

UNITED KINGDOM · CHINA · MALAYSIA

Virus life cycle and the pathogenesis of malignant catarrhal fever

By

Osama Kumati

BVSc & MSc

Thesis submitted to the University of Nottingham for the degree of Doctorate of Philosophy

Division of Infection and Immunity School of Veterinary Medicine and Science The University of Nottingham

May 2016

Abstract

Malignant catarrhal fever (MCF) is caused by two closely associated gamma herpes viruses namely alcelaphine herpesvirus 1 (AIHV-1) and ovine herpesvirus 2 (OvHV-2) and characterised with lymphocyte infiltration in non-lymphoid tissues, vasculitis and epithelial damage. The mechanism by which the viruses cause the disease is not fully understood. The hypothesis of this project was that MCF is initiated by aberrant gene expression in endothelium, epithelium and infected T cells of susceptible animals, because they are not the natural hosts for the viruses and the viruses will not have evolved in them. The first goal was to examine whether rabbit epithelium and bovine endothelium can be infected in vitro and in vivo with AlHV-1 using q PCR and, if infected whether viral transcripts could be identified in these tissue cells using q PCR and in situ hybridisation (ISH). The results revealed that endothelium and epithelium can be infected and latent infection can be established in them. This suggests the likelihood of establishing a similar type of infection in vivo. Secondly, the trial to identify latency-associated transcripts using 5-azacitidine treatment on bovine turbinate fibroblast (BT) cells and rabbit large granular lymphocytes (LGLs) was only partially successful. However, pan T antigen was expressed in 5-azacitidine treated but not untreated LGLs cells. This may indicate a function of the drug either directly or

Ι

through the latency state. Transcriptome analysis in the infected and treated LGLs and BT cells showed that several pathways were affected by 5-aza although a possible latency (low transcript levels) was only seen in the BTs. Transcriptome analysis revealed similar pathways to those described for MCF in the tissues *in vivo*, and an effect of 5-aza on these. Viral transcripts analysis showed that genes related to productive/lytic cycles were higher than latent ones on day 17 of the *in vivo* experiment demonstrating that the virus may replicate at this stage of the disease. The attempt to localize the viral transcripts on the rabbit infected tissues using ISH was unsuccessful due to a lack of time.

Declaration

I declare that the work in this dissertation was carried out in accordance with the regulations of the University of Nottingham. The work is original and has not been submitted for any other degree at the University of Nottingham or elsewhere.

Name: Osama Kumati

Signature:

Date:

Conferences, posters, and oral presentations:

- Postgraduate (PG) research forum: a Research Poster presented; Faculty of Medicine, University of Nottingham, QMC. 15th June 2013.
- Research Day (first year); Oral Presentation, in Veterinary Medicine and Science; 15th July 2012.
- Research Day (second year); Oral Presentation, in Veterinary Medicine and Science; 13th February 2014.
- Research Day (third year); Oral Presentation, in Veterinary Medicine and Science; 18th June 2015.

Acknowledgements

I would like to express my sincere gratitude to my supervisors Professor. David Haig and Dr. Robbin Flynn for their scientific supervision and support. I am immensely grateful for opportunities you have given me. Your guidance helped me in all time of research and writing of this thesis. Many thanks for supervision and input.

I am also very grateful to Dr George Russell of the Moredun Research Institute for his involvement in the project and providing BT cells. I would also like to thank Professor. James Stewart of Liverpool University for giving me opportunity to be trained on ISH technique in his laboratory.

I would like to acknowledge the members of ADAC group at the University of Nottingham for their help and support with special thanks to Dr. Tom Giles. I'm also grateful to the staff, technician and postgraduate communities within the school for their help, interactions, support and advice.

Many sincere thanks go to Dr. Nivethitha Parameswaran and technician Belinda Wang for their technical knowledge during the research time. Without their invaluable input it would be difficult to carry out this research.

V

I wish to express my deepest gratitude to my late parents, also my wife and children for their patience and support and my family especially my sisters for their moral and financial support during my hardship.

Table of contents

1.1 Malignant catarrhal fever (MCF) 1.1.1 General comments:	11
1.2 Aetiology of MCF 1.2.1 Herpes viruses	4 4
 1.3 Malignant catarrhal fever viruses (MCFV) 1.4 Genomic structure of AlHV-1 and gene function 1.5 AlHV-1 genome sequence classification 1.6 AlHV-1 genome sequence 1.7 Spliced genes in AlHV-1 virus 1.8 Functions of non-conserved genes 1.9 Gene similarities to other herpes viruses 1.10 Gene expression of the MCF viral genome, latency and levelos 	8 . 11 . 14 . 15 . 16 . 17 . 20 lytic 21
 1.11 Virulent and attenuated forms of AlHV-1 1.12 Virus life cycle 1.13 Latency 1.14 Symptoms and pathology of MCF 1.14 1 Clinical signs 	· 21 · 23 · 25 · 29 · 31
1.14.2 Pathology of MCF	. 32
1.15 Epidemiology of MCF 1.15.1 MCF Transmission	. 34 . 34
1.15.2 Geographical distribution	. 35
 1.15.3 Susceptible species 1.16 Disease Impact. 1.17 Diagnosis of MCF 1.18 Treatment and prevention. 1.19 Prospective vaccine development 1.20 Chemicals for the experiments. 1.20.1 5-azacitidine. 1.20.2 Cyclosporine A 1.21 Pathogenesis 1.21.1 Direct versus indirect mechanism of MCF 	. 36 . 37 . 39 . 41 . 43 . 45 . 45 . 45 . 46 . 46
1.21.2 Experimental MCF	. 48
1.21.3 Large granular lymphocytes in MCF and their phenotype	. 49
1.21.4 The role of cytokines in MCF pathogenesis	. 50
1.21.5 The site of infection and MCF pathogenesis	. 52
1.21.6 Recombinant AIHV-1	. 54
1.22 Hypothesis1.23 Objectives2.1 Introduction2.2 Tissue culture	. 55 . 55 . 57 . 57

2.2.1 Large granular lymphocytes	58
2.2.2 Counting cells	59
2.2.3 Cryopreservation of cells	59
2.2.4 AlHV-1 virus stocks	60
2.2.5 Virus titration : 50% tissue culture infective dose (TCII	250)
	63
2.3 Molecular techniques 2.3.1 DNA extraction	66 66
2.3.2 RNA extraction	68
2.4 Nucleic acid amplification and quantitation 2.4.1 Complementary DNA (cDNA) synthesis	69 69
2.4.2 Polymerase chain reaction (PCR)	71
2.4.2.1 PCR condition	71
2.4.2.2 Agarose gel electrophoresis	71
2.4.3 Viral load measurement	73
2.4.4 Quantitative real-time PCR (q RT-PCR)	74
2.4.5 Quantification of DNA and RNA by spectrophotometer	78
2.5 Flow cytometry	79
2.5.1 Direct Immunofluorescence labelling of cells	81
2.5.2 Indirect Immunofluorescence labelling of cells	81
2.5.3 Flow cytometry analysis of labelled cells	82
2.6 Animals	82
2.6.2 Experiment (1) design	0J
2.6.2 Experiment (1) design	دی ۸۶
2.6.4 Sample collection	
2 7 Histology	04
2.7.1 Paraffin embedding	86
2.7.2 Tissue sectioning and staining	86
2.8.1 RNA <i>in situ</i> hybridisation 2.8.1.1 Preparation of riboprobes for virus gene transcripts	87 88
2.8.1.2 Primers design	88
2.8.1.3 Polymerase chain reaction (PCR) amplification	88
2.8.1.4 Gel extraction for ORF65 product	90
2.8.2 Plasmid cloning, transformation and bacterial culture 2.8.2.1 Plasmid purification	91 92
2.8.2.1.1 Minimum isolation of plasmid DNA (Mini-prep)	92
2.8.2.1.2 Maximum isolation of plasmid DNA (maxi-prep)	93

2.8.2.1.3 DNA sequencing	. 94
2.8.2.1.4 Restriction digestion for plasmid DNA preparation	. 94
2.8.2.1.5 In vitro transcription of digoxygenin (dig)-labelled probes	RNA 95
2.8.2.1.6 Dot blot analysis of generated probes	. 96
2.8.3 Deparaffinisation, proteolysis, and acetylation of tis sections	ssue 98
 2.8.4 Hybridisation of probes 2.8.5 Anti-DIG labelling for probe detection 2.9 RNA quality measurement using Agilent Bio-analyser Nano 6 	.99 100 000
2.10 RNA sequencing (RNA-Seq) methods 2.10.1 RNA poly (A) library	102 104 104
2.11 Illumina machine NextSeq500 sequencing platform work	flow
2.12 Bioinformatics tools2.12.1 Blast like alignment tool (BLAT)	106 107 107
2.12.2 Scythe-a Bayesian adapter trimmer	108
2.12.3 Sickle- a windowed adaptive trimming tool for FASTQ using quality	files 108
2.12.4 HISAT	109
2.12.5 Sequence alignment map (SAM) tool	110
2.12.6 String Tie assembler tool	110
2.12.7 Ballgown	111
2.13 Statistical analysis	113
3.1 Abstract	114
3.3 Materials and methods	118 118
3.3.2 Virus dose	118
3.4 In vitro infection	119
3.4.1 Direct virus infection	119
3.5 Results3.5.1 Infection of the epithelial and endothelial cell lines	121 121
3.5.2 BAE endothelial cells	121
3.5.3 SIRC epithelial cells	123
3.5.4 Detection of viral DNA in the infected cells	125
3.5.5 Viral gene expression in the infected cells	127
3.6 Discussion4.1 Abstract	132 136

4.2 Introduction4.3 Materials and methods4.3.1 Samples collection	138 139 139
4.3.2 Tissue culture and infection	139
4.3.3 Drug treatments	139
4.3.4 Flow cytometry	140
4.4 Results	141 141
4.4.2 Viral DNA load in LGLs	143
4.4.3 The effect of 5-azacitidine on BT cells	144
4.4.4 Measuring viral gene transcripts	145
4.4.5 Flow cytometry analysis of LGL	148
 4.5 Discussion	151 158 160 162 162
5.3.2 RNA extraction	162
5.3.3 RNA quality measurement using utilizing Agilent Bio-anal Nano 6000 kit	yser 162
5.3.4 Complimentary (cDNA) DNA Library preparation sequencing	and 163
5.3.5 Sequence analysis, bioinformatics and statistics	163
5.4 Results 5.4.1 Viral DNA load in LGLs	165 165
5.4.2 RNA Integrity Number (RIN) measurement	165
5.4.3 Mapping results	168
5.4.4 Differentially expressed host genes	171
5.4.5 Differentially-expressed virus genes detected by RNA	-Seq 206
5.4.6 David clustering	208
5.4.7 IPA results	210
 5.5 Discussion 6.1 Abstract 6.2 Introduction 6.3 Materials and methods 6.3.1 Animals 	215 221 222 224 224
6.3.2 Inoculum	224
6.3.3 Experimental design	224

6.3.4 Samples collection 224 6.3.5 Histology 224 6.3.7 In situ Hybridization 224 6.4.7 In situ Hybridization 224 6.4 Results 225 6.4.1 Experiment (1) results 225 6.4.1.1 Clinical signs 225 6.4.1.2 Gross appearance of MCF lesions 227 6.4.1.3 Viral DNA load measurement 227 6.4.1.4 Histological analysis of AlHV-1 in rabbits 229 6.4.1.5 Gene expression 236 6.4.1.6 In situ Hybridisation 239 6.4.2 Experiment (2) results 240 6.5 Discussion 243 7.1 General discussion 243 7.1.1 Conclusion and recommendations 257 7.1.2 Project summary 259 8.1 SOLUTIONS 261 8.1.3 DEPC water 261 8.1.4 CaCl2 261 8.1.5 MgCl2-hexahydrate 262 8.1.6 NaCl 262 8.1.9 10x PBS 262 8.1.10 Buffer 1, pH 7,5 263 8.1.11 Buffer 3, pH 9.5 263 8.1.12 Buffer 4, pH 8.0 263 8.1.13	6.3.6 Molecular techniques	224
6.3.5 Histology 224 6.3.7 In situ Hybridization 224 6.4.7 In situ Hybridization 225 6.4.1 Experiment (1) results 225 6.4.1.1 Clinical signs 225 6.4.1.2 Gross appearance of MCF lesions 227 6.4.1.3 Viral DNA load measurement 227 6.4.1.4 Histological analysis of AlHV-1 in rabbits 229 6.4.1.5 Gene expression 236 6.4.1.6 In situ Hybridisation 239 6.4.2 Experiment (2) results 240 6.5 Discussion 243 7.1 General discussion 243 7.1.1 Conclusion and recommendations 257 7.1.2 Project summary 259 8.1 SOLUTIONS 261 8.1.1 DEPC water 261 8.1.2 ddH ₂ O 261 8.1.3 TrisHCl 261 8.1.4 CaCl ₂ 261 8.1.5 MgCl ₂ -hexahydrate 262 8.1.6 NaCl 262 8.1.9 10x PBS 262 8.1.10 Buffer 1, pH 7,5 263 8.1.12 Buffer 4, pH 8.0 263 8.1.12 Buffer 4, pH 8.0 263 8.1.13 1x P	6.3.4 Samples collection	224
6.3.7 In situ Hybridization 224 6.4 Results 225 6.4.1 Experiment (1) results 225 6.4.1.1 Clinical signs 225 6.4.1.2 Gross appearance of MCF lesions 227 6.4.1.3 Viral DNA load measurement 227 6.4.1.4 Histological analysis of AlHV-1 in rabbits 229 6.4.1.5 Gene expression 236 6.4.1.6 In situ Hybridisation 239 6.4.2 Experiment (2) results 240 6.5 Discussion 243 7.1 General discussion 243 7.1.2 Project summary 259 8.1 SOLUTIONS 261 8.1.1 DEPC water 261 8.1.2 ddH ₂ O 261 8.1.3 TrisHCl 261 8.1.4 CaCl ₂ 261 8.1.5 MgCl ₂ -hexahydrate 262 8.1.6 NaCl 262 8.1.9 10x PBS 262 8.1.10 Buffer 1, pH 7,5 263 8.1.12 Buffer 4, pH 8.0 263 8.1.13 1x PBS + 5 mM MgCl ₂ 264 8.1.14 2x SSC + 5 mM EDTA-Na ₂ 264 8.1.15 0.2% Glycine in 1x PBS 264	6.3.5 Histology	224
6.4 Results 225 6.4.1 Experiment (1) results 225 6.4.1.1 Clinical signs 225 6.4.1.2 Gross appearance of MCF lesions 227 6.4.1.3 Viral DNA load measurement 227 6.4.1.4 Histological analysis of AlHV-1 in rabbits 229 6.4.1.5 Gene expression 236 6.4.1.6 In situ Hybridisation 239 6.4.2 Experiment (2) results 240 6.5 Discussion 243 7.1 General discussion 243 7.1.1 Conclusion and recommendations 257 7.1.2 Project summary 259 8.1 SOLUTIONS 261 8.1.1 DEPC water 261 8.1.2 ddH ₂ O 261 8.1.2 ddH ₂ O 261 8.1.4 CaCl ₂ 261 8.1.5 MgCl ₂ -hexahydrate 262 8.1.6 NaCl 262 8.1.7 0.2 M HCl (Sterilize prior to use; not 2 N HCl) 262 8.1.10 Buffer 1, pH 7,5 263 8.1.11 Buffer 3, pH 9.5 262 8.1.12 Buffer 4, pH 8.0 263 8.1.12 Buffer 4, pH 8.0 264 8.1.12 So Chy Glycine in 1x PBS 264	6.3.7 In situ Hybridization	224
6.4.1.1 Clinical signs 225 6.4.1.2 Gross appearance of MCF lesions 227 6.4.1.3 Viral DNA load measurement 227 6.4.1.3 Viral DNA load measurement 227 6.4.1.4 Histological analysis of AlHV-1 in rabbits 229 6.4.1.5 Gene expression 236 6.4.1.6 In situ Hybridisation 239 6.4.2 Experiment (2) results 240 6.5 Discussion 243 7.1 General discussion 244 7.1.1 Conclusion and recommendations 257 7.1.2 Project summary 259 8.1 SOLUTIONS 261 8.1.1 DEPC water 261 8.1.2 ddH ₂ O 261 8.1.3 TrisHCl 261 8.1.4 CaCl ₂ 261 8.1.5 MgCl ₂ -hexahydrate 262 8.1.6 NaCl 262 8.1.7 0.2 M HCl (Sterilize prior to use; not 2 N HCl) 262 8.1.10 Buffer 1, pH 7,5 263 8.1.11 Buffer 3, pH 9.5 263 8.1.12 Buffer 4, pH 8.0 264 8.1.13 1x PBS + 5 mM MgCl ₂ 264 8.1.14 2x SSC + 5 mM EDTA-Na ₂ 264 8.1.16 4% paraformaldehyde (P	6.4 Results 6.4.1 Experiment (1) results	225 225
6.4.1.2 Gross appearance of MCF lesions 227 6.4.1.3 Viral DNA load measurement 227 6.4.1.3 Viral DNA load measurement 227 6.4.1.4 Histological analysis of AIHV-1 in rabbits 229 6.4.1.5 Gene expression 236 6.4.1.6 In situ Hybridisation 239 6.4.2 Experiment (2) results 240 6.5 Discussion 243 7.1 General discussion 244 7.1.1 Conclusion and recommendations 257 7.1.2 Project summary 259 8.1 SOLUTIONS 261 8.1.1 DEPC water 261 8.1.2 ddH ₂ O 261 8.1.3 TrisHCI 261 8.1.4 CaCl ₂ 261 8.1.5 MgCl ₂ -hexahydrate 262 8.1.6 NaCl 262 8.1.7 0.2 M HCl (Sterilize prior to use; not 2 N HCl) 262 8.1.10 Buffer 1, pH 7,5 263 8.1.11 Buffer 3, pH 9.5 263 8.1.12 Buffer 4, pH 8.0 264 8.1.13 1x PBS + 5 mM MgCl ₂ 264 8.1.14 2x SSC + 5 mM EDTA-Na ₂ 264 8.1.14 2x SSC + 5 mM EDTA-Na ₂ 264 8.1.16 4% paraformal	6.4.1.1 Clinical signs	225
6.4.1.3 Viral DNA load measurement 227 6.4.1.4 Histological analysis of AIHV-1 in rabbits 229 6.4.1.5 Gene expression 236 6.4.1.6 In situ Hybridisation 239 6.4.2 Experiment (2) results 240 6.5 Discussion 243 7.1 General discussion 243 7.1.1 Conclusion and recommendations 257 7.1.2 Project summary 259 8.1 SOLUTIONS 261 8.1.1 DEPC water 261 8.1.2 ddH ₂ O 261 8.1.3 TrisHCI 261 8.1.4 CaCl ₂ 261 8.1.5 MgCl ₂ -hexahydrate 262 8.1.6 NaCI 262 8.1.7 0.2 M HCl (Sterilize prior to use; not 2 N HCl) 262 8.1.10 Buffer 1, pH 7,5 263 8.1.11 Buffer 3, pH 9.5 263 8.1.12 Buffer 4, pH 8.0 263 8.1.13 1x PBS + 5 mM MgCl ₂ 264 8.1.16 4% paraformaldehyde (PFA) 264 8.1.17 50x Denhardt's solution 265 8.1.18 20x hybridisation salts 265	6.4.1.2 Gross appearance of MCF lesions	227
6.4.1.4 Histological analysis of AlHV-1 in rabbits 229 6.4.1.5 Gene expression 236 6.4.1.6 In situ Hybridisation 239 6.4.2 Experiment (2) results 240 6.5 Discussion 243 7.1 General discussion 243 7.1.1 Conclusion and recommendations 257 7.1.2 Project summary 259 8.1 SOLUTIONS 261 8.1.1 DEPC water 261 8.1.2 ddH ₂ O 261 8.1.3 TrisHCl 261 8.1.4 CaCl ₂ 261 8.1.5 MgCl ₂ -hexahydrate 262 8.1.6 NaCl 262 8.1.7 0.2 M HCl (Sterilize prior to use; not 2 N HCl) 262 8.1.10 Buffer 1, pH 7,5 263 8.1.11 Buffer 3, pH 9.5 263 8.1.12 Buffer 4, pH 8.0 263 8.1.13 1x PBS + 5 mM MgCl ₂ 264 8.1.14 2x SSC + 5 mM EDTA-Na ₂ 264 8.1.15 0.2% Glycine in 1x PBS 264 8.1.16 4% paraformaldehyde (PFA) 265 8.1.18 20x hybridisation salts 265	6.4.1.3 Viral DNA load measurement	227
6.4.1.5 Gene expression 236 6.4.1.6 In situ Hybridisation 239 6.4.2 Experiment (2) results 240 6.5 Discussion 243 7.1 General discussion 243 7.1 Conclusion and recommendations 257 7.1.2 Project summary 259 8.1 SOLUTIONS 261 8.1.1 DEPC water 261 8.1.2 ddH ₂ O 261 8.1.3 TrisHCl 261 8.1.4 CaCl ₂ 261 8.1.5 MgCl ₂ -hexahydrate 262 8.1.6 NaCl 262 8.1.7 0.2 M HCl (Sterilize prior to use; not 2 N HCl) 262 8.1.9 10x PBS 262 8.1.10 Buffer 1, pH 7,5 263 8.1.11 Buffer 3, pH 9.5 263 8.1.12 Buffer 4, pH 8.0 263 8.1.13 1x PBS + 5 mM MgCl ₂ 264 8.1.14 2x SSC + 5 mM EDTA-Na ₂ 264 8.1.15 0.2% Glycine in 1x PBS 264 8.1.16 4% paraformaldehyde (PFA) 265 8.1.18 20x hybridisation salts 265	6.4.1.4 Histological analysis of AlHV-1 in rabbits	229
6.4.1.6 In situ Hybridisation 239 6.4.2 Experiment (2) results 240 6.5 Discussion 243 7.1 General discussion 243 7.1.1 Conclusion and recommendations 257 7.1.2 Project summary 259 8.1 SOLUTIONS 261 8.1.1 DEPC water 261 8.1.2 ddH ₂ O 261 8.1.3 TrisHCl 261 8.1.4 CaCl ₂ 261 8.1.5 MgCl ₂ -hexahydrate 262 8.1.6 NaCl 262 8.1.7 0.2 M HCl (Sterilize prior to use; not 2 N HCl) 262 8.1.9 10x PBS 262 8.1.10 Buffer 1, pH 7,5 263 8.1.12 Buffer 4, pH 8.0 263 8.1.13 1x PBS + 5 mM MgCl ₂ 264 8.1.14 2x SSC + 5 mM EDTA-Na ₂ 264 8.1.15 0.2% Glycine in 1x PBS 264 8.1.16 4% paraformaldehyde (PFA) 265 8.1.18 20x hybridisation salts 265	6.4.1.5 Gene expression	236
6.4.2 Experiment (2) results 240 6.5 Discussion 243 7.1 General discussion 246 7.1.1 Conclusion and recommendations 257 7.1.2 Project summary 259 8.1 SOLUTIONS 261 8.1.1 DEPC water 261 8.1.2 ddH ₂ O 261 8.1.3 TrisHCl 261 8.1.4 CaCl ₂ 261 8.1.5 MgCl ₂ -hexahydrate 262 8.1.6 NaCl 262 8.1.7 0.2 M HCl (Sterilize prior to use; not 2 N HCl) 262 8.1.8 PIPES 262 8.1.9 10x PBS 262 8.1.10 Buffer 1, pH 7,5 263 8.1.11 Buffer 3, pH 9.5 263 8.1.13 1x PBS + 5 mM MgCl ₂ 264 8.1.14 2x SSC + 5 mM EDTA-Na ₂ 264 8.1.15 0.2% Glycine in 1x PBS 264 8.1.16 4% paraformaldehyde (PFA) 265 8.1.18 20x hybridisation salts 265 8.1.19 Orabuschidionality is solution 265	6.4.1.6 In situ Hybridisation	239
6.5 Discussion 243 7.1 General discussion 246 7.1.1 Conclusion and recommendations 257 7.1.2 Project summary 259 8.1 SOLUTIONS 261 8.1.1 DEPC water 261 8.1.2 ddH ₂ O 261 8.1.3 TrisHCl 261 8.1.4 CaCl ₂ 261 8.1.5 MgCl ₂ -hexahydrate 262 8.1.6 NaCl 262 8.1.7 0.2 M HCl (Sterilize prior to use; not 2 N HCl) 262 8.1.9 10x PBS 262 8.1.10 Buffer 1, pH 7,5 263 8.1.11 Buffer 3, pH 9.5 263 8.1.12 Buffer 4, pH 8.0 263 8.1.13 1x PBS + 5 mM MgCl ₂ 264 8.1.14 2x SSC + 5 mM EDTA-Na ₂ 264 8.1.15 0.2% Glycine in 1x PBS 264 8.1.16 4% paraformaldehyde (PFA) 265 8.1.18 20x hybridisation salts 265	6.4.2 Experiment (2) results	240
7.1.2 Project summary 259 8.1 SOLUTIONS 261 8.1.1 DEPC water 261 8.1.2 ddH ₂ O 261 8.1.3 TrisHCI 261 8.1.4 CaCl ₂ 261 8.1.5 MgCl ₂ -hexahydrate 262 8.1.6 NaCl 262 8.1.7 0.2 M HCI (Sterilize prior to use; not 2 N HCI) 262 8.1.9 10x PBS 262 8.1.10 Buffer 1, pH 7,5 263 8.1.12 Buffer 4, pH 8.0 263 8.1.13 1x PBS + 5 mM MgCl ₂ 264 8.1.14 2x SSC + 5 mM EDTA-Na ₂ 264 8.1.15 0.2% Glycine in 1x PBS 264 8.1.17 50x Denhardt`s solution 265 8.1.18 20x hybridisation salts 265	6.5 Discussion7.1 General discussion7.1.1 Conclusion and recommendations	243 246 257
8.1 SOLUTIONS 261 8.1.1 DEPC water. 261 8.1.2 ddH2O 261 8.1.3 TrisHCI 261 8.1.4 CaCl2 261 8.1.5 MgCl2-hexahydrate 262 8.1.6 NaCl. 262 8.1.7 0.2 M HCl (Sterilize prior to use; not 2 N HCl) 262 8.1.8 PIPES 262 8.1.9 10x PBS 262 8.1.10 Buffer 1, pH 7,5. 263 8.1.11 Buffer 3, pH 9.5. 263 8.1.12 Buffer 4, pH 8.0 263 8.1.13 1x PBS + 5 mM MgCl2 264 8.1.14 2x SSC + 5 mM EDTA-Na2 264 8.1.15 0.2% Glycine in 1x PBS 264 8.1.16 4% paraformaldehyde (PFA) 265 8.1.18 20x hybridisation salts. 265 8.1.19 Drahybridisation salts. 265	7.1.2 Project summary	259
8.1.2 ddH2O 261 8.1.3 TrisHCI 261 8.1.4 CaCl2 261 8.1.5 MgCl2-hexahydrate 262 8.1.6 NaCl 262 8.1.7 0.2 M HCl (Sterilize prior to use; not 2 N HCl) 262 8.1.8 PIPES 262 8.1.9 10x PBS 262 8.1.10 Buffer 1, pH 7,5 263 8.1.11 Buffer 3, pH 9.5 263 8.1.12 Buffer 4, pH 8.0 263 8.1.13 1x PBS + 5 mM MgCl2 264 8.1.14 2x SSC + 5 mM EDTA-Na2 264 8.1.15 0.2% Glycine in 1x PBS 264 8.1.17 50x Denhardt's solution 265 8.1.18 20x hybridisation salts 265	8.1 SOLUTIONS	261 261
8.1.3 TrisHCI 261 8.1.4 CaCl2 261 8.1.5 MgCl2-hexahydrate 262 8.1.6 NaCl 262 8.1.7 0.2 M HCl (Sterilize prior to use; not 2 N HCl) 262 8.1.8 PIPES 262 8.1.9 10x PBS 262 8.1.10 Buffer 1, pH 7,5 263 8.1.11 Buffer 3, pH 9.5 263 8.1.12 Buffer 4, pH 8.0 263 8.1.13 1x PBS + 5 mM MgCl2 264 8.1.15 0.2% Glycine in 1x PBS 264 8.1.16 4% paraformaldehyde (PFA) 264 8.1.17 50x Denhardt`s solution 265 8.1.18 20x hybridisation salts 265	8.1.2 ddH ₂ O	261
8.1.4 CaCl2 261 8.1.5 MgCl2-hexahydrate 262 8.1.6 NaCl 262 8.1.7 0.2 M HCl (Sterilize prior to use; not 2 N HCl) 262 8.1.8 PIPES 262 8.1.9 10x PBS 262 8.1.10 Buffer 1, pH 7,5 263 8.1.11 Buffer 3, pH 9.5 263 8.1.12 Buffer 4, pH 8.0 263 8.1.13 1x PBS + 5 mM MgCl2 264 8.1.15 0.2% Glycine in 1x PBS 264 8.1.16 4% paraformaldehyde (PFA) 264 8.1.17 50x Denhardt`s solution 265 8.1.18 20x hybridisation salts 265	8.1.3 TrisHCl	261
8.1.5 MgCl ₂ -hexahydrate 262 8.1.6 NaCl 262 8.1.7 0.2 M HCl (Sterilize prior to use; not 2 N HCl) 262 8.1.8 PIPES 262 8.1.9 10x PBS 262 8.1.10 Buffer 1, pH 7,5 263 8.1.11 Buffer 3, pH 9.5 263 8.1.12 Buffer 4, pH 8.0 263 8.1.13 1x PBS + 5 mM MgCl ₂ 264 8.1.14 2x SSC + 5 mM EDTA-Na ₂ 264 8.1.15 0.2% Glycine in 1x PBS 264 8.1.17 50x Denhardt`s solution 265 8.1.18 20x hybridisation salts 265 9.1 10 Drebubridication mix (DUP, Mix) 265	8.1.4 CaCl ₂	261
8.1.6 NaCl. 262 8.1.7 0.2 M HCl (Sterilize prior to use; not 2 N HCl) 262 8.1.8 PIPES 262 8.1.9 10x PBS 262 8.1.10 Buffer 1, pH 7,5. 263 8.1.11 Buffer 3, pH 9.5. 263 8.1.12 Buffer 4, pH 8.0. 263 8.1.13 1x PBS + 5 mM MgCl ₂ 264 8.1.14 2x SSC + 5 mM EDTA-Na ₂ 264 8.1.15 0.2% Glycine in 1x PBS 264 8.1.16 4% paraformaldehyde (PFA) 265 8.1.18 20x hybridisation salts. 265 8.1.19 Drabubridization mity (DUD Mity) 265	8.1.5 MgCl ₂ -hexahydrate	262
8.1.7 0.2 M HCl (Sterilize prior to use; not 2 N HCl) 262 8.1.8 PIPES 262 8.1.9 10x PBS 262 8.1.10 Buffer 1, pH 7,5 263 8.1.11 Buffer 3, pH 9.5 263 8.1.12 Buffer 4, pH 8.0 263 8.1.13 1x PBS + 5 mM MgCl ₂ 264 8.1.14 2x SSC + 5 mM EDTA-Na ₂ 264 8.1.15 0.2% Glycine in 1x PBS 264 8.1.17 50x Denhardt`s solution 265 8.1.18 20x hybridisation salts 265 8.1 10 Deshubridization mix (PUR Mix) 265	8.1.6 NaCl	262
8.1.8 PIPES 262 8.1.9 10x PBS 262 8.1.10 Buffer 1, pH 7,5 263 8.1.11 Buffer 3, pH 9.5 263 8.1.12 Buffer 4, pH 8.0 263 8.1.13 1x PBS + 5 mM MgCl ₂ 264 8.1.14 2x SSC + 5 mM EDTA-Na ₂ 264 8.1.15 0.2% Glycine in 1x PBS 264 8.1.16 4% paraformaldehyde (PFA) 264 8.1.17 50x Denhardt`s solution 265 8.1.18 20x hybridisation salts 265 8.1.10 Deshybridisation salts 265	8.1.7 0.2 M HCI (Sterilize prior to use; not 2 N HCI)	262
8.1.9 10x PBS 262 8.1.10 Buffer 1, pH 7,5. 263 8.1.11 Buffer 3, pH 9.5. 263 8.1.12 Buffer 4, pH 8.0. 263 8.1.13 1x PBS + 5 mM MgCl ₂ 264 8.1.14 2x SSC + 5 mM EDTA-Na ₂ 264 8.1.15 0.2% Glycine in 1x PBS 264 8.1.16 4% paraformaldehyde (PFA) 264 8.1.17 50x Denhardt`s solution 265 8.1.18 20x hybridisation salts 265 8.1 10 Drebubridization mix (DUD Mix) 265	8.1.8 PIPES	262
8.1.10 Buffer 1, pH 7,5	8.1.9 10x PBS	262
8.1.11 Buffer 3, pH 9.5	8.1.10 Buffer 1, pH 7,5	263
8.1.12 Buffer 4, pH 8.0	8.1.11 Buffer 3, pH 9.5	263
$8.1.13 \ 1x \ PBS + 5 \ mM \ MgCl_2 \$	8.1.12 Buffer 4, pH 8.0	263
8.1.14 2x SSC + 5 mM EDTA-Na2 264 8.1.15 0.2% Glycine in 1x PBS 264 8.1.16 4% paraformaldehyde (PFA) 264 8.1.17 50x Denhardt`s solution 265 8.1.18 20x hybridisation salts 265 8.1.10 Drebybridisation mix (DUB, Mix) 265	8.1.13 1x PBS + 5 mM MgCl ₂	264
8.1.15 0.2% Glycine in 1x PBS 264 8.1.16 4% paraformaldehyde (PFA) 264 8.1.17 50x Denhardt`s solution 265 8.1.18 20x hybridisation salts 265 8.1.10 Drebybridisation mix (DUB, Mix) 265	8.1.14 2x SSC + 5 mM EDTA-Na ₂	264
8.1.16 4% paraformaldehyde (PFA) 264 8.1.17 50x Denhardt`s solution 265 8.1.18 20x hybridisation salts 265 8.1.10 Drebybridisation mix (DUB, Mix) 265	8.1.15 0.2% Glycine in 1x PBS	264
8.1.17 50x Denhardt's solution	8.1.16 4% paraformaldehyde (PFA)	264
8.1.18 20x hybridisation salts	8.1.17 50x Denhardt`s solution	265
9.1.10 Drahybridization mix (DUD Mix)	8.1.18 20x hybridisation salts	265
8.1.19 Prenybridisation mix (PHB-Mix)	8.1.19 Prehybridisation mix (PHB-Mix)	265

8.1.20 50x TAE Electrophoresis Buffer	266
8.1.21 1x TAE Electrophoresis Buffer	266
8.1.22 ssDNA	267
8.1.23 Proteinase K solution:	267
8.1.25 RNA stock solution	267
8.1.26 Dye solution	267
8.2 Rabbit DAVID cluster	269
8.3 Cattle DAVID clusters	283
8.5 Cattle IPA analysis	304
8.6 Rabbit to human with gene description	310
8.7 Rabbit DAVID analysis 1	312
8.9 Cattle DAVID analysis 1	317
8.10 Scripts	320
8.10.1 EdgeR	320
8.10.2 Ballgown	323
8.10.3 Hisat	325
References	339

List of tables

Table 1 shows malignant catarrhal fever viruses and their resevoir Table 2 Function of unique genes in AIHV-1 and OvHV-2 (Russell et

 Table 3 example of virus titration
 65

 Table 4 primers and probes used for target and reference genes throughout the study......76

 Table 5 Labelling steps
 80

 Table 6 shows AIHV-1 ORF65 and ORF A9.5 primer sequences and Table 7 Viral gene transcripts representing either productive or

 Table 8 Summary of results.
 131

 Table 9 sample number, sample name, RNA concentrations and RNA integrity numbers (RIN) for LGL and BT samples sent for RNA-Seq Table 10 conserved gene matrix of rabbit LGLs differentially expressed genes in the presence of 5-azacitidine in comparison to infected only control. 174 Table 11 conserved gene matrix of cattle's differentially expressed genes in the presence of 5-azacitidine in comparison to infected up-regulated and down regulated of rabbit gene Table 12 Table 13 up-regulated and down regulated LGL transcripts involved in the nuclear lumen pathway 179 up-regulated and down regulated of LGL transcripts Table 14 involved in the DNA repair pathway 183 Table 15 up-regulated and down regulated LGL transcripts involved in cellular death and apoptosis pathway 186 Table 16 up-regulated and down regulated LGL transcripts involved in the cell cycle pathway 189 Table 17 up-regulated and down regulated of cattle BT transcripts Table 18 up-regulated and down regulated of cattle BT transcripts involved in endosomal pathways 197 up-regulated and down regulated of cattle BT gene Table 19 up-regulated and down regulated of cattle BT gene Table 20 transcripts involved in lysosomal pathways...... 203 up-regulated and down regulated of cattle BT gene Table 21 transcripts involved in purine and pyrimidine biosynthesis pathways

List of Figures

schematic figure illustrates the simple structure of the Figure 1 herpes virus virion (stdgen.northwestern.edu/stdgen/bacteria/hhv2/herpes.html)......5 Figure 2 demonstrates the genome structure of AIHV-1 and OvHV-2. Figure 3 schematic map shows the changes in genes due to passage resulting in attenuation (Wright et al., 2003)......25 Figure 4 illustrates the herpesvirus life cycle steps from entry to egress. The entry happens when virus glycoprotein attaches to specific cell receptors. Un-coating of the virus takes place in the cytoplasm and linear DNA transferred to the nucleus where the replication and transcription occur. The virus is transported to the cytoplasm through inter-nuclear pore (INP) from the nucleus where complete assembly of the progeny virus takes place. The release of the Herpes virion occurs by budding......27 Figure 6 snapshot of q RT-PCR standard curve......77 Figure 7 AIHV-1 PCR products for ORF A9.5 and ORF65 genes. ... 89 Figure 9 shows the Agilent 6000 Nano chip appearance and its different loading wells 103 Figure 10 infection of bovine turbinate fibroblast (BT) cells 121 Figure 11 Infection of bovine aortic endothelial (BAE) cells 122 Figure 12 Infection of bovine turbinate BT cells with infected BAE123 Figure 13 Infection of SIRC epithelial cells 124 Figure 14 Infection of bovine turbinate BT cells with infected SIRC Figure 15 gPCR products for low-pass AlHV-1 ORF3 gene visualised Figure 16 gPCR products for high-pass AlHV-1 ORF3 gene visualised on agarose gel 126 Figure 17 qPCR products for low and high pass AlHV-1 ORF3 gene visualised on agarose gel. Infected BT cells and controls uninfected BT, SIRC and BAE cells 127 Figure 18 AlHV-1 transcripts in infected BT cells...... 128 Figure 19 AlHV-1 transcripts in infected endothelial cells 129 Figure 21 Q PCR and PCR products for AIHV-1 ORF3 gene 141 Figure 22 Q PCR and PCR products for AIHV-1 ORF3 gene 142 Figure 23 Q PCR and PCR products of AlHV-1 ORF A3 gene...... 143 Figure 24 AlHV-1 DNA copy number in rabbits' large granular Figure 25 BT cells infected with AlHV-1 C500 strain and infected Figure 26 viral gene transcripts of AIHV-1 C500 in rabbit LGLs... 147

Figure 27 viral gene transcripts of AlHV-1 C500 strain in BT cells
Figure 28 flow cytometry analysis of mononuclear cells in LGL non-
treated and treated with 5-azacitidine 150
Figure 29 flow cytometry analysis of LGL double stained with two
fluorescence antibodies in 5-azacitidine treated and non-treated
IYDY cell lines 151
Figure 30 AlHV-1 DNA copy number in rabbit large granular
lymphocytes 167
Figure 31 RNA Integrity Number 168
Figure 32 genome coverage for rabbits (Oryctolagus cuniculus2)
and cattle (Bos tourus 8) 169
Figure 33 mapping percentage for rabbits (Oryctolagus cuniculus2)
and cattle (Bos tourus 8) genomes 170
Figure 34 differentially expressed AlHV-1 virus in rabbits' LGLs and
BT cells
Figure 35 viral DNA load in lymph nodes and blood from rabbits
tissues infected and treated with cyclosporine and infected only
control animals 228
Figure 36 viral DNA load in rabbits' tissues infected and treated
with cyclosporine A and infected only controls
Figure 37 haematoxylin and eosin stain of rabbits' kidney 232
Figure 38 haematoxylin and eosin stain of rabbit's liver
Figure 39 haematoxylin and eosin stain of rabbit's lung 234
Figure 40 haematoxylin and eosin stain of rabbit's appendix 235
Figure 41 haematoxylin and eosin stain of rabbit's spleen 236
Figure 42 viral transcripts of six AlHV-1 genes in rabbits' tissues 238
Figure 43 haematoxylin and eosin stain in rabbit's liver (1) 241
Figure 44 viral DNA load in tissues in infected only and infected and
treated with cyclosporine A group animals (1) 242

List of abbreviations

μΙ	Microliter		
5-aza	5-azacitidine		
AIHV-1	Alcelaphine herpes virus 1		
APHA	Animal and plant health agency		
BAC	Bacterial artificial chromosome		
BAE	Bovine aortic endothelium		
BLAT	Blast-like alignment tool		
BT	Bovine turbinate fibroblast cells		
CPE	Cytopathic effect		
CpHV-2	Caprine herpes virus 2		
CsA	Cyclosporine A		
DEFRA	Department of environment, food and rural affairs		
DEPC	Diethyl bicarbonate		
DMSO	Dimethyl sulfoxide		
DNA	Deoxyribonucleic acid		
EBV	Epstein-Barr virus		
ECACC	European Collection of Authenticated Cell Cultures		
EHV-1	Equine herpesvirus 1		
ELIZA	enzyme-linked immunosorbent assay		
EM	Electron microscope		
ET	Electron tomography		

H-DNA	High guanine-cytosine (GC) content of DNA			
HVS	Herpes virus saimiri			
IFA	Immunofluorescence assay			
IFN-γ	Interferon gamma			
IL-2	Interleukin-2			
IPA	Ingenuity Pathway Analysis			
ISH	In situ hybridisation			
Кbр	Kilo base pair			
KSHV	Kaposi sarcoma-associated herpes virus			
LANA	Latency associated nuclear antigen			
LATs	Latency associated transcripts			
L-DNA	Low guanine-cytosine (GC) content of DNA			
LGLs	Large granular lymphocytes			
MCF	Malignant catarrhal fever			
MCFV	Malignant catarrhal fever virus			
MCF-WTD	Malignant catarrhal fever- white tailed deer			
ml	Millilitre			
mRNA	Messenger Ribonucleic acid			
NK	Natural killer cells			
ORF	Open reading frame			
OvHV-2	Ovine herpes virus 2			
PCR	Polymerase chain reaction			
RNA	Ribonucleic acid			

RTA	R trans-activator protein			
RT-PCR	Reverse- transcriptase PCR			
SA-MCF	Sheep associated malignant catarrhal fever			
SIRC	Serum institute rabbit cornea			
TCR	T cell receptor			
TGN	Transit Golgi network			
WA-MCF	Wildebeest associated malignant catarrhal fever			

Chapter 1

Introduction

1.1 Malignant catarrhal fever (MCF)

1.1.1 General comments:

catarrhal fever (MCF) is acute, systemic, Malignant lethal lymphoproliferative disease of cattle and even-toed ungulates including pigs, deer, and bison (Buxton, 1984; Plowright, 1960; Schultheiss, 2000). The disease is caused by group of viruses belonging to the Herpesviridae family, subfamily Gammaherpesvirinae, genus Macavirus (Li et al., 2005). Two viruses of this group that are known to cause MCF, alcelaphine herpes virus 1 (AIHV-1) and ovine herpes virus 2 (OvHV-2), are widely distributed and extensively studied (Russell et al., 2009). Wildebeest (Connochaetes taurinus) is the reservoir host for AlHV-1 in the sub-Saharan area, hence the name wildebeest-associated MCF (WA-MCF) for disease susceptible-animals that contract MCF from wildebeest. Sheep (Ovis aries) are the reservoir host for OvHV-2 worldwide; hence the name sheep associated MCF (SA-MCF) (Dewals et al., 2008, Russell et al., 2009). There are no clinical signs of MCF in the reservoir hosts, however, often-fatal MCF is seen when virus is transmitted to the disease-susceptible species (cattle, deer, bison, pigs and water buffalo) (Russell et al., 2009). The clinical signs of MCF range from per-acute to mild form and the outcome are usually fatal although recovery has been recorded. The most common symptoms recorded are high fever; salivation, nasal and ocular discharge, diarrhoea, and enlarged lymph nodes.

Pathologically, the disease is characterised with erosions and haemorrhages in the intestinal tract, vasculitis, and infiltration of lymphoid cells in non-lymphoid organs (kidney, lung, and liver) (CFSP, 2012, OIE, 2013). The importance of MCF lies in the fact that the disease is a major cause of death in many disease-susceptible animals worldwide that come into contact with reservoir hosts. It is also a serious welfare issue (Lankester et al., 2015a, Li et al., 2014). MCF occurs worldwide wherever reservoir and diseasesusceptible animals are close to each other, and can affect a wide range of naturally-susceptible species within the Artiodactyl families Cervidae, Suidae, Bovidae, and Geravidae. Most of the well-adapted within the subfamilies carrying hosts are Hippotraginae, Alcellaphinae, and Caprinae, containing roan antelope, wildebeest, sheep, and goats (Li et al., 2005, Russell et al., 2009). Based on their susceptibility to MCF, animals can be classified as relatively resistant (such as European cattle to OvHV-2 MCF) intermediate susceptibility (e.g. water buffalo and most deer) to the highly susceptible ones like Pere David's deer, bison and Bali cattle (CFSP, 2012). Transmission of MCF is brought about by wildebeest calves and lambs between two to nine months through aerosol and close contacts (Li et al., 2011a, Mushi et al., 1981). MCF is associated with a high mortality rate (often 100% in outbreaks where clinical signs are observed) and low morbidity rate (sporadic) (Schultheiss et al., 1998). Rabbits and hamsters are good animal models for the

disease as they show similar clinical signs and pathological changes to those exhibited in the susceptible animals (Anderson et al., 2007, Buxton and Reid, 1980, Buxton et al., 1984).

Gross diagnosis of MCF can be achieved through noting the characteristic clinical signs and pathological changes. Nevertheless, an accurate (specific) diagnosis is necessary as well. Molecular tools such as the polymerase chain reaction (PCR) and serological tests like the enzyme-linked immunosorbent assay (ELISA) have become bench standards for detecting MCF viral DNA and antigen/antibody respectively (Fraser et al., 2006, Li et al., 2001). To date, there is no effective treatment for MCF (Li et al., 2014, Russell et al., 2009). However, there have been vaccine trials by several researchers most without success (Mirangi, 1991, Rossiter et al., 1977) until recently (Haig et al., 2008). Despite the fact that the disease is generally sporadic (affecting small numbers of animals) the incidence of MCF fluctuates year on year and continues to be a problem (Anderson et al., 2007). In some outbreaks MCF can affect up to 40 % of a herd (Russell et al., 2009). The details of the virus life cycle and the pathogenesis (the mechanism by which the disease happens) of MCF is still not well understood (Russell et al., 2009).

1.2 Aetiology of MCF

1.2.1 Herpes viruses

Herpes viruses comprise a large family of DNA viruses that induce disease in both animals and humans (Mettenleiter et al., 2009). The herpesvirion, an infectious virus particle, comprises an icosahedral capsid (Figure 1) consisting of 162 capsomeres (Mettenleiter et al., 2009) which contain a large double stranded linear DNA genome (125 to 240 kilo base pair Kbp), and encircled with an envelope holding glycoprotein spikes on its surface. The structure between the capsid and the envelope is called the tegument which is made up of proteins that are related to the capsid proteins (Pellett and Roziman, 2007). The aim of the productive/lytic infection is to produce progeny virions that are able to spread and infect new cells. In this type of infection, there are regulated viral genes expressions, and genome replication, virion assembly, egress and transmission. Early in this cycle, successive sets of genes are transcribed including a immediate early (IE) that are involved in initiation of virus DNA replication, β early (E) genes that act to DNA replication and control cellular activities such as RNA polymerase II (Estes et al., 2007). After that, the transcription program switches to γ late genes expressing y proteins. The newly replicated viral DNA is integrated into immature capsids and tequment proteins in the nucleus (Mettenleiter & Minson, 2006). The virus also gets its primary envelope in the nucleus, nuclear membranes play role in virus

capsid nuclear egress (Peng *et al.*, 2010). The virus gains its secondary membrane when buds through Golgi apparatus derived vesicles (Mettenleiter *et al.*, 2006). Eventually, mature virion fuse with the cell membrane and buds to the extracellular spaces (Mettenleiter, 2006).

Figure 1 schematic figure illustrates the simple structure of the herpes virus virion (stdgen.northwestern.edu/stdgen/bacteria/hhv2/herpes.html).

The viruses of the family Herpesviridae have common biological features, i.e. they contain groups of enzymes that are implicated in metabolizing nucleic acid, DNA synthesis, and processing of proteins as well as the ability to establish latent infection in their natural hosts (Pellett and Roziman, 2007). The family Herpesviridae is classified into three subfamilies (*Alphaherpesvirinae*, *Betaherpesvirinae*, and *Gamaherpesvirinae*) according to their

biological properties and the viruses within these subfamilies further categorised to genera on the basis of resemblances in the DNA sequence (Pellett and Roziman, 2007).

Herpesviridae are well distributed in nature in a way that most animals have at least one herpesvirus and some viruses have more than one definitive host. To date more than 200 herpesviruses have been recognized, nine of which are human viruses (Pellett & Roizman, 2013). Viruses of veterinary importance are found in mammals, birds and fish. The range of diseases caused by herpesvirus infections is quite large. Moreover, the same virus can provoke different diseases, depending on the viral strain, the age of the animal or the route of infection. Bovine herpesvirus 1 (BHV-1) and Suid herpesvirus 1 (SHV-1) are good examples: BHV-1 infection of cattle causes rhinotracheitis, vulvovaginitis, conjunctivitis, abortion in pregnant cows, encephalitis in young calves, metritis; BHV-1 is also associated with enteritis and mastitis (Pastoret et al., 1982). SHV-1 infection of pigs is followed by abortion in pregnant sows, by septicaemia in neonates, by encephalomyelitis in piglets or by respiratory diseases in young pigs and adults. In domestic animals, clinical disease is usually produced following a primary infection; recrudescent disease, i.e. caused by a reactivated virus, seems to be rare. The situation differs in humans: labial and genital recrudescent lesions are commonly observed in humans infected with herpes simplex virus type 1 and 2 (HSV 1 and 2), even in the

presence of a high level of specific immunity (Nahmias et al., 1981). Shingles is a painful expression of reactivation of varicella-zoster virus, another human herpesvirus.

1.3 Malignant catarrhal fever viruses (MCFV)

Malignant catarrhal fever viruses (MCFV) belong to the genus Macavirus in the subfamily *Gammaherpesvirinae* within the family Herpesviridae (Davison et al., 2009, Gasper et al., 2012). The classification of these viruses within the genus Macavirus came after being categorised previously under the genus Rhadinovirus, and is based on the existence of the 15A antigenic epitope and also due to the resemblance in the conserved regions of the DNA polymerase gene among MCFV (Li et al., 2003, Russell et al., 2009). At least two of these viruses within the MCFV can give rise to the disease in naturally susceptible species and have been studied in detail- AIHV-1 and OvHV-2 (Davison et al., 2009). The MCFV group comprises ten viruses (Table 1). Six of these viruses have been recognised as pathogenic (capable of inducing disease in the susceptible host) (Li et al., 2003). The pathogenic ones consist of alcelaphine herpes virus 1 (AlHV-1), ovine herpes virus 2 (OvHV-2), alcelaphine herpes virus 2 (AIHV-2), ibex-MCFV, caprine herpes virus 2 (CpHV-2), and MCF- white tailed deer (WTD) (Gasper et al., 2012, Li et al., 2003). Wildebeest associated MCF (WA-MCF) caused by AlHV-1 poses an important problem in cattle in Eastern and Southern Africa and zoos where natural and susceptible species are kept together in the same vicinity. Sheep associated MCF (SA-MCF) is considered as a major problem in many parts of the world, in particular, to the highly vulnerable animals, like Bali cattle, Pere David's deer, and bison as

well as in zoological collections where sheep and susceptible animals co-mingle (Heuschele, 1988, Plowright et al., 1960, Schultheiss et al., 1998).

Table 1 shows malignant catarrhal fever viruses and their resevoir and susceptible species (Li et al., 2014).

The virus	Disease	natural	Susceptible host
	documented	host	
AIHV-1	\checkmark	Wildebeest	cattle
AIHV-2	\checkmark	Hartebeest	Deer and bison
OvHV-2	\checkmark	Sheep	Cattle, deer, bison, pigs, and giraffe
CpHV-2	\checkmark	Goat	Sika deer and white tailed deer
Ibex-MCF	\checkmark	Ibex	Bongo and anoa
MCF-WTD	\checkmark	Unknown	White tailed deer
HiHV-1	X	Roan antelope	Unknown
Oryx-MCF	Х	Oryx	Unknown
Muskox- MCF	Х	Muskox	Unknown
Aoudad- MCF	X	Aoudad	Unknown

Abbreviations: AlHV-1, alcelaphine herpes virus 1. AlHV-2; alcelaphine herpes virus 2. OvHV-2; ovine herpes virus 2, CpHV-2; caprine herpes virus 2, Ibex-MCF; ibex9-malignant catarrhal fever, MCF-WTD; MCF-white tailed deer, HiHV-1; hippotrogine herpes virus 1, Oryx-MCF; Oryx-malignant catarrhal fever, Muskox-MCF; Muskox-malignant catarrhal fever, Aoudad-MCF; Aoudad-malignant catarrhal fever. $\sqrt{}$: Yes, X: NO.

The reservoir host for MCFV-WTD is still unidentified. However, the virus can infect and give rise to MCF in white tailed deer in North America and the virus was found to be genetically closely related to AlHV-1 and OvHV-2 (Li et al., 2000). Domestic and wild goats are

the reservoir hosts for CpHV-2 and the virus is endemic in them. In addition, it has been reported that the virus can cause MCF in a wide range of species including pronghorn antelope, white tailed deer, and sika deer. The most common symptoms associated with the CpHV-2 MCF are emaciation, alopecia, and dermatitis (Keel et al., 2003, Li et al., 2011b). AIHV-2, initially, was classified as apathogenic under natural circumstances. Nevertheless, the virus was isolated from Jackson's hartebeest which induced MCF in Barbary red deer leading to the observation that the virus can be pathogenic (Klieforth et al., 2002, Li et al., 2003, Li et al., 2005). Ibex MCF virus found in ibex is capable of inducing MCF in bongo, an American forest antelope and in anoa (midget buffalo) (Li et al., 2011b). The non-pathogenic MCFV are Hippotragine herpes virus 1 (HiHV-1) and Oryx-MCFV in roan antelope and Oryx respectively with no recognisable susceptible hosts as well as Muskox and Aoudad MCFV in Muskox and Aoudad also with no susceptible hosts recognised to date (Li et al., 2005).

1.4 Genomic structure of AIHV-1 and gene function

AlHV-1 can easily be grown in cell culture. In contrast, it has been difficult to propagate OvHV-2 *in vitro*. This has hindered the study of OvHV-2 virology, infection, and pathogenesis. However, the use of T-lympho-blastoid cell lines with the morphology of large granular lymphocytes (LGL) derived from organs from MCF-affected animals has enabled researchers to study the host-virus communication (Hart et al., 2007a). These large granular lymphocytes are large lymphoblasts that can grow in the absence of exogenous cytokines and are indiscriminately cytotoxic, killing various target cells in a non-MHC-dependent manner (swa et al., 2001). The two viruses have had their genomes sequenced (Figure 2) (Ensser et al., 1997a, Hart et al., 2007a). The OvHV-2 genome is very similar to that of saimiri AIHV-1 and herpesvirus (HVS), a gamaherpesvirus categorised under the genus Rhadinovirus. Both viruses have a unique sequence of around 131 kbp and these are flanked by terminal repeats of 4.2 kbp and 1.1 kbp for OvHV-2 and AlHV-1 respectively. OvHV-2 has 73 open reading frames (ORFs), 62 of which have homologues in other *gammaherpesviruses* whereas AlHV-1 contains 70 ORFs, 61 of which are conserved among other gammaherpesviruses. Eight out of the 10 unique genes, designated A1 to A10 in AlHV-1, have homologues in OvHV-2 while OvHV-2 includes 3 completely unique ORFs, i.e. Ov2.5, Ov3.5, and Ov8.5 (Ensser et al., 1997a, Hart et al., 2007a). All ORFs of the two

named after those within the other viruses were gamaherpesviruses. As such, ORFs with similarity in herpesvirus saimiri were given the number of the related herpesvirus saimiri gene. Those which are unique to each virus were designated prefixes with A and Ov for AlHV-1 and OvHV-1 respectively followed by numbers one to ten. The unique genes of OvHV-2 assigned a nomenclature showing the relative position of the adjacent genes, for example, Ov2.5 locates between OV2 and Ov3 and so on and so forth for the other genes (Hart et al., 2007a, Russell et al., 2009).

Figure 2 demonstrates the genome structure of AIHV-1 and OvHV-2.

Genes are shown as block arrows representing their orientation and position of open reading frames. Gene designations are written below according to the numbering system adopted in Herpes virus saimiri. The unique genes in both viruses are shaded grey and named beneath each gene with a prefix A for AlHV-1 virus and Ov for OvHV-2 whereas conserved genes are shown as white arrows. The terminal repeats (TR) are given grey shaded blocks. (Russell et al., 2009).

1.5 AlHV-1 genome sequence classification

Following the complete AIHV-1 DNA genome characterized by Ensser and co-researchers in 1997, Coulter et al. (2001) arranged the Herpesvirus genome sequences in five blocks, designated the roman numbers, based on the gene similarity among the viruses within this family. Blocks I, II, IV include ORFs that are conserved within all herpesviruses subfamilies while blocks III and V comprise ORFs that are conserved between the subfamily *Gamaherpesvirus* only. Block I contains ORFs 6 to 9. Block II contains ORFs 17 to 47. Block III contains ORFs 48 to 50. Block IV contains ORFs 52 to 69. Block V contains ORF75.

There are changeable areas which can be assigned A-F disseminated between these conserved blocks of genes throughout the family of Herpesviruses. In AlHV-1 area A comprises A1 to A4 and ORF3. Area B comprises A5 and ORFs 10 and 11. Area D/E comprises A6, A7, A8, ORFs 73, 75, A9, and A10 (Coulter et al., 2001).

1.6 AIHV-1 genome sequence

As in Herpesvirus saimiri, the low guanine-cytosine (GC) content (L-DNA) (46.17%) in AlHV-1, which contains the coding ORFs is surrounded by high GC content area of nucleotide repeats (H-DNA) (71.83%) which is considered as predominately a non-coding region (Ensser et al., 1997a). The L-DNA region of around 131,000 Kbp nucleotide sequence comprises (Figure 2) 70 ORFs as previously found by Ensser et al. (1997a). However, Mills et al. (2003) and Russell et al. (2013) discovered two new ORFs in AlHV-1 virus located in the inter-genic spaces between ORF 6 and ORF3 (designated ORF A4.5) and between ORF A9 and ORF A10 which is assigned ORF A9.5. This brings the number of open reading frames in the L-DNA region to 72 ORFs instead of 70 as previously stated. Consequently, the number of the unique genes (shared by AIHV-1 and OvHV-2 plus unique to AlHV-1) in AlHV-1 virus is twelve to date. Ten of these have homologues in OvHV-2 and two are unique to AlHV-1. Ovine herpes virus genes Ov2 and Ov3 which have homologues in AIHV-1 lie in the left end of the unique region whereas Ov2.5 and Ov3.5 locate in the same area but with no homology with AIHV-1 genes (Hart et al., 2007a, Russell et al., 2009).

The ORFs A1 to A4 are located at the left end of L-DNA genome and at the right end of the H-DNA region whereas ORF A4.5 and Ov4.5 lie between ORF3 and ORF6 (Coulter et al., 2001, Hart et al., 2007a,
Russell et al., 2009). ORF A5 and Ov5 locate between ORFs 9 and 10 (Coulter et al., 2001, Hart et al., 2007a). ORFs A6, A7, A8 and Ov6, Ov7, and Ov8 locate amongst ORF50 and ORF52. Ovine herpes virus Ov8.5 with no homology in AIHV-1 locates between ORF73 and ORF69 (Hart et al., 2007a, Russell et al., 2009). ORF A9 and Ov9 locate after ORF75 towards the right H-DNA genome while A10 and Ov10 locate adjacent to and to the left of the right H-DNA repeat (Coulter et al., 2001, Hart et al., 2007a, Russell et al., 2009). ORF A9.5 and its homologues Ov9.5 lie between A9 and A10, and Ov9 and Ov10 respectively (Russell et al., 2014, Russell et al., 2013). Figure 2 shows the location of the unique genes on both AIHV-1 and OVHV-2 genomes.

1.7 Spliced genes in AlHV-1 virus

Splicing is a process that happens in the nucleus after transcription to RNA in which the introns are removed and the exons are joined together to make mRNA which can then be translated to a protein within the ribosomes (House, 2008; Poulos, 2011). This process is important as it removes the introns (non-coding sequence) and joins exons (coding-sequence) to produce mature mRNA.

In the two MCF viruses that have been sequenced (AIHV-1 and OvHV-2) splicing takes place in both conserved and unique ORFs (Ensser et al., 1997a, Hart et al., 2007a). ORF A2 encodes a spliced product and ORF50 the R-transactivator gene is expected to show

splicing due to the fact that herpesviruses equivalent genes exhibit splicing (Ensser et al., 1997a).

1.8 Functions of non-conserved genes

ORF A1 has no homology to other herpes virus ORFs and its putative protein product is not similar to any known proteins with no known function. It is therefore assumed to be non-functional or a pseudogene (Russell et al., 2009). Table 2 lists the known and predicted functions of the twelve unique genes of AlHV-1. ORF A2 and ORF Ov2 are similar to ATF3 which is considered as stressinduced transcription factor. A2 gene and its product is a member of the basic leucine zipper proteins implicated in altering host genes expressions. Therefore, they may play a role as transcription factor (Hart et al., 2007a, Parameswaran et al., 2014). Nevertheless, AIHV-1 ORFA2 is dispensable for the induction of MCF (Parameswaran et al., 2014). Semaphorins are huge family of glycoproteins that are found in all vertebrates and invertebrate's species in addition to viruses (Jongbloets et al., 2013). It has been found that these proteins are involved in many biological activities like cancer, bone haemostasis, and immune system (Xu et al., 1998). Semaphorin 7A (SEMA7A) is encoded by AlHV-1 ORF A3 and OvHV-2 ORF Ov3 homologue (Myster et al., 2015). However, AlHV-1 ORF A3 has not been implicated in lymphocytes infiltration in MCF but is essential for avoiding immune evasion (Myster et al., 2015).

Ovine herpes virus Ov3.5 is a unique gene with no similarity to any other viral genes encoding a putative signal peptide. Therefore, it thought to be secreted by the infected cells (Hart et al., 2007a, Thonur et al., 2006). ORF A4 has no obvious role with no homology to other herpes virus ORFs (Russell et al., 2009). ORF A4.5 is similar to OvHV-2 Ov4.5 which encodes a protein similar to Epstein-Barr virus EBV BALF1 and cellular B-cell lymphoma genes of the Bcl-2 family that regulate programmed cell death (apoptosis). It seems therefore that this gene may be involved in inhibiting/supporting cell death, hence encouraging cell survival and establishment of productive and / or latent infection cycles (Hart et al., 2007a, Russell et al., 2009).

AIHV-1 ORF	OvHV-2 ORF	Function
A1		Unknown
A2	Ov2	Leucine zipper protein; transcription regulation
	Ov2.5	Viral IL-10
A3	Ov3	Semaphorin homologue; intracellular signalling
	Ov3.5	Unknown, signal peptide
A4		Unknown
A4.5	Ov4.5	Bcl-2 homologue; cell death regulators
A5	Ov5	GPCR (G-protein coupled receptor); intracellular signalling
A6	Ον6	Similar to Epstein-Barr virus BZLF1; viral transactivator
A7	Ov7	Virus glycoprotein
A8	Ov8	Virus glycoprotein
	Ov8.5	Unknown
A9	Ov9	Bcl-2 homologue; cell death regulators
A9.5	Ov9.5	Secreted glycoprotein with unknown function
A10	Ov10	Unknown, glycoprotein

Table 2 Function of unique genes in AlHV-1 and OvHV-2 (Russell et al., 2009).

ORF A5 is similar to OvHV-2 Ov5 encodes a G protein-coupledreceptors orthologue (GPCRs), hence it may play a role in modulating the host immune defence or any of the other functions of this diverse family of molecules (Ensser et al., 1997a, Hart et al., 2007a). However, the role of this ORF was investigated using the bacterial artificial chromosome AlHV-1BAC to produce a recombinant virus with a deleted A5 gene. Animals infected with this clone developed MCF-like syndrome indicating that A5 has no function in the development of MCF (Boudry et al., 2007). ORF A6 is similar to OV6 encodes a protein similar to EBV BZLF1 which encodes a protein considered as a transcriptional factor that is responsible for

the activation of early genes leading to latent / lytic cycle switch (Coulter et al., 2001, Hart et al., 2007a). ORF A7 and A8 and their homology Ov7 and Ov8 in OvHV-2 virus are viral glycoproteins and may have a role in cell attachment and entry to the host cell (Coulter et al., 2001, Hart et al., 2007a, Russell et al., 2009). ORF A9 and Ov9 has similar predicted function to ORF A4.5 as it has homology to bcl-2 anti-apoptosis family genes and therefore may inhibit/induce the host cell death (Coulter et al., 2001, Russell et al., 2009) to enhance productive and /lytic infections. ORF A10 is putative (unknown gene function) glycoprotein and may be involved in cell attachment and entry to the host cell (Coulter et al., 2001). ORF A10, similar to Ov10, is putative (unknown gene function) glycoprotein and may be involved in cell attachment and entry to the host cell (Coulter et al., 2001, Hart et al., 2007a, Russell et al., 2009). Ovine herpes virus Ov8.5 with no similarity to any genes in AlHV-1 genome has no identified function (Hart et al., 2007a, Thonur et al., 2006). ORF A9.5 is similar to Ov9.5 encoding secreted glycoprotein that is similar to IL-4 (Lankester et al., 2015b, Russell et al., 2014, Russell et al., 2013). However, the role of this gene in inducing MCF is still unknown.

1.9 Gene similarities to other herpes viruses

AlHV-1 ORF73, encodes latency associated nuclear antigen (LANA), is homologous to latency associated transcripts of other herpes

viruses including HHV-8- also known as Kaposi's sarcomaassociated herpesvirus (KSHV LANA) ORF73 (Palmeira et al., 2013, Taus et al., 2007), herpes saimiri ORF73 (Blake, 2010), And EBV Epstein Barr nuclear antigen (EBNA1) (Blake, 2010). These are important for the viral latency cycle (Hu et al., 2002). It looks likely therefore that AIHV-1 ORF73 has the same function (Dewals et al., 2008, Palmeira et al., 2013). The R transactivator (RTA) ORF50 has a role in switching from latency to lytic replication responsible for the productive life cycle (Frame and Dalziel, 2008, Goodwin et al., 2001, Staudt and Dittmer., 2007). ORF 25 homologue is conserved in all herpesviruses and encodes a major capsid protein (Ensser et al., 1997a). This ORF product is expressed during the lytic cycle demonstrating viral replication (Cunha et al., 2008, Dewals et al., 2008). ORF63 is conserved among other herpes viruses and encodes a tequment structural protein (Boyle and Monie, 2012, Ensser et al., 1997a). The presence of these proteins is associated with the expression of ORF50/ORF25 responsible for productive/lytic cycle (Gailbreath et al., 2008, Meier-Trummer et al., 2009b).

1.10 Gene expression of the MCF viral genome,

latency and lytic cycles

Based on the genome sequence of OvHV-2, Thonur et al. (2006) studied the transcription of OvHV-2 genes and its conformation in lymphocytes from both natural (wildebeest and sheep) and

susceptible hosts (cattle, bison, pigs, deer, water buffalo). OvHV-2 viral genome from peripheral blood mononuclear cells derived from sheep (natural host reservoir species) was primarily circular as Gardella measured using gel analysis, indicating а latent conformation and mRNA for only Ov3.5 unique gene, encoding a putative signal peptide which thought to be secreted by the infected cells, identified. In contrast, cultured was large granular lymphocytes (LGL), have natural killer (NK)/T cells morphology, contain enriched-population of infected cells and are good source to study virus-host interaction, from the rabbit (a MCF-susceptible species following experimental infection) had mainly a linear viral genome indicating productive cycle whereas bovine (natural disease-susceptible host) LGL cultures contained mainly circular viral DNA indicating latency dominance. Both these susceptible species genomes expressed nearly all of the virus unique genes. Their expression in this experiment indicates that they may be involved some way in MCF pathogenesis. Treating the LGLs from the susceptible species with doxorubicin, a drug used for cancer treatment that drives the productive life cycle (AbuHammad and Zihlif, 2013, Feng et al., 2004, Rahman et al., 2001), stimulated predominantly linear genome from latent circular ones, while treatment with 5-azacytidine, a drug utilised to stimulate latency in EBV-infected tissues (Feng et al., 2004, Mossman et al., 1989, Schaefer et al., 1997), supported circular genome production in LGL

lines and a range of putative latency transcripts (Thonur et al., 2006). In spite of productive cycle gene expression, no virions were detected by electron microscopy (EM) in the cultures, indicating an incomplete virus life cycle (Thonur et al., 2006). These results are in agreement with the previous work of Rosbottom and co-researchers who made the same conclusion (Rosbottom et al., 2002).

In particular, OvHV-2 and AlHV-1 gene expression in the tissues of infected cattle or rabbits indicated that the latency transcript ORF 73 could be detected, leading to a belief that MCF is a disease of latency (Meier-Trummer et al., 2009a, Palmeira et al., 2013). In contrast, other researchers have shown evidence of viral replication and productive virus associated with this (Cunha et al., 2012, Cunha et al., 2013, Li et al., 2008a, Nelson et al., 2013). The structural viral proteins (as mRNA transcripts) were identified in organs within SA-MCF virus-infected rabbits indicating viral replication was occurring (Gailbreath et al., 2008). In addition, it was found that there was low expression of ORF50 in lymphoid tissues extracted from WA-MCF-affected rabbits, which might indicate productive infection (Dewals et al., 2008).

1.11 Virulent and attenuated forms of AIHV-1

AlHV-1 C500 strain derived from a cow (Plowright et al., 1960, Plowright et al., 1975) that developed MCF can be cultured in bovine turbinate (BT) cells (Handley et al., 1995). After several passages (up to 5 times) the virus exists as free virus that is virulent and can cause disease when injected into MCF-susceptible animals (Dewals et al., 2011, Haig et al., 2008, Palmeira et al., 2013, Parameswaran et al., 2014) but as culture passages proceed, the proportion of virus that is attenuated (i.e. cannot induce disease when injected into MCF-susceptible animals) increases. Virus can exist as free in culture or as a proportion that is cell-associated and not excreted into the cultures (Wright et al., 2003). Handley et al. (1995) conducted the first study of these changes. They found out that an area in the middle of AlHV-1 DNA was deleted that results in virus attenuation. This region contains the distal part of ORF 50b, proximal part of A6 and distal part of A10.

The AIHV-1 C500 strain was completely sequenced by Ensser et al,. (1997a), allowing more detailed study. Wright et al. (2003) discovered that after multiple passages *in vitro* there was evidence of gene deletion, translocation, and duplication that could be involved in attenuation process. Candidate ORFs included ORF50 and ORF A6 that were truncated and translocated (distal part of ORF 50b, proximal part of A6 and distal part of A10). ORF48 and ORF A7 might have been affected which locate to either side of the translocated fragments (Figure 3) (Wright et al., 2003).

Figure 3 schematic map shows the changes in genes due to passage resulting in attenuation (Wright et al., 2003).

A further proteomic study identified differences in protein expression between the virulent and attenuated forms of AIHV-1 (Dry et al., 2008). This revealed that 23 virus proteins were expressed in both virus forms. This means that there was no change in the structural composition of the virulent and attenuated viruses detectable by this method. It was concluded therefore that the attenuation of the virus was not due to the virus particle structure, but perhaps a result of altered viral gene expression in the infected cell (Dry et al., 2008).

1.12 Virus life cycle

The life cycle (Figure 4) of viruses of the herpesvirus family is initiated when the virus engages with the host cell surface, binding to specific receptors, for example, it was shown that gD of herpes simplex virus-1 (HSV-1) bound to the herpes virus entry mediator A (HveA receptor) whereas gp42 of Epstein-Barr virus (EBV) bound to HLA-DR (Flint et al., 2009). The receptors used by MCF-related viruses to enter the host cell are still not known (Russell et al., 2009). After binding of viral envelope glycoproteins to cell membrane receptors, entry is brought about by membrane fusion proteins. By contrast, a study carried out to identify the different of Gammaherpesvirus life stages cycle using murine gammaherpesvirus 68 (MHV 68) and utilizing dual-axis electron tomography (ET) revealed that the entry occurs by endocytosis (Peng et al., 2010). Once the virion is internalised, un-coating or disassembling occurs and the DNA genome is released and then transported via transit Golgi network (TGN) to the nucleus where the linear double stranded DNA genome is circularised by covalent bonds before replication. After that, viral DNA is transcribed into early mRNAs which are then transported to the cytoplasm for early protein synthesis. These early proteins are imported into the nucleus and promote viral DNA replication. The viral DNA is then transcribed into the late mRNAs which are responsible for late viral protein synthesis (capsid and envelope proteins). The viral envelope proteins are processed in the endoplasmic reticulum (ER) and Golgi complex. The capsid proteins are imported into the nucleus and then encapsidate the newly replicated genomes. The assembly of the progeny virions partially occurs in the nucleus and in the cytoplasm by the Golgi membranes. The release of the enveloped virus from the host cell occurs by budding (Flint et al., 2009).

Figure 4 illustrates the herpesvirus life cycle steps from entry to egress. The entry happens when virus glycoprotein attaches to specific cell receptors. Un-coating of the virus takes place in the cytoplasm and linear DNA transferred to the nucleus where the replication and transcription occur. The virus is transported to the cytoplasm through inter-nuclear pore (INP) from the nucleus where complete assembly of the progeny virus takes place. The release of the Herpes virion occurs by budding.

There have been studies carried out on MCF viruses' replication, in particular, OvHV-2. These studies were able to identify the stages through which OvHV-2 replicate in both reservoir and susceptible host (Li et al., 2008a, Rosbottom et al., 2002, Taus et al., 2010). In sheep, the reservoir host for SA-MCF, the virus initially replicates in particular in the alveolar epithelium of the lung. This takes place in the early stage of the disease course. Afterwards, the virus disseminates into the blood (tropism) favouring the lymphocytes where it can establish latent infection (Li et al., 2008a, Taus et al., 2010). Ultimately, the virus targets the respiratory system, especially the lung and nasal sinuses where it departs the host in a cell-free form (Cunha et al., 2012). In susceptible species such as rabbits and bison that have been experimentally infected, the pattern of infection, initially, is similar to the reservoir host where the virus replicates in the lung tissue and then disseminates into the blood. However, the pattern here varies from the one in the reservoir host. The expression of ORF50, ORF25, and ORF73 is marked in most of the tissues (Cunha et al., 2012). The expression of ORF63 and ORF43 genes encoding structural proteins in the tissues of the susceptible species supports the incidence of viral replication (Meier-Trummer et al., 2009b). With regard to AIHV-1 virus, the details of virus life cycle are still unknown. Nonetheless, recent work has shown that the virus replicates in the lung of the susceptible species in very early clinical stage and then disseminate

into the blood where it establishes latency in T lymphocytes (mainly CD8⁺ T lymphocyte) (Myster et al., 2015, Palmeira et al., 2013).

1.13 Latency

MCF-associated viruses (AIHV-1 and OvHV-2) are assumed similar to the viruses of the family *Herpesviridae* in terms of their ability to become latent. The herpes viruses are able to establish latency in natural host tissues and sometimes in tissue culture (Flint et al., 2009). The hallmark of this stage is that the viral genome is preserved as a circular episome inside the nucleus, few viral genes are expressed (Virgin et al., 1999), and no virions produced. Moreover, the cytopathic effects (cell lysis due to the lytic virus cycle) are inhibited and the virus can avoid the host immune control (Blake, 2010). Reactivation occurs when the host immune system is stressed or compromised (Russell et al., 2009). Different herpesviruses have the ability to establish latency in certain cells. For example, Herpes simplex virus (HSV) remains latent in peripheral sensory ganglia (Flint et al., 2009) whereas the Epstein-Barr virus undergoes latency in B lymphocytes and epithelial cells (Mesri et al., 1996). In regard to the MCF-associated viruses AlHV-1 or OvHV-2, the site in which the viruses establish latency it is still unknown (Russell et al., 2009).

The mechanism by which Herpes viruses establish latency is complex and not completely known (Flint et al., 2009, Nicoll et al.,

2012). In herpes simplex virus 1 (HSV 1), supporting of latency goes through two important steps. In the first one the virus suppresses the expression of lytic cycle genes and secondly prevent programed cell death (apoptosis) (Nicoll et al., 2012). The expression of latency associated transcripts (LAT) is important in establishing latency in HSV1 and HSV 2 (Nicoll et al., 2012). LAT is a set of RNAs encoded from the virus genome resulting in the construction of minor LAT transcripts. These transcripts inhibit the immediate early genes (IE), such as ICP0 (transcriptional activator) and ICP4 (transcriptional regulator), required to initiate lytic/productive cycle in the host cell (Nicoll et al., 2012). In addition, LATs are involved in repression of proteins production such as glycoprotein gD and gJ, ICP27 (transcriptional factor), ICP10 (apoptotic regulator), which is responsible for the promotion of cell survival (Nicoll et al., 2012).

The role of micro-RNA (miRNA) in regulating viral latency has been highlighted. Micro-RNA is non-coding sequence belongs to the RNA family and found in plants, animals, algae and viruses (Griffiths-Jones, 2008). EBV and KSHV which belong to *gammaherpes* virus subfamily, have been found to encode miRNAs (Pfeffer, 2005) that are associated with immune response (Grundhoff, 2011) and also have anti-apoptotic role (Seto, 2010).

1.14 Symptoms and pathology of MCF

1.14.1 Clinical signs

Animals affected include cattle deer, bison, and pigs. The signs are similar for AIHV-1 and OvHV-2 MCF. The clinical signs of MCF are diverse as the disease can affect many systems of the infected animals including the digestive system, respiratory system, head and eye, nervous system, and uro-genital system (Liggitt and DeMartini, 1980a, Liggitt and DeMartini, 1980b, Russell et al., 2009). MCF has many forms ranging from peracute to mild stages. The symptoms are few in the peracute phase, which is characterised by sudden death. However, depression, weakness, dysentery may develop 12 to 24 hours before the onset of death. This is mostly seen in the highly susceptible species (CSFH, 2012; OIE, 2013). In the acute form, the clinical signs are more obvious and are associated with the emergence of high fever, inappetence, lachrymation, nasal discharge which progresses to mucopurulent, corneal opacity, decrease in milk production, and skin lesions in the form of ulceration and exudation that are mainly found in perineum, udder and teats. Salivation, erosions of the tongue and the buccal papillae are detected. Superficial lymph nodes are enlarged and limb joints may be swollen. Head pressing, hyperesthesia, tremors and nystagmus are the most obvious nervous signs of the MCF (Russell et al., 2009, Zemljic et al., 2012). The severity of the disease depends on the causative agent, species infected and the course of

disease (Russell et al., 2009). Although the clinical signs are similar in other species to those found in cattle, there is some variance in some aspects. For instance, in bison, the animals usually die in the acute stage without developing the head and eye form, diarrhoea, neurological signs as well as lymph nodes only slightly enlarged. Acute MCF is predominant; however, chronic disease and recovery of some cases have also been documented (Milne and Reid, 1990, O'Toole et al., 1997).

1.14.2 Pathology of MCF

The macroscopic pathological changes are commonly diffuse and mirror the intensity of the clinical signs, and may include most body systems (OIE, 2013). Erosions and petechial haemorrhages are seen in the gastrointestinal tract and echymotic haemorrhages (a haemorrhagic spots forming rounded and irregular patch) of the gall bladder epithelium. In the respiratory tract the development of a diphtheric membrane and erosions are often recognized. Lymph nodes are enlarged, in particular in cattle and can be solid, and white when cut. Kidneys' surfaces are, generally, characterised by the presence of white foci (OIE, 2013; CSFH, 2012; Russell et al, 2009).

Epithelial degeneration, vasculitis, hyperplasia and necrosis of lymphoid organs, and the accumulation of lymphoid cells in nonlymphoid organs are the main obvious microscopic appearances

in MCF (OIE, 2013). Vascular lesions exist and are obvious in the arterioles, venules, arteries and veins of tissues including the brain. They are identified by the infiltration of the lymphoid cells in the tunica adventia and media of the blood vessels. The accumulation of the lymphoid cells is pronounced, especially, in the renal cortex, periportal regions of the liver, and extremely large in the kidney (OIE, 2013).

The infiltration of lymphoid cells in both SA-MCF and WA-MCF are mostly T cells, the majority of which are CD8⁺ T cells along with very small numbers of CD4⁺ T cell (Anderson et al., 2007, Dewals et al., 2008).

1.15 Epidemiology of MCF

1.15.1 MCF Transmission

Although MCF viruses (AIHV-1 and OvHV-2) show no clinical signs in the reservoir host, they can induce the disease in susceptible species. Both viruses can be propagated horizontally from reservoir to susceptible host by either direct contact or respiratory route, mostly from lambs and wildebeest calves under 12 months old (Li et al., 1998, Mushi and Rurangirwa, 1981, Mushi et al., 1980). The horizontal transmission between the susceptible hosts does not occur and they are considered as dead end hosts (Ackermann 2006). Nonetheless, some cases of transmission among infected deer were documented (Reid et al., 1986). Also, it has been shown that the inability of animals to transmit the disease horizontally is owing to the cell-associated trait of the viruses as well as the failure to shed cell-free viruses by the animals (Li et al., 2014). However, vertical transmission has been documented in susceptible host animals. In study carried out by Plowright et al, (1972) a cow was inoculated with AlHV-1. After 84 months the cow was killed and the virus was grown in a culture from its organs. It was found that four out of the six calves that the cow yielded throughout its life were infected with the virus after parturition. In addition, OvHV-2 genome was identified in specimens of digestive tract, respiratory and urogenital tract of a sheep as well as semen of rams (Hussy et al, 2001; CFSPH, 2012). These observations have defined a possible

role for vertical transmission for passing the infection to the progeny after birth. Although the presence of both reservoir and susceptible hosts within the same vicinity is fundamentally required to transmit MCF, some cases of infection have been recorded when both types of hosts were at some distance up to five Km (CFSPH, 2012). The role of external parasites (Plowright, 1965) and urine (Michel, 1993) in transmitting MCF is ruled out.

1.15.2 Geographical distribution

Malignant catarrhal fever is distributed all over the globe; however, the incidence of the disease is dependent on both the causative agent and the susceptible host (CFSPH, 2012). WA-MCF is found in the sub-Saharan region in Africa when cattle and wildebeest are reared together in the same proximity. In addition, many cases of WA-MCF have been reported from wild parks and zoological gatherings (Russell et al., 2009). Sheep associated malignant catarrhal fever is found mainly in Europe and North America (Russell et al., 2009). However, the disease has been reported from various areas of the world in the Middle East (Abu Elzein et al., 2003) in New Zealand (Russell et al., 2009). Moreover, the disease is considered as a serious problem in Bali cattle in Indonesia (Wiyono et al., 1994).

1.15.3 Susceptible species

Malignant catarrhal fever viruses can infect a wide range of animals worldwide and exhibit clinical signs in these species. These animals belong to subfamily Bovinae including, cattle, bison, and water buffalo as well as family Cervidae containing, deer and moose. It has also been found that MCF viruses can induce the disease in animals belong to other species such as pigs and giraffes (Russell et al, 2009; CSFH, 2012). Some species are more sensitive to the infection of certain type of MCF virus than other species. For example, European cattle are more easily infected with OvHV-2 and are somewhat more resistant to AlHV-1. In contrast, animals such as Pere David's deer, wild-tailed deer, and bison are extremely susceptible to OvHV-2 infection (CFSPH, 2012).

1.16 Disease Impact

The lack of an effective reporting approach along with misdiagnosis of the clinical MCF has almost certainly led to the under-diagnosis of MCF (O'Toole et al., 1997). The significance of MCF lies in the fact that the disease is considered as a major cause of death in farmed bison in North America (Li et al., 2006), farmed deer and Bali cattle as well as a cause of death wherever the reservoir and host species for the virus cohabit. In the USA, an outbreak of MCF in 2003 led to the death of about 800 bison resulting in a loss of millions of dollars to the owners (Li et al., 2006). This has led the United States department of agriculture (USDA) placing MCF research in its priority programme. MCF is also reported as a serious problem in farmed deer in variety of locations and Bali cattle in Indonesia (Wiyono et al., 1994). The disease is mainly sporadic in Europe and the UK. However, outbreaks range (60-300) occurs annually in the UK. In addition, MCF may contribute to Bovine respiratory disease (Parameswaran et al., 2014). This has led organisations such as Animal and Plant Health Agency (APHA), Department for Environment, Food and Rural Affairs (DEFRA), and Global Alliance for Livestock Veterinary Medicines (GALVMED) to support research on MCF control (personal comment, David Haig). In Africa, it has been estimated that about 7% of the cattle exposed to wildebeest calves during migration perish due to MCF (Cleaveland et al., 2001). Consequently, MCF has been placed as one of the most significant

cattle diseases in certain parts of eastern and southern Africa (Cleaveland et al., 2001). MCF is a major cause of death in zoological gatherings where susceptible and reservoir hosts cohabit, hence loss of some expensive animals (Russell et al., 2009). The significance of MCF does not only lie on the fact that the disease can cause death in many animals around the world but also due to serious welfare issues that this brings and also socio-economic problems for farmers and pastoralists (Li et al., 2014, Palmeira et al., 2013). Eventually, the research on MCF and studying the virus life cycle and how it reacts with the host may contribute scientifically towards opening opportunities for researchers studying herpes viruses to gain more knowledge about the virus behaviour.

1.17 Diagnosis of MCF

Diagnosis of MCF depends, initially, on the clinical signs and the pathology of the disease (Li et al., 2011b). The existence of the susceptible species close to the reservoir hosts in the same vicinity could be a valuable approach for diagnosing MCF (CFSP, 2012). Tissues such as liver, kidney, intestines, lung, spleen, and lymph nodes should be collected from animals developing MCF clinical signs for diagnostics (Anderson et al., 2007, Parameswaran et al., 2014). Histologically, lesions such as vasculitis and accumulation of lymphocytes in the lymphoid tissues are suggestive of MCF incidence (Anderson et al., 2007, Cunha et al., 2012, Palmeira et al., 2013). MCF should be differentiated from other viral diseases such as mucosal disease, bovine viral diarrhoea virus, and infectious bovine rhinotracheitis (OIE, 2013; CFSP, 2012). One of the effective methods for diagnosing MCF with regard to AlHV-1 virus infection is to infect bovine turbinate fibroblast (BT) cells with the isolated virus and monitor any cytopathic effect (CPE) development. This is characterized by the absence of monolayer and the accumulation of cell debris (Wright et al., 2003). However, the advent of molecular based techniques like the polymerase chain reaction (PCR) assays has considerably enhanced MCF laboratory diagnostics (Li et al., 2011a, Russell et al., 2009). Especially, real time quantitative PCR (RT q-PCR) and nested PCR which are considered powerful and reliable tools for detecting viral DNA in the samples of MCF infected

animals (Hussy et al., 2001, Traul et al., 2005). This is due the fact that MCF affected animals have detectable levels of Viral DNA in their blood (at certain stages of the disease) and organs at postmortem (Dewals et al., 2008). There are serological approaches to detecting MCF virus antibodies including the virus neutralisation test (VN), enzyme-linked immunosorbent assay (ELISA), immunoperoxidase test (IPT), immunofluorescence assay (IFA) and immunoblotting introduced for the diagnosis of MCF (OIE, 2013). These techniques depend upon identifying antibodies for specific MCF virus antigens (CSFH, 2012). Neutralisation test (VN) could be effective for detecting antibodies from animals infected with AIHV-1 virus or viruses associated with AlHV-1 such as AlHV-2 and HiHV-1 whereas it is non-specific for detecting antibodies in animals infected with OvHV-2 or other related viruses (CSFH, 2012). The use of competitive enzyme-linked immunosorbent assay (cELISA), monoclonal antibody based technique utilizing 15A antibody targeting a conserved epitope among all MCF viruses or an indirect ELISA using virus extract are the methods of choice for identifying antibodies in MCF affected animals (Fraser et al., 2006, Li et al., 1994).

1.18 Treatment and prevention

There is currently no effective remedy or licensed vaccination for treating or preventing MCF (Russell et al., 2012b, Russell et al., 2009). The only current approach to control the disease is to separate the reservoir host from the susceptible species (CSFH, 2012; OIE, 2013). The efficiency of this method depends upon the reservoir host, susceptible species, separation distance as well as the age of the carrying host (CSFH, 2012; OIE, 2013). With regard to WA-MCF, separation of cattle from wildebeest is crucially important in preventing MCF transmission especially around the calving season whereas in SA-MCF this approach is of less significance in particular in the European cattle, the relatively resistant species (CSFH, 2012; OIE, 2013). However, isolation of highly susceptible animals to SA-MCF such as bison, Pere David's deer, and Bali cattle is highly recommended (CSFH, 2012; OIE, 2013). The MCF viruses can be transmitted over several km (Li et al., 2008b), with one report of disease in bison located 5km from the nearest sheep farm (CFSH, 2012). The age of wildebeest calves and lambs should be avoided ranges from two to nine months as these animals have higher cell-free virus titrations in their nasal secretions (CSFH, 2012; OIE, 2013). Avoiding stress factors such as starvation, high stock density, travelling could be effective in controlling MCF as such factors can induce virus reactivation (CSFH, 2012; OIE, 2013). Equine herpesvirus 1 (EHV-1) latently infected

horses can reactivate if the appropriate conditions such as stress, immunosuppression, transportation, sale barns and competitions appear (Dunowska., 2014).

1.19 Prospective vaccine development

The lack of effective treatment for MCF has encouraged scientists to develop a strategic vaccination approaches to protect susceptible species against the disease. Therefore, many studies (Plowright et al., 1975, Ferris et al., 1976, Edington and Plowright, 1980, Haig et al., 2008, Russell et al., 2012a) have been carried out in order to The first trial to protect cattle utilising live or fulfil this target. attenuated WC11 strain of AIHV-1 was not effective (Plowright et al., 1975). Similarly, study using inactivated cell free virulent C500 AlHV-1 virus in rabbits challenged parentally to generate immunity against cell free virus did not provide complete protection (Russell, 1980). However, another study using rabbits inoculated systemically with cell-associated virus and vaccinated with live cell-associated virus produced protection against the virus while inactivated cellassociated vaccination did not generate immunity (Edington and Plowright, 1980).

In order to examine whether cattle immunised with AIHV-1 C500 strain naturally and challenged with the attenuated virus could develop protective immunity Haig et al. (2008) conducted a study to address this hypothesis. In this trial cattle challenged with virulent cell-free virus naturally (intranasal inoculation) and immunised with attenuated AIHV-1 C500 strain in Freund's adjuvant (intramuscular route). The data obtained revealed that nine out of ten of the cattle systemically administrated developed a high level of neutralizing

antibodies in their nasal discharges as well as generating protective immunity. Moreover, animals challenged systemically did not develop protection against the virus (Haig et al., 2008).

The role of licensed adjuvant (Emulsigen, MVP Technologies) in helping protective immunity in cattle challenged with AlHV-1 (intranasal route) has been examined. The results indicated that considerable number of cattle were protected from the virulent virus at around three months post immunisation, however, the disease is developed when cattle further challenged at later time from 26 to 39 weeks post primary immunisation (Russell et al., 2012a). In addition, the high level of neutralising antibodies in the nasal secretions and blood from vaccinated and survived animals highlighted their role as a mucosal barrier for blocking the virus entry (Russell et al., 2012a).

The bulk of the vaccine development work has been done on AIHV-1 rather than OvHV-2. This is due to the absence of an effective propagating system for OvHV-2 in culture (Hart et al., 2007b). However, there are many factors such as the high similarity between AIHV-1 and OvHV-2 (Hart et al., 2007b, Ensser et al., 1997b), the existence of good reliable experimental animals (Anderson et al., 2007), and the use of large granular lymphocytes (LGLs) generated from the tissues of infected animals (Thonur et al., 2006), which can pave the way for researchers to develop a promising vaccine for MCF protection.

1.20 Chemicals for the experiments

1.20.1 5-azacitidine

5-azacitidine is a chemical analogue of cytidine, a nucleotide in DNA and RNA. The drug is a chemotherapeutic agent and used in the treatment of cancer (Brodovsky et al., 2013). The drug works through two mechanisms- at low doses, by inhibiting of DNA methyltransferases leading to hypo methylation of DNA, and high doses through its incorporation to the nucleic acids causing cell death (Kaur et al., 2014). The drug has wide spectrum of side effects ranging from anaemia, renal failure, foetal damage, fever, vomiting, and diarrhoea. Due to its hypo methylation activity, it has been found that 5-azacitidine can reduce the stability of silencing signals (stabilized by methylation) and hence affecting gene expression (Navada et al., 2014).

1.20.2 Cyclosporine A

Cyclosporine A is an immunosuppressant agent used in organ transplantation to prevent tissue rejection (Mott, Zhang et al. 2004). The drug decreases the activity of the immune system by interfering with the development and activity of T cells. Beside its use in tissue transplantation, it has been used for the treatment of rheumatoid arthritis, acute ulcerative colitis, and dry eyes. The adverse effects of cyclosporine A include fever, diarrhoea, vomiting, convulsions, hypertension, thrombosis in renal vasculature and weakening the immune response through lowering the growth of T cells (Henry et al., 1995, Robert et al., 2010). The mechanism of action of cyclosporine A is not well known but it is thought that cyclosporine binds to cyclophilin of T cells. This cyclosporine and cyclophilin complex inhibits calcineurin required for the transcription of IL-2 (Youn et al., 2002).

1.21 Pathogenesis

Malignant catarrhal fever is а lymphoproliferative disease characterised by the proliferation of lymphocytes in lymphoid tissues (lymph nodes, spleen, and appendix) and interstitial infiltration of lymphoid cells in non-lymphoid organs (Liver, kidney, and lung) and this is often connected with tissue necrosis (Buxton et al., 1984). Many hypotheses have been suggested and many studies have been conducted in order to interpret the pathogenesis (mechanism by which the disease occurs) of MCF (Dewals et al., 2008, Anderson et al., 2007, Buxton et al., 1984). However, it is yet unknown.

1.21.1 Direct versus indirect mechanism of MCF

Buxton et al. (1984) infected rabbits with sheep-associated malignant catarrhal fever virus (SA-MCF) in lymphoid cells intravenously; it was found that the systemic pathological changes were analogous to those found in rabbits similarly infected with WA-MCF virus. It was also discovered that there was augmentation in T-

lymphocytes which was due to hyperplasia instead of neoplasia. Moreover, after treating the infected rabbits with cyclosporine (lymphocyte proliferation suppressor), the T cell proliferation ceased but areas of necrosis and disease were unaffected suggesting to the authors that tissue necrosis was due to autoimmunity induced by cytotoxic activity of uninfected cells under the control of a small number of infected cells. This indicated that the development of MCF was not associated with cell infiltration as such but to the tissue necrotic lesions. This hypothesis was strengthened by the paucity of virus or viral antigen in infected tissues, supporting this indirect mechanism (Bridgen et al., 1992). However, further studies have shown that both viruses induce lymphoid cell accumulations mainly of T-lymphocytes, of which CD8⁺ T-cells comprised predominate (Anderson et al., 2007, Simon et al., 2003). Using in situ PCR, Simon et al. (2003) confirmed that larger numbers of the CD8⁺ T-cells were infected with OvHV-2 in the brain of a cow and bison than previously thought indicating that the pathogenesis of MCF may not be by bystander cell activity after all.

Dewals and Vanderplasshen continued examining the pathogenesis of WA-MCF (AIHV-1) in rabbits using multi-colour flow cytometry staining to phenotype mononuclear leucocytes in both lymphoid (during the infection and at time of euthanasia) and lymphoid tissues (at time of euthanasia). They found that the prevalent T cell subsets were CD3⁺ CD8⁺ CD4⁻ and the majority of these cells

produced gamma interferon (IFN- γ) and perforin (Dewals and Vanderplasschen, 2011). In addition, the identification of CD8 perforin⁺ $\gamma \delta^-$ T cells has been reported (Nelson et al., 2010) in the perivascular spaces throughout experimental SA-MCF (OvHV-2) in bison. These outcomes show that MCF is associated with the extension and infiltration of infected activated and cytotoxic CD8⁺ T cells expressing high levels of IFN- γ and perforin.

1.21.2 Experimental MCF

The use of rabbits as experimental animals has facilitated the study of the pathogenesis of MCF as they develop the same symptoms and systemic changes that occur in the naturally-susceptible hosts (Anderson et al., 2007, Buxton et al., 1984, Cunha et al., 2013, Gailbreath et al., 2008). These studies have demonstrated certain variations between MCF caused by AlHV-1 and OvHV-2. AIHV-1related lesions were more abundant in the peripheral lymph nodes, while lesions associated with OvHV-2 were more obvious in visceral lymph nodes such as mesenteric lymph nodes. Moreover, AIHV-1associated lesions showed less necrotic regions than those seen in OvHV-2 (Anderson et al., 2007, Buxton et al., 1984).

In an experiment carried out by Gailbreath et al. (2008) cell-free OvHV-2 removed from nasal secretions of virus-shedding sheep was inoculated by intranasal nebulisation into eight rabbits. Five of these, developed clinical signs and systemic pathological changes

which were similar to those changes in rabbits infected intravenously by cell-associated OvHV-2 in earlier studies.

1.21.3 Large granular lymphocytes in MCF and their phenotype

Large granular lymphocytes (LGL) are the T/NK cells that grow in culture from the tissues (usually lymphoid tissue) of MCF-affected animals. They are enriched for virus-infected cells that are difficult to detect in vivo. They possess cytotoxic activity and seem to express either natural killer or T cell phenotypes (Burrells and Reid, 1991). The phenotype of LGLs has been studied in cells from various species infected with either OvHV-2 or AIHV-1 (Burrells and Reid, 1991, Schock et al., 1998, Schock and Reid, 1996). Schock et al. (1998) examined the phenotype of LGLs in five different cell lines derived from some cattle infected with OvHV-2. It was shown that surface antigen CD2 and CD5 expressed on greater than 97.5 % of cells in all cell lines. CD4 was expressed on the majority of cells in three cell lines while CD8⁺ was expressed on one cell line. However, CD8⁺ T cell was the predominant cell type accumulated in the brain of a cow and bison infected with OvHV-2 (Simon et al., 2003). It was also demonstrated that CD25, the interleukin-2 (IL-2) alpha chain receptor, was expressed on all the cell lines. The growth of LGLs infected with OvHV-2 is enhanced in the presence of IL-2 and

high cell density (Schock et al., 1998). However, these cells can develop in IL-2-free culture (Swa et al., 2001).

