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Abstract 

 
Drugs that are preferentially absorbed through the stomach or the small 

intestine have a narrow time window for absorption since passage through this 

region of the gastrointestinal tract is rapid. A drug delivery system that can 

adhere to the gastric epithelium will substantially slow down drug transit and 

help overcome this problem. To achieve this, this study proposes the novel 

use of a glycan-binding adhesion protein from Helicobacter pylori, BabA, to 

create targeted drug delivery vectors that can mimic the attachment of this 

bacterium to the gastric epithelium. 

 

In this work, a recombinant form of BabA was expressed in the periplasmic 

space of Escherichia coli; it was found that after the incorporation of a C-

terminal hexa-lysine tag, the expression and purification of this protein was 

significantly improved to amounts that enabled its subsequent characterisation 

and application. Recombinant BabA retained the highly selective glycan-

binding properties of H. pylori and next, its crystal structure was solved in the 

absence and presence of Lewisb – a glycan well studied for its role in serving 

as a receptor for BabA. The structural models revealed that Lewisb binding 

occurred through a network of hydrogen bonds within a single, shallow binding 

pocket at the tip of a β-unit in BabA. Binding studies then confirmed that this 

site was also responsible for the recognition of other glycan receptors. Using 

this insight, recombinant BabA was conjugated to model drug delivery vectors 

via a linkage that favoured exposure of its glycan-binding β-unit; the binding 

properties of BabA successfully translated to these model BabA-vectors.  

 

The research presented in this thesis lays a strong foundation for future work 

to assess the in vitro and in vivo efficacy of biomimetic BabA drug carriers.  
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Introduction 

 1 

Chapter 1: Introduction 

 
1.1 Summary 

Gastroretentive drug delivery systems based on bioadhesion have long been 

researched, to limited avail, as strategies to increase the bioavailability of 

drugs that are preferentially absorbed through the stomach and small intestine. 

Lectin-mediated drug delivery systems may still represent a promising 

approach – a priori, these systems can attach to glycoproteins and glycolipids 

on the gastric epithelium and can thereby be retained in the stomach for 

prolonged durations. However, to date, and to the best of knowledge, no 

lectins have been reported for use in this context. In this thesis, the functional 

properties of the Helicobacter pylori adhesin BabA were studied with a view 

towards its potential use as such a gastric-targeting moiety. Indeed, while the 

role of this lectin in mediating H. pylori gastric colonisation is relatively well 

understood, its functional properties have not been fully characterised. Thus, 

this research contributes to the advancement of both drug delivery and 

bacteriology disciplines.  
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1.2 Gastric-targeted drug delivery 

1.2.1 The narrow absorption window 

The oral route is the most popular and convenient method of drug 

administration to the human body; it has recently been estimated that over 

60% of marketed medicines are formulated as oral products (1). The 

absorption of drugs by the gastrointestinal tract is governed by several patient-

specific and drug-specific variables (2). However, for any systemically acting 

drug to have its optimal therapeutic effect, it must have a suitable contact time 

with its preferred site of absorption (3). The gastrointestinal tract is 

characterised by having different transit times through its various regions (4). 

As shown in Figure 1.1, the residence time of drugs within the colon is 

markedly greater than transit time through the stomach and small intestine. 

Accordingly, if a drug displays preferential absorption through the stomach or 

small intestine (particularly through its proximal region), it is said to have a 

narrow time window for optimal absorption (5). 

 

 
 
Figure 1.1: Schematic representation of the gastrointestinal tract 

The estimated transit time of a drug through the different regions of the 

gastrointestinal tract in humans is indicated (3, 4). Note that the small intestine is 

divided into three parts not indicated in the diagram: i) the duodenum and ii) jejunum, 

which are collectively referred to as the proximal small intestine, and iii) the ileum, 

which is referred to as the distal small intestine (6). Reprinted from (7) with permission.  

Small 
Intestine 
(~3 hrs) 

Colon 
(~20 hrs) 

Stomach 
(~2 hrs) 
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Several drugs display preferential absorption through the stomach or small 

intestine and this is attributable to a variety of factors. For example, some drug 

molecules better diffuse across the stomach membrane, rather than small or 

large intestine membranes, because they are unprotonated at acidic, gastric 

pH. The best studied example of such a case is furosemide, a diuretic used in 

the treatment of congestive heart failure (8). In other cases, such as the anti-

Parkinson’s drug, levodopa, specific active transporters that mediate drug 

absorption exist in the small intestine (9). However, in some instances, the 

colon simply presents as an unfavourable environment for drug absorption. A 

clinical study of the absorption properties of the recently marketed anti-platelet 

drug ticagrelor, which is used to prevent thrombotic events, revealed a marked 

decrease in bioavailability if its absorption was restricted to the colon (32%), 

compared to the small intestine and the colon (89%) (10). This was attributed 

to the greater surface area and larger gaps between cellular tight junctions 

found in the small intestine compared to the colon – these features facilitate 

the absorption of drugs with poor permeability properties (11). It has also been 

shown that the absorption of some drugs is limited to the stomach and/or 

small intestine because they are susceptible to degradation by colonic 

bacteria. An example of this is ranitidine, a widely prescribed drug used in the 

treatment of peptic ulcers (12).  

 

These examples are representative of the most common causes of 

preferential drug absorption through the stomach or small intestine (13). For 

drugs with this absorption profile, the rapid transit through the stomach and 

small intestine can limit their bioavailability, and subsequent therapeutic effect 

in patients, if sufficient absorption does not occur. In the case of the discussed 

examples, which are all widely prescribed drugs, this has been successfully 

circumvented through the administration of a sufficiently high dose. However, 
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several drugs under development by the pharmaceutical industry are rendered 

completely ineffective due to this absorption profile (14, 15). 

 
 
 
1.2.2 Gastric retention 

In order to increase the absorption and subsequent bioavailability of such 

drugs, gastroretentive drug delivery strategies have been suggested. Unlike a 

conventional drug formulation, gastroretentive systems aim to retain a drug 

formulation in the stomach and also control the release of drug from the 

formulation. Through this, active therapeutic molecules are supplied to the 

stomach and small intestine at an appropriate, controlled rate. As such, 

contact time in these regions is maximised and futile drug release from the 

formulation in distal intestinal regions is prevented (16, 17). 

 

To achieve gastric retention, several different formulation strategies have been 

employed over the years (18). The three most active approaches are shown 

below in Figure 1.2. These are i) floating systems, ii) expandable systems, and 

iii) bioadhesive systems (16). 

 

 
 
Figure 1.2: Schematic illustration of the most studied gastroretentive strategies 
Illustrated are (A) floating systems, (B) expandable systems, and (C) bioadhesive 

systems. 

  

A B C 
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1.2.2.1 Floating systems 

In a floating system, the drug formulation simply remains buoyant on the 

stomach’s fluid contents until complete drug release is achieved. This strategy 

has been shown to significantly improve the delivery of levodopa, which is 

predominantly absorbed through the small intestine, and has been 

successfully commercialised as Madopar HBS® (19). Recent reviews that 

outline the mechanism of this strategy can be found in (13, 18).  

 

 
1.2.2.2 Expandable systems 

In an expandable system, the drug formulation swells upon contact with 

stomach fluid and is consequently too large to pass through the pyloric 

sphincter until complete drug release is achieved. This method has been 

shown to improve the delivery of the anti-diabetic drug metformin, which is 

also predominantly absorbed through the small intestine, and has been 

successfully commercialised as Glutmetza® (20). Recent reviews that outline 

the mechanism of this strategy can also be found in (13, 18). 

 

 
1.2.2.3 Bioadhesive systems 

An ideal bioadhesive system would mediate the prolonged attachment of a 

drug formulation to the stomach wall until complete drug release is attained. 

This strategy, which has not achieved clinical/commercial success so far, is 

the focus of this study because a successful bioadhesive approach could 

confer unique advantages over other gastroretentive systems. Floating and 

expandable systems clearly require the presence of fluid in the stomach to be 

functional. This represents a major disadvantage because it limits their use to 

the fed state only; in a fasted stomach, any liquid taken by a patient alongside 

the drug formulation is rapidly emptied into the intestine (4, 18, 20). On the 
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contrary, the bioadhesive approach does not depend on the presence of fluid 

in the stomach, thus, it is hoped that a successful system can be used in 

either fasted or fed states (21). Additionally, gastric adhesion specifically 

localises the drug in close proximity to the stomach epithelium, which 

generates a high concentration gradient between the luminal and serosal 

sides of the gastric membrane. This facilitates absorption through passive 

diffusion, which is highly beneficial for drugs preferentially absorbed through 

the stomach (22).  

 

 
1.2.3 Bioadhesive gastroretentive systems 

The term bioadhesion refers to the adherence of a material to a biological 

surface. Because the stomach is a mucosal membrane, bioadhesion to this 

organ actually encompasses i) mucoadhesion, which describes an attachment 

to the protective mucus gel layer; and ii) cytoadhesion, which describes an 

attachment to the underlying gastric epithelium. 

 
 
1.2.3.1 Mucoadhesion 

Mucus is a hydrogel found throughout the body that protects the epithelium of 

mucosal surfaces, including that of the gastrointestinal tract, from chemical, 

enzymatic, and mechanical damage; a review of its important, protective 

function can be found in (23). It is composed mainly of water (>95%) and 

mucins (1-5%), which are a family of 17 high molecular weight glycoproteins 

that give mucus its structure. In the stomach, there are three major mucins, 

which can be divided into two subfamilies: secreted mucins (MUC5AC and 

MUC6) and cell surface mucins (MUC1) – both of these contribute to the 

protective function of mucus (24-26) and are discussed in further detail in 

Section 1.3.3. 
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Research into mucoadhesive strategies began in the 1980s and is still very 

much active. Mucoadhesive materials have typically been chosen empirically 

based on their ability to bind mucus in vitro and ex vivo. The most studied 

mucoadhesive materials have been polymers and these can be divided into 

cationic or anionic subsets. Cationic polymers are thought to primarily impart 

their adhesive properties through electrostatic interactions with mucins that 

are negatively charged at physiological pH due to terminal sialic acid and 

sulphate groups. The best-studied cationic polymer is chitosan – a water-

soluble, semi-synthetic polymer derived by the deacetylation of chitin, which 

itself is insoluble in aqueous systems (27). Anionic polymers, on the other 

hand, are thought to interact with mucins through other physicochemical 

processes such as hydrogen bonds and van der Waals forces. Typical 

examples of these polymers are carbomers and polycarbophil – these are 

synthetic polyacrylic acid derivatives well studied for their mucoadhesive 

properties (27). However, as reviewed in (28), mucoadhesion by both cationic 

and anionic polymers is likely to be imparted by several mechanisms, 

including entanglement within mucin strands, for example.  

 

Initial mucoadhesive strategies were based on a simple idea: a material with 

mucoadhesive properties could be incorporated into a dosage form, such as a 

tablet or a granule-filled capsule, to mediate the attachment of the drug 

formulation to the gastric mucus layer. As surveyed by Waterman et al. in 

2007, although such dosage forms display excellent mucoadhesive properties 

in vitro and in some animal models, no human trials showed significant gastric 

retention with this strategy [Table 1.1 (16)]. Cationic and anionic polymers 

formulated into microspheres, typically between 1 and 10 µm, have also been 

assessed. These microparticulates, which can in principle be used to 

encapsulate a drug of interest, were expected to have more intimate contacts 
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with the gastric mucus layer due to a higher surface area to volume ratio. 

Again, in animal models, several researchers have shown that in vitro 

mucoadhesion can correlate well with in vivo gastric localisation [reviewed in 

(29)]. However, success has not been reported through this approach either in 

human studies. Ultimately, this is because the prolonged gastric retention of 

mucoadhesive materials is governed by the rate of gastric mucus turnover (30, 

31). As this is a frequent process, both mucoadhesive formulations and 

microspheres have generally been regarded as inefficient or suboptimal in 

mediating prolonged gastric retention. 

 
Table 1.1: Examples of mucoadhesive gastroretentive formulations assessed in 

human trials 

The mucoadhesive materials indicated were all formulated into oral dosage forms 

such as tablets or granule-filled capsules. In all studies, gastric retention time was 

compared to non-mucoadhesive formulations and analysed with γ-scintigraphy.  

 
Material Polymer Type Gastric Retention Reference 
Chitosan Cationic No evidence  Säkkinen et al. (32, 33) 

Polycarbophil Anionic  No evidence Khosla et al. (34) and 
Harris et al. (35)  

Carbopol® 934P Anionic No evidence Jackson et al. (36) 

Cholestyramine Anionic No evidence  Jackson et al. (36) 

 
 

 
The frequent turnover of the gastric mucus layer is one of the hallmarks of its 

protective function (37). Physiologically, as depicted in Figure 1.3, it is well 

known that the mucus that lines the human stomach, and the rest of the 

gastrointestinal tract, is a two-component system consisting of a loosely 

adherent layer that overlays a firmly adherent layer (38-40). In the stomach, 

the loosely adherent layer, which is estimated to be replaced every 1 to 4 

hours, can be easily removed through physical suction ex vivo; it is this layer 

that is responsible for the trapping and rapid clearance of the aforementioned 
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mucoadhesive drug delivery systems. The firmly adherent layer acts as a 

thicker, unstirred layer that cannot be removed without disrupting the surface 

epithelium. It provides further physiological protection and is cleared less 

frequently (estimated to be between hours to days), though a well-defined 

timeframe is yet to be established (30, 38, 41). 

 

 

Figure 1.3: Schematic representation of the human gastric surface mucus layer 

The loosely and firmly adherent mucus gel layers that overlay the gastric surface 

epithelium are shown; both layers are comprised of the secreted MUC5AC mucin (42). 

The thickness of these mucus layers in the human stomach has not yet been 

determined. In the antrum region of rat stomachs, Atuma et al. calculated the loosely 

adherent layer to be ~120 µm and the firmly adherent layer to ~150 µm (38). In the 

body region of mouse stomachs, Ermund et al. have calculated the firmly adherent 

layer to be ~45 µm (40). 

  

Given these features of the gastric mucus layer, a mucoadhesive strategy that 

successfully penetrates past the loosely adherent layer and preferentially 

accumulates in the firmly adherent layer may be successful in the relative 

prolongation of gastric retention. Indeed, mucus penetration by bacterial 

pathogens is observed in nature (43). However, it was the characteristics of 

two viruses that inspired researchers to develop drug delivery systems based 

on this strategy. In 2001, Olmsted et al. showed that the human papilloma 

virus (~55 nm) and Norwalk virus (~38 nm) can successfully partition through 

human cervical mucus (44). As such, it was thought that nanoscale drug 

carriers could provide a means to achieve mucus penetration. This was 

investigated by Lai et al. who found that polystyrene nanoparticles (ranging 

Firmly adherent layer 

Loosely adherent layer 

Surface epithelium 
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from 100 to 500 nm), which are a particularly common model drug delivery 

vehicle, could not achieve similar penetration due to non-specific interactions 

with mucins. However, if densely coated with polyethylene glycol (PEG), 

polystyrene nanoparticles developed the ability to penetrate through the 

openings between mucin mesh fibres. This characteristic was attributed to the 

hydrophilic nature of PEG preventing hydrophobic interactions between the 

polystyrene core and mucins. Low molecular-weight PEG had to be used to 

attenuate possible entanglement between PEG chains and mucins (45). 

Indeed, low molecular-weight PEG has since been shown to have a similarly 

beneficial effect in mucus penetration with other relevant, biodegradable 

nanovehicles of a non-polystyrene core (46). These aforementioned studies 

were performed in vitro using human cervicovaginal mucus. However, in a 

recent in vivo study by Maisel et al., PEGylated nanoparticles were shown to 

successfully penetrate through the loosely adherent layer of gastrointestinal 

mucus and localise within close proximity to the small and large intestine 

epithelium of mice after oral administration (47). Similar findings on the 

beneficial effects of PEGylation on gastrointestinal mucus penetration by 

nanoparticles have also been independently reported by Inchaurraga et al. 

(48).  

 

It remains to be seen whether these so-called “mucus penetrating” 

nanoparticles are retained in the firmly adherent layer or whether the lack of 

mucin interaction simply results in transitory association (49). While their 

ability to penetrate into the firmly adherent mucus layer is a promising lead for 

drug delivery, because the entire gastrointestinal tract is a continuous mucosal 

membrane, a significant drawback of these systems is their inherent inability 

to selectively target the gastric mucosa. 



Introduction 

 11 

1.2.3.2 Cytoadhesion 

A step forward towards the selective gastric targeting of bioadhesive systems 

lies in the use of a specific cytoadhesive ligand that can enable the attachment 

of drug carriers to receptors on gastric epithelial surfaces. In principle, through 

this strategy, drug localisation is not only gastric-specific but the limiting effect 

of mucus turnover can also be evaded; the rate of gastric epithelial cell 

turnover is between 2 to 3 days and, as such, will not impact the acute 

clearance of cytoadhesive drug delivery vectors from the stomach (50).  

 

It is believed that gastrointestinal epithelial cells express a wide array of 

glycans on their surfaces. However, an in-depth characterisation of the 

gastrointestinal glycosylation pattern has been a challenge because the 

glycoproteins and glycolipids expressed on epithelial cells can vary greatly 

due to individuals factors, such as hormonal status, and microenvironmental 

factors, such as microbial colonisation and inflammation (26). Indeed, the 

complexity and heterogeneity of glycan structures also complicates their 

identification through glycoproteomic approaches (51). 

 

One of the most successful approaches used to study gastrointestinal 

glycosylation patterns has been through lectin-histochemical staining. Though 

the name “lectin” originally described plant extracts capable of cross-linking 

red blood cells, the term is now widely used to describe a protein with 

carbohydrate binding properties; lectins can be obtained from various sources 

including plants, animals and microorganisms. In addition to having stringent 

glycan binding specificity, several lectins, particularly plant lectins, display 

good resistance to acid denaturation and enzymatic degradation (22). 

Because of these properties, lectins have also been considered to be good 
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ligands for gastrointestinal targeting – this is often referred to as the “second-

generation” bioadhesive approach (52).  

 

Naisbett and Woodley commenced research into lectin-mediated targeting in 

the early 1990s when they investigated the binding properties of Lycopersicum 

esculentum (tomato) lectin (53-56). They showed that this protein selectively 

bound to the N-acetylglucosamine residues of glycoproteins on rat intestinal 

epithelia ex vivo. Soon after, a number of complementary studies revealed 

that after conjugation to model microparticulate drug carriers, tomato lectin 

maintained its affinity for rat intestinal epithelia ex vivo (57, 58). In light of 

these promising results, several other lectins were studied in this capacity 

given that their glycan binding properties were already being exploited for 

histochemical staining. For example, Ulex europaeus (Gorse) agglutinin I 

(Figure 1.4) is a lectin that specifically recognises terminal α(1,2) linked fucose 

residues – these residues are abundantly found on intestinal M cells in mice 

(59). Foster et al. found that linking this protein to microspheres resulted in the 

significant and specific binding of particle-conjugates to these cells in a mouse 

gut loop model (60). Targeting effects have similarly been well studied with 

Canavalia ensiformis (Jack bean) agglutinin, also known as Concanavalin A. 

This lectin binds to mannose and glucose residues (Figure 1.4) and was 

shown by Russell-Jones et al. to mediate mannose-specific microparticle 

binding to the Caco-2 intestinal cell line (61). There are several other 

examples of such interactions included in a review by Bies et al., where the 

use of lectins to target the gastrointestinal tract, and other mucosal 

membranes, is discussed (62). 
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Figure 1.4: Examples of lectins used as gastrointestinal targeting moieties 

Shown on the left is the ribbon representation of the crystal structure of Ulex 

europaeus agglutinin I (UEA-1) in complex with a fucose residue (red) [Protein Data 

Bank (PDB) Accession no: 1JXN]. On the right is the ribbon depiction of the crystal 

structure of Concanavalin A (ConA) in complex with a mannose residue (green) (PDB 

Accession no: 1I3H). For both lectins, only a single subunit is shown. 

 

To some extent, the potential clinical applicability of lectin-mediated systems is 

already evident from the in vivo studies reported in the literature that have 

successfully used these delivery systems to target intestinal cells. For 

example, the aforementioned study by Foster et al. confirmed that UEA-1-

conjugates retained targeting efficacy to mice intestinal M cells after 

intragastric administration (60). Recently, Liu et al. showed that wheat germ 

agglutinin grafted onto lipid nanoparticles not only mediated enhanced 

attachment to the Caco-2 cell line (63), but the conjugates were also able to 

improve the bioavailability of bufalin (a model drug molecule) ~2-fold in a rat 

study through association with the jejunum and ileum (64). Additionally, at 

least five in vivo small animal studies [reviewed in (65)] have reported that the 

efficacy of oral immunogens delivered through nanocarriers is significantly 

improved by intestinal M-cell targeting through lectin functionalisation.  

 

Though these studies have reported enhanced targeting efficacy, it must be 

noted that the ability of the drug carriers employed to diffuse through mucus 

UEA-1 ConA 
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was not studied in detail. Importantly however, as demonstrated in work by 

Montisci et al., lectin-targeting in vivo can result in both cytoadhesion and 

mucoadhesion (66) because while lectins are capable of binding to epithelial 

tissue, they can also bind prematurely to the overlaying mucus layer – 

secreted mucins tend to carry the same glycans that are found on the 

underlying epithelium that they protect (67). This is an important factor that 

has not yet been studied in the context of mucus penetration by lectin-

mediated drug delivery systems. 

 

Although further work is needed to fully evaluate the potential of cytoadhesive 

systems, the literature suggests that lectin-mediated drug carriers are 

promising tools for intestinal delivery. However, no studies could be found that 

have reported using this approach for a gastric-targeted drug delivery system. 

Furthermore, to date and to the best of knowledge, no lectins have been 

evaluated in this context for their ability to target glycans on the gastric 

epithelium. Accordingly, identifying a gastric-targeting lectin can be considered 

the first step towards the development of a cytoadhesive, gastroretentive 

system. In search of such a lectin, this study adopted learnings from nature.  
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1.3 Gastric targeting in nature – Helicobacter pylori 

1.3.1 H. pylori infection 

An excellent example of gastric targeting in nature can be found in H. pylori. 

This Gram-negative, microaerophilic bacterium displays a strict tropism for 

human and primate gastric mucosa, particularly in the less acidic antrum 

region of the stomach (Figure 1.5) (68, 69). It is exceedingly successful at the 

population level, with more than one-half of the global population infected (70). 

Although this always leads to histologic gastritis, the majority (80-90%) of 

infected individuals do not develop clinical symptoms (71). However, in a 

subset of individuals, infection can lead to severe peptic ulceration and it is 

also the strongest known risk factor for gastric cancer (72). 

 

 
 
Figure 1.5: Schematic representation of H. pylori gastric localisation 
H. pylori (inset) is a helicoidal-shaped bacterium, with unipolar flagella, typically found 

in the lower, less acidic antrum region of the human stomach. 

 

Despite the acidic and proteolytic conditions of the gastric lumen, which 

creates a hostile ecological environment that kills most pathogens ingested 

with meals, H. pylori manages to establish chronic infection in the stomach. In 

fact, unless treated, the bacterium can persist in the stomach for decades or 

even the duration of its host’s lifespan (72). Infection is established through 

unique evolutionary adaptations, which are believed to have co-evolved with 

Body 

Antrum 

Pylorus 

Fundus 

Cardia 

H. pylori 
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humans over millennia as the existence of the bacterium can be traced back 

to 58,000 years ago (73). First, while present in the stomach lumen, H. pylori 

withstands acidic conditions through the uptake and hydrolysis of urea in 

stomach fluid into ammonia and carbon dioxide using its cytosolic enzyme 

urease. Urease accounts for 10-15% of total protein in H. pylori cells and 

through the generation of ammonia, it enables the bacterium to maintain a 

buffered cytosol, periplasm and surface layer (74, 75). However, H. pylori is 

not an acidophile and must swim into the gastric mucus layer using its 

sheathed, unipolar flagella [Figure 1.5 (inset)]; this movement is guided by the 

detection of chemotactic factors, including urea and bicarbonate ions (76). 

Through this mechanism, the helicoidal-shaped bacterium penetrates the 

gastric mucus layer “like a screw into a cork” (77), and it subsequently 

colonises the firmly adherent mucus layer (Figure 1.3) (78). Here, it is 

protected from acid and proteases, and critically, the bacterium can establish 

contact with host cells. A comprehensive review of the infection-establishing 

mechanisms discussed here can be found in (77). 

 

 
1.3.2 H. pylori adhesins 

Host cell attachment is key to H. pylori infection. Without this mechanism, 

attempts to colonise the gastric mucosa will be futile because the bacteria will 

be cleared into the intestine during gastric mucus turnover. This mechanism is 

also necessary to enable the bacteria to gain access to vital nutrients from 

epithelial cells (78). Thus, while also able to remain motile within the gastric 

mucus layer, H. pylori possesses a chemotactic sensing mechanism that 

enables it to migrate towards the surface epithelium. This mechanism is based 

on the acidic to near-neutral pH gradient found from the luminal to apical 

regions of the mucus layer (79). Like other bacteria, to establish contact with 
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host cells, H. pylori employs adhesion proteins (adhesins) that recognise 

specific cell surface moieties. Even at the cellular level, H. pylori continues to 

display tropism. As Falk et al. showed in an in situ adherence assay, 

attachment only occurs to gastric surface mucous cells (also referred to as the 

gastric surface epithelium) but not to mucous neck, parietal or chief cells, 

which are all found deeper in the gastric glands (Figure 1.7) (80). To date, the 

adhesins listed in Table 1.2 have been identified as responsible for mediating 

H. pylori attachment to the gastric surface epithelium. However, specific 

receptors have not been identified for all adhesins.  

 
Table 1.2: Adhesins known to mediate H. pylori attachment to the gastric 

mucosa 
aLacdiNAc is an abbreviation for N,N’-diacetyllactosediamine 

 
Adhesin Abbreviation Host Receptor Reference 
Adherence-associated 
lipoprotein A 

AlpA Unknown Odenbreit et al. (81) 

Adherence-associated 
lipoprotein B 

AlpB Unknown Odenbreit et al. (81) 

Blood group antigen-
binding adhesin 

BabA ABO/Lewis blood 
group antigens 

Ilver et al. (82) 

Helicobacter outer 
membrane porin Z 

HopZ Unknown Peck et al. (83) 

LacdiNAc-binding 
adhesina 

LabA LacdiNAc 
moieties 

Rossez et al. (84) 

Sialic acid-binding 
adhesin 

SabA Sialylated glycans Mahdavi et al. (85) 

 

 
All of the abovementioned adhesins fall into the 21-member Helicobacter outer 

membrane porin (Hop) family. Members of this family have not been fully 

characterised with regards to pathological function, however, all members 

share a region of high sequence identity/similarity that is predicted to form a β-

barrel unit for outer membrane insertion. The above listed adhesins within this 

family are characterised by putative N-terminal extracellular domains with their 
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predicted β-barrel units localised to their C-termini (86, 87). As a number of 

other Hop proteins also share this domain similarity, it is believed that other 

yet-to-be characterised adhesins may exist. Interestingly, some outer 

membrane proteins with apparently unrelated functions, such as the outer 

inflammatory protein OipA and the heat shock protein Hsp70, have also been 

implicated in bacterial attachment (88, 89). Furthermore, recent studies have 

proposed new glycan structures that act as H. pylori receptors, though 

corresponding adhesins have not yet been identified (90, 91). Taken together, 

this indicates that the full picture of H. pylori gastric colonisation is incomplete. 

It can be argued, however, that colonisation mediated by several different or 

complex mechanisms is expected. Possessing a wide range of adhesins that 

recognise various host moieties is certainly beneficial to H. pylori in sustaining 

lifelong colonisation as this enables the bacterium to adapt to changes in its 

ecological niche (92). This is already well exemplified in its two best-studied 

adhesins – BabA and SabA. BabA mediates specific attachment to ABO and 

Lewis (Le) blood group antigens. In addition to erythrocytes, these glycan 

structures are found abundantly expressed in the healthy gastric mucosa of 

the majority of the Western population. On other hand, SabA mediates equally 

specific attachment to sialylated glycans. These structures are rarely 

expressed in healthy stomachs but appear in response to inflammation, which 

is a typical result of chronic H. pylori infection (93). Thus, with regards to the 

use of lectins in gastric-targeted drug delivery systems, the well-characterised 

adhesin BabA presents as a favourable choice. While lacdiNAc moieties that 

serve as receptors for LabA are also found in healthy stomachs, this adhesin 

was only recently identified by Rossez et al. in 2014 (94), that is, after the 

commencement of this study. AlpA, AlpB and HopZ were considered less 

suitable choices because their host receptors are currently unknown.  
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1.3.3 BabA-mediated H. pylori attachment 

In the gastric mucosa, surface mucous cells express ABO/Le blood group 

antigens that contain what is known as a type 1 lacto series core – this refers 

to their central Galβ1-3GlcNAc linkage (Figure 1.6, Figure 1.7). Deeper within 

the gastric glands, mucous neck cells also express ABO/Le blood group 

antigens (Figure 1.7). However, though related, these glycans are inherently 

different as they contain a type 2 lacto series core, which denotes a central 

Galβ1-4GlcNAc linkage (Figure 1.6) (95, 96). In line with preceding reports of 

strict tropism for surface mucous cells (80), Borén et al. showed in 1993 that 

H. pylori could only bind to gastric tissue that expressed ABO/Le blood group 

antigens with a type 1 core (97). Soon after, in 1998, Ilver et al. showed that 

this interaction is completely mediated by BabA, which displays no type 2 

ABO/Le blood group antigen affinity (82). Through these two landmark studies, 

the role of BabA in mediating H. pylori attachment to gastric tissue was 

established. As suggested by their nomenclature, the composition of type 1 

and type 2 ABO/Le blood group antigens in each individual is determined by 

blood phenotype. Figure 1.6 shows the relationship between blood phenotype 

and the aforementioned blood group antigens found in the gastric mucosa. 

Their full biosynthetic pathways are later described in Section 4.1.  
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Figure 1.6: The dominant ABO/Le blood group antigens in the gastric mucosa 

and their relationship to blood group phenotype 

Type 1 ABO/Le blood group antigens are characterised by a Galβ1-3GlcNAc linkage 

(glycosidic bond and glycan name represented in black) while type 2 ABO/Le blood 

group antigens display a Galβ1-4GlcNAc linkage (glycosidic bond and glycan name 

represented between parentheses and in red). Glycan symbolic representations can 

be interpreted with the following key: fucose – , galactose – , N-

acetylgalactosamine – , N-acetylglucosamine – . 

 

As previously mentioned, H. pylori can attach to surface mucous cells but can 

also remain motile in the gastric mucus layer. A study in 1991 by Tzouvelekis 

et al. was one of the first to show that H. pylori is actually able to attach to 

gastric mucus (98). It was later revealed that BabA plays a significant role in 

mediating this attachment, which was a rational finding given the composition 

of gastric mucus. The gastric mucus layer consists of two secreted mucins – 

MUC5AC and MUC6; MUC5AC originates from surface mucous cells whereas 

MUC6 originates from mucous neck cells, which, as previously mentioned, lie 

deeper within the gastric glands (Figure 1.7). ABO/Le blood group antigens 

are found as terminal glycan epitopes on both of these O-linked glycoproteins 

(43, 99). However, in agreement with the aforementioned cellular glycan 
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expression patterns of these mucus-secreting cells, MUC5AC strictly carries 

type 1 ABO/Le blood group antigens whereas MUC6 strictly carries the 

corresponding type 2 glycans. Importantly, the localisation of these mucins in 

the gastric mucus layer is further associated with cell type such that the 

surface mucus layer is exclusively comprised of MUC5AC while mucus found 

within the gastric glands is comprised of MUC6 (96, 100, 101). As shown in 

Figure 1.7, this results in a “laminated” gastric mucus layer with regard to 

mucin composition. So, after Tzouvelekis et al. showed that H. pylori can bind 

to gastric mucus, independent studies by Linden et al. and Van de 

Bovenkamp et al. showed that BabA mediates this attachment by binding to 

the type 1 ABO/Le blood group antigens on MUC5AC (102, 103). Importantly, 

this indicates that as with other lectins, there are anticipated benefits and 

obstacles associated with the use of BabA as a cytoadhesive-targeting moiety.  

 

Another potential obstacle may lie in the protective role of the cell surface 

associated mucin found in the stomach, MUC1 (Figure 1.7). The extracellular 

domain of this glycoprotein can be released from the apical cell surface of the 

gastric epithelium via proteolytic cleavage (104) and/or the dissociation of its 

non-covalently linked mucin subunits in response mechanical stress (105, 

106). This is of relevance because although the glycosylation pattern of the 

extracellular domain of this mucin has not been as well characterised as 

MUC5AC and MUC6, a recent study by Linden et al. showed that H. pylori 

binds to MUC1, which then acts a protective “decoy” receptor by being shed 

from the cell surface into mucus gel layer and gastric juice (107). Though the 

MUC1 binding mechanism of H. pylori is not yet fully understood, BabA was 

noted to contribute to attachment.  
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Figure 1.7: Mucin composition of the gastric mucus layer 

Type 1 ABO/Le blood group antigens are found attached to both MUC5AC and 

surface epithelial cells (indicated in black) while type 2 ABO/Le blood group antigens 

are found attached to MUC6 and epithelial cells in the gastric glands (indicated in red). 

The glycosylation pattern of MUC1 (indicated in blue) has not been well characterised 

but Linden et al. have reported the presence of Leb (107). MUC5AC and MUC6, which 

are the secreted mucins in gastric mucus, form a laminated mucus layer. Note that the 

surface mucus layer illustrated refers to both firmly and loosely adherent layers, which 

are both formed predominantly by MUC5AC (42). MUC1 is found attached to the 

surface epithelium, however, it may also be found attached to mucous neck cells 

within the gastric gland (not indicated) (108).  

 

 
1.3.4 Variability in the BabA glycan-binding profile 

Since the role of BabA in mediating H. pylori attachment to gastric surface 

epithelial cells and mucin was identified, its selective affinity for type 1 ABO/Le 

blood group antigens has been validated by several studies using various 

methodologies. This has included surface plasmon resonance (109), dynamic 

force spectroscopy (110), atomic force microscopy (111), oblique-

incidence reflectivity difference microscopy (112), glycoconjugate arrays (113) 

and transgenic mice models (114). As such, despite no structural information 

detailing the molecular mechanism of glycan binding, the role of type 1 

ABO/Le blood group antigens acting as BabA receptors has been well 

demonstrated (Figure 1.6). 
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However, a number of studies have shown that not all H. pylori strains are 

able to attach to Leb (this Le blood group antigen is the most studied of all type 

1 ABO/Le blood group antigens in H. pylori gastric-attachment) (82, 115, 116). 

H. pylori strains are considered to be highly genetically diverse (117), and in 

accordance with this, not all clinical isolates possess a functional babA gene 

so lack of Leb attachment is expected in some cases (118-120). However, as 

shown by Hennig et al. in 2004 and again by Odenbreit et al. in 2009, not even 

the detection of the BabA protein on H. pylori cells guarantees Leb binding 

affinity (121, 122). The study by Hennig et al. also showed, using optical 

density assays, that within functional BabA strains, attachment to Leb 

glycoconjugates occurs to different extents (121). Variability in Leb affinity was 

studied in closer detail, also in 2004, by Aspholm-Hurtig et al. (123). From a 

panel of 68 Swedish clinical isolates, a 1500-fold range in Leb binding affinity 

was observed. Association constants (KA) ranged from 2x108 M-1 to 3x1011 M-1, 

as determined through Scatchard analysis of suspended bacteria binding to 

radiolabelled Leb glycoconjugates. These differences in binding affinity were 

believed to be due to the high sequence variability observed in the N-terminal 

extracellular domain of BabA. Indeed, as shown in Figure 1.8, a recent study 

by Nell et al. definitively illustrated that amino acid substitutions in this domain 

were highly common across a number of strains that displayed both variable 

and lack of Leb affinity (124). The variability in the expression, functionality and 

affinity of BabA indicates that it plays a relative, rather than absolute, role in 

mediating H. pylori adherence.  
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Figure 1.8: Sequence variability of BabA 

Nell et al. showed that 25 H. pylori strains that expressed BabA but bound Leb with 

different affinity (21 strains) or could not bind Leb (4 strains) contained high sequence 

variability in their putative N-terminal extracellular domains (124). The Shannon 

Diversity Index used to illustrate variability can range from 0 (same amino acid present 

at given position across all sequences) to 4.322 (all 20 amino acids equally present at 

given position across all sequences). Reprinted from (124) with permission. 

