus

Initially constructed by Alonzo Church in 1932 as a model of effective

computability [Chu32], the first variant of the λ-calculus concerning the

foundations of mathematics was proven logically inconsistent with Curry’s

combinatory logic [Cur30] via the Richard paradox by the Kleene-Rosser

paradox [KR35] in 1935.
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As a result, the portion of the λ-calculus solely devoted to computation was

isolated and published seperately in 1936 [Chu36], and is today referred

to as the untyped λ-calculus. Whilst a typed variant was produced in

1940 [Chu40], this thesis considers only the former.

Definition Of The Untyped λ-Calculus

Untyped lambda expressions are constructed from the following:

• Variables v1, v2, v3, . . .

• The terminal symbols λ and (.).

• Left and right parentheses ( and ).

The set of all lambda expressions Λ is defined inductively:

1. If v is a variable, v ∈ Λ.

2. If v is a variable and M ∈ Λ, then (λv . M) ∈ Λ.

3. If M and N ∈ Λ, then (M . N) ∈ Λ.

A variable associated with a λ symbol is said to be bound if it appears

within the body of an abstraction (an anonymous function), and the (.)

symbol is notation for function application. For example, in the lambda
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expression (λx. x y x), x is bound. In contrast, those variables that are

not bound are said to be free. The set of free variables of an expression M,

denoted FV(M) is defined recursively over the structure of the expression:

• FV(v) = { v }, where v is a variable.

• FV(λv . M) = FV(M) \{ v }

• FV(M . N) = FV(M) ∪ FV(N)

An expression M containing no free variables (i.e. FV(M) = ∅ is closed. For

the purposes of this thesis, closed expressions are particularly important as

they represent programs which can be fully evaluated.

At this point, we must recognise that lambda expressions are given meaning

by the way in which they are evaluated. There are multiple notions of

reduction and conversion which can be applied when manipulating said

expressions, but for our purposes we focus on three in particular, namely

α-conversion, β-reduction, and term substitution.

α-Conversion

Also known as α-renaming, the process of renaming the bound variables of

a lambda expression in a manner producing an expression describing the

same function is referred to as α-conversion. For example, the expression
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(λx.λy. x z y) can be α-converted to (λa.λb. a z b). Note that care

must be taken to avoid name capture, e.g. renaming (λx. x y) to the

different expression (λy. y y).

β-Reduction

The application of an argument to a function is commonly known as a β-

reduction. More generally, we often think of such a reduction as a single

computational step. For example, given the expression (λx.λy. x + y)

(assuming both x and y represent integers, with addition defined in the

usual manner), its application to the argument 40 can be β-reduced to

(λy. 40 + y). Importantly, we observe that β-reduction is defined in

terms of capture-free substitution, as shown in the next section.

Term Substitution

Substitution, an operation which we denote as E[V := R], is the replace-

ment of all free instances of the variable V in the expression E with the

expression R. Substitution over a λ-expression is defined recursively (below,

x and y are variables, and M and N are metavariables over λ-expressions):

• x[x := N] ≡ N

• y[x := N] ≡ y if y 6= x
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• (M1 . M2) [x := N] ≡ (M1[x := N] . M2[x := N])

• (λx . t) [x := r ] ≡ (λx . t)

• (λy . t) [x := r ] ≡ λy . (t [x := r ]) if x 6= y, y 6∈ FV(r)

As the latter two cases above indicate, we need to be certain that we are not

going to substitute in a term containing a variable that is already bound by

the term being substituted into (referred to as capturing a variable). This is

undesirable, as doing so can change the semantics of a lambda expression.

Capture-Free Substitution

One potential solution 2 for performing substitution in a capture-free man-

ner lies in renaming the conflicting bound variables from the term being

substituted to unique identifiers, thereby assuring that the substitution

does not capture any existing variable. By α-converting the relevant vari-

ables in such a way that fresh names are used where needed, we can refor-

mulate the case for substituting into an abstraction as follows:

• (λy . t) [x := r ] ≡ (λy . t)

if x ≡ y

• (λy . t) [x := r ] ≡ λy . (t [x := r ])

if x 6≡ y ∧ y 6∈ FV(r)

2We will encounter other solutions shortly.
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• (λy . t) [x := r ] ≡ (λz . (t [y := z ])) [x := r ]

if x 6≡ y ∧ z 6∈ FV(r) ∧ z 6∈ FV(t)

The notion of β-reduction can now be defined simply in terms of capture-

free substitution via the equation (λx . t) u ≡ t [x := u].

One may wonder why we are going through such pains to describe substi-

tution in a capture-free manner. Whilst it is indeed important that the

substitution operation is semantically sound, we do so here to illustrate the

fact that there are implementation issues that require additional boilerplate

code to resolve, particularly when managing variable names. An implemen-

tation that avoids these concerns is preferable, and it is this point which

justifies the model that we use within our modular framework.

5.2.2 A Modular λ-Calculus

Although the variables used for abstraction purposes in lambda terms are

often given names in the same way that we would name other variables,

there are many alternative ways to model bindings, including such ap-

proaches as higher order abstract syntax (HOAS) [PE] and de Bruijn in-

dices [dB72], amongst others. The HOAS approach approach uses the

binders of Haskell to describe the binding structure of the language being

implemented, via a datatype such as:
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data LambdaH e = App e e | Lam (e -> e)

The argument to the Lam constructor in the above explicitly prevents

LambdaH from being an instance of the Functor typeclass, as we cannot

apply the fmap method to this argument in a sensible manner. More for-

mally we observe that the Lam variable e appears in both a covariant and

contravariant position; this point is discussed in finer detail in [MH95]. We

can still define catamorphisms over LambdaH as a difunctor by using a more

refined fold operator; however this adds significant amounts of both com-

plexity and boilerplate to the underlying technique. As such, for simplicity’s

sake – alongside the desire to avoid implementing capture-free substitution

– in this thesis we use a de Bruijn indexed encoding of the lambda calcu-

lus. In this encoding, the syntax of lambda expressions is defined in the

following manner:

data Lambda e = Index Value | Abs e | Apply e e

The Value type associated with an Index constructor represents some

datatype that gives rise to an integer constructor that can represent a vari-

able, where the integer refers to the number of lambda operators in scope 3

before its binding site (note that we have previously encountered Value in

Chapter 4.2: we state at this point that this type should be modular to

3An interesting potential research direction is the usage of the type system to ensure
scope correctness for terms constructed in this way.
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account for the potential for other features being included, but we do not

do so here for ease of explanation). The Abs constructor indicates the pres-

ence of a binder, and Apply represents the substitution of lambda terms,

and is passed both a function body and its argument as subexpressions.

However, by choosing not to use the HOAS approach, an issue arises when

considering the Apply constructor. Specifically, when defining a modular

semantics for the Lambda signature, the carrier of the evaluation algebra

determines that both subexpressions would be typed (m Value), a problem

avoided by HOAS by only deeming valid those expressions wherein the first

subexpression is a Lam constructor. The following attempt at defining the

evaluation algebra illustrates the problem:

instance Monad m => Eval Lambda m where

-- evAlg :: Lambda (m Value) -> m Value

evAlg (Apply f x) = f >>= \f’ -> ...

The definition of Apply cannot be completed in a sensible way, because

the semantic domain is not expressive enough. In particular, the result of

binding the function body f has the primitive type Value which accepts

no arguments (whereas the Lam constructor of LambdaH is typed (e → e)).

Moreover, binding the result of f breaks the abstraction that a function

body represents.
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Our solution to this issue is to extend the semantic domain Value with

support for closures : pairs consisting of functions and environments defin-

ing their non-local variables. To do this, we define Value as follows (again,

we are defining Value as a GADT here rather than as a modular datatype

simply to avoid boilerplate):

data Value m where

Num :: Int -> Value m

Clos :: Monad m => [Value m] -> m (Value m) -> Value m

Above, the Num constructor represents an integer value, and the Clos con-

structor takes as arguments a list of values (i.e. an environment) and a

computation which represents an unevaluated function body. There are

two points to note about this definition. Firstly, we would not be able

to represent closures in this way without the (Monad m) constraint (as we

need to suspend the evaluation of the function body within a monad until

required) and secondly, this constraint is only imposed within the Clos

constructor, meaning that those subexpressions that do not make use of

lambda expressions can safely use () as the parameter to Value rather than

a monad which is not used.

To make use of closures when giving a semantics to the lambda calculus,

we define a class CBVMonad of operations associated with the call-by-value

evaluation scheme, which reduces arguments to values prior to their use:
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class Monad m => CBVMonad m where

env :: m [Value m]

with :: [Value m] -> m (Value m) -> m (Value m)

Intuitively, the env operation provides the list of values that are currently

in scope, and the with operation takes both an associated environment

and a computation, returning the result of performing substitution. We

can now give a semantics to the λ-calculus signature, using the CBVMonad

class constraint to allow the use of the env and with methods as follows:

instance CBVMonad m => Eval Lambda m where

evAlg (Index i) = do e <- env

return (e !! i)

evAlg (Abs t) = do e <- env

return (Clos e t)

evAlg (Apply f x) = do (Clos ctx t) <- f

c <- x

with (c:ctx) t

In the above, a de Bruijn index is evaluated by looking up the index in the

current environment, a lambda abstraction is packaged up with the current

environment to form a closure, and substitution of lambda expressions is

performed by evaluating argument x, adding this value to the environment
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of the closure associated with the function body, and finally evaluating the

function body with respect to this updated environment. Implicit in the

above is that all lambda expressions we define must be closed, as permitting

open terms would require that we also keep track of the largest de Bruijn

index at a given point in an expression.

We can now write expressions in our modular source language that make use

of variable binding. For example, consider the following example (where

apply, abs, etc. are the appropriate smart constructors, and Identity

is used in order to permit the do-notation in the evaluation algebra for

Lambda):

e :: Fix (Lambda :+: Arith)

e = apply (abs (ind 0)) (add (val 1) (val 2))

> eval e :: [Value Identity]

[Num 3]

The source language used in this example is capable of using both variable

binding and arithmetic. The expression e represents the lambda expression

(λx . x)(1 + 2), and evaluating e with respect to (for example) the list

monad, which can readily be made into an instance of the CBVMonad class,

returns the singleton value Num 3.



Chapter 5. Further Refinements 103

We can also define multiple evaluation schemes for terms within the lambda

calculus. A common alternative to call-by-value is call-by-name, which

does not evaluate arguments before applying them to a function body.

The difference between this and call-by-value is that environments contain

computations, not values. Another class, CBNMonad, is needed to reflect this

change:

class Monad m => CBNMonad m where

env :: m [m (Value m)]

with :: [m (Value m)] -> m (Value m) -> m (Value m)

Constraining by this class allows a call-by-name semantics to be defined for

the lambda calculus signature as follows:

instance CBNMonad m => Eval Lambda m where

evAlg (Index i) = do e <- env

(e !! i)

evAlg (Abs t) = do e <- env

(Clos e t)

evAlg (Apply f x) = do (Clos ctx t) <- f

with (x:ctx) t
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This definition is similar to that for call-by-value evaluation, the main dif-

ference being that the substitution of terms does not bind the argument x

to a value prior to using it.

We have presented two separate evaluation algebras, both defined over a

signature Lambda. However, despite the differing contexts, Haskell does

not permit the two algebras to coexist in the same source file, stating that

they are overlapping instances: GHC does not consider differing class con-

straints a sufficient distinction between two instances as to suggest unique-

ness. One possible solution is to define two source signatures LambdaCBV

and LambdaCBN which contain appropriately tagged constructors to avoid

naming conflicts. An alternative involves parameterising the evaluation al-

gebra class with a tag that can be pattern-matched upon, and we will see

this idea in action in the final section of this chapter when discussing a

solution to the issue of noncommutative effects.

