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ABSTRACT
Themaximum overlapmethod (MOM) provides a simple but powerful approach for performing cal-
culations on excited states by targeting solutions with non-Aufbau occupations from a reference
set of molecular orbitals. In this work, the MOM is used to access excited states of H+

3 and H3 in
strongmagnetic fields. The lowest 1A′

1,
1E′ and 3E′ states of H+

3 in the absence of a field are compared
with the corresponding states in strong magnetic fields. The changes in molecular structure in the
presence of the field are examined by performing excited state geometry optimisations using the
MOM. The 3E′ state is significantly stabilised by the field, becoming the ground state in strong fields
with a preferred orientation perpendicular to the applied field. Its potential energy surface evolves
from being repulsive to bound, with an equilateral equilibrium geometry. In contrast, the 1A′

1 state
is destabilised and its structure distorts to an isosceles form with the longest H−H bond parallel to
the applied field. Comparisons are made with the 4A′

2 state of H3, which also becomes bound with
an equilateral geometry at high fields. The structures of the high-spin ground states are rationalised
by orbital correlation diagrams constructed using constrained geometry optimisations.
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1. Introduction

Themaximum overlap method (MOM) is an elegant and
simple approach to calculate the electronic structure of
excited states. The method was put forward by Gilbert,
Besley and Gill in 2008 and has attracted more than
400 citations to date [1]. The MOM may be thought of
as a practical implementation of the �-Self-Consistent
Field (�-SCF) method [2–4]. It addresses a key issue in
�-SCF calculations, namely the variational collapse to
the lowest energy solution of a given spin symmetry. In
the MOM approach, a simple orbital-overlap-based cri-
terion is used to prevent the aforementioned variational
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collapse and excited states are targeted by selecting a non-
Aufbau occupation from a set of ground-state reference
orbitals. The MOM has been used in a wide range of
applications such as X-ray spectroscopy [5–10], photo-
electron spectroscopy [11,12], calculations of electronic
excitation in crystalline solids [13], and vibrational anal-
ysis of excited states of molecules [14]. MOM solutions
can also serve as reference wavefunctions for correlated
methods [15–19].

The simplicity of the MOM is appealing, not only
because it is easy to implement, but also because the
MOM-SCF solutions are straightforward to interpret and
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use. A number of further developments of the MOM
scheme have been put forward by many other authors
including the initial MOM (IMOM) [20], projection-
based MOM (PMOM) and projection-based initial
MOM (PIMOM) [21]. It has also inspired work by other
authors to provide alternative approaches to obtain �-
SCF solutions for arbitrary excited states (see, for exam-
ple, Refs. [22–24]). As a result, the original MOM paper
has become one of the most highly cited and influential
works of Nick Besley, to whose memory and scientific
legacy this volume is dedicated.

In the present work, we propose harnessing the simple
interpretive power of theMOM to understand the nature
of molecular structure in the presence of strong mag-
netic fields. Recently, a wide range of electronic structure
methods have been extended to treat molecules in exter-
nal magnetic fields of arbitrary strength using London
atomic orbitals (LAOs) [25–37]. The interplay between
the kinetic andCoulombic terms of the electronicHamil-
tonian with the extra terms arising due to the interac-
tion with the external field leads to a complex variation
of the energies of different electronic states with vary-
ing magnetic field. In particular, the crossing of states
of different spin or involving orbitals of different angu-
lar momenta is a frequent occurrence, and so a simple
approach for tracking different states, such as the MOM,
is invaluable. Recent work has also led to the develop-
ment of analytic nuclear gradients over LAOs [36] which
enables the calculation of equilibrium molecular struc-
tures under these conditions. Coupling this development
with the recent implementation of the MOM procedure
using LAO-SCF methods [38] allows for the determina-
tion of the equilibrium molecular structures of excited
states.

In the present work, we consider the simple molecules
H+

3 and H3 in the presence of strongmagnetic fields. The
paper is organised as follows. In Section 2, we review key
elements of the theoretical methods used; in particular,
a brief overview of the MOM and its variants in strong
magnetic fields is presented. In Section 3, we give the
computational details of our calculations. In Section 4,
we first discuss the potential energy surfaces of the low-
est lying states of H+

3 in a range of magnetic fields at
equilateral geometries. Pronounced changes in the order-
ing of the different electronic states are observed, along
with significant changes in the bonding in each state, as
the magnetic field strength is increased. We then con-
sider the fully optimised structures for each of these states
and compare the lowest energy high-spin state of H+

3
with the corresponding high-spin state of H3. Finally,
we interpret the structure of these states by considering
the variation of their occupied molecular orbital (MO)
energies as a function of bond angle in a magnetic field

using constrained geometry optimisations. Concluding
remarks and directions for future work are presented in
Section 5.

