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Abstract: Extensive intratumoral heterogeneity (ITH) is believed to contribute to therapeutic failure
and tumor recurrence, as treatment-resistant cell clones can survive and expand. However, little
is known about ITH in triple-negative breast cancer (TNBC) because of the limited number of
single-cell sequencing studies on TNBC. In this study, we explored ITH in TNBC by evaluating
gene expression-derived and imaging-derived multi-region differences within the same tumor. We
obtained tissue specimens from 10 TNBC patients and conducted RNA sequencing analysis of
2–4 regions per tumor. We developed a novel analysis framework to dissect and characterize different
types of variability: between-patients (inter-tumoral heterogeneity), between-patients across regions
(inter-tumoral and region heterogeneity), and within-patient, between-regions (regional intratumoral
heterogeneity). We performed a Bayesian changepoint analysis to assess and classify regional
variability as low (convergent) versus high (divergent) within each patient feature (TNBC and PAM50
subtypes, immune, stroma, tumor counts and tumor infiltrating lymphocytes). Gene expression
signatures were categorized into three types of variability: between-patients (108 genes), between-
patients across regions (183 genes), and within-patients, between-regions (778 genes). Based on the
between-patient gene signature, we identified two distinct patient clusters that differed in menopausal
status. Significant intratumoral divergence was observed for PAM50 classification, tumor cell counts,
and tumor-infiltrating T cell abundance. Other features examined showed a representation of both
divergent and convergent results. Lymph node stage was significantly associated with divergent
tumors. Our results show extensive intertumoral heterogeneity and regional ITH in gene expression
and image-derived features in TNBC. Our findings also raise concerns regarding gene expression
based TNBC subtyping. Future studies are warranted to elucidate the role of regional heterogeneity
in TNBC as a driver of treatment resistance.

Keywords: intratumoral heterogeneity; triple negative breast cancer; gene expression

1. Introduction

Triple-negative breast cancer (TNBC) is a breast cancer (BC) subtype that lacks ex-
pression of estrogen receptor (ER), progesterone receptor (PR), and HER2 and accounts
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for 15–20% of BC cases worldwide. TNBC is a heterogeneous and aggressive disease that
displays a grim prognosis with high recurrence and death rates. The aggressive clinical
course of TNBC is primarily attributed to the high risk of relapse and metastasis, typically
to visceral organs and the brain [1] within the first five years of follow-up. The prevalence
of TNBC is particularly high in women of African descent, with TNBC being diagnosed
at an earlier age and a more advanced disease stage in African American women than in
women of European descent [2]. TNBC has been characterized by extensive inter-patient
molecular heterogeneity. Extensive cellular heterogeneity in TNBC clinical specimens
can be attributed to the presence of fibroblasts, endothelial and immune cell populations.
Immune cells, especially tumor infiltrating lymphocytes (TILs) have recently emerged
as clinically relevant biomarkers capable of affecting TNBC prognosis and response to
treatment [3,4]. Infiltrating lymphocytes have been strong prognosticators for TNBC pa-
tients receiving neoadjuvant or adjuvant chemotherapy as well as for early stage TNBC
patients who did not receive any systemic therapy [5]. Stromal cells in tumors are usually
represented by the cancer associated fibroblasts (CAFs). Particularly in TNBCs, distinct
subsets of myofibroblast- like and inflammatory CAFs have been identified previously that
promote cancer cell proliferation and survival [6–8]. Although patients with early stage
TNBC respond well to chemotherapy, tumor relapse after chemotherapy is frequent [9].
Several clinical trials have demonstrated that compared with patients with non-TNBC,
those with TNBC have an increased pathological response (pCR) following neoadjuvant
chemotherapy (NACT); however, TNBC patients with residual disease have a significantly
worse overall survival than patients with non-TNBC [10]. Although actionable targets,
including EGFR, PARP, androgen receptor (AR), FGFR, and angiogenic pathways, are under
clinical investigation in TNBC, heterogeneity in clinical outcomes suggests the presence
of significant molecular heterogeneity that has not yet been identified, rendering TNBC
treatment challenging [9,11].

The two main types of heterogeneity are intertumoral heterogeneity, referring to
variation between tumors from different patients [12,13], and intratumoral heterogeneity
(ITH), describing regional differences within a single tumor. Advances in single-cell
sequencing technologies and analytical methods allow sampling of hundreds of cells
from the same tumor specimen to study cellular ITH. Nevertheless, as specimens from
different TNBC regions are not typically collected, little is known about spatial ITH in
TNBC and its impact on molecular subtyping and pathway enrichment. Prediction of
prognosis and treatment decisions are increasingly becoming dependent upon sequencing,
and sequencing depends on a representative sampling of a tumor specimen [12]. This
representative sampling hinders the understanding of the multi-regional molecular profile
of the tumor, which is critical for optimal and accurately informed management of TNBC.