 

In further support of H. pylori being a genetically diverse species, BabA activity 

can be governed by an individual’s blood type. While most strains with 

functional BabA proteins can recognise all of the aforementioned type 1 

ABO/Le blood group antigens (generalist strains), others can only bind to the 

type 1 ABO/Le blood group antigens in individuals with the group-O phenotype, 

that is, Leb and H-1 antigens (specialist strains) (Figure 1.6). This was 

reported by Aspholm-Hurtig et al. who also found that specialist strains are 

highly localised to South Amerindian populations that are composed almost 

entirely of the blood group-O phenotype (123). Though the observed 

differences in glycan recognition were attributed to sequence variability, no 

molecular mechanism was identified. Taken together, the literature 

convincingly informs that not all BabA proteins are created equal, and strain 

variability must be considered when employing BabA to avoid the creation of 

inert drug delivery systems. 

 
  

intact C terminus of strain LSU1014-1 allowed a closer inspection
of the influences of these 11 amino acid differences on Le(b) bind-
ing. For example, clones 12 and 743 showed no increase in Le(b)
binding compared to clone 522, indicating that the specific resi-
dues at positions 421 and 630 in strain LSU1014-1 were probably
less important for ligand binding. In contrast, the presence of
further LSU1014-1-specific residues in clone 362 (residues 378
and 385) and clone 5 (residues 212, 213, 215, 220, 225, 378, and
385) restored Le(b) binding back to the level of clone 1, suggesting
that these residues play an important role in Le(b) binding. This
was further confirmed in the remaining clones, which all showed
diminished Le(b) binding.

To further analyze the importance of the C terminus for pro-
tein biogenesis, we performed structure prediction analyses of the
BabA sequences using Phyre2 (Fig. 5). The structural model of the
N-terminal adhesion domain of BabA was based on the previously
published extracellular adhesion domain of H. pylori SabA (25)
and was predicted with high confidence for all strains (100% con-
fidence; !21% identity). In contrast, the confidence of the struc-
ture prediction of the C-terminal !-barrel membrane domain dif-
fered considerably between Le(b) binding and nonbinding strains
(Fig. 5B). While the outer membrane domain of BabA from strain
LSU1014-1 was predicted with high confidence (95.3%), confi-
dence values for the membrane domains of strain LSU1014-6
(74.6%) and clone 135 (76.8%) were markedly lower, suggesting
that the missing C terminus affects the correct folding of the
!-barrel and may thereby influence stability.

DISCUSSION
In this study, we analyzed the dynamics of Le(b) binding and
sequence variation of babA during chronic H. pylori infection in
humans. In contrast to reports from experimental infections in
animal models (18–20), the Le(b) binding phenotype was rela-
tively stable during human infection, as Le(b) binding ability
changed in only 5 out of 23 sets of sequential isolates. This stable
BabA phenotype might be due to the already long-standing infec-
tion and a stable physiological situation in the infected individuals
when the first isolate was collected.

The reported loss of Le(b) binding in animal infection experi-
ments has been the result of either gene conversion, frameshifts
due to variation in length of repeat sequences, or mutations lead-
ing to amino acid substitutions or truncated proteins (18–20). We

observed a loss of Le(b) binding due to replacement of babA with
a second copy of babB in one case. In the other isolates, changes in
Le(b) binding ability were caused by mutations leading to amino
acid changes in BabA, which were mainly located in the predicted
N-terminal adhesion domain of BabA. We did not observe loss of
Le(b) binding due to phase variation in any of these isolates.

Since we analyzed only one purified H. pylori clone per biopsy,
we cannot assess potential intrastrain variation of Le(b) binding
within a stomach or between different parts of the stomach niche.
Two recent studies of our group have analyzed multiple single
colony isolates from two stomach biopsies for hopZ gene status
and detected only minimal intrastrain variation (26, 27). Another
study analyzing the bab genotype of more than one single colony
isolate from each of three patients observed intrastrain genotype
variation in two of the three cases (14).

Our experimental data and protein structure predictions sug-
gest that the C terminus of BabA may be important for protein
folding and possibly stability. The C terminus is predicted to en-
code an outer membrane !-barrel (28), and correct assembly into
the outer membrane is essential for protein function. Folding and
membrane insertion of OMPs are evolutionarily highly conserved
and mediated by the BAM (!-barrel assembly machinery) com-
plex (29, 30). The central and essential component of this multi-
protein complex, BamA, is itself an OMP and recognizes substrate
OMPs by a C-terminal signature sequence (31). This sequence is
found in the majority of bacterial OMPs and is highly conserved
among Proteobacteria (32, 33). Changes of this sequence have
been shown to diminish or completely disturb OMP assembly (31,
33, 34). For example, deletion of the C-terminal phenylalanine of
the Escherichia coli porin PhoE disabled BamA activity, while a
synthetic peptide consisting of the last 12 amino acids was suffi-
cient to activate BamA (31). So far, the BAM complex has not been
analyzed in H. pylori. However, BamA is conserved in H. pylori
(35), and it has been found in a recent analysis of the cell surface
proteome of H. pylori (28). Thus, we assume that recognition of
the truncated BabA protein by the BAM complex is hampered due
to the missing C terminus, which might subsequently lead to rapid
protein degradation to avoid accumulation in the periplasmic
space. Interestingly, BabA belongs to the Y-Hop subgroup of
H. pylori OMPs that encode a tyrosine residue at the final position
(6). Future studies should concentrate on the impact of this amino
acid on OMP assembly.

FIG 3 Sequence variability of BabA from BabA-expressing NQ and LSU strains. The Shannon diversity index (H) for each site in the multiple-sequence
alignment of BabA (see Fig. S2 in the supplemental material) was determined using the Protein Variability Server (PVS) (24). H can range from 0 (the same amino
acid is present at that position in all sequences) to 4.322 (all 20 amino acids are equally represented in that position). The predicted domain structure based on
Phyre2 analysis is indicated on top of the figure.

Nell et al.
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1.4 Study Aim and Objectives 

BabA plays a well-established role in the mediation of H. pylori attachment to 

type 1 ABO/Le blood group antigens in the gastric mucosa. This glycan 

binding profile makes BabA an excellent candidate for imparting cytoadhesive 

properties to particulate drug delivery vectors. However, to successfully create 

such a system, it is fundamentally imperative that the properties of BabA as an 

H. pylori adhesin are maintained ex situ and can be translated into a drug 

delivery system.  

 

The aim of this study was to characterise the functional properties of BabA, in 

the context of its use as a gastric targeting moiety (Figure 1.9). This was 

achieved through three specific research objectives, which have been 

insufficiently addressed in the literature to date: 

 
1. Development of a recombinant BabA expression and purification 

method. This is an essential step of the study needed to support 

subsequent BabA characterisation and application. 

2. Characterisation of the BabA glycan-binding site. This is required to 

understand the mechanism through which BabA recognises type 1 

ABO/Le blood group antigens in order to correctly exploit this interaction 

through a BabA-mediated drug delivery system. 

3. Assessment of BabA acid/pepsin stability and particle-conjugate 

activity. This provides crucial, first insights into the translational 

applicability of BabA as a targeting moiety. 
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Figure 1.9: Schematic representation of BabA-mediated drug delivery vectors 

This study wishes to propose (A) the use of BabA as a cytoadhesive moiety to direct 

drug delivery vectors to (B) type 1 ABO/Le blood group antigens in the gastric mucosa. 

The experimental work presented in this thesis focuses on characterising the 

functional properties of BabA in the context of its use as a gastric targeting moiety. (B) 

adapted from (125) with permission. 

 

If successful, the translation of this biomimetic approach into a clinically 

applicable system will require several additional phases of development and 

assessment. These will include steps focused on drug delivery, such as the 

choice of delivery vehicle (e.g. polymeric nanoparticles, liposomes etc.), 

optimisation of drug encapsulation and, as shown in Figure 1.10, the 

incorporation of controlled drug release mechanisms. Product formulation will 

also have to be considered. Currently, it is envisaged that the drug delivery 

system will be orally administered via an encapsulating dosage form such that 

the gastric mucosa will be the first mucosal surface to which BabA-particles 

are exposed. Through such a formulation, the chances of effective attachment 

to the gastric mucosa are maximised because any potential premature or non-

specific binding interactions to the oral cavity and oesophagus are avoided.  
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Figure 1.10: Drug release mechanisms from polymeric nanoparticles 

Polymeric nanoparticles are shown here, as an example of a drug delivery vehicle, to 

illustrate how drug molecules can be released from drug delivery vehicles over time. 

The mechanisms illustrated are: (A) diffusion of the drug out of the polymer matrix, or 

(B) surface erosion of the polymer matrix, or (C) hydrolytic biodegradation of the 

polymer matrix (126). 

 

While there are clearly longer-term translational milestones associated with 

this project, characterising the functional properties of BabA, in the context of 

its use as a gastric targeting moiety, underpins development of the entire 

system. In addition to progressing the development of a BabA-mediated drug 

delivery system, the insight gained from addressing the aforementioned 

research objectives of this study will provide relevant insight into a primary 

mechanism through which H. pylori colonise the gastric mucosa. 
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Chapter 2: Overview of experimental techniques 

 
Throughout the course of this study, the use of a wide range of techniques 

was required to sufficiently encompass the breadth of each research objective.  

 

The first objective of this study was to develop a method to express and purify 

recombinant BabA – this was performed using standard molecular biology and 

chromatographic techniques. As such, an explanation of the mechanism 

behind the processes and instruments employed to achieve this objective is 

precluded from this section. However, a brief description of the specific 

expression vectors and host organisms used is given in Section 2.1. 

 

The second and third objectives of this study were to characterise the glycan-

binding site of BabA and to assess its acid/pepsin stability and particle-

conjugate activity. To achieve this, a number of techniques were employed for 

which the mechanism of the instrumentation is essential for interpretation of 

the data output. While a comprehensive overview of each of these techniques 

is beyond the scope of this thesis, the fundamental principles behind these 

biophysical, structural and biochemical methods are introduced below in 

Sections 2.2 to 2.8. 
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2.1 Recombinant expression 

Recombinant expression was chosen over native protein extraction because it 

offers distinct advantages relevant to this study’s downstream requirements: 

for characterisation of the BabA glycan-binding site, recombinant expression 

allows the relevance of specific amino acids required for binding affinity to be 

easily assessed through mutagenesis; for the generation of BabA-particle 

conjugates, this technique enables the incorporation of functional polypeptide 

tags into BabA to facilitate particle linkage.  

 

 
2.1.1 Expression vectors used in this study 

A brief summary of the functional features of each vector used for recombinant 

BabA expression is given below.  

 
- pET-22b(+) expression vector 

This vector confers ampicillin resistance, contains an isopropyl β-D-1-

thiogalactopyranoside (IPTG)-inducible lac operator downstream of a T7 

promoter sequence, and a C-terminal 6x His tag for immunodetection and 

purification. Additionally, there is an N-terminal pelB leader signal sequence 

(MKYLLPTAAAGLLLLAAQPAMA) for potential periplasmic localisation. This 

vector is suited to protein expression in Escherichia coli (127).  

 
- pOPE101 expression vector 

This vector confers ampicillin resistance, contains an IPTG-inducible lac 

operator behind a synthetic P/A1/04/03 lac promoter, a C-terminal c-Myc 

(EQKLISEEDL) tag for immunodetection and a C-terminal 6x His tag for 

purification. There is also an N-terminal pelB leader signal sequence for 

potential periplasmic localisation. This vector is suited to protein expression in 

E. coli (128).  
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- az_FB84_D132 expression vector 

This is an AstraZeneca R&D proprietary vector containing features optimised 

for Spodoptera frugiperda expression. It is based on the pFastBac™ vector, 

making it suitable for site-specific transposition into bacmid DNA. It contains 

no signal sequences, immunodetection tags, or purification tags, which must 

be added, as desired, through cloning. 

 
- pDEST12.2oriP_C718 expression vector 

This is an AstraZeneca R&D proprietary vector containing features optimised 

for mammalian expression. It contains no signal sequences, immunodetection 

tags, or purification tags, which must also be added through cloning.   

 

 
2.1.2 Host organisms used in this study 

A brief overview of the host organisms used for both plasmid construction and 

protein expression is given below. 

 
- E. coli DH5α  

This is a strain typically used for cloning as it has recA and endA1 mutations, 

which prevent the homologous recombination and degradation of plasmid 

DNA, respectively (129). 

 
- E. coli XL10 Gold 

These cells are also typically used for cloning applications as they exhibit the 

Hte phenotype, which increases the transformation efficiency of large DNA. 

Like E. coli DH5α, they are also recA and endA1 deficient (129). 

 
- E. coli BL21 (DE3) 

This E. coli strain is ideal for routine protein expression in conjunction with T7 

promoter expression vectors. As it is a DE3 lysogen, it contains a 
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chromosomal copy of the T7 RNA polymerase gene. Once expressed, this 

polymerase binds to T7 promoters on expression vectors to direct transcription 

of the cloned gene. BL21 (DE3) is deficient in lon and ompT proteases, which 

degrade intracellular and outer membrane proteins, respectively (129).  

 
- E. coli Origami B (DE3) 

This strain has all the features of E. coli BL21 (DE3) and additional mutations 

to enhance disulphide bond formation in the cytoplasm of E. coli. These 

mutations are in thioredoxin reductase and glutathione reductase enzymes, 

thereby creating an oxidising cytoplasmic environment. Additionally, this strain 

is a lacY1 deletion mutant; this enables a more precise control of expression 

levels by adjusting IPTG concentration (129). 

 
- Spodoptera frugiperda Sf21 

This is a lepidopteron insect cell line frequently used for protein expression in 

conjunction with a baculovirus expression vector system (130). 

 
- Human Embryonic Kidney (HEK) 293-6E 

This is a derivative of the mammalian cell line HEK 293 optimised for transient 

protein expression. It stably expresses the Epstein Barr virus (EBV) nuclear 

antigen 1 (EBNA-1) and grows in suspension, as opposed to adherently. 

Presence of EBNA-1 has been shown to increase the semi-stable episomal 

propagation of plasmids containing an EBV origin of replication (131). 

 
- Chinese Hamster Ovary (CHO) G22 

This is a derivative of the CHO mammalian cell line optimised and patented by 

AstraZeneca R&D for enhanced transient expression. It grows in suspension, 

stably expresses EBNA-1 and also glutamine synthetase – an enzyme that 

catalyses condensation of glutamate and ammonia to form glutamine (132).  
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2.2 Surface plasmon resonance 

Surface plasmon resonance (SPR) was used as a direct method to observe 

binding between recombinant BabA and glycans. It is an extremely sensitive 

technique that detects the real-time association and dissociation of molecules 

and, as such, can also be used for affinity and kinetic determination (133). 

 

SPR is a spectroscopic technique. First, a molecule of interest (ligand) is 

immobilised, through various possible chemistries, onto the dextran-coated 

gold surface of a glass-backed slide. A solution containing the ligand’s binding 

partner (analyte) is then flown over the surface and interactions are assayed 

based on the SPR phenomenon. The principles of the SPR phenomenon are 

centred on the reflection of light. In the assay, the sensor chip is irradiated with 

a wedge-shaped beam of polarised light, from its glass side, at an angle range 

where only reflection occurs and no light passes through the glass slide. 

During the reflection of light, a phenomenon exists whereby an 

electromagnetic field component, known as the evanescent wave, traverses a 

short distance (~150 nm) across the glass slide into the gold/buffer layer of the 

chip. This energy is absorbed by free electrons in the gold layer (surface 

plasmons) but only from a specific angle within the range of incident light. 

Therefore, when the reflected light is analysed by a detector, a shadow is 

observed at the corresponding angle – the SPR angle. The SPR angle 

changes based on the refractive index of the surface layer buffer within the 

evanescent wave field (Figure 2.1). As this is largely determined by the 

surface concentration of molecules, association and dissociation binding 

events can be monitored through reversible changes to the SPR angle (133, 

134).  
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Figure 2.1: The principle of SPR 

Changes to the surface concentration of molecules causes a change in the SPR angle, 

which can then be translated into a sensogram.  

 

The main advantage of SPR is that binding events are monitored in real-time. 

Thus, the curvature of sensogram traces can be analysed to determine the 

kinetics of binding, that is, the association rate, kon, and dissociation rate, koff, 

constants (Figure 2.2).  

 

 
Figure 2.2: A typical SPR sensogram 

A sensogram depicts changes in the SPR angle as Response Units. Distinct 

association and dissociation phases are evident if the analyte interacts with the ligand 

and kinetic rate constants can be determined by curve fitting.  

 

These constants can also be used to determine binding affinity: the 

association constant, KA = kon/koff; the inverse applies to the dissociation 

constant, KD = koff/kon (135). Alternatively, binding constants can be calculated 
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directly through equilibrium analysis. This is done by measuring the 

concentration of analyte required to saturate all ligand binding sites and fitting 

obtained data to a binding isotherm. Finally, because SPR is a highly sensitive 

technique, changes in the refractive index of buffers can also affect signal 

output, as a consequence, careful manipulation in combination with thorough 

results evaluation is needed to interpret experimental data (136, 137). 
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2.3 Isothermal titration calorimetry 

Isothermal titration calorimetry (ITC) was used to calculate the binding affinity 

and thermodynamic parameters of interactions between recombinant BabA 

and glycans. As its name suggests, this technique characterises binding 

interactions based on the amount of heat that is given out (exothermic 

processes) or taken up (endothermic processes) during binding events (138).  

 

An isothermal titration calorimeter contains two identical reference and sample 

cells, which are both maintained at the same user-defined temperature 

through separate cell heaters. In an experimental run, the reference cell is 

filled with the same buffer as the protein-containing sample cell, which 

receives known amounts of ligand injections (Figure 2.3). During these 

injections, extremely sensitive thermocouple circuits detect the slight 

differences in temperature between the reference and sample cells. In the 

case of exothermic reactions, binding events cause an increase in the 

temperature of the sample cell. This temperature increase is fed back to the 

sample cell heater so that it reduces its heat/power input in order for the cell to 

be cooled back to the same temperature as the reference cell. The opposite 

occurs during endothermic reactions (139). 

 

 
 

Figure 2.3: Schematic diagram of an ITC instrument 

ITC determines binding heat change by comparing the temperatures of reference 

(buffer only) and sample (protein+ligand in buffer) cells during a binding experiment. 
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In other words, an isothermal titration calorimeter works by matching the 

temperatures of sample and reference cells over the course of a binding 

experiment. The signal output of these instruments is the positive or negative 

change in power (µcal/sec) applied to the sample cell in order to match the 

temperature of the reference cell over multiple titrations. A relatively high 

signal is observed upon initial titration of ligand into protein, this then 

decreases after repeated titrations as protein binding sites become saturated. 

The positive or negative power change applied to the sample cell equates to 

the heat absorbed or released during binding, respectively. Consequently, the 

heat change after each injection can be determined by calculating the area 

under the peak of the power change signal output (Figure 2.4) (140).  

 

 
 

Figure 2.4: Representative output from a typical ITC experiment 

The signal output (top) from an ITC experiment is transformed into a binding isotherm 

(bottom) by plotting the area under each peak, normalised per mole of injected ligand, 

against the ligand:protein molar ratio. KA, ΔH and N can then be obtained after non-

linear least squares analysis of the data. Note: low affinity interactions do not yield 
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sigmoidal curves but are similarly interpretable (141). Reprinted from (142) with 

permission. 

 

Because a binding isotherm based on heat change can be generated, analysis 

of the data can yield the binding enthalpy change (ΔH), KA and stoichiometry 

(N). The KD can then be calculated from Equation 1: 

KA = 1/KD                                                             (1) 

This can then be used to calculate the Gibbs free energy change (ΔG) of the 

complex using Equation 2, where R is the ideal gas constant (= 8.31 J-1 K-1 

mol) and T is temperature (in Kelvin): 

ΔG = RTlnKD                                                   (2) 

Finally, the binding entropy change (ΔS) can be calculated using Equation 3: 

ΔG = ΔH−TΔS                                                  (3) 

 

As such, a full set of binding affinity constants and thermodynamic parameters 

can be determined through ITC. While the KA (or KD) and N for protein:ligand 

interactions are significant because they describe the strength and 

stoichiometry of the binding interaction, respectively, the relative enthalpic and 

entropic contributions of binding are similarly important in order to understand 

the mechanism of binding. Favourable enthalpy (where the value of ΔH is 

negative) is mediated by non-covalent interactions such as hydrogen bonds 

and van der Waal’s contacts; favourable entropy (where the value of –TΔS is 

negative) is effectively mediated by hydrophobic interactions (142, 143). 
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2.4 X-ray crystallography 

X-ray crystallography is a structural method that was used to identify the 

recombinant BabA glycan-binding site. This technique enables the 

determination of the three-dimensional atomic structure of a protein, within a 

solid crystalline material, in the absence and presence of its binding partner. 

 

X-ray crystallography is an elaborate technique based on complex physical 

phenomena and mathematical relationships that are readily calculable due to 

advances in computational software. Structural determination is achieved 

through a number of key steps. Briefly, proteins are crystallised and exposed 

to X-ray radiation where the electrons of each atom within the protein 

molecules diffracts the X-rays. Diffracted X-rays are collected and interpreted 

using mathematical analyses to produce an electron density map of the entire 

protein, from which its atomic model can be directly inferred (144). 

 

The initial crystallisation step is central to this technique: an X-ray signal 

diffracted by an individual molecule is not detectable, however, because a 

crystal lattice contains molecules identically packed in a repeated manner with 

three-dimensional, long-range order, the signal of diffracted X-rays is amplified 

to levels that enables their analysis. A popular method to crystallise proteins, 

which was used in this study, is the sitting drop vapour diffusion method. Here, 

a droplet containing a high concentration of protein is mixed with a well-

defined solution containing a precipitant that effectively competes with the 

protein for water molecules. This droplet is placed in a sealed system adjacent 

to a significantly larger reservoir containing the same precipitant solution. In 

comparison to the droplet, this reservoir has a higher concentration of 

precipitant because it is undiluted. This causes water molecules to gradually 

diffuse from the droplet to the reservoir, through the vapour phase, so that 
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equilibrium may be reached (Figure 2.5). Through this process, the 

concentration of protein and precipitant in the droplet slowly increases and 

encourages the spontaneous formation of protein crystal nuclei and 

subsequent crystal growth, under the right conditions. Factors like pH and 

temperature also affect successful crystallisation, which may often end in 

protein precipitation if optimal conditions are not achieved. If available, small 

pieces of protein crystals can also be incorporated into the crystallisation 

droplet to encourage nucleation. This is known as crystal seeding (145). 

 

 
 
Figure 2.5: Schematic representation of the sitting drop vapour diffusion 

method used in protein crystallisation 
Hundreds to thousands of precipitant solutions can be screened using this process to 

identify and optimise conditions that yield protein crystals.  

 

After successful crystallisation, crystal irradiation is performed and a charged 

couple device detector collects the diffraction spots generated from X-ray 

photons shone at the protein crystal; crystals are gradually rotated during this 

process to maximise data collection (Figure 2.6). Because the structure of a 

material is mathematically related to its diffraction pattern through a function 

known as a Fourier transform, an inverse Fourier transform can be applied to 

create an electron density map of a protein from its diffractogram. Importantly, 

this requires a diffraction pattern to originate from a single crystal and 

consequently twinned crystals represent a significant hindrance to structure 

solution. To perform an inverse Fourier transform, both the amplitude and 

phases of the diffracted X-ray waves that generated the diffraction pattern 
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need to be known. However, an inverse Fourier transform cannot be readily 

applied in macromolecular crystallography. From a diffractogram, the 

amplitude of the waves is known because this relates to the intensity of the 

spots, however, all wave phase information is lost; this generates what is 

known as the phase problem (146). 

 

 
 
Figure 2.6: Schematic representation of the data collection step in X-ray 
crystallography 

In order to obtain complete diffraction data, protein crystals are rotated during 

irradiation (not shown). 

 

The phase problem can be solved using several different techniques. If the 

atomic coordinates are available for a protein with a similar amino acid 

composition to that of the protein of interest (greater than 20-40% sequence 

identity), the phase problem can be simply solved through a computational 

process known as molecular replacement. Here, the orientation of the 

structurally characterised molecule is theoretically modelled into the crystal 

lattice such that it would give a near-identical diffraction pattern to that of the 

unknown protein. If this is suitably similar, the wave phase information of the 

known molecule can effectively be borrowed to enable an inverse Fourier 

transform to be performed on the experimental diffraction pattern (146). Where 

no homologous protein exists, single-wavelength anomalous dispersion is one 
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of the most popular methods used to solve the phase problem. This method 

was used in this study. It is based on the fact that within the typical 

wavelengths of X-ray radiation employed in macromolecular crystallography 

(0.8-2.3 Å), after interaction with the atoms found in natural amino acids, the 

phase of incident X-ray waves is not changed during diffraction. However, if a 

type of atom known as an anomalous scatterer is present in the protein, at a 

specific wavelength that is still suitable for structural determination, the atom 

will partly absorb and partly diffract the X-rays. This unique event, known as 

anomalous scattering, can be detected in a diffraction pattern and enables the 

phase information for all waves to be gained through mathematical processes 

(147). An example of an anomalous scatterer is selenium, which is typically 

incorporated into a protein through the substitution of methionine for 

selenomethionine. 

 

Typically, after the use of molecular replacement or single-wavelength 

anomalous dispersion to solve the phase problem, an electron density map 

can be built and after an appropriate number of rounds of iterative refinement, 

an atomic model can be generated. A detailed insight into the full 

mathematical processes used to translate experimental data into an atomic 

model can be found in (148). 

  



Experimental Techniques 

 42 

2.5 Circular dichroism spectroscopy 

To study protein conformational state, circular dichroism spectroscopy was 

used as an investigative tool. This technique enables the evaluation of a 

protein’s secondary structure content. As such, it is effective for studying 

whether amino acid substitutions or microenvironmental factors affect 

recombinant BabA folding and stability (149). 

 

Circular dichroism spectroscopy studies the absorbance of circularly polarised 

light by molecules. Circularly polarised light has two components – left- and 

right-handed circularly polarised light. If this form of light is passed through a 

chiral molecule with absorptive properties, left- and right-handed circularly 

polarised light will be absorbed to different extents because of the molecule’s 

asymmetry. This effect is known as circular dichroism and the difference in 

left- and right-handed absorption can be measured by spectropolarimeters 

(150). 

 

Proteins are well suited for investigations using circular dichroism 

spectroscopy. Between approximately 190 and 260 nm (the far-UV spectral 

region), their peptide bonds act as chromophores and the degree to which 

they absorb left- or right-handed circularly polarised light is dependent on the 

conformation of their asymmetric polypeptide chains. As such, α-helix, β-sheet 

and random coil structures each yield distinctive CD spectra (Figure 2.7) and 

the combination of these structural features in a protein can be characterised 

and studied in different contexts (151). 
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Figure 2.7: Far-UV circular dichroism spectra associated with the various 

protein secondary structures 

The CD spectra shown are of poly-L-lysine in different conformations (due to changes 

in pH and temperature) (152). These spectra fingerprints are consistent amongst 

proteins dominated by the indicated structural features (153).  
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2.6 Differential scanning fluorimetry 

Differential scanning fluorimetry was used to characterise the thermal-induced 

unfolding transition of recombinant BabA. This information is similarly useful 

for comparing the relative stabilities between protein variants, and to study the 

(de)stabilising effect of a protein’s microenvironment (e.g. pH) (154). 

 

In this experiment, the protein of interest is incubated with a unique 

fluorescent dye, the properties of which are essential to the assay, and 

subjected to an increasing heat gradient in a thermocycler with fluorescence 

excitation/emission filters. The fluorescent dye used, typically SYPRO Orange, 

non-specifically binds to hydrophobic surfaces and only emits a signal when in 

such local environments (its fluorescence is strongly quenched by water). 

Thus, during the thermal-induced unfolding transition of a protein, the dye 

emits fluorescence once bound to a protein’s hydrophobic patches – these are 

typically hidden within the protein core in its folded conformational state. The 

more a protein unfolds, the more the fluorescent dye that binds. Accordingly, 

its thermal denaturation curve can be obtained by plotting fluorescence 

against temperature and its unfolding transition midpoint (Tm) can be 

calculated by non-linear regression fitting. Once completely unfolded, the 

protein’s exposed hydrophobic core tends to lead to intermolecular 

aggregation and subsequently causes a displacement of the fluorescent dye, 

leading to requenching of its signal (Figure 2.8). Because the chemical 

structure of SYPRO Orange is proprietary, its exact mechanism of protein-

binding is not known (155, 156). 
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Figure 2.8: A typical thermal-induced protein unfolding transition 

[1] Correctly folded proteins do not bind SYPRO Orange and the aqueous 

environment quenches its fluorescence, [2] Thermal denaturation allows the dye to 

bind to the internal hydrophobic core of the protein and fluorescence is emitted, [3] 

Maximal fluorescence intensity is reached at complete protein unfolding, [4] Protein 

aggregation results in dye-protein dissociation. 
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2.7 Dynamic light scattering 

Dynamic light scattering (DLS) was used to assess the colloidal stability of 

model particles used or generated in this study. DLS measures the 

hydrodynamic diameter and polydispersity of particles in the sub-micron to 

micron range. Therefore, it can be used to study how the conjugation of BabA 

to particle surfaces impacts the ability of the system to remain suspended in 

solution, that is, to resist aggregation and/or sedimentation (157). 

 

DLS calculates particle size by measuring the speed of Brownian motion, 

which is the random movement of particles in a suspension due to collision 

with surrounding solvent molecules. To determine this experimentally, the light 

scattering pattern of a suspension is analysed over time (Figure 2.9).  

 

 

Figure 2.9: A typical light scattering pattern 

A representative light scattering pattern, also known as a speckle pattern, at a single 

time point is shown. The mixture of bright and dark areas is due to diffracted light from 

a particle suspension arriving at the detector in phase (constructive interference) and 

out of phase (destructive interference), respectively. Reprinted from (158) with 

permission. 

 

As diffusion occurs, particles are spatially rearranged and, as a result, their 

light scattering pattern changes. Smaller particles diffuse faster through a 

liquid than larger particles, hence, their light scattering pattern changes more 

Some fundamental properties of speckle*
J. W. Goodman

Department of Electrical Engineering, Stanford University, Stanford, California 94305
(Received 28 May 1976)

A speckle pattern formed in polarized monochromatic light may be regarded as resulting from a classical
random walk in the complex plane. The resulting irradiance fluctuations obey negative exponential statistics,
with ratio of standard deviation to mean (i.e., contrast) of unity. Reduction of this contrast, or smoothing of
the speckle, requires diversity in polarization, space, frequency, or time. Addition of M uncorrelated speckle
patterns on an intensity basis can reduce the contrast by l/AVM. However, addition of speckle patterns on a
complex amplitude basis provides no reduction of contrast. The distribution of scale sizes in a speckle pattern
(i.e., the Wiener spectrum) is investigated from a physical point of view.

INTRODUCTION

Objects illuminated by light from a highly coherent cw
laser are readily observed to acquire a peculiar granu-
lar appearance. Figure 1 shows a typical pattern ob-
served in the image of a uniformly white reflecting ob-
ject. This extremely complex pattern bears no obvious
relationship to the macroscopic properties of the object
illuminated. Rather it appears chaotic and unordered,
and is best described quantitatively by the methods of
probability and statistics.

The origin of this granularity was quickly recognized
by early workers in the laser field. , 2 The vast majori-
ty of surfaces, synthetic or natural, are extremely
rough on the scale of an optical wavelength. Under il-
lumination by coherent light, the wave reflected from
such a surface consists of contributions from many in-
dependent scattering areas. Propagation of this re-
flected light to a distant observation point results in the
addition of these various scattered components with
relative delays which may vary from several to many
wavelengths, depending on the microscopic surface and
the geometry (see Fig. 2), Interference of these de-
phased but coherent wavelets results in the granular
pattern we know as speckle, Note that if the observa-
tion point is moved, the path lengths traveled by the
scattered components change, and a new and indepen-
dent value of intensity may result from the interference
process. Thus the speckle pattern consists of a multi-
tude of bright spots where the interference has been
highly constructive, dark spots where the interference
has been highly destructive, and irradiance levels in
between these extremes. Accordingly, we observe a
continuum of values of irradiance which has the appear-
ance of a chaotic jumble of "speckles".

While the origin of speckle is perhaps easiest to dis-
cuss in the free-space reflection geometry of Fig. 2,
with some additional work its appearance in the imaging
geometry of Fig. 3 can also be explained, The image
formed at a given point in the observation plane con-
sists of a superposition of a multitude of complex am-
plitude spread functions, each arising from a different
scattering point on the surface of the object. As a con-
sequence of the roughness of this surface, the various
amplitude spread functions add with different phases,
resulting again in a complex pattern of interference, or a
speckle pattern superimposed on the image of interest.

The appearance of speckle is not limited to imagery
formed with reflected light. If a photographic trans-

1145 J. Opt. Soc. Am., Vol. 66, No. 11, November 1976

parency is illuminated through a diffuser, the wave
front passing through the transparency has a highly
corrugated and extremely complex structure. In the
image of such a transparency we again find large fluc-
tuations of irradiance caused by the overlapping of a
multitude of dephased amplitude spread functions.
While most of the discussions in this paper are pre-
sented in terms of the reflecting geometries of Figs. 2
and 3, the conclusions apply equallv well to the trans-
mission geometry, provided the wave front transmitted by
the transparency satisfies the same basic assumptions
applied to the wave front reflected from a rough object.

While a detailed analysis of the properties of speckle
patterns produced by laser light began in the early
1960's, nonetheless, far earlier studies of specklelike
phenomena are found in the physics and engineering
literature. Mention should be made of the studies of
"coronas" or Fraunhofer rings by Verdet3 and Lord
Rayleigh.4 Later, in a series of papers dealing with
scattering of light from a large number of particles,
von Laue5 derived many of the basic properties of
specklelike phenomena,

In a more modern vein, direct analogs of laser speck
le are found in all types of coherent imagery, including
radar astronomy,6 synthetic-aperture radar,7 and acous
tical imagery,8 In addition, statistical phenomena en-
tirely analogous to speckle are found in radio-wave
propagation,9 the temporal statistics of incoherent
light,'0 the theory of narrowband electrical noise," and
even in the general theory of spectral analysis of ran-

FIG. 1. Typical speckle pattern.

Copyright C 1976 by the Optical Society of America 1145
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rapidly. The rate of changes to a particle’s light scattering pattern can 

therefore be used to calculate the speed of Brownian motion. In practice, 

these changes are recorded by a detector that monitors fluctuations in light 

intensity over time (Figure 2.10). The translation of this data into the speed of 

Brownian motion is then achieved using a correlator, as described in (159).  

 

 

Figure 2.10: Schematic representation of typical particle intensity fluctuations  

Fluctuations in light intensity occur more rapidly in smaller particles (top) than larger 

particles (bottom) because of their respective rates of diffusion within a suspension.  

 

From the speed of Brownian motion, which is defined as the translational 

diffusion coefficient (D), particle size can be estimated using the Stokes-

Einstein equation where d(H) is the hydrodynamic diameter, k is the 

Boltzmann constant, T is the absolute temperature (in Kelvin) and η is the 

viscosity of the dispersant: 

d(H) =   kT  T 
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As this equation converts the speed of particle diffusion through a fluid into 

particle size, size is reported as a hydrodynamic diameter. It is also important 

to note that this equation assumes that the particle is a perfect sphere. 

Through this method, an average hydrodynamic diameter can be calculated 

and the particle size distribution can also be analysed to reveal the 

polydispersity of the sample. 
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2.8 Bio-layer interferometry 

To characterise the glycan binding activity of BabA-particle conjugates in this 

study, bio-layer interferometry (BLI) was used. Similar to SPR, this technique 

monitors real-time association and dissociation events so it can be used to 

simply assess whether binding takes place or to determine kinetic and affinity 

constants (160). 

 

In this technique, molecules are immobilised onto the biocompatible surface of 

a glass fibre biosensor tip that is designed to support specific covalent or non-

covalent linkages. Biosensor tips are then immersed into a buffer containing 

the binding partner of interest and only molecules that attach to the biosensor 

tip are detected, that is, buffer components, changes in refractive index etc. do 

not affect the detection of binding (161). BLI is a spectroscopic technique. In 

this assay, as depicted in Figure 2.11, white light of all wavelengths in the 

visible spectrum is sent down a biosensor tip, which contains two layers – an 

internal reference layer and a biocompatible surface layer. Incident light is 

reflected back up the tip from these two interfaces. 

 

 

Figure 2.11: Schematic representation of biosensor tips used in BLI 

White light is emitted down the biosensor tip and a portion is reflected back along an 

optic fibre, from the indicated surfaces, and collected by a spectrometer.  