2. Background and theory

2.1. Quantum chemistry in strongmagnetic fields

The electronic Hamiltonian for an N-electron system in
the presence of a uniform external magnetic field B is
given by

Ĥ = Ĥ0 +
N∑
i=1

B · ŝi + 1
2

N∑
i=1

B · l̂i

+ 1
8

N∑
i=1

[
B2r2i − (B · ri)2

]
, (1)

where Ĥ0 is the standard zero-field electronic Hamilto-
nian. The remaining terms arise due to the presence of
the external magnetic field and consist of the linear Zee-
man terms depending on the spin (ŝi) and orbital angular
momentum (l̂i = −iri × ∇i) operators and a diamag-
netic term that has a quadratic dependence on the exter-
nal field strength. The linear Zeeman terms may either
raise or lower the energy as a function of magnetic field
and typically lift the degeneracy of orbitals; these terms
often dominate at lower field strengths. However, as the
field strength increases, the diamagnetic term, which
always raises the energy, eventually dominates. The result
is a complex variation of the electronic energy with the
appliedmagnetic field, thus giving rise to potentially very
rich chemistry. Given that zero-field degeneracies are
lifted, with each component having a different response
to the external field, state crossings and avoided cross-
ings occur frequently as the field strength is increased. It
is therefore highly desirable to have simple approaches to
study many low-lying electronic configurations at mod-
est computational cost so that the most relevant ones can
be easily identified over a range of field strengths.

To perform quantum-chemical calculations, the
Hamiltonian of Equation (1) may be employed directly,
enabling studies for systems where the external mag-
netic field cannot be considered as a weak perturbation.
The presence of the orbital angular momentum oper-
ator in the third term of Equation (1) means that the
resulting wavefunctions may be complex and this must
be accounted for in practical implementations. More-
over, for commonly used finite-basis-set approaches, the
presence of the external field presents challenges with
respect to the gauge-origin independence of observables
and their convergence with respect to basis set size. To
overcome these challenges, LAOs [39] can be used as
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basis functions with the form

ωa(r) = φa(r) exp [−iA(Ra) · r], (2)

where the complex phase factor is associated with a uni-
form magnetic field B via the vector potential A(Ra) =
1
2B × (Ra − RO) for an LAO centred at Ra relative to the
gauge-origin RO. This phase factor multiplies a standard
Gaussian basis function φa(r). The use of LAOs ensures
that calculated observables are gauge-origin independent
and converge smoothly towards the basis set limit for
arbitrary field strengths and orientations.

The introduction of LAOs for wavefunction-based
approaches requires the evaluation of molecular inte-
grals over these basis functions using complex algebra
and implementations that do not assume real wavefunc-
tions [33]. Several programs now exist that are capable of
determining the required integrals over LAOs including
London [40], BAGEL [41], ChronusQ [42], TURBO-
MOLE [43], CFOUR [44], QCUMBRE [45], and our
in-house program QUEST [46]. Acceleration techniques
such as the resolution of the identity (RI) [31,36,47] and
Cholesky decomposition [48] are available. Analytic gra-
dients are also available both with and without RI accel-
eration [26,36]. With the availability of the underlying
integrals, a wide variety of electronic structure meth-
ods are now implemented for use in the strong-field
regime using LAOs. These include Hartree–Fock (HF)
theory [25], configuration interaction theory [28], com-
plete active space self-consistent field (CAS-SCF) the-
ory [31], coupled-cluster (CC) theory [32,35], (direct)
random phase approximation and GW theories [49], as
well as CAS-SCF with second-order perturbation the-
ory [31]. For all of these approaches, the underlying
electronic structure implementations follow through in a
manner similar to their standard counterparts. However,
significant implementation work is required to ensure
compatibility with complex algebra and to ensure all
assumptions associated with real wavefunctions are elim-
inated.

Density-functional theory (DFT) can also be extended
to account for the presence of an external magnetic field.
However, the universal density functional F[ρ, jp] is then
a functional of both the charge density ρ and the param-
agnetic component of the induced current density jp. It
has recently been shown that the Vignale–Rasolt formu-
lation [50,51] of current-DFT (CDFT) can be treated in
a manner analogous to Lieb’s formulation [52] of con-
ventional DFT [27,53], placing it on a similarly rigor-
ousmathematical foundation.AKohn–Sham (KS)CDFT
scheme can be set up in a non-perturbative manner
using LAOs to describe the MOs — we refer the reader
to Refs. [29,30,51] for details of the resulting KS equa-
tions. It therefore becomes necessary to approximate the

exchange–correlation component Exc[ρ, jp] in an appro-
priate manner. The accuracy of practical calculations
using vorticity-based corrections to local density approx-
imation (LDA) and generalised gradient approximation
(GGA) levels has been shown to be poor [29,54,55].
However, introducing current dependence via the kinetic
energy density at the meta-GGA level has been shown
to yield good quality results in comparison with higher-
level correlated approaches [30]. In the present work, we
use the regularised form of the strongly constrained and
appropriately normed (SCAN) semilocal density func-
tional of Sun et al. [56], denoted r2SCAN, as proposed
by Furness et al. [57]. The r2SCAN functional is based
on the dimensionless kinetic energy density,

ᾱ(r) = τ̃ (r) − τW(r)
τunif (r) + ητW(r)

, (3)

where τW(r) = |∇ρ(r)|2/8ρ(r) is the von Weizsäcker
kinetic energy density, τunif (r) = 3(3π2)2/3ρ5/3(r)/10 is
the kinetic energy density of a uniform electron gas,
and

τ̃ (r) = 1
2

occ∑
i
[∇ϕi(r)]∗ · [∇ϕi(r)] − |jp(r)|2

2ρ(r)