Massive parallel sequencing studies have shown that both spatial and temporal het-
erogeneities are common in BC [13–16]. Deep sequencing of tumor-associated somatic
mutations has revealed a substantial level of ITH in TNBC, and spatial subclonal diver-
sification is more prominent in TNBC than in other BC subtypes. Recent studies have
demonstrated that ITH is a driver of pathogenesis, treatment resistance, metastasis, and
poor clinical outcomes. Whole-exome and whole-genome sequencing have revealed that
ITH underlies therapeutic resistance and recurrence in TNBC [17–19]. Furthermore, al-
though the mutation rate of ER+ tumors was found to be similar to that of normal cells,
TNBCs exhibited a 13-fold higher mutation rate [20,21]. Collectively, these findings suggest
that TNBC is characterized by persistent intratumoral diversification. Therefore, biopsies
of a single tumor region are unlikely to accurately represent the genetic, epigenetic, and
phenotypic characteristics of the entire tumor [12,22].

ITH may significantly influence the outcomes of personalized treatments, which
commonly rely on a biopsy from a single region of the tumor to represent a patient tumor’s
gene expression profiles and cellular composition. Hence, a better understanding of the
mechanisms and consequences of ITH, as well as the development of novel approaches to
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characterize ITH, are crucial for improving the efficacy of personalized anticancer therapies,
particularly in TNBC, which has been shown to exhibit profound ITH.

In this study, we analyzed the molecular, phenotypic, and cellular profiles of
34 multi-regional tumor samples from 10 TNBC patients by RNA sequencing (RNA-seq)
and quantitative image analysis (Figure 1, top). Our goal was to elucidate the variability in
gene expression and cellular density between patients, across regions of different patients,
and between regions within the same patient (Figure 1, bottom). Figure 1 displays the dis-
tinction between these levels of variation using a simple hypothetical example of a 4-gene
signature. The first two categories of variation (i.e., between patients and between-patients
across regions) are relative; that is, the same gene signature is examined relative to each
patient. In contrast, the last category (i.e., between regions within the same patient) is
absolute; thus, the gene signature is specific for each patient. Our novel, distance-based
analysis framework for characterizing the different levels of variation and their effects
on molecular subtyping and tumor composition revealed that multi-regional sampling
in sequencing studies could lead to heterogeneity in marker-based treatment outcomes,
prognosis, and etiology [23]. Collectively, these results underscore the importance of
multi-regional sampling in TNBC sequencing studies.
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Figure 1. Overview of study design and analyses. (Top): Schematic representation of specimen se-
lection, multiregional sampling, data generation, and processing steps. (Bottom): Schematic of three Figure 1. Overview of study design and analyses. (Top): Schematic representation of specimen

selection, multiregional sampling, data generation, and processing steps. (Bottom): Schematic of
three levels of variation: between-patients, between-patients across regions, and within-patients
between regions. For the first two levels, a single gene signature is defined (based on four genes in
this schematic) with distinct expression profiles (orange, expressed; white, not expressed) between
patients or between patients and across regions. In the third variation level, 2-gene signatures are
defined for each patient; one with high and one with low variation between regions. In this example,
the least variable gene signature could be characterized by either expressed genes or genes with low
to no expression (white).
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2. Results
2.1. Tumor and Patient Characteristics

The clinicopathological characteristics of the 10 TNBC patients, including age at
diagnosis, menopausal status, tumor size, nuclear grade, treatment, recurrence, distant
metastasis, date of initial diagnosis, date of surgery, and patient survival status at last
contact, are shown in Table 1 (Supplementary Table S2.1). Patients were followed up for
a minimum of ~11 years. Adjuvant chemotherapy treatment with cyclophosphamide,
methotrexate, and 5-fluorouracil (CMF) was administered to 7 of 10 (70%) patients, none
of whom received neoadjuvant chemotherapy. Most patients had large (≥2 cm), grade
3, invasive ductal tumors. Most patients were alive with no distant metastasis at the last
follow up, suggesting a good response to CMF treatment.

Table 1. Clinicopathological characteristics of patients.

Menopausal Status, n (%)

Pre 6 (60%)
Post 4 (40%)
Age at diagnosis, n (%)
<50 4 (40%)
≥50 6 (60%)
Tumor size, n (%)
<2.0 2 (20%)
≥2.0 8 (80%)
Grade, n (%)
1 1 (10%)
2 1 (10%)
3 8 (80%)
LN stage, n (%)
1 2 (20%)
2 5 (50%)
3 3 (30%)
Chemotherapy, n (%)
CMF 7 (70%)
No therapy 1 (10%)
Missing Data 2 (20%)
Recurrence, n (%)
Yes 4 (40%)
No 6 (60%)
Distant metastasis, n (%)
Yes 4 (40%)
No 6 (60%)
Alive or dead, n (%)
Alive 6 (60%)
Died from Breast Cancer 4 (40%)

2.2. Between-Patients (Intertumoral) Gene Expression Heterogeneity

We performed gene expression variability analysis using gene expression transformed
counts (Supplementary Table S2.2) and identified two gene sets: (1) between-patients—as
compared to within-patient gene expression variability across regions (108 genes) and
(2) between-patients across regions defined by greater within-patient gene expression
variability across regions as compared to between-patient variability (183 genes) (Figure 2A
and Supplementary Table S2.3).