Greater than 90% of LGL cell lines are virus infected as identified by immunocytochemistry or by in situ hybridisation for viral DNA or mRNA, despite the scarcity of cells containing virus in MCF affected organs in vivo. LGL cell lines are able to induce MCF when transferred to rabbits (Russell et al., 2009). LGLs are able to destroy tissue cells in an MHC-unrestricted manner and do not grow after stimulation with mitogens, while control T cells do (Schock et al., 1998, Swa et al., 2001). The interpretation of the activated cytotoxic phenotype of infected LGLs, in IL-2 free culture, includes constitutively activated Lck and Fyn kinases. These kinases are normally significant for the primary stimulation of T cells via the T cell receptor and co-receptors on the cell surface (Swa et al., 2001). LGLs produce various cytokines including TNF-alpha, IFN-gamma but are usually deficient in IL-2 either before or after stimulation by mitogen (Schock et al., 1998). LGLs have been used intensively to study the pathogenesis of MCF in vitro (Hart et al., 2007a, Thonur et al., 2006).

1.21.4 The role of cytokines in MCF pathogenesis

The role of cytokines, in particular, interleukin 15 (IL-15) and interleukin 2 (IL-2) in the pathogeneses of MCF has been examined (Anderson et al., 2008, Meier-Trummer et al., 2009a) IL-15 is a

cytokine which has a structural resemblance with IL-2. It is secreted by a wide range of cells and tissues containing, monocytes, macrophages, dendritic cells (DC), epithelium, and endothelium (Grabstein et al., 1994). Its function is to recruit, activate the proliferation of, and regulate cytotoxic cells including CD8⁺ cytotoxic T lymphocytes, natural killer cells (NK), NK T cells, and CD4⁺ cytotoxic lymphocytes. Therefore, it plays a significant role in both innate and adaptive immunity. Also, it has an anti-apoptotic function (Anderson et al., 2008, Lodolce et al., 2002). Moreover, the involvement of IL-15 in the pathogenesis of various autoimmune diseases has been documented. It has been found that, in mouse paradigms of autoimmunity, inhibiting IL-15 abolished the intensity of the diseases (Smith et al., 2000).

It was discovered; utilizing *in situ* hybridisation, after infecting rabbits with either AlHV-1 or OvHV-2 that IL-15 was abundant in the lymphoid tissues. The abundance of IL-15 is associated with tissue lesions indicating that the cytokine may be implicated in the pathogenesis of MCF (Anderson et al., 2008). In addition, it was found in the same experiment that the intensity of BLT esterase, (that detects tryptase) measuring cytotoxicity, was preserved in LGLs when stimulated with IL-15 in comparison with IL-2. These observations demonstrate that IL-15 may play a role in the regulation of the active cytotoxic cells in MCF (Anderson et al., 2008).
IL-2 is a cytokine which plays a significant role in the growth of T cells as well as the development of T regulatory cells (Tregs). It is expressed by T cells, mainly CD4⁺ T lymphocytes during immune responses (Boyman and Sprent, 2012, Meier-Trummer et al., 2009a). IL-2 transcript abundance was low in lymphoid tissues derived from cows infected with OvHV-2 using microarray RNAseq assay. Although, the abundance of CD28 and T cell receptor (TCR), co-stimulatory enhancer for IL-2 production, was very high. It was also demonstrated that the ratio of CD4⁺ was less than CD8⁺ lymphocytes. These observations indicate that IL-2 deficiency may have a significant role in the pathogenesis origin of MCF (Meier-Trummer et al., 2009a).

1.21.5 The site of infection and MCF pathogenesis

A reverse-transcription PCR was used as the technique to detect OvHV-2 in organs in which OvHV-2 replication takes place *in-vivo*. Samples (turbinate, lungs, and trachea) were collected from naturally-infected sheep (reservoir species) and samples including kidney, bladder, brain, and intestine were obtained from cattle and bison infected with OvHV-2. OvHV-2 major capsid protein gene (ORF25) was utilised as a marker of viral replication. The data obtained revealed that the ORF25 transcript was present in 30% of the respiratory tract-related samples, 66% of which were turbinate, in sheep, indicating that this is the site of virus production in the

reservoir host. In contrast, most of the bovine and bison samples contained ORF25 transcripts indicating that replication or at least partial productive cycle appears to takes place in most tissues (Cunha et al., 2008). Of course in the MCF-susceptible animals this productive cycle is incomplete as discussed above. In situ hybridisation and immuno-histochemistry using antibodies for capsid and tegument structural proteins (ORF43and ORF63) of OvHV-2 were used to identify regions of viral replication in six OvHV-2 infected rabbits. The results showed that all infected rabbits developed pathological lesions in the samples. However, virus structural proteins were identified solely in the appendix, in particular, in the epithelial cells and M-cells, while ORF63 mRNA was only found in the epithelial cells but not in the M-cells suggesting that these cells may have a role in the pathogenesis of MCF and may represent an entry site for the virus (Meier-Trummer et al., 2009b).

It may be worth mentioning that the researchers in both experiments have used different techniques, different virus administration approaches (intravenous and aerosol), and different viral strains. This may have an impact on the data obtained as, for example, the OvHV-2 virus used was from European and American strains (Meier-Trummer et al., 2009b). Although it has been found in earlier work that the two strains are highly similar 94-100% (Hart et al., 2007b, Taus et al., 2007), variations in the genomic

sequences between the two strains may interpret their biological diversity (Meier-Trummer et al., 2009b).

1.21.6 Recombinant AIHV-1

In order to study the role of virus genes in pathogenesis, Researchers have exploited the availability of virulent AIHV-1 virus in low passage tissue culture to construct a stable virus genome as a bacterial artificial chromosome (BAC), for this, a modified loxPflanked BAC cassette was integrated in one of the two large noncoding sites of AIHV-1 DNA. The integration led to the generation of an AlHV-1 BAC clone in bacteria and capable of producing infectious particles when transfected into permissive cells. AlHV-1 virions originated from BAC were able to replicate and generate MCF in rabbits that were similar to that of the AlHV-1 virulent parental strain. This discovery will greatly assist our understanding of MCF by pathogenesis allowing gene knockout and reinsertion recombinant viruses to be made (Dewals et al., 2006a).

1.22 Hypothesis

Malignant catarrhal fever is initiated by aberrant gene expression in infected T cells, epithelium and endothelium.

1.23 Objectives

- Objective 1: To determine whether bovine endothelium and rabbit epithelium can be infected with AIHV-1 C500 strain *in vitro* (cell lines, rabbit and cattle) and *in vivo* (in rabbits detected by *in situ* hybridisation). Also to determine the life cycle stage of the virus in the infected cells (by RT-qPCR and *in situ* hybridisation) using known latent and lytic transcript analysis.
- 2. Objective 2: to attempt to switch the virus life cycle from lytic to latent in large granular lymphocytes (LGLs, mixed latency and lytic cycle) and BT fibroblasts (lytic cycle only) infected with AIHV-1 C500 strain after treatment with 5azacitidine (a drug used to support latency). In addition, RNAseq will be used to map the host and viral gene transcripts in these cells to look for pathways associated with latency and the lytic cycle.
- 3. **Objective 3:** To determine viral gene expression in the tissues of animals infected with AlHV-1 and treated with cyclosporine-A (CSA) to attempt removal of the infiltrating

infected T cells. The effect of this on disease outcome and virus gene expression will be monitored.

Chapter 2

General materials and

methods

2.1 Introduction

This chapter describes the approaches which have been done in most of the work and common for all of the chapters while more specific methodology will be described in the results chapters.

Virus: The C500 strain (Plowright et al., 1960, Plowright et al., 1975) was used. For preparation of virus stocks, see section (2.2.4) below.

2.2 Tissue culture

Three types of cultured plate adherent cells were grown for the study; bovine turbinate fibroblast (BT) cells were kindly donated by Dr George Russell of Moredun institute (Palmeira et al., 2013, Parameswaran et al., 2014), bovine aortic endothelium (BAE) cells (cat# 87022601, ECACC) the official name is BFA but BAE is used throughout the project, (Pollock et al., 1991), and statens seruminstitut rabbit cornea (SIRC) cells (Cat# 89090404, ECACC), (Parameswaran et al., 2014). The media used were Iscove's ThermoFisher Modified Dulbecco's Medium Gibco® (IMDM, Scientific, UK) for the growth of BT cells and Dulbecco's Modified Eagle Media (DMEM, Gibco® ThermoFisher Scientific, UK) for the culture of BAE and SIRC. All the manipulations were undertaken under aseptic conditions in a laminar air flow tissue culture hood. The cells were split when they reached 80% confluence using 1%

trypsin in phosphate buffer saline (PBS) for up to 10 minutes (2ml for a 25 cm² flask and 4ml for a 75cm² flask) in 37° C, 5% CO2 in air incubator. Trypsin reaction was stopped by adding the same volume of warmed media containing 10% foetal calf serum (FCS). Supernatant was removed by centrifugation at the 1500 rpm for 5 minutes at 21 °C. The cell pellet was re-suspended by adding media (5ml for 25 cm² and 14 ml for 75 cm² flasks). Cells were incubated at 37 °C, 5% CO₂ in air and checked regularly (every 3 days) until cells become confluent.

2.2.1 Large granular lymphocytes

Large granular lymphocytes (LGLs) derived from rabbit mesenteric or popliteal lymph nodes are used in the study. Briefly, lymph node tissues were teased apart using sterile forceps and scissors. To give a single cell suspension the tissues were then passed through a 70 µm filter using PBS (using back of 2ml syringe and 50ml centrifuge tube). The cells were washed twice with IMDM medium (containing Glutamax, 10% FCS, 100µg/ml penicillin, 50µg/ streptomycin). All manipulations were undertaken using sterile solutions, equipment and aseptic technique under the laminar flow hood. Cells were culture in upright 25cm² flasks at 37°C, in 5% CO₂ in air. For maintaining the cultures, the cells were fed with fresh IMDM media (contain 10% special FCS and 50 µl interleukin-2 (IL-2) 50ng/ml media (Cat# 202-IL, Recombinant Human IL-2, R&D Systems))

added up to 10 ml total volume of media by remixing the top ~one third of culture medium where most of the cells are at the bottom region of the flasks)) when the medium colour changes to yellow/orange or once every seven days. After that, cells are checked under the microscope for growth and stored back in the incubator in the upright position.

2.2.2 Counting cells

A haemocytometer was used to count cells and trypan blue exclusion used as a measure of cell viability.

2.2.3 Cryopreservation of cells

Adherent cells (BT, BAE and SIRC) were cryopreserved at 5x10⁶-1x10⁷ cells per ml medium containing 50% FCS in 10% v/v dimethyl sulfoxide (DMSO) (Cat# 472301, Sigma-Aldrich) and the LGLs and lymphoid cells at 1x10⁷- 1x10⁸ cells per ml. Adherent cells were detached from cultured plates by adding 1% trypsin in 1xPBS, centrifuged at 1200 rpm for 5 min. The cell pellet was re-suspended in freezing medium consists of 90% IMDM or DMEM media (containing 10% FCS, 1% penicillin/streptomycin) and 10% filtered (DMSO) according to the type of the cells. The cell suspension was then transferred to labelled cryo-tubes, placed in Mr frosty (freezing container, ThermoFisher Scientific, UK) in -80 °C freezer overnight and then in liquid nitrogen.

2.2.4 AIHV-1 virus stocks

Low culture pass (virulent) AlHV-1 C500 strain (Plowright et al., 1975) virus stock was obtained from infected rabbit lymphoid cells incubated with BT cells where a mixture of cell-associated virulent and cell-free virulent viruses obtained from up to five passages in BT cells were harvested and frozen away as stock virus. The AlHV-1 C500 strain used to infect BT cells to make the virus stock was obtained from AlHV-1 infected rabbit's mesenteric lymph node (MLN) cells. The approach applied was as follows: All the

manipulations undertaken were under aseptic conditions in the laminar flow hood. BT cells were washed twice with PBS. Vials of infected rabbits MLN cells were taken out of the liquid Nitrogen storage and placed on dry ice. The vials were thawed and the MLN cells were added to a centrifuge tube containing 15 ml IMDM media and centrifuged then re-suspended two and half millilitres of the medium were added to each flask of BT cells (4 flasks in total) and one left as a BT only control. The flasks were incubated at 37 °C, in 5% CO₂ in air incubator overnight.

The following day, the media were discarded and the cells were washed with 1xPBS twice. Fifteen millilitres of IMDM media were added to each flask and then kept at 37 °C, in a 5% CO₂ air incubator. The cells were monitored daily for any cytopathic effect (CPE) which is characterised by the accumulation of cell debris and the absence of monolayer.

The supernatant from the cultures were collected when the BT cells showed approximately 50% CPE, centrifuged and the pellet resuspended in 4 ml medium. The supernatant collected in 75 cm² flask and placed on Ice. Four ml 1xPBS was added to the attached cells which were mechanically detached from all the flasks, centrifuged and the pellet mixed with the previously obtained pellet. The mixture was then freeze-thaw three times in liquid nitrogen and spun down. The supernatant carefully collected and finally mixed with the supernatant initially collected in 75 cm² flask. The

supernatant was aliquot in labelled cryo-tubes (1ml each), placed in -80 °C freezer overnight and then stored in liquid nitrogen. Applying the same technique P_1 , P_2 , P_3 , and P_4 were finally made. With regard to high pass attenuated AlHV-1 virus stock was made by passaging the virus in BT cells more than 5 times up to thirty passages.

2.2.5 Virus titration : 50% tissue culture infective dose (TCID50)

TCID₅₀ is the approach used to measure virus titration. This measure the infective dose of the virus required to kill 50 % of infected BT cells measured as a cytopathic effect (CPE).

The procedure was undertaken under aseptic conditions in the laminar flow hood. Seven Eppendorf tubes were labelled 10¹ to 10⁷ for the virus to be titrated. A volume of 100 µl of BT cell suspension (2x10⁵ cells/ml in IMDM medium containing 10% FCS) was added towells of a 96-well plate designated A1-4 to H1-4 (Figure 5). The plate was kept at 37 °C, in 5% CO₂ in air in an incubator overnight. The following day the media were discarded and the cells were washed twice with 1xPBS. A volume of 900 µl serum-free IMDM medium was loaded into each labelled Eppendorf tubes. AlHV-1 C500 virus for titration was thawed from frozen storage. A volume of 100 μ l of neat AlHV-1 virus was added to the tube labelled 10¹, and mixed thoroughly. A volume of 100 μ l of 10¹ dilutions was then transferred to 10^2 Eppendorf tube and so on up to the 10^7 tube giving a number of serially diluted samples. A volume of 100 µl of dilution 10^1 was added to the wells B1-4 and dilution 10^2 to wells C1-4 and so on to H1-4. A volume of 100 µl of serum free medium was added to the wells A1-4 used as control (Figure 5).

Figure 5 Virus titration: 50% tissue culture infective dose (TCID50). The figure shows the steps were taken to carry out TCID50 for virus titration.

The plate was finally placed in the 37 °C, 5% CO₂ incubator for two hours. After two hours, all the wells including the control were topped up with 100 μ I IMDM medium containing 10% FCS. The plate was then placed in the 37 °C, 5% CO₂ incubator and read for % CPE after 4-5 days.

Wells were positive if CPE was present. The virus titre is calculated by Spearman/Karber (http://www.cureffi.org/2015/09/20/themath-behind-spearman-karber-analysis/) Calculation as follows: Log TCID50-L-d (S-0.5) where

L = negative log of lowest dilution

D = difference between log dilution steps

S = sum of proportion of positive tests (wells showing CPE from

virus infection)

Example of virus titration

Table 3 example of virus titration

Virus dilution	Positive wells			ells	Proportion of infected culture
10 ⁻¹	+	+	+	+	4/4 = 1
10 ⁻²	+	+	+	+	4/4 = 1
10 ⁻³	+	+	+	+	4/4 = 1
10 ⁻⁴	+	+	-	-	2/4 = 0.5
10-5	-	-	+	-	1/4 = 0.25
10 ⁻⁶	-	-	-	-	0/4 = 0 3.75

2.3 Molecular techniques

2.3.1 DNA extraction

The total cellular and viral DNA was extracted using DNeasy blood and tissue kit (cat# 69506, Qiagen) according to manufacturer's instructions. DNA was extracted from different tissues, blood and cultured cells.

Cultured cells: appropriate number of cells was centrifuged (maximum 5x10⁶) for 5 min at 300 g. The pellet was re-suspended in 200 µl phosphate buffered saline (PBS) and 20 µl proteinase K was added. A volume of 200 µl of buffer AL was added, mixed thoroughly by vortexing, and then incubated at 56 °C for 10 min. After that, 200 µl of absolute ethanol was added to the sample and mixed thoroughly by vortexing. The mixture was then pipetted into DNeasy Mini spin column placed in a 2 ml collection tube, centrifuged at 6000g for 1 min, and the flow-through and the collection tube were completely discarded. The DNeasy Mini spin column was placed in a new 2 ml collection tube, 500 µl of buffer AW1 was added and centrifuged at 6000 g for 1 min. The flowthrough and the collection tube were discarded. The DNeasy Mini spin column was placed in a new 2 ml collection tube, 500 µl of buffer AW2 was added and centrifuged at 20,000 g for 3 min. The flow-through and the collection tube were discarded. The DNeasy Mini spin column was placed in a clean 1.5 ml, 100 µl of buffer AE was directly loaded onto DNeasy membrane, incubated at room

temperature for 1 min, and then centrifuged for 1 min at 6000 g to elute.

From blood: A volume of 20 μ l of proteinase K was loaded into a 1.5 ml Eppendorf tube. A volume of 50-100 μ l anti-coagulated blood was added and the volume was adjusted to 220 μ l with PBS. A volume of 200 μ l of buffer AL was added, mixed thoroughly by vortexing, and then incubated at 56 °C for 10 min. After that, the steps were exactly similar to the ones done for cultured cells.

Animal tissues: A piece of 25mg tissue was cut into small pieces, and then placed in a 2 ml micro-centrifuge tube. A volume of 200 µl of buffer ATL was then added. A stainless steel bead was added to the tube and the tube was placed in a tissue lyser (TissueLyser II Qiagen, Uk) to help disrupting the tissue. A volume of 20 µl of proteinase K was added, mixed thoroughly by vortexing, and incubated at 56 °C until the tissue is completely lysed. The next steps are similar to the ones done for cultured tissues.

2.3.2 RNA extraction

Total RNA was extracted using RNeasy Plus mini kit (cat# 74134, Qiagen). A maximum of 1×10^7 cells were harvested and appropriate volume (600 µl) of Buffer RLT Plus was added and mixed by vortexing for 30 s. The homogenised lysate was transferred to a gDNA Eliminator spin column placed in a 2 ml collection tube and centrifuged for 30 s at 8000 g. the column was discarded and the flow-through was saved. One volume (600 μ l) of 70% ethanol was added to the flow-through and mixed well by pipetting. Up to 700 µl of the sample was transferred to an RNeasy spin column placed in a 2 ml collection tube and centrifuged for 15 s at 8000 g. the flowthrough was discarded. A volume of 350 Buffer RWT was added to the RNeasy spin column and was centrifuged for 15 s at 8000 g to wash the membrane. The flow-through was discarded. A volume of 10 µl DNase I stock (cat# 79254, Qiagen) solution was added to 70 µl Buffer RDD (cat# 79254, Qiagen), mixed gently by inverting the tube, and centrifuged briefly. The DNase incubation mix (80) was directly added to the RNeasy spin column membrane, and placed on the benchtop for 15 min. A volume of 350 Buffer RWT was added to the RNeasy spin column and was centrifuged for 15 s at 8000 g to wash the membrane. The flow-through was discarded. A volume of 500 µl Buffer RPE was added to RNeasy spin column, and centrifuged for 15 s at 8000 g to wash the membrane. The flowthrough was discarded. A volume of 500 µl Buffer RPE was added

to RNeasy spin column, and centrifuged for 2 min at 8000 g to wash the membrane. The RNeasy spin column was placed in a new 1.5 ml collection tube. A volume of 30 μ l RNase-free water was directly added to the spin column membrane, centrifuged for 1 min at 8000 g to elute the RNA.

Animal tissues: a piece of an animal tissue (less than 50 mg) was excised and loaded into a 2 ml collection tube. 600 µl of Buffer RLT Plus were added and a stainless steel bead was added to the tube and the tube was placed in a tissue-Lyser (Tissue Lyser II, Qiagen, UK) to disrupt the tissue. The tube containing the lysate was placed on the benchtop at room temperature for 5 min. The next steps are similar to the ones done for extraction of the RNA from the cultured cells.

2.4 Nucleic acid amplification and quantitation

2.4.1 Complementary DNA (cDNA) synthesis

Complementary DNA was synthesised using the Transcriptor First Strand cDNA Synthesis Kit (cat *#* 04897030001, Roche Applied Sciences, UK). The template-primer mixture for 20 µl reaction was prepared in a sterile, nuclease-free, thin-walled PCR tube on ice by adding the components in the following order; the equivalent of 1 µg total RNA, 2 µl random hexamer primer, and up to 13 µl RNase free water. After that, the RT (reverse transcriptase) mix was prepared by adding the following reagents; 4µl Transcriptor Reverse Transcriptase Buffer, 0.5 μ l Protector RNase Inhibitor, 2 μ l Deoxynucleotide Mix, and 0.5 μ l Transcriptor Reverse Transcriptase (storage buffer; 200 mM potassium phosphate, 2 mM dithiothreitol, 0.2 % Triton X-100 (v/v), 50% glycerol (v/v), pH approx. 7.2). The RT mix was then added to the tube containing the template-primer mix. The mixture was mixed carefully by flicking the tube, centrifuged briefly, and finally placed in a thermal block cycler with a heated lid for 10 min at 25 °C followed by 35 min at 55 °C. The Transcriptor Reverse Transcriptase was inactivated by heating to 55 °C for 5 min using XP Thermal Cycler (Bioer, UK). The reaction was stopped by placing the tube on ice and sample was stored at -20 °C.

2.4.2 Polymerase chain reaction (PCR)

2.4.2.1 PCR condition

The procedure was undertaken under aseptic conditions in the ultra violet cabinet. The equipment (pipettes, tips, and nuclease-free water) were exposed to ultra violet light for 15 min. All the reagents except the Tag polymerase were thawed and placed into the ice box. The master mix mixture for 24 µl reactions was prepared in a sterile, nuclease-free, thin-walled PCR tube on ice by adding the components in the following order; 17,875 µl nuclease free water, 2.5 µl 10x buffer, 1 µl MgCl2 (25mM), 0.5 µl dNTPs (10mM), 1 µl forward primer (5pmol/ μ l), 1 μ l reverse primer (5pmol/ μ l), and 0.125 μ l Tag polymerase (5 u/ μ l). A volume of 1 μ l sample/s was added to the tube containing the master mix mixture outside the UV hood. The tube was centrifuged and placed in the PCR machine to run according to the following programme; 1 cycle (initializing) \times 94 °C, 35 (denaturation) x 94 °C for 1 min, 60 °C (annealing) for 1 min, 72 °C (elongation) for 1 min, and 1x 4 °C hold.

2.4.2.2 Agarose gel electrophoresis

The PCR products were resolved to agarose gel (Sigma-Aldrich, UK). Certain amount of agarose powder, according to the concentration required, was dissolved in 100 ml 1xTAE buffer in a beaker. The beaker was then heated in the microwave oven for sometimes until completely dissolved, cooled down, and 3.8 μ l Nancy-520 (nucleic

acid stain) (Sigma-Aldrich, Uk) was added. The gel solution was slowly poured into the gel tray and the air bubbles were removed using disposable tips. The gel was left for sometimes to set. The gel tray was placed in the gel tank and 1xTAE buffer (Tris base, acetic acid and EDTA) was added to the gel tank until the wells were covered. A volume of 1 μ l 6% loading dye (New England BioLabs) was thoroughly mixed with 5 μ l sample and then loaded into the gel wells along with 6 μ l DNA ladder (New England BioLabs). The voltage was adjusted to 110 V for 1 hour and the DNA was viewed by the UV illuminator (ImageQuant 300 imager, GE healthcare, UK).

2.4.3 Viral load measurement

Viral load is used to quantify the viral copy number in specific cells and tissues. g PCR is the device by which the viral load is identified. AlHV-1 virus copy number is measured by comparing the C_T value with standard curve by normalizing AIHV-1 ORF3 gene with 10⁵ copy number of rabbit β globin used as a reference gene as described in (Boudry, 2007). The forward primer sequence for ORF3 used 5'-GGGCTAATTTGTGCAGTTTGTGA-3' 5'and reverse primer AGGTGTTTCTGAAAAGAGGGGGAA-3' and the probe used for the assay was FAMAIHV-1 6FAM ACAGGCTCCTCGTCCTCGTCGTGT TAMRA. The 5'rabbit β globin forward primer used GGTATCCTTTTTACAGCACAAC-3' and the reverse 5'primer CAGGTCCCCAAAGGACTCG-3', in the presence of the fluorescent probe 5'-FAM-CCTGGGCTGTTTTCATTTTCTCAGG-TAMRA-3'.

AlHV-1 BAC plasmid was utilized as standard as described in (Dewals et al., 2006a). The data obtained analysed using the absolute quantitative approach utilizing Light Cycler 480 software analysis.

2.4.4 Quantitative real-time PCR (q RT-PCR)

The quantitative PCR, using the Light Cycler 480 System (Roche Applied Science, UK), is the method used to measure the viral copy number and detection of the virus DNA in the infected cells and tissues as well as measuring the viral gene expression profiles throughout the project work. The technique is utilized to amplify and quantify a target DNA based on the sequence-specific probes tagged with florescence probe upon hybridisation with its complementary DNA sequence in the presence of flanked primers. The probes and primer sequences for q RT-PCR used in this study are shown in table 4. The probes and primers were designed using Universal Probe Library (UPL) System Assay Design

(https://lifescience.roche.com/shop/products/universal-

probelibrary-system-assay-design). Probes were labelled with fluorescent reporter dye 5 carboxyfluorescein (FAM) at the 5' end and quencher N,N,N,N'-tetramethyl-6-carboxyrhodamine (TAMARA) at the 3' end. The technique was carried out utilizing the Light Cycler 480 Probes Master Kit (Roche Applied Science, UK) with the universal cycle profile. The 96-well plates were used for q RT-PCR with 20 µl added per reaction (well). For the test sample, each q RT-PCR mixture contained 1x light cycler probe master, 900 nM forward primer, 900 nM reverse primer, 100 nM probe, 2 µl (10-50) template DNA, made up to 20 µl with RNase free water. Each q RT-PCR reaction was carried out in duplicate. In addition, each q RT-

PCR trial comprises two no template controls (NTC), test samples, a control from non- infected cells along with a standard log₁₀ dilution series. The standard log₁₀ dilution series were used to produce standard curves. The efficiency of the standard curve was measured using the Light Cycler 480 (LC480) software. The PCR reaction efficiency, ideally, should be 100% meaning that the amount of product doubles each cycle (E=2) (Figure 5 & 6). The normalised values for the gene expression profile were measured using the advanced relative quantification method utilizing the Light Cycler 480 (LC480) analysis software. The genes selected for viral transcripts analysis (Table 4) are known with their involvement in latent and productive/lytic cycle in other herpesviruses. ORF73 encodes latency associated nuclear antigen (LANA), homologue to Epstein Barr virus nuclear antigen (EBVNA1) and and KSAH ORF73 LANA protein involved in latent infection, ORF50 encodes RTA protein the transcriptional and replication activator responsible for the switch to lytic cycle, ORF25 encodes a major capsid protein highly expressed during viral replication, A4.5 similar to Bcl-2 family of apoptosis and virus cycle expression not known and A9.5 encodes a secreted glycoprotein that is similar to IL-4 and virus cycle expression not known.

Table 4 primers and probes used for target and reference genes throughout the study.

Gene symbol	Oligonucleotide sequence (5'-3')
ORF50 F	GCCACAGCCTCAATCTGAAT
ORF50 P	UPL23
ORF73 F	TGGGCCTTCTCCTTCAGAT
ORF73 R	AAGTGGACCAGGTTCGTCTG
ORF73 P	UPL32
ORF25 F	TTCACCGTTATGCACAATAAGC
ORF25 R	CTTGTGCTTTGCCTGCACT
ORF25 P	UPL155
ORF A4.5 F	TTTGACCCGGGTAGTCAATC
ORF A4.5 R	GCTAGAATACATTCTGTGACCGTTAG
ORF A4.5 P	UPL92
ORF A9.5 F	CAACCAGTTTTGTTGTTATTCAATG
ORF A9.5 R	AAGAGAGTTAAAGTTAAATTTGGAGCA
ORF A9.5 P	UPL83
ORF63 F	GCTGTAATTGGCACTCTCAGG
ORF63 R	TCATGAGGCGGAAGTTGC
ORF63 P	UPL40
Rabbit SDHA1 F	ACCGTGAAGGGCTCTGAC
Rabbit SDHA1 R	TTTCTAGCTCGACCACAGAGG
Rabbit SDHA1 P	UPL158
Bovine RPS9 F	GCCTCGACCAAGAGCTGAAG
Bovine RPS9 R	GGGCAGCCIIICGGAICI
Bovine RPS9 P	TGATCGGCGAGTATGGGCTCCG
Bovine G actin F	CACCTICCAGCAGATGTGGA
Bovine G actin R	
Bovine G actin P	AGCAAGCAGGAGTACG

Figure 5 snapshot of q RT-PCR amplification curve.

The figure illustrates the amplification curves generated using Light Cycler 480 for determination of AIHV-1 DNA load from infected rabbit tissues utilizing ORF3 gene as a standard.

Figure 6 snapshot of q RT-PCR standard curve.

The figure shows the standard curve generated using Light Cycler for determination of AlHV-1 DNA load from infected rabbit tissues utilizing ORF3 gene as a standard and seven log_{10} serial dilutions 10^{-3} to 10^{-8} and PCR efficiency of 1.95.

2.4.5 Quantification of DNA and RNA by spectrophotometer

DNA and RNA concentrations were assessed by a NanoDropTM ND-8000 spectrophotometer (ThermoScientific, UK) according to the manufacturer's instructions using the software program NanoDrop ND-8000 version 2.2.0. To make the data as precise as possible, 1.5 μ I blank was used for reading. After that, 1.5 μ I of samples were loaded onto each lower measurement pedestal and read. The ratio of absorbance at 260 was used to measure the purity of nucleic acids. A ratio of ~1.8-2.0 showed pure nucleic acids and values outside this range were presumed to indicate the presence of proteins or phenols or other contaminants.

2.5 Flow cytometry

Flow cytometry was used to phenotype rabbit LGL samples (recognise the cell type and cell subset). Ten Eppendorf tubes labelled as non-stained, CD4 FITC, CD4 isotype control, CD8, CD11B (monocyte), B cell (CD19), Pan T (T cell), secondary antibody only FITC, secondary antibody only APC, and double staining (CD4&CD8) were used in this experiment. Labelling also includes rabbit LGL IDs (IYDY, IYJJ, LFLK, and LFKJ) for both 5-azacitidine-treated and nontreated LGL. After three weeks, RPMI (cat 61870-010 Gibco Life technologies) was used with 2% FCS supplement for cell labelling: The only direct conjugated antibodies used were the CD4 FITC and CD4 isotype control (primary antibodies/one step labelling) For indirect immunofluorescence, the secondary antibodies used were mouse IqG1 FITC (CD11B, B cell, Pan T, and secondary FITC only) and mouse IgG1 APC (CD8, CD4&CD8, and secondary APC only). Table 5 shows the antibodies and the dilution factors used in the experiment.

Table 5 Labelling steps

Antibody	Primary antibody + dilution factor	Secondary antibody + dilution factor	
specificity			
CD4	mouse IgG2a anti-rabbit CD4 FITC (KEN-4, AbD	NO	
	Serotec)		
CD4 isotype	mouse IgG2a CD4 isotype control-FITC (MCA929F, AbD	NO	
control	Serotec)		
Non-stained NO		NO	
CD11b	Anti-rabbit CD11b (1:10) (MCA802GA, AbD Serotec)	Goat anti-mouse IgG1 FITC (1:20)	
B cell	Anti-rabbit B cells (1:10)	Goat anti-mouse IgG1 FITC (1:20)	
Pan T cell	Anti-rabbit Pan T cell (1:10) (RTH2A, 2BScientific)	Goat anti-mouse IgG1 FITC (1:20)	
CD8	Anti-rabbit CD8 (1 :10) (MRB107A, 2BScientific)	Goat anti-mouse IgG1 APC (1:20) (A10530,	
		Invitrogen, UK)	
CD8&CD4	Anti-rabbit CD8 (1:10) and mouse IgG2a anti-rabbit	Goat anti-mouse IgG1 APC (1:20)	
	CD4 FITC (1:10)		
APC	NO	anti-mouse IgG1 FITC (1:20)	
FITC	NO	anti-mouse IgG1 FITC (1:20)	

Ten tubes were labelled for each cell line and four cell lines (IYJJ, IYDY, LFLK, and LFKJ) were used in the experiment.

2.5.1 Direct Immunofluorescence labelling of cells

For this purpose, cells were spun at 2000 rpm for 5 minutes and pelleted then RPMI culture medium was added. Cells were counted to 5 X 10⁵ cells/45 µl and placed in Eppendorf tubes. Antibodies of 5µl mouse IgG2a anti-rabbit CD4 FITC (KEN-4, AbD Serotec) to CD4 and CD4 & CD8 tubes, and 5µl mouse IgG2a CD4 isotype control-FITC (MCA929F, AbD Serotec) were added to CD4 iso tube. 5µl of anti-rabbit CD8 (ISC29E, WS0768U-100, USA) (1:10) to CD8 and CD4 & CD8 tubes, 5µl of anti-rabbit CD11B (MCA802GA, AbD Serotec) (1:10) to CD11B tubes, 5µl of anti-rabbit Pan T cells (RTH2A, 2BScientific) (1:10) to Pan T tube, and 5µl of anti-rabbit B cells (MRB107A, 2BScientific) (1:10) to B cell tubes. Labelled Eppendorf tubes incubated in the dark in the fridge for 30 minutes.

2.5.2 Indirect Immunofluorescence labelling of cells

After that, cells were centrifuged at 2000 rpm for 2 minutes and washed twice with RPMI then 5µl (1:20 diluted) of goat anti-mouse IgG1 FITC (secondary Ab) was added to CD11b, B cell, and Pan T tubes, 5µl (1:20) of anti-mouse IgG1 APC (A10530, Invitrogen, UK) to CD8 and CD4 & CD8 tubes, 5µl (1:20) of anti-mouse IgG1 FITC secondary only tubes, 5µl (1:20) of anti-mouse IgG1 APC to APC secondary only tubes. Labelled Eppendorf tubes were again incubated in the dark in the fridge for 30 minutes. Cells were washed twice by spinning at 2000 rpm for 2 minutes leaving 100 µl

supernatant. Cells were fixed with 2% PFA and finally suspended in 0.5 ml of PBS.

2.5.3 Flow cytometry analysis of labelled cells

The cells were centrifuged and rinsed then directed to FACScan [™] flow cytometer system (Becton Dickinson, Bioscience, USA). The Cells population were gated out to appropriate forward scatter (FSC), side scatter (SSC), 280 and 400, respectively. Cell's samples were then acquired by CellQuest pro-software (BD Biosceince, USA). Finally, the fluorescence data analysis was performed by FACSDiva software (BD Biosceince, USA) and the quadrant sitting for labelled and unlabelled cells was based on antibody-isotype control fluorescence.

2.6 Animals

Ten three month old New Zealand white female rabbits were used (Purchased from Harlan UK). Animals were kept at the animal facility at Sutton Bonington, University of Nottingham. Animal experiments were under ASPA (UK) regulations with a project license held by David Haig at the University of Nottingham. Ethical review was obtained from the local SVMS ethics committee and the University of Nottingham AWERB committee. After infection (see section 2.6.1) animals were observed and temperature was recorded daily using a subcutaneous mini chip. Animals were

euthanized when high body temperature (40°C) developed for two consecutive days or more along with an accumulation of clinical signs typical of MCF that would progress the disease to a higher severity limit than moderate (limited by ASPA project license held by D Haig).

2.6.1 Inoculation

Wildebeest-associated MCF virus (AlHV-1) contained in mesenteric lymph node cells isolated from a rabbit previously infected with AlHV-1 virus C500 strain was used to infect the rabbits injected intravenously (IV, ear vein) with 2×10^6 cells in 1 ml PBS.

2.6.2 Experiment (1) design

Ten rabbits were infected with AlHV-1 C500 strain on day 0 of the experiment as described above. Six of the ten rabbits were treated with cyclosporine A (Cat# 239835, CALBIOCHEM, Germany) every other day starting at day 0 at dose of 0.25-0.5ml IV (depending on the weight of the rabbit) to give a dose of 20mg/kg body weight. The CsA was dissolved in 1XPBS D-a-Tocopherol 25mg/ml per animal in 1XPBS (Cat# 57668-25G, Sigma) containing 2% v/v ethanol in PBS. The remaining four rabbits were given vehicle (tocopherol- ethanol-PBS) only every other day intravenously.

2.6.3 Experiment (2) design

The second experiment was similar to the first one with the exception that the number of rabbit groups included an uninfected control group. Four were infected with the virus; four were infected and treated with cyclosporine A as before except that it was dissolved in PBS containing castor oil 25mg/ml per animal (Kolliphor® EL, cat# C5135-500G, Sigma) and two non-infected controls given vehicle only.

Experiment # 1	Inoculation	Treatment	Observations
10 rabbits	All animals	6 rabbits	D-a-
	infected with	treated with	Tocopherol
	the virus from	CsA (20 mg/kg	25mg/ml per
	day 0 of the	body weight)	animal in
	experiment IV	IV every other	1XPBS
		day	containing 2%
			ethanol IV
			used as a
			vehicle
Experiment # 2			
16 rabbits	12 rabbits	6 rabbits	Castor oil
	infected with	treated with	25mg/ml per
	the virus from	CsA (20mg/kg	animal IV
	day 0 of the	body weight)	used as a
	experiment IV	IV every other	vehicle
		day	
	4 rabbits were	6 rabbits no	
	not infected	treatment	
	used as a		
	control		

2.6.4 Sample collection

Liver, kidney, lung, spleen, and appendix tissues about 1 cm^3 were collected (four pieces per tissue) and one piece each placed in Eppendorf tubes containing 500 µl RNA-later (Cat# AM7020,

ThermoFisher Scientific, UK), and placed immediately in -20 C° freezer until RNA extraction. A second piece of each tissue was placed in Eppendorf tubes without adding RNA-later and then placed in -20 C° freezer for subsequent DNA extraction. Mesenteric (MLN) and popliteal lymph nodes were placed in 60ml tubes containing 40ml sterile 1XPBS. The lymph nodes were processed immediately after collection (see section 2.2.1). Blood samples \sim 1800µl were placed in Eppendorf tubes and then placed in -20 C° freezer. The third piece of liver, kidney, lung spleen, and appendix were placed in 7ml bijou tubes containing 5ml 4% paraformaldehyde (Cat# P/0840/53, Fisher Scientific) in PBS for 48 hours prior to paraffin embedding (see section 2.7.1) for in situ hybridisation work. Finally, the fourth piece of each tissue (liver, kidney, lung, spleen, and appendix) was placed in 60ml tubes containing 40ml 10% neutral-buffer-formalin (Cat# 361387P, VWR International) for 24-48 hours prior to paraffin embedding (see section 2.7.1) for H&E staining.

2.7 Histology

Histological approaches are used to investigate the structural organisation of tissue.

2.7.1 Paraffin embedding

Following fixation (see above), tissues were placed in an embedding cassette and dehydrated by processing with an increasing gradient of absolute ethanol in a tissue processor (Leica TP 1020, Leica microsystem. UK) as the following protocol:

- 70% (v/v) Ethanol, 1 hour.
- 80% (v/v) Ethanol, 1 hour.
- 95% (v/v) Ethanol, 1 hour.
- 100% (v/v) Ethanol, four changes, 30 min each.
- Histoclear, three changes, 1 hour.
- Paraffin wax (56-58 C°), two changes, 1 hour and half each.

Finally, the processed tissue samples were oriented and embedded into paraffin molds and kept on the cold plate for 30 minutes to set. Then the mold is removed and the excessive paraffin is trimmed off.

2.7.2 Tissue sectioning and staining

Sections, 6µm thickness, from kidney and appendix fixed in buffered formalin were cut, de waxed and then stained with haematoxylin and eosin stain (H&E) according to the standard histological approach (described below) to visualize the histological structure of the tissues. The slides of tissue sections were passed into histoclear (two changes for 5 min each), dabbed to remove excess fluid, then rehydrated in a series of alcohol concentrations (100%, 95%, and 70%) for 2 minutes each and then rinsed in running water. Slides were immersed in a bath comprising haematoxylin (Cat# H9627,
Sigma-Aldrich) for 3 minutes and then washed in running tab water. After that, slides were placed in 1% acid alcohol (300ml ethanol+ 3ml HCl) for few seconds, and then washed in water.

Slides were immersed in Eosin (cat# 318906-500 ml, Sigma-Aldrich) for 5 minutes and then briefly washed in water. Eventually, slides were dehydrated by passing through different concentrations of ethanol (Cat# E10650DF/17, Fisher Chemicals) (95% and 100% alcohol), dabbed to remove excess, and then cleared in xylene for 5 minutes in a fume hood before being mounted with 1,3-diethyl-8phenlxanthine (DPX) (Fluka analytical, Sigma Aldrich, UK). Sections were visualized using upright microscopy Leica DM 5000B epifluoresence imaging system.

For the third experiment, sample preparation and fixation was performed manually applying the same parameters with the exception that xylene (cat# x10200/17, Fisher Chemicals) was used as an alternative to histoclear. In addition, DEPC-treated water was used in 1XPBS to make up 4% paraformaldehyde.

2.8.1 RNA in situ hybridisation

In situ hybridisation is the technique by which gene transcripts (mRNA) can be located on tissue using a combination of molecular and histological approaches providing that the tissue components (RNA and morphological features) are maintained.

2.8.1.1 Preparation of riboprobes for virus gene transcripts

RNA probe synthesis is one of the steps towards achieving comprehensive *in situ* hybridisation procedure. The other two main steps include tissue fixation and sectioning and hybridisation of probes.

2.8.1.2 Primers design

The PCR primers used in preparing the riboprobes for AlHV-1 ORF 65 and ORF A9.5 were designed by professor James Stewart (ORF65) and Dr George Russell and colleagues (Russell et al., 2013). Table 6 shows the primers sequence and their amplicon size.

Table 6 shows AIHV-1 ORF65 and ORF A9.5 primer sequences and amplicon size

AIHV-1 gene	Oligonucleotides sequence	Amplicon size
ORF 65 Forward	GCACGCTAGGCCTAAACTTCC	730 bp
ORF 65 Reverse	GCCTTTGCCTAGTTTTCCTCTGG	
ORF A9.5 Forward	TGGTTGTGAGAATGAAACACTTG	525 bp
ORF A9.5 Reverse	GCACAAACCGAGTTTGACAG	

2.8.1.3 Polymerase chain reaction (PCR) amplification

PCR was used to amplify the genes of interest according to the protocol described in the materials and methods, section (2.4.2) using Taq polymerase enzyme (NEB). The benefit of using Taq polymerase enzyme is to add a single deoxyadenosine A to the 3'

end of the PCR product. The PCR fragment of the gene of interest was then inserted into a linearized plasmid victor (TOPO-TA one shot cloning kit, Invitrogen) having single overhanging 3′ deoxythymidine T residues. This will provide efficient ligation of the PCR insert with the plasmid DNA victor. Complementary DNA (cDNA) from rabbit's kidney infected with AIHV-1 C500 strain was used to amplify the gene of interest. The reason for using cDNA is to obtain coding sequence without any introns (non-coding sequence), hence avoiding any complication while synthesising the RNA probe. Figure 7 shows the amplicon size for both genes.

Figure 7 AIHV-1 PCR products for ORF A9.5 and ORF65 genes.

The figure illustrates the PCR products (cDNA) for two AlHV-1 genes used to generate RNA probes utilizing plasmid vector. Image (A) shows the product size (525 bp) of ORF A9.5 while image (B) shows the product size (730 bp) of ORF65. One kilo base pair ladder was used to analyse the genes product size. NC: negative control.

2.8.1.4 Gel extraction for ORF65 product

Gel extraction was performed on ORF65 PCR products as it did not give a clear single band using QIAguick Gel Extraction Kit (Cat# 28704, Qiagen). The protocol used was according to the manufacturer's instructions as the following. The DNA fragment was excised from the agarose gel with a clean, sharp scalpel, weighed in a colourless tube, and 3 volumes Buffer QG were added to 1 volume gel. The tube incubated at 50 °C for 10 min and 10 µl 3 M sodium acetate was added. One volume isopropanol was added to the sampled and mixed. The sample was applied to a QIAquick spin column in 2 ml collection tube and centrifuged for 1 min. The flowthrough was discarded. A volume of 500 µl Buffer OG was added to the spin column and centrifuged for 1 min. The flow-through was discarded. A volume of 750 µl Buffer BE was added to QIAquick column and centrifuged for 1 min to wash the DNA. The flowthrough was discarded. The QIAquick column was placed in a clean 1.5 ml micro-centrifuge tube. A volume of 30 µl Buffer EB (10 mM Tris-Cl, pH 8.5) was added to the centre of the QIAquick membrane, let stand for 1 min, and then centrifuged for 1 min to elute the DNA.

2.8.2 Plasmid cloning, transformation and bacterial culture

The PCR products for the genes of interest were then cloned into TOPO vector (PCR II TOPO, Invitrogen) utilizing TOPO-TA one shot cloning kit (Invitrogen) according to the following steps: Two μ l of fresh PCR product mixed with 1 μ l salt solution (1.2 M NaCl, 0.06 M MgCl2) and 2 μ l of RNase free water was added then 1 μ l of plasmid (10 ng/ μ l linearized plasmid, 50 glycerol, 50 mM Tris, 1mM DTT, 0,1% 100x triton, 100 μ g/ml BSA, phenol red) was added to make a final mixture of 6 μ l cloning mix. The mixture was incubated for 5 minutes at room temperature. The mix then placed on ice.

Two µl of the TOPO cloning reaction was added to the chemically competent *E. coli* in a vial (one shot, Invitrogen), mixed gently and then incubated on ice for 30 minutes. The cells were then heat-shocked for 30 seconds at 42°C in water bath without shaking and quickly transferred on ice. A 250µl of room temperature supplied SOC medium (Invitrogen) was added to the bacterial vial. The vial was caped tightly and placed horizontally (200 rpm) at 37°C for 1 hour in a shaker.

Upon incubation, 40 μ l of the transformed cells were spread on agar plate with 50 μ g/ml kanamycin (Cat# 15160054, Thermo-fisher Scientific) and x gal (Cat# 15520-018, Thermo-fisher Scientific) for white or blue colony screening. The plates were incubated overnight at 37°C. The following day six white colonies were chosen and cultured in 5 ml nutrient broth containing 50 μ g/ml kanamycin and then incubated for 24 hours at 37°C in universal tubes in orbital shaker at 200 rpm.

2.8.2.1 Plasmid purification

2.8.2.1.1 Minimum isolation of plasmid DNA (Mini-prep)

The plasmid DNA was isolated using resource plasmid mini kit (cat # SBS27104, Source Bio Science, UK). One to five ml bacterial overnight culture was pelleted by centrifugation at 6000 g for 3 min at room temperature. Pelleted bacterial cells were re-suspended in 250 µl buffer 1 and then transferred to a micro-centrifuge tube. A volume of 250 µl Buffer 2 was added and mixed thoroughly by inverting the tube 4-6 times until the solution becomes clear. A volume of 350 µl Buffer 3 was added, mixed immediately and thoroughly by inverting the tube 4-6 times, and then centrifuged for 10 min at 17,900 g in table-top micro-centrifuge. The supernatant was applied to spin column in a 2ml collection tube, washed by adding 0.5ml Buffer B and centrifuged for 1 min. The flow-through was discarded. The spin column was washed by adding 0.75ml Buffer E and centrifuged for 1 min. The flow-through was discarded. The spin column was further centrifuged for 1 min to remove residual wash buffer. The spin column was placed in a clean 1.5 ml micro-centrifuge tube and 50 µl Elution buffer was added to the

centre of the spin column, let stand for 1 min, and then centrifuged for 1 min to elute the DNA.

2.8.2.1.2 Maximum isolation of plasmid DNA (maxi-prep)

The maximum isolation of plasmid DNA was performed using plasmid maxi kit (Cat# 12362, Qiagen). The 150 ml overnight nutrient broth culture was harvested by centrifuging at 6000 g for 15 min at 4 °C and the bacterial pellet was completely re-suspended in 10 ml Buffer P1. A volume of 10 ml Buffer P2 was added mixed thoroughly by inverting 4-6 times, and incubated at room temperature for 5 min. During the incuation, the QIA filter Cartridge cap was screwed onto the outlet nozzle of the QIAfilter Cartridge in a falcon tube. A volume of 10 ml chilled Buffer P3 was added and mixed thoroughly by inverting 4-6 times. The lysate was loaded into the barrel of the OIAfilter Cartridge, incubated at room temperature for 10 min. After removing the cap from the QIAfilter Cartridge outlet nozzle, a plunger was gently inserted into the QIAfilter Cartridge to filter the cell lysate into the falcon tube. A volume of 2.5 ml Buffer ER was added to the filtered lysate, mixed by inverting the tube 10 times, and then incubated on ice for 30 min. A QIAGENtip 500 was equilibrated by applying 10 ml Buffer QBT and allowed the column to empty by gravity flow into a falcon tube. The filtered lysate placed on ice was applied to the QIAGEN-tip and allowed to enter the tip. The QIAGEN-tip was washed twice with 30 ml Buffer

QC. The DNA was eluted with 15 ml Buffer QN into a 30 ml endotoxin free tube, precipitated by adding 10.5 ml room-temperature isopropanol, mixed, and then centrifuged at 15,000 g for 30 min at 4 °C. The supernatant was carefully discarded and the DNA pellet was washed with 5 ml of endotoxin-free room-temperature 70% ethanol, and centrifuged at 15,000 g for 30 min at 4 °C. the supernatant was carefully decanted without disturbing the pellet. The DNA pellet was air-dried for 5-10 min and redissolved in a suitable volume (100 μ l) of endotoxin-free Buffer TE.

2.8.2.1.3 DNA sequencing

The plasmid DNA containing the PCR product inserts of the genes of interest were sent for a sequence check to Source Bioscience (Rochdale, UK) utilizing universal primers (M13 reverse and M13 forward) to sequence sense and anti-sense DNA strands. The data obtained from the sequence analysis were compared with the genes of interest sequence available at

(<u>http://www.ncbi.nlm.nih.gov/nuccore/10140926/</u>) using clustalW2 software programme.

2.8.2.1.4 Restriction digestion for plasmid DNA preparation

In order to prepare DNA template, plasmids were linearized using suitable restriction enzymes generating correct DNA cut. A volume of 8 μ g of DNA was mixed with 8 μ l restriction enzyme and 8 μ l

restriction enzyme buffers (10X). The volume was then completed to 100 μ l RNase free water and then incubated for 2 hours at 37°C. A volume of 2.5 μ l of the digested DNA were run on 1% agarose gel as described in section (2.4.2.2) to compare the size of plasmid and gene of interest. The restriction enzymes used were Bam H I (Ref# 10798975001, version 12, Roche) to prepare anti-sense probe and Xho I (Ref# 10899194001, version 22, Roche) to prepare sense probe. Digested DNA was purified utilizing Phenol:Chloroform: Isomyl (25:24:1) (P 3803-100, Sigma) Chloroform:Isomyl alcohol (24:1) (Cat# C0549-1QT, Sigma) and ethanol and then suspended in 50 μ l RNase free water and kept in -20°C freezer.

2.8.2.1.5 In vitro transcription of digoxygenin (dig)-labelled RNA probes

In order to produce digoxigenin-labelled RNA probes, the linearized DNA template was used for *in vitro* riboprobe synthesis utilizing Dig RNA labelling kit (Cat # 11175025910, Roche, USA) in line with the manufacturer's instructions. An amount of 1 μ g of purified template DNA was added into Eppendorf tube and 2 μ l of 10X NTP labelling mix, 2 μ l of 10X transcription buffer, 1 μ l of protector RNAse inhibitor, 2 μ l RNA polymerase SP6 to generate sense probe or 2 μ l RNA polymerase T7 to produce anti-sense probe and then the volume was made up to 13 μ l with RNase free water. The mix was centrifuged briefly and then incubated for 2 hours at 37°C. a

volume of 2 μ I DNase I were added and incubated for 15 minutes at 37 °C to degrade the template DNA. The reaction was then stopped by adding 2 μ I of 0.2 M EDTA pH 8. A volume of 1 μ I of 1 mg/mI carrier yeast tRNA was added to the DNase digested probes, precipitated by ethanol and then re-suspended in 50 μ I RNase free water.

2.8.2.1.6 Dot blot analysis of generated probes

In order to check the excellence of the generated probes, serial dilutions of sense, antisense and T7 control were prepared in 10 μ g/ml yeast tRNA (cat # VYAM7119, Fisher Scientific, UK) and tested by dot blot hybridization. A volume of 5 µl of each dilution Amersham's nylon membrane was spotted on (Amersham Pharmacia biotech, Hybond-N+, England) from 10⁻⁵ to 10⁻¹ in a petri dish. Upon drying, the dish containing the membrane was placed in UV croslinker (stratalinker) to fix the probes. The membrane was then placed on a bigger dish on a shaker and washed in 100 ml washing buffer (0.1 M maleic acid, 0.15 M NaCl pH 7.5, 0.3 % v/v Tween 20) for 2 minutes. The membrane was soaked in 100 ml blocking solution (Dig-wash and block, cat # 11585762001, version 10, Roche) (0.1 M maleic acid, 0.15 M NaCl, pH 7.5) on a shaker for 30 minutes. After that, the membrane was incubated with 20 ml labelled anti-DIG antibody solution (anti-Digoxigenin-AP FAb fragments, cat# 11093274910, Roche) diluted 1:5000 in blocking

solution) for 30 minutes. The membrane was then washed twice with 100 ml washing buffer for 15 minutes and equilibrated in detection buffer (0.1 M Tris-HCl, 0.1 M NaCl, pH 9.5) for 3 minutes. The colour substrate was prepared by dissolving one tablet Sigma fast BCIP/NBT (Cat# B5655-25TAB, Sigma) in 10 ml RNase free water. The dish was then placed in the dark until the dot blot coulure develop. The reaction was then stopped by adding 50 ml TE buffer for 5 minutes.

Figure 8 dot blot analysis of AlHV-1 ORF A9.5 RNA probe

The figure shows the log_{10} dilutions of sense, antisense, dig-labelled RNA and T7 control which were spotted on Amersham's nylon membrane from 10^{-1} to 10^{-5} concentrations. The membrane was washed and blocked using dig-wash and block solutions to develop the dot blot colour.

2.8.3 Deparaffinisation, proteolysis, and acetylation of tissue sections

Deparaffinisation was performed by placing tissue sections in xylene (Cat# X/0200/17, Fisher Scientific) twice in staining dishes for 5 minutes. The sections were then rehydrated by dipping twice in 100% ethanol for 5 minutes and 96% and 70% once for 5 minutes. The slides were dipped in DEPC treated water (diethyl pyrocarbonate, cat# E174-25G, Amresco) in staining dish for 5 minutes. The slides were then transferred to coplin jar and washed with 1XPBS for 5 minutes.

To achieve proteolysis, slides were incubated in 0.2 M HCl at room temperature for 30 minutes. Slides were then incubated twice 2X sodium saline citrate with 5 mM EDTA at 50°C for 30 minutes, trailed by digestion in proteinase K solution ({proteinase K, recombinant PCR grade, cat# 03115836001, Roche}, with 1 M TRIS pH 8 and 0.1 M CaCl2 made up to 60 ml DEPC treated water) for 15 minutes at 37°C. Fixation steps were performed in room temperature through incubation in 0.2% glycine-PBS for 5 minutes, followed by washing in 4% paraformaldehyde for 4 minutes and then washing in 1XPBS for 2 minutes and 15 minutes in 5mM MgCl2 in 1XPBS.

Acetylation was done through incubation with 0.25% acetanhydrid (Cat# 45830-250ML-F, Sigma) with 0.1 M triethanolamine (Cat# 1.08379.0250, VWR International Ltd) pH 7.5, followed by washing

in 1XPBS twice for one minute and once for 15 minutes in room temperature.

2.8.4 Hybridisation of probes

Pre-hybridisation, hybridisation, and post hybridisation wash: The slides were prepared for hybridisation by pre-warming in prehybridisation buffer (0.1 mg/ml salmon sperm DNA [Sigma] and 0.25 mg/ml yeast tRNA in a pre-hybridisation stock mix of 30% v/v 20X SSC, 45% v/v 100% deionised formamide [cat# 11FORMD002, MP Biomedicals, LLC], 10% v/v 50x Denhardt's solution [Invitrogen] with 14% DEPC-treated dH20) in coplin jar at 52°C for 1 hour.

To perform the hybridisation step, slides were transferred to metal tray and covered with 30-40 µl/ tissue section hybridisation buffer consisting of 250µg/ml tRNA, 10mg/ml salmon sperm DNA, 80 µl dextransulfate, 2-6 µl RNA probe (1:100) dilution added to 700 µl hybridisation mix 100% deionised formamide, 20X of 0.5 M EDTA pH 8, 0.5 M piperazin-N,N'bis 2-ethanesulfate-acid-PIPES pH 7.0 (cat# P3768-25G, Sigma), 5 M NaCl, 50X Denhardt's solution, heparin 20,000 U (Cat# H 3393-25 KU, Sigma), and 10% Triton X-100. Slides were covered with hydrophobic surface of gel-bond film (Cat# LZ53734, Scientific Laboratory Supplies LTD, Uk), sealed with Fix-O-gum gel (Marabu, Tamm, Germany) and incubated at 52°C in a moist box overnight.

The following day gel bond was carefully removed and slides placed again in coplin jar for post hybridisation wash. Washes were performed twice in 6XSSC with 45% formamide (Cat# 1.09684.1000, VWR International LTD) at 42°C for 15 minutes, followed by two washes in 2XSSC for 5 minutes at room temperature and twice in 0.2XSSC at 50°C for 15 minutes.

2.8.5 Anti-DIG labelling for probe detection

Tissue sections were washed with buffer 1 (TRIS 100mM, NaCl 100mM, pH 7.5) for one minute at room temperature. Slides were then washed with blocking solution (sterile neutral sheep serum {NSS, cat# S2263-100ML, Signa}, 10% Triton X-100) for 30 minutes at room temperature. Slides were then placed on metal tray, carefully dried, and circled by water repellent pen (PAP-PEN). Antibody solution 400 µl/slide (30 µl AP-conjugated {Anti-DIG-AK-AP 1:200}, 42 µl NSS, 188 µl 10% Triton X-100, 6 ml buffer1) were added on top of the tissue sections for 2 hours at room temperature. Slides were then transferred to coplin jar and washed with buffer 1 twice for 15 minutes at room temperature. Tissue sections were further washed with buffer 3 (TRIS 100mM, NaCl 100mM, pH 9.5, MgCl2+6H2O) for two minutes at room temperature. Ultimately, slides were incubated in the dark with staining solution (three tablets of BCIP/NBT, 30 mg levamisole (Cleaveland et al. L9756-5G, Sigma), 60 ml buffer 3) for long time

up to 1 week. Slides were periodically inspected under light microscope for signal development (dark blue colour in cell cytoplasm). The reaction was stopped by incubating slides with buffer 4 (TRIS 10mM and EDTA 1mM, pH 8) in the dark for 10 minutes. Slides were kept in duple distilled water for 5 minutes. Counter staining was done by dipping slides in haematoxylin (Ref# HHS32-1L, Sigma Aldrich) for 10 seconds. After that, slides were blueing in tap water for 5 minutes. Slides were then dried and covered with cover slip using 1, 3-diethyl-8-phenlxanthine (DPX) (Fluka analytical, Sigma Aldrich, UK) and then stored in the dark.

2.9 RNA quality measurement using Agilent Bio-

analyser Nano 6000 kit

Agilent Nano chips (Agilent Technologies, Stevens Creek Blvd, USA) comprise a set of micro channels used to separate nucleic acid fragments based on base sizes as they are driven through it RNase ZAP electrophoretically. (Cat# AM9780, ThermoFisher Scientific) which removes RNases and reduce nuclease contamination in RNA purification laboratories and RNase free water were used to decontaminate the electrodes by washing for 1 minute and 10 seconds respectively. All the reagents and samples used in the technique were equilibrated at room temperature for 30 minutes. A volume of 550 µl of Agilent 6000 Nano gel matrix (red colour tube in the kit) was placed in a spin filter and centrifuged for 10 minutes at 1500 g. A volume of 65 µl filtered gel was aliquoted in RNase free 0.5ml micro-centrifuge tubes. For single use, the gel dye mix was prepared by adding 1 µl of RNA 6000 Nano dye (blue colour) to 65 µl aliquot of pre-prepared filtered gel. The tube was mixed thoroughly by vortex and then centrifuged for 10 minutes at room temperature at 13000 g. The gel dye mix was loaded into the RNA Nano chip by pipetting 9 µl of the mix at the bottom of the wells marked[©] (Figure 9) after the chip was being placed on the chip priming station. The plunger was positioned at 1 ml position and the chip priming station was closed for 30 seconds. The plunger of the syringe was held down until it was held by the clip. After 30

seconds the plunger was released by a clip release mechanism. The chip priming station was opened and 9 μ l of the gel dye mix was pipetted in the wells marked **G**(Figure 9). 5 μ l of RNA 6000 Nano marker (green colour) was pipetted into the 12 wells and the wells marked **G** (Figure 9). The RNA samples and the ladder were heat denatured at 70°C for 2 minutes to minimise secondary structure. 1 μ l of the ladder was pipetted to the wells marked **G** (Figure 9) and 1 μ l of each sample into each of the 12 sample wells. The chip was horizontally placed in the adapter of the available vortex mixer and vortexed for 1 minute at 2000 rpm. The chip was inserted in the Agilent 2100 Bioanalyzer and read. Figure 9 shows the Agilent 6000 Nano chip shape and its various loading wells.

Figure 9 shows the Agilent 6000 Nano chip appearance and its different loading wells

2.10 RNA sequencing (RNA-Seq) methods

RNA-seq is also known as whole transcriptome shotgun sequencing (WTSS) and utilizes next-generation sequencing (NGS) to detect and quantify RNA molecule by way of DNA copies in a given biological sample (Morin et al., 2008, Wang et al., 2009). The use of this enabled scientists technique has to analyse cellular transcriptomes and simplified looking at alternative gene spliced transcripts, changes expression, single nucleotide in gene polymorphism (SNP), posttranscriptional modifications and the ability to look at RNA populations including mRNA, micro-RNA (miRNA), small RNA, total RNA, tRNA and ribosomal RNA (Ingolia et al., 2012, Maher et al., 2009). There are many approaches by which RNA sequencing can be achieved.

2.10.1 RNA poly (A) library

In this approach the polyadenylated (poly (A)) tail is targeted to guarantee that coding RNA is split from non-coding RNA. This can be done by using poly (T) magnetic beads (Wang et al., 2009). Because ribosomal RNA (rRNA) represent up to 80% of total RNA in a given cell resulting in dilution of mRNA species, tRNA is removed by either enzymatic degradation or hybridisation-based depletion approaches (Chen and Duan, 2011, Yi et al., 2011). Prior to cDNA synthesis, RNA samples are fragmented by either chemical hydrolysis or enzymatic digestion to approximately 200-250

nucleotide (nt) long (Mortazavi et al., 2008). After that, complementary DNA (cDNA) is synthesized by reverse transcriptase and oligonucleotides, used as adapters, are utilized to ligate to cDNA to assist amplification and allowing sequencing (Chu and Corey, 2012).

2.11 Illumina machine NextSeq500 sequencing

platform work flow

The work flow of the Illumina sequencing machine comprises four main steps; sample preparation, cluster generation, sequencing and data analysis. In the first step, the sample of interest (total RNA) is subjected to a series of stages to fragment the RNA molecule, converted into cDNA and then amplified to produce cDNA library. This library is then placed in an eight-lane flow cell in which the cDNA fragments are attached to oligonucleotide primers complementary through its adapters. The cDNA fragments then undergo a series of amplification by which clusters of double stranded DNA are produced. The flow cell is placed in the sequencing machine where each cluster is sequenced and at each cycle four-fluorescence labelled nucleotides are added and the emitted signals are recorded. The intensity of the fluorescence is translated into base-calls. The cycle numbers show the length of the reads whereas clusters numbers define the number of reads (Bullard et al., 2010).

2.12 Bioinformatics tools

The activities that can be covered by bioinformatics include sequence alignment, prediction of gene expression, mapping and analysing DNA and protein sequencing and aligning DNA. All of these activities can be achieved by various bioinformatics tools (Luscombe et al., 2001).

2.12.1 Blast like alignment tool (BLAT)

BLAT is a sequence alignment tool introduced by Jim Kent in 2002 to facilitate the assembly and annotation of the human genome. BLAT was ~500 times faster with performing mRNA/DNA alignment and ~50 times faster with protein/protein alignments than any other alignment tools. BLAT can be used for aligning multiple RNA sequences onto a DNA assembly to deduce their genomic matches, aligning of a protein or mRNA sequence from one species onto a sequence data base from another species and identification of gene family members of certain gene query. BLAT and BLAST have many things in common however they vary in some aspects. While BLAT scans the guery sequence for matches, BLAST searches the data base for matches. BLAT is less sensitive than BLAST. BLAT involves query sequence in FASTA format, whereas BLAST requires the query in accession number and FASTA-formatted sequence. BLAT can be utilized as server-client programme or as stand-alone programme (Kent, 2002).

2.12.2 Scythe-a Bayesian adapter trimmer

Scythe utilizes a Bayesian method categorising contaminant substrings in sequence reads. The software has the ability to remove the 3' –end adapters which contain low quality bases. The process of a poor-quality trimmer is required before mapping, analysis and assemblies for the next generation sequencing run to pick out low quality bases. The mechanism of scythe is based on two probabilities i.e. the likelihood of identifying the matches in a given contaminant or not given contaminant. Assuming that the read is contaminated, the likelihood of seeing the specific number of matches and mismatches is reliant on how good the quality of the sequence is. In the later model, the likelihood of seeing the specific number of matches and mismatches is an accidental. Scythe does not function on 5'-end contaminant or any other contaminants (Lindgreen, 2012).

2.12.3 Sickle- a windowed adaptive trimming tool for FASTQ files using quality

The majority of contemporary sequencing technologies generate reads that have relapsing quality towards the 3'-end and some towards the 5'-end which in turn can affect mapping, assembles, and data analysis. Sickle is a bioinformatics tool that utilizes sliding windows along with quality and length thresholds in order to define when quality is appropriately low to remove the 3'-end of reads and

also determine when the quality is adequately high to trim the 5'end of the reads. Sickle also rejects reads based upon the length threshold. Sickle slides a window across quality values whose length is 0.1 times the length of the reads. Sickle backs up three sorts of quality standards i.e. Illumina, Solexa and Sanger. Sickle comprises two techniques to work with both paired-end reads and single-end reads sickle se and sickle pe (Joshi and Fass., 2011)

2.12.4 HISAT

The first step in RNA-Seq downstream data analysis is to align the reads against a reference genome. The use of pre-existing and vastly utilised alignment programmes such as TopHat2 and GSNAP is time consuming. In order to overcome this deficit, HISAT, a spliced aligner tool, was produced with indexing approach based on the Burrows-Wheeler transform and the FM index. The programme algorithms occupy two various sorts of indexes: a global FM index that denotes the whole genome and several small FM indexes that collectively cover the entire genome. Each index exemplifies \sim 64,000 bp and \sim 48,000 bp are required to cover the human genome. These small indexes (local indexes) are stored in small set of files and other optimisations are applied to reduce the memory requirements. This has allowed the human genome to be indexed in almost 4 GB of space. The advantage of using these small indexes in combination with numerous alignment approaches is in allowing

effective alignment of RNA-seq reads, especially, reads spanning multiple exons. HISAT is a fast, accurate and sensitive alignment programme for mapping RNA-seq reads (Kim et al., 2015).

2.12.5 Sequence alignment map (SAM) tool

The sequence alignment map is a TAB-delimited text format comprising a header section which is optional and an alignment section. The header line begins with'@' whereas alignment lines do not. Each alignment line contains 11 compulsory fields for important alignment information like mapping location and changeable figure for optional fields. SAM is a universal format for saving sequence nucleotide alignments and easy to work with. SAM's file size is compact and permits the file to be indexed by genomic location to professionally recover all reads aligning to a locus. SAM permits most of the processes on the alignment to function on a stream without loading the whole genome into a memory. SAM tools deliver different advantages for handling alignments in the SAM format comprising merging, sorting and generating alignments in prelocated format (Li et al., 2009).

2.12.6 String Tie assembler tool

The approaches utilised to sequence the transcriptome such as RNAseq generate more than 200 million short sequences. Each of these short reads is 100-150 bp. Due to the fact that various transcripts

have highly variable sequence coverage and alternative transcripts from the same locus can share exons, this has made assembling the short reads a hard task. String Tie is a computational approach enforcing a network flow algorithm initially designed in optimisation theory along with optional de novo assembly to assemble a complex data into transcripts. In comparison with other superior transcript assembly packages such as Cufflings, Isolasso, scripture and Traph, String tie generates comprehensive and precise reconstructions of genes and better evaluates the expression level. The software is faster on all data sets than other assembly softwares (Pertea et al., 2015).

2.12.7 Ballgown

Ballgown is a software package to assist the analysis of RNA-Seq data. It supplies assignments to organise, visualize and analyse the expression quantities for transcriptome assembly. There are a number of pre-processing stages required prior to the use of ballgown R package i.e. the RNA-Seq reads should be aligned to a reference genome, a transcriptome should be assembled and expression for the traits (transcript, intron and exon junctions) ought to be evaluated in ballgown readable format. There are two sample pipelines for pre-processing and they are pipeline one (tophat2 + stringtie) and pipeline two (tophat2 + cufflinks + table maker). Certain files should be produced by stringtie and

tablemaker for ballgown to load and some of these are e_data.ctab, i_data.ctab and t_data.ctab. Data is then loaded utilizing ballgown function. The soft contain six slots to access the assembly data: structure, expr, indexes, dirs, mergedDate, and meas. Ballgown delivers broad bundles of simple, fast statistical approaches such as limma and stattest for examining whether transcripts are differentially expressed between experimental conditions or across a continuous covariate (such as time) (Frazee et al., 2014).

2.13 Statistical analysis

Deferential statistical analysis was performed by ball gown (Frazee et al., 2014) and the experiment replicate was in duplicate (N=2). The gene expression analysis was done with q PCR LightCycler 480 software and Microsoft Office Excel 2010 applying Pfaffl method (Pfaffl., 2004). LGL viral load was calculated using LightCycler 480 software the experiment replicate was done in duplicate (N=2) and two-way ANOVA used to analyse the data followed Sidak's multiple comparisons test.

Chapter 3 AIHV-1 infection of epithelial and endothelial cell lines

3.1 Abstract

Malignant catarrhal fever is characterised by accumulation of lymphocytes in non-lymphoid tissues, vasculitis and epithelial damage. The pathogenesis of MCF is not well understood. It could be due to the cytotoxic activity of infiltrated T cells or direct infection and destruction of tissues (particularly epithelium or endothelium) or a mixture of both. It is also not clear whether infection of these cell types establishes latent or productive virus life cycle or both. To address this, rabbit epithelium and bovine endothelium cell lines were used to attempt infection and measure virus life cycle gene transcripts. Bovine turbinate fibroblasts were included as a positive control for productive virus infection. The cells were infected with low pass AlHV-1 (fully virulent virus) and high pass AIHV-1 C500 strain (attenuated with gene deletions and translocations, Handley et al., 1995, Wright et al., 2003). Polymerase chain reaction and q PCR were used to detect the viral DNA and measure the viral gene transcript profiles in the infected cells. It was found that the virus infected the epithelial and endothelial cells (as measured by viral DNA). There was, however, no CPE and very low level gene expression such that it can only be concluded that there was no or limited productive infection in the infected epithelium and endothelium *in vitro* compared to a productive transcript

profile seen in the control BT Cells, or alternatively, that the cells were latently-infected. Importantly though, when the virus extracted from the BAE and SIRC cells was used to infect BT cells, a productive infection (with CPE) was recorded. This indicated that virus from the BAE and SIRC cells was infective and intact (expressed genes).

3.2 Introduction

Malignant catarrhal fever is characterized by infiltration of lymphocytes in non-lymphoid tissues, lymphoid hyperplasia vasculitis and epithelial and endothelial degeneration (Buxton et al., 1984, Jacoby et al., 1988, Liggitt and DeMartini, 1980a, Liggitt and DeMartini, 1980b, Simon et al., 2003). The severity of the lesions in particular in the epithelium of the oral cavity, gastrointestinal tract, urinary bladder, liver, biliary ducts, and kidneys as well as damage to the endothelium of arteries and veins is associated with an increase in T lymphocyte (mainly CD8⁺ T cells) infiltration a proportion of which are infected with virus in these tissues (Dewals et al., 2008, Dewals et al., 2011, Palmeira et al., 2013). Furthermore, this damage becomes more pronounced towards the end of the disease course (Liggitt and DeMartini, 1980a, Liggitt and DeMartini, 1980b). In addition, the paucity of viral transcripts supporting productive virus cycle as well as for the latent cycle (where this is expected possibly) in the tissues of animals infected with AlHV-1 has been reported (Dewals et al., 2008, Dewals et al., 2011) leading to the hypothesis that MCF is a disease of latency. However, there is evidence of productive virus cycle transcripts in infected cells and ex vivo LGLs as well as antibody responses to envelope and capsid proteins that would indicate productive virus infection. The mechanism of epithelium and endothelium damage is not proved. It could be due to the cytotoxic activity of the

accumulating infected T cells in the tissues or may be due to direct infection of these cells and destruction of them (cytopathic effect) or possibly a combination of both mechanisms. The aim of this study is to examine whether AlHV-1 (low culture passage, virulent C500 AlHV-1 or high pass attenuated virus) can infect epithelial and endothelial cells and cause cell damage, and also to investigate whether the virus is able to establish a productive/lytic infection or latent one in the infected cells. BT cells were used as controls where productive virus infection occurs.

3.3 Materials and methods

3.3.1 Virus

Low culture pass (virulent) AIHV-1 C500 strain and high pass attenuated C500 AIHV-1 were obtained from inoculated bovine turbinate fibroblasts (BT cells) and titrated as described in M&M chapter 2 (section 2.2.5). Titres obtained were ~ 10^3 TCID₅₀ per ml for low pass and ~ 10^6 TCID₅₀ per ml for high pass virus. The cells were infected with the virus (see virus dose below) when they become 80% confluent (confluency is the percentage of the cells covering the vessel). This is carried out by discarding the old media, washing the cells with 1x PBS and then inoculating the virus directly onto the cell surface with serum free media until the surface is covered.

3.3.2 Virus dose

Statens seruminstitut rabbit cornea (SIRC) epithelial cells, BT fibroblasts and bovine aortic endothelium (BAE) cells were cultured as described in Chapter 2 (section 2.2). The cells were infected with high pass AlHV-1 virus C500 strain at a dose of 5x 10⁴ TCID₅₀ per 50 µl inoculum for SIRC and BAE and 5x10³ TCID₅₀ per 5 µl for BT cells. For low pass virus 2x10³ TCID₅₀ per 2 ml inoculum was used to infect both SIRC and BAE cells and 1x10³ TCID₅₀ per 1 ml inoculum for BT cells.

3.4 In vitro infection

3.4.1 Direct virus infection

Bovine turbinate fibroblast (BT) cells, SIRC, and BAE were cultured in two types of media IMDM or DMEM as described in chapter two (2.2). The cells were infected as described (3.3.1) with either low pass or high pass AIHV-1 virus C500 strain with the doses described above and DNA was extracted from the cells on 2, 5, and 10 days after infection. This was to determine the presence or absence of the virus as viral DNA detected by PCR. BT cells at 50% CPE were harvested as a productive virus control (around day 5 post infection).

In order to determine whether the BAE and SIRC cells infected as described above contained infective virus, the cells and supernatant were harvested 7 days after infection and cell sonicate (to release cell-associated virus) and the supernatant were then added to uninfected cultures of BAE, SIRC and BT cells, which were analysed at different time points afterwards for the presence of virus DNA. For the harvest of the indirect (or secondary) infected cells, medium was collected from centrifuged cells placed into falcon tubes on ice. The cell pellet was re-suspended in medium after being centrifuged at 300xg for 10 minutes. The supernatant was collected and added to the collected supernatant placed on ice. The cell pellets were resuspended in medium, freeze/thawed once in liquid nitrogen, sonicated in water bath sonicator and then spun down at 300xg for

10 minutes. This supernatant was added to the already collected medium and supernatant to make up viral product from the cells which was used to infect healthy SIRC and BAE cells at 80% confluence in 75cm³. The flasks were placed in a 37 C° 5% CO2 incubator for seven days. During this time cells were monitored for CPE development under the microscope. Finally, (day 7), cells were harvested and DNA and RNA extracted for further analysis of viral DNA and viral gene transcripts (as shown in Table 7) by PCR and Q RT PCR (as described in chapter 2 sections 2.3.1 and 2.3.2).

Table 7 Viral gene transcripts representing either productive or latent cycle or involved in the virus life cycle.

AlHV-1 genes	Putative function/homology to productive or lytic cycle
(ORF)	herpesvirus genes.
ORF50	Encodes RTA the transcriptional and replication activator
	responsible for the switch to lytic cycle.
ORF25	Major capsid protein expressed during lytic cycle.
ORF63	Encodes structural protein during lytic cycle.
ORF73	Encodes LANA protein involved in latent infection.
A4.5	Similar to Bcl-2 family of apoptosis. Virus cycle expression
	not known.
A9.5	Encodes a secreted glycoprotein that is similar to IL-4.
	Virus cycle expression not known.

3.5 Results

3.5.1 Infection of the epithelial and endothelial cell lines

Three cell lines, BAE bovine endothelium, SIRC rabbit epithelium, and control BT bovine fibroblasts were infected with low and high pass AlHV-1 C500 strains. Bovine turbinate (BT) fibroblast cells showed a cytopathic effect (CPE) when infected with either low or high pass AlHV-1 virus five to six days after inoculation, indicating that both virus preparations contained infective virus capable of replicating and generating a CPE as part of the productive/lytic virus life cycle (Figure 10).

Figure 10 infection of bovine turbinate fibroblast (BT) cells A: healthy BT cells used as a control, image B: infected BT cells with low pass AIHV-1 C500 strain. The arrow indicates the absence of monolayer and the circle shows the accumulation of dying or dead cells and debris. The pictures represent scale bar of 500 μ m.

3.5.2 BAE endothelial cells

Infection of BAE cells directly or after secondary transfer of infected

cell sonicates and supernatants to uninfected BAE cells did not show

any signs of CPE and the cells remained intact up to ten days post
infection (Figure 11). Conversely, BT cells infected with cell sonicates and supernatant from directly infected BAE cells displayed CPE around day 5 post infection (Figure 12). This indicates that BAE cells were successfully infected and generated virus able to induce CPE in BT reporter cells.

Figure 11 Infection of bovine aortic endothelial (BAE) cells

A: control uninfected BAE cells, B and C: BAE cells infected directly with low pass or high pass AIHV-1 C500 respectively (day 10 of culture), Serial infection, D and E: BAE infected with sonicate and supernatant material from directly-infected BAE cells. No CPE seen in the cells up to ten days post infection but cells look unhealthy at this point. Picture A represents scale bar of 500 μm whereas pictures B, C, D and E represent scale bar of 200 μm .

Figure 12 Infection of bovine turbinate BT cells with infected BAE Serial infection, A and B: BT infected with directly-infected BAE and secondary BAE infected with cell sonicate and supernatant materials from directly infected cells, showing CPE of the BT cells. Arrows indicate absence of monolayers whereas circles indicate accumulation of cell debris. Pictures represent scale bar of 200 μ m.

3.5.3 SIRC epithelial cells

There was no evidence of CPE in SIRC cells infected either directly or in a serial/ secondary infection using cell sonicates and supernatant, up to 10 days after infection (Figure 13). However, BT cells infected with cell sonicates and supernatant from directlyinfected SIRC cells displayed CPE within a few days post inoculation (Figure 14), indicating that SIRC cells had supported infection and generated infective virus capable of inducing CPE in BT reporter cells.

Figure 13 Infection of SIRC epithelial cells

A: SIRC uninfected control. B and C: SIRC cells infected directly with low or high culture pass AlHV-1 C500 strain respectively. D and E: Serial infection: SIRC cells infected with cell sonicates and supernatant derived from directly-infected SIRC cells. No CPE was seen in the cells up to ten days post infection but cells look unhealthy. Pictures represent scale bar of 200 μ m.

Figure 14 Infection of bovine turbinate BT cells with infected SIRC A and B, BT cells show CPE after infection with cell sonicates and supernatant derived from directly-infected SIRC and with SIRC infected with cell sonicate and supernatant materials from directly infected cells. Arrows indicate absence of monolayers and circles show accumulation of dying/dead cell and debris. Pictures represent scale bar of 200 μ m.

3.5.4 Detection of viral DNA in the infected cells

Viral DNA was detected in SIRC, BAE and BT cells infected with either low pass AIHV-1 or high pass AIHV-1 at different time points (Figure 15 and 16) after infection. Viral DNA was not identified in non- infected cells (Figure 17).

Figure 15 qPCR products for low-pass AIHV-1 ORF3 gene visualised on agarose gel.

SC2; DNA extracted from SIRC cells 2 days post infection with AIHV-1 low pass virus, SC5; DNA extracted from SIRC cells 5 days post infection with AlHV-1 low pass virus, SC10; DNA extracted from SIRC cells 10 days post infection with AlHV-1 low pass virus, SSL; Serial infection: DNA extracted from SIRC cells infected with whole cell sonicate plus supernatant collected from directly-infected SIRC cells infected (AIHV-1 low pass virus), BT SSL; serial infection: DNA extracted from BT cells infected with whole cell sonicate plus supernatant collected from directly-infected SIRC cells (AIHV-1 low pass virus), BE2; DNA extracted from BAE cells 2 days after infection with AIHV-1 low pass virus, BE5; DNA extracted from BAE cells 5 days after infection with AIHV-1 low pass virus, BE 10; DNA extracted from BAE cells 10 days after infection with AIHV-1 low pass virus, BBL; serial infection: DNA extracted from BAE cells infected with whole cell sonicate plus supernatant collected from directly-infected BAE cells (AIHV-1 low pass virus). BT BBL; DNA extracted from bovine turbinate cells infected with whole cell lysate collected from BAE cells infected with whole cell sonicate plus supernatant collected from directly-infected BAE cells (AIHV-1 low pass virus), 0.1KB ladder; 100 base pair ladder, red arrows; indicates PCR product.

Figure 16 qPCR products for high-pass AIHV-1 ORF3 gene visualised on agarose gel

SC2; DNA extracted from SIRC cells 2 days post infection with AIHV-1 high pass virus, SC5; DNA extracted from SIRC cells 5 days post infection with AlHV-1 high pass virus, SC10; DNA extracted from SIRC cells 10 days post infection with AlHV-1 high pass virus, SSL; serial infection: DNA extracted from SIRC cells infected with whole cell sonicate plus supernatant collected from directly-infected SIRC cells (AIHV-1 high pass virus), BT SSL; serial infection: DNA extracted from BT cells infected with whole cell sonicate plus supernatant collected from directlyinfected SIRC cells (AIHV-1 high pass virus), BE2; DNA extracted from BAE cells 2 days post infection with AIHV-1 high pass virus, BE5; DNA extracted from BAE cells 5 days post infection with AIHV-1 high pass virus, BE 10; DNA extracted from BAE cells 10 days post infection with AlHV-1 high pass virus, BBL; serial infection: DNA extracted from BAE cells infected with whole cell sonicate and supernatant collected from directly-infected BAE cells (AIHV-1 high pass virus), BT BBL; serial infection: DNA extracted from BT cells infected with whole cell sonicate and supernatant collected from directly-infected BAE cells (AIHV-1 high pass virus), 0.1KB ladder; 100 base pair ladder, red arrows; indicate the PCR products.

Figure 17 qPCR products for low and high pass AlHV-1 ORF3 gene visualised on agarose gel. Infected BT cells and controls uninfected BT, SIRC and BAE cells

BT LP; bovine turbinate cells infected with AlHV-1 low pass virus, BT HP; bovine turbinate cells infected with high pass virus, BT ctrl; non-infected bovine turbinate cells. BAE ctrl; non-infected bovine aortic endothelium cells, SIRC ctrl, non-infected statens seruminstitut rabbit cornea cells; 0.1 KB ladder; 100 base pair ladder, red arrows; indicate PCR products corresponding to ORF3 DNA.

3.5.5 Viral gene expression in the infected cells

The transcripts of six AIHV-1 genes (A4.5, ORF50, ORF25, ORF73, ORF63, and A9.5) were measured using qPCR. In BT cells infected with low pass virus, ORF50 and ORF25 genes were highly expressed compared to the others that were present at very low level (Figure 18A) indicating that these transcripts were associated with the productive/lytic cycle and as such they can be used as productive cycle positive control transcripts. The other transcripts were very poorly expressed (Figure 18A). There was no detectable expression of the transcripts in BT cells infected with serial/secondary infection

from BAE endothelium and SIRC epithelium cell sonicates and supernatant after infection with low pass virus (Figure 18A). On the other hand, in BT cells infected with high pass AIHV-1, we detected ORF50 transcript and the A4.5 gene transcript in all BT cells infected, although levels were variable between different cultures (hence the large error bars) (Figure 18B). In BT cells infected with cell sonicates and supernatant from directly-infected SIRC or BAE cells, variable but low levels of A4.5 and ORF 50 were also detected. There was no virus gene expression in non-infected BT cells (Figure 18 A and B).

Figure 18 AlHV-1 transcripts in infected BT cells

Viral transcripts of six AlHV-1 C500 strain genes (A4.5, ORF9.5, ORF25, ORF50, ORF63, and ORF73) in BT cells infected with low and high pass virus. BT INF; BT cells infected directly with low culture pass virus (A) and high pass virus (B), BT SSL (A) and BT SSH (B); BT cells infected with whole cell sonicate and supernatant derived from SIRC cells directly-infected with low and high pass virus respectively, BT BBL and BT BBH; BT cells infected with whole cell sonicate and supernatant derived from directly-infected BAE cells (low culture pass (A) and high pass virus (B)), BT Ctrl; non-infected BT cells. Q RT PCR was used to measure the viral transcripts by normalizing the target genes with bovine ribosomal protein S 9 (RPS9) reference gene (chapter 2, section 2.4.4). The error bars indicate SD of duplicate samples from infected BT cells.

The viral gene transcript profile of the six virus genes revealed that they were expressed at very low levels in both endothelium (Figure 19) and epithelium (Figure 20) infected with either low culture passage AlHV-1 or high pass virus. There was no gene expression in endothelial and epithelial cells serially-infected with directly-infected endothelium and epithelium-derived virus. The use of different reference genes in the bovine cells (BT and BAE) make the gene expression comparison between the two cell lines difficult. This is because the expression rate varies between the two genes.

Figure 19 AlHV-1 transcripts in infected endothelial cells

Viral transcripts of six AlHV-1 C500 strain genes (ORF25, ORF50, ORF73, A4.5, ORF9.5, and ORF63) in bovine aortic endothelial (BAE) cells infected with low and high pass virus. BAE was infected directly on day 0 and transcripts were measured at different time point two, five, and ten days post infection for both

low and high pass virus. Error bar, represented by continuous black dashed line, represents the variation between samples. q PCR was used to measure the viral transcripts by normalizing the target genes with bovine G actin reference gene (chapter 2 section 2.4.4).

Figure 20 AlHV-1 transcripts in infected epithelial cells

Viral transcripts of six AlHV-1 C500 strain genes (ORF25, ORF50, ORF73, A4.5, ORF9.5, and ORF63) in statens seruminstitut rabbit cornea (SIRC) cells infected with low and high pass virus. SIRC was infected directly on day 0 and transcripts were measured at different time point two, five, and ten days post infection for both low and high pass virus. Error bar, represented by continuous black dashed line, represents the variation between samples. q PCR was used to measure the viral transcripts by normalizing the target genes with rabbit SDHA1 reference gene (chapter 2 section 2.4.4).

able 8 Summary of results.
able 8 Summary of results.

Virus	Cell type/ infection ¹	Viral DNA	CPE	Transcripts
Low pass	BT	+	+	ORF50; ORF25
AIHV-1	SIRC	+	-	Low level ORF50, A9.5
	BAE	+	-	V low level ORF50
	BT+SIRCv ²	+	+	-
	BT+BAEv ²	+	+	-
	SIRC+SIRCv ²	+	-	-
	BAE+BAEv ²	+	-	-
High pass	BT	+	+	Low level ORF50, A4.5
AIHV-1	SIRC	+	-	V low ORF50, A4.5, A9.5
	BAE	+	-	V low ORF50
	BT+SIRCv ²	+	+	V low ORF50, A4.5
	BT+BAEv ²	+	+	V low ORF50, A4.5
	SIRC+SIRCv ²	+	-	-
	BAE+BAEv ²	+	-	-

¹BT fibroblasts support productive virus infection; SIRC epithelial cells and BAE endothelial cells. ²Serial infection: uninfected cells were inoculated with cell sonicates and supernatant from directly-infected SIRC (SIRCv) or BAE (BAEv) after ~10 days in culture. Transcripts analysed: ORF50; ORF25; ORF63; ORF73; A4.5 and A9.5. Inoculated cells analysed on days 2, 5 and 10 after inoculation. CPE occurred around day 5 In BT cells. Viral DNA scored positive and transcripts listed only if present at all-time points after inoculation.

3.6 Discussion

In this series of experiments (summarised in table 8), rabbit epithelial corneal SIRC cells, bovine aortic endothelium (BAE) cells and bovine turbinate fibroblasts (BT) cells were infected with either low culture passage virus or high pass AIHV-1 C500 strain to determine whether the endothelial cells and /or the epithelial cells could be infected, and if so whether they could induce CPE in the cells or not. A selection of viral gene transcripts was analysed, representing either productive cycle (ORF50, ORF 25, ORF 63), latent cycle (ORF 73) or where their involvement in the virus life cycle was unknown (A4.5, A9.5).

The results indicate that low pass and high pass virus were able to infect SIRC and BAE cells although there was no CPE. This might indicate establishment of the latent cycle, and this was supported by the results of the gene transcription profiles that were of low abundance in these cells in spite of good evidence of viral DNA, indicating the presence of virus (Table 8 summary). The virus was intact and infective as, when directly-infected SIRC and BAE cell sonicates and culture supernatant were used to infect BT cells that support the productive life cycle, the BT cells were infected and showed CPE, evidence of virus replication and the productive life cycle. However, there was little or no viral gene transcription, possibly indicating a low level of gene expression.

To speculate, a consequence of the study could be that BAE and SIRC represent endothelium and epithelium *in vivo* but a lack of direct virus-induced CPE *in vitro* may reflect a similar lack of CPE *in vivo* and that the destruction of epithelium and endothelium is the result of infected T cell damage. The BAE and SIRC cells may be in a latent state (low gene expression and lack of CPE in spite of infective virus present in the cells). This requires further study.

The lack of knowledge of latency transcripts in particular in MCF is hampered by difficult access to the natural reservoir species for AlHV-1 – the wildebeest. This is where the latent and lytic cycles will have evolved and not in the disease-susceptible species where the virus is less likely to persist. Recent work from the Stewart laboratory may be challenging this view though, where evidence of subclinical infections is seen in cattle (unpublished results).

The high expression of ORF50 and ORF25 in BT cells infected with low pass virus indicates their involvement in productive cycle, which given what they code for is expected. Why ORF63 was not seen here is a mystery, but may reflect the low abundance of the viral transcripts and lack of sensitivity of the q PCR used. The low expression and absence of productive/lytic ORFs has also been reported in lymphoid and non-lymphoid tissues from animals infected with AlHV-1 C500 strain (Dewals et al., 2008, Palmeira et al., 2013).

In BT cells infected with high pass virus and epithelium and endothelium derived virus, there was an expression of ORF50 and ORF A4.5 but no expression of the other genes, indicating that A4.5 is probably a productive virus life cycle gene. The absence of the expression of the other genes is probably due to the deletion, translocation, and rearrangement that the high pass virus undergoes where ORF50 and ORFA6 were truncated and translocated (distal part of ORF50b, proximal of A6 and distal part of A10) (Wright et al., 2003). ORF A4.5 may be involved in preventing cell death, hence supporting cell survival and the establishment of either productive and/or latent infection. This is because the gene encodes a protein similar to Epstein-Barr virus EBV BALF1 and cellular B-cell lymphoma genes of the BCI-2 family that controls apoptosis (Hart et al., 2007b, Russell et al., 2009). The respiratory system including turbinate cells are the primary site of infection in OvHV-2 MCF-affected animals (Cunha et al., 2008, Myster et al., 2015) and this is likely to be the case with AlHV-1 MCF as well.

Recent work has shown that AIHV-1 establishes latency in infected tissues and cells (Dewals et al., 2008, Dewals et al., 2011, Palmeira et al., 2013) and that MCF is therefore a disease of latency. The epithelial and endothelial cell lines infected with the virus did not show any CPE. It was possible though that the virus may support latent infection in these cells. However, the undetectable levels of ORF73, a latency-associated transcript make it difficult to be clear

on this point. It would be interesting to establish sensitive detection methods for the transcripts and co-culture cells with uninfected activated T cells to see if this forces a latency programme in the cultured epithelial and endothelial cells. These cells may play, *in vivo*, a role in enforcing the virus to establish latency in order to avoid detection by the immune system (Blake, 2010). In addition, the longevity of infection may be required for the virus to support latency.

To conclude, Endothelial and epithelial cells were infected with AIHV-1 but there was no evidence of productive infection and although there was some indication that there may be a latent state (lack of CPE). The low level of gene transcripts makes a definitive conclusion currently difficult.

Chapter 4 The effect of 5-azacitidine on AlHV-1 viral gene expression in large granular lymphocytes (LGLs) and infected bovine turbinate (BT) cells

4.1 Abstract

Malignant catarrhal fever is fatal lymphoproliferative disease of even-toed ungulates. Although the tissue damage leading to animals' death is linked to lymphocytes accumulating within these tissues, the pathogenesis is still unknown. Culture of infected tissues cells can be achieved ex vivo to develop large granular lymphocytes (LGL) that represent the infected cells in vivo. These cells enrich for MCF virus-infected cells and are useful to study virus-host interactions. In this series of experiments, AlHV-1 virus genes, known for their involvement in productive/lytic and latent life cycles, were examined in LGLs in the presence and absence of 5azacitidne, a drug used to drive latency programming from a productive cycle one (Thonur et al, 2006). In addition, bovine turbinate fibroblast (BT) cells were studied as they support the productive virus life cycle and virus genes expressed in these represent important ones in the productive virus life cycle. Flow used to phenotype the LGL, which were cytometry was predominantly CD8⁺ T cells. The results showed that LGL show gene expression representative of a mixture of productive/lytic and latent life cycle and the effect of 5-azacitidine on gene expression was irregular and inconsistent with respect to identifying key latency genes. Interestingly, 5-azacitidine had an impact on LGL phenotype where it increased the percentage of pan T cells in the treated LGLs group. There was also a slight increase in CD8+ cells in 5-aza

treated group in comparison to non-treated group. In the BT cells infected with the virus, productive/lytic associated genes ORF50, ORF25, and ORF A4.5 were highly expressed. The expression of these genes was reduced when BT cells were treated with 5azacitidine but there was no elevation in ORF73 latency-associated transcript. Importantly, there was no CPE in the infected and treated cells.

4.2 Introduction

The mechanism by which the MCF related viruses (AIHV-1 and OvHV-2) induce disease is not yet well known (Li et al., 2014, Russell et al., 2009). Nonetheless, the pathogenesis of MCF is attributed in vivo to T cells accumulating in the tissues, many of which are infected with MCF virus (Dewals et al., 2011, Palmeira et al., 2013). Infected cells (LGL) can be developed in culture and are useful to study host-pathogen interactions (Reid et al., 1989, Reid et al., 1983). LGL are found to be capable of transmitting MCF when inoculated into naive rabbits (Reid et al., 1989). The viral genes profile, especially those responsible for productive/lytic and latent infection, from LGL derived from tissues of both reservoir and susceptible species, has been studied and found to be variable (Rosbottom et al., 2002). The ability to manipulate the productive/latent virus cycle, using drugs such as doxorubicin, which was found to stimulate productive virus cycle in lymphocytes infected with Epstein Barr virus (EBV) and 5-azacitidine, which had been found to drive latency in gamma herpes viruses (Szyf et al., 1985, Feng et al., 2004) has motivated researchers to study virus life cycle in OvHV-2 MCF-affected animals (Thonur et al., 2006). Here we study the effect of 5-azacitidine to drive the AlHV-1 latent virus cycle in rabbits LGL and in BT cells.

4.3 Materials and methods

4.3.1 Samples collection

Popliteal lymph nodes were obtained from rabbits infected with AlHV-1 C500 strain virus (see general materials and methods (2.6.4)). Samples were collected from rabbits IYDY, IYJJ, LFLK and LFKJ which were euthanized on day 17 of the experiment. The lymph node samples were placed in 1XPBS and processed immediately (see materials and methods section 2.2.1).

4.3.2 Tissue culture and infection

Large granular lymphocytes (LGL) were cultured and BT cells were cultured and infected as described in materials and methods chapter 2 sections (2.2.1 and 2.2). Quantitative PCR and PCR were performed as described in materials and methods, sections (2.4.4 and 2.4.2) to detect the virus and measure the viral DNA load.

4.3.3 Drug treatments

LGL derived from AlHV-1-infected rabbits were cultured as described in materials and methods chapter, section (2.2.1) and treated with 25µM 5-azacitidine (CALBICHEM, cat# 189825, Germany) over a period of three weeks with culture medium removal and drug replacement. This dose of drug was determined to be the highest concentration that did not affect the viability and growth of the LGLs or BT cells. Cultured LGL were exposed to the above mentioned

concentration for three days after which the drug was diluted by changing two thirds of the medium with fresh IL-2 IMDM medium every three days and adding fresh 5-azacitidine. Infected BT cells were treated with 5-azacitidine exactly in the same manner as the LGLs with the exception that the medium was completely discarded and replaced with fresh containing 5-azacitidine.

4.3.4 Flow cytometry

The protocol is as described in the materials and methods (chapter2, section 2.5.3).