= τ(r) − |jp(r)|2
2ρ(r)

, (4)

is the everywhere positive kinetic energy density, which
is modified here for use in a magnetic field in the
manner discussed in Refs. [30,58–60] to ensure that
the exchange–correlation energy remains properly gauge
independent in the presence of a magnetic field,
and where ϕi(r) are the KS orbitals. A simple regular-
isation using the parameter η = 10−3 was defined in
Ref. [57] and helps to ensure that r2SCAN avoids the
numerical instabilities suffered by the original SCAN
functional [57,61]. Recently, global hybrid exchange–
correlation functionals based on the r2SCAN have been
developed [62]. They are constructed as

Er
2SCANx
xc = (1 − a)Er

2SCAN
x + aEHF

x + Er
2SCAN
c , (5)

with a denoting the amount of the HF exchange. Three
variants of this functional with increasing amounts of the
HF exchange have been developed: r2SCANh, r2SCAN0,
and r2SCAN50 with 10%, 25%, and 50% of the HF
exchange, respectively. It has been shown in Ref. [62] that
a moderate amount of the HF exchange leads to amodest
improvement of molecular properties over a wide range
of benchmark data sets. In this work, we consider the use
of the r2SCAN0 functional in strong magnetic fields.
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2.2. Themaximumoverlapmethod

The MOM has been implemented in the QUEST pro-
gram [38,46]. The implementation includes the original
MOM approach of Gilbert, Besley and Gill [1] as well as
the IMOM variant of Barca et al. [20] and the projection-
based PMOM / PIMOM approaches of Corzo et al. [21].
EachMOM approach proceeds by tracking the SCF solu-
tion and choosing orbital occupations according to an
overlap criterion rather than the more typical Aufbau-
based one, driving the SCF solver towards a solution
approximating a desired excited state.

The target orbitals, against which the SCF orbitals at
each iteration are compared, and themetric used to deter-
mine the occupations distinguish the different variants
of the MOM. For all MOM approaches, an initial set of
MOs are generated for the ground state of the system
of interest, and from these orbitals, excitations are then
targeted by adjusting the occupations to replace one (or
more) occupied orbitals by virtual orbitals in a manner
consistent with the symmetry of the electronic excited
state to be calculated. Typically, the orbitals used are those
of the neutral ground state of the molecule, although in
some cases it can be advantageous to also consider tar-
get orbitals from the ground state of the corresponding
cationic system [1].

Once the initial orbital set has been selected, the ordi-
nary MOM approach uses an overlap metric to select
occupied SCF orbitals at a given iteration such that they
are the ‘closest’ to, i.e. have the maximal overlap with, the
target orbitals from the previous iteration. As a result, if
one starts with orbitals occupied according to the excited
state of interest, this method can be used to drive the SCF
solver towards a solution closest to the desired excited
state. In the IMOMapproach of Barca andGill [20], it was
recognised that an alternative procedure is to occupy at
each SCF cycle the orbitals most similar to target orbitals
from the initial SCF guesswhich remain fixed throughout
the SCF procedure. This alternative approach has been
found to be beneficial in difficult cases such as doubly
excited states.

In theMOM and IMOM approaches, the overlapmet-
ric used has been defined in a number of ways in the
literature [1,15,20,63] — for an overview, see, for exam-
ple, Ref. [21]. In the present work, we use the definition
of Ref. [20]:

sp =
⎧⎨
⎩

∑
i

[∑
μν

(Ctarget
μi )∗SμνCνp

]2
⎫⎬
⎭

1/2

, (6)

where the non-Aufbau occupations are selected in
descending order of {sp}. Here, Ctarget

μi are the target MO
coefficients for the occupied orbitals, Sμν is the overlap

matrix in the atomic orbital (AO) basis, and Cνp are the
MO coefficients of the current SCF cycle.

More recently, the projection-based MOM approach
was proposed by Corzo et al. [21], in which the overlap
metric is calculated as

sp =
∑
q

∑
i

∑
μν

∑
λσ

C∗
μpSμλC

target
λi (Ctarget

σ i )∗SσνCνq.

(7)
This projection is designed to select the set of eigenvec-
tors of the current Fock matrix that gives rise to a deter-
minant with the largest projection onto the determinant
constructed from the target orbitals. This projection-
based metric can be used with either target orbitals
defined as those from the previous SCF iteration or the
initial guess, denoted as PMOMor PIMOM, respectively.
The implementation in the QUEST program has been
extended to include these variants.

Despite many successes, the MOM does have some
limitations. A well documented case is the description
of open-shell singlet solutions, which cannot typically be
well described by single-determinant methods. In these
cases, the MOM typically leads to spin-contaminated
solutions whose spin expectation values 〈Ŝ2〉 are close
to 1. This problem can be resolved to some extent by
performing an approximate spin purification [64] for
excitations of closed-shell molecules within the MS = 0
manifold. The simplest such approach is to calculate the
energy of the corresponding triplet state in theMS = ±1
manifold (ET), which iswell represented by a single deter-
minant, and then calculate the energy of the true singlet
state according to

ES = 2Esc − ET, (8)

where Esc is the energy of the spin-contaminated solu-
tion. For a more detailed discussion, see, for example,
Ref. [65]. A secondary point is that theMOMmaybe cou-
pled with a variety of SCF algorithms, and in challenging
cases, the solutions obtainedmay differ depending on the
choice of SCF algorithm employed. In the present work,
we utilise the MOM with the C1-DIIS approach [66,67]
for convergence acceleration.