Int. J. Mol. Sci. 2022, 23, 13322 5 of 18

Int. J. Mol. Sci. 2022, 23, x FOR PEER REVIEW 5 of 18 
 

 

2.2. Between-Patients (Intertumoral) Gene Expression Heterogeneity 
We performed gene expression variability analysis using gene expression trans-

formed counts (Supplementary Table S2.2) and identified two gene sets: (1) between-pa-
tients—as compared to within-patient gene expression variability across regions (108 
genes) and (2) between-patients across regions defined by greater within-patient gene ex-
pression variability across regions as compared to between-patient variability (183 genes) 
(Figure 2A and Supplementary Table S2.3). 

 
Figure 2. Gene expression heterogeneity between TNBC patients and regions characterizes patients 
based on age at diagnosis and post-menopausal status. (A) Selection of genes with high expression 
variability between patients and across regions. Scatterplot of standard deviations (SD) of gene ex-
pression between patients and between regions. In red are 183 genes with within-patient gene ex-
pression variability greater than one and greater than or equal to nine times the estimated between-
patient variability. In blue are 108 genes with between-patient expression variability greater than 
one and greater than or equal to four times the estimated within-patient variability. (B,C) Unsuper-
vised clustering of genes characteristic of between-TNBC patients versus between-TNBC patients 
and regions. RNA expression data (log2[CPM + 1]) were scaled in rows and columns and were clus-
tered using Ward’s algorithm based on Euclidean distance. The heatmap of 108 genes characterizing 
between-patient differences (B) shows two main patient clusters: C1 (blue, n = 4 patients) and C2 
(orange, n = 6 patients). The heatmap of 183 genes characterizing between patient and region differ-
ences (C) shows clusters of regions from the same tumor (with the exception of one patient). (D) 
Distribution of significant (p < 0.05) patient and tumor characteristics associated with between-
TNBC patient clusters represented by colored bars. 

Protein-coding genes comprised the majority of each signature gene set (56% for be-
tween-patient, 73% between-patient across regions); the remaining genes were 
pseudogenes. Gene set enrichment analyses revealed a significant (p = 0.05) enrichment of 
the following gene signatures in the between-patient gene expression signature: choles-
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across regions gene signature. However, this between-patient signature did include the 
genes PAXIP1 and RAD51D as part of the homologous recombination pathway, although 
not specifically enriched. 

Figure 2. Gene expression heterogeneity between TNBC patients and regions characterizes patients
based on age at diagnosis and post-menopausal status. (A) Selection of genes with high expression
variability between patients and across regions. Scatterplot of standard deviations (SD) of gene
expression between patients and between regions. In red are 183 genes with within-patient gene
expression variability greater than one and greater than or equal to nine times the estimated between-
patient variability. In blue are 108 genes with between-patient expression variability greater than one
and greater than or equal to four times the estimated within-patient variability. (B,C) Unsupervised
clustering of genes characteristic of between-TNBC patients versus between-TNBC patients and
regions. RNA expression data (log2[CPM + 1]) were scaled in rows and columns and were clustered
using Ward’s algorithm based on Euclidean distance. The heatmap of 108 genes characterizing
between-patient differences (B) shows two main patient clusters: C1 (blue, n = 4 patients) and
C2 (orange, n = 6 patients). The heatmap of 183 genes characterizing between patient and region
differences (C) shows clusters of regions from the same tumor (with the exception of one patient).
(D) Distribution of significant (p < 0.05) patient and tumor characteristics associated with between-
TNBC patient clusters represented by colored bars.

Protein-coding genes comprised the majority of each signature gene set (56% for
between-patient, 73% between-patient across regions); the remaining genes were pseudo-
genes. Gene set enrichment analyses revealed a significant (p = 0.05) enrichment of the
following gene signatures in the between-patient gene expression signature: cholesterol
homeostasis, estrogen response early, fatty acid metabolism, and myogenesis. No signifi-
cant enrichment of hallmark cancer gene sets was identified in the between-patients across
regions gene signature. However, this between-patient signature did include the genes
PAXIP1 and RAD51D as part of the homologous recombination pathway, although not
specifically enriched.

Cluster analysis of the between-patient gene expression signature showed clustering
of regions from the same patient and separation into two patient subclusters: C1 with n = 4
patients and C2 with n = 6 samples; Figure 2B. We examined the relationship between
tumor and molecular characteristics in these two subclusters and identified age at diagnosis
and menopausal status as significantly (p < 0.20) associated with the feature associated
with age at diagnosis and menopausal status. Specifically, cluster C1 was enriched in
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post-menopausal patients diagnosed at an older age; in contrast, cluster (C2) consisted of
premenopausal TNBC patients diagnosed at a younger age (Figure 2D). Cluster analysis
of the between-patient across regions gene expression signature showed that except for
one patient (P6), multiregional tumor samples from the same patient were grouped into
different clusters, confirming that this signature signifies intratumoral heterogeneity in
gene expression (Figure 2C).