4.4 Results

4.4.1 Viral DNA detection

Quantitative PCR was used to detect AlHV-1 DNA in LGL and BT cells. AlHV-1 ORF3 gene was utilised to perform the procedure. This is due to the fact that AlHV-1 ORF3 is validated for AlHV-1 DNA detection and quantitation (Traul et al., 2005). The results showed that AlHV-1 DNA was identified in all samples (Figures 21, 22 and 23) demonstrating that LGL were infected with the virus. The virus DNA was not identified in non-infected BT cells (Figure 23).

Figure 21 Q PCR and PCR products for AlHV-1 ORF3 gene

The figure shows qPCR and PCR products of AlHV-1 ORF3 in the rabbit LGL (110 bp) visualised on agarose gel. PCR product was estimated by comparison with the standard DNA (0.1 kb) ladder. AlHV-1 ORF3 was detected in LGL samples treated with 5-azacitidine drug. IYDY, IYJJ, LFKJ, and LFLK; different rabbit IDs from different cell lines, 0.1 KB ladder, 100 bp ladder, red arrows; indicate to the PCR product of the corresponding cell line.

Figure 22 Q PCR and PCR products for AlHV-1 ORF3 gene

The figure shows qPCR and PCR products of AlHV-1 ORF3 in the rabbit LGL (110 bp) visualised on agarose gel. The size of the gene was estimated by comparison with the standard DNA (0.1 kb) ladder. AlHV-1 ORF3 was detected in non-treated LGL samples. IYDY, IYJJ, LFKJ, and LFLK; different rabbit IDs from different cell lines, 0.1 KB ladder, 100 bp ladder, red arrows; indicate to the PCR product of the corresponding cell line.

Figure 23 Q PCR and PCR products of AlHV-1 ORF A3 gene

The figure shows q PCR and PCR products of AlHV-1 ORF3 (110 bp) visualised on agarose gel. The size of the gene was estimated by comparison with the standard DNA (0.1 kb) ladder. AlHV-1 ORF3 was detected in BT cells samples (infected only and infected and treated with 5-azacitidine) whereas the viral DNA was not detected in uninfected BT control. BT IF; bovine turbinate cells infected with AlHV-1 virus, BT 5-aza; bovine turbinate cells infected with AlHV-1 virus and treated with 5-azacitidine; 0.1 KB ladder; 100 base pair ladder; red arrows; indicate to the PCR products of the corresponding cells.

4.4.2 Viral DNA load in LGLs

To evaluate AIHV-1 copy number in LGL (treated and non-treated samples), q PCR assay was performed on LGL samples. The viral DNA copy number was estimated by normalising AIHV-1 ORF3 gene with 10^5 rabbit β globin reference gene as described in Dewals et al. (2008). The data obtained showed that the viral load is nearly

similar in both groups (Figure 24) with values between 1-1.6x 10^5 AlHV-1 copy numbers per 10^5 rabbit β globin.

Figure 24 AlHV-1 DNA copy number in rabbits' large granular lymphocytes. The figure illustrates the viral load (as copy numbers per 105 beta globin DNA copies) in large granular lymphocytes (LGL) from rabbits infected with AlHV-1 C500 strain. Four lines (IYJJ, IYDY, LFKJ, and LFLK) were treated with 5-azacitidine drug or kept without treatment as a control. The viral load was estimated by normalizing the viral DNA copy number per 105 rabbit β globin reference gene using qPCR. The primers and probe (FAMAlHV-1) for AlHV-1 ORF3 were used inside the standard sequence and then analysed using Roche Light Cycler 480 system. Two-way ANOVA was performed to do the statistical analysis using Sidak's multiple comparisons test. The primers and probe (FAM) for rabbit β globin reference gene was utilized within the standard sequence.

4.4.3 The effect of 5-azacitidine on BT cells

There was an obvious cytopathic effect (CPE) in BT cells infected with the virus. However, the development of CPE was not seen in BT cells infected and treated with 5-azacitidine. Figure 25 shows the difference between infected BT cells in the presence and absence of 5-azacitidine.

Figure 25 BT cells infected with AIHV-1 C500 strain and infected and treated with 5-azacitidine

The figure depicts BT cells infected with AIHV-1 and treatment of one of the samples with 5-azacitidine. Image (A) shows BT cells infected with the virus and treated with the drug the following day and the drug was changed every three days up to day 17 post infection. No CPE was seen after treatment. Image (B) BT infected with the virus without treatment and there was CPE detected from around day 5 post infection. The red arrows indicate the absence of monolayer and the yellow arrow show the accumulation of cell debris.

4.4.4 Measuring viral gene transcripts

In order to examine the viral gene profiles in LGL and BT cells, cDNA was synthesised from RNA for q PCR as described in chapter two, section (2.4.1). The results showed that all viral gene transcripts examined were expressed at very low level in two of the LGL lines (LFLK and LFKJ) and were not detected in the other two lines (IYDY

and IYJJ) (Figure 26). AlHV-1 ORF73 was expressed at a higher level in the 5-azacitidine treated group than non-treated in LFLK cell line. However, ORF50 expression is also identified. The expression of ORF 25, ORF63 and ORF A4.5 varied in each cell line in both groups.

In infected BT cells there was high expression of ORF50, ORF25, and ORF A4.5 in comparison with the other genes (Figure 27). In BT cells infected and treated with 5-azacitidine there was an obvious reduction in the genes supporting productive/lytic infection namely ORF50 and ORF25, but no increase in ORF73 transcripts (Figure 27) even though the cells did not show any CPE illustrating that the drug has had an effect on the expression of these genes. No virus gene expression was seen in non-infected and non-treated control BT cells (Figure 27).

Figure 26 viral gene transcripts of AIHV-1 C500 in rabbit LGLs The figure shows the viral gene profiles of AIHV-1 C500 strain genes (ORF25, ORF50, ORF73, ORF63, ORF A4.5, and ORF A9.5) in rabbit LGLs treated with 5azacitidine or not-treated. Rabbit mesenteric lymph node cells from a noninfected rabbit were used as a negative control. Q PCR was used to measure the gene expression by normalizing the target genes with rabbit SDHA1 reference gene (chapter 2 section 2.4.4).

Figure 27 viral gene transcripts of AlHV-1 C500 strain in BT cells The figure shows the viral gene transcripts of five AlHV-1 C500 genes (ORF A4.5, ORF25, ORF50, ORF63, and ORF73) in BT cells. QPCR was used to measure the gene expression by normalizing the target genes with bovine ribosomal protein S9 (RPS9) used as a reference gene (chapter 2, section 2.4.4). BT INF; infected BT without treatment, BT 5-aza; infected BT and treated with 5-azacitidine, BT Ctrl; non-infected and non-treated BT cells.

4.4.5 Flow cytometry analysis of LGL

Monoclonal antibodies directed against CD4, CD8, CD11b, B cell, and Pan T cells were used for flow cytometry analysis of the rabbit LGLs (material and methods (2.5.3)). The results revealed that the predominant cell type in the LGLs was CD8⁺ whereas CD4⁺ T cells were not detected. Figure 28 depicts the percentage of mononuclear cells in LGLs in the absence or presence of 5-azacitidine. In addition, the results showed that the percentage of Pan T cells is low in nontreated LGL but the percentage was high in 5-azacitidine treated cells. The cell lines in both groups were devoid of both CD11b cells (expressed on leukocytes, particularly most monocyte/macrophage series cells) and CD19+ B cells. There was a bias towards CD8⁺ in the double staining samples used for all cell lines (Figure 29). Figure 29 shows the typical results in one cell line (IYDY) in both treated and non-treated groups.

Figure 28 flow cytometry analysis of mononuclear cells in LGL non-treated and treated with 5-azacitidine

The figure illustrates the percentage of cell types within LGL upon analysis by flow cytometry. CD8 represents the majority of expressed T cell subset in both 5-azacitidine treated group and non-treated group whereas Pan T cell was high in 5-azacitidine treated group and low in non-treated group. CD4, CD11b and B cell were not detected in both groups.

Figure 29 flow cytometry analysis of LGL double stained with two fluorescence antibodies in 5-azacitidine treated and non-treated IYDY cell lines The figure shows the flow cytometry dot blot double staining of IYDY LGL lines with secondary antibody APC for CD8 and primary antibody conjugated with FITC CD4. High percentage of labelled cells lie in the quadrants 1-2 and 1 representing APC fluorescence for CD8 whereas no cells labelled with FITC for CD4 in quadrants 4-2 and 4 in both treated and non-treated IYDY cell lines. The figure also shows high percentage of CD8 when parameter of count used versus fluorescence in both groups. For the calculation of cell percentage, CD4 isotype control was used as a negative control for CD4 samples. Therefore, the figures of CD4 isotype control were subtracted from the values of CD4 for each sample. Due to the fact that the secondary antibodies have a role in the detection and do not bind directly to the cells; the figures for secondary APC and secondary FITC can be subtracted from the figures of each cell type to give percentage of cell count. For example, secondary FITC must be subtracted from CD11b, Pan T, B cell and FITC only. Secondary APC must be subtracted from CD8, double stained and APC only.

4.5 Discussion

In this study, Rabbit LGLs were shown to be infected as determined

by viral DNA presence, but expressed only a low abundance of

transcripts. In a few, a mixture of known productive cycle (ORF50,

ORF25, ORF63) and latent cycle (ORF73) transcripts were detected,

but not in all the LGLs. ORF50 is the R transactivator (RTA) which plays a role in driving the productive viral programme from latency (Frame and Dalziel, 2008, Goodwin et al., 2001); ORF 25 encodes a major capsid protein that is expressed during lytic cycle indicating viral replication (Dewals et al., 2008); ORF 73 encoding the latency associated nuclear antigen (LANA) is important for driving latent infection (Dewals et al., 2011, Hu et al., 2002, Palmeira et al., 2013). ORF63 encodes a tequment protein which is involved in preventing apoptosis (Boyle and Monie, 2012). This indicates that ORF63 may serve a function within the lytic life cycle. ORF A4.5 (a bcl-2 anti-apoptosis orthologue) (Mills et al., 2003) and A9.5 (secreted cytokine orthologue) (Lankester et al., 2015a, Russell et al., 2013) were included in the study to see if they could be identified as either productive cycle or latent cycle expressed. ORF73, ORF50, ORF63 and ORF25 were expressed in two LGL lines, indicating possibly predominance of productive cycle, but with no indication of a latent cycle within some of the cells which remains a possibility. This is in consistent with the observation made by Thonur et al., (2006) in cattle and rabbits using LGL infected with OvHV-2. There was also expression of ORF A4.5 in two of the rabbit lines (LFLK and LFKJ). Thonur et al. (2006) found similar results with Ov4.5 in LGL cell lines infected with OvHV-2 virus. ORF A9.5 was expressed in one of the lines (LFLK). However, the role of this gene in latent and productive/lytic life cycle remains unclear.

Upon treatment with 5-azacitidine, there was an increase in ORF73 expression in one cell line (LFLK) in comparison to the non-treated control. This is consistent with 5-azacitidine driving latency and was also seen in LGL infected with OvHV-2 virus and treated with 5azacitidine (Thonur et al., 2006). It is worth mentioning that ORF73 can be 'leaky' with respect to expression in the different virus life cycles such that absence of ORF73 in productive infection is not necessarily absent (Thonur et al., 2006). The expression also of ORF50 indicates that the cells support both latent and lytic infection. The expression of the other genes: ORF25, ORF63 and ORF A9.5 were different in each cell line in 5-aza treated and non-treated groups. This may indicate that LGL support both productive/lytic and latent virus cycle. In addition, the viral gene expression may be irregular in these cells. ORF A4.5 was expressed to a much lower level in 5-aza treated LGLs than the untreated control cells, indicating a role in the productive virus life cycle. ORF A9.5 was not investigated because of the time limit and lab authorisation required to repeat the experiment.

5-azacitidine is a DNA hypo-methylating agent that functions by inhibiting DNA methyltransferase. It has also been found that 5azacitidine has different effects on different virus gene expression patterns (Chang et al., 2014, Qiu et al., 2010). In herpes-virus saimiri, 5-azacitidine encourages productive cycle from latency (Mossman et al., 1989) while it appears that it changes the form of

EBV expression from type I latency to type III latency in lymphoma cell lines (Schaefer et al., 1997). It seems therefore that the effect of 5-azacitidine on gene expression is possibly virus and cell-type specific (Thonur et al., 2006). Thonur et al. (2006) also discovered differences in viral gene expression between cattle and rabbit LGLs samples. As defined by Gardella analysis (Gardella et al., 1984), bovine LGLs infected with OvHV-2 supports predominately latent infection (circular DNA) and only a weak band (smear) of linear DNA. OvHV-2 -infected rabbit LGLs showed productive infection (linear DNA) and only a small amount of circular DNA. Unfortunately, time ran out before Gardella gels could be performed on the samples in this study. However, the match between Gardella analysis and productive and latent gene expression was high (Thonur et al., 2006).

The high level of expression of ORF50, A4.5 and ORF25 in infected BT cells confirms the support of the virus productive/lytic cycle in these cells, which undergo a CPE and release infectious virions into the culture medium. However, when treated with 5-azacitidine, there was a lack of CPE and a sharp decline in the expression of these genes (ORF50, A4.5 and ORF25) consistent with a latency programme. This confirms the latency-inducing activity of 5-aza in this study with AIHV-1. ORF73 expression however was not increased, but this in itself may not be diagnostic of the latent state (i.e. an increase in expression rather than just expression).

MCF viruses (OvHV-2 and AIHV-1), initially, replicate in the respiratory system, in particular in the nasal turbinate (Li et al., 2008, Myster et al., 2015) where ORF25 is identified. Afterwards, the virus disseminates to the blood where, in the case of one set of studies with AIHV-1 infection, it establishes latency in lymphocytes (mainly CD8⁺ T cells) and ORF73 expression is detected (Dewals et al., 2008, Palmeira et al., 2013). ORF A4.5 may be involved in preventing cell death, hence supporting cell survival and the establishment of productive infection. This is because the gene encodes a protein similar to Epstein-Barr virus EBV BALF1 and cellular B-cell lymphoma genes of the BCI-2 family that controls apoptosis (Hart et al., 2007, Mills et al., 2003).

Flow cytometry analysis of the rabbit LGLs showed that the predominant cell type was CD8⁺ in both 5-azacitidine-treated and non-treated cells. The results are in line with the observations made in other studies that also found that the main cell type in LGL and infected tissues *in vivo* was CD8⁺ cells (Dewals et al., 2008, Dewals et al., 2011). The results showed that the LGL were devoid of CD4⁺ cells. Dewals et al. (2008) discovered that the rise in CD8⁺ cells is correlated with a reduction in CD4⁺ cells. The observation that T cells proliferating in MCF affected tissues outnumbered CD4⁺ cells was also highlighted by other researchers (Anderson et al., 2007). LGL are indiscriminately cytotoxic and have the morphology of T/natural killer (NK) cells (Swa et al., 2001).

However, in this study there was a surprising result. Very few LGL cells reacting with the Pan-T marker were detected in the LGLs not treated with 5-aza, whereas in the treated cells, the pan T marker was present on the majority of the cells. The actual antigenic target of the Pan-T antibody used is not known (Parameswaran et al., 2014). However, a recent study showed that MCF virus infection is associated with an effect on T cell phenotype of infected cells. The A2 gene (transcription regulator) had an effect on the regulation of LGL T cell phenotype where there was downregulation of $v\delta$ TCR receptors and upregulation of $\alpha\beta$ TCR receptors in the absence of A2 gene (Parameswaran et al., 2014). This may explain the reduction in pan T cells in the non-treated group if A2 is involved in latency versus productive cycle gene expression affecting this phenotype. The effect of 5-azacitidine on human T cells in particular CD4 and CD8 has been reported. It was established that 5-azacitidine treatment of Human T cells reduced CD8⁺ T cells while CD4⁺ T cells increased (Stübig et al., 2014).

In conclusion, 5-azacitidine affected the latency programme as evidenced in BT cells, where it prevented CPE and inhibited markedly productive virus gene transcription. In LGLs the effect of 5-aza was less clear due to the low level of viral transcripts although in some lines there appeared to be a small effect. The drug clearly affected the LGLs as there was a marked increase in the pan T cell
marker on T cells compared to infected untreated controls. At this stage it is not clear what this means.

Chapter 5 Cellular and viral gene expression analysis (RNA-Seq) in rabbit LGLs and BT cells infected with AlHV-1 and treated with 5-azacitidine

5.1 Abstract

The goal of this study was to determine the molecular-biochemical pathways affected by treatment of AIHV-1 infected rabbit large granular lymphocytes (LGLs) and bovine turbinate (BT) cells infected with the virus, with 5-azacitidine (5-aza). The hypothesis is that 5-aza will suppress productive virus infection and aid identification of virus latency transcripts and the host transcriptome in latently-infected cells. In order to achieve this objective, RNA-Seq was performed on the cell RNA (as copy DNA) samples. The results showed differences in gene expression patterns between treated and untreated cells, both LGLs and BT cells. Pathways identified using David[®] and Ingenuity Pathway analysis software showed that cell death (apoptosis), T cell chemo-attraction, proliferation and immune response pathways affected in 5-aza-treated LGLs compared to non-treated ones. In addition, the analysis indicated that mRNA translation, gene expression, cell cycle, DNA replication and post transcriptional modification pathways were affected in 5aza treated BT cells in comparison to non-treated BT cells. In conclusion the pathway analysis showed that there were variations between rabbit LGLs and cattle BT cells. While LGLs have pathways that aid T cell proliferation and accumulation and immune responsiveness in 5-aza-treated groups compared to untreated ones, BT cells contain pathways that support gene expression and mRNA translation in treated groups compared to untreated. In

addition, it is unclear whether rabbit LGLs support productive or latent virus cycle. RNA-Seq was not sensitive enough to pick up any other than a few viral transcripts.

5.2 Introduction

In the previous chapter, the issue of 5-azacytidine effect on the viral productive and latency programmes was studied. In this chapter, the global transcriptome of LGLs and BT cells was compared in treated versus untreated cells using RNAseq. Although Gamma herpes virus latency, generally, is not connected with disease development, latency in lymphocytes can produce malignant lymphocyte activation and proliferation dependent upon the viral species and the infected host (Barton et al., 2011, Ensser and Fleckenstein, 2005). Latency is regulated by the control of a viral gene expression programme in the infected cells enabling the virus to avoid the detection by the host immune system and persist in the infected cells. One of the approaches the virus adopts to induce latency is the control of the expression of transcriptomes including mRNA and non-coding RNAs such as micro-RNAs (miRNA) (Bartel, 2009, Kincaid and Sullivan, 2012, Pfeffer et al., 2004). The advent of sequence-based approaches such as deep sequencing, in particular RNA-Seq have opened opportunities to researchers to look at post transcriptional modification, mutations and gene expression alterations (Kumar et al., 2012, Wang et al., 2009, Wilhelm and Landry, 2009). Here, RNA-Seq technique is used to map host (and viral) gene transcripts in LGLs derived from rabbits infected with AlHV-1 virus and bovine turbinate (BT) cells infected with AlHV-1 virus to look for host pathways associated with latency and the lytic

cycle. LGLs represent the T cells naturally-infected *in vivo* and in the previous chapter, as with a previous study with OvHv-2 (Thonur et al., 2006) infected rabbit cells showed that the cells supported a mixture of latency and productive cycle genes, although in this study gene expression was low and the results not particularly clear cut. 5-aza could suppress the productive virus life cycle and reveal latency transcripts. Cattle BT cells support productive virus infection and they are a control for viral productive cycle transcripts. It was of interest to compare the host responses in 5-aza-treated and untreated cells for both species.

5.3 Materials and methods

5.3.1 Tissue and infection

Large granular lymphocytes (LGL) were obtained and cultured and BT cells were cultured and infected as described in materials and methods chapter 2 sections (2.2.1). Quantitative PCR was performed as described in materials and methods, sections (2.4.4) to measure the viral DNA load.

5.3.2 RNA extraction

Total (viral and cellular) RNA was extracted using RNeasy Plus Universal Mini Kit (cat *#* 73404, Qiagen) according to the manufacturer's instructions as described in materials and methods chapter, section (2.3.2).

5.3.3 RNA quality measurement using utilizing Agilent Bioanalyser Nano 6000 kit

The RNA quality measurement was as described in the materials and methods, section (2.9).

5.3.4 Complimentary (cDNA) DNA Library preparation and sequencing

This was done by Deepseg (University of Nottingham). Total RNA was measured using Qubit RNA BR assay kit (Life technologies, Q10210). 1µg of Total RNA was used for enrichment of mRNA using NEBNext Poly(A) mRNA Magnetic Isolation Module (NEB, E7490). Illumina stranded whole transcriptome sequencing libraries were prepared using NEBNext Ultra Directional RNA library prep kit for Illumina (NEB, E7420S). Library QC was performed using the bioanalyser HS kit (Agilent biotechnologies, 5067-4626). Libraries were quantified using qPCR (Kapa Biosystems, KK4824). Libraries were pooled at desired concentrations, denatured and loaded for according the manufacturer's instructions. sequencing to Sequencing was performed on the Illumina NextSeq500 sequencing platform to generate 2 x 75bp reads.

5.3.5 Sequence analysis, bioinformatics and statistics

This was done by Deepseq (University of Nottingham) with bioinformatics by ADAC (UoN). Ingenuity pathway analysis (IPA, www.ingenuity.com/products/pathway) was performed to look at relationships between the differentially-expressed gene lists (5-aza treated versus untreated for both cell types). The data from both species (cattle and rabbits) were interpreted utilizing the core analysis function included in IPA system in the context of biological

processes, pathways and networks. The up and down regulators were described as value parameters for the analysis. The significance of predicted bio-functions and canonical pathways was examined by the Fisher Exact test p-value (McKinney et al., 1989). Bio-functions were categorised in diseases and disorders, molecular and cellular functions. In a similar manner, canonical pathways were clustered in metabolic and signalling pathways. The bovine and rabbit (Cattle=Bos-taurus UMD3.1, rabbit=Orycorolagus-cuniculus 2.0 from ensemble genome version 82) as contained in BT cells and rabbit LGLs respectively were used to map transcript sequences. The viral genome annotation file was modified to include A9.5 ORF. BLAT (Kent, 2002) was used to identify the overlapping sequence regions. The viral genome sequence and their cosponsoring annotations were merged with the cow and rabbit files so that the viral genome sequence appeared to represent an additional contig within the host genome.

The reads were trimmed with scythe (Lindgreen, 2012) to remove residual adaptor contamination and with sickle (Joshi and Fass., 2011) to remove low quality bases. The trimmed Reads were aligned to the modified reference genomes using HISAT v2 (Kim et al., 2015). Technical replicates from different lanes were merged with SAM tools (Li et al., 2009). The merged alignments were assembled using string tie (Pertea et al., 2015) and differential expression analysis was performed using Ballgown (Frazee et al.,

2014). Scripts used in this analysis pipeline can be found in appendices in the soft copy version section (8.10).

5.4 Results

5.4.1 Viral DNA load in LGLs

To evaluate AIHV-1 copy number in LGL (5-azacitidine-treated and non-treated samples), q PCR assay was performed on LGL samples. The viral DNA copy number was estimated by normalising AIHV-1 ORF3 gene with 10^5 rabbit β globin reference gene copies as described in Dewals et al. (2008). The data obtained showed that the viral load is similar in both groups (Figure 30). This is the same as the figure shown in Chapter 2, as the same cells were used and analysed just prior to sending samples off for RNA-seq and doing the viral transcript studies in chapter 2. This is repeated here to provide context for this chapter.

5.4.2 RNA Integrity Number (RIN) measurement

The RNA integrity number is measured by a set of bio-analytical devices, which is a combination of microfluidic chips, voltageinduced size separation in gel filtered channels and laser-induced fluorescence detection and analysis of data using Agilent software tool (Schroeder et al., 2006). The RIN number ranges from 1 to 10. A RIN number of 1 show completely degraded RNA whereas a RIN number of 10 indicate totally intact RNA samples. Upon RNA extraction, the RNA integrity was estimated and samples with RIN

numbers 7 and more were used for further analysis. Figure 31 shows the RIN number in the some of the RNA samples sent for RNA-Seq analysis. Table 9 shows sample number, sample name, RNA concentrations and RNA integrity numbers (RIN) for samples sent for RNA-Seq analysis.

Table 9 sample number, sample name, RNA concentrations and RNA integrity numbers (RIN) for LGL and BT samples sent for RNA-Seq analysis.

Sample	Sample name	Sample type	Concentration	RIN #
number			ng/µl	
1	LGLLK5aza	Total RNA	297	10
3	LGLKJ5aza	Total RNA	291	10
4	LGLLKcon	Total RNA	655	9.90
5	LGLKJcon	Total RNA	1217	9.90
6a	BTinfa	Total RNA	1788	8.40
6b	BTinfb	Total RNA	1341	8.40
7a	BT5AZa	Total RNA	1335	9.60
7b	BT5AZb	Total RNA	916	9.60

LGLLK5aza and LGLKJ5aza: large granular lymphocytes derived from rabbit IDs LFLK and LKKJ and treated with 5 azacitidine, LGLLK con and LGLKJ con: Large granular lymphocytes derived from rabbits IDs LFLK and LFKJ without treatment, BTinfa and b: Bovine turbinate infected only with AlHV-1 virus, BT5Aza and b: BT treated only with 5-azacitidine.

Figure 30 AlHV-1 DNA copy number in rabbit large granular lymphocytes The figure illustrates the viral load (as DNA copy numbers per 10^5 beta globin DNA copies) in large granular lymphocytes (LGL) from rabbits infected with AlHV-1 C500 strain. Four lines (IYJJ, IYDY, LFKJ, and LFLK) were treated with 5azacitidine drug or kept without treatment as a control. The viral load was estimated by normalizing the viral DNA copy number per 10^5 rabbit β globin reference gene using qPCR. The primers and probe (FAMAlHV-1) for AlHV-1 ORF3 were used inside the standard sequence and then analysed using Roche Light Cycler 480 system. Two-way ANOVA was performed to do the statistical analysis using Sidak's multiple comparisons test. The primers and probe (FAM) for rabbit β globin reference gene was utilized within the standard sequence.

Samples with different RIN numbers show various RNA qualities. A RIN of 1 shows a completely degraded RNA sample while a RIN of 10 demonstrates a fully intact RNA sample. The two peaks in the electropherogram represent the 18S and 28S areas of the ribosomal RNA (rRNA) molecule during the single RNA cleavage. The height of 28S peak reflects the status of the RNA degradation as it dissolves faster than 18S peak. The highest peaks for categories 9 and 10 and the lowest for 1-3. (A), RIN value for LGLLK5aza sample; (B), RIN value for LGLKJ5aza sample; (C), RIN value for BT5Aza sample; (D), RIN value for BTinfa sample.

5.4.3 Mapping results

The raw data containing reads with low sequencing score were filtered and aligned to adapter sequences. All filtered reads were mapped against the reference genome (AlHV-1, Bos-tourus 8 and Oryctolagus-cuniculus 2) in line with known gene exon coordinates using HISAT2 (Kim et al., 2015). The data revealed that the number of trimmed reads ranged from 85.86 million reads for sample (LGLLFLKctrl) to nearly 112 million reads for (LGLLFLK5-aza) (Figure 32). In addition, the number of mapped reads ranged from 23 million reads for (LGL LFLK ctrl) with sample to 35 million reads for sample (BTinfb) with percentage of 98% (Figure 33). Of those mapped reads, the correctly mapped reads ranged from 22 million counts to 35 million counts for the same samples respectively (Figure 32). The percentage of mapped reads ranged from 92.93% for sample (LGL LFLK ctrl) to 98.5% for ample (BT5Aza) and those for correctly mapped reads ranged from 89.8% to 96.8% for sample (LGL LFKJ5-aza) and (BT5Aza) respectively (Figure 33).

Mapping Counts

Figure 32 genome coverage for rabbits (Oryctolagus cuniculus2) and cattle (Bos tourus 8).

The figure shows the mapping count of trimmed reads, mapped reads and uniquely and correctly mapped reads for rabbit and cattle transcripts. The highest counts for trimmed reads were nearly 112 million reads and the lowest was 85 million reads. The highest counts for mapped reads were 35.9 million counts while the lowest was 28.9 million counts. The highest counts for uniquely and correctly

mapped reads were 35 million reads whereas the lowest was 22 million counts. Reads with low sequencing score and reads aligned to adapter sequences were filtered. These reads were mapped against the rabbit and cattle gene transcripts in the context of known gene exon coordinates by HISAT mapping tool. LK5-aza; LGLs LFLK treated with 5-azacitidine, KJ5-aza; LGLs LFKJ treated with 5-azacitidine, LKctrl; non-treated LGL LFLK, KJ ctrl; non-treated LGLs LFKJ, BTinfa; BT infected with AlHV-1 sample a, BTinfb; BT infected with AlHV-1 sample b, BT5Aza; BT infected with AlHV-1 virus and treated with 5-azacitidine sample b.

Figure 33 mapping percentage for rabbits (Oryctolagus cuniculus2) and cattle (Bos tourus 8) genomes.

The figure shows the mapping count of mapped reads and uniquely and correctly mapped reads for rabbit and cattle transcripts. The highest counts for trimmed reads were nearly 112 million reads and the lowest was 85 million reads. The highest percentage for mapped reads was 98.5 % while the lowest was 92.9 %. The highest percentage for uniquely and correctly mapped reads was 96.8 % whereas the lowest was 89.8 %. Reads with low sequencing score and reads aligned to adapter sequences were filtered. These reads were mapped against the rabbit and cattle reference transcripts in the context of known gene exon coordinates by HISAT mapping toll. LK5-aza; LGLs LFLK treated with 5-azacitidine, KJ5-aza; LGLs LFKJ treated with 5-azacitidine, LKctrl; non-treated LGLs LFKJ, BTinfa; BT infected with AlHV-1 sample a, BTinfb; BT infected with AlHV-1 sample b, BT5Aza; BT infected with AlHV-1 virus and treated with 5-azacitidine sample a, BT5AZb; BT infected with AlHV-1 virus

5.4.4 Differentially expressed host genes

The data obtained from RNA sequencing analysis were run in BioMart- ensemble www.enssembl.org/biomart to identify the transcript descriptions for both species. The excel look up function was used to annotate the differential transcript lists with the clusters identified by David analysis (see sections (8.6 and 8.8)). Five top clusters represented the most affected pathways based on their enrichment score (the highest values) and then the overlapped differentially-expressed genes were identified between the clusters for both species. Table 10 and 11 show the pathways most affected in both species and the differentially expressed host genes expressed in the presence of 5-azacitidine in comparison to infected control as well as the up-regulated and down regulated genes.

The data also revealed that the pathways that had the majority of genes that were down regulated in rabbits are nuclear lumen (cell structural components), lipid biosynthesis, DNA repair, apoptosis and cell cycle in the presence of 5-azacitidine in comparison to the infected control (Table 12-16). The data also showed that the principle affected pathways that had down-regulated genes overall in cattle (BT) cells are those involved in mitochondrion integrity, endosome (structural cell components), organelle lumen (structural cell components), lysosome (structural cell components), and purine and pyrimidine biosynthesis in the presence of 5-azacitidine in comparison to infected control (Table 17-21).

Some of the genes belong to the Bcl-2 family of apoptosis such as BCL2-Associated X Protein (BAX) and BCL2/Adenovirus E1B 19kDa Interacting Protein 2 (BNIP2), which were up-regulated in 5-azatreated LGLs compared to untreated controls are considered as pro and anti-apoptotic genes respectively while BCL2/Adenovirus E1B 19kDa Interacting Protein 1 (BNIP1) and BCL2/Adenovirus E1B 19kDa Interacting Protein 3 (BNIP3), which were down regulated are thought to be cell death suppressor and cell death activator respectively. The upregulated genes known to inhibit apoptosis were Tumor Necrosis Factor Receptor Superfamily, Member 1B (TNFRSF1B) and X-Linked Inhibitor of Apoptosis, E3 Ubiquitin Protein Ligase (XIAP) (Table 12-16).

There were overlapped genes between the different pathways that are known to act as anti-apoptotic such as Mitogen-Activated Protein (MAPK 7) and Pim-1 Kinase 7 Proto-Oncogene, Serine/Threonine Kinase (PIM1) and genes acting as cell death activator like STE20-Like Kinase (SLK), Receptor (TNFRSF)-Interacting Serine-Threonine Kinase 1 (RIPK1) and Macrophage Erythroblast Attacher (MAEA) (Table 10). In addition, the overlapped genes involved in apoptosis with unknown function, either as pro or anti apoptotic, were Brain and Reproductive Organ-Expressed (TNFRSF1A Modulator) (BRE), Tubulin, Beta Class I (TUBB), Coagulation Factor II (Thrombin) Receptor-Like 3 (PAR4)

and Nuclear Receptor Subfamily 2, Group C, Member 2 (NR2C2) (Table 12-16).

The host differentially-expressed genes in BT cells that were down regulated in 5-aza treated BT cells compared to untreated controls included Polymerase (RNA) III (DNA Directed) Polypeptide F, 39 KDa (POLR3F), Proliferating Cell Nuclear Antigen (PCNA), GATA Binding Protein 2 (GATA2), Polyglutamine Binding Protein 1 (PQBP1), and Kruppel-Like Factor 4 (Gut) (KLF4) (Table 17-21). All of these genes are involved in transcription, translation, posttranslational activity and DNA replication. Table 10 conserved gene matrix of rabbit LGLs differentially expressed genes in the presence of 5-azacitidine in comparison to infected only control.

	Nuclear lumen	Lipid biosynthesis	DNA repair	Cell death and apoptosis	Cell cycle
Nuclear lumen	22	X	14 7	10 6	9 2
Lipid biosynthesis	X	7 2	1 0	x	x
DNA repair	14 7	1 1	9	11 8	6 3
Cell death and apoptosis	10 4	x	11 3	12 22	7 4
Cell cycle	9 7	X	6 3	7 3	10 15

The table contains the most affected pathways in rabbits in the presence of 5-azacitidine in comparison to the infected control. The total of differentially expressed genes in 5-aza compared to untreated controls in each cluster

is in bold black font, the up regulated genes are in red font, the down regulated genes are in green font and no overlapping is represented by X. The total number of the genes in the same cluster is split to halves. The line was drawn to split the genes in each pathway to up-regulated and down regulated genes. Table 11 conserved gene matrix of cattle's differentially expressed genes in the presence of 5-azacitidine in comparison to infected control.

	Mitochondrion	Endosome	Organelle	Lysosome	Purine and pyrimidine
			lumen		biosynthesis
Mitochondrion	20	4 2	12 5	9 5	6 2
	34				
Endosome	4 2	8	x	7 4	X
		6			
Organelle lumen	12 7	X	18	x	2 1
			27		
Lysosome	9 4	7 3	x	5	1 1
				4	
Purine and	6 4	X	2 1	1 0	9
pyrimidine					8
biosynthesis					

The table contains the most affected pathways in rabbits in the presence of 5-azacitidine in comparison to the infected control. The total of differentially expressed genes in 5-aza compared to untreated controls in each cluster is in bold black font, the up regulated genes are in red font, the down regulated genes are in green font and no overlapping is represented by X. The total number of the genes in the same cluster is split to halves. The line was drawn to split the genes in each pathway to up-regulated and down regulated ones.

Osama Kumati

Table 12 up-regulated and down regulated of rabbit gene transcripts involved in lipid bio-synthesis

Gene ID	Gene name/description	p-value	Log FC
Lipid biosynthesis			
ENSOCUG0000025649	TPI1 triosephosphate isomerase 1	0.003501	-2.1
ENSOCUG0000005722	CERS6 Cyramide synthase 6	0.007421	1.2
ENSOCUG0000015384	OXSM 3 Oxacyl-ACP-synthase, mitochondarial	0.018148	-1.2
ENSOCUG00000014801	Uncharacterised protein	0.035263	-3.5
ENSOCUG0000024832	Uncharacterised protein	0.02456	1.2
ENSOCUG0000003499	FADS 2 fatty acid desaturase 2	0.011453	-3.5
ENSOCUG00000022356	Uncharacterised protein	0.016451	-0.9
ENSOCUG0000004549	CYP51A1 cytochrome P450, family 51, subfamily A, polypeptide 1	0.040602	-0.8
ENSOCUG0000015843	MCAT Malonyl CO:CAP acyltransferase (mitochondorial)	0.040358	-1.2

The table shows the rabbits' genes name involved in the lipid bio-synthesis pathway along with their gene IDs. (-) values of log FC indicates gene down regulation where positive values indicate gene transcript up-regulation in 5-aza treated compared to untreated controls. P values are significant \leq 0.04.

Table 13 up-regulated and down regulated LGL transcripts involved in the nuclear lumen pathway

Gene ID	Gene name/description	p-value	Log FC
Nuclear lumen	·		
ENSOCUG0000011841	LIG1 ligase I, DNA, ATP-dependent	0.000739	-1.67635
ENSOCUG0000006346	PSKH1 protein serine kinase H1 [Source:HGNC Symbol;Acc:HGNC:9529]	0.001056	0.527987
ENSOCUG00000014274	MNAT1 MNAT CDK-activating kinase assembly factor 1	0.003235	0.0827
ENSOCUG0000015063	URI1 URI1, prefoldin-like chaperone	0.008231	0.54297
ENSOCUG0000029326	serine/arginine-rich splicing factor 10	0.010133	3.421816
ENSOCUG0000007138	EXOSC2 exosome component 2	0.01081	-0.1158
ENSOCUG0000003624	RFC3 replication factor C (activator 1) 3, 38kDa	0.015444	-0.24525
ENSOCUG0000010418	SAP30 Sin3A-associated protein, 30kDa	0.015697	-1.5082
ENSOCUG0000015154	MAPK7 mitogen-activated protein kinase 7	0.018904	0.796661

ENSOCUG0000005172	ZSCAN30 zinc finger and SCAN domain containing 30	0.019611	-0.59829
ENSOCUG00000017150	HNRNPH1 heterogeneous nuclear ribonucleoprotein H1 (H)	0.022724	0.573093
ENSOCUG0000009275	PPP1CC protein phosphatase 1, catalytic subunit, gamma isozyme	0.023446	-1.71405
ENSOCUG0000006975	NR2C2 nuclear receptor subfamily 2, group C, member 2	0.023524	-0.35353
ENSOCUG0000008735	MAK16 MAK16 homolog	0.034845	0.145717
ENSOCUG0000005398	CCNE2 cyclin E2	0.040346	-0.85486
ENSOCUG00000025072	Uncharacterized protein	0.041209	-0.08768
ENSOCUG0000005276	NF2 neurofibromin 2 (merlin)	0.04231	0.231713
ENSOCUG0000002802	FANCD2 Fanconi anemia, complementation group D2	0.042852	-0.59767
ENSOCUG00000027381	Uncharacterized protein	0.04345	-0.44872
ENSOCUG0000000322	PARN poly(A)-specific ribonuclease	0.043932	-0.19677
ENSOCUG0000007979	TBP TATA box binding protein	0.045047	0.407046
ENSOCUG00000024051	IDH3B isocitrate dehydrogenase 3 (NAD+) beta	0.045702	0.159479
ENSOCUG0000003848	TCOF1 Treacher Collins-Franceschetti syndrome 1	0.04798	0.278411
ENSOCUG00000014124	SENP5 SUMO1/sentrin specific peptidase 5	0.048374	-0.53382

ENSOCUG0000002541	BNIP3 BCL2/adenovirus E1B 19kDa interacting protein 3	0.010643	-2.36666
ENSOCUG00000011703	PQBP1 polyglutamine binding protein 1	0.02809	1.548224
ENSOCUG0000004604	EME1 essential meiotic structure-specific endonuclease 1	0.009054	0.278554
ENSOCUG0000000408	Uncharacterized protein	0.018583	-1.83834
ENSOCUG0000003879	CTDP1 CTD (carboxy-terminal domain, RNA polymerase II, polypeptide A)		
	phosphatase, subunit 1	0.013843	0.268011
ENSOCUG00000010012	AK4 adenylate kinase 4	0.01612	-3.43355
ENSOCUG0000006610	MAEA macrophage erythroblast attacher	0.02166	-0.85255
ENSOCUG0000012396	ZMYM3 zinc finger, MYM-type 3	0.049674	0.179336
ENSOCUG00000014778	MORF4L2 mortality factor 4 like 2	0.008387	0.524559
ENSOCUG00000021243	EXOSC4 exosome component 4	0.026038	-2.99464
ENSOCUG0000024309	SMAD7 SMAD family member 7	0.002216	0.707824
ENSOCUG00000016827	ETV6 ets variant 6	0.032107	-0.57071
ENSOCUG0000006642	XRCC5b X-ray repair complementing defective repair in Chinese hamster		
	cells 5 (double-strand-break rejoining)	0.024364	0.140797

ENSOCUG0000014717	Uncharacterized protein	0.013059	2.937234	
ENSOCUG0000010624	POLR3G polymerase (RNA) III (DNA directed) polypeptide G (32kD)	0.016503	0.121737	
ENSOCUG00000017091	MBIP MAP3K12 binding inhibitory protein 1	0.028152	0.787543	
ENSOCUG0000003587	ZMIZ1 zinc finger, MIZ-type containing 1	0.048565	0.274723	
ENSOCUG0000008568	ANKRD28 ankyrin repeat domain 28	0.042355	-0.53151	
ENSOCUG0000012218	MRPS26 mitochondrial ribosomal protein S26	0.01552	-0.14257	
ENSOCUG0000004933	SUPV3L1 SUV3-like helicase	0.024445	-0.1046	
The table shows the rabbits' genes name involved in the nuclear lumen pathway along with their gene IDs. (-)				
values of log EC indicates gone down regulation where positive values indicate gon un-regulation in 5-aza				

values of log FC indicates gene down regulation where positive values indicate gen up-regulation in 5-aza compared to untreated controls. P values are significant \leq 0.04.

	Usama Kumati
	<u> </u>

 Table 14
 up-regulated and down regulated of LGL transcripts involved in the DNA repair pathway

Gene ID	Gene name/description	p-value	Log FC			
DNA repair	DNA repair					
ENSOCUG00000022356	Uncharacterized protein	0.016451	-0.96062			
ENSOCUT0000006644	XRCC5 X-ray repair complementing defective repair in Chinese					
	hamster cells 5 (double-strand-break re-joining)	0.024364476	0.140797037			
ENSOCUT00000021649	Uncharacterized protein		-			
		0.043449515	0.448723692			
ENSOCUG0000011841	LIG1 ligase I, DNA, ATP-dependent	0.000739	-1.67635			
ENSOCUG0000014274	MNAT1 MNAT CDK-activating kinase assembly factor 1	0.003235	0.0827			
ENSOCUT0000002540	BNIP3 BCL2/adenovirus E1B 19kDa interacting protein 3	0.010643207	-2.36666053			
ENSOCUG0000003624	RFC3 replication factor C (activator 1) 3, 38kDa	0.015444	-0.24525			
ENSOCUG0000002802	FANCD2 Fanconi anemia, complementation group D2	0.042852	-0.59767			
ENSOCUG0000004604	EME1 essential meiotic structure-specific endonuclease 1	0.009054	0.278554			

		1	
ENSOCUG0000014778	MORF4L2 mortality factor 4 like 2	0.008387	0.524559
ENSOCUT00000010697	BRE Brain And Reproductive Organ-Expressed (TNFRSF1A		
	Modulator)	0.040783077	0.323317894
ENSOCUG00000017091	MBIP MAP3K12 binding inhibitory protein 1	0.028152	0.787543
ENSOCUT00000005398	CCNE2 Cyclin E2		-
		0.040346282	0.854855505
ENSOCUG0000012218	MRPS26 mitochondrial ribosomal protein S26	0.01552	-0.14257
ENSOCUT00000012453	EIF2AK3 Eukaryotic Translation Initiation Factor 2-Alpha Kinase 3	0.001836194	0.588992333
ENSOCUT0000009875	XIAP X-Linked Inhibitor Of Apoptosis, E3 Ubiquitin Protein Ligase		-
		0.023859876	1.292221674
ENSOCUT0000003039	SLK STE20-Like Kinase	0.013003841	2.362971241
ENSOCUT00000011792	RIPK1 Receptor (TNFRSF)-Interacting Serine-Threonine Kinase 1	0.031130748	0.443478374
ENSOCUT00000014532	PARP4 Poly (ADP-Ribose) Polymerase Family, Member 4	0.047262905	0.218631005
ENSOCUT00000024642	BAX BCL2-Associated X Protein	0.03360173	1.01942528

The table shows the rabbits' genes name involved in the DNA repair pathway along with their gene IDs. (-) values of log FC indicates gene down regulation where positive values indicate gene up-regulation in 5-aza treated to untreated controls. P values are significant ≤ 0.04 .

Osama Kumati

Gene ID	Gene name/ description		Log FC
Cell death and apoptos	sis	<u> </u>	
ENSOCUG0000014274	MNAT1 MNAT CDK-activating kinase assembly factor 1	0.003235	0.0827
ENSOCUG0000027381	Uncharacterized protein	0.04345	-0.44872
ENSOCUG0000002541	BNIP3 BCL2/adenovirus E1B 19kDa interacting protein 3	0.010643	-2.36666
ENSOCUG0000006642	XRCC5 X-ray repair complementing defective repair in Chinese hamster cells		
	5 (double-strand-break re-joining)	0.024364	0.140797
ENSOCUG0000012451	EIF2AK3 eukaryotic translation initiation factor 2-alpha kinase 3	0.001836	0.588992
ENSOCUG0000009878	XIAP E3 ubiquitin-protein ligase XIAP	0.02386	-1.29222
ENSOCUG00000011791	RIPK1 receptor (TNFRSF)-interacting serine-threonine kinase 1	0.031131	0.443478
ENSOCUG0000006423	BAX BCL2-associated X protein	0.033602	1.019425
ENSOCUG0000014529	PARP4 poly (ADP-ribose) polymerase family, member 4	0.047263	0.218631
ENSOCUG0000003035	SLK STE20-like kinase	0.013004	2.362971

Table 15 up-regulated and down regulated LGL transcripts involved in cellular death and apoptosis pathway

	BDE brain and reproductive organ-expressed (TNEPSE1A modulator)	0.040783	0 323318
	DRE brain and reproductive organ expressed (TMIRSEIA modulator)	0.040705	0.525510
ENSOCUG0000015154	MAPK7 mitogen-activated protein kinase 7	0.018904	0.796661
	ND2C2 pueleon recenter subfamily 2, group C, member 2	0.022524	0 25252
	NRZCZ huclear receptor subrannity 2, group C, member 2	0.023524	-0.35353
ENSOCUG0000005276	NF2 neurofibromin 2 (merlin)	0.04231	0.231713
ENSOCUG0000007979	TBP TATA box binding protein	0.045047	0.407046
ENSOCUG0000006610	MAEA macrophage erythroblast attacher	0.02166	-0.85255
		0.02100	0100200
ENSOCUG0000014717	Uncharacterized protein	0.013059	2.937234
ENSOCUG0000001542	RIPK2 receptor-interacting serine-threonine kinase 2	0.001105	-0.59341
ENSOCUG0000000172	VAV3 vav 3 guanine nucleotide exchange factor	0.006063	1.138616
ENSOCUC000007938	ALDH1A3 aldehyde dehydrogenase 1 family, member A3	0.010062	0 170754
	ALDITAS aldenyde denydrogenase i fanniy, member AS	0.010002	0.170754
ENSOCUG0000012028	PIM1 Pim-1 proto-oncogene, serine/threonine kinase	0.019968	0.398831
	·····		
ENSOCUG0000004627	APH1B APH1B gamma secretase subunit	0.020786	0.424591
ENSOCUG0000015236	Uncharacterized protein	0.021786	-1.71366
			0.007460
ENSOCUG0000006277	BNIP2 BCL2/adenovirus E1B 19kDa interacting protein 2	0.034452	0.30/168
	BNTD1 BCI 2/adenovirus E1B 19kDa interacting protein 1	0.025577	-3 16023
		0.023377	-2.10922
	l	1	

TNFRSF1B tumor necrosis factor receptor superfamily, member 1B	0.048762	-1.25577
TUBB tubulin, beta class I	0.038957	-0.37109
TMEM173 transmembrane protein 173	0.039155	0.522144
Uncharacterized protein	0.020263	-0.21927
BCAP31 B-cell receptor-associated protein 31	0.043509	-0.3856
PPP2CA Serine/threonine-protein phosphatase 2A catalytic subunit alpha		
isoform	0.007485	0.092106
PPP2CA Serine/threonine-protein phosphatase 2A catalytic subunit alpha		
isoform	0.007485	0.092106
PDCD10 programmed cell death 10	0.008327	0.106757
PGF placental growth factor	0.032233	0.349872
	TNFRSF1B tumor necrosis factor receptor superfamily, member 1BTUBB tubulin, beta class ITMEM173 transmembrane protein 173Uncharacterized proteinBCAP31 B-cell receptor-associated protein 31PPP2CA Serine/threonine-protein phosphatase 2A catalytic subunit alphaisoformPPP2CA Serine/threonine-protein phosphatase 2A catalytic subunit alphaisoformPDCD10 programmed cell death 10PGF placental growth factor	TNFRSF1B tumor necrosis factor receptor superfamily, member 1B0.048762TUBB tubulin, beta class I0.038957TMEM173 transmembrane protein 1730.039155Uncharacterized protein0.020263BCAP31 B-cell receptor-associated protein 310.043509PPP2CA Serine/threonine-protein phosphatase 2A catalytic subunit alpha isoform0.007485PPP2CA Serine/threonine-protein phosphatase 2A catalytic subunit alpha isoform0.007485PPF2CA Serine/threonine-protein phosphatase 2A catalytic subunit alpha isoform0.0072233

The table shows the rabbits' genes name involved in the cellular death and apoptosis pathway along with their gene IDs. (-) values of log FC indicates gene down regulation where positive values indicate gene up-regulation in 5-aza treated in comparison to untreated controls. P values are significant ≤ 0.04 .

Table 16 up-regulated and down regulated LGL transcripts involved in the cell cycle pathway

Gene ID	Gene name/ description	p-value	Log FC
Cell Cycle			
ENSOCUG0000014274	MNAT1 MNAT CDK-activating kinase assembly factor 1	0.003235	0.0827
ENSOCUG0000006423	BAX BCL2-associated X protein	0.033602	1.019425
ENSOCUG0000015154	MAPK7 mitogen-activated protein kinase 7	0.018904	0.796661
ENSOCUG0000006975	NR2C2 nuclear receptor subfamily 2, group C, member 2	0.023524	-0.35353
ENSOCUG0000006610	MAEA macrophage erythroblast attacher	0.02166	-0.85255
ENSOCUG0000012028	PIM1 Pim-1 proto-oncogene, serine/threonine kinase	0.019968	0.398831
ENSOCUG0000002187	TUBB tubulin, beta class I	0.038957	-0.37109
ENSOCUG0000011841	LIG1 ligase I, DNA, ATP-dependent	0.000739	-1.67635
ENSOCUG0000005398	CCNE2 cyclin E2	0.040346	-0.85486
ENSOCUG0000002802	FANCD2 Fanconi anemia, complementation group D2	0.042852	-0.59767
ENSOCUG0000004921	DCLRE1A DNA cross-link repair 1A	0.009148	0.087371

ENSOCUG0000009275	PPP1CC protein phosphatase 1, catalytic subunit, gamma isozyme	0.023446	-1.71405
ENSOCUG0000014124	SENP5 SUMO1/sentrin specific peptidase 5	0.048374	-0.53382
ENSOCUG0000007827	SASS6 SAS-6 centriolar assembly protein	0.00895	-0.42226
ENSOCUG0000011298	FAM83D family with sequence similarity 83, member D	0.018536	-1.03649
ENSOCUG0000009879	STAG2 cohesin subunit SA-2	0.021314	0.364604
ENSOCUG00000016706	KIF11 kinesin family member 11	0.027452	-0.19417
ENSOCUG0000006348	PSMB10 proteasome subunit beta 10		0.5946833
		0.028911	23
ENSOCUG0000001418	PSMD14 proteasome 26S subuni, non-ATPase 14	0.029403	-0.62192
ENSOCUG0000001097	CGRRF1 cell growth regulator with ring finger domain 1	0.035752	-1.73356
ENSOCUG0000000791	RPL24 ribosomal protein L24	0.043664	-1.61249
ENSOCUG0000003623	ITGB1 integrin, beta 1	0.00548	4.106411
ENSOCUG00000014903	RGCC regulator of cell cycle	0.042739	0.620927
ENSOCUG0000010944	NEDD1 neural precursor cell expressed, developmentally down-		
	regulated 1	0.033882	-1.16131

	I.	T	
ENSOCUG0000005880	PDS5A PDS5 cohesin associated factor A	0.048663	0 879025
ENSOCOGOGOGOGOGOGOGOGOGO		0.010000	0.07 5025

The table shows the rabbits' genes name involved in the cell cycle pathway along with their gene IDs. (-) values of log FC indicates gene down regulation where positive values indicate gen up-regulation in 5-aza treated compared to untreated controls. P values are significant ≤ 0.04 .
Table 17 up-regulated and down regulated of cattle BT transcripts involved in the mitochondrion integrity pathway

Gene ID	Gene name/description	p-value	Log FC
Mitochondrion			
ENSBTAG0000006272	nth-like DNA glycosylase 1	0.017064	0.52413
ENSBTAG00000015294	COX10 heme A:farnesyltransferase cytochrome c oxidase assembly factor	0.016254	-0.62018
ENSBTAG00000045703	cytochrome c oxidase assembly homolog 15 (yeast)	0.018873	4.340498
ENSBTAG0000007332	Uncharacterized protein	0.029911	-7.33293
ENSBTAG0000005791	uroporphyrinogen III synthase	0.036102	-4.84748
ENSBTAG00000047462	Uncharacterized protein	0.045345	-2.40732
ENSBTAG00000046690	Uncharacterized protein	0.023888	1.060966
ENSBTAG00000011931	CD63 antigen	0.028907	-0.32749
ENSBTAG0000006065	proliferating cell nuclear antigen	0.004827	-2.10674
ENSBTAG00000015006	mitochondrial ribosomal protein L11	0.009037	-1.45233
ENSBTAG00000047906	mitochondrial ribosomal protein L36	0.015561	0.068833

translocase of inner mitochondrial membrane 44 homolog (yeast)	0.016698	-0.84677
DEAH (Asp-Glu-Ala-His) box helicase 30	0.016792	-8.03291
serinetRNA ligase, mitochondrial precursor	0.019816	-1.32708
serinetRNA ligase, mitochondrial precursor	0.029509	-1.15327
ribonuclease L (2',5'-oligoisoadenylate synthetase-dependent)	0.036661	1.759817
calcyclin binding protein	0.040685	0.183786
hydroxysteroid (17-beta) dehydrogenase 4	0.046434	0.519715
glutathione S-transferase kappa 1	0.049364	-0.69816
Rab9 effector protein with kelch motifs	0.008312	7.027562
premelanosome protein	0.020502	-1.15137
SRA stem-loop-interacting RNA-binding protein, mitochondrial	0.004899	-3.087
mitochondrial ribosomal protein L14	0.011364	-2.85854
MAD1 mitotic arrest deficient-like 1 (yeast)	0.012979	-1.7572
nudix (nucleoside diphosphate linked moiety X)-type motif 8	0.014434	4.202557
carbohydrate (chondroitin 4) sulfotransferase 12	0.014673	4.543596
	translocase of inner mitochondrial membrane 44 homolog (yeast) DEAH (Asp-Glu-Ala-His) box helicase 30 serinetRNA ligase, mitochondrial precursor serinetRNA ligase, mitochondrial precursor ribonuclease L (2',5'-oligoisoadenylate synthetase-dependent) calcyclin binding protein hydroxysteroid (17-beta) dehydrogenase 4 glutathione S-transferase kappa 1 Rab9 effector protein with kelch motifs premelanosome protein SRA stem-loop-interacting RNA-binding protein, mitochondrial mitochondrial ribosomal protein L14 MAD1 mitotic arrest deficient-like 1 (yeast) nudix (nucleoside diphosphate linked moiety X)-type motif 8 carbohydrate (chondroitin 4) sulfotransferase 12	translocase of inner mitochondrial membrane 44 homolog (yeast)0.016698DEAH (Asp-Glu-Ala-His) box helicase 300.016792serinetRNA ligase, mitochondrial precursor0.019816serinetRNA ligase, mitochondrial precursor0.029509ribonuclease L (2',5'-oligoisoadenylate synthetase-dependent)0.036661calcyclin binding protein0.040685hydroxysteroid (17-beta) dehydrogenase 40.046434glutathione S-transferase kappa 10.049364Rab9 effector protein with kelch motifs0.020502SRA stem-loop-interacting RNA-binding protein, mitochondrial0.004899mitochondrial ribosomal protein L140.011364MAD1 mitotic arrest deficient-like 1 (yeast)0.014434carbohydrate (chondroiti 4) sulfotransferase 120.014673

ENSBTAG00000018770	hydroxysteroid dehydrogenase like 1	0.015835	2.683234
ENSBTAG00000014653	spinster homolog 1 (Drosophila)	0.016729	1.300334
ENSBTAG0000009682	LOC532995 protein; Uncharacterized protein	0.017564	-4.66056
ENSBTAG0000008730	sideroflexin 4	0.019208	0.333715
ENSBTAG0000008077	solute carrier family 37 (glucose-6-phosphate transporter), member 4	0.020471	-3.86726
ENSBTAG00000043959	platelet derived growth factor C	0.020528	-5.22392
ENSBTAG00000019854	ATP-binding cassette, sub-family E (OABP), member 1	0.021995	-1.79642
ENSBTAG00000021780	SCO1 cytochrome c oxidase assembly protein	0.02314	-0.33666
ENSBTAG0000003177	solute carrier family 25 (pyrimidine nucleotide carrier), member 33	0.023753	-0.50344
ENSBTAG0000001463	tankyrase, TRF1-interacting ankyrin-related ADP-ribose polymerase	0.024295	1.709409
ENSBTAG00000015255	ST6 (alpha-N-acetyl-neuraminyl-2,3-beta-galactosyl-1,3)-N-		
	acetylgalactosaminide alpha-2,6-sialyltransferase 2	0.031701	0.68046
ENSBTAG00000024781	39S ribosomal protein L17, mitochondrial	0.031911	-0.41802
ENSBTAG0000008629	mitochondrial fission regulator 1	0.036049	-0.20923
ENSBTAG0000004240	thymopoietin	0.037698	-4.9725

ENSBTAG0000006398	translocase of outer mitochondrial membrane 7 homolog (yeast)	0.037962	-5.25928
ENSBTAG0000000301	Glycerol kinase; Uncharacterized protein	0.038167	-0.30485
ENSBTAG0000001962	mitochondrial ribosomal protein S27	0.040067	-0.25581
ENSBTAG00000021790	apolipoprotein O-like	0.040527	-2.04374
ENSBTAG00000047836	NADH dehydrogenase [ubiquinone] 1 alpha subcomplex subunit 2	0.041881	2.67723
ENSBTAG0000008438	ADP-ribosylation factor interacting protein 1	0.042427	2.705246
ENSBTAG00000012107	solute carrier family 25 (mitochondrial iron transporter), member 28	0.042458	-4.15644
ENSBTAG0000005903	low density lipoprotein receptor-related protein 5	0.042508	3.191428
ENSBTAG00000012072	NADH dehydrogenase (ubiquinone) Fe-S protein 8, 23kDa	0.046031	-2.11016
ENSBTAG00000030566	GLE1 RNA export mediator	0.046476	-0.51529
ENSBTAG00000034827	platelet derived growth factor D	0.046738	6.932076
ENSBTAG0000006966	nurim (nuclear envelope membrane protein)	0.046957	-3.65053
ENSBTAG0000013282	NECAP endocytosis associated 2	0.048582	-0.20713
ENSBTAG00000046671	Wolfram syndrome 1 (wolframin)	0.049274	2.497423

The table shows cattle gene names involved in the mitochondrion pathway along with their gene IDs. (-) values of log FC indicates gene down regulation where positive values indicate gen up-regulation in 5-aza treated compared to untreated controls. P values are significant ≤ 0.04 .

Osama Kumati

ת
Ð
Ë
ਜ

Table 18 up-regulated and down regulated of cattle BT transcripts involved in endosomal pathways

Gene ID	Gene name/description	p-value	Log FC
endosome		I	I
ENSBTAG00000046690	Uncharacterized protein	0.023888	1.060966
ENSBTAG00000011931	CD63 antigen	0.028907	-0.32749
ENSBTAG00000016094	solute carrier family 36 (proton/amino acid symporter), member 1	0.002693	-3.00111
ENSBTAG00000018202	cytochrome b561 family, member A3	0.013663	-3.80245
ENSBTAG00000039968	transmembrane protein 55A	0.023713	3.109691
ENSBTAG00000034689	zinc and ring finger 1, E3 ubiquitin protein ligase	0.036233	1.176685
ENSBTAG0000003745	WD repeat domain 48	0.037767	0.725065
ENSBTAG00000015098	Rab9 effector protein with kelch motifs	0.008312	7.027562
ENSBTAG0000004019	premelanosome protein	0.020502	-1.15137
ENSBTAG00000046467	protein tyrosine phosphatase type IVA, member 3	0.009776	-2.61277
ENSBTAG00000018915	WASH complex subunit FAM21	0.01622	3.690243

ENSBTAG00000025297	membrane magnesium transporter 1	0.018348	10.41085
ENSBTAG0000003565	tripartite motif containing 3	0.022235	4.037245
ENSBTAG00000021639	activity-regulated cytoskeleton-associated protein	0.040311	-0.17954

The table shows cattle's genes name involved in the endosome pathway along with their gene IDs. (-) values of log FC indicates gene down regulation where positive values indicate gen up-regulation in 5-aza-treated compared to untreated controls. P values are significant \leq 0.04.

SSC
m
X
ΠΠ
lat

Table 19 up-regulated and down regulated of cattle BT gene transcripts involved in the organelle lumen pathway

Gene ID	Gene name/description	p-value	Log FC
Organelle lumen			
ENSBTAG0000006272	nth-like DNA glycosylase 1	0.017064	0.52413
ENSBTAG0000008825	polymerase (RNA) III (DNA directed) polypeptide F, 39 kDa	0.038073	-1.69785
ENSBTAG0000006065	proliferating cell nuclear antigen	0.004827	-2.10674
ENSBTAG00000015006	mitochondrial ribosomal protein L11	0.009037	-1.45233
ENSBTAG00000047906	mitochondrial ribosomal protein L36	0.015561	0.068833
ENSBTAG00000015567	translocase of inner mitochondrial membrane 44 homolog (yeast)	0.016698	-0.84677
ENSBTAG00000015833	DEAH (Asp-Glu-Ala-His) box helicase 30	0.016792	-8.03291
ENSBTAG0000001780	serinetRNA ligase, mitochondrial precursor	0.019816	-1.32708
ENSBTAG0000001780	serinetRNA ligase, mitochondrial precursor	0.029509	-1.15327
ENSBTAG0000009091	ribonuclease L (2',5'-oligoisoadenylate synthetase-dependent)	0.036661	1.759817
ENSBTAG0000001107	calcyclin binding protein	0.040685	0.183786

ENSBTAG0000006978	hydroxysteroid (17-beta) dehydrogenase 4	0.046434	0.519715
ENSBTAG0000009839	glutathione S-transferase kappa 1	0.049364	-0.69816
ENSBTAG00000011360	pre-mRNA-splicing factor SYF1	0.00146	-1.66151
ENSBTAG0000003849	guanine nucleotide binding protein-like 2 (nucleolar)	0.005061	-3.48445
ENSBTAG00000016606	polycomb group ring finger 1	0.00592	7.051528
ENSBTAG00000019707	GATA binding protein 2	0.007854	-0.29559
ENSBTAG0000007323	cleavage and polyadenylation specific factor 6, 68kDa	0.008762	1.478988
ENSBTAG00000012777	serum response factor	0.008861	-1.61675
ENSBTAG0000009562	zinc finger protein 593	0.0127	-1.68797
ENSBTAG00000016332	inhibitor of growth family, member 3	0.015852	-2.50246
ENSBTAG00000012575	macrophage erythroblast attacher	0.016016	1.536743
ENSBTAG0000008190	sulfatase modifying factor 2	0.0175	-0.57121
ENSBTAG0000007480	cold inducible RNA binding protein	0.018909	8.773147
ENSBTAG00000038409	methyl-CpG binding domain protein 3	0.01934	-0.93366
ENSBTAG00000026585	transcription elongation factor B (SIII), polypeptide 3 (110kDa, elongin A)	0.019828	1.808792
N		•	

ENSBTAG0000003697	TAR DNA binding protein	0.021319	-6.7882
ENSBTAG00000015946	retinoblastoma binding protein 5	0.021543	1.793306
ENSBTAG00000020490	NACC family member 2, BEN and BTB (POZ) domain containing	0.02163	-4.77528
ENSBTAG0000005076	synovial apoptosis inhibitor 1, synoviolin	0.025081	1.024949
ENSBTAG00000021192	glioma tumor suppressor candidate region gene 2	0.025745	0.595285
ENSBTAG0000006112	SprT-like N-terminal domain	0.027078	1.98873
ENSBTAG00000010384	cell division cycle 6	0.0276	-1.29413
ENSBTAG00000021845	striatin, calmodulin binding protein 3	0.028528	-1.55617
ENSBTAG00000016271	small nuclear ribonucleoprotein polypeptide F	0.029432	-1.43929
ENSBTAG0000003423	DEAD (Asp-Glu-Ala-Asp) box helicase 24	0.030951	-2.64543
ENSBTAG00000018498	polyglutamine binding protein 1	0.031957	-5.22647
ENSBTAG00000017582	checkpoint kinase 1	0.032011	4.752555
ENSBTAG0000008905	folliculogenesis specific bHLH transcription factor	0.03221	-0.81315
ENSBTAG00000012699	exosome component 1	0.034345	-1.84211
ENSBTAG0000008704	fidgetin	0.038805	-1.51006

ENSBTAG00000019846	alkB homolog 2, alpha-ketoglutarate-dependent dioxygenase	0.03964	11.41241
ENSBTAG00000017219	DEAD (Asp-Glu-Ala-Asp) box polypeptide 51	0.044658	3.336827
	Kennengel like forsten 4 (nut)	0.045010	0.77207
ENSBIAG0000020355	Kruppel-like factor 4 (gut)	0.045216	-9.//39/
ENSBTAG0000003934	paraspeckle component 1	0.047011	5.469299

The table shows cattle's genes name involved in the organelle lumen pathway along with their gene IDs. (-) values of log FC indicates gene down regulation where positive values indicate gen up-regulation in 5-aza treated compared to untreated controls. P values are significant ≤ 0.04 .

Osama
Kumati

Table 20 up-regulated and down regulated of cattle BT gene transcripts involved in lysosomal pathways

Gene ID	Gene name/description	p-value	Log FC
Lysosome			1
ENSBTAG00000011960	glutamic-oxaloacetic transaminase 1, soluble	0.009702	0.410793
ENSBTAG00000046690	Uncharacterized protein	0.023888	1.060966
ENSBTAG00000011931	CD63 antigen	0.028907	-0.32749
ENSBTAG00000016094	solute carrier family 36	0.002693	-3.00111
ENSBTAG00000018202	cytochrome b561 family, member A3	0.013663	-3.80245
ENSBTAG00000039968	transmembrane protein 55A	0.023713	3.109691
ENSBTAG00000034689	zinc and ring finger 1, E3 ubiquitin protein ligase	0.036233	1.176685
ENSBTAG0000003745	WD repeat domain 48	0.037767	0.725065
ENSBTAG0000000484	hyaluronoglucosaminidase 2	0.042501	-0.97983

The table shows cattle's genes name involved in the lysosome pathway along with their gene IDs. (-) values of log FC indicates gene down regulation where positive values indicate gen up-regulation in 5-aza-treated compared to untreated controls. P values are significant \leq 0.04.

Osama Kumati

Results

Table 21 up-regulated and down regulated of cattle BT gene transcripts involved in purine and pyrimidine biosynthesis pathways

Gene ID	Gene name/description		Log FC
Purine and pyrimidine	biosynthèses	I	
ENSBTAG00000011960	glutamic-oxaloacetic transaminase 1, soluble	0.009702	0.410793
ENSBTAG0000006272	nth-like DNA glycosylase 1	0.017064	0.52413
ENSBTAG0000008825	polymerase (RNA) III (DNA directed) polypeptide F, 39 kDa	0.038073	-1.69785
ENSBTAG00000015294	COX10 heme A:farnesyltransferase cytochrome c oxidase assembly factor		-0.62018
ENSBTAG00000045703	cytochrome c oxidase assembly homolog 15 (yeast)		4.340498
ENSBTAG0000007332	Uncharacterized protein	0.029911	-7.33293
ENSBTAG0000005791	uroporphyrinogen III synthase	0.036102	-4.84748
ENSBTAG00000047462	Uncharacterized protein	0.045345	-2.40732
ENSBTAG00000015509	nicotinamide phosphoribosyltransferase	0.00014	6.215473
ENSBTAG00000019274	5-aminoimidazole-4-carboxamide ribonucleotide formyltransferase/IMP		
	cyclohydrolase	0.006476	10.49776

ENSBTAG0000007758	phosphodiesterase 10A	0.011243	4.872506
ENSBTAG0000013776	inosine triphosphatase	0.013862	-0.93005
		01015002	0199009
ENSBTAG0000003025	NME/NM23 nucleoside diphosphate kinase 6	0.032176	5.09935
ENSBTAG0000016552	NME/NM23 nucleoside diphosphate kinase 3	0.036335	14.84213
ENSBTAG0000004549	uracil phosphoribosyltransferase (FUR1) homolog	0.037439	-5.2164
ENSBTAG0000013825	branched chain amino-acid transaminase 1, cytosolic	0.044216	3.56528
ENSBTAG0000002689	NME/NM23 family member 7	0.048514	-0.52516
			<u> </u>
The table shows cattle's genes name involved in the purine and pyrimidine biosynthesis pathway along with their gene			

IDs. (-) values of log FC indicates gene down regulation where positive values indicate gen up-regulation in 5-azatreated compared to untreated controls. P values are significant \leq 0.04.

5.4.5 Differentially-expressed virus genes detected by RNA-Seq

The sequence analysis revealed that one virus gene differentially expressed (ORF 8, down-regulated in 5-aza group compared to controls, figure 34) in the cattle samples whereas two virus genes (ORF 21 and ORF 7) were up-regulated in the rabbit samples in the presence of 5-azacitidine in comparison to infected control (Figure 34). Table 22 shows viral DNA load and viral gene transcripts in rabbit LGL and cattle BT cells in the presence and absence of 5azacitidine as measured by PCR and qPCR. Table 22 summary of viral gene transcripts and viral DNA load in rabbit LGL and cattle BT cells in the presence and absence of 5-azacitidine as measured by qPCR and PCR approaches.

Cell type/treatment	Viral	Transcripts	
	DNA		
Non-treated LGLs			
ILI	+	Undetectable level of all transcripts	
IYDY	+	Undetectable level of all transcripts	
LFKJ	+	Low level ORF25, ORF63, ORFA4.5 and	
		undetectable level of ORF50, ORF73, ORF	
		A.9.5	
LFLK	+	Low level of all transcripts	
5-aza treated LGLs			
ΙΥΊ	+	Very low level of ORF25 and ORF A4.5	
IYDY	+	Undetectable level of all transcripts	
LFKJ	+	Low level ORF25, ORF A4.5 and	
		undetectable level of ORF73, OR50, ORF63,	
		ORF A9.5	
LFLK	+	Low level of all transcripts	
infected only BT cells	+	High level of ORF50, ORF25, ORF A4.5 and	
		low level of ORF73, ORF63	
5-aza treated and	+	Low level of ORF50, ORF25, ORF A4.5 and	
infected BT cells		undetectable level of ORF73, ORF63	

diferentialy expressed AIHV-1 genes

Figure 34 differentially expressed AlHV-1 virus in rabbits' LGLs and BT cells. The figure shows the differentially expressed genes (ORF 8) in bovine turbinate (BT) cells and ORF21 and ORF 7 in rabbits' LGLs in the presence of 5-azacitidine in comparison to infected control. The figure also shows that ORF 8 gene was down regulated (log FC) whereas ORF 7 and ORF 21 were up-regulated. The genes were significantly expressed with p value < 0.05.

5.4.6 David clustering

The human orthologue gene ID's lists for both rabbit and cattle were uploaded in David's software http//david.ncifcrf.gov in order to cluster the functionally annotated genes. The results showed that there were 93 and 100 clusters in rabbit and cattle species respectively (see the sections (8.2 and 8.3) in appendix). These were reduced to 15 and 11 clusters for both rabbit and cattle respectively (see sections (8.7 and 8.9) in appendix) based upon the enrichment score by which the clusters trimmed. These clusters with enrichment score of ≥ 1 were kept for further analysis.

5.4.7 IPA results

Ingenuity pathway analysis (IPA) was performed on the data obtained from RNA sequencing analysis. For this it was necessary to generate one to one orthologues between our species (cattle and rabbit) and human using BioMart ensemble www.ensemble.org . The data obtained is placed in sections 8.6 and 8.7 in the appendix. The IPA system was used to investigate the differentially regulated pathways in the comparison between the treated (5-aza) and untreated cells (cattle or rabbit). The entire data sets were uploaded to the IPA software for global analysis. The top five significant canonical pathways affected in LGLs in the presence of 5-azacitidine in comparison to control LGLs were related to cell death and T cell activation (Table 23). The principal networks/pathways recognised contained those connected with: cell death and survival; cellular proliferation; lymphoid growth and tissue structure and development; lipid metabolism and the humoral immune response (Table 23). In general, genes within the pathways were down regulated in 5aza treated LGLs compared to untreated controls and the overall impact of this was possible induction of apoptosis and immune response genes. In addition, the top five significant canonical pathways affected in BT cells in the presence of 5azacitidine in comparison to control BT cells were related to: mRNA translation and mitochondrion structure (Table 24). The most significant networks/pathways observed are those associated with

cell cycle, gene expression, DNA replication and cancer (Table 24). The balance of genes in the majority of affected pathways were down regulated in 5aza treated in BT cells compared to untreated controls and the overall affect was a decrease in transcription and translation. Table 23 summary of ingenuity pathway analysis of rabbit LGLs in the presence of 5-azacitidine

Top Canonical Pathways		
	p-value	overlap
Ceramide Signalling	9.18E-05	8.8 % 7/80
Induction of Apoptosis by AIHV-1	1.40E-04	10.0 % 6/60
Death Receptor Signalling	2.21E-04	7.6 % 7/92
Tec Kinase Signalling	2.51E-04	5.7 % 9/157
NF-B Activation by Viruses	4.12E-04	8.2 % 6/73

Molecular and cellular functions

	p-value	#Molecules
Cell Death and Survival	1.32E-02 - 9.08E-	98
	06	
Cellular Function and Maintenance	1.32E-02 - 9.08E-	49
	06	
Cellular Development	1.32E-02 - 1.34E-	66
	05	
Cellular Growth and Proliferation	1.32E-02 - 1.34E-	95
	05	
Lipid Metabolism	1.32E-02 - 3.65E-	31
	05	
ID Associated Network Functions		Score
Antimicrobial Response, Cell Morphology, Cellular Assembly		51

and Organization		
Cancer, Organismal Injury and Abnormalities,	41	
Gastrointestinal Disease		
Auditory and Vestibular System Development and Function,	35	
Cellular Development, Cellular Growth and		
Proliferation		
Lymphoid Tissue Structure and Development, Organ	33	
Development, DNA Replication, Recombination, and Repair		
Cell Death and Survival, Cancer, Organismal Injury and	30	
Abnormalities		

IPA uses Fisher's Exact test to calculate p value

Table 24 summary of ingenuity pathway analysis of bovine turbinate (BT) cells in the presence of 5-azacitidine

Top Canonical Pathways		
	p-value	Overlap
Regulation of eIF4 and p70S6K	2.35E-04	6.8 %
Signaling		10/146
EIF2 Signaling	1.43E-03	5.4 %
		10/184
mTOR Signaling	1.61E-03	5.3 %
		10/187
2-oxobutanoate Degradation I	2.89E-03	40.0 % 2/5
Oxidative Phosphorylation	2.89E-03	6.4 % 7/109

Molecular and Cellular Functions		
	p-value	#Molecules
Cellular Assembly and Organization	2.41E-02 - 2.67E-	43
	06	
Gene Expression	1.73E-02 - 1.52E-	62
	04	
RNA Damage and Repair	1.33E-02 - 1.52E-	7
	04	
RNA Post-Transcriptional Modification	1.52E-04 - 1.52E-	6
	04	
DNA Replication, Recombination, and	2.24E-02 - 1.71E-	35
Repair	04	
ID Associated Network Functions		Score
Cancer, Organismal Injury and	d Abnormalities,	53
Gastrointestinal Disease		
Cancer, Organismal Injury and	d Abnormalities,	41
Gastrointestinal Disease		
Cell Cycle, DNA Replication, Recombin	36	
Gene Expression		
Ophthalmic Disease, Organismal Injury and Abnormalities,		36
Skeletal and Muscular Disorders		
Cell Cycle, DNA Replication, Recombination, and Repair,		34
Developmental Disorder		

IPA uses Fisher's Exact test to calculate p value

5.5 Discussion

In this study the aim was to investigate the pathways affected by AlHV-1 in rabbit LGLs and cattle BT cells infected with AlHV-1 in the presence or absence of 5-azacitidine. The viral DNA copy number was used to identify the presence of AlHV-1 virus in LGLs samples. The RNA integrity number (RIN) results showed that all samples exhibited high quality RNA. This is important as the degradation of RNA can affect the gene expression level (Romero et al., 2014, Schroeder et al., 2006). The RNA sequencing analysis revealed that the mapping efficiency (the percentage of reads aligned to host genome or transcripts) was high (92% to 98%) indicating that high percentage of the RNA reads matched to rabbit and cattle transcripts (Benjamin et al., 2014, Mortazavi et al., 2008).

The pathway analysis indicated that cell death and T cell accumulation, proliferation and immune response pathways were augmented in 5-aza-treated LGLs in comparison to infected only control LGL suggesting that LGLs have selected genes involved in T cell activation, proliferation and apoptosis that are normally suppressed in infected untreated cells. This makes sense as the virus requires inhabiting the infected T cell without killing the cell or being removed by an activation process. From other published work (Swa et al., 2001) it is known that the infected LGLs do not exhibit significant apoptosis but do have a heightened activation state with respect to T cell cytotoxicity and constitutive activation of the T cell

receptor. Thus the RNA-Seq study is recording a net effect based on the genes differentially regulated by 5-aza, that may not affect other activation genes and pathways. This picture is also in agreement with observations made by other authors (Palmeira et al., 2013, Parameswaran et al., 2014, Russell et al., 2012) who found the similar pathways (in the *in vivo* study) from rabbit and cattle Lymph nodes infected with AlHV-1 and LGLs derived from rabbits infected with AlHV-1 virus. In addition, the results are in line with analysis of transcription profiles in lymph node tissues from OvHV-2 infected cattle (Meier-Trummer et al., 2009). As mentioned above the results showed that a number of genes involved in the various pathways were either up or down regulated in the presence of 5-aza in comparison to infected control, allowing a clue to overall function only when the activity of the particular genes is known. Among those genes were Bcl-2 family members, which can be either anti-apoptotic or pro-apoptotic (Czabotar et al., 2014, Tsujimoto, 1998). In this study, the overall effect of these changes was a net pro-apoptotic state in 5-aza-treated cells, but with no time course aspect to the analysis, it is difficult to see if there are any time related changes. However, the analysis was done when the LGLs were in a steady state of growth in IL-2 with a stable phenotype. The dysregulation of this gene family could also be under the effect of AlHV-1 ORF A4.5 or ORF A9 which has similarities to the Bcl-2 family (Hart et al., 2007, Mills et al., 2003). However, their role

whether they act as anti-apoptotic or cell death activator is yet unknown. The presence of the viral bcl-2 orthologues indicates that these are required in the virus life cycle. Importantly, the study only identifies changes associated with 5-aza treatment as both the control and treated cells were infected. Regarding the objective to this study it was hoped that the changes would represent those seen as part of a latent state induced by 5-aza. The impact of 5azacitidine on the expression of OvHV-2 Ov4.5, the homologue of AlHV-1 A4.5, has been recorded where it increased in expression in cattle LGLs but not rabbit LGLs (Thonur et al., 2006). It is an advantage to the virus to escape the recognition by the immune system in order to survive and replicate within cells. Latency is the approach by which the virus can avoid the immune evasion by the expression of ORF73 LANA protein (Coscoy, 2007). 5-azacitidine is a nucleoside analogue which inhibits the methyltransferase enzyme and hence altering gene expression (Haaf, 1995, Jones, 1985). It was found that the drug can establish latency in LGLs from OvHV-2 infected rabbits (Thonur et al., 2006) but failed to control latency III in primary lymphoma cells infected with recombinant Epstein-Barr virus (Anastasiadou et al., 2005). Two genes (XIAP and TNFRSF1B) which are known as inhibitors of apoptosis (Morizane et al., 2005, Schall et al., 1990) were down regulated in the presence of 5azacitidine indicating that the virus may affect these genes in order to alter cell survival. It was demonstrated that KSHV ORF73 LANA

was involved in tumour necrosis factor regulatory network which affects in the survival of latently infected cells (Si and Robertson, 2006, Uppal et al., 2014).

LGLs are known to be predominantly productive cycle programmed or latently programmed or have a mixture of both productive and latent virus cycles (Rosbottom et al., 2002, Thunor et al., 2006). The analysis demonstrated that many host genes involved in the various pathways; in particular cell death and cell cycle, acting as both cell death inhibitors and activators, were either up or down regulated in the presence of 5-aza compared to non-treated controls. In addition, two viral genes (ORF7 and ORF21), where their role in the life cycle and the pathogenesis of MCF is unknown, were up-regulated in the presence of 5-aza-treated group in comparison to non-treated controls. Moreover, the viral gene profiles from the previous chapter indicated that the expression of ORF73 and ORF50 supporting latent and productive virus cycle were very low (Table 22). Taking these observations together, one could extrapolate that it is not obvious that the cells support either productive or latent virus cycle or both.

The pathway analysis in treated BT cells versus infected controls is likely to identify productive cycle versus latency cycle changes better than in LGLs as the effect of 5-aza on infected BT cells was more profound (induction of a latency phenotype with respect to lack of CPE and reduction of productive cycle gene transcripts).

Overall, genes involved in mitochondrion integrity, mRNA translation, regulator of gene expression, cell cycle and DNA replication, post transcriptional modification and genes known to be associated with neoplasia were down regulated in 5-aza treated infected BT cells compared to untreated BT cells. These effects are compatible with the fact that the virus replicates in these cells and establishes a productive/lytic infection and may reveal the latency programme in the transcriptome of the cells treated with 5-aza. The results also showed that ORF8 gene was differentially expressed, being down regulated in the presence of 5-azacitidine in BT cells compared to non-treated control indicating that the virus may affect the expression of this gene. ORF8 is a glycoprotein required for viral entry to the host cell (Dry et al., 2016) and is also expressed during productive infection (Palmeira et al., 2013). This is therefore predicted as BT cells support productive virus infection (Dry et al., 2008, Dry et al., 2016, Parameswaran et al., 2014). However, upon treatment with 5-azacitidine, ORF 73 was not highly expressed (Table 22) even though BT cells did not show any CPE. The explanation of this is that the expression of ORF73 may not, in isolation, be diagnostic of the latent state (i.e. an increase in expression rather than expression per se). 5-azacitidine is a hypomethylation agent (Christman, 2002) which may have not completely removed ORF50 gene in BT cells meaning that ORF50 may have repressed the expression of ORF 73 gene. Recombinant

murine Gama herpesvirus (MHV-68) was engineered to overexpress RTA, transcriptional and replication activator encoded by ORF50 of Gama herpesviruses, was found to inhibit the expression of ORF73 gene and induce lytic virus cycle (Hair et al., 2007). The approach one could think of to address the expression of ORF73 in BT cells therefore is to completely remove ORF 50, the productive gene, by knockout gene technique.

The work study revealed that there were differences between the gene expression profiles between 5-aza treated and non-treated cells and also between rabbit LGLs and cattle BT cells, which reflects the different types of cell under study.

Chapter 6 The effect of Cyclosporine-A on T cell recruitment, viral gene expression and disease pathogenesis in infected rabbits

6.1 Abstract

The mechanism by which MCF viruses (AIHV-1 and OvHV-2) cause the disease is not fully understood. The tissue damage seen in the affected tissues is attributed to the accumulation of T lymphocytes. However, it is not well established whether the damage is due to the direct effect of infiltrated T lymphocytes (infected or bystander noninfected) or due to the effect of small number of infected non T cells or both. Cyclosporine A drug, in rabbits infected with OvHV-2 prevented lymphocyte accumulation but not overt MCF (Buxton et al., 1984). This is a key observation and the basis of the aims of this thesis. Rabbits were infected with AIHV-1 and treated with cyclosporine A. Unfortunately; the rabbits reacted badly to the CsA and infection such that they had to be euthanized before full onset of MCF. However, these animals showed some pathological changes and these data were analysed. In a subsequent trial to examine the pathogenesis of MCF in rabbits infected only with AlHV-1, results were again inadequate due to the early termination of the experiment as the animals reacted unexpectedly to infection. The viral transcript profile analysis revealed that the productive/lytic genes were expressed at low level in the infected only group indicating the virus may replicate at this stage of the disease.

6.2 Introduction

There has been a controversy for long time over the mechanism by which MCF viruses (AIHV-1 and OvHV-2) cause the disease (Buxton et al., 1984, Dewals et al., 2011, Palmeira et al., 2013, Schock et al., 1998). The core of this debate has been over the issue whether the tissue damage is due to dysregulated immune response or direct viral impact, and whether the disease is one of viral latency or not (Palmeira et al., 2013). Rabbits are a good model for MCF because they exhibit clinical signs and pathological changes similar to those seen in susceptible species (Anderson et al., 2007, Cunha et al., 2013). Treating rabbits infected with OvHV-2 with cyclosporine A, an immunosuppressive drug, eliminated the lymphocytes infiltrating the infected tissues but did not prevent disease development (Buxton et al., 1984). There is a scarcity of the virus in the infected tissues (Bridgen et al., 1992, Thonur et al., 2006) making analysis difficult. The phenotype and cytokine profile of the lymphoblastoid cells infiltrating the infected tissues represent unregulated cytotoxic cells (Schock et al., 1998, Swa et al., 2001). Nonetheless, growing evidence demonstrates that lymphocytes accumulating in MCFaffected tissues are infected with the virus and the virus establishes latency in them (Palmeira et al., 2013, Simon et al., 2003). Furthermore, the cells are cytotoxic and secrete cytokines and proteins that are responsible for the tissue damage seen (Dewals et al., 2008, Dewals et al., 2011, Palmeira et al., 2013). I aim to treat

AlHV-1 infected rabbits with CsA to examine the role of T lymphocytes in the pathogenesis of AlHV-1 MCF and to study the gene expression using known productive/lytic and latent viral transcripts in rabbits during MCF disease course. Cyclosporine acts by inhibiting calcineurin which is responsible for triggering a significant signal transduction pathway of T cell activation. The outcome of this action is a reduction in T cell maturation (Matsuda and Koyasu, 2000, Mott et al., 2004). We hoped to see whether ablation of T cells would alter the course of MCF and whether there was an associated change or not in gene transcription profiles. For this, q PCR and *in situ* hybridisation techniques will be used.

6.3 Materials and methods

6.3.1 Animals

See the materials and methods chapter section (2.6).

6.3.2 Inoculum

As described in the materials and methods chapter section (2.6.1).

6.3.3 Experimental design

As described in the materials and methods chapter sections (2.6.2) and (2.6.3).

6.3.6 Molecular techniques

The molecular approaches as described in materials and methods chapter. Quantitative R-T PCR was used to measure both viral load and gene expression in the infected tissues as described in materials and methods sections (2.4.3) and (2.4.4).

6.3.4 Samples collection

As described in the materials and methods chapter section (2.6.4).

6.3.5 Histology

See the materials and methods chapter section (2.7).

6.3.7 In situ Hybridization

The *in situ* hybridisation method used as described in materials and methods sections (2.8.1) to (2.8.5).

6.4 Results

6.4.1 Experiment (1) results

10 rabbits split into two groups of 6 to get CsA and infection and 4 to get infection only with vehicle IV rather than CsA (See table 25). Two rabbits were culled from CsA treated group (IYTU and IYDI) without collecting samples from them as they died suddenly (see below). Tissue samples were collected from the remaining animals in both CsA treated group (4 animals, day 12) and infected only group (4 animals, day 17).

6.4.1.1 Clinical signs

None of the rabbits injected with cyclosporine A and infected with AlHV-1 developed clinical signs until around day 10 of the experiment two rabbits died from the CsA treated group (IYTU and IYDI) after exhibiting fever, weight loss, and conjunctivitis (Table 25). They then died suddenly overnight. In the control group (infected with the virus along with vehicle), one of the rabbits developed a diarrhoea with high temperature that reached 41.2C° on day 17 of the experiment. Nearly all of the rabbits in this group exhibited in-appetence, high temperature, lethargy and conjunctivitis just prior to euthanasia. No other clinical findings were recorded on the rabbits up to the seventeenth day of the experiment when all rabbits were euthanized.

Table 25 shows the design of two rabbit's experiments infected and treated with cyclosporine A as long as pathological changes

Exp # (1)	Clinical signs/euthanasia	Pathological changes
4 rabbits infected + CsA	Started on day 10 (2 animals). Animals developed fever, conjunctivitis, apathy, weight loss. Reminder euthanized due to severe reaction to CsA on day 12.	Small numbers white foci on the kidney, intestines, liver and spleen. Lung haemorrhage in both IYBM and IYKA.
4 rabbits infected only	On day 15 animals developed fever, conjunctivitis, apathy and weight loss and were euthanized on day 17 of the experiment.	Multiple white foci on the kidney, liver, lung, enlarged lymph nodes and enlarged spleen. Some micro- haemorrhage in the intestines and lung.
Exp #(2)	Clinical signs/euthanasia	Pathological changes
4 rabbits infected + CsA	Adverse reaction to CsA seen days 9-10. Fever, apathy, and rapid demise. Animals euthanized on day 10	Slight lung haemorrhage, slight lymph nodes enlargement and small numbers of white foci on the liver and kidney.
4 rabbits infected not treated.	Day 9 animals exhibited fever and weight loss. Animals euthanized on day 10 of the experiment.	Enlarged spleen, white foci on the liver, haemorrhage in the intestines and lung.
2 rabbits, uninfected controls	No clinical signs seen. Animals euthanized on day 10.	No pathological changes seen.
6.4.1.2 Gross appearance of MCF lesions

In the cyclosporine A treated group there were some small white foci on the kidney, liver, intestines and spleen along with haemorrhage in the lung of the rabbit IYBM as well as haemorrhagic lung and red eyes in the rabbit IYKA (Table 25). In the infected control group, the lesions were diverse affecting many body systems and more pronounced in three rabbits (LFKJ, LFLK, and IYDY) ranging from multiple white foci on the kidneys, liver, and lung, enlarged lymph nodes (in particular popliteal lymph nodes) and slight enlargement in mesenteric lymph nodes (MLN), congested intestines, enlarged and dark spleen, and dark and enlarged urinary bladder (Table 25).

6.4.1.3 Viral DNA load measurement

Viral DNA load was identified in both blood and lymph nodes of three animals from each group (Figure 35). In the tissues (Liver, kidney, lung, spleen and appendix), the viral load was detected in the infected control group confirming infection. The viral copy number was below the detection level in the cyclosporine A treated group in these tissues (Figure 36).

Figure 35 viral DNA load in lymph nodes and blood from rabbits tissues infected and treated with cyclosporine and infected only control animals. The figure shows viral DNA load in the blood and lymph nodes from rabbits infected with AlHV-1. Samples were collected on day 12 and 17 of the experiment. The viral load was estimated by normalizing the viral DNA per 10^5 rabbit β globin using q PCR.

Rabbits IDs and Tissues

Figure 36 viral DNA load in rabbits' tissues infected and treated with cyclosporine A and infected only controls.

The figure demonstrates viral DNA load in rabbit tissues infected with AlHV-1 virus. Samples were collected on day 12 and 17 of the experiment. The viral load was estimated by normalizing the viral DNA copy number to 10^5 rabbit β globin gene copies using q PCR.

6.4.1.4 Histological analysis of AlHV-1 in rabbits

The major histological findings in regard to MCF lesions in rabbits in both groups (infected control and infected plus cyclosporine A treated) are summarised in Table 26. The non-lymphoid tissues in the control group (Liver, kidney, and lung) illustrated marked lymphocyte infiltration (accumulation of lymphoid cells) especially around the blood vessels, which showed evidence of vasculitis. In addition, there has been marked hyperplasia in the lymphoid follicles in the lymphoid tissues (appendix and spleen). In the cyclosporine A treated group there was not any change in either lymphoid or non-lymphoid tissues.

ע
ß
č
ť

Table 26 cyclosporine A experiment: AIHV-1 MCF histology on lymphoid and non-lymphoid tissues.

Exp (1)	Exp (2)	Lymphoi		Non-lymphoid Tissues							
		Hyperplasia/Necrosis ¹				Lymphoid cell accumulation ²					
animal	animal	Appendix		spleen		Kidney		Liver		lung	
Infected only	Infected only										
LFKJ	JYDR	+/0	0/0	+/0	0/0	++	0	++	+	++	0
LFLK	JYBU	+/0	0/0	+/0	0/0	++	0	+	+	++	0
IYJJ	JYFC	+/0	0/0	+/0	0/0	++	0	++	+	++	0
ΙΥDΥ	JYJE	+/0	0/0	+/0	0/0	++	0	+	-	++	0
CsA+infection	CsA+infection										
CSATINCELION	CSATINCCUON										
ΙΥΚΑ	SIA	-/-	-/-	-/-	-/-	0	0	0	0	0	0
IYBM	JXXS	-/-	-/-	-/-	-/-	0	0	0	0	0	0
Υίγι	JXTS	-/-	-/-	-/-	-/-	0	0	0	0	0	0

XLAI	IXII	-/-	-/-	-/-	-/-	0	0	0	0	0	0
IYTU (Culled)											
IYDI (Culled)											
Uninfected control	Uninfected control										
C1	JXXL	0	0	0	0	0	0	0	0	0	0
C2	JXXR	0	0	0	0	0	0	0	0	0	0
Lymphoid tissues: + = change present, 0 = change not present (hyperplasia = increased lymphoid cell										oid cell	

accumulation /proliferation compared to the controls).

²Non- lymphoid tissues: Interstitial and perivascular lymphoid cell accumulations. ++ = marked accumulation, + = moderate accumulation, 0 = no accumulation. There was evidence of vasculitis (vascular endothelium thickening) in the infected control animal tissues. The rabbits were not marked in the table are those which were thrown away without samples being collected.

Kidney: there was perivascular lymphocyte infiltration in the cortex in the kidneys of the control group while in the cyclosporine A (CsA) treated group there was not any evidence of infiltration around the blood vessels (Figure 37).

Liver: in the infected control group there was an obvious perivascular lymphoid accumulation in the periportal area whereas there was no infiltration in the cyclosporine A treated group (Figure 38).

Lung: no lymphocyte accumulation seen in the lungs from the cyclosporine A group, however, there was a clear lymphocyte infiltration in the peri-bronchial region as well as disperse infiltration throughout the parenchyma (Figure 39).

Kidney

Figure 37 haematoxylin and eosin stain of rabbits' kidney

The images show the formalin fixed, haematoxylin and eosin stained histological sections of rabbits' kidney (A, D, E, and F). Slides A and D show typical histological lesions of MCF after infection with AlHV-1 C500 strain. The most obvious appearance in these slides is the infiltration of lymphocytes around the blood vessels in the cortex area. Slides (E and F) are from the rabbits infected with AlHV-1 C500 strain and treated with cyclosporine A. There is an absence of lymphocyte infiltration. (a) Blood vessel, (Li) lymphocyte infiltration, (Ld) No evidence of lymphocyte accumulation, (RC) renal corpuscle, (T) uriniferous tubules. Pictures represent scale bar of 500 μ m.

Figure 38 haematoxylin and eosin stain of rabbit's liver

The images depict the Formalin fixed, haematoxylin and eosin stained histological sections of rabbits' liver (A, B, C, D). There is obvious lymphoid infiltration around the blood vessels in the periportal area in the infected tissues only with AlHV-1 C500 strain virus (slid A and B) whereas no infiltration in the tissues infected with the same virus and treated with cyclosporine A drug (slides C and D). CsA: cyclosporine A treated group, LI: lymphoid infiltration, HPV: hepatic portal vein. Pictures A and B represent scale bar of 500 μ m whereas pictures C and D represent 200 μ m.

Lung

Figure 39 haematoxylin and eosin stain of rabbit's lung

The images depict the Formalin fixed, haematoxylin and eosin stained histological sections of rabbits' lung (A, B, C, D, E, F). There is obvious evidence of peribronchial lymphoid infiltration as well as dispersed lymphocyte infiltration throughout the parenchyma slides (A, B,C) in the tissues infected only with AlHV-1 C500 strain virus. No lymphocyte infiltration in the tissues infected with AlHV-1 C500 strain virus and treated with cyclosporine A drug slides (D, E, F). LI: lymphocyte infiltration. Pictures represent scale bar of 200 µm.

Appendix: there was an obvious expansion of the lymphatic nodules, absence of the inter-follicular space, haemorrhage in the blood vessels, and loss of the tissue architecture in the infected control group. No apparent changes in the cyclosporine A treated group (Figure 40).

Spleen: there were no remarkable changes in the tissues from the cyclosporine A treated group. However, there was hyperplasia in the

white bulb nodules, intensive scattered lymphocyte infiltration, and loss of architecture in the infected control group (Figure 41).

Figure 40 haematoxylin and eosin stain of rabbit's appendix

The images show the formalin fixed, haematoxylin and eosin stained histological sections of rabbit's appendix (G, H, I, and J). Slides G, H, and I are from rabbits infected with AlHV-1 virus without treatment with CsA. Slides illustrate expansion of follicles, relative absence of inter-follicular space, loss of tissue architecture as well as congested blood vessels. Slide J is from CsA treated group where the appearance is more normal. LN, lymphatic nodule; IS, inter-follicular space; CB, congested blood vessel. Pictures represent scale bar of 200 µm.

Figure 41 haematoxylin and eosin stain of rabbit's spleen The images show the Formalin fixed, haematoxylin and eosin stained histological sections of rabbit's spleen (A, B, C, D). There was apparent hyperplasia in the white bulb (black arrow) as well as intensive dispersing of lymphoid cells throughout the tissue (arrow head) in the tissue infected only with AlHV-1 C500 strain virus slide (A and B). No clear and remarkable changes in the cyclosporine A treated group (C and D). CsA: cyclosporine A treated group, WB: white bulb, RB: red bulb, LI: lymphocyte infiltration. Pictures A and B represent scale bar of 200 µm whereas pictures C and D represent scale bar of 500 µm.