5.2.3 Compiling λ-Calculi

In order to execute programs which make use of the lambda calculus as

defined in the previous section, instruction sets for the two variants (call-

by-value and call-by-name) must be defined separately (newtypes could

be used to distinguish the evaluators, but this may prove quite confusing

in practice). To this end, we define two target signatures, corresponding
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to the stack instructions for variants of a Categorical Abstract Machine

(CAM) [CCM85] and Krivine machine [Ler90, Cur91], respectively:

data LAMBDAV e = IND Int e | CLS e e | RET e | APP e

data LAMBDAN e = ACS Int e | GRAB e | PSH e e

The above constructors are sufficient for us to look up values in environ-

ments by de Bruijn index, build closures, evaluate function bodies and

arguments and execute code with a given environment: the semantics of

these constructors are based upon the following compilation schemes C and

K targeting the CAM and Krivine machine respectively:

C[n] = [IND n]

C[λ t ] = [CLS (C[t ] ++ [RET])]

C[f x ] = C[x ] ++ C[f ] ++ [APP]

K[n] = [ACS n]

K[λ t ] = [GRAB] ++ K[t ]

K[f x ] = [PSH(K[x ])] ++ K[f ]

We have chosen to show the compilation schemes for the above rather

than the code representing their compilation algebras, as we believe that

the above is better suited to demonstrating the translation between the
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source and target languages; however the definitions for said algebras follow

directly. For example, an abstraction over a term is translated under the

Krivine machine model into a GRAB instruction appended to the result of

recursively translating the underlying term itself. As alluded to at the end

of Chapter 4, we defer the explanation and implementation of the virtual

machine defining the operational semantics of these two machines until

Chapter 7.

Having successfully implemented variable binding modelled using the lambda

calculus in a modular manner and presented the compilation schemes for

two distinct models of execution, we now consider how to introduce persis-

tent, updatable state into our modular compilation framework.

5.3 Introducing Modular Mutable State

In programming languages, a commonly used feature is that of mutable

state variables that can change their value over time. In this section, we

extend the expressive power of a modular source language by introducing

the notion of modular mutable state. To begin with, we consider a single-

celled state consisting of an integer as the state domain, although as we

have seen with the lambda-calculus, lifting these definitions into a modular

Value datatype is straightforward. This single-celled state is presented

simply as a proof of concept, however, as we shall see in Chapter 7 how
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this can be generalised to a countably infinite key-value table of states.

The syntax associated with such an updatable integer value is given by the

following signature functor:

data State e = Get | Set Int e

In the above, the Get operation returns the current state, and the Set

operation takes an integer and an expression which treats this new value as

the current state. As with each new feature, we define a class StateMonad

of associated operations:

class Monad m => StateMonad m where

update :: (Int -> Int) -> m Int

The update operation takes a function Int → Int and uses it to alter the

state variable. By passing different functions to update, it can be used to

define an evaluation algebra for the State signature:

instance StateMonad m => Eval State m where

evAlg (Get) = do n <- update id

return (Num n)

evAlg (Set v c) = update (\_ -> v) >> c

When evaluating a Get constructor, the update operation is passed the

identity function id, leaving the state value unchanged. This value is then
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bound to n and embedded into the Value domain. In turn, when evaluating

a Set constructor, update is passed an anonymous function overwriting the

state to v before evaluating subexpression c.

We can now write terms in our modular source language that utilise an

integer state variable. To illustrate, consider the following two terms, built

from languages supporting both arithmetic and state, and state and excep-

tion handling, respectively:

x :: Fix (Arith :+: State)

x = set 1 (add get (val 2))

y :: Fix (State :+: Except)

y = set 1 (catch throw get)

Informally, the expression x first sets the state to have value 1, then adds

the current state to the number 2. In turn, expression y first sets the state

to number 1, then immediately throws an exception that is handled by

returning the current value of the state.

Recall that in our modular compilation framework, we evaluate a modular

expression with respect to a monad that has been constructed by applying

the appropriate monad transformers to a base monad, for which purposes

we often use the identity Identity. The underlying machinery associated
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with the monad transformer class allows access to the operations associated

with each constituent feature (such as throw, update, env etc.) at the top

level, with all of the necessary lifting handled automatically.

Recall that each monad transformer comes equipped with an accessor func-

tion – such as runS and runE – with allow access to the underlying repre-

sentation. By first evaluating an expression and then applying the desired

series of accessor functions, we obtain a final value, as illustrated below

(using () as the parameter to Value as we do not require the closures from

the lambda calculus):

newtype StateT s m a =

S { runS :: s -> m (a, s) }

newtype ErrorT m a =

E { runE :: m (Maybe a) }

> let a = eval x :: StateT Int Identity (Value ())

> runS 0 (runId a)

Num 3

> let b = eval y :: ErrorT (StateT Int Identity) (Value ())

> runE (runS 0 (runId b))

Just (Num 1)
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In both of the above evaluations, we see that modular expressions involving

state are given a semantics by applying the StateT state monad transformer

at some point when building the monad, and similarly that the ErrorT ex-

ception monad transformer is applied when handling exceptions modularly.

However, an issue arises when considering the order in which certain monad

transformers are applied, namely that of noncommutative effects. To illus-

trate, consider the following:

instance MonadT (StateT s) where

lift m = S $ \s -> do x <- m

return (x, s)

instance Monad m => Monad (StateT s m) where

return x = S $ \s -> return (x, s)

(S g) >>= f = S $ \s -> do (x, t) <- g s

runS (f x) t

instance Monad m => StateMonad (StateT Int m) where

update f = S $ \s -> (s, f s)

The above instantiations and instance declarations of the StateT monad

transformer appear at first glance to be no different to that of any other
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transformer associate with a particular feature. However, in the next sec-

tion we shall see that defining StateT in this manner leads to noncommu-

tativity concerns.

5.3.1 The Noncommutativity Of Effects

We have just seen how monad transformers are used to access the opera-

tions needed to define evaluation algebras. However, in some cases separate

features can interact in multiple ways, and this is reflected when applying

the associated monad transformers in different orders. Consider the follow-

ing expression demo, constructed from a modular source language which

supports arithmetic, mutable state and exception handling:

demo :: Fix (Arith :+: Except :+: State)

demo = set 0 (catch (add (set 1 get) throw) get)

The demo example must be evaluated within a monad that supports both

exception and state, and therefore must contain both of the relevant monad

transformers. It is less obvious, however, that switching the order in which

these two transformers are applied has an observable effect on the resulting

semantic domain. Assuming that no other features are present, and using

Identity as the base monad, the types resulting from the two possible

orderings are:
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type LocalM a =

StateT Int (ErrorT Identity) a

= Int -> ErrorT Identity (a, Int)

= Int -> Identity (Maybe (a, Int))

= Int -> Maybe (a, Int)

type GlobalM a =

ErrorT (StateT Int Identity) a

= StateT Int Identity (Maybe a)

= Int -> Identity (Maybe a, Int)

= Int -> (Maybe a, Int)

In particular, when applied to a parameter a, the underlying representation

of the LocalM monad takes an Int and either successfully returns a pair

(a, Int), or an exception in the form of Nothing. In turn, the GlobalM

monad also takes an Int but always returns a pair, where the first element

can return Nothing.

More specifically, when handling an exception the ‘local state’ monad re-

stores the state to its most recent value prior to entering the catch-block

that threw the exception, while the ‘global state’ monad treats any up-

dates to the state value as irreversible. Specifically, demo produces the
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value Num 1 when evaluated with respect to GlobalM, and the value Num 0

with respect to LocalM.

These are both sensible results, and depend on how we wish to order the

underlying effects: the local version has a transactional nature to it, which

may better capture the particular requirements of a given situation. The

natural progression at this point is to address the issue of compiling expres-

sions with multiple interpretations, such as demo, in a modular manner.

Our modular compiler will currently compile demo to the following code

sequence (written using Haskell list notation):

> comp demo []

[SET 0, MARK [GET] [SET 1, GET, THROW, ADD, UNMARK]]

The above code is associated with the global approach to state, as the

SET operation within the catch-block cannot be reversed when the THROW

instruction is encountered. To model the behaviour associated with the

local approach to state, two additional operations are required:

> comp demo []

[SET 0, MARK [RESTORE, GET]

[SAVE, SET 1, GET, THROW, ADD, UNMARK]]
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The SAVE operation records the current value of the state on the stack, and

in turn the RESTORE operation restores the state to its previous value before

the handler code is executed.

Both of the above results are valid, corresponding to compiling demo with

respect to a particular ordering of effects. However, a modular compiler is

only capable of generating one such program in any particular session, as

the compilation algebra class is only parameterised by the source and target

signatures, with no information available concerning intended semantics.

Clearly, there is a need for a more flexible compilation algebra that is

aware of the context of an argument expression. To do this, we must allow

the compilation algebra to examine the monad in which an expression is

evaluated, as the semantics are defined by the order in which certain monad

transformers are applied.

5.3.2 Monadic Parameterisation

In this section, we propose three distinct techniques for directing the mod-

ular compilation of an expression by inspecting its underlying semantic

monad. As we have seen, in our framework we make use of monads that

have been constructed by applying a sequence of transformers to a base

monad. Taking advantage of the fact that monad transformers are defined
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as newtypes, we can inspect their constructors at the type level, giving rise

to our first technique:

Type-Level Monadic Parameterisation

class (Functor f, Functor g, Monad m) => Comp f g m where

compAlg :: f (m () -> Fix g -> Fix g)

-> m () -> Fix g -> Fix g

In the above, the compilation algebra class is parameterised by a monad.

The algebra carrier then includes a monadic computation as an argument,

however this computation is parameterised by the void type () to indicate

that the monad is not explicitly used in the compilation process, but rather

used as a context reference.

In this manner, multiple instances of a compilation algebra can be defined

for a single source signature by pattern-matching upon constructors asso-

ciated with monad transformers. This allows for expressions such as demo

(defined in the previous section) to be compiled using different schemes for

different orderings of effects. For example, the compilation schemes for the

two different orderings of exceptions and state can now be defined:
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-- global compilation scheme

instance (EXCEPT :<: g, Monad m) =>

Comp Except g (ErrorT (StateT s m)) where

compAlg (Throw) = \_ -> throw

compAlg (Catch x h) = \m c -> mark (h m c)

(x m (unmark c))

-- local compilation scheme

instance (EXCEPT :<: g, Monad m) =>

Comp Except g (StateT s (ErrorT m)) where

compAlg (Throw) \_ -> throw

compAlg (Catch x h) = \m c -> mark (h m c)

(save (x m (restore $ unmark c)))

An advantage of this technique is that we only need to match on construc-

tors associated with monad transformers that cause semantics to differ. For

example, consider the commutative monad transformer ReaderT:

newtype ReaderT w m a = R { runR :: w -> m a }

As the name suggests, commutative monad transformers will affect the

semantics of a given monad in the same manner whether it is applied before

or after any other given transformer. If ReaderT were to appear between
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ErrorT and StateT in the above, we could abstract over this transformer

using a generic variable t of type MonadT, allowing the programmer to

focus on the task of defining algebras only for noncommutative orderings.

This leaves us with a choice to make. Either; for each noncommutative

transformer pair, define two algebra instances (one with, and one without

intermediate transformers), or insist that each transformer pair (whether

noncommutative or not) is interspersed with an Identity commutative

transformer in order to cut down the number of algebra instances required.

In either case, modularity is somewhat impaired.

More importantly, however, the monadic computation that appears in the

carrier of the algebra allows for effectful operations to be manifested by

calling its associated methods. The user must be careful to not use any

monadic operations when defining a compilation algebra for a particular

signature, as we define compilation to be an effect-free mapping between

modular source and target languages. Further, this computation cannot be

removed from the carrier, as it must be threaded through to subexpressions.

Function-Level Monadic Reification

In order to exclude the possibility of monadic operations being invoked

during compilation, we require a way to provide the compilation algebra

with information concerning the ordering of monad transformers, without
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explicitly passing around the resulting monad. A solution to this issue is to

use GADTs to reify a monad, representing it as a sequence of constructors.

We capture this notion with the datatype MTL, defined as follows:

data ST = IntT | BoolT | ...

data MTL m where

Err :: MTL m -> MTL (ErrorT m)

Sta :: ST -> MTL m -> MTL (StateT ST m)

...