2.3. Symmetry analysis

In the presence of a magnetic field, the unitary symmetry
point group of the molecule may be restricted to one of
its subgroups since only symmetry operations that leave
the combined molecule and field unchanged remain. In
fact, the unitary symmetry group H of the system in a
uniform magnetic field is given by the intersection

H = G ∩ C∞h,
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where G is the zero-field unitary symmetry point group
of the molecule and C∞h is the well-known unitary sym-
metry group of the uniformmagnetic field in the absence
of any other external potentials [68,69]. In general, only
proper or improper rotation axes parallel to the field,
mirror planes perpendicular to the field, and the centre
of inversion, if present, will remain. As such, the reduc-
tion G ⊃ H depends on the orientation of the molecular
frame relative to the direction of the applied magnetic
field. Furthermore, it can be shown that all possible uni-
tary symmetry groups in the presence of a magnetic field
are Abelian [68,69].

In order to use the MOM procedure effectively, it is
highly desirable to have knowledge of the unitary sym-
metry group H of the system so that the irreducible
representations ofH can be used to classify the symme-
tries of the SCF state and MOs. The latter are of course
essential when deciding which MOs should be occupied
for a particular target state using the MOM.

Thus far, only unitary symmetry has been discussed.
In principle, when a magnetic field is present, certain
antiunitary transformations involving the action of time
reversal may also be symmetry transformations of the
combined molecule and field [70–72]. In such a case, the
full symmetry group of the system becomes a magnetic
group [73], which is no longer unitary and for which
corepresentations must be considered instead of repre-
sentations [73–75]. However, antiunitary symmetry will
not need to be taken into account in the present work
because it turns out that unitary symmetry is more than
sufficient to classify the SCF state and MOs for the pur-
pose of utilising the MOM procedure for the systems
examined in the discussions below. All of the unitary
symmetry groups considered in this work are therefore
subgroups of O(3).

To extract symmetry properties of SCF states and
MOs automatically, a flexible symmetry analysis pack-
age QSym2 has been developed and integrated into the
QUEST program [46]. Details of the implementation and
algorithms will be reported elsewhere; here we only indi-
cate briefly someof its key capabilities that are relevant for
the present work. In particular, QSym2 is able to deter-
mine the unitary symmetry group H of any molecule
in the absence or presence of magnetic and/or electric
fields with arbitrary user-defined orientations without
the need to impose a standard orientation. Then, the
conjugacy classes are deduced and the character table
is determined symbolically and automatically using the
Burnside–Dixon algorithm [76,77]. This allows the con-
jugacy classes and irreducible representations of H to
refer faithfully to the symmetry transformations of the
system in the original user-defined orientation while also

eliminating the need to store fixed character tables prede-
fined in certain standard orientations.

Together with the generated character table, the
general representation-theoretic approach described in
Ref. [78] enables the Mulliken symmetry labels of SCF
states and MOs to be determined directly in H with-
out recourse to its Abelian subgroups. This approach
ensures that degeneracy and symmetry breaking are cor-
rectly detected, and that any complex representations of
H, which occur frequently when H is an Abelian group
in the presence of a magnetic field, are properly handled.

The classification of SCF states and MOs based on
symmetry helps to ensure that theMOMsolutions deliver
the desired states, and that the correct states and MOs
are followed as the molecular geometry and the applied
magnetic field are varied. In the present work, we exploit
this analysis to construct state and orbital correlation
diagrams for systems in magnetic fields.

3. Computational details

The methods and analysis tools described in Section 2
have been implemented in our in-house QUEST pro-
gram [46]. For all calculations, the 6-311(2+,2+)G(dp)
basis set, which is augmented with additional diffuse
functions as described in Refs. [1,79], was used. Geom-
etry optimisations were carried out using the analytic-
gradient implementation described in Ref. [36] with a
quasi-Newton optimisation approach using the BFGS
Hessian update scheme. All excited-state calculations use
the IMOMapproach of Ref. [20]. TheMOMapproach [1]
was found to give similar results in the vast major-
ity of cases, though some variational collapses were
observed for larger magnetic field strengths. Preliminary
investigations suggested that the PMOM and PIMOM
approaches [21] give results identical to the MOM and
IMOM for the simple H+

3 andH3 molecules in this study.
Where potential energy curves are computed directly
(see Sections 4.1 and 4.2), spatial symmetry breaking
has been applied in the MOM calculations so that the
curves approach the energies of the expected dissociation
products.