6.4.1.5 Gene expression

Gene expression in the infected tissues was measured by normalising viral target genes with rabbit SDHA1 reference gene using q PCR. The results showed that the gene expression of viral target genes was higher in infected controls than cyclosporine A treated group. Also, the pattern of expression was similar in nearly all genes tested with highest values in spleen, lung, and kidney. ORF A4.5 recorded the highest gene expression in tissues of infected animals and in the spleen of the cyclosporine A treated group. The expression of ORF25, ORF50, and ORF63 was similar in the tissues of infected animals. The expression of ORF73 was lower than the other genes whereas ORF A9.5 was the lowest. Figure 42 shows the gene expression of 6 viral genes putatively responsible for productive/lytic and latent virus infection in rabbit tissues.

Figure 42 viral transcripts of six AlHV-1 genes in rabbits' tissues The figure shows viral gene expression of six AlHV-1 genes (ORF50, ORF25, ORF63, ORF73, ORF9.5, and A4.5) in five rabbits' tissues (liver, kidney, lung, spleen, and appendix) from infected only and infected and treated with cyclosporine A groups euthanized on day 12 (CsA group) and 17 of the experiment. The transcripts were measured using qPCR and normalised with rabbit SDHA1 reference gene. CsA 12 day; cyclosporine A treated group euthanized on day 12 of the experiment, Ctrl 17 days; infected control group euthanized on day 17 of the experiment.

6.4.1.6 In situ Hybridisation

No results were obtained from the *in situ* hybridisation work despite the fact that synthesis of RNA probe for ORF65 and ORF A9.5 genes was unsuccessful.

6.4.2 Experiment (2) results

The clinical signs associated with MCF in the infected cyclosporine A treated group were fever, apathy, and rapid demise. At this time two CsA-treated rabbits showed a rapid decline with fever, respiratory distress and apathy, and were euthanized for humane reasons. In the infected control group number of animals developed fever, weight loss, enlarged spleen, white foci on the liver and haemorrhage in the intestines and lung. In the negative control group there were no clinical signs and pathological changes seen. All animals were euthanized on day 10.

In terms of the histological changes, the only changes were seen in the liver from infected group in form of small perivascular lymphocyte infiltration in the periportal area whereas there was no lymphoid infiltration in infected cyclosporine A treated group animals or the uninfected control group (Figure 43) CsA

Figure 43 haematoxylin and eosin stain in rabbit's liver (1) The figure illustrates formalin fixed, haematoxylin and eosin stained liver (A, B, C, D). There is obvious lymphoid infiltration around the blood vessels in the periportal area in the infected only group tissues (slides C and D) whereas no infiltration was seen in the tissues of the infected and CsA-treated animals (slide A) or the uninfected control (slide B). CsA: cyclosporine A treated group, LI: lymphoid infiltration, CV: central vein, CB: congested blood vessel, LD: infiltration disappearance. Pictures represent scale bar of 500 µm.

The viral DNA load data revealed that this was under detectable level in most animals' tissues except some liver and kidney samples from the CsA+infection group, the viral load was more than 3x10⁶ in one of the kidneys (rabbit JXTS). There was no change recorded in the uninfected control group (Figure 44).

Figure 44 viral DNA load in tissues in infected only and infected and treated with cyclosporine A group animals (1)

The figure demonstrates the viral DNA load in infected tissues and from samples collected on day 10 of the experiment. Infected control group; rabbits infected only with the virus, Cyclosporine A treated group; rabbits infected with the virus and treated with cyclosporine A uninfected control group; non-infected and non-treated rabbits. The viral DNA load was calculated by normalizing the viral DNA per 105 rabbit β globin gene copy number using quantitative PCR.

No results were obtained from the gene expression experiment in

any sample.

6.5 Discussion

Two *in vivo* experiments were carried out in order to investigate the role of CsA on MCF induction, and whether it would prevent T cell accumulation as shown previously (Buxton et al., 1984). The clinical signs and pathological changes observed in both experiments were typical for MCF in the control infected groups and consistent with other observations (Anderson et al., 2007, Dewals et al., 2008, Jacoby et al., 1988). There was a severe reaction to CsA in some animals necessitating the euthanasia of the entire group in each case. Thus, throughout this series of experiments the CsA-treated animal tissues examined represented an early stage of MCF and the infection only controls were not time matched to this in experiment 1.

Consequently, in terms of the histological findings, typical MCFassociated changes were seen in the infected only groups in all the tissues collected which is in agreement with previous observations (Anderson et al., 2007, Buxton et al., 1984, Palmeira et al., 2013). In the cyclosporine A treated group, however, the lymphocytes did not accumulate around the blood vessels. This is also in agreement with results recorded by Buxton et al. (1984) with OvHV-2 infection, but this is an early time in infection before control infection only animals got MCF and this most likely explains the result.

Similarly, possibly due to early euthanasia, it was noticed that the viral DNA load in the tissues of the control infection group was

considerably higher than the cyclosporine A treated group and in general although in some of the cyclosporine A animals viral DNA load was high in blood and MLN. However, detectable levels of MCF viral DNA (AIHV-1 and OvHV-2) can be identified as early as five days in the tissues and blood of infected animals (Cunha et al., 2012, Dewals et al., 2008, Taus et al., 2005).

All studied viral genes were expressed at low level in both groups and were higher in infected control groups than cyclosporine A treated group. Again this is due to the early death of the animals before MCF fully developed. The gene expression patterns were typical of AlHV-1 MCF with ORF73 (encoding latency associated nuclear antigen (LANA)) expressed at a lower level than most of the others. ORF A9.5 which encodes a secreted glycoprotein that is similar to IL-4 (Lankester et al., 2015, Russell et al., 2013) was expressed at very low level in the infected group. The role of this gene in the virus life cycle is still unknown.

It was hoped to perform in situ hybridisation to localise viral genes to tissues and cells *in vivo*. Much time was spent developing the technique. Although synthesis of RNA probes was achieved, there were no convincing results obtained from the *in situ* analysis of infected tissues. Time was not available to troubleshoot the technique further. *In situ* hybridisation is a powerful technique which is used to detect cellular location of certain genes representing latent or lytic cycle (Jin and Lloyd, 1997, Malarkey and

Maronpot, 1996, Nouri-Aria, 2008). This means that the viral mRNA copy numbers may have been below the *in situ* hybridisation threshold (Simon et al., 2003). The approach necessitates the presence of around 10-20 mRNA copy numbers in a single cell to make the signal detectible (Jin and Lloyd, 1997).

The second CsA experiment was terminated on the tenth day due to an adverse reaction to CsA once again in spite of changing the vehicle used to dissolve the drug. Consequently, there were no results obtained as MCF did not develop. We surmise that in both experiments the CsA may have not been fully dissolved and formed micro-precipitates causing vascular obstruction/damage. Buxton et al. (1984) injected rabbits with cyclosporine A intramuscularly which may delay the drug diffusion, hence its effect on the animals' tissues and the disease course. However, I applied intravenous route where the drug absorption time is fast.

Chapter 7

General discussion

7.1 General discussion

Although the pathological changes of MCF such as vasculitis, lymphocyte infiltration and tissue necrosis are well characterised, the pathogenesis of the disease is still not completely understood (Parameswaran et al., 2014, Russell et al., 2012). The tissue damage seen in MCF-affected tissues, especially epithelium and endothelium could be due to the infiltration and activity of cytotoxic T cells (either containing the virus or dysregulated non-infected cells) or virus infection of epithelium and endothelium or a mixture of both.

The main hypothesis of this project work was that malignant catarrhal fever is initiated by aberrant virus gene expression in infected T cells, epithelium and endothelium. Whether the disease was predominantly one of latency (as has been suggested (Palmeira et al., 2013, Dewals et al., 2008)) or productive virus infection still remains controversial. The first aim was to determine whether epithelium and endothelium can be infected *in vitro* using q PCR and, if so whether a latent or productive viral cycle is established. Rabbit epithelial (SRIC) cells, Bovine aortic endothelial (BAE) cells and bovine turbinate fibroblast (BT) cells (productive virus control) were infected with both low pass (virulent) and high (attenuated) AlHV-1. It was clear that both cell-types can be infected with either form of AlHV-1 as shown by the presence of viral DNA and the ability to transfer infection to uninfected fresh cells where, in BT

cells, a productive infection was detected. If these cells represent epithelial cells and endothelial cells in vivo then it is possible that these cell types can contain virus. Interestingly, a lack of CPE in the SIRC and BAE cells indicated a lack of productive viral life cycle, raising the possibility that the cells are latently infected. The viral gene transcription analysis of these cells did not confirm a latency pattern, but levels of transcripts were very low and there was no gene transcription pattern typically seen in productively-infected BT cells. The ability of virus isolated from the SIRC and BAE cells to induce a productive infection in BT cells (as measured by a CPE) strongly suggests the virus was latent in the SIRC and BAE cells. It is also possible that the low viral transcripts were due to the fact that the virus could not enter or penetrate the cells. Consequently, the effect in the serial infection may have been the result of transfer of virus direct from the supernatant or that was attached to the surface of the first cells, and not virus that had "infected" the first cells.

The question remains why ORF73 gene (the LANA equivalent latency-associated transcript) was not expressed in epithelium and endothelium in the *in vitro* model if the latent state was established. One explanation is that viral DNA load in the cells is present but transcript abundance is below detectable level. Another, explanation more speculative and less likely is that there might be biological factors in the *in vivo* system not available in the *in vitro* paradigm to

make the virus express ORF73 gene and hence establish true latency. One of these is a lack of immune cells in the *in vitro* system which may be important to establish latency to escape the detection by the immune system (Blake, 2010). Finally, an important point when studying latency in MCF, is that this will have evolved in the host reservoir species (wildebeest for AlHV-1) and not the diseasesusceptible species, where the virus cannot transmit between animals (at least that we know of). Consequently, the virus life cycles may be altered or corrupted in some way in the MCF susceptible species cells, a possibility explored by Thonur et al., in studying cycles in LGLs from reservoir (sheep) and MCF susceptible animals in OvHV-2 MCF. A study of wildebeest cells infected with AlHV-1 was beyond the scope of this project.

So, what is in BT vs SIRC and BAE that causes the productive virus cycle to switch on. The RNA-Seq analysis of infected BT cells and LGLs with and without 5-aza did not reveal any obvious answer to this, at least from the host transcriptome analyses. There was not enough resource to do transcriptome analyses on infected SIRC or BAE cells versus infected BT cells to address this directly.

Large granular lymphocytes (LGLs), with T/natural killer cells morphology that are infected with AlHV-1 (Schock et al., 1998, Swa et al., 2001), were obtained from the infected rabbits and were treated with 5-azacitidine, a drug used to drive latency in gamma herpes viruses (Schaefer et al., 1997, Thonur et al., 2006). Bovine

turbinate fibroblast (BT) cells were infected with AlHV-1 and infected and treated with 5-azacitidine as productive cycle virus controls. The notion was to see if 5-aza could inhibit the productive cycle and establish a latent state and allow identification of latency-associated transcripts for AIHV-1. All infected cells treated or not were shown to have viral DNA using g PCR and PCR analysis indicating that the cells were infected with the virus. The most noticeable effect was in the infected BT cells where 5-aza treatment inhibited a CPE and this was associated with a marked reduction in gene transcripts associated with the productive viral life cycle (ORF50 and ORF25 and ORF A4.5 and low level expression of ORF 73 the latencyassociated transcript). This confirms that 5-aza drives a latency-like state in AlHV-1-infected cells as it does with OvHV-2 infected cells (Thonur et al., 2006). The results for LGLs were less clear. 5-aza treatment caused a dramatic effect on the pan T antigen (uncharacterised to date) recognised by a monoclonal antibody, but although there was some evidence of changes in viral productive and latent gene expression this was at low level, near detection limits and not consistent between the LGL lines. It is known that the A2 gene of AlHV-1 is a leucine zipper transcriptional regulator that has multiple functions on gene regulation in rabbits infected with an A2 gene knock-out virus or wild-type /gene reinsertion controls (Parameswaran et al., 2014). One of these effects is to alter the T cell receptor phenotype, downregulating alpha-beta TCR and

augmenting the gamma-delta TCR. It is known that there is a gd T cell subset that expresses CD8 (the predominant T cell marker detectable on the LGLs), found particularly at mucosal sites (Nelson et al., 2010, Wilson et al., 2002, Davis et al., 1996).

Unfortunately, there is no gd T cell-specific antibody for the rabbit to test this theory out. Furthermore, the gd T cells lack the CD3 molecule that is a pan T cell marker (Owens et al., 2015).

Although the effect seen in this study is due to 5-aza treatment, it may be that this or the associated drive to a latent state may have stimulated this phenotypic change in the T cells and that A2 may be active in this way during latency. All of this speculation is open to further research. In contrast possibly, the impact of 5-azacitidine on (uninfected) human T cells especially CD4 and CD8 T cells has been documented. It was established that 5-azacitidine treatment of human T cells decreased CD8+ T cells whereas CD4+ T cells were augmented (Stübig et al., 2014). CD8⁺ T cells were the prevalent cell type after flow cytometry analysis of rabbit LGLs in both 5azacitidine and non-treated groups. The results are compatible with the observations made by other researchers who found that CD8⁺ T cells were the main cell type in LGLs and infected tissues in vivo (Dewals et al., 2008, Dewals et al., 2011). Also, there was a lack of CD4⁺ T cells in both groups. Anderson et al. (2007) also observed the reduction in CD4⁺ T cells in MCF affected tissues. The target cell

in the T cell lineage for virus infection in MCF is unknown (Parameswaran et al., 2014).

The global transcriptome analysis by RNAseq on the 5-aza-treated and control infected LGLs and BT cells did not reveal an answer to the above speculation. However, the genes differentially expressed in 5-aza-treated versus untreated infected BT cells showed a pattern consistent with changes in mRNA translation, mitochondrion integrity, regulation of gene expression, cell cycle control, DNA replication, post transcriptional modification and in genes associated with neoplasia (see gene lists and pathway analyses in chapter 5). This is consistent with the fact that these changes are fully active in the untreated BT controls indicating productive/lytic virus cycle.

In LGLs, the effect of 5-aza treatment was less clear on viral gene transcripts and the host transcriptome when compared to untreated cells. Viral transcript profiles showed that there was low expression of ORF50, ORF25, ORF63 and ORF73 in LGLs in two cell lines (LFLK and LFKJ) and no evidence of expression in two others. This could be because the level of viral transcripts is low to start with, which is the most likely explanation, or that a latency state was in these cells. A Gardella gel analysis of viral genome configuration was not performed due to a lack of time left in the study. This would reveal whether the LGLs had closed circular DNA (latent configuration, tight band on the gel) or linear DNA (lytic cycle configuration, smear on the gel). In the Thonur et al., (2006) analysis of rabbit LGLs

infected with OvHV-2, a mixed latent and lytic configuration was seen. After 5-azacitidine treatment there was a rise in ORF73 expression in one cell line (LFLK) compared to the infected control but ORF50 was also detected. This is consistent with 5-azacitidine driving latency via increased ORF73 expression and was also seen in LGL infected with OvHV-2 virus and treated with 5-azacitidine (Thonur et al., 2006). It is worth mentioning that ORF73 can be 'leaky' with respect to expression in the different virus life cycles such that complete absence of ORF73 in productive infection is not usually recorded (Thonur et al., 2006). The expression of ORF50 confirms that the cells support at least productive infection and its transcript may be abundant. There was an increase in ORF A4.5 in one cell line due to 5-azacitidine. Thonur et al. (2006) found an increase in OvHV-2 Ov4.5 in cattle LGLs but not rabbit LGLs treated with 5-aza. The reason for the difference in this study is not known, but may be due to some difference between AlHV-1 and OvHv-2.

The expression of ORF73 may not, in isolation, be diagnostic of the latent state (i.e. an increase in expression rather than expression per se). 5-azacitidine is a hypo-methylation agent (Christman, 2002) which may have not completely removed ORF50 gene in BT cells meaning that ORF50 may have blocked the expression of ORF 73 gene. The suppression of ORF73 gene and the induction of lytic virus cycle had been observed when ORF50 overexpressed using an

engineered recombinant murine Gama herpesvirus (MHV-68) (Hair et al., 2007).

showed that cell death and T cell The pathway analysis accumulation, proliferation and immune response pathways were increased in 5-azacitidine treated LGLs compared to infected-only control LGL indicating that LGLs have genes associated in immunological, cell death and proliferation processes. The pathways present in the untreated LGLs are similar to those in lymphoid tissues from MCF-affected cattle or rabbits (Palmeira et al., 2013, Paramiswaran et al., 2014, Russell et al., 2012). This indicates that the LGLs are an accurate representation of the host changes in vivo. The result also shows that 5-aza affects the above pathways (increased in treated versus untreated LGLs). This may be as a consequence of inducing a latent viral state, but there could also be some productive cycle activity as well as the results on this were not clear. It will be of interest in future work to determine if this is as a consequence of forcing the latent state for the virus and that these changes are at least in part stimulated by the latent gene expression programme or a lack of productive cycle gene expression. These pathways do not fit with classical latency, where inducing cell death in particular is not a good strategy for the virus. But, the viral gene expression may not be typical (i.e. is aberrant) in MCF-susceptible species. This all requires further research.

Importantly, although the pathway analysis identified several pathways affected by 5-aza-treated LGLs compared to untreated cells, the contribution of up and down regulated genes within these pathways can only really be assessed for a net overall effect if the precise functions of the genes are known in the context of the LGLs. For the apoptosis (cell death) pathway, this is possible as the function of many of the genes is known and conserved in animals. For example, there are both cell death inhibitors (BNIP1 and BNIP2) and activators (BAX and BNIP3) that were differentially expressed in the presence of 5-aza compared to non-treated controls. The overall effect is a tendency towards increased cell death in the 5-aza-treated LGLs compared to control cells.

In the final set of experiments, it was hoped that the Buxton et al., 1984 study on the effect of CsA on OvHV-2-infected rabbits could be repeated for AIHV-1-infected ones. This is because the CsA prevented the accumulation of T cells in the tissues, but did not prevent MCF. This key paper was the main reason for the hypothesis and objectives of this thesis, namely that if the accumulating T cells (that we now know are infected with virus) are not present to cause epithelial and endothelial damage /tissue damage in MCF, what other possible mechanisms can cause disease? That is why we looked at infecting epithelial cells and endothelial cells in chapter 1.

Unfortunately, the rabbits reacted badly to IV CsA and had to be euthanized early in the development of MCF (around 10-12 days over two experiments). Changing the formulation for CsA delivery did not help (experiment 2). In the Buxton paper, the formulation was given intramuscularly, which may have avoided the problems experienced in this study. Nonetheless, the pathological changes and clinical signs seen in infected only rabbits represented early stages of MCF. These observations are compatible with results observed by other authors (Anderson et al., 2007, Jacoby et al., 1988, Liggitt and DeMartini, 1980a, Liggitt and DeMartini, 1980b).

There was not any accumulation of lymphocytes in the tissues of the cyclosporine A treated group in the non-lymphoid tissues. This was probably due to the early demise of the animals. However, and interestingly, in the control infected animals in experiment two (euthanased on day 10 after infection and therefore at a similar time to the CsA-treated animals) lymphoid accumulations were seen, mainly around blood vessels (e.g figure 43). So some effect on lymphocyte accumulation by the CsA treatment is implied. Also interestingly, in the CsA-tereated animals but not the infected controls, high levels of viral DNA were seen in kidney and liver samples in some animals. These could be sites of virus replication at this time in the presence of CsA.

The viral transcript profiles in the experiments revealed that the level of gene expression was low but higher in the infected control

group than cyclosporine A treated group. This may have been due to the early finish of the experiment and also due to the variable viral copy number between the two groups as it was higher in the infected control than the cyclosporine A group. In addition, the results showed that the pattern of expression in the infected only animals was similar. Most of the genes especially those supporting productive/lytic virus cycles were expressed in the lung and spleen of the infected animals as seen in experiment 1 (Figure 42). The expression of ORF50, ORF25, ORF63 and ORF A4.5 and the low expression of ORF73 gene indicating that the virus may replicate and not tend to establish latency at this stage of the disease.

The other main objective of this series of experiments was to use *in situ* hybridisation to localise putative productive virus cycle or latency cycle gene transcripts to particular cells in various tissues. This was to determine whether MCF was associated with predominantly latent viral gene expression or a productive cycle one, comparing animals with and without T cell accumulation (CsA-treatment).

Unfortunately, no results were obtained as time ran out to perform a comprehensive study. ORF 65 (productive cycle gene) and ORF A9.5 (secreted IL-4 orthologue) riboprobes were made and the technique developed and validated (with help from Dashty Amin and James Stewart in Liverpool). First attempts to detect the transcripts in the tissues of the infected animals were unsuccessful. *In situ*

hybridisation is a powerful approach which is utilized to localize certain genes signifying latent or lytic cycle along with the detection of cellular cytokine mRNA during viral infection (Anderson et al., 2008, Anderson et al., 2001, Bridgen et al., 1992). It was documented that for potential detection of certain transcripts the approach requires the existence of approximately 10-20 mRNA copy numbers in a single cell to make the signal measureable (Jin and Lloyd, 1997). This may explain the inability to detect the transcripts in the affected tissues as viral mRNA copy numbers may have been below the *in situ* hybridisation threshold (Simon et al., 2003).

7.1.1 Conclusion and recommendations

The results of the *in vitro* epithelial and endothelial cell cultures indicate that the cells can be infected and establish a latent state, indicating that this is also possible *in vivo*, which should be looked at when studying MCF pathogenesis. The identification of proven latency transcripts by using 5-aza treatment on BTs and LGLs was unsuccessful, and more viral genes should be measured or other means as stimulating latency explored. The effect of 5-aza/ possible latency-associated expression the pan T antigen in LGLs is interesting and deserves further research. The transcriptome analyses in the infected and treated BTs and LGLs revealed several changes that may help future work to focus in on latency and productive infections *in vivo*. Moreover, the use of Gardella gel

analysis would have been useful in analysing the DNA configuration and hence the virus life cycle. The development of the *in situ* hybridisation work using productive virus cycle and latency gene riboprobes should proceed and the technique is partially developed here.

The conclusion from this study using q PCR is that MCF in rabbits involves virus expressing both productive and putative latency transcripts. This raises some doubts that MCF is a disease of latency. Gene expression may be 'aberrant' but more work is required.

Two papers are in preparation from this work. The first is on the *in vitro* analyses of more BT samples and LGLs with 5-aza, and also the use of phosphonoacetic acid as a treatment to induce latency. This has worked more efficiently on BT cells and LGLs than 5-aza treatment and was used by Abbie Jones, a student in D Haig lab. The second will be on the *in vitro* infection of endothelial and epithelial cells after some further analyses and increased sensitivity and extended range gene transcription analyses by q PCR. A work to address the role of ORF A9, a second bcl-2-like gene in AlHV-1 (along with A4.5) in the pathogenesis of MCF is ongoing by a graduate student.

7.1.2 Project summary

The research work was carried out to investigate the virus life cycle and the pathogenesis of malignant catarrhal fever (MCF). Rabbits, which are good model for MCF, were infected with alcelphine herpesvirus 1 (AIHV-1) and treated with cyclosporine A to suppress the accumulation of lymphocytes in the infected tissues. Large granular lymphocytes (LGLs) with the morphology of T/natural killer cells derived from the infected only rabbits were treated with 5azacitidine in order to drive the latency programme in them. RNA-Seq was performed on the cells RNA (as copy DNA) samples to identify virus latency transcripts and the host transcriptome in latently-infected cells. Epithelial (SIRC) and endothelial (BAE) cells were infected with the virus *in vitro* to identify whether the cells can be infected and if so what kind of infection can be established (latent or productive/lytic). The results obtained can be summarised as following:

- The *in vitro* epithelium and endothelium cell culture showed that the cells can be latently infected with the virus and this may be possible *in vivo*.
- The identification of latency transcripts on LGLs and BT cells using 5-azacitidine was unsuccessful.
- The flow cytometry analysis of LGLs showed that CD8⁺ T cells was the predominant cell subset in both 5-aza treated and

non-treated LGLs and the percentage of Pan-T cells were higher 5-aza treated LGLs.

- The pathway analysis of LGLs and BT cells showed that there were variations between rabbit LGLs and cattle BT cells. LGLs have pathways supporting T cell proliferation and accumulation and immune responsiveness in 5-aza-treated groups compared to untreated ones, BT cells contain pathways that aid gene expression and mRNA translation in treated groups compared to untreated.
- The viral genes profile from the infected rabbits euthanized at early stage of the disease showed a mixture of both latent and productive virus cycle.
- Unfortunately, no results obtained from the *in situ* hybridisation work.

Appendices
8.1 SOLUTIONS

Use distilled water to make up solutions, then autoclave solution. When using distilled water within the protocol, use autoclaved distilled water.

8.1.1 DEPC water

(ddH₂O, diethylepyrocarbonate-treated)

1 ml DEPC (Fluka, 32490) add 1000 ml ddH₂O

Dissolve overnight on magnetic stirrer. Autoclave at 0.4 atm, 120°C, 20 min. Care: This solution is regarded as carcinogenic!

8.1.2 ddH₂O

Autoclave ddH_2O without DEPC (like all other solutions) at 0.4 atm, 120°C, 20 min.

8.1.3 TrisHCl

(MW 121.14): 1 M, pH 8.0

12.11g Tris(hydroxymethyl)aminomethane (Fluka, 93352) in 100 ml ddH_2O

Adjust pH with concentrated HCl.

8.1.4 CaCl₂

(MW 147.02) for proteinase K: 0.1 M

1.47 g CaCl₂ (Merck, 102382) in 100 ml ddH₂O

8.1.5 MgCl₂-hexahydrate

(MW 203.3) for PBS: 5mM MgCl₂

1 M: 20.33 g MgCl₂-hexahydrate (Merck, 105833) in 100 ml ddH₂O

8.1.6 NaCl

(MW 58,44; Merck, 1.06400.5000)

For hybridisation salts: $5 \text{ M} = 29.22 \text{ g}/100 \text{ ml } ddH_2O$

For RNAse treatment: $3 M = 87.66 \text{ g}/500 \text{ ml } ddH_2O$

8.1.7 0.2 M HCl (Sterilize prior to use; not 2 N HCl)

50 ml 2 N HCl (Merck, 1.09970. Titrisol[®]) 450 ml ddH₂O

8.1.8 **PIPES**

(Piperazin-N,N'bis(2-ethanesulfate-acid)), pH 7,0 (MW 346.3;

Sigma, P3768)

For hybridisation salts: 0.5 M = $1.7315 \text{ g/}10 \text{ ml } \text{dH}_2\text{O}$ (sterile preparation!)

8.1.9 10x PBS

(Phosphate buffered saline), 1x PBS:

Dilute some 10 x PBS 1:10 to 1x PBS (in ddH_2O without DEPC) and adjust the pH to 7.4 with 1M HCl or 1M NaCl.

8.1.10 Buffer 1, pH 7,5

Tris (MW 121,14)12.11 g Tris (final concentration 100 mM)NaCl (MW 58,44)8.77 g NaCl (final concentration 100 mM)add 1000 ml ddH2O (without DEPC).

Adjust pH with concentrated HCI.

8.1.11 Buffer 3, pH 9.5

Prepare fresh! To 150ml ddH₂O without DEPC add;

 Tris (MW 121,14)
 2.422 g (3.633g) Tris (final concentration

 100 mM)

 NaCl (MW 58,44)
 1.168 g (1.752g) NaCl (final concentration

 100 mM)

 Adjust pH to 9.5, then add

 MgCl₂ + 6H₂0 (MW 203,3)
 2.034 g (3.051g) MgCl₂

concentration 50 mM)

Make volume to 200 ml (300ml) with ddH₂O (without DEPC).

8.1.12 Buffer 4, pH 8.0

Tris (MW 121,14)1.21 gTris (final concentration 10 mM)EDTA (MW 372,3)0.37 gEDTA (finalconcentration 1 mM; Serva, 11280.01)add 1000 ml ddH₂O (without DEPC). Adjust pH with 2 N HCl.

8.1.13 1x PBS + 5 mM MgCl₂

10x PBS 10 ml

1 M MgCl₂ 0.5 ml

add 100 ml ddH₂O (without DEPC)

8.1.14 2x SSC + 5 mM EDTA-Na₂

20x SSC 50 ml

0.5 M EDTA-Na₂ 5 ml

add 500 ml ddH₂O (without DEPC)

8.1.15 0.2% Glycine in 1x PBS

1 g glycine 500 ml 1x PBS (adjust pH before!)

8.1.16 4% paraformaldehyde (PFA)

For 250 ml:

Dissolve 10 g paraformaldehyde in approx. 200 ml 1x PBS at approx. 60°C (on magnetic stirrer; do not increase the temperature above 70°C, as the solution will precipitate!); adjust pH to 7.35 – 7.4. Fill with 1x PBS to 250 ml. Solution can be stored for up to one month. N.B.: poisonous fumes so do this in hood. Takes about 2 hours.

Do not autoclave the prehybridisation mix, hybridisation mix or their components, but produce them under sterile, that is to say RNAse-free, conditions!! (You may autoclave: 20x SSC, Triton X-100, 5 M NaOH)

8.1.17 50x Denhardt`s solution

100x Denhardt`s solution 100 ml ddH₂O (without DEPC) 100 ml Store at -20°C.

8.1.18 20x hybridisation salts

EDTA pH 8.0	0.5 M	10 ml (final concentration 0.1 M)
PIPES pH 7.0	0.5 M	10 ml (final concentration 0.1 M)
NaCl,	5.0 M	30 ml

Produce the salt solutions with ddH₂O (without DEPC).

8.1.19 Prehybridisation mix (PHB-Mix)

20x SSC	150 ml
100% formamide, deion.	225 ml
50x Denhardts solution	50 ml
ddH ₂ O with DEPC	70 ml
store at -20°C.	

8.1.20 50x TAE Electrophoresis Buffer

Tris free base 242 g Disodium EDTA 18.61 g Glacial Acetic Acid 57.1 ml DDI H2O to 1 l Add the Tris free base and EDTA to approximately 700 ml DDI H2O and stir until the Tris and EDTA are dissolved. Add the acetic acid

and adjust the volume to 1 liter.

8.1.21 1x TAE Electrophoresis Buffer

The 1x TAE solution is 40mM Tris, 20mM Acetate and 1mM EDTA and typically has a pH around 8.6 (do not adjust).

Or add 480 ml DDI H2O to 20 ml 50x TAE solution.

Hybridisation mix (HB-Mix):

100% formamide,	deion.	16 ml	
20x hybridisation	salts	8 ml	
50x Denhardts so	lution 3	.2 ml	
Heparin 400	µl (Heparin (20,000 U),	diluted in 1 ml ddH $_2$ O)
10% Triton X-100		320 µl	
27.84 ml = 40 ali	quots a 696 µ	l; store at -	20°C.

8.1.22 ssDNA

Dissolve ssDNA (Deoxyribonucleic acid (DNA) Sodium Salt Type XIV from Salmon sperm; Sigma, D6898, 250 mg) in **buffer 4**, pH 8.0 to a final concentration of 10 mg/ml.

8.1.23 Proteinase K solution:

Is supplied by company (diluted in 10 mM TrisHCl, pH 7.5 (15.6 mg/ml); Roche Diagnostics, 1413783).

8.1.24 Dextransulfate solution

250mg dextransulfate + 400μ l ddH₂O with DEPC; pipette into Eppendorf tube, mix well and dissolve by placing eppendorf in boiling waterbath; **takes time**!

8.1.25 RNA stock solution

10 mg RNA (Sigma, R 7250) 1 ml ddH₂O (DEPC-treated)

Need 1.3ml per run (for steps V and VI); keep on ice

8.1.26 Dye solution

Nitrobluetetrazoliumchloride (NBT):

Sigma, Order No. N 6639

1 g NBT add 13.3 ml 70% dimethylformamide (DMF: = 30 ml Aqua ddH_2O + 70 ml DMF) = Stock solution with 75 mg/ml final concentration

5-bromo-4-chloro-3-indolylephosphate (X-phosphate, BCIP)

Sigma, Order.No. B6777

500 mg X-Phosphate add 10 ml 100% dimethylformamide (syock solution)

The solutions are prepared in their original container. N.B.: toxic.

12016

DAVID

Data

đ ł

notation Sis

zation

and Integra

ed Discovery (Labor

atory of Immunopathogenesis and Bioinform

latics

(LIB); National

Inst

8.2 Rabbit DAVID cluster

2/29/2016 DAVID: Database for Annotation, Visualization, and Integrated Discovery (Laboratory of Immunopathogenesis and Bioinformatics (LIB); National Inst...

													D					0]			0 0																	(
INTERPRO	INTERPRO	GOTERM_MF_FAT	GOTERM_BP_FAT	SP_PIR_KEYWORDS	SP_PIR_KEYWORDS	SP_PIR_KEYWORDS	GOTERM_MF_FAT	GOTERM_BP_FAT	GOTERM_BP_FAT	Annotation Cluster 12	INTERFAC	INTERPRO	Annotation Cluster11	GOTERM_MF_FAT	GOTERM_MF_FAT	GOTERM_MF_FAT		GOTERM MF FAT	GOTERM ME FAT	SP_PIR_KEYWORDS	KEGG_PATHWAY	SP PIR KEYWORDS	COTEDN NE EAT	GOTERM_MF_FAT	GOTERM_MF_FAT	GOTERM_BP_FAT	GOTERM_BP_FAT	GOTERM_BP_FAT	GOTERM_BP_FAT	GOTERM_BP_FAT	GOTERM_BP_FAT	Annotation Cluster 9	GOTERM_BP_FAT	GOTERM_BP_FAT	GOTERM BP FAT	SP_PIR_KEYWORDS	GOTERN BP FAT	GOTERM_BP_FAT	GOTERM_BP_FAT	GOTERM_BP_FAT	GOTERM_BP_FAT	SP_PIR_KEYWORDS	GOTERM_BP_FAT	SP_PIR_KEYWORDS	Annotation Cluster 8	GOTERM_CC_FAT	GOTERM_CC_FAT	GOTERM_CC_FAT	GOTERM_CC_FAT	GOTERM_CC_FAT	GOTERM_CC_FAT	Annotation Cluster 7	GOTERM_BP_FAT
Serine/threonine protein kinase-related	Serine/threonine protein kinase, active sit	nucleotide binding	phosphorylation	kinase	serine/threonine-protein kinase	phosphotransferase	protein serine/threonine kinase activity	phosphate metabolic process	phosphorus metabolic process	domain:VWFA EnrichmentScore: 1.39	von Willebrand factor, type A	VWA	Enrichment Score: 1.49	ribonuclease activity	3"-5" exonuclease activity	exonuclease activity	or deoxyribonucleic acids and producing 5' phosphomonoesters	nuclease activity, active with either ribo			RNA depradation	exoriboniuciedse activity	phosphomonoesters	exoribonuclease activity, producing 5'-	3'-5'-exoribonuclease activity	DNA catabolic process	apoptotic nuclear changes	DNA catabolic process, endonucleolytic	nucleus organization	<u>cellular component disassembly</u> DNA fraomentation involved in apontosis	cell structure disassembly during apoptosis	Enrichment Score: 1.55	M phase	mitosis		ordanene hasson	M phase of mitotic cell cycle	<u>cell cvcle phase</u>	cell cycle process	mitotic cell cycle	cell division	cell division	cell cycle	cell cycle	Enrichment Score: 1.64	organelle membrane	endoplasmic reticulum part	endomembrane system	nuclear envelope-endoplasmic reticulum	endoplasmic reticulum membrane	endoplasmic reticulum	Enrichment Score: 1.66	cell proliferation.
	100																	· · · ·									-							50 53				b a	I m	120	120		-				_	_	-				
R	R	R	R	8	R	R	R	R	R (<mark>م</mark> 1	4	1	o	2	R	작	RI	2			4 12		-		۹ ۵	8	4	Ä	a 1	a 19	Ĥ	o	A	H F			1 19	Ĥ	Ä	A	Ĥ	Ä	A	R	<mark>ہ</mark>	RT	4	4	Ä	8	껵	ନ	7
8	R ⁰ 2]	8	₽	₽ ■	R ∎I	₽	₽	2	[₽] (° ¤			G		₽			P		9	9 12				" "							G					i A	FA ■	R ■	•	IA ■	¤	a	₽ ■	o	R			I74 ■		4	O	₽
Pi I		2	R ∎	₽ ■	₽ ■I	₽ ■	₽) ^A	ריי איני איני			ନ 	RI			8	P	; F													ନ 						H III	¤ ∎		IA ■	¤			ດ 	R		₽ ■	■	₽		0 2	
RI 12	e RI 12	RT 46	RI 22	RT 19	PI 13	RI ■	RT 15	RT 28	RI (28	Count Count			G Count	3	3	RI	Π			• P	л с	1 1	, u			4	₽ ■	α 1		α α		G Count	₩. I	7	4 1	н н	• •	12 I2	16 III	13	II ■	ET ■ 11	23 Z3	RI 18	G Count	RT 24	RT ■ 11	RT 20	ET	RI 11	RT 26	G	RT 8
RI 12 1.6E-2	≗ RT ■ 12 1.5E-2	RT 46 1.1E-2	RT 22 1.1E-2	RT 🔤 19 9.7E-3	RI 🖬 13 8.5E-3	RI 🗃 9 8.2E-3	RT 15 3.8E-3	RT 28 1.9E-3	RT 28 1.9E-3	RI 4 5.9E-Z	RT 5 2.8E-2	RT 5 2.1E-2	G Count P_Value	RT 3 2.5E-1	RT 3 6.1E-2	RT 4 4.1E-2	RI 3 3.3E-2				RT = 5 2.0F-2				BT Count P_Value 3 1.2F-2	RI 4 6,4E-2	RT 3 6.0E-2	XI 3 6.0E-2	4 4.5E-2	an 5 8.7E-3 3 3.4E-2	4 5.0E-3	G Count P_Value	II ■ 9 1.3E-1	T 1.2E-1			8 5.7E-2	12 5.3E-2	16 2.7E-2	13 1.2E-2	12 5.8E-3	XI = 11 4.6E-3	RT 23 3.9E-3	RI 18 3.4E-4	G Count P_Value	RT 24 8.3E-2	RT 11 4.4E-2	RT 20 3.4E-2	RT 📕 11 1.3E-2	RT 🖬 11 9.2E-3	RT	G Count P_Value	RT 8 5.0E-1

https://david.nciforf.gov/term2termjsp?annot=52,9,79,85,25,32,39,1,3,47,45,63,76¤tList=1

2/29/2016 DAVID: Database for Annot tation, Visu zation, , and Inte ated Dis ery (Labor atory of Imm and Bioinformatics (LIB); National Inst...

UP_SEQ_FEATURE	UP_SEQ_FEATURE	INTERPRO	SMART	INTERPRO	Annotation Cluster16	GOTERM_BP_FAT	GOTERM_BP_FAT	GOTERM_BP_FAT	GOTERM_BP_FAT	GOTERM_BP_FAT	GOTERM_BP_FAT	GOTERM_BP_FAT	GOTERM_BP_FAT	GOTERM_BP_FAT	Annotation Cluster15	GOTERM_BP_FAT	GOTERM_BP_FAT	GOTERM_BP_FAT	GOTERM_BP_FAT	GOTERM_BP_FAT	GOTERM_BP_FAT	GOTERM_BP_FAT	GOTERM BP FAT	GOTERM_BP_FAT	Annotation Cluster14	GOTERM_BP_FAT	GOTERM_BP_FAT	SP_PIR_KEYWORDS	GOTERM_BP_FAT	Annotation Cluster 13 GOTERM_BP_FAT	KEGG_PATHWAY	SP_PIR_KEYWORDS	GOTERM_MF_FAT	GOTERM_MF_FAT	GOTERM_MF_FAT	GOTERM_MF_FAT	GOTERM_MF_FAT	INTERPRO	INTERPRO	UP_SEQ_FEATURE	GOTERM_MF_FAT	GOTERM_MF_FAT	SP_PIR_KEYWORDS	SP_PIR_KEYWORDS	UP_SEQ_FEATURE	SMART	GOTERM_MF_FAT	UP_SEQ_FEATURE	GOTERM_BP_FAT	UP_SEQ_FEATURE	SP_PIR_KEYWORDS	GOTERM_MF_FAT
domain:RRM 2	domain:RRM 3	RNA recognition motif, RNP-1	RRM	Nucleotide-binding, alpha-beta plait	Enrichment Score: 0,94	induction of apoptosis by extracellular signals	positive regulation of cell death	positive regulation of programmed cell death	positive regulation of apoptosis	induction of programmed cell death	induction of apoptosis	regulation of cell death	regulation of programmed cell death	regulation of apoptosis	positive regulation of protein kinase activity Enrichment Score: 1.03	positive regulation of transferase activity	positive regulation of kinase activity	nositive regulation of molecular function	positive regulation of catalytic activity	regulation of protein kinase activity	regulation of phosphorus metabolic process	requision of phoenhate metabolic process	regulation of phosphorylation	regulation of kinase activity	Enrichment Score: 1.17	nuclear-transcribed mRNA catabolic	nuclear-transcribed mRNA catabolic process, nonsense-mediated decay	nonsense-mediated mrna decay	mRNA catabolic process	Enrichment Score: 1.33 RNA catabolic process	MAPK signaling pathway	serine/threonine-specific protein kinase	adenyl ribonucleotide binding	nucleoside binding	ATD hinding	nurine nucleoside hinding	adem/ nucleotide binding site	FIGURE AND AND FIGURE	Serine/threonine protein kinase	domain:Protein kinase	ribonucleotide binding	purine ribonucleotide binding	transferase	ate-binding	nucleotide phosphate-binding region:ATP	S TKc	<u>purine nucleotide binding</u>	active site: Proton acceptor	protein amino acid phosphorylation	binding site:ATP	nucleotide-binding	protein kinase activity
																																-		in t						-												
RT	8	8	R	R	o	R	R	8	RT	8	R	R	RI	8	o 🖾	R	R	RI	3	8	8	9 8		R	o	3	8	4	3	<mark>۵</mark> م	8	3	Ħ	A P	4 4	9 8	4 P		14	A	8	RT	8	R	8	R	R	R	3	2	8	4
12 		R ■	₽	₽	ດ 		I3 ■	₽									₽	₽ ■1		I 2 ■		9 ₽			ត 					₽ 						9 P	9		4 124	8			₽ •	₽ ■	₽	₽ ■			I 3 ■			I¤ (
RT 4 1.8E-1	RI 3 1.6E-1	RT 📕 7 8.8E-2	RT = 7 6.3E-2	RI 🖬 8 3.6E-2	G Count P_Valu	RI 4 2.5E-1	RT 🖬 11 1.3E-1	RI 🖬 11 1.3E-1	RT 🖬 11 1.2E-1	RT 9 1.2E-1	RT 9 1.2E-1	RT 20 4.4E-2	RT 20 4.3E-2	RI 20 3.9E-2	RT 5 4.4E-1 G Count P Valu	RT 6 3.1E-1	RI = 6 2.8E-1	RT 15 6.6E-2	RT 14 5.7E-2	RT 🖬 11 4.0E-2	RI 14 3.6E-2			RT 12 2.2E-2	G Count P_Valu	RT 3 1.0E-1	RI 3 7.7E-2	RT 3 6.0E-2	RT 4 2.8E-2	G Count P_Valu	RT 3 9.6E-1	RT 3 2.1E-1	XI 27 1.8E-1	29 1.7E-1		20 16E-1				RI 12 7.5E-2	RI 35 7.1E-2	RI 35 7.1E-2	RT 28 6.2E-2	RI 27 5.9E-2	RI 21 5.9E-2	RT 🖬 8 5.8E-2	RT 37 5.5E-2	RT 16 5.1E-2	RT 17 5.0E-2	RT 14 4.8E-2	RI 34 3.7E-2	RT 16 2.9E-2

https://david.nciforf.gov/term2term.jsp?annot=52,9,79,85,25,32,39,1,3,47,45,63,76¤tList=1

2/29/2016 DAVID: Database for Annotation, Visualization and Intec ited Disco of Imm and Bioinformatics (LIB); National Inst...

I																		I																													
Annotation Cluster 22	SP_PIR_KEYWORDS	GOTERN_NF_FAT	GOTERM_BP_FAT	GOTERM_MF_FAT	SP_PIR_KEYWORDS	GOTERM_MF_FAT	Annotation Cluster 21	GOTERM_CC_FAT	GOTERM_CC_FAT	Annotation Cluster 20	INTERPRO	UP_SEQ_FEATURE	GOTERM_MF_FAT	GOTERM_MF_FAT	SD DID KEYWODDS	GOTERN_MF_FAT	GOTERM_MF_FAT	Annotation Cluster19	GOTERM_BP_FAT	GOTERM_BP_FAT	GOTERM_BP_FAT	GOTERM_BP_FAT	GOTERM_BP_FAT	GOTERM BP FAT	SP_PIR_KEYWORDS GOTERM_BP_FAT	GOTERM_BP_FAT	GOTERM_BP_FAT	GOTERM_BP_FAT Annotation Cluster 18	GOTERM_BP_FAT	GOTERM_BP_FAT	GOTERM_BP_FAT	GOTERM_BP_FAT	GOTERN_BP_FAT	GOTERM_BP_FAT	GOTERM_BP_FAT	GOTERM_BP_FAT	SP_PIR_KEYWORDS	GOTERM_BP_FAT	GOTERM BP FAT	GOTERN BP FAT	GOTERM BP FAT	GOTERN BP FAT	GOTERN BR FAT	GOTERM_BP_FAT	KEGG_PATHWAY	SP_PIR_KEYWORDS	UP_SEQ_FEATURE
Enrichment Score: 0.82	<u>aeprospriorytetion</u> <u>ahosahoric monoester hydrolase</u>	phosphatase activity	protein amino acid dephosphorylation	protein serine/threonine phosphatase activity	protein phosphatase	phosphoprotein phosphatase activity	Farichment Score: 0.82	heterotrimeric G-protein complex	extrinsic to plasma membrane	Small GTP-binding protein Enrichment Score: 0.84	Ras GTPase	nucleotide phosphate-binding region:GTP	quanyl nucleotide binding	<u>atp-binding</u> auanyl ribonucleotide binding	small GTPase mediated signal transduction	GTP binding	GTPase activity	Enrichment Score: 0.89	proteolysis	ubiquitin-dependent protein catabolic	modification-dependent protein catabolic	modification-dependent macromolecule catabolic process	protein catabolic process	catabolic process	ubl conjugation pathway proteolysis involved in cellular protein	macromolecule catabolic process	cellular macromolecule catabolic process	cellular carbohydrate catabolic process Enrichment Score: 0.92	alcohol catabolic process	monosaccharide catabolic process	hexose catabolic process	carbohydrate biosynthetic process carbohydrate catabolic process	alucose catabolic process	alvcolvsis	alcohol biosynthetic process	pyruvate metabolic process	alvoolvsis	cellular carboliyorate biosynthesic process		nexose prosyntrietic process	Giucone biorcettatio aconomi	monosaccharide metabolic process	aluconeogenesis	hexose metabolic process	Glycolysis / Gluconeogenesis	methylation Fordchment Scores ¹ 0.93	domain:RRM 1
																														-																	
ၐ		P	R	8	8	۳ (^{ير} م	8	RI	o P	8	8	2		4	8	2	ၐ	3	RI	3	3	3	9 12	9 8	RT	8	۳ ۵	R	8	4	9 6	8	8	7	격	8	9 8	1	4	1		8	RI	۳ (R
ၐ			₽ ■	2	R	₽ ■		R	Ri	o ^R		2					₽ ■	၈	3 	R	4	2 				R	R 	۳ ۳	R	14 				R		<u>ה</u>								24 	₽ 	^{يم} م	₽
G Cou		RI	PI 5	RI 3	RI 5	RT (₽ ∎	RI ■	G 4 Cou	R • • •	RI 🖬 7	RI 10	RT 9		PI 10	RI	Cou	RT 17	5 S	RT 12	RT 12		5 5		RI 23	RT 22		Π ■	RT 3	ω.	₽ ₽ ■ ■	. ω	RI 3	RT 3	₽	α β					• □		₽ ■1	E (₽ •
G Count P_Val	RI 3 2.6E-	RI = 7 1.5E-	RI 5 1.5E-	RT 3 1.4E-	RI = 5 1.1E-	RT 6 9.1E-	RT 6 1.0EC	RI = 3 7.4E-	RI = 4 4.2E-	G Count P_Val	RT 4 3.1E	RT 🖬 7 2.5E-	RT 10 1.0E-	RI 2 9 9.85: RI 10 1.05-	9 9.7E	RT 10 8.9E-	RI = 8 3.3E-	G Count P_Val	RT 17 5.5E-	RT 5 5.1E-	RT 12 2.6E-	RT 12 2.6E-	RT 13 2.4E			RI 23 4.2E-	RT 22 3.7E-	RI 3 3.7E-	RI 3 3.5E-	RT 3 3.0E-	RT 3 2.8E-	RT 4 2.3E	RI 3 2.2E	RI 🗃 3 1.6E-	RT 3 1.5E-	RT 3 1.3E-	2 1 3 1 3						RI 3 2.9E	RT 8 2.8E-		RI 6 2.6E-	RI 4 1.8E

https://david.nciforf.gov/term2termjsp?annct=52,9,79,85,25,32,39,1,3,47,45,63,76¤tList=1

2/29/20 2 2 2 ₩.

]																		(
GOTERM_BP_FAT		GOTERM BP FAT	GOTERN BP_FAI	GOTERM BP FAT	GOTERM BP FAT	GOTERM_BP_FAT	GOTERM_BP_FAT	GOTERM_BP_FAT	GOTERM_BP_FAT	GOTERM_BP_FAT	GOTERM_BP_FAT		Annotation Cluster 27	GOTERM_CC_FAT	GOTERM_CC_FAT	GOTERM_CC_FAT	GOTERM_CC_FAT	GOTERM_CC_FAT	SP_PIR_KEYWORDS	GOTERM_CC_FAT	GOTERM_CC_FAT	GOTERM_CC_FAT	Annotation Cluster 26	GOTERM_BP_FAI	GOTERM_BP_FAT	SP_PIR_KEYWORDS	SP_PIR_KEYWORDS	Annotation Cluster 25	GOTERM_BP_FAT	GOTERM_BP_FAT	Annotation Cluster 24	KEGG_PATHWAY	KEGG_PATHWAY	BIDCARTA	KEGG_PATHWAY	Annotation Cluster 23	UP_SEQ_FEATURE	KEGG_PATHWAY	SP_PIR_KEYWORDS	GOTERM_BP_FAT	GOTERM_BP_FAT	GOTERM_BP_FAT	GOTERM_BP_FAT		GOTERN BR EAT		SD DID KEYWODDS	INTERPRO	SMART	GOTERM_BP_FAT	GOTERM_MF_FAT	INTERPRO
negative regulation of ligase activity	ligase activity	negative regulation of molecular function	negative regulation of catalytic activity	regulation of cell adhesion	process	negative regulation of phosphate metabolic	negative regulation of phosphorus metabolic process	negative regulation of protein modification process	negative regulation of phosphorylation	negative regulation of protein amino acid phosphorylation	process	metabolic process	Enrichment Score: 0.73	cvtoskeleton	cvtoskeletal part	centrosome	microtubule organizing center part	microtubule organizing center	cvtoskeleton	microtubule cytoskeleton	centriole	spindle	protein localization Enrichment Score: 0.73	establishment of protein localization	protein transport	protein transport	er-golgi transport	requiation of UNA binding Enrichment Score: 0.74	regulation of transcription factor activity	regulation of binding	Enrichment Score: 0.76	Pathways in cancer	<u>Apoptosis</u> Colorertal cancer	Role of Mitochondria in Apoptotic Signaling	Small cell lung cancer	Enrichment Score: 0.81	domain:RRM	Spliceosome	mma solicing	mRNA processing	RNA processing	nuclear mRNA splicing, via spliceosome	RNA splicing, via transesterification	reactions with bulaed adenosine as nucleophile	mrna processing	rna-binding	RNA splicing	RNA recognition motif. RNP-1	RRM	mRNA metabolic process	RNA binding	Nucleotide-binding, alpha-beta plat
														-	-	-		-	-					in.	in.		1.00	1.0	B an	I m					120		æ	100				-	-		1m	100			50	120		
RT	4	8	R			RT	R	R	2	RI	7	8	Q	A	A	Ä	8	4	A	Ä	Ä	۳ (۹ م	A	A	Ä	a	_ଦ ^ନ	Ä	R	ົ	9 6	нн	н	E	G	н	A.	A.	a P	-	q	4	R	A	R	H	B	н	н	14	ñ
<u>₽</u>		R R				₽		₽ ■					ନ 		Fi III	A		₽	¤	¤ ∎	₩		ייין ק עריין אין אין אין אין אין אין אין אין אין		R I∎I	H		ם ה א			ด ¹					0 						a	R4 ■								IA III	
R J			RT 1			RT ■	RT -	RI 6	RT 4	RI	R •	¶ ∎ ₽	Count Count	RT 18	EA 14	A ■	₽	EI 7	1 3 1 3	H 1	¥ ■ 3					¥ ∎ 9	27	G 4 Count		6 6	G Count	7		ι μ ι 1 ω	G	G Count	3	A 4	G		- I - I - I	а I П I	5	H	27		, 0	7	I		ET 17	₩ ■
RT 3 2.7E-1 9.7	RT 3 2.7E-1 9.7	RT 8 2.5E-1 9.6	RT 7 2.5E-1 9.6			RT 4 3.7E-2 7.6	RT = 4 3.7E-2 7.6	RT = 6 3.6E-2 7.6	RT 4 3.1E-2 7.7	RI = 4 1.3E-2 5.6	RI 🥃 9 8.2E-3 4.9	RI 9 6.5E-3 4.6	G Count P_Value Bei	RT 18 8.7E-1 1.0	RI 🖬 14 7.2E-1 9.9	EII = 6 2.7E-1 9.0	RT 3 2.2E-1 8.9	RT 📕 7 2.0E-1 9.00	RI I3 2.0E-1 7.5	XI = 14 8.5E-2 6.8	XT 3 8.3E-2 7.0	21 7 2.7E-2 5.2	Count P Value Ber	11 7.5E-1 1.0	II II 7.4E-1 1.0	XI 🖬 9 3.9E-1 9.0	NT 🖬 7 1.2E-3 3.5	G Count P_Value Ber	4 2.1E-1 9.6	t ∏ ■ 6 8.6E-2 8.5	G Count P_Value Ber	TT 5.6E-1 9.7		I 3 7.1E-2 8.9	TT 5 6.7E-2 9.4	G Count P_Value Ber	I 3 5.1E-1 1.0	T 4 4.1E-1 9.5	I 5 3.5E-1 8.8	TT 8 2.2E-1 9.6	T 12 2.2E-1 0.5	er 5 2.1E-1 9.6	RT 5 2.1E-1 9.6	XI = 5 2.1E-1 9.6	<u>u</u> ■ 7 1.7E-1 7.2	II II 1.5E-1 6.9	I 8 1.5E-1 9.3	TI 7 8.8E-2 1.0	I = 7 6.3E-2 9.3	II II 5.8E-2 7.7	AT 17 5.5E-2 8.2	ET = 8 3.6E-2 9.9

https://david.nciforf.gov/term2term.jsp?annot=52,9,79,85,25,32,39,1,3,47,45,63,76¤tList=1

2/29/2016 DAVID: Dat ₫ S dBio itics (LIB); National Inst.

://davi																														(0 0	
d.ncifcrf.gov/term2term.jsp?anr	Annotation Cluster 34	GOTERM_BP_FAT	GOTERM_BP_FAT	GOTERM_BP_FAT	GOTERM_BP_FAT	SP_PIR_KEYWORDS	GOTERM_BP_FAT	KEGG_PATHWAY	Annotation Cluster 33	GOTERM_BP_FAT	GOTERM_BP_FAT	GOTERM_BP_FAT	GOTERM_BP_FAT	GOTERM_BP_FAT	GOTERM_BP_FAT	GOTERM_BP_FAT	Annotation Cluster 32	GOTERM_CC_FAT	GOTERM_CC_FAT	GOTERM_CC_FAT	Annotation Cluster 31	GOTERM_BP_FAT	GOTERM_BP_FAT	GOTERM_BP_FAT	Annotation Cluster 30	GOTERM_CC_FAT	GOTERM_CC_FAT	GOTERM_CC_FAT	GOTERM_CC_FAT	Annotation Cluster 29	GOTERM MF FAT	KEGG PATHWAY	GOTERM MF FAT	GOTERM_BP_FAT	GOTERN CC FAT	GOTERN RP FAT	GOTERM_CC_FAT	SP_PIR_KEYWORDS	Annotation Cluster 28	GOTERM_BP_FAT	GOTERM_BP_FAT		GOTERM_BP_FAI		GOTERM BP FAT	GOTERN BP FAT	GOTERM_BP_FAI	GOTERM_BP_FAI		GOTERM_DP_FAI	COTEDM BD FAT	GOTERM_BP_FAT	GOTERN BP FAT	GOTERM_BP_FAT	GOTERM BP FAT	
not=52,9,79,85,25,32,39,1,3,47,45,63,76&c	Enrichment Score: 0.54	ncRNA processing	rRNA metabolic process	rRNA processing	<u>ribosome biogenesis</u>	rrna processing	ribonucleoprotein complex biogenesis	RNA degradation	Enrichment Score: 0.58	spermatogenesis	male gamete generation	reproductive cellular process	multicellular organism reproduction	reproductive process in a multicellular organism	sexual reproduction	<u>camete</u> ceneration	Enrichment Score: 0.59	mitochondrial lumen	mitochondrial matrix	mitochondrial part	Enrichment Score: 0.6	forebrain development	telencephalon development	limbic system development	Enrichment Score: 0.61	cvtoskeleton	non-membrane-bounded organelle	intracellular non-membrane-bounded organelle	nucleolus	Enrichment Score: 0.62	structural molecule activity	structural constituent or ribosome	d onstatuted appartition of all apparent	ruposonne tranclation	translational elongation	ribosomal protein	ribonucleoprotein complex	ribonucleoprotein	Enrichment Score: 0.72	negative regulation of cell communication	positive regulation of protein metabolic process	<u>metabolic process</u>	negative regulation of signal transduction	process	requiation of protein upiquitination	negative regulation of transferase activity	negative regulation of kinase activity	negative regulation of protein kinase activity	positive regulation of protein ubiquitination	regulation of ligase activity	activity	regulation of ubiquitin-protein ligase	process	regulation of cellular protein metabolic	phosphorylation	regulation of protein amino acid
urrent	Ē	3	2	R	R	R	RI	R	ଜ	8	8	8	R	R	8	R	ଜ	8	8	2	ଜ	R	8	8	o	RI	<u>R</u>	R	R	o P	9 12	1	2	9 19	8	8	4	RI	ନ	R	R	RT	RI	RI	2	14	R	×RI	8	R	P		, 1 P	A	9	8
																							_	_		-																														
List=1																										1			1																											
List=1									a								2								a														2																	
List=1	2 Count	υ ω	ω	ω	4	ω	6	01	Count	6	6	0	11	11	11	10	Count	6	6	13	Count	ω	ω	ω	Count	18	46	46	17	Count		4 0		D 0	4 1	. თ.		10	Count	ω	ω	ω	ω	ω	L.	ء س	ω	ω	ω	ω) (J (j	01		4	
List=1	Gount P-Value	3 7.8E+1	3 4.3E-1	3 4.1E-1	4 2.9E-1	3 2.1E-1	6 1.4E-1	5 2.0E-2	Count P_Value	■ 6 5.1E-1	■ 6 5.1E-1	5 2.4E-1	11 2.1E-1	■ 11 2.1E-1	■ 11 1.7E-1	10 1.5E-1	Count P_Value	■ 6 2.8E-1	■ 6 2.8E-1	13 2.1E-1	Count P_Value	3 6.8E-1	3 2.6E-1	3 8.6E-2	Count P_Value	18 8.7E-1	46 2.2E-1	46 2.2E-1	17 7.6E-2	Count P_Value	2 9.0E1	4.4[-1	0 1.00	0 Z.4E-1	4 2.0E-1	6 1.3E-1	14 5.7E-2	10 1.9E-2	Count P_Value	3 9.0E-1	3 8.9E-1	3 8.8E-1	3 8.6E-1	3 7.8E-1	4.5m	3 4,3E-1	3 4.0E-1	3 3.9E-1	3 3.7E-1	3 3.5E-1			10 3.18-1	/ 3.0E-1		5 2.7E-1

2/29/2016 DAVID: Database for Annotation, Visualization, and Integrated Discovery (Laboratory of Immunopathogenesis and Bioinformatics (LB); National Inst...

^~~· 7/14	1	`	st= 1	rrentLis	?annot=52,9,79,85,25,32,39,1,3,47,45,63,76&cu	id.nciforf.gov/term2term.j sp	https://dav
9.7E-1	3.2E-1	ω		RI	B cell activation	GOTERM_BP_FAT	
9.7E-1	3.1E-1	6		R	leukocyte activation	GOTERM_BP_FAT	
9.7E-1	3.0E-1	4		RI	T cell activation	GOTERM_BP_FAT	
9.5E-1	1.9E-1	6		R	lymphocyte activation	GOTERM_BP_FAT	
9.3E-1	1.5E-1	8		4	cell activation	GOTERM_BP_FAT	
8.6E-1	- 8.0E-2	7		<u>۾</u>	protein heterodimerization activity	GOTERM_MF_FAT	
1.0E0 Benjamini	P Value	Count		^م م	tetrapyrroe binding EnrichmentScore: 0.51	Annotation Cluster 39	
1.0E0	5.2E-1	ω		8	heme binding	GOTERM ME FAT	
9.5E-1	5.1E-1	ω		8	heme	SP_PIR_KEYWORDS	
9.8E-1	2.8E-1	7		8	iron ion binding	GOTERM_MF_FAT	
7.7E-1	2.2E-1	ω		R	chromoprotein	SP_PIR_KEYWORDS	
7.7E-1	2.2E-1	7	•••	RI	Iron	SP_PIR_KEYWORDS	
5.8E-1	P_Value	5 Conut		<mark>۳</mark> و	ennonment score: 0.53 metalloprotein	Annotation Cluster 36	
1.0E0	9.4E-1	3		^۳	ionic channel	SP_PIR_KEYWORDS	
1.0E0	8.4E-1	6		R	metal ion transport	GOTERM_BP_FAT	
1.0E0	8.4E-1	10		R	ion transport	GOTERM_BP_FAT	
1.0E0	7.5E-1	8		R	cation transport	GOTERM_BP_FAT	
1.0E0	7.1E-1	6		8	passive transmembrane transporter activity	GOTERM_MF_FAT	
1.0E0	7.1E-1	6		8	channel activity	GOTERM_MF_FAT	
1.000	6.8E-1	თ. ძ		3 P	substrate specific channel activity	GOTERM_MF_FAT	
1.0E0	6.6E-1	м 0		8	oated channel activity	GOTERN MF FAT	
1.0E0	5.6E-1	5		8	cation channel activity	GOTERM_MF_FAT	
1.0E0	5.4E-1	6		R	monovalent inorganic cation transport	GOTERM_BP_FAT	
1.0E0	5.1E-1	6		R	metal ion transmembrane transporter activity	GOTERM_MF_FAT	
1.0E0	4.9E-1	4		8	BTB/POZ fold	INTERPRO	
9.4E-1	3.9E-1	5		8	ion channel complex	GOTERM_CC_FAT	
9.8E-1	3.1E-1	5		RI	voltage-gated ion channel activity	GOTERM_MF_FAT	
9.8E-1	3.1E-1	5		R	voltage-gated channel activity	GOTERM_MF_FAT	
1.0E0	2.6E-1	ы (3	BTB/POZ-like	INTERPRO	
9.6E-1	2.3E-1	5 1		4	potassium ion transport	GOTERM_BP_FAT	
1.0F0	2.2E-1			3 P	RTPA	SMART	
0.3E-1	1 68-1	ло		9 19	cation channel complex	GOTERM_MF_FAT	
1.UEU 8 3E-1	1 56 1	л		9 19	domain:B1B cation channel complex	GOTERM_CC_FAT	
9.1E-1	1.3E-1	n Un		1	potassium channel activity	GOTERM_MF_FAT	
8.0E-1	5.6E-2	5		8	voltage-gated potassium channel activity	GOTERM_MF_FAT	
5.8E-1	4.4E-2	5		R	voltage-gated potassium channel complex	GOTERM_CC_FAT	
5.8E-1	4.4E-2	5		R	potassium channel complex	GOTERM_CC_FAT	
9.9E-1	4.0E-2	4	•••	8	Potassium channel, voltage dependent, Kv. tetramerisation	INTERPRO	
9.7E-1 Benjamini	5.7E-1 P_Value	7 Count	1	o 🛱	mitochondrial membrane Enrichment Score: 0.53	Annotation Cluster 37	
9.65-1	4./E-1	œ		Ā	mitochondrial envelope		
8.9E-1	2.3E-1	4		R	outer membrane	GOTERM_CC_FAT	
8.9E-1	2.2E-1	4		R	organelle outer membrane	GOTERM_CC_FAT	
8.5E-1	1.6E-1	4		R	mitochondrial outer membrane	GOTERM_CC_FAT	
Benjamini	P_Value	Count	1	o ^P	Enrichment Score: 0.53	Annotation Cluster 36	(
1 DED	5 3E-1	n u		9 P	orotain borondimerivation activity	GOTERM_MF_FAT	
9.55-1	2.46-1	л 4		9 14	<u>urodenital system development</u> Haalle morphonenele	GOTERM_BP_FAT	
9.5E-1	1.8E-1	. 4		R	kidney development	GOTERM_BP_FAT	
Benjamini	P_Value	Count		G	Enrichment Score: 0.54	Annotation Cluster 35	
9.8E-1	3.7E-1	4		8	regulation of MAP kinase activity	GOTERM_BP_FAT	
9.7E-1	3.1E-1	ы.		8	MAPKKK cascade	GOTERM_BP_FAT	
9.6E-1	2.1E-1	6		RT	nrotein kinase cascade	GOTERM_BP_FAT	

275

2/29/2016 DAVID: Database for Annotation, Visualization, and Integrated Discovery (Laboratory of Immunopathogenesis and Bioinformatics (LB); National Inst...

)]																																																				
	Annotation Cluster 45	GOTERM_BP_FAT	GOTERM_BP_FAT	GOTERM_BP_FAT	Annotation Cluster 44	GOTERM_BP_FAT	GOTERM_BP_FAT	GOTERM_BP_FAT	GOTERM_BP_FAT	GOTERM_BP_FAT	GOTERM_BP_FAT	GOTERM_BP_FAT	GOTERM_BP_FAT	GOTERM_BP_FAT	GOTERM_BP_FAT	Annotation Cluster 43	GOTERM_CC_FAT	GOTERM_CC_FAT	KEGG_PATHWAY	GOTERM_CC_FAT	GOTERM_BP_FAT	GOTERM_CC_FAT	GOTERM_BP_FAT	KEGG_PATHWAY	KEGG_PATHWAY	GOTERM_CC_FAT	GOTERM_CC_FAT	SP_PIR_KEYWORDS	GOTERM_BP_FAT	GOTERM_BP_FAT	GOTERM_BP_FAT	SP_PIR_KEYWORDS	KEGG_PATHWAY	GOTERM_BP_FAT	Annotation Cluster 42	GOTERM_CC_FAT	GOTERM_CC_FAT	GOTERM_CC_FAT	GOTERM_CC_FAT	GOTERM_CC_FAT	GOTERM_CC_FAT	KEGG_PATHWAY	Annotation Cluster 41	GOTERM_BP_FAT	GOTERM_BP_FAT	GOTERM_BP_FAT	GOTERM_BP_FAT	GOTERM_BP_FAT	GOTERM_BP_FAT	GOTERM_BP_FAT	GOTERM_BP_FAT	Annotation Cluster 40	GOTERM_BP_FAT	GOTERM_BP_FAT	GOTERM_BP_FAT	GOTERM_BP_FAT	
	Enrichment Score: 0.43	interphase	interphase of mitotic cell cycle	G1/S transition of mitotic cell cycle	Enrichment Score: 0.44	cellular macromolecular complex assembly	cellular macromolecular complex subunit organization	protein oligomerization	protein complex biogenesis	protein complex assembly	macromolecular complex assembly	macromolecular complex subunit organization	ribonucleoprotein complex as sembly	protein homooligomerization	ribonucleoprotein complex biogenesis	Enrichment Score: 0.47	organelle inner membrane	<u>mitochondrial inner membrane</u>	Oxidative phosphorylation	mitochondrial membrane	oxidation reduction	mitochondrial envelope	oxidative phosphorylation	Parkinson's disease	Alzheimer's disease	respiratory chain	mitochondrial membrane part	respiratory chain	electron transport chain	compounds cellular respiration	energy derivation by oxidation of organic	electron transport	Huntington's disease	generation of precursor metabolities and energy	Enrichment Score: 0.49	mitochondrial membrane	mitochondrial envelope	nuclear envelope	envelope	organelle envelope	mitochondrial part	Huntington's disease	Enrichment Score: 0.5	regulation of hydrolase activity	regulation of peptidase activity	regulation of endopeptidase activity	regulation of caspase activity	positive regulation of hydrolase activity	positive regulation of peptidase activity	positive regulation of caspase activity	activation of caspase activity	Enrichment Score: 0.51	leukocyte differentiation	hemopoietic or lymphoid organ developme	hemonoiesis	lymphocyte differentiation	immune system development
								-		122	120	20	in.		R		R	æ		R	R	R	R	R	2	R	8	B	2	2	2	3	2	2	_	R	R	8	2	2	RT	7		8	2	2	B	R	R	2	2		R	R	2	2	E
ł	ଜ	7	R	8	G	14	8	Ä	Ä	A	а	а	Ä	A	н	o	н	н	н	н	Ξ.	н	н	н		Ξ.		·							ଜ								ନ				· ·	Ξ.	н			ଜ			Ξ.		
1	ଜ	8	RI	R	ဂ	14 11	14 11	HA IIII	r II	¤ ■	H	A	A	A III	•	ဂ																			ଜ								ດ 									ନ	•				
	G Count	3	3	3	G Count	5	RI 6	H ■ ■	ET 10	10 II	II 13	14	Π 	A 	∎ ■ 6	Ç Count	•	3	H B	E = 7			3	H 1	5	3	4	3		4	Ш	•	7	10	Count Count	7			1 2	■ 12	13	7	G Count	6	ω.	3	3		Ξ			G Count	ω		5	ω.	•
	G Count P_Value	RT 3 4.8E-1	RI 3 4.7E-1	RI 3 2.1E-1	G Count P_Value	RT 5 7.2E-1	RT 6 6.4E-1	XI = 4 5.0E-1	10 3.7E-1	TT 🔳 10 3.7E-1	13 3.2E-1	II 📰 14 2.9E-1	II 3 2.8E-1	1 4 1.8E-1	I = 6 1.4E-1	Count P_Value	I 3 9.7E-1	I 3 9.5E-1	I 3 6.9E-1	I 🖬 7 5.7E-1	r 🖬 11 5.2E-1	I = 8 4.7E-1	I = 3 4.4E-1	I 4 4.2E-1	5 3.5E-1	E 📕 3 3.2E-1	r = 4 3.1E-1	E 📕 3 2.7E-1	4 2.55-1	4 1.9E-1	5 1.8E-1	4 1.7E-1	7 1.1E-1	II 5.2E-2	G Count P_Value	7 5.7E-1	8 4.7E-1	■ 5 3.9E-1	12 3.7E-1	■ 12 3.7E-1	I3 2.1E-1	7 1.1E-1	C Count P_Value	6 5.9E-1	■ 3 3.8E-1	I 3 3.6E-1	3 3.4E-1	E 5 2.9E-1	I 3 2.3E-1	3 2.3E-1	3 2.0E-1	G Count P_Value	3 6.0E-1	5 5.7E-1	5 4.9E-1	E 3 4.7E-1	0 4.2E-1

https://david.nciforf.gov/term.2term.jsp?annot=52,9,79,85,25,32,39,1,3,47,45,63,76¤tList=1

2/29/2016 DAVID: Database for Annotation, Visualization, and Integrated Discovery (Laboratory of Immunopathogenesis and Bioinformatics (LIB); National Inst...

tps://david.nciforf.gov/term2termjsp?annot=52,9,79,85,25,32,39,1,3,47,45,63,		GOTERM_BP_FAT transcription DNA-dependent	GOTERM_CC_FAT transcription factor complex	GOTERM_BP_FAT transcription initiation	GOTERM_CC_FAT DNA-directed RNA polymerase II. holeenzyme	Annotation Cluster 50 Enrichment Score: 0.34	GOTERN RP FAT	GOTEDM BD EAT	homeostasis	COTEDN RD EAT collular di- tri-violent increasion ratio	COTEDE DE EAT	GOTERM_BP_FAT homeostatic process	GOTERM_BP_FAT cellular metal ion homeostasis	GOTERM_BP_FAT chemical homeostasis	GOTERM_BP_FAT calcium ion homeostasis	GOTERM_BP_FAT cellular calcium ion homeostasis	GOTERM_BP_FAT di-, tri-valent inorganic cation homeo	GOTERM_BP_FAT cation homeostasis	GOTERM_BP_FAT regulation of membrane potential	GOTERM_BP_FAT metal ion homeostasis	GOTERM_BP_FAT ion homeostasis	GOTERM_BP_FAT regulation of hydrolase activity	GOTERM_CC_FAT <u>extrinsic to membrane</u>	GOTERM_BP_FAT regulation of cell motion	GOTERM_BP_FAT regulation of locomotion	GOTERM_BP_FAT <u>positive regulation of hydrolase activi</u>	GOTERM_BP_FAT regulation of cell migration	GOTERM_BP_FAT anglogenesis	GOTERM_BP_FAT	GOTERM_BP_FAT blood vessel development	GOTERM_BP_FAT response to toxin	GOTERM_BP_FAT blood vessel morphogenesis	Annotation Cluster 49 Enrichment Score: 0.37	GOTERM BP_FAT positive regulation of cell communica	GOTERM_BP_FAT nocitive regulation of signal transduc	GOTERM_BP_FAT positive regulation of protein kinase	GOTERM_BP_FAT regulation of protein kinase cascade	GOTERM_BP_FAT regulation of I-kappaB kinase/NF-kap cascade	kapnaB cascade	GOTERM_BP_FAT positive regulation of I-kappaB kinase	Annotation Cluster 48 Enrichment Score: 0.38	GOTERM_BP_FAT wound healing	GOTERM_BP_FAT coagulation	GOTERM_BP_FAT blood coagulation	GOTERM_BP_FAT regulation of body fluid levels	GOTERM_BP_FAT hemostasis	Annotation Cluster 47 Enrichment Score: 0.4	GOTERM_MF_FAT ATPase activity	GOTERM_MF_FAT ATPase activity, coupled	TPase, AAA+ type, core	SMART AAA	GOTER M_MF_FAT DNA-dependent ATPase activity	Annotation Cluster 46 Enrichment Score: 0.42	Zinc finger, CHC4 RING-type	INTERPRO Zinc finger, RING-type	INTERPRO Zinc finder. RING-type, conserved sit	SMART BING	Zind ringer region: KING- type
76¤tL	P	9 P	2	2	R			p RI	1	R	R	14	RI	R	RI	R	stasis RT	2	RI	RI	RI	RI	RI	8	R	RT	R	RI	8	8	3 F	R (RT	RI	oaB RT	P	NF- RT	ا _م	RT	RT	RT	8	R	ا ۵	RT	<u>R</u>	RI	RI	RI	o	<u>R</u>	2 2	5 81 81	9 I	F
				н		ଜ																																																				
ist=1						କ •							•	•	•	•	•	•	•		•	•		•	•	•••	•						1					•	ľ		1						1											1
ist=1						ନ 											•••		•••													•••								•	4																	
ist=1			4	3	4	G Count	ι ω	ا ا		5		- 10	ω	7	3	3	•	5	•••	4	7	6	10				5				. 4		Count			4	6	•		4	Count	4	ω	ω.	4	4	Count	5	ш 1	4	4	ω	Count	4	6	דו וו	л I	•
st=1		4 8 3F-1	4 6.4E-1	I 3 3.6E-1	4 1.3E-1	Count P_Value	3 9.0E-1	6 8.9E-1	3 8.7E-1	5 8.4E-1	5 8.3E-1	10 8.2E-1	3 8.1E-1	■ 7 8.0E-1	3 7.9E-1	3 7.7E-1	■ 4 7.1E-1	5 6.4E-1	■ 3 6.1E-1	4 6.1E-1	7 6.0E-1	6 5.9E-1	10 3.6E-1	5 3.4E-1	■ 5 3.4E-1	■ 5 2.9E-1	5 2.6E-1	5 1.9E-1	8 9.1E-2	8 8.2E-2	4 6.7E-2	8 4,4E-2	Count P Value	4 0.3r-1	4	4 4.7E-1	■ 6 3.4E-1	■ 4 2.3E-1	4	4 1.9E-1	Count P Value	4 5.6E-1	3 4.6E-1	3 4.6E-1	■ 4 3.7E-1	4 2.3E-1	Count P Value	5 7.1E-1	5 5.5E-1	4 3.5E-1	▲ 3.0E-1	3 2.0E-1	Count P_Value	4 6.5E-1	6 4.3E-1	5 3.0F-1		T-36-T 0

 2/23/2016
 DAVID: Database for Annotation, Visualization, and Integrated Discovery (Laboratory of Immunopathogenesis and Bioinformatics (LIB); National Inst...

 gotterin_BP_FAT
 BNA biosynthetic process
 BT
 4
 8.3E-1
 1.0E0

avio															0			D																															1
d.ncifcrf.gov/term2term.jsp?ann	INTERPRO	UP_SEQ_FEATURE	INTERPRO	UP_SEQ_FEATURE	UP_SEQ_FEATURE	SP_PIR_KEYWORDS	UP_SEQ_FEATURE	UP_SEQ_FEATURE	GOTERM_CC_FAT	GOTERM_CC_FAT	GOTERM_CC_FAT	Appointer Director 50	GOTERM_BP_FAT	GOTERM_BP_FAT	Annotation Cluster 58	INTERPRO	KEGG PATHWAY	Annotation Cluster 57	SP_PIR_KEYWORDS	UP_SEQ_FEATURE	UP_SEQ_FEATURE	INTERPRO	INTERPRO	SMART	INTERPRO	INTERPRO	GOTERM_CC_FAT	GOTERM_CC_FAT	GOTERM_CC_FAT	Annotation Cluster 55 GOTERM_CC_FAT	GOTERM_CC_FAT	GOTERM_CC_FAT	Annotation Cluster 54 GOTERM_CC_FAT	GOTERM_BP_FAT	GOTERM_BP_FAT	GOTERM_BP_FAT	GOTERM_BP_FAT	GOTERM_BP_FAT	UP_SEQ_FEATURE	UP_SEQ_FEATURE	INTERPRO	SP_PIR_KEYWORDS	UP_SEQ_FEATURE	UP_SEQ_FEATURE	SMART	GOTERM_BP_FAT	GOTERM_BP_FAT	GOTERM_BP_FAT	Annation Chintor Rt
nd=52,9,79,85,25,32,39,1,3,47,45,63,76&c	Leucine-rich repeat	Leucine-rich repeat, typical subtype	LRR TYP	repeat:LRR 10	repeat: LRR 2	leucine-rich repeat	repeat:LRR 1	repeat:LRR 3	Golgi apparatus	<u>Golqi apparatus part</u>	<u>Golgi membrane</u>	response to abiotic stimulus	response to radiation	response to ionizing radiation	Enrichment Score: 0.27	Planketrin homoloov-hona	Chemokine signaling pathway	Enrichment Score: 0.27	tor repeat	repeat: TPR 1	repeat: TPR 2	Tetratricopentide region	Tetratricopeptide repeat	TPR	Tetratricopeptide TPR-1	Ennonment score: 0.27 Tetratricopeptide-like helical	cytoplasmic vesicle	cytoplasmic membrane-bounded vesicle	vesicle	Enrichment Score: 0.31 membrane-bounded vesicle	insoluble fraction	membrane fraction	Enrichment Score: 0.32	muscle organ development	muscle tissue development	striated muscle tissue development	heart development	cardiac muscle tissue development	repeat:ANK 4	repeat: ANK 3	Ankyrin	ank repeat	repeat: ANK 2	repeat:ANK 1	ANK	response to bacterium	response to molecule of bacterial origin	response to lipopolysaccharide	Environment Sama 1 22
urrentLi	3	21 P	8	R	R	8	3 I	۳ د	, ₽	RI	R 6	, 🖻	R	RI	^ه م	9 P	1	ଜ	2	8	8 8	8	RT	8	8	R و	<u>۳</u>	R	R	۳ ۵	RI		۹ ۵	2	RI	8	4 P	۹ د	R	RT	8	R	R	R	۳ •	8	8	۳ ،	2
st=1	1					•			1	•				•					•						•									•	•				•	•						•			
	÷ (ωυ	ა დ	- ω	6	6	6	6 coun	12	2	5	5	ω	ω	coun Coun	лц	ა თ	Coun	ω	ω	ωι	ιω	ω	ω	З		10	10	12	70 Coun	14	14	Coun	u	ы	ω	и с	unon 🥂	ω	4	5	U	л	5	2 com	ω	З	3	
4 0.05	4 6.0E-1	3 5.8F-1	3 5.2E-1	3 5.0E-	6 4.9E-1	6 4.8E-1	6 4.8E-1	د در در ۲۰۰۰ ۲۵ در ۲۵	12 8.0E-1	5 6.7E-1	S 3.3E-1	5 8.2E-1	3 8,1E-)	3 2.3E-1	Count P_Valu	л окс.	5 4.5m	Count P_Valv	3 6.7E-1	3 6.4E-1	3 5.4E-1	3 5.3E-1	3 5.1E-1	3 4.6E-1	3 4.3E-1		10 6.7E-1	10 4.8E-1	12 4.7E-1	Count P_Val	14 5.4E-1	14 4.9E-1	Count P_Val	3 8.4E-1	3 5.7E-1	3 5.5E-1	5 4.2E-1		3 6.6E-)	4 5.3E-1	5 4.6E-1	5 4.4E-1	5 4.2E-1	5 4.2E-1	S 3.9E-1	3 8.0E-1	3 3.8E-1	3 3.3E-1	

2/29/2016 DAVID: Database for Annotation, Visualization, and Integrated Discovery (Laboratory of Immunopathogenesis and Bioinformatics (LIB); National Inst...

										(D			0 0													I									D						
INTERPRO	Annotation Cluster72	GOTERM_BP_FAT	GOTERM_BP_FAT	GOTERM_BP_FAT	Annotation Cluster71	GOTERM_CC_FAT	GOTERM_CC_FAT	GOTERM_CC_FAT	SP_PIR_KEYWORDS	Annotation Cluster 70	GOTERM_MF_FAT	SP_PIR_KEYWORDS	GOTERM_MF_FAT	SP_PIR_KEYWORDS	GOTERM_MF_FAT	GOTERM_MF_FAT	Annotation Cluster 69	GOTERM_BP_FAT	GOTERM_BP_FAT	GOTERM_BP_FAT	Annotation Cluster 68	GOTERM_BP_FAT	GOTERM_BP_FAT	GOTERM_BP_FAT	GOTERM_BP_FAT	Annotation Cluster67				GOTERM BP FAT	GOTEKW_BP_FAT		GOTERN BP FAT	GOTERM_BP_FAT	GOTERM_BP_FAT	Annotation Cluster65	GOTERM_BP_FAT	SP_PIR_KEYWORDS	GOTERM_CC_FAT	GOTERM_BP_FAT	Annotation Cluster 64		COTEDM OC EAT	GOTERM CC FAT	GOTERM_CC_FAT	Annotation Cluster 63	SP_PIR_KEYWORDS	SP_PIR_KEYWORDS	UP_SEQ_FEATURE	Annotation Cluster62	GOTERM_MF_FAT	INTERPRO	SMART	INTERPRO	Annotation Cluster 61	UP_SEQ_FEATURE	UP_SEQ_FEATURE	UP_SEQ_FEATURE	UP_SEQ_FEATURE	UP_SEQ_FEATURE	
Planketrin homoloovuhona 	Enrichment Score: 0.16	inflammatory response	defense response	response to wounding	Enrichment Score: 0.17	vacuole	Ivtic vacuole	lysosome	lysosome	Enrichment Score: 0.18	endopeptidase activity	Protease	neptidase activity, acting on L-amino acid	metalloprotease	peptidase activity	metallonentidase activity	Enrichment Score: 0.18	noncess	positive regulation of immune response	positive regulation of response to stimulus	Enrichment Score: 0.18	cell migration	cell motility	localization of cell	cell motion	Enrichment Score: 0,19	sensory organ development	eve development	camera-type eve development	Enrichment Score: 0.2	response to hormone stimulus	response to endogenous stimulus		cellular response to hormone stimulus	response to organic substance	Enrichment Score: 0.2	microtubule-based process	microtubule	microtubule	microtubule cytoskeleton organization	Enrichment Score: 0.23	cell junction	anchoring luncuon		adherens junction	Enrichment Score: 0.24	lipoprotein	palmitate	lipid moiety-binding region: S-palmitoyl cysteine	Enrichment Score: 0.24	phospholipid binding	C2 calcium-dependent membrane targeting	2	C2 membrane targeting protein	Enrichment Score: 0.24	repeat:LRR 6	repeat:LRR 7	repeat:LRR 4	repeat:LRR 5	repeat: LRR 8	
5																																																													
-	o	R	RT	R	۵	8	R	<u>R</u>	4	o ا	8	R	R	R	8	R	ด	R	R	R	o	7	R	RT	R	ຸດ	3	8	8	G		Ā	1	RT	R	n	2	4	R	RI	ଜ	2	2	1	₽ (<mark>ہ</mark> ا	3	R	R	ଜ	R	R	2	8	o	RI	R	2	RI	8	
	G	P.	<u>R</u>	R	n	R	8 •	RT	<u>۲</u>	o I		RI	P.	₽	₽ ■	A	n	R	2	8	٥ ٥	₽	R	P	R	o	R			ר ר ר				R	8	G	2	<u>R</u> ■	R.	R	G				₽ 	ם י י	₽	R	RI	G	R	RT	2		G	8	R	RI	8	8	
	្ច				e a			R						8	R		0 .4		R		o a		R		8	0 	12			ି 			₹ ₽	R7		ด 			R		e S				직 (·	ิ ส	쪽 		R .	ନ 	₽		רא 		ີ 	R			四	8	
	G Count	P •	RT 10	PI	G Count	PI	PI	R I	3	G Count	α Ι	RI 7	8	3	PET 39	₽ ■	Count Count	PI	RI 3	R •	Ç. Count	RI	5	EI 5	PT 9	Ç. Count	3			G Count	· · · · · · · · · · · · · · · · · · ·			RT	PI 13	G	RT 4	RI	PI	RI	G	RT 6			P7 (Count Count	RT -	RT 4	P I	G Count	EI 3	3 N	3		G Count	₽1 3	RT 3	RI 	RI	3	
	Gi Count P_Value	RT 4 8.8E=1	RT 10 6.0E-1	RT 9 5.7E-1	🚱 😽 Count P_Value	RT 4 7.5E-1	RT 4 6.4E-1	RT 4 6.4E-1	RT 3 6.3E-1	G Count P_Value	RI 3 9.7E-1	RI 7 6.9E-1	RI 8 6.8E-1	RT 3 6.3E-1	RT 9 5.9E-1	RI 4 4.9E-1	G Count P_Value	RT 3 8.8E-1	RT 3 6.5E-1	RI 5 4.9E-1	Count P_Value	RT 4 8.0E-1	RT 5 7.0E-1	RI 5 7.0E-1	RI 9 4.4E-1	Count P_Value	RI 3 8.7E-1	RT 3 6.0E-1	RT 3 4.9E-1	G Count P_Value	RI 5 8.2E-1	KI 0 /.5E-1		RT 3 6.1E-1	RT 13 4.2E-1	G Count P_Value	RT 4 7.5E-1	RT 4 6.4E-1	RI 5 6.2E-1	RI 4 3.9E-1	G Count P_Value	RT 6 9.1E-1	4 3.06-1		RT (Count P Value	RT 9 6.9E-1	RT 4 5.8E-1	RT 4 4.8E-1	G Count P_Value	RT 3 7.3E-1	1 RT 3 5.9E-1	RT 3 5.5E-1	RT 3 4.6E-1	G Count P_Value	RI 3 8.0E-1	RT 3 7.2E-1	RT 4 7.0E-1	RT 4 6.4E-1	RT 3 6.3E-1	

 Intresen
 Encletion homologicality

 https://david.noiforf.gov/term2term.jsp?annot=52,9,79,85,25,32,38,1,3,47,45,63,768.ourrentList=1

2/29/2

																			(]			D					0								(W2016
GOTERM_BP_FAT	GOTERM_BP_FAT	GOTERM_BP_FAT	GOTERM_BP_FAT	GOTERM_BP_FAT	GOTERM_BP_FAT	GOTERM_BP_FAT	GOTERM_BP_FAT	GOTERM_BP_FAT	GOTERM_BP_FAT	GOTERM_BP_FAT	GOTERM_BP_FAT	GOTERM_MF_FAT Annotation Cluster81	GOTERM_MF_FAT	GOTERM_MF_FAT	GOTERM_MF_FAT	SP_PIR_KEYWORDS	GOTERM_MF_FAT	SP_PIR_KEYWORDS	Annotation Cluster 80	GOTERM_CC_FAT	GOTERM_CC_FAT	Annotation Cluster79	GOTERM_MF_FAT	GOTERM_MF_FAT	Annotation Cluster78	GOTERM_BP_FAT	GOTERM_BP_FAT	Annotation Cluster77 GOTERN BP FAT	GOTERM_MF_FAT	GOTERM_MF_FAT	GOTERM_MF_FAT	COTEDM ME EAT	Annotation Cluster76	GOTERM_MF_FAT	GOTERM_MF_FAT	GOTERM_MF_FAT	Annotation Cluster 75	GOTERM_BP_FAT	GOTERM_BP_FAT	GOTERM_BP_FAT	Annotation Cluster74	GOTERM_CC_FAT	GOTERM_CC_FAT	Annotation Cluster73 SP PIR KEYWORDS	INTERPRO	SMART	UP_SEQ_FEATURE	DAVID: Database for Annotatic
	positive regulation of cellular biosynthetic process	positive regulation of macromolecule biosynthetic process	positive regulation of RNA metabolic process	positive regulation of transcription, DNA- dependent	positive regulation of gene expression	positive regulation of nitrogen compound metabolic process	positive regulation of macromolecule metabolic process	positive regulation of transcription	nositive regulation of nucleobase, nucleoside, nucleotide and nucleic acid metabolic process	regulation of transcription from RNA polymerase II promoter	positive regulation of transcription from RNA polymerase II promoter	zinc ion binding Enrichment Score: 0.1	lon binding	metal ion binding	cation binding	zinc-ringer zinc	transition metal ion binding	metal-binding	Enrichment Score: 0.11	integral to plasma membrane	plasma membrane part	Enrichment Score: 0.12	transcription activator activity	transcription coartivator activity	Enrichment Score: 0.13	actin filament-based process	cyroskeieton organization actin cytoskeleton organization	Enrichment Score: 0.14	enzyme activator activity	small GTPase regulator activity	<u>GTPase requiator activity</u> nucleoside-triphosphatase requiator activity	GIPase activator activity	Enrichment Score: 0.14	transcription repressor activity	transcription corepressor activity	transcription cofactor activity	regulation of growth Enrichment Score: 0.15	regulation of cellular component size	regulation of cell size	regulation of cell growth	Enrichment Score: 0.15	vesicular fraction	microsome	Enrichment Score: 0.15	Pleckstrin homology	면	domain:PH	on, Visualization, and Integrated Discover
	R	8	RT	8	R	8	3	RI	RI	8	R	۳ ۲	R	RI	8	7 A	8	8	o I	9 19	R	o	8	9 19	G	8		G	R	8		4	G	R	8	۳ ,		RI	R	RT	م ا	3 P	9 P	ີ ດ	R	8	8	y (Labo
I	••		••		•••	•	•	•											 			25														•					' 							atory of Immunopathogenesis
	8		6 8.	6 8.	8 7.	9 7.	■ 12 7.	8 7.	9 7.	11 6.	6 6;	26 9. Count P	54 9.	53 9.1	54 8.	23 7.	39 6.	44 4.	Count P	16 8.	34 6.	Count P		ω σ 20 5	Count P	ω .	ω α	Count P	4 8.	4 7.	6 7. 2	· •	Count P	3 9,	3 6.:	6 6	4 9. Count P	4 75	4 6.	■ 4 5,	Count P	ω u ο 9	ω u 	Count P	4 7.	4 7.	4 6.	atory of Immunopathogenesis and Bioinformatics (L

https://david.nciforf.gov/term2termjsp?annot=52,9,79,85,25,32,39,1,3,47,45,63,76¤tList=1

2/29/2016 DAVID: Database for Annotation, Visualization, and Integrated Discovery (Laboratory of Immunopathogenesis and Bioinformatics (LIB); National Inst...

				1														(]]	
UP_SEQ_FEATURE	Annotation Cluster 89	GOTERM_BP_FAT	GOTERM_BP_FAT	Annotation Cluster88	GOTERM_BP_FAT	GOTERM_BP_FAT	Annotation Cluster87 GOTERM_BP_FAT	GOTERM_BP_FAT	GOTERM_BP_FAT	GOTERM_BP_FAT	SP_PIR_KEYWORDS	GOTERN_BP_FAT	SP_PIR_KEYWORDS	Annotation Cluster 86	GOTERN BE FAT	GOTERM_BP_FAT	GOTERM_BP_FAT	Annotation Cluster 85	UP SEO FEATURE	GOTERM_CC_FAT	UP_SEQ_FEATURE	SP_PIR_KEYWORDS	SP_PIR_KEYWORDS	SP_PIR_KEYWORDS	GOTERM_BP_FAT	SP_PIR_KEYWORDS	SP_PIR_KEYWORDS	GOTERN_BP_FAT	GOTERM_MF_FAT	GOTERM_MF_FAT	GOTERM_BP_FAT	COTEDN BD EAT	GOTERM BP FAT	Annotation Cluster 83	GOTERM_BP_FAT	GOTERM_BP_FAT	GOTERM_BP_FAT	GOTERM_BP_FAT	GOTERM_BP_FAT	GOTERM_BP_FAT	GOTERM_BP_FAT	GOTERM_BP_FAT		GOTERN RP FAT	GOTERN BP FAT	Annotation Cluster82	
zinc finger region:C2H2-type 1	Chromatin organization Enrichment Score: 0.02	chromatin modification	chromosome organization	end natching Enrichment Score: 0.03	embryonic development ending in birth or	chordate embryonic development	Enrichment Score: 0.05 in utero embryonic development	neurological system process	cognition	sensory perception	sensory transduction	sensory perception of light stimulus	vision	Intracellular protein transport Enrichment Score: 0.05	cellular macromolecule localization	cellular protein localization	intracellular transport	Enrichment Score: 0.05	Intrinsic to membrane	integral to membrane	transmembrane region	transmembrane	membrane	dna-binding	transcription	transcription regulation	transcription regulator activity	regulation of transcription	transcription factor activity	DNA binding	regulation of KNA metabolic process regulation of transcription, DNA-dependent	polymerase II promoter	transcription factor binding	Enrichment Score: 0.08	negative regulation of transcription	negative regulation of transcription, DNA- dependent	negative regulation of nitrogen compound metabolic process	negative regulation of nucleobase, nucleoside, nucleotide and nucleic acid metabolic process	negative regulation of gene expression	negative regulation of biosynthetic process	negative regulation of cellular biosynthetic process	negative regulation of macromolecule biosynthetic process	process	RNA polymerase II promoter	negative regulation of macromolecule metabolic process	Enrichment Score: 0.1	positive regulation of biosynthetic process
-	in.	in.	100		20	7	20	20	70		9 P	2	2		~	R	2	P		2	2	8	R	2	2	2	2 2	8	8	R	<u>a</u> a	2	Ā		7	RT	R	2	R	R	R	R	7	R	R		R
8	o ^P	Ĥ	Fi j	୍କ	A I	н	ି ଜ	н	н	-			Ξ.	ດີ			-	ດ່					° (,										ନ												ଦ	
	ດ ⁴			ନ 			" o							ດ ີ -				ດ ີ 											•					ר ו נו	•••		•••									ດ <mark>ສ</mark>	
RT 6 8.9E-1	Count P_Vaiv	1 3 9.3E-1	2 6 8.7E-1	G Count P_Val	II 3 9.7E-1	3 9.6E-1	G Count P_Vail I 3 7.5E-1 3 3	I 5 1,0E0	I 📕 4 1.0E0			3 8.5E-1	g 3 5.9E-1	Count P_Valu	4 9.5E-1	E 4 9.5E-1	E 10 6.8E-1	G Count P_Valu	75 9.56-	73 9.4E-1	67 7.4E-1	68 7.1E-1	86 7.1E-1	15 1.0E0	24 9.7E-1	21 9.7E-1	16 9.6E-1 22 9.6E-1	32 9.5E-1	■ 10 9.5E-1	27 9.4E-1	26 7.4E-1 23 8.8E-1	11 6.8E-	10 3.26-	G Count P_Valu	■ 4 9.7E-1	■ 4 9.1E-1	■ 6 9.0E-1	■ 6 9.0E-1	6 8.9E-1	7 8.8E-1	7 8.6E-1	7 8.5E-1	5 8.1E-1	4 7.8E-1	14 3.3E-1	G Count P_Valv	■ 8 9.1E-1

https://david.nciforf.gov/term2term.jsp?annd=52,9,79,85,25,32,39,1,3,47,45,63,76¤tList=1

2/22/2016 DAVID: Database for Annotation, Visualization, and Integrated Discovery (Laboratory of Immunopathogenesis and Bioinformatics (LIB); National Inst...