Pathway enrichment analysis showed that significantly enriched pathways among the
“between-patient, across regions” signature included the PD-1 and Notch signaling path-
ways, while ERBB4 signaling, metabolic reprogramming, and multidrug resistance path-
ways were enriched in the between-patient signature (Figure 3; Supplementary Table S2.4).
We further divided the between-patient set (n = 108 genes) into gene sets associated
with each of the two main patient subclusters and performed pathway enrichment anal-
ysis (Supplementary Figure S1). The between-patient signature (n = 45 genes) associ-
ated with older age at diagnosis and post-menopausal, stage 2 TNBC was significantly
enriched in metabolic reprogramming and multidrug resistance pathways; glycolysis
was enriched in both the within-patient signature and the C1 cluster signature. The
between-patient signature (n = 63 genes) associated with younger age at diagnosis and
premenopausal, stage 2 and 3 TNBC was significantly enriched in APC-related pathways,
including activator regulation.
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Figure 3. Enrichment analysis shows distinct pathways enriched in gene signatures with high
regional ITH and intratumoral heterogeneity. Significant (p < 0.05) enrichment of pathways from
between-patient gene expression signature (blue, 108 genes) and within-patient signature (red,
183 genes).

2.3. Gene Expression Heterogeneity within Patient, between Regions

We analyzed expression-based features (subtyping, immune cell type, immune score,
stroma score, and tumor purity) of different tumor regions within each patient based on con-
structed distances using our divergent analysis approach. We also used this distance-based
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approach to identify gene expression signatures specific to each patient characteristic of low-
and high-expression variability and explored the collective use of these signatures to derive
an enriched network of long-term survivors. We analyzed different tumor regions within
each patient for PAM50 subtypes and found that four patients (P1, P2, P6, and P9) exhibited
divergent PAM50 classification results (Figure 4A). For example, P1 (T1) shows slightly
greater than 50% basal subtype, 28% Her2 and 17% Luminal B (Supplementary Table S2.5).
In clinical practice, the PAM50 subtype with the largest estimated probability is assigned.
In the case of P6, the probabilities for basal and Her2 were very close, making it difficult
to determine the PAM50 subtype. The remaining six patients showed convergence for
the basal subtype. No significant associations between patient and tumor characteristics
and PAM50 classifications were identified. We further applied PAM50 to the mean gene
expression among regions within each tumor to define and evaluate the patient-level rep-
resentation. With the exception of two patients (P6, P9), the basal subtype was identified.
In P9, PAM50 luminal B was identified, and in P6, luminal B and basal subtypes were
identified with similar estimated probabilities. By evaluating PAM50 subtyping on mean
gene expression, the heterogeneity present in P1 and P2 was lost as it was not present in all
regions, in contrast to what was observed for patients P6 and P9.
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Figure 4. Molecular classification differs among different regions of the same tumor. (A) PAM50
subtyping. For each patient (denoted by P) and tumor regions (denoted by T) and average gene
expression over regions (denoted by avg), PAM50 subtyping results were expressed as probability
to classify into each of the five subtypes: basal-like (basal), luminal A (LumA), luminal B (LumB),
HER2-enriched (HER2) and normal-like (normal). (B) TNBC subtyping. Correlogram of TNBC
subtyping results for each tumor region and average (over regions); significant (p ≤ 0.05) results are
shown. Each pie chart represents the correlation between the tumor sample with each TNBC subtype,
with the direction of correlation as positive (red) and negative (blue). (C) Summary of regional
TNBC subtype classifications combined with patient and tumor characteristics. BL1: Basal-like 1; IM:
Immunomodulatory; LAR: Luminal androgen receptor; M: Mesenchymal; UNS: Unspecified group.
(D) TNBC subtyping assignment based on mean (over regions) gene expression.

We also investigated TNBC subtypes in different regions of tumors that revealed a di-
vergence in classification (patients P1, P2, P3, P4, P6, P7, P8, P9; Figure 4B). P1 was assigned
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TNBC subtype Basal-like 1 (BL1) in T1, Basal-like 1 (BL2) in T2, BL1 in T3, and mesenchymal
(M) in T4 regions based on their largest significant correlation (Supplementary Table S2.6).
Notably, the four divergent PAM50 classifications were a subset of the seven divergent
TNBC subtypes.

A significant (p = 0.06) association between patient classification (divergent vs. conver-
gent) and CMF chemotherapy (yes vs. no) was identified, as seven of the eight patients
with divergent TNBC subtypes received chemotherapy. These findings suggest that TNBC
subtyping based on multiregional sampling rather than a single tumor region may more
accurately predict response to treatment. This result implies an underlying link between
TNBC molecular heterogeneity and treatment outcomes that would have otherwise been
missed based on representative sampling of a single region. In contrast, TNBC subtyping
based on the mean gene expression among regions showed three samples as unspecified,
with two TNBC patients represented in each of BL1, IM, and LAR subtypes; one tumor was
classified as M subtype (Figure 4D).