To analyse how the electronic structures of the high-
spin states of H+

3 and H3 in a magnetic field deter-
mine the molecular structure, a series of constrained
geometry optimisations were performed. Figure 1 shows
a schematic of the molecular structure and defines
the coordinates discussed in the present work. In par-
ticular, the direction of the applied magnetic field is
defined relative to the Cartesian axes shown in Figure 1.
Two constraints were applied in these calculations: first,
the angle θ213 was constrained, allowing a scan to be
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Figure 1. Schematic of the atom numbering, bond labels and
angles in H+

3 and H3.

carried out in which the molecules could be adjusted
from a linear to bent structure allowing for the H−Hdis-
tances to relax at each step; second, the molecular plane
defined by the three hydrogen atoms was constrained to
be perpendicular to the applied field vector. Both con-
straintswere enforced by using an augmented Lagrangian
approach requiring only the analytic nuclear gradient
and first derivatives of constraint functions. Details of
this approach will be reported in a forthcoming publica-
tion. All calculations were performed at the unrestricted
Hartree–Fock (UHF) level. For comparison, geometry
optimisations were also performed at the coupled clus-
ter singles and doubles (CCSD) and r2SCAN0 levels of
theory using numerical nuclear gradients.

4. Results and discussion

The H2 molecule in strong magnetic fields was investi-
gated by Kubo [80] and Lange et al. [28]. In the pres-
ence of a strong magnetic field on the order of 1B0 =
235052 T, the molecule preferentially orients perpendic-
ular to the field direction and the MS = −1 state (i.e.
the β(1)β(2) component of the zero-field 3�+

u state)
becomes the ground state. This observation is striking
since the 3�+

u state in the absence of a strong mag-
netic field is entirely repulsive, but becomes increasingly
bound with stronger magnetic fields. This implies the
possibility of a rather different chemistry in the presence
of such extreme fields, which may be found on magnetic
white dwarf stars.

In the present work, we consider H+
3 and H3 as proto-

typical examples of polyatomic systems. The H+
3 cation

is well studied as an important species in astrochem-
istry [81] which exhibits a D3h equilateral triangular
geometry in the ground state, whilst the H3 radical has
been much less studied and, as may be expected, is rel-
atively unstable in the absence of a magnetic field. Sev-
eral questions arise when considering molecular systems
in the presence of a magnetic field. Which electronic

configurations are favoured at each field strength? For
each configuration, what is the preferred orientation rel-
ative to the applied field?What structure does a molecule
adopt in the presence of an applied field? And finally,
can the structure adopted be rationalised in a simple MO
picture?

We use the prototypical H+
3 and H3 systems to exam-

ine some of these questions. The ground and lowest-lying
excited states are determined in the absence of a field
using the MOM protocol and then their behaviour is
tracked to strongermagnetic fields. Optimised structures
are determined for each state using the MOM within
geometry optimisations and the features of the structures
for the lowest-lying states are then rationalised using
orbital correlation diagrams.

4.1. Potential energy surfaces for equilateral H+
3

The ground 1A′
1 state of H+

3 adopts an equilateral D3h
equilibrium geometry in the absence of a magnetic field.
The ground state and the lowest excited states have
been well studied computationally — see, for example,
Ref. [82] for an early configuration-interaction investi-
gation. We commence by considering this simple verti-
cal excitation picture for the equilateral geometry in the
presence of a range of magnetic fields.

The potential energy curves for |B| = 0.0, 0.1, 0.5 and
1.0B0 are presented in Figure 2. The zero-field poten-
tial energy curves in Figure 2(a) agree well with those
from higher level ab initio calculations [82], indicating
that for the lowest states of this simple molecule, HF the-
ory can provide a reasonable description. This is further
confirmed by our own calculations at the CCSD level, as
shown by the curves marked with crosses in Figure 2,
and this agreement is preserved as the magnetic field
strength increases. Similar potential energy curves can be
obtained at the DFT level using the r2SCAN0 functional.
However, the dissociation limits tend to be slightly too
low in energy due to a residual self-interaction error and
this affects each state to a different degree. As a result, we
focus our discussion here on the HF and CCSD results
and refer the reader to the supplementary material for a
discussion of the r2SCAN0 results.

As expected, the 1A′
1 ground state is bound, whilst the

1E′ and 3E′ states are dissociative in the absence of the
magnetic field. Here, we have applied the approximate
spin purification of Equation (8) to the 1E′ state, tak-
ing care to remove the spin-Zeeman energy contribution
from ET when calculating the correction.

As a magnetic field is applied, there are several note-
worthy changes to the electronic structure of H+

3 for the
states considered. Firstly, the states with MS = 0 prefer-
entially orientate so that one of theH−Hbonds is parallel
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Figure 2. Potential energy curves for equilateral geometries of H+
3 calculated using UHF, spin-purified UHF (sp-UHF), and CCSD. (a) The

1A′
1,

1E′ and 3E′ states in the absence of a magnetic field. (b) The corresponding A′, �′ and A′ states in the presence of a magnetic field
of magnitude 0.1B0. For states with MS = 0, the potential energy curves for the lowest energy orientation with the field vector parallel
to the y-axis in Figure 1 is shown. For the state with MS = −1, the lowest energy orientation with the field vector parallel to the x-axis
(perpendicular to the molecular plane) is shown. (c) and (d) The corresponding A′,�′ and A′ states in the presence of a magnetic field of
magnitude 0.5 B0 and 1.0 B0, respectively.

to the field vector; this means that, in the coordinate
system shown in Figure 1, B is parallel to the y-axis,
denoted as B ‖ y. In contrast, the state with MS = −1
preferentially orientates with the field vector parallel to
the x-axis — denoted as B ‖ x — and thus perpendicu-
lar to the molecular plane. In Figure 2(b–d), we therefore

present each surface for the energetically preferred orien-
tation.