UP_SEQ_FEATURE	GOTERM_CC_FAT	SP_PIR_KEYWORDS	UP_SEQ_FEATURE	SP_PIR_KEYWORDS	UP_SEQ_FEATURE	SP_PIR_KEYWORDS	SP_PIR_KEYWORDS	GOTERM_CC_FAT	Annotation Cluster 93	SP_PIR_KEYWORDS	PIR_SUPERFAMILY	INTERPRO	INTERPRO	GOTERM_BP_FAT	SP_PIR_KEYWORDS	Annotation Cluster 92	INTERPRO	SP_PIR_KEYWORDS	INTERPRO	Annotation Cluster 91	GOTERM_BP_FAT	GOTERM_BP_FAT	SP_PIR_KEYWORDS	Annotation Cluster 90	UP_SEQ_FEATURE	INTERPRO	INTERPRO	UP_SEQ_FEATURE	SMART	UP_SEQ_FEATURE	INTERPRO	UP_SEQ_FEATURE	UP_SEQ_FEATURE	UP_SEQ_FEATURE
disulfide bond	extracellular region	alvcoprotein	signal peptide	sional	glycosylation site: N-linked (GlcNAc)	disulfide bond	Secreted	extracellular region part	Enrichment Score: 0	g-protein coupled receptor	PIRSF800006:rhodopsin-like G protein- coupled receptors	7TM GPCR, rhodopsin-like	GPCR, rhodopsin-like superfamily	G-protein coupled receptor protein signaling pathway	transducer	Enrichment Score: 0	Immunoalobulin-like	Immunoalobulin domain	Immunoalobulin-like fold	Enrichment Score: 0	biological adhesion	cell adhesion	cell adhesion	Enrichment Score: 0.01	zinc finger region:C2H2-type 6	Zinc finger, CH2-like	Zinc finger, C2H2-type	zinc finger region:C2H2-type 7	ZnF C2H2	zinc finger region:C2H2-type 5	Zinc finger, C2H2-type/integrase, DNA- binding	zinc finger region:C2H2-type 3	zinc finger region:C2H2-type 2	zinc finger region:C2H2-type 4
RI	RI	RT	R	R	R	RI	RI	RI	o	8	R	RT	2	RI	RI	۵ ۵	8	RI	8	o	RT	R	R	ବ	RI	RT	2	RT	8	RI	R	8	R	RI
₽	RI			12 11	P2	₽ ■	Ri 📕	RI	ល រ			RI		R] ■	RI III	ត រ		R	8	ด <mark>ส</mark>	I]	₽		ត 	RI I	₽		8	₽	RI		[] []	8	R ■
RI 15 1.0E0	RI 🖬 12 1.0E0	RT 34 1.0E0	RT 23 1.0E0	RI 23 1.0E0	RT 33 1.0E0	RI 20 1.0E0	RT 🗾 10 1.0E0	RT 5 1.0E0	G Count P_Value	RT 3 1.0E0	RI 🗃 3 1.0E0	RT 📱 3 1.0E0	RT 🚡 3 1.0E0	RT 🗃 8 1.0E0	RT = 6 1.0E0	G Count P_Value	RT 3 9.9E-1	RT 3 9.9E-1	RT = 4 9.9E-1	G Count P_Value	RT = 6 9.8E-1	RT 6 9.8E-1	RI 4 9.4E-1	G Count P_Value	RI 🗧 3 9.9E-1	RT 6 9.9E-1	RT 6 9.9E-1	RT 3 9.9E-1	RT 6 9.8E-1	RI = 4 9.8E-1	RI 5 9.8E-1	RT = 6 9.5E-1	RI 🖬 6 9.4E-1	RT 🗧 6 9.2E-1

217 terms were not clustered.

Please cite Nature Proto **N** ols 2009; 4(1):44 & Genome Biology 2003; 4(5):P3 within any publication that makes use of any methods inspired by DAVID. H NCIFrederick FIRSTGOV and Human Services

Term of Service | Contact Us | Site Map

2/29/2016 DAVID: Database for Annotation, Visualization, and Integrated Discovery (Laboratory of Immunopathogenesis and Bioinformatics (LIB); National Inst...

-> DATABASE

Nat

DAVID Bioinformatics Resources 6.7 and Institute of Allergy and Infectious Diseases (NIAID), NIH

Functional Annotation Clustering

Current Gene List: List_1 Current Background: Homo sapiens 323 DAVID IDs Options Classification Stringency Medium V Renun using options Create Sublist

																										1																			100 C
GOTERM_BP_FAT	GOTERM_BP_FAT	GOTERM_BP_FAT	GOTERM_BP_FAT	GOTERM_BP_FAT	GOTERM_BP_FAT	GOTERM_BP_FAT	GOTERM_MF_FAT	INTERPRO	SMART	UP_SEQ_FEATURE	GOTERM_BP_FAT	KEGG_PATHWAY	GOTERM_BP_FAT	SP_PIR_KEYWORDS	Annotation Cluster 5	GOTERM_CC_FAT	SP_PIR_KEYWORDS	GOTERM_CC_FAT	GOTERM_CC_FAT	Annotation Cluster 4	GOTERM_CC_FAT	GOTERM_CC_FAT	GOTERM_CC_FAT	GOTERM_CC_FAT	GOTERM_CC_FAT	Annotation Cluster 3	SP_PIR_KEYWORDS	GOTERM_CC_FAT	SP_PIR_KEYWORDS	Annotation Cluster 2	SP_PIR_KEYWORDS	SP_PIR_KEYWORDS	UP_SEQ_FEATURE	GOTERM_CC_FAT	GOTERM_CC_FAT	GOTERM_CC_FAT	GOTERM_CC_FAT	GOTERM_CC_FAT	GOTERM_CC_FAT	GOTERM_CC_FAT	GOTERM_CC_FAT	SP_PIR_KEYWORDS	GOTERM_CC_FAT	Annotation Cluster 1	luster(s)
pyrimidine ribonucleoside triphosphate biosynthetic process	pyrimidine ribonucleoside triphosphate metabolic process	CTP metabolic process	UTP biosynthetic process	GTP biosynthetic process	UTP metabolic process	pyrimidine nucleoside metabolic process	nucleoside diphosphate kinase activity	Nucleosid e diphosphate kinase, core	NDK	active site: Pros-phosphohistidine intermediate	pyrimidine nucleotide metabolic process	Pyrimidine metabolism	pvrimidine nucleoside triphosphate metabolic process	nucleotide metabolism	Enrichment Score: 1.37	vacuole	lvsosome	lvsosome	lytic vacuole	Enrichment Score: 1.58	nucleoplasm	nuclear lumen	organelle lumen.	membrane-enclosed lumen	intracellular organelle lumen	Enrichment Score: 2	lysosome	endosome	endosome	Enrichment Score: 2.09	mitoch ondrion inner membrane	transit peptide	transit peptide:Mitochondrion	mitochondrial inner membrane	mitoch ondrial envelope	organelle inner membrane	mitoch ondrial part	mitoch ond rial membrane	organelle membrane	en velope	organelle envelope	mitoch ondrion	mitoch ondrion.	Enrichment Score: 2.27	
50	in the	20	len.	ba i	Þ	8	8	8	R	2	적	2	R	R		2	R	2	7	_	2	8	8	3	8	۱	3	R	2		R	2	즉	적	R	8	3	R		R	R	직	2	•	
н	P	н	R	A	н										G					G						w/				2															
															ດ <u>-</u>	•			•••	o a										er A			•••		•••			•••							
I = 3 1.3E-2	II ■ 3 1.3E-2	T 3 1.3E-2	IT ■ 3 1.0E-2	IT ■ 3 1.0E-2	I 3 1.0E-2	4 9.2E-3	3 8.8E-3	2 3 6.8E-3	3 6.1E-3	3 3.8E-3	5 3.5E-3	7 3.0E-3	4 1.7E-3	5 2.6E-4	G Count P_Value	9 4.5E-2	T 3.4E-2	■ 9 1.8E-2	■ 9 1.8E-2	G Count P_Value	20 9.7E-2	35 1.0E-2	43 5.6E-3	44 4.7E-3	43 3.7E-3	Count P_Value	7 3.4E-2	■ 11 2.7E-2	12 6.0E-4	G Count P_Value	6 2.0E-1	■ 13 8.6E-2	I3 8.0E-2	■ 12 8.8E-3	15 6.2E-3	13 5.7E-3	19 5.7E-3	■ 15 3.6E-3	30 3.5E-3	22 7.5E-4	22 7.2E-4	28 4.6E-4	33 3.6E-4	Count P_Value	E Down

8.3 Cattle DAVID clusters

https://david.nciforf.gov/term2term.jsp?annct=52,9,79,85,25,32,39,1,3,47,45,63,76¤tList=0

Help

and Manual

229/2016 DAVID: Database for Annotation, Visualization, and Integrated Discovery (Laboratory of Immunopathogenesis and Bioinformatics (LIB); National Inst...

																																													(
GOTERM_MF_FAT	UP_SEQ_FEATURE	GOTERM_MF_FAT	SP_PIR_KEYWORDS	GOTERM_MF_FAT	UP_SEQ_FEATURE	GOTERM_MF_FAT	GOTERM_MF_FAT GOTERM_MF_FAT	GOTERM_MF_FAT	GOIEKM_MF_FAI Annotation Cluster 8	GOTERM_MF_FAT	GOTERM_MF_FAT	GOTERM_MF_FAT	SP_PIR_KEYWORDS	SP_PIR_KEYWORDS	Annotation Cluster 7 GOTERM_MF_FAT	GOTERM_BP_FAT	GOTERM_BP_FAT	GOTERM_BP_FAT	GOTERM_BP_FAT	GOTERM_BP_FAT	GOTERM_BP_FAT	GOTERM_BP_FAT	GOTERM_BP_FAT	GOTERM_BP_FAT GOTERM_BP_FAT	GOTERM_BP_FAT	GOTERM_BP_FAT	GOTERM_BP_FAT	GOTERM_BP_FAT	GOTERM_BP_FAT	GOTERM_BP_FAT	GOTERM_BP_FAT	GOTERM_BP_FAT	GOTERM_BP_FAT	GOTERM_MF_FAT	GOTERM_BP_FAT	GOTERM_BP_FAT	GOTERM_MF_FAT	GOTERM_BP_FAT	GOTERM BP FAT	GOTERM_BP_FAT	GOTERM_BP_FAT	GOTERM_BP_FAT	KEGG_PATHWAY	GOTERM_BP_FAT	GOTERM_BP_FAT
purine nucleotide binding	nucleotide phosphate-binding region:ATP	nucleotide binding	atp-binding	ATP binding	binding site:ATP	ad envi i noorructeoude omaing nucleoside binding	purine nucleoside binding	adenvi nucleotide binding	ion binding Enrichment Score: 1.18	cation binding	metal ion binding	zinc ion binding	zinc-finger	metal-binding	Enrichment Score: 1.26 transition metal ion binding	generation of precursor metabolites and energy	cellular protein complex assembly	respiratory chain complex IV assembly	purine nucleotide metabolic process	purine nucleoside triphosphate metabolic process	ribonucleoside triphosphate metabolic process	purine ribonucleoside triphosphate metabolic process	nucleoside triphosphate biosynthetic process	ribonucleotide metabolic process pur ine nucleotide biosynthetic process	ribon ucleoside triphosphate bios ynthetic process	purine nucleoside triphosphate biosynthetic process	nucleobase, nucleoside, nucleotide and nucleic acid biosynthetic process	nucleobase, nucleoside and nucleotide biosynthetic process	purine ribonucleoside triphosphate biosynthetic process	purine ribonucleotide metabolic process	nucleoside triphosphate metabolic process	ribon ucleoside metabolic process	ribonucleotide biosynthetic process	nucleobase, nucleoside, nucleotide kinase	purine ribonucleotide biosynthetic process	<u>group as acceptor</u> nucleoside metabolic process	phosphotransferase activity, phosphate	nitronen compound biosynthetic process	process numidine purcleotide biocusthetic process	pyrimidine ribonucleoside metabolic	process pyrimidine ribonucleotide metabolic process	pyrimidine ribonucleatide biosynthetic	Purine metabolism	<u>pvrimidine nucleoside triphosphate</u> <u>biosynthetic process</u>	CTP biosynthetic process
8	8	RT	RT	8	8		9 23	8	^م م	西	8		8	R	a 0	R	R	<u>م</u>	8	8	8	RI	R	8	R	8	8	R	8		RI	8	8	RT	8	3		2 P	9	3	8	8	3	8	3
			-																							•			•			•													
	•••								3									<mark>e</mark>	8																										
40	23	47	31	34	16	37	37	37	76 Count	76	76	4π 4π	40	65	62	8	7	3	5	4	4	4	4	л л	4	4	6	6	4	л л	U.	3	б	ω	- сл	4	ω :	11) ئى) ئىل	ω	ω	2 7	υ	ω

https://david.nciforf.gov/term2term.jsp?annot=52,9,79,85,25,32,39,1,3,47,45,63,76¤tList=0

2/29/2016
DAVID:
Database for Annot:
ation, Via
sualization,
and Integrated Discovery
(Laborator)
of Immunopathogenesis and Bioin
ormatics (LIE
3); National Inst

]			(
SP_PIR_KEYWORDS	GOTERM_BP_FAT	GOTERM_BP_FAT	GOTERM_BP_FAT	GOTERM_BP_FAT	SP_PIR_KEYWORDS	GOTERM_BP_FAT	SP_PIR_KEYWORDS	GOTERM_MF_FAT	GOTERM_BP_FAT	GOTERM_BP_FAT	GOTERM_BP_FAT	GOTERM_BP_FAT	GOTERM_MF_FAT	GOTERM_CC_FAT	GOTERM_CC_FAT	GOTERM_CC_FAT	SP_PIR_KEYWORDS	GOTERM_CC_FAT	SP_PIR_KEYWORDS	Annotation Cluster 12	GOTERM_MF_FAT	GOTERM_MF_FAT	Annotation Cluster 11	SP_PIR_KEYWORDS	GOTERM_MF_FAT	GOTERM_MF_FAT	UP_SEQ_FEATURE	Annotation Cluster 10 INTERPRO	GOTERM_BP_FAT	GOTERM_BP_FAT	GOTERM_BP_FAT	GOTERM_BP_FAT	KEGG_PATHWAY	GOTERM_BP_FAT	GOTERM_BP_FAT	GOTERM_BP_FAT	GOTERM_BP_FAT	GOTERM_BP_FAT	Annotation Cluster 9	GOTERM_BP_FAT	INTERPRO	GOTERM_MF_FAT	SP_PIR_KEYWORDS	GOTERM_MF_FAT	GOTERM_MF_FAT
<u>dna repair</u>	response to DNA damage stimulus	DNA metabolic process	DNA repair	cellular response to stress	oxidoreductase	oxidation reduction	iron	Iron ion binding	regulation of lipid metabolic process	regulation of fatty acid oxidation	regulation of cellular ketone metabolic process	regulation of fatty acid metabolic process	structural molecule activity	ribosomal subunit	large ribosomal subunit	ribon ucleoprotein complex	ribon ucleoprotein.	ribosome	translation ribosomal protain	Enrichment Score: 0.99	manganese ion binding	<u>magnesium ion binding</u>	Enrichment Score: 1.05	<u>oxvgen</u> dioxygenase	<u>oxyden</u> oxidoreduct <u>ase activity, actino on sinole</u> donors with incorporation of molecular	oxidoreductase activity, acting on single donors with incorporation of molecular oxygen, incorporation of two atoms of	domain:Fe2OG dioxygenase	Enrichment Score: 1.09 Oxoglutarate and iron-dependent oxygenas	heterocycle biosynthetic process	cofactor metabolic process	nornhyrin metaholic process	cofactor biosynthetic process	Porphyrin and chlorophyll metabolism	heme metabolic process	tetranyrrole blosynthetic process	ploment metabolic process	heme biosynthetic process	plament blosyn thetic process	Enrichment Score: 1.13	protein amino acid phosphorylation	Protein kinase, ATP binding site	protein kinase activity	nucleotide-binding.	ribon ucleotide binding	purine ribonucleotide binding
먹	8	R	RI	8	, ¤	RT	3	8	P	8	직	۲ ۵	R	R	3	14	R		9 19	G	4 A	8	o P	4	R	8	R	۲	R	3	3 23	R	8	8	9 P	8	RT	R	ດ	R	3	88	8	2	8
										•	•			•									ł	https:/ rrentLi	//davio ist=0	d.ncifcrf.	.gov/	relate	lTerr	ns.jsp	?id=7	79000	04378	2cu				•		I					I
					5				4											_																			<u>,</u>						
	1	1		1	10	1	1	1	4	ω	4	-	•	4	ω σ		10		79 11	-		1		ω	•	4	ω i	ω.	ω			5	ω	64 1	a u		ω	4					• (J)	ω	ω
6	11	14	10	17	9	14	10	12	4	ω	4	Count 4	12	4	ως	13	6	80 (8 13	Count	ō, ō	13	Count	ω.	4	4	ω	Count	ω	6	נט נע	и	З	ωι	ω (,	4 υ	ω	4	Count	15	11	10	35	38	38
6 2.0E-1	11 1.2E-1	14 1.1E-1	10 6.2E-2	17 4.1E-2	9 6.9E-1	14 3.3E-1	10 4.2E-2	12 1.2E-2	4 3.1E-1	3 8.6E-2	4 7.8E-2	4 5.4E-2	12 4.6E-1	4 3.2E-1	3 2.8E-1	13 1.1E-1	9 8.3E-2	8 5.2E-2	13 1.4E-2 8 3.3E-2	Count P_Value	6 1.1E-1	13 6.6E-2	Count P_Value	3 2.9E-1	4 9.5E-2	4 9.2E-2	3 4.5E-2	Count P_Value 3 3.0E-2	3 2.8E-1	6 2.6E-1	3 9.1E-2 3 9.1E-2	5 9.1E-2	3 8.8E-2	3 5.6E-2	3 4.7F-2	4 4.4E-2	3 3.5E-2	4 3.1E-2	Count P_Value	15 2.8E-1	11 2.0E-1	10 1.5E-1 14 1.9E-1	35 1.0E-1	38 9.5E-2	38 9.5E-2

https://david.nciforf.gov/term2term.jsp?annot=52,9,79,85,25,32,39,1,3,47,45,63,76¤tList=0

	2/29/2016
SP PIR KEYWORDS	DAVID: Database for Annotation,
DNA damane	Visualization,
	and Integrated Discovery
4	(Laborator)
	of Immunopathogenesis and Bioin
თ	ormatics
2.4F-1	(LIB);
8.7E-1	National Inst

																																												0				
GOTERM_BP_FAT	GOTERM_CC_FAT	Annotation Cluster 21	GOTERM_BP_FAT	GOTERM_BP_FAT	GOTERM_BP_FAT	Annotation Gluster 20 GOTERM_BP_FAT	GOTERM_BP_FAT	KEGG_PATHWAY	UP_SEQ_FEATURE	GOTERM_BP_FAT	GOTERM_MF_FAT	INTERPRO	SMART	INTERPRO	GOTERM_MF_FAT	SP_PIR_KEYWORDS	SP_PIR_KEYWORDS	INTERPRO	UP_SEQ_FEATURE	INTERPRO	GOTERM_BP_FAT	INTERPRO	SP_PIR_KEYWORDS	GOTERM_MF_FAT	UP_SEQ_FEATURE	GOTERM_BP_FAT	Annotation Cluster 19 GOTERM_BP_FAT	UP_SEQ_FEATURE	INTERPRO	INTERPRO	SMART	Annotation Cluster 18 INTERPRO	UP_SEQ_FEATURE	UP_SEQ_FEATURE	UP_SEQ_FEATURE	INTERPRO	INTERPRO	SMART	SP_PIR_KEYWORDS	GOIERM_MF_FAI	GOTERM_MF_FAT	GOTERM_MF_FAT		GOTERM_MF_FAT	SP_PIK_KEYWORDS	GOTERM_MF_FAT	GOTERM_MF_FAT	SP_PIR_KEYWORDS Annotation Cluster 16
mitochondrial ATP synthesis coupled electron transport	mitoch ondrial membrane part	Enrichment Score: 0.8	tRNA metabolic process	tRNA processing	ncRNA processing	ncRNA metabolic process	Intracellular signaling cascade	Chemokine signaling pathway	active site: Proton acceptor	protein amino acid phosphorylation	protein serine/threonine kinase activity	Acute myeloid leukemia Serine/threenine nrotein kinase	<u>S. TKc</u>	Protein kinase, ATP binding site	protein kinase activity	serine/threonine-protein king tt p	kinase p://v	Protein kinase, core	domain: Protein kinase	Serine/threonine protein king protections we sli	phosphorvlation	Corino/thropping protein kind	atp-binding	ATP binding	binding site:ATP	phosphate metabolic process erine	Enrichment Score: phosphorus metabolic proce /three	zinc finger region:RING-type ine	Zinc finger, C3HC4 RING-type	Zinc finger, RING-type	RING	Enrichment Score: 0.9 Zinc finger, RING-type, conserved site	domain: RRM 1	domain: RRM 2	domain: RRM	Nucleotide-binding, alpha-beta plait	RNA recognition motif. RNP-1	DDM	rna-binding	Endohmont Coom. 0.02	endoribonuclease activity	nuclease activity	ribo- or d eoxyribonucleic acids and producing 5'-phosphomonoesters	nuclease endonuclease activity, active with either	Endonuclease	endonuclease activity	endoribonuclease activity, producing 5'- phosphomonoesters	DNA damage Enrichment Score: 0.94
																				60														les.	_	-												
R	RT	^ه م	3	3	8	۲ ۵	8	적	2	8 I	8		8	27	西	8	8	2	4	3	2	9 19	3	8	ä	R	^ຊ ດ	4	14	н	r I	ິດ	ra -	Ä	5	9	4 F		۹ ۵	, ¤	q	8	8	2	14	8	4	a 🛱
RI	<u>R</u>	⁴ م		<u>R</u>	R	R •	¤ ∎	2	R	곱 				<u>₹</u>	2	<u>R</u>	8	<u>곡</u>	4	2			4	RT	Ä	R	^ຊ ດ	[작]		•		ິດ "		•	•				a 11			13	R				R •	ם ייי ייי
R	RT 6		9 2	1 1 4	RT = 7	2 13	R 16	R	ET 11	RT 15	RT 10	RT 3	RI 7	RT = 11	RI 🖬	RT = 10	RT 16	RT = 12	RT = 12	RT 10	RT 21		31	RT 34	ET 16	EI 2 7	RT C Co	RT 6	RT = 7	9 9	₩ I		H	а ••• з	RT	RT = 7	RT P	7				R • •	Р			ET 5	ĭ ■ ■	
RI 着 4 7.51	RT 6 4.71	G S Count P_V	RT 5 1.5	RI 4 1.5	RT = 7 1.11	Count P.1	R 1 1 1 6 9.6	RT 3 7.8	RI 🖬 11 6.3	RT 15 2.8	RT 10 2.71	RT 3 2.22 7 2.4	RT 7 2.11	RT 11 2.01	RT 🖬 14 1.91	RT 🖬 10 1.69	RT 🖬 16 1.51	RT = 12 1.51	RT = 12 1.41	RT 10 1.21	RT 21 6.91		31 3.8	RT 34 3.61	RT 🖬 16 3.21	EI 2 7 2.11	G Count P_V RT 27 2.11	RT 6 2.6	RT = 7 1.61	ET 9 1.11	9 8,41	27 G Count P_\ 9 8.41	XI 3 4.9	27 ■ 3 4.91	RT = 4 3.04	RT = 7 1.3	RT 1.3				3 1.8	RT 6 1.21	RT 3 1.11	0 9/2	R 1 1 1 1 1 1 1 1	ET 5 8.01	RT 3 7.41	BI 6 2.4

https://david.nciforf.gov/term2term.jsp?annot=52,9,79,85,25,32,39,1,3,47,45,63,76¤tList=0

2/29/2 1 ¥.

)											
Annotation Cluster 27	SP_PIR_KEYWORDS	GOTERM_BP_FAT	SP_PIR_KEYWORDS	GOTERM_BP_FAT	GOTERM_CC_FAT	GOTERM_BP_FAT	GOTERM_BP_FAT	GOTERM_BP_FAT	GOTERM_BP_FAT	GOTERM_BP_FAT	GOTERM_BP_FAT	GOTERM_BP_FAT	GOTERM_BP_FAT	KEGG_PATHWAY	GOTERM_BP_FAT	GOTERM_BP_FAT	GOTERM_BP_FAT	GOTERM_BP_FAT	GOTERM_BP_FAT			GOTERM_CC_FAT	Annotation Cluster 25	GOTERM_MF_FAT	GOTERM_MF_FAT	GOTERM_MF_FAT	KEGG_PATHWAY	GOTERM_BP_FAT	Annotation Cluster 24	GOTERM_BP_FAT	GOTERM_BP_FAT	GOTERM_BP_FAT	GOTERM_BP_FAT	GOTERM_BP_FAT	GOTERM_BP_FAT	GOTERM_BP_FAT	GOTERM_BP_FAT	GOTERM_BP_FAT	GOTERM_BP_FAT	GOTERM_BP_FAT	Annotation Cluster 22	SP_PIR_KEYWORDS	GOTERM_CC_FAT	GOTERM_BP_FAT	GOTERM_CC_FAT	GOTERM_BP_FAT	GOTERM_BP_FAT	GOTERM_BP_FAT	KEGG_PATHWAY	GOTERM_BP_FAT	GOTERM_BP_FAT	GOTERM_BP_FAT
Enrichment Score: 0.73	mitosis	regulation of mitotic cell cycle	cell division	cell division	so india	M phase of mitotic cell cycle	nuclear division	mitosis	G1/S transition of mitotic cell cycle	cell cycle checkpoint	<u>organelle fission</u>	regulation of cell cycle	cell cycle process	Cell cycle	cell cycle phase	interphase	internhase of mitotic cell cycle		mitatic cell cycle	cvtos keleton	organelle	non-membrane-bounded organelle	Enrichment Score: 0.78	monovalent inorganic cation transmembrane transporter activity	inorganic cation transmembrane transporter activity	hydrogen ion transmembrane transporter activity	Oxidative phosphorylation	oxidative phosphorylation	Enrichment Score: 0.78	an ti-apoptos is	<u>death</u> negative regulation of cell death	negative regulation of programmed cell	negative regulation of apoptosis	regulation of cell death	regulation of programmed cell death	regulation of apoptosis	embryonic organ development	end hatching	chordate embryonic development	in utero embryonic development	Enrichment Score: 0.79	electron transport	respiratory chain	generation of precursor metabolites and energy	mitoch ond rial respiratory chain	energy derivation by oxidation of organic compounds	cellular respiration	electron transport chain	Oxidative phosphorylation	respiratory electron transport chain	oxidative phosphorylation	ATP synthesis coupled electron transport
										-	-	-	les.	50	Þ					R	R	R		8	8	2	B	2			2 I	R	2	2	a	2	B	R	R	2		2	집	8		æ	R	R	8	8	진	R
ø	8	8	3	q	9 8		4	4	8	8	8	4	R	A	н	14 F		•••	6) ⁻	14	н	Q						G							G					ଦ				н	н	н					
0 	27				9				R		•		¤	•	•		• •		- c 				0 2						0 2								• • • • • • •				ດ ' <mark>ສ</mark>											I IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII
G Count	RT 4		RT 6 ~	RT 7			ο σι	RT = 6	ET 3	H ••••••••••••••••••••••••••••••••••••	ET 7	RT 10	15	ы П (л	I I2	о (ν μ	3			50	I 50	G Count	-	5	4			G Count	б - <u>с</u>	10	10	10	20	20		Contraction of the second seco	•		0	G Count				I 3	H	4	I I	•	4	5	I I I 44
G Count P_Value	RT 4 5.7E-1	RT 4 5.0E-1	RT 6 4.2E-1	RT 7 4.1E-1	RT 4 4.1F-1	RT 8 3.5t-1	RI 6 3.4E-1	RT = 6 3.4E-1	RT 3 2.6E-1	RT 4 2.1E-1	RT 🗧 7 2.1E-1	RT 10 1.3E-1	ET 15 1.2E-1	T 5 1.2E-1	I I 12 1.1E-1	E 6 3.9E-2		T = = = = = = = = = = = = = = = = = = =			I 50 8.4E-2	I 50 8.4E-2	G Count P_Value	E 📕 4 2.4E-1	E = 5 2.3E-1	r 4 1.8E-1	5 1.3E-1	5 9.3E-2	G Count P_Value	6 2.9E-1	10 1.8E-1	10 1.8E-1	10 1.7E-1	20 1.2E-1	20 1.2E-1		5 3.6E-1	9 2.3E-1	9 2.3E-1	8 3.5-2	G Count P_Value	3 4.8E-1	3 3.3E-1	8 3.1E-1	I = 3 2.6E-1	I 5 2.5E-1	T = 4 2.4E-1	5 1.4E-1	5 1.3E-1	4 1.0E-1	[■ 5 9.3E-2	I 4 7.5E-2

https://david.nciforf.gov/term2term.jsp?annd=52,9,79,85,25,32,39,1,3,47,45,63,76¤tList=0

2/29/2016 DAVID: Datab B cs (UB); National Inst...

D																																																	
GOTERM BP FAT	GOTERM_BP_FAT	GOTERM_BP_FAT	Annotation Cluster 34 GOTERM BP FAT	GOTERM_BP_FAT	GOTERM_MF_FAT	SP_PIR_KEYWORDS	GOTERM_BP_FAT	GOTERM_BP_FAT	GOTERM_BP_FAT	GOTERM_BP_FAT	GOTERM_BP_FAT	GOTERM_BP_FAT	Annotation Cluster 32 GOTERM_BP_FAT	SP_PIR_KEYWORDS	GOTERM_CC_FAT	GOTERM_CC_FAT	GOTERM_CC_FAT	GOTERM_BP_FAT	GOTERM_BP_FAT	GOTERM_BP_FAT	GOTERM_BP_FAT	Annotation Cluster 30 SP_PIR_KEYWORDS	GOTERM_CC_FAT	GOTERM_BP_FAT	GOTERM_CC_FAT	GOTERM_BP_FAT	SP_PIR_KEYWORDS	GOTERM_BP_FAT	GOTERM_CC_FAT GOTERM_BP_FAT	GOTERM_CC_FAT	GOTERM_CC_FAT	GOTERM_CC_FAT	Annotation Cluster 29	UP_SEQ_FEATURE	INTERPRO	SMART	SMART	INTERPRO	GOTERM_BP_FAT	GOIEKM_BP_FAI	GOTERM_BP_FAT	GOTERM_BP_FAT	GOTERM_BP_FAT	GOTERM_BP_FAT	GOTERM_BP_FAT	GOTERM_BP_FAT	GOTERM_BP_FAT	SP_PIR_KEYWORDS	
rihnenma hinnanaele	ribonucleoprotein complex biogenesis	noRNA processing	Enrichment Score: 0.61	protein folding	heat shock protein binding	Chaperone	Endobroant Common Control Common Control Contr	protein complex assembly	macromolecular complex assembly	macromolecular complex subunit organization	cellular macromolecular complex assembly	<u>cellular protein complex assembly</u>	Enrichment Score: 0.62 <u>cellular macromolecular complex subunit</u> organization	chromosomal protein	<u>ch romatin</u>	<u>ch romosome</u>	chromosomal part	programmed cell death	an onto sis	<u>death</u>	<u>cell death</u>	Enrichment Score: 0.67 Apontosis	<u>cytos keleton</u>	cytos keleton organization	<u>cell division</u> cytoskeletal part	M phase	cytos keleton	microtubule cytoskeleton organization	microtubule organizing center	centrosome	microtubule organizing center part	microtubule cytoskeleton	Serine/threonine protein kinase	domain: AGC-kinase C-terminal	AGC-kinase, C-terminal	<u>S TKc</u>	S TK X	Protein Kinase, C-terminal	protein import	intracellular transport	protein targeting	protein localization in organelle	protein localization	establishment of protein localization	intracellular protein transport	protein transport	cellular macromolecule localization	protein transport	
																																-																	
9		3 P	G	R	3	8	PIR I	8	8	8	8	2	^ع م	2	4	8	8	^ع ,	R	RT	8	۲ ۵	P	8		8	작			4	8	^۲ (8	R	3	지	8		8	RI	RI	R	<u>8</u>	8	8	3 2	8	
9			ີ ດ 						ET I	R ■		₽			의 ■	피			8		점	¤ 6										[₽] (₽													₹		•
5 F	B	RT • • • • • • • • • • • • • • • • • • •	G Count	5	R1	B G	R 9	RT 9	ET 12	RT 14	PT 10	RT = 7	G Count	RI	5	RT 11		RT 14	RI 📕	RT = 17	RT = 17	RT I Count	21	₽ ₽ ₽	RT ■ 7 7 16	RT 3	RT 13	5 0	∞ ∞	8	F I		RI 7	ET 3	RT 3	RT = 7	3	RT G		RT 14	6	FI	RT 20	RT 19	₽ ■	19 I	RT 12	RI II II	
DT =	RT 6 2.1E-1	RT 0 1.1E-1	G Count P_Value	RT 5 3.8E-1	RT 3 3.4E-1	RI 6 1.1E-1	RT 9 6.6E-1	RT 🗃 9 6.6E-1	RT 12 6.2E-1	RT 🖬 14 4.7E-1	RT 10 1.1E-1	RT 7 6.6E-2	G Count P_Value RI 12 5.0E-2	RT 4 4.1E-1	RT 5 3.9E-1	RT 11 1.8E-1	RT 11 8.2E=2	RI 14 2.7E-1	RT 14 2.6E-1	RT = 17 2.0E-1	RT 17 1.9E-1	RT Count P_Value 10 1.6E-1	RT 21 6.8E-1	RT 8 6.5E-1	RT 7 4.1E-1 RT 16 5.3E-1	RT 8 3.5E-1	RT 13 3.3E-1	RT 5 2.6E-1	RT 8 1.0E-1	RT = 8 6.3E-2	RT 4 5.7E-2	RT 15 5.0E-2	RI 7 2.4E-1	RI 3 2.2E-1	RT 3 2.2E-1	RT = 7 2.1E-1	RT 3 2.1E-1	RT 3 1.4E-1	RT 3 6.7E-1	RT 14 3.7E-1	RT 6 3.2E-1	RT 5 2.5E-1	RT 20 2.1E-1	RT 📰 19 1.3E-1	RT 11 1.2E-1	RT 19 1.2E-1	RT 12 1.1E-1	BT 13 9.6E-2	•

https://david.nciforf.gov/term2term.jsp?annot=52,9,79,85,25,32,39,1,3,47,45,63,76¤tList=0

2/29/2016 DAVID: Database for Annotation, Visualization, and Integrated Discovery (Laboratory of Immunopathogenesis and Bioinformatics (LIB); National Inst...

											(I										(0
ODTERN RP FAT	INTERPRO	INTERPRO	SMART	Annotation Cluster 41	GOTERM_BP_FAT	GOTERM_BP_FAT	GOTERM_BP_FAT	GOTERM_BP_FAT	SP_PIR_KEYWORDS	KEGG_PATHWAY	Annotation Cluster 39	UP_SEQ_FEATURE	SMART	UP_SEQ_FEATURE	UP_SEQ_FEATURE	UP_SEQ_FEATURE	UP_SEQ_FEATURE	UP_SEQ_FEATURE	UP_SEQ_FEATURE	UP_SEQ_FEATURE	UP_SEQ_FEATURE	INTERPRO	UP SEQ FEATURE	UP_SEQ_FEATURE	INTERPRO	UP_SEQ_FEATURE	UP_SEQ_FEATURE	PIR_SUPERF AMILY	UP_SEQ_FEATURE	Annotation Gluster 38	GOTERM_BP_FAT	GOTERM_BP_FAT	SP_PIR_KEYWORDS	GOTERM_BP_FAT	GOTERM_BP_FAT	Annotation Cluster 37	GOTERM_BP_FAT	GOTERM_BP_FAT	GOTERM_BP_FAT	GOTERM_BP_FAT	GOTERM_BP_FAT	GOTERM_BP_FAT	GOTERM_BP_FAT	GOTERM_BP_FAT	GOTERM_BP_FAT	Annotation Cluster 36	GOTERM_CC_FAT	GOTERM_CC_FAT	Annotation Cluster 35 GOTERM_CC_FAT	GOTERM_BP_FAT	GOTERM_BP_FAT	
domain: Kinesin - motor	Kinesin, motor region	Kinesin, motor region, conserved site	KISc	Enrichment Score: 0.53	response to endogenous stimulus	response to organic nitrogen	response to amine stimulus	Whit receptor signaling pathway	wnt signaling pathway	Wnt signaling pathway	Enrichment Score: 0.53	Nruepper-Associated pox	KRAB	zinc finger region:C2H2-type 10	domain: KRAB	zinc finger region:C2H2-type 6	zinc finger region:C2H2-type 12	zinc finger region:C2H2-type 5	zinc finger region:C2H2-type 11	zinc finger region:C2H2-type 4	zinc finger region:C2H2-type 7	Zinc finger, C2H2-type	Zinc finger, CZHZ-like	zinc finger region:C2H2-type 3	Zinc finger, C2H2-type/integrase, DNA- binding	zinc finger region:C2H2-type 2	zinc finger region:C2H2-type 1	PIRSF005559:zinc finger protein ZFP-36	zinc finger region:C2H2-type 9	ZnF C2H2	membrane organization	vesicle-mediated transport	Endocytosis	membrane invagination	endocvtosis	signals Enrichment Score: 0.59	induction of apoptosis by extracellular	positive regulation of cell death	positive regulation of programmed cell death	positive regulation of apoptosis	induction of programmed cell death	induction of apoptosis	regulation of cell death	regulation of programmed cell death	regulation of apoptosis	Enrichment Score: 0.59	nore complex	nuclear nore	Enrichment Score: 0.6 nuclear envelope	rRNA metabolic process	rRNA processing	LIVUUUIUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUU
																								-	-	1	la l			20	ba.	R	R	R					120		22	50		-	1				_			
RT	2	R	RT	o	격	8 1	۳ د	^۲	RT	2	۵		3	8	RI	8	즉	격	즉	R	a	4 8		R	8	19	9	9 1	9 8	٦ ۵	, F	н	-	н	^н (۵	9	A	а	A	IQ.	A	a	8	IC .	o '	a 1	4 1	ິດ		R	P
RI	RT	R	R	o	2		8 •	역 	R.	RT	ດ			2	Ri	8	직 	<u>R</u>	려 	8				R; ■	R	I¤	A			ר ר וו	, A	•		•	•	ה י	9	•	H			•	•	4		o ¹		4 I	ິດ "		<u>R</u> ■	P
RT 3	RT 3	RT 3	RT 3	G Count	RT	RI		4 0	RI 4	RT 5	G Count		PET 1	ET 7	RT T 7	RT 10	RT 6	ET 11	RT = 7	RT 12	RT 10	RT 16		E 14	EI 14	14	13	о ;			₩ ₩	I I 13	H	I I 7	7	G Count	а Ш	10	10	10		8	20 Z	20	20	G Count	μ 	α ι	Count Count	RT 3	RT 3	•
RT 3 1.5E-1	RT 3 1.5E-1	RT 3 1.5E-1	RT 3 1.4E-1	G Count P_Valu	RT 8 5.7E-1	RT 3 3.0E-1	RI 3 1.5E-1	RI 4 4.1E-1	RT 4 3.1E-1	RT 5 1.9E-1	G Count P_Valu		RT 7 4.6E-1	RT 7 4.6E-1	RT 7 4.5E-1	RT 🖬 10 4.0E-1	RT = 6 3.9E-1	RT 11 3.7E-1	RT 7 3.4E-1	RT 12 3.4E-1	RT 10 3.1E-1	RT 16 2.8E-1		RT 14 2.1E-1	RT 14 2.0E-1	<u>21</u> ■ 14 1.9E-1	II 13 1.7E-1	5 1.7E-1	10 1.5E-1	TT 17 1.6E-1	8 5.0E-1	I I 3 3.1E-1	I 4 2.0E-1	I = 7 1.9E-1	7 1.9E-1	G Count P Valu	ar 3 5.9E-1	10 3.5E-1	IT 10 3.5E-1	TT 10 3.5E-1	IT - 8 3.3E-1	II ■ 8 3.3E-1	XI 20 1.2E-1	RT 20 1.2E-1	XI 20 1.1E-1	G Count P_Valu	27 = = = = = = = = = = = = = = = = = = =		G Count P_Valu	RT 3 5.0E-1	RT 3 4.8E-1	1

https://david.ncifcrf.gov/term2term.jsp?annct=52,9,79,85,25,32,39,1,3,47,45,63,76¤tList=0

2/29/2016 DAVID: Database for Annotation, Visualization, and Integrated Discovery (Laboratory of Immunopathogenesis and Bioinformatics (LIB); National Inst...

															1																			0 0			0 0																		
GOTERM_BP_FAT	GOTERM_BP_FAT	GOTERM_BP_FAT	GOTERM_MF_FAT Annotation Cluster 47	INTERPRO	UP_SEQ_FEATURE	UP_SEQ_FEATURE	INTERPRO	INTERPRO	SP_PIR_KEYWORDS	GOTERM_BP_FAT	GOTERM_MF_FAT	UP_SEQ_FEATURE	GOTERM_MF_FAT	GOTERM_BP_FAT	Annotation Cluster 46	INTERPRO	SMART	INTERPRO	Annotation Cluster 45	GOTERM_BP_FAT	GOTERM_BP_FAT	GOTERM_BP_FAT	GOTERM_MF_FAT	SP_PIR_KEYWORDS	SP_PIR_KEYWORDS	GOTERM BP_FAT	INTERPRO	SP PIR KEYWORDS		INTERPRO	SMART	GOTERM MF FAT	Appoint of Cluster M	COTEDM DD EAT	GOTERM_BP_FAT	GOTERM_BP_FAT	GOTERM RP FAT	GOTERM_BP_FAT	GOTERM_BP_FAT	GOTERM_BP_FAT	SP_PIR_KEYWORDS	GOTERM_BP_FAT	GOTERM_BP_FAT	Annotation Cluster 43	KEGG_PATHWAY	KEGG_PATHWAY	KEGG_PATHWAY	Annotation Cluster 42	SP_PIR_KEYWORDS	GOTERM_MF_FAT	SP_PIR_KEYWORDS	GOTERM_CC_FAT	GOTERM_MF_FAT	GOTERM_BP_FAT	
cellular amino acid catabolic process	organic acid catabolic process	carboxylic acid catabolic process	phosphatase activity Enrichment Score: 0.47	Protein-tyrosine phosphatase, active site	active site: Phosphocysteine intermediate	active site: Proton donor	Dual-specific/protein-tyrosine_phosphatase conserved_region	Protein-tyrosine phosphatase	protein phosphatase	dephosphorylation.	phosphoprotein phosphatase activity	domain:Tyrosine-protein phosphatase	protein tyrosine phosphatase activity	protein amino acid dephosphorylation	Enrichment Score: 0.48	ATPase, AAA+ type, core	AAA	ATPase, AAA-type, core	Enrichment Score: 0.51	regulation of transcription, DNA-dependent	regulation of RNA metabolic process	regulation of transcription	transcription regulator activity	transcription regulation	dna-binding		Tinc finner (2H2-type	Zinc finger, C2H2-like	binding	ZnF C2H2 Zinc finner (2H2-tyne/integrace DNA-		Ennomment Score: 0.54	Drotzolvsis	Drocess	ubiquitin-dependent protein catabolic	cellular protein catabolic process	catabolic process	proteolysis involved in cellular protein	modification-dependent protein catabolic	modification-dependent macromolecule catabolic process	ubl conjugation pathway	macromolecule catabolic process	cellular macromolecule catabolic process	Enrichment Score: 0.52	Focal ad hesion	Melanoma	Prostate cancer	Enrichment Score: 0.53	microtubule	motor activity	motor protein	microtubule	microtubule motor activity	microtubule-based movement	microtubule-based process
																																_						_	-		-	-									-				
RT	R	8	^{الم}	3	西	RT	러	2	3	5	R	8	작	8	0	R	2	8	o	즉	8	8	5	R	4		9 14	8	R	8		G	, "		a 1	4 P	1	7	8	8	8	9	3	n	5	7	8	Q	4	4	Ħ	8	3	7	8
8	R		ריי ייי ניי			RI				4	R				.	3	<u>R</u>		0 	3	R	R	곡 -			9 ₽	9 A					יים יי 		•	4 F		(): 	9			¤			റ ച			8	o J						₽ ■	8
RT 3	RI a) ¹¹	Count Count	. ₽	RT 3	5	RI 3	RT 3	- FR	RT 5	BT 5	BA A	RT 4	Fi (Count Count	RT	RT 4	A	G Count	RT 27	RT 28	RT 47	RT 26	RT 35	R F		11 1	EI 17	RT 14	17					°¶	13 IS		87 13	RT 13	RT	ET ■ 12	19 III	RT 18	G Count	RT	RT 3	R 4	G Count	RT 4	₽	21	RI 5	α .	RT 4	8
RT 3 3.3E-1	RT 4 3.1E-1	RI 4 3.1E-1	RT 5 5.8E-1 Count P Value	RT 3 4.2E-1	RT 3 3.9E-1	RT 5 3.9E-1	RT 3 3.8E-1	RT 3 3.8E-1	RT 4 3.5E-1	RT 5 2.8E-1	RT 5 2.8E-1	RT 3 2.7E-1	RT 4 2.4E-1	RT 5 2.0E-1	Count P Value	RT 4 4.1E-1	RT 4 3.8E-1	RT 3 1.9E-1	G Count P_Value	RT 27 8.6E-1	RT 28 8.4E-1	RT 47 5.0E-1	RT 26 5.0E-1	RT 35 4.3E-1	RT 3.2F-1		PT 1 6 3 8E-1		RT 14 2.0E-1	ET 17 1.6E-1					6 4.2E-1			RT 13 3.6F-1	RT 13 3.1E-1	RT 📕 13 3.1E-1	RT 12 2.0E-1	RT 19 1.4E-1	RT 18 1.4E-1	G Count P_Value	RT 4 5.9E-1	RT 3 2.9E-1	RT 4 1.5E-1	G Count P_Value	RT 4 7.2E-1	RT 3 6.8E-1	XI = 3 6.3E-1	RI 5 6.2E-1	RT 3 3.6E-1	RT 4 3.2E-1	RT = 8 1.6E-1

https://david.nciforf.gov/term2term.jsp?annot=52,9,79,85,25,32,39,1,3,47,45,63,78¤tList=0

229/2016 DAVID: Database for Annotation, Visualization, and Integrated Discovery (Laboratory of Immunopathogenesis and Bioinformatics (LIB); National Inst... GOTERM_BP_FAT

D]																																							
GOTERM BP FAT	GOTERM_BP_FAT	Annotation Cluster 56 SP_PIR_KEYWORDS	SP_PIR_KEYWORDS	GOTERM_BP_FAT	GOTERM_BP_FAT	GOTERM_BP_FAT	GOTERM_BP_FAT	Annotation Cluster 55	GOTERM_BP_FAT	GOTERM_BP_FAT	GOTERM_BP_FAT	GOTERM_BP_FAT	Annotation Cluster 54	GOTERM_BP_FAT	SP_PIR_KEYWORDS	SP PIR KEYWORDS	GOTERM BP FAT	GOTERM_BP_FAT	KEGG_PATHWAY	Annotation Cluster 53	INTERPRO	INTERPRO	INTERPRO	UP_SEQ_FEATURE	Annotation Cluster 52	GOTERM_BP_FAT	GOTERM_BP_FAT	GOTERM_BP_FAT	Annotation Cluster 51	GOTERM_CC_FAT	SP_PIR_KEYWORDS	GOTERM_CC_FAT	Annotation Cluster 50	INTERPRO	UP_SEQ_FEATURE	UP_SEQ_FEATURE	SMART	UP SEO FEATURE	UP_SEQ_FEATURE	UP_SEQ_FEATURE	UP_SEQ_FEATURE	UP_SEQ_FEATURE	UP_SEQ_FEATURE	Annotation Cluster 49	OP_SEQ_PEATURE	SP_PIR_KEYWORDS	Annotation Cluster 48
smins transnet	amino acid transport	Enrichment Score: 0.35	Signal-anchor	glycosylation	protein amino acid glycosylation	biopolymer glycosylation	alvcoprotein biosynthetic process	Enrichment Score: 0.35	neuron development	neuron differentiation	camera-type eve development	eve development	Enrichment Score: 0.38	RNA splicing	mma solicion	mena processing	mRNA metabolic process	RNA processing	<u>Spliceos orne</u>	Enrichment Score: 0.4	Zinc finger, PHD-type, conserved site	Zinc finner DHD-tyne	Zinc finger, PHD-finger	zinc finger region:PHD-type	Enrichment Score: 0.44	sensorv ordan development embryonic ordan morphodenesis	embryonic organ development	embryonic morphogenesis	cell projection Enrichment Score: 0.45	neuron protection	cell protection	dendrite	ank repeat Enrichment Score: 0.46	Ankvrin	repeat:ANK 2	repeat:ANK 1	ANK	repeat:ANK 3	repeat:ANK 5	repeat:ANK 4	repeat:ANK 7	repeat:ANK 8	repeat:ANK 9	isopeptide bond Enrichment Score: 0.46	cross-link: Glycyl lysine isopeptide (Lys-Gi (interchain with G-Cter in ubiquitin)	ubl conjugation	amine catabolic process Endebmant Score: 0.47
4	2	3	2	8	8	3			R	2		R						RT	RT	_	8 I	9 P	R	R	G		Rī	8	^م م	3	8	8		RI	R	3	8 R		3	3	8	8	R		3 R	8	a la
		ି ଜ						Q.												u /																											
		ິດ "		•••		•		•												w,					I						•										•••	•••	•			•	
II 1	ω	Coun	7	ω	ω	ω (ა თ	Coun	ш		ם וו 4 ת	. л	Coun	. 4	. 0		1 00	14		Coun	ωı	ω υ	υ ωι		Coun	• •			Coun	7	5	о 0	S Coun	0	U	5	UT (и п	4		ω	ω	ω	Z Coun		13	
1. IC	3 4.7E-1	Count P_Val.	7 6.8E-1	■ 3 6.6E-1	■ 3 6.6E-1	3 6.6E-1	6 1.4E-1 6 2.8E-1	Count P_Valu	5 8.5E-1	6.5E-1	4 2.9E-1	5 2.0E-1	Count P_Valu	4 4 9.86	0 0.11		8 4.8E-1	14 1.6E-1	5 1.2E-1	Count P_Val	3 4.4E-1	3 4.0F-1	3 4.0E-1	3 2.1E-1	Count P_Valu	6 3.7E-1 4 4.1E-1	5 3.6E-)	8 2.9E-1	Count P_Val	7 4.5E-1	5 4.3E-1	6 1.1E-1	S 5.4E-1 Count P Value	5 5.4E-1	5 5.2E-1	5 5.2E-1	5 5.0E-1	5 3.9E-1	4 3.65-1	5 2.5E-1	3 2.4E-1	3 1.5E-1	3 1.2E-1	Z 4.1E-: Count P_Valu	5 4.0E-1	13 2.4E-1	Gount P Val

https://david.nciforf.gov/term2term.jsp?annot=52,9,79,85,25,32,39,1,3,47,45,63,76¤tList=0

2/29/20

]										1																0				0		
SP_PIR_KEYWORDS	UP_SEQ_FEATURE	UP_SEQ_FEATURE	UP_SEQ_FEATURE	SMART	INTERPRO	INTERPRO	INTERPRO		Annotation Cluster 63	SP_PIK_KETWORDS	GOTERM_CC_FAT	GOTERM_CC_FAT	GOTERM_CC_FAT	GOTERM_CC_FAT	Annotation Cluster 62	GOTERM MF FAT	GOTERM ME EAT	Annotation Cluster 61	SP_PIR_KEYWORDS	GOTERM_BP_FAT	GOTERM_BP_FAT	GOTERM_BP_FAT	GOTERM BP FAT	GOTERM_BP_FAT	GOTERM_BP_FAT	GOTERM_BP_FAT	GOTERM_BP_FAT	Annotation Cluster 60	GOTERM_BP_FAT	GOTERM BP FAT	GOTERM_BP_FAT	GOTERM_BP_FAT	GOTERM_BP_FAT	Annotation Cluster 59 GOTERM_BP_FAT	UP_SEQ_FEATURE	UP_SEQ_FEATURE	UP_SEQ_FEATURE	UP_SEQ_FEATURE	UP_SEQ_FEATURE	UP SEQ FEATURE	UP_SEQ_FEATURE	UP_SEQ_FEATURE	UP_SEQ_FEATURE	Annotation Cluster 58	KEGG PATHWAY	KEGG PATHWAY	VERR DATUMAY	Annotation Cluster 57 KEGG_PATHWAY	GOTERM_BP_FAT	GOTERM_BP_FAT
tor repeat	repeat:TPR 2	repeat:TPR 1	repeat:TPR 3	TPR	Tetratricopeptide TPR-1	Tetratricopentide-like helical	Tetratricopeptide region	i etratricopeptide repeat	Enrichment Score: 0.29	cytoplasmic vesicle	membrane-bounded vesicle	cytoplasmic membrane-bounded vesicle	vesicle	cytoplasmic vesicle	Enrichment Score: 0.31	tubulin binding	microtubule binding	Enrichment Score: 0.31	ion transport	metal ion transport	ion transport	monovalent in organ ic cation transport	di-, tri-valent inorganic cation transport	hydrogen transport	proton transport	transition metal ion transport	iron ion transport	Enrichment Score: 0.32	appendage development	limb morphogenesis	appendage morphogenesis	embryonic limb morphogenesis	embryonic appendage morphogenesis	Enrichment Score: 0.33	repeat:2	repeat:1	repeat:3	repeat:8	repeat:3	repeat:6	repeat:7	repeat:9	repeat:10	Enrichment Score: 0.34	MADK sinnaling nathway	Chronic myeloid leukemia	Pancreatic cancer	Enrichment Score: 0.35	organic acid transport	carboxylic acid transport
3	8	RT	저	찍	R	R	3	4		ם	西	적	R	R	o Þ		3	0	RT	2	2		3	R	R	R	R	ا م	3	3	2	8	3	^م م	R	RT	직	2	8 B	4 4	8	R	R	۹ ۱	9 E	1		ه ¹	2	2
									, î							•		, T								•	•				•					•						•••	•						•••	
									2	8				I				2																	I								I	4					I	
ω	ы	ω	ω	ω	з	4	4	4	Count	5	10	10	12	12	Count	۵ (س	ı (س	Count	S	5	9	4 0	ι ω	ω	ω	4	ω	Count	لى ئ	υ ω	з	ω) س	Count 8	4	4	4	ω.	4 4	4	4	4	4	- Count	× 0	۱ س	ı ل	Count 3	з	ш
3 7.3E-1	3 7.1E-1	3 7.1E-1	3 6.6E-1	3 5.3E-1	3 4.8E-1	4 4.6E-1	4 3.1E-1	4 2.9E-1	Count P_Value	5 5.4E-1	10 5.3E-1	10 4.9E-1	12 4.8E-1	12 4.2E-1	Count P_Value	3 4.9 1 - 1	3 3.3E-1	Count P_Value	5 9.8E-1	5 9.7E-1	9 9.6E-1	o o.oc-1 4 9.2E-1	3 8.2E-1	3 3.0E-1	3 2.9E-1	4 1.3E-1	3 9.1E-2	Count P_Value	3 5,4E-1	3 5.2E-1	3 5.2E-1	3 4.5E-1	3 4.5E-1	Count P_Value 8 2.9F-1	4 7.6E-1	4 7.6E-1	4 6.8E-1	3 5.8E-1	4 5.7F-1	4 4.1E-1	4 3.5E-1	4 2.3E-1	4 2.0E-1	Count P_Value	6 5.6E-1	3 3.11-1	3 3.0E-1	Count P_Value	3 7.4E-1	3 7.3E-1

Endehment Score: 0.28 G
https://david.nciforf.gov/term2term.jsp?annct=52,9,79,85,25,32,39,1,3,47,45,63,76&curr entList=0

10/16

<u>.</u>

Count P_Value Benjar

nini

2/29/2 Ē.

				(]							
GOTERM_BP_FAT	GOTERM_BP_FAT	GOTERM_BP_FAT	GOTERM_BP_FAT	Annotation Cluster 70	UP_SEQ_FEATURE	UP_SEQ_FEATURE	INTERPRO	SMART	INTERPRO	GOTERM_MF_FAT Annotation Cluster 69	GOTERM_BP_FAT	GOTERM_BP_FAT	GOTERM_BP_FAT	GOTERM_BP_FAT	GOTERM_BP_FAT	GOTERM_BP_FAT	GOTERM_BP_FAT	GOTERM_BP_FAT	GOTERM_BP_FAT	GOTERM_MF_FAT	GOTERM_BP_FAT	GOTERM_BP_FAT	GOTERM_BP_FAT	GOTERM_BP_FAT	GOTERM_BP_FAT	GOTERM_BP_FAT	GOTERM_BP_FAT	GOTERM_BP_FAT	SP_PIR_KEYWORDS	GOTERM_MF_FAT	GOTERM_MF_FAT	UP_SEQ_FEATURE	INTERPRO	INTERPRO	UP_SEQ_FEATURE	SMART	SMART	GOTERM MF FAT	GOTERM_MF_FAT		Annotation Cluster 66	INTERPRO	UP_SEQ_FEATURE	INTERPRO	Annotation Cluster 65	GOTERM_BP_FAT	GOTERM_BP_FAT	GOTERM_BP_FAT
positive regulation of growth	cell migration	aoino	response to toxin	Enrichment Score: 0.26	DNA-binding region: Basic motif	domain:Helix-loop-helix motif	Basic helix-loop-helix dimerisation region bHLH	HIH	Helix-loop-helix DNA-binding	transcription factor activity Enrichment Score: 0.27	positive regulation of gene expression	positive regulation of transcription	positive regulation of RNA metabolic process	positive regulation of transcription, DNA- dependent	positive regulation of transcription from RNA polymerase II promoter	positive regulation of nitrogen compound metabolic process	positive regulation of biosynthetic process	positive regulation of cellular biosynthetic process	nucleoside, nucleotide and nucleic acid metabolic process	sequence-specific DNA binding	positive regulation of macromolecule biosynthetic process	positive regulation of macromolecule metabolic process	regulation of gene-specific transcription	regulation of specific transcr H from RNA polymerase II promoter	positive regulation of gene-si	from RNA polymerase II pron	lipid localization	lipid transport	lipid transport	ATPase activity, coupled	ATPase activity	domain: Helicase ATP-binding	DRAD-like helicase N-termin 0010	Helicase, superfamily 1 and 7	domain: Helicase C-terminal	DEXDC	HELICC	ATD-Apportant balloon anticht	helicase activity	helicase	Enrichment Score: 0.28	Pleckstrin homology-type	domain: PH	Pleckstrin homology	PH	pattern specification process	regionalization	anterior/posterior pattern formation
직	R	8	8	2	8	RT	R	8	R	2	R	RT	RI	R	R	RT	8	R	7	R	8	8	R	R	R	^{لع} و	R	8	8	, P3	R	8	9 k	R	R	작	A B		13	R	0	RT	R	8	8	8	8	
			Ξ.	ດີ						2																															_					-		c
•••				ດ່						ק ∎			•	•					ш				•				•	•						•	•••						1		•					
•••	7	4	4	C Count	ω	ω	•	ω	ω	C 12			7	7	6 1		12	12	•	10	12	16	4	4	4	4 Count	ω	ω	3	3	5	ω (ω ω	ω	ω	3	ω ι	υ υ υ	υ μ	4	Count	u.		Ø	6 Count	UT UT	•	
3 4.1E-1	7 3.5E-1	4 3.0E-1	4 9.1E-2	G Count P_Value	3 7.4E+1	3 5.5E-1	3 5.5E-1	3 5.2E-1	3 3.9E-1	G 12 9.3E-1 Count P Value	8 8.9E-1	8 8.7E-1	■ 7 8.5E-1	7 8.5E-1	■ 6 7.8E-1	■ 11 7.0E-1	■ 12 6.8E-1	1 2 6.6E-1	■ 11 6.6E-1	10 6.6E-1	■ 12 6.0E-1	16 5.4E-1	4 4.2E-1	■ 4 2.3E-1	4 2.0E-1	4 7.8E-2	3 7.6E-1	■ 3 7.3E-1	3 2.6E-1	3 9.4E-1	5 8.0E-1	3 5.4E-1	3 5.2E-1	3 5.2E-1	3 5.1E-1	3 5.0E-1	3 4.9E-1	3 4 ./E-1	4 4.0E-1	4 3.7E-1	Count P_Value	5 7.2E-1	5 5.4E-1	6 4.6E-1	Gount P_Value 6 4.2E-1	5 6.9E-1	5 4.5E-1	

https://david.nciforf.gov/term2termjsp?annot=52,9,79,85,25,32,39,1,3,47,45,63,76¤tList=0

2292016 DAVID: Database for Annotation, Visualization, and Integrated Discovery (Laboratory of Immunopathogenesis and Bioinformatics (LIB); National Inst...

https://david.nciforf.gov/term2term.jsp?annot=52,9,79,85,25,32,39,1,3,47,45,63,76¤tList=0

229/2016 DAVID: Database for Annotation, Visualization, and Integrated Discovery (Laboratory of Immunopathogenesis and Bioinformatics (UB); National Inst...

															((0 0						
UP_SEQ_FEATURE	Annotation Cluster 84	GOTERM_BP_FAT	GOTERM_BP_FAT	GOTERM_BP_FAT	GOTERM_BP_FAT	Annotation Cluster 83 GOTERM_BP_FAT	GOTERM_BP_FAT	GOTERM_BP_FAT	GOTERM_BP_FAT	GOTERM_BP_FAT Annotation Cluster 82	GOTERM_BP_FAT	GOTERM_BP_FAT	GOTERM_BP_FAT	GOTERM_BP_FAT	Annotation Cluster 81	GOTERM CC_FAT	GOTERM_CC_FAI	GOTERM_CC_FAT	GOTERM_CC_FAT	Annotation Cluster 80	GOTERM_BP_FAT	GOTERM BP FAT	Annotation Cluster 79 GOTERM BP FAT	GOTERM_BP_FAT	GOTERM_BP_FAT	GOTERM_BP_FAT	GOTERM_BP_FAT	GOTERM_BP_FAT	GOTERM_BP_FAT	GOTERM_BP_FAT	GOTERM_BP_FAT	GOTERM_BP_FAT	GOTERM_BP_FAT	GOTERM_BP_FAT	GOTERM_BP_FAT	GOTERM_MF_FAT	Annotation Cluster 78	SP_PIR_KEYWORDS	UP_SEQ_FEATURE	UP_SEQ_FEATURE	UP SED FEATURE	UP_SEQ_FEATURE	UP_SEQ_FEATURE	INTERPRO	INTERPRO	SMART	
domain: Ig-like C2-type	Enrichment Score: 0.06	regulation of cellular protein metabolic process	positive regulation of cellular protein	positive regulation of protein modification process	positive regulation of protein metabung	Enrichment Score: 0.07	RNA biosynthetic process	transcription, DNA-dependent	transcription from RNA polymerase	multicellular organism reproduction	organism	gamete generation	sexual reproduction	reproductive cellular process GO:0	Enrichment Score: 0.07	membrane traction	cell fraction	vesicular fraction	microsome	Enrichment Score: 0.08	secretion by cell	exocytosis	Enrichment Score: 0.1	negative regulation of macromolecule metabolic process	negative regulation of gene expression	negative regulation of cellular biosynthetic process	negative regulation of macromolecule biosynthetic process	negative regulation of transcription	negative regulation of nitrogien compound metabolic process	negative regulation of nucleobase, nucleoside, nucleotide and nucleic acid metabolic process	negative regulation of biosynthetic process	negative regulation of RNA metabolic process	negative regulation of transcription, DNA- dependent	negative regulation of transcription from RNA polymerase II promoter	regulation of transcription from RNA polymerase II promoter	transcription repressor activity	Enrichment Score: 0.11	leucine-rich repeat	repeat:LRR 2	repeat:LRR 1	repeat:LRR 6	repeat:LRR 4	repeat:LRR 5	Leucine-rich repeat	Leucine-rich repeat, typical subtype		WD40 repeat. conserved site
R	o	직	R	R	8	۵ ۵	RI	3	8	^ه م	R	8	RI	8	o P		2	R	R	٥	9 P		a	적	R	8	R	8	RI	RI	러	R	3	3	R	RT	Q		a	3 P	1 A	8	RT	2	러	^ع م) ^R
R	n		四	₽ ■	RI I	ື ດ	<u>R</u>	8		^א פ ■	RI III		₽ ■	¤ (o ^P			R	RI	۵ י	적 12 11 11		o	₽	R	R	R.		B	B		8	ы П	<u>₽</u>	₽	RT	o '		3		9 2 11 1 1		RI		R	¤ •	а
RT	0	R	RT	RT 3	RT	ດ ເ 1 2 2	RT -	RT		G III	R1	RT 5	RT 6					RI	RT - 4	。				9	RI	E	RT	RT = 7	RI	RT	P. 17	RT	RT	5	RI 🔳	RT 6	0 		RT	1 FR			RI	RI 4	3		
RT	Ç Count I	55 D	RT	RT 3 8	RI 4 5	Count L	RT 4 8	PT		G S Count I	ET 5 5	RT 5 5	FT 6 5		Count I		15	RI	EI	G Count I			Count	P I 9 9	RT = 7 8	RI 8	RI 8 8	RT = 7 8	8	8	RT 9 7	RT 📕 6	RT B	RI 5 6	RT 🔳 13 6	R1 6 (5	G Count I		A				R 1	RI 4	RT 3 6		
RT 3 5.0E-1	G Count P_Value	RT 5 9.7E-1	RT 3 9.2E-1	RT 3 8.4E-1	RT 4 8.0E-1	G 🙀 Count P_Value	RT 4 8.9E-1	RT 4 8.9E-1	RT 4 7.8E-1	RT = 5 9.7E-1 C Count P_Value	RT 5 9.7E-1	RT 5 9.2E-1	RT = 6 9.1E-1	RI 4 5.4E-1	G Count P_Value	9 9.4E-1 0 0.6E-1	RT 15 8.1E-1	RT 4 7.4E-1	RT 4 7.2E-1	G Count P_Value	RT 3 0.05-1	BI 3 6.0E-1	G Count P_Value	RT 9 9.5E-1	RT 📕 7 8.8E-1	RT 📕 8 8.7E-1	RT 8 8.5E-1	RT 7 8.2E-1	RT 📕 8 8.1E-1	RT 📕 8 8.0E-1	RT 🗃 9 7.9E-1	RT 🗧 6 7.6E-1	RT = 6 7.5E-1	RT = 5 6.9E-1	RT 🔳 13 6.3E-1	RT 6 5.9E-1	G Count P_Value	RT 4 8.9E-1	RT 4 8.9E-1	RT 4 9.75-1	KI 3 8.6E-1	RT 4 7.8E-1	RT 4 7.3E-1	RT 4 6.7E-1	RT 3 6.3E-1	RI 3 6.0E-1	4 8.3E-1

https://david.nciforf.gov/term2term.jsp?annot=52,9,79,85,25,32,39,1,3,47,45,63,76¤tList=0

229/2016 DAVID: Database for Annotation, Visualization, and Integrated Discovery (Laboratory of Immunopathogenesis and Bioinformatics (LIB); National Inst...

]																								
Annotation Cluster 92 GOTERM_BP_FAT GOTERM_BP_FAT GOTERM_BP_FAT	SP_PIR_KEYWORDS GOTERM_CC_FAT GOTERM_CC_FAT SP_PIR_KEYWORDS	GOTERM_MF_FAT GOTERM_MF_FAT Annotation Cluster 91	GOTERM_MF_FAT GOTERM_MF_FAT	GOTERM_CC_FAT Annotation Cluster 90 GOTERM_MF_FAT	GOTERM_CC_FAT	Annotation Cluster 89 GOTERM_CC_FAT	UP_SEQ_FEATURE	SP_PIR_KEYWORDS	GOTERM_MF_FAT	GOTERM_MF_FAT	Annotation Cluster 88	GOTERM_MF_FAT	GOTERM_MF_FAT	GOTERM_MF_FAT Annotation Cluster 87	GOTERM_MF_FAT	GOTERM_MF_FAT	Annotation Cluster 86 GOTERM_MF_FAT	GOTERM_BP_FAT	GOTERM_BP_FAT	GOTERM_BP_FAT	GOTERM_BP_FAT	GOTERM_BP_FAT	GOTERM_BP_FAT	GOTERM_BP_FAT	GOTERM_BP_FAT		GOTERM_BP_FAT	GOTERM_BP_FAT GOTERM_BP_FAT	GOTERM_BP_FAT GOTERM_BP_FAT GOTERM_BP_FAT	GOTERM_BP_FAT GOTERM_BP_FAT GOTERM_BP_FAT GOTERM_BP_FAT	GOTERM_BP_FAT GOTERM_BP_FAT GOTERM_BP_FAT GOTERM_BP_FAT GOTERM_BP_FAT	INTERPRO Annotation Cluster 85 GOTERM_BP_FAT GOTERM_BP_FAT GOTERM_BP_FAT GOTERM_BP_FAT	SP_PR_KETWORDS INTERPRO Annotation Cluster 85 GOTERM_BP_FAT GOTERM_BP_FAT GOTERM_BP_FAT GOTERM_BP_FAT	INTERPRO SP_PR_KEWORDS INTERPRO Annotation Cluster 45 GOTERM_SP_FAT GOTERM_SP_FAT GOTERM_SP_FAT GOTERM_SP_FAT	INTERPRO INTERPRO SP_PR_KETWORDS INTERPRO Annotation Cluster 05 GOTERM_SP_FAT GOTERM_SP_FAT GOTERM_SP_FAT GOTERM_SP_FAT
cellular.com Enrichment Score: 0.02 cellular.ditri-valent inorganic cation homeostasis ditri-valent inorganic cation homeost cellular cation homeostasis	synapse synapse cell lunction	substrate specific channel activity channel activity passive transmembrane transporter Enrichment Score: 0.02	activity cation channel activity ion channel activity	nuclear enveloce-endoplasmic retici network Enrichment Score: 0.02 metal ion transmembrane transport	endoplasmic reticulum membrane	Enrichment Score: 0.03 endoplasmic reticulum part	s P binding nucleotide phosphate-binding regio	ato-binding	quanyl nucleotide binding	guanyl ribonu cleotide binding	Enrichment Score: 0.05	identical protein binding protein homodimerization activity	protein dimerization activity	endopeptidase activity Enrichment Score: 0.05	peptidase activity	peptidase activity, acting on L-amino a nentides	Enrichment Score: 0.05	positive regulation of catalytic activity	regulation of cellular protein metabolic process	regulation of phosphate metabolic proc	regulation of phosphorus metabolic pr	positive regulation of transferase activ	regulation of phosphorylation	positive regulation of protein kinase ac	regulation of transferase activity	regulation of kinase activity		regulation of protein kinase activity	regulation of protein amino acid phosphorylation regulation of protein kinase activity	resulation of protein modification proce resultation of protein amino acid phosphorviation resultation of protein kinase activity	activation of protein kinase activity resultation of protein modification proce resultation of protein antino acid phosphorylation resultation of protein kinase activity	Immunoalobulin-like Enrichment Soore: 0.06 activation of protein kinase activity resultation of protein mol fication proce resultation of protein amino actid phosenbrockation resultation of protein kinase activity	Immunoalobulin-Lee Immunoalobulin-Like Enrichment Score: 0.06 activation of protein Kinssa activity resultation of protein amino acid phosenbrockation resultation of protein kinssa activity	Immunoalabulin-like faid Immunoalabulin-like Enrichment Soore: 0.06 activation of protein kinase activity resultation of protein amino acid phosphorylation resultation of protein kinase activity	Immunoalobulin subtrae Immunoalobulin-like fad Immunoalobulin-like Endelmant Soom: 0.06 activation of protein kinase activity resultation of protein modification proc resultation of protein kinase activity
as is		activit		er ulum			n:GTP									ocid		5		ŝ	oces i	ŧ.		tivit						SS.	SS	8	8	8	S.
월 명 명 8	김 김 김 김			R R	R	^م م	n:GTP RT		RI	직 주	6	<u>a</u> <u>a</u>	R	^{عا} م	8	RT R	ا م ا	9 R	R	Jess RT	ocess RI	7 7 P	9 12	tivity RT	8	R		R	88	해 I 편 편 편	의 의 의 의 의	³¹ 의 의 의 의 의	의 전 전 전 전 전 전 전 전 전 전 전 전 전 전 전 전 전 전 전	록 또 또	위 명명명명
³	명 김 김 명	Schwitz RI				a o			8	3 A	G	<u>a</u> <u>a</u>	8	^{یہ} م	2	RT R	' <mark>ہ</mark>		Ri	iess RT		2 23 24 24 24 24 24 24 24 24 24 24 24 24 24		tivity RT	R	Ri		8	평 명			a a a a a a a a a a a a a a a a a a a			
4						^{ମ୍ମ} ଜ ଅ	n:GTP RT		EI III	작 조	G -			G ^{I¤} ■			ີດ 			ess RT			9 23	tivity RT	RI	R		R							
REAL Count	8 8 8 8 8	G Count		EL BRT 3 Count 3	Π	G Count	n:GTP RT 4		ET 5	A	G Count			RT 3 G Count	N		Count	л (л	5	ess RT	6 0	₩ ₽	R II III	tivity RT 3	RI	5	P								
	RI 3 8.6E-1 RI 3 9.8E-1 RI 4 9.9E-1 RI 3 9.9E-1	ET 4 9.6E-1 ET 4 9.7E-1 G N Count P_Value	RT RT 4 9.5E-1	BIT 3 9.4E-1 G T Count P_Value E A 9.1E-1	RT 3 9.3E-1	G Count P_Value	n:GTP RT = 3 9.5E-1	RI 4 9.0E-1	RI 5 8.7E-1	RT 5 8.7E-1	G Count P_Value	RT 8 9.05-1 RT 4 9.15-1	RI 7 8.8E-1	RT 3 9.9E-1 G Count P_Value	RT 5 9.9E-1		Count P_Value	5 RT 5 9.8E-1	RT 🗧 5 9.7E-1	ess RT 6 9.3E-1	20055 RT 6 9.3E-1	Try RT 3 9.3E-1	RT 6 9.2E-1 3 0.2E-1	tivity RT 🗧 3 9.1E-1	RT 5 8.9E-1	RI 5 8.8E-1	KI 5 8.6E-1		RT 3 8.1E-1	EXI 5 7.6E-1 1 3 8.1E-1	N Outline Count RI 3 6.12-10 SI 1 5 7.62-11 RI 3 8.12-11 3	RI 4 9.9E-1 Count P_Value 3 6.0E-1 5 7.6E-1 3 8.1E-1	RI 4 9.8E-1 RI 4 9.9E-1 G Count P_Value RI 3 6.0E-1 RI 5 7.6E-1 RI 3 8.1E-1	BI 5 9.8E-1 BI 4 9.8E-1 BI 4 9.9E-1 Count P_Value Count P_Value BI 3 6.0E-1 BI 5 7.6E-1 BI 3 8.1E-1	RI 3 9.7E-1 RI 5 9.8E-1 RI 6 9.8E-1 RI 6 9.9E-1 Count 9.9E-1 4 RI 6 9.9E-1 State 7 6.0E-1 RI 6 5 7.6E-1 RI 6 3 8.1E-1 RI 6 3 8.1E-1

https://david.nciforf.gov/term2term.jsp?annot=52,9,79,85,25,32,39,1,3,47,45,63,76¤tList=0
2292016 DAVID: Database for Annotation, Visualization, and Integrated Discovery (Laboratory of Immunopathogenesis and Bioinformatics (UB); National Inst...

234 terr																							(
ms were not clustered.	SP_PIR_KEYWORDS	UP_SEQ_FEATURE	SP_PIR_KEYWORDS	UP_SEQ_FEATURE	UP_SEQ_FEATURE	UP_SEQ_FEATURE	SP_PIR_KEYWORDS	UP_SEQ_FEATURE	Annotation Cluster 100	GOTERM_BP_FAT	SP_PIR_KEYWORDS	SP_PIR_KEYWORDS	Annotation Cluster 99	GOTERM_BP_FAT	GOTERM_BP_FAT	GOTERM_BP_FAT	GOTERM_BP_FAT	Annotation Cluster 98	GOTERM_CC_FAT	SP_PIR_KEYWORDS	GOTERM_CC_FAT	GOTERM_CC_FAT	Annotation Cluster 97	GOTERM_CC_FAT	GOTERM_CC_FAT	GOTERM_CC_FAT	GOTERM_BP_FAT	GOTERM_BP_FAT	SP_PIR_KEYWORDS	Annotation Cluster 95	SP_PIR_KEYWORDS	UP_SEQ_FEATURE	UP_SEQ_FEATURE	SP_PIR_KEYWORDS	UP_SEQ_FEATURE	GOTERM_CC_FAT	GOTERM_CC_FAT	SP_PIR_KEYWORDS	Annotation Cluster 94	GOTERM_CC_FAT	GOTERM_CC_FAT	GOTERM_CC_FAT	SP_PIR_KEYWORDS	Annotation Cluster 93	GOTERM_BP_FAT	GOTERM_BP_FAT	GOTERM_BP_FAT	GOTERM_BP_FAT	GOTERM_BP_FAT	GOTERM_BP_FAT		
	glycoprotein	glycosylation site: N-linked (GlcNAc)	disulfide bond	disulfide bond	topological domain: Extracellular	signal peptide	sional	topological domain:Cytoplasmic	Enrichment Score: 0	G-protein coupled receptor protein	<u>a-protein coupled receptor</u>	transducer	Enrichment Score: 0	neurological system process	sensory perception	cognition	behavior	Enrichment Score: 0	extracellular region	Secreted	extracellular region part	<u>extracellu lar space</u>	Enrichment Score: 0	plasma membrane part	intrinsic to plasma membrane	integral to plasma membrane	biological adhesion	cell adhesion	cell adhesion	Enrichment Score: 0	alvcoprotein	glycosylation site: N-linked (Gic NAc)	topological domain: Cytoplasmic	transmembrane	transmembrane region	integral to membrane	intrinsic to membrane	membrane	Enrichment Score: 0.01	extracellular region part	extracellular matrix	proteinaceous extracellular matrix	extracellular matrix	Enrichment Score: 0.02	homeostatic process	ion homeostasis	<u>cellular homeostasis</u>	cellular chemical homeostasis	cation homeostasis	cellular ion homeostasis	chemical homeostasis	
	20		len.	ba i		R	R	R		2	R	R		R	8	R	작		R	직	8	R	ا ہ	2	a	۹ ،	R	RI	RT	a	8	3	R	2	R	R	3	직	ا م	직	R	RT	R		2	8	R	직	R	8	R	
	н	19	n	R	н	н	н	н	G				Q					G					67																					Ψ.								
				■					0 				0					ה 		•••			ני ו																- -									•••				
	38	36	23	22	21	I 28	I 28	I 36	G Count		4	∎∎ U	G Count	ол –	ω	и	ω	G	13	13	7	5	Count	18	10	10	5	5	ω	Count	38	36	36	63	63	70	75	88	Count	7	ω	3	ω	Count	60	4		4	ω	4	6	
	I 38 1.0E0	XI 36 1.0E0	XI 23 1.0E0	1 2 1.0E0	I 21 1.0E0	I 28 1.0E0	I 28 1.0E0	I 36 1.0E0	G Count P_Value	5 1.0E0	4 1.0E0	5 1.0E0	G Count P_Value	6 1.0E0	3 1.0E0	5 1.0E0	3 1.0E0	Count P_Value	13 1.0E0	■ 13 1.0E0	T 1.0E0	5 1.0E0	Count P_Value	18 1.0E0	10 1.0E0		5 1.0E0	5 1.0E0	3 9.9E-1	Count P_Value	38 1.0E0	36 1.0E0	36 1.0E0	63 9.9E-1	63 9.9E-1	70 9.8E-1	75 9.6E-1	88 9.6E-1	Count P_Value	7 1.0E0	3 9.7E-1	3 9.6E-1	3 9.0E-1	Count P_Value	8 9.8E-1	4 9.8E-1	5 9.7E-1	■ 4 9.6E-1	3 9.6E-1	4 9.6E-1	6 9.5E-1	

297

Please cite Nature Protocols 2009; 4(1):44 & Genome Biology 2003; 4(5):P3 within any publication that makes use of any methods inspired by DAVID.

https://david.nciforf.gov/term2term.jsp?anndt=52,9,79,85,25,32,39,1,3,47,45,63,76¤tList=0

15/16

8.4 Rabbit IPA analysis

INGENUITY[®] PATHWAY ANALYSIS

Analysis Name: Rabbit - 2016-03-14 10:57 AM Analysis Creation Date: 2016-03-14 Build version: 366632M Content version: 26127183 (Release Date: 2015-11-30)

Analysis Settings

Reference set: Ingenuity Knowledge Base (Genes Only) Relationship to include: Direct and Indirect Includes Endogenous Chemicals Optional Analyses: My Pathways My List

Filter Summary: Consider only relationships where confidence = Experimentally Observed Osama Kumati

(c) 2000-2016 QIAGEN. All rights reserved.

1

INGENUITY

Top Canonical Pathways						
Name	p-value	Overlap				
Ceramide Signaling	9.18 E- 05	8.8 % 7/80				
Induction of Apoptosis by HIV1	1.40E-04	10.0 % 6/60				
Death Receptor Signaling	2.21E-04	7.6 % 7/92				
Tec Kinase Signaling	2.51E-04	5.7 % 9/157				
NF-B Activation by Viruses	4.12E-04	8.2 % 6/73				

Top Upstream Regulators							
Upstream Regulator	p-value of overlap	Predicted Activation					
MAX	1.20E-05						
SREBF1	4.07E-05	Inhibited					
SATB1	4.38E-05						
amiodarone	9.08 E- 05						
WHSC1	1.04E-04						

Top Diseases and Bio Functions

Dicascac	and	Disordare	
Discases	anu	DISULUCIS	

Name	p-value	#Molecules
Gastrointestinal Disease	1.32E-02 - 1.05E-04	207
Hepatic System Disease	1.28E-02 - 1.05E-04	13
Inflammatory Disease	1.32E-02 - 1.05E-04	44
Organismal Injury and Abnormalities	1.32E-02 - 1.82E-04	245
Immunological Disease	1.32E-02 - 2.23E-04	58

Molecular and Cellular Functions

(c) 2000-2016 QIAGEN. All rights reserved.

ĮŊĢĘŅŲĬŢŶ

Name	p-value	#Molecules
Cell Death and Survival	1.32E-02 - 9.08E-06	98
Cellular Function and Maintenance	1.32E-02 - 9.08E-06	49
Cellular Development	1.32E-02 - 1.34E-05	66
Cellular Growth and Proliferation	1.32E-02 - 1.34E-05	95
Lipid Metabolism	1.32E-02 - 3.65E-05	31

Physiological System Development and Function

Name	p-value	#Molecules
Embryonic Development	1.32E-02 - 9.08E-06	24
Hematological System Development and Function	1.32E-02 - 4.41E-05	41
Humoral Immune Response	1.32E-02 - 4.41E-05	19
Immune Cell Trafficking	1.32E-02 - 4.41E-05	13
Lymphoid Tissue Structure and Development	1.14E-02 - 2.09E-04	25

Top Tox Functions

Assays: Clinical Chemistry and Hematology

Name	p-value	#Molecules
Increased Levels of AST	1.81E-01 - 1.32E-02	1
Increased Levels of Alkaline Phosphatase	2.37E-01 - 1.32E-02	2
Decreased Levels of Albumin	5.19E-02 - 2.63E-02	1
Increased Levels of CRP	2.63E-02 - 2.63E-02	1
Increased Levels of ALT	2.34E-01 - 6.45E-02	1

Cardiotoxicity

(c) 2000-2016 QIAGEN. All rights reserved.

Name	p-value	#Molecules
Cardiac Inflammation	4.21E-01 - 2.53E-03	5
Cardiac Damage	1.02E-01 - 1.32E-02	2
Cardiac Necrosis/Cell Death	5.21E-01 - 1.32E-02	6
Congenital Heart Anomaly	4.80E-01 - 3.39E-02	6
Cardiac Stress Response	3.92E-02 - 3.92E-02	1

Hepatotoxicity

Name	p-value	#Molecules
Liver Damage	5.63E-01 - 1.82E-04	6
Liver Degeneration	2.63E-02 - 8.57E-03	3
Liver Necrosis/Cell Death	2.44E-01 - 8.61E-03	7
Liver Inflammation/Hepatitis	5.63E-01 - 1.24E-02	9
Liver Enlargement	1.03E-01 - 2.63E-02	4

Nephrotoxicity

Name	p-value	#Molecules
Renal Necrosis/Cell Death	3.02E-01 - 1.25E-03	14
Glomerular Injury	4.87E-01 - 3.42E-03	8
Renal Damage	3.25E-01 - 1.13E-02	6
Nephrosis	2.13E-01 - 1.32E-02	3
Renal Fibrosis	4.87E-01 - 2.63E-02	3

Top Regulator Effect Networks								
ID Regulators	Diseases & Functions	Consistency Score						
1 SREBF1	synthesis of cholesterol ester	1.732						
2 STAT1	cell death of tumor cell lines	-6.5						
(c) 2000-2016 QIAGEN. All rights reserved.	4	Į ŊĢĘŅŲI <u>T</u> Y*						

3	ARNT	cell death of tumor cell lines	-7.0
4	STAT1	cell death of leukocyte cell lines	-8.083
5	SREBF1	necrosis	-11.431

Top Networks			
ID	Associated Network Functions	Score	
1	Antimicrobial Response, Cell Morphology, Cellular Assembly and Organization	51	
2	Cancer, Organismal Injury and Abnormalities, Gastrointestinal Disease	41	
3	Auditory and Vestibular System Development and Function, Cellular Development, Cellular Growth and Proliferation	35	
4	Lymphoid Tissue Structure and Development, Organ Development, DNA Replication, Recombination, and Repair	33	
5	Cell Death and Survival, Cancer, Organismal Injury and Abnormalities	30	

Top Tox Lists		
Name	p-value	Overlap
Decreases Transmembrane Potential of Mitochondria and Mitochondrial Membrane	1.67E-04	6.8 % 8/117
Increases Liver Hepatitis	6.69E-04	9.4 % 5/53
Anti-Apoptosis	8.06E-04	12.5 % 4/32
Increases Liver Steatosis	9.87E-04	7.0 % 6/86
Increases Permeability Transition of Mitochondria and Mitochondrial Membrane	4.64E-03	25.0 % 2/8

Top My Lists			
Name		p-value	Overlap
Colorectal cancer		1.57E-02	1.7 % 73/4364
dysregulated FDR p=0.05 010216		2.64E-01	4.3 % 1/23
Hu downreg		3.30E-01	2.0 % 3/153
EDN1 p=0.01		3.89E-01	2.7 % 1/37
CD40LG p=0.01		5.20E-01	1.8 % 1/55
(c) 2000-2016 QIAGEN. All rights reserved.	5		ĮŅĢĘŅŲIŢŶ

Top Analysis-Ready Molecules		
Exp Fold Change up-regulated		
Molecules	Exp. Value	Exp. Chart
CD3D	† 23.528	
ITGB1	† 17.225	
TMEM127	† 14.373	
RCAN3	† 12.205	
RAB40AL	† 11.558	
SRSF10	† 10.717	
MRPL38	† 10.485	
LMBR1	† 8.205	
TAF9B	† 7.659	
UCKL1	† 6.825	

Exp Fold Change down-regulated

Molecules	Exp. Value	Exp. Chart
SLC2A3	+ -12.324	
FADS2	+ -11.672	
SCD	+ -11.341	
AK4	+ -10.804	
BNIP1	+ -8.996	
EXOSC4	+ -7.970	
INF	+ -6.723	
PRKD3	+ -6.407	
MIF	+ -6.105	
PIK3AP1	+ -5.433	

8.5 Cattle IPA analysis

INGENUITY[°] PATHWAY ANALYSIS

Analysis Name: Cow2 - 2016-03-15 11:00 AM Analysis Creation Date: 2016-03-15 Build version: 366632M Content version: 26127183 (Release Date: 2015-11-30)

Analysis Settings

Reference set: Ingenuity Knowledge Base (Genes Only) Relationship to include: Direct and Indirect Includes Endogenous Chemicals Optional Analyses: My Pathways My List

Filter Summary: Consider only relationships where confidence = Experimentally Observed

(c) 2000-2016 QIAGEN. All rights reserved.

1

INGENUITY

 $\mathcal{N} \not \mapsto \mathcal{N}$

Top Canonical Pathways		
Name	p-value	Overlap
Regulation of eIF4 and p70S6K Signaling	2.35E-04	6.8 % 10/146
EIF2 Signaling	1.43E-03	5.4 % 10/184
mTOR Signaling	1.61E-03	5.3 % 10/187
2-oxobutanoate Degradation I	2.89E-03	40.0 % 2/5
Oxidative Phosphorylation	2.89E-03	6.4 % 7/109

Top Upstream Regulators		
Upstream Regulator	p-value of overlap	Predicted Activation
NUPR1	1.22E-06	Activated
E2f	6.76E-06	
TP53	1.23E-05	
ST1926	1.65E-05	Activated
RRP1B	4.15E-05	

Top Diseases and Bio Functions

Diseases and Disorders

Name	p-value	#Molecules
Cancer	2.52E-02 - 1.10E-06	319
Organismal Injury and Abnormalities	2.52E-02 - 1.10E-06	324
Developmental Disorder	2.49E-02 - 2.98E-05	65
Endocrine System Disorders	1.73E-02 - 3.54E-05	22
Gastrointestinal Disease	1.73E-02 - 1.70E-04	273

Molecular and Cellular Functions

(c) 2000-2016 QIAGEN. All rights reserved.

Name	p-value	#Molecules
Cellular Assembly and Organization	2.41E-02 - 2.67E-06	43
Gene Expression	1.73E-02 - 1.52E-04	62
RNA Damage and Repair	1.33E-02 - 1.52E-04	7
RNA Post-Transcriptional Modification	1.52E-04 - 1.52E-04	6
DNA Replication, Recombination, and Repair	2.24E-02 - 1.71E-04	35

Physiological System Development and Function

Name	p-value	#Molecules
Embryonic Development	2.37E-02 - 2.98E-05	53
Organismal Survival	5.15E-03 - 2.98E-05	77
Connective Tissue Development and Function	1.73E-02 - 8.86E-04	24
Tissue Development	2.37E-02 - 8.86E-04	48
Organismal Development	2.37E-02 - 1.02E-03	55

Top Tox Functions

Assays: Clinical Chemistry and Hematology

Name	p-value	#Molecules
Decreased Levels of Hematocrit	1.30E-01 - 1.30E-01	1
Increased Levels of Hematocrit	4.91E-01 - 4.91E-01	2
Increased Levels of Creatinine	4.94E-01 - 4.94E-01	1
Increased Levels of Red Blood Cells	5.24E-01 - 5.24E-01	2

Cardiotoxicity

Name		p-value	#Molecules
Cardiac Degeneration		1.73E-02 - 1.73E-02	1
Congenital Heart Anomaly		5.75E-01 - 1.73E-02	2
(c) 2000-2016 QIAGEN. All rights reserved.	3		ĮŊĢĘŅŲIŢŸ

Cardiac Arrythmia	4.01E-01 - 3.43E-02	3
Cardiac Dilation	1.77E-01 - 6.98E-02	3
Cardiac Arteriopathy	5.18E-01 - 9.95E-02	6

Hepatotoxicity

Name	p-value	#Molecules
Liver Fibrosis	3.19E-01 - 8.76E-03	7
Hepatocellular Peroxisome Proliferation	1.73E-02 - 1.73E-02	1
Liver Hyperplasia/Hyperproliferation	5.97E-01 - 1.73E-02	128
Hepatocellular Carcinoma	5.97E-01 - 3.11E-02	124
Liver Inflammation/Hepatitis	5.55E-01 - 3.43E-02	6

Nephrotoxicity

Name	p-value	#Molecules
Nephrosis	1.73E-02 - 1.73E-02	1
Renal Dilation	1.73E-02 - 1.73E-02	1
Glomerular Injury	3.31E-01 - 4.62E-02	6
Renal Hyperplasia/Hyperproliferation	4.62E-02 - 4.62E-02	2
Renal Atrophy	1.75E-01 - 1.60E-01	1

Top Networks	
ID Associated Network Functions	Score
1 Cancer, Organismal Injury and Abnormalities, Gastrointestinal Disease	53
2 Cancer, Organismal Injury and Abnormalities, Gastrointestinal Disease	41
3 Cell Cycle, DNA Replication, Recombination, and Repair, Gene Expression	36
4 Ophthalmic Disease, Organismal Injury and Abnormalities, Skeletal and Muscular Disorders	36
5 Cell Cycle, DNA Replication, Recombination, and Repair, Developmental Disorder	34
(c) 2000-2016 QIAGEN. All rights reserved.	Į ŅĢĘŅŲI <u>Ţ</u> Ŷ

Top Tox Lists		
Name	p-value	Overlap
Mitochondrial Dysfunction	3.39E-02	4.0 % 7/176
Long-term Renal Injury Anti-oxidative Response Panel (Rat)	3.81E-02	11.1 % 2/18
VDR/RXR Activation	4.64E-02	5.1 % 4/78
Mechanism of Gene Regulation by Peroxisome Proliferators via PPAR	8.29E-02	4.2 % 4/95
Increases Cardiac Dilation	8.41E-02	7.1 % 2/28

Top My Lists		
Name	p-value	Overlap
CCL5 p=0.01	3.46E-03	16.7 % 3/18
CSF2 p=0.01	6.87E-03	7.2 % 5/69
CSF1 p=0.01	2.41E-02	8.3 % 3/36
CXCL8 p=0.01	3.05E-02	12.5 % 2/16
CSF3 p=0.01	1.00E-01	6.5 % 2/31

Top My Pathways		
Name	p-value	Overlap
CCL5 p=0.01	3.46E-03	16.7 % 3/18
CSF2 p=0.01	6.87E-03	7.2 % 5/69
CSF1 p=0.01	2.41E-02	8.3 % 3/36
CXCL8 p=0.01	3.05E-02	12.5 % 2/16
HGF mechanistic network p0.01	5.81E-02	3.3 % 8/240

Top Analysis-Ready Molecules		
(c) 2000-2016 QIAGEN. All rights reserved.	5	ĮŊĢĘŅŲIŢŶ

Summary of Analysis - Cow2	2 - 2016-03-15 11:00 AM
----------------------------	-------------------------

Exp Fold	Change	up-regulated
----------	--------	--------------

Molecules	Exp. Value	Exp. Chart
CFHR3	† 34.156	
PSMD11	† 30.737	
NME3	† 22.407	
UNC5B	† 19.885	
MUM1	† 16.392	
WNT5A	† 13.694	
SLC36A4	† 12.970	
VASH1	† 12.130	
NATD1	† 11.199	
SMOC1	† 10.862	

Exp Fold Change down-regulated

Molecules	Exp. Value	Exp. Chart
HMGA2	+ -80.890	
CEP55	+ -12.382	
UHRF1	+ -11.811	
KIF2C	+ -8.982	
PBK	+ -8.369	
ESPL1	+ -8.023	
MT-CYB	+ -7.237	
MT-ND3	+ -7.147	
KIF22	+ -7.069	
CCNF	+ -7.000	

(c) 2000-2016 QIAGEN. All rights reserved.