 

Because the reflections originate from two different distances, when the 

reference and surface layer light waves are analysed together, at each 
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wavelength, one of the following would be found: 1) some waves are perfectly 

out of phase (resulting in destructive interference and no wave amplitude); 2) 

some waves are perfectly in phase (resulting in constructive interference and 

a doubling of wave amplitude); and 3) some waves are partially in and out of 

phase. The detected amplitudes can be collated and translated into relative 

intensities, then plotted against their respective wavelengths to produce an 

interferometric profile (Figure 2.12A). An increase in the distance between the 

reference layer and the surface layer, due to molecule immobilisation to the 

biocompatible surface for example, again changes the relative phases of 

reflected waves. This causes a rightward shift to the interferometric profile 

(Figure 2.12B). This shift is a direct measure of molecule association to the 

biosensor tip. Further association to immobilised molecules will increase the 

height of the biocompatible surface layer and induce another rightward shift to 

the interferometric profile. As these shifts are reversible and occur in real-time, 

from this, a sensogram trace can be produced (162, 163) 

 

 

Figure 2.12: Detection of molecule association to biosensor tips through optical 

interferometry 

Analysis of reflections from both optical and surface layers creates an interferometric 
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profile. In this example, initially, (A) blue light waves were completely out of phase (no 

wave amplitude), red light waves were completely in phase (doubling of wave 

amplitude); and green light waves were partially in phase (partial increase of wave 

amplitude). After molecule immobilisation, (B) blue light waves are no longer out of 

phase, green are now out of phase and red light waves are no longer perfectly in 

phase. This causes a rightward shift (Δλ) to the interferometric profile (this analysis is 

performed at all wavelengths in the visible light spectrum). 
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Chapter 3: Developing a recombinant BabA expression and 
purification method 

 
3.1 Introduction 

The first objective of this study was to develop a method to recombinantly 

express and purify BabA. Indeed, there have been reports of successful BabA 

expression in E. coli in the literature. These include secretion to the 

periplasmic space (112), expression as a fusion protein using glutathione S-

transferase (GST) as a solubility enhancing partner (164), and refolding from 

inclusion bodies (165). However, each of these approaches has drawbacks. 

Periplasmic expression is associated with low yield (166), GST-fusion proteins 

require partner cleavage before structural studies (167), and refolding from 

inclusion bodies is time-consuming with proteins not always regaining full 

function (168, 169). Thus, it was deemed necessary to screen various 

expression vectors and host organisms in search of an efficient method to 

express recombinant BabA for use in this study. 

 

In light of the desired characterisation and application of BabA, a recombinant 

protein containing only its glycan-binding region was necessary. At the 

commencement of this study, there was no structural insight into the molecular 

basis of glycan recognition by BabA. Thus, the location of its binding site was 

unknown. However, BabA is an outer membrane protein and like other 

members within the Hop family, it is expected to contain an N-terminal 

extracellular domain and a C-terminal domain predicted to form a β-barrel unit 

for outer membrane insertion (Figure 3.1) (86). Consequently, the C-terminal 

domain of BabA is not needed for glycan binding and may be excluded from 

the recombinant protein design. In fact, the expression of full-length outer 

membrane proteins is typically avoided, unless essential for study purposes, 
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as the hydrophobicity of their transmembrane domains usually leads to 

intracellular aggregation during routine expression (170).  

 

 

Figure 3.1: The predicted domain structure of BabA 

BabA is predicted to have an N-terminal extracellular domain (blue) and a 

transmembrane C-terminal domain (green) that spans the H. pylori outer membrane. 

(A) Schematic representation of the BabA primary structure; the babA gene encodes 

a 20 amino acid N-terminal signal sequence (ss) that is cleaved during the 

transportation of BabA to the outer membrane (86); mature BabA is formed of 724 

amino acids. (B) Schematic representation of the BabA N-terminal extracellular and 

C-terminal transmembrane domains orientated within the H. pylori outer membrane. 

 

Recombinant BabA expression and purification was achieved in three steps. 

First, a fragment of the babA gene, corresponding to the expected 

extracellular domain of the protein, was cloned into a variety of vectors 

designed for protein expression in either prokaryotic or eukaryotic hosts. The 

genomic DNA of H. pylori J99 was chosen a source for cloning because this 

strain is known to express a generalist BabA protein, that is, one that binds to 

the type 1 ABO/Le blood group antigens in group-A, -B and -O individuals 

(121). Furthermore, BabA from H. pylori J99 has been confirmed to be 

functional and, when present on H. pylori, is involved in a high affinity glycan-
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binding interaction – the association constant of H. pylori J99 attachment to 

Leb glycoconjugates is reportedly ~2x10-12 M (123). These features were 

considered to be desirable the proposed application of BabA in drug delivery. 

After the generation of expression constructs, a number of prokaryotic (E. coli) 

and eukaryotic (S. frugiperda, HEK and CHO) expression systems, described 

in Section 2.1.2, were assessed for their ability to generate a soluble 

recombinant protein. Given that the predicted extracellular domain of BabA 

contains eight cysteine residues, these expression systems were chosen 

because they supported disulphide bond formation, which is a common post 

translational modification in the outer membrane proteins of Gram-negative 

bacteria (171). Finally, the successful strategies identified during expression 

screening were scaled up for chromatographic protein purification.  

 

Ultimately, the optimal method identified was an improvement to a previously 

reported strategy based on periplasmic expression (112).   



Developing a recombinant BabA expression and purification method 

 55 

3.2 Experimental Procedures 

3.2.1 Generation of BabA expression constructs 

The BabA expression constructs engineered in this study are summarised 

below in Table 3.1.  

 
Table 3.1: Expression constructs engineered in this study 

The abbreviations used in the naming of constructs represent the following: babA527 – 

babA gene fragment derived from H. pylori strain J99 encoding amino acids 1-527; 

babA527K – babA gene fragment derived from H. pylori strain J99, encoding amino 

acids 1-527, with a 3’ hexa-lysine tag; ΔpelB – deletion mutation of pelB leader 

sequence from vector.  
aPlasmid construction was outsourced to Life Technologies, USA 

 
Construct Name Vector Backbone Cloning Host 
pET22b_babA527  pET-22b(+) E. coli DH5α 
pET22b(ΔpelB)_babA527  pET-22b(+) E. coli DH5α 
pOPE101_babA527   pOPE101 E. coli XL10 Gold 
pOPE101_babA527K pOPE101 E. coli XL10 Gold 
AZ1_babA527K az_FB84_D132 n/aa 
AZ2_babA527K pDEST12.2_oriP n/aa 

 

These were generated using the steps described below. 
 

 
3.2.1.1 babA gene fragment design – sequence analysis 

To identify the region of BabA corresponding to its transmembrane domain, 

CLC Main WorkBench 7.6 (CLC bio, USA) was used to perform a sequence 

alignment (protein) of BabA J99 (GenBank accession no. AAD06409.1) with 

SabA 26695 (GenBank accession no. AFV41939.1). For a prediction of 

structural features within the putative C-terminal transmembrane domain of 

BabA J99, amino acids corresponding to residues 528-724 in mature BabA 

J99 were submitted to Phyre2 (172). 95% of residues were modelled with 

>90% confidence; the model was based on 14 template structures – 12 of 

which were outer membrane proteins from Gram-negative bacteria. 
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3.2.1.2 Polymerase chain reaction amplification 

Q5™ high-fidelity DNA polymerase (New England Biolabs, USA) was used to 

amplify a fragment of the babA gene (Genbank accession no. AE001439.1; 

Locus_tag = jhp_0833) from the genomic DNA of H. pylori J99 (kindly donated 

by John Atherton, University of Nottingham). This gene fragment, henceforth 

referred to as babA527, encoded amino acids 1-527 of mature BabA J99 and 

was designed to exclude the putative C-terminal transmembrane domain. The 

babA gene also encodes a 20 amino acid N-terminal signal sequence that is 

cleaved in H. pylori during the secretion of BabA to its outer membrane (86); 

this sequence was also excluded from the babA527 gene fragment. The 

polymerase chain reaction (PCR) was set up according to the manufacturer’s 

protocol using the primers shown in Table 3.2. An annealing temperature of 

60 °C was used for all reactions. 

 
Table 3.2: Primers for babA527 amplification 

The incorporated restriction sites are designated in the primer name and underlined in 

the oligonucleotide sequence. FOR and REV indicate sense and antisense primers, 

respectively. The number in the primer name denotes the first BabA amino acid 

encoded by the nucleotides on the 3’ end of the restriction site. 

 
Construct Primer Name Sequence (5’-3’) 
pET22b_babA527  BabA [1- 

FOR]_NcoI 
TCGGATCCATGGAAGACGACGGC
TTTTAC 

 BabA [-527 
REV]_XhoI 

TATGTCCTCGAGGAGTTCTTGGTT
GATGGTTTGG 

pET22b(ΔpelB)_babA527 BabA [1- 
FOR]_NdeI 

TCGGATCATATGGAAGACGACGG
CTTTTAC 

 BabA [-527 
REV]_XhoI 

TATGTCCTCGAGGAGTTCTTGGTT
GATGGTTTGG 

pOPE101_babA527  BabA [1- 
FOR]_NcoI 

TCGGATCCATGGAAGACGACGGC
TTTTAC 

 BabA [-527 
REV]_BamHI 

CGAGTTGGATCCGAGTTCTTGGTT
GATGG 

pOPE101_babA527K  BabA [1- 
FOR]_NcoI 

TCGGATCCATGGAAGACGACGGC
TTTTAC 

 BabA [-527K 
REV]_BamHI 

TCTGCTGGATCCCTTCTTCTTCTT
CTTCTTGAGTTCTTGGTTGATGG 
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3.2.1.3 Cloning 

PCR products were purified after agarose gel electrophoresis, using a 

QIAquick gel extraction kit (Qiagen, USA), then digested, alongside the 

desired expression vectors with restriction enzymes under conditions specified 

by the manufacturer (New England Biolabs, USA). Digested PCR products 

and expression vectors were mixed in a 3:1 insert to vector molar ratio and 

ligated with T4 DNA ligase (New England Biolabs, USA), according to the 

manufacturer’s protocol. For plasmid propagation, ligation mixtures were 

transformed into chemically competent E. coli via the following heat-shock 

protocols. E. coli DH5α cells were used to propagate pET-22b(+) based 

constructs using the following heat shock method for transformation: 30 

minutes on ice, followed by 90 seconds at 42 °C, then 2 minutes on ice. 

Similarly, E. coli XL10 Gold cells were used to propagate pOPE101 based 

constructs using the following heat shock method for transformation: 30 

minutes on ice, followed by 30 seconds at 42 °C, then 2 minutes on ice. After 

each heat shock process, cells were grown in super optimal broth with 

catabolite repression (SOC) medium for one hour at 37 °C (200 rpm) before 

being grown overnight on lysogeny broth (LB), containing ampicillin at 100 

µg/mL (LBamp), agar plates for plasmid selection. Single colonies were 

selected from the overnight growth plates for colony PCR using primers, 

shown in Table 3.3, that spanned the multiple cloning site of the host vectors. 

GoTaq® DNA Polymerase (Promega, USA) was used for PCR amplification, 

according to the manufacturer’s protocol; an annealing temperature of 56 °C 

was used in all reactions. Agarose gel electrophoresis was used to screen the 

PCR products for gene insertion. Subsequently, positive clones were grown 

overnight at 37 °C (200 rpm) in 5 mL LBamp medium followed by plasmid 

extraction with a QIAprep miniprep kit (Qiagen, USA), according to the 
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manufacturer’s protocol. Finally, confirmatory sequencing of the plasmids was 

performed (Source BioScience, Nottingham) using primers listed in Table 3.3.  

 
Table 3.3: Primers for colony PCR and confirmatory sequencing 

FOR and REV indicate sense and antisense primers respectively. T7 FOR and REV 

are universal primer sequences corresponding to the T7 Promoter and Terminator. 

The numbers in the primer name denotes the corresponding base pairs (sense strand) 

in the pOPE101 or babA DNA sequences.  
aPrimers used for colony PCR and confirmatory sequencing 
bPrimer used for confirmatory sequencing only 

 
Construct 
Backbone 

Primer Name Sequence (5’-3’) 

pET22b(+) 
 

T7 FORa TAATACGACTCACTATAGGG 

T7 REVa GCTAGTTATTGCTCAGCGG 

babA[904-923bp REV]b GCCTCACTACTATTACTAGC 
pOPE101 pOPE[27-46bp FOR]a TTGACTTGTGAGCGGATAAC 

pOPE[1135-1154bp REV]a ATGTGTCAGAGGTTTTCACC 

babA[904-923bp REV]b GCCTCACTACTATTACTAGC 
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3.2.2 Expression screening 

The expression constructs and corresponding hosts used in this study are 

summarised below in Table 3.4. 

 
Table 3.4: Expression constructs and corresponding hosts employed in this 

study 

The abbreviations used in the naming of constructs represented the following: 

babA527 – babA gene fragment derived from H. pylori strain J99 encoding amino acids 

1-527; babA527K – babA gene fragment derived from H. pylori strain J99, encoding 

amino acids 1-527, with a 3’ hexa-lysine tag; ΔpelB – deletion mutation of pelB leader 

sequence from vector. 

 
Construct Name Vector Backbone Expression Host 
pET22b_babA527 pET-22b(+) E. coli BL21 (DE3) 

pET22b(ΔpelB)_babA527 pET-22b(+) E. coli Origami B (DE3) 

pOPE101_babA527 pOPE101 E. coli XL10 Gold 

pOPE101_babA527K pOPE101 E. coli XL10 Gold 

AZ1_babA527K az_FB84_D132 S. frugiperda SF21 

AZ2_babA527K pDEST12.2_oriP HEK 293-6E and CHO G22 

 

Recombinant BabA expression was screened using the following procedures. 
 

 
3.2.2.1 Periplasmic expression in E. coli BL21 (DE3)  

The pET22b_babA527 expression construct was transformed into chemically 

competent E. coli BL21 (DE3) cells using a heat-shock protocol (5 minutes on 

ice, followed by 90 seconds at 42 °C, then 2 minutes on ice) and grown in 

SOC medium for one hour at 37 °C, then overnight on a LBamp-agar plate. A 

single colony was used to inoculate 5 mL of LBamp media overnight at 37 °C 

(200 rpm). From this starter culture, 100 µL was used to inoculate a 20 mL 

culture, which was grown at 37 °C (200 rpm) until the optical density of the 

culture at 600 nm (OD600) reached 0.6. At this point, a 1 mL sample was taken 

and used to prepare a “total protein fraction” for subsequent analysis (sample 

preparation method described in Section 3.2.2.7). Various IPTG induction / 
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expression conditions were assessed:  

§ Growth at 24 °C (200 rpm) after induction with either 0.1 or 1 mM IPTG 

for 4 or 20 hours 

§ Growth at 37 °C (200 rpm) after induction with either 0.1 or 1 mM IPTG 

for 1 or 3 hours 

“Soluble and insoluble fractions” were taken at each stated time point (sample 

preparation method described in Section 3.2.2.7). Recombinant BabA 

expression was analysed by sodium dodecyl sulphate-polyacrylamide gel 

electrophoresis (SDS-PAGE) followed by Coomassie-staining, also described 

in Section 3.2.2.8. 

 

 
3.2.2.2 Cytoplasmic expression in E. coli Origami B (DE3)  

The same protocol as described above was used for the assessment of 

recombinant BabA expression in E. coli Origami B (DE3) cells. For this system, 

the pET22b(ΔpelB)_babA527K expression construct was transformed into 

chemically competent cells using a slightly different heat-shock protocol: 5 

minutes on ice, followed by 30 seconds at 42 °C, then 2 minutes on ice.  

 

 
3.2.2.3 Periplasmic expression in E. coli XL10 Gold  

The E. coli XL10 Gold strain was used for both plasmid propagation and 

protein expression with pOPE101_babA527 and pOPE101_babA527K vectors. 

Ten µL of a glycerol stock was used to inoculate 5 mL of LB media containing 

100 µg/mL ampicillin, 12.5 µg/mL tetracycline and 0.1 M glucose (LBATG) 

overnight at 37 °C (200 rpm). From this starter culture, 100 µL was used to 

inoculate a 20 mL culture, which was grown at 37 °C (200 rpm) until the OD600 

reached 0.6. At this point, a 1 mL sample was taken and used to prepare a 

“total protein fraction”, (sample preparation method described in Section 
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3.2.2.7) for subsequent analysis. Cultures were then induced with 0.1 mM 

IPTG for 16 hours at 24 °C. In addition to a “total protein fraction”, “medium” 

and “periplasmic and spheroplast” fractions were prepared (sample 

preparation method described in Section 3.2.2.7). All protein fractions were 

analysed by SDS-PAGE followed by Coomassie-staining and Western blotting, 

as described in Section 3.2.2.8. 

 

 
3.2.2.4 Secretory expression in S. frugiperda Sf21  

Experimental procedures performed by Eileen McCall, AstraZeneca R&D. 

The AZ1_babA527K construct was transformed into E. coli DH10Bac™ (Life 

Technologies, USA) cells according to the manufacturer’s protocol, with 

modifications as detailed in (173). Transformants were grown at 37 °C for 48 

hours on LBamp-agar plates containing IPTG (0.1 mM) and X-gal (40 µg/mL) 

for blue/white screening. A single white colony was grown in LBamp media 

followed by bacmid DNA isolation with a QIAprep miniprep kit (Qiagen, USA), 

according to the manufacturer’s protocol. S. frugiperda Sf21 cells, grown in 

suspension in a deep 24-well plate with SF900II serum-free medium (Life 

Technologies, USA), were transfected with bacmid DNA using Cellfectin® 

Transfection Reagent (Life Technologies, USA), according to the 

manufacturer’s protocol as per modifications in (173). After incubation for 7 

days, cells were centrifuged at 2,800 g for 10 minutes (4 °C) allowing virus 

stocks to be obtained from medium, which were titrated with a standard 

plaque assay (BD Biosciences, USA), as directed by the manufacturer. Finally, 

to assess expression, as described in (173), 3 mL of Sf21 cells were grown in 

suspension in deep 24-well plates until the mid-log phase (3x106 cells/mL) 

then infected at a multiplicity of infection of 2.0. After 48 and 72 hours, cells 

were centrifuged at 2,800 g for 10 minutes (4 °C) and the supernatant saved 
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for the preparation of a “medium” fraction, as described in Section 3.2.2.7. 

This fraction was analysed by SDS-PAGE followed by Coomassie-staining 

and Western blotting, as described in Section 3.2.2.8. Sf21 cells were always 

grown at 27 °C, 700 rpm and 75% relative humidity using sterile techniques. 

 

 
3.2.2.5 Secretory expression in HEK 293-6E  

Experimental procedures assisted by Mark Abbott, AstraZeneca R&D. 

The AZ2_babA527K construct was transformed into E. coli DH5α cells, as 

described in Section 3.2.1.3, for plasmid propagation. Vector DNA was 

extracted from a 3 L culture using a Plasmid Giga Kit (Qiagen, USA), 

according to the manufacturer’s protocol. HEK 293-6E cells were grown using 

sterile techniques in vented shake flasks at 37 °C, 140 rpm and 5% CO2. Cells 

were maintained in F17 medium (Invitrogen, USA) supplemented with 4mM L-

glutamine, 25 µg/mL genticin and 0.1% Pluronic F68 (Sigma-Aldrich, USA). 

Once a cell density of 1.6-1.8x106 cells/mL was reached, vector DNA was 

added directly to 10 mL of cells, to a final concentration of 0.75 µg/mL, in a 50 

mL Tubespin tube (Sigma-Aldrich, USA) followed by polyethylenimine “Max” 

(Polysciences, USA) to a final concentration of 2.8 µg/mL. Cells were then 

grown at 37 °C, 700 rpm, 5% CO2 and 90% relative humidity. 24 hours later, 

cells were fed with 6.7 mL of aforementioned media, supplemented with 0.8% 

HyPep1510 (Sheffield Bioscience, UK). Seven days later, cells were counted 

and harvested by centrifugation at 2,800 g for 10 minutes (4 °C). The 

supernatant was removed and saved for the preparation of a “medium” 

fraction, as described in Section 3.2.2.7. This fraction was analysed by SDS-

PAGE followed by Coomassie-staining and Western blotting, as described in 

Section 3.2.2.8.  
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3.2.2.6 Secretory expression in CHO G22 

Experimental procedures assisted by Mark Abbott, AstraZeneca R&D. 

The AZ2_babA527K construct was generated as described in Section 3.2.2.5 

above. Cells were similarly grown in vented shake flasks at 37 °C, 140 rpm 

and 5% CO2. However, CHO G22 cells were instead maintained in a 

MedImmune proprietary medium supplemented with 25 µM methionine 

sulphoximine and 100 µg/mL hygromycin B. Two passages prior to 

transfection, methionine sulphoximine and hygromycin B were omitted from 

the growth media. Once a cell density of 1.0-1.2x106 cells/mL was reached, 

vector DNA was added directly to 10 mL of cells, to a final concentration of 0.5 

µg/mL, in a 50 mL Tubespin tube (Sigma-Aldrich, USA) followed by 

polyethylenimine “Max” (Polysciences, USA) to a final concentration of 7 

µg/mL. Cells were then grown at 37 °C, 700 rpm, 5% CO2 and 90% relative 

humidity. 24 hours later, cells were fed with 6.7 mL of a modified MedImmune 

proprietary media. Seven days later, cells were counted and harvested by 

centrifugation at 2,800 g for 10 minutes (4 °C). The supernatant was removed 

and saved for the preparation of a “medium” fraction, as described in Section 

3.2.2.7. This fraction was analysed by SDS-PAGE followed by Coomassie-

staining and Western blotting, as described in Section 3.2.2.8. 

 

 
3.2.2.7 Preparation of cellular fractions for analysis 

- Total protein fraction 

A 1 mL sample of bacterial cells was taken from culture and harvested through 

centrifugation at 10,000 g for 1 min (25 °C). The pellet was resuspended in 

1/10 culture volume of phosphate buffered saline (PBS) and an equal amount 

of 2x non-reducing sample buffer (NRSB), that is, 0.1 M Tris-Cl (pH = 6.8), 

20% glycerol, 4% SDS and 0.2% bromophenol blue, was added before heat 
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denaturation at 100 °C for 5 minutes ahead of SDS-PAGE. 

 
- Soluble and insoluble protein fractions 

After cell harvesting, as described above, the obtained pellet was 

resuspended in 1/10 culture volume of 50 mM Tris-Cl (pH = 8.0), 500 mM 

NaCl and 5% glycerol then probe sonicated on ice (6 to 8 bursts at 10-20% 

duty). After centrifugation at 14,000 g for 10 minutes (25 °C), the supernatant 

was mixed with an equal amount of 2x NRSB and heat denatured for SDS-

PAGE. This generated the soluble protein fraction. The pellet obtained after 

centrifugation was resuspended in 100 µL PBS and 100 µL 2x NRSB then 

heat denatured for SDS-PAGE. This generated the insoluble protein fraction. 

 
- Supernatant protein fractions 

After cell harvesting, 1 mL of culture supernatant was concentrated by 

trichloroacetic acid (TCA) precipitation and resuspended in 100 µL PBS and 

100 µL 2x NRSB. The resulting sample was then heat denatured for SDS-

PAGE. 

 
- Periplasmic and spheroplast fractions  

A 10 mL sample of bacterial cells was taken from culture and harvested 

through centrifugation at 10,000 g for 5 minutes (25 °C). The cell pellet was 

resuspended in 1/10 culture volume of cold Spheroplast solution [50 mM Tris-

Cl (pH = 8.0), 20% sucrose, 1 mM ethylenediaminetetraacetic acid (EDTA)] 

and shaken gently for 30 minutes on ice. The cell suspension was then 

centrifuged for 10 minutes at 10,000 g (4 °C). The supernatant was saved for 

further processing while the pellet was resuspended in 1/10 culture volume of 

cold 5 mM MgSO4, shaken and centrifuged again, as previously, to generate 

supernatant. One mL of the supernatant generated at each step was 

concentrated by TCA precipitation and resuspended in 100 µL PBS and 100 
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µL 2x NRSB. The resulting sample was then heat denatured for SDS-PAGE 

analysis. The remaining pellet containing spheroplasts, that is, cells lacking a 

periplasmic space, was resuspended in 100 µL PBS and 100 µL 2x NRSB 

then also heat denatured for SDS-PAGE.  

 

 
3.2.2.8 Analysis of cellular fractions 

- SDS-PAGE 

After sample preparation, 15 to 25 µL of cellular fraction samples were loaded 

into precast Tris-Glycine 4-20% TGX mini gels (Bio-Rad, USA) and run in a 

Mini-PROTEAN™ Tetra Cell (Bio-Rad, USA), according to the manufacturer’s 

protocol.  

 
- Coomassie-staining 

After SDS-PAGE, the Tris-Glycine gels were stained in 0.1 % Coomassie 

Blue® in 50% water, 40% methanol and 10% acetic acid overnight then 

destained the next day in 50% water, 40% methanol and 10% acetic acid until 

protein bands resolved appropriately.  

 
- Western blotting 

After SDS-PAGE, the Tris-Glycine gels were blotted against a 0.2 µm 

nitrocellulose membrane using a Trans-Blot® Turbo™ Blotting System (Bio-

Rad, USA) as described by the manufacturer. After blotting, the membrane 

was incubated for 1 hour at room temperature in 5% non-fat milk powder 

diluted in Tris-buffered saline (TBS) containing 0.1% Tween 20 (TBS-T), 

henceforth referred to as blocking buffer. Next, the “primary antibody” was 

diluted into fresh blocking buffer and incubated with the membrane overnight 

at 4 °C. The membrane was then washed four times with TBS-T before 

incubation with a “secondary antibody” for 1 hour at room temperature in fresh 
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blocking buffer. After 4 washes, the membrane was exposed to 

chemiluminescent reagents [0.1 M Tris-Cl (pH = 8.0), 200 µM p-coumaric acid, 

1.25 mM luminol and 0.1% H2O2] and imaged with a FUJI-LAS 4000 charge 

coupled device camera (Fujifilm, Japan) under high binning mode. All blocking 

and wash steps were performed on a rocking platform. For c-Myc 

immunodetection, the “primary antibody” used was a mouse anti-c-Myc:Biotin 

clone 9E10 antibody (AbD Serotec, USA) at a 1:5000 dilution; the “secondary 

antibody” used was a Streptavidin-Horseradish peroxidase (HRP) conjugate 

(AbD Serotec, USA), also at a 1:5000 dilution. For 6x His immunodetection, 

the “primary antibody” used was a mouse anti-His antibody (GE Healthcare, 

USA) at a 1:5000 dilution; the “secondary antibody” used was a goat anti-

mouse IgG HRP conjugate (GE Healthcare, USA), also at a 1:5000 dilution.  
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3.2.3 Protein purification 

3.2.3.1 Large-scale expression and periplasmic harvest 

E. coli XL10 Gold cells containing pOPE101_babA527 and pOPE101_babA527K 

constructs were grown in 75 mL of LBATG media overnight at 37 °C (200 rpm). 

Three mL of overnight culture was used to inoculate 600 mL of media grown in 

a 2 L Erlenmeyer flask. The culture was grown at 37 °C (200 rpm) until the 

OD600 reached 0.6 when the temperature was then reduced to 24 °C and cells 

were induced with 0.1 mM IPTG for 12-16 hours. Cells were harvested 

through centrifugation (15 minutes at 10,000 g, 4 °C) and the pellet was 

resuspended in 1/10 culture volume of cold Spheroplast solution [50 mM Tris-

Cl (pH = 8.0), 20% sucrose, 1 mM EDTA] and shaken gently for one hour on 

ice. After centrifugation (45 minutes at 15,000 g, 4 °C), the supernatant was 

removed and passed through a 0.22 µm filter. The remaining pellet was 

resuspended in 1/10 culture volume of cold 5 mM MgSO4 and shaken gently 

for one hour on ice. After another centrifugation step (45 minutes at 15,000 g, 

4 °C), the supernatant was again removed and passed through a 0.22 µm 

filter. Both solutions used for periplasmic extraction contained cOmplete® 

EDTA-free protease inhibitor cocktail tablets (Roche, USA), according to the 

manufacturer’s instructions. At least 10 L of bacterial culture was grown each 

time recombinant BabA purification was performed. 

 

 
3.2.3.2 Immobilised metal ion affinity chromatography 

The periplasmic extracts obtained from the previous step were combined and 

loaded onto a column containing EDTA-resistant Ni2+ sepharose excel resin 

(GE Healthcare, USA) at a rate no greater than 2 mL/min. Using an ÄKTA 

purifier system (GE Healthcare, USA), a gradient elution program was run at a 

flow rate of 2 mL/min. The wash buffer consisted of 20 mM Tris-Cl (pH=7.4) 
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and 300 mM NaCl. The elution buffer consisted of 20 mM Tris-Cl (pH=7.4), 

300 mM NaCl and 500 mM imidazole. Protein containing elution fractions were 

loaded onto a Tris-Glycine gel for SDS-PAGE and Coomassie-staining. 

 

 
3.2.3.3 Size-exclusion chromatography 

Immobilised metal ion affinity chromatography (IMAC) elution fractions were 

concentrated to no more than 5 mL using a Vivaspin sample concentrator (GE 

Healthcare, USA), according to the manufacturer’s instructions. The 

concentrated samples were loaded onto a HiLoad 16/60 Superdex 75 (120 

mL) gel filtration column (GE Healthcare, USA) connected to an ÄKTA purifier 

system (GE Healthcare, USA). The column was pre-equilibrated with a 20 mM 

Tris-Cl (pH=7.4) and 300 mM NaCl buffer, which was also used for elution at a 

flow rate of 1 mL/min. Protein containing elution fractions were loaded onto a 

Tris-Glycine gel for SDS-PAGE and Coomassie-staining. Further protein 

concentration using Vivaspin sample concentrators was performed if 

necessary. Molecular weight standards (Bio-Rad, USA) were used for size 

calibration of the column.  

 

 
3.2.3.4 Recombinant BabA quantification 

Protein concentration for periplasmic extracts, IMAC and size exclusion 

chromatography (SEC) elutions was determined with a Bradford assay 

reagent (Bio-Rad, USA), using bovine serum albumin (BSA) (Sigma-Aldrich, 

USA) as a standard, according to the manufacturer’s instructions (174). SDS-

PAGE followed by Coomassie-staining and Western blotting, as described 

above, was performed on IMAC- and SEC- purified fractions to determine 

purity. ImageJ software (National Institute of Health, USA) was used to 

quantify purity by analysing band density. The concentration of pure 
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recombinant BabA was subsequently determined by measuring absorbance at 

280 nm using an extinction coefficient of 37290 M-1cm-1 (calculated from the 

actual amino acid sequence of BabA527K) on a Nanodrop 2000 (Thermo 

Scientific, USA). 

 

 
3.2.3.5 Mass spectrometry 

Liquid chromatography–time-of-flight mass spectrometry was used to 

determine the molecular weights of proteins in IMAC-SEC purified BabA527 

and BabA527K protein samples. Approximately 5 µg of protein samples were 

loaded onto an Agilent 1100 Series LC (Agilent Technologies, USA) coupled 

to a time-of-flight Q-Tof Premier mass spectrometer (Waters, USA), which was 

equipped with an electron spray ioniser for acquisition in a positive ionisation 

mode. The mass scan range was set to 500–2000 m/z and MassLynx (Waters, 

USA) was used to analyse the mass data. 

 

 
3.2.3.6 Tryptic peptide mapping 

Experimental procedures performed by Jon Renshaw, AstraZeneca R&D. 

Tryptic peptide mapping was performed on gel slices of purified BabA protein 

bands after SEC. Bands were reduced with 10 mM dithiothreitol for 45 minutes 

at 65 °C, followed by alkylation of protein thiols by incubation with 50 mM 

iodoacetamide in the dark at room temperature for 20 minutes. Digestion of 

the proteins was performed using 250 ng of trypsin for 16 hours at 37 °C. 

Resulting fragments were analysed by liquid chromatography–quadrupole 

time-of-flight mass spectrometry. An UltiMate 3000 Nano LC system (Dionex, 

USA) coupled to a QSTAR Elite System (AB Sciex, USA) – a hybrid 

quadrupole time-of-flight mass spectrometer fitted with electrospray ionisation 

for acquisition in a positive ionisation mode – was used. Mascot (Matrix 



Developing a recombinant BabA expression and purification method 

 70 

Science, USA) was used to analyse data.  

 

3.2.3.7 N-terminal protein sequencing 

This was outsourced (AltaBiosciences, UK) for determination of the first five 

amino acids of BabA527K through Edman degradation. 
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3.3 Results 

3.3.1 Cloning a babA gene fragment into expression vectors 

To generate BabA expression constructs, a PCR was first used to amplify a 

fragment of the babA gene from the genomic DNA of H. pylori J99. This gene 

fragment, termed babA527, encoded only the expected N-terminal extracellular 

domain of BabA, that is, amino acids 1-527. As no structural information for 

BabA or any other H. pylori adhesin was available at this stage of the study 

(175), exclusion of the conserved C-terminal transmembrane domain was 

based on bioinformatic investigations. Sequence alignment of BabA with SabA, 

which is also from the Hop family and was then the only other H. pylori 

adhesin with an identified receptor, revealed a distinctly high similarity in their 

C-terminal regions between BabA amino acids 530-724 (Figure 3.2).  

 

 
 

Figure 3.2: Sequence alignment of BabA J99 and SabA 26695 

BabA and SabA share 40% sequence identity. The extracellular domains of BabA and 

SabA share 26% sequence identity and the predicted C-terminal transmembrane 

domains of BabA and SabA (indicated; commencing at residue 530 of BabA) share 

1

EDDGFYT SVGYQ I GEAAQMVTNTKG I QD L SDRY ESLNNL LNRY ST LNT L I K L SAD PSA I N
EDNGF FV SAGYQ I GEAVQMVKNTGELKNLNEKY EQL SQY LNQVASLKQS I QNANN I ELVN
AVRENLGASAKNL I GDKANSPAYQAV L LA I NAAVGFWNVVG- - YVT - - - - - - - - QCGGNA
SSLNY LKSFTNNNYNST TQSP I FNAVQAV I T SV LGFWSLYAGNY FT F FVGKKVGD SGQPA
NGQKS I SSKT I FNNEPGYRST S I TCSLNGHSPGYYGPMS I EN FKKLNEAYQ I LQTA LKRG
SVQGNPPFKT I I ENCSG I EN - - - - CAMD - - - - - - - - QT T YDKMKKLAED LQAAQTN- - - -
L PA LKENNGKVNVT YT YTCSGDGNNNCSSQVTGVNNQKDGTKTK I QT I DGKSVT T T I SSK
- SATKGNN- - - - - - - - - LCA L SG- - - CAA - TD ST SNPPNST V SN- - - - - - - - - A LN LAQQ
VVD SRADGNT TGV SYT E I TNK L EGV PD SAQAL LAQAST L I NT I NNACPY FHASNSSEANA
LMD L I AN - TKTAMMWKN I V - - I SGV SNT SGA I - - - - - - - - - T STNY PTQYAV FNN I KAM I
PK F ST T TGK I CGAF SEE I SA I QKM I TDAQELVNQT SV I N EHEQT T PVGNNNGKPFNPFTD
P- - - - - - - - - - - - - - - - - - I LQQAVT L SQS- - NHT L SASLQAQAT - - - - - - GSQTNP- - -
A SFAQGMLANASAQAKMLNLAEQVGQA I N PERL SGT FQNFVKGF LATCNNPSTAGTGGTQ
- K FAKD I YT FAQNQKQV I SYAQD I FN L FNS I PAE- QYKY L EKAY LK I PN - - - - - - - - - - A
GSAPGT VT TQT FASGCAYVGQT I TN LKNS I AH FGTQEQQ I QQAEN I AD T LVN FKSRY SEL
GST PTNPYRQV - - - - - VN LNQEVQT I KNNV SYYGNR- - - VDAAL SVARDVYNLKSNQAE I
GNT YNS I T TA - - - L SN I PNAQ- SLQNAV SKKNNPY SPQG I D TNYY LNQNSYNQ I QT I NQE
VTAYNDAKT L SEE I SK L PHNQVNTKD I VT L PYDKNAPAAGQSNYQ I N PEQQSNLNQALAA

LGRNPFRKVG I V SSQTNNGAMNG I G I QVGYKQF FGQKRKWGARYYGF FDYNHAF I K SSF F
MSNNPFKKVGM I SSQNNNGALNGLGVQVGYKQF FGESKRWGLRYYGF FDYNHGY I K SSF F
NSASDVWT YGFGADALYNF I NDKATNF LGKNNKL SVGL FGG I A LAGT SWLNSEYVNLATM
NSSSD I WT YGGGSD L LVN I I ND S I T R- - - KNNKL SVGL FGG I QLAGT TWLNSQYVNLTA F
NNVYNAKMNVANFQF L FNMGVRMNLARPKKKD SDHAAQHG I ELGLK I PT I NTNYY SFMGA
NNPY SAKVNATNFQF L FN LGLRTN LATARKKD SEHSAQHG I ELG I K I PT I T TNYY SF LGT
ELKYRRLY SVY LNYV FAY
QLQYRRLY SVY LNYV FAY



Developing a recombinant BabA expression and purification method 

 72 

73% sequence identity. Identical amino acids are highlighted by red boxshade and 

mismatches by blue boxshade. 