Id :: MTL Identity

Using the auxiliary datatype ST of state types to reify monad transformer

parameters, an instance of MTL m represents the monad m by applying the

appropriate constructors to Id. We note that by defining MTL as an ordi-

nary ADT, the set of effects that can be handled is closed, but a modular

representation is also possible, at the cost of including the appropriate con-

straints when defining instances of the resulting datatype. To illustrate, the

two monads LocalM and GlobalM that are defined in the previous section

can be reified as follows:

local :: MTL (StateT ST (ErrorT Identity))

local = Sta IntT (Err Id)
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global :: MTL (ErrorT (StateT ST Identity))

global = Err (Sta IntT Id)

There are two points to be made concerning the above. Firstly, by using

ST to abstract over the parameter type of state monad transformers, we are

highlighting that it is the structure of the underlying representation that we

are concerned with, as opposed to the actual types involved. Secondly, the

ordering of the monad transformers can now be examined at the function

level by using pattern matching on the data constructors Sta and Err, .

We can now replace the monadic computation m () in the carrier of the

compilation algebra with its reified representation MTL m. In doing this, we

eliminate the concern that effectful operations may ‘leak’ into the compi-

lation process by removing the possibility of invoking any monadic opera-

tions. This leads to the definition of our second technique:

class (Functor f, Functor g) => Comp f g where

compAlg :: f (MTL m -> Fix g -> Fix g)

-> MTL m -> Fix g -> Fix g

By performing case analysis on the MTL argument, we can now define mul-

tiple compilation schemes within a single compilation algebra instance, as

seen in the following:
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instance (EXCEPT :<: g) => Comp Except g where

compAlg (Throw) = \_ _ -> throw

compAlg (Catch x h) = \m c -> case m of

(Err (Sta s t)) ->

mark (h m c) (x m (unmark c))

(Sta s (Err t)) ->

mark (h m c) (save (x m (restore $ unmark c)))

Particularly important here is that the compilation algebra is no longer pa-

rameterised by a monad m, highlighting the fact that a modular compiler is

informed by a monad, rather than defined in terms of one. Also interesting

is the potential to introduce predicates (of a sort) over instances of the MTL

datatype in order to bypass intermediate transformers of no interest, for

example:

globalState :: MTL m -> Bool

globalState (Sta s t) = containsError t

globalState (Err _) = False

globalState ... = ...

Constraint-Level Monadic Proxies

The previous two approaches represent two extremes of the solution spec-

trum: either put all the information about the monad (this information
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arguably being primarily of use to the programmer constructing new com-

pilation algebras) within which an expression is evaluated into an argument

m () and inspect it at the type-level, or reify the monad into a ‘list’ of con-

structors MTL m and pattern-match upon it at the function-level. Our third

approach represents a meeting point between the two, by passing the monad

as a type argument to a proxy datatype which cannot access the underlying

monad, but is still aware of the context within which it is defined:

data Proxy m = Proxy

The data constructor Proxy can be threaded through to the carrier of a

compilation algebra and retain the correct type (in much the same way as

the empty list [] retains its type), and we are prohibited from invoking

monadic operations. The resulting compilation typeclass that makes use of

this is defined as follows:

class (Functor f, Functor g) => Comp f g where

compAlg :: f (Proxy m -> Fix g -> Fix g)

-> Proxy m -> Fix g -> Fix g

We believe that this approach is the best of the three, minimising the pres-

ence of the monad within the compilation algebra, the boilerplate code

required to implement said algebra, and the risk of invoking stateful op-

erations in a context where no such operations should appear. However,
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each approach has their use, and the choice of which one best suits their

needs or taste is ultimately one for the user, in light of the necessity of

the compilation algebra to be able to account for all possible interactions.

In this sense, the compilation algebra is less modular than its evaluation

counterpart, but we believe this to be a necessary consequence of ensuring

that expressions are compiled into the ‘correct’ target instruction set.

5.4 Chapter Summary

In this chapter we have:

• Extended our framework with support for both mutable state and

a de Bruijn indexed variant of the lambda calculus, improving the

expressive power of a modular source language.

• Shown how the use of generalised algebraic datatypes to model trou-

blesome signature functors and value domains permits certain forms

of type constraints to be captured in a clean and modular manner.

• Defined modular variants of a Categorical Abstract Machine and the

Krivine machine as suitable targets for our implementation of the

lambda calculus. However, as in the previous chapter, we defer all

notion of virtual machines and their construction to Chapter 7, where

they will be treated in depth.
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• Considered the issue of effects that do not commute (such as excep-

tions and state), which potentially require programs to be compiled

in different manners depending on the ordering of the effects, and

present three approaches to addressing this.
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Modular Control Structures

At this point, our framework supports multiple source features and targets

any language supporting the appropriate instructions. We have seen how

troublesome constructors within an individual source signature can have

their constraints integrated into the constructor itself by using GADTs, and

how the associated evaluators for modular source programs are parametri-

cally polymorphic in the monad that they are evaluated within. Moreover,

we have identified the issue of noncommutative effects and the impact that

monad transformer ordering can have on the required instruction set of

a target program, and provided multiple solutions for this. However, the

source programs which we can write thus far are limited, particularly as we

have not yet considered the issue of control flow.

124
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In this chapter, we introduce a number of new features to the source syn-

tax implementing cyclic and non-cyclic control flow, further improving the

expressive capabilities of source programs. We identify the fact that the

presence of such constructs in our source language introduces an entirely

new class of incorrect programs, and modify the representation of the syn-

tax of source signatures to solve the issue. We go on to discuss what the

presence of cyclicity means for both the compiler itself and the syntax the

compiler maps into, and redesign the target representation appropriately.

6.1 Introducing Control Flow

When considering the taxonomy of computational language features, we

typically distinguish between two varieties: firstly, effectful features, such as

exception handling and mutable state that we have treated in the previous

two chapters, and secondly those features which relate to control-flow, such

as conditionals and recursion.

In this section, we once again extend the expressive capability of our mod-

ular compilation framework, this time with features drawn from the latter

category above. We will show that our framework is sufficiently flexible to

accommodate this type of feature with minimum effort, and how refining

the representation of the target language to use graphs instead of fixpoints

unlocks the full breadth of expressibility afforded by these new constructs.
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6.2 Re-representing the Source Language

Our goal in this chapter is to be able to compile source languages which

contain modular representations of imperative control structures such as

loops and conditionals. To do this, we require more care when choosing an

appropriate representation of the abstract syntax trees of the source lan-

guage. Specifically, we claim that the initial algebra representation that we

have been working with throughout the previous two chapters is insufficient

for this purpose. To illustrate, assume the existence of a loop signature:

data For e = For e e

The above represents loops with the following intended semantics: the first

argument evaluates to an integer value n, and the second argument is then

iterated n times. The problem with this representation is that it uses the

same ‘sort’ to represent both expressions and statements. Within a loop

we typically expect the first argument to be an expression (i.e. something

that evaluates to a value), whereas the second argument is a statement (i.e.

something that causes side effects such as variable assignment). Whilst it is

possible to incorporate the distinct notions of expressions and statements

into a single type, simplifying the implementation of both an interpreter

and a compiler, their implementations can be inefficient.
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Given that we want to compile the source language into code that runs

on a stack-based virtual machine, we face the problem of having to clean

up the stack after ‘executing’ an expression whose value is not used. For

instance, consider the following example:

simpleLoop :: Fix (For :+: Arith)

simpleLoop = for (val 10) (val 42)

The above is a loop that repeats its body 10 times, and where the body

of the loop pushes the integer 42 onto the stack. However, since this value

is not used after being pushed, the code associated with the body of the

loop needs to end with an instruction that removes the topmost element

from the stack. We note that this issue does not only appear within the

above example, but is a symptom of a more general problem with the

current source syntax representation. To illustrate, assume the existence

of a signature State with get and set operations defined over a single

integer state domain. Then, the following loop simply produces the result

of adding ten consecutive numbers, beginning from the current state value:

countLoop :: Fix (For :+: State :+: Arith)

countLoop = for (val 10) (set (get ‘add‘ val 1))
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In this example, set (...) must have a semantics that adds a ‘result’ – a

meaningless placeholder value, as the expected result from a setter opera-

tion is () – to the top of the stack, as it is in the same syntactic category

as val 10. Here too, we must clean up the stack after each iteration. The

only systematic solution to the problem presented by the two examples

given above is to distinguish between two syntactic categories : statements,

with the invariant that their execution leaves the stack unchanged; and

expressions, with the invariant that evaluating them puts their result on

top of the stack. While these invariants can be, in principle, enforced in-

dependent to the representation of the syntax, mistakes are easy to make

given the current representation.

6.2.1 Splitting the Source Language

In order to split the source language into different syntactic categories, we

make use of Johann and Ghani’s initial algebra semantics of GADTs [JG08].

The underlying idea is that each node of a tree type is annotated at the

type level with the syntactic category it resides in. To this end, we extend

each signature functor with an additional type argument, noting that these

augmented signature functors are no longer functors in the Haskell typeclass

sense (we shall see why shortly). For example, using Haskell’s GADT

syntax, we can now redefine Arith as follows:
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data Exp

data Arith e l where

Val :: Int -> Arith e Exp

Add :: e Exp -> e Exp -> Arith e Exp

Note that we define an empty datatype Exp as a label – or more precisely,

an index – for expressions. The Arith signature is simple - the addition

operator only takes expressions and returns expressions. More interesting

is the signature for assigning and dereferencing mutable variables:

data Stmt

data State e l where

Get :: Ref -> State e Exp

Set :: Ref -> e Exp -> State e Stmt

Note that the Get constructor builds an expression, while the Set construc-

tor takes an expression and builds a statement. Whilst in Chapter 5.3 we

assume the presence of a single integer as the state space, and thus require

no argument to the Get constructor as there was no ambiguity to resolve,

in Chapter 6.3.1 we will extend the state space to arbitrarily many mutable

references – or variables – which we represent as type Ref. For simplicity,

we assume that these variables are just strings, i.e.:

newtype Ref = Ref String
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As we have already noted, the above indexed signatures are no longer

Haskell functors: instead of mapping types to types, they map functors

to functors (and, in turn, natural transformations to natural transforma-

tions). In the language of Johann and Ghani, these signatures are akin to

higher-order functors, and throughout this chapter we shall explore their

properties and the recursion schemes they give rise to.

We introduce new type constructors that lift the definitions of (:+:) and

Fix to the higher-order setting by equipping them with an additional type

argument:

data (f ::+ g) (h :: * -> *) e = InlH (f h e)

| InrH (g h e)

data FixH f i where

InH :: f (FixH f) i -> FixH f i

As expected, the fixpoint of a higher-order functor is itself a type function of

kind (* → *) (in other words, a family of types). In the case of the syntax

trees for our target language, this family consists of the different syntactic

categories we want to represent. Concretely, FixH (Arith ::+ For) Exp

is the type of expressions over the signature (Arith ::+ For), whilst FixH

(Arith ::+ For) Stmt is the corresponding type of statements.
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We can make use of these higher-order syntax trees to keep track of the

types of subexpressions within our source language. To do this, we parame-

terise Exp with an argument indicating the value type of a given expression.

For simplicity, here we only consider integer and Boolean expressions:

data Exp e

data IntType

data BoolType

type IExp = Exp IntType

type BExp = Exp BoolType

To illustrate, the definition of the higher-order representation of Arith

changes as follows:

data Arith e l where

Val :: Int -> Arith e IExp

Add :: e IExp -> e IExp -> Arith e IExp

In order to construct Boolean-valued expressions within this setting, we

introduce a new signature Comp of operators comparing integer expressions:

data Comp e l where

Equ :: e IExp -> e IExp -> Comp e BExp

Lt :: e IExp -> e IExp -> Comp e BExp
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Signatures for control structures and exceptions are defined similarly:

data While e l where

While :: e BExp -> e Stmt -> While e Stmt

data Seq e l where

Seq :: e Stmt -> e Stmt -> Seq e Stmt

data If e l where

If :: e BExp -> e Stmt -> e Stmt -> If e Stmt

data Except e l where

Throw :: Except e Stmt

Catch :: e Stmt -> e Stmt -> Except e Stmt

In the next section, we will see that the machinery needed when defining

folds on higher-order fixpoints – and defining higher-order smart construc-

tors – is easily carried over to the setting of higher-order functors.