Immune enrichment analysis revealed two main subclusters that differentiated sam-
ples based on the abundance of naïve versus memory B cells (Supplementary Figure S2A;
Supplementary Table S2.7). Specifically, all regions from patients P6 and P7 (post-menopausal
patients with stage 2 TNBC and older age at diagnosis) showed an abundance in naïve B
cells. In contrast, memory B cells were abundant in premenopausal patients with stage
2 or 3 TNBC and younger age at diagnosis. Supervised cluster analysis for each tumor
revealed profound heterogeneity in immune cell abundance among different tumor regions
(Supplementary Figure S2B, Supplementary Table S2.7). For example, macrophages and
memory CD4 and B cells were enriched in the entire tumor of P1 but not in individual
regions, suggesting a high variability in immune cell type enrichment among tumor regions.
By contrast, in patient P2, memory B cells were enriched in all tumor regions (convergent
immune enrichment). Patients P1, P3, P4, and P9 showed divergent immune cell enrich-
ment. We found a significant association between divergent versus convergent immune
cell enrichment and vital status, recurrence, distant metastasis, and menopausal status
(all p < 0.10). Divergent immune cell enrichment was associated with increased patient
survival, no recurrence or distant metastasis, and premenopausal status.

Gene expression-based stroma, immune score, and tumor purity predictions showed
that six patients (P1, P2, P5, P7, P8, and P9) had varying immune and stroma scores
among tumor regions (Supplementary Figure S3); in contrast, tumor purity remained at
approximately 75% in all regions and tumors. This result underscores the importance of
multiregional sampling within the context of personalized treatment based on the TNBC
microenvironment.

We applied our novel divergent analysis to each feature derived from gene expres-
sion and imaging data (Figure 5). TNBC patients were classified into patients with high-
divergence tumors and those with low-divergence tumors in terms of expression-derived
stromal score, molecular subtyping, and TIL abundance (Supplementary Figure S4). Table 2
shows a summary of the impact of multiregional gene expression heterogeneity and
imaging-derived heterogeneity (Tumor/TIL cell counts) and their relationship with clinico-
pathological characteristics. In Table 2, the ‘divergent association’ row highlights patient
and tumor associations (p < 0.20) with divergent versus convergent results. Among gene
expression features, lymph node stage was significantly associated with divergent tumors,
while grade was associated with image-derived abundance of TILs.
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Figure 5. Summary of heterogeneity in features derived from gene expression and imaging data.
According to the degree of variability in each feature, patients were stratified into patients with
divergent tumors and those with convergent tumors.

Table 2. Summary of the impact of regional heterogeneity in gene expression-derived and image-
derived features. “C” denotes convergence (i.e., low intratumor heterogeneity among regions)
and “D” denotes divergence (i.e., high intratumor heterogeneity among regions). The “Divergent
Association” row highlights patient and tumor associations with the divergent versus convergent
results at p < 0.20 based on Fisher’s exact test.

Patient

RNA-Seq-Derived Gene Expression Image-Derived Cell Counts

PAM50 TNBC Immune
Cell Immune Stroma Tumor Tumor TILs

Subtype Subtype Type Score Score Purity Cell Counts Cell Counts
P1 D D D D D C D D
P2 D D C D D D
P3 D D D D C D C D
P4 D C D D C D C D
P5 C D C D C D D C
P6 D C C C C C D D
P7 D C C C C D D D
P8 D D D C C C
P9 D C D C C C C C

P10 C D C C C C
Divergent CMF Lymph Node

Stage
CMF Lymph Node

Stage GradeAssociation Chemotherapy Chemotherapy

We also analyzed absolute, patient-specific gene expression heterogeneity to de-
fine high-variance and low-variance gene sets among different regions of the same tu-
mor. First, we evaluated the level of ITH based on the distributions of genetic distance
(Supplementary Figure S5). After applying a Bayesian changepoint model to these genetic
distances, we defined patient-specific gene signatures with high and low variability in their
expression levels (Figure 6).

These patient-level signatures might broadly represent ‘clonal’ (low heterogeneity)
(Supplementary Table S2.8) and ‘subclonal’ (high heterogeneity) variations
(Supplementary Table S2.9). Pathway enrichment analysis showed little overlap between
patient-level gene signatures and between gene signatures with high and low variance
(Figure 6).
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Figure 6. Identification of gene signatures with high and low regional gene expression heterogenetiy
within patients. (A) Example of a Bayesian changepoint model to assess the distribution of gene dis-
tance measures to define genes with high (pink) and low expression variability (green). (B) Frequency
distribution of the number of genes with high (pink) and low (green) ITH in their expression levels
based on a Bayesian changepoint model. (C,D) Dot plot showing BioPlanet pathways significantly
(p < 0.05) enriched for gene sets with high and low ITH. The dots are color-coded according to the
p-value.

Since low variability genes can reflect one of two scenarios, i.e., either low or high ex-
pression among regions, we examined expression levels to differentiate between these two
scenarios and found that low-variance gene signatures were mainly expressed
(Supplementary Figure S6). By combining all high-variance gene signatures in a network
analysis, we identified an enriched network in living versus deceased patients (Figure 7).
Notably, the USP17 gene family (including USP17L11, USP17L20, and USP17L17) was
highly represented in the protein-coding network.
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3. Discussion

BCs exhibit substantial phenotypic and genetic intratumoral heterogeneity. In this
study, we examined the extent of discordance between multiple tumor samples that orig-
inated from the same patient by analyzing the intrapatient and interpatient variance of
gene expression, tumor cell density, and TIL density. Multiregional RNA-seq and image
analyses of consecutive tumors from the same patient provided evidence of significant
intratumoral heterogeneity. Notably, gene expression profiling of multiple samples from
the same tumors revealed that the gene expression variance was higher within tumors than
between tumors of different patients.