 

Thus, the C-terminal truncation for recombinant BabA was arbitrarily chosen 

between residues 527-528, that is, two residues before what was anticipated 

as the start of the transmembrane domain. In support of the chosen truncation 

point, Phyre2 predicted that the first out of seven β-strands in the proposed β-

barrel transmembrane domain is formed between amino acids 541-560 

(Figure 3.3). Consequently, it was assumed that the chosen truncation would 

not disrupt any ordered regions. 

 

 
 

Figure 3.3: Homology modelling of the C-terminal conserved domain of BabA 

BabA amino acids 528-724 were input into Phyre2. The model structure is rainbow 

coloured from N- (blue) to C- (red) terminus. The first predicted β strand is indicated. 

The presented model structure is based on 14 template structures – 12 of which were 

outer membrane proteins from Gram-negative bacteria. The template protein with the 

highest confidence (92%) was outer membrane protein W (OmpW) of E. coli (PDB 

accession code: 2F1V).  

 

Two DNA products were obtained after PCR amplification, with the larger 

product corresponding to the correct amplicon size; this was expected as the 

functionally uncharacterised, paralogous H. pylori outer membrane protein 

BabB contains identical sequences at its N- and C- termini to BabA (82, 86). 

Consequently, gel extraction was employed, before clean-up, to produce pure 

β = AA 541-560  
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babA527 (Figure 3.4). Importantly, the primers used to amplify babA527 

introduced restriction sites that would enable its insertion into the multiple 

cloning site of a specific expression vector. 

 

 
 

Figure 3.4: Representative amplification of the babA527 gene fragment 

The babA527 gene fragment, amplified from H. pylori J99 genomic DNA, before (left) 

and after (right) purification on an agarose gel. Purification refers to band excision 

after agarose gel electrophoresis followed by a PCR clean-up step. The expected size 

of this PCR product, which contains NcoI and BamHI restriction sites and six-

nucleotide overhangs at its 5‘ and 3’ ends, is 1,605 bp. M – DNA ladder. 

 

Purified babA527 and recipient vectors were then restriction-digested according 

to the desired location of babA527 in the expression cassette of each construct 

(the design of each construct is later presented in Section 3.2.2). After ligation 

and transformation into E. coli for plasmid propagation, colony PCR was used 

to detect whether transformants hosted plasmids containing babA527. The 

primers used in these reactions were designed to span each recipient vector’s 

multiple cloning site, thus, amplicon sizes revealed whether colonies were 

negative or positive for babA527 insertion (Figure 3.5).  
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Figure 3.5: Representative verification of babA527 insertion into an expression 

vector 

Agarose gel of PCR-amplified multiple cloning sites from two separate bacterial 

colonies hosting either babA527-negative [(−); left] or babA527-positive [(+); right] 

pOPE101 constructs. The expected size of the pOPE101 multiple cloning site is 1128 

bp, while successful babA527 insertion results in a size of 1956 bp. M – DNA ladder. 

 

Finally, DNA sequencing was used to confirm that plasmids extracted from 

positive transformants had 100% sequence identity to babA527. DNA 

sequencing also confirmed babA527 was cloned in frame with the pelB leader 

(Figure 3.6). 

 

 
Figure 3.6: Representative DNA sequencing of a BabA expression construct 

Chromatogram trace of the pOPE101_babA527 construct sequenced after extraction 

from E. coli XL10 Gold cells. The six nucleotides highlighted in blue represent the 

NcoI restriction site. To its left is the pelB leader sequence and to its right is the 
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babA527 gene fragment. Underneath the DNA sequence is the corresponding amino 

acid sequence, showing translation of the in-frame babA527 gene fragment. 

 

Through this process, the babA527 gene fragment was successfully cloned into 

a number of commercial vectors designed for protein expression in E. coli. On 

the other hand, cloning of babA527 into proprietary AstraZeneca R&D vectors 

for expression in eukaryotic hosts was outsourced. Where necessary, each 

expression construct was subsequently transformed or transfected into the 

expression host organism for which it had been engineered. 
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3.3.2 Recombinant expression in prokaryotic and eukaryotic hosts 

In order to swiftly identify an efficient expression strategy that yielded 

recombinant BabA, various host organisms containing BabA expression 

constructs were grown on a small scale and screened for soluble protein 

expression. 

 

3.3.2.1 Periplasmic expression in E. coli BL21 (DE3)  

For the first attempt, the pET22b_babA527 construct was transformed into 

E. coli BL21 (DE3) cells. This construct contained the babA527 gene behind a 

cleavable pelB leader sequence for periplasmic secretion, as shown below in 

Figure 3.7. 

 

 

Figure 3.7: Schematic diagram of the pET22b_babA527 expression cassette 

babA527 was cloned into the pET22b(+) vector using NcoI and XhoI restriction enzyme 

sites. The abbreviations and symbols represent the following: T7 – T7 promoter; lacO 

– lac operator; arrow – start codon; pelB – cleavable pelB leader sequence; babA527 – 

babA527 gene fragment; 6x His – 6-histidine peptide tag; X/STOP – stop codon. 

 

Transformed cells were induced with IPTG under a variety of conditions and 

cellular fractions were analysed via Coomassie-staining. Disappointingly, after 

expression at 24 °C, no recombinant BabA was found in the soluble fraction of 

cell lysates, which contain both soluble cytoplasmic and periplasmic proteins 

(Figure 3.8A). This also held true after expression at 37 °C (Figure 3.8B). As a 

result, recombinant BabA expression in E. coli BL21 (DE3) cells was regarded 

as unsuccessful. 
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Figure 3.8: Expression of recombinant BabA in E. coli BL21 (DE3)  

Coomassie-staining showing recombinant BabA localisation in the insoluble fraction of 

E. coli BL21 (DE3) cells after expression at (A) 24 °C and (B) 37 °C. Putative 

recombinant BabA proteins (expected molecular weight ~57 kDa) are indicated by 

black stars. The abbreviations and symbols represent the following: T – total protein 

fraction; S – soluble protein fraction; I – insoluble protein fraction; M – molecular 

weight marker; (−) – uninduced sample; 0.1 mM & 1 mM – IPTG induction 

concentration; 1 h, 3 h, 4 h & 20 h – induction duration in hours. 
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3.3.2.2 Cytoplasmic expression in E. coli Origami B (DE3)  

Next, the pET22b(ΔpelB)_babA527 construct was transformed into E. coli 

Origami B (DE3) cells to assess recombinant BabA expression. This construct 

contained babA527 without a preceding periplasmic signal sequence, as shown 

below in Figure 3.9, thereby limiting expression to the cytoplasmic space.  

 

 

Figure 3.9: Schematic diagram of the pET22b(ΔpelB)_babA527 expression 

cassette 

babA527 was cloned into the pET22b(+) vector using NdeI and XhoI restriction enzyme 

sites. The abbreviations and symbols represent the following: T7 – T7 promoter; lacO 

– lac operator; arrow – start codon; babA527 – babA527 gene fragment; 6x His – 6-

histidine peptide tag; X/STOP – stop codon. 

 

Again, cells were induced with IPTG under a variety of conditions and cellular 

fractions were analysed through Coomassie-staining. Recombinant BabA was 

only found in the insoluble fraction of bacterial lysates, after expression at 

24 °C (Figure 3.10A). This was also the case after expression at 37 °C (Figure 

3.10B). Thus, this strategy was regarded as another unsuccessful attempt of 

the expression screen.  
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Figure 3.10: Expression of recombinant BabA in E. coli Origami B (DE3)  

Coomassie-staining showing recombinant BabA localisation in the insoluble fraction of 

E. coli Origami B (DE3) cells after expression at (A) 24 °C and (B) 37 °C. Putative 

recombinant BabA proteins (expected molecular weight ~57 kDa) are indicated by 

black stars. The abbreviations and symbols represent the following: T – total protein 

fraction; S – soluble protein fraction; I – insoluble protein fraction; M – molecular 

weight marker; (−) – uninduced sample; 0.1 mM & 1 mM – IPTG induction 

concentration; 1 h, 3 h, 4 h & 20 h – induction duration in hours. 
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3.3.2.3 Periplasmic expression in E. coli XL10 Gold  

Based on a successful expression strategy reported by Fei et al. (112), the 

pOPE101_babA527 construct was thereafter assessed for expression in E. coli 

XL10 Gold cells. This construct contains the babA527 gene fragment behind a 

synthetic P/A1/04/03 lac promoter and a pelB leader (Figure 3.11).  

 

 
Figure 3.11: Schematic diagram of the pOPE101_babA527 expression cassette    

babA527 was cloned into the pOPE101 vector using NcoI and BamHI restriction 

enzyme sites. The abbreviations and symbols represent the following: Pro – synthetic 

P/A1/04/03 lac promoter; lacO – lac operator; arrow – start codon; pelB – cleavable 

pelB leader sequence; babA527 – babA527 gene fragment; c-Myc – c-Myc tag; 6x His – 

6-histidine peptide tag; X/STOP – stop codon. 

 

Analysis of the cellular fractions, through Coomassie-staining and c-Myc 

immunodetection, indicated that recombinant BabA was successfully 

expressed and secreted to the periplasmic space after overnight induction with 

IPTG at 24 °C (Figure 3.12). This recombinant BabA protein is henceforth to 

as referred BabA527. 

 

 
 
Figure 3.12: Expression of recombinant BabA in E. coli XL10 Gold  
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Coomassie-staining (left) and c-Myc immunodetection (right) showing BabA527 

localisation in periplasmic fractions after overnight expression in E. coli XL10 Gold 

cells at 24 °C. BabA527 (expected molecular weight ~58 kDa) is indicated by the red 

star. The abbreviations and symbols represent the following: T – total protein fraction; 

Me – culture medium protein fraction; P1 – first periplasmic protein fraction; P2 – 

second periplasmic protein fraction; Sp – spheroplast protein fraction; M – molecular 

weight marker; (−) – uninduced sample; 0.1 mM – IPTG induction concentration. 

 

In an attempt to further verify that the protein identified through c-Myc 

immunodetection was indeed recombinant BabA, separate Western blots were 

performed on the aforementioned periplasmic extracts using antibodies 

directed at both the c-Myc and the 6x His polypeptide tags of BabA527. 

However, as shown in Figure 3.13, in contrast to c-Myc immunodetection, anti-

His immunodetection resulted in non-specificity – the same bands, of an 

incorrect size, appeared both before and after IPTG induction. Thus, as anti-

BabA antibodies are not commercially available, c-Myc recognition was the 

sole form of immunodetection used to verify successful recombinant BabA 

expression at this stage. 

 

 
 
Figure 3.13: Comparison of BabA527 immunodetection methods 

(Left) 6x His and (Right) c-Myc immunodetection of BabA527 (~58 kDa) in the 

periplasmic extracts of E. coli XL10 Gold cells before (−) and after (+) overnight 0.1 

mM IPTG induction at 24 °C. M – molecular weight marker. 
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Because a successful expression strategy was obtained, consideration was 

given to the downstream applications of recombinant BabA. With a view 

towards potentially facilitating its conjugation to carboxylate particle surfaces, 

through carbodiimide coupling reactions, a hexa-lysine tag was incorporated 

into pOPE101_babA527 between babA527 and the c-Myc tag (Figure 3.14).  

 

 
Figure 3.14: Schematic diagram of the pOPE101_babA527K expression cassette 

babA527K was cloned into the pOPE101 vector using NcoI and BamHI restriction 

enzyme sites. The abbreviations and symbols represent the following: Pro – synthetic 

P/A1/04/03 lac promoter; lacO – lac operator; arrow – start codon; pelB – cleavable 

pelB leader sequence; babA527 – babA527 gene fragment; 6x Lys – 6-lysine peptide 

tag; c-Myc – c-Myc tag; 6x His – 6-histidine peptide tag; X/STOP – stop codon.  

 

Again, both Coomassie-staining and c-Myc immunodetection showed that the 

hexa-lysine tagged, recombinant BabA protein was successfully expressed 

and secreted to the periplasmic space after overnight IPTG induction (Figure 

3.15). This recombinant BabA protein is henceforth to as referred BabA527K.  

 

 

Figure 3.15: Expression of recombinant BabA in E. coli XL10 Gold after the 
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incorporation of a C-terminal hexa-lysine tag 

Coomassie-staining (left) and c-Myc immunodetection (right) showing BabA527K 

localisation in the periplasmic fraction after expression in E. coli XL10 Gold cells at 

24 °C. BabA527K is indicated by the red stars (expected molecular weight ~59 kDa). 

The abbreviations and symbols represent the following: T – total protein fraction; Me – 

culture medium protein fraction; P1 – first periplasmic protein fraction; P2 – second 

periplasmic protein fraction; Sp – spheroplast protein fraction; M – molecular weight 

marker; (−) – uninduced sample; 0.1 mM – IPTG induction concentration. 

 

Interestingly, BabA527K protein bands in Figure 3.15 appeared to be more 

pronounced than BabA527 bands in Figure 3.12. Thus, to ascertain whether 

this was an artefact or reflected a difference in expression levels, BabA527 and 

BabA527K were expressed in parallel under identical conditions. As shown in 

Figure 3.16, after expression, greater amounts of BabA527K were indeed found 

in periplasmic extracts than BabA527. Nonetheless, both BabA527 and BabA527K 

were used for large-scale expression and purification, as later described in 

Section 3.3.3.  

 

 

Figure 3.16: Comparison of BabA527 and BabA527K periplasmic expression in 

E. coli XL10 Gold 

Coomassie-staining (left) and c-Myc immunodetection (right) of periplasmic extracts 

from E. coli XL10 Gold cells expressing BabA527 and BabA527K proteins before (−) and 

after (+) induction with 0.1 mM IPTG at 24 °C for 16 hours. The recombinant BabA 

proteins are indicated by red stars. M – molecular weight marker.  
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3.3.2.4 Secretory expression in S. frugiperda SF21  

In search of other potential expression hosts, S. frugiperda Sf21 cells were 

investigated using the baculovirus expression system. As shown in Figure 

3.17, the expression construct employed, AZ1_babA527K, contained a 

cleavable N-terminal extracellular secretory signal sequence preceding 

babA527 in the expression cassette of a proprietary AstraZeneca R&D vector. It 

also contained the C-terminal polypeptide tags found in pOPE101_babA527K.  

 

 
Figure 3.17: Schematic diagram of the AZ1_babA527K expression cassette 

The abbreviations and symbols represent the following: Pro – Undisclosable promoter 

sequence; arrow – start codon; Secr – Undisclosable cleavable secretory signal 

sequence; babA527 – babA527 gene fragment; 6x Lys – 6-lysine peptide tag; c-Myc – c-

Myc tag; 6x His – 6-histidine peptide tag; X/STOP – stop codon; A – SV40 

polyadenylation signal. 

 

Coomassie-staining of the culture medium of infected S. frugiperda cells 

revealed two proteins potentially correlating to BabA527K (Figure 3.18). 

However, these proteins did not contain a detectable c-Myc epitope and, as 

such, were not confirmed to be recombinant BabA. 

 

 

Figure 3.18: Expression of recombinant BabA in S. frugiperda Sf21  
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Coomassie-staining (left) and c-Myc immunodetection (right) showing recombinant 

BabA is not identifiable in the culture medium of S. frugiperda Sf21 cells. The (−) 

symbol represents non-infected cells while (+) represents cells infected with the 

AZ1_babA527K construct. The expected molecular weight of recombinant BabA is ~59 

kDa. M – molecular weight marker; P – periplasmic extract of E. coli XL10 Gold cells 

expressing BabA527K as a Western blot positive control. Samples were taken 72 hours 

from point of infection. 

 
 

3.3.2.5 Secretory expression in HEK 293-6E and CHO G22 

For the final attempt of the expression screen, the AZ2_babA527K construct 

was transfected into both HEK 293-6E and CHO G22 cells for transient 

recombinant BabA expression. The expression cassette of this construct 

closely resembled the AZ1_babA527K vector, as shown in Figure 3.19.  

 

 
Figure 3.19: Schematic diagram of the AZ2_babA527K expression cassette 

The abbreviations and symbols represent the following: Pro – Undisclosable promoter 

sequence; arrow – start codon; Igκ – Immunoglobulin k-chain secretory signal 

sequence; babA527 – babA527 gene fragment; 6x Lys – 6-lysine peptide tag; c-Myc – c-

Myc tag; 6x His – 6-histidine peptide tag; X/STOP – stop codon; A – SV40 

polyadenylation signal. 

 

Frustratingly, as observed in S. frugiperda expression, Western blotting 

showed that none of the proteins visualised through Coomassie-staining of the 

culture medium from transfected cells contained a detectable c-Myc epitope to 

enable the positive identification of recombinant BabA (Figure 3.20).  
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Figure 3.20: Expression of recombinant BabA in HEK 293-6E and CHO G22 

Coomassie-staining (left) and c-Myc immunodetection (right) showing recombinant 

BabA is not identifiable in the culture medium of transfected HEK 293-6E or CHO G22 

cells. The (−) symbol represents culture medium before transfection, while (+) 

represents culture medium after transfection. The expected molecular weight of 

recombinant BabA is ~59 kDa. M – molecular weight marker. P – periplasmic extract 

of E. coli XL10 Gold cells expressing BabA527K as a Western blot positive control. 

Samples were taken eight days after transfection.  

 

As the majority of expression strategies attempted were unsuccessful, only 

periplasmic expression in E. coli XL10 Gold cells was performed on a large 

scale to enable the purification of recombinant BabA. 
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3.3.3 Purification of recombinant BabA  

BabA527 and BabA527K proteins were purified from the periplasmic extracts of 

E. coli XL10 Gold cells expressing the pOPE101 based constructs described 

in Section 3.3.2.3. This was achieved through their hexa-histidine tags via 

immobilised metal ion affinity chromatography (IMAC) as an initial purification 

step. Following imidazole elution, visible aggregates were observed in the 

BabA527 but not BabA527K fractions. These aggregates were removed via 

centrifugation and as such were excluded from subsequent analysis and 

processing. BabA527 and BabA527K IMAC fractions were then separated 

through SDS-PAGE and analysed via Coomassie-staining – a higher yield of 

BabA527K was immediately apparent (Figure 3.21). Furthermore, an additional, 

lower molecular weight band was found in BabA527 IMAC fractions, but not in 

BabA527K IMAC fractions. 

 

 
 

Figure 3.21: IMAC purification of BabA527 and BabA527K 

BabA527 (left) and BabA527K (right) proteins from 3 consecutive IMAC-elution fractions 

were collected, separated via SDS-PAGE and analysed by Coomassie-staining (lanes 

1-3). Gel loading volumes were equal, as were bacterial culture and periplasmic 

extract volumes used in IMAC purification. One red star indicates recombinant BabA. 

The two red stars indicate an additional, lower molecular weight band. M – molecular 

weight marker.  
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Size exclusion chromatography (SEC) was employed as a second and final 

purification step. A comparison of BabA527 and BabA527K SEC traces with 

molecular weight standards (Appendix Table 1) indicated that the elution 

peaks between 60 and 70 mL equate to a monomeric recombinant BabA 

protein (Figure 3.22). Greater relative amounts of aggregates (which would 

therefore elute before 60 mL) are observed in the BabA527 trace than in the 

BabA527K trace. The large peak shoulder in the BabA527 trace (between 70 to 

80 mL), which is largely absent in the BabA527K trace, represents the lower 

molecular weight band observed through Coomassie-staining after IMAC. 

Accordingly, only BabA527 and BabA527K peak fractions between 60 and 70 mL 

were selected for further use and analysis.  

 

 
Figure 3.22: SEC purification of BabA527 and BabA527K 

Overlay of SEC traces of BabA527 (solid line) and BabA527K (dashed line) after IMAC 

purification. 

 

Table 3.5 below shows protein quantification after each purification step. It can 

be observed here, in comparison to BabA527K, that the amount, or yield, of 

BabA527 decreases markedly after each IMAC and SEC purification step; this 

poor recovery is attributed to the loss of BabA527 due to protein aggregation, 

as described above. The final yield, from bacterial culture, of IMAC-SEC 
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purified BabA527K (1.8 mg/L) was 22.5 times higher than that of BabA527 (0.08 

mg/L) after identical expression and purification conditions. 

 
Table 3.5: Summary of yield from BabA527 and BabA527K purification 
aPeriplasmic extract from 10 L of E. coli culture after induction with 0.1 mM IPTG for 

16 hours at 24 °C 
bTotal protein determined by Bradford assay (BSA as standard protein) 
cPurity estimated from ImageJ analysis of a scanned Coomassie stained SDS-PAGE 

gel by measuring target band as a fraction of all bands 

 
Step BabA527  BabA527K 

Total 
Protein 
(mg)b 

Target 
Protein 
(mg)b 

Yield 
(%) 

Purity 
(%)c 

 Total 
Protein 
(mg)b 

Target 
Protein 
(mg)b 

Yield 
(%) 

Purity 
(%)c 

Extracta 276 18 100 6.4  284 26 100 9.3 

IMAC 22 3.3 19 15  31 20 76 65 

SEC 2.4 0.8 4.4 33  18 18 67 99 

 

 
Coomassie-staining, as indicated in Table 3.5, and mass spectrometry were 

both used to analyse the purity of IMAC-SEC purified BabA527 and BabA527K. 

Coomassie-staining revealed that the additional lower molecular weight band 

previously seen in BabA527 IMAC elutions was still found after SEC. The 

corresponding mass spectrometry trace further indicated that this band 

actually consisted of multiple proteins of similar molecular weight (Figure 3.23). 
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Figure 3.23: Analysis of BabA527 purity 

(Left) Coomassie stained SDS-PAGE gel and (right) liquid chromatography–time-of-

flight mass spectroscopy trace of IMAC-SEC purified BabA527. The expected 

molecular weight of BabA527 is 58,444 Da. M – molecular weight marker. 

 

To determine the identity of these lower molecular weight proteins, which 

resemble degradative fragments, peptide mapping of an excised gel slice was 

performed. Figure 3.24 shows the mapped peptides, generated through tryptic 

digestion, contained 45% of BabA527 residues. No amino acids after K392 

were matched. 

 
1 
51 
101 
151 
201 
251 
301 
351
401 
451 
501 

.........GYQIGEAAQMVTNTKGIQDLSDRYESLNNLLNRYSTLNTLI
KLSADPSAINAVRENLGASAKNLIGDKANSPAYQAVLLAINAAVGFWNVV
GYVTQCGGNANGQKSISSKTIFNNEPGYRSTSITCSLNGHSPGYYGPMSI
ENFKKLNEAYQILQTALKRGLPALKENNGKVNVTYTYTCSGDGNNNCSSQ
VTGVNNQKDGTKTKIQTIDGKSVTTTISSKVVDSRADGNTTGVSYTEITN
KLEGVPDSAQALLAQASTLINTINNACPYFHASNSSEANAPKFSTTTGKI
CGAFSEEISAIQKMITDAQELVNQTSVINEHEQTTPVGNNNGKPFNPFTD
ASFAQGMLANASAQAKMLNLAEQVGQAINPERLSGTFQNFVKGFLATCNN
PSTAGTGGTQGSAPGTVTTQTFASGCAYVGQTITNLKNSIAHFGTQEQQI
QQAENIADTLVNFKSRYSELGNTYNSITTALSNIPNAQSLQNAVSKKNNP
YSPQGIDTNYYLNQNSYNQIQTINQELGSEQKLISEEDLSHHHHHH 

 

Figure 3.24: BabA527 amino acid sequence showing peptides matched in 

additional lower molecular weight band 

Peptides shown in bold were identified through mass matching, after liquid 

chromatography–quadrupole time-of-flight mass spectrometry. Trypsin cleavage sites 

[C-terminal side of lysine (K) or arginine (R) unless next residue is proline (P)] are 

highlighted in red unless part of a matched peptide. The black dots at the N-terminus 

represent the first nine amino acids of BabA527, which are cleaved during expression. 
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In stark contrast, IMAC-SEC purified BabA527K was found to be highly pure 

(Figure 3.25). Interestingly, both BabA527 and BabA527K are 1,014 Da smaller 

than their expected molecular weights. This would correspond to a loss of the 

first 9 amino acids (EDDGFYTSV) from the N-terminus of their predicted 

amino acid sequences. Indeed, Edman degradation of pure BabA527K 

confirmed that its first five N-terminal amino acids correspond to residues 10 

to 14 of mature BabA (GYQIG). 

 

 

Figure 3.25: Analysis of BabA527K purity 

(Left) Coomassie stained SDS-PAGE gel and (right) liquid chromatography–time-of-

flight mass spectroscopy trace of IMAC-SEC purified BabA527K. The expected 

molecular weight of BabA527K is 59,213 Da. M – molecular weight marker. 

 

Taken together, these results show that, somewhat surprisingly, the simple 

incorporation of a hexa-lysine tag to the C-terminus of recombinant BabA had 

a substantially beneficial effect on protein yield and purity. Both the yield and 

the purity of BabA527K were reproducible over the entire course of this study. 
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3.4 Discussion 

The first objective of this study was to establish an efficient method for the 

expression and purification of recombinant BabA. Consideration was given to 

the design of the babA gene fragment used for expression screening to 

ensure that the hydrophobic C-terminal transmembrane domain of BabA, 

which was superfluous with regards to the aim of this study, was excluded. 

This was also considered to be particularly important to avert potential 

recombinant protein insolubility during expression and purification (176). While 

the predicted β-barrel conformation of the BabA transmembrane domain has 

been long described in the literature (86), there has been no consensus on the 

exact amino acid sequence that corresponds to this domain because no 

structural information has been available. In this study, a single C-terminal 

truncation point at residue 527 was chosen based on bioinformatic 

investigations; however, various researchers have also reported successful 

expression after different C-terminal truncation points both upstream and 

downstream of residue 527 (112, 164, 177).  

 

The first attempt to express recombinant BabA was in E. coli BL21 (DE3) cells 

using a vector containing a pelB leader signal sequence to direct synthesised 

protein to the periplasmic space. The periplasmic space is an aqueous 

oxidising environment containing enzymes that aid disulphide bond formation 

(e.g. DsbA and DsbC) and a signal peptidase that cleaves off the pelB leader 

(178). As babA527 does not encode the hydrophobic domain of native BabA, 

an insoluble protein was not expected yet was observed. This may have been 

caused by saturation of the Sec complex, the machinery that mediates 

periplasmic secretion, if protein synthesis was too rapid (171). This is plausible 

as the expression strategy used, that is, a pET vector containing the T7 

promoter in a DE3 lysogen strain, is designed for rapid overexpression due to 
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the powerful action of T7 RNA polymerase (179, 180). Saturation of the Sec 

complex would result in the localisation of recombinant BabA to the reducing 

environment of the cytoplasm where disulphide bond formation is not possible. 

Consequently, large amounts of expressed protein would be improperly folded 

and would ultimately aggregate to form inclusion bodies in the cytoplasm (181).  

 

Attempts to facilitate periplasmic secretion in E. coli BL21 (DE3) cells, by 

reducing the rate of protein synthesis through changes to IPTG concentration 

and temperature, were unsuccessful (166). Thus, to circumvent the potential 

problem of Sec complex saturation, expression in E. coli Origami B (DE3) cells 

was attempted. This strain lacks thioredoxin reductase and glutathione 

reductase enzymes and thereby possesses an oxidising cytoplasmic 

environment, which reportedly aids intramolecular disulphide bonds formation 

(182-184). Disappointingly, inclusion body formation also occurred using this 

strategy despite attempts to support correct folding by similarly reducing the 

rate of protein synthesis. This suggests that oxidising conditions alone are not 

sufficient to enable the correct formation of the disulphide bridges in BabA. It 

must be noted that due to the poor specificity of anti-His immunodetection 

observed in this study, Western blotting could not be used to verify whether 

either strategy produced low levels of soluble protein that may have been 

undetectable through Coomassie-staining. 

 

According to Fei et al., a recombinant BabA protein could be expressed in the 

periplasmic space of E. coli XL10 Gold cells (a strain normally used for 

plasmid propagation) using the pOPE101 expression vector, which contains a 

pelB leader, for periplasmic secretion, behind a synthetic lac promoter 

associated with slower protein synthesis than the pET system (112, 185, 186). 

When employed in this study, this approach was successful for the expression 



Developing a recombinant BabA expression and purification method 

 94 

and periplasmic secretion of two soluble recombinant BabA proteins, which 

differed solely by the presence of a C-terminal hexa-lysine tag. Although a 

successful expression strategy was established, it is well known that one 

major limitation of periplasmic expression is low yield due to its restricted 

volume and the limited capacity of the Sec complex (179, 187). Secretory 

expression in eukaryotic cells, on the other hand, typically provides higher 

yields, in addition to enabling disulphide bond formation. Due to this 

advantage, the baculovirus expression system in insect cells [S. frugiperda 

Sf21 (130, 188)] and transient gene expression in mammalian cells [HEK 293-

6E and CHO G22 (131, 132, 188-190)] were assessed. The expression 

constructs used in these eukaryotic systems contained cleavable secretory 

signal sequences to enable translocation of synthesised protein to the 

endoplasmic reticulum, for post-translational modifications, and secretion into 

the extracellular medium for subsequent purification (191, 192). However, 

after expression, recombinant BabA could not be identified in the extracellular 

medium of any of these cells through immunodetection of its c-Myc 

polypeptide tag, though Coomassie-staining revealed “expressed” proteins of 

the expected size. Immunodetection would have ideally been repeated using 

an anti-BabA antibody to discount potential issues of c-Myc tag recognition, 

however, no such antibodies are commercially available. It is possible though 

that successful recombinant protein secretion into the extracellular medium 

may have been impaired by glycosylation. While glycosylation in BabA has 

been suggested [Champasa et al. putatively identified BabA as one of 125 

H. pylori proteins to undergo glycosylation based on the mass spectrometric 

identification of a glycosylated protein that possessed a 2.8% sequence match 

to BabA of strain 26695 (193)], such a post-translational modification has 

neither been verified nor characterised. Accordingly, glycosylation (or atypical 

glycosylation) during expression may have resulted in protein misfolding, 



Developing a recombinant BabA expression and purification method 

 95 

which typically results in intracellular retention and degradation (194, 195). 

This could be considered a likely occurrence as recombinant BabA contains 

seven potential N-linked glycosylation sites [based on the N-X-S/T consensus 

sequence, where X is not P (196)]. The same eukaryotic expression methods 

described in this thesis were subsequently used to successfully generate 

AstraZeneca R&D in-house mammalian proteins as positive controls for 

expression (results not shown). Thus, in the interests of progressing to the 

next objective of the study, the expression of recombinant BabA by these 

systems was not pursued further and troubleshooting options were not 

explored. This would have primarily included peptide mapping of the potential 

recombinant BabA bands identified through Coomassie-staining and 

attempting to detect the c-Myc tag of recombinant BabA after lysing cells. 

 

From the expression screen, periplasmic expression in E. coli XL10 Gold cells 

was the only method capable of generating recombinant BabA proteins for 

purification – BabA527 and BabA527K. It was envisaged that the free amine 

groups in the hexa-lysine tag of BabA527K could act as “hotspots” for 

carbodiimide coupling reactions during protein immobilisation onto model 

carboxylated polystyrene particles, as similarly reported by Allard et al. (197). 

Such immobilisation would be advantageous as chemical modification of an 

extraneous, non-native sequence is less likely to affect glycan binding activity 

than modification of free amine groups within BabA (198). The C-terminus of 

recombinant BabA was chosen for hexa-lysine tag insertion as it was hoped 

that linkage at this terminus could also provide a surface presentation of 

recombinant BabA similar to native BabA molecules, which are attached to the 

H. pylori outer membrane through their C-terminal domain. Meanwhile, it was 

also observed that after IMAC purification, BabA527 lacked solubility and 

formed visible aggregates. As polycationic amino acid tags have been shown 
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to increase the solubility of several recombinant proteins (199-202), a further 

rationale to support the incorporation of the C-terminal hexa-lysine was to 

improve the solubility, and purification, of recombinant BabA. Indeed, BabA527K 

visually appeared to be less prone to aggregation than BabA527 after IMAC, 

and during subsequent SEC, fewer aggregates were also observed in 

BabA527K traces than in BabA527 traces. While this suggests an improvement to 

intrinsic protein solubility, a direct comparison based on these findings cannot 

be made because of differences in sample purity at both steps. Nonetheless, it 

can be said that, due to the reduction in protein aggregation effected, the C-

terminal hexa-lysine tag resulted in an improvement to the purification and 

yield of recombinant BabA. 

 

The greater yield of BabA527K over BabA527 may be also explained through the 

presence of proteolytic fragments, truncated from their C-termini, found during 

the purification of BabA527. Such fragments were not found during BabA527K 

purification, suggesting that the hexa-lysine tag alleviated proteolytic cleavage 

and consequently resulted in a higher yield of intact BabA527K. It is important to 

note that the co-purification of BabA527 fragments, which lacked their hexa-

histidine tags, was unexpected as their binding to the Ni2+ column during IMAC 

is usually unlikely. However, the EDTA resistant Ni2+ sepharose resin used in 

purification required an imidazole-free equilibration buffer – this can result in 

the non-specific attachment of other proteins (203). 

 

The mechanism and location of BabA527 degradation was not confirmed. 

However, higher levels of intact BabA527K than BabA527 were also found in 

periplasmic extracts after identical expression conditions. This suggests that 

BabA527 degradation occurred during expression, within the periplasmic space 

of E. coli, which is known to host at least 20 proteases with various 



Developing a recombinant BabA expression and purification method 

 97 

functionalities (204). For example, the protease DegP is known to degrade 

recombinant proteins that are misfolded upon overproduction in order to 

prevent protein aggregate formation (205). Another periplasmic protease, Tsp, 

is known to have a preference for unfolded substrates with hydrophobic amino 

acids at its C-terminus (206). Further experiments would be necessary to 

confirm whether BabA527 is a substrate for these, or other, periplasmic 

proteases. Nevertheless, through an unknown mechanism, the C-terminal 

hexa-lysine tag clearly prevented proteolysis. One potential explanation is that 

the hexa-lysine tag may increase recombinant BabA solubility in the 

periplasmic space and thereby prevent aggregation and enzymatic attack. An 

alternative explanation could be that the C-terminal hexa-lysine tag interacts 

with other amino acids to protect susceptible cleavage sites. Ultimately, the 

protective effect of the hexa-lysine tag is considered an unexplained but 

fortuitous finding.  

 

While the hexa-lysine tag protects against C-terminal proteolytic attack, it was 

consistently observed that both BabA527 and BabA527K lacked the first nine N-

terminal amino acids of their predicted sequence. Interestingly, Subedi et al. 

have also recently reported the loss of the first nine N-terminal amino acids of 

a recombinant BabA protein expressed in the periplasmic space of E. coli 

(177). These combined findings suggest that these residues are prone to 

spontaneous cleavage by periplasmic proteases. Fortunately, the N-terminal 

truncation observed in this study was controlled and did not prevent 

reproducible BabA527K expression and purification. 

 

Thus, the first objective of this study was successfully met and albeit a 

relatively low yield, highly pure, hexa-lysine tagged recombinant BabA could 

consistently be generated for use in all further investigations and applications.
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Chapter 4: Characterising the BabA glycan-binding site 

 
4.1 Introduction 

Having successfully expressed the extracellular domain of BabA, the second 

objective of this study was to identify and characterise its glycan-binding site. 

To date, the glycans known to act as BabA receptors are the type 1 ABO and 

Le blood group antigens, which are naturally found in healthy gastric mucosa, 

either expressed on surface mucous cells or attached to the MUC5AC mucin 

that comprises the surface mucus layer (Figure 1.7) (95, 207). As shown in 

Figure 4.1, their biosynthesis in the gastric mucosa commences with the initial 

fucosylation of a type 1 lacto series core chain by the fucosyltransferase 2 

(FucT-II) enzyme. This generates the H-1 antigen, which is further modified by 

a GalNAc-transferase in blood group A individuals and a Gal-transferase in 

blood group B individuals, thereby producing the A-1 and B-1 antigens, 

respectively. H-1, A-1 and B-1 are ABO blood group antigens that are then 

further fucosylated to produce Le blood group antigens. This occurs through 

the action of fucosyltransferase 3 (FucT-III), which results in Leb, A-Leb and B-

Leb in blood group O, A and B individuals, respectively (208). However, a 

~20% subset of the Western population, known as non-secretors, lack FucT-II 

and consequently possess none of the aforementioned ABO/Le blood group 

antigens. Rather, they synthesise the Lea antigen from the type 1 lacto series 

core; this glycan is otherwise not typically found in the gastric mucosa of 

individuals with functional FucT-II enzymes (209). Importantly, the Lea antigen 

is the only type 1 ABO/Le blood group antigen that does not act as a receptor 

for BabA (82). Closely related to type 1 ABO/Le blood group antigens are their 

type 2 counterparts. These glycans are produced through a similar 

biosynthetic pathway with the characteristic difference being an initial type 2 

lacto series core chain, which is modified by the fucosyltransferase 1 (FucT-I) 
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enzyme. Type 2 ABO/Le blood group antigens differ from their type 1 

counterparts through an alternate glycosidic bond in the Gal-GlcNAc core, that 

is, type 1 antigens have a Galβ1-3GlcNAc linkage whereas type 2 antigens 

have a Galβ1-4GlcNAc linkage (Figure 4.1). Type 2 ABO/Le blood group 

antigens are not found in the surface layer of the gastric mucosa; they are 

located in the deep glands, either attached to mucous neck cells or the MUC6 

mucin (Figure 1.7). They do not act as receptors for BabA (82, 95, 101, 102).  