6.2.2 Higher-Order Folds & Smart Constructors

As mentioned above, higher-order functors map both functors to functors

and natural transformations to natural transformations. This characteri-

sation is captured by the following typeclass,
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class HFunctor f where

hfmap :: (g :-> h) -> f g :-> f h

where natural transformations are defined as:

type f :-> g = forall i. f i -> g i

In general, HFunctor should also provide a method of type, capturing the

requirement that a higher-order functor maps functors to functors:

Functor g => (a -> b) -> f g a -> f g b

However, as in the work of Johann and Ghani [JG08], we do not provide

such a method, meaning that our higher-order functors only map type func-

tions to type functions. This generalisation from functors to type functions

is necessary in order to represent the indexed types required for augmenting

expressions with their syntactic categories. For example, given a functor g,

the parameterised signature Arith g is not a functor. Technically speak-

ing, what we have defined here are higher-order endofunctors mapping

types to types, with no (non-trivial) mapping of functions to functions (i.e.

no fmap). In the language of Johann and Ghani, these structures map be-

tween functors of kind | ∗ | → ∗ (wherein | C | is shorthand for the discrete

category derived from the category C [Pro00], and ∗ refers to any ordinary

Haskell type), which is precisely what is needed to represent GADTs.
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Instance declarations for HFunctor are defined in a straightforward manner,

akin to those for Functor. For example, we can define the State signature

as a higher-order functor as follows:

instance HFunctor State where

hfmap f (Get v) = Get v

hfmap f (Set v x) = Set v (f x)

Using this structure, we can define higher-order folds. Since our signatures

are now indexed (as are their fixpoints), so are the algebras that are used

to define folds over them. More precisely, given a higher-order functor f

and a type constructor c :: ∗ → ∗, a higher-order f-algebra with carrier

c is a natural transformation of type f c :-> c. Apart from the types,

the implementation of higher-order folds is identical to the implementation

over typical Haskell functors:

foldH :: HFunctor f => (f c :-> c) -> FixH f :-> c

foldH f (InH t) = f (hfmap (foldH f) t)

The definition of the subsignature typeclass (:<:) is also easily lifted to

the higher-order setting:

class (sub :: (* -> *) -> * -> *) ::< sup where

injH :: sub a :-> sup a
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The instance declarations for (:<:) are carried over to the typeclass (::<)

without surprises, producing the higher-order inject function:

injectH :: (g ::< f) => g (FixH f) :-> FixH f

injectH = InH . injH

As for signature functors, we assume that each constructor of a higher-order

signature functor comes equipped with a corresponding smart constructor

defined via injectH, e.g.:

whileH :: (While ::< f) => FixH f BExp

-> FixH f Stmt -> FixH f Stmt

whileH x y = injectH (While x y)

Given these smart constructors, we can write the source program of Fig-

ure 6.1, which computes the factorial of the variable x. Note that this

program makes use of a mulH constructor that we have omitted for brevity,

however it is part of the Arith signature, and trivial to implement.

6.2.3 Well-Kinded Signature Indices

The use of empty data types such as Stmt as indices may seem crude at

first glance, especially considering that the latest versions of GHC support
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type FacLang =

(Seq ::+ Arith ::+ While ::+ State ::+ Comp)

fac :: FixH FacLang Stmt

fac = setH y (valH 1) ‘seqH‘

whileH (valH 0 ‘ltH‘ getH x)

(setH y (getH y ‘mulH‘ getH x) ‘seqH‘

setH x (getH x ‘addH‘ valH (-1)))

where x = Ref "x"

y = Ref "y"

Figure 6.1: A sample program computing factorials.

the promotion of datatypes to the kind [YWC+12] level. Using this new

promotion mechanism, we could have defined the following datatypes:

data Idx = Exp Ty | Stmt

data Ty = IntType | BoolType

Using GHC’s Haskell language extension DataKinds, these datatypes are

promoted to the kind level, giving us the type constructor Exp of kind

(Ty → Idx). These types and kinds allow for the definition of more precise

kinds for higher-order signatures: that is to say, instead of having kind

(∗ → ∗) → (∗ → ∗), they would have kind (Idx → ∗) → (Idx → ∗).

The problem with using this well-kinded representation is that we lose the

ability to extend the indices used in our signature functors. For example, we

are no longer able to add a language feature that makes use of a ‘new’ type

– say, natural numbers – since the type Ty (and thus the corresponding kind
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via promotion) is closed. Opting instead to use empty datatypes allows us

to extend the set of indices by simply defining a corresponding datatype:

data NatType

The above, for example, now allowing us to index expressions as having the

type NatType of kind ∗.

Note that the approach of using a typeclass such as (:<:) in order to

facilitate open definitions (as detailed in Chapter 4.2.2) cannot be used

in order to implement an extensible signature index. For this, we would

require kind-classes, a feature currently not supported in Haskell.

We now go on to consider the semantics for these higher-order modular

source signatures, and identify the necessary alterations required in order to

both make use of the indices now found within subexpressions, and extend

the definitions of the evaluation algebras into a higher-order setting.

6.3 Semantics of Higher-Order

Signatures

In this section we demonstrate how the use of higher-order functors when

defining source signatures requires a new modular evaluation algebra type-

class. Further, we extend the state space to an arbitrarily large key-value
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mapping, and as such we must reconsider the semantics of modular mutable

state before we lift the signature into the higher-order setting.

6.3.1 Revisiting The State Monad

Consider a higher-order representation of State that makes use of the index

labels discussed in the last section:

data State e l where

Get :: Ref -> State e IExp

Set :: Ref -> e IExp -> State e Stmt

In Chapter 5.3 we introduced the state monad transformer and StateMonad

effect typeclass in order to define the semantics for state. The interface for

a state monad as found in the mtl monad transformer library [Gil14] is:

class Monad m => MonadState s m | m -> s where

get :: m s

put :: s -> m ()

modify :: MonadState s m => (s -> s) -> m ()

modify f = do {x <- get; put (f x)}
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In order to implement a state space comprising an arbitrarily large number

of integer-valued variables, we use the type Map of finite mappings. The

resulting type of this new state space is:

type St = Map Ref Int

As before, in the above the mapping could just as easily target a modular

Value datatype, but for clarity we do not do so here. Functions to read

and write individual variables are easily implemented:

getRef :: (MonadState St m, MonadPlus m) => Ref -> m Int

getRef v = do s <- get

case Map.lookup v s of

Just n -> return n

Nothing -> mzero

setRef :: MonadState St m => Ref -> Int -> m ()

setRef v n = modify (Map.insert v n)

In the above, note that since a variable may not yet be associated with an

integer when referenced (although generally we make the assumption that

we only consider closed terms), the getRef function provides a means to

signal failure (alternatively, a default value can be returned in the event of
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a lookup failure). For our purposes, we treat failure as an effect in the sense

of an exception, and reflect this structure by the MonadPlus constraint.

6.3.2 Higher-Order Modular Semantics

Having redefined the modular source language of our compilation frame-

work as a family of types – comprising the types for expressions and state-

ments –, the semantic domain must also be redefined as a type family. Here

we define the potential types of the semantic domain in a manner similar

to the source language itself (i.e. treating the resulting values as literals,

which can in turn be used to define datatypes such as Arith):

data VNum (e :: * -> *) l where

Num :: Int -> VNum e IExp

data VBool (e :: * -> *) l where

Bool :: Bool -> VBool e BExp

data VUnit (e :: * -> *) l where

Unit :: VUnit e Stmt

A higher-order modular semantics is defined in terms of a natural trans-

formation, i.e. of type (f c :-> c). However, we require more structure
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within this algebra, because the carrier c may contain both values (con-

structed using the above constructors) and effects invoked by any monadic

methods available to the source expression. Therefore, the definition of the

typeclass for the evaluation algebra is:

class (HFunctor f, Monad m) => AlgEv f m v where

algEv :: f (m :o: FixH v) :-> m :o: FixH v

In the above, (:o:) denotes the composition of type constructors of kind

∗ → ∗, and is defined as follows:

newtype (f :o: g) i = C { unC :: f (g i) }

That is to say, the carrier of the evaluation algebra is the composition of

a monad m with a fixpoint FixH v over a higher-order functor v describing

the semantic domain. This explicit separation of the carrier into distinct

components is a necessary consequence of monads composing in a different

manner to fixpoints: the former is achieved via the use of monad trans-

formers, and the latter via coproducts.

However, we make one small modification to the above definition of algEv.

In its current form, the result type is a composition involving (:o:), which

means that any results must be explicitly tagged with the constructor C.

We choose to avoid this, and use the following definition instead:
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class (HFunctor f, Monad m) => AlgEv f m v where

algEv :: f (m :o: FixH v) i :-> m (FixH v i)

The type of the above algebra is isomorphic to the previous definition: we

regain the correct algebra type by composing algEv with C:

C . algEv :: AlgEv f m v => f (m :o: FixH v)

:-> m :o: FixH v

We use this composition as the argument to foldH in order to define the

desired higher-order modular evaluator:

eval’ :: AlgEv f m v => FixH f :-> m :o: FixH v

eval’ = foldH (C . algEv)

Finally, by composing eval’ with unC, we obtain a variant that does not

make use of the composition operator (:o:):

eval :: AlgEv f m v => FixH f i -> m (FixH v i)

eval = unC . eval’

To achieve modularity in the source signature, the typeclass AlgEv is triv-

ially lifted over higher-order coproducts:
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instance (AlgEv f m v, AlgEv g m v) =>

AlgEv (f +:: g) m v where

algEv (InlH x) = algEv x

algEv (InrH y) = algEv y

As was the case for our previously defined higher-order functors, we assume

the existence of smart constructors for Num, Bool and Unit called num,

bool and unit, respectively. However, at this point we also require smart

destructors, as we wish to pattern match on the result of an evaluation. In

order to implement such destructors, the (::<) typeclass is extended with

a projection method of the following type:

prjH :: sup a i -> Maybe ((sub a) i)

In the event that the supersignature does indeed contain the subsignature

in question, fromJust ◦ prjH is both a left and right inverse of injH,

coercing a value of the supersignature into a value of the subsignature, and

returning Nothing if this is not possible. Instance declarations for (::<)

can be easily extended to implement prjH:

instance HFunctor f => f ::< f where

injH = id

prjH = Just



Chapter 6. Modular Control Structures 144

instance (HFunctor f, HFunctor g) => f ::< (f ::+ g) where

injH = InlH

prjH (InlH x) = x

prjH (InrH y) = Nothing

instance (HFunctor f, HFunctor g, HFunctor h, f ::< h)

=> f ::< (g ::+ h) where

injH = InrH . injH

prjH (InlH x) = Nothing

prjH (InrH y) = InrH . prjH

With the use of this new method, we can define the smart destructor for

Num as follows:

getNum :: (VNum ::< f) => FixH f IExp -> Maybe Int

getNum (InH e) = case (prjH e) of

Just (Num n) -> Just n

_ -> Nothing

The corresponding smart destructor getBool is defined analogously. With

these destructors available to us, we can finally define the higher-order
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semantics of the source language. The definitions are given in Appendix A.

Note that the context of these instance definitions list both the monadic

constraints and the value signature, keeping them open for extension as

before. Since the carrier of the evaluator algebra is a composition formed

using (:o:), we must pattern match on all subexpressions.

There are two points worth noting about the evaluation algebra instantia-

tions for control structure signatures. Firstly, common to all three instances

is the lack of an effect typeclass constraint, as their semantics concerns con-

trol flow only, and so any monad suffices. Secondly, we note that the body

of the semantics for while-loops is recursively defined, making it more op-

erational than denotational in nature. This is an important distinction

to make given that the latter must be compositional, however we are not

bound to this requirement (other than by a desire for a modular equivalent

to a denotational semantics), and therefore keep in mind that the introduc-

tion of while-loops removes this property. However, those source signatures

that do not contain while-loops still satisfy compositionality. Moreover, we

highlight at this point that whilst non-termination is an effect unto itself

(and one that can be captured using while-statements), we have chosen to

limit our source expressions to terminating closed terms.

Now that we have set our framework up anew, we demonstrate its usage

by way of interpreting the factorial program defined in Figure 6.1.
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6.3.3 Modular Semantics: An Example

Recall the type signature of the modular evaluation function:

eval :: AlgEv f m v => FixH f i -> m (FixH v i)

This type signature tells us that the result of interpreting a modular source

expression will have type m (FixH v i) for some appropriate monad m

and semantic domain v. Because it is the monad that allows access to

the requisite effectful methods, the signature of a given source program

provides information about the requisite candidate monads within which

it can be interpreted. Likewise, a suitable semantic domain can also be

inferred in this manner. We will demonstrate this idea below.