Moreover, we performed TNBC subtyping analysis and found that 70% of the patients
exhibited heterogeneous molecular subtypes. The remaining 30% of patients who presented
with more homogenous TNBC subtypes had luminal androgen receptor or mesenchymal
subtype of TNBC. These findings are in line with previous studies showing that these
TNBC subtypes are associated with pCR and favorable overall survival, suggesting low
tumor heterogeneity [24–26].

Intratumor heterogeneity in TNBCs may also stem from the distinct gene expres-
sion profiles of different cell types within TNBC microenvironment. As in our study, we
found that PLK1 and Notch signaling pathways were enriched among genes with high
within-patient expression variability. Notch signaling plays a critical role in TNBC. Overex-
pression of JAG-1 and Notch-1 has been associated with poor overall survival in patients
with TNBC, and the Notch pathway has been shown to promote TNBC cell proliferation.
Previous studies have demonstrated that Notch signaling is associated with the regulation
of tumor-initiating cells as well as with the regulation of TNBC etiology. Furthermore,
Notch signaling has also been implicated in playing a major role in breast cancer stem
cells maintenance and expansion [27,28]. Notch signaling has also been implicated in
the development of small-cell lung cancer and has been shown to increase intratumoral
heterogeneity [29,30]. Thus, Notch pathway activation in a subset of TNBC cells may
contribute to intratumoral heterogeneity, and certain patients with TNBC may benefit
from Notch pathway inhibitors in combination with chemotherapy. Furthermore, results
from the protein-coding network exhibited a high representation of USP17 gene family.
USP17 subfamily genes encoding deubiquitinating enzymes were identified as immediate
early genes that can be rapidly induced in response to cytokine stimulation in mice and
humans [31]. Specifically, USP17 has been shown to regulate inflammation, cell motil-
ity, Th17 cell development, and oncogenesis [32]. Moreover, high levels of USP17 have
been shown to promote G1-S transition and cell proliferation in multiple cancer cell types.
However, the role of USP17 in BC remains largely unexplored. One study demonstrated
that USP17 acted as a tumor suppressor by deubiquitinating asparaginyl endopeptidase,
thereby promoting breast cancer development and progression [33]. Further studies are
warranted to explore the role of USP17 family genes in BC.

Immune evasion by tumor cells has been implicated as a hallmark of cancer, wherein
tumor cells evade attack and elimination by the immune system [34]. The crosstalk between
tumors and immune system is complex, that is, tumor cells not only have the ability to
escape immunologic defenses but are also shaped by their immune surroundings, a process
called immunoediting [35]. Specifically, TNBCs, TILs have emerged as clinically relevant
biomarkers capable of affecting TNBC prognosis and response to treatment [36]. In this
regard, it is imperative to conclude that TILs and gene signatures associated with immune
cells have important implications for clinical response and hold significant prognostic value.
Additionally, the interactions between tumor cells and tumor-infiltrating inflammatory cells
can increase phenotypic heterogeneity and may influence treatment response [37–40]. Our
image analysis revealed that the variance in tumor cell and TIL densities within patients
was higher among patients with high gene expression variance (Supplementary Table S1).
In addition, high variance of TIL area was associated with large tumor size, young age,
premenopausal status, and high tumor grade. These findings are in line with our gene
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expression data and collectively suggest that intratumoral cellular heterogeneity is greater
than intertumoral heterogeneity.

Transcriptomic profiling studies have shown that BCs can be classified into five intrin-
sic subtypes: luminal A, luminal B, HER2-enriched, basal-like, and normal breast-like (5, 6).
Although all intrinsic subtypes can be found in IHC-defined TNBC tumors, most TNBCs
(50–75%) exhibit a basal-like phenotype [9,24,41,42]. Approximately 80% of basal-like
tumors are ER-negative/HER2-negative. Although PAM50 intrinsic subtypes have been
associated with intertumoral heterogeneity in TNBC, the relationship between PAM50
subtypes and intratumoral heterogeneity remains unclear.

Our study has some limitations. The cohort size was very small, potentially limiting
the generalizability of our findings. The uneven distribution of the molecular subtypes of
TNBC is another major limitation, as the lack of a larger sample size with known subtypes
of TNBC precluded the study of the confounding effect of subtypes. In this study, the
resolution of intratumoral heterogeneity was characterized on a macroscopic scale rather
than a microscopic scale. Single-cell gene expression profiling studies should be conducted
to characterize intratumoral heterogeneity at a higher resolution. Furthermore, the distance
between the multiregion samples was unknown. Samples from the border of the tumor,
the surrounding stroma, and the sub-border may differ from those from the center of the
tumor. Often, the border of the tumor has a higher level of cellularity and more extensive
angiogenesis than the core of the tumor. The study provides a new lens on intratumoral
heterogeneity from regional sampling. Since it involves looking at intratumoral hetero-
geneity from vantage point of the regions and not several cells from a single region tissue
as is the case in most of the studies. Furthermore, any comparison to single cell results
when sampling many cells of the same region tissue or bulk tumor results would not
be informative as they are not comparable, and as such, differences in results are likely
due to differences in tissue sampling. Moreover, because of the paucity of tumor tissues,
we were not able to stain the samples for common biomarkers. Studies have reported
extensive heterogeneity in the protein expression of commonly used biomarkers. Future
studies involving large cohorts with well-annotated clinicopathological characteristics are
required to understand the role of intratumoral genomic and phenotypic differences in
patient prognosis and treatment outcomes.