 

 
 

Figure 4.1: The biosynthesis pathways of the dominant ABO/Le blood group 
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antigens in healthy gastric mucosa 

The terminal glycan epitopes of the type 1 (top) and type 2 (bottom) ABO/Le blood 

group antigens in the gastric mucosa are shown. Those that act as receptors for BabA 

are outlined by a red box. Glycan symbolic representations can be interpreted with the 

following key: fucose – , galactose – , N-acetylgalactosamine – , N-

acetylglucosamine – .  

 

The majority of published work to date has investigated the ability of BabA to 

interact with these host receptors through whole bacterium assays. 

Consequently, there has been a lack of information regarding the molecular 

basis for glycan recognition by BabA. Such information is, however, essential 

for utilising BabA as a targeting moiety. Importantly, knowledge of the location 

of its glycan-binding site will support or negate intentions to create BabA-

particle conjugates through its C-terminal hexa-lysine tag, as previously 

suggested in Section 3.4. Furthermore, downstream, variant BabA proteins 

lacking binding properties are useful as an additional measure to confirm any 

glycan binding activity of BabA-vectors is specifically imparted by BabA, rather 

than non-specific effects. Relevant BabA-variants can only be generated with 

structural insight. 

 

With these intentions in mind, after validating the binding activity of BabA527K, 

its crystal structure was solved in the absence and presence of Leb – the 

ABO/Le blood group antigen most studied in BabA-mediated H. pylori 

attachment. To validate the binding site revealed by the crystallographic model, 

and to support downstream studies, BabA527K variants were generated through 

site directed mutagenesis. Subsequent binding studies indicated that the 

successful elimination of BabA glycan binding properties was achieved. 

 

Importantly, BabA527K displayed the same glycan recognition pattern as 
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H. pylori J99 cells. Therefore, in addition to aiding the design of BabA-

microparticle conjugates, these findings explain the previously poorly 

understood molecular mechanism of BabA-mediated attachment by H. pylori.  
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4.2 Experimental Procedures 

4.2.1 Binding activity of BabA527K 

4.2.1.1 Enzyme-linked immunosorbent assay 

The composition of neoglycoconjugates used in this experiment is detailed in 

Appendix Table 2. 96-well Maxisorp® plates (Thermo Scientific, USA) were 

coated with 100 µL of human serum albumin (HSA) (Sigma Aldrich, USA), 

HSA-Ley and HSA-Leb glycoconjugates (Isosep AB, Sweden) at 5 µg/mL in 

0.05 M sodium carbonate buffer (pH= 9.6) at 4 °C overnight. Plates were 

washed with PBS supplemented with 0.05% Tween 20 (PBS-T) and blocked 

with 200 µL 2% non-fat dried skimmed milk in PBS-T for 2 hours at room 

temperature. After washing again with PBS-T, sample wells were incubated 

with 100 µL of BabA527K at different concentrations (1.0 – 20 µg/mL in PBS-T) 

at 4 °C overnight. A mouse anti-c-Myc:Biotin clone 9E10 antibody (AbD 

Serotec, USA), diluted 1:2000 in PBS-T, was added, after washing, for 2 hours 

at room temperature. This step was repeated with streptavidin-HRP (AbD 

Serotec, USA), also at a 1:2000 dilution. After a final series of washes, wells 

were exposed to 100 µL of 0.1 mg/mL tetramethylbenzidine in 0.1 M sodium 

acetate/acetic acid buffer (pH = 6.0) supplemented with H2O2 to a final 

concentration of 0.03%. The reaction was allowed to proceed for 10 minutes 

then stopped through the addition of 50 µL 2.5 M H2SO4. Absorbance was 

measured at 450 nm. 

 

 
4.2.1.2 Surface plasmon resonance 

The composition of neoglycoconjugates used in this experiment is detailed in 

Appendix Table 2. SPR assays were performed at 25 °C on a Biacore 3000 

instrument (GE Healthcare, USA). HSA-Ley and HSA-Leb glycoconjugates 

(Isosep AB, Sweden) were immobilised onto two separate flow cells of a CM5 
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sensor chip (GE Healthcare, USA) via amine coupling. This was achieved by 

first converting the carboxymethyl groups of the CM5 surface layer to reactive 

N-hydroxysuccinimide esters via an injection of a 0.2 M 1-ethyl-3-(3-

dimethylaminopropyl) carbodiimide hydrochloride (EDC) and 0.05 M N-

hydroxysuccinimide (NHS) at a rate of 5 µL/min for 7 minutes. Next, each 

glycoconjugate, at a concentration of 25 µg/mL in 10 mM sodium acetate (pH 

= 4.5), was coupled onto the CM5 surface until an increase of ~10,000 

response units (RU) was achieved. To deactivate unreacted NHS esters, 

0.1 M Tris-Cl (pH=8.0) was injected onto both flow cell surfaces at a rate of 5 

µL/min for 7 minutes. Each flow cell was equilibrated overnight in HEPES-

buffered saline supplemented with EDTA and Tween-20 (HBS-ET). This 

consisted of 10 mM HEPES (pH = 7.4), 150 mM NaCl, 3 mM EDTA and 

0.005% Tween-20. BabA527K was then injected, in the same running buffer, 

over each flow cell surface in a serial flow manner, at concentrations up to 15 

µM at a rate of 30 µL/min. Changes in RU were analysed during each injection, 

which had an association time of 120 seconds and a dissociation time of 300 

seconds. Regeneration of the sensor chip surface was performed after each 

injection using 2 M potassium thiocyanate at a rate of 5 µL/min for 1 minute.  

 

 
4.2.1.3 Mammalian glycan array screening 

Binding of BabA527K to a mammalian glycan array was assessed by the 

Consortium for Functional Glycomics (CFG) (Emory University, USA) using 

their in-house glycan binding assay protocols and reagents. Binding of 

BabA527K to the printed surface of the CFG version 5.2 array, containing 609 

synthetic and mammalian glycans, was performed in a 20 mM Tris-Cl (pH = 

7.4), 300 mM NaCl and 0.05% Tween-20 buffer. Bound BabA527K was 

detected with a fluorescein isothiocyanate labelled anti-c-Myc antibody. 



Characterising the BabA glycan-binding site 

 104 

4.2.2 Crystallographic studies 

4.2.2.1 Crystallisation of apo-BabA527K and data collection 

Experimental procedures assisted by Claire Brassington, AstraZeneca R&D. 

Crystallisation was performed using the sitting drop vapour diffusion method in 

96-well MRC crystallisation plates. Each droplet contained 200 nL of BabA527K 

[at 20 mg/mL in 20 mM Tris-Cl (pH=7.4) and 300 mM NaCl] mixed with 200 nL 

of a precipitant solution, which was also present in an adjacent well (reservoir 

volume = 80 µL) for sample droplet equilibration. Screens were set up with 

BabA527K at 4 °C and 20 °C using a variety of precipitant solutions as per the 

in-house AstraZeneca R&D crystallisation screening protocol. An initial hit was 

obtained after two weeks at 20 °C under the following conditions: 25% PEG 

10,000, 0.1 M sodium propionate and sodium cacodylate trihydrate, bis-tris 

propane (PCTP) buffer (pH = 4.5). Crystallisation optimisation was performed 

by varying the pH and type of buffer, as well as the concentration and type of 

precipitant. An optimised hit was obtained three days after repeated 

dispensing trials and continued to grow for a further ten days at 20 °C under 

the following conditions: 27% PEG 3,350, 0.1 M sodium citrate (pH = 5.6) and 

0.2 M ammonium acetate. Initial and optimised crystals were cryoprotected by 

transfer to a well solution including 20% glycerol for 30 seconds, plunged into 

liquid nitrogen and kept at 100 K during data collection. X-ray data was 

collected at the Diamond Light Source, Didcot, UK (Beamline i04, DECTRIS 

Pilates detector).  
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4.2.2.2 Generation of selenomethionine substituted BabA527K 

Selenomethionine (SeMet) substituted BabA527K was expressed using the 

pOPE101_babA527K expression construct in E. coli XL10 Gold cells. Cells were 

grown in M9 minimal media supplemented with 2 mg/L thiamine, 4 g/L glucose, 

2 mM MgSO4, 0.1 mM CaCl2, 100 µg/mL ampicillin and 12.5 µg/mL 

tetracycline at 37 °C until the OD600 reached ~0.6. The following amino acids 

were added for 15 minutes before IPTG induction at 24 °C for 16 hours: lysine, 

phenylalanine and threonine (100 mg/L each) and isoleucine, leucine, valine 

and DL-selenomethionine (50 mg/L each). Periplasmic extraction was 

performed using the same procedures, as described in Section 3.2.3.1. 

However, extracts were supplemented with EDTA to a final concentration of 1 

mM. Purification was performed using the same IMAC-SEC protocol as for 

unlabelled BabA527K, as described in Sections 3.2.3.2 and 3.2.3.3. EDTA was 

added to IMAC buffers only, to a final concentration of 1 mM. Incorporation 

levels of SeMet were assessed using liquid chromatography–time-of-flight 

mass spectrometry, as described in Section 3.2.3.5. 

 

 
4.2.2.3 Crystallisation of SeMet apo-BabA527K and data collection 

Experimental procedures assisted by Claire Brassington, AstraZeneca R&D. 

SeMet BabA527K at a concentration of 20 mg/mL, in a 20 mM Tris-Cl (pH=7.4) 

and 300 mM NaCl buffer, was crystallised using the sitting drop vapour 

diffusion method as described in Section 4.2.2.1 above. Conditions yielding 

crystals were identified, at 20 °C, under the following conditions: 34% PEG 

3350, 0.2 M ammonium acetate and 0.1 M PCTP (pH = 6.5). To optimise the 

hit before X-ray data collection, crystal seeding was used. Droplets were 

prepared by mixing 250 nL of SeMet BabA527K, at a concentration of 20 mg/mL 

in a 20 mM Tris-Cl (pH=7.4) and 300 mM NaCl buffer, with 250 nL of the 
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aforementioned precipitant solution and 50 nL of seed stock. The seed stock 

was prepared by placing three large unlabelled BabA527K crystals into a 

microcentrifuge tube with 50 µL of the precipitant solution. A seed bead was 

then added and the mixture was vortexed for 2 minutes immediately prior to 

dispensing trials. Crystals appeared overnight under the following conditions: 

30% PEG 3350, 0.2 M magnesium acetate and 0.1 M PCTP (pH = 6.0), and 

continued to grow for a further 5 days at 20 °C. Finally, crystals were 

cryoprotected by transfer to a well solution including 20% glycerol for 30 

seconds, plunged into liquid nitrogen and kept at 100 K during data collection. 

X-ray data was collected at the European Synchrotron Radiation Facility, 

Grenoble, France (Beamline ID23-1, DECTRIS Pilates detector). 

 

 
4.2.2.4 Co-crystallisation of BabA527K:Leb and data collection 

Experimental procedures assisted by Claire Brassington, AstraZeneca R&D. 

BabA527K:Leb co-crystals were screened for at 4 °C and 20 °C using the sitting 

drop vapour diffusion method described in Section 4.2.2.1 above. The 

BabA527K:Leb complex was formed, before dispensing trials, by pre-incubating 

a four-fold molar excess of Leb antigen hexasaccharide (Isosep AB, Sweden; 

Appendix Table 3) with 20 mg/mL unlabelled BabA527K on ice. Both BabA527K 

and Leb were in a 20 mM Tris-Cl (pH=7.4) and 300 mM NaCl buffer. A suitable 

hit was obtained after three days at 20 °C and continued to grow for a further 

ten days under the following conditions: 22% PEG 3,350, 0.1 M PCTP buffer 

(pH = 6.0). Finally, crystals were cryoprotected by transfer to a well solution 

including 20% glycerol for 30 seconds, plunged into liquid nitrogen and kept at 

100 K during data collection. X-ray data was collected at the Diamond Light 

Source, Didcot, UK (Beamline i04, DECTRIS Pilates detector). 
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4.2.2.5 Structure solution 

Experimental procedures performed by Tina Howard and Judit Debreczeni, 

AstraZeneca R&D. 

The structure of BabA527K could not be solved with the unlabelled apo-

BabA527K dataset using the SabA 26695 model (PDB accession code: 4O5J) 

via molecular replacement [Phaser (210)] due to insufficient sequence identity. 

Thus, to solve the structure, highly redundant single-wavelength anomalous 

SeMet apo-BabA527K diffraction data was processed using XDS, Truncate and 

Aimless (211). The anomalous completeness of the data was 98.3% (87.2% in 

outer shell), with an anomalous multiplicity of 12.0 overall (7.0 in outer shell). 

Anomalous correlation between half-sets was 0.760 in the inner shell and 

0.280 overall. Crank2 (CCP4i) (212-218) was used to solve the structure. 

Programs used in pipeline were ShexlC (213), ShelxD (213), Refmac5 (214), 

Solomon (215), Multicomb (216), Parrot (217) and Buccaneer (218). ShelxC 

found four selenium atoms. 89% of the residues were built with four gaps in 

the chain. Coot (217) was used for model building; rebuilding of chains across 

gaps was necessary where they had crossed to symmetry related molecules 

in the initial model. The model was further refined as a 1.9 Å dataset 

(Refmac5) although the data was weak in the outer shell. The Ramachandran 

plot showed 100% of residues were allowed with 96.04% in the preferred 

region. This apo model was used in molecular replacement [Phaser (210)] to 

solve the structure of BabA527K complexed with the Leb. The sugar was fitted 

using Coot (0.8) (219) and refinement again carried out using Refmac5. X-ray 

data and refinement statistics are shown in Table 4.1. 
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Table 4.1: X-ray diffraction data collection and refinement statistics 

Values in parentheses refer to the highest recorded resolution shell 
§Excluding the partially visible galactose (Gal5) moiety  

 
Components SeMet apo-BabA527K BabA527K:Leb 
 (SAD data collection) (Molecular Replacement) 
PDB Deposition   
Accession number 4ZH0 4ZH7 
   
Data collection   
Space group P212121 P212121 
Cell dimensions     

a, b, c (Å) 60.83, 93.04, 96.92 60.59, 91.77, 96.42 
α, β, γ (º) 90, 90, 90 90, 90, 90 

Wavelength (Å) 0.97925 0.920 
Resolution (Å) 48.46-1.91  (1.98-1.91) 44.78-2.12  (2.18-2.12) 
Rmerge (all I+ and I-) 0.236  (3.427) 0.141  (0.643) 
I/σI 13.2  (0.9) 11.8  (3.0) 
Completeness (%) 98.7  (89.2) 99.1  (99.4) 
Multiplicity 23.1  (13.8) 6.6  (6.5) 
   
Refinement   
No. of reflections 39877 29319 
Rwork / Rfree 0.189/0.231 (0.378/0.331) 0.171/0.223 (0.224/0.271) 
No. of atoms   

Protein 3662 3654 
Ligand  57 
Water 132 156 

B-factors   
Protein (Å2) 25.327 20.97 
Ligand (Å2)  35.413  [31.9]§ 
Water (Å2) 34.124 30.034 

R.m.s deviations   
Bond lengths (Å) 0.0184 0.0165 
Bond angles (º) 1.7756 1.726 

Ramachandran plot   
Allowed residues (%) 100 100 
Preferred residues (%) 96.04 96.45 
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4.2.2.6 Sequence analysis 

For identification of proteins with structural similarity to BabA, the apo-BabA 

PDB file (Accession code: 4ZH0) was uploaded onto the Dali server (220) for 

an atomic coordinates similarity search within the PDB. For analysis of 

sequence similarity of BabA regions with other H. pylori adhesins, from the 

J99 strain, CLC Main WorkBench 7.6 (CLC bio, USA) was used for amino acid 

multiple sequence alignment of BabA (AAD06409.1); LabA (AAD05605.1); 

HopZ (AAD05591.1); SabA (AAD06240.1); AlpA (AAD06426.1); and AlpB 

(AAD06427.1). Indicated in brackets are Genbank accession numbers.  

 

For analysis of H. pylori strain conservation of the Leb binding site, available 

babA gene sequences corresponding to the Crown region (amino acids 183-

253 in mature BabA J99) from Leb binding strains identified in (120, 123, 124) 

were obtained from the European Nucleotide Archive and GenBank. CLC 

Main WorkBench 7.6 (CLC bio, USA) was used for the multiple sequence 

alignment (protein) of the aforementioned BabA J99 fragment with that of 

sequences obtained from a total of 28 H. pylori strains. To search for DNA 

sequences with similarity to the BabA Crown, the BabA gene fragment 

corresponding to the Crown [i.e. complement (914203-914421) in GenBank 

accession no. AE001439.1] was submitted to the National Centre for 

Biotechnology Information (NCBI) basic local alignment search tool (BLAST). 

The nucleotide (nr/nt) database was searched using megablast, discontiguous 

and blastn algorithms. To search for protein sequences with similarity to the 

BabA Crown, the BabA protein fragment corresponding to the Crown (i.e. 

residues 203-273 in GenBank accession no. AAD06409.1) was submitted to 

NCBI Protein-BLAST. The protein sequences (nr) database was searched 

using Protein-protein, Position-specific Iterated, Pattern Hit Initiated and 

Domain Enhanced Lookup Time Accelerated BLAST algorithms.  
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4.2.3 Binding affinity of BabA527K and BabA527K variants 

4.2.3.1 Expression and purification of BabA527K variants 

Expression constructs encoding BabA527K variants containing either N206A or 

D233A/S244A substitutions were generated with a Phusion site-directed 

mutagenesis kit (Thermo Scientific, USA), using the primers shown in Table 

4.2 and the pOPE101_babA527K expression construct as the DNA template. 

The PCR reaction was set up according to the manufacturer’s protocol using 

an annealing temperature of 72 °C for both reactions. Confirmatory 

sequencing of the plasmids was performed (Source BioScience, Nottingham) 

using primers previously listed in Table 3.3. Expression and purification was 

performed under the same conditions as BabA527K, as described in Section 

3.2.3.  

 
Table 4.2: Primers for BabA527K alanine point substitutions 

[FOR] and [REV] denote sense and antisense primers, respectively. [Phos] denotes a 

5’ phosphorylation. 

 
Primer Name Sequence (5’-3’) 
BabA527K-N206A [FOR]	 [Phos]GAACCAAGACTAAAATCCAAACCA

TAGAC	
BabA527K-N206A [REV]	 [Phos]CGTCTTTTTGAGCATTTACACCTGT

GAC	
BabA527K-D233A [FOR] [Phos]GTTCAAAAGTGGTTGCTAGTCGTG

CAGATG 
BabA527K-D233A [REV] [Phos]TGATCGTGGTGGTTACGCTTTTGC

CGTCTATG 
BabA527K-D233A/S244A [FOR] [Phos]GTAATACAACAGGGGTGGCCTACA

CCGAAATCAC 
BabA527K-D233A/S244A [REV] [Phos]CATCTGCACGACTAGCAACCACTT

TTGAAC 
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4.2.3.2 Isothermal titration calorimetry 

The composition of oligosaccharides used in this experiment is detailed in 

Appendix Table 3. Calorimetric measurements were performed at 25 °C on a 

MicroCal iTC200 System (GE Healthcare, USA). All ABO/Le blood group 

antigens (purity > 90%) were obtained in oligosaccharide form from Elicityl SA, 

France except Leb, which was obtained from Isosep AB, Sweden. The sample 

cell was filled with BabA527K (at concentrations ranging between 0.035 mM and 

0.25 mM) and stirred at 1000 rpm until the system reference power was 

equilibrated to 6 µCal/sec. The injection syringe contained the ABO/Le blood 

group antigen (at concentrations ranging between 0.35 mM and 10 mM) and 

nineteen repeated 2 µL injections were made allowing 120 seconds between 

each titration. In general, the optimal concentrations of BabA527K and ABO/Le 

blood group antigens used were 0.1 mM and 2 mM, respectively. However, 

these conditions were modified when studying the interaction between 

BabA527K and H-1, A-1 and B-1 antigens, where the protein and 

oligosaccharide concentration was increased to 0.25 mM and 10 mM, 

respectively. A-Leb and B-Leb antigens were not studied, as they were not 

readily commercially available. The optimal concentrations of BabA527K-N206A 

and Leb used were 0.25 mM and 10 mM, respectively. Binding of BabA527K-

D233A/S244A to ABO/Le blood group antigens was studied at protein and 

oligosaccharide concentrations of 0.1 mM and 2 mM, respectively. A buffer 

containing 20 mM Tris-Cl (pH = 7.4) and 300 mM NaCl was used for all 

calorimetric measurements. NITPIC (221) was used for baseline auto-

determination and calorimetric data was analysed by peak integration using 

ORIGIN 7.0 software (OriginLab, USA), taking into account the heat of dilution 

for each glycan into buffer. 
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4.2.3.3 Circular dichroism spectroscopy 

Circular dichroism spectra of BabA527K and BabA527K variants was measured 

using a J-810 Spectropolarimeter (Jasco, USA). Protein concentration was 

1 µM in a buffer containing 20 mM Tris-Cl (pH = 7.4) and 3 mM NaCl. 

Measurements were made at 25 °C in a quartz cell with a 0.1 cm path length 

at a data pitch of 0.5 nm and scanning speed of 100 nm/min. Reported 

spectra are baseline-corrected for buffer alone and averaged from three 

independent scans. 

 

 
4.2.3.4 Differential scanning fluorimetry  

SYPRO Orange dye (20x final concentration) was added to 10 µM BabA527K 

and BabA527K variants in a buffer containing 20 mM Tris-Cl (pH = 7.4) and 300 

mM NaCl. Changes in fluorescence were measured across an increasing 

temperature gradient from 25 °C to 60 °C using a LightCycler 480 II (Roche, 

Switzerland) at a ramp rate of 0.01 °C/s. Primary data points from three 

independent experiments were fitted to a 6-parameter unfolding equation 

(222) using the Prism analysis package (GraphPad Prism 6 Software, USA). 

 

 

  



Characterising the BabA glycan-binding site 

 113 

4.3 Results 

4.3.1 Validating the functional activity of BabA527K 

To confirm that BabA527K was functionally active after recombinant expression 

and purification out of the periplasmic space of E. coli, binding to various 

ABO/Le blood group antigens was assessed. This was achieved using three 

different techniques: 

 

4.3.1.1 Enzyme-linked immunosorbent assay 

As an initial test, BabA527K interactions with HSA-Leb and HSA-Ley were 

assayed in a sandwich ELISA format. In this experiment, binding of BabA527K 

to Le antigen neoglycoconjugates, which were immobilised to a Maxisorp® 

plate, was detected via an antibody directed to its C-terminal c-Myc tag. As 

shown in Figure 4.2, specific concentration-dependent binding to HSA-Leb 

was observed.  

 

 
 

Figure 4.2: Binding of BabA527K to HSA-Leb/y in an ELISA 

Binding of BabA527K to immobilised HSA, HSA-Ley and HSA-Leb glycoconjugates was 

determined using a sandwich ELISA (n=3, error bars represent the standard error of 

the mean). ns = not significant (p > 0.05), unpaired two-tailed Welch’s t-test.  
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4.3.1.2 Surface plasmon resonance 

To further validate BabA527K attachment to HSA-Leb, SPR was employed to 

provide a direct approach to the detection of binding. Similar to the ELISA 

setup, HSA-Leb and HSA-Ley glycoconjugates were immobilised to the surface 

of CM5 sensor chip flow cells. This was achieved through amine coupling 

where an immobilisation level of ~10,000 RU was targeted (Figure 4.3).  

 

 

Figure 4.3: Immobilisation of HSA-Leb to a CM5 sensor chip via amine coupling 

[1] Activation of carboxymethyl groups on a CM5 sensor chip surface to NHS esters 

via injection of NHS/EDC, [2] Injections of HSA-Leb, [3] Deactivation of unreacted 

NHS esters via injection of Tris-Cl. The amount of immobilised ligand (RU after 

deactivation minus from RU after activation) was ~10,000 RU. HSA-Ley was similarly 

immobilised via amine coupling. 

 

BabA527K was injected in a serial flow manner over HSA-Ley then HSA-Leb 

surfaces. During injection over the HSA-Ley flow cell, an increase in RU was 

observed due to the changes in the refractive index of the running and sample 

buffer. However, no association or dissociation phases are seen in this 

sensogram. On the other hand, BabA527K clearly interacts with HSA-Leb as an 

association phase is observed during sample injection. This is succeeded by a 

dissociation phase after injection termination at 120 seconds (Figure 4.4A). 

BabA527K also displayed concentration-dependent binding towards HSA-Leb, 

1000 1500 2000 2500 3000
10000

15000

20000

25000

30000

35000

40000

Time (secs)

R
es

po
ns

e 
U

ni
ts

 (R
U

)

[1]

[2]

[3]



Characterising the BabA glycan-binding site 

 115 

but not HSA-Ley, when studied in a multi-cycle experimental setup (Figure 

4.4B).  

 

 

Figure 4.4: SPR analysis of BabA527K binding to HSA-Leb/y 

(A) BabA527K, at a concentration of 1.5 µM, was injected over HSA-Ley then HSA-Leb 

flow cells in a serial flow manner. (B) BabA527K binding to HSA-Leb was studied in a 

multi-cycle assay, that is, multiple analyte injections to the same ligand surface 

separated by regeneration steps. The RU shown have been reference subtracted for 

each sensogram trace (HSA-Leb minus HSA-Ley). 

 

SPR was not used to determine BabA527K binding affinity to HSA-Leb 

glycoconjugates in this study. This is because any apparent affinity 

determined is not reflective of a BabA527K:Leb interaction, but rather of 

BabA527K binding to a multivalent complex.  
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4.3.1.3 Mammalian glycan array 

Finally, binding of BabA527K to a glycan array containing several natural and 

synthetic mammalian glycans was outsourced to the CFG. This was used to 

examine BabA527K ABO/Le blood group antigen binding specificity as the array 

slide consisted of glycans containing the unique determinant regions of: 

§ H-1, A-1 and B-1 antigens, which are type 1 ABO blood group antigens  

§ Lea, Leb, A-Leb and B-Leb, which are type 1 Le blood group antigens  

§ H-2, A-2 and B-2 antigens, which are type 2 ABO blood group antigens  

§ Lex, Ley, A-Ley and B-Ley, which are type 2 Le blood group antigens  

 

Out of 609 glycans, notable binding was detected to five glycans, each of 

which contained a unique determinant region of H-1, A-1 or B-1 (type 1 ABO) 

blood group antigens (Figure 4.5A/B). While the selective binding observed 

may be reflective of the BabA527K glycan binding properties, it must be noted 

that epitope presentation on the array slide greatly affected BabA527K binding: 

no binding to glycans containing the unique determinant regions of H-1, A-1 or 

B-1 blood group antigens was detected if these structures were part of larger 

sugar complexes, or if they were attached to the array slide directly through 

their central N-acetylglucosamine residue (Figure 4.5A/C, Appendix Table 4).  

 

Of the five type 1 ABO glycan structures to which BabA527K bound, three 

(corresponding to the H-1, A-1 and B-1 antigen) were attached to the array 

slide via the following glycan linkage and spacer arm: [Core (GlcNAc)]β1-

3GalNAcα1-Sp14. Accordingly, to exclude the effect of epitope presentation, 

BabA527K binding to type 1 Le blood group antigens and type 2 ABO/Le blood 

group antigens on the array slide was only analysed if their unique 

determinant regions were conjugated to the array slide through the 

aforementioned linkage. All of the type 2 ABO/Le blood group antigens listed 
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at the beginning of this section were immobilised to the array slide through this 

glycan linkage and spacer arm – no notable binding was observed to any of 

these glycans (Figure 4.5A/D, Appendix Table 5). However, no type 1 Le 

blood group antigens were conjugated to the array slide through the specified 

linkage (Figure 4.5A/E).  

 

Low levels of binding, suggestive of non-specific binding either by BabA527K or 

the detecting antibody, were detected to a large proportion of the 609 glycans 

tested – this indicates that the assay conditions could be optimised. 
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Figure 4.5: Detection of BabA527K binding to a glycan array 

(A) Binding profile of BabA527K to various synthetic and mammalian glycans. Indicated 

in (B) are glycans to which BabA527K displayed notable binding. These glycans all 

contain the unique determination region of a type 1 ABO blood group antigen. (C) 

Shown are examples of glycan structures containing the same H-1 unique 

determinant region immobilised to the array slide through different glycan linkages and 

spacer arms. The difference in the detection of BabA527K binding to these glycans 

demonstrates the effect of epitope presentation on the interpretability of results from 

this assay. (D) Shown is an example of the differential binding profile displayed by 
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BabA527K to blood group antigens containing type 1 and type 2 cores. The unique 

determinant regions of the H-1 and H-2 antigen are both linked to the array slide 

through the same glycan linkage and spacer arm, that is, [Core (GlcNAc)]β1-

3GalNAcα1-Sp14. (E) The unique determinant regions of type 1 Le antigens were not 

attached to the array slide through this specified linkage, and BabA527K did not display 

notable binding to the only form of the Leb antigen present on the slide. Note that the 

Leb antigen [60] contained the same glycan linkage and spacer arm as the H-1 

antigen [67], to which BabA527K did not display any notable binding. Unique 

determinant regions are surrounded by a light orange shade. Sp0, Sp8, Sp10, Sp14, 

Sp20 and Sp21 are CFG specific spacer arms. Glycan symbolic representations can 

be interpreted with the following key: fucose – , galactose – , glucose – , N-

acetylgalactosamine – , N-acetylglucosamine – , mannose – . 

 

The ELISA, SPR assay and mammalian glycan array screen collectively 

indicated that BabA527K retained the glycan binding activity and specificity 

mediated by BabA on H. pylori J99 cells (82). Although not all type 1 ABO/Le 

blood group antigens that act as receptors for BabA-mediated H. pylori 

attachment could be tested, these assays irrefutably confirm that BabA527K is 

functionally active and is therefore suitable for structural studies and 

downstream applications. 
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4.3.2 Structural insight into BabA527K glycan recognition 

4.3.2.1 Determination of the crystal structure of apo-BabA527K 

To identify the glycan-binding site of BabA527K, determination of its crystal 

structure in the absence and presence of Leb was pursued. First, apo-

BabA527K crystallisation conditions were screened for, at both 4 °C and 20 °C, 

using an in-house AstraZeneca R&D screen comprised of 192 conditions. A 

twinned crystal, which diffracted to ~3 Å, was obtained as an initial hit (Figure 

4.6A). Its diffraction pattern revealed overlapping X-ray reflections – a defect 

that is manifested through the appearance of smeared spots – thereby 

rendering this dataset unsuitable for structural determination. Optimisation of 

the crystallisation conditions was consequently performed and this produced a 

larger, though still twinned, crystal. A single-crystal fragment was broken off 

for X-ray radiation and single diffraction data was collected to a resolution of 

2.0 Å (Figure 4.6B). 

 

 
 
Figure 4.6: Crystallisation of apo-BabA527K 

Crystal image (top) and representative diffraction image (bottom) of (A) initial and (B) 

optimised apo-BabA527K crystals. The broken black line in (B) indicates the single-

crystal fragment broken off and subjected to X-ray radiation. Both crystals were 

obtained through the sitting drop vapour diffusion method. 

            100 µm              100 µm  

A B 
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Using this dataset, apo-BabA527K structure solution was attempted via 

molecular replacement. This was unsuccessful due to the poor sequence 

identity (26%) between BabA527K and the most related atomic model available, 

which was the extracellular domain of SabA from H. pylori 26695 (175) (Figure 

3.2). Thus, to facilitate apo-BabA527K structure solution, SeMet was substituted 

into BabA527K in place of methionine to enable the use of anomalous 

dispersion to solve the phase problem. SeMet substitution was fulfilled during 

recombinant expression by introducing DL-selenomethionine into the E. coli 

XL10 Gold culture medium alongside amino acids known to inhibit methionine 

biosynthesis. Mass spectrometric analysis revealed SeMet substitution was 

both successful and efficient (incorporation efficiency = 94%). Once 

crystallised under similar conditions to unlabelled apo-BabA527K, this protein 

also yielded a twinned crystal (results not shown). However, through crystal 

seeding, single crystals were obtained. A single crystal was subjected to X-ray 

radiation and produced a 1.9 Å dataset (Figure 4.7). 

 

 
 

Figure 4.7: Crystallisation of SeMet apo-BabA527K 
Crystal image (top) and representative diffraction image (bottom) of optimised SeMet 

apo-BabA527K crystals. Crystals were obtained by sitting drop vapour diffusion. 

            100 µm  
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Single-wavelength anomalous dispersion was then successfully used to solve 

the phase problem of the SeMet apo-BabA527K dataset. An electron density 

map was calculated, and after multiple rounds of iterative refinement, BabA527K 

backbone and amino acid side chains were modelled (Figure 4.8). The final 

atomic model ran from residues Q27 to L527. In addition to the N- and C-

terminal amino acids not visible in the electron density map, two disordered 

loops between A282 – P291 and S402 – Q410 were missing from the model 

(Appendix Figure 1). 

 

 
 

Figure 4.8: Representative electron density map of the apo-BabA527K model 

Two amino acids of BabA527K modelled into the 1.9 Å-resolution electron density map 

[blue mesh (2Fo – Fc map, contoured at 2.0 σ)]. The visible hole in the centre of these 

aromatic residues indicates the high resolution of the calculated electron density map 

used to model BabA527K backbone and amino acid side chains (sticks).  

 

The crystallographic model (Figure 4.9) indicated that BabA527K contains two 

predominantly α-helical regions, termed Handle and Head regions, and a third 

β-sheet motif located on top of the Head region. This β-strand unit was named 

the Crown. The Handle region, containing both the N- and C-termini of 

BabA527K, forms an α+β unit. The N-terminal helix (α-N) forms a two-helix anti-

parallel coiled coil bundle with a C-terminal helix (α-C1) of similar approximate 

length. This C-terminal helix is followed by a two-strand anti-parallel β-sheet 

(β-C) before ending with a short α-helix (α-C2), which packs against α-N in an 

Phe96 

Trp97 
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anti-parallel orientation. In the native BabA protein, the highly conserved 

putative β-barrel transmembrane domain sequence succeeds the α-C2 helix. 

The core of the Head region is comprised of a four-helix anti-parallel coiled 

coil bundle, similar to a tetratricopeptide repeat motif (α-1 to α-4), at a near 

perpendicular angle to the Handle region creating the markedly kinked tertiary 

structure. The connecting features between these four helices are: i) a loop 

containing a short α-helix between α-3 and α-4; ii) a 20 amino acid loop 

between α-2 and α-3; and iii) a ~200 amino acid segment between the α-1 and 

α-2 helices. This connecting segment, which extends out of the core of the 

Head region, contains a small β-sheet (β-1), a pair of interacting α-helices (α-

1a and α-1b) and the Crown – the four-strand antiparallel β-sheet at the 

highest tip of the protein (β-2).  

 

 
 

Figure 4.9: Ribbon representation of the crystal structure of BabA527K 

Indicated are the Handle (blue) and Head regions (dark magenta), and the Crown β-

strand unit (gold). The four disulphide bridges are represented as green sticks. 

 

To contextualise this novel crystal structure, BabA527K was submitted to the 

Dali server (220) to identify structurally related molecules. This revealed the 
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extracellular domain of SabA 26695 (Figure 4.10A), which shares only 26% 

amino acid sequence identity with that of BabA527K, as the single most related 

structure in the PDB database [Root-mean-square deviation (RMSD) = 3.7 Å 

for all Cα atoms]. Superimposition of BabA and SabA shows that the α-1a 

helix is a common characteristic. This feature has been suggested to form part 

of the glycan-binding cavity of SabA, which recognises SLex antigens (Figure 

4.10B). While both proteins share highly similar three-dimensional folds, the 

four-strand anti-parallel β-sheet Crown of BabA is altogether absent in SabA.  

 

 
 
Figure 4.10: Comparison of BabA527K with the extracellular domain of SabA  

(A) Ribbon representation of the crystal structure of the extracellular domain of SabA 

26695. (B) Superimposition of the extracellular domain of SabA 26695 and BabA527K. 

Highlighted in colour are the Handle (blue) and Head regions (dark magenta), and the 

Crown β-strand unit (gold) of BabA527K. The extracellular domain of SabA 26695 is 

indicated in grey.  