ĮŊĢĘŅŲIŢŶ[®]

8.6 Rabbit to human with gene description

1	Transcript_Name	Human Ensembl Gene ID	CLUSTER 1	CLUSTEF 2	CLUSTER 3	CLUSTER 6	CLUSTER 7	FC	pval	Log_FC	strand	start	end	num_ exons	length	gene_id	Description	gene_name
2	ENSOCUT0000006948	ENSG00000110958		YES	YES			0.513835471	0.016451238	-0.960621609	-	40230879	40231361	1	483	ENSOCUG0000022356	Uncharacterized protein [Source:UniProtKB/TrEMBL;Acc:G1SS21]	0
3	ENSOCUT00000023770	ENSG00000100294		YES				0.918355717	0.040357954	-0.122875018	+	16562	26899	4	4784	ENSOCUG00000015843	malonyl CoA: ACP acyltransferase (mitochondrial) [Source: HGNC Symbol	MCAT
4	ENSOCUT00000024031	ENSG00000138381		YES				1.232731108	0.0245595	0.301858143	+	9303819	9305696	1	1878	ENSOCUG0000024832	Uncharacterized protein [Source:UniProtKB/TrEMBL;Acc:G1TX10]	0
5	ENSUCUT00000015376	ENSG00000151093		YES				0.434145939	0.018148202	-1.203748005	+	12327109	12331612	2	2548	ENSUCUG0000015384	3-oxoacyl-ACP synthase, mitochondrial [Source:HGNC Symbol; Acc:HG	OXSM
6	ENSUCUT0000024169	ENSG00000172292		YES			YES	1.270737712	0.007420982	0.34566628	+	108176894	108508100	11	1467	ENSUCUG0000005722	ceramide synthase 6 [Source:HGNU Symbol;Acc:HGNU:23826]	CERS6
	ENSUCUT0000003499	ENSG00000134824		YES			YES	0.085672586	0.011453431	-3.545022558	-	2874101	2906618	12	1353	ENSUCUG0000003499	Tatty acid desaturase 2 [Source: HGNU Symbol; Acc: HGNU: 3575]	FADS2
0	ENSULUT00000014794	ENSG00000099194		YES			YES	0.088172741	0.035263001	-3.503523475	-	48425105	48437117	10	1123	ENSULUG0000014801	Uncharacterized protein [Source:UniProtKD/TrEPIBL;Acc:GT1847]	U CV/DE1A1
- 3	ENSOLUT0000004547	EN36000000000000		YES			YEO	0.560022666	0.040601664	-0.030442013	+	30034034	30034313	10	1527	ENSOLUG000004543	cytochrome P450, ramily 51, subramily A, polypeptide 1(Source: HGNC 59	CTP5IAT
10	ENSUCUT00000025399	ENSG0000011663	VEC	YES	VEC	VEC		0.231695789	0.00350146	-2.103636273	+	32830155	32893009		929	ENSULUG0000025649	Triosephosphate isomerase T[Source:HGNU Symbol; Acc:HGNU: I2003]	IPH VDCCE
12	ENSULUT0000000044	ENSG00000173246	YEO		YES	YES VEC		0.72269075	0.024304476	0.140737037	+	02221405	000010	21	2200	ENSOCUC00000027391	A-ray repair complementing derective repair in Uninese namster cells 5 (d Use have staries desetate (Research LeiDes)//PIT/EMPL Associative)	< AHUUS
12	ENSOCUT00000021043	ENSC000000172115	VEC		VEC	VEC		1.050000000	0.043443515	-0.440723032		02231435	02231012		310	ENSOCUC00000027301	Uncharacterized protein (Source: UniProtivibility in EMIDL; Acc; Gill Y 2 I)	MANA T1
10	ENSULUT00000014272	ENSG00000020426	YEO VEO		YES VEC	YES VEC	VEO	1.000330303	0.003234023	0.002700300	+	0315533	0042303	0	1000	ENSOCUC00000002541	MINA FUDK-activating kinase assembly factor it Jource: HUNC Symbol; A ROL 21, describes E1P 10LDs (assessible assessible 21P)	2 MINATT DNID2
14	ENSOCUT0000002540	ENSCOOD0176171	VEC		TEO	VEC	TEO	1.174229096	0.010643207	-2.30000033		2795414	2024200	10	2249	ENSOCUC00000002341	DUL2/adenovirus E iD Takba interacting protein 5 (Source: HGNU Symbol) a supelity of the set of	ME2
10	ENSOCUT0000003210	ENSC00000100313	VEC			VEC		1.005060040	0.042310131	0.23111201		2133414	40912	7	2011	ENSOCUC0000000278	TATA Levis Lie Jie e coste la Revene d'UCNO Sur Le LA e d'UCNO (11599)	TPD
17	ENSOCUT00000026320	ENSC0000012532	VEC			VEG		1.323300243	0.045046504	0.407040223	-	21713	90312	e f	2750	ENSOCUC00000015154	TATA box binding protein (Source: HGNU Symbol; Acc: HGNU: HS00)	
19	ENSOCUT00000015150	ENSC00000177463	VES			VEG		0.792669317	0.010304004	-0.353527049		10502766	10566693	16	2059	ENSOCUC000000015154	mitogen-activated protein kinase in [Source: Hond: Symbol; Acc. Hond: or	A NECCO
19	ENSOCUTO0000008808	ENSC000000111403	VEG			VEG		0.0020000011	0.023324234	-0.333321043		E41	750	1	2030	ENSOCUC00000000000000000000000000000000000	Indice an eceptor subranity 2, group C, member 2 (Source: Hond Symbol,	MAEA
20	ENSOCUT00000014714	ENSC00000197325	VES			VES		7 659412772	0.021000030	2 937233977		69977434	69994179	7	210	ENSOCUC000000014717	Hackophage erythiobiast attacher (Source, How Coymbol, Acc. How Cit	I INALA
21	ENSOCUT00000014714	ENSC0000167325	VEG		VEC	TEO		1.000410110	0.013030727	0.270554450		27222215	27240229	6	2171	ENSOCUCIONODODIA	Uncharacterized protein (Source: UniProtNorThEMDL;Acc: Giff (Tito)	EME1
22	ENSOCUT0000004004	ENSC00000134320	VEC		VEC			1.420404102	0.000000001	0.210334430		00440010	06449792	1	007	ENSOCUC0000004004	essential melotic structure-specific endonuclease 1(300/ce.ndivic 39m)	MODEAL 2
22	ENSOCUT00000014772	ENGC00000123302	VEO		TEO VEO			0.919974142	0.000300311	1.024000000		00440310	24250	22	00 r	ENSOCUC00000011941	Inortality ractor 4 like 2 (cource: HONC cymbol; Acc; HONC; 10040)	MORF4L2
23	ENSOCUT00000017099	ENSC00000161222	VEC		VEC			1.72612224E	0.000730023	-1.010343002 0.707E42000	+	310 EE012002	24350	- 22	4000	ENSOCUC00000017091	 Igase I, UNA, A I Proceendent (Cource: HUNU Cymbol; Acc: HUNU:0000) MAD9K12 Lis dis a islability of a state of the state o	2 MPID
24	ENSOCUTO00000F299	ENSC00000175305	VEO		TEO VEO			0.552920702	0.020131740	0.001042333		110496503	110E00646	12	4030	ENSOCUCIONONESS	MAFGN 12 binding inhibitory protein 1 (Source: Holid Symbol; Acc: Holid: 2 analysis E2 (Reviews) UCNC Symbol; Acc: UCNC (1990)	CONE2
20	ENSOCUT00000003330	ENSC000001/3305	VEC		VEG			0.002320702	0.040346262	-0.034033303		159720	240697	44	E410	ENSOCUC00000003330	Cyclin E2 [Bourde: HBNU Bymbol; Acc: HBNU: 1990]	EANCD2
20	ENSOCUT0000002807	ENGC00000122119	VEC		VEC			0.000021230	0.042032423	0.33100131		4595242	401001	- 44	2000	ENSOCUC0000002802	Franconitanemia, complementation group D2 (Source, HONC Symbol, Acc and the Key Key Construction 1) 2, 2010 - 12 (Source, HONC Symbol, Acc, HOC	FANCOZ
20	ENSOCUT0000003622	ENSC00000133113	YEO		TEO VEO			0.043071100	0.015444300	-0.245247235	+	40000000	4010030	3	2030	ENSOCUC00000003824	replication ractor C (activator I) 3, 30kDa (30urce: HGNC 3ymbol; Acc: HG	MDDCOC
20	ENSUCUT00000012216	ENSC00000125301	VEC		TE0			1.000044040	0.015520212	-0.14230071	+	10033230	10041201	4	724	ENSOCUC00000012218	 mitochondriai ribosomai protein 326 (Source: InGNU Symbol; Acc: InGNU; I a studio second (DNA) III (DNA disected) a studio secide C (220D) (Second III) (DNC) 	MRP320
23	ENSOCUT0000025560	ENSC00000113330	TEO VEO					0.972502795	0.010002101	0.121130304	+	7493245	10203042	22	1905	ENSOCUC00000000024	polymerase (HIVA) III (DIVA directed) polypeptide G (32kD) (Source: HGNC	DADN
30	ENSOC010000000324	ENSG00000140634	YEO					0.072002700	0.043331000	-0.130700330	-	7433345	007407	20	1305	ENSOCUG0000000322	poly(A)-specific fibonuclease [Source: HGNU Symbol; Acc: HGNU: 0003]	PARN
- 31	ENSOCUT0000000034	ENSC00000103002	TEO VEO					1.009761617	0.041200312	-0.001004010		420200	5700750	21	010	ENSOCUC00000023072	Uncharacterized protein (Source: UniProtNDF (FEMDE) Acc: 6 (SUB3)	C 7MI74
- 32	ENSOCUT0000027010	ENSG00000100175	YEO					1.203701017	0.040004000	0.214122133	+	430300	330330	21	1700	ENSOCUG00000003567	Zind ringer, Miz-type containing I (Source: HGNU Symbol; Acc: HGNU: 104	2 ZMIZT
- 33	ENSOCUTO00000081/0	ENSC00000100014	VEO				VEO	1.441945599	0.01056105	0.536266736		22455909	10034313	4	1740	ENSOCUC0000000172	Zind ringer and SCAN domain containing 30 (Source: HONC Symbol; Acc:	23CAN30
25	ENSOCUT0000000345	ENSC00000103102	VEC				TEO	2 924569729	0.001056105	1 E40000000	+	23455500	23433101	- 4	027	ENSOCUC000000011702	 protein serine kinase ni (bource: nGNU bymbol; Acc: nGNU: 3523) a shak tanina kinase ni (bource: nGNU bymbol; Acc: nGNU: 3523) 	PORTI DORD1
- 33	ENSOCUTO000000927E	ENGC00000102103	VEO				VEO	2.324300130	0.020030071	1.340223030		2001292	7024261	0	2702	ENSOCUC000000011103	polygiutamine binding protein 1 (Source: Horic Symbol; Add: Horic: 3330)	FUDF1
27	ENSOCUT0000003213	ENSC00000100230	VEC				TES	1.122262549	0.02344030	0.17922594		49710474	49726020	25	2103	ENSOCUC00000012296	 protein priosphatasen, datalytic suburit, gamma isozyme (oburce, noivo size, Genes, MVM, web 219 subert UCNC SubLet AssociaCNC, 120E41 	765/642
- 31	ENSOCUT0000024134	ENSC00000197130	VEC					0.092555	0.043014321	0.113333334		1011014E4	43120020	20	1500	ENSOCUC00000012336	Zind inger, htt hetype 3 (bourde: Holid, Symbol; Add, Holid, 19034)	ZPIT MO
- 20	ENSOCUT00000000576	ENSC00000002433	VEC					0.032355	0.01012021	-3.433343207 0 E21E09221	-	1766796	101200102	20	6250	ENSOCUCIONODO	adenyiate kinase 4 (Dource: HUNU Dymbol; Add: HUNU: 300)	ANK/0029
40	ENSOCUT0000000310	ENSC00000200300	VEC					0.031031034	0.042333133	0.331300321		17529970	17509504	10	4206	ENSOCUC000000004922	CHU2, Marketer (Contraction Contraction Co	CUDU2L1
40	ENSOCUT0000004334	ENSC00000100002	TEO VEO					1.01005000	0.024445073	-0.104002024		22445526	22150424	10	4200 624E	ENSOCUC0000004333	Too should all a second and an an an and a second s	JUPV3L1
41	ENSOCUT0000003030	ENSC0000010014	VEC					1.212030330	0.041300302	0.210411231		000004494	00050040	20	0243	ENSOCUC00000000040	Preacher Collins Financeschertrisyndrome T[Source.Hohic Symbol, Acc.) 9MAD (article article	SMAD7
42	ENSOCUT00000024416	ENSC000001010005	VEG					0.690724499	0.002215502	0.101023033		91000226	91929462	10	2220	ENSOCUC00000024303	SPIAD ramity member in (Source: HONC Symbol; Acc: HONC; 6 (173)	SPIADT CENDE
40	ENSOCUT00000014123	ENSC0000010E176	VEC					1456969656	0.040313013	0.53350111		720202	926059	10	2620	ENSOCUC00000014124	UDH association specific peptidase of courses individually individual and the second s	
44	ENSOCUT00000015065	ENSC00000103176	VEG					1.450500050	0.000231044	0.54230304		1097171	1104740	12	1407	ENSOCUC00000017150	between a state of the state of	
40	ENSOCUT00000017143	ENSC00000103045	VEC					10.71690221	0.022123142	2.421016100		129265575	129266425	10	140 r	ENSOCUCIONO0029226	 neterogeneous nuclear ribonucleoprotein mit (m) (Dource: nunu Dymbol; assis a lassistas, stala paliata a (a star 10 (Sausa a UCNC Superlati A su UCNC) 	
40	ENSOCUT0000034133	ENSC00000160323	VEO					0.251549912	0.010132330	1 509199972		E10000010	E1244206		2247	ENSOCUC00000023326	Serierarginine-from spiloing ractor to [cource: HONC cymbol; Acc: HONC 10P 9: 20 August 2010 - 20	EAD20
41	ENSOCUT00000027951	ENGC00000104103	VEG					0.001040012	0.01000112	2,994640222		10554	11771		720	ENSOCUC00000021242	Sin SAFassociated proteint, Sokba (Source: Holido Symbol, Acc. Holido, Ioc	EVORCA
40	ENSOCUT00000027331	ENSCOODDOTTO030	VEC					1.204146629	0.020030242	0.20001100		66142	100050	12	2005	ENSOCUC00000021243	CTD (a scheme terr i scheme sie DNA schemessen lite stress ide A) scheme i	CTDD1
43	ENSOCUT0000000000000	ENSC00000452256	VEC					0.279642946	0.010040000	1.020001100		112251922	112291020	10	4275	ENSOCUCIONODODODA	Linu (carboxy-terminal domain, HVA polymerase ii, polypeptide A) phospr Linu (carboxy-terminal domain, HVA polymerase ii, polypeptide A) phospr	
50	ENSOCUT000000401	ENGC00000132230	VEC					0.213042040	0.010303212	0.570707649		27022272	20099575	0	4210	ENSOCUC000000400	ononaracterized protein (Source: OniProtKDFHEHDE; Acc. 0 (SD0 F)	ETUE
51	ENSOCUT00000008725	ENSC00000133003	VEG					1.106290007	0.032107124	0.370707040		74292410	20033575	10	1005	ENSOCUC00000008725	MAK16 Landlar [Source: HENC Symbol; Acc: HENC: 3435]	MAK/16
52	ENSOCUT0000000133	ENSC0000010092	VEC					1.100200001	0.034043131	0.140110000	-	9697260	9692746	10	2092	ENSOCUC0000000155	(in a strain of the second se second second sec	
- 33	ENSOCUT0000024612	ENSC0000010130349	VEG					0.922970699	0.040102173	0.100410000		3001200	9417	14	2002	ENSOCUC00000024051	Isockrate denydrogenase 3 (NAD+) beta (Bource: HONU Bymbol) Acc; HD Isockrate denydrogenase 2 (Review, HCNC Support Acc, HCNC 47097)	EVOSC2
04	ENSOCUT0000007134	ENSC00000150713	160		VEC	VEC		0.322070683	0.010010012	-0.115733581 0.222217004	+	157715100	150205121	12	4202	ENSOCUC00000007138	exusume component 2 (cource: FIGNU cympo); Acc: FIGNU: 1/03/(EAUGUZ
55	ENSOLUT00000012452	ENSC00000172071			TEO VEO	TEO VEO	VEO	1.201204749	0.040703077	0.323317634		00070200	100200131	12	4302	ENSOCUC00000012451	prain and reproductive organ-expressed (TNFHOF IA modulator) [Source and another table to biotication (a page 2) along the page 2 (2)	DHE FIEDAKO
20	ENSOCUT00000012453	ENSC00000172071			VEC	VEC	160	0.409221751	0.001030134	0.0000022000	+	00004000	33110142	CI CI	3000	ENSOCUC00000012451	- eukaryoud translation initiation ractor zhaipha kinase 5 [Cource: FIGINU Gy 2015] - Exception and the set of the set	A MAD
01	ENSOLUT0000003875	ENGC0000000EEet2			TEO VEO	TEO VEO		0.400321751	0.023053676	2 202071241	+	30304363	50400022	10	1434	ENSOCUCOD000003035	- Lo ubiquiun-protein ligase AIAP (pource: Kerped peptide; Acc: NP_UUTb) - STE20, March 1999	OL MAP
50	ENSOCUT00000044792	ENSC00000127275			VEC	VEC		3.144207304	0.013003641	0.442479274	+	2020120	01040604	10	2012	ENSOCUC00000044794	 D I EZUHIKE KINASE (DOURCE: FIGINU DYMDO) ACC: FIGINU: HU003 State State Sta	
- 23	ENSOCUT0000001/732	ENSC00000137275			TEO VEO	TEO VEO		1.353073081	0.031130748	0.443470374	-	2043279	2003030	24	2013	ENSOCUCIOD000011791	Tredeptor (Thirmon J-Interacting serine-threenine kinase 1(bourde:HGNU) and (ADD share) a due asses (and the analysis 4 (Range, UCNO C), 1, 1, 6	BIPNI DADDA
οU	ENGULU (000000 4532 -	EN360000002633			ITEO .	TED		1.103020077	0.047202305	0.210031005	-	443526UZ	+ +5044352	34	0201	EN30600000014523	 poly (ADF=ripose) polymerase family, member 4 (Source: HGNU Symbol: A 	A PARPA

61 ENSOCUT00000024642	ENSG0000087088	YES	YES	YES	2.027111268	0.03360173	1.01942528	-	90719	93528	5	579	ENSOCUG0000006423	BCL2-associated X protein [Source:HGNC Symbol; Acc:HGNC:959]	BAX
62 ENSOCUT0000032048	ENSG00000119630		YES		1.274447604	0.032233476	0.349872061	+	30172447	30180160	6	489	ENSOCUG0000026354	placental growth factor [Source: HGNC Symbol; Acc: HGNC: 8893]	PGF
63 ENSOCUT0000015230	ENSG0000145649		YES		0.304886331	0.021785852	-1713656624	+	71073774	71082586	5	792	ENSOCUG0000015236	Uppharacterized protein [Source:UpiProtKB/TrEMBL:Acc:G1T902]	0
64 ENSOCUT0000031433	ENSG0000075790		YES	YES	0.859000883	0.020262515	-0.219268481	-	126566	127291	1	726	ENSOCUG0000028156	Uncharacterized protein [Source:UniProtKB/TrEMBL:Acc:G1TPZ4]	õ
65 ENSOCUT0000008309	ENSG00000100234		YES		2 512241051	0.003666106	1328974898	-	88307960	88362257	5	5335	ENSOCUG000008310	metalloproteinase inhibitor 3 precursor ISource: BefSeg peptide: Acc: NP	TIMP3
66 ENSOCUT0000007940	ENSG0000184254		VES		1125646297	0.010062358	0.170753572	-	21	32016	12	6992	ENSOCUG0000007938	aldebude debudrogen ase 1 family, member A3 (Source: HGNC Symbol: Ac	AL DH1A3
67 ENSOCUT0000001542	ENSC0000104204		VES		0.662776092	0.001105467	-0.593406534	+	105172432	105208358	11	4919	ENSOCUC0000001542	recenter-interacting corine-threaning liness 21Seuroe/HCNC Symbol, No.	DIDK2
68 ENSOCUT00000000956	ENSC0000194512		VEG	VEG	1436097749	0.039155328	0.522143905	-	21717532	21721800	6	11/13	ENSOCUC00000001342	transmembrane protein 173 (Service: HCNC Symbol; Ace; HCNC: 27962)	TMEM173
60 ENSOCUT00000000000	ENCC00000104304		VEC	VEC	0.111104994	0.035133320	0.022140000		E4179922	E4197126		007	ENSOCUCIONODODODO	PCI 21- deservices EID 191.De texterente e service 110- consecuencies UCNC Supervice	DMIDH
53 ENSOCUT0000000040	EN3600000113734		TEO	TEO	0.11104034	0.025577572	-3.103220030	+	54173323	54137136	07	001	ENSOC06000000040	DULZradenovirus E ID Tokua Interacting protein 1 (Dource: HUNU Dymbor)	DINIPT
70 ENSOCUT0000000172	EN360000134215		TEO	LUDO.	2.201031300	0.006062542	1.130010321	+	30144430	30330033	44	1005	ENSOC06000000172	Vav 5 guanine nucleotide exchange ractor (Source: HGNU Symbol; Acc: H	0A03
71 ENSOLUT0000006278	ENSG00000140233		YES	YES	1.237276578	0.034451832	0.307168034	+	12711305	12731422		1285	ENSOLUG0000006277	BULZ/adenovirus EIB 13kDa interacting protein 2 [Source: HGNU Symbol; i	BNIP2
72 ENSOCUT0000004623	ENSG0000138613		YES		1.342191638	0.020785756	0.424590674	-	8941946	8381823	6	114	ENSUC06000004627	APH ID gamma secretase subunit [Source:HGNU Symbol;Acc:HGNU:240	APHIB
73 ENSUCUT0000015411	ENSG00000114209		YES		1.076805208	0.008326844	0.106757293		62397127	62443385	8	823	ENSUCUG0000015413	programmed cell death 10 [Source: HGNU Symbol; Acc: HGNU: 8 /61]	PUCUIU
74 ENSUCUTUUUUUU14132	ENSG0000028137		YES		0.418770231	0.048761698	-1.255769206		1901647	1932164	9	2458	ENSUCUGUUUUU14127	tumor neorosis factor receptor superfamily, member 18 [Source: HGNU Syr	INFRSF1B
75 ENSOCUT00000012027	ENSG0000137193		YES		1.318439588	0.019968398	0.398831467	+	27027310	27031509	6	1514	ENSOCOG0000012028	Pim-1proto-oncogene, serine/threonine kinase [Source:HGNU Symbol;A	PIM1
76 ENSOCUT00000015956	ENSG00000113575		YES		1.065924802	0.007485036	0.092105664	-	17013509	17040696	7	1424	ENSOCUG0000015961	Serine/threonine-protein phosphatase 2A catalytic subunit alpha isoform	PPP2CA
77 ENSOCUT00000017921	ENSG00000185825		YES	YES	0.765459382	0.043508814	-0.38560227	+	694531	727417	8	831	ENSOCUG0000017921	B-cell receptor-associated protein 31 [Source:HGNC Symbol; Acc:HGNC;	BCAP31
78 ENSOCUT0000002187	ENSG00000196230		YES		0.77320004	0.038956903	-0.371086382	+	22748030	22752315	4	2641	ENSOCUG0000002187	tubulin, beta class I [Source: HGNC Symbol; Acc: HGNC: 20778]	TUBB
79 ENSOCUT0000006052	ENSG00000181938	YES			0.776087549	0.022884741	-0.365708686	+	14294137	14304532	3	1862	ENSOCUG0000006054	GINS complex subunit 3 (Psf3 homolog) [Source: HGNC Symbol; Acc: HGN	GINS3
80 ENSOCUT00000025334	ENSG00000198924	YES			1.06243205	0.009148041	0.087370573	-	61409924	61437082	9	4172	ENSOCUG0000004921	DNA cross-link repair 1A [Source: HGNC Symbol; Acc: HGNC: 17660]	DCLRE1A
81 ENSOCUT00000017632	ENSG00000174943	YES			0.773371366	0.006671638	-0.370766745	-	18314268	18329818	6	990	ENSOCUG0000017636	potassium channel tetramerization domain containing 13 [Source: HGNC S	KCTD13
82 ENSOCUT0000000013	ENSG0000070950	YES			0.5860789	0.026107386	-0.770833196	+	42530	146086	13	1597	ENSOCUG0000000013	RAD18 E3 ubiguitin protein ligase [Source:HGNC Symbol; Acc:HGNC:1827	RAD18
83 ENSOCUT00000031279					0.054120272	0.001699629	-4.207687089	-	119951100	119951563	1	464	ENSOCUG0000027293		0
84 ENSOCUT00000015392	ENSG0000015285			YES	1.089654141	0.002391647	0.123870293	+	33343571	33362270	13	2596	ENSOCUG0000015393	Viskott-Aldrich syndrome [Source: HGNC Symbol: Acc: HGNC: 12731]	WAS
85 ENSOCUT00000019646	ENSG00000277846				0.832794559	0.002532464	-0.263967453	+	1509980	1510048	1	69	ENSOCUG0000019646	Small nucleolar BNA SNORD30 [Source: BEAM: Acc: BE00088]	SNORD30
86 ENSOCUT0000017551					0.98037903	0.004855068	-0.028588469	+	71896473	71896981	1	509	ENSOCUG0000017552		0
87 ENSOCUT0000006965	ENSG0000136010				0.643275676	0.013769814	-0.636490958	+	91263358	91325818	23	6154	ENSOCUG000006962	aldebude debudrogenase 1 familu, member 1,2 (Source: HGNC Sumbol: Acr	AL DH1 2
88 AlH\/lap18.1	2110000000000000				1.035905543	0.01510364	0.05089246	+	38345	40030	1	1686	AlHV/lop18	#N/A	0
89 ENSOCUT0000019581					0.942382699	0.021954861	-0.085615042		1509745	1509809	1	65	ENSOCUC0000019581	Small publicator DNA SNOPD29 (Source: DEAM: App: PE00070)	SMODD29
90 ENSOCUT0000003374	ENSC0000107669				0.491244869	0.021964763	-1.025485757		68671085	68850046	13	5208	ENSOCUG0000003373	projection and a second s	ATE1
91 ENSOCUT0000008192	ENSC0000071054				0.498702868	0.02780959	-1.003747594	_	90545949	90731059	32	7249	ENSOCUG0000008180	mitogen-patiented protein kinase kinase kinase kinase 4 (Seuroe: HGNC S	MADAKA
92 ENGOCUT0000000102	2143630000011034				0.009074761	0.020617064	E 702024EE7		22171050	22171457	1	409	ENSOCUC00000027807	Hadden activated protein Kinase Kinase Kinase Kinase 4 (Jourden Kond C	0
92 ENGOCUT00000031016					0.003074701	0.030317004	=0.103324301 2.0424E6211	-	23111030	23111431		400	ENGOCUCODODODZTOOT	Uncharacterized protein (Source: UniProtNor InEMOL; Acc: GIU Hoj	
33 ENSOCUT00000020435	ENGCORDON 40001				0.121375043	0.017030447	=3.042430211 4.0004E0047	-	242	330	4	35	ENSOC060000025005		DL OVDO
34 ENSOCUT00000022024	EN360000240631				2.400040004	0.021011043	1.233130017	-	0101413141	01533012	4	1000	ENSOCUG0000027805	phosphatidylinositol-specific phospholipase C, A domain containing 2 (or	PLUADZ
35 ENSOLUT00000033691					1.464330878	0.015547678	0.563612725	-	243501	252516	4	1192	ENSOCOG0000023173	Uncharacterized protein [Source:UniProtKDrTrEMBL;Acc:U3KNU3]	<u> </u>
36 ENSOLUT0000025140					0.993587712	0.010742514	-0.009280763	-	22803292	22804049		758	ENSULUG0000023563		
37 AIHV IgpU8.1	EN OCOCOCO TOTA				1.013526685	0.020804324	0.019384074	+	14725	16767	_	2043	AIHV IgpU8	THINKA	U
98 ENSOCUT0000013565	ENSG0000173114				1.024956285	0.01126394	0.035562379	+	47981727	47983853		2127	ENSOC060000013571	leucine rich repeat neuronal 3 [Source:HGNU Symbol;Acc:HGNU: 1/200]	LRHN3
99 ENSUCUT0000023234	ENSG00000175857				1.022788321	0.008608298	0.032507593	+	74425245	74425718	1	474	ENSUCUG0000021351	GRB2-binding adaptor protein, transmembrane [Source: HGNU Symbol; A	GAPT
100 ENSOCUT00000033736					1.03951913	0.041509753	0.055916307	+	143548	144798	1	1251	ENSOCUG0000029739	Uncharacterized protein [Source:UniProtKB/TrEMBL;Acc:U3KNH4]	0
101 ENSOCUT00000028806	ENSG0000211535				1.027606111	0.002479401	0.039287375	-	16278486	16278558	1	73	ENSOCUG0000026051		0
102 ENSOCUT00000033317	ENSG00000112081				1.036278329	0.034092733	0.051411541	+	26545708	26553842	5	4519	ENSOCUG0000006684	serine/arginine-rich splicing factor 3 [Source: HGNC Symbol; Acc: HGNC: 1]	SRSF3
103 ENSOCUT0000002404					1.034876887	0.012287232	0.049459149	+	14889862	14890171	1	310	ENSOCUG0000002404		0
104 ENSOCUT0000008995	ENSG00000182324				1.037876849	0.010078283	0.053635268	+	96090	98925	2	1302	ENSOCUG0000008998	potassium channel, inwardly rectifying subfamily J, member 14 [Source:HG	KCNJ14
105 ENSOCUT00000023471	ENSG00000178878				1.038444187	0.010996465	0.054423678		26945542	26946288	1	747	ENSOCUG0000025481	apolipoprotein L domain containing 1 [Source: HGNC Symbol; Acc: HGNC: 2	APOLD1
106 ENSOCUT00000029987					1.03552974	0.000823818	0.050368988	+	110738755	110739432	1	678	ENSOCUG0000026237		0
107 ENSOCUT00000021607					1.034461539	0.009711978	0.048880008	+	6776859	6777764	1	906	ENSOCUG0000022196	Uncharacterized protein [Source:UniProtKB/TrEMBL;Acc:G1TZU1]	0
108 ENSOCUT00000013264					0.964560403	0.022262767	-0.052056509	+	15896219	15897556	1	1338	ENSOCUG0000013266		0
109 ENSOCUT00000010785					1.035111882	0.035556711	0.049786713	-	1828855	1829584	1	730	ENSOCUG0000010788		0
110 ENSOCUT0000025731	ENSG0000201129				1.516043944	0.029816454	0.600311572	-	38289165	38289301	1	137	ENSOCUG0000024097	Small publicate BNA SNOBA58 [Source: BEAM: Acc: BE00418]	SNOBA58
111 ENSOCUT00000005887	ENSG00000121892				1.83913245	0.048663098	0.879025383	-	29073825	29206002	32	7044	ENSOCUG0000005880	PDS5 cohesin associated factor A [Source: HGNC Symbol: Acc: HGNC: 29	PDS5A
112 ENSOCUT0000033492	ENSG00000178338				1174290484	0.01718789	0.231789332	-	464145	478206	3	5524	ENSOCUG000029238	zing finger protein 354B [Source: HGNC Symbol: Acg: HGNC: 17197]	ZNE354B
113 ENSOCUT0000009889	ENSG0000101972				1287528617	0.021314026	0.364604499	+	98528365	98628576	33	6281	ENSOCUG000009879	cohesin subunit SA-2 ISource: BelSeg pentide: Acc: NP. 0011647971	STAG2
114 ENSOCUT00000001597	ENSG0000125848				1 139067977	0.040041663	0.187853846	÷	21887023	21888972	1	1950	ENSOCUG000001599	fibronactin leucine rich transmembrane protein 3 [Source: HCNC Sumbol (ELBT3
115 ENSOCUT00000013823	ENSG0000180332				1.071056557	0.01540475	0.099034664	+	49910756	49911535	1	780	ENSOCUG0000013829	notación de anne non reansmeriorane proteiri o (pouroe, noncos) Inotación de anne litetramerization domain containing di Sources HCNC Su	KCTD4
116 ENSOCUT00000026344	ENSC00000207789				1.074310545	0.015145841	0.103411086	-	918065	9191/18	1	84	ENSOCI C00000024507	porassium on an menter amerization domain contraining 4 (Source: Honic Sy	0
117 ENSOCUT0000020344	ENSC00000201103				1.092672245	0.013/43041	0.127960952	-	146945	171334	10	1936	ENSOCUC0000024907	D-2-kudrowali itarate dekudrogenare (Seuree HCNC Sur-K-KAHCNC	D2HCDH
119 ENSOCUT00000022653	LINGG0000100302				1.002012.040	0.034000074	0.121000032	-	12904701	1290/799	10	99	ENSOCUC0000022302	UP2-myoroxygiocarate denydrogenase (Dource: HONU Dymbol; ACC: HONU UB calicocacemal DNA (Service: DEAM: Acc; DE000281	LIE
119 ENSOCUT00000032544	ENSC00000208802				1.100401044	0.0400000000	0.140000023	+	90429022	10004100	1	23	ENSOCUC0000020343	Colspiceosomar ANA (Cource: HF API; ACC: HF 00020)	ENUDDES
100 ENERCUT00000013053	LINGG0000200002				1.421434165	0.043312020	0.307400137		50420023	50420030	1	490	ENSOCI C00000013053	Unain fucieural mNA ONUMUSO (Cource: RF AM) Acc: RF 00 (51)	JNURDS8
ENSOLUT0000030273					1.040665363	0.01746062	0.051534768	+	50138372	50136651		480	ENSOCOG0000027750	Uncharacterized protein (Cource:UniProtK.DrTrEMBL;Acc:GTTNG5)	0

8.7 Rabbit DAVID analysis 1

1		Enrichment Score: 2.160388230158114	_				
2	Genes	Term	Count	%	PValue	Fold Enrichment	Benjamini
3	ENSG00000159792, ENSG00000105176, ENSG00000101665, ENSG00000198042, ENSG00000112592, ENSG00000186575, ENSG00000105486, ENSG00000175305, ENSG00000206560, ENSG000	GO:0031981'nuclear lumen	38	13.1944	0.001486427	1.683299255	0.327781027
4	ENSG00000159792, ENSG00000105176, ENSG00000162433, ENSG0000010665, ENSG00000198042, ENSG00000125901, ENSG00000172115, ENSG00000112592, ENSG00000186575, ENSG00000	GO:0070013'intracellular organelle lumen	44	15.2778	0.001714856	1.588628923	0.20477471
5	ENSG00000159792, ENSG00000105176, ENSG00000162433, ENSG00000101665, ENSG00000198042, ENSG00000125901, ENSG00000172115, ENSG00000112592, ENSG00000186575, ENSG0000	GD:0043233° organelle lumen	44	15.2778	0.002662996	1.552841129	0.211263371
6	ENSG00000159792 ENSG00000105176 ENSG00000162433 ENSG0000010665 ENSG00000198042 ENSG00000125901 ENSG00000172115 ENSG00000112592 ENSG00000186575 ENSG000001	GD:0031974'membrane-enclosed lumen	44	15.2778	0.003843962	1.522721365	0.226692771
7	ENSG00000159792 ENSG00000105176 ENSG00000060069 ENSG00000020426 ENSG0000001665 ENSG000001659045 ENSG00000112592 ENSG00000105486 ENSG000001021475 ENSG00000105486	GD:0005654 nucleonlasm	21	7 2917	0.055346149	1529313233	0.637043939
à	ENSG0000151332 ENSG0000177463 ENSG00000178896 ENSG00000198042 ENSG0000072814 ENSG00000154920 ENSG00000140894 ENSG00000186575 ENSG00	GD:0005730 pucleolus	17	5 9028	0.075520078	1 564 369124	0.688006168
ă				0.0020	0.010020010	1.004000124	0.000000100
10		E					
10	C	Enrichment 3core: 1.0302231240033103	Course		DU-Los	E a lal E a stala a sera	Profession 1
10		Term For the design of the second	Count	2,0000	PValue	0.70E4E0C07	Denjamini O ODEOZOE4O
12	EN3G00000033134, EN3G0000011063, EN3G00000151033, EN3G00000100234, EN3G00000134624, EN3G00000110356	r atty acid biosynthesis	0	2.0033	3.44E-04	3.133430661	0.025073513
13	ENSG0000099194, ENSG00000172292, ENSG00000111669, ENSG00000151093, ENSG0000010294, ENSG000001130, ENSG00000134824, ENSG00000110958	lipid synthesis	8	2.7778	4.95E-04	5.730671831	0.024847861
14	ENSG00000099994, ENSG00000111669, ENSG00000151093, ENSG00000100294, ENSG00000134824, ENSG00000110958	GU:UUU6633 fatty acid biosynthetic process	6	2.0833	0.007210794	4.93962999	0.471999462
15	ENSG00000138381, ENSG0000099194, ENSG00000111669, ENSG00000151093, ENSG00000100294, ENSG00000134824, ENSG00000110958	GD:0016053" organic acid biosynthetic process	7	2.4306	0.031954613	2.937220844	0.750823103
16	ENSG00000138381, ENSG0000099194, ENSG00000111669, ENSG00000151093, ENSG00000100294, ENSG00000134824, ENSG00000110958	GO:0046394" carboxylic acid biosynthetic process	7	2.4306	0.031954613	2.937220844	0.750823103
17	ENSG0000099194, ENSG00000111669, ENSG00000151093, ENSG00000100294, ENSG00000134824, ENSG00000110958	GD:0006631 fatty acid metabolic process	6	2.0833	0.187788658	1.970862471	0.953077378
18	ENSG0000099194. ENSG00000172292, ENSG00000111669. ENSG00000151093, ENSG00000100294, ENSG0000001630, ENSG00000134824, ENSG00000110958	GD:0008610'lipid biosynthetic process	8	2.7778	0.226410393	1.610859729	0.956055431
19							
20		Enrichment Score: 1.8771899367092622					
21	Genes	Term	Coupt	%	PValue	Fold Enrichment	Beniamini
22	ENSG0000020426 ENSG00000181938 ENSG00000154920 ENSG00000172115 ENSG00000158019 ENSG00000087088 ENSG00000175305 ENSG00000133119 ENSG0000	GD:00062591DNA metabolic process	19	6 5972	7 80F-04	2 44215567	0.66791155
23	ENSG0000020426 ENSG0000010466 ENSG00000154320 ENSG00000125901 ENSG00000158019 ENSG00000087088 ENSG00000105486 ENSG00000133119 ENSG00000073246 ENSG00	GD:0006974"response to DNA damage stimulus	15	5 2083	0.001820508	2 615487729	0.402248446
24		CD:000629#DNA repair	12	4 1667	0.0042765	2 749104009	0.420511244
24		CO.000201DINATEPAIL	10	9,1001	0.0043103	2.140104003	0.400011044
23		GU:0033334 deliular response to stress	10	0.2300	0.0002/0337	2.000300300	0.400340203
20	ENSG000000735246, ENSG00000123562, ENSG00000144554, ENSG000000154920, ENSG00000070950, ENSG000001058015, ENSG000000105466	dna repair	0	2.1118	0.019538324	2.940344709	0.271484256
21	ENSG00000079246, ENSG00000 12362, ENSG00000144554, ENSG00000194920, ENSG000000 10950, ENSG000000198924, ENSG0000001058019, ENSG00000105486	UNA damage	8	2.1118	0.027419441	2.73954068	0.319850019
28	ENSG0000073246, ENSG00000154320, ENSG00000105486	dna recombination	3	1.0417	0.096706767	5.691951075	0.598433049
29	ENSG00000079246, ENSG00000154920, ENSG00000105486	GO:0006310'DNA recombination	3	1.0417	0.479476128	1.858241758	0.991784059
30							
31		Enrichment Score: 1.8365367441713873					
32	Genes	Term	Count	/	PValue	Fold Enrichment	Benjamini
33	ENSG00000162433, ENSG00000204316, ENSG00000151093, ENSG00000184584, ENSG00000196449, ENSG00000205220, ENSG00000125901, ENSG00000172115, ENSG00000100294, ENSG000	mitochondrion	25	8.6806	8.23E-04	2.109396933	0.030889374
34	ENSG0000204316, ENSG00000162433, ENSG00000151093, ENSG00000184584, ENSG00000196449, ENSG00000172115, ENSG00000125901, ENSG00000100294, ENSG00000100889, ENSG0000(GD:0005739 [°] mitochondrion	28	9.7222	0.009634107	1.654528392	0.308750153
35	ENSG0000101365.ENSG0000204316.ENSG00000151093.ENSG00000152256.ENSG00000196449.ENSG00000125901.ENSG00000100294.ENSG00000125246.ENSG00000156502.ENSG000	transit peptide: Mitochondrion	12	4.1667	0.072508119	1.792431892	0.998614995
36	ENSG00000101365_ENSG00000204316_ENSG00000151093_ENSG00000152256_ENSG00000196449_ENSG00000125301_ENSG00000100294_ENSG00000125246_ENSG00000156502_ENSG00000125201_ENSG00000125246_ENSG0000	transit peptide	12	4.1667	0.078422171	1,769766301	0.529900417
37							
38		Enrichment Score: 1.8234411390579053					
39	Genes	Term	Coupt	%	PValue	Fold Enrichment	Benjamini
40	ENSCR0000137193 ENSCR00000101365 ENSCR00000113575 ENSCR00000196236 ENSCR00000170340 ENSCR00000154237 ENSCR00000100386298 ENSCR00000100389	mangapese	8	2 7778	0.0060746	3 694775259	0 143470866
41	ENSCRIDDD112193 ENSCRIDDD111355 ENSCRIDDD111355 ENSCRIDDD119528 ENSCRIDDD117340 ENSCRIDDD115427 ENSCRIDDD115428 ENSCRIDDD119829	GD:0030145 ^r manganosa ian bioding	8	2 7778	0.006934887	3 587455098	0.623405421
#1 42		oo.ooonyo manganese ion binding matal iaa-kinding sita: Manganasa	0	1.0417	0.000334007	6 341406769	0.023403421
42	EN330000115313, EN350000100230, EN3500000100003	metanon-binuing site: Manganese	3	1.0417	0.000374717	0.341400100	0.331300123
40		E-1-1					
44		Ennorment Joore: 1.0130304433037337	C		DUL		D
45	Lenes	lerm	Count		PValue	Fold Enrichment	Benjamini
46	ENSG00000184584, ENSG00000101966, ENSG00000075730, ENSG00000185825, ENSG00000172115, ENSG00000113734, ENSG00000158019, ENSG00000087088, ENSG0000005613, ENSG0000	Apoptosis	16	5.5556	3.81E-04	2.948062149	0.022988329
47	ENSG00000184584, ENSG00000101966, ENSG00000075790, ENSG00000185825, ENSG00000172115, ENSG00000134215, ENSG00000113734, ENSG00000158019, ENSG00000087088, ENSG000001	GD:0012501" programmed cell death	21	7.2917	0.001122499	2.235364472	0.547482611
48	ENSG00000184584, ENSG00000101966, ENSG00000075790, ENSG00000185825, ENSG00000172115, ENSG00000134215, ENSG00000112592, ENSG00000113734, ENSG00000158019, ENSG0000	GD:0008219° cell death	23	7.9861	0.001521007	2.080507115	0.511507997
49	ENSG00000184584, ENSG00000101966, ENSG00000075790, ENSG00000185825, ENSG00000172115, ENSG00000134215, ENSG00000112592, ENSG00000113734, ENSG00000158019, ENSG0000	GD:0016265'death	23	7.9861	0.001659925	2.066138972	0.443695976
50	ENSG0000184584, ENSG00000101966, ENSG0000075790, ENSG00000185825, ENSG00000172115, ENSG00000134215, ENSG00000113734, ENSG00000158019, ENSG00000087088, ENSG000001	GD:0006915' apoptosis	20	6.9444	0.002256924	2.160746231	0.366039366
51	ENSG0000100234, ENSG0000020426, ENSG00000101966, ENSG00000113575, ENSG00000172115, ENSG00000134215, ENSG00000113734, ENSG00000087088, ENSG00000079246, ENSG000	GD:004298Tregulation of apoptosis	20	6.9444	0.039475165	1.617872178	0.776098843
52	ENSG00000100234, ENSG00000020426, ENSG00000101966, ENSG00000113575, ENSG00000172115, ENSG00000134215, ENSG00000113734, ENSG00000087088, ENSG00000079246, ENSG000	GD:0043067 regulation of programmed cell death	20	6.9444	0.042909032	1.60193255	0.779175421
53	ENSG0000100234, ENSG0000020426, ENSG00000101966, ENSG00000113575, ENSG00000172115, ENSG00000134215, ENSG000000113734, ENSG00000087088, ENSG00000079246, ENSG000	GD:0010941" regulation of cell death	20	6.9444	0.044251302	1.596035866	0.773774029
54	ENSG0000079246.ENSG00000137193.ENSG00000020426.ENSG00000101966.ENSG00000090316.ENSG00000104312.ENSG00000187325.ENSG00000113734.ENSG00000140299.ENSG00	GO:0043066 negative regulation of apoptosis	11	3.8194	0.045932848	2.020969144	0.771317656
55	ENSG00000073246 ENSG00000137133 ENSG00000020426 ENSG00000101366 ENSG00000000316 ENSG00000104312 ENSG00000187325 ENSG00000113734 ENSG00000140299 ENSG00	GD:0043063 negative regulation of programmed cell death	11	3 8194	0.049368123	1 992821941	0 781507992
56	ENSG0000079246 ENSG00000137193 ENSG0000020426 ENSG00000101966 ENSG00000090316 ENSG00000104312 ENSG00000187325 ENSG00000113734 ENSG00000140299 ENSG00	GD:0060548" negative regulation of cell death	- 11	3,8194	0.050667131	1987286325	0.769697344
57	ENSCODD0101988 ENSCOD000104312 ENSCOD000140394 ENSCOD000140299 ENSCOD000176171 ENSCOD0000876 (2) ENSCOD00017673 ENSCOD00017673 ENSCOD00017673	GD:0006916 Acti-apoptosis	6	2.0833	0.209216678	1 894324122	0.957428779
58	ENSCONDON19830 ENSCONDON7926E ENSCONDON27193 ENSCONDON2020E ENSCONDON17763 ENSCONDON194312 ENSCONDON198575 ENSCONDON188575	CD:0008282 coll oroliforation	8	2 7778	0.503263476	1 193366267	0.993019773
20	EN30000015000, EN30000015240, EN300000151135, EN300000020420, EN300000111403, EN300000104312, EN300000100515, EN3000000100515	GG.0000203 Cel proliferation	0	<u>د.</u> ۱۱۱۵	0.303203470	1.133300207	0.333013113
-00							

60	Enrichment Score: 1.6608436214037252					
61 Genes	Term	Count	t 7	PValue	Fold Enrichment	Benjamini
62 ENSG00000111885, ENSG00000099194, ENSG00000128699, ENSG00000159792, ENSG00000133056, ENSG00000145354, ENSG00000105829, ENSG00000198856, ENSG00000184584, ENSG00	GD:0005783'endoplasmic reticulum	26	9.0278	0.00719027	1.739593802	0.319785734
63 ENSG00000128699, ENSG00000101558, ENSG00000172071, ENSG00000198856, ENSG00000175826, ENSG00000185825, ENSG00000076258, ENSG000000113734, ENSG0000001630, ENSG000	GO:0005789 endoplasmic reticulum membrane	11	3.8194	0.009215732	2.626552839	0.337676695
64 ENSG00000128699, ENSG00000101558, ENSG00000172071, ENSG00000198856, ENSG00000175826, ENSG00000185825, ENSG00000076258, ENSG00000113734, ENSG0000001630, ENSG00	GD:0042175 nuclear envelope-endoplasmic reticulum network	11	3.8194	0.013119271	2.487826456	0.356448498
65 ENSG00000111885, ENSG00000128639, ENSG00000093194, ENSG00000105829, ENSG00000138856, ENSG00000175826, ENSG00000015285, ENSG00000185825, ENSG00000076258, ENSG00000076258, ENSG00000015825, ENSG00000015825, ENSG00000015858, ENSG000000158585, ENSG00000015858, ENSG000000000000000000000000000000000000	GD:0012505 endomembrane system	20	6.9444	0.034355499	1.642740557	0.571970423
66 ENSG00000128639 ENSG00000101558 ENSG00000172071 ENSG00000198856 ENSG00000175826 ENSG00000185825 ENSG00000076258 ENSG00000113734 ENSG0000001630 ENSG00	GD:0044432'endoplasmic reticulum part	11	3.8194	0.043695379	2.036146149	0.600536665
67 ENSG0000011885 ENSG00000128699 ENSG00000099194 ENSG00000195829 ENSG00000198856 ENSG00000175826 ENSG00000184584 ENSG00000015285 ENSG00000185825 ENSG000000000000000000000000000000000000	GO:0031090 organelle membrane	24	8 3333	0.083046583	1 406521659	0.685705995
88						
59 59	Enrichment Score: 16393495529309094					
70 Gauge	Term	Count	/	DValue	Fold Enrichment	Baniamini
	renn aall avala	10	6 2500	2.26E_04	2 741026221	0.022619244
11 ENSCOUDD 21/02, ENSCOUDD 15230, ENSCOUDD 2420, ENSCOUDD 20122, ENSCOUDD 15230, ENSCOUDD 152	CO 00070401 - II I	22	7.0001	0.000074007	1.007000000	0.000010244
72 ENSCOUDULE 1832, ENSCOUDULISUSS, ENSCOUDULUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUU	UUUU1043 cell cycle	20	1.3001	0.003674037	1.32700030	0.400030331
73 ENSC00000 [21832, ENSC00000 [35350, ENSG00000 [36 [60, ENSG00000 [38324, ENSG00000 [01972, ENSG00000 [19546, ENSG00000 [1923], ENSG00000 [38236, ENSG00000 [38324, ENSG00000 [1972]]	cell division	10	3.0134	0.004612663	2.325030414	0.120316432
74 ENSG00000121892, ENSG00000139350, ENSG00000177483, ENSG000000138160, ENSG00000090316, ENSG00000198924, ENSG00000101972, ENSG00000105486, ENSG00000119231, ENSG0000	GU:005130T cell division	12	4.1667	0.005789834	2.645632334	0.46777697
ENSG00000121892, ENSG00000139350, ENSG00000150093, ENSG0000020426, ENSG00000114391, ENSG00000205220, ENSG0000011972, ENSG00000139350, ENSG00000137493, ENSG00000114391, ENSG000000114391, ENSG000000114391, ENSG000000114391, ENSG000000114391, ENSG00000114391, ENSG00000114391, ENSG00000114391, ENSG00000114391, ENSG00000114391, ENSG00000114391, ENSG00000114391, ENSG00000114391, ENSG000000114391, ENSG000000114391, ENSG000000114391, ENSG00000114391, ENSG00000114391, ENSG00000114391, ENSG00000114391, ENSG000000114391, ENSG000000144391, ENSG000000000000000000000000000000000000	GU:UUUU278 mitotic cell cycle	13	4.5139	0.011568436	2.285135135	0.542680861
ENSG00000121892, ENSG00000139350, ENSG00000150093, ENSG00000020426, ENSG00000100532, ENSG00000114391, ENSG00000205220, ENSG00000156876, ENSG00000101972, ENSG00000100532, ENSG000001014391, ENSG000000205220, ENSG00000156876, ENSG00000101972, ENSG00000100532, ENSG000000114391, ENSG000000205220, ENSG00000156876, ENSG00000101972, ENSG00000100532, ENSG000000100532, ENSG000000100532, ENSG0000001000020426, ENSG0000010000010000000000000000000000000	GD:0022402"cell cycle process	16	5.5556	0.027121756	1.841797141	0.762587636
27 ENSG00000121892, ENSG00000139350, ENSG00000150093, ENSG00000137193, ENSG0000020426, ENSG00000144554, ENSG00000196230, ENSG00000114391, ENSG00000138160, ENSG00000	GD:0022403" cell cycle phase	12	4.1667	0.052983019	1.885172798	0.771954016
78 ENSG00000121892, ENSG00000139350, ENSG00000196230, ENSG00000114391, ENSG00000138160, ENSG00000198924, ENSG00000101972, ENSG00000101447	GD:0000087"M phase of mitotic cell cycle	8	2.7778	0.056943224	2.322802198	0.771971136
79 ENSG00000121892, ENSG00000139350, ENSG00000196230, ENSG00000138160, ENSG00000198924, ENSG00000101972, ENSG00000087088, ENSG00000101447	GD:0048285" organelle fission	8	2.7778	0.062481589	2.272085993	0.786491585
80 ENSG00000121892, ENSG00000139350, ENSG00000138160, ENSG00000198924, ENSG00000101972, ENSG00000101447	mitosis	6	2.0833	0.119787823	2.301663276	0.631324027
81 ENSG00000121892, ENSG00000139350, ENSG00000196230, ENSG00000138160, ENSG00000198924, ENSG00000101972, ENSG00000101447	GO:0000280 nuclear division	7	2.4306	0.122116729	2.069405594	0.913880207
82 ENSG00000121832, ENSG00000139350, ENSG00000196230, ENSG00000138160, ENSG00000198924, ENSG00000101972, ENSG00000101447	GD:0007067 mitosis	7	2.4306	0.122116729	2.069405594	0.913880207
83 ENSG00000121892 ENSG00000139350 ENSG00000144554 ENSG00000196230 ENSG00000114391 ENSG00000138160 ENSG00000198924 ENSG00000101972 ENSG00000101447	GD:0000279fMpbase	. 9	3 1250	0 132751141	1779167641	0.921581745
84			0.1000	0.100101111		0.001001110
85	Enrichment Score: 15465483572493635					
Se Ganar	Torm	Court		DValue	Fold Enrichmont	Boniamini
00 Deles	CO-000692# and attractions discover block with a second state	2 d	1 2000	0.004999501	11 21102679	0 444000000
	CO.002241# Ill Jacome as assembly during apoptosis	- 4 E	1 7261	0.004303301	C 10E700010	0.444003333
00 EN3500000143043, EN350000017213, EN350000017717, EN350000007000	GO:0022411 cellular component disassembly	5	1.1301	0.000001130	0.100700010	0.433043400
	GU:0006303 DNA tragmentation involved in apoptosis	3	1.0417	0.033586584	10.26923077	0.757994046
30 ENSCOUDT/S25, ENSCOUDD/17/15, ENSCOUDD/17/17, ENSCOUDD/087088	GU:0006337 nucleus organization	4	1.3889	0.045142418	5.00295858	0.772902966
31 ENSE0000017215, ENSE00000176171, ENSE00000087088	GU:UUUU737 DNA catabolic process, endonucleolytic	3	1.0417	0.053553376	7.50443787	0.775740772
92 ENSG00000172115, ENSG00000176171, ENSG00000087088	GU:0030262 apoptotic nuclear changes	3	1.0417	0.059559976	7.50443787	0.775740772
93 ENSG0000020426, ENSG00000172115, ENSG00000176171, ENSG00000087088	GD:0006308"DNA catabolic process	4	1.3889	0.064051622	4.335897436	0.789398586
94						
95	Enrichment Score: 1.5403676044959722					
36 Genes	Term	Count	t 7.	PValue	Fold Enrichment	Benjamini
97 ENSG00000178896, ENSG00000130713, ENSG00000140694	GO:0000175'3'-5'-exoribonuclease activity	3	1.0417	0.012386175	17.26462766	0.649862267
38 ENSG00000178896. ENSG00000130713. ENSG00000140694	GO:0016896' exoribonuclease activity, producing 5'-phosphomono	e 3	1.0417	0.014500733	15.93657938	0.641173819
99 ENSG00000178896, ENSG00000130713, ENSG00000140694	GD:0004532 exoribonuclease activity	3	1.0417	0.014500733	15,93657938	0.641173819
100 ENSG00000147687 ENSG00000178896 ENSG00000130713 ENSG00000154920 ENSG00000140694 ENSG00000138767	nuclease	6	2.0833	0.017629354	3 973626222	0.273206265
101 ENSG00000178896 ENSG00000130713 ENSG00000164167 ENSG00000140694 ENSG00000138767	bsa03018:BNA degradation	5	17361	0.019800024	4 745240761	0.912825018
102 ENSC00000178896 ENSC00000130713 ENSC00000140694 ENSC00000138767	evonuolease	4	1 3889	0.022985295	6 530300458	0.298557981
113 ENSCI00000155513 ENSCI0000101782 ENSCI0000178295 ENSCI0000130713 ENSCI00000154920 ENSCI000001040694 ENSCI00000138767	GD:0004518 nuclease activity	7	2 4306	0.026898516	3.059554269	0.761865759
104 ENECONDOCOUS (1999) ENECONDOM/003, ENECONDOM/0034, ENECONDOM/0034, ENECONDOM/0034, ENECONDOM/0034, ENECONDOM/0034	CO.0016796' suspendence patients active with either the paralesses		1.0417	0.020030310	10 2597766	0.75721974
	CO.0004507		1,0411	0.03301301	E 011000007	0.13131014
	CD 0000400001 Ft	4	1.0003	0.040733746	5.211363067 7.00010014	0.0005501020
106 EN3G0000178030, EN3G0000130713, EN3G0000140534	GD:000406.3 -5 exonuclease activity	3	1.0417	0.061061123	7.33312614	0.003552135
UT ENGLUUUUT/8636, ENGLUUUUT/8736, ENGLUUUUT40634	GU:0004540 ribonuclease activity	3	1.0417	0.245885771	3.139023211	0.353688092
	Enrichment Score: 1.4872446537026687	-				_
110 Genes	Term	Coun	t 7.	PValue	Fold Enrichment	Benjamini
111 ENSG00000079246, ENSG00000150093, ENSG00000214078, ENSG00000102699, ENSG00000085719	SM00327:VWA	5	1.7361	0.020956463	4.710002075	0.930649017
112 ENSG00000079246, ENSG00000150093, ENSG00000214078, ENSG00000102699, ENSG00000085719	IPR002035:von Willebrand factor, type A	5	1.7361	0.027975905	4.338959212	0.993890957
113 ENSG00000150093, ENSG00000214078, ENSG00000102699, ENSG00000085719	domain:VWFA	4	1.3889	0.058906594	4.50035319	0.998914661
44.4						

115	Enrichment Score: 1.385731365755221						
116	Genes Term		Count	× ×	PValue	Fold Enrichment	Benjamini
117	ENSC00000081985 ENSC00000159792 ENSC00000103056 ENSC00000101665 ENSC00000175856 ENSC000000175354 ENSC000000206203 ENSC000000152256 ENSC00000152256 ENSC00000152256		28	9 7222	0.001882304	1.871610404	0 358140752
118	ENSCONDON/1985 ENSCONDON/1972 ENSCONDON/19755 ENSCONDON/19536 ENSCONDON/17534 ENSCONDON/2023 ENSCONDON/20253 ENSCONDON/19754		28	9 7222	0.001882304	1.871610404	0.358140752
119	ENSCONDON17202 ENSCONDON20326, ENSCONDON20326, ENSCONDON20329, ENSCONDON265213, ENSCONDON265213, ENSCONDON17202, ENSCONDON17212, ENSCONDON1721		15	5 2083	0.00377395	2 /09017813	0.796448943
120			0	2.1250	0.00011000	2.403011013	0.174721619
120			3	3.1250	0.000152104	3. 1433 16265	0.174731013
121	ENSGUUUUU17(20, ENSGUUUUU059792, ENSGUUUUU03313, ENSGUUUUU25203, ENSGUUUUU05513, ENSGUUUUU172071, ENSGUUUUU14312, ENSGUUUUU15484, ENSGUUUU serineithreonine-protein kinase		13	4.5139	0.008538829	2.395300496	0.170409659
122	ENSG00000117020, ENSG00000153732, ENSG00000162433, ENSG00000133056, ENSG0000013335, ENSG00000198276, ENSG000000067057, ENSG000000206203, ENSG00000065613, ENSG00000065613, ENSG000000133056, ENSG00000133056, ENSG000000133056, ENSG00000000133056, ENSG000000133056, ENSG0000000133056, ENSG000000133056,		19	6.5972	0.009718526	1.938682949	0.180102975
123	ENSG00000117020, ENSG00000081985, ENSG00000159792, ENSG00000133056, ENSG00000101665, ENSG00000103319, ENSG00000099795, ENSG00000206203, ENSG00000065613, ENSG000 (GC:0016310' phosphorylation		22	7.6389	0.011015403	1.788557692	0.542511015
124	ENSG00000159792, ENSG00000133056, ENSG00000162433, ENSG00000112081, ENSG00000105486, ENSG0000067057, ENSG00000198276, ENSG00000100889, ENSG00000206203, ENSG00, GC: 0000166*nucleotide binding		46	15.9722	0.011034434	1.415007345	0.688958591
125	ENSG0000206203, ENSG00000117020, ENSG00000159792, ENSG00000172071, ENSG00000065613, ENSG00000137193, ENSG00000104312, ENSG00000166484, ENSG00000115825, ENSG0000(IPR008271:Serine/hreonine protein kinase, active site		12	4.1667	0.014681945	2.323917137	0.999655093
126	ENSG0000026203, ENSG00000117020, ENSG00000159792, ENSG00000172071, ENSG00000065613, ENSG00000137193, ENSG0000014312, ENSG00000166484, ENSG00000115825, ENSG0000 (IPR017442; Serine/threonine protein kinase-related		12	4.1667	0.016084591	2.291550604	0.987349231
127	ENSG00000117020_ENSG00000159792_ENSG00000020426_ENSG00000103319_ENSG00000206203_ENSG0000005613_ENSG00000172071_ENSG00000137193_ENSG00000152256_ENSG00000152256_ENSG00000137193_ENSG00000137193_ENSG000000137193_ENSG000000137193_ENSG000000137193_ENSG000000000000000000000000000000000000		16	5.5556	0.028923303	1.823327014	0.746633856
128	ENSG00000159792 ENSG00000133056 ENSG00000162433 ENSG00000165486 ENSG000000198276 ENSG000000087657 ENSG00000100889 ENSG000000206203 ENSG00000085613 ENSG00000085613		34	11.8056	0.036811308	1415673083	0.379132786
129	ENSCOND0117/202 ENSCOND0115422 ENSCOND0105485 ENSCOND0202032 ENSCOND00152731 ENSCOND00152735 ENSCOND0110/312 ENSCOND0110/312 ENSCOND0110/312 ENSCOND0110/312		14	4.8611	0.048313181	1.801801923	0.999941291
120			17	E 9029	0.050314309	1.001001023	0.3333341231
100	ENSEQUIDUO 1720 ; ENSEQUIDUO 153 52; ENSEQUIDUO 153 15; ENSEQUIDUO 153		10	5.3020	0.050314363	1.001001043	0.114030621
131	ENSG0000017202, ENSG00000157132, ENSG0000011653, ENSG000000120437, ENSG000000067057, ENSG00000005613, ENSG00000172071, ENSG000000157133, ENSG00000157133, ENSG00000120437, ENSG000000065613, ENSG000000172071, ENSG000000157133, ENSG000000005613, ENSG000000172071, ENSG000000157133, ENSG000000157133, ENSG000000157133, ENSG000000157133, ENSG000000157133, ENSG000000157133, ENSG000000157133, ENSG00000005613, ENSG00000005613, ENSG000000157133, ENSG000000157133, ENSG000000157133, ENSG00000005613, ENSG00000005613, ENSG000000157133, ENSG000000157133, ENSG000000157133, ENSG00000005613, ENSG00000005613, ENSG00000005613, ENSG0000000157133, ENSG00000005613, ENSG00000005613, ENSG000000005613, ENSG000000005613, ENSG0000000157133, ENSG00000005613, ENSG000000005613, ENSG000000005613, ENSG000000005613, ENSG000000005613, ENSG000000005613, ENSG000000005613, ENSG00000005613, ENSG00000005613, ENSG000000005613, ENSG000000005613, ENSG000000005613, ENSG000000000000000000000000000000000000		16	5.5556	0.051222541	1.63618175	0.99974551
132	ENSG00000159 /32, ENSG00000162433, ENSG00000162433, ENSG0000016486, ENSG000001982 /6, ENSG00000100889, ENSG00000100889, ENSG000000206203, ENSG00000065613, ENSG00000162433, ENSG00000162433		37	12.8472	0.054728972	1.33220276	0.838414756
133	ENSG0000206203, ENSG00000117020, ENSG00000159792, ENSG00000065613, ENSG00000137193, ENSG00000166484, ENSG00000115825, ENSG00000071054 SM00220; S_TKo		8	2.7778	0.057641122	2.298626495	0.976251917
134	ENSG00000117020, ENSG00000159792, ENSG00000162433, ENSG00000103319, ENSG00000198276, ENSG0000067057, ENSG00000160404, ENSG00000206203, ENSG00000065613, ENSG00 nucleotide phosphate-binding region: ATP		21	7.2917	0.058549683	1.522728652	0.999634327
135	ENSG00000159732, ENSG00000162433, ENSG00000133056, ENSG00000105486, ENSG00000198276, ENSG00000067057, ENSG00000206203, ENSG00000065613, ENSG00000138160, ENSG00 atp-binding		27	9.3750	0.058821758	1.429426627	0.495815212
136	ENSG00000117020, ENSG00000159792, ENSG00000133056, ENSG00000162433, ENSG00000151093, ENSG00000103319, ENSG00000107669, ENSG00000169902, ENSG00000100294, ENSG000 transferase		28	9.7222	0.062049597	1.410057703	0.490189207
137	ENSG00000159792 ENSG00000133056 ENSG00000162433 ENSG00000162486 ENSG00000067057 ENSG00000100889 ENSG00000026203 ENSG00000065613 ENSG00000162483 ENSG00000162486 ENSG00000067057 ENSG00000006268203 ENSG00000065613 ENSG00000065613		35	12 1528	0.071360068	1.316474876	0.840136544
138	ENSC00000159792 ENSC00000133056 ENSC00000162433 ENSC00000165486 ENSC00000067057 ENSC0000000889 ENSC00000206203 ENSC00000085613 ENSC00000165486 ENSC00000198276 ENSC00000067057 ENSC000000206203		35	12 1528	0.071360068	1 316474876	0.840136544
129			12	4 1667	0.074539205	1 794 799 259	0.997749903
140			0	9.1001	0.014050200	2 117540110	0.001140000
140			10	2.1110	0.004230230	2.111340110	0.000100702
141	ENSG00000205205, ENSG00000 (1525), ENSG00000 (153732, ENSG00000 (15753), ENSG00000 (15454), ENSG00000 (15454), ENSG00000 (1525), ENSG00000 (15257), ENSG000000000000000000000000000000000000		12	4.100 r	0.007311043	1.720231317	0.333162163
142	ENSEQUUUU26203, ENSEQUUUU17020, ENSEQUUUU179732, ENSEQUUUU172071, ENSEQUUUU065613, ENSEQUUUU137733, ENSEQUUUU14312, ENSEQUUUU1156484, ENSEQUUUU115825, ENSEQUUUU159732, ENSEQUUUU159732, ENSEQUUUU15873,		11	3.8194	0.127621323	1.657387057	0.999718881
143	ENSG00000159792, ENSG00000162433, ENSG00000133056, ENSG00000105486, ENSG00000198276, ENSG00000067057, ENSG00000206203, ENSG00000065613, ENSG00000138160, ENSG00 000133056, ENSG00000105486, ENSG00000198276, ENSG000000067057, ENSG000000206203, ENSG00000065613, ENSG00000138160, ENSG00000130564 adenyl nucleotide binding		29	10.0694	0.140928241	1.269940906	0.922543867
144	ENSG00000159792, ENSG00000162433, ENSG00000133056, ENSG00000105486, ENSG000000198276, ENSG00000067057, ENSG00000206203, ENSG00000065613, ENSG00000138160, ENSG00 C0: 0001883' purine nucleoside binding		29	10.0694	0.159609543	1.250903691	0.926798568
145	ENSG00000159792, ENSG00000162433, ENSG00000133056, ENSG0000015486, ENSG00000198276, ENSG00000067057, ENSG00000206203, ENSG00000065613, ENSG00000138160, ENSG00 GD: 0005524"ATP binding		27	9.3750	0.162892627	1.262410147	0.917517393
146	ENSG00000159732, ENSG00000162433, ENSG00000133056, ENSG00000105486, ENSG00000198276, ENSG00000067057, ENSG00000206203, ENSG00000065613, ENSG00000138160, ENSG00 0001882 nucleoside binding		29	10.0694	0.168630494	1.242367747	0.9119375
147	ENSG00000159792, ENSG00000162433, ENSG00000133056, ENSG00000105486, ENSG000000198276, ENSG000000206203, ENSG00000065613, ENSG00000138160, ENSG00 0032553 adenul ribonucleotide binding		27	9.3750	0.180354761	1.24554428	0.920918275
148	ENSG00000159792 ENSG00000137193 ENSG00000115825		3	1.0417	0.209366335	3 510036496	0 768288114
14.9	ENSCOODO0117020 ENSCOOD000186484 ENSCOOD00071054		ă	1.0417	0.960443685	0.607817356	0.999982375
150	ENSORGED IN The Instantial grant way			1.0411	0.000440000	0.001011330	0.00002010
100							
151	Ennohment Score: 1.3303335541/2332		~		0111	5 U.S. ()	
152	Lenes lerm		Lount	7.	PValue	Fold Enrichment	Benjamini
153	ENSGUUUUU189266, ENSGUUUUU190621, ENSGUUUUU10577, ENSGUUUUU138668, ENSGUUUUU140694 GU: UUU64UT HNA catabolic process		5	1.7361	0.01/44334	5.00295858	0.660512852
154	ENSG0000189266, ENSG00000105771, ENSG00000138668, ENSG00000140694 GD: 0006402'mRNA catabolic process		4	1.3889	0.027831376	6.050089445	0.759105757
155	ENSG00000189266, ENSG00000105771, ENSG00000140694 nonsense-mediated mrna decay		3	1.0417	0.059573238	7.521506778	0.487807973
156	ENSG00000189266, ENSG00000105771, ENSG00000140694 GD: 00000184/200000140694 GD: 00000184/200000189266, ENSG00000105771, ENSG00000140694	cess, nonsen:	3	1.0417	0.076645425	6.503846154	0.832577139
157	ENSG00000189266_ENSG00000105771_ENSG00000140694	cess	3	1.0417	0.099839057	5.574725275	0.87653316
158							
159	Englement Sector 11742385547228661						
160			Court	•/	DValue	Fold Enrichment	Baniamini
100			12	4 1007	0.001640666	2 199100774	0.709414461
101	ENSCOUDUO 15753, ENSCOUDUO 17753, ENSCUUDUO 12420, ENSCUUDUO 12700, ENSCUUDUO 17314, ENSCUUDUO 1523, ENSCUUDUO 15753,		12	4. 100 r	0.021043000	2.100100774	0.703414461
162	ENSG00000151332, ENSG0000012042b, ENSG000001016b5, ENSG00000137153, ENSG00000018215, ENSG000000175305, ENSG00000117133, ENSG00000137193, ENSG00000137193, ENSG000000137193, ENSG0000000137193, ENSG000000137193,		14	4.8611	0.02637686	1.953945196	0.113531298
163	ENSEQUUUUTS 1332, ENSEQUUUUTS 1333, ENSEQUUUUTS 1333, ENSEQUUUUTS 1333, ENSEQUUUUTS 1333, ENSEQUUUUTS 1337, ENSEQUUUUTS		12	4.1667	0.028264051	2.098014888	0.752412034
164	ENSG00000151332, ENSG0000020426, ENSG00000101665, ENSG00000113575, ENSG00000134215, ENSG00000186575, ENSG0000087088, ENSG00000175305, ENSG00000137193, ENSG000 GD:0019220'regulation of phosphate metabolic proce	SS	14	4.8611	0.035775192	1.87739889	0.770010791
165	ENSG00000151332, ENSG0000020426, ENSG00000101665, ENSG00000113575, ENSG00000134215, ENSG00000186575, ENSG0000087088, ENSG00000175305, ENSG00000137193, ENSG000 GD:0051174'regulation of phosphorus metabolic proce	ss	14	4.8611	0.035775192	1.87739889	0.770010791
166	ENSG00000151332, ENSG00000137193, ENSG0000020426, ENSG00000113575, ENSG00000102760, ENSG00000173114, ENSG00000115825, ENSG00000157193, ENSG00000186575, ENSG00000 GC:0045859' regulation of protein kinase activity		11	3.8194	0.039694851	2.073690078	0.769258928
167	ENSG0000205220, ENSG00000172115, ENSG00000134215, ENSG00000087088, ENSG00000115233, ENSG00000170989, ENSG00000172071, ENSG00000137193, ENSG00000138613, ENSG00000134215, ENSG0000087088, ENSG00000115233, ENSG00000170989, ENSG00000172071, ENSG00000137193, ENSG00000138613, ENSG00000134215, ENSG00000170989, ENSG00000170989, ENSG00000172071, ENSG00000137193, ENSG00000138613, ENSG00000134215, ENSG00000170989, ENSG00000170989, ENSG00000134215, ENSG00000134215, ENSG00000134215, ENSG00000170989, ENSG00000170989, ENSG00000172071, ENSG00000138613, ENSG00000138613, ENSG00000134215, ENSG00000170989, ENSG00000170989, ENSG00000170989, ENSG00000132071, ENSG00000138613, ENSG00000		14	4.8611	0.056604213	1.751035503	0.775960686
168	ENSG0000025220, ENSG00000132115, ENSG00000134215, ENSG00000087088, ENSG00000115233, ENSG00000170989, ENSG00000132071, ENSG00000138613, ENSG00000138613, ENSG00000134019, and		15	5,2083	0.066266466	1.664807036	0.79548053
169	ENSG00000137193 ENSG0000015825 ENSG00000154215 ENSG00000157193 ENSG00000137275		6	2.0833	0.283675498	1,689310689	0.967887126
170	ENSCONDO13743 ENSCONDO137414 ENSCONDO142425 ENSCONDO15743 ENSCONDO13725 CD-05134 Zeaching and where a variation		6	2.0833	0.30540296	1.625961538	0.969816139
171			Ē	1 7261	0.30340230	1.02000000	0.303010133
101	Envalaged up to a name of protein kinase active regulation of protein kinase activ	10		LICODI	0.444(33/03	1.400201403	u.300500554

8.8 Cattle to human with gene description

		Human Ensembl	CLUSTER	CLUSTER	CLUSTER	CLUSTER	CLUSTER										
1	Transcript Name	Gene ID	1	2	3	4	5	FC	nval	Log EC	strand	start	end	num exons length	gene id	Description	dene name
2	ENSRTAT00000015873	ENSC00000120053			-	VEG	VEG	1 3294164	0.0097024	0.4107931	-	20295697	20310044	9 1974	ENSRTAC0000011960	alutamia-augle sectis transpringes 1. coluble (Source: HCNC Sum	I COT1
- 2	ENGDTAT00000049790	ENSC00000020005	VEO		VEC	100	VEO	1.4390666	0.0007024	0.5341305		1590353	15050044	e 1009	ENERTACODODODOR272	- du lite DNA - luce - dans annuase 1, soluble (obuice, none dyn	INTURA
- 5	EN2B1A10000049780	ENSG0000065057	YES		YES		YES	1.4380666	0.017064	0.5241305	-	1530252	1535334	6 1023	EN2B1AG0000006272	nth-like DIVA glycosylase T[Source:HGIVU Symbol;Acc:HGIVU:802	ZINTHET
- 4	ENSBTAT00000011619	ENSG00000132664			YES		YES	0.3082448	0.0380734	-1.697852	+	38841092	38855175	9 1839	ENSBTAG0000008825	polymerase (RNA) III (DNA directed) polypeptide F, 39 kDa [Source	(POLR3F
5	ENSBTAT00000020336	ENSG0000006695	5 YES				YES	0.6505892	0.0162541	-0.620181	+	32696437	32804796	7 2845	ENSBTAG00000015294	COX10 heme A; farnesyltransferase cytochrome c oxidase assemb	COX10
6	ENSBTAT0000064176	ENSG0000014919	YES				YES	20.259094	0.0188731	4 3404977	-	20533690	20550733	9 1585	ENSBTAG0000045703	outochrome clovidase assembly homolog 15 (yeast) [Source:HGN]	(COX15
	ENCDTAT000000004110	ENCC0000014313	VEC				VEC	20.200004	0.0100101	7.000000		20000000	20000100	0 474	ENCDTA C00000043103	cytochronie cloxidase assenibly foniolog to (yeast) (bource.) form	.00010
	EN3D1A10000003643	EN3600000167263	YEO				YEO	0.0062025	0.0233103	-1.332333	+	23521300	23530103	3 4/4	EN3DTAG0000007332		0
8	ENSBTAT00000007615	ENSG00000188690	YES				YES	0.0347346	0.0361015	-4.847484	-	45635844	45660024	10 1714	ENSBTAG0000005791	uroporphyrinogen III synthase [Source:HGNC Symbol;Acc:HGNC:"	UROS
9	ENSBTAT00000064252	ENSG00000128951	YES				YES	0.1885056	0.0453446	-2.40732	+	142679111	142679692	1 582	ENSBTAG0000047462	Uncharacterized protein [Source:UniProtKB/TrEMBL:Acc:G3N0B	6 O
10	ENSBIAT0000020608	ENSG00000105835					VES	74 309429	0.0001398	6 2154734	-	47597860	47635332	11 1814	ENSBTAG0000015509	pipotipamide phosphoribosultrapsferase [Source: HGNC Sumbol: A	MAMPT
10	ENODTATOOOOOOOOOO	ENGC00000100000					VEO	14.000420	0.0004353	10.407700		400047400	400030355	10 0040	ENODTA 00000010000	Fill of a start of the All of the start of the start of the Symbol, H	ATIO
11	EN3BTA10000025662	EN200000138363					YES	1445, 3037	0.0064757	10.497762	+	103847180	103870755	16 2042	ENSBTAG0000019274	5-aminoimidazole-4-carboxamide ribonucleotide formyltransferas	AHC
- 12	ENSBTAT00000010204	ENSG00000112541					YES	29.293443	0.0112433	4.8725059	-	101987619	102068801	1 19 2382	ENSBTAG0000007758	phosphodiesterase 10A [Source:HGNC Symbol; Acc:HGNC:8772]	, PDE10A
13	ENSBTAT00000018301	ENSG00000125877					YES	0.5248396	0.0138623	-0.930052	-	52449560	52462362	8 934	ENSBTAG0000013776	inosine triphosphatase (nucleoside triphosphate pyrophosphatase	e ITPA
14	ENSBLATOOOOOO3935	ENSC0000172113					VES	34 281313	0.0321761	5 0993505	±	52126504	52133264	6 1086	ENSBTAG0000003025	NME/NM23 publicacido diphocolhato kinaco 6 (Source: HGNC Sum)	ENMER
10	ENCDTAT0000000000000	ENCC00000102024					VEC	20221 500	0.0021101	14.040104		1240445	1040000	5 010	ENCDTACOOOOOOOOOOO	INMEININGS I THE REPORT OF A DECEMBER OF A D	L NIMEO
15	EN2BTA10000022012	ENSG00000103024					YES	23371.536	0.0363354	14.842134	-	1348415	1349600	1 5 813	ENSBTAG0000016552	INPE/INPIZIO nucleoside diphosphate kinase 3 [Source: HUNU Symt	2 INPRES
- 16	ENSBTAT00000005978	ENSG00000094841					YES	0.0268973	0.0374393	-5.216395	-	80939906	80970032	2 8 1131	ENSBTAG0000004549	uracil phosphoribosyltransferase (FUR1) homolog (S. cerevisiae) [3]	UPRT
17	ENSBIAT0000018370	ENSG0000060982					YES	11.837396	0.044216	3 5652798	+	85480247	85597788	11 2258	ENSBTAG0000013825	branched chain amino-acid transaminase 1 outosolic [Source:HF	(BCAT1
18	ENSBIAT00000046902	ENSC00000143156					VES	0.6948802	0.0485144	-0.525164	-	37593775	37838172	12 1413	ENSBTAC0000002689	MME/NM23 family member 7 (Service HGNC Symbol: App; HGNC 20	NME7
10	ENGDTAT00000040302	ENGC00000145150	UE0	VEC.		VEC.	TEO .	0.0340002	0.0403144	1.000000		00000110	0000002	. 12 1910	ENODTA 00000002003	TVPENVEZOTANNY NENDELL (OOURCELLONG OVIDOL, MOCH ONC.20	TAPIET O
- 19	ENSBTA10000065618	ENSG0000069974	YES	YES		YES		2.086328	0.0238884	1.060366	-	35101143	35101808	1 666	ENSB1AG0000046690	Uncharacterized protein [Source:UniProtKB/TrEMBL;Acc:G3MYK	、 U
- 20	ENSBTAT00000015829	ENSG00000135404	YES	YES		YES		0.7969207	0.0289074	-0.327492	+	57854278	57857485	8 850	ENSBTAG00000011931	CD63 antigen [Source:UniProtKB/Swiss-Prot;Acc:Q9XSK2]	CD63
21	ENSBTAT00000021426	ENSG00000123643		YES		YES		0.1249039	0.0026932	-3.00111	+	64650884	64684500	10 1531	ENSBTAG0000016094	solute carrier family 36 (proton/amino acid symporter), member 1/S	SLC36A1
22	ENSBIAT0000024228	ENSC00000162144		VES		VES		0.0716718	0.0136631	-3.802451	-	40551223	40562584	7 1868	ENSBTAG0000018202	outookrome b561 family, member 03 (Source: HGNC Symbol: 0 oct	CVB56103
- 22	ENODTAT00000024220	EN300000102144		LLC0		LLD VEO		0.0110110	0.0100001	-3.002431	-	40331223	40302304	1 1000	EN301A00000010202	Cytochronie boomanily, member Ab (bouce, noive by mbo), Acc.	CTDJOIMJ
_ 23	EN2BTA10000028656	EN200000155033		YES		YES		8.6319793	0.0237126	3, 1036314	+	75708345	75780623	i i iU24	EN2B1400000033388	transmembrane protein 55A (Source: HGNU Symbol; Acc: HGNU: 25	2 TMEM55A
- 24	ENSBTAT00000049126	ENSG00000186187		YES		YES		2.2605669	0.0362335	1.1766846	+	2396335	2482363	4 1389	ENSBTAG0000034689	zino and ring finger 1, E3 ubiquitin protein ligase [Source:HGNC Syl	(ZNRF1
- 25	ENSBIAT0000004876	ENSG00000114742		YES		YES		16529749	0.0377671	0.7250648	+	12416919	12469477	19 3957	ENSBTAG0000003745	WD repeat domain 48 [Source: HGNC Symbol: Acc: HGNC: 30314]	WDB48
26	ENSBIAT00000052079	ENSC0000068001				VES		0.5070393	0.0425012	-0.97983	- -	50593627	50597453	4 1876	ENSBTAC0000000484	hugh repeatures aminidade 2 (Seures: HCNC Sumbel: Ape; HCNC)	HM012
20	ENGDTAT00000032013	ENGC00000000000	VEC		VEC.	TL0		0.0010000	0.0423012	0.0100344	+	47700520	47704000	4 1010	ENODTA COCCOCCOCCC	riyadulonogidoosaniinidase 2 (oodide. horido oyinbol, Mod. horido. d	L DONIA
21	EN281A10000007367	ENSG0000132646	YES		YES			0.2321709	0.0048274	-2.106741	-	47788530	47794602	6 1366	ENSBIAG0000000005	proliferating cell nuclear antigen [Source:HGNU Symbol;Acc:HGN	PUNA
- 28	ENSBTAT00000019979	ENSG00000174547	YES		YES			0.3654304	0.009037	-1.452331	-	45127205	45130554	5 827	ENSBTAG00000015006	mitochondrial ribosomal protein L11 [Source: HGNC Symbol; Acc: H	MRPL11
- 29	ENSBTAT0000064878	ENSG00000171421	YES		YES			1.0488679	0.0155609	0.068833	+	70995210	70996377	2 775	ENSBTAG0000047906	mitochondrial ribosomal protein L36 [Source: HGNC Symbol: Acc: h	1 MBPL36
30	ENSBIAT00000020681	ENSC00000104980	VES		VES			0.5560291	0.016698	-0.846768	-	17907314	17920304	13 1816	ENSBTAG0000015567	translogase of inner mitophondrial membrane 44 homolog (veget) [TIMM44
- 01	ENCDTATO0000020001	ENCC00000104300	VEC		VEC			0.0000201	0.010030	0.040100		E240E002	E2400017	10 1010	ENCDTAC00000015001	DEALUA OL AL USUL LE 2010 UCNOC LE	(DUV20
- 31	EN2BIA10000030623	ENSG00000132153	YES		YES			0.0038182	0.0167316	-8.03291	-	52465093	52480017	19 3743	EN2B1AG0000015833	DEAH (Asp-Glu-Ala-His) box helicase 30 (Source: HGNU Symbol; /	VDHX30
32	ENSBTAT00000032066	ENSG00000104835	YES		YES			0.3985734	0.0198164	-1.327083	-	48896564	48905591	1 16 1888	ENSBTAG00000001780	serinetRNA ligase, mitochondrial precursor [Source:RefSeq pep	را (U
- 33	ENSBTAT0000002334	ENSG00000104835	YES		YES			0.449606	0.0295088	-1.153267	-	48896564	48905610	16 1907	ENSBTAG0000001780	serinetRNA ligase, mitochondrial precursor [Source:RefSeg per	0 د
34	ENSBT#100000044248	ENSC0000135828	VES		VES			3 3865515	0.0366613	1 7598169	-	65097628	85115555	7 2779	ENSBTAC0000009091	ribonuolopico I. (2' 5'-pliapico pdopulato cunthotaco-donondont) [9	DNASEL
07	ENGDTAT00000044240	ENGCO0000133020	VEO		VEO			1.100000010	0.0000010	0.1007001	-	57004700	57705405	0 1000	ENGDTA C000000000000	The indicate L (2, 5 - oligois order lylate synthetase-dependent) (c	- NAMULL
- 35	EN361A10000001464	ENSG0000016661	YES		YES			1.1356606	0.040685	0.1637661	+	57634733	57705435	6 1200	ENSBIAG000000107	calcyclin binding protein [Source:HBNU Symbol;Acc:HBNU:3042	CAUYBP
- 36	ENSBTAT00000009173	ENSG00000133835	YES		YES			1.4336715	0.0464338	0.5197145	-	35662599	35763653	24 2611	ENSBTAG0000006978	hydroxysteroid (17-beta) dehydrogenase 4 [Source:HGNC Symbo	(HSD17B4
37	ENSBTAT00000012969	ENSG00000197448	YES		YES			0.6163584	0.0493638	-0.698159	+	107468164	107473271	1 8 951	ENSBTAG0000009839	olutathione S-transferase kappa 1 (Source: HGNC Symbol: Acc: HG	GSTK1
38	ENSBTAT0000015097	ENSC0000076924			VES			0.316109	0.0014603	-1.661506	-	17689653	17698398	19 2624	ENSBTAG0000011360	pro-mPNA-colicing factor SVE1/Source: PefSeg peptide: Acc:NP	YAB2
- 20	ENCDTAT00000005010	ENCC0000010424			VEC			0.0000450	0.0000000	2.404455		100000000	100010400	10 2024	ENCDTAC000000000000	pre minum spicingractor on ingoducer reloed peptide, Hocking	CNLO
- 33	ENSETATUUUUUUUUUUUU	EN3G00000134637			TEO			0.0033453	0.0050607	-3.404455	+	100032202	100310432	10 2302	EN301AG00000003043	guanine nucleotide binding protein-like 2 (nucleolar) (bource: hGi	GNLZ
40	ENSBTAT0000022090	ENSG00000115289			YES			132.65435	0.0059198	7.0515282	+	10113121	10115411	1 9 906	ENSBTAG00000016606	polycomb group ring finger 1[Source:HGNC Symbol;Acc:HGNC:17	/ PCGF1
41	ENSBTAT00000026265	ENSG00000179348			YES			0.8147415	0.007854	-0.295586	+	60016985	60024586	6 3021	ENSBTAG0000019707	GATA binding protein 2 [Source: HGNC Symbol: Acc: HGNC: 4171]	GATA2
42	ENSBIAT0000050636	ENSG00000111605			VES			2 7875308	0.0087621	14789878	-	44765461	44793485	10 2123	ENSBTAG0000007323	cleavage and polyadepulation specific factor 6, 68kDa [Source:HI	C C PSE6
40	ENERTATOOOOOO10901	ENEC00000112659			VEO			0.00000000	0.00000021	1,010750		10747959	10754754	7 1905	ENGDTAC00000012777	creavage and polyader yiation specific factor 0, cokba (cource) in	enc
43	EN301A100000016361	EN3G00000112656			TEO			0.3200000	0.0000013	-1.010132	+	10141350	10104104	r 1305	ENSBIAG0000012111	serum response ractor (Source: HGNU Symbol; Acc: HGNU: H231)	JHF
- 44	ENSBIA10000012578	ENSG0000142684			YES			0.3103642	0.0126996	-1.687966	-	127523710	127524790	3 748	ENSBTAG0000009562	zinc finger protein 593 [Source:HGNU Symbol;Acc:HGNU:30943]	ZNF593
- 45	ENSBTAT00000021725	ENSG00000071243			YES			0.1764751	0.0158515	-2.502464	+	86211497	86237574	12 1380	ENSBTAG00000016332	inhibitor of growth family, member 3 [Source: HGNC Symbol: Acc: H	(ING3
46	ENSBIAT0000016693	ENSC0000090316			YES			2 9013876	0.016016	1536743	+	109330259	109343607	9 1243	ENSBTAG0000012575	macrophage eruthroblast attacher [Source: BefSeg pentide: Acc://	MAFA
47	ENGRTAT00000010772	ENEC00000129102			VEC			0.6720517	0.0175	0.571211		27995066	29005720	9 1772	ENERTACODODODE190	and or opining of your oblast at a one of poly of the foreign opinion in the foreign of the fore	CLIME?
41	ENSBIATO0000010773	EN360000123103			TEO			0.0130311	0.0115	-0.511211	*	21333000	20003120	3 1113	EN301AG0000000130	suiracase modifying ractoriz (bourde: holivic bymbol; Acc: holivic; 20	JOHEZ
- 48	ENSBTAT0000004477	ENSG0000099622			YES			437.50236	0.0189091	8.773147	+	45354486	45359172	: 7 3101	ENSBTAG0000007480	cold inducible RNA binding protein [Source:HGNC Symbol; Acc:HU	_ CIRBP
- 49	ENSBTAT0000003926	ENSG00000071655			YES			0.5235298	0.01934	-0.933657	-	45577377	45579729	4 615	ENSBTAG0000038409	methyl-CpG binding domain protein 3 [Source:HGNC Symbol; Acc	d MBD3
50	ENSBTAT0000037847	ENSG0000011007			VES			3 503487	0.0198284	1.8087915	-	129743823	129752821	4 1255	ENSBTAG0000026585	transcription elongation factor B (SIII), polypeptide 3 (110kDa, elong	TCEB3
E1	ENCRTATOOOOOCECEC	ENCC00000120949			VEC			0.0090479	0.0212196	C 70000E		42491409	42496469	C 1951	ENCRTAC00000002697	TAD DNA Listic service (Course UCNC Course) UCNC 4457	TADDDD
01	LINDDTAT0000005252	ENG00000120346			1EO			0.0030473	0.0213186	-0.100205	-	43401408	+3400450	0 1351	EN351AG0000003637	TAN DIVA DITUTING Protein (Cource: HENU ComportAcc: HENU: 1157	(IMHUDP
- 52	ENSBIA10000021204	ENSG00000117222			YES			3.466082	0.0215429	1.7933058	-	2694854	2733979	14 2536	EINSELAGUUUUUU15946	retinoblastoma binding protein 5 [Source:HGNU Symbol;Acc:HGN	(RBBP5
53	ENSBTAT00000027302	ENSG00000148411			YES			0.0365173	0.0216296	-4.775275	-	103572295	103607342	5 1758	ENSBTAG0000020490	NACC family member 2, BEN and BTB (POZ) domain containing [S	(NACC2
54	ENSBIAT0000006699	ENSG0000162298			YES			2 0348881	0.0250807	10249495	-	43997381	44003325	16 1914	ENSBTAG0000005076	suppyial apoptosis inhibitor 1 suppying [Source: HGNC Sumbol: Ac	SYVN1
55	ENSBTAT0000042292	ENSC0000010E272			VES			15107709	0.0257452	0.5952940		55089142	55097794	13 1514	ENSBTAG0000021192	aliamentumer autoresser expedidate region game 219-11-11-14000, He	CLTSCP2
- 30	EN301A10000043302	2145600000105373			160			1.0101100	0.0201400	0.0002040	-	33003143	- 30031734	0101	ENGDT #00000021132	gioma tumor suppressor candidate region gene 2 (Source: HGNU)	CODDTU
- 56	EN281A10000008030	ENSG000000072			YES			3.968874	0.0270781	1.9887298	-	3346617	3358272	6 1908	ENSBTAG0000006112	oprit-like IV-terminal domain [Source:HGIVU Symbol;Acc:HGIVU2]	4 SPRTN
57	ENSBTAT00000013706	ENSG00000094804			YES			0.4077818	0.0275998	-1.294131	+	41185975	41196948	12 2502	ENSBTAG00000010384	cell division cycle 6 [Source: HGNC Symbol; Acc: HGNC: 1744]	CDC6
58	ENSBTAT0000029119	ENSG00000196792			YES			0.340053	0.0285277	-1.556169	-	41964003	42070978	18 4071	ENSBTAG0000021845	striatin, calmodulin binding protein 3 [Source:HGNC Sumbol: Acorb	STRN3
59	ENSBIAT0000021643	ENSC0000139343			VES			0.3687495	0.0294318	-1439287		60556051	60564297	4 1299	ENSBTAG0000016271	small publicat riboru pleoprotein polypentide ElSource: HGNC Sum	SNDDF
- 33	ENODIA T0000002 1043	ENG00000103343			1LU UEO			0.0001400	0.0234310	1.433201	•	500500001	50304237	4 1233	ENGDTA 00000000271	Smain dolean bondoleoprotein polypepiden (bource: HGNC bym	DDWOA
- 60	EN3D1A10000004441	EN200000083131			TEO .			0.103826	0.0303503	-2.045426	-	00256632	- 53275Ubi	ij <u>3</u> 2007	EN3D1AG0000003423	DEAD (Asp-Giu-Ala-Asp) box nelicase 24 [Source:HGNU Symbol;	100824

61 ENSBIAT0000024621	ENSG0000102103	Y	'FS	0.0267102	0.031957	-5 226466 +	92092355	92098095	6	1397	ENSBIAGOOOOO18498	polugiutamine binding protein 1/Source: HGNC Sumbol: Acc: HGNC POBP1
62 ENSPTATO0000022220	ENSC0000149554		E0	26 956299	0.0320107	4 7525552 +	29402269	29420244	12	2261	ENSETAC00000017592	abaalmaint binding protein (Source: Howe Symbol, Acc. Howe P BDF 1
C2 ENCRTATO0000023300	ENGC00000193733	1	E0	20.330303	0.0320101	4.1020000 +	12012000	10010000	10	2201 I	ENSETAC000000011302	Checkpoint kinase r (bodice: holid: bythol, Acc. Holid: hozoj Check i
63 ENGDTAT00000011723	EN3600000103733	1 	E3	0.303130	0.0322033	-0.013135 +	10012010	10010000		005	ENSBIAG000000000000	rolliculogenesis specific DHLH transcription ractor [Dource: HUNU (FIGLA
64 ENSBIAT0000006673	ENSG00000171311	Y	E3	0.2763132	0.0343448	-1.042112 -	10522233	10520323		000	EN361AG00000012633	exosome component I (Bource: HUNU Bymbol; Acc: HUNU: 1720b) EXUBLI
65 ENSBIAT00000011468	ENSG0000182263	Y	E5	0.3510973	0.0388047	-1.510057 +	32850155	32852428		2274	ENSBTAG0000008704	hidgetin (Source: HGIVU Symbol; Acc: HGIVU: 13285) FIGN
66 ENSBIAT0000026442	ENSG0000189046	Y	ES	2725.705	0.0396397	11.412414 +	66234084	66239899	4	2047	ENSBTAG0000019846	alkB homolog 2, alpha-ketoglutarate-dependent dioxygenase [Sc ALKBH2
67 ENSBTAT00000022893	ENSG00000185163	Y	ES	10.103807	0.0446581	3.3368271 +	46015020	46021726	15	1660	ENSBTAG00000017219	DEAD (Asp-Glu-Ala-Asp) box polypeptide 51 (Source: HGNC Symt DDX51
68 ENSBTAT00000027125	ENSG00000136826	Y	ES	0.0011422	0.0452157	-9.773967 -	98843684	98847740	4	2343	ENSBTAG00000020355	Kruppel-like factor 4 (gut) [Source:HGNC Symbol; Acc:HGNC:634{ KLF4
69 ENSBTAT00000005134	ENSG00000121390	Y	ES	44.301962	0.0470105	5.4692987 +	36529631	36579763	9	1983	ENSBTAG0000003934	paraspeckle component 1 [Source: HGNC Symbol; Acc: HGNC: 203 PSPC1
70 ENSBTAT00000020093	ENSG00000136933 YES	YES		130.46886	0.0083122	7.0275617 +	96092486	96113995	7	1149	ENSBTAG00000015098	Rab9 effector protein with kelch motifs [Source: HGNC Symbol; Acc RABEPK
71 ENSBTAT0000005250	ENSG00000185664 YES	YES		0.4501991	0.0205022	-1.151365 +	57669835	57677941	11	2046	ENSBTAG0000004019	premelanosome protein [Source:HGNC Symbol:Acc:HGNC:10880] PMEL
72 ENSBTAT0000064455	ENSG00000184489	YES		0.1634848	0.0097756	-2.612772 -	3578346	3586015	5	1532	ENSBTAG0000046467	protein tyrosine phosphatase type IVA, member 3 [Source: HGNC S PTP4A3
73 ENSBIAT00000025173	ENSG00000172661	YES		12 908443	0.0162201	3 6902431 +	44495476	44542213	31	4104	ENSBTAG0000018915	WASH complex subunit EAM21/Source: BefSeg peptide: Acc: NP 1 0
74 ENSBIAT0000035505	ENS/G0000169446	YES		1361 3805	0.018348	10.410855 -	19576179	19585346	5	923	ENSBTAG0000025297	membrane magnesium transporter 1/Source: HGNC Symbol: Acc: H MMGT1
75 ENSBIAT0000004636	ENSG0000110171	VES		16 418434	0.0222347	4.0372446 +	47193828	47219561	12	2792	ENSBIAG0000003565	tripartite motif containing 3 [Source: HGNC Sumbol: Acc: HGNC: 100, TRIM3
76 ENSBIAT00000028836	ENSC0000198576	VES		0.8829855	0.0403111	-0.179538 +	2892788	2893978	1	1191	ENSBTAC0000021639	activity-regulated out-ofkelatery-accepted protein [Seuroe:HCN0.00 min/o
77 ENGRTAT00000042025	ENSC000011970E VES	160		0.0023033	0.040311	2.097002 1	0001/100	00000167	4	270	ENGDTAC00000021033	SDA store labor interesting DNA binding store interesting whether district and
70 ENCRTATO0000045055	ENSCODO0190992 VEC			0.1070770	0.0040300	-3.007003 +	17044407	17647000		1070	ENGBTAC000000011720	She stern coprinteracting his monolog protein, mitochondria (S) 0
10 ENODIATO000000000	EN3G00000160332 YES			0.1510113	0.0113643	-2.000001 -	1/044407	1/04/033	40	0744	ENSBIAG00000011760	mitochondriai ribosomai protein L 14 (Dource: HGNU Dymbol; Acc: HI MHPL 14
79 ENSBIAT0000003210	ENSG0000002822 YES			0.2358212	0.0123786	-1.757202 +	41535263	41/78055	18	2711	ENSBTAG0000002474	MAD I mitotic arrest deficient-like T(yeast) [Source:HGIVL Symbol; A MAD IL I
80 ENSBIA10000044604	ENSGUUUUU167799 YES			18.411771	0.0144342	4.2025565 -	46123752	46126289	4	917	ENSBIAG0000011809	nudix (nucleoside diphosphate linked moiety X)-type motif 8 [Sourc NUD18
81 ENSBTAT00000027841	ENSG00000136213 YES			23.321624	0.0146728	4.5435963 -	41372194	41390545	2	1839	ENSBTAG0000020898	carbohydrate (chondroitin 4) sulfotransferase 12 [Source:HGNC 5; CHST12
82 ENSBTAT00000024993	ENSG00000103160 YES			6.4229422	0.015835	2.6832343 -	10439489	10451245	6	3223	ENSBTAG00000018770	hydroxysteroid dehydrogenase like 1[Source:HGNC Symbol;Acc:HHSDL1
83 ENSBTAT00000019510	ENSG00000169682 YES			2.4628588	0.0167286	1.3003339 -	26126253	26134744	12	2189	ENSBTAG00000014653	spinster homolog 1 (Drosophila) (Source: HGNC Symbol; Acc: HGNC SPNS1
84 ENSBTAT00000012771	ENSG00000100890 YES			0.0395397	0.0175643	-4.660555 +	45821718	45953661	7	1936	ENSBTAG0000009682	LOC532995 protein; Uncharacterized protein [Source:UniProtKB/ 0
85 ENSBTAT00000011502	ENSG00000183605 YES			1.2602546	0.019208	0.3337152 -	39653449	39669981	14	1397	ENSBTAG0000008730	sideroflexin 4 [Source:HGNC Symbol;Acc:HGNC:16088] SFXN4
86 ENSBTAT00000061244	ENSG00000137700 YES			0.0685236	0.0204713	-3.867255 -	30122001	30127150	8	2110	ENSBTAG0000008077	solute carrier family 37 (glucose-6-phosphate transporter), membe SLC37A4
87 ENSBTAT00000061070	ENSG00000145431 YES			0.0267573	0.0205277	-5.223922 +	43348702	43457620	5	938	ENSBTAG0000043959	platelet derived growth factor C (Source: HGNC Symbol: Acc: HGNC PDGFC
88 ENSBIAT0000048747	ENSG00000164163 YES			0.2878889	0.0219952	-1.796416 -	13333870	13364710	18	2391	ENSBTAG0000019854	ATP-binding cassette, sub-family E (DABP), member 1 (Source: HCABCE1
89 ENSBIAT00000029032	ENSG0000133028 YES			0 7918704	0.0231404	-0.336664 -	30276156	30296404	6	3793	ENSBTAG0000021780	SCO1 outochrome o ovidese essemblu protein [Source: HGNC Sum SCO1
90 ENSBIAT0000004127	ENSC0000171612 VES			0.7054251	0.0237531	-0.503435 -	44801770	44831904	7	1447	ENSBTAG0000003177	colute parrier family 25 (purimidine publicatide parrier), member 331/ SL C25433
91 ENSETATO0000001917	ENSC00000172272 VES			3 2702694	0.0242947	1 7094095 +	24632930	24799416	27	4209	ENSETAC00000001462	taskurace. TDE1-interaction askurin-related ADD-vibace polymora. TNKS
92 ENCRTATO0000042EE7	ENSC0000070721 VES			1.6026506	0.0242341	0.004000 +	EE002007	EE000410		40001	ENGRTACODODO01405	Califyrase, Thi Finteracting ankyntherated Aberhibose polyhera; TVKO
32 ENGDIAT00000042537	ENGGODOOUTOTOT TES			0.7404545	0.0317013	0.0004000 +	3300330 r	33022120		023	ENGDTA C00000015255	DT0 (alpha-tv-acetyl-neuraminyl-2,0-beta-galactosyl-1,0)-tv-ace DT00ALIVAU
33 EN3BTAT00000034505	EN3G00000156042 YES			0.7404515	0.0313107	-0.410013 +	47004013	47005432		0011	EN361AG0000024781	335 ribosomal protein LTr, mitochondrial (Source: UniProtK.browiss U
94 ENSBIAT0000001379	ENSG0000066855 YES			0.864997	0.0360488	-0.209233 +	31735268	31794502	8	1852	ENSBTAG0000008629	mitochondrial fission regulator 1[Source:HGINU Symbol;Acc:HGINU PITERT
95 ENSBIAT0000005553	ENSGUUUUU120802 YES			0.0318515	0.0376983	-4.972497 +	63027194	63052802	(2356	ENSBIAG0000004240	thymopoletin [Source:HGNC Symbol;Acc:HGNC:11875] IMPU
96 ENSBTAT0000008388	ENSG00000196683 YES			0.0261096	0.0379617	-5.259275 -	89692607	89692771	1	165	ENSBTAG0000006398	translocase of outer mitochondrial membrane 7 homolog (yeast) [S TOMM7
97 ENSBTAT0000000378	ENSG00000198814 YES			0.8095261	0.0381665	-0.30485 +	111598716	111600550	1	1835	ENSBTAG00000000301	Glycerol kinase; Uncharacterized protein [Source:UniProtKB/TrEM 0
98 ENSBTAT0000002549	ENSG00000113048 YES			0.8375143	0.040067	-0.255814 +	9211237	9315274	11	2179	ENSBTAG00000001962	mitochondrial ribosomal protein S27 [Source:HGNC Symbol;Acc:HMRPS27
99 ENSBTAT00000029044	ENSG00000155008 YES			0.2425345	0.0405268	-2.043738 -	75160536	75265102	9	1236	ENSBTAG00000021790	apolipoprotein O-like [Source: HGNC Symbol; Acc: HGNC: 24009] APOOL
100 ENSBTAT00000064188	ENSG00000131495 YES			6.3962646	0.0418814	2.6772296 -	64586967	64587266	1	300	ENSBTAG0000047836	NADH dehydrogenase [ubiguinone] 1 alpha subcomplex subunit 2 0
101 ENSBTAT00000029827	ENSG00000164144 YES			6.5216893	0.0424265	2.7052457 -	4732242	4868678	9	3026	ENSBTAG0000008438	ADP-ribosvlation factor interacting protein 1/Source: HGNC Symbol ARFIP1
102 ENSBIAT00000016063	ENSG00000155287 YES			0.0560773	0.0424577	-4.15644 -	20466104	20476402	4	1146	ENSBTAG0000012107	solute carrier family 25 (mitochondrial iron transporter), member 28, SLC25A28
103 ENSBIAT0000007756	ENSG00000162337 YES			9 135145	0.0425081	3 1914276 +	46485172	46573460	22	5030 (ENSBIAG0000005903	low density linoprotein recentor-related protein 5 (Source: HGNC S 1 BP5
104 ENSBIAT00000016013	ENSG0000110717 VES			0.2316219	0.0460312	-2 110156 +	46205045	46208795	7	886	ENSBTAG0000012072	NADH debudrogenese (ubiguinone) Ee-S protein 8, 23/De (NADH, NDLIES8
105 ENSBIAT00000020333	ENSC0000119392 VES			0.69965	0.0464764	-0.515295 +	99077978	99103590	16	2436	ENSBIAGOOOOOO30566	CLE1DN0 outpart mediater [Seurce:HCNC Sumbel: Ape;HCNC:431 CLE1
106 ENGETAT00000049292	ENSC00000170962 VES			122 11225	0.0467291	E 92207E +	4501425	4799200	7	2055	ENSETAC00000024827	alexalex deviced execute (actors D (Second UCNC Symbol, Mod. 1010, 401 BEET
100 ENODIAT00000043232	EN300000110302 1123			122.11323	0.0401301	0.052010 +	4301433	9100300	1	2000	EN381A60000034021	platelet derived growth ractor b (Source, Horid, Symbol, Add, Horid, PDGFD
100 ENODIAT00000035036	EN3G00000137404 YES			0.0736306	0.0463574	-3.050523 -	2011073	20114705	4	10000	ENSETACIOUUUUUUUUUUUU	NECAD VICE A CONTRACT OF A CON
108 ENSBIA10000017663	ENSG00000157191 YES			0.8662606	0.0485823	-0.207127 -	136252384	136266397	8	2019	ENSBTAG0000013282	NECAP endocytosis associated 2 [Source:HGNU Symbol; Acc:HG NECAP2
109 ENSBTAT0000066249	ENSGUDDDDDDDDDDTDSD1 YES			5.6467589	0.0492745	2.497423 -	104673701	104696495	7	2667	ENSB (AG0000046671	Woltram syndrome 1 (woltramin) [Source: HGNC Symbol; Acc: HGNC WFS1
110 ENSBTAT00000011044				10.977035	0.0002071	3.4564165 +	219743	220147	1	405	ENSBTAG0000032198	Uncharacterized protein [Source:UniProtKB/TrEMBL;Acc:F1N150] 0
111 ENSBTAT00000065516				0.9621405	0.0003172	-0.055681 -	71676362	71677651	1	1290	ENSBTAG00000046463	0
112 ENSBTAT00000010089	ENSG0000026652			0.0494256	0.0005049	-4.338597 -	98239672	98376380	9	1886	ENSBTAG0000007668	1-acylglycerol-3-phosphate O-acyltransferase 4 [Source:HGNC § AGPAT4
113 ENSBTAT0000009283	ENSG00000110046			0.1667031	0.0012762	-2.584647 -	43752917	43757930	9	1224	ENSBTAG0000007058	autophagy related 2A [Source: HGNC Symbol; Acc: HGNC: 29028] ATG2A
114 ENSBTAT0000008606	ENSG00000171320			0.4819603	0.0013901	-1.053014 -	10859329	10885722	10	2972	ENSBTAG0000006551	ESCO2 protein; Uncharacterized protein [Source:UniProtKB/TrEM 0
115 ENSBTAT00000024759	ENSG0000095539			2.2374255	0.0015959	1.1618396 +	21677156	21690795	16	4269	ENSBTAG0000018604	sema domain, immunoglobulin domain (lg), transmembrane domain SEMA4G
116 ENSBTAT00000052263	ENSG00000158985			0.4781896	0.0018425	-1.064345 -	24318564	24436629	6	3306	ENSBTAG0000005961	CDC42 small effector 2 [Source: HGNC Symbol: Acc: HGNC: 18547] CDC42SE2
117 ENSBIAT0000064006	ENSG00000137720			5 1974376	0.0025845	2 3778005 +	22550859	22552378	3	609	ENSBTAG0000045821	Uncharacterized protein [Source: UniProtKB/TrEMB] :Acc: G3N352 0
118 ENSBIAT00000022481	ENSG0000197860			6.0090595	0.0029296	2 5871392 +	13805928	13851473	11	1115	ENSBTAG0000016902	small dutamine-rich tetratriconentide reneat (TPR)-containing, bo SGTR
119 ENSBTAT00000022401	ENSC0000180537			0.2878961	0.0020200	-179638 -	42467107	42467856	1	750	ENSBTAG00000045994	ring finger protein 182 [Source:HGND Sumbel: Ace;HGND:285221 DNE192
120 ENSBIAT00000045045	21455560000100551			0.2010301	0.0030021	-0.270397 -	21/97/00	21/97990		411	ENSBTAC00000043004	ning ninger protein roz (bourcet rorisc bymbol, Acctribitic, 20022) RNF IOZ
120 EN3DTAT0000045045				0.0230312	0.0030304	-0.270337[=	31437460	31431030	1	4.010	EN301AG00000031766	not not