4. Materials and Methods
4.1. TNBC Samples

Formalin-fixed paraffin-embedded (FFPE) tissue sections and hematoxylin-eosin
(H&E)-stained slides of patients diagnosed with TNBC between 1987 and 1998 were ob-
tained from Nottingham City Hospital, UK. The triple-negative status of these cases was
confirmed by immunohistochemistry (IHC) as part of the Nottingham-Tenovus Primary
Breast Carcinoma Series [43,44]. All cases were histologically reviewed, and diagnoses
were confirmed by three independent pathologists. All study aspects were approved by
all Institutional Review Boards (Gorgia State University; University of Nottingham and
Nottingham University Hospitals) were conducted in compliance with material transfer
and data use guidelines of all involved institutions. Written informed consent was obtained
from all subjects.

Representative FFPE blocks (n = 34 samples) from ten patients with TNBC were
retrieved. H&E-stained sections of 21 samples from seven patients were observed micro-
scopically to determine tumor burden (at least 50% tumor burden relative to the tissue
cellularity of the entire specimen) and to guide tumor macro dissection. Multiregional
samples from these patients were prepared during routine specimen gross examination
as per the Royal College of Pathologists guidelines for reporting breast disease in surgical
excision specimens [45]. Briefly, specimens were incised with a cruciate incision to embed
spatially representative areas of the tumor and to accurately determine the tumor size. Four
10 µm-thick unstained sections were prepared from each block, and the invasive tumor
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tissue was macro dissected. Macro dissected tissues from each sample were deparaffinized,
rehydrated, and centrifuged to remove excess ethanol.

4.2. RNA-seq Data Processing

RNA was extracted using the Omega Mag-Bind XP FFPE RNA isolation kit (Omega,
Biel/Bienne, Switzerland, M2595-01) and KingFisher Flex magnetic particle separator
(ThermoFisher, Waltham, MA, USA). RNA concentration was measured using a Nanodrop
2000c spectrophotometer (Thermo Scientific Inc., Waltham, MA, USA). RNA integrity was
assessed using Agilent 2200 TapeStation (Agilent Technologies, Santa Clara, CA, USA),
and the percentage of fragments larger than 200 nucleotides (DV200) was calculated. First-
strand cDNA synthesis was performed using ~100 ng RNA at 25 ◦C for 10 min, 42 ◦C for
15 min, and 70 ◦C for 15 min, followed by RxnPure magnetic bead clean-up. The final
libraries were validated using Agilent High Sensitivity D1000 ScreenTape on an Agilent
2200 Tapestation instrument. The size distribution of the library ranged from ~200 bp
to 1 kb. Libraries were normalized, pooled, and clustered. Pair-read sequencing was
performed for 75 cycles on a HiSeq2500 instrument (Illumina, Inc., San Diego, CA, USA)
according to the manufacturer’s instructions. An index was built on GRCh38.P10 using
Salmon [46] index command, and the index alignment-free transcript abundance was deter-
mined. Transcript-level abundance was imported into tximport [47] to calculate gene abun-
dance. Batch effects and unwanted variation were eliminated using SVA [48]. DESeq2 [49]
was used to obtain relative log expression (RLE)-normalized gene expression levels.

4.3. Variability Analysis of Gene Expression

Between-patients versus between-patients across regions. We developed a single
statistical model to identify a single gene with varying expression levels between patients
and a single gene signature with varying expression levels across regions of different
patients. By fitting a linear model to a defined vector of gene expression data within each
gene (treating each patient tumor as an independent factor), we calculated two standard
deviations (SD): (1) between tumor samples across regions and (2) between patients. The
scatter of the two standard deviations was examined, and genes with high intertumoral
heterogeneity in their expression were identified based on their high intertumoral to
intratumoral SD. The number of genes selected as characteristic of each set was significantly
(p < 0.0001) greater than the expected number of genes identified by chance due to random
sampling. Hierarchical clustering of gene expression data was performed using the R
package ComplexHeatmap [50].

Within-patient, between regions (regional intratumoral heterogeneity). A gene-level
metric of genetic distance was derived [23] by calculating the Euclidean distance in gene
expression among all region pairs within a patient. The genome-wide distribution of
genetic distances for all genes was used in a Bayesian changepoint model [51] to define
gene sets with high and low variability for each patient.