Recall the type signature of fac:

type FacLang = (Seq ::+ Arith ::+ While

::+ State ::+ Comp)

fac :: FixH FacLang Stmt

From the above signature alone, we can sketch a complete picture of the

type of monads and semantic domains needed to evaluate this particular

program. We do this by accumulating the constraints upon each of the five

language features, according to the instance declarations given in Appendix

A. For clarity, we list the relevant signatures below:
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instance Monad m

=> AlgEv Seq m v where ...

instance (Monad m, VNum ::< v)

=> AlgEv Arith m v where ...

instance (Monad m, VBool ::< v, VUnit ::< v)

=> AlgEv While m v where ...

instance (MonadPlus m, MonadState St m,

VNum ::< v, VUnit ::< v) => AlgEv State m v where ...

instance (Monad m, VNum ::< v, VBool ::< v)

=> AlgEv Comp m v where ...

Upon inspection, we conclude that we can interpret fac within the context

of any monad m provided that it is also an instance of the MonadState St

and MonadPlus typeclasses. Likewise, we find that an appropriate semantic

domain — abusing terminology somewhat, as we do not require a bottom

element since we do not incorporate non-termination — is the fixpoint of

a higher-order signature functor v that contains at least VNum, VBool and

VUnit. Note that we have done this without even looking at the body of

the source program itself!
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For this example, we obtain a suitable monad for our purposes by applying

the state monad transformer – with state space St – to the Maybe monad:

type FacMonad = StateT St Maybe

The semantic domain is obtained by capturing all value types referenced in

the constraints of the required evaluation algebras. Here, we have invoked

the Stmt syntactic category so as to match the type of fac, but in practice

any syntactic category can be used):

type FacValue = FixH (VNum ::+ VBool ::+ VUnit) Stmt

The evaluator for the language of the fac program is now obtained by

instantiating the modular eval function with its modular context (the

monad) and modular semantic domain:

evalFac :: FixH FacLang Stmt -> FacMonad FacValue

evalFac = eval

We can now define our modular factorial function by evaluating fac and

running the resulting state computation with the initial state map

[(x, n)], recalling that fac associates its argument with x:

runFac :: Int -> Maybe (Value, St)

runFac n = runS (evalL1 fac) (fromList [(x, n)])
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We test the function with input 10:

-- x = Ref "x"

-- y = Ref "y"

> runFac 10

Just (Unit, fromList [(x, 0), (y, 3628800)])

As expected, the variable y is bound to the value 3,628,800. The actual

return value of running the program, however, is Unit, which is expected

as we declared fac to be a Stmt in its signature.

6.4 Further Refining Modular Compilers

Having treated the source language representation of our new framework in

depth, we move on to consider the representation of the target language in

light of the presence of the control-flow features introduced. Whilst the tar-

get language defined in Chapter 5.1 incorporates a simple notion of control

flow in the form of exceptions, the target languages required when compil-

ing these new signatures must necessarily allow for cyclic control flow. For

instance, the factorial program illustrated in Figure 6.1 is inherently cyclic.

The cyclicity of a source program must be reflected in the code produced by

a compiler, and this is typically achieved by making use of a graph structure
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using explicit jumps and labels. However, in this thesis we will make use

of the purely functional representation of graphs proposed by Oliveira and

Cook dubbed structured graphs [OC12], which provide a representation of

term graphs, using an elegant encoding of sharing and cyclicity via para-

metric higher-order abstract syntax [Chl08]. This representation provides a

simple interface for constructing graphs in a compositional fashion, at the

cost of a more complicated and restrictive interface for their consumption,

as we shall see shortly.

6.4.1 From Fixpoints To Graphs

The idea of structured graphs is to represent term graphs – graphs wherein

vertices denote subterms – via mutually recursive let-bindings. The defini-

tion of structured graphs that we make use of extends the definition of the

least-fixpoint construct by including two additional constructors, Var and

Mu for representing variables and mutually recursive bindings:

data GraphT f v = Var v

| Mu ([v] -> [GraphT f v])

| InG (f (GraphT f v))

The newly-added parameter v defines the type for the metavariables in the

graph. We are already familiar with the notion of the InG constructor,
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as it is equivalent to the In constructor for fixpoints. The Mu constructor

represents binders using higher-order abstract syntax (HOAS). In order to

enable mutually recursive bindings, we define Mu as a function taking a

list of metavariables and returning a list of associated term graphs. The

simplest way to explain the intended semantics of Mu is to show how it

corresponds to the let-binding notation of Haskell. Specifically, a let-

binding that takes the form –

let x1 = b1; x2 = b2; ...; xn = bn in b

– is represented as a structured graph as follows:

Mu (\[_, x1, x2, ..., xn] -> [b, b1, b2, ..., bn])

More specifically, the function associated with the Mu constructor takes the

list of bound metavariables as arguments, and returns a list of the same

length such that the ith element of that list is bound to the ith metavariable

from the input list. The first element of the return list, b, is the entry

point of the graph. In addition, we choose to represent the metavariable

list passed to Mu as an irrefutable pattern:

Mu (\~(_ : x1 : x2 : ... : xn : _)

-> [b, b1, b2, ..., bn])
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In brief, we have made the list of metavariables into a lazy pattern, mean-

ing that all matches immediately succeed. Such patterns are only matched

against – and in our case, the metavariables in question looked up – if a

variable contained within is needed on the right-hand side of the function,

creating a more general and less strict setting for modelling cyclic computa-

tion. In this thesis, we shall only use two special cases of the Mu constructor,

namely non-recursive let bindings and fixpoints over a single argument:

letx :: GraphT f v -> (v -> GraphT f v) -> GraphT f v

letx g f = Mu (\~(_ : x : _) -> [f x, g])

mu :: (v -> GraphT f v) -> GraphT f v

mu f = Mu (\~(x : _) -> [f x])

Using these combinators, within our framework we represent non-recursive

let-bindings of the form (let x = b in s) as (letx b (λx → s), and

a least-fixpoint Fix f as mu f.

As mentioned at the beginning of this section, structured graphs make use

of a restricted form of HOAS called parametric HOAS. When constructing

structured graphs, the type v of metavariables is left polymorphic. To

ensure this, structured graphs of type GraphT are wrapped in the newtype

Graph, which enforces the parametric polymorphism of v:
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newtype Graph f = MkGraph (forall v. GraphT f v)

The parametricity of v ensures that it is only used to define binders within

the graph. Moreover, parametricity is used when defining recursion schemes

on structured graphs. The recursion schemes we use here operate similarly

to the usual fold operator on fixpoints. One particularly general recursion

scheme over graphs is defined below:

gfold :: Functor f => (t -> c) -> (([t] -> [c]) -> c)

-> (f c -> c) -> Graph f -> c

gfold v l f (MkGraph g) = trans g where

trans (Var x) = v x

trans (Mu g) = l (map trans . g)

trans (InG fa) = f (fmap trans fa)

In contrast to fold, gfold takes two additional arguments corresponding to

the actions to be taken for the Var and Mu constructors. The first argument,

of type (t → c), is used to transform metavariables into the result type

c. The second argument, of type ([t] → [c]) → c, is used to interpret

mutually recursive binders, where the right-hand side of each binding has

already been transformed.

In analogy to the fixpoint type constructor Fix, smart constructors simplify

graph construction. We transcribe inject from fixpoints to graphs below:
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injectG :: (f :<: g) => f (GraphT g a) -> GraphT g a

injectG = InG . inj

Using injectG, we obtain smart constructors such as the following:

pushG :: (ARITH :<: f) => Int -> GraphT f v -> GraphT f v

pushG n c = injectG (PUSH n c)

Note that the structured graphs that we have defined above make use of

standard functors as opposed to the higher-order variant introduced in this

chapter (i.e. there is only one syntactic category used within the code), even

though building graph types based on higher-order functors is possible, as

shown by Oliveira and Löh [OL13]. However for the purpose of representing

control-flow graphs, this is not necessary. The potential for a more richly

typed target language has many applications, such as using types to encode

invariants about the current state of a stack (see, for example, McKinna and

Wright [MW06]), but this is an orthogonal issue and will not be discussed

further here.

6.4.2 Compiling To Structured Graphs

At this point we can refactor the carrier of the modular compilation algebra

typeclass to reflect the usage of structured graphs instead of least fixpoints:
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class Functor f => AlgCoG f g where

algCoG :: f (GraphT g v -> GraphT g v)

-> GraphT g v -> GraphT g v

It is important to note that as well as shifting to a graph structure to rep-

resent target code, the syntax of the various source language features are

now represented as higher-order functors in order to include information

about syntactic categories. However, because the target language remains

untyped – and is represented via standard functors – we use the type con-

structor K to forget the type information from the source language:

newtype K a i = K { unK :: a }

class (HFunctor f) => AlgCoG f g where

algCoG :: f (K (GraphT g v -> GraphT g v))

:-> K (GraphT g v -> GraphT g v)

Finally, we repeat the type manipulations of Chapter 6.3.2 to eliminate

the type constructor K in the result type, producing the following (final)

definition of the higher-order compilation algebra typeclass:

class (HFunctor f) => AlgCoG f g where

algCoG :: f (K (GraphT g v -> GraphT g v)) i

-> GraphT g v -> GraphT g v
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To obtain an algebra of the correct type, we compose algCoG with K:

K . algCoG :: f (K (GraphT g v -> GraphT g v))

:-> K (GraphT g v -> GraphT g v)

As before, this typeclass is easily lifted to coproducts:

instance (AlgCoG f g, AlgCoG h g) =>

AlgCoG (f +:: h) g where

algCoG (InlH x) = algCoG x

algCoG (InrH y) = algCoG y

Note that we have been using the GraphT type constructor, instead of the

encapsulated Graph variant. As a rule, the manipulations involving GraphT

are passed on to MkGraph to construct a graph of type Graph g. The type of

MkGraph – a rank-2 polymorphic constructor – ensures that the underlying

graph is indeed polymorphic in the type v of metavariables:

comp :: (AlgCoG f g, HALT :<: g) => FixH f i -> Graph g

comp e = MkGraph (unK (foldH (K . algCoG) e) haltG)

Here we use unK to turn the result of the fold, which is of type K (GraphT

g v → GraphT g v) i, into a function of type (GraphT g v → GraphT

g v). This function is then applied to a singleton HALT instruction which
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serves as the final code continuation. The implementation of the new com-

pilation algebra instance for arithmetic is analogous to the version defined

via standard least-fixpoints in Chapter 5.1:

instance (ARITH :<: g) => AlgCoG Arith g where

algCoG (Val n) c = pushG n |> c

algCoG (Add (K x) (K y)) c = x |> y |> addG |> c

The (|>) constructor used above is simply a graph-specific variant of the

function application operator ($). Furthermore, because we are compiling

into a graph structure, we make use of the smart constructors for graphs,

and because the carrier of the algebra is wrapped in the type constructor

K, we pattern match argument subexpressions against K.

When defining the algebra instance for the higher-order exceptions signa-

ture, we can now exploit the sharing capabilities afforded to us by the

newfound target graph structure:

instance (EXCEPT :<: g) => AlgCoG Except g where

algCoG (Throw) c = throwG

algCoG (Catch (K x) (K h)) c = letx c (\v ->

markG (h |> Var v) |> x |> unmarkG |> Var v)

Instead of placing the continuation c directly into the generated code

(thereby duplicating c and wasting memory on an uninvoked thunk), we
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choose to bind c to the metavariable v and refer to this instead of c, elimi-

nating the risk of code duplication. The same approach is used to compile

if -statements, with the aid of a conditional jump instruction:

data COND e = JPC e e

The JPC instruction removes the topmost element from the stack and in-

spects it, executing its first argument (and skipping the second) if this

value is True, and skipping the first argument and executing the second

argument otherwise. In a manner similar to MARK, JPC has the potential

for code duplication when joining the execution paths of the conditional.