In the presence of a magnetic field, the unitary sym-
metry group of equilateral H+

3 is restricted to a subgroup
ofD3h as discussed in Section 2, and the spatial symme-
try labels of the states must be subduced accordingly. For
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the ground and excited singlet states which are labelled
1A′

1(D3h) and 1E′(D3h) in the absence of the field, theB ‖
y preferential orientation implies the restriction D3h ⊃
Cs, for which the following subductions hold:

A′
1(D3h) ↓ Cs = A′, E′(D3h) ↓ Cs = 2A′,

which means that, in B ‖ y, the state 1A′
1(D3h) becomes

A′(Cs), and the state 1E′(D3h) is split into two non-
degenerate states, each of which also has the label A′(Cs).
In what follows, only the energetically lower of the two
A′(Cs) states originating from 1E′(D3h) shall be consid-
ered. In all cases, the spin projection quantum number
MS = 0 remains a good descriptor with the spin projec-
tion axis taken to be along the direction of the magnetic
field.

The splitting of the zero-field 3E′(D3h) state is more
subtle. In the absence of a field, this state has six
microstates, all of which are degenerate, as a consequence
of the spin triplet three-fold degeneracy and the spatial
two-fold degeneracy. In the B ‖ x preferential orienta-
tion, the restriction D3h ⊃ C3h holds, which admits the
following subduction for the spatial part of the state:

E′(D3h) ↓ C3h = �′ ⊕ �̄′, (9)

where �′ and �̄′ are two one-dimensional complex-
conjugate irreducible representations in C3h, and �′ is
chosen such that its character under the C3 operation
in the group (anticlockwise as viewed down the x-axis
in Figure 1) is exp(2π i/3). Furthermore, the degener-
acy between the three MS = 0,±1 components of the
spin triplet at zero field is lifted by the magnetic field. It
turns out that themicrostate with�′(C3h) spatial symme-
try and MS = −1 spin projection is the lowest amongst
the six, which shall therefore be the only microstate orig-
inating from the zero-field 3E′(D3h) state that will be
considered for the rest of this discussion.

As the field is applied, the energies of the A′(Cs) states
rise diamagnetically. This can be seen easily by examining
the red and green curves in Figure 2(b–d) at 5.0 Å where
their common dissociation limit of H(1sα) + H(1sβ)

+ H+ is approached: the energy of this dissociation
limit rises purely due to the diamagnetic confinement
of the electron on the hydrogen atoms, described by
the last term of Equation (1). It is also clear that as |B|
increases, the lower A′(Cs) state, which corresponds to
the 1A′

1(D3h) state at zero field, remains bound, whilst
the excited state, which corresponds to the 1E′(D3h)

state at zero field, remains unbound. The bound state in
this equilateral geometry displays a minimum at shorter
internuclear separations as |B| increases and both states
also become degenerate and approach the dissociation
limit at shorter internuclear distances as |B| increases.

This is consistent with the analysis for the MS = 0 state
of H2 in Ref. [28] and illustrates the general features of
binding in such states: diamagnetic confinement domi-
nates, thus resulting in smaller atoms that can approach
each other more closely but does not change fundamen-
tally their bonding. In fact, the lowestA′(Cs) state remains
bound due to the double occupation of a bonding orbital,
whilst the excited A′(Cs) state remains unbound due to
equal occupation of bonding and anti-bonding orbitals
with electrons of opposite spin.

More striking is the behaviour of the �′(C3h) state as
the magnetic field strength increases. The energy of this
state is lowered paramagnetically by the spin-Zeeman
contribution [the second term in Equation (1)], resulting
in a significant reordering of the states in Figure 2(b–d),
with the �′(C3h) state becoming the lowest at all inter-
nuclear separations considered in a perpendicular field
when |B| = 1.0B0. Furthermore, the nature of the bond-
ing in this state changes, from repulsive in the absence of
amagnetic field to bound in the presence of a strongmag-
netic field with the dissociation energy increasing and
the equilibrium internuclear separation decreasing as |B|
increases. As a result, the bound β(1)β(2) configuration
of H+

3 becomes increasingly more stable as the magnetic
field increases compared to the H(1sβ) + H(1sβ) + H+
dissociation limit. This is consistent with the behaviour
of the 3�+

u state of H2 as described in Ref. [28].
Throughout this analysis, we have assumed that the

structure remains equilateral to give the simplified poten-
tial energy curves in Figure 2(a–d). This simple analysis
reveals how the external magnetic field favours states
with unpaired electrons that have β spin, and that dif-
ferent states may have different preferential orientations
relative to the direction of the applied magnetic field.
For the �′(C3h) state, the occurrence of perpendicular
paramagnetic bonding is observed, as may be expected
from Ref. [28]. Of course, for a polyatomic system, the
molecular structure may distort away from the equilat-
eral geometry — an aspect we shall consider in more
detail in Section 4.3.