 

Furthermore, at the protein level, a multiple sequence alignment indicated that 

the BabA Crown sequence is effectively absent in other known H. pylori 

adhesins (Figure 4.11). Moreover, apart from BabA, no DNA or protein 

sequences with similarity to the Crown were identified in H. pylori or any other 

organism in NCBI nucleotide sequence and protein sequence databases.  
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Figure 4.11: Sequence alignment of BabA with other known H. pylori adhesins 

Multiple sequence alignment of the putative extracellular domains of known adhesins, 

from H. pylori strain J99, indicates that the Crown sequence of BabA (highlighted in 

yellow, amino acids 183-253) is absent in other adhesins. 
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- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

- - - - - - I NNACPY FHASNSSEANAPK- - F ST T TGK I CG- A F SEE I SA I QKM I TDAQELVNQT SV I N EHEQ
NSACPW I NNG- - - - GAGGASSGSLWEG I Y LKGDGSACG- I FKNE I SA I QDM I KNAA I AV EQSK I VAANAQ
T TNCPWVNH- - - - - - - NQGQNGGAPWG- - LD TAGNVCQ- V FAT EF SAVT SM I KNAQE I VTQAQSL - - NQQ
- - - - - - - - - - - - - - - AGV SNV SGA- - - - - I D STGY PTQYAV FNN I KAM I P I LQQAVT L SQSNHT L SASLQ
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - F PNMQQQLT Y LNAGNV F FNAMNKAL EKNGT
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - SAN L SNQL SELNTASVY LT YMNSF LNANNQ

T T PVGNNNGKPFNPFTDAS- - FAQGMLANASAQAKMLNLAEQVGQA I N PERL SGT FQNFV - KGF LATCNN
NQR- N LD TGKT FNPYKDAN- - FAQSMFANAKAQAE I LNRAQAVVKD F - - ER I PA - - - EFV - KD SLGVCHE
N- - - NQNAPQD FNPYT SADRAFAQNMLNHAQAQAK I L ELADQMKKD LN- - T I PS- - - Q F I - TNY LAACHN
A- - - - QATGSQTNP- - - - - - K FAKD I YA FAQNQKQV I SYAQD I FN L F S- - S I PKDQYRY L EKAY LK I - - -
ATANST SST S- - GATGSDGQT Y SQQA I QY LQGQQN I L - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
AGG I FQNNTN- - QAY - ENGVTAQQ- - I AYV LKQAS I TM- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

PSTAGTGGTQGSAPGT VT TQT FASGCAYVGQT I TN LKNS I - - AH FGTQEQQ I QQAEN I AD T LVN FKSRY S
VQN- - - GH LRGT PSGT VTDNTWGAGCAYVGET VTN LKD S I - - AH FGDQAER I HNARNLAYT LANF SSQYQ
- - - - - GGGT - - L PDAGVTNNTWGAGCAYV EET I TA LNNSL - - AH FGTQAEQ I KQSEL LART I LD FRGSL S
- - - - - - - - - - - - PNAGKT PTNPYRQEVNLNQE I QT I QNNV - - SYYGN- - - RVDAAL SVAKDVYNLKSNQT
- - - - - - - - - - - - - - - - - - - - NNAANL LKQD EL L L EA FNSAVAAN I GNKEFNSAAFTGLVQG I I D - QSQLV
- - - - - - - - - - - - - - - GPSGD SGAAGAF LDAALAQHV FNSA- - - NAGN- D L SAKEFT SLVQN I VN - N SQ- -

ELGNT YNS- - - I T TA L SN I P- NAQSLQNAV SKKNNPY SPQG I D TNYY LNQNSYNQ I QT I NQEL
K LGEHYD S- - - I T AA I SSL P- DAQSLQNVV SKKTNPNSPQG I QDNYY I D SN I H SQVQSRSQEL
NLNNT YNS- - - I T T TASNT P- N SPF LKNL I SQSTNPNNPGGLQAVYQVNQSAY SQL L SATQEL
E I VT T YNNAKNL SQE I SK L PYNQVNTKD I I T L PYDQNAPAAGQYNYQ I N PEQQSNL SQALAAM
YNELTKNT I SGSAVNNAG I N SNQA- - - - - - - NAVQGRASQL PNALYNV - QVT LDK I NA LNNQV
- NA LT - - - - - - - LANNAN I SNSTGYQV SYGGN I DQARSTQL LN - - - NT - TNT LAKVTA LNNEL
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4.3.2.2 Determination of the crystal structure of BabA527K in complex 

with Leb 

Having solved the structure of apo-BabA527K, the crystal structure of BabA527K 

bound to Leb was pursued for glycan binding insight. To achieve this, the 

hexasaccharide form of the Leb antigen was pre-incubated with BabA527K prior 

to dispensing trials. As shown in Figure 4.12, this oligosaccharide contained 

two fucose residues (Fuc1 and Fuc4), two galactose residues (Gal2 and Gal5), 

a N-acetylglucosamine residue (GlcNAc3) and a glucose residue (Glc6). 

 

 
 
Figure 4.12: Chemical structure of the hexasaccharide form of Leb 

The monosaccharide units of Leb are indicated.  

 

Co-crystallisation screening yielded a large, twinned crystal. Nevertheless, 

after dislodging a single-crystal fragment, single X-ray diffraction data was 

successfully collected to a resolution of 2.1 Å (Figure 4.13). Molecular 

replacement was used to solve the phase problem of the BabA527K:Leb dataset 

using BabA527K as a model. The BabA527K chain built into the calculated 

electron density map run from residues Q27 to K528. Similar to the apo-model, 

two disordered loops (between A282 – F293 and S402 – Q410) were also 

missing from the BabA527K chain (Appendix Figure 2). 
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Figure 4.13: Crystallisation of BabA527K:Leb 

Crystal image (top) and representative diffraction image (bottom) of BabA527K:Leb 

crystals. The broken black line in the crystal image indicates the single-crystal 

fragment broken off and subjected to X-ray radiation. Crystal obtained through the 

sitting drop vapour diffusion method. 

 

As shown in Figure 4.14, BabA527K:Leb structural determination indicated that 

there was no conformational change to the BabA527K chain after sugar 

complexation. 

 

 
 

Figure 4.14: Superimposition of BabA527K from apo- and co-crystal structures 

No global conformational change occurs in BabA (sandy brown) after Leb complex 

formation (steel blue) – RMSD = 0.25Å for all Cα atoms. 

            100 µm  
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Furthermore, a single region of electron density, corresponding to Leb, was 

identified adjacent to the Crown. Five of the six sugar residues could be 

modelled but the Glc6 unit was not seen and density for the adjoining Gal5 

was partial (Figure 4.15A). Leb bound to a shallow, solvent-exposed groove at 

the tip of the Crown (Figure 4.15B). 

 

 
 

Figure 4.15: The Leb binding site of BabA527K 
(A) The electron density map around Leb (2Fo – Fc map, contoured at 2.0 σ) is shown. 

(B) An electrostatic surface representation of the Leb binding pocket at the tip of BabA 

containing charged (red = negative; blue = positive) and neutral (white) patches. 

Fucose, galactose and N-acetylglucosamine residues are coloured orange, yellow and 

blue, respectively. 

 

To investigate the binding mechanism, interactions between BabA527K, Leb and 

water atoms within bonding distance (<4 Å) were analysed. This indicated that 

binding is mediated solely by a network of hydrogen bonds between Leb Fuc1, 

GlcNAc3, Fuc4 and Gal5 residues and a total of eight BabA amino acids. Fuc1 

forms hydrogen bonds with the carbonyl backbone groups of C189, G191, 
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N194 and the hydroxyl group of the T246 side chain (Figure 4.16A). Fuc4 

interacts with the hydroxyl group of the N206 side chain through a water-

mediated hydrogen bond (Figure 4.16B). The GlcNAc3 residue forms two 

hydrogen bonds with the carboxyl and hydroxyl side chain groups of D233 and 

S244, respectively (Figure 4.16C). Lastly, Gal5 forms hydrogen bonds with 

both the S244 carbonyl backbone and hydroxyl side chain group. It also 

interacts with both the carboxyl group of the D233 side chain and the hydroxyl 

group of the S234 side chain through water-mediated hydrogen bonds (Figure 

4.16D). No interactions were observed between Gal2 and BabA527K.  

 

 

Figure 4.16: Hydrogen bonding between BabA527K and Leb residues 

Fucose, galactose and N-acetylglucosamine residues are coloured orange, yellow and 

blue, respectively. Hydrogen bonds are represented by dotted black lines. 

 

As this represents the first molecular insight into the structural basis of Leb 

binding by BabA, the identified binding site could not be compared to relevant 

models. However, alignment of BabA527K with BabA from 28 H. pylori strains, 

reported to bind Leb glycoconjugates, revealed that the amino acids identified 

in mediating Leb binding are highly conserved with the exception of N206 
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(Figure 4.17A). In fact, N206 is found within a region (residues 198 to 207 in 

BabA J99) with low amino acid conservation across the Leb binding strains. 

Thus, this segment, which connects two antiparallel β-strands in the BabA527K 

Crown, was termed the Hypervariable Crown Loop (Figure 4.17B). For the 

majority of analysed sequences, it was not known whether their corresponding 

BabA proteins displayed generalist or specialist binding patterns. However, 

Figure 4.17A shows that known specialist strains possess a conserved 

sequence within the Hypervariable Crown Loop that is markedly dissimilar, 

and longer, in comparison to known generalist strains.  

 

 

Figure 4.17: Conservation of the Leb binding site  

1

VT YT YTCSGDGNNNCSS- - - QVTGV - - - - NNQKDGTKTK I QT I DGKSVT T T I SSKVVD SRADGNT TGV SYT E I TNK L E
VT YT YTCSGEGNDNCSK- - - KATGV - - - - DNQNDGSKT T TQT I DGKT VT T T I SSKVVD SAASGN I SHV SYT E I TNK LD
VT YT YTCSGAGNDNCSK- - - EATGV - - - - DNQNGRTKT T TQT I DGKSVT T T I SSKVVD STASGNT SRV SYT E I TNK LN
VT Y SYTCSGEGNSNCSK- - - KATGV - - - - E I QNGGSKT T TQT I DGKQVT T T I SSKVVD SGAEGNT SGV SYT E I TNQLN
VT YT YTCSGEGNNNCSK- - - EVTG I - - - - I DQNGGNKT ETKT I DGKT VT T T I SSKVVD STASGN I RHV SYT E I TNK LD
VT YT YTCSGEGNNNCSK- - - EATGV - - - - EKQNGGTKT ETQT I DGKNVT T T I SSKVVD SRANGNT TGV SYT E I TNK LD
VT YT YTCSG- GNDNCSK- - - KATGV - - - - SDQNGGTKTKTQT I DGKT VT T T I SSKVVD SQAKGNT T RV SYT E I TNK LD
VT YT YTCSGEGNTNCSPSVTG- - - - - - - AN SQSNGSGTKTQT I DGKT VT T T I SSKVVD SRASGNT LGV SYT E I TNQL S
VKYNYTCSGEGNNNCSQEATGV - - - - - - - NDQNGGS I TKTQT I DGKT VT TM I SSKVVNSTAPGNT SGV SYT E I TNQLN
VT YT YTCSGKGNNNCDAL - - - - - - E- - - - NNRNGGTKT ETQT I DGKT VNT T I SSKVVD SHARGNT RGV SYT E I TNA LT
VT YT YTCSGEGNNNCDAL - - - - - - K - - - - DHRNGGTKT ETQT I DGKSV ST T I SSKVVASGAQGNT TGV SYT E I TNK LD
VT YT YTCSGEGNNNCDAL - - - - - - - - - - AKQREGGTKT ETQT I DGKT VNT T I SSKVVNGGT ETN - KGPSYT E I TNK L E
VKYT YTCSGEGNTNCDAL - - - - - - - - - - SEHRDGGTK I ETQ I I DGKT VNT T I SSKVVQP- - - - - LNGAAYT E I TNA LN
VKYT YTCSGEGNNNCNPSL LG I AD - - - - - DKQNDGSVTKTQT I DGKQV ET S I SSKVVD SKASSNT TGV SYT E I TNQLN
VT YT YTCSGEGNNNCNALVGNGNGE- - - - DKRNGGTKT ETQT I DGKSV ST T T SSKVVD SGAQGNTQGV SYT E I TNMLN
VT YT YTCSGEGNNNCNALVGNGNGE- - - - DKRNGGTKT ETQT I DGKSV ST T T SSKVVD SRAQGNTQGV SYT E I TNMLN
VT Y SYTCSGEGNTNCNPSL FG I KGKETNDDGRNGGT VTKTQT I DGKSVT T T I SSKVVD SKAEGNKSGV SYT E I TNQLN
VT Y SYTCSGEGNTNCNPSL FG I TGT I NNGDGRNGGSVTKTQT I DGKT VT T T I SSKVVD SGAAGNT SGV SYT E I TNQLN
VT Y SYTCSGKGNNNCD PL L LG I AG- - - - - DKRNGGS I TKNQT I DGKT V ST T I SSKVVQP- - - - - T NGAAYTK I TNA LN
VKYT YTCSGKGNTNCD PSVVGLGAD - - - - GKQNGGTKT T TQT I DGKT VT T T I SSKVVD STAPGNT SKV SYT E I TNQL S
VKYT YTCSG- GNTNCD PSVVGLGNK- - - - GERRGGSVTKTQT I DGKT V ST T I SSNVVDAGVQGNT RGV SYT E I TNQLK
VKYT YTCSGGGNTNCD PSL FG I TGT TNNGDGRNGGSVTKTQT I DGKQVT T T I SSKVVD SGASGNT SRV SYT E I TNQL S
VT YT YTCSGEGNTNCD PSL FG I KGND SNVDWRNGGSVTKTQT I DGKQVT T T I SSKVVD SEARGNT SHV SYT E I TNK LD
VDYT YTCSGNGNTNCD PSL FG I KGDNSNGDGRNGGST TKTQT I DGKSVT T T I SSKVVD SNAEGNT SHV SYT E I TNA L S
VNYT YTCSGEGNTNCD PSL FG I TGNTANGDGRNGGSVTKTQT I DGKSVT T T I SSKVVD STASGNT SHV SYT E I TNQLA
VKY SYTCSGKGNTNCD PSL LG I KGT SENGEGRNGGST TKAQT I DGKQVT T T I SSKVVD STAVGNTQHV SYT E I TNQLN
VT YT YTCSGEGNTNCD PSL LG I KGT SENGEGRNGGST TKTQT I DGKQVT T T I SSKVVD STATGNTQHV SYT E I TNQLN
VT YT YTCSGTGNDNCD PSL FG I TGNRQNGDGRNGGST TKTQT I DGKQVT T T I SSKVVD SRASGNT SHV SYT E I TNQLN
VT YT YTCSGNGNTNCD PSL FG I TGNKTNGEGRNGGT VTKTQT I DGKSV ST T I SSKVVD SGASGNT LHV SYT E I TNQLN

* 

* 

** ** 
** 
** 
** 
** 
** 

1

VT YT YTCSGDGNNNCSS- - - QVTGV - - - - NNQKDGTKTK I QT I DGKSVT T T I SSKVVD SRADGNT TGV SYT E I TNK L E
VT YT YTCSGEGNDNCSK- - - KATGV - - - - DNQNDGSKT T TQT I DGKT VT T T I SSKVVD SAASGN I SHV SYT E I TNK LD
VT YT YTCSGAGNDNCSK- - - EATGV - - - - DNQNGRTKT T TQT I DGKSVT T T I SSKVVD STASGNT SRV SYT E I TNK LN
VT Y SYTCSGEGNSNCSK- - - KATGV - - - - E I QNGGSKT T TQT I DGKQVT T T I SSKVVD SGAEGNT SGV SYT E I TNQLN
VT YT YTCSGEGNNNCSK- - - EVTG I - - - - I DQNGGNKT ETKT I DGKT VT T T I SSKVVD STASGN I RHV SYT E I TNK LD
VT YT YTCSGEGNNNCSK- - - EATGV - - - - EKQNGGTKT ETQT I DGKNVT T T I SSKVVD SRANGNT TGV SYT E I TNK LD
VT YT YTCSG- GNDNCSK- - - KATGV - - - - SDQNGGTKTKTQT I DGKT VT T T I SSKVVD SQAKGNT T RV SYT E I TNK LD
VT YT YTCSGEGNTNCSPSVTG- - - - - - - AN SQSNGSGTKTQT I DGKT VT T T I SSKVVD SRASGNT LGV SYT E I TNQL S
VKYNYTCSGEGNNNCSQEATGV - - - - - - - NDQNGGS I TKTQT I DGKT VT TM I SSKVVNSTAPGNT SGV SYT E I TNQLN
VT YT YTCSGKGNNNCDAL - - - - - - E- - - - NNRNGGTKT ETQT I DGKT VNT T I SSKVVD SHARGNT RGV SYT E I TNA LT
VT YT YTCSGEGNNNCDAL - - - - - - K - - - - DHRNGGTKT ETQT I DGKSV ST T I SSKVVASGAQGNT TGV SYT E I TNK LD
VT YT YTCSGEGNNNCDAL - - - - - - - - - - AKQREGGTKT ETQT I DGKT VNT T I SSKVVNGGT ETN - KGPSYT E I TNK L E
VKYT YTCSGEGNTNCDAL - - - - - - - - - - SEHRDGGTK I ETQ I I DGKT VNT T I SSKVVQP- - - - - LNGAAYT E I TNA LN
VKYT YTCSGEGNNNCNPSL LG I AD - - - - - DKQNDGSVTKTQT I DGKQV ET S I SSKVVD SKASSNT TGV SYT E I TNQLN
VT YT YTCSGEGNNNCNALVGNGNGE- - - - DKRNGGTKT ETQT I DGKSV ST T T SSKVVD SGAQGNTQGV SYT E I TNMLN
VT YT YTCSGEGNNNCNALVGNGNGE- - - - DKRNGGTKT ETQT I DGKSV ST T T SSKVVD SRAQGNTQGV SYT E I TNMLN
VT Y SYTCSGEGNTNCNPSL FG I KGKETNDDGRNGGT VTKTQT I DGKSVT T T I SSKVVD SKAEGNKSGV SYT E I TNQLN
VT Y SYTCSGEGNTNCNPSL FG I TGT I NNGDGRNGGSVTKTQT I DGKT VT T T I SSKVVD SGAAGNT SGV SYT E I TNQLN
VT Y SYTCSGKGNNNCD PL L LG I AG- - - - - DKRNGGS I TKNQT I DGKT V ST T I SSKVVQP- - - - - T NGAAYTK I TNA LN
VKYT YTCSGKGNTNCD PSVVGLGAD - - - - GKQNGGTKT T TQT I DGKT VT T T I SSKVVD STAPGNT SKV SYT E I TNQL S
VKYT YTCSG- GNTNCD PSVVGLGNK- - - - GERRGGSVTKTQT I DGKT V ST T I SSNVVDAGVQGNT RGV SYT E I TNQLK
VKYT YTCSGGGNTNCD PSL FG I TGT TNNGDGRNGGSVTKTQT I DGKQVT T T I SSKVVD SGASGNT SRV SYT E I TNQL S
VT YT YTCSGEGNTNCD PSL FG I KGND SNVDWRNGGSVTKTQT I DGKQVT T T I SSKVVD SEARGNT SHV SYT E I TNK LD
VDYT YTCSGNGNTNCD PSL FG I KGDNSNGDGRNGGST TKTQT I DGKSVT T T I SSKVVD SNAEGNT SHV SYT E I TNA L S
VNYT YTCSGEGNTNCD PSL FG I TGNTANGDGRNGGSVTKTQT I DGKSVT T T I SSKVVD STASGNT SHV SYT E I TNQLA
VKY SYTCSGKGNTNCD PSL LG I KGT SENGEGRNGGST TKAQT I DGKQVT T T I SSKVVD STAVGNTQHV SYT E I TNQLN
VT YT YTCSGEGNTNCD PSL LG I KGT SENGEGRNGGST TKTQT I DGKQVT T T I SSKVVD STATGNTQHV SYT E I TNQLN
VT YT YTCSGTGNDNCD PSL FG I TGNRQNGDGRNGGST TKTQT I DGKQVT T T I SSKVVD SRASGNT SHV SYT E I TNQLN
VT YT YTCSGNGNTNCD PSL FG I TGNKTNGEGRNGGT VTKTQT I DGKSV ST T I SSKVVD SGASGNT LHV SYT E I TNQLN
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HYPERVARIABLE CROWN LOOP B

VT YT YTCSGDGNNNCSS- - - QVTGV - - - - NNQKDGTKTK I QT I DGKSVT T T I SSKVVD SRADGNT TGV SYT E I TNK L E
VT YT YTCSGEGNDNCSK- - - KATGV - - - - DNQNDGSKT T TQT I DGKT VT T T I SSKVVD SAASGN I SHV SYT E I TNK LD
VT YT YTCSGAGNDNCSK- - - EATGV - - - - DNQNGRTKT T TQT I DGKSVT T T I SSKVVD STASGNT SRV SYT E I TNK LN
VT YT YTCSGKGNNNCDAL - - - - - - E- - - - NNRNGGTKT ETQT I DGKT VNT T I SSKVVD SHARGNT RGV SYT E I TNA LT
VT YT YTCSGEGNNNCDAL - - - - - - K - - - - DHRNGGTKT ETQT I DGKSV ST T I SSKVVASGAQGNT TGV SYT E I TNK LD
VT YT YTCSGEGNNNCDAL - - - - - - A - - - - KQREGGTKT ETQT I DGKT VNT T I SSKVVNGGT ETN - KGPSYT E I TNK L E
VT YT YTCSGEGNTNCSPSVTGA- - - - - - - N SQSNGSGTKTQT I DGKT VT T T I SSKVVD SRASGNT LGV SYT E I TNQL S
VKYT YTCSGEGNNNCNPSL LG I A - - - - - DDKQNDGSVTKTQT I DGKQV ET S I SSKVVD SKASSNT TGV SYT E I TNQLN
VKYNYTCSGEGNNNCSQEATGV - - - - - - - NDQNGGS I TKTQT I DGKT VT TM I SSKVVNSTAPGNT SGV SYT E I TNQLN
VT Y SYTCSGEGNSNCSKKATGV - - - - - - - E I QNGGSKT T TQT I DGKQVT T T I SSKVVD SGAEGNT SGV SYT E I TNQLN
VT YT YTCSGEGNNNCSK- - - EVTG I - - - - I DQNGGNKT ETKT I DGKT VT T T I SSKVVD STASGN I RHV SYT E I TNK LD
VT YT YTCSGEGNNNCSK- - - EATGV - - - - EKQNGGTKT ETQT I DGKNVT T T I SSKVVD SRANGNT TGV SYT E I TNK LD
VT YT YTCSGEGNDNCSKKATGV - - - - - - - SDQNGGTKTKTQT I DGKT VT T T I SSKVVD SQAKGNT T RV SYT E I TNK LD
VKYT YTCSGKGNTNCD PSVVGL - - - - GADGKQNGGTKT T TQT I DGKT VT T T I SSKVVD STAPGNT SKV SYT E I TNQL S
VKYT YTCSGEGNTNCD PSVVGLG- - - NKGE- RRGGSVTKTQT I DGKT V ST T I SSNVVDAGVQGNT RGV SYT E I TNQLK
VT YT YTCSGEGNNNCNALVGNGNGE- - - - DKRNGGTKT ETQT I DGKSV ST T T SSKVVD SGAQGNTQGV SYT E I TNMLN
VT YT YTCSGEGNNNCNALVGNGNGE- - - - DKRNGGTKT ETQT I DGKSV ST T T SSKVVD SRAQGNTQGV SYT E I TNMLN
VT Y SYTCSGEGNTNCNPSL FG I KGKETNDDGRNGGT VTKTQT I DGKSVT T T I SSKVVD SKAEGNKSGV SYT E I TNQLN
VKYT YTCSGGGNTNCD PSL FG I TGT TNNGDGRNGGSVTKTQT I DGKQVT T T I SSKVVD SGASGNT SRV SYT E I TNQL S
VT Y SYTCSGEGNTNCNPSL FG I TGT I NNGDGRNGGSVTKTQT I DGKT VT T T I SSKVVD SGAAGNT SGV SYT E I TNQLN
VT Y SYTCSGKGNNNCD PL L LG I AG- - - - - DKRNGGS I TKNQT I DGKT V ST T I SSKVVQP- - - - - T NGAAYTK I TNA LN
VKYT YTCSGEGNTNCDAL - - - - - - - - - - SEHRDGGTK I ETQ I I DGKT VNT T I SSKVVQP- - - - - LNGAAYT E I TNA LN

Hypervariable Crown 
Loop 

A
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(A) Sequence alignment of the BabA527K Crown (residues 183-253) with that of 28 Leb 

binding H. pylori strains. Amino acids involved in hydrogen bond formation to each Leb 

residue are indicated. (*) indicates generalist strains, which bind to the type 1 ABO/Le 

blood group antigens in group-O, -A and -B individuals. (**) indicates specialist strains, 

which bind to the type 1 ABO/Le blood group antigens in group-O individuals only 

(123). (B) The Hypervariable Crown Loop (residues 198-207 in BabA527K) is indicated 

in grey. Fucose, galactose and N-acetylglucosamine residues are coloured orange, 

yellow and blue, respectively. Hydrogen bonds are represented by dotted black lines. 

 

 
To build on the structural insight into Leb antigen binding obtained from X-ray 

crystallography, the glycan binding characteristics of BabA527K were next 

evaluated from a biophysical perspective. 
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4.3.3 Glycan binding profile of BabA527K and BabA527K variants 

To further validate the binding mechanism of BabA527K, ITC was used to 

characterise its interaction with the Leb antigen hexasaccharide used in 

structural determination. ITC was specifically chosen over SPR as the 

biophysical technique to be used for glycan affinity determination so as to 

avoid the need for BabA527K immobilisation and ligand surface regeneration, 

both of which can affect apparent affinity (223). In agreement with the 

structural model (Figure 4.18A), the thermodynamic parameters of binding 

confirmed a single-site interaction (N ~1.07) driven by non-covalent, that is, 

enthalpic contributions (ΔH ~−10.9 kcal/mole) rather than hydrophobic, that is, 

entropic contributions (−TΔS ~6.0 kcal/mole); binding was characterised by a 

weak dissociation constant (KD) of ~252 µM (Figure 4.18B).  

 

 
 

Figure 4.18: Binding affinity between wild-type BabA527K and Leb 

(A) Observed interactions of wild-type BabA527K with Leb in the crystallographic model. 

The fucose, galactose and N-acetylglucosamine residues of Leb are coloured orange, 

yellow and blue, respectively. Hydrogen bonds are represented by dotted black lines. 

(B) Calorimetric response (upper panel) and binding isotherm (lower panel) of wild-

A

B 
KD = 252 ± 15 µM 
N = 1.07 ± 0.03 
ΔH = -10.9 ± 0.5 kcal/mole  
-TΔS = 6.0 ± 0.5 kcal/mole 

Wild-type 

B

Wild-type 



Characterising the BabA glycan-binding site 

 133 

type BabA527K titrated with Leb. The continuous line in the lower panel represents the 

least-squares fit of the data to a single-site binding model. The reported 

thermodynamic parameters are the average [± standard error of the mean (SEM)] of 

three independent experiments. The calorimetric titrations were performed at pH 7.4. 

 

To validate and probe the significance of the interaction between Leb and the 

Hypervariable Crown Loop, site-directed mutagenesis was used to perform an 

alanine point substitution at residue N206. A BabA527K-N206A variant would 

lack the hydroxyl group of the asparagine side chain that was observed to 

form a single water-mediated hydrogen bond with the Fuc4 residue of Leb 

(Figure 4.19A). Indeed, when studied through ITC, this variant had a lower 

affinity for Leb (KD ~582 µM) (Figure 4.19B). Again, the thermodynamic 

parameters of binding indicated a single-site interaction driven by enthalpic 

contributions rather than entropic contributions. 

 

 
 

Figure 4.19: Binding affinity between the BabA527K-N206A variant and Leb 

(A) Predicted interactions between BabA527K with an N206A substitution (indicated) 

and Leb, based on the crystallographic model. The fucose, galactose and N-

acetylglucosamine residues of Leb are coloured orange, yellow and blue, respectively. 

KD = 582 ± 14 µM 
N = 1.03 ± 0.05 
ΔH = -11.8 ± 0.7 kcal/mole  
-TΔS = 7.4 ± 0.7 kcal/mole 

N206A 

N206A A

B
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Hydrogen bonds are represented by dotted black lines. (B) Calorimetric response 

(upper panel) and binding isotherm (lower panel) of BabA527K-N206A titrated with Leb. 

The continuous line in the lower panel represents the least-squares fit of the data to a 

single-site binding model. The reported thermodynamic parameters are the average (± 

SEM) of three independent experiments. The calorimetric titrations were performed at 

pH 7.4. 

 

To validate and probe the significance of the interactions between Leb and 

highly conserved amino acids in the Crown, site-directed mutagenesis was 

used to perform combined alanine point substitutions at residues D233 and 

S244. This variant would lack the carboxyl and hydroxyl side chains of D233 

and S244, respectively, that form direct and water-mediated hydrogen bonds 

with GlcNAc3 and Gal5 of Leb (Figure 4.20A). When studied through ITC, this 

variant displayed no detectable affinity for Leb (Figure 4.20B).  

 

 
 

Figure 4.20: Binding affinity between the BabA527K-D233A/S244A variant and Leb 

(A) Predicted interactions between BabA527K with combined D233A/S244A 
substitutions and Leb, based on the crystallographic model. The fucose, galactose and 

N-acetylglucosamine residues of Leb are coloured orange, yellow and blue, 

respectively. Hydrogen bonds are represented by dotted black lines. (B) No 

No binding detected 

D233A/S244A 
D233A 

S244A 

A

B
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calorimetric response (upper panel) or binding isotherm (lower panel) was obtained by 

titrating BabA containing D233A/S244A substitutions with Leb. The calorimetric 

titrations was performed at pH 7.4. 

 

Having validated the BabA527K:Leb crystallographic model through BabA527K 

variant binding studies, it was desirable to confirm that the identified binding 

site was responsible for BabA527K recognition of the other type 1 ABO/Le blood 

group antigens. In support of this, no binding was detected, using ITC, 

between the BabA527K-D233A/S244A variant and H-1, A-1 and B-1 antigens 

while wild-type BabA527K bound these glycans, albeit with lower affinity than to 

Leb (Table 4.3, Appendix Table 6 and 7). These structurally similar blood 

group antigens all lack the Leb Fuc4 residue that forms a single water-

mediated hydrogen bond with BabA527K at N206. However, the A-1 and B-1 

antigens have additional galactosamine and galactose residues, respectively, 

attached to Gal2.  

 

The type 1 ABO/Le blood group antigen binding specificity of BabA527K was 

also confirmed through ITC. No binding was observed between BabA527K and 

the Lea antigen, which lacks the Leb Fuc1 residue that forms direct hydrogen 

bonds with C189, G191, N194 and T246. Furthermore, no binding was 

observed between BabA and the closely related Ley and H-2 antigens. 

Although Ley and H-2 contain the same residues that were observed in our 

structural model to bind BabA as Leb and H-1, respectively, they differ by 

having a Galβ1-4GlcNAc glycosidic linkage. Lastly, no binding was observed, 

using ITC, between BabA and the SLex antigen, which is recognised by SabA. 

This glycan lacks the Leb Fuc1 residue and contains a terminal N-

acetylneuraminic acid residue adjoined to a Galβ1-4GlcNAc core (Table 4.3, 

Appendix Table 6). 
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Table 4.3: Binding affinity of BabA527K to various ABO/Le blood group antigens 

Glycan symbolic representations can be interpreted with the following key: fucose – , 

galactose – , glucose – , N-acetylgalactosamine – , N-acetylglucosamine – , 

N-acetylneuraminic acid – . Binding affinity was determined through calorimetric 

titrations performed at pH 7.4. Values are obtained from a single experiment, unless 

otherwise indicated. 
aAverage of three independent experiments. 
bAverage of two independent experiments. 

 
ABO/Le blood group antigen  BabA527K Binding Affinity 

Leb antigen hexasaccharide 
 

 

 KD = 252 µMa 
 
 
 
 
 
 
 H-1 antigen pentasaccharide 

 
 

 

 
 
KD = 617 µMb 
 
 

A-1 antigen hexasaccharide 
 
 

 

 
 
KD = 529 µM 
 
 
 

B-1 antigen hexasaccharide 
 
 

 

 
 
KD = 416 µM 

 

Lea antigen pentasaccharide 
 

 
 
 

 
 
 

No binding detected  
 

Ley antigen tetrasaccharide 
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H-2 antigen pentasaccharide 
 

 

 

 
 
No binding detected  
 
 

SLex antigen pentasaccharide 
 

 
 
 

 
 
 

No binding detected  
 
 

 

 
To better understand how Galβ1-3GlcNAc (type 1) and Galβ1-4GlcNAc (type 

2) cores affect glycan recognition by BabA, three-dimensional Le blood group 

antigen models were calculated in minimum energy conformations with the 

SWEET-II system (224). As shown in Figure 4.21, this indicated that glycans 

with type 1 and type 2 cores markedly differ in their conformational orientation, 

and accordingly, in the positioning of their functional groups. 

 

 
 
Figure 4.21: Type 1 and type 2 fucosylated ABO/Le blood group antigen 

molecular models 

Stick models of Leb (type 1) and Ley (type 2) antigens show distinctly different three-

dimensional orientations to due to Galβ1-3GlcNAc and Galβ1-4GlcNAc linkages, 

respectively. Fucose, galactose and N-acetylglucosamine residues are coloured 

orange, yellow and blue, respectively.  
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Finally, to confirm that the observed reduction and loss of BabA527K binding 

affinity to the tested ABO/Le blood group antigens was a direct result of the 

alanine point substitutions, rather than a change to the global protein fold, 

circular dichroism spectroscopy was used to compare the secondary structure 

of BabA527K variants against that of the wild-type. Neither the N206A nor the 

D233A/S244A mutations caused a change to the α-helical fold of BabA527K 

(Figure 4.22A). In further support of this result, differential scanning fluorimetry 

revealed that neither mutation causes a major change to the conformational 

stability of BabA527K, as indicated by the similarity in thermal unfolding 

temperatures between wild-type and variant proteins (Figure 4.22B). 

 

 
 

Figure 4.22: Secondary structure and thermal stability of wild-type and variant 
BabA527K proteins 

(A) Overlay of far-UV circular dichroism spectra averaged from three independent 

experiments. (B) Temperature-induced unfolding transition determined using 
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differential scanning fluorimetry. The reported midpoint temperature of each protein 

unfolding transition (Tm) is the average (± SEM) from three independent experiments. 

 

Successfully generating a variant BabA527K protein lacking ABO/Le blood 

group antigen affinity not only validates the crystallographic model but also 

offers a control to stringently identify BabA-specific targeting effects during the 

development of targeted drug delivery vectors. 
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4.4 Discussion 

Following the successful expression and purification of recombinant BabA, the 

next objective of this study was to characterise its glycan-binding site. This 

information is crucial to ensure that recombinant BabA is correctly orientated 

when conjugated to the surface of drug delivery vectors such that it retains 

binding activity. However, before commencing structural studies, it was 

necessary to confirm that BabA527K was functional and possessed its expected 

glycan-binding specificity. It has repeatedly been reported that H. pylori J99 

cells recognise Leb but not the closely related the Ley antigen. Recent studies 

have also shown that both native and recombinant forms of BabA J99 

maintain this characteristic (109, 112). Consequently, this binding selectivity 

was assessed in BabA527K though an ELISA and SPR assay. Both techniques 

definitively confirmed that BabA527K bound to HSA-Leb but not to HSA-Ley 

glycoconjugates, thereby suggesting that the protein was correctly folded and 

functional.  

 

An important characteristic of H. pylori J99 cells is also the ability to attach to 

type 1 ABO/Le blood group antigens corresponding to blood group-A, -B and -

O phenotypes (123). Through assessment of binding to a mammalian glycan 

array, this “generalist” glycan recognition profile was similarly found in 

BabA527K. As also reported with H. pylori J99 cells, no binding was observed 

between BabA527K and the wide range of type 2 ABO/Le blood group antigens 

present on the array. This further confirms the correct folding and binding 

activity of BabA527K. Additionally, the retention of the characteristic features of 

H. pylori ABO/Le blood group antigen-binding specificity validates the efficacy 

of the recombinant strategy employed in generating a functional protein. The 

results of the mammalian glycan array screen also suggest that the BabA527K 

glycan recognition site is highly specific in recognising type 1 ABO/Le blood 
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group antigens only, which greatly supports its use a gastric- and glycan-

specific targeting moiety. Unfortunately however, this assay does not provide 

definitive results regarding glycan specificity because immobilisation strategies 

can adversely affect the spatial orientation of glycans and thereby prevent 

their subsequent recognition by lectins in this assay (225); this was seen in 

BabA527K binding to A-1, B-1, and H-1 antigens. 

 

In contrast to the abundance of information in the literature regarding the 

BabA glycan binding profile, there was no published information describing 

BabA crystallisation or structure solution when this objective was first pursued. 