We avoid this duplication using letx as before:

instance (COND :<: g) => AlgCoG If g where

algCoG (If (K b) (K p) (K q)) c = letx c (\c ->

b |> jpcG (p |> Var v) |> q |> Var v)

We also make significant usage of this new graph structure when compiling

loops, as we must construct cycles in the target code. For this, we make

use of the mu combinator defined earlier:

instance (COND :<: g) => AlgCoG While g where

algCoG (While (K b) (K lb)) c =

mu (\v -> b |> jpcG (lb |> Var v) |> c)
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Next, we define the algebras for both the State and Comp signatures. These

require corresponding target instructions:

data STATE e = GET Ref e | SET Ref e

data COMP e = EQ e | LT e

The semantics of the instructions for the STATE signature above are identical

to the variant presented in Chapter 5.3, albeit operating over a larger state

space. The instructions of the COMP signature take the topmost two integers

from the stack, and replace them with the appropriate Boolean value. The

instance declarations themselves are defined thus:

instance (STATE :<: g) => AlgCoG State g where

algCoG (Get v) c = getG v |> c

algCoG (Set v (K e)) c = e |> setG v |> c

instance (COMP :<: g) => AlgCoG Comp g where

algCoG (Equ (K x) (K y)) c = x |> y |> eqG |> c

algCoG (Lt (K x) (K y)) c = x |> y |> ltG |> c

Finally, the algebra instance for compiling sequential composition:

instance AlgCoG Seq g where

algCoG (Seq (K x) (K y)) c = x |> y |> c
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To see the compiler thus defined in action, we apply it to the example

source program from Figure 6.1. Firstly, we specialise the source and target

languages in the manner described in Chapter 6.3.3. We note that here the

constraints which must be adhered to are fewer, as we need not consider

monadic effects. We only consider target language requirements:

type FacLangG = (ARITH :+: COND :+: STATE

:+: COMP :+: HALT)

compFacG :: FixH FacLang i -> Graph FacLangG

compFacG = comp

The type system of Haskell will ensure that the target language contains the

necessary instruction set to compile the source language. If, for example,

we were to forget to include the COMP signature as a component of the target

language FacLangG, the typechecker would produce:

No instance for (COMP :<: HALT)

arising from a use of ‘comp’.

Applying compFacG to fac returns the following (pretty-printed) graph:

> compFacG fac

PUSH 1; SET y; [v1 -> PUSH 0; GET x; LT;

JPC (GET y; GET x; MUL; SET y; GET x;
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PUSH (-1); ADD; SET x; v1); HALT]

The code inside the square brackets corresponds to bindings in the graph

structure constructed using Mu. As expected, the output code graph has a

single cycle, corresponding to the loop of the source program.

6.5 Modifying Existing Language Features

Recall that the compilation of exceptions makes use of the instructions

MARK and UNMARK, which place handler code onto the stack and removes

it respectively. This scheme is very general, allowing exceptions to be

compiled within a language when the context of a throw -statement is not

statically known. However, if we assume that we are working within the

context of the language features considered in this thesis, then we know for

each occurrence of a throw-statement which exception handler is associated

with it. It is a simple matter to define an alternative compilation scheme

that exploits this property, using the following target signature:

data EXCEPT’ e = THROW’ e | UNMARK’ e | MARK’ e

Note in the above that MARK’ only has one argument, as we do not pass the

handler code to it. Instead, the handler is passed directly to the THROW’

instruction. We cannot compile the source signature Except into EXCEPT’
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using the AlgCoG compilation algebra class, as this latest formulation re-

quires that we extend the carrier with the handler currently in scope:

type Triple a = a -> a -> a

class AlgCoG’ f g where

algCoG’ :: f (K (Triple (GraphT g v))) l

-> Triple (GraphT g v)

To run a modular compilation function that invokes this variant of compil-

ing exceptions, we must supply an initial exception handler. For simplicity,

we opt for the smart constructor haltG:

comp’ :: (HFunctor f, AlgCoG’ f g, HALT :<: g)

=> FixH f i -> Graph g

comp’ e = MkGraph (unK (foldH (K . algCoG’) e) haltG haltG)

Thankfully, we do not have to redefine the compilation algebra instances for

those language features unaffected by this change, as we can map directly

from the original algebra typeclass AlgCoG into the modified class AlgCoG’,

with only the Except source signature itself requiring redefinition:

instance AlgCoG f g => AlgCoG’ f g where

algCoG’ x h c =
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algCoG (hfmap (K . (\f -> f h) . unK) x) c

instance (EXCEPT’ :<: g) => AlgCoG’ Except g where

algCoG’ (Throw) h c = throwG’ h

algCoG’ (Catch (K x) (K h’)) h c =

letx c (\v -> markG’ |> letx (h’ h |> Var v)

(\vh -> x (Var vh) |> unmarkG’ |> Var v))

One last point to note here is that whilst we have focussed on the adapta-

tions to the types involved in the switch from fixpoints to graphs, existing

concerns such as correctly compiling source expressions in light of noncom-

mutative effects still hold. To this end, the techniques demonstrated in

Chapter 5.3.2 for monadic parameterisation are equally applicable here.

6.6 Chapter Summary

The final component required for a complete definition of our modular com-

pilation framework is the semantics of the modular target languages them-

selves: modular variants of virtual machines. Before we begin discussing

these, however, we give a summary of the work presented above.

In this chapter, we:
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• Eliminated a class of ill-typed imperative programs by using a typed

representation of source signatures using Johann and Ghani’s fixpoint

representation of generalised algebraic datatypes.

• Refactored the target languages of our modular framework to make

use of Oliveira and Cook’s structured graph representation.

• Demonstrated that the additional structure provided by structured

graphs allows us to compile non-cyclic control structures such as con-

ditionals in a way that eliminates code duplication.

• Showed that the graph representation also allows for the sensible com-

pilation of cyclic control structures such as while-loops.

• Showed how the compilation schemes for individual features can be

redesigned, and that if necessary existing compilation typeclasses can

be mapped into modified variants.



Chapter 7

Modular Virtual Machines

7.1 Virtual Machines

The final semantic component of our modular compilation framework is

that of a virtual machine which executes a semantics of the target language.

For our purposes, this chapter is primarily concerned with demonstrating

that the same techniques of modular function construction can be used to

define modular semantics for both source and target languages, be they

represented via least-fixpoints or structured graphs.

In Chapter 3, we presented two variants of a CPS-style nonmodular ex-

ecution function. The first, which considered only arithmetic, has type

Code → Stack → Stack for some appropriate datatype Stack, whilst the

second has type Code → Stack → Maybe Stack to account for the new

165
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possibility of an uncaught exception. Generalising from this, our modular

variant might well have type Code → Stack → m Stack for an arbitrary

monad m. We observe that since Stack → m Stack is a state transformer,

a naive first implementation may have type:

type StackT m a = StateT Stack m a

class (Monad m, Functor f) => Exec f m where

exAlg :: f (StackT m ()) -> StackT m ()

In the above, StackT is a type synonym for a state transformer param-

eterised over the aforementioned Stack datatype. Within the execution

algebra itself, we instantiate the metavariable of StackT to the void result

type (), indicating that following execution we are interested in the value

of the Stack rather than any potential result value.

7.1.1 In Defence of Non-Modular Stacks

At this point, we make the design choice of using a non-modular repre-

sentation – i.e. standard Haskell lists – of the stack for the purposes of

clarity. The purpose of this subsection is to demonstrate why we do this,

by considering the alternative and assuming that we have implemented the

stack of a virtual machine operating over arithmetic as the following:



Chapter 7. Modular Virtual Machines 167

data Integer e = Intgr Int e

data Null e = Null

type ModularStack = Fix (Integer :+: Null)

The intuitive instantiation of the naive execution algebra above for the

ARITH functor which uses this stack representation is:

instance (Monad m) => Exec ARITH m where

exAlg (PUSH n st) = pushint n >> st

exAlg (ADD st) = addstack >> st

The intended meaning of the above should be evident from a first reading,

but contains subtleties due to the fact that the algebra carrier is defined

as a state transformer. Specifically, the pushint and addstack operations

produce state transformers which are anonymously composed (recall that

the result type is always ()) with the continuation state transformer st.

Whilst the above appears straightforward, consider the underlying imple-

mentation. In contrast with the usage of least-fixpoints for the representa-

tion of the target language of our modular compilation algebra – wherein

we are only interested in building up final results from an initial continua-

tion – when using the same structure for a stack we are interested in the

potential to inspect values at specific locations. As such, we must define
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modular variants of combinators we take for granted when working with

typical lists:

class Functor f => ModularList f where

modHead :: f (Fix f) -> Fix f

modTail :: f (Fix f) -> Fix f

We note two points in the above: that taking the head of a modular list

returns a least fixpoint - this is due to the fact that modular stack construc-

tors are also parameterised by their continuations. As such, when taking

the head of a list, we simply prepend the result to an empty stack. For the

sake of brevity, we will not define the instantiations of the Integer and

Null functors for this class, as they are trivial to implement. Suffice it to

say, the amount of such boilerplate required quickly becomes prohibitive,

exceeding the size of the program implementing the modular execution al-

gebra itself. The smart constructors for both injecting an integer value into

a stack and updating the stack transformer computation appropriately are

defined as follows:

intgr n st = inject $ Intgr n st

pushval n = update (\st -> intgr n st) >> return ()

In contrast, the definition of addstack is complicated by the inability to

efficiently pattern-match on our modular representation of a stack:



Chapter 7. Modular Virtual Machines 169

addstack st = let (Just n) = getInt (modHead st)

st’ = modTail st

(Just m) = getInt (modHead st’)

st’’ = modTail st’’

in intgr (n + m) st’’

The above assumes that we have access to a smart destructor getInt similar

in nature to getNum as defined in Chapter 6.3.2.

At this point, we declare that whilst defining a modular execution algebra

using modular auxiliary datatypes such as stacks is indeed possible, we do

not consider doing so instructive, as the code required to implement the

required combinators both detracts from the main aims of the chapter and

is – in our opinion – not worthwhile in terms of utility gained. As such, for

the rest of this chapter we will treat Stack and other such constructs as

standard Haskell lists of typical ADTs.

7.2 Executing Structured Graphs

In light of the above subsection, we will be operating over a non-modular

version of a virtual machine. In conjunction with a stack representation,

we also require access to the key-value map St originally introduced in
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Chapter 6.3.1. Thus, we refer to the collection of auxiliary datatypes which

make up the representation of a virtual machine as the configuration:

type St = Map Ref Int

type Stack = [Elem]

type Conf = (Stack, St)

We could well inculcate St into the definition of Stack, pushing the values

associated with variables onto the stack as soon as they are introduced,

and searching through the stack to update them whenever necessary. How-

ever, such an update operation would be O(n) in the length of the stack,

rather than O(1) when using St. As such, we opt for the above tuple

representation instead.

Having decided that key-value pairs are recorded externally to the stack,

we must decide what can appear on the stack. We define the datatype of

stack elements Elem as follows:

data Elem = VAL Int | VALB Bool

| HAN (Conf -> Conf) | HAN’

There are two points to note about the definition. Firstly, the execution

of exception-handling constructs introduces mutual recursion between the

definitions of the stack and the virtual machine configuration via the argu-

ment to the HAN constructor. Secondly, we will see in the next subsection



Chapter 7. Modular Virtual Machines 171

how the (currently unused) constructor HAN’ can be used to factor out this

mutual recursion by compiling exceptions with respect to an alternative

compilation scheme.

Now that we have chosen the representation of the virtual machine, we

must decide upon the definition of the execution function over structured

graphs. Given this graph structure, we can describe the aspects related to

cyclicity and sharing – as identified in Chapter 6.4.1 – separate to the core

semantics, which can be viewed simply as a tree structure. Recall the type

signature of the most general type of fold applicable to structured graphs:

gfold :: Functor f => (t -> c) -> (([t] -> [c]) -> c)

-> (f c -> c) -> Graph f -> c

We note that the first two arguments of gfold do not fit into the general

structure of the modular functions we have seen up to this point, and further

highlight that these arguments correspond to the treatment of sharing and

cyclicity respectively. Consider the following typeclass definition of the

execution algebra, using Conf → Conf as the semantic domain:

class Functor f => Exec f where

exAlg :: f (Conf -> Conf) -> Conf -> Conf

The above algebra fits into gfold as its third argument, handling the def-

inition of the core semantics. For the other two cases (i.e. where the



Chapter 7. Modular Virtual Machines 172

argument to gfold is a Var or Mu constructor) we unravel the graph struc-

ture and fold over the resulting tree using exAlg. This recursion scheme is

the underlying intuition of the cfold combinator [OC12]:

cfold :: Functor f => (f t -> t) -> Graph t -> t

cfold = gfold id (head . fix)

where fix :: (a -> a) -> a

fix f = let r = f r in r

This cyclic fold combinator turns each Mu in a graph into a fixpoint compu-

tation, which corresponds to the intuition above. Given this combinator,

we define the modular execution function of the virtual machine as follows:

exec :: (Functor f, Exec f) => Graph f -> Conf -> Conf

exec = cfold exAlg

The instantiations of the underlying execution algebra appear together in

Appendix B, and are fairly straightforward in their definitions.