4.2. Potential energy surfaces for equilateral H3

Given that the presence of a strongmagnetic field favours
systems with unpaired β-spin electrons, a natural point
of comparison is the corresponding MS = −3/2 state of
H3. In the absence of a magnetic field, this radical is very
weakly bound in an equilateral geometry. However, in
the presence of a strong magnetic field, the MS = −3/2
state becomes the lowest in energy, with an equilateral
geometry that preferentially orients perpendicular to the
applied field. It is therefore interesting to compare this
state of H3 with those of H+

3 considered in Section 4.1.
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Figure 3. Potential energy curves of the lowest MS = −3/2 state for equilateral geometries of H3 at various magnetic field strengths.
In all finite-field cases, the field vector is parallel to the x-axis and perpendicular to the molecular plane. At zero field, the system has
D3h unitary symmetry in which the state is given the symmetry label 4A′

2. At finite fields, the system is reduced to C3h unitary symmetry
and the state becomes A′ with spin-projection degeneracies lifted. (a) The UHF and CCSD energy curves. (b) The corresponding UHF and
CCSD interaction energy curves given by E(rH−H) − E(5.0 Å) plotted on a smaller vertical scale to show the variation of the minimum
structures of the UHF and CCSD energy curves in (a) with respect to magnetic field strengths more clearly.

Potential energy curves for the equilateral geometry of
H3 in the MS = −3/2 state are presented in Figure 3. In
this configuration, the electrons are placed in the lowest
three β MOs. Figure 3(a) shows clearly the paramagnetic
decrease in the energy of the state with increasing |B|,
as would be expected from the presence of an additional
electron with β spin which gives a larger spin-Zeeman
contribution. However, for |B| < 1.0B0, it is evident from
the relatively flat potential energy curves that little or
no binding occurs. Again, the HF and CCSD results
agree remarkably well for this simple system in its high-
spin configuration for all of the magnetic field strengths
considered, indicating the modest role of correlation.

To investigate the nature of the interactions, fur-
ther field strengths up to |B| = 1.5B0 were considered.
For |B| ≥ 1.0B0, as seen in Figure 3(a), minima in the
potential energy curves start to become perceptible. In
Figure 3(b), the interaction energy relative to the H(1sβ)
+ H(1sβ) + H(1sβ) dissociation limit is plotted for each

field strength. It is clear that the field strength required
to induce significant bonding in H3 is much higher than
that for H+

3 . A more detailed analysis of the bonding in
each case is given in Section 4.4.

4.3. Optimisedmolecular structure for H+
3 and H3

For the bound states, geometry optimisations were per-
formed to determine whether their structures would dis-
tort from the equilateral geometries considered in Sec-
tions 4.1 and 4.2. The geometrical parameters for the
lowest energy orientations are summarised in Table 1 at
the HF and CCSD levels, and in the supplementary infor-
mation at the DFT level with the r2SCAN0 functional.

For the lowest A′(Cs) state with MS = 0 which orig-
inates from the 1A′

1(D3h) state at the equilateral con-
figuration in zero field, H+

3 is raised in energy as
the magnetic field strength increases, as expected from
Section 4.1. However, the structure smoothly distorts
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Table 1. Optimised molecular structures for the H+
3 and H3 molecules in particular electronic states as a magnetic field is applied either

along the x (Bx) or y (By) directions as shown in Figure 1.

State MS B/B0 Group Symmetry Energy / Eh θ213 / ◦ θ132 / ◦ R12 / Å R23 / Å Shape

H+
3

1A′
1 0 0 D3h A′

1 −1.2985300 (−1.3372397) 60.00 60.00 0.869 (0.878) 0.869 (0.878) Equilateral
0 By = 0.1 Cs A′ −1.2953725 (−1.3340867) 60.08 (60.09) 59.96 (59.96) 0.867 (0.875) 0.868 (0.877) Isosceles
0 By = 0.3 Cs A′ −1.2707995 (−1.3095510) 60.67 (60.74) 59.67 (59.63) 0.850 (0.858) 0.858 (0.868) Isosceles
0 By = 0.5 Cs A′ −1.2246226 (−1.2634092) 61.65 (61.83) 59.18 (59.08) 0.822 (0.830) 0.842 (0.852) Isosceles
0 By = 0.7 Cs A′ −1.1607536 (−1.1995441) 62.81 (63.13) 58.59 (58.44) 0.790 (0.798) 0.824 (0.835) Isosceles
0 By = 1.0 Cs A′ −1.0391816 (−1.0779118) 64.64 (65.17) 57.78 (57.42) 0.744 (0.751) 0.796 (0.809) Isosceles

3E′ −1 0 † – – – – – – –
−1 Bx = 0.1 C3h �′ −1.1453838 (−1.1473844) 60.00 60.00 1.762 (1.739) 1.762 (1.739) Equilateral
−1 Bx = 0.3 C3h �′ −1.3513473 (−1.3546006) 60.00 60.00 1.516 (1.505) 1.516 (1.505) Equilateral
−1 Bx = 0.5 C3h �′ −1.5155514 (−1.5195295) 60.00 60.00 1.349 (1.342) 1.349 (1.342) Equilateral
−1 Bx = 0.7 C3h �′ −1.6517855 (−1.6561028) 60.00 60.00 1.226 (1.222) 1.226 (1.222) Equilateral
−1 Bx = 1.0 C3h �′ −1.8209581 (−1.8254658) 60.00 60.00 1.093 (1.091) 1.093 (1.091) Equilateral