Nonetheless, despite difficulties in obtaining single crystals, which have since 

been similarly reported by Subedi et al. (177), the crystal structure of BabA527K 

in the absence and presence of Leb was successfully solved. With regards to 

expected features, these crystal structures confirm that recombinant BabA, 

which exists as a monomer, contains four intramolecular disulphide bonds. 

This provides structural evidence to support the choice of recombinant 

expression strategies in Chapter 3, which all facilitated this post-translational 

modification. With regards to unexpected features, the immediately apparent 

structural similarity between the extracellular domain of BabA J99 and that of 

SabA 26695 could be considered a surprise finding due to their low sequence 

identity. Perhaps this suggests that the three-dimensional folds of these 

proteins may be of functional significance. However, an in-depth analysis and 

understanding of the H. pylori outer leaflet is needed to aid the functional 

contextualisation and rationalisation of these adhesin structures. SabA does 

not contain the Crown β-sheet motif of BabA527K, which was found in this study 

to possess its Leb binding site. This structural difference fully explains the lack 

of SabA affinity to Leb antigens (175). In line with previous studies, BabA527K 

displayed no affinity for SLex antigens, which are conversely recognised by 
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SabA (226). Although a putative glycan-binding pocket in SabA has been 

suggested by Pang et al. (175), crystallographic insight into its molecular basis 

for glycan recognition is needed to understand the structural differences that 

distinguish binding of SLex antigens between these two important adhesins.  

 

The Leb binding interaction takes place in BabA527K at the edge of its Crown 

region within a solvent-exposed binding site. The binding pocket is of a 

shallow topology, which is, in fact, typically observed in carbohydrate binding 

proteins and is known to result in few ligand contacts (227). As a result, lectins, 

including bacterial adhesins such as SabA, typically display low glycan binding 

affinity (175, 228). Low BabA527K:Leb affinity was similarly found in this study; 

these experiments were performed at pH 7.4 to reflect the near-neutral 

conditions found around surface mucous cells that host type 1 ABO/Le blood 

group antigens (229, 230). It must, however, be noted that any potential 

effects of the membrane-spanning domain of BabA on Leb binding affinity are 

not captured. Furthermore, the multitude of BabA:Leb interactions that occur 

between H. pylori and epithelium or mucin associated Leb antigens, would 

exponentially increase the binding affinity of a single bacterium during 

colonisation. This effect of avidity on BabA:Leb has been demonstrated in 

H. pylori J99 where bacteria bind multivalent Leb glycoconjugates with 

substantially higher affinity (KD ~2 pM) (123).  

 

The structural model revealed that BabA, of the J99 strain, employs eight 

amino acids to bind to Leb. Interestingly, these amino acids are highly 

conserved between strains, with the exception of N206, which interacts with 

Leb Fuc4 and is located within the Hypervariable Crown Loop. The disparity in 

sequence identity and length observed in the Hypervariable Crown Loop may 

result in modified secondary structure folds in other H. pylori strains and 
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thereby affect the presentation of functional groups capable of interacting with 

Leb Fuc4, or other residues. Accordingly, variability in this segment may be 

responsible, at least in part, for the differences seen in the affinity of H. pylori 

strains towards Leb antigens (123, 124). Indeed, the interaction between the 

Hypervariable Crown Loop and Leb, through N206 and Fuc4, did have an 

effect on binding affinity – an alanine point substitution at position 206 resulted 

in a 2.3-fold reduction in binding affinity. Furthermore, analysis of the binding 

interaction between BabA and the H-1 antigen supported this finding. H-1 

lacks only the Fuc4 residue of Leb and binds to BabA527K with 2.4-fold lower 

affinity than Leb. Thus, the data suggests that the interaction between the 

Hypervariable Crown Loop and Leb Fuc4 can play a significant role in 

determining binding affinity. 

 

Similar to the H-1 antigen, BabA527K bound with lower affinity than Leb to A-1 

(2.1 fold) and B-1 (1.7 fold) antigens. It must be noted that the large sample 

amounts of BabA527K required for binding analysis through ITC, in combination 

with the low protein yield after periplasmic expression, limited the ability to 

perform repeated A-1 and B-1 calorimetric titrations. As such, these reported 

dissociation constants would benefit from further validation. While this limits 

analysis of the data, the relatively weaker binding affinity observed, in 

comparison to Leb, can still be considered rational because these glycans, like 

the H-1 antigen, lack the Leb Fuc4 residue. However, A-1 and B-1 antigens do 

contain additional galactosamine and galactose residues, respectively; these 

extend out of Gal2 towards the Hypervariable Crown Loop. Accordingly, their 

relative affinities can only be explained with structural insight that reveals how 

these residues affect binding interactions with BabA527K. 
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Further structural insight probing ABO/Le blood group A and B antigen binding 

could also aid in the understanding whether the Hypervariable Crown Loop 

has a role to play in the definition of “specialist” binding specificity. This 

characteristic of BabA binding was defined by Aspholm-Hurtig et al. upon the 

observation that certain South American Amerindian H. pylori strains only 

bound to the type 1 ABO/Le blood group antigens corresponding to blood 

group-O phenotypes but not those of group-A or group-B (123). Interestingly, 

an analysis of specialist strain Crown sequences, made publicly available by 

Aspholm-Hurtig et al., revealed a markedly dissimilar and longer 

Hypervariable Crown Loop in comparison to that of the generalist J99 strain 

used in this study. It would be interesting to investigate whether the structural 

features formed by these sequences are able to modulate their BabA binding 

sites to prevent accommodation of the additional galactosamine and galactose 

residues found in ABO/Le blood group A and B antigens, respectively. Based 

on an extrapolation of the BabA527K:Leb structural model, these additional 

residues would extend out of Leb Gal2 towards the Hypervariable Crown Loop. 

Given this proximity, the conformation of the Hypervariable Crown Loop in 

specialist strains could prove to be an important structural feature that creates 

the observed specificity in glycan binding. 

 

No DNA or protein sequences with similarity to the BabA Crown were 

identified in H. pylori or any other organism. In this light, the Crown can be 

considered unique to BabA to enable specific attachment of H. pylori to type 1 

ABO/Le blood group antigens in the human gastric mucosa. This is achieved 

through the network of hydrogen bonds presented, as partial deletions of 

these interactions can result in a loss of recognition: 
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• Combined alanine point substitutions to BabA527K at D233 and S244, which 

form direct and water-mediated hydrogen bonds through their side chains 

to GlcNAc3 and Gal5, results in a complete loss of binding to Leb. This 

occurs in spite of possible interactions between the Crown and Leb through 

Fuc1 and Fuc4.  

• These combined alanine point substitutions also result in a complete loss 

of BabA527K binding affinity to H-1, A-1 and B-1 antigens, indicating a 

single glycan-binding site. This absence of affinity is observed despite 

possible direct hydrogen bonds BabA527K and Fuc1 (based on an 

extrapolation of the BabA527K:Leb structural model), as these glycans do 

not contain Fuc4. 

• However, BabA527K contacts through D233 and S244, though necessary, 

are not sufficient to confer glycan recognition. The interaction between 

wild-type BabA527K and Lea shows that despite possible interactions 

between the Crown and GlcNAc3, Fuc4 and Gal5, the absence of only the 

Fuc1 residue results in a complete loss of binding.  

 

Thus, no single sugar residue is responsible for glycan recognition by 

BabA527K. Rather, it is the network of hydrogen bonds to multiple residues that 

forms the basis of molecular recognition. Consequently, it is no surprise that 

BabA527K did not bind to the distantly related Ley, H-2 and SLex antigens as 

they possess completely different three-dimensional conformations.  

 
 
The structural and biophysical insight into the glycan binding mechanism of 

BabA527K answers a previously elusive question of how BabA mediates 

H. pylori attachment to the gastric mucosa. While this is of substantial 

significance to researchers investigating the adaptations of H. pylori to the 

gastric environment, this insight immediately aids the rational design of BabA-
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particle conjugates. For the development of proof-of-principle vectors, linkage 

of recombinant BabA to particle surfaces through its Handle region should 

enable glycan-binding activity to be retained given the relative location of its 

glycan-binding site at the tip of the Crown. Furthermore, the functional activity 

of BabA-vectors can now be stringently assessed by a comparison of its 

glycan binding properties with that of vectors hosting the variant BabA proteins 

developed through these experiments. 
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Chapter 5: Assessing BabA acid/pepsin stability and particle-
conjugate activity 

 
5.1 Introduction 

Having successfully characterised the glycan binding mechanism of BabA, the 

final objective of this study focused on its use as a gastric targeting moiety 

through an assessment of its acid/pepsin stability and functional activity as a 

particle-conjugate. In order for BabA to direct drug delivery vectors to glycans 

on the gastric surface epithelium, the protein will first have to endure harsh 

conditions in the lumen of the stomach. This is mediated by gastric fluid, which 

is a denaturing acidic medium that, during digestion, also has an abundance 

of the proteolytic enzyme pepsin (231). Pepsin is an endopeptidase that has 

an optimal hydrolysis activity for peptide bonds within a pH range of 1-4. At pH 

1.5 it exhibits ~90% of maximum activity but at pH 4.5 this is reduced to ~35% 

and at pH 8, it is irreversibly inactivated (232, 233). In comparison to other 

gastrointestinal proteases, pepsin has a broad specificity, which is discussed 

in detail in (234) and can be estimated using bioinformatics tools. Cleavage 

probability is uniquely determined by the identity of both amino acid residues 

on either side of the peptide bond. However, pepsin preferentially cleaves 

peptide bonds adjoined to bulky, hydrophobic residues, such as phenylalanine, 

tryptophan, tyrosine or leucine and it will not cleave at valine, alanine or 

glycine linkages (235). Although pepsin is the principal proteolytic enzyme of 

gastric fluid, not all proteins (e.g. β-lactoglobulin) are susceptible to peptic 

digestion because cleavage sites can be rendered inaccessible by 

conformational folds (236). In contrast to the harsh conditions of the lumen, 

the mucus layer that overlays the gastric epithelium is a more favourable 

microenvironment. It is characterised by a pH gradient from acidic at the 

luminal interface, to neutral at the epithelial surface, due to mucosal 
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bicarbonate secretions (229, 237, 238). The surface mucus layer, which also 

withstands luminal pepsin penetration, is principally composed of the 

MUC5AC mucin (100, 239). Because this glycoprotein carries type 1 ABO/Le 

blood group antigens, it may also act as receptor for BabA-vectors as it does 

for H. pylori (Figure 5.1) (38, 240, 241). In addition to these potential 

physiological barriers, BabA must be immobilised to drug delivery vectors in a 

manner that ensures exposure of its glycan-binding site. Several different 

methods can be employed to attach proteins to drug delivery vectors; these 

approaches are very much dependent on the material that constitutes the 

vector’s core as conjugation strategies are based on particle surface chemistry. 

As reviewed in (242), while established methods are readily applicable, a poor 

choice of conjugation strategy can impair the functional activity of particle-

conjugates not only due to inappropriate orientation but also due to loss of 

protein tertiary structure after immobilisation. As such, a robust assessment of 

functional activity is always needed to confirm the applicability of any protein in 

a particle-conjugate system. 

 

 
 

Figure 5.1: Schematic representation of the gastric lumen and mucus layer 

MUC5AC is the major mucin constituent of the acid- and pepsin-resistant gastric 

surface mucus layer (207). BabA receptors, that is, type 1 ABO/Le blood group 

antigens, are found attached to both MUC5AC and surface epithelial cells (indicated). 
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Despite its important role in mediating gastric colonisation, the susceptibility of 

BabA to peptic digestion has not been published. Additionally, the effects of 

acidic conditions on its stability have not been described in the literature. It is 

also not known how pH affects the glycan binding affinity of BabA (92), 

however, this defines how BabA interacts with type 1 ABO/Le blood group 

antigens in the distal, acidic portion of the surface mucus layer compared to 

those found on the surface epithelial cells and on MUC5AC in the 

juxtamucosal, near-neutral region. Finally, no studies have described the 

immobilisation of BabA onto a particle surface such that it remains functional – 

this is clearly a key consideration for mediating the proposed biomimicry. 

 

Therefore, to study the effect of the low pH found in the stomach lumen and 

mucus layer on recombinant BabA, its conformation and functionality was 

characterised at acidic conditions. Subsequently, its resistance to proteolytic 

cleavage by pepsin was evaluated in comparison to β-lactoglobulin – a protein 

known to possess intrinsic resistance to pepsin (243). Finally, BabA-particle 

conjugates (polystyrene-based microparticles were used as model particles, 

however, it must be noted that their non-biodegradability prevents their in vivo 

applicability) were created and studied in a binding assay. Importantly, this 

array of information provides essential insight needed to make a preliminary 

assessment of the suitability of BabA as a targeting moiety, and if applicable, 

lay a foundation for the future development of BabA-vectors.  

 

Though the conformational stability and functionality of recombinant BabA was 

not adversely affected by acidic pH, the protein displayed limited resistance to 

pepsin. However, BabA-particle conjugates were successfully generated and 

found to be functional. This represents a significant step towards achieving the 

translational goal of this project.  
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5.2 Experimental Procedures 

5.2.1 Acidic pH conformation and functionality studies  

5.2.1.1 Circular dichroism spectroscopy 

Circular dichroism spectra of BabA527K was measured and analysed as 

detailed in Section 4.2.3.3. Protein concentration was 1 µM in a buffer 

containing 50 mM KH2PO4 (pH = 4.5) or 20 mM Tris-Cl (pH = 7.4) and 3 mM 

NaCl. 

 

 
5.2.1.2 Differential scanning fluorimetry  

SYPRO Orange dye (20x final concentration) was added to 10 µM BabA527K in 

a buffer containing 50 mM KH2PO4 (pH = 4.5) or 20 mM Tris-Cl (pH = 7.4) and 

300 mM NaCl. Changes in fluorescence were measured across an increasing 

temperature gradient from 20 °C to 80 °C using a iCycler iQ Real-Time PCR 

Detection System (Bio-Rad, USA) at a ramp rate of 0.01 °C/s. Primary data 

points from three independent experiments were fitted to a 6-parameter 

unfolding equation (222) using the Prism analysis package (GraphPad Prism 6 

Software, USA), as detailed in Section 4.2.3.4. 

 

 
5.2.1.3 Isothermal titration calorimetry 

Calorimetric measurements were measured and analysed as detailed in 

Section 4.2.3.2. The sample cell was filled with BabA527K at a concentration of 

0.1 mM and the injection syringe contained the Leb antigen hexasaccharide at 

a concentration of 2 mM. A buffer containing 50 mM KH2PO4 (pH = 4.5) was 

used for calorimetric measurements.  
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5.2.2 Peptic digestion tests 

5.2.2.1 Prediction of pepsin cleavage sites 

Amino acid sequences of BabA527K and β-lactoglobulin (Genbank accession 

no. AAI08214.1) were submitted to ExPASy PeptideCutter [Swiss Institute of 

Bioinformatics, (244)] for a prediction of potential cleavage sites by pepsin at 

pH > 2 – at pH 1.3, pepsin reportedly cleaves peptide bonds where the N-

terminal residue is a phenylalanine or leucine and displays negligible cleavage 

for other amino acids in this position; at pH >2, this specificity is lost (245). 

Predicted cleavage sites were mapped onto apo-BabA527K and β-lactoglobulin 

(PDB Accession code: 3BLG) crystal structures.  

 

 
5.2.2.2 Peptic digestion 

One µL of protein sample, at a concentration of 2 mg/mL, was pipette-mixed 

with 9 µL of 50 mM KH2PO4 (pH = 4.5) containing pepsin from porcine gastric 

mucosa at a concentration of 750 units/mL (Sigma-Aldrich, USA), then 

immediately incubated for variable durations for up to two hours at 37 °C. At 

desired time points, samples were quenched through the addition of 10 µL of 

1 M Tris-Cl (pH = 10.0). Zero time point samples were prepared through the 

addition of the quenching solution to the pepsin-containing buffer before the 

addition of protein samples. The following protein samples were assessed: 

§ BabA527K 

§ β-lactoglobulin from bovine milk (Sigma-Aldrich, USA) 

§ Native BabA from H. pylori strain CCUG 17875 (a kind gift from Thomas 

Borén, University of Umeå) 
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5.2.2.3 Analysis of digested protein samples 

20 µL of 2x NRSB was added to each quenched protein sample, followed by 

heat denaturation at 100 °C for five minutes then separation by SDS-PAGE as 

described in Section 3.2.2.8. Digested protein samples were subsequently 

analysed using various techniques: 

 
- Coomassie-staining 

Gels containing BabA527K and β-lactoglobulin samples were analysed with 

Instant Blue® stain (Expedeon, USA), according to the manufacturer’s 

instructions. 

 
- Silver staining 

Gels containing native BabA samples were analysed using a PlusOne silver 

staining kit (GE Healthcare, USA), according to the manufacturer’s instructions. 

 
- Western blotting 

Gels containing BabA527K samples were blotted onto a nitrocellulose 

membrane and analysed via c-Myc immunodetection, as described in Section 

3.2.2.8.  

 
- Tryptic peptide mapping 

Experimental procedures performed by Melanie Snow, AstraZeneca R&D 

Following BabA527K peptic digestion, an excised gel slice containing its 

uppermost digested fragment was subjected to tryptic peptide mapping, as 

described in Section 3.2.3.6.  
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5.2.3 Generation and assessment of BabA-particle conjugates 

Wild-type and D233A/S244A-variant BabA527K proteins were conjugated to 

microparticles by exploiting the avidin:biotin interaction, as described below. 

 

5.2.3.1 Biotinylation of BabA527K and BabA527K-D233A/S244A 

Protein biotinylation was performed through in vitro enzymatic biotinylation by 

the E. coli biotin ligase BirA, which specifically recognises and conjugates a 

single biotin molecule to the AviTag™ peptide sequence 

(GLNDIFEAQKIEWHE) (246). Using the primers shown in Table 5.1, a 

Phusion site-directed mutagenesis kit (Thermo Scientific, USA), was used to 

insert the AviTag™ peptide sequence, in between the c-Myc and hexa-

histidine tag of i) the pOPE101_babA527K expression construct, and ii) the 

pOPE101_babA527K expression construct containing combined D233A/S244A 

mutations. The PCR reaction was set up according to the manufacturer’s 

protocol using an annealing temperature of 72 °C for both reactions. 

Confirmatory sequencing of the plasmids was performed (Source BioScience, 

Nottingham) using primers listed in Table 3.3. 

 
Table 5.1: Primers for AviTag™ peptide sequence insertion into BabA527K 

expression constructs 

[FOR] and [REV] denote sense and antisense primers, respectively. [Phos] denotes a 

5’ phosphorylation. 

 
Primer Name Sequence (5’-3’) 
pOPE101-AviTag [FOR]	 [Phos]AAAAGATCGAATGGCATGAATCCCATC

ATCACCATCATC 
pOPE101-AviTag [REV]	 [Phos]GAGCTTCAAAAATATCATTCAGTCCTA

GATCTTCTTCTGAGATCAGC 
 

Expression and purification was performed under the same conditions as 

BabA527K, as described in Section 3.2.3. Subsequently, approximately 1 mg of 

both wild-type BabA527K and BabA527K-D233A/S244A, containing AviTag™ 
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peptide sequences, were biotinylated using a BirA biotin-protein ligase kit 

(Avidity, USA), according to the manufacturer’s protocol. Per 1 mg of protein, 

complete biotinylation was achieved after incubation at room temperature for 

two hours with 15 µg of BirA in a total reaction volume of 0.5 mL; complete 

biotinylation was verified using liquid chromatography–time-of-flight mass 

spectrometry, as described in Section 3.2.3.5. Biotinylated recombinant BabA 

proteins are henceforth referred to as BabAWT[Biotin] and 

BabAD233A/S244A[Biotin] for the wild-type form and D233A/S244A-variant form, 

respectively. Both proteins were separated from BirA via IMAC, as described 

in Section 3.2.3.2, using gravity columns instead of an ÄKTA purifier system. 

Protein-containing elutions were dialysed overnight into a buffer containing 20 

mM Tris-Cl (pH = 7.4) and 300 mM NaCl. Finally, proteins were concentrated, 

as required, using Vivaspin sample concentrators (GE Healthcare, USA). 

 

 
5.2.3.2 Enzyme-linked immunosorbent assay 

ELISA quantification of BabAWT[Biotin] and BabAD233A/S244A[Biotin] binding to 

Leb/y glycoconjugates was performed with modifications to the protocol 

detailed in Section 4.2.1.1, that is, the concentration range tested was 0.1-1.0 

µg/mL and proteins were detected using streptavidin-HRP only, at a 1:10000 

dilution. 

 

 
5.2.3.3 Conjugation of recombinant BabA to microparticles 

To optimise surface coating, a NeutrAvidin microparticle suspension, 

containing 50 µg solids in 5 µL of water, was mixed with ranging amounts (1.0, 

2.5 and 5.0 µg) of BSA, BabAWT[Biotin], and BabAD233A/S244A[Biotin] in 5 µL of 

20 mM Tris-Cl (pH = 7.4) and 300 mM NaCl. The protein-microparticle 

mixtures were incubated for 15 minutes at room temperature then centrifuged 
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at 15,000 g for 5 minutes. The resulting supernatant was then carefully 

aspirated, mixed with an equal volume of 2x NRSB and heat denatured. 

Finally, samples were separated by SDS-PAGE and the supernatant protein 

concentration was analysed by Coomassie-staining using Instant Blue® stain. 

Per 50 µg of NeutrAvidin microparticle solids, the optimum amount of both 

BabAWT[Biotin] and BabAD233A/S244A[Biotin] chosen for conjugation, via 

incubation, was 2.5 µg. The designations and descriptions for microparticles 

and protein-microparticle conjugates used or prepared in this study are 

summarised below in Table 5.2. 

 
Table 5.2: Microparticles used in this study 

The chosen designations indicate the outermost layer of the microparticles. 
aObtained from Life Technologies, USA 
bGenerated in this study 

 
Designation Description 
Polystyrenea  Carboxylate-modified 1.0 µm microspheres with yellow-green 

fluorescence 

NeutrAvidina NeutrAvidin®-labelled 1.0 µm microspheres with yellow-green 

fluorescence 

BabAWT
b NeutrAvidin®-labelled 1.0 µm microspheres with yellow-green 

fluorescence surface modified with BabAWT[Biotin] 

BabAD233A/S244A
b NeutrAvidin®-labelled 1.0 µm microspheres with yellow-green 

fluorescence surface modified with BabAD233A/S244A[Biotin] 

 
 

 
5.2.3.4 Dynamic light scattering 

Microparticle hydrodynamic diameters and polydispersity indices (PDI) were 

measured by DLS in a Zetasizer NanoZS instrument (Malvern, UK) at 25 °C. 

Microparticle suspensions, at a solids concentration of 25 µg/mL, were studied 

in a 20 mM Tris-Cl (pH = 7.4) and 300 mM NaCl buffer. The following 

microparticles were analysed: i) polystyrene-microparticles; ii) NeutrAvidin-
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microparticles; iii) BabAWT-microparticles and iv) BabAD233A/S244A-microparticles. 

Each sample was measured in triplicate. 

 

 
5.2.3.5 Bio-layer interferometry 

The Octet® RED96 System (ForteBio, USA) was used for BLI studies; assays 

were performed in black 96-well plates (Thermo Scientific, USA) at 25 °C. At 

each assay step, the total sample or buffer volume in each well was 200 µL 

and a plate shaking speed of 1000 rpm was employed. The assay was 

designed to use amine reactive biosensor tips (ForteBio, USA). Amine 

reactive biosensor tips were first hydrated in water for 60 seconds followed by 

activation of their carboxymethyl groups to reactive NHS esters through a 300 

second incubation with 0.2 M EDC / 0.05 M NHS. Leb and Ley HSA-

glycoconjugates (Isosep AB, Sweden; Appendix Table 2), at a concentration 

of 5 µg/mL in 100 mM MES (pH = 4.3), were then immobilised to the tip 

surfaces through a 600 second incubation. Leb/y antigen modified tips were 

washed for 120 seconds in a 20 mM Tris-Cl (pH = 7.4) and 300 mM NaCl 

buffer, followed by baseline equilibration for 120 seconds in the same buffer. 

Binding of test proteins and microparticles, to both Leb and Ley HSA-

glycoconjugate modified amine reactive tips was assessed using association 

and dissociation times of 300 and 900 seconds, respectively. Test proteins – 

BabA527K and BabA527K-D233A/S244A – were studied at a concentration of 

12.5 µg/mL whereas polystyrene-, NeutrAvidin-, BabAWT- and BabAD233A/S244A-

microparticles were studied at a solids concentration of 250 µg/mL. 

Microparticle suspensions were directly prepared in the 96-well plates. 
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5.3 Results 

5.3.1 Effect of acidic pH on BabA527K conformation and functionality 

To assess the effect of acidic pH on the folding of BabA527K, circular dichroism 

spectroscopy was first used to study changes to its secondary structure. As 

shown in Figure 5.2A, acidic conditions do not disrupt the α-helical 

conformation that is characteristic of BabA527K at neutral conditions. Though 

no effects on BabA527K folding are apparent, differential scanning fluorimetry 

revealed that the lower pH buffer actually prolongs BabA527K thermal-induced 

unfolding (Figure 5.2B). 

 

 
 

Figure 5.2: Secondary structure and thermal stability of BabA527K at neutral and 

acidic pH 

(A) Overlay of far-UV circular dichroism spectra averaged from three independent 

experiments. (B) Temperature-induced unfolding transition determined using 

differential scanning fluorimetry. The reported midpoint temperature of each protein 

unfolding transition (Tm) is the average (± SEM) from three independent experiments. 
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To further investigate whether acidic conditions adversely affected BabA527K 

conformation, and thereby functionality, binding affinity to Leb was measured 

through ITC. As determined by an unpaired two-tailed Welch’s t-test, there are 

no significant differences (p > 0.05) in binding, neither between the 

dissociation constants nor the thermodynamic parameters of the interaction, at 

neutral or acidic pH (Figure 5.3).  

 

 
 

Figure 5.3: Binding affinity between BabA527K and Leb at neutral and acidic pH 

Calorimetric response (upper panel) and binding isotherm (lower panel) of BabA527K 

titrated with Leb at (A) neutral and (B) acidic pH. The continuous line in the lower 

panels represents the least-squares fit of the data to a single-site binding model. The 

reported thermodynamic parameters are the average (± SEM) of three independent 

experiments. 

 

To better understand the potential effect of the gastric environment on 

BabA527K, its resistance to the proteolytic activity of pepsin was evaluated next.  

B

pH 4.5 

KD = 227 ± 22 µM 
N = 0.91 ± 0.15 
ΔH = -12.2 ± 1.8 kcal/mole  
-TΔS = 7.2 ± 1.8 kcal/mole 

B 

A

KD = 252 ± 15 µM 
N = 1.07 ± 0.03 
ΔH = -10.9 ± 0.5 kcal/mole  
-TΔS = 6.0 ± 0.5 kcal/mole 

pH 7.4 
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5.3.2 Resistance of BabA527K to peptic degradation 

To characterise resistance to peptic digestion, BabA527K was studied alongside 

bovine β-lactoglobulin, which has been shown in vitro to be intrinsically 

resistant to the proteolytic activity of pepsin. Analysis of the amino acid 

sequences of both proteins indicated that they both contain several predicted 

pepsin cleavage sites (Figure 5.4).  

 

 
 

Figure 5.4: Crystal structures of BabA527K and β-lactoglobulin showing potential 

pepsin cleavage sites 
The potential pepsin cleavage sites (indicated in red) mapped onto BabA527K (left) and 

β-lactoglobulin (right) crystal structures are based on the peptide bond cleavage 

probability of their amino acid sequences. 

 

These predicted cleavage sites may be rendered inaccessible by the protein 

tertiary fold. To determine this empirically, peptic digestion for both proteins 

was performed, at pH 4.5, in a time course experiment where samples were 

analysed by SDS-PAGE and Coomassie-staining after incubation with pepsin. 

BabA527K was rapidly degraded by pepsin; digestion was characterised by the 

immediate generation of three fragments, however, after incubation with 

pepsin for two minutes, no intact or fragmented BabA527K is visible on the 

Coomassie-stained gel (Figure 5.5A). In stark contrast, no peptic digestion of 

BabA527K 

β-lactoglobulin 
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β-lactoglobulin was observed after incubation with pepsin for two hours, as 

expected (Figure 5.5B). 

 

 
 

Figure 5.5: Peptic digestion pattern of BabA527K and β-lactoglobulin 
A time-course of (A) BabA527K and (B) β-lactoglobulin peptic digestion at pH 4.5. 

analysed by Coomassie-staining. BabA527K resistant fragments are indicated; the 

largest identifiable fragment, highlighted by the red box, was excised for tryptic 

peptide mapping. M – molecular weight marker. Time points indicated are in minutes. 

 

Next, as also indicated in Figure 5.5A above, the largest BabA527K peptic 

fragment was analysed by tryptic peptide mapping in an attempt to identify the 

cleaved regions of BabA527K. Peptide masses were identified only between 

G25 and K392 – this corresponds to the start of the α-N helix in the Handle 
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region to the loop connecting the α-3 and α-4 helices in the Head region. No 

C-terminal sequences thereafter were detected (Figure 5.6).  

 

 
 

Figure 5.6: BabA527K amino acid sequence showing peptides matched in the 
largest peptic digestion fragment 

Secondary structure elements of BabA527K are indicated. Peptides shown in bold were 

identified through mass matching, after liquid chromatography–quadrupole time-of-

flight mass spectrometry. Trypsin cleavage sites [C-terminal side of lysine (K) or 

arginine (R) unless next residue is proline (P)] are highlighted in red unless part of a 

matched peptide. The black dots at the N-terminus represent the first nine amino 

acids of BabA527K, which are cleaved during expression.  

 

 

                                                   α-N

1 .........GYQIGEAAQMVTNTKGIQDLSDRYESLNNLLNRYSTLNTLI 50

                                         α-1

51 KLSADPSAINAVRENLGASAKNLIGDKANSPAYQAVLLAINAAVGFWNVV 100

                                  β-1 

101 GYVTQCGGNANGQKSISSKTIFNNEPGYRSTSITCSLNGHSPGYYGPMSI 150

          α-1a

151 ENFKKLNEAYQILQTALKRGLPALKENNGKVNVTYTYTCSGDGNNNCSSQ 200

                                           β-2

201 VTGVNNQKDGTKTKIQTIDGKSVTTTISSKVVDSRADGNTTGVSYTEITN 250

                                α-1b

251 KLEGVPDSAQALLAQASTLINTINNACPYFHASNSSEANAPKFSTTTGKI 300

                 α-2

301 CGAFSEEISAIQKMITDAQELVNQTSVINEHEQTTPVGNNNGKPFNPFTD 351

                 α-3

351 ASFAQGMLANASAQAKMLNLAEQVGQAINPERLSGTFQNFVKGFLATCNN 400

                                                        α-4

401 PSTAGTGGTQGSAPGTVTTQTFASGCAYVGQTITNLKNSIAHFGTQEQQI 450

                           α-C1        

451 QQAENIADTLVNFKSRYSELGNTYNSITTALSNIPNAQSLQNAVSKKNNP 500

      β-C                                 α-C2

501 YSPQGIDTNYYLNQNSYNQIQTINQELKKKKKKGSEQKLISEEDLSHHHHHH 552
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In further support of the apparent C-terminal cleavage, analysis of BabA527K 

peptic digestion through immunodetection, rather than Coomassie-staining, 

indicated that none of the observed fragments contained the C-terminal c-Myc 

tag (Figure 5.7). 

 

 

Figure 5.7: c-Myc immunodetection of the BabA527K peptic digestion pattern 
A time-course of BabA527K and peptic digestion at pH 4.5 analysed by c-Myc 

immunodetection. M – Molecular weight marker. Time points indicated are in minutes. 

 

To ascertain whether the lack of BabA527K resistance to peptic degradation 

was an unexpected drawback of recombinant expression, native BabA, 

purified from the outer membrane of H. pylori CCUG 17875 (a kind gift from 

Thomas Borén, University of Umeå), was studied using the same in vitro 

assay. As with BabA527K, native BabA was degraded by pepsin, though 

complete digestion required 30-60 minutes and no BabA fragments were 

detected (Figure 5.8). It was also verified that incubation of recombinant and 

native BabA in the same acidic buffer, without pepsin, did not result in any 

detectable proteolysis (results not shown). 
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Figure 5.8: Peptic digestion pattern of native BabA 

A time-course of native BabA (from H. pylori strain CCUG 17875) peptic digestion, at 

pH 4.5, analysed by silver staining. M – molecular weight marker. Time points 

indicated are in minutes. 

 

In order to obtain further insight into the suitability of BabA as a gastric-

targeting moiety, proof-of-principle BabA-microparticle conjugates were next 

generated and evaluated.  
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5.3.3 Functionality of BabA-particle conjugates  

The initial strategy chosen for BabA527K conjugation to microparticles was 

through the carbodiimide coupling method, where carboxylated particle 

surfaces are chemically converted into reactive NHS-esters to bind free 

protein amine groups. Indeed, the intended use of the C-terminal hexa-lysine 

tag in BabA527K was to facilitate this reaction. However, preliminary 

conjugation attempts with this method resulted in irreversible microparticle 

aggregation (results not shown). This was attributed to the likely activation of 

multiple free amine groups found on the side chains of lysine residues, which 

are widely distributed over the BabA527K surface (Figure 5.9) and could 

consequently act as attachment sites for more than one microparticle, 

effectively leading to cross-linking and aggregation.  

 

 

Figure 5.9: Location of lysine residues on the surface of BabA527K 

Surface representation of BabA527K (tan) with lysine residues indicated (red). The 

BabA527K glycan-binding site is indicated by a black square. 

 

Thus, to circumvent aggregation, which hinders the handling and functional 

characterisation of particle suspensions, the avidin-biotin interaction was 

exploited. This interaction was to be used to mediate conjugation through the 

immobilisation of biotinylated, recombinant BabA onto the surface of 1 µm 

microparticles labelled with deglycosylated avidin (NeutrAvidin). Because with 

this strategy mono-biotinylated, recombinant BabA protein could be generated, 

it was hoped that each protein would only contain one microparticle 
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attachment site. The avidin-biotin interaction was chosen in order to facilitate 

the rapid generation of a colloidally stable BabA-microparticle suspension and 

does not represent the intended strategy for future in vivo application. 

 

To generate mono-biotinylated protein, the AviTag™ peptide sequence was 

first introduced into the C-terminus of BabA527K and BabA527K-D233A/S244A, 

in between their c-Myc and 6x His tags, to enable in vitro enzymatic 

biotinylation by BirA. An ELISA confirmed AviTag™ insertion and biotinylation 

did not disrupt the selective binding and non-binding properties of the wild-

type and D233A/S244A-variant recombinant BabA proteins, respectively 

(Figure 5.10).  

 

 

Figure 5.10: Binding of biotinylated recombinant BabA proteins to HSA-Leb/y in 

an ELISA 

Binding of biotinylated (A) wild-type and (B) D233A/S244A-variant recombinant BabA 

proteins to immobilised HSA-Ley and HSA-Leb glycoconjugates was determined using 

a sandwich ELISA (n=3, error bars represent the standard error of the mean). ns = not 

significant (p > 0.05), unpaired two-tailed Welch’s t-test. 
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Next, the selectivity of protein capture by NeutrAvidin-microparticles was 

assessed. In support of the use of the chosen immobilisation strategy, Figure 

5.11A shows BSA does not non-specifically bind to NeutrAvidin-microparticles. 

On the other hand, at the same range of concentrations tested, attachment of 

BabAWT[Biotin] is clearly observed (Figure 5.11B). 2.5 µg of BabAWT[Biotin] 

and BabAD233A/S244A[Biotin] was used per 50 µg of NeutrAvidin-microparticles in 

all subsequent experiments to achieve saturation of the microparticle surfaces. 

 

 

Figure 5.11: Optimisation of protein:microparticle conjugation 

Various amounts of (A) BSA and (B) BabAWT[Biotin] were incubated with NeutrAvidin-

microparticles; unbound proteins were separated from protein-particle conjugates 

through centrifugation then analysed by SDS-PAGE and Coomassie-staining. (−) 

indicates the stated amount of protein loaded directly onto the gel, representing 100% 

unbound protein. (+) indicates the unbound protein retrieved after the stated amount 

of protein had been incubated with 50 µg of NeutrAvidin-microparticles.   
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To assess the effect of BabAWT[Biotin] and BabAD233A/S244A[Biotin] conjugation 

on the colloidal stability of NeutrAvidin-microparticles, DLS was used to 

measure changes in the hydrodynamic diameter of microparticles after surface 

modification. As shown in Figure 5.12 below, the hydrodynamic diameter of 

NeutrAvidin-microparticles is increased by ~67 nm and ~84 nm after 

conjugation of BabAWT[Biotin] and BabAD233A/S244A[Biotin], respectively. This 

modest change in hydrodynamic diameter is reflective of an increase 

in microparticle size due to an additional surface layer rather than 

agglomeration. As a reference, NeutrAvidin-labelled microparticles were 

compared to their unlabelled form, that is, polystyrene-microparticles. A larger 

hydrodynamic diameter due to this surface labelling was similarly observed; 

NeutrAvidin-microparticles were ~56 nm larger than polystyrene-microparticles. 