The observant will note that we have not yet made any reference to the ex-

ecution of modular lambda-calculus terms as introduced in Chapter 5.2.3.

The reason for this is that we have not yet described either the semantics

of the target machines we seek to emulate, or the auxiliary data struc-

tures required to implement them, however both points will be addressed

in Chapter 7.4.
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7.3 Modifying Language Features

Recall from Chapter 4.3 that exception handlers are compiled via the two

stack instructions MARK and UNMARK, which respectively place a handler

onto the stack and remove it. This compilation scheme is very general, as

it allows for the compilation of exceptions for a language where the context

of a throw -statement is not statically known. However, if we know precisely

which exception handler is associated with each occurrence of throw – which

is the case in the presence of all of the features that we have introduced

within this thesis–, we can define an alternative compilation scheme that

exploits this property. Consider the following representation of the EXCEPT

signature functor:

data EXCEPT’ e = THROW’ e | MARK’ e | UNMARK’ e

Note that MARK’ only has one argument, as it is not provided with handler

code. Instead, the handler code is given to the THROW’ instruction. The

execution semantics of the new instructions follow:

instance Exec EXCEPT’ where

exAlg (THROW’ c) (k, s)

= unwind’ c (k, s)

exAlg (MARK’ c) (k, s)
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= c (HAN’ : k, s)

exAlg (UNMARK’ c) (e : HAN’ : k, s)

= c (e : k, s)

unwind’ c (HAN’ : k, s) = c (k, s)

unwind’ c (_ : k, s) = unwind’ c (k, s)

unwind’ c ([], s) = ([], s)

We cannot compile the source signature Except into this modified target

signature EXCEPT’ using the original compilation algebra typeclass Comp.

To do this, we require a slight variation of the compilation algebra:

type Trio a = a -> a -> a

class (Functor f, Functor g) => AlgCoG’ f g where

algCoG’ :: f (K (Trio (GraphT g v))) l

-> Trio (GraphT g v)

The additional GraphT g v argument in the carrier represents the excep-

tion handler that is currently in scope. For simplicity, we pick HALT as the

initial exception handler:

comp’ :: (AlgCoG’ f, HALT :<: g) => FixH f i -> Graph g

comp’ e = MkGraph (unK (foldH (K . algCoG’) e) haltG haltG)
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However, we do not have to redefine compilation algebras for features

that are not affected by this change, as we can embed the existing defi-

nitions from AlgCoG into AlgCoG’. The only feature requiring redefinition

is Except, as it is directly affected:

instance AlgCoG f g => AlgCoG’ f g where

algCoG’ x h c

= algCoG (hfmap (K . (\f -> f h) . unK) x) c

instance (EXCEPT’ :<: g) => AlgCoG’ Except g where

algCoG’ (Throw) h c = throwG’ h

algCoG’ (Catch (K x) (K h’)) h c

= letx c (\v -> markG’ |> letx (h’ h |> Var v)

(\vh -> x (Var vh) |> unmarkG’ |> Var v))

We now turn our attention to describing how terms within both modular

variants of the lambda calculus – as introduced in Chapter 6 – fit into this

execution framework.
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7.4 The Operational Semantics of the λ-Calculi

As mentioned in Chapter 5.2.3, a more operational explanation of the mod-

ular representations and compilation schemes implementing the call-by-

value and call-by-name recursion schemes is required. In this section, we

define their operational semantics and their execution algebra implementa-

tions.

Recalling the compilation schemes C(t) for the Categorical Abstract Ma-

chine and K(t) for the Krivine machine from Chapter 5.2.3, tables 7.1 and

7.2 below describe the operational semantics of both machines in terms of

transformations over a tuple consisting of an environment and a heap:

Code Env Heap Code Env Heap

IND n; c e h → c e (e !! n); h
CLS k ; c e h → c e [k, e]; h
APP; c e v; [d, f ]; h → d v; f c; e; h
RET; c e v; d ; f ; h → d f v; h

Table 7.1: Call-by-Value Operational Semantics
for the Categorical Abstract Machine

The notation [c, e] used by both of these tables is shorthand for a clo-

sure consisting of a code fragment c and current environment e. Looking

at the instructions for the CAM in Table 7.1, we highlight the fact that

variable lookup corresponds simply to indexing into the environment via

the de-Bruijn index (corresponding to the number of binders that must
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be ‘jumped’ over to reach the appropriate binding site), and function ap-

plication is performed by reducing both the function to a closure and the

argument to a value, and then calling the code fragment of the closure with

the associated environment updated with the argument value.

When considering the instructions for the Krivine machine of Table 7.2,

the heap represents the spine of the lambda-term being executed, and we

note in particular that β-reduction is performed by calling GRAB.

Code Env Heap Code Env Heap

ACS 0; c [d, f ]; e h → d f h

ACS (n + 1); c [d, f ]; e h → ACS n; c e h

GRAB; c e [d, f ]; h → c [d, f ]; e h

PSH c’ ; c e h → c e [c’ ; e]; h

Table 7.2: Call-by-Name Operational Semantics
for the Krivine Machine

The transitions in the above tables directly inform the definitions of the

datatypes used by our virtual machine to implement both schemes:

type Heap = [Thunk]

type Env = [Thunk]

data Thunk = Clsr (LConf -> LConf) [Thunk]

| Thk [Thunk]

| Cnt (LConf -> LConf)

type LConf = (Stack, St, Env, Heap)
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class ExecLC f where

exAlg’ :: f (LConf -> LConf) -> LConf -> LConf

We state at this point that we are defining the auxiliary datatypes for the

implementation of the lambda-calculi separate to the stack and variable

map defined for all of the other features we have discussed up until this

point. Whilst they could be inculcated into the existing structures – in

much the same way as the variable map could be merged into the stack – we

make this decision as a separation of concerns, and to clarify the semantics.

This new typeclass ExecLC accounts for the fact that the lambda calculus

makes exclusive use of Heap and Env.

As an aside, whilst terms in the lambda calculus do not make use of either

Stack or St, we include them both in the updated configuration LConf

above so that they can be accessed by other features when being executed,

the details of which we shall see shortly. The instances of ExecLC imple-

menting both evaluation schemes for the lambda calculus follow:

instance ExecLC LAMBDAV where

exAlg’ (IND i c) (s, m, e, h)

= c (s, m, e, (e !! i) : h)

exAlg’ (CLS k c) (s, m, e, h)

= c (s, m, e, ((Clsr k e):h))
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exAlg’ (APP c) (s, m, e, (v:(Clsr d f):h))

= d (s, m, (v:f), ((Cnt c):(Thk e):h))

exAlg’ (RET c) (s, m, e, (v:(Cnt d):(Thk f):h))

= d (s, m, f, (v:h))

instance ExecLC LAMBDAN where

exAlg’ (ACS n c) (s, m, e, h)

= let (Clsr d f) = (e !! n)

in d (s, m, f, h)

exAlg’ (GRAB c) (s, m, e, clsr:h)

= c (s, m, clsr:e, h)

exAlg (PSH c’ c) (s, m, e, h)

= c (s, m, e, (Clsr c’ e):h)

Given that we have already defined a number of execution algebras over an

existing configuration, instead of redefining them over the richer configura-

tion associated with the execution of lambda-calculus terms, we repeat the

technique used in Chapter 7.3 of embedding one typeclass into another:

instance Exec f => ExecLC f where

exAlg’ c (s, m, e, h) = exAlg c (s, m)

The above instance minimises the need to write duplicate code wherein the

only changes required add dummy variables to the configuration.
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7.5 Chapter Summary

The end of this chapter represents the conclusion of the presentation of our

modular compilation framework. Whilst we discuss the impact and future

research potential of this work as a whole in the next (and final) chapter,

the salient points of this chapter are:

• We justify our representation of the current configuration of a mod-

ular virtual machine as a tuple of non-modular lists as being both

simpler to comprehend and as a reduction of necessary boilerplate.

• We show how features that are compiled via distinct schemes may ne-

cessitate distinct execution algebra carriers, and furthermore, demon-

strate how embeddings between execution algebras can eliminate the

need to rewrite code that is unaffected .

• We present the operational semantics of two implementations of the

lambda calculus – namely the Categorical Abstract Machine and

Krivine’s machine – in table form, and then implement both as in-

stances of a new execution algebra with an extended carrier, defining

an embedding between the two.



Chapter 8

Discussion & Conclusion

To conclude, this final chapter presents a general overview of the thesis and

a discussion on both its motivation and to what extent it has succeeded in

its original aims, as well as a number of directions for future work.

8.1 Retrospection

The desire to construct compilers that are provably correct in a systemic

manner has existed since the 1950s. This thesis is itself the third in a tril-

ogy under Graham Hutton; the first being that of Joel Wright on compiling

and reasoning about exceptions and interrupts [Wri05], published in 2005,

181
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and the second being that of Liyang Hu, treating the compilation of con-

currency in a correct manner via a verified software transactional memory

model [Hu12], published in 2012.

My own work on this topic began in 2010, with my original goal being to

develop a compiler over a modularised variant of a language based upon

Hutton’s Razor, as presented in Chapter 4. The intention was that each

constituent feature could be proved correct in the style of Wright, and the

combination of these proofs would itself constitute a proof for the com-

pound language. However, it was quickly realised that the truly interesting

material lay in the interactions between features themselves, not necessarily

the proofs that they were being compiled in a sane manner. With that said,

such a proof technique would go a long way towards motivating the usage

of the ideas we have presented as an alternative to the deep embedding of

DSLs such as Functional MetaPost [Hob15]. As it stands, the framework

we have developed is currently best suited to exploring the requirements

placed on source expressions for experimental DSLs.

The discovery that a program containing a given set of features may be com-

piled into different instruction sets (Chapter 5) depending on its intended

semantics was a direct consequence of the shortcomings of the monad trans-

former approach of Haskell. Notably, the first two techniques which we

present to permit the compilation of noncommutative effects were borne

from a desire to produce a working solution from the monad transformer
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approach itself, and the subsequent realisation that we were simply pattern-

matching upon the type constructors of the transformer stack. These tech-

niques are themselves subject to modularity concerns (concerning the pres-

ence of commutative intermediate transformers), but are intended as an

alleviation, not a cure.

Attempts to construct source programs which could act as running exam-

ples for our framework highlighted the need to introduce syntax associated

with control-flow (Chapter 6). By doing so, the desire for syntactic cate-

gories within source syntax and a target representation capable of support-

ing cyclicity arose, and hence justified the presence of higher-order source

functors and structured graphs.

Finally, the work on constructing modular virtual machines (Chapter 7) is

intended primarily as a mechanism for establishing the equivalence between

terms that been evaluated, and compiled and executed. Whilst the presence

of the virtual machine was originally attributed to the desire to construct

inductive proofs of correctness à la Wright, the algebras for the lambda

calculus prove interesting reading. The initial approach we took to virtual

machines – that they are simply computations producing state transformers

– proved useful in that we have adapted it into the justification for non-

modular auxiliary datatypes. Further, this initial approach led us to the

decision that monads should not appear within virtual machine carriers, as

we use them solely to manifest and describe effectful operations.
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The thesis as a whole concerns the piecemeal definition and construction of

functions that manipulate syntax trees, with particular emphasis on the re-

lationships between syntax drawn from distinct features. We have merged

together the seminal work on modular monadic semantics [LHJ95b], the

datatypes à la carte technique for extensible datatypes (alongside show-

ing how this technique can support multi-sortedness), and Haskell’s rich

static type system to form a novel framework allowing for a denotational

semantics, operational semantics or syntactic transformation to be defined

for a language in an easily-composable manner. By introducing the lan-

guages in question as representing the features that can be invoked by a

programming language, we have been able to scale up from trivial examples

(arithmetic) to treatments of features with fully-fledged associated fields of

research behind them (the lambda calculus).