8.9 Cattle DAVID analysis 1

X	Α	В	С	D	E	F	G	Н
1		Annotation Cluster 1	Enrichment Score: 2.273398306120239					
2	Genes	Category	Term	Count	%	PValue	Fold Enrich	Benjamini
3	ENSG00000113048, ENSG00000183605, ENSG00000132153, ENSG00000119705, ENSG00000180992, ENSG00000174547, ENSG00000197448, ENSG00000132835, ENSG00000	GOTERM_CC_FAT	GD:0005739 ^c mitochondrion	33	10.21672	3.60E-04	1.930577	0.049994
4	ENSG00000113048, ENSG00000183605, ENSG00000132153, ENSG00000119705, ENSG00000180992, ENSG00000174547, ENSG00000133028, ENSG00000171421, ENSG000001	SP_PIR_KEYWORDS	mitochondrion	28	8.668731	4.64E-04	2.081453	0.035555
5	ENSG00000137404, ENSG00000167283, ENSG00000155287, ENSG00000119392, ENSG00000131495, ENSG00000197448, ENSG00000116161, ENSG0000002822, ENSG00000	GOTERM_CC_FAT	GD:0031967" organelle envelope	22	6.811146	7.15E-04	2.256492	0.065694
6	ENSG00000137404, ENSG00000167283, ENSG00000155287, ENSG00000119392, ENSG00000131495, ENSG00000197448, ENSG00000116161, ENSG0000002822, ENSG00000	GOTERM_CC_FAT	GD:0031975 envelope	22	6.811146	7.45E-04	2.249236	0.051726
7	ENSG00000109501, ENSG00000137700, ENSG00000197448, ENSG00000133028, ENSG00000145431, ENSG00000185664, ENSG00000170962, ENSG00000173273, ENSG0000	GOTERM_CC_FAT	GD:0031090 organelle membrane	30	9.287926	0.003514	1.740658	0.181807
8	ENSG00000167283, ENSG00000155287, ENSG00000131495, ENSG00000197448, ENSG0000006695, ENSG00000133028, ENSG00000171612, ENSG00000110717, ENSG00000	GOTERM_CC_FAT	GD:0031966 mitochondrial membrane	15	4.643963	0.003636	2.421017	0.15888
9	ENSG0000167283, ENSG00000132153, ENSG00000155287, ENSG00000131495, ENSG00000174547, ENSG00000197448, ENSG00000104835, ENSG0000006695, ENSG0000	GOTERM_CC_FAT	GD:0044429° mitochondrial part	19	5.882353	0.005688	2.03067	0.150043
10	ENSG0000167283, ENSG00000155287, ENSG00000131495, ENSG00000197448, ENSG00000133028, ENSG00000171612, ENSG00000110717, ENSG00000155008, ENSG00000	GOTERM CC FAT	GO:0019866 organelle inner membrane	13	4.024768	0.005723	2.512755	0.138174
11	ENSG0000167283, ENSG00000155287, ENSG00000131495, ENSG00000197448, ENSG0000006695, ENSG00000133028, ENSG00000171612, ENSG00000110717, ENSG00000	GOTERM CC FAT	GD:0005740 mitochondrial envelope	15	4.643963	0.00621	2.276565	0.137518
12	ENSG00000171612 ENSG00000133028 ENSG00000167283 ENSG00000110717 ENSG00000155287 ENSG00000158042 ENSG00000155008 ENSG00000169682 ENSG00000	GOTERM CC FAT	GO:0005743' mitochondrial inner membrane	12	3.71517	0.008799	2.493805	0.17614
13	ENSG00000119705 ENSG00000180992 ENSG00000174547 ENSG00000014835 ENSG0000006695 ENSG00000133028 ENSG00000110717 ENSG000000171421 ENSG00000	UP SEQ FEATURE	transit peptide: Mitochondrion	13	4 024768	0.079682	1,710783	0.998904
14	ENSG00000119705 ENSG00000180932 ENSG00000174547 ENSG00000104835 ENSG0000006695 ENSG00000133028 ENSG00000110717 ENSG00000171421 ENSG00000	SP PIR KEYWORDS	transit pentide	13	4 024768	0.085751	1.68915	0.753051
15	ENSG00000171612 ENSG00000167283 ENSG00000155287 ENSG00000169682 ENSG00000131495 ENSG00000104980	SP PIB KEYWORDS	mitochondrion inner membrane	6	1857585	0.202068	1922763	0.843292
16		or <u>or an entre</u> internet	nikoononanon intermenistane			0.202000		0.010200
17		Annotation Cluster 2	Enrichment Score: 2.088331357171254					
18	Genes	Category	Term	Count	%	PValue	Fold Enrich	Beniamini
19	ENSG0000162144, ENSG00000185664, ENSG00000172661, ENSG00000186187, ENSG00000184489, ENSG00000169446, ENSG00000069974, ENSG00000135404, ENSG00000	SP PIR KEYWORDS	endosome	12	3.71517	6.05E-04	3.551132	0.037042
20	ENSG00000162144, ENSG00000185664, ENSG00000186187, ENSG00000184489, ENSG00000169446, ENSG00000069974, ENSG00000135404, ENSG00000110171, ENSG00000	GOTEBM CC FAT	GD:0005768'endosome	11	3 405573	0.026509	2.220674	0.362639
21	ENSG00000162144_ENSG00000186187_ENSG00000123643_ENSG0000069974_ENSG00000135404_ENSG00000155099_ENSG00000114742	SP. PIB. KEYWORDS	lusosome	7	2 167183	0.033889	2 905652	0.51184
22								
23		Annotation Cluster 3	Enrichment Score: 2.0042406789176077					
24	Genes	Category	Term	Count	%	PValue	Fold Enrich	Beniamini
25	ENSG00000120948 ENSG00000183733 ENSG00000071243 ENSG00000139343 ENSG00000132153 ENSG00000011007 ENSG00000089737 ENSG00000174547 ENSG00000	GOTEBM CC FAT	GD:00700137 intracellular organelle lumen	43	13 31269	0.0037	1537076	0.140091
26	ENSG00000120948 ENSG00000183733 ENSG00000071243 ENSG00000139343 ENSG00000132153 ENSG0000001007 ENSG00000089737 ENSG00000174547 ENSG00000	GOTEBM CC FAT	GD:0031974 [*] membrane-enclosed lumen	44	13 62229	0.004653	150757	0.153068
27	ENSG00000120948 ENSG00000183733 ENSG00000071243 ENSG00000139343 ENSG00000132153 ENSG0000001007 ENSG00000089737 ENSG00000174547 ENSG00000	GOTEBM CC FAT	GD:0043233 organelle lumen	43	13 31269	0.005565	1502449	0 161984
28	ENSG00000120948 ENSG00000183733 ENSG00000071243 ENSG00000139343 ENSG00000011007 ENSG00000088737 ENSG00000185163 ENSG00000034804 ENSG0000	GOTEBM CC FAT	GD:0031981"puclear lumen	35	10.83591	0.010242	153498	0.189073
29	ENSG00000183733 ENSG00000117222 ENSG00000136826 ENSG00000071243 ENSG00000139343 ENSG00000149554 ENSG00000148411 ENSG00000011007 ENSG00000	GOTEBM CC FAT	GD:0005654'nucleoplasm	20	6 19195	0.097056	1 441996	0.646254
30					0.10100	0.001000		0.010201
31		Annotation Cluster 4	Enrichment Score: 15772804042500475					
32	Genes	Category	Term	Count	%	PValue	Fold Enrich	Benjamini
33	ENSG00000162144_ENSG00000186187_ENSG00000068001_ENSG00000123643_ENSG00000069974_ENSG00000135404_ENSG00000155099_ENSG00000120053_ENSG0000	GOTEBM CC FAT	GD:00003231utic vacuole		2 786378	0.018001	2 712457	0.276436
34	ENSG00000162144 ENSG00000186187 ENSG00000068001 ENSG00000123643 ENSG00000069974 ENSG00000135404 ENSG00000155099 ENSG00000120053 ENSG0000	GOTEBM CC FAT	GD:0005764/lusosome	9	2 786378	0.018001	2 712457	0.276436
35	ENSG0000162144_ENSG00000186187_ENSG00000123643_ENSG0000069974_ENSG00000135404_ENSG00000155099_ENSG00000114742	SP. PIB. KEYWORDS	lusosome	7	2 167183	0.033889	2 905652	0 51184
36	ENSG000012/144 ENSG00000186187 ENSG00000068001 ENSG000001/3643 ENSG00000068974 ENSG00000135404 ENSG00000155039 ENSG00000120053 ENSG0000	GOTERM CC FAT	GD:0005773'vacuole	9	2 786378	0.044691	2 271144	0.515146
37					2.100010	0.011001		0.010110
38		Annotation Cluster 5	Enrichment Score: 1.3669326361639456					
39	Genes	Category	Term	Count	%	PValue	Fold Enrich	Benjamini
40	ENSG00000128951, ENSG00000103024, ENSG00000143156, ENSG00000125877, ENSG00000172113	SP PIR KEYWORDS	nucleotide metabolism	5	1.547988	2.61E-04	15.46222	0.026828
41	ENSG0000128951.ENSG00000103024.ENSG00000143156.ENSG00000172113	GOTEBM BP FAT	GO:0009147 pyrimidine nucleoside triphosphate metabolic pr	4	123839	0.001675	16.2401	0.912949
42	ENSG00000132664 ENSG00000128951 ENSG00000103024 ENSG00000094841 ENSG00000143156 ENSG00000125877 ENSG00000172113	KEGG PATHWAY	hsa00240 Purimidine metabolism	7	2 167183	0.002958	4 803644	0.280265
43	ENSG0000065057, ENSG00000128951, ENSG00000103024, ENSG00000143156, ENSG00000172113	GOTERM BP FAT	GD:0006220 pyrimidine nucleotide metabolic process	5	1.547988	0.003484	7.894491	0.921206
44	ENSG00000103024_ENSG00000143156_ENSG00000172113	UP SEQ FEATURE	active site: Pros-phosphohistidine intermediate	3	0.928793	0.003767	30,7283	0.966907
45	ENSG00000103024 ENSG00000143156 ENSG00000172113	SMART	SM00562:NDK	3	0.928793	0.006134	24 31875	0.513199
46	ENSG00000103024 ENSG00000143156 ENSG00000172113	INTERPRO	IPR001564:Nucleoside dinhosphate kinase, core	3	0.928793	0.006772	23 22351	0.971193
47	ENSG0000103024 ENSG00000143156 ENSG00000122113	GOTEBM ME EAT	GD:00045500 pucleoside diphosphate kinase activitu	3	0.928793	0.008778	20 41352	0 70984
48	ENSC0000128351 ENSC00000133024 ENSC00000143155 ENSC00000172113	GOTERM BR FAT	GD:0006213" purimidipe publicoside metabolic process	4	123839	0.009187	9 094454	0.965246
49	ENSC00001/3324 ENSC000014355 ENSC000012213	GOTERM BR FAT	G0:00460511 ITP metabolic process	3	0.928793	0.010145	18 94678	0.948665
50	ENSC0000103024 ENSC0000014355 ENSC00000122113	GOTERM BP FAT	GD:00061837GTP biosupthetic process	3	0.928793	0.010145	18 94678	0.948665
51	ENSG0000013324 ENSG00000133156 ENSG00000172113	GOTERM BP FAT	GD:00062281UTP biosynthetic process	3	0.928793	0.010145	18 94678	0.948665
52	ENSCOND01/3024 ENSCOND01/3/156 ENSCOND0017/1/3	GOTERM BP FAT	GD:0046036°CTP metabolic process	3	0.928793	0.012536	17 0521	0.953174
53	ENSCROND0113024 ENSCROND0143155 ENSCROND0177113	GOTERM BR FAT	GD:0009208" purimidine ribopu cleoside triphosphato motabal	3	0.928793	0.012536	17 0521	0.953174
54	ENSCROND113024 ENSCROND143156 ENSCROND17113	GOTERM BP FAT	GD:0003200 pyrimidine ribon ucleoside triphosphate metaboli	1	0.928793	0.012536	17.0521	0.953174
55	ENSCROND113024 (INSCROND143155 ENSCROND117113	GOTERM BR EAT	GO:0005200 pyrmiane riborid debside inprospriate biosyntr	3	0.928793	0.012536	17 0521	0.953174
56	ENSCRIDDD113024 ENSCRIDDD143155 ENSCRIDDD0172113	GOTERM BR FAT	GD:0009148 purimidine publicacide triphosphate biographetic	3	0.928793	0.017969	14 21009	0.946779
57	ENSCRIDDD113024_ENSCRIDDD11315E_ENSCRIDDD112113	COTEDM BD FAT	GO:0000140 pyrimiane nacieoside aprospriate biosynthetic	3	0.928799	0.017969	14.21000	0.946776
58	ENSCOND00122664 (HISCOND0013024 ENSCOND00112541 ENSCOND00138363 ENSCOND0142156 ENSCOND00125877 ENSCOND00172113	KECC DATHWAY	kes00230-During metabolic process	7	2 167183	0.02759	2 982655	0.788343
59		COTEDM BD FAT	SD:0009220 purimidine rihanu aleatide biogunthatia process	2	0.928792	0.027619	11 36203	0.975453
60	ENSCONDUIT3024 ENSCONDUIT3156 ENSCONDUIT2113	COTEDM BD FAT	CO:0003220 pyrimiane ribonucleotide biosynthetic process	2	0.020100	0.021013	10.65759	0.010400
00	Enabledee 103024, Enabledee 143130, Enabledee 112113	COLCHPLOP_PAT	100.00032 to pyrmitaine ribonacieotae metabolic process		0.320133	0.001200	10.03130	0.000000

			-	_				
61	ENSC00000103024_ENSC00000143156_ENSC00000172113	GOTERM BR FAT	GO:0046131 purimidipe ribopucleoside metabolic process	- 9	0.928793	0.034965	10.03065	0.952558
01		COTEDM DD FAT	CO.00000017		0.020100	0.054303	7.750055	0.002000
02	EN3600000103024, EN3600000143156, EN3600000172113	GUIERM_DP_FAI	GU:0006221 pyrimiaine nucleotide biosynthetic process	3	0.320133	0.056103	1.100300	0.365363
63	ENSG0000006695, ENSG00000167283, ENSG00000103024, ENSG00000138363, ENSG00000060982, ENSG00000105835, ENSG00000120053, ENSG00000014919, ENSG0000	GOTERM_BP_FAT	GU:004427T nitrogen compound biosynthetic process	11	3.405573	0.059918	1.923827	0.968574
64	ENSG00000103024, ENSG00000143156, ENSG00000172113	GOTERM_MF_FAT	GO:0016776 phosphotransferase activity, phosphate group a	3	0.928793	0.10001	5.567324	0.903171
65	ENSG00000128951 ENSG00000103024 ENSG00000143156 ENSG00000172113	GOTERM BP FAT	GO 0009116 nucleoside metabolic process	4	123839	0.101857	3 552521	0.983692
66	ENSC00000167283 ENSC00000103024 ENSC00000138363 ENSC00000143156 ENSC00000172113	COTEDM BD FAT	GO:0009152" nuring ribonu glastida biogunthatia proposo	Ġ	1547988	0.149619	2 4 2 9 0 7 4	0.976379
00		COTEDM ME FAT	CO 001020 painte riboriacie dae biosynthetic process		0.000700	0.154045	4.970500	0.010010
07	EN3600000 103024, EN3600000 143 156, EN3600000 172 113	GUIERM_MF_FAI	GU:0013203 nucleobase, nucleoside, nucleotide kinase acti	3	0.320733	0.154345	4.272530	0.333764
68	ENSG00000167283, ENSG00000103024, ENSG00000138363, ENSG00000143156, ENSG00000172113	GOTERM_BP_FAT	GD:0009260 ribonucleotide biosynthetic process	5	1.547988	0.173047	2.291949	0.982895
69	ENSG00000103024, ENSG00000143156, ENSG00000172113	GOTERM_BP_FAT	GO:0009119 ribonucleoside metabolic process	3	0.928793	0.192561	3.706978	0.985963
70	ENSG00000167283 ENSG00000128951 ENSG00000103024 ENSG00000143156 ENSG00000172113	GOTERM BP_EAT	GO:0009141 pucleoside triphosphate metabolic process	5	1547988	0 197644	2 169478	0.985281
71	ENSC00000157283 ENSC00000103024 ENSC00000138363 ENSC00000143156 ENSC00000172113	COTEDM BD FAT	GO:0009150" nurine ribenuele stide metabolie process		1547988	0.22323	2.059432	0.985413
70		COTEDM DD FAT	CO.0000100 pullie inbolidoleoide inecabolic process		1.041000	0.22323	1000550	0.005005
12	ENSG00000167283, ENSG00000103024, ENSG00000138363, ENSG00000143196, ENSG00000172113	GUIERM_BP_FAI	GU:0003 Ibb nucleotide biosynthetic process	6	1.057505	0.227444	1.033553	0.365325
73	ENSG00000167283, ENSG00000103024, ENSG00000143156, ENSG00000172113	GOTERM_BP_FAT	GD:0003205 purine ribonucleoside triphosphate biosynthetic	4	1.23839	0.246274	2.320014	0.985012
74	ENSG00000167283, ENSG00000103024, ENSG00000138363, ENSG00000105835, ENSG00000143156, ENSG00000172113	GOTERM_BP_FAT	GD:0034404 nucleobase, nucleoside and nucleotide biosyn	6	1.857585	0.250047	1.767057	0.985475
75	ENSG00000167283 ENSG00000103024 ENSG00000138363 ENSG00000105835 ENSG00000143156 ENSG00000172113	GOTERM BP FAT	GD:0034654 public base, publicoside, publicatide and public	6	1857585	0.250047	1767057	0.985475
76	ENSC0000157293 ENSC00000103024 ENSC000001/3156 ENSC00000172113	COTEDM BD FAT	CO:0009145" nurine nucleoside trinkesekate kiesuntketie pre	4	123939	0.250971	2 296579	0.994494
77		COTENILOF_IMI	CO. 0000140 pullite riddledside (iphosphate biosynthetic pro	4	1.23033	0.230311	2.230313	0.004404
	EN3600000167283, EN3600000103024, EN3600000143156, EN3600000172113	GUIERM_BP_FAI	GU:0003201 ribonucleoside triphosphate biosynthetic proces	4	1.23833	0.250971	2.236573	0.384484
78	ENSG00000167283, ENSG00000103024, ENSG00000138363, ENSG00000143156, ENSG00000172113	GOTERM_BP_FAT	GD:0009259 ribonucleotide metabolic process	5	1.547988	0.257286	1.933345	0.983829
79	ENSG00000167283, ENSG00000103024, ENSG00000138363, ENSG00000143156, ENSG00000172113	GOTERM_BP_FAT	GD:0006164" purine nucleotide biosynthetic process	5	1.547988	0.261135	1.920282	0.983726
80	ENSC00000167283 ENSC00000103024 ENSC00000143156 ENSC00000172113	GOTERM BR FAT	GO 0009142 publicoside triphosphate biosupthetic process	4	123839	0.265139	2 229033	0.984288
91	ENSCORDONIE7293 ENSCORDON/02024 ENSCORDON/042155 ENSCORDON/72113	COTEDM PD FAT	CO:0009205" ev vice vice vice side tripheen hate metabolie ev	4	1 22929	0.226926	1943259	0.999103
01		GOTERM_DP_FAT	GO.0003203 purine ribonucieoside tripnosphate metabolic pi	4	1.23033	0.330330	1.343233	0.300103
82	ENSGUUUUU167283, ENSGUUUUU103024, ENSGUUUUU143156, ENSGUUUUU172113	GUIERM_BP_FAI	GU: UUU9199 ribonucleoside triphosphate metabolic process	4	1.23839	0.341737	1.926791	0.987867
83	ENSG00000167283, ENSG00000103024, ENSG00000143156, ENSG00000172113	GOTERM_BP_FAT	GO:0009144" purine nucleoside triphosphate metabolic proce	4	1.23839	0.36091	1.863618	0.987778
84	ENSG00000167283. ENSG00000103024. ENSG00000138363. ENSG00000143156. ENSG00000172113	GOTERM BP FAT	GO:0006163' purine nucleotide metabolic process	5	1.547988	0.410751	1.527966	0.991877
85			· · · · ·					
90		Annestation Chuster 6	Envictment Course 1 2624076020202662					
07	Second	Annotation cluster o	T	C		DULL	E 11E - 11	D
01	Genes	Lategory	lerm	Count	7.	Pvalue	r old Enrich	Denjamini
88	ENSG0000006695, ENSG00000133028, ENSG00000014919	GOTERM_BP_FAT	GU:0008535" respiratory chain complex IV assembly	3	0.928793	0.007982	21.31513	0.979548
89	ENSG0000006695, ENSG00000133028, ENSG00000145431, ENSG00000110717, ENSG00000171368, ENSG00000167552, ENSG00000014919	GOTERM_BP_FAT	GO:0043623' cellular protein complex assembly	7	2.167183	0.065603	2.456064	0.970647
00	ENCERPROPORTED ENCERPROPORTED ENCERPROPAGE AND ENCERPROPORTED ENCE	COTTON DO LLT				0.000545	1 450700	0.997094
- 211		LITTERM BE FAL	1.5 FULLINDERT dependion of precursor metabolites and energy	1	2.47678	11303545	1932(00)	11.30(1104)
90	ENSEUUUUUU6635, ENSEUUUU 13228, ENSEUUUU 16214, ENSEUUUU 167283, ENSEUUUU 10717, ENSEUUUU 131435, ENSEUUUU 12053, ENSEUUUU 14313	GUIERM_BP_FAI	GU:UUUbU3T generation of precursor metabolites and energy	8	2.47678	0.309545	1.452700	0.301004
90	ENSCUUUUUU6655, ENSCUUUU ISSU28, ENSCUUUUU I62144, ENSCUUUU I67263, ENSCUUUU I10777, ENSCUUUUU IS1455, ENSCUUUUU I20053, ENSCUUUUU 14313	GUIERM_BP_FAI	GU: UUUbU3T generation of precursor metabolites and energy	8	2.47678	0.309545	1.452700	0.301004
90 91 92		Annotation Cluster 7	Enrichment Score: 1.2598047353013444	-	2.47678	0.309545	1.452700	0.301004
90 91 92 93	ENGEGUUUUU0655, ENGEGUUUU IS3028, ENGEGUUUU I62 H4, ENGEGUUUU I6723, ENGEGUUUU IN717, ENGEGUUUU IS1435, ENGEGUUUU I2005, ENGEGUUUU I4313 Genes	Annotation Cluster 7 Category	GU:000003T generation of precursor metabolites and energy Enrichment Score: 1.2598047353013444 Term	t Count	2.47678	PValue	Fold Enrich	Benjamini
90 91 92 93 94	ENSG0000006653, ENSG00000133028, ENSG00000162144, ENSG0000016783, ENSG00000101717, ENSG00000131435, ENSG00000120053, ENSG0000014313 Genes ENSG00000146587, ENSG00000175835, ENSG00000071243, ENSG00000183605, ENSG00000213588, ENSG00000180537, ENSG00000100722, ENSG0000010539, ENSG00000012308, ENSG00000100722, ENSG0000010539, ENSG000000123588, ENSG00000180537, ENSG00000100722, ENSG00000010539, ENSG000000123588, ENSG00000180537, ENSG00000100722, ENSG00000110539, ENSG00000114588, ENSG00000110537, ENSG00000100722, ENSG00000110539, ENSG000000114588, ENSG0000011000001100000000000000000000000	GUTERM_BP_FAT Annotation Cluster 7 Category GOTERM_MF_FAT	GU: UUUbUS1 generation of precursor metabolites and energy Enrichment Score: 1.2598047353013444 Term GU: 0046914 ⁴ transition metal ion binding	8 Count 62	2.47678 % 19.19505	0.309545 PValue 0.006175	Fold Enrich 1.363345	Benjamini 0.728527
90 91 92 93 94 95	ENSEQUUUDU06537, ENSEQUUUD133028, ENSEQUUUD0162144, ENSEQUUUD167283, ENSEQUUUD16717, ENSEQUUUD131435, ENSEQUUUD131435, ENSEQUUUD16717, ENSEQUUUD131435, ENSEQUUUD16717, ENSEQUUUD131435, ENSEQUUUD16717, ENSEQUUUD16737, ENSEQUUUD16717, ENSEQUUUD16737, ENSEQUUUD17377, ENSEQUUUD173777777777	GOTERM_BP_FAT Annotation Cluster 7 Category GOTERM_MF_FAT SP_PIB_KEYWORDS	EuCloubbly1 generation of precursor metabolites and energy Enrichment Score: 1.2598047353013444 Term CC:0046314 'transition metal ion binding metal-binding	Count 62 65	2.47678 % 19.19505 20.12384	0.309545 PValue 0.006175 0.008338	Fold Enrich 1.363345 1.352684	Benjamini 0.728527 0.278586
90 91 92 93 94 95 96	ENSG0000006535, ENSG00000173028, ENSG000000162144, ENSG00000167283, ENSG00000116717, ENSG00000180537, ENSG00000100722, ENSG0000010539, ENSG00000100722, ENSG0000010539, ENSG0000010000000000000000000000000000000	GOTERM_BP_FAT Annotation Cluster 7 Category GOTERM_MF_FAT SP_PIR_KEYWORDS SP_PIR_KEYWORDS	CLI:UUDUST generation of precursor metabolites and energy Enrichment Score: 1.2538047353013444 Term CCI:0046314' transition metal ion binding metal-binding transfinger	62 Count 62 65	2.47678 19.19505 20.12384 12.3839	0.309545 PValue 0.006175 0.008338 0.018422	Fold Enrich 1.363345 1.352684 1.44002	Benjamini 0.728527 0.278586 0.40985
90 91 92 93 94 95 96 97	ENSEQUUUDU06557, ENSEQUUUD133028, ENSEQUUUD162144, ENSEQUUUD16728, ENSEQUUUD16717, ENSEQUUUD13455, ENSEQUUUD13455, ENSEQUUUD134557, ENSEQUUUT13457, ENSEQUUUT134577, ENSEQUUUT13	GOTERIM_BP_FAT Annotation Cluster 7 Category GOTERM_MF_FAT SP_PIR_KEYWORDS SP_PIR_KEYWORDS	Enrichment Score: 1.2598047353013444 Term CD:0046314 transition metal ion binding metal-binding zino-finger	62 Count 65 40	2.47678 19.19505 20.12384 12.3839	0.303545 PValue 0.006175 0.008338 0.018422 0.121972	Fold Enrich 1.363345 1.352684 1.44002	Benjamini 0.728527 0.278586 0.40985 0.770517
90 91 92 93 94 95 96 97	ENSG0000006535, ENSG00000133028, ENSG00000162144, ENSG0000016743, ENSG0000016717, ENSG00000180537, ENSG00000100722, ENSG0000010539, ENSG0000010000000000000000000000000000000	GOTERM_BP_FAT Annotation Cluster 7 Category GOTERM_MF_FAT SP_PIR_KEYWORDS SP_PIR_KEYWORDS SP_PIR_KEYWORDS	ELLUUDUUT generation of precursor metabolites and energy Enrichment Score: 1.2538047353013444 Term GC:0046914 'transition metal ion binding metal-binding zino-finger zino-compared and binding	Count 62 65 40 43	2.47678 19.19505 20.12384 12.3839 13.31269	0.309545 PValue 0.006175 0.008338 0.018422 0.131972	Fold Enrich 1.363345 1.352684 1.44002 1.214939	Benjamini 0.728527 0.278586 0.40985 0.770517
90 91 92 93 94 95 96 97 98	ENSEQUUUDU6655, ENSEQUUUD133028, ENSEQUUUD162144, ENSEQUUUD167283, ENSEQUUUD16717, ENSEQUUUD131435, ENSEQUUUD131233, ENSEQUUUD131233, ENSEQUUUD131233, ENSEQUUUD131233, ENSEQUUUD131233, ENSEQUUUD131233, ENSEQUUUD131435, ENSEQUUUD131233, ENSEQUUUD131334, ENSEQUUUD131334, ENSEQUUUD131334, ENSEQUUUD131334, ENSEQUUUD131334, ENSEQUUUD131334, ENSEQUUUD131334, ENSEQUUUD131334, ENSEQUUUD131334, ENSEQUUUD131343, ENSEQUUUD131343, ENSEQUUUD131343, ENSEQUUUD131343, ENSEQUUUD131334, ENSEQUUUD131334, ENSEQUUUD131343, ENSEQUUUD131343, ENSEQUUUD131343, ENSEQUUUD131343, ENSEQUUUD131343, ENSEQUUUD131343, ENSEQUUUD131343, ENSEQUUUD131343, ENSEQUUUD131343, ENSEQUUUD131344, ENSEQUUUD131344, ENSEQUUUD131344, ENSEQUUUD131344, ENSEQUUUD131344, ENSEQUUUD131344, ENSEQUUUD131344, ENSEQUUUD1334, ENSEQUUUD1334, ENSEQUUUD1334, ENSEQUUUD131344, ENSEQUUUD131344, ENSEQUUUD131344, ENSEQUUUD13344, ENSEQ	GUTEHM_BP_FAT Annotation Cluster 7 Category GOTERM_MF_FAT SP_PIR_KEYWORDS SP_PIR_KEYWORDS SP_PIR_KEYWORDS GOTERM_MF_FAT	Eur. UUUUUUU generation of precursor metabolites and energy Enrichment Score: 1.2538047353013444 Term GC:0046314 'transition metal ion binding metal-binding zino-finger zino GC:0008270'zino ion binding	8 Count 62 65 40 43 45	2.47678 19.19505 20.12384 12.3839 13.31269 13.93189	0.309545 PValue 0.006175 0.008338 0.018422 0.131972 0.140998	Fold Enrich 1.363345 1.352684 1.44002 1.214939 1.192482	Benjamini 0.728527 0.278586 0.40985 0.770517 0.930474
90 91 92 93 94 95 96 97 98 99	ENSEQUUUDU06555, ENSEQUUUD153028, ENSEQUUUD0162144, ENSEQUUUD167283, ENSEQUUUD16717, ENSEQUUUD151455, ENSEQUUUD0153028, ENSEQUUUD016733, ENSEQUUUD016737, ENSEQUUUD017537, ENSEQUUUD017533, ENSEQUUUD017533, ENSEQUUUD017533, ENSEQUUUD017537, ENSEQUUUD017537, ENSEQUUUD017537, ENSEQUUUD017533, ENSEQUUUD017533, ENSEQUUUD017537, ENSEQUUUD017537, ENSEQUUUD017533, ENSEQUUUD017533, ENSEQUUUD017533, ENSEQUUUD017533, ENSEQUUUD017533, ENSEQUUUD017533, ENSEQUUUD017537, ENSEQUUUD017537, ENSEQUUUD017533, ENSEQUUUD017533, ENSEQUUUD017533, ENSEQUUUD017537, ENSEQUUUD017537, ENSEQUUUD017533, ENSEQUUUD017533, ENSEQUUUD017533, ENSEQUUUD017533, ENSEQUUUD017533, ENSEQUUUD017533, ENSEQUUUD017533, ENSEQUUUD017537, ENSEQUUUD017537, ENSEQUUUD017533, ENSEQUUUD017533, ENSEQUUUD017537, ENSEQUUUD017537, ENSEQUUUD017533, ENSEQUUUD017533, ENSEQUUUD017537, ENSEQ	GUTERM_BP_FAT Annotation Cluster 7 Category GOTERM_MF_FAT SP_PIR_KEYWORDS SP_PIR_KEYWORDS SP_PIR_KEYWORDS GOTERM_MF_FAT GOTERM_MF_FAT	ELLOUDDUST generation of precursor metabolites and energy Enrichment Score: 1.2538047353013444 Term GC:0046314 'transition metal ion binding metal-binding zino-finger zino GC:0008270 'zino ion binding GC:0048372' metal ion binding	8 Count 62 65 40 43 45 76	2.47678 19.19505 20.12384 12.3839 13.31269 13.93189 23.52941	0.309545 PValue 0.006175 0.008338 0.018422 0.131972 0.140998 0.141487	Fold Enrich 1.363345 1.352684 1.44002 1.214939 1.192482 1.124223	Benjamini 0.728527 0.278586 0.40985 0.770517 0.930474 0.923388
90 91 92 93 94 95 96 97 98 97 98 99 98 99 100	ENSE0000006555, ENSE00000133028, ENSE00000162144, ENSE0000016745, ENSE000001717, ENSE0000013455, ENSE00000100722, ENSE00000014518 ENSE00000146587, ENSE00000175895, ENSE00000071243, ENSE00000133024, ENSE00000123588, ENSE00000180537, ENSE00000100722, ENSE000001533, ENSE0000 ENSE00000146587, ENSE00000175895, ENSE00000071243, ENSE00000186187, ENSE00000123588, ENSE00000180537, ENSE0000010722, ENSE0000017239, ENSE00000120539, ENSE0000017243, ENSE00000186187, ENSE00000180537, ENSE0000017243, ENSE000001243, ENSE00000123588, ENSE00000180537, ENSE0000017243, ENSE00000186187, ENSE0000012558, ENSE00000180537, ENSE0000017243, ENSE00000186187, ENSE0000012558, ENSE00000180537, ENSE0000017243, ENSE00000186187, ENSE0000012541, ENSE0000012537, ENSE0000017243, ENSE00000186187, ENSE0000012541, ENSE0000012538, ENSE0000017243, ENSE0000017243, ENSE0000012541, ENSE0000012538, ENSE0000017243, ENSE0000017243, ENSE0000012541, ENSE0000012538, ENSE00000180537, ENSE0000017243, ENSE0000017243, ENSE0000012541, ENSE0000012538, ENSE0000017243, ENSE0000017243, ENSE0000012541, ENSE0000012538, ENSE0000017243, ENSE0000017243, ENSE0000017244, ENSE00000172541, ENSE0000012538, ENSE0000017243, ENSE0000017243, ENSE00000172541, ENSE0000012538, ENSE0000017243, ENSE0000017243, ENSE00000172541, ENSE0000012538, ENSE0000017243, ENSE0000017243, ENSE0000017244, ENSE0000017254, ENSE0000012538, ENSE0000017243, ENSE0000017243, ENSE0000017244, ENSE0000017244, ENSE0000017344, ENSE0000017344, ENSE0000017344, ENSE0000017244, ENSE0000017244, ENSE0000017344, ENSE0000017344, ENSE0000017243, ENSE0000017344, ENSE0000017344, ENSE0000017344, ENSE0000017344, ENSE0000017344, ENSE0000017344, ENSE0000017344, ENSE0000017344, ENSE0000017244, ENSE0000017344, ENSE00000107344, ENSE0000	GUTEHM_BP_FAT Annotation Cluster 7 Category GOTERM_MF_FAT SP_PIR_KEY-WORDS SP_PIR_KEY-WORDS GOTERM_MF_FAT GOTERM_MF_FAT GOTERM_MF_FAT	ELL/0000001 generation of precursor metabolites and energy Enrichment Score: 1.2538047353013444 Term GD:0046314 transition metal ion binding metal-binding zino-finger zino GD:00468727 metal ion binding GD:00468727 metal ion binding GD:0046875 reation binding	Count 62 65 40 43 76 76	2.47678 19.19505 20.12384 12.3839 13.31269 13.93189 23.52941 23.52941	U.303545 PValue 0.006175 0.008338 0.018422 0.131972 0.140398 0.141487 0.16333	Fold Enrich 1.363345 1.352684 1.44002 1.214339 1.192482 1.124223 1.113731	Benjamini 0.728527 0.278586 0.40985 0.770517 0.930474 0.923388 0.938686
90 91 92 93 94 95 96 97 98 97 98 93 100	ENSEQUUUDU0655, ENSEQUUUD133028, ENSEQUUUD17243, ENSEQUUUD167283, ENSEQUUUD1777, ENSEQUUUD13455, ENSEQUUUD13455, ENSEQUUUD13455, ENSEQUUUD13455, ENSEQUUUD134557, ENSEQUUUD1345, ENSEQUUUD134557, ENSEQUUUD134557, ENSEQUUUD1345, ENSEQUUUD13545, ENSEQUUUD13557, ENSEQUUUD1345, ENSEQUUUD13545, ENSEQUUUD134557, ENSEQUUUD1345, ENSEQUUUD13545, ENSEQUUUD1345,	GUTERM_BP_FAT Annotation Cluster 7 Category GOTERM_MF_FAT SP_PIR_KEYWORDS SP_PIR_KEYWORDS GOTERM_MF_FAT GOTERM_MF_FAT GOTERM_MF_FAT GOTERM_MF_FAT	ELL/0000021 generation of precursor metabolites and energy Enrichment Score: 1.2598047353013444 Term GC:0046314 'transition metal ion binding metal-binding zino-finger zino GC:0008270 zinci on binding GC:00431857 eation binding GC:00431857 eation binding GC:00431857 eation binding	8 Count 65 40 43 45 76 76 76 76	2.47678 19.19505 20.12384 12.3839 13.31269 13.33189 23.52941 23.52941	PValue 0.006175 0.008338 0.018422 0.131972 0.140938 0.141487 0.16393 0.20392	Fold Enrich 1.363345 1.352684 1.44002 1.214939 1.192482 1.192482 1.113731 1.097449	Benjamini 0.728527 0.278586 0.40985 0.770517 0.930474 0.923388 0.938686 0.945494
90 91 92 93 94 95 96 97 98 99 100 101	ENSE0000016653; ENSG000017585; ENSG0000017243; ENSG00000183605; ENSG0000013024; ENSG00000180537; ENSG00000100722; ENSG0000017533; ENSG0000017534; ENSG00000175	GUTERM_BP_FAT Annotation Cluster 7 Category GOTERM_MF_FAT SP_PIR_KEYWORDS SP_PIR_KEYWORDS SOTERM_MF_FAT GOTERM_MF_FAT GOTERM_MF_FAT GOTERM_MF_FAT	CL1:0005091 generation of precursor metabolites and energy Enrichment Score: 1.2538047353013444 Term CD:0046314 transition metal ion binding metal-binding zino-finger zino CD:0048872 metal ion binding CD:0048872 metal ion binding CD:00443167 sotion binding GD:0043167 ion binding	8 Count 65 40 43 45 76 76 76 76	2.47678 19.19505 20.12384 12.3839 13.31269 13.33189 23.52941 23.52941	V.303545 PValue 0.006175 0.008338 0.018422 0.131972 0.140938 0.141487 0.16393 0.20392	Fold Enrich 1.363345 1.352684 1.44002 1.214939 1.192482 1.192482 1.124223 1.113731 1.097449	Benjamini 0.728527 0.278586 0.40985 0.770517 0.930474 0.923388 0.938686 0.9345494
90 91 92 93 94 95 96 97 98 99 100 101 102	ENSE0000016857, ENSE00000175855, ENSE0000017243, ENSE0000018765, ENSE000001777, ENSE00000180537, ENSE00000100722, ENSE0000014733 ENSE00000146587, ENSE00000175855, ENSE00000071243, ENSE0000013024, ENSE0000012588, ENSE00000180537, ENSE0000010722, ENSE0000010533, ENSE0000010533, ENSE00000100722, ENSE0000010533, ENSE00000100722, ENSE00000100723, ENSE00000100723, ENSE00000100723, ENSE00000100724, ENSE00000174587, ENSE0000017243, ENSE0000017437, ENSE0000012538, ENSE0000012537, ENSE0000010722, ENSE0000017253, ENSE0000017253, ENSE0000017243, ENSE0000016817, ENSE0000012538, ENSE00000100724, ENSE0000017258, ENSE0000017243, ENSE0000016817, ENSE0000012588, ENSE0000012588, ENSE00000174174, ENSE0000017439, ENSE0000017439, ENSE0000017439, ENSE0000017439, ENSE0000017439, ENSE0000012588, ENSE0000012588, ENSE0000017447, ENSE0000017439, ENSE0000017439, ENSE0000017588, ENSE0000017588, ENSE0000017439, ENSE0000017439, ENSE0000017588, ENSE0000017588, ENSE0000017447, ENSE0000017439, ENSE0000017588, ENSE0000017588, ENSE000001722, ENSE000001722, ENSE0000017588, ENSE0000017589, ENSE000001722, ENSE0000017589, ENSE00000100722, ENSE0000018560, ENSE0000017589, ENSE00000180537, ENSE00000100722, ENSE0000018560, ENSE0000013589, ENSE00000180537, ENSE00000100722, ENSE00000018560, ENSE0000013589, ENSE00000180537, ENSE000000100722, ENSE00000018560, ENSE00000013589, ENSE0000	GOTERINGBP_FAT Annotation Cluster 7 Category GOTERIM_MF_FAT SP_PIR_KEVWORDS SP_PIR_KEVWORDS SOTERIM_MF_FAT GOTERIM_MF_FAT GOTERIM_MF_FAT GOTERIM_MF_FAT	EUL0000091 generation of procursor metabolites and energy Enrichment Score: 1.2598047353013444 Term GD:0046314" transition metal ion binding metal-binding zino-finger zino GD:0046372 metal ion binding GD:00431677 carton binding GD:00431677 carton binding GD:00431677 ion binding GD:00431677 ion binding GD:00431677 ion binding	8 62 65 40 43 45 76 76 76	2.47678 19.19505 20.12384 12.3839 13.31269 13.32189 23.52941 23.52941	PValue 0.006175 0.008338 0.018422 0.131972 0.140938 0.141487 0.16393 0.20392	Fold Enrich 1.363345 1.352684 1.44002 1.214939 1.192482 1.192482 1.124223 1.113731 1.097449	0.337034 Benjamini 0.728527 0.278586 0.40985 0.770517 0.930474 0.923388 0.336866 0.345434
90 91 92 93 94 95 96 97 98 99 100 101 102 103	ENSE00000146587, ENSG00000175895, ENSG00000071243, ENSG00000183605, ENSG0000013024588, ENSG00000180537, ENSG00000100722, ENSG0000017539, ENSG0000017534, ENSG0	GOTERM/CBP_FAT Annotation Cluster 7 Category GOTERM_MF_FAT SP_PIR_KEYWORDS SP_PIR_KEYWORDS SP_PIR_KEYWORDS SP_PIR_KEYWORDS GOTERM_MF_FAT GOTERM_MF_FAT GOTERM_MF_FAT GOTERM_MF_FAT	CL1:0000091 generation of precursor metabolites and energy Enrichment Score: 1.2538047353013444 Term CD:0046314 transition metal ion binding metal-binding CD:00463172 metal ion binding CD:00468727 metal ion binding CD:0046875 eation binding GD:00443167 ion binding GD:0043167 ion binding GD:0043167 ion binding CD:0043167 ion binding CD:0043167 ion binding	Count 62 65 40 43 45 76 76 76	2.47678 19.19505 20.12384 12.3839 13.31269 13.93189 23.52941 23.52941 23.52941	PValue 0.006175 0.008388 0.018422 0.131972 0.140998 0.141487 0.16393 0.20392	Fold Enrich 1.363345 1.352684 1.44002 1.214939 1.192482 1.124223 1.113731 1.097449	Benjamini 0.728527 0.278586 0.40985 0.770517 0.930474 0.932388 0.938686 0.938686
90 91 92 93 94 95 96 97 98 99 100 101 102 103 104	ENSEQUUUDU0655, ENSEQUUUD133028, ENSEQUUUD17243, ENSEQUUUD16747, ENSEQUUUD1777, ENSEQUUUD13455, ENSEQUUUD13455, ENSEQUUUD13455, ENSEQUUUD13455, ENSEQUUUD13455, ENSEQUUUD13455, ENSEQUUUD13455, ENSEQUUUD134557, ENSEQUUUD1345, ENSEQUUUD13545, ENSEQUUUD134557, ENSEQUUUD134557, ENSEQUUUD1345, ENSEQUUUD134557, ENSEQUUUD134557, ENSEQUUUD1345, ENSEQUUUD134557, ENSEQUUUD13557,	GOTERM_DR_FAT Category GOTERM_MR_FAT SP_PIR_KEVWORDS SP_PIR_KEVWORDS SP_PIR_KEVWORDS GOTERM_MR_FAT GOTERM_MR_FAT GOTERM_MF_FAT GOTERM_MF_FAT GOTERM_MF_FAT	EUL0000091 generation of procursor metabolites and energy Enrichment Score: 1.2598047353013444 Term GD:0046314' transition metal ion binding metal-binding ino-finger zino GD:0046872' metal ion binding GD:0043165' cation binding GD:0043165' cation binding GD:0043165' cation binding GD:0043165' cation binding GD:0043167' ion binding Enrichment Score: 1.1848092573949434 Term	8 62 65 40 43 45 76 76 76 76 76	2.47678 19.19505 20.12384 12.3839 13.31269 13.331269 23.52941 23.52941 23.52941	PValue 0.006175 0.008338 0.018422 0.131972 0.140938 0.141487 0.16393 0.20392 PValue	Fold Enrich 1.363345 1.352684 1.44002 1.214939 1.192482 1.124223 1.113731 1.097449 Fold Enrich	Benjamini 0.728527 0.278586 0.40985 0.770517 0.930474 0.9330474 0.933686 0.936866 0.9345434 Benjamini
90 91 92 93 94 95 96 97 97 98 99 100 101 102 103 104 105	ENSG0000010853, ENSG00000133028, ENSG0000017243, ENSG00000183605, ENSG0000013024, ENSG00000180537, ENSG00000100722, ENSG0000017533, ENSG00000120000120000000000000000000000000	GUTERM_GP_FAT Annotation Cluster 7 Category SD_FIR_KEY-WORDS SP_PIR_KEY-WORDS SP_PIR_KEY-WORDS SP_PIR_KEY-WORDS GOTERM_MF_FAT GOTERM_MF_FAT GOTERM_MF_FAT Annotation Cluster 8 Category GOTERM_MF_FAT	EUL0000091 generation of precursor metabolites and energy Enrichment Score: 1.2538047353013444 Term GD:0046314" transition metal ion binding metal-binding zino-finger zino GD:0048872" metal ion binding GD:0048872" metal ion binding GD:0044875" ostion binding GD:0043167" to binding GD:0043167" to binding Enrichment Score: 1.1848032573343434 Term GD:00554" adenyl nucleotide binding	Count 62 65 40 43 45 76 76 76 76 76 76 76 37	2.47678 19.19505 20.12384 12.3839 13.3268 23.52941 23.52941 23.52941 23.52941 23.52941 23.52941	PValue 0.006175 0.008338 0.018422 0.131972 0.140938 0.141487 0.16393 0.20392 PValue 0.021524	Fold Enrich 1.352684 1.44002 1.214939 1.192482 1.192482 1.113731 1.097449 Fold Enrich 1.436843	Benjamini 0.728527 0.278586 0.40985 0.770517 0.930474 0.923388 0.938686 0.938686 0.9345494 Benjamini 0.833927
90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106	ENSEG0000016535, ENSEG0000173028, ENSEG00000162144, ENSEG000016745, ENSEG00001777, ENSEG0000131435, ENSEG000017202, ENSEG0000014313 ENSEG00000146587, ENSEG00000175895, ENSEG0000017243, ENSEG0000163024, ENSEG0000180537, ENSEG0000100722, ENSEG000010533, ENSEG0000100122, ENSEG0000010001233, ENSEG000010001233, ENSEG000010001233, ENSEG000010001233, ENSEG0000010001233, ENSEG000010001233, ENSEG0000012358, ENSEG0000010001001234, ENSEG0000010001234, ENSEG0000010001001234, ENSEG00000100001001234, ENSEG0000010001001234, ENSEG00000100001001234, ENSEG0000010000100122, ENSEG0000010000100122, ENSEG0000010000100122, ENSEG0000010000100122, ENSEG0000010000100122, ENSEG0000010000100122, ENSEG0000010000100122, ENSEG0000010000100122, ENSEG000001000100122, ENSEG0000010000100122, ENSEG000001000100122, ENSEG00000100000100122, ENSEG0000010000100122, ENSEG00000100000100122, ENSEG0000010000100000100022, ENSEG00000100000100122, ENSEG00000100000000100122, ENSEG00000100000100122, ENSEG000001000000100122, ENSEG00000100000100122, ENSEG00000100000100122, ENSEG00000100000100122, ENSEG00000100000100122, ENSEG00000100000100122, ENSEG00000100000100122, ENSEG00000100000100122, ENSEG000001000001000000100122, ENSEG0000010000100122, ENSEG0000010000000000000100000000000000000	GUTERM_DP_FAT Annotation Cluster 7 Category GUTERM_MF_FAT SP_PIR_KEVWORDS SP_PIR_KEVWORDS SP_PIR_KEVWORDS GUTERM_MF_FAT GUTERM_MF_FAT GUTERM_MF_FAT GUTERM_MF_FAT GUTERM_MF_FAT GUTERM_MF_FAT GUTERM_MF_FAT	Eurouobust generation of precursor metabolites and energy Enrichment Score: 1.2598047353013444 Term GC:0046314 'transition metal ion binding metal-binding GD:0046872 'transition binding GD:0046872 'transition binding GD:0046872 'transition binding GD:00431671 en binding GD:00431671 en binding GD:00431671 en binding GD:0030554' adeny Inceleotide binding GD:0030554' adeny Inceleotide binding GD:0030554' adeny Inceleotide binding	8 62 40 43 45 76 76 76 76 76 76 76 76 76 76 76 76 76	2.47678 % 19.19505 20.12384 12.3839 13.31269 13.33189 23.52941 24.5511 11.45551	0.303545 PValue 0.006175 0.008338 0.018422 0.131972 0.140938 0.141487 0.16333 0.20392 PValue 0.021524 0.021524	Fold Enrich 1.363345 1.352684 1.44002 1.214939 1.192482 1.124223 1.124223 1.13731 1.097449 Fold Enrich 1.436843 1.415304	0.337034 Benjamini 0.728527 0.278586 0.40985 0.770517 0.930474 0.9330474 0.933686 0.9345494 Benjamini 0.833927 0.847188
90 91 92 93 94 95 96 97 98 97 98 97 98 97 98 97 98 97 100 101 102 103 104 105 106	ENSEQUUOUDUSSS, ENSEQUUOUTSSU28, ENSEQUUOUTE2144, ENSEQUUOUTE743, ENSEQUUOUTE717, ENSEQUUOUTS1435, ENSEQUUOUTS13455, ENSEQUUOUTS13455, ENSEQUUOUT1445, ENSEQUUOUTE743, ENSEQUUOUTE743, ENSEQUUOUTE743, ENSEQUUOUT1445, ENSEQUUOUT14587, ENSEQUUOUT14585, ENSEQUUOUT14587, ENSEQUUUT145, ENSEQUUUT18587, ENSEQUUOUT15385, ENSEQUUUT1474, ENSEQUUUT18587, ENSEQUUUT1538, ENSEQUUUT15387, ENSEQUUUT1474, ENSEQUUUT18587, ENSEQUUUT15387, ENSEQUUUT13302, ENSEQUUUT13302, ENSEQUUUT15388, ENSEQUUUT1533, ENSEQUUUT1474, ENSEQUUUT13302, ENSEQUUUT13302, ENSEQUUUT13302, ENSEQUUUT15388, ENSEQUUUT15337, ENSEQUUUT1742, ENSEQUUUT13302, ENSEQUUUT13324, ENSEQUUUT1333, ENSEQUUUT1332, ENSEQUUUT13324, ENSEQUUUT1333, ENSEQUUUT1333, ENSEQUUUT1333, ENSEQUUUT13324, ENSEQUUUT1333, ENSEQU	GUTERM_MF_FAT GATERM_MF_FAT SP_PIR_KEV-WORDS SP_PIR_KEV-WORDS SP_PIR_KEV-WORDS GOTERM_MF_FAT GOTERM_MF_FAT GOTERM_MF_FAT GOTERM_MF_FAT GOTERM_MF_FAT GOTERM_MF_FAT GOTERM_MF_FAT GOTERM_MF_FAT GOTERM_MF_FAT	EUL0000001 generation of precursor metabolites and energy Enrichment Score: 1.2598047353013444 Term GC:0046314'transition metal ion binding metal-binding cinco GC:0004872'metal ion binding GC:0043167'cinc ion binding GC:0043167'cinc binding GC:0043167'cinc binding GC:0043167'cinc binding CC:0043167'cinc binding CC:00043167'cinc binding GC:0003554' adenyl houeleotide binding GC:0001883' purine nucleoside binding GC:0001883' purine nucleoside binding GC:0001883' purine nucleoside binding	Count 62 63 40 43 76 76 76 76 76 76 76 76 76 76 76 76 76	2.47678 % 13,19505 20.12384 12,3839 13,33189 23,52941 23,52941 23,52941 23,52941 23,52941 14,45511 11,45	0.303545 PValue 0.006175 0.008338 0.018422 0.130372 0.140338 0.141487 0.16333 0.20392 PValue 0.021524 0.026417 0.0226417	Fold Enrich 1.363345 1.352684 1.44002 1.214939 1.192482 1.124223 1.113731 1.097449 Fold Enrich 1.436843 1.415304	Benjamini 0. 728527 0. 278586 0. 40985 0. 770517 0. 9330474 0. 923388 0. 938686 0. 935494 Benjamini 0. 833927 0. 847188 0. 883927
90 91 92 93 94 95 96 97 98 99 98 99 100 101 102 103 104 105 106 106	ENSEQUUOUDB855, ENSEQUUOUT33028, ENSEQUUOUT73028, ENSEQUUOUT6744, ENSEQUUOUT6745, ENSEQUUOUT777, ENSEQUUOUT3435, ENSEQUUOUT733028, ENSEQUUUT733028, ENSEQUUUT733000000000000000000000000000000000	COTERM_MF_FAT COTERM_MF_FAT SP_PIR_KEVWORDS SP_PIR_KEVWORDS SP_PIR_KEVWORDS SP_PIR_KEVWORDS GOTERM_MF_FAT GOTERM_MF_FAT GOTERM_MF_FAT GOTERM_MF_FAT COTERM_MF_FAT	Enclobuble91 generation of precursor metabolites and energy Enrichment Score: 1.2598047353013444 Term CD:0046314 'transition metal ion binding metal-binding cinc-finger zinc GD:0048372' metal ion binding GD:0046872' metal ion binding GD:0046872' metal ion binding GD:0048375' ration binding GD:0043187' ion binding GD:0030554' adenyl nucleotide binding GD:00302554' adenyl nucleotide binding GD:0032555' adenyl ribonucleotide binding GD:0032555' adenyl ribonucleotide binding	Count 62 65 40 43 45 76 76 76 76 76 76 76 76 76 76 76 76 76	2.47678 % 13.19505 20.12384 12.3839 13.31269 13.31269 13.352941 23.52941 23.52941 23.52941 % 11.45511 1	0.303545 PValue 0.006175 0.008338 0.018422 0.131972 0.140938 0.141487 0.16333 0.20392 PValue 0.021524 0.0221524 0.0227073 0.0227073	Fold Enrich 1.363345 1.352684 1.44002 1.214339 1.192482 1.124223 1.1124223 1.113731 1.097449 Fold Enrich 1.436843 1.415304	Benjamini 0.728527 0.278586 0.40985 0.770517 0.330474 0.323388 0.338686 0.345494 Benjamini 0.833927 0.847488 0.845494
90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 106	ENSE0000010855, ENSE00000133028, ENSE0000017243, ENSE0000018747, ENSE000001777, ENSE0000013455, ENSE00000120053, ENSE0000014515 ENSE00000146587, ENSE00000175855, ENSE00000017243, ENSE00000183605, ENSE00000125588, ENSE00000180537, ENSE00000100722, ENSE0000010533, ENSE0000 ENSE00000146587, ENSE00000175855, ENSE0000017243, ENSE00000186187, ENSE00000125588, ENSE00000180537, ENSE00000187147, ENSE0000014230, ENSE00000120537, ENSE00000100722, ENSE0000014230, ENSE00000186187, ENSE0000012588, ENSE00000100722, ENSE0000014230, ENSE00000186187, ENSE0000012588, ENSE0000019537, ENSE0000014230, ENSE00000186187, ENSE0000012588, ENSE0000012588, ENSE00000180537, ENSE0000014230, ENSE000001200, ENSE0000014587, ENSE0000017243, ENSE00000186187, ENSE0000013024, ENSE0000012588, ENSE0000014230, ENSE0000010722, ENSE0000010020, ENSE0000018687, ENSE0000017243, ENSE00000183605, ENSE0000013024, ENSE0000012588, ENSE00000100722, ENSE0000010722, ENSE0000010722, ENSE0000010020, ENSE0000013024, ENSE00000180537, ENSE0000010722, ENSE0000010722, ENSE0000010722, ENSE0000010722, ENSE0000010722, ENSE0000010722, ENSE0000010024, ENSE0000013024, ENSE00000180537, ENSE0000010722, ENSE0000010722, ENSE00000100224, ENSE0000013024, ENSE00000180537, ENSE0000010722, ENSE00000100224, ENSE0000013024, ENSE00000180537, ENSE0000010722, ENSE00000100224, ENSE0000013024, ENSE00000180537, ENSE0000010722, ENSE00000100224, ENSE0000013024, ENSE00000180537, ENSE0000010722, ENSE0000010722, ENSE00000100224, ENSE0000013245, ENSE00000100234, ENSE0000013245, ENSE00000100234, ENSE0000010324, ENSE00000100234, ENSE00000100234, ENSE00000100234, ENSE00000108537, ENSE00000100234, ENSE00000100234, ENSE00000100234, ENSE00000100234, ENSE00000100234, ENSE00000100234, ENSE00000107533, ENSE00000107537, ENSE00000103244, ENSE00000013245, ENSE00000010533, ENSE00000106737, ENSE00000013245, ENSE00000102534, ENSE00000013245, ENSE0000010533, ENSE00000000003377, ENSE00000013246, ENSE00000105435, ENSE00000105435, ENSE00000000003377, ENSE00000013246, ENSE00000105435, ENSE00000013245, ENSE00000013246,	GOTERM_MF_FAT GOTERM_MF_FAT GOTERM_MF_FAT GOTERM_MF_FAT GOTERM_MF_FAT GOTERM_MF_FAT GOTERM_MF_FAT GOTERM_MF_FAT GOTERM_MF_FAT GOTERM_MF_FAT GOTERM_MF_FAT GOTERM_MF_FAT GOTERM_MF_FAT GOTERM_MF_FAT	CU20000091 generation of precursor metabolites and energy Enrichment Score: 1.2598047353013444 Term CC:0046314'transition metal ion binding metal-binding zino-finger zino CD:0046872'metal ion binding CD:0043167'cancion binding CD:0043167'cancion binding CD:0043167'cancion binding CD:0043167'cancion binding CD:0043167'cancion binding CD:0043167'cancion binding CD:0043167'puncleotide binding CD:0032554' adenyl nucleotide binding CD:0001885' punce nucleotide binding CD:0001885' punce nucleotide binding CD:0001885' punce nucleotide binding CD:0001885' punce nucleotide binding	20unt 62 65 40 43 45 76 76 76 76 76 76 76 76 76 76 76 76 76	2.47678 19.19505 20.12384 12.3839 13.31269 13.31389 23.52941 23.52941 23.52941 23.52941 11.45511 11.45511 10.83591 10.83591	0.303545 PValue 0.006175 0.008336 0.018422 0.131972 0.140938 0.141487 0.16393 0.20392 PValue 0.021524 0.027073 0.022936	Fold Enrich 1.363345 1.352684 1.44002 1.214339 1.192482 1.124223 1.113731 1.037449 Fold Enrich 1.436843 1.415304 1.43181 1.405546	Benjamini 0. 728527 0. 278586 0. 40985 0. 770517 0. 9330474 0. 923388 0. 938686 0. 935494 Benjamini 0. 839927 0. 847188 0. 80887 0. 7086734
90 91 92 93 94 95 96 97 98 97 98 99 100 101 102 103 104 105 106 107 108 109	ENSEQUOUDUSESS, ENSEQUUDUIS3028, ENSEQUUDUIE 744, ENSEQUUDUIE 743, ENSEQUUDUIE 717, ENSEQUUDUIS 7455, ENSEQUUDUI 51455, ENSEQUUDUI 514557, ENSEQUUDUI 5145, ENSEQUUDUI 51457, ENSEQUUDUI 514557, ENSEQUUDUI 514557, ENSEQUUDUI 5145857, ENSEQUUDUI 5145, ENSEQUUDUI 51457, ENSEQUUDUI 514557, ENSEQUUDUI 514557, ENSEQUUDUI 5145857, ENSEQUUDUI 5145857, ENSEQUUDUI 5145, ENSEQUUDUI 51457, ENSEQUUDUI 514577, ENSEQUUDUI 5145	GUTERM_DP_FAT Annotation Cluster 7 Category GUTERM_MF_FAT SP_PIR_KEY-WORDS SP_PIR_KEY-WORDS SP_PIR_KEY-WORDS GUTERM_MF_FAT GUTERM_MF_FAT GUTERM_MF_FAT GUTERM_MF_FAT GUTERM_MF_FAT GUTERM_MF_FAT GUTERM_MF_FAT GUTERM_MF_FAT GUTERM_MF_FAT GUTERM_MF_FAT	Eur.00000091 generation of precursor metabolites and energy Enrichment Score: 1.2538047353013444 Term CD:0046314 transition metal ion binding metal-binding GD:0046317 metal ion binding GD:0046317 metal ion binding GD:00463167 metal ion binding GD:0043167 cation binding GD:0043167 cation binding GD:0043167 cation binding GD:0030554* adenyi Inueleotide binding GD:0030554* adenyi Inueleotide binding GD:00018837 nucleotide binding GD:00018837 nucleotide binding GD:00018837 nucleotide binding GD:00018827 nucleotide binding GD:00018827 nucleotide binding GD:00018827 nucleotide binding GD:00018827 nucleotide binding GD:00018827 nucleotide binding	8 Count 62 65 40 43 45 76 76 76 76 76 76 76 76 76 76 76 76 76	2.47678 % 13.19505 20.12384 13.31269 13.31269 13.33189 23.52941 23.52941 23.52941 23.52941 % 11.45511 10.83591 11.45511 10.83591 11.455156	U.303545 PValue 0.006175 0.008338 0.018422 0.131972 0.140938 0.141487 0.163933 0.20392 PValue 0.021524 0.026417 0.027073 0.028336 0.031787	Fold Enrich 1363345 1352684 144002 1244339 1192482 1124223 1192482 1113731 1097449 Fold Enrich 1435643 1435643 1445646 1443641 1445846	Benjamini 0.728527 0.278586 0.40985 0.770517 0.330474 0.323388 0.338686 0.345494 Benjamini 0.833927 0.847188 0.847188 0.846734 0.377674
90 91 92 93 94 95 96 97 98 93 100 101 102 103 104 105 106 107 108 109 110	ENSEQUUOUDUSSS, ENSEQUUOUTSSU28, ENSEQUUOUTS2414, ENSEQUUOUTB 743, ENSEQUUOUTB 717, ENSEQUUOUTS1455, ENSEQUUOUTS1528, ENSEQUUOUTS1528, ENSEQUUOUTB737, ENSEQUUOUTS1528, ENSEQUUOUTB738, ENSEQUUOUTB737, ENSEQUUOUTB737, ENSEQUUOUTB738, ENSEQUUOUTB738, ENSEQUUOUTB737, ENSEQUUOUTB737, ENSEQUUOUTB738, ENSEQUUOUTB738, ENSEQUUOUTB737, ENSEQUUOUTB737, ENSEQUUOUTB737, ENSEQUUOUTB737, ENSEQUUOUTB737, ENSEQUUOUTB737, ENSEQUUOUTB738, ENSEQUUOUTB738, ENSEQUUOUTB737, ENSEQUUUTB737, ENSEQUUUTB7347, ENSEQUUUTB737, ENSEQUUUTB734, ENSEQUUUTB734, ENSEQUUUTB737, ENSEQUUUTB734, ENSEQUUUTB734, ENSEQUUUTB737, ENSEQUUUTB737, ENSEQUUUTB734, ENSEQUUUTB737, ENSEQUUUTB734, ENSEQUUUTB737, ENSEQUUUTB734, ENSEQUUUTB737, ENSEQUUUTB734, ENSEQUUUTB737, ENSEQUUUTB734, ENSEQUUUTB737, ENSEQUUUTB734, ENSEQUUUTB737, ENSEQUUUTB7344, ENSEQUUUTB737, ENSEQUUUTB7344, ENSEQUUUTB734, ENSEQUUUTB734, ENSEQUUUTB737, ENSEQUUUTB737, ENSEQUUUTB7344, ENSEQUUUTB734, ENSEQUUUTB7344, ENSEQUUUTB737, ENSEQUUUTB7344, ENSEQUUUTB734, ENSEQUUUTB	GOTERM/LBP_FAT Annotation Cluster 7 Category GOTERM_MF_FAT SP_PIR_KEY/WORDS SP_PIR_KEY/WORDS SOTERM_MF_FAT GOTERM_MF_FAT GOTERM_MF_FAT GOTERM_MF_FAT GOTERM_MF_FAT GOTERM_MF_FAT GOTERM_MF_FAT GOTERM_MF_FAT GOTERM_MF_FAT GOTERM_MF_FAT GOTERM_MF_FAT	Eut.00000091 generation of precursor metabolites and energy Enrichment Score: 1.2598047353013444 Term GC:0046314" transition metal ion binding metal-binding cince GC:00046312" ancient binding GC:0043187" carlo binding GC:0043187" carlo binding GC:0043187" carlo binding GC:0043187" carlo binding GC:0043187" carlo binding GC:0030554" adenyl nucleotide binding GC:0030554" adenyl nucleotide binding GC:0032553" adenyl ruceleotide binding GC:0032553" adenyl ruceleotide binding GC:0032554" and exites binding GC:0032554" adenyl ruceleotide binding GC:0032554" adenyl ruceleotide binding GC:0032554" ATP binding	Count 62 65 40 43 45 76 76 76 76 76 76 76 76 37 37 37 37 37 37 37 37 37 37 37 37 37	2.47678 19.19505 20.12364 12.3839 13.31269 13.313789 23.52941 23.52941 23.52941 23.52941 1.45511 1.45511 1.45511 1.45511 1.455156 10.52532	0.303545 PValue 0.006175 0.008388 0.018422 0.131972 0.140398 0.141487 0.16333 0.20392 PValue 0.021524 0.0226417 0.027073 0.022032	Fold Enrich 1363345 1352684 14002 1214339 1192482 1124233 1112423 1112423 1112423 1112423 1112423 112423 112423 112423 112423 112423 112504 1435145 1409735	Benjamini 0.278527 0.278526 0.40985 0.770517 0.930474 0.923388 0.938686 0.9345494 Benjamini 0.838927 0.838927 0.847188 0.80887 0.86734 0.987074
90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 111	ENSEQUOUDUSESS, ENSEQUUOUT33028, ENSEQUOUDT82144, ENSEQUOUDT8745, ENSEQUUOUT8717, ENSEQUUOUT3435, ENSEQUUUT3586, ENSEQUUUT3586, ENSEQUUUT3587, ENSEQUUUT3585, ENSEQUUUT3435, ENSEQUUUT3345, ENSEQUUUT3344, ENSEQUUUT3344, ENSEQUUUT3345, ENSEQUUUT33455, ENSEQUUUT33455, ENSEQUU	GUTERIM_DB_FAT Annotation Cluster 7 Category GUTERIM_MF_FAT SP_PIR_KEY-WORDS SP_PIR_KEY-WORDS SP_PIR_KEY-WORDS GUTERIM_MF_FAT GUTERIM_	LCL/0000091 generation of procursor metabolites and energy Enrichment Score: 1.2538047353013444 Term CD:0046314 transition metal ion binding metal-binding CD:0046317 metal ion binding CD:0046317 metal ion binding CD:00463167 metal ion binding CD:0043167 cation binding CD:0043167 cation binding CD:0043167 cation binding CD:0043167 cation binding CD:0030554* adenyi Inueleotide binding CD:0030554* adenyi Inueleotide binding CD:00018837 nucleotide binding CD:00018837 nucleotide binding CD:00018837 nucleotide binding CD:00018827 nucleotide binding CD:00018827 nucleotide binding CD:00018827 nucleotide binding CD:00018827 nucleotide binding CD:00018827 nucleotide binding CD:00018827 nucleotide binding CD:0005524*ATP binding atp-binding	2000000 62 65 65 40 43 45 76 76 76 76 76 76 37 37 37 37 37 37 37 37 37 37 37 34 33 34 33	2.47678 19.19505 20.12384 12.3839 13.31289 13.31289 13.31289 13.352941 23.52941 23.52941 23.52941 14.45511 14.45511 14.45511 14.455156 10.52632 9.597523	0.303545 PValue 0.006175 0.008338 0.018422 0.131972 0.140398 0.241487 0.26332 PValue 0.02524 0.026417 0.026436 0.025861 0.037833	Fold Enrich 1363345 1352684 144002 124339 1192482 1124239 1192482 1124282 1132482 113731 1097449 Fold Enrich 1436843 1415304 143584 1405546 1814217 1409735	Benjamini 0.278527 0.278526 0.40985 0.770517 0.330474 0.330474 0.336866 0.336686 0.345494 Benjamini 0.839927 0.847186 0.808087 0.768734 0.808087 0.768734 0.397074 0.397074 0.528605
90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 110 112	ENSE0000010855, ENSE00000133028, ENSE00000182144, ENSE0000018745, ENSE00000131455, ENSE00000120053, ENSE0000014315 Genes ENSE00000146587, ENSE00000175855, ENSE00000071243, ENSE00000183605, ENSE0000012588, ENSE00000180537, ENSE0000010722, ENSE0000010539, ENSE0000 ENSE00000146587, ENSE00000175855, ENSE00000071243, ENSE00000186187, ENSE0000012588, ENSE00000180537, ENSE00000180537, ENSE0000014230, ENSE0000014233, ENSE00000186187, ENSE0000012588, ENSE00000180537, ENSE00000180537, ENSE0000014230, ENSE0000014587, ENSE0000017585, ENSE0000014234, ENSE0000017588, ENSE00000180537, ENSE0000014230, ENSE0000014230, ENSE0000014230, ENSE00000186187, ENSE000001324, ENSE0000015858, ENSE0000014230, ENSE0000014234, ENSE0000018305, ENSE000001324, ENSE000001324, ENSE000001337, ENSE00000180537, ENSE0000010722, ENSE0000010722, ENSE0000018567, ENSE0000017585, ENSE0000017343, ENSE0000013805, ENSE0000013324, ENSE00000180537, ENSE0000010722, ENSE0000010722, ENSE0000010722, ENSE0000018567, ENSE0000017585, ENSE0000017343, ENSE0000018365, ENSE0000013324, ENSE00000180537, ENSE0000010722, ENSE0000 ENSE00000146587, ENSE0000017585, ENSE0000017243, ENSE0000018365, ENSE0000013324, ENSE00000180537, ENSE0000010722, ENSE0000 ENSE00000146587, ENSE0000017585, ENSE0000017243, ENSE0000018365, ENSE0000013024, ENSE0000018537, ENSE0000010722, ENSE0000 ENSE0000014587, ENSE00000132153, ENSE0000017243, ENSE0000018365, ENSE00000132466, ENSE0000018513, ENSE0000010722, ENSE00000 ENSE0000013024, ENSE00000132153, ENSE00000112541, ENSE0000018486, ENSE000000132466, ENSE0000018513, ENSE0000018573, ENSE0000018573, ENSE0000018573, ENSE0000018573, ENSE0000018573, ENSE0000018573, ENSE0000013244, ENSE0000013244, ENSE0000013244, ENSE0000013244, ENSE0000013244, ENSE0000013244, ENSE0000013246, ENSE0000018513, ENSE0000018573, ENSE0000018573, ENSE0000013244, ENSE0000013244, ENSE0000013244, ENSE0000013244, ENSE0000013244, ENSE0000013244, ENSE0000018573, ENSE0000018573, ENSE0000018573, ENSE0000018573, ENSE0000018573, ENSE0000018573, ENSE0000018573, ENSE0000018573, ENSE0000	GUTERM_MF_FAT Annotation Cluster 7 Category GUTERM_MF_FAT SP_PIR_KEVWORDS SP_PIR_KEVWORDS SUP_FIR_KEVWORDS GUTERM_MF_FAT GUTERM_MF_FAT GUTERM_MF_FAT GUTERM_MF_FAT GUTERM_MF_FAT GUTERM_MF_FAT GUTERM_MF_FAT SUP_FIR_KEVWORDS SUTERM_MF_FAT SUP_FIR_KEVWORDS SUTERM_MF_FAT SUP_FIR_KEVWORDS SUPERV_MF_FAT SUP_FIR_KEVWORDS SUPERV_MF_FAT SUP_FIR_KEVWORDS SUPERV_MF_FAT SUP_FIR_KEVWORDS SUPERV_MF_FAT SUP_FIR_KEVWORDS SUPERV_MF_FAT SUP_FIR_KEVWORDS SUPERV_MF_FAT SUP_FIR_KEVWORDS SUPERV_MF_FAT SUP_FIR_KEVWORDS SUPERV_MF_FAT SUP_FIR_KEVWORDS SUPERV_MF_FAT SUP_FIR_KEVWORDS SUPERV_MF_FAT SUP_FIR_KEVWORDS SUP_FIR_FIR SUP_FIR_FIR SUP_FIR_KEVWORDS SUP_FIR_FIR SUP_FI	EuCloubbudg generation of precursor metabolites and energy Enrichment Score: 1.2598047353013444 Term GD:0046314' transition metal ion binding metal-binding cince GD:0046372' zinci ion binding GD:0043167' zinci ion binding GD:0030554' adenyi lucelotide binding GD:0030555' adenyi lucelotide binding GD:0032555' adenyi lucelotide binding GD:0032555' adenyi lucelotide binding GD:0032555' adenyi lucelotide binding GD:0032555' adenyi lucelotide binding GD:0001857' nucleotide binding GD:0001857' nucleotide binding GD:00001857' underside binding	8 Count 62 65 40 43 43 45 76 76 76 76 76 76 76 37 35 37 37 37 37 37 37 37 37 37 37 37 37 37	2.47678 19.19505 20.12364 12.3839 13.31269 13.352941 23.52941 23.52941 23.52941 23.52941 1.45511 10.83531 11.45511 10.83531 11.45511 10.52632 9.597523 14.5510	0.303545 PValue 0.006175 0.008338 0.018422 0.131972 0.140398 0.141487 0.16333 0.20392 PValue 0.021524 0.0226417 0.027073 0.028336 0.035861 0.035861 0.035833	Fold Enrich 1.363345 1.352684 1.44002 1.214339 1.192482 1.124233 1.113731 1.097449 Fold Enrich 1.436843 1.415304 1.43181 1.405546 1.8142177 1.8142177	0.357064 Benjamini 0.728527 0.40385 0.70517 0.930474 0.933474 0.93348 0.936454 0.936454 0.936656 0.945434 Benjamini 0.839927 0.847188 0.839927 0.847188 0.839927 0.847188 0.839927 0.847188 0.839027 0.83917 0.83917 0.83917 0.83917 0.83917 0.83917 0.847188 0.839027 0.847188 0.839027 0.847188 0.93047 0.847188 0.93047 0.847188 0.93047 0.847188 0.93047 0.847188 0.93047 0.847188 0.93047 0.847188 0.93047 0.847188 0.93047 0.847188 0.93047 0.847188 0.93047 0.847188 0.93047 0.847188 0.93047 0.847188 0.930620 0.93047 0.847188 0.930620 0.93047 0.847188 0.930620 0.93067 0.847188 0.930620 0.930620 0.93067 0.847188 0.930620 0.93067 0.847188 0.930620 0.93067 0.847188 0.930620 0.93067 0.84754 0.93074 0.930620 0.930620 0.930620 0.93067 0.93074 0.930620 0.930620 0.93067 0.93074 0.930620 0.930620 0.930620 0.93074 0.93074 0.93074 0.93074 0.937074 0.9
90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 107 108 109 110 111 111	ENSEQUOUDUBESS, ENSEQUUDUTS3028, ENSEQUUDUTE2144, ENSEQUUDUTE 743, ENSEQUUDUTE 717, ENSEQUUDUTE 714, ENSEQUUDUTE 717, ENSEQUUDUTE 7143, ENSEQUUDUTE 7143, ENSEQUUDUTE 717, ENSEQUUDUTE 7143, ENSEQUUDUTE 7144, ENS	GOTERM_ME_FAT GOTERM_ME_FAT SP_PIR_KE_VORDS SP_PIR_KE_VORDS SP_PIR_KE_VORDS GOTERM_ME_FAT	EuCloubburg generation of precursor metabolites and energy Enrichment Score: 1,2538047353013444 Term GC: 0046314' transition metal ion binding metal-binding zino-finger zino GC: 0008272' metal ion binding GC: 0043167' creation binding GC: 0043167' creation binding GC: 0043167' creation binding GC: 0043167' creation binding GC: 00018887' zereation binding GC: 00018887' safety in uncleotide binding GC: 00018887' uncleotide binding GC: 00005524' 3depti / binding zito-binding GC: 00001867' rueleotide binding GC: 00001867' rueleotide binding	Count 62 65 40 43 76 76 76 76 76 76 76 76 37 37 37 37 37 37 37 37 37 37 37 37 37	2.47678 19.19505 20.12384 12.3839 13.31289 13.31289 13.31289 13.31289 13.352941 23.52941 23.52941 23.52941 23.52941 14.45511 14.45511 14.45511 14.455108 2.55762 15.55108 2.12074	0.303545 PValue 0.006175 0.008338 0.018422 0.131972 0.140398 0.241487 0.26332 0.20392 PValue 0.02524 0.026417 0.026437 0.025641 0.025861 0.037833 0.052678 0.05278 0.05278	Fold Enrich 1363345 1352684 14002 124939 1192482 1124223 1113731 1097449 Fold Enrich 1436843 1.415304 1.415304 1.814217 1.405846 1.814217	8.367064 Benjamini 0.728527 0.278568 0.40985 0.930474 0.930474 0.933868 0.945494 Benjamini 0.838666 0.945494 Benjamini 0.839827 0.847168 0.847168 0.847168 0.847168 0.8476784 0.957074 0.957074 0.9570665 0.870665
30 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113	ENSEG0000016855, ENSEG0000173028, ENSEG0000017243, ENSEG000018765, ENSEG00001717, ENSEG000018757, ENSEG0000120053, ENSEG0000014735 ENSEG00000146587, ENSEG00000175855, ENSEG0000017243, ENSEG0000018305, ENSEG0000180537, ENSEG0000180537, ENSEG00001722, ENSEG000017235, ENSEG000017243, ENSEG0000016817, ENSEG000017585, ENSEG000017243, ENSEG00000186187, ENSEG0000012588, ENSEG00000180537, ENSEG000001722, ENSEG0000017233, ENSEG0000017243, ENSEG00000186187, ENSEG0000012588, ENSEG00000180537, ENSEG0000017232, ENSEG0000017233, ENSEG00000172343, ENSEG00000186187, ENSEG0000012588, ENSEG0000012588, ENSEG0000017243, ENSEG0000017243, ENSEG00000186187, ENSEG0000012588, ENSEG0000012588, ENSEG0000017243, ENSEG00000186187, ENSEG0000012588, ENSEG0000012583, ENSEG0000017243, ENSEG00000186187, ENSEG0000013024, ENSEG0000012588, ENSEG00000180537, ENSEG000001722, ENSEG0000018305, ENSEG0000018305, ENSEG00000180537, ENSEG0000010722, ENSEG0000018305, ENSEG0000018305, ENSEG0000018324, ENSEG00000180537, ENSEG0000010722, ENSEG000018305, ENSEG0000013024, ENSEG00000180537, ENSEG0000010722, ENSEG000018305, ENSEG0000013024, ENSEG00000180537, ENSEG0000010722, ENSEG0000018305, ENSEG0000013024, ENSEG00000180537, ENSEG00000100722, ENSEG0000018305, ENSEG0000013244, ENSEG00000180537, ENSEG00000100722, ENSEG0000018505, ENSEG0000013244, ENSEG0000013245, ENSEG00000112541, ENSEG00000184865, ENSEG00000132466, ENSEG0000018513, ENSEG0000018578, ENSEG0000018513, ENSEG0000018513	GUTERM_MF_FAT GOTERM	Eurouobust generation of precursor metabolites and energy Enrichment Score: 1.2598047353013444 Term GC:0046314" transition metal ion binding metal-binding cince GC:0004877" zinci ion binding GC:0043167" zental ion binding GC:0030554" adenyl nucleotide binding GC:0030554" adenyl nucleotide binding GC:0032557" adenyl ribonucleotide binding GC:0001867" nucleotide binding GC:0001857" adenyl ribonucleotide binding GC:0001857" adenyl ribonucleotide binding GC:0001857" adenyl ribonucleotide binding GC:0001867" nucleotide binding binding site: ATP GC:0001867" nucleotide binding atp-binding GC:0001867" nucleotide binding nucleotide phosphate-binding region: ATP	Count 62 65 400 43 45 76 76 76 76 76 76 76 76 33 37 35 37 35 34 34 34 33 47 7 23 24 34 34 34 34 35 34 34 35 34 34 35 34 35 34 35 34 35 34 35 34 35 34 35 34 35 35 36 55 55 55 55 55 55 55 55 55 55 55 55 55	2.47678 19.19505 20.12804 12.3839 13.31289 23.52941 23.52941 23.52941 23.52941 14.45511 14.45511 14.45511 10.52832 9.537523 14.5516 14.5516 10.52832 9.537523 14.5516 14.5516 10.52832 9.537523 14.5516 14.5516 10.52832 9.537523 14.5516 14.5516 10.52832 9.537523 14.5516 14.5516 14.5516 14.5516 14.5517 15.5627 15.5627 15.5627 15.5627 15.5627 15.5627 15.5627 15.5627 15.5677 15.5677 15.5677 15.5677 15.56777 15.56777 15.56777 15.56777 15.56777 15.56777 15.56777 15.56777 15.56777 15.56777 15.56777 15.56777 15.56777 15.56777 15.56777 15.567777 15.567777 15.567777 15.567777 15.5677777 15.5677777 15.5677777 15.567777777 15.5677777777777777777777777777777777777	0.303545 PValue 0.006175 0.008336 0.018422 0.113172 0.140398 0.141487 0.20392 PValue 0.021524 0.026417 0.023836 0.035861 0.035861 0.035863 0.035783 0.052078 0.055278	Fold Enrich 1363345 1352684 144002 1214339 1192482 11924223 1193422 119342 119342 119342 119342 119342 119342 119342 119342 119342 119342 1436843 1445304 1409735 1445539 1282096 1493936 1282096	Benjamini 0.726527 0.276568 0.40985 0.770517 0.930474 0.932388 0.945434 Benjamini 0.839826 0.945434 Benjamini 0.847188 0.80087 0.776734 0.97074 0.97074 0.916828 0.948828 0.948828
30 31 91 32 93 34 95 36 97 38 99 300 1001 102 103 104 105 106 107 108 109 111 112 113 114 114	ENSEQUOUDUBESS, ENSEQUUDUTS3028, ENSEQUUDUTE2144, ENSEQUUDUTE 743, ENSEQUUDUTE 717, ENSEQUUDUTS1435, ENSEQUUDUTS318, ENSEQUUDUT3324, ENSEQUUDUT3334, ENSEQUUDUT3334, ENSEQUUDUT3334, ENSEQUUDUT3334, ENSEQUUDUT3334, ENSEQUUDUT3334, ENSEQUUDUT3334, ENSEQUUDUT3334, ENSEQUUDU	GUTERM_MF_FAT Annotation Cluster 7 Category GUTERM_MF_FAT SP_PIR_KEY-WORDS SP_PIR_KEY-WORDS SD_PIR_KEY-WORDS GUTERM_MF_FAT GUTERM_MF_FAT GUTERM_MF_FAT GUTERM_MF_FAT GUTERM_MF_FAT GUTERM_MF_FAT GUTERM_MF_FAT GUTERM_MF_FAT GUTERM_MF_FAT GUTERM_MF_FAT GUTERM_MF_FAT GUTERM_MF_FAT GUTERM_MF_FAT GUTERM_MF_FAT GUTERM_MF_FAT SP_PIR_KEY-WORDS SQUERN_MF_FAT JP_SEQ_FEATURE GUTERM_MF_FAT JP_SEQ_FEATURE GUTERM_MF_FAT JP_SEQ_FEATURE GUTERM_MF_FAT JP_SEQ_FEATURE SUBJERCE JP_SEQ_FEATURE SUBJERCE JP_SEQ_FEATURE GUTERM_MF_FAT JP_SEQ_FEATURE GUTERM_MF_FAT JP_SEQ_FEATURE JP_SEQ_FE	EUL0000091 generation of precursor metabolites and energy Enrichment Score: 1.2598047353013444 Term GC: 0046314' transition metal ion binding metal-binding zino-finger zino GC: 0008270' zinc ion binding GC: 0043167' zental ion binding GC: 0003554' zental ion binding GC: 0001655' zental ion binding GC: 000166' nucleotide binding GC: 000166' nucleotide binding sap-binding GC: 000166' nucleotide binding in ucleotide phosphate-binding region: ATP GC: 000166' nucleotide binding ucleotide phosphate-binding vental ion	Count 62 65 40 43 45 76 76 76 76 76 76 76 76 76 76 37 35 37 35 37 35 37 36 37 42 34 31 47 23 44 24 31 47 47 47 47 47 47 47 47 47 47 47 47 47	2.47678 19,19505 20,12384 12,3839 13,31269 13,31269 13,352941 23,52941 23,52941 23,52941 14,45511 10,83551 10,52632 9,557523 14,555108 7,120743 12,3839 12,3859 12,3859 12,3859 13,318 13,318 13,318 13,318 13,318 13,318 13,318 13,318 13,318 13,318 14,318 14,318 14,318 14,3551 15,358 15,358 15,358 15,358 12,358 12,358 12,358 12,358 12,358 12,358 12,358 12,358 12,358 12,358 12,358 12,358 12,358 12,358 12,358 12,358 12,358 12,358 12,558	0.303545 PValue 0.006175 0.008338 0.018422 0.131972 0.140398 0.141487 0.163933 0.20392 PValue 0.021524 0.0221524 0.0220417 0.022033 0.023783 0.037873 0.037863 0.0378782 0.05742 0.05742 0.05742 0.05742 0.05742 0.05742 0.05742 0.05742 0.05742 0.05742 0.05742 0.05742 0.05742 0.05742 0.05742 0.05742 0.05742 0.0575 0.0575 0.055 0.05 0.	Fold Enrich 1.363345 1.352684 1.44002 1.214339 1.192482 1.124223 1.1124223 1.1124223 1.1124223 1.037449 Fold Enrich 1.436843 1.445536 1.445536 1.445536 1.4455326 1.44556326 1.44556326 1.44556326 1.44556326 1.44556566	Benjamini 0.726527 0.278566 0.40985 0.770517 0.930474 0.9338686 0.945434 Benjamini 0.839827 0.847188 0.839827 0.847188 0.828685 0.528605 0.528605 0.528605 0.528605 0.945244
30 31 92 33 94 95 95 96 97 98 99 100 101 102 103 104 105 106 100 107 108 109 101 112 113 114 115 114	ENSEG000010855; ENSEG0000133028; ENSEG000017243; ENSEG000018765; ENSEG000018777; ENSEG000018757; ENSEG0000100722; ENSEG000017539; ENSEG0000017539; ENSEG0000017539	GUTERM/CBP_FAT Annotation Cluster 7 Category GUTERM_MF_FAT SP_PIR_KEVWORDS SP_PIR_KEVWORDS SP_PIR_KEVWORDS GUTERM_MF_FAT GUTERM_MF_FAT GUTERM_MF_FAT GUTERM_MF_FAT GUTERM_MF_FAT GUTERM_MF_FAT UP_SEQ_FFATURE GUTERM_MF_FAT UP_SEQ_FFATURE GUTERM_MF_FAT UP_SEQ_FFATURE GUTERM_MF_FAT UP_SEQ_FFATURE GUTERM_MF_FAT UP_SEQ_FFATURE GUTERM_MF_FAT	Eut.00000091 generation of precursor metabolites and energy Enrichment Score: 1.2598047353013444 Term GC:0046314" transition metal ion binding metal-binding tino-finger tino GC:0004877" princ ion binding GC:0043167" cation binding GC:0043167" cation binding GC:0043167" cation binding GC:0043167" cation binding GC:0030554" adenyl nucleotide binding GC:00030554" adenyl nucleotide binding GC:0003255" adenyl ribonucleotide binding GC:0001365" ruleotide binding GC:0001365" adenyl ribonucleotide binding GC:00001365" adenyl ribonucleotide binding GC:00001367 mucleotide binding GC:00001367 mucleotide binding GC:00001367 mucleotide binding GC:00001365 mucleotide binding GC:00001365 puncleotide binding GC:00001365 puncleotide binding GC:00001365 puncleotide binding GC:00001365 puncleotide binding GC:00017076 punche nucleotide binding GC:0003555 punch ribonucleotide binding	Count 62 65 40 43 45 76 76 76 76 76 76 76 76 76 76 76 76 76	2.47678 % 13.19505 20.12384 13.31269 13.31269 13.31269 13.3252941 23.52941 23.52941 23.52941 23.52941 23.52941 14.5511 14.5511 14.5535 14.55356 10.52632 9.597523 14.55104 7.120743 7.120743 17.3639 11.76471 10.52632 9.537523 14.55104 10.52632 9.537523 14.55104 10.52632 9.537523 14.55104 10.52632 9.537523 14.55104 10.52632 9.537523 14.55104 10.52632 9.537523 14.55104 10.52632 9.537523 14.55104 15.5264 15.5664 15.5264 15.56644 15.56644 15.56644 15.56644 15.56644	0.303945 PValue 0.006175 0.008336 0.018422 0.113172 0.140398 0.141487 0.20392 PValue 0.021524 0.026417 0.023936 0.032836 0.032836 0.035783 0.0352878 0.052078 0.052078 0.0527786 0.094774	Fold Enrich 1363345 1352684 144002 1214339 1192482 11924223 1193422 119345 119345 119345 119345 119345 119345 119345 119345 1193	Benjamini 0.726527 0.278568 0.40985 0.770517 0.330474 0.323868 0.345434 Benjamini 0.833927 0.845434 Benjamini 0.847188 0.845434 0.847188 0.84687 0.345434 0.847188 0.868087 0.376734 0.818828 0.528605 0.818828 0.356833 0.315083
30 31 32 33 34 35 36 37 39 36 37 38 39 100 101 102 103 104 105 106 107 108 100 111 113 114 115 116	ENSEQUOUDU0855, ENSEQUUDU133028, ENSEQUUDU162144, ENSEQUUDU16743, ENSEQUUDU16717, ENSEQUUDU13455, ENSEQUUDU120053, ENSEQUUDU13455, ENSEQUUDU13455, ENSEQUUDU13455, ENSEQUUDU144557, ENSEQUUDU1445, ENSEQUUDU16571, ENSEQUUDU144557, ENSEQUUDU144557, ENSEQUUDU144557, ENSEQUUDU1445, ENSEQUUDU16557, ENSEQUUDU1445, ENSEQUUDU14557, ENSEQUUDU144557, ENSEQUUDU1445, ENSEQUUDU1445, ENSEQUUDU16577, ENSEQUUDU1445, ENSEQUUDU14557, ENSEQUUDU1445, ENSEQUUDU14541, ENSEQUUDU1436, ENSEQUUDU14544, ENSEQUUDU14557, ENSEQUUDU1445, ENSEQUUDU14541, ENSEQUUDU1436, ENSEQUUDU14544, ENSEQUUDU14557, ENSEQUUDU14547,	GUTERM_MF_FAT GOTERM_MF_FAT SOTERM_MF_FAT SP_PIR_KEVWORDS SP_PIR_KEVWORDS SP_PIR_KEVWORDS GOTERM_MF_FAT GOTERM_MF_FAT GOTERM_MF_FAT GOTERM_MF_FAT GOTERM_MF_FAT GOTERM_MF_FAT GOTERM_MF_FAT GOTERM_MF_FAT GOTERM_MF_FAT GOTERM_MF_FAT GOTERM_MF_FAT GOTERM_MF_FAT GOTERM_MF_FAT GOTERM_MF_FAT GOTERM_MF_FAT GOTERM_MF_FAT GOTERM_MF_FAT	EuCloubburg generation of precursor metabolites and energy Enrichment Score: 1.2598047353013444 Term GC:0046314" transition metal ion binding metal-binding zino-finger zino GC:0008270" zino ion binding GC:0043163" zeiton binding GC:0043163" zeiton binding GC:0043163" zeiton binding GC:0043163" zeiton binding GC:0043163" zeiton binding GC:000554" adenyl nucleotide binding GC:0001865 varien ruccleoside binding GC:0001865 varien tuccleoside binding GC:00032555 purien eitocnucleoside binding GC:00032555 varien tubcnucleoside binding GC:00032555 varien tubcnucleoside binding GC:00032555 varien tubcnucleoside binding GC:00032555 varien tubcnucleoside binding	8 Count 62 65 40 43 45 76 76 76 76 76 76 76 76 76 76 37 37 35 37 37 35 37 37 36 37 37 36 37 36 33 34 33 34 33 34 33 34 33 34 33 36 38 38 38 38 38 38 38 38 38 38 38 38 38	2.47678 19,19505 20,12384 12,3839 13,31269 13,31269 13,352941 23,52941 23,52941 23,52941 23,52941 11,45511 11,45511 11,45511 11,45511 11,45511 11,45511 11,55508 7,120743 12,3839 11,76471 11,76471	0.303545 PValue 0.006775 0.008338 0.018422 0.131972 0.140398 0.141487 0.20392 PValue 0.021524 0.026417 0.027073 0.028336 0.037873 0.037873 0.037873 0.052078 0.052078 0.052178 0.05742 0.078786 0.094774 0.094774	Fold Enrich 1363345 1352684 144002 1214392 1192482 1192482 1192482 1192482 1192482 1192482 119348 119348 119348 119348 119348 14935846 1384217 1409735 1282096 1463336 1267506 1267506	Benjamini 0.726527 0.278566 0.40985 0.770517 0.930474 0.933666 0.935666 0.9356434 Benjamini 0.839927 0.637947 0.839927 0.637947 0.93794 0.977074 0.947965 0.94786 0.947865 0.947865 0.94786
30 31 32 33 34 35 35 36 37 38 39 100 101 102 103 104 105 107 108 109 110 111 112 113 114 115 116 117	ENSEG000010855; ENSEG0000133028; ENSEG000017243; ENSEG000018765; ENSEG000018717; ENSEG000018737; ENSEG0000100722; ENSEG000019533; ENSEG000019534; ENSEG000019534; ENSEG000019533; ENSEG000019533; ENSEG000019534; ENSEG000019533; ENSEG0000019533; ENSEG0000019533; ENSEG0000019533; ENSEG0000	GUTERIM LEFATURE Annotation Cluster 7 Category GUTERM_MF_FAT SP_PIR_KEVWORDS SP_PIR_KEVWORDS SP_PIR_KEVWORDS GUTERM_MF_FAT GUTERM_MF_	Enclobuble91 generation of precursor metabolites and energy Enrichment Score: 12598047353013444 Term GC:0046314 'transition metal ion binding metal-binding tino-finger cinc GC:0008270' zinc ion binding GC:0048872' metal ion binding GC:0043167' ion binding GC:0043167' ion binding GC:0030554' adenyl nucleotide binding GC:0030554' adenyl nucleotide binding GC:0030554' adenyl rubonucleotide binding GC:00305524' adenyl rubonucleotide binding GC:00001857 rubeside binding GC:00001857 purine nucleotide binding GC:00001857 purine nucleotide binding GC:00032555 purine ribonucleotide binding GC:00032555 purine ribonucleotide binding GC:00325557 purine ribonucleotide binding	Count 62 65 40 43 45 76 76 76 76 76 76 76 76 76 76 76 76 76	2.47678 13.19505 20.12384 13.31259 13.31259 13.31259 13.3252941 23.52941 23.52941 23.52941 23.52941 14.55111 10.83591 11.455111 10.52632 3.537523 14.55108 7.120743 12.3839 17.6471 10.83591 17.6471 17.	0.303545 PValue 0.006175 0.008338 0.018422 0.131972 0.131972 0.130978 0.131972 0.131972 0.131972 0.131972 0.131972 0.131972 0.131972 0.131972 0.131972 0.131972 0.131972 0.131972 0.026417 0.026417 0.026417 0.037833 0.055142 0.078786 0.094774 0.094774 0.094774 0.094774	Fold Enrich 1363345 1352684 144002 124839 1132282 1124239 1132282 1124223 113731 1097449 Fold Enrich 1436843 1445339 1282096 1245339 1282096 1277776 1265506 1267506 1267506	Benjamini 0.726527 0.278568 0.40985 0.770517 0.330474 0.328588 0.345434 Benjamini 0.839227 0.845434 Benjamini 0.847188 0.845434 0.847188 0.845434 0.847188 0.86087 0.7765734 0.528605 0.870863 0.315063 0.315063 0.316063
30 31 31 32 33 34 35 36 37 38 39 35 36 37 39 102 103 104 102 103 104 105 105 106 107 108 109 111 111 115 116 117 117 116 117 118	ENSEQUUOUDUSESS, ENSEQUUOUT33028, ENSEQUUOUT62144, ENSEQUUOUT6743, ENSEQUUOUT6717, ENSEQUUOUT3455, ENSEQUUOUT720, ENSEQUUOUT7355, ENSEQUUOUT720, ENSEQUUOUT743, ENSEQUUUT743, ENSEQUUOUT743, ENSEQUUOUT743, ENSEQUUOUT743, ENSEQUUUT743, ENSEQUUUT743, ENSEQUUUT743, ENSEQUUUT743, ENSEQUUUT743, ENSEQUUUT744, ENSEQUUUT744	GUTERM_MF_FAT GOTERM_MF_FAT SP_PIR_KEVWORDS SP_PIR_KEVWORDS SP_PIR_KEVWORDS SP_PIR_KEVWORDS GOTERM_MF_FAT	EuCloubburg generation of precursor metabolites and energy Enrichment Score: 1.2598047353013444 Term GC:0046314" transition metal ion binding metal-binding zino-finger zino GC:00046370" zino ion binding GC:0043163" zention binding GC:0043163" zention binding GC:0043163" zention binding GC:0043163" zention binding GC:0043163" zention binding GC:0030554" adenyil nucleotide binding GC:0030554" adenyil nucleotide binding GC:0030555" adenyil ruborucleotide binding GC:000166" nucleoside binding GC:000166" nucleoside binding GC:000166" nucleotide binding GC:000166" nucleotide binding GC:000166" nucleotide binding GC:00032555" purine ruborucleotide binding GC:000166" nucleotide binding GC:000166" strueteotide binding GC:00032555" purine ruborucleotide binding GC:0003255" purine ruborucleotide binding GC:00	Count 62 65 40 43 45 76 76 76 76 76 76 76 76 76 76 76 76 76	2.47678 % 13.19505 20.12384 13.31269 13.3229 13.3229 13.3229 13.3229 13.3229 13.3229 11.45511 11.45511 10.52532 3.5357523 11.455516 7.120743 12.3839 11.76471 11.76471 10.63551 4.95556 12.3839 11.76471 1	0.303545 PValue 0.006175 0.008338 0.018422 0.131972 0.140938 0.0141487 0.16393 0.20392 PValue 0.021524 0.0221524 0.0225417 0.022073 0.028336 0.035861 0.035861 0.035861 0.035861 0.035861 0.035861 0.037833 0.052078 0.055142 0.078786 0.094774 0.102445 0.141427 0.14245 0.141427 0.14245 0.141427 0.14245 0.141427 0.14245 0.141427 0.14245 0.141427 0.14245 0.141427 0.14245 0.141427 0.141427 0.141427 0.094774 0.141427 0.094774 0.141427 0.094774 0.094774 0.141427 0.094774 0.09475 0.09475 0.09475 0.09475 0.094774 0.09475 0.094774 0.094774 0.09475 0.094774 0.09475 0.094	Fold Enrich 1363345 1352684 144002 1214339 1192482 1124223 1192422 1113731 1097449 Fold Enrich 1436843 1415304 1436843 1445339 1282096 1463336 1445339 1287506 1267506 1267506 1267506	Benjamini 0.726527 0.278556 0.40985 0.770517 0.930474 0.933666 0.9356434 0.9336666 0.945434 0.839927 0.847168 0.839927 0.847168 0.839927 0.847168 0.839607 0.818826 0.526605 0.518626 0.518625 0.518655 0.518655 0.518655 0.518655 0.518655 0.5185555 0.5185555 0.5185555 0.5185555 0.5185555 0.5185555 0.518555555 0.51855555 0.51855555 0.5185555555555 0.51855555555555555555555555555555555555
301 31 31 32 33 34 34 35 36 37 38 39 301 102 103 104 105 106 101 107 108 109 111 112 113 114 115 117 118 117 118 119	ENSEG000016857, ENSEG0000173028, ENSEG000017243, ENSEG0000183605, ENSEG000017177, ENSEG0000180537, ENSEG0000100722, ENSEG0000014539, ENSEG000014539, ENSEG000014537, ENSEG0000100722, ENSEG000001533, ENSEG000014557, ENSEG00001722, ENSEG000001533, ENSEG000014557, ENSEG0000142537, ENSEG0000142557, ENSEG00000142537, ENSEG00000142557, ENSEG00000142557, ENSEG00000142557, ENSEG0000142557, ENSEG0000142537, ENSEG0000142557, ENSEG0000142537, ENSEG0000142557, ENSEG0000142537, ENSEG0000142557, ENSEG0000142537, ENSEG0000145557, ENSEG0000145557, ENSEG000015557, ENSEG000015552, ENSEG000015552, ENSEG000015552, ENSEG000015552, ENSEG000015552, ENSEG000015552, ENSEG000015552, ENSEG000015552, ENSEG000015553, ENSEG000015553, ENSEG000015553, ENSEG000015553, ENSEG000015553, ENSEG000015553, ENSEG0000015553, ENSEG00000	GUTERM_MF_FAT GOTERM_MF_FAT	Enclobuble9 generation of precursor metabolites and energy Enrichment Score: 1.2598047353013444 Term CD: 0046314 'transition metal ion binding metal-binding cinc-finger zinc CD: 0046317 'metal ion binding CD: 0046872' metal ion binding CD: 0046872' metal ion binding CD: 0046875' reliable for the state of the state CD: 0043187' ion binding CD: 0043187' ion binding CD: 0030554' adeny hucleotide binding CD: 0001882' purise nucleotide binding CD: 0001882' nucleotide binding CD: 000186' nucleotide binding CD: 00017076' purise nucleotide binding CD: 00017076' purise nucleotide binding CD: 00032555' purise ribonucleotide binding CD: 0004672'' avasib liceae patible	8 65 65 40 43 45 76 76 76 76 76 76 76 76 76 76 37 37 35 37 35 37 37 37 37 37 35 37 37 37 36 33 40 31 40 31 40 40 40 40 40 40 40 40 40 40 40 40 40	2.47678 13.19505 20.12384 12.3839 13.31289 23.52341 23.52341 23.52341 23.52341 23.52341 14.45511 11.45511 11.45511 11.45510 11.55108 7.120743 12.3839 11.76471 10.835516 4.35356 4.35556 4.35556 4.355567 4.355567 4.355567 4.355567 4.3556767 4.355677777777777777777777777777777777777	0.303545 PValue 0.006175 0.008338 0.018422 0.131972 0.140998 0.0140998 0.0140998 0.026317 0.026317 0.026317 0.0265142 0.0265142 0.0265142 0.037878 0.037878 0.037878 0.055142 0.037878 0.055142 0.078786 0.094774 0.094774 0.012445 0.11726 0.4177726 0.4177726 0.4177777 0.41777777777777777777777777777777777777	Fold Enrich 1363345 1352864 144002 124839 1122482 1124239 1124223 1124239 1124223 1124239 1124223 1124239 1124223 1124239 1282482 1445333 1282096 1267506 1267506 1267506 1267506	Benjamini 0.726527 0.278566 0.40985 0.700517 0.930474 0.9323666 0.932386 0.938589 0.938589 0.839927 0.847188 0.839927 0.847188 0.839927 0.847188 0.839927 0.86734 0.939683 0.939084 0.939685 0.939683 0.939683 0.939685 0.944025
30 31 31 32 33 34 35 36 37 38 39 36 37 38 39 36 37 38 39 101 102 103 104 105 105 106 107 108 109 111 112 113 115 116 117 118 118 119	ENSEG00000168587, ENSG00000173028, ENSG0000017243, ENSG00000183605, ENSG00000123588, ENSG00000180537, ENSG00000100722, ENSG0000010539, ENSG00000100539, ENSG0000012432, ENSG0000016817, ENSG0000012588, ENSG00000100537, ENSG0000017447, ENSG0000012589, ENSG0000017447, ENSG0000017439, ENSG0000016817, ENSG0000015858, ENSG0000017447, ENSG0000017439, ENSG00000186187, ENSG0000015858, ENSG0000015859, ENSG0000017447, ENSG0000017439, ENSG00000183605, ENSG0000013024, ENSG0000015858, ENSG0000010722, ENSG0000010722, ENSG0000010722, ENSG0000010722, ENSG0000010722, ENSG0000010722, ENSG00000107244, ENSG0000017588, ENSG0000017585, ENSG0000010722, ENSG0000010722, ENSG0000010722, ENSG0000010722, ENSG0000010722, ENSG0000010722, ENSG0000010722, ENSG000001000010724, ENSG0000017585, ENSG0000018305, ENSG0000013024, ENSG000001357, ENSG0000010722, ENSG00000100722, ENSG0000010000000000000000000000000000000	GUTERM_MF_FAT GOTERM_MF_FAT	Eutouobul91 generation of precursor metabolites and energy Enrichment Score: 1.2598047353013444 Term GD:0046314" transition metal ion binding metal-binding tino-finger dino GD:0046372" zinci on binding GD:0043167" zenation binding GD:0043167" zenation binding GD:0043167" zenation binding GD:0043167" zenation binding GD:0043167" zenation binding GD:0043167" zenation binding GD:0030554" adenyil nucleotide binding GD:0030554" adenyil nucleotide binding GD:0001657" zurier nucleoside binding GD:0001657" zurier nucleoside binding GD:0001657" zurier nucleoside binding GD:0001657" zurier nucleoside binding GD:0001657" purier nucleotide binding GD:0001657" purier nucleotide binding GD:0001657" purier nucleotide binding GD:00032555" purier ibonucleotide binding GD:0032555" purier ibonucleotide binding GD:00457" porter ibonucleotide bind	Count 62 65 40 43 45 76 76 76 76 76 76 76 76 76 76 76 35 37 35 33 40 40 38 36 35 51 16 38 35 51 16	2.47678 13.19505 20.12384 13.31269 13.3269 13.3269 13.322941 23.52941 23.52941 23.52941 11.45511 11.45511 11.45511 10.52632 9.537523 14.55108 7.120743 12.3639 11.76471	0.303545 PValue 0.006175 0.008338 0.018422 0.131972 0.140938 0.141487 0.16333 0.20392 PValue 0.021524 0.026417 0.026427 0.026427 0.027073 0.026547 0.027838 0.035861 0.035861 0.037833 0.052078 0.055142 0.078786 0.094774 0.078785 0.	Fold Enrich 1363345 135284 144002 124339 1192482 1124233 1112423 1112423 1112423 1112423 1112423 1124233 1124253 142539 1445339 14057506 12875	Benjamini 0.726527 0.276566 0.40985 0.770517 0.930474 0.933666 0.945434 0.9336666 0.945434 0.839627 0.847166 0.647166 0.647166 0.647166 0.86087 0.786734 0.918224 0.918264 0.918264 0.918265 0.94665 0.918255 0.940765 0.76675