The low PDI of all the microparticle suspensions tested further indicates that 

all samples were monodisperse. As such, they were deemed suitable for 

functional studies. 

 

 
Figure 5.12: Comparison of the hydrodynamic diameters of microparticles with 

various surface modifications, as determined by DLS 

DLS measurements were performed in a 20 mM Tris-Cl (pH = 7.4) and 300 mM NaCl 

buffer at 25 °C. The indicated hydrodynamic diameters are the average [± SEM (error 

bars)] of three independent experiments. All suspensions had a PDI < 0.15. ns = not 

significant (p > 0.05), unpaired two-tailed Welch’s t-test. 
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To assess whether the BabA-microparticle conjugates retained the functional 

properties of recombinant BabA, binding to Le antigens was studied using BLI. 

BLI was the preferred biophysical technique to assay this interaction because 

of its low sample requirements, compared to ITC, and the absence of clogging 

effects, which is a risk associated with the use of SPR in the study of 

particulate analytes (223). In this setup, HSA-Leb/y glycoconjugates were 

immobilised to a BLI biosensor tip via amine coupling (Figure 5.13). 

 

 

Figure 5.13: Immobilisation of HSA-Leb to an amine reactive biosensor tip via 

amine coupling 

[1] Activation of carboxymethyl groups on the amine reactive biosensor tip to NHS 

esters via tip submersion in NHS/EDC, [2] Loading of HSA-Leb, [3] Deactivation of 

unreacted NHS esters via tip submersion in Tris-Cl, [4] Washing and baseline 

equilibration. HSA-Ley was similarly immobilised via amine coupling. 

 

The successful immobilisation of HSA-Leb and HSA-Ley glycoconjugates to 

the biosensor tips was further verified through a preliminary protein binding 

experiment, at pH 7.4, using BabA527K and its D233A/S244A-variant form. As 

shown in Figure 5.14, BabA527K elicits a ~3-fold higher increase in biosensor 

tip optical thickness than BabA527K-D233A/S244A when probed with HSA-Leb. 

Both proteins produce comparable response levels when probed with HSA-Ley 

– response levels that are similar to the observed interaction between 
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BabA527K-D233A/S244A and HSA-Leb. This binding pattern indicates that the 

immobilised glycoconjugates act as functional receptors. However, a level of 

non-specific association is observed given the well-established lack of affinity 

of BabA527K for Ley and the non-binding characteristics of the D233A/S244A-

variant. 

 

 
 
Figure 5.14: Binding of BabA527K and its D233A/S244A-variant form to HSA-Leb/y 

in a BLI assay  

Binding was studied in a 20 mM Tris-Cl (pH = 7.4) and 300 mM NaCl buffer. Each well 

(200 µL) contained 2.5 µg of the stated recombinant BabA protein. Association and 

dissociation times were 300 and 900 seconds, respectively. 

 

Given the validity of this approach to detect binding, BLI was used to 

investigate microparticle:HSA-Leb/y binding, at pH 7.4. As shown in Figure 5.15, 

binding of BabAWT-microparticles to HSA-Leb on the biosensor tip is clearly 

seen while no interaction with HSA-Ley is observed; BabAD233A/S244A-

microparticles do not interact with either HSA-Leb or HSA-Ley. Additionally, 

neither polystyrene- nor NeutrAvidin-microparticles interacted with HSA-Leb or 

HSA-Ley. Thus, the observed binding between BabAWT-microparticles and 

HSA-Leb is specifically mediated by the glycan binding activity of recombinant 

BabA. Importantly, the vast difference seen in the increase of the optical 
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thickness of HSA-Leb biosensor tips during BabA527K binding (max: ~0.07) 

compared to BabAWT-microparticle binding (max: ~1.75) indicates that the 

response seen in the latter interaction is due to particle association with the 

biosensor tips, rather than binding of unconjugated protein in solution. The 

same total amount of recombinant BabA that was used for protein binding 

experiments was immobilised onto microparticles for protein-particle binding 

experiments. 

 

 
 
Figure 5.15: Binding of various microparticles to HSA-Leb/y in a BLI assay  

Binding was studied in a 20 mM Tris-Cl (pH = 7.4) and 300 mM NaCl buffer. Each well 

(200 µL) contained up to 2.5 µg of the stated recombinant BabA protein conjugated to 

50 µg microparticle solids. Association and dissociation times were 300 and 900 

seconds, respectively. 

 

The generation of functional BabA-microparticles completes the experimental 

objectives of this study and strongly supports the use of BabA as a targeting 

moiety.  
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5.4 Discussion 

After developing an efficient, reproducible method to express recombinant 

BabA, and subsequently performing a thorough characterisation of its glycan-

binding site, the final objective of this study focused on the prompt generation 

of essential data to provide relevant insights into the proposed use of BabA as 

a gastric-targeting moiety. First, the effect of low gastric fluid pH on protein 

stability was considered. Though it is widely accepted that the stomach lumen 

is frequently characterised by strongly acidic conditions (pH ≤ 3), as recently 

collated by Mudie et al., various researchers have recorded a wide range of 

pH values in both fasted (between 1 and 8) and fed (between 3 and 6) states 

(247). Consequently, in this study, a pH value of 4.5 was adopted to mimic the 

acidic conditions that may exist in both pre- and post-prandial states. At this 

pH, circular dichroism spectroscopy revealed that the secondary structure 

folds of recombinant BabA are not altered in comparison to that observed at 

neutral pH, which represents the conditions of the inner surface mucus layer 

where H. pylori prefer to thrive (79). This demonstrates the acid stability of 

BabA, however it would be of interest to further study conformation at more 

acidic pH levels.  

 

In addition to its secondary structure being unaffected by the reduction of pH, 

no difference was observed in BabA527K binding to Leb antigens at acidic and 

neutral pH. This can be considered to be a rational finding given that the 

binding interaction does not involve charge-dependent electrostatic 

interactions, as shown through the BabA527K:Leb structural model. Though this 

further supports the acid-resistance of recombinant BabA, pH-independent 

binding affinity may actually compromise its intended use. As the strength of 

the interaction between recombinant BabA and Leb, and perhaps other 

ABO/Le blood group antigens, is not affected by pH, secreted MUC5AC in the 
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gastric mucus layer, which carries these glycans, may compete with the 

surface epithelia for BabA-vectors (103, 229, 230, 248). As a consequence, 

similar to what is observed in H. pylori, it is expected that BabA ex situ can 

mediate both mucoadhesive and cytoadhesive attachment.  

 

Interestingly, although pH reduction did not affect secondary conformation or 

Leb binding activity, differential scanning fluorimetry showed that recombinant 

BabA had enhanced thermal stability at pH 4.5. This may be due to favourable 

changes to the protonation state of amino acids that enable the formation of 

structure-stabilising electrostatic interactions (249). Perhaps this may be an 

important feature of BabA to withstand the acidic, denaturing conditions of 

gastric fluid. However, electrostatic interactions between amino acid side 

chains can also be affected by the ionic strength of their environment – salt 

ions can interact with charged amino acids and consequently modulate inter-

residue interactions (250). Because the acidic and neutral buffers used in this 

study inadvertently had different ionic strengths, the enhanced thermal stability 

of recombinant BabA solely due to a reduction in pH cannot be accurately 

suggested. Ultimately, due to the possible effects of microenvironment 

constituents on thermal stability, differential scanning fluorimetry will provide 

the most value when employed to study protein unfolding in physiological 

conditions that closely mimic the gastric milieu. Through this, calculated BabA 

unfolding transition temperatures will also be of biological significance.  

 

Nonetheless, the differential scanning fluorimetry assay showed that in the pH 

4.5 buffer, at 37 °C, the hydrophobic patches of BabA527K are not available for 

SYPRO Orange dye binding. As this indicates that the three-dimensional fold 

of BabA527K is intact and not disrupted at these conditions, this buffer system 

was used to assess BabA527K peptic degradation in its native conformation. 
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BabA527K was rapidly and completely digested by pepsin although intermediate 

fragments that were truncated from their C-termini were observed. In fact, in 

this respect, peptic digestion shares similarities with the previously observed 

degradation of BabA527 during periplasmic expression. This suggests that 

BabA contains a highly susceptible C-terminal protease cleavage site; it would 

be of interest to identify this region and study the potential effect of sequence 

variations on both peptic and periplasmic proteolytic susceptibility. This can be 

achieved through combining a thorough mass spectrometric analysis of 

recombinant BabA degradation with exploration of potentially labile structural 

features revealed through the crystallographic model. 

 

Unlike the experimental control β-lactoglobulin, which has been well 

characterised as a pepsin-resistant protein, no similar tests have been 

reported in the literature for H. pylori adhesins, although its secreted toxin 

VacA has been shown to be resistant to peptic digestion (243, 251). At the 

whole bacterium level, pepsin not only kills H. pylori but actually impairs its 

motility in the stomach lumen, thereby preventing its colonisation of the gastric 

mucus layer (252-254). Thus, despite being a specialised gastric pathogen, 

H. pylori is considered to be sensitive to the detrimental effects of pepsin. 

Consequently, it is perhaps not surprising that BabA is not intrinsically 

resistant to peptic digestion, particularly since pepsin cannot penetrate into the 

gastric mucus layer where BabA-mediated attachment occurs (248). With 

regards to its use as a targeting moiety, peptic digestion may be 

circumventable through the administration of BabA-vectors during fasted 

conditions as pepsin (pepsinogen) is only secreted into the stomach lumen in 

response to meals (255). 
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The physiological characteristics of the stomach clearly present considerable 

barriers for BabA-mediated drug delivery vectors. Nonetheless, representing a 

significant step towards achieving such systems, this study shows for the first 

time that the selective ABO/Le blood group antigen-binding properties of 

H. pylori can be mimicked by BabA-particle conjugates. The functional glycan 

binding activity of BabAWT-microparticles clearly indicates that recombinant 

BabA is correctly orientated on the microparticle surfaces. This was achieved 

using insight from the crystallographic models as the C-terminal linkage of 

recombinant BabA to NeutrAvidin-microparticles was based on the relative 

positioning of the Handle region to the glycan-binding Crown unit. Indeed, this 

surface presentation mimics that of native BabA, which is inserted into the 

H. pylori outer membrane through its C-terminal transmembrane domain (86). 

Importantly, the variant form of BabA was used, as one of the experimental 

controls, to verify that the observed glycan binding of these model biomimetic 

vectors was specifically imparted by BabA. However, the complete lack of 

affinity of the BabAD233A/S244A-microparticles for HSA-Leb also further 

strengthens the validity of the BabA527K:Leb structural model and indicates the 

relevance of the observed hydrogen bond network in mediating H. pylori 

attachment. This is because the conditions under which binding was studied – 

multivalent BabA-particles binding to multivalent Leb complexes, that is, avidity 

– are representative of the attachment of a single H. pylori cell to surface- or 

mucin-associated glycans during colonisation. It would be of interest to 

characterise the apparent affinity of BabA-vectors to HSA-Leb, using a 

technique such as BLI, not only to see how this compares with reported 

H. pylori affinity, but also to understand how factors such as protein surface 

coating density and immobilisation strategy can affect glycan binding (161). 
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Though potential physiological barriers to using BabA as a targeting moiety 

have been identified, the successful generation of proof-of-principle BabA-

vectors represents the first milestone towards the development of a gastric-

targeted drug delivery system. Importantly, these results form the foundation 

for future studies investigating the in vivo applicability of this system. 
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Chapter 6: General discussion and conclusions 

 
6.1 Research significance and future work 

The motivation of this research was to address shortcomings in the 

development of bioadhesive drug delivery systems capable of mediating the 

gastric retention of drugs. While this field has yet to witness an effective 

approach, learnings from unsuccessful strategies have resulted in a sound 

understanding of the characteristics that these systems should possess in 

order to be effective. In brief, an ideal bioadhesive drug delivery vector would 

mediate gastric retention by evading gastric mucus turnover through attaching 

directly to the gastric epithelium. While such attachment may be achievable in 

drug delivery systems by using lectins as targeting moieties, no lectins that 

target the gastric epithelium have been suggested for this use in the literature. 

This study proposes a biomimetic approach based on BabA, a lectin that 

mediates the attachment of H. pylori to glycans naturally expressed on the 

gastric epithelium.  

 

The aim of this work was to characterise the functional properties of BabA, in 

the context of its use as a gastric targeting moiety. In this regard, this study 

has shown that the glycan binding properties of BabA are fully maintained in a 

recombinant form of the protein; importantly, recombinant BabA can be 

successfully used to create a model, glycan-binding drug delivery vector. 

While it has not yet been assessed how this model system will fare in 

conditions mimicking the stomach, this study serves as the first demonstration 

of the potential use of BabA to direct drug delivery vectors to gastric glycans. It 

must be emphasised that a potential disadvantage of using lectins to target 

drug delivery vectors to glycans on epithelial cell surfaces in vivo is the 

possible mediation of premature, undesired interactions with mucins in the 
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overlaying mucus layer. In a BabA mediated approach, this could similarly 

prove to be a hindrance given the presence of its glycan receptors on 

epithelial cells as well as attached to the secreted gastric mucin MUC5AC. 

Thus, it is imperative that this system is studied in a physiologically relevant 

microenvironment in order to make a true assessment of the viability of this 

biomimetic approach. Given that this is the first study concerning the 

development of BabA-vectors, such an assessment was beyond the scope of 

this research.  

 

The realisation that the properties of BabA as an H. pylori adhesin can be 

successfully translated to a model targeted drug delivery system was achieved 

through experimentation aligned to specific research objectives. Importantly, 

through the design of this study, this resulted in the advancement of not only 

the use of BabA for drug delivery applications, but also in a mechanistic 

understanding of its role in mediating H. pylori gastric colonisation. The novel 

insights gained from the results of the experimental work presented in this 

thesis, in the context of their scientific relevance and opportunities for future 

work, are summarised and discussed below. 

 

 
6.1.1 Discovery of an improved periplasmic expression strategy 

While the most successful method of recombinant expression reported in this 

work was based on a published E. coli periplasmic expression strategy, it was 

the serendipitous incorporation of a C-terminal hexa-lysine tag into 

recombinant BabA that facilitated the progression of this research. Due to the 

significant advantages in expression yield and purity that this strategy 

conferred, it can be considered ideal to support future studies evaluating the 

use of BabA as a gastric-targeting moiety. Albeit a low yield in comparison to 
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the potential of other prokaryotic and eukaryotic expression strategies, 

periplasmic expression enabled rapid experimentation with a functional 

recombinant BabA protein. This is a significant advantage in comparison to 

other reported BabA expression methods that, depending on application, 

require additional, time-consuming interventions following expression, such as 

solubility-enhancing partner cleavage (164) and refolding from inclusion 

bodies (165). Thus, the efficient and reproducible periplasmic expression 

strategy described in this thesis will be of value to researchers requiring the 

swift generation of recombinant BabA for differing study needs. This strategy 

can also be employed to express recombinant BabA from strains other than 

J99 – the extracellular domain of BabA, with a C-terminal hexa-lysine tag, 

from strain CCUG 17875 was also successfully expressed and purified in our 

lab with a similar yield (results not shown in this thesis).  

 

The incorporation of a C-terminal hexa-lysine tag was observed to improve 

recombinant BabA purification by enhancing solubility and conferring 

protection against proteolysis, which most likely occurred during periplasmic 

expression. Though not fully understood, given that this method significantly 

aided the generation of a functional recombinant protein, it will be of great 

interest to determine if this method also facilitates the recombinant expression 

of other paralagous proteins from the Hop family. For example, SabA and 

LabA, which are known to function as glycan-binding adhesins, are also 

suitable candidates for periplasmic expression; SabA contains three 

intramolecular disulphide bonds (175) while LabA contains six cysteine 

residues, which may also form intramolecular disulphide bonds. Thus, should 

the incorporation of a hexa-lysine tag also improve the periplasmic expression 

of these proteins, this strategy could prove to be a highly useful tool for 

bacteriologists looking to probe the biological role of members of the Hop 
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family at the protein level. In support of the applicability of this expression 

method, preliminary experiments by researchers in our lab investigating the 

unknown function of BabB found that this protein could not be at all expressed 

in the periplasm of E. coli without a C-terminal hexa-lysine tag (results not 

shown in this thesis). 

 

From a drug delivery perspective, it is also of great interest to express and 

study other H. pylori adhesins as potential targeting ligands because they may 

confer particle-conjugate affinity towards other important gastric epithelial 

moieties. SabA, which recognises sialylated glycans in the gastric mucosa, 

deserves strong consideration. Sialylated glycans are not typically found in 

abundance in healthy stomachs but are significantly expressed under 

conditions of inflammation, such as the histologic gastritis caused by H. pylori 

infection in around half of the global population. Accordingly, a drug delivery 

system relying on both BabA and SabA may be more effective than BabA 

alone in imparting the gastric retention of drug delivery vectors to both healthy 

and inflamed stomachs. 

 

 
6.1.2 Revelation of the BabA glycan-binding mechanism 

Identification and characterisation of the BabA glycan-binding site was 

considered essential to ensure that the generation of functional BabA-vectors 

was not hindered by inappropriate protein immobilisation to particle surfaces. 

Of paramount importance, this led to the revelation of the mechanism through 

which BabA mediates H. pylori attachment to type 1 ABO/Le blood group 

antigens – this represents the first molecular insight into an H. pylori gastric 

colonisation mechanism. Understanding the structural basis for type 1 ABO/Le 

blood group antigen binding by BabA finally rationalises why other H. pylori 



General Discussion and Conclusions 

 180 

adhesins, which all lack the Crown β-unit sequence, do not bind to these 

glycans. Furthermore, knowledge of the location of the BabA glycan-binding 

site in H. pylori J99 may enable researchers to understand the amino acid 

differences that dictate why other babA expressing strains are incapable of 

attaching to type 1 ABO/Le blood group antigens. Such insight allows the role 

of BabA in H. pylori pathogenesis to be studied with a better fundamental 

understanding. 

 

The structural basis of glycan recognition by BabA has long been sought to 

test the hypothesis that preventing the interaction between adhesins and host 

receptors can represent a new form of antimicrobial treatment by inhibiting 

bacterial adherence and subsequent colonisation. The potential of this 

approach has already been demonstrated in mice against uropathogenic 

E. coli where inhibition of its FimH adhesin, through the oral administration of 

novel anti-adhesion molecules, can successfully treat and prevent infection 

(256, 257). Consequently, the comprehension of the molecular interactions 

that constitute BabA glycan-binding is considered a promising lead for the 

development of new strategies for the treatment of H. pylori infections, which 

are globally gaining resistance to traditional antibiotics (258).  

 

With regards to drug delivery applications, the structural identification of the 

BabA binding site also introduces the possibility that the proposed biomimetic 

vectors can be creating using solely the Crown as a targeting moiety. While 

the activity of this fragment will need to be evaluated, the use of a smaller 

glycan-binding protein could be beneficial as more molecules can be packed 

onto particle surfaces; this could prove to be key as smaller particles (< 0.2 

µm), with consequently smaller surface areas, achieve better penetration 

through mucin mesh fibres compared to larger particles (> 0.5 µm) (49). 
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6.1.3 Identification of the Hypervariable Crown Loop 

The observation that a segment of the Crown region is involved in mediating 

BabA glycan binding, yet is poorly conserved between H. pylori strains, may 

explain the previously reported inter-strain variability in BabA glycan-binding 

affinity. As developing an understanding of BabA-mediated H. pylori glycan 

binding at the whole bacterium level was beyond the scope of this research, 

the proposed relevance of the Hypervariable Crown Loop must be validated 

through further investigation.  

 

Future work could utilise the optimised recombinant expression techniques 

and biophysical binding assays described in this thesis to study the effect of 

strain variation on protein:glycan binding alongside bacterium:glycan binding 

investigations. Certainly, binding studies would benefit from crystallographic 

models because the effects of variability in regions other than the Crown 

cannot be excluded without structural insight. However, as this can be both 

challenging and resource-intensive, an innovative approach could be to 

develop a chimeric expression construct whereby recombinant BabA proteins 

have identical Handle and Head regions, corresponding to BabA J99 for 

example, but different Crown or Hypervariable Crown Loop sequences 

corresponding to the strain of interest. Perhaps through this strategy, the 

proposed effect of the Hypervariable Crown Loop on glycan-binding affinity 

can be more closely evaluated. In the absence of crystallographic information, 

such an approach could also aid in the evaluation of whether the 

Hypervariable Crown Loop has a role to play in the creation of “specialist” 

binding specificity.  

 

Ultimately, the potential relevance of the Hypervariable Crown Loop is of 

greater interest to the study of H. pylori adherence mechanisms rather than 
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the development of drug delivery vectors. Nevertheless, a better 

understanding of the glycan binding properties in other H. pylori strains could 

reveal properties relevant to the use of BabA as a targeting moiety, such as 

the identification of enhanced adhesive characteristics for example. 

 

 
6.1.4 Observation of BabA susceptibility to peptic digestion 

Given that H. pylori is a pathogen believed to have evolved over millennia to 

adapt to the harsh conditions of the human stomach, it was somewhat 

unexpected to discover that one of its main colonisation mechanisms is 

susceptible to the proteolytic effects of pepsin. With regards to the proposed 

use of BabA, this is a significant drawback that may render BabA-vectors 

completely unsuitable for gastric targeting. Alternatively, their usage may be 

restricted to the fasted state, during which high levels of pepsin are not 

typically found in gastric fluid. Functional model vectors will have to be 

assessed in gastric fluid representative of both fasted and fed states in order 

to conclude on the use of BabA as a targeting moiety in a biorelevant context. 

Still, it is worth considering that the BabA Crown, which might retain glycan-

binding function without the BabA Handle and Head, may not be readily 

digested by pepsin in its folded conformation; this must be determined 

empirically to assess whether Crown-vectors represent a better biomimetic 

approach than BabA-vectors.  

 

While both recombinant and native forms of BabA were completely degraded 

by pepsin in this study, these observations do not directly translate to the 

susceptibility of this adhesin in the stomach lumen while attached to the 

H. pylori outer membrane. The activity of urease in H. pylori creates a buffered 

surface layer for the bacterium in response to acidic conditions (259) – this 
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may modulate the proteolytic activity of pepsin. H. pylori also possesses 

several outer membrane proteins [approximately 4% of its coding genome 

(87)] and a lipopolysaccharide layer – these could very well affect the 

accessibility of pepsin to BabA, as may potential yet-to-be characterised post-

translational modifications, such as glycosylation. Thus, a study that compares 

the in situ and ex situ peptic susceptibility of BabA would greatly further the 

understanding of the findings observed in this work.  

 
 

6.1.5 Development of functional glycan-binding BabA-vectors 

As has been shown through this study, BabA can be used create functional 

glycan-binding particles and this greatly supports its use a gastric-targeting 

moiety. Performing an in vitro or in vivo study with these model particles is 

undoubtedly the most efficient way to assess the viability of this targeted drug 

delivery system. However, though desired, such as an assessment was 

beyond the scope of this study, mostly due to the focus of experimental work 

on characterising the BabA glycan-binding site to enable the rational design of 

particle-conjugates for this study, and for future research. Still, preliminary 

attempts were made to develop an in vitro gastric model using the MKN7 cell 

line. Unfortunately, the culture conditions required to support cell polarisation 

and the expression of ABO/Le blood group antigens have still not been 

identified by our lab. This remains under active investigation because a 

relevant model must be utilised to confirm that the findings observed in this 

study translate to an effective interaction between BabA-vectors and gastric 

epithelial cells.  

 

The progression of this work to a clinically applicable system necessitates 

several further phases of evaluation and development. This will include 
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trialling biologically relevant, biodegradable drug delivery vehicles. As such, 

processes such as nano-/micro-particle formation, drug encapsulation/release 

and surface modification with BabA will need to be developed. The properties 

of the drug delivery system are important for the definition of the conjugation 

method of BabA to particle surfaces and the rate of controlled release for the 

drug. However, as a result of exciting, recent advancements, the properties of 

the delivery system can also impact targeting efficacy. Polymeric 

nanoparticles can be engineered such that targeting moieties are concealed in 

the particle core until conformational changes in the polymeric matrix occur in 

response to the pH of the microenvironment and leads to their exposure on 

particle surfaces (260). Given the pH gradient across the gastric mucus layer, 

such technology may useful for asserting the cytoadhesive, rather than 

mucoadhesive, properties of BabA-particles. Indeed, this strategy may also be 

used to protect BabA from peptic degradation during exposure to gastric juice. 

 

As already stressed, future work should also focus on studying the interactions 

between BabA-vectors and MUC5AC as part of an investigation into the 

properties that these biomimetic vectors must possess in order to penetrate 

through the frequently replaced gastric mucus layer. Further regarding 

undesirable attachment to mucins, the glycosylation pattern and the role of the 

gastric cell surface associated mucin MUC1 in acting as a releasable decoy 

receptor for H. pylori must be studied in greater detail to understand if this 

proposed mechanism, described by Linden et al. (107), could interfere with 

BabA-particle cytoadhesion. 

 

While H. pylori exploits the abundance of type 1 ABO/Le blood group antigens 

in the gastric mucosa through BabA, it must be noted that these glycans can 

also be found in a variety of exocrine secretions, and accordingly, are also 
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found in different parts of the GI tract in varying amounts (95). For example, 

the salivary mucin MUC5B carries blood group antigens to which H. pylori 

have been shown to bind via BabA in vitro (113). However, gastric-specificity 

is not a prerequisite for BabA-particles per se because once administered, the 

gastric mucosa will be the first mucosal membrane to which BabA-particles 

are exposed after oral administration if delivered via an encapsulating dosage 

form. As such, a successful and rapid association of these particles to the 

gastric epithelium is expected to elicit effective gastric-specific retention. 

Nonetheless, the prevalence and relevance of blood group antigen expression 

throughout the GI tract should also be studied during the future development 

of BabA-vectors to understand how off-site binding may impact clinical 

applicability. 

 

As has been emphasised in this thesis, no lectins have been studied in the 

literature for a role in gastric-targeted drug delivery. However, BabA and other 

H. pylori adhesins do not represent the only candidates. For example, Ulex 

europaeus lectin I and Griffonia simplifolicia isolectin 1B4 also attach to blood 

group antigens, albeit with less specificity by binding to terminal α-fucose and 

α-galactose residues, respectively, rather than to multiple sugar units (261); 

these plant lectins have previously been studied for use in intestinal-targeted 

drug delivery systems. To increase the chances of identifying a suitable 

gastric-targeting ligand, the efficacy of these plant lectins in binding to the 

gastric epithelium could also be assessed alongside BabA in well-defined in 

vitro and in vivo evaluation models. Indeed, the use of these lectins may 

confer specific advantages over BabA with regards to peptic susceptibility; 

plant lectins are typically resistant to gastrointestinal proteolytic enzymes (262). 
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6.2 Summary 

Through the experimental work presented in this thesis, this study has 

demonstrated that a recombinant form of the H. pylori adhesin BabA can be 

used to create model biomimetic particles that have the same blood group 

antigen-binding properties found with the whole bacterium (Figure 6.1). As a 

result, this work represents the first step towards the potential use of BabA-

vectors to achieve the gastric retention of drugs. Overall, though physiological 

barriers exist that may limit the use of BabA as a targeting moiety, the 

successful generation of proof-of-principle BabA-vectors represents the first 

milestone towards the potential use of H. pylori biomimics for the gastric 

targeting of drugs and lays the foundation for future translational research. 

 

 
 
Figure 6.1: Schematic representation of the glycan-binding BabA-particles 

created in this study 

Functional BabA-particle conjugates were created through three sequential steps in 

this study: 1) the determination of an efficient method to recombinantly express the 

extracellular domain of BabA as a soluble protein, 2) the identification and 

characterisation of its functionally active glycan-binding site, and finally 3) the 

development of particle-conjugates through a BabA site-specific linkage that ensured 

retention of its glycan-binding properties. 
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Appendix 

 
Appendix Table 1: Size calibration of the gel filtration column used in this study 

The HiLoad 16/60 Superdex 75 (120 mL) gel filtration column used for size exclusion 

chromatography was calibrated using the known molecular weight standards indicated. 

 
 
 
 
 
 
 
 

 
 
 
 
 
Appendix Table 2: Neoglycoconjugates used in ELISA, SPR and BLI assays 

Oligosaccharides are linked to HSA lysine residues via a spacer using isothiocyanate 

coupling. Glycan abbreviations can be interpreted as follows: Fuc – fucose, Gal – 

galactose, GlcNAc – N-acetylglucosamine, Glc – glucose. Spacer abbreviations can 

be interpreted as follows: APE – p-aminophenylethyl, APD – acetyl-phenylenediamine. 

HSA-Ley and contained HSA-Leb contained 13 and 22 moles of oligosaccharide per 

HSA, respectively.  

 
Name IUPAC nomenclature 
HSA-Ley Fucα1-2Galβ1-4(Fucα1-3)GlcNAcβ1-APE-HSA 
HSA-Leb Fucα1-2Galβ1-3(Fucα1-4)GlcNAcβ1-3Galβ1-4(Glc)-APD-HSA 

 
 
 
 
 
  

Standard Molecular 
weight (kDa) 

Elution volume (mL) 
Range Median 

Thyroglobulin (bovine) 670 42 - 50 46 
γ-globulin (bovine) 158 50 - 62 56 
Ovalbumin (chicken) 44 63 - 74 68.5 
Myoglobin 17 76 - 91 83.5 
Vitamin B12 1.35 105 - 121 113 
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Appendix Table 3: ABO/Le blood group antigens used in crystallographic 

determination and ITC assays 

Glycan abbreviations can be interpreted as follows: Fuc – fucose, Gal – galactose, 

GlcNAc – N-acetylglucosamine, Glc – glucose, GalNAc – N-acetylgalactosamine, 

Neu5Ac – N-acetylneuraminic acid.  

 
Name IUPAC nomenclature 
Leb antigen 
(hexasaccharide form) 

Fucα1-2Galβ1-3(Fucα1-4)GlcNAcβ1-3Galβ1-4Glc 

H-1 antigen 
(pentasaccharide form) 

Fucα1-2Galβ1-3GlcNAcβ1-3Galβ1-4Glc 

A-1 antigen 
(hexasaccharide form) 

GalNAcα1-2Fucα1-2Galβ1-3GlcNAcβ1-3Galβ1-4Glc 

B-1 antigen 
(hexasaccharide form) 

Galα1-2Fucα1-2Galβ1-3GlcNAcβ1-3Galβ1-4Glc 

Lea antigen 
(pentasaccharide form) 

Galβ1-3(Fucα1-4)GlcNAcβ1-3Galβ1-4Glc   

Ley antigen 
(pentasaccharide form) 

Fucα1-2Galβ1-4(Fucα1-3)GlcNAcβ1-3Gal 

H-2 antigen 
(tetrasaccharide form) 

Fucα1-2Galβ1-4GlcNAcβ1-3Gal 

SLex antigen 
(pentasaccharide form) 

Neu5Acα2-3Galβ1-4(Fucα1-3)GlcNAcβ1-3Gal 
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Appendix Table 4: Effect of type 1 ABO blood group antigen epitope 

presentation on BabA527K binding  

Glycan symbolic representations can be interpreted with the following key: fucose – 

, galactose – , N-acetylgalactosamine – , N-acetylglucosamine – , glucose 

– , mannose – . Unique determinant regions are surrounded by a light orange 

shade. Sp0, Sp8, Sp10, Sp14, Sp20 and Sp21 are CFG specific spacer arms. 
aReported values are average relative fluorescence units, standard deviation shown in 

brackets. 
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66 

 

2025 
(221) 
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Appendix Table 5: Comparison of BabA527K binding to type 1 and 2 ABO/Le 

blood group antigens in a glycan array 

For a direct comparison between type 1 and 2 ABO/Le blood group antigens, only 

those with unique determinant regions that were conjugated to CFG spacer arms via a 

galactosamine through an α-glycosidic linkage were selected. All other type 1 and 2 

ABO/Le blood group antigens on the glycan array were not compared. Glycan 

symbolic representations can be interpreted with the following key: fucose – , 

galactose – , N-acetylgalactosamine – , N-acetylglucosamine – , glucose – . 

Unique determinant regions are surrounded by a light orange shade. Sp14 is a CFG 

specific spacer arm. 

aReported values are average relative fluorescence units, standard deviation shown in 

brackets. 
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Appendix Table 6: Thermodynamic parameters of BabA527K binding to various 

ABO/Le blood group antigens 

The upper panels in each ITC trace show a representative calorimetric response 

obtained by titrating BabA527K with the indicated ABO/Le blood group antigen. The 

lower panels depict the binding isotherm obtained where the continuous line 

represents the least-squares fit of the data to a single-site binding model (where 

applicable). Calorimetric titrations were performed at pH 7.4. The calculated 

thermodynamic parameters of each binding interaction are reported; values are 

obtained from a single experiment, unless otherwise indicated. 
aAverage ± SEM of three independent experiments. 
bAverage ± Range of two independent experiments. 

 
ABO/Le blood group antigen 
and Thermodynamic parameters 

   ITC trace 

 
 
Leb antigen hexasaccharidea 
 
KD = 252 ± 15 µM 
 
N = 1.07 ± 0.03 
 
ΔH = -10.9 ± 0.5 kcal/mole 
 
-TΔS = 6.0 ± 0.5 kcal/mole 
 
 
 

 

 
 
H-1 antigen pentasaccharideb 
 
KD = 617 ± 45 µM 
 
N = 1.74 ± 0.05 
 
ΔH = -3.9 ± 0.2 kcal/mole 
 
-TΔS = 0.5 ± 0.3 kcal/mole 
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A-1 antigen hexasaccharide 
 
KD = 529 µM 
 
N = 1.37 
 
ΔH = -8.0 kcal/mole 
 
-TΔS = 3.5 kcal/mole 
 

 

 
 
B-1 antigen hexasaccharide 
 
KD = 417 µM 
 
N = 1.08 
 
ΔH = -10.5 kcal/mole 
 
-TΔS = 5.9 kcal/mole 
 

 

 
 
Lea antigen pentasaccharide 
 
No binding detected 
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Ley antigen pentasaccharide 
 
No binding detected 
 

 

 
 
H-2 antigen tetrasaccharide 
 
No binding detected 
 

 

 
 
SLex antigen pentasaccharide 
 
No binding detected 
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Appendix Table 7: Thermodynamic parameters of BabA527K-D233A/S244A 

binding to various ABO/Le blood group antigens 

Calorimetric titrations of BabA527K-D233A/S244A with the indicated ABO/Le blood 

group antigens were performed at pH 7.4. No calorimetric response (upper panel) or 

binding isotherm (lower panel) indicative of a binding interaction was observed in any 

experiment. 

 
ABO/Le blood group antigen 
and Thermodynamic parameters 

   ITC trace 

 
 
Leb antigen hexasaccharide 
 
No binding detected 
 
 
 

 

 
 
H-1 antigen pentasaccharide 
 
No binding detected 
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A-1 antigen hexasaccharide 
 
No binding detected 
 

 

 
 
B-1 antigen hexasaccharide 
 
No binding detected 
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GYVTQCGGNANGQKSISSKTIFNNEPGYRSTSITCSLNGHSPGYYGPMSI
ENFKKLNEAYQILQTALKRGLPALKENNGKVNVTYTYTCSGDGNNNCSSQ
VTGVNNQKDGTKTKIQTIDGKSVTTTISSKVVDSRADGNTTGVSYTEITN
KLEGVPDSAQALLAQASTLINTINNACPYFHASNSSEANAPKFSTTTGKI
CGAFSEEISAIQKMITDAQELVNQTSVINEHEQTTPVGNNNGKPFNPFTD
ASFAQGMLANASAQAKMLNLAEQVGQAINPERLSGTFQNFVKGFLATCNN
PSTAGTGGTQGSAPGTVTTQTFASGCAYVGQTITNLKNSIAHFGTQEQQI
QQAENIADTLVNFKSRYSELGNTYNSITTALSNIPNAQSLQNAVSKKNNP
YSPQGIDTNYYLNQNSYNQIQTINQELKKKKKKGSEQKLISEEDLSHHHH
HH 
 

Appendix Figure 1: Amino acid sequence of the visible residues in the apo-

BabA527K atomic model 

Amino acid sequence of BabA527K. Visible residues in the apo-BabA527K atomic model 

are in boldface while amino acids not modelled are in red. Red dots at the protein N-

terminus represent the first nine amino acids of BabA527K, which are cleaved during 

periplasmic expression. 
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Appendix Figure 2: Amino acid sequence of the visible residues in the 

BabA527K:Leb atomic model 
Amino acid sequence of BabA527K. Visible residues in the BabA527K atomic model are 

in boldface while amino acids not modelled are in red. Red dots at the protein N-

terminus represent the first nine amino acids of BabA527K, which are cleaved during 

periplasmic expression. 

 