Our final result is a set of features which, when combined, corresponds to a

substantially expressive source language. Associated with this language is

a fully defined, intuitive semantics that can be inspected on a per-feature

basis. In addition, we present a schema for transforming programs from

the source language into a target language consisting of stack-based in-

structions. However, we are not fixed in this choice of target: we have,

for example, been able to successfully target the graph representation of

the Hoopl dataflow analysis library [RDPJ10] in the same manner. To our

knowledge, this technique of transforming syntax piecemeal alongside the
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ability to produce different results according to the presence and ordering

of certain features is unique.

8.2 Potential Future Research Directions

To reiterate the claim we made at the end of Chapter 3, the compilation

of EDSLs in a modular manner is a particularly rich source topic, and

whilst we are satisfied that the work presented by this thesis constitutes a

novel and powerful set of techniques for manipulating both the syntax and

semantics of the source and target languages associated with a given EDSL,

there is no shortage of ways in which such a framework can be improved

upon. In particular, the question of what exactly would be required for

this approach to ‘scale up’ to a production quality DSL compiler (or a

general compiler) is worth considering, requiring as it were a far more formal

specification of the range of types and constructors available for source,

target and execution algebras. In this subsection, we list a number of

additional avenues that we feel are worthy of future consideration.

Additional Computational Features : extending our framework with sup-

port for additional features is a project that holds significant potential,

as there will always be ‘something else’ that might make an ideal candi-

date for integration. In particular, we would be interested in seeing the

introduction of other forms of control flow such as continuations, explicit
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parallelism and I/O, as well as any domain-specific features unique to the

DSL we wish to introduce (most likely to present as combinations of the

former with those we have introduced in this thesis). Furthermore, the

recursion schemes used to define the compiler and the language semantics

can be extended: more structured recursion schemes derived from tree au-

tomata [Bah12, BD13] and attribute grammars [VS12] offer more freedom

to replace parts of a given modular definition as opposed to only being

able to extend them. In the same direction goes the work of Kimmell et

al. [KKA05] and Frisby et al. [WKFA] which introduce algebra combina-

tors such as switch and sequence to compose algebras. Finally, it would

be interesting to investigate how one might exploit the algebraic theory

of effects to give a principled understanding of the complexity involved in

integrating a new feature based upon the effectful methods it provides.

Attribute Grammars : The Utrecht University Attribute Grammar Com-

piler (UUAGC) [SAS+99] is a Haskell preprocessor which simplifies the

construction of catamorphisms over tree-like structures. Moreover, the

UUAGC supports open data types and functions, providing an excellent

foundation for modular programming. Future investigation into the extent

to which the UUAGC system is suitable for further highlighting the inde-

pendence of individual signature functors and their associated semantics

appears promising. There are also a number of standalone attribute gram-

mar systems with particular focus on extensible language implementation
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such as LISA [MU05], JastAdd [EH07] and Silver [VWBGK08].

Modular Syntax : As identified in Chapter 6.2.1, the usage of higher-order

functors to represent indexed datatypes and families of mutually recur-

sive datatypes stems from Johann and Ghani [JG08], however Yakushev et

al. [YHLJ09] also applied this technique to generic programming. Axels-

son [Axe12] introduces a different approach to modular well-typed defini-

tions of syntax and semantics: said work develops an applicative encoding

of syntax making heavy use of type indexing to describe the signature of

individual language features.

Indexed Type Families : In Haskell, the indexed type family extension [CKJM05],

which permits ad-hoc overloading of datatypes, may prove useful in explic-

itly declaring a link between the signature functors of a source and target

language for a particular effect. For example, in Chapter 4.3 we defined

an evaluation algebra mapping terms constructed from the source functor

Arith into terms constructed from the target functor ARITH. At present, we

are capable of compiling into any target language, provided it supports the

requisite signatures. Declaring a type family with a functional dependency

in order to define a mapping from a source language FixH f i to a target

language Graph (Target f) may ensure the target language is minimal,

removing the requirement that the user pre-defines the target language.
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Automatic Context Inference: An observation 1 that arose during my re-

search is that it may be possible to use the ordering of signature functors

in the type of a source expression to automatically infer the monadic con-

text within which we wish to evaluate it. For example, given a term with

signature (Arith ::+ Except ::+ State), one might infer that it is to

be evaluated within a monad built up from the identity monad – corre-

sponding to Arith – by first applying the exception transformer, and then

applying the state monad transformer. Such an interpretation could prove

to be useful as a method of providing a default behaviour, which a user can

override if they wish. With that said, further differentiation would likely be

required if, for example, a state-carrying signature appeared twice (perhaps

both before and after an exception-based signature).

Alternative Target Languages : As presented in this thesis, we compile into

a stack-based language. It would be useful to consider how our framework

can be adapted to other forms of target language, in particular register-

based languages such as LLVM [LA04], which can be used as the target

language for many imperative language compilers or logic-based languages

such as System F [Rey74], a variant of which is used by GHC.

Dataflow Analysis and Optimisations : A natural extension of our work is

the implementation of dataflow analysis and optimisations in a modular

style. A good starting point for extending our work in this direction is

1Personal Communication: Wouter Swierstra, March 2013
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Hoopl, the Higher Order Optimisation Library of Ramsey et al. [RDPJ10].

Hoopl is a Haskell library that allows compiler representations to define

dataflow analyses and implement optimising transformations that are in-

formed by said analyses. Modular implementations of optimising trans-

formations can be achieved using the same techniques as presented in this

thesis. However, as mentioned in the previous subsection, we have observed

that dataflow analysis and the underlying lattice structures can be defined

in a modular manner for – at least – standard textbook analyses.

Testing and Reasoning : An important property of a compiler is its trust-

worthiness. Does it perform only semantics preserving transformations?

Establishing such trustworthiness in a modular fashion remains a consider-

ably challenge. However, using the same techniques as presented here,

automatic test case generation (i.e. generation of input programs and

initial configurations) can be implemented in a modular fashion. Rigor-

ous and machine-checked correctness proofs, however, require new reason-

ing techniques that work in a modular setting. There is growing inter-

est in formalising programming language metatheory in a modular fash-

ion [DdSOS13, DKSO13, SS13]. However, the process in of building mod-

ular proofs of compiler correctness includes several additional difficulties.

Such proofs must be modular along both the source and target languages as

well as its computational effects. As the work of Delaware et al. [DdSOS13]
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shows, modular reasoning about effects already becomes a considerable ob-

stacle for type soundness proofs.



Appendix A:

Higher-Order

Evaluation Algebras

instance (AlgEv f m v, AlgEv g m v) => AlgEv (f :+: g) m v where

algEv (Inl x) = algEv x

algEv (Inr y) = algEv y

instance (Monad m, VNum ::< v) =>

AlgEv Arith m v where

algEv (Val n) = return (num n)

algEv (Add (C x) (C y)) = do

Just n <- liftM getNum x

Just m <- liftM getNum y

return (num (n + m))

191
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instance Monad m => AlgEv Seq m v where

algEv (Seq (C x) (C y)) = x >> y

instance (Monad m, VNum ::< v, VBool ::< v) =>

AlgEv Comp m v where

algEv (Equ (C x) (C y)) = do

Just n <- liftM getNum x

Just m <- liftM getNum y

return (bool (n == m))

algEv (Lt (C x) (C y)) = do

Just n <- liftM getNum x

Just m <- liftM getNum y

return (bool (n < m))

instance MonadPlus m =>

AlgEv Except m v where

algEv (Throw) = mzero

algEv (Catch (C x) (C h)) = x ‘mplus‘ h
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instance (MonadPlus m, MonadState St m,

VNum ::< v, VUnit ::< v) =>

AlgEv State m v where

algEv (Get v) =

liftM num (getRef v)

algEv (Set v (C m)) =

liftM getNum m >>= \(Just n) ->

setRef v n >> return unit

instance (Monad m, VBool ::< v, VUnit ::< v)

=> AlgEv While m v where

algEv (While (C c) (C lp)) = loop

where loop = do Just b <- liftM getBool c

if b then (lp >> loop)

else return unit

instance (Monad m, VBool ::< v) => AlgEv If m v where

algEv (If (C c) (C x) (C y)) = do

Just b <- liftM getBool c; if b then x else y



Appendix B:

Virtual Machine Algebras

instance (Exec f, Exec g) => Exec (f :+: g) where

exAlg (Inl x) = exAlg x

exAlg (Inr y) = exAlg y

instance Exec ARITH where

exAlg (PUSH n c) (k, s)

= c (VAL n : k, s)

exAlg (ADD c) (VAL m : VAL n : k, s)

= c (VAL (n + m) : k, s)

instance Exec COND where

exAlg (JPC c c’) (VALB b : k, s)

= if b then c (k, s) else c’ (k, s)

194
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instance Exec EXCEPT where

exAlg (THROW) (k, s)

= unwind (k, s)

exAlg (MARK h c) (k, s)

= c (HAN h : k, s)

exAlg (UNMARK c) (e : HAN _ : k, s)

= c (e : k, s)

unwind (HAN h : k, s) = h (k, s)

unwind ( _ : k, s) = unwind (k, s)

unwind ([], s) = ([], s)

instance Exec STATE where

exAlg (GET v c) (k, s)

= case Map.lookup v s of

Just n -> c (VAL n : k, s)

Nothing -> unwind (k, s)

exAlg (SET v c) (VAL n : k, s)

= c (k, Map.insert v n s)
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instance Exec COMP where

exAlg (EQ c) (VAL m : VAL n : k, s)

= c (VALB (n == m) : k, s)

exAlg (LT c) (VAL m : VAL n : k, s)

= c (VALB (n < m) : k, s)

instance Exec HALT where

exAlg (HALT) cf = cf
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[Mö93] Hanspeter Mössenböck. Oberon0 — A Case Study. In Object-

Oriented Programming, pages 153–213. 1993.

[MFP91] Erik Meijer, Maarten Fokkinga, and Ross Paterson. Func-

tional Programming with Bananas, Lenses, Envelopes and

Barbed Wire. pages 124–144. Springer-Verlag, 1991.

[MH95] Erik Meijer and Graham Hutton. Bananas In Space: Extend-

ing Fold and Unfold To Exponential Types. In Proceedings of

the 7th SIGPLAN-SIGARCH-WG2.8 International Confer-

ence on Functional Programming and Computer Architecture.

ACM Press, La Jolla, California, June 1995.

[Mog89] E. Moggi. Computational Lambda-Calculus and Monads.

In Proceedings of the Fourth Annual Symposium on Logic in

Computer Science, pages 14–23. IEEE Press, 1989.



Bibliography 208

[Mos89] Peter D. Mosses. Unified Algebras and Action Semantics. In

Proceedings of the 6th Annual Symposium on Theoretical As-

pects of Computer Science, STACS ’89, pages 17–35, London,

UK, UK, 1989. Springer-Verlag.

[Mos96] Peter D. Mosses. Theory and Practice of Action Semantics.

In Proceedings of the 21st International Symposium on Math-

ematical Foundations of Computer Science, MFCS ’96, pages

37–61, London, UK, UK, 1996. Springer-Verlag.

[MU05] Marjan Mernik and Viljem Umer. Incremental Program-

ming Language Development. Comput. Lang. Syst. Struct.,

31(1):1–16, April 2005.

[MW06] James Mckinna and Joel Wright. A Type-Correct, Stack-

Safe, Provably Correct, Expression Compiler in Epigram. In

Journal of Functional Programming, 2006.

[NMRW02] George C. Necula, Scott Mcpeak, Shree P. Rahul, and West-

ley Weimer. CIL: Intermediate Language And Tools For

Analysis And Transformation Of C Programs. In In Interna-

tional Conference on Compiler Construction, pages 213–228,

2002.



Bibliography 209

[OC12] Bruno C.d.S. Oliveira and William R. Cook. Functional

Programming with Structured Graphs. SIGPLAN Not.,

47(9):77–88, September 2012.

[OL13] Bruno C. d. S. Oliveira and Andres Löh. Abstract Syntax
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