		1 -
	_	
h	Benjamini	
З.	0.969003	
5	0.952558	ש
1	0.955711	
5	0.959258	
5	0.959258	01
5	0.965369	
3	0.967477	<u> </u>
1	0.984902	
5	0.983302	
5	0.983302	
3	0.984904	<u> </u>
7	0.985729	
	m	

123	Annotation Cluster 9	Enrichment Score: 1.1297027188409117					
124 Genes	Category	Term	Count	%	PValue	Fold Enrich	Benjamini
125 ENSG0000006695, ENSG00000185664, ENSG00000014919, ENSG00000188690	GOTERM_BP_FAT	GO:0046148 [°] pigment biosynthetic process	4	1.23839	0.03054	5.829778	0.969003
126 ENSG0000006695, ENSG0000014919, ENSG00000188690	GOTERM_BP_FAT	GO:0006783'heme biosynthetic process	3	0.928793	0.034965	10.03065	0.952558
127 ENSG0000006695, ENSG00000185664, ENSG00000014919, ENSG00000188690	GOTERM_BP_FAT	GO:0042440 pigment metabolic process	4	1.23839	0.043962	5.052474	0.955711
128 ENSG0000006695, ENSG0000014919, ENSG00000188690	GOTERM_BP_FAT	GO:0006779 porphyrin biosynthetic process	3	0.928793	0.047208	8.52605	0.959258
123 ENSG0000006695, ENSG0000014919, ENSG00000188690	GOTERM_BP_FAT	GO:0033014 [*] tetrapyrrole biosynthetic process	3	0.928793	0.047208	8.52605	0.959258
130 ENSG0000006695, ENSG0000014919, ENSG00000188690	GOTERM_BP_FAT	GO:0042168'heme metabolic process	3	0.928793	0.056109	7.750955	0.965369
131 ENSG0000006695, ENSG0000014919, ENSG00000188690	KEGG_PATHWAY	hsa00860:Porphyrin and chlorophyll metabolism	3	0.928793	0.088433	5.926573	0.967477
132 ENSG0000006695, ENSG00000105835, ENSG00000014919, ENSG00000188690, ENSG00000023909	GOTERM_BP_FAT	GO:0051188' cofactor biosynthetic process	5	1.547988	0.090662	2.929914	0.984902
133 ENSG0000006695, ENSG0000014919, ENSG00000188690	GOTERM_BP_FAT	GO:0033013' tetrapyrrole metabolic process	3	0.928793	0.091141	5.880035	0.983302
134 ENSG0000006695, ENSG0000014919, ENSG00000188690	GOTERM_BP_FAT	GO:0006778' porphyrin metabolic process	3	0.928793	0.091141	5.880035	0.983302
135 ENSG0000006695, ENSG00000105835, ENSG00000197448, ENSG0000014919, ENSG00000188690, ENSG00000023909	GOTERM_BP_FAT	GO:0051186 [°] cofactor metabolic process	6	1.857585	0.256691	1.748933	0.984904
136 ENSG0000006695, ENSG0000014919, ENSG00000188690	GOTERM_BP_FAT	GO:0018130"heterocycle biosynthetic process	3	0.928793	0.276725	2.890187	0.985729
137							
138	Annotation Cluster 10	Enrichment Score: 1.093631290268119					
133 Genes	Category	Term	Count	%	PValue	Fold Enrich	Benjamini
140 ENSG0000087263, ENSG00000189046, ENSG00000178467	INTERPRO	IPR005123:Oxoglutarate and iron-dependent oxygenase	3	0.928793	0.029911	10.92871	0.999639
141 ENSG0000087263, ENSG00000189046, ENSG00000178467	UP_SEQ_FEATURE	domain:Fe2OG dioxygenase	3	0.928793	0.044962	8.779513	0.997354
142 ENSG0000087263, ENSG00000189046, ENSG00000132510, ENSG00000178467	GOTERM_MF_FAT	GO:0016702' oxidoreductase activity, acting on single donors	4	1.23839	0.092157	3.711549	0.921447
143 ENSG00000087263, ENSG00000189046, ENSG00000132510, ENSG00000178467	GOTERM_MF_FAT	GO:001670T oxidoreductase activity, acting on single donors	4	1.23839	0.095377	3.656153	0.904099
144 ENSG0000087263, ENSG00000189046, ENSG00000178467	SP_PIR_KEYWORDS	dioxygenase	3	0.928793	0.287868	2.811312	0.909942
145							
146	Annotation Cluster 11	Enrichment Score: 1.0526031513223535					
147 Genes	Category	Term	Count	7	PValue	Fold Enrich	Benjamini
148 ENSG00000103024, ENSG00000112541, ENSG00000106799, ENSG00000136159, ENSG00000172113, ENSG00000127334, ENSG00000064655, ENSG00000169446, ENSG0000	D GOTERM_MF_FAT	GO:0000287 magnesium ion binding	13	4.024768	0.06554	1.761344	0.90728
149 ENSG00000127334, ENSG00000167799, ENSG00000119414, ENSG00000106799, ENSG00000154237, ENSG00000136159	SP_PIR_KEYWORDS	manganese	6	1.857585	0.099765	2.441403	0.744948
150 ENSG00000127334, ENSG00000167799, ENSG00000119414, ENSG00000106799, ENSG00000154237, ENSG00000136159	GOTERM_MF_FAT	GO:0030145 [°] manganese ion binding	6	1.857585	0.106343	2.385996	0.895023

8.10 Scripts

8.10.1 EdgeR

```
#source("http://bioconductor.org/biocLite.R")
#biocLite("edgeR")
library(edgeR)
library(limma)
library(gtools)
******
## SET THE WORKING DIRECTORY
setwd('/home/svztg/Desktop/David haig Rabbit vs Cattle/RABBIT/Edge
R DE')
directory <- getwd()
filenames <- list.files(directory, pattern="*.counts")</pre>
for (file in filenames)
  {
 x <- read.delim(file,row.names="GENE")</pre>
 group <- factor(c(2,2,1,1))
 all_results_table = paste(file,"_all_Results_edgeR.xls")
FDR.lt0.05_table = paste(file,"_FDR_p0.05_edgeR.xls")
 PValue.lt0.05_table = paste(file, "_PValue_p0.05_edgeR.xls")
 mds.plot.name = paste(file,".MDS.plot.pdf")
 smear.plot.name = paste(file,".smear.plot.pdf")
 volcano.plot.name = paste(file,".volcano.plot.pdf")
******
****
 y <- DGEList(counts=x, group=group)</pre>
 z <- DGEList(counts=x,group=group)</pre>
  ## Since the smallest group size is TWO, we keep genes that
achieve at least one count per million (cpm) in at least TWO
samples:\n";
 keep <- rowSums(cpm(y)>1) >= 1
 y <- y[keep,]</pre>
  # Re-compute the library sizes
 y$samples$lib.size <- colSums(y$counts)</pre>
 z$samples$lib.size <- colSums(z$counts)</pre>
  # Compute effective library sizes using TMM normalization:\n";
 y <- calcNormFactors(y)</pre>
 z <- calcNormFactors(z)</pre>
 v$samples
  # Output plot as a pdf
 pdf(mds.plot.name)
 plotMDS(y)
 dev.off()
```

```
y <- estimateCommonDisp(y)</pre>
  z <- estimateCommonDisp(z)</pre>
  y <- estimateTagwiseDisp(y)</pre>
  z <- estimateTagwiseDisp(z)</pre>
  #plotBCV(y)
  et <- exactTest(v)</pre>
  etz <- exactTest(z)</pre>
  top <- topTags(et)</pre>
  pdf(smear.plot.name)
  plotSmear(y, de.tags=top, main="Differential expression using
the common dispersion")
  dev.off()
  ## Check the individual cpm values for the top genes:
  cpm(y)[rownames(top), ]
  ## The total number of DE genes at 5% FDR is given by:
  summary(de <- decideTestsDGE(et))</pre>
  ## Plot the log-fold-changes, highlighting the DE genes:
  detags <- rownames(y)[as.logical(de)]</pre>
  ## Get LogFC values
  LogFCvalues <- etz$table$logFC
  ## Get the Genenames
  RownamesforLogFC <- rownames(etz)</pre>
  ## Convert LogFC to FC
  FC <- logratio2foldchange(LogFCvalues, base=2)</pre>
  ## Convert FC list to dataframe with Genenames
  FClist <- data.frame( RownamesforLogFC, FC )</pre>
  # volcano plot
  pdf(volcano.plot.name)
  plot(et$table$logFC, -log10(et$table$PValue), pch=19, cex=0.2,
main ="Volcano Plot", xlab = "LogFC", ylab = "-log10 pvalue")
  dev.off()
  ## Generate an EdgeR results table
  EdgeRResults <- topTags( et , n = nrow( et$table ) )$table</pre>
  ## Generate an counts table
  gene.counts <- z$counts</pre>
  ## Merge tables
  most.results <- merge(gene.counts, EdgeRResults, by=0, all=TRUE)</pre>
  combined.results <- merge(most.results, FClist, by=1, all=TRUE)
  ## Identify if a gene is up or down regulated
  #combined.results.UP.G2 <- subset(combined.results, logFC > 0)
  # combined.results.DOWN.G2 <- subset(combined.results, logFC <=</pre>
0)
  # combined.results.UP.G2[, "G2vsG1"] <- "UP"</pre>
  #combined.results.DOWN.G2[, "G2vsG1"] <- "DOWN"</pre>
  ## Add Up or Down to combined results
  #combined.results <-</pre>
rbind(combined.results.UP.G2, combined.results.DOWN.G2)
```

Filter combined.results to identify significant genes significant.results0.05FDR <- subset(combined.results, FDR <= 0.05) significant.results0.05 <- subset(combined.results, PValue <= 0.05) ## Write tables write.table(combined.results, file=all_results_table,row.names=FALSE,col.names=TRUE,quote=FALSE) write.table(significant.results0.05, file= PValue.lt0.05_table,row.names=FALSE,col.names=TRUE,quote=FALSE) write.table(significant.results0.05FDR, file=FDR.lt0.05_table,row.names=FALSE,col.names=TRUE,quote=FALSE)

}

8.10.2 Ballgown

```
## ----loadmethods, echo=FALSE, message=FALSE, warning=FALSE------
_____
## source("http://bioconductor.org/biocLite.R")
## biocLite("ballgown")
library(edgeR)
library(limma)
library(ballgown)
library(gtools)
## ----Variables------
_____
group = factor(c(1, 1, 2, 2))
data directory
='/home/svztg/Desktop/David_haig_Rabbit_vs_Cattle/COW/assemblies'
## ----makebg, message=FALSE-----
-----
setwd(data directory)
directory <- getwd()</pre>
bg = ballgown(dataDir=data directory, samplePattern='assembly',
meas='all')
## ----getexpr-----
_____
gene_expression = texpr(bg, 'FPKM')
transcript values = texpr(bg, 'all')
transcript names = transcriptNames(bg)
## ----pData-----
_____
pData(bg) = data.frame(id=sampleNames(bg), group)
phenotype results = pData(bg)
stats results = stattest(bg, feature='transcript',
gexpr=gene expression, getFC=TRUE, meas='FPKM', covariate='group')
stats results <- merge(transcript names, stats results, by=0,</pre>
all=TRUE)
stats results = subset(stats results,
select=c("x","fc","pval","qval"))
colnames(stats results)[1] <- "t name"</pre>
colnames(stats_results)[2] <- "Ratio"</pre>
Log FC <- log2(stats results$Ratio)</pre>
FC <- logratio2foldchange(Log FC, base=2)</pre>
stats_results <- cbind(stats_results, Log_FC, FC)</pre>
stats results = subset(stats_results,
select=c("t_name","Ratio","FC","Log_FC","pval","qval"))
stats_results <- merge(stats_results, transcript_values)</pre>
colnames(stats results)[1] <- "Transcript Name"</pre>
```

```
323
```

Osama Kumati

```
stats_results <- stats_results[ order(stats_results$pval) ,]</pre>
## ----writeTable------
_____
#transcript table = paste("transcript table", sep="" )
#write.table(transcript values,
file=transcript table,row.names=FALSE,col.names=TRUE,quote=FALSE,s
ep="\t")
phenotype_results_table = paste("phenotype_results_table", sep =
.
"")
write.table(phenotype results,
file=phenotype results table,row.names=FALSE,col.names=TRUE,quote=
FALSE, sep="\t")
stats_results_table = paste("stats_results_table", sep="" )
write.table(stats results,
file=stats results table, row.names=FALSE, col.names=TRUE, quote=FALS
E, sep="t")
## ----sessioninfo, results='markup'-----
_____
```

```
#sessionInfo()
```

8.10.3 Hisat

#!/usr/bin/bash

#HISAT and StringTie wrapper script v0.0.1
#Tom Giles
#09.12.14
#thomas.giles@nottingham.ac.uk

help readme() {

Help Section

echo "

HISAT and StringTie wrapper script v1.0.1 by Tom Giles (21.10.15) (thomas.giles@nottingham.ac.uk) `basename \$0`

This pipeline aligns reads to a genome sequence using Hisat v2 (Kim D, Langmead B and Salzberg SL. HISAT: a fast spliced aligner with low memory requirements. Nature Methods 2015). Technical replicates from different lanes are merged using samtools (Heng Li, Et Al, The Sequence Alignment/Map format and SAMtools. Bioinformatics 2009) and then assembled to identify transcipt level expression using stringtie (Pertea M, Et Al. StringTie enables improved reconstruction of a transcriptome from RNA-seq reads Nature Biotechnology 2015).

Usage:

Hisat Wrapper.sh <genome directory> <read directory>

The genome directory should contain the following 2 files:

#	GENOME_SEQUENCE =		genome_name.fa		
#	GENOME	ANNOTATIONS	=	genome_name.gtf	

if you wish to use the SNP aware indexer the genome folder should also contain:

GENOME SNPS = genome name.vcf

The read directory should contain trimmed.gz reads in pairs:

You will be prompted to enter the number of CPUS's to use, the amount of RAM and the unique read suffixes

The number of cores and amount of RAM should be specified as whole numbers (eg 20 = 20gb)

The read suffixes should be unique:

*_R1_001.fq.gz # *_R2_001.fq.gz for optimum compatibility we recomend that the reads are formated as follows:

SAMPLE REPLICATE LANE READSUFFIX

If the reads are not formated in this manner it is likely that the script will crash whilst merging of the sorted bamfiles.

This script assumes that the reads were generated across multiple lane (eg: L001, L002).

If the reads were not generated across multiple lanes then the script will crash whilst merging of the sorted bamfiles. In this instance you may need to re-write the Merge_bam_files function or rename your reads so that the technical replicates are defined after the second underscore in the readname.

Dependencies (The folowing tools must be installed at \$/PATH):

HISAT (tested with version 2.0.0-beta) # samtools (tested with version 0.1.19) # HTSeq count (tested with version 0.6.1) # StringTie (tested with version 1.0.4) If not set, the CPU and RAM settings determined automatically based on the avalible system resources " exit 0 } #______# Extract_Splice_sites() { # Extract Splice sites from GFF START=\$(date +%s) if [-f \$SPLICE SITES]; then echo "Splice site file \$SPLICE SITES exists" else echo "Extracting splice sites from \$GENOME GTF" python \$HISAT2 DIRECTORY/extract splice sites.py \$GENOME GTF > \$SPLICE SITES fi; wait END=\$(date +%s) TIME SPLICE SITES=\$((END-START))

```
echo "Time to extract Splice sites from GFF: $TIME_SPLICE_SITES
seconds"
}
#______#
Extract Exons() {
# Extract Exons from GFF
 START=$(date +%s)
 if [ -f $EXONS ];
     then
     echo "Exon file $EXONS exists"
     else
     echo "Extracting exons sites from $GENOME GTF"
     python $HISAT2 DIRECTORY/extract exons.py $GENOME GTF >
$EXONS
 fi;
 wait
 END=$(date +%s)
 TIME EXONS=$((END-START))
 echo "Time to extract Exons from GFF: $TIME EXONS seconds"
}
Extract SNPs() {
# Extract Exons from VCF
 START=$(date +%s)
 if [ -f $SNPS ];
 then
     echo "Exon file $SNPS exists"
     else
     echo "Extracting SNPs from $GENOME_VCF"
 cat $GENOME VCF | awk -F $'\t' 'BEGIN {OFS = FS}{
              if (index($8, "deletion")) { print
$3,"deletion"$1,$2,length($5);}
              else if (index($8, "SNV")) { print
$3,"single"$1,$2,$5;}
              else if (index($8,"insertion")) { print
$3, "insertion"$1, $2, $5; }
       }' | tr '[,]' '[\t]' | awk -F $'\t' 'BEGIN {OFS = FS}{
              if ($6=="") { print $1,$2,$3,$4,"$5;}
              else { for (i=4; i<=NF; i++) print</pre>
$1,$2,$3,$4,"$i;
     }' > $SNPS
```

```
fi;
 wait
 END=$(date +%s)
 TIME EXONS=$((END-START))
 echo "Time to extract SNPs from GFF: $TIME SNPs seconds"
}
Index reference genome no SNPs() {
# Build the reference genome without the SNP aware indexer
 START=$(date +%s)
 if [ -f $INDEX NAME.1.ht2 ] ;
     then
     echo "GENOME SEQUENCE $INDEX NAME Exists. If you need to re-
index the genome please remove current version in
$GENOME DIRECTORY"
     else
     echo "Indexing $GENOME SEQUENCE with splice site aware
algorithm";
    hisat2-build --verbose -p $NPROC --ss $SPLICE SITES --exon
$EXONS $GENOME SEQUENCE $INDEX NAME
 fi;
 wait
 END=$(date +%s)
 TIME INDEXING=$((END-START))
 echo "Time to index the reference sequence: $TIME INDEXING
seconds"
}
#------
Index reference genome with SNPs() {
# Build the reference genome with the SNP aware indexer
 START=$(date +%s)
 if [ -f $INDEX NAME.1.ht2 ] ;
     then
     echo "GENOME SEQUENCE $INDEX NAME Exists. If you need to re-
index please remove current version"
     else
     echo "Indexing $GENOME SEQUENCE with splice site aware
algorithm";
```

```
hisat2-build --verbose -p $NPROC --snp $SNP --ss
$SPLICE SITES --exon $EXONS $GENOME SEQUENCE $INDEX NAME
 fi;
 wait
 END=$(date + %s)
 TIME INDEXING=$((END-START))
 echo "Time to index the reference sequence: $TIME_INDEXING
seconds"
}
#------
Run_alignment() {
#Run hisat on all read pairs
 START=$(date +%s)
 for fq pair 1 in $WORKING DIRECTORY/*$READ1 SUFFIX ;
     do
     filename=${fq pair 1%$READ1 SUFFIX}
     fq pair 2=${filename}$READ2 SUFFIX
     samfile=$filename.$SAMFILE
     mapping statistics=$filename.$MAPPING STATISTICS
     novel splice sites=$filename.$NOVEL SPLICE SITES
     unaligned singletons=$filename.$UNMAPPED SINGLETONS
     unaligned pairs=$filename.$UNMAPPED PAIRS
     if [ -f $samfile ] ;
          then
          echo "$samfile Exists"
          else
          echo "now aligning $fq_pair_1 and $fq_pair_2"
          hisat2 -x $INDEX NAME -p $NPROC -- known-splicesite-
infile $SPLICE SITES --novel-splicesite-outfile
$novel splice sites -1 $fq pair 1 -2 $fq pair 2 -S $samfile --met-
file $mapping statistics --un-gz $unaligned singletons --un-conc-
gz $unaligned_pairs;
     fi
 done;
 wait
 END=$(date +%s)
 TIME ALLGINING=$((END-START))
 echo"Time to run hisat: $TIME ALLGINING seconds"
}
#______#
Convert SAM to BAM() {
```

```
#Convert all .sam files to sorted .bam files in batches of NPROC
 START=$(date +%s)
 for samfile in $WORKING DIRECTORY/*.$SAMFILE;
     do
     bamfile="${samfile%.sam}.alignment"
     if [ -f $bamfile.bam ];
          then
          echo "$bamfile.bam Exists"
          else
          echo "Now sorting $samfile."
           samtools view -bS $samfile | samtools sort - $bamfile
&
          PROC = $ ((PROC + 6))
           if [ "$PROC" -ge "$NPROC" ];
                then
                wait
                PROC=0
           fi
     fi
 done;
 wait
 END=$(date +%s)
 TIME SORTING=$((END-START))
 echo "Time to convert .sam files to sorted .bam files:
$TIME SORTING seconds"
}
Merge_bam_files() {
#merge the sorted .bam files
 START=$(date +%s)
 grouped sample ID=$(find "$WORKING DIRECTORY" -name
"*.alignment.bam" -exec echo "{}" \;)
 echo "$grouped_sample_ID" >
$WORKING DIRECTORY/list of alignments.tmp
 sample IDs=$(cat $WORKING DIRECTORY/list of alignments.tmp | rev
| cut -d"/" -f1 | rev | cut -d" " -f1-2 | sort | uniq)
  for sample in $sample IDs;
     do
     list=$(find "$WORKING DIRECTORY" -name
"$sample*alignment.bam");
     echo "merging sorted bam files"
     echo " $list"
```

```
samtools merge
$WORKING_DIRECTORY/"$sample".merged_alignment.bam $list
 done;
 wait
 END=$(date +%s)
 TIME MERGING=$((END-START))
 echo "Time to merge .bam files: $TIME MERGING seconds"
}
#______#
Generate assembly() {
#Run stringtie on sorted .bam files
 START=$(date +%s)
 for bamfile in $WORKING DIRECTORY/*merged alignment.bam;
     do
     results summary="${bamfile%.merged alignment.bam} assembly/r
esults summary.txt"
     results folder="${bamfile%.merged alignment.bam} assembly"
     if [ -f $results summary ];
     then
          echo "$results summary Exists"
          else
          echo "Now running StringTie on $bamfile."
          mkdir $results folder
          stringtie $bamfile -G $GENOME GTF -p $NPROC -b
$results folder > $results summary
    fi
 done;
 wait
 END=$(date +%s)
 TIME ASSEMBLING=$((END-START))
 echo "Time to run StringTie: $TIME ASSEMBLING seconds"
}
#-----#
Generate_counts() {
#Run HTSeq on sorted .bam files
 START=$(date +%s)
 for bamfile in $WORKING DIRECTORY/*merged alignment.bam;
     do
     results counts="${bamfile%.bam}.counts"
```

```
if [ -f $results_counts ];
     then
           echo "$results summary Exists"
           else
           echo "Now running HTSeq on $bamfile."
           samtools view $bamfile | htseq-count - $GENOME GTF >
$results counts &
           PROC = $ ((PROC + 2))
           if [ "$PROC" -ge "$NPROC" ];
                then
                wait
                PROC=0
           fi
     fi
 done;
 wait
 END=$(date +%s)
 TIME COUNTING=$((END-START))
 echo "Time to count alignments with HTSeq counts: $TIME COUNTING
seconds"
}
#______#
Generate statistics() {
#Calculate total runtime, the number of reads and Mapping
Statistics
 START=$(date +%s)
 echo "Generating statistics"
 for fq_pair_1 in $WORKING_DIRECTORY/*$READ1_SUFFIX;
     do
     filename=${fg pair 1%$READ1 SUFFIX}
     fq pair 2=${filename}$READ2 SUFFIX
     samfile=$filename.$SAMFILE
     bamfile=$filename.alignment.$BAMFILE
     sample name=${filename##*/}
       number of R1 input reads=$(zcat "$fq pair 1" | echo $((`wc
-1^{(4)})
     number of R2 input reads=$(zcat "$fq pair 2" | echo $((`wc -
l`/4)))
     flagstat=$(samtools flagstat $bamfile)
     echo "Filename = $sample name
number of reads = $number of R1 input reads +
$number of R2 input read
Samtools flagstats =
```
```
$flagstat
          ..
 done > "$WORKING DIRECTORY/Run statistics.tsv"
 END=$(date +%s)
 TIME GENERATE STATISTICS=$((END-START))
}
            #----
Move files() {
#Make new directories and move files accordingly
if [ ! -d "$WORKING DIRECTORY/reads" ]; then
    mkdir $WORKING DIRECTORY/reads
fi;
if [ ! -d "$WORKING DIRECTORY/reads/trimmed" ]; then
     mkdir $WORKING DIRECTORY/reads/trimmed
     mv $WORKING DIRECTORY/*$READ1 SUFFIX
$WORKING DIRECTORY/reads/trimmed
     mv $WORKING DIRECTORY/*$READ2 SUFFIX
$WORKING DIRECTORY/reads/trimmed
fi;
if [ ! -d "$WORKING DIRECTORY/reads/unmapped singletons" ]; then
     mkdir $WORKING DIRECTORY/reads/unmapped singletons
     mv $WORKING DIRECTORY/*$UNMAPPED SINGLETONS
$WORKING DIRECTORY/reads/unmapped singletons
fi;
if [ ! -d "$WORKING DIRECTORY/reads/unmapped pairs" ]; then
     mkdir $WORKING DIRECTORY/reads/unmapped pairs
     mv $WORKING DIRECTORY/*.unmapped.pairs.fq.*.gz
$WORKING DIRECTORY/reads/unmapped pairs
fi;
if [ ! -d "$WORKING DIRECTORY/alignments" ]; then
     mkdir $WORKING DIRECTORY/alignments
fi;
if [ ! -d "$WORKING_DIRECTORY/alignments/merged alignment" ];
then
     mkdir $WORKING DIRECTORY/alignments/merged alignment
     mv $WORKING DIRECTORY/*.merged alignment.bam
$WORKING DIRECTORY/alignments/merged alignment
fi;
if [ ! -d "$WORKING DIRECTORY/alignments/samfiles" ]; then
     mkdir $WORKING DIRECTORY/alignments/samfiles
     mv $WORKING DIRECTORY/*$SAMFILE
$WORKING DIRECTORY/alignments/samfiles
fi;
if [ ! -d "$WORKING DIRECTORY/alignments/sorted bamfiles" ]; then
```

```
mkdir $WORKING DIRECTORY/alignments/sorted bamfiles
     mv $WORKING DIRECTORY/*$BAMFILE
$WORKING DIRECTORY/alignments/sorted bamfiles
fi;
if [ ! -d "$WORKING DIRECTORY/alignments/statistics" ]; then
     mkdir $WORKING DIRECTORY/alignments/statistics
     mv $WORKING DIRECTORY/*$MAPPING STATISTICS
$WORKING DIRECTORY/alignments/statistics
fi;
if [ ! -d "$WORKING DIRECTORY/alignments/novel splice sites" ];
then
     mkdir $WORKING DIRECTORY/alignments/novel splice sites
     mv $WORKING DIRECTORY/*$NOVEL SPLICE SITES
$WORKING DIRECTORY/alignments/novel splice sites
fi;
if [ ! -d "$WORKING DIRECTORY/assemblies" ]; then
     mkdir $WORKING DIRECTORY/assemblies
     mv $WORKING DIRECTORY/*assembly
$WORKING DIRECTORY/assemblies
fi;
if [ ! -d "$WORKING DIRECTORY/counts" ]; then
     mkdir $WORKING DIRECTORY/counts
     mv $WORKING DIRECTORY/*counts $WORKING DIRECTORY/counts
fi;
}
*****
# Either run the pipeline or exit based on input variables
******
GENOME DIRECTORY=$1;
WORKING DIRECTORY=$2;
if ["$1" = -h];
     then
     help readme
elif [ "$1" = --help ];
     then
     help readme
elif [ -d "$1" ] && [ -d "$2" ];
     then
     gtf=$(ls $GENOME DIRECTORY/*.gtf | wc -1)
     fa=$(ls $GENOME DIRECTORY/*.fa | wc -1)
     vcf=$(ls $GENOME DIRECTORY/*.vcf | wc -1)
     if [ "$gtf" = "1" ] && [ "$fa" = "1" ];
          then
```

echo "Run Started" echo "HISAT and StringTie wrapper script v1.0.1 by Tom Giles (21.10.15) (thomas.giles@nottingham.ac.uk)" echo "for more information on how to run this script please use -h or --help" echo "" echo "Genome folder = \$1" echo "Read folder = \$2" #---------# # Set global variables echo -n "Enter the number of CPU cores to use > " read number of cores echo -n "Enter the amount of RAM (in GB) to use > " read amount of ram echo -n "Enter the unique read 1 suffix > " read READ1 SUFFIX echo -n "Enter the unique read 2 suffix > " read READ2 SUFFIX #______ ----# # Define the status of the system NPROC=\$(grep -c ^processor /proc/cpuinfo) if ["\$number of cores" -lt "\$NPROC"]; then NPROC=\$number of cores else echo "\$number of cores is greater than the avalible number of cores. \n Using \$NPROC cores" fi KB RAM=\$(head -1 /proc/meminfo | awk '{ print \$2 }'); GB RAM=\$(echo "scale=2; \$KB RAM /1048576" | bc); GB RAM ROUNDED=\$(echo \${GB RAM%%.*}); RAM=\$((GB RAM ROUNDED-2)); if ["\$amount_of_ram" -lt "\$RAM"]; then RAM=\$amount_of_ram else echo "\$amount of ram is greater than the avalible amount of RAM. \n Using \$RAM GB of RAM" fi echo "Using \$RAM GB of RAM and \$NPROC cores"

~# # Automatically define the additional core variables GENOME SEQUENCE=\$(find \$GENOME DIRECTORY -type f -name *.fa) GENOME GTF=\$(find \$GENOME DIRECTORY -type f -name *.gtf) INDEX NAME="\${GENOME SEQUENCE%.fa}" SPLICE SITES="\${GENOME GTF%.gtf}.splice sites" EXONS="\${GENOME GTF%.gtf}.exons" HISAT2 DIRECTORY=\$(which hisat2 | sed 's,/*[^/]\+/*\$,,') SAMFILE="sam" BAMFILE="bam" MAPPING STATISTICS="mapping statistics.txt" NOVEL_SPLICE_SITES="novel_splice sites.tsv" UNMAPPED SINGLETONS="unmapped.singletons.fq.gz" UNMAPPED PAIRS="unmapped.pairs.fq.gz" if ["\$vcf" = "1"]; then \$GENOME_VCF=\$(find \$GENOME_DIRECTORY -type f name *.vcf) \$SNPS="\${GENOME VCF%.vcf}.snps" echo "SNP file present - will attempt to generate a SNP sensitive genome index" else echo "SNP file not present - will not attempt to generate a SNP sensitive genome index" fi ~# # call functions Extract Splice sites; Extract Exons; if ["\$vcf" = "1"]; then Extract_SNPs; fi if ["\$vcf" = "1"]; then Index_reference_genome_with_SNPs; else Index reference_genome_no_SNPs;

fi Run alignment; Convert_SAM_to_BAM; Merge bam files; Generate counts; Generate assembly; Generate statistics; Move files; ~# # Collect Statistics echo "Run Finished" rm \$WORKING_DIRECTORY/*.tmp Run date=\$(date); TIME SPLICE SITES=\$ (echo \$TIME SPLICE SITES | awk '{print int(\$1/60)"m:"int(\$1%60)}"s"') TIME EXONS=\$ (echo \$TIME EXONS | awk '{print int(\$1/60)"m:"int(\$1%60)}"s"') TIME_INDEXING=\$(echo \$TIME_INDEXING | awk '{print int(\$1/60)"m:"int(\$1%60)}"s"') TIME ALLGINING=\$ (echo \$TIME ALLGINING | awk '{print int(\$1/60)"m:"int(\$1%60)}"s"') TIME SORTING=\$ (echo \$TIME SORTING | awk '{print int(\$1/60)"m:"int(\$1%60)}"s"') TIME MERGING=\$ (echo \$TIME MERGING | awk '{print int(\$1/60)"m:"int(\$1%60)}"s"') TIME COUNTS=\$ (echo \$TIME COUNTS | awk '{print int(\$1/60)"m:"int(\$1%60)}"s"') TIME ASSEMBLING=\$ (echo \$TIME ASSEMBLING | awk '{print int(\$1/60)"m:"int(\$1%60)}"s"') TIME_GENERATE_STATISTICS=\$ (echo \$TIME_GENERATE_STATISTICS | awk '{print int(\$1/60)"m:"int(\$1%60)}"s"') echo "" echo "PERFORMANCE STATISTICS:" echo "Number of CPUs = \$NPROC | Amount of Ram used = \$RAM" if ["\$TIME SPLICE SITES" != "Om:Os"]; then echo "Time to extract splice sites from GFF: \$TIME SPLICE SITES" else echo "splice sites file existed"; fi if ["\$TIME EXONS" != "Om:Os"]; then echo "Time to extract exons from GFF: \$TIME EXONS"; else echo "Exon file already existed"; fi if ["\$TIME INDEXING" != "Om:Os"]; then

echo "Time to index the reference sequence: \$TIME_INDEXING"; else echo "Genome was already indexed" fi if ["\$TIME ALLGINING" != "Om:Os"]; then echo "Time to run HISAT: \$TIME_ALLGINING"; fi if ["\$TIME SORTING" != "Om:Os"]; then echo "Time to convert .sam files to sorted .bam files: \$TIME SORTING"; fi if ["\$TIME MERGING" != "Om:Os"]; then echo "Time to merge .bam files: \$TIME_MERGING"; fi if ["\$TIME COUNTS" != "Om:Os"]; then echo "Time to count alignments with HTSeq counts: \$TIME COUNTS"; fi if ["\$TIME ASSEMBLING" != "Om:Os"]; then echo "Time to run StringTie: \$TIME_ASSEMBLING"; fi if ["\$TIME_GENERATE_STATISTICS" != "Om:Os"]; then echo "Time to generate statistics: \$TIME GENERATE STATISTICS"; fi exit 0 else help readme fi else help readme fi

References

References

- ABU ELZEIN, E. M., HOUSAWI, F. M., GAMEEL, A. A., AL-AFALEQ, A. I. & EL-BASHIR, A. M. 2003. Sheep-associated malignant catarrhal fever involving 3-5-week-old calves in Saudi Arabia. J Vet Med B Infect Dis Vet Public Health, 50, 53-9.
- ABUHAMMAD, S. & ZIHLIF, M. 2013. Gene expression alterations in doxorubicin resistant MCF7 breast cancer cell line. Genomics, 101, 213-220.
- Ackermann, M. (2006). "Pathogenesis of gammaherpesvirus infections." <u>Veterinary Microbiology</u> **113**(3): 211-222.
- ANASTASIADOU, E., BOCCELLATO, F., CIRONE, M., KIS, L. L., KLEIN, E., FRATI, L., FAGGIONI, A. & TRIVEDI, P. 2005. Epigenetic mechanisms do not control viral latency III in primary effusion lymphoma cells infected with a recombinant Epstein-Barr virus. Leukemia, 19, 1854-6.
- ANDERSON, I. E., BUXTON, D., CAMPBELL, I., RUSSELL, G., DAVIS, W. C., HAMILTON, M. J. & HAIG, D. M. 2007. Immunohistochemical study of experimental malignant catarrhal fever in rabbits. J Comp Pathol, 136, 156-66.
- ANDERSON, I. E., DEANE, D., SWA, S., THOMSON, J., CAMPBELL, I., BUXTON, D., WEI, X. Q., STEWART, J., RUSSELL, G. & HAIG, D. M. 2008. Production and utilization of interleukin-15 in malignant catarrhal fever. J Comp Pathol, 138, 131-44.
- ANDERSON, I. E., REID, H. W., NETTLETON, P. F., MCINNES, C. J. & HAIG, D. M. 2001. Detection of cellular cytokine mRNA expression during orf virus infection in sheep: differential interferon-gamma mRNA expression by cells in primary versus reinfection skin lesions. Vet Immunol Immunopathol, 83, 161-76.
- BARTEL, D. P. 2009. MicroRNAs: target recognition and regulatory functions. Cell, 136, 215-33.
- BARTON, E., MANDAL, P. & SPECK, S. H. 2011. Pathogenesis and host control of gammaherpesviruses: lessons from the mouse. Annu Rev Immunol, 29, 351-97.
- BENJAMIN, A. M., NICHOLS, M., BURKE, T. W., GINSBURG, G. S. & LUCAS, J. E. 2014. Comparing reference-based RNA-Seq mapping methods for non-human primate data. BMC genomics, 15, 1.
- BLAKE, N. 2010. Immune evasion by gammaherpesvirus genome maintenance proteins. J Gen Virol, 91, 829-46.
- Borodovsky, Alexandra; et al. (2013). "5-azacytidine reduces methylation, promotes differentiation and induces tumor regression in a patient-

derived IDH1 mutant glioma xenograft". Oncotarget. 4 (10): 1737-1747.

- BOUDRY, C., MARKINE-GORIAYNOFF, N., DELFORGE, C., SPRINGAEL, J. Y., DE LEVAL, L., DRION, P., RUSSELL, G., HAIG, D. M., VANDERPLASSCHEN, A. F. & DEWALS, B. 2007. The A5 gene of alcelaphine herpesvirus 1 encodes a constitutively active G-proteincoupled receptor that is non-essential for the induction of malignant catarrhal fever in rabbits. J Gen Virol, 88, 3224-33.
- BOYLE, J. P. & MONIE, T. P. 2012. Computational analysis predicts the Kaposi's sarcoma-associated herpesvirus tegument protein ORF63 to be alpha helical. Proteins, 80, 2063-70.
- BOYMAN, O. & SPRENT, J. 2012. The role of interleukin-2 during homeostasis and activation of the immune system. Nat Rev Immunol, 12, 180-90.
- BRIDGEN, A., MUNRO, R. & REID, H. W. 1992. The detection of Alcelaphine herpesvirus-1 DNA by in situ hybridization of tissues from rabbits affected with malignant catarrhal fever. J Comp Pathol, 106, 351-9.
- BULLARD, J. H., PURDOM, E., HANSEN, K. D. & DUDOIT, S. 2010. Evaluation of statistical methods for normalization and differential expression in mRNA-Seq experiments. BMC bioinformatics, 11, 94.
- BURRELLS, C. & REID, H. W. 1991. Phenotypic analysis of lymphoblastoid cell lines derived from cattle and deer affected with "sheep-associated" malignant catarrhal fever. Vet Immunol Immunopathol, 29, 151-61.
- BUXTON, D. & REID, H. W. 1980. Transmission of malignant catarrhal fever to rabbits. Vet Rec, 106, 243-5.
- BUXTON, D., REID, H. W., FINLAYSON, J. & POW, I. 1984. Pathogenesis of 'sheep-associated' malignant catarrhal fever in rabbits. Res Vet Sci, 36, 205-11.
- CFSP. 2012. Malignant catarrhal fever Available: http://www.cfsph.iastate.edu/Factsheets/pdfs/malignant_catarrhal_f ever.pdf [Accessed 28/08/2015].
- CHANG, H. W., WANG, H. C., CHEN, C. Y., HUNG, T. W., HOU, M. F., YUAN, S. S., HUANG, C. J. & TSENG, C. N. 2014. 5-azacytidine induces anoikis, inhibits mammosphere formation and reduces metalloproteinase 9 activity in MCF-7 human breast cancer cells. Molecules, 19, 3149-59.
- CHEN, Z. & DUAN, X. 2011. Ribosomal RNA depletion for massively parallel bacterial RNA-sequencing applications. Methods Mol Biol, 733, 93-103.

- CHRISTMAN, J. K. 2002. 5-Azacytidine and 5-aza-2'-deoxycytidine as inhibitors of DNA methylation: mechanistic studies and their implications for cancer therapy. Oncogene, 21, 5483-95.
- CHU, Y. & COREY, D. R. 2012. RNA sequencing: platform selection, experimental design, and data interpretation. Nucleic Acid Ther, 22, 271-4.
- CLEAVELAND, S., KUSILUKA, L., OLE KUWAI, J., BELL, C. & KAZWALA, R. 2001. Assessing the impact of malignant catarrhal fever in Ngorongoro District, Tanzania. Department for international development, animal health programme, 1-57.
- COSCOY, L. 2007. Immune evasion by Kaposi's sarcoma-associated herpesvirus. Nat Rev Immunol, 7, 391-401.
- COULTER, L. J., WRIGHT, H. & REID, H. W. 2001. Molecular genomic characterization of the viruses of malignant catarrhal fever. J Comp Pathol, 124, 2-19.
- CUNHA, C. W., GAILBREATH, K. L., O'TOOLE, D., KNOWLES, D. P., SCHNEIDER, D. A., WHITE, S. N., TAUS, N. S., DAVIES, C. J., DAVIS, W. C. & LI, H. 2012. Ovine herpesvirus 2 infection in American bison: virus and host dynamics in the development of sheep-associated malignant catarrhal fever. Veterinary microbiology, 159, 307-319.
- CUNHA, C. W., O'TOOLE, D., TAUS, N. S., KNOWLES, D. P. & LI, H. 2013. Are rabbits a suitable model to study sheep-associated malignant catarrhal fever in susceptible hosts? Vet Microbiol, 163, 358-63.
- CUNHA, C. W., TRAUL, D. L., TAUS, N. S., OAKS, J. L., O'TOOLE, D., DAVITT, C. M. & LI, H. 2008. Detection of ovine herpesvirus 2 major capsid gene transcripts as an indicator of virus replication in shedding sheep and clinically affected animals. Virus Res, 132, 69-75.
- CZABOTAR, P. E., LESSENE, G., STRASSER, A. & ADAMS, J. M. 2014. Control of apoptosis by the BCL-2 protein family: implications for physiology and therapy. Nature reviews Molecular cell biology, 15, 49-63.
- DAVIS, W. C., BROWN, W. C., HAMILTON, M. J., WYATT, C. R., ORDEN, J. A., KHALID, A. M. & NAESSENS, J. 1996. Analysis of monoclonal antibodies specific for the gamma delta TcR. *Vet Immunol Immunopathol*, 52, 275-83.
- DAVISON, A. J., EBERLE, R., EHLERS, B., HAYWARD, G. S., MCGEOCH, D. J., MINSON, A. C., PELLETT, P. E., ROIZMAN, B., STUDDERT, M. J. & THIRY, E. 2009. The order Herpesvirales. Arch Virol, 154, 171-7.
- DEWALS, B. G. & VANDERPLASSCHEN, A. 2011. Malignant catarrhal fever induced by Alcelaphine herpesvirus 1 is characterized by an expansion of activated CD3+CD8+CD4- T cells expressing a cytotoxic phenotype in both lymphoid and non-lymphoid tissues. Vet Res, 42, 95.

- DEWALS, B., BOUDRY, C., FARNIR, F., DRION, P. V. & VANDERPLASSCHEN, A. 2008. Malignant catarrhal fever induced by alcelaphine herpesvirus 1 is associated with proliferation of CD8+ T cells supporting a latent infection. PLoS One, 3, e1627.
- DEWALS, B., BOUDRY, C., GILLET, L., MARKINE-GORIAYNOFF, N., DE LEVAL, L., HAIG, D. & VANDERPLASSCHEN, A. 2006a. Cloning of the genome of Alcelaphine herpesvirus 1 as an infectious and pathogenic bacterial artificial chromosome. Journal of general virology, 87, 509-517.
- DEWALS, B., MYSTER, F., PALMEIRA, L., GILLET, L., ACKERMANN, M. & VANDERPLASSCHEN, A. 2011. Ex vivo bioluminescence detection of alcelaphine herpesvirus 1 infection during malignant catarrhal fever. J Virol, 85, 6941-54.
- DRY, I., HAIG, D. M., INGLIS, N. F., IMRIE, L., STEWART, J. P. & RUSSELL, G. C. 2008. Proteomic analysis of pathogenic and attenuated alcelaphine herpesvirus 1. J Virol, 82, 5390-7.
- DRY, I., TODD, H., DEANE, D., PERCIVAL, A., MCLEAN, K., INGLIS, N. F., MANSON, E. D., HAIG, D. M., NAYUNI, S., HUTT-FLETCHER, L. M., GRANT, D. M., BARTLEY, K., STEWART, J. P. & RUSSELL, G. C. 2016. Alcelaphine herpesvirus 1 glycoprotein B: recombinant expression and antibody recognition. Arch Virol, 161, 613-9.
- EDINGTON, N. & PLOWRIGHT, W. 1980. The protection of rabbits against the herpesvirus of malignant catarrhal fever by inactivated vaccines. Research in veterinary science, 28, 384-386.
- ENSSER, A. & FLECKENSTEIN, B. 2005. T-Cell Transformation and Oncogenesis by γ 2-Herpesviruses. In: GEORGE, F. V. W. & GEORGE, K. (eds.) Advances in Cancer Research. Academic Press.
- ENSSER, A., PFLANZ, R. & FLECKENSTEIN, B. 1997a. Primary structure of the alcelaphine herpesvirus 1 genome. Journal of virology, 71, 6517-6525.
- FENG, W. H., HONG, G., DELECLUSE, H. J. & KENNEY, S. C. 2004. Lytic induction therapy for Epstein-Barr virus-positive B-cell lymphomas. J Virol, 78, 1893-902.
- FERRIS, D., HAMDY, F. & DARDIRI, A. 1976. Detection of African malignant catarrhal fever virus antigens in cell cultures by immunofluorescence. Veterinary Microbiology, 1, 437-448.
- FLINT, S. J., ENQUIST, L. W., RACANIELLO, V. R. & SKALA, A. 2009. Principles of Virology volume I: Molecular Biology, Washington, USA: American Society for Microbiology Press.
- FRAME, F. M. & DALZIEL, R. G. 2008. Transcriptional control by the Rtransactivator protein of alcelaphine herpesvirus-1. Vet Res Commun, 32, 215-23.

- FRAME, F. M. & DALZIEL, R. G. 2008. Transcriptional control by the Rtransactivator protein of alcelaphine herpesvirus-1. Vet Res Commun, 32, 215-23.
- FRASER, S. J., NETTLETON, P. F., DUTIA, B. M., HAIG, D. M. & RUSSELL, G. C. 2006. Development of an enzyme-linked immunosorbent assay for the detection of antibodies against malignant catarrhal fever viruses in cattle serum. Vet Microbiol, 116, 21-8.
- FRAZEE, A. C., PERTEA, G., JAFFE, A. E., LANGMEAD, B., SALZBERG, S. L. & LEEK, J. T. 2014. Flexible isoform-level differential expression analysis with Ballgown. bioRxiv.
- GAILBREATH, K. L., TAUS, N. S., CUNHA, C. W., KNOWLES, D. P. & LI, H. 2008. Experimental infection of rabbits with ovine herpesvirus 2 from sheep nasal secretions. Vet Microbiol, 132, 65-73.
- GARDELLA, T., MEDVECZKY, P., SAIRENJI, T. & MULDER, C. 1984. Detection of circular and linear herpesvirus DNA molecules in mammalian cells by gel electrophoresis. *Journal of Virology*, 50, 248-254.
- GASPER, D., BARR, B., LI, H., TAUS, N., PETERSON, R., BENJAMIN, G., HUNT, T. & PESAVENTO, P. A. 2012. Ibex-associated malignant catarrhal fever-like disease in a group of bongo antelope (Tragelaphus eurycerus). Vet Pathol, 49, 492-7.
- GOODWIN, D. J., WALTERS, M. S., SMITH, P. G., THURAU, M., FICKENSCHER, H. & WHITEHOUSE, A. 2001. Herpesvirus saimiri open reading frame 50 (Rta) protein reactivates the lytic replication cycle in a persistently infected A549 cell line. J Virol, 75, 4008-13.
- GRABSTEIN, K. H., EISENMAN, J., SHANEBECK, K., RAUCH, C., SRINIVASAN, S., FUNG, V., BEERS, C., RICHARDSON, J., SCHOENBORN, M. A., AHDIEH, M. & ET AL. 1994. Cloning of a T cell growth factor that interacts with the beta chain of the interleukin-2 receptor. Science, 264, 965-8.
- GRIFFITHS-JONES, S., SAINI, H. K., VAN DONGEN, S. & ENRIGHT, A. J. 2008. miRBase: tools for microRNA genomics. Nucleic acids research, 36, D154-D158.

GRUNDHOFF, A. & SULLIVAN, C. S. 2011. Virus-encoded microRNAs. *Virology*, 411, 325-43.

HAAF, T. 1995. The effects of 5-azacytidine and 5-azadeoxycytidine on chromosome structure and function: implications for methylation-associated cellular processes. Pharmacol Ther, 65, 19-46.

HAIG, D. M., GRANT, D., DEANE, D., CAMPBELL, I., THOMSON, J., JEPSON, C., BUXTON, D. & RUSSELL, G. C. 2008. An immunisation strategy for the protection of cattle against alcelaphine herpesvirus-1-induced malignant catarrhal fever. Vaccine, 26, 4461-8.

- HAIR, J. R., LYONS, P. A., SMITH, K. G. C. & EFSTATHIOU, S. 2007. Control of Rta expression critically determines transcription of viral and cellular genes following gammaherpesvirus infection. J Gen Virol, 88, 1689-97.
- HANDLEY, J. A., SARGAN, D. R., HERRING, A. J. & REID, H. W. 1995. Identification of a region of the alcelaphine herpesvirus-1 genome associated with virulence for rabbits. Vet Microbiol, 47, 167-81.
- HART, J., ACKERMANN, M., JAYAWARDANE, G., RUSSELL, G., HAIG, D. M., REID, H. & STEWART, J. P. 2007b. Complete sequence and analysis of the ovine herpesvirus 2 genome. J Gen Virol, 88, 28-39.
- Henry J. Kaminski (2008). Myasthenia Gravis and Related Disorders. Springer. p. 163. Cyclosporine is derived from a fungus and is a cyclic undecapeptide with actions directed exclusively on T cells.
- HENRY, M. L., ELKHAMMAS, E. A., DAVIES, E. A. & FERGUSON, R. M. 1995. A clinical trial of cyclosporine G in cadaveric renal transplantation. *Pediatr Nephrol*, 9 Suppl, S49-51.
- HEUSCHELE, W. 1988. Malignant catarrhal fever: a review of a serious disease hazard for exotic and domestic ruminants. Zoologische Garten, 58, 123-133.
- HOUSE, A. E. & LYNCH, K. W. 2008. Regulation of alternative splicing: more than just the ABCs. *J Biol Chem*, 283, 1217-21.
- HU, J., GARBER, A. C. & RENNE, R. 2002. The latency-associated nuclear antigen of Kaposi's sarcoma-associated herpesvirus supports latent DNA replication in dividing cells. J Virol, 76, 11677-87.
- HUSSY, D., STAUBER, N., LEUTENEGGER, C. M., RIEDER, S. & ACKERMANN, M. 2001. Quantitative fluorogenic PCR assay for measuring ovine herpesvirus 2 replication in sheep. Clin Diagn Lab Immunol, 8, 123-8.
- INGOLIA, N. T., BRAR, G. A., ROUSKIN, S., MCGEACHY, A. M. & WEISSMAN, J. S. 2012. The ribosome profiling strategy for monitoring translation in vivo by deep sequencing of ribosome-protected mRNA fragments. Nat Protoc, 7, 1534-50.
- JACOBY, R. O., BUXTON, D. & REID, H. W. 1988. The pathology of wildebeestassociated malignant catarrhal fever in hamsters, rats and guineapigs. J Comp Pathol, 98, 99-109.
- JIN, L. & LLOYD, R. V. 1997. In situ hybridization: methods and applications. J Clin Lab Anal, 11, 2-9.
- JONES, P. A. 1985. Altering gene expression with 5-azacytidine. Cell, 40, 485-6.

- JONGBLOETS, B. C., RAMAKERS, G. M. J. & PASTERKAMP, R. J. 2013. Semaphorin7A and its receptors: Pleiotropic regulators of immune cell function, bone homeostasis, and neural development. Seminars in Cell & Developmental Biology, 24, 129-138.
- Joshi NA, Fass JN. (2011). Sickle: A sliding-window, adaptive, quality-based trimming tool for FastQ files (Version 1.33) [Software]. Available at https://github.com/najoshi/sickle.
- Kaur, Keerat; Yang, Jinpu; Eisenberg, Carol; Eisenberg, Leonard (2014). "5azacytidine promotes the transdifferentiation of cardiac cells to skeletal myocytes." (PDF). Cellular Reprogramming. 16: 324–30.
- KEEL, M. K., GAGE, P. J., NOON, T. H., BRADLEY, G. A. & COLLINS, J. K. 2003. Caprine herpesvirus-2 in association with naturally occurring malignant catarrhal fever in captive sika deer (Cervus nippon). Journal of Veterinary Diagnostic Investigation, 15, 179-183.
- KENT, W. J. 2002. BLAT--the BLAST-like alignment tool. Genome Res, 12, 656-64.
- KIM, D., LANGMEAD, B. & SALZBERG, S. L. 2015. HISAT: a fast spliced aligner with low memory requirements. Nat Meth, 12, 357-360.
- KINCAID, R. P. & SULLIVAN, C. S. 2012. Virus-encoded microRNAs: an overview and a look to the future. PLoS Pathog, 8, e1003018.
- KLIEFORTH, R., MAALOUF, G., STALIS, I., TERIO, K., JANSSEN, D. & SCHRENZEL, M. 2002. Malignant catarrhal fever-like disease in Barbary red deer (Cervus elaphus barbarus) naturally infected with a virus resembling alcelaphine herpesvirus 2. Journal of clinical microbiology, 40, 3381-3390.
- KUMAR, R., ICHIHASHI, Y., KIMURA, S., CHITWOOD, D. H., HEADLAND, L. R., PENG, J., MALOOF, J. N. & SINHA, N. R. 2012. A High-Throughput Method for Illumina RNA-Seq Library Preparation. Front Plant Sci, 3, 202.
- LANKESTER, F., LUGELO, A., KAZWALA, R., KEYYU, J., CLEAVELAND, S. & YODER, J. 2015a. The economic impact of malignant catarrhal fever on pastoralist livelihoods. PloS one, 10, e0116059.
- LANKESTER, F., LUGELO, A., MNYAMBWA, N., NDABIGAYE, A., KEYYU, J., KAZWALA, R., GRANT, D. M., RELF, V., HAIG, D. M., CLEAVELAND, S. & RUSSELL, G. C. 2015b. Alcelaphine Herpesvirus-1 (Malignant Catarrhal Fever Virus) in Wildebeest Placenta: Genetic Variation of ORF50 and A9.5 Alleles. PLoS One, 10, e0124121.
- LI, H., CUNHA, C. W. & TAUS, N. S. 2011b. Malignant catarrhal fever: understanding molecular diagnostics in context of epidemiology. International journal of molecular sciences, 12, 6881-6893.

- LI, H., CUNHA, C. W., DAVIES, C. J., GAILBREATH, K. L., KNOWLES, D. P., OAKS, J. L. & TAUS, N. S. 2008a. Ovine herpesvirus 2 replicates initially in the lung of experimentally infected sheep. J Gen Virol, 89, 1699-708.
- LI, H., CUNHA, C. W., GAILBREATH, K. L., O'TOOLE, D., WHITE, S. N., VANDERPLASSCHEN, A., DEWALS, B., KNOWLES, D. P. & TAUS, N. S. 2011a. Characterization of ovine herpesvirus 2-induced malignant catarrhal fever in rabbits. Veterinary microbiology, 150, 270-277.
- LI, H., CUNHA, C. W., TAUS, N. S. & KNOWLES, D. P. 2014. Malignant Catarrhal Fever: Inching Toward Understanding. Annu. Rev. Anim. Biosci., 2, 209-233.
- LI, H., DYER, N., KELLER, J. & CRAWFORD, T. B. 2000. Newly recognized herpesvirus causing malignant catarrhal fever in white-tailed deer (Odocoileus virginianus). Journal of Clinical Microbiology, 38, 1313-1318.
- LI, H., GAILBREATH, K., BENDER, L. C., WEST, K., KELLER, J. & CRAWFORD, T. B. 2003. Evidence of three new members of malignant catarrhal fever virus group in muskox (Ovibos moschatus), Nubian ibex (Capra nubiana), and gemsbok (Oryx gazella). J Wildl Dis, 39, 875-80.
- LI, H., GAILBREATH, K., FLACH, E. J., TAUS, N. S., COOLEY, J., KELLER, J., RUSSELL, G. C., KNOWLES, D. P., HAIG, D. M., OAKS, J. L., TRAUL, D. L. & CRAWFORD, T. B. 2005. A novel subgroup of rhadinoviruses in ruminants. J Gen Virol, 86, 3021-6.
- LI, H., HANDSAKER, B., WYSOKER, A., FENNELL, T., RUAN, J., HOMER, N., MARTH, G., ABECASIS, G. & DURBIN, R. 2009. The Sequence Alignment/Map format and SAMtools. Bioinformatics, 25, 2078-9.
- LI, H., KARNEY, G., O'TOOLE, D. & CRAWFORD, T. B. 2008b. Long distance spread of malignant catarrhal fever virus from feedlot lambs to ranch bison. The Canadian Veterinary Journal, 49, 183.
- LI, H., MCGUIRE, T. C., MULLER-DOBLIES, U. U. & CRAWFORD, T. B. 2001. A simpler, more sensitive competitive inhibition enzyme-linked immunosorbent assay for detection of antibody to malignant catarrhal fever viruses. J Vet Diagn Invest, 13, 361-4.
- LI, H., SHEN, D. T., KNOWLES, D. P., GORHAM, J. R. & CRAWFORD, T. B. 1994. Competitive inhibition enzyme-linked immunosorbent assay for antibody in sheep and other ruminants to a conserved epitope of malignant catarrhal fever virus. Journal of Clinical Microbiology, 32, 1674-1679.
- LI, H., SNOWDER, G., O'TOOLE, D. & CRAWFORD, T. B. 1998. Transmission of ovine herpesvirus 2 in lambs. J Clin Microbiol, 36, 223-6.

- LI, H., TAUS, N. S., JONES, C., MURPHY, B., EVERMANN, J. F. & CRAWFORD, T. B. 2006. A devastating outbreak of malignant catarrhal fever in a bison feedlot. J Vet Diagn Invest, 18, 119-23.
- LIGGITT, H. D. & DEMARTINI, J. C. 1980a. The pathomorphology of malignant catarrhal fever. I. Generalized lymphoid vasculitis. Vet Pathol, 17, 58-72.
- LIGGITT, H. D. & DEMARTINI, J. C. 1980b. The pathomorphology of malignant catarrhal fever. II. Multisystemic epithelial lesions. Vet Pathol, 17, 73-83.
- LINDGREEN, S. 2012. AdapterRemoval: easy cleaning of next-generation sequencing reads. BMC Res Notes, 5, 337.
- LODOLCE, J. P., BURKETT, P. R., KOKA, R. M., BOONE, D. L. & MA, A. 2002. Regulation of lymphoid homeostasis by interleukin-15. Cytokine & growth factor reviews, 13, 429-439.
- LUSCOMBE, N. M., GREENBAUM, D. & GERSTEIN, M. 2001. What is bioinformatics? A proposed definition and overview of the field. Methods Inf Med, 40, 346-58.
- MAHER, C. A., KUMAR-SINHA, C., CAO, X., KALYANA-SUNDARAM, S., HAN, B., JING, X., SAM, L., BARRETTE, T., PALANISAMY, N. & CHINNAIYAN, A. M. 2009. Transcriptome sequencing to detect gene fusions in cancer. Nature, 458, 97-101.
- MALARKEY, D. E. & MARONPOT, R. R. 1996. Polymerase chain reaction and in situ hybridization: applications in toxicological pathology. Toxicol Pathol, 24, 13-23.
- MATSUDA, S. & KOYASU, S. 2000. Mechanisms of action of cyclosporine. Immunopharmacology, 47, 119-125.
- MCKINNEY, W. P., YOUNG, M. J., HARTZ, A. & LEE, M. B. 1989. The inexact use of Fisher's Exact Test in six major medical journals. JAMA, 261, 3430-3.
- M Dunowska (2014) A review of equid herpesvirus 1 for the veterinary practitioner. Part A: Clinical presentation, diagnosis and treatment, New Zealand Veterinary Journal, 62:4, 179–188,
- MEIER-TRUMMER, C. S., REHRAUER, H., FRANCHINI, M., PATRIGNANI, A., WAGNER, U. & ACKERMANN, M. 2009a. Malignant catarrhal fever of cattle is associated with low abundance of IL-2 transcript and a predominantly latent profile of ovine herpesvirus 2 gene expression. PLoS One, 4, e6265.
- MEIER-TRUMMER, C. S., TOBLER, K., HILBE, M., STEWART, J. P., HART, J., CAMPBELL, I., HAIG, D. M., GLAUSER, D. L., EHRENSPERGER, F. & ACKERMANN, M. 2009b. Ovine herpesvirus 2 structural proteins in

epithelial cells and M-cells of the appendix in rabbits with malignant catarrhal fever. Vet Microbiol, 137, 235-42.

- MESRI, E. A., CESARMAN, E., ARVANITAKIS, L., RAFII, S., MOORE, M. A., POSNETT, D. N., KNOWLES, D. M. & ASCH, A. S. 1996. Human herpesvirus-8/Kaposi's sarcoma-associated herpesvirus is a new transmissible virus that infects B cells. J Exp Med, 183, 2385-90.
- METTENLEITER, T. C., KLUPP, B. G. & GRANZOW, H. 2009. Herpesvirus assembly: an update. Virus Res, 143, 222-34.
- MICHEL, A. L. 1993. Generation of a nucleic acid probe specific for the alcelaphine herpesvirus 1 and its use for the detection of malignant catarrhal fever virus DNA in blue wildebeest calves (Connochaetes taurinus). Onderstepoort J Vet Res, 60, 87-93.
- MILLS, R., ROZANOV, M., LOMSADZE, A., TATUSOVA, T. & BORODOVSKY, M. 2003. Improving gene annotation of complete viral genomes. Nucleic acids research, 31, 7041-7055.
- MILNE, E. M. & REID, H. W. 1990. Recovery of a cow from malignant catarrhal fever. Vet Rec, 126, 640-1.
- MIRANGI, P. K. 1991. Attempts to immunize cattle against virulent African malignant catarrhal fever virus (alcelaphine herpesvirus-1) with a herpesvirus isolated from American cattle. Vet Microbiol, 28, 129-39.
- MORIN, R., BAINBRIDGE, M., FEJES, A., HIRST, M., KRZYWINSKI, M., PUGH, T., MCDONALD, H., VARHOL, R., JONES, S. & MARRA, M. 2008. Profiling the HeLa S3 transcriptome using randomly primed cDNA and massively parallel short-read sequencing. Biotechniques, 45, 81-94.
- MORIZANE, Y., HONDA, R., FUKAMI, K. & YASUDA, H. 2005. X-linked inhibitor of apoptosis functions as ubiquitin ligase toward mature caspase-9 and cytosolic Smac/DIABLO. J Biochem, 137, 125-32.
- MORTAZAVI, A., WILLIAMS, B. A., MCCUE, K., SCHAEFFER, L. & WOLD, B. 2008. Mapping and quantifying mammalian transcriptomes by RNA-Seq. Nat Methods, 5, 621-8.
- MOSSMAN, S. P., LEIB, D. A., MCCARTHY, K. & HART, C. A. 1989. The effects of 5-azacytidine, 12-O-tetradecanoylphorbol 13-acetate and sodium nbutyrate on reactivation of alphaherpesvirus saimiri from explant cultures of latently infected rabbit dorsal root ganglia. J Gen Virol, 70 (Pt 9), 2507-12.
- MOTT, J. L., ZHANG, D., FREEMAN, J. C., MIKOLAJCZAK, P., CHANG, S. W. & ZASSENHAUS, H. P. 2004. Cardiac disease due to random mitochondrial DNA mutations is prevented by cyclosporin A. Biochemical and Biophysical Research Communications, 319, 1210-1215.

- MUSHI, E. & RURANGIRWA, F. 1981. Epidemiology of bovine malignant catarrhal fevers, a review. Veterinary research communications, 5, 127-142.
- MUSHI, E., KARSTAD, L. & JESSETT, D. 1980. Isolation of bovine malignant catarrhal fever virus from ocular and nasal secretions of wildebeest calves. Research in Veterinary Science, 29, 168-171.
- MUSHI, E., RURANGIRWA, F. & KARSTAD, L. 1981. Shedding of malignant catarrhal fever virus by wildebeest calves. Veterinary Microbiology, 6, 281-286.
- MYSTER, F., PALMEIRA, L., SOREL, O., BOUILLENNE, F., DEPAUW, E., SCHWARTZ-CORNIL, I., VANDERPLASSCHEN, A. & DEWALS, B. G. 2015. Viral semaphorin inhibits dendritic cell phagocytosis and migration but is not essential for gammaherpesvirus-induced lymphoproliferation in malignant catarrhal fever. J Virol, 89, 3630-47.
- Navada, Shyamala C.; Steinmann, Juliane; Lübbert, Michael; Silverman, Lewis R. (2014). "Clinical development of demethylating agents in hematology". Journal of Clinical Investigation. 124 (1): 4–46.
- NELSON, D. D., DAVIS, W. C., BROWN, W. C., LI, H., O'TOOLE, D. & OAKS, J. L. 2010. CD8(+)/perforin(+)/WC1(-) gammadelta T cells, not CD8(+) alphabeta T cells, infiltrate vasculitis lesions of American bison (Bison bison) with experimental sheep-associated malignant catarrhal fever. Vet Immunol Immunopathol, 136, 284-91.
- NELSON, D. D., TAUS, N. S., SCHNEIDER, D. A., CUNHA, C. W., DAVIS, W. C., BROWN, W. C., LI, H., O'TOOLE, D. & OAKS, J. L. 2013. Fibroblasts express OvHV-2 capsid protein in vasculitis lesions of American bison (Bison bison) with experimental sheep-associated malignant catarrhal fever. Vet Microbiol, 166, 486-92.
- NICOLL, M. P., PROENÇA, J. T. & EFSTATHIOU, S. 2012. The molecular basis of herpes simplex virus latency. FEMS microbiology reviews, 36, 684-705.
- NOURI-ARIA, K. T. 2008. In situ Hybridization. Methods Mol Med, 138, 331-47.
- OIE. 2013. Malignant catarrhal fever. Available: http://www.oie.int/fileadmin/Home/eng/Health_standards/tahm/2.04 .15_MCF.pdf [Accessed 14/08/2015].
- O'TOOLE, D., LI, H., MILLER, D., WILLIAMS, W. & CRAWFORD, T. 1997. Chronic and recovered cases of sheep-associated malignant catarrhal fever in cattle. The Veterinary Record, 140, 519-524.
- OWENS, G. C., ERICKSON, K. L., MALONE, C. C., PAN, C., HUYNH, M. N., CHANG, J. W., CHIRWA, T., VINTERS, H. V., MATHERN, G. W. & KRUSE, C. A. 2015. Evidence for the involvement of gamma delta T cells in the immune response in Rasmussen encephalitis. J Neuroinflammation, 12, 134.

- PALMEIRA, L., SOREL, O., VAN CAMPE, W., BOUDRY, C., ROELS, S., MYSTER, F., RESCHNER, A., COULIE, P. G., KERKHOFS, P., VANDERPLASSCHEN, A. & DEWALS, B. G. 2013. An essential role for gamma-herpesvirus latency-associated nuclear antigen homolog in an acute lymphoproliferative disease of cattle. Proc Natl Acad Sci U S A, 110, E1933-42.
- PARAMESWARAN, N., DEWALS, B. G., GILES, T. C., DEPPMANN, C., BLYTHE, M., VANDERPLASSCHEN, A., EMES, R. D. & HAIG, D. 2014. The A2 gene of alcelaphine herpesvirus-1 is a transcriptional regulator affecting cytotoxicity in virus-infected T cells but is not required for malignant catarrhal fever induction in rabbits. Virus Res, 188, 68-80.
- PELLETT, P. E. & ROZIMAN, B. 2007. Herpesviridae A Brief Introduction *In:* KNIPE, D. M. & HOWLEY, P. M. (eds.) *Feilds Virology.* 5th ed. Philadelphia, USA: Lippincott Williams & wilkins.
- PENG, L., RYAZANTSEV, S., SUN, R. & ZHOU, Z. H. 2010. Three-dimensional visualization of gammaherpesvirus life cycle in host cells by electron tomography. Structure, 18, 47-58.
- PERTEA, M., PERTEA, G. M., ANTONESCU, C. M., CHANG, T. C., MENDELL, J. T. & SALZBERG, S. L. 2015. StringTie enables improved reconstruction of a transcriptome from RNA-seq reads. Nat Biotechnol, 33, 290-5.
- Pfaffl MW (2004) Quantification strategies in real-time PCR. In: Bustin SA (ed), A-Z of Quantitative PCR, pp. 87–120. La Jolla, CA: IUL Biotechnology Series, International University LinePFEFFER, S., ZAVOLAN, M., GRASSER, F. A., CHIEN, M., RUSSO, J. J., JU, J., JOHN, B., ENRIGHT, A. J., MARKS, D., SANDER, C. & TUSCHL, T. 2004. Identification of virus-encoded microRNAs. Science, 304, 734-6.
- PFEFFER, S., SEWER, A., LAGOS-QUINTANA, M., SHERIDAN, R., SANDER, C., GRASSER, F. A., VAN DYK, L. F., HO, C. K., SHUMAN, S., CHIEN, M., RUSSO, J. J., JU, J., RANDALL, G., LINDENBACH, B. D., RICE, C. M., SIMON, V., HO, D. D., ZAVOLAN, M. & TUSCHL, T. 2005. Identification of microRNAs of the herpesvirus family. *Nat Methods*, 2, 269-76.
- PLOWRIGHT, W. 1965. MALIGNANT CATARRHAL FEVER IN EAST AFRICA. I. BEHAVIOUR OF THE VIRUS IN FREE-LIVING POPULATIONS OF BLUE WILDEBEEST (GORGON TAURINUS TAURINUS, BURCHELL). Res Vet Sci, 6, 56-68.
- PLOWRIGHT, W. 1965. MALIGNANT CATARRHAL FEVER IN EAST AFRICA. II. OBSERVATIONS ON WILDEBEEST CALVES AT THE LABORATORY AND CONTACT TRANSMISSION OF THE INFECTION TO CATTLE. Res Vet Sci, 6, 69-83.
- PLOWRIGHT, W., FERRIS, R. D. & SCOTT, G. R. 1960. Blue wildebeest and the aetiological agent of bovine malignant catarrhal fever. Nature, 188, 1167-9.

- PLOWRIGHT, W., HERNIMAN, K. A., JESSETT, D. M., KALUNDA, M. & RAMPTON, C. S. 1975. Immunisation of cattle against the herpesvirus of malignant catarrhal fever: failure of inactivated culture vaccines with adjuvant. Res Vet Sci, 19, 159-66.
- POLLOCK, J. S., FÖRSTERMANN, U., MITCHELL, J. A., WARNER, T. D., SCHMIDT, H., NAKANE, M. & MURAD, F. 1991. Purification and characterization of particulate endothelium-derived relaxing factor synthase from cultured and native bovine aortic endothelial cells. Proceedings of the National Academy of Sciences, 88, 10480-10484.
- POULOS, M. G., BATRA, R., CHARIZANIS, K. & SWANSON, M. S. 2011. Developments in RNA splicing and disease. *Cold Spring Harbor* perspectives in biology, 3, a000778.
- QIU, X., HOTHER, C., RALFKIAER, U. M., SOGAARD, A., LU, Q., WORKMAN, C. T., LIANG, G., JONES, P. A. & GRONBAEK, K. 2010. Equitoxic doses of 5azacytidine and 5-aza-2'deoxycytidine induce diverse immediate and overlapping heritable changes in the transcriptome. PLoS One, 5.
- RAHMAN, A., ALAM, M., RAO, S., CAI, L., LUTHER T, C., SHAFIQ, S. & SIDDIQUI, M. 2001. Differential effects of doxorubicin on atrial natriuretic peptide expression in vivo and in vitro. Biological research, 34, 195-206.
- REID, H. W., BUXTON, D., POW, I. & FINLAYSON, J. 1986. Malignant catarrhal fever: experimental transmission of the 'sheep-associated' form of the disease from cattle and deer to cattle, deer, rabbits and hamsters. Res Vet Sci, 41, 76-81.
- REID, H. W., BUXTON, D., POW, I., FINLAYSON, J. & BERRIE, E. L. 1983. A cytotoxic T-lymphocyte line propagated from a rabbit infected with sheep associated malignant catarrhal fever. Res Vet Sci, 34, 109-13.
- REID, H., BUXTON, D., POW, I. & FINLAYSON, J. 1989. Isolation and characterisation of lymphoblastoid cells from cattle and deer affected with'sheep-associated'malignant catarrhal fever. Research in veterinary science, 47, 90-96.
- ROBERT, N., WONG, G. W. & WRIGHT, J. M. 2010. Effect of cyclosporine on blood pressure. *Cochrane Database Syst Rev*, Cd007893.
- ROMERO, I. G., PAI, A. A., TUNG, J. & GILAD, Y. 2014. RNA-seq: impact of RNA degradation on transcript quantification. BMC biology, 12, 42.
- ROSBOTTOM, J., DALZIEL, R. G., REID, H. W. & STEWART, J. P. 2002. Ovine herpesvirus 2 lytic cycle replication and capsid production. Journal of general virology, 83, 2999-3002.
- ROSSITER, P. B., MUSHI, E. Z. & PLOWRIGHT, W. 1977. The development of antibodies in rabbits and cattle infected experimentally with an

african strain of malignant catarrhal fever virus. Veterinary Microbiology, 2, 57-66.

- RUSSELL, G. C., BENAVIDES, J., GRANT, D. M., TODD, H., THOMSON, J., PURI, V., NATH, M. & HAIG, D. M. 2012b. Host gene expression changes in cattle infected with Alcelaphine herpesvirus 1. Virus Res, 169, 246-54.
- RUSSELL, G. C., BENAVIDES, J., GRANT, D., TODD, H., DEANE, D., PERCIVAL, A., THOMSON, J., CONNELLY, M. & HAIG, D. M. 2012a. Duration of protective immunity and antibody responses in cattle immunised against alcelaphine herpesvirus-1-induced malignant catarrhal fever. Vet Res, 43, 51.
- RUSSELL, G. C., SCHOLES, S. F., TWOMEY, D. F., COURTENAY, A. E., GRANT, D. M., LAMOND, B., NORRIS, D., WILLOUGHBY, K., HAIG, D. M. & STEWART, J. P. 2014. Analysis of the genetic diversity of ovine herpesvirus 2 in samples from livestock with malignant catarrhal fever. Vet Microbiol, 172, 63-71.
- RUSSELL, G. C., STEWART, J. P. & HAIG, D. M. 2009. Malignant catarrhal fever: a review. Vet J, 179, 324-35.
- RUSSELL, G. C., TODD, H., DEANE, D., PERCIVAL, A., DAGLEISH, M. P., HAIG, D. M. & STEWART, J. P. 2013. A novel spliced gene in alcelaphine herpesvirus 1 encodes a glycoprotein which is secreted in vitro. J Gen Virol, 94, 2515-23.
- RUSSELL, P. H. 1980. Malignant catarrhal fever virus in rabbits—Reproduction of clinical disease by cell-free virus and partial protection against such disease by vaccination with inactivated virus. Veterinary Microbiology, 5, 161-163.
- SCHAEFER, B. C., PAULSON, E., STROMINGER, J. L. & SPECK, S. H. 1997. Constitutive activation of Epstein-Barr virus (EBV) nuclear antigen 1 gene transcription by IRF1 and IRF2 during restricted EBV latency. Mol Cell Biol, 17, 873-86.
- SCHALL, T. J., LEWIS, M., KOLLER, K. J., LEE, A., RICE, G. C., WONG, G. H., GATANAGA, T., GRANGER, G. A., LENTZ, R., RAAB, H. & ET AL. 1990. Molecular cloning and expression of a receptor for human tumor necrosis factor. Cell, 61, 361-70.
- SCHOCK, A. & REID, H. W. 1996. Characterisation of the lymphoproliferation in rabbits experimentally affected with malignant catarrhal fever. Vet Microbiol, 53, 111-9.
- SCHOCK, A., COLLINS, R. A. & REID, H. W. 1998. Phenotype, growth regulation and cytokine transcription in Ovine Herpesvirus-2 (OHV-2)-infected bovine T-cell lines. Vet Immunol Immunopathol, 66, 67-81.

- SCHROEDER, A., MUELLER, O., STOCKER, S., SALOWSKY, R., LEIBER, M., GASSMANN, M., LIGHTFOOT, S., MENZEL, W., GRANZOW, M. & RAGG, T. 2006. The RIN: an RNA integrity number for assigning integrity values to RNA measurements. BMC Mol Biol, 7, 3.
- SCHULTHEISS, P. C., COLLINS, J. K., AUSTGEN, L. E. & DEMARTINI, J. C. 1998. Malignant catarrhal fever in bison, acute and chronic cases. J Vet Diagn Invest, 10, 255-62.
- Schultheiss, P. C., et al. (2000). "Epizootic malignant catarrhal fever in three bison herds: differences from cattle and association with ovine herpesvirus-2." J Vet Diagn Invest **12**(6): 497-502.
- SETO, E., MOOSMANN, A., GRÖMMINGER, S., WALZ, N., GRUNDHOFF, A. & HAMMERSCHMIDT, W. 2010. Micro RNAs of Epstein-Barr virus promote cell cycle progression and prevent apoptosis of primary human B cells. *PLoS Pathog*, 6, e1001063.
- SI, H. & ROBERTSON, E. S. 2006. Kaposi's sarcoma-associated herpesvirusencoded latency-associated nuclear antigen induces chromosomal instability through inhibition of p53 function. Journal of virology, 80, 697-709.
- SIMON, S., LI, H., O'TOOLE, D., CRAWFORD, T. B. & OAKS, J. L. 2003. The vascular lesions of a cow and bison with sheep-associated malignant catarrhal fever contain ovine herpesvirus 2-infected CD8(+) T lymphocytes. J Gen Virol, 84, 2009-13.
- SMITH, X. G., BOLTON, E. M., RUCHATZ, H., WEI, X., LIEW, F. Y. & BRADLEY, J. A. 2000. Selective blockade of IL-15 by soluble IL-15 receptor alphachain enhances cardiac allograft survival. J Immunol, 165, 3444-50.
- STAUDT, M. R. & DITTMER, D. P. 2007. The Rta/Orf50 transactivator proteins of the gamma-herpesviridae. Curr Top Microbiol Immunol, 312, 71-100.
- STÜBIG, T., BADBARAN, A., LUETKENS, T., HILDEBRANDT, Y., ATANACKOVIC, D., BINDER, T., FEHSE, B. & KRÖGER, N. 2014. 5-Azacytidine promotes an inhibitory T-cell phenotype and impairs immune mediated antileukemic activity. Mediators of inflammation, 2014.
- SWA, S., WRIGHT, H., THOMSON, J., REID, H. & HAIG, D. 2001. Constitutive activation of Lck and Fyn tyrosine kinases in large granular lymphocytes infected with the gamma-herpesvirus agents of malignant catarrhal fever. Immunology, 102, 44-52.
- SZYF, M., ELIASSON, L., MANN, V., KLEIN, G. & RAZIN, A. 1985. Cellular and viral DNA hypomethylation associated with induction of Epstein-Barr virus lytic cycle. Proceedings of the National Academy of Sciences, 82, 8090-8094.
- TAUS, N. S., HERNDON, D. R., TRAUL, D. L., STEWART, J. P., ACKERMANN, M., LI, H., KNOWLES, D. P., LEWIS, G. S. & BRAYTON, K. A. 2007.

Comparison of ovine herpesvirus 2 genomes isolated from domestic sheep (Ovis aries) and a clinically affected cow (Bos bovis). J Gen Virol, 88, 40-5.

- TAUS, N. S., SCHNEIDER, D. A., OAKS, J. L., YAN, H., GAILBREATH, K. L., KNOWLES, D. P. & LI, H. 2010. Sheep (Ovis aries) airway epithelial cells support ovine herpesvirus 2 lytic replication in vivo. Veterinary microbiology, 145, 47-53.
- TAUS, N. S., TRAUL, D. L., OAKS, J. L., CRAWFORD, T. B., LEWIS, G. S. & LI, H. 2005. Experimental infection of sheep with ovine herpesvirus 2 via aerosolization of nasal secretions. J Gen Virol, 86, 575-9.
- THONUR, L., RUSSELL, G. C., STEWART, J. P. & HAIG, D. M. 2006. Differential transcription of ovine herpesvirus 2 genes in lymphocytes from reservoir and susceptible species. Virus Genes, 32, 27-35.
- TRAUL, D. L., ELIAS, S., TAUS, N. S., HERRMANN, L. M., OAKS, J. L. & LI, H. 2005. A real-time PCR assay for measuring alcelaphine herpesvirus-1 DNA. J Virol Methods, 129, 186-90.
- TSUJIMOTO, Y. 1998. Role of Bcl-2 family proteins in apoptosis: apoptosomes or mitochondria? Genes to Cells, 3, 697-707.
- UPPAL, T., BANERJEE, S., SUN, Z., VERMA, S. C. & ROBERTSON, E. S. 2014. KSHV LANA—The Master Regulator of KSHV Latency. Viruses, 6, 4961-98.
- VIRGIN, H. W. T., PRESTI, R. M., LI, X. Y., LIU, C. & SPECK, S. H. 1999. Three distinct regions of the murine gammaherpesvirus 68 genome are transcriptionally active in latently infected mice. J Virol, 73, 2321-32.
- WANG, Z., GERSTEIN, M. & SNYDER, M. 2009. RNA-Seq: a revolutionary tool for transcriptomics. Nat Rev Genet, 10, 57-63.
- WILHELM, B. T. & LANDRY, J. R. 2009. RNA-Seq-quantitative measurement of expression through massively parallel RNA-sequencing. Methods, 48, 249-57.
- WILSON, E., HEDGES, J. F., BUTCHER, E. C., BRISKIN, M. & JUTILA, M. A. 2002. Bovine gamma delta T cell subsets express distinct patterns of chemokine responsiveness and adhesion molecules: a mechanism for tissue-specific gamma delta T cell subset accumulation. J Immunol, 169, 4970-5.
- WIYONO, A., BAXTER, S. I., SAEPULLOH, M., DAMAYANTI, R., DANIELS, P. & REID, H. W. 1994. PCR detection of ovine herpesvirus-2 DNA in Indonesian ruminants--normal sheep and clinical cases of malignant catarrhal fever. Vet Microbiol, 42, 45-52.

- WRIGHT, H., STEWART, J. P., IRERI, R. G., CAMPBELL, I., POW, I., REID, H. W. & HAIG, D. M. 2003. Genome re-arrangements associated with loss of pathogenicity of the gamma-herpesvirus alcelaphine herpesvirus-1. Res Vet Sci, 75, 163-8.
- XU, X., NG, S., WU, Z. L., NGUYEN, D., HOMBURGER, S., SEIDEL-DUGAN, C., EBENS, A. & LUO, Y. 1998. Human semaphorin K1 is glycosylphosphatidylinositol-linked and defines a new subfamily of viral-related semaphorins. J Biol Chem, 273, 22428-34.
- YI, H., CHO, Y. J., WON, S., LEE, J. E., JIN YU, H., KIM, S., SCHROTH, G. P., LUO, S. & CHUN, J. 2011. Duplex-specific nuclease efficiently removes rRNA for prokaryotic RNA-seq. Nucleic Acids Res, 39, e140.
- YOUN, T. J., PIAO, H., KWON, J. S., CHOI, S. Y., KIM, H. S., PARK, D. G., KIM, D. W., KIM, Y. G. & CHO, M. C. 2002. Effects of the calcineurin dependent signaling pathway inhibition by cyclosporin A on early and late cardiac remodeling following myocardial infarction. *Eur J Heart Fail*, 4, 713-8.
- ZEMLJIC, T., POT, S. A., HAESSIG, M. & SPIESS, B. M. 2012. Clinical ocular findings in cows with malignant catarrhal fever: ocular disease progression and outcome in 25 cases (2007-2010). Vet Ophthalmol, 15, 46-52.