4.4. Enrichment Analysis

Pathway enrichment analysis was performed using enrichR [52] and ClusterPro-
filer [53]. Gene set enrichment analysis was performed for each gene signature against
the hallmark cancer gene set based on a hypergeometric distribution [54]. p-values ≤ 0.05
were considered statistically significant. To identify gene networks enriched in long-term
survivors (versus deceased patients), we used hypermodules [55] to cluster the ten patients
into two sets: a network training set (P1/P3/P4, long-term survivors) and a network vali-
dation set (consisting of the remaining long-term survivors and deceased TNBC patients).
An input ‘training’ network was built based on the high-variance gene sets identified
among the three long-term survivor patients with one-to-one interaction. The validation
gene list consisted of high-variance genes among the remaining seven patients (n = 3
long-term survivors, n = 4 deceased) and was used to identify submodules enriched in
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long-term survivors. We implemented this approach separately for all high-variance genes
and protein-coding genes within the high-variance gene sets.

4.5. Association Analysis

Patient-level associations with clinicopathological variables were examined using
Fisher’s exact test. A p-value ≤ 0.20 was considered statistically significant because of the
small sample size.

4.6. Subtyping

Gene expression data were expressed as counts per million (CPM) and were log2-
transformed. PAM50 [56] subtyping was conducted using the genefu package [57] and
was applied to a dataset of breast tumors and normal samples. For tumor samples, we
combined our RNA-seq data of 34 multiregional samples from ten patients with 931 TCGA-
BRCA primary invasive breast tumor samples with at least 60% tumor purity. For the
normal samples, we used RNA-seq data from normal breast tissues from GTEx (n = 290)
and normal breast tissue samples from the TCGA-BRCA data portal (n = 113). The results
of PAM50 were expressed as the probability for each sample to classify into each subtype.

TNBC molecular subtyping was performed using TNBC type [58,59] gene expression
matrix of 34 samples. In addition, an average TNBC type subtype was defined based on
the mean gene expression among all regions within each patient. Gene expression CPM
data were log2-transformed before subtyping, and all ESR1 values were set to 0, as all cases
were confirmed to be ER-negative based on IHC. The results of TNBC subtyping were
expressed as a correlation matrix and confidence intervals between samples and subtypes;
a correlogram based on the correlation matrix was created using corrplot [60].

4.7. Prediction of Immune, Stroma, and Tumor Purity Scores

We performed CIBERSORT analysis using RNA-seq CPM data to predict absolute
immune abundance scores based on the LM22 signature gene sets. We also performed
ESTIMATE analysis using RNA-seq to predict stromal, immune, and tumor purity scores.

4.8. Slide Annotation

All diagnostic slides of the surgical samples were reviewed by a pathologist. Fresh
5 µm-thick full-face sections were prepared from FFPE blocks, stained with H&E, and
reviewed by a pathologist. Two sets of slides were scanned with a digital slide scanner using
a 40× magnification objective lens (0.24 µm/pixel; Pannoramic 250 Flash III, 3DHISTECH,
Budapest, Hungary) in mrxs format and with the Olympus Nanozoomer whole-slide
scanner using a 20× magnification objective lens in ndpi format. The resulting whole-
slide images (WSIs) were reviewed using CaseViewer (3DHISTECH Ltd., version 2.3) and
ImageScope (version 12.3.2.8013, Leica Microsystems). WSIs with out-of-focus areas were
rescanned, and those with folded tissues were excluded from further analysis. Cell centers
and different tissue components identified by the pathologists were manually annotated
in randomly selected regions of variable size using ImageScope. For training purposes,
image patches of 128 × 128 pixels for mrxs and 96 × 96 pixels for ndpi files were generated
from the pathologist-identified “ground truth” images. Different image patch sizes were
selected from mrxs and ndpi files to accommodate different magnification levels. To count
tumor cells and tumor-infiltrating lymphocytes (TILs), we trained one model for each cell
type with each type of whole-slide microscopy image. In total, 52,945 and 53,361 image
patches were annotated for tumor cells in mrxs and ndpi WSIs, respectively.

4.9. Divergent Analysis

To compare the degree of regional heterogeneity in gene expression and image-derived
quantitative features between patients, we calculated the Euclidean distance among all
region pairs with respect to each quantitative feature (e.g., subtype probability, stroma score,
and tumor counts) within each patient. We applied a Bayesian changepoint model [51]
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to the patient-level distributions of distances to define patients as either divergent (high-
valued distances) or convergent (low-valued distances) for each feature. For image features,
we used manually annotated averaged tumor counts and TILs (Supplementary Table S1).

5. Conclusions

In conclusion, our results suggest that TNBCs exhibit higher intratumoral than inter-
tumoral variability in gene expression and cellular densities, suggesting the presence of
profound intratumoral heterogeneity in TNBC. These findings suggest that single biopsy
specimens may reveal only a portion of genetic aberrations that are present in the entire
tumor. These genetic aberrations contribute to tumorigenicity, activation of signaling
pathways, induction of senescence, angiogenesis, cancer cell migration, and response to
treatment. Therefore, treatments selected based on the molecular profile of diagnostic
biopsies may fail to eliminate the bulk of the tumor, ultimately leading to tumor recur-
rence. Targeting a highly heterogeneous tumor comprising multiple cell clones is clinically
challenging. Thus, understanding the molecular mechanisms driving intratumoral hetero-
geneity in TNBC may help identify novel therapeutic targets.
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