H3
4A′

2 −3/2 0 † – – – – – – –
−3/2 Bx = 0.5 C3h A′ −2.0882040 (−2.0887421) 60.00 60.00 2.203 (2.144) 2.203 (2.144) Equilateral
−3/2 Bx = 0.7 C3h A′ −2.2609694 (−2.2625532) 60.00 60.00 1.794 (1.744) 1.794 (1.744) Equilateral
−3/2 Bx = 1.0 C3h A′ −2.4821822 (−2.4857342) 60.00 60.00 1.445 (1.414) 1.445 (1.414) Equilateral
−3/2 Bx = 1.1 C3h A′ −2.5472857 (−2.5513931) 60.00 60.00 1.369 (1.342) 1.369 (1.342) Equilateral
−3/2 Bx = 1.3 C3h A′ −2.6652456 (−2.6701932) 60.00 60.00 1.258 (1.238) 1.258 (1.238) Equilateral
−3/2 Bx = 1.5 C3h A′ −2.7679688 (−2.7735027) 60.00 60.00 1.179 (1.163) 1.179 (1.163) Equilateral

†Dissociative.
Notes: Each state is labelled by the spin multiplicity and spatial symmetry that it would adopt in aD3h molecular structure at zero field. Values are computed at
the UHF and CCSD levels. CCSD values are shown in parentheses where different.

from the equilateral D3h geometry obtained in the
absence of a magnetic field to an isosceles structure with
Cs symmetry. The equilibriumapex angle θ213 opens from
60.00◦ to 64.64◦ (65.17◦) at the HF (CCSD) level as the
field strength increases and the longest edge, H2−H3,
aligns parallel to the applied field vector. The equilibrium
H−H internuclear distances shorten significantly with
changes on the order of 0.1 Å, with a slightly more pro-
nounced shortening for R12 and R13 compared with R23.
This distortion allows the system to reduce its extent per-
pendicular to the field axis as the impact of the diamag-
netic confinement [final term in Equation (1)] becomes
more important with increasing magnetic field.

For the �′(C3h) state with MS = −1 of H+
3 in a mag-

netic field, which corresponds to the 3E′
1(D3h) state at

the equilateral configuration in the absence of the field,
the structure remains equilateral with the lowest energy
orientation being that in which the molecular plane is
perpendicular to the field direction. Initially, for |B| =
0.5B0, a weakly bound minimum develops on this state
as shown in Figure 2. However, as the field strength
increases, the structure becomes increasingly bound and
this is reflected in the significant shortening of equilib-
rium internuclear distances from 1.762 Å at |B| = 0.1B0
to 1.093 Å at |B| = 1.0B0.

For H3 in its lowest A′(C3h) state with MS = −3/2,
which corresponds to the 4A′

2(D3h) state in the absence of
a magnetic field, a similar trend is observed. The system
remains equilateral and preferentially orients such that

the molecular plane is perpendicular to the applied field.
However, since H3 is considerably less stable than H+

3 ,
the optimal structure calculated at |B| = 0.5B0 has con-
siderably larger internuclear H−H distances at 2.203 Å,
than those for H+

3 at 1.349 Å in the same field strength
at the HF level. As a result, significantly stronger fields
are required to stabilise the structure, which is reflected
in the shortening of the equilibrium internuclear H−H
distances from 2.203 Å to 1.179 Å over the field range
|B| = 0.5 − 1.5B0. Overall, the results for both the H+

3
and H3 molecules computed at the CCSD level show
a similar trend to those computed at the HF level (see
Table 1).

4.4. MO analysis of bonding in strongmagnetic
fields

The analysis in Sections 4.1–4.3 highlights features of
molecular bonding in a strong magnetic field. In this
Section, we explore the extent to which the MO picture
intrinsic to �-SCF and MOM calculations can be used
to rationalise the nature of the structures of H+

3 and H3.
In each case, we will focus on the states that become the
ground state in strong magnetic fields.

A simple question is why the �′(C3h) state of H+
3

and A′(C3h) state of H3 prefer to adopt an equilateral
geometry in a strong field rather than an isosceles or lin-
ear structure, or, in particular, whether this preference
can be rationalised in terms of maximising (minimising)
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Figure 4. Variation of the lowestMS = −1 UHF solution of H+
3 in the presence of a uniformmagnetic field B ‖ x across a range of θ213-

constrained geometry-optimised structures. For each constrained value of θ213, all three H−H bond lengths in H+
3 are allowed to relax to

attain an optimal geometry. (a) Energies of the two occupiedms = −1/2MOs in H+
3 along this path, plotted relative to the energy of the

HOMO of the θ213 = 180◦ geometry-optimised structure in each field strength. The forms of the two β MOs at 60◦, 120◦, and 180◦ are
also shown: the isosurface for MO ϕi(r) is plotted at |ϕi(r)| = 0.08, and the colour at each point r on the isosurface indicates the phase
angle argϕi(r) ∈ (−π ,π ] at that point according to the accompanied colour wheel. (b) Energy of theMS = −1 UHF solution along this
path, plotted relative to the value at the θ213 = 180◦ geometry-optimised structure in each field strength.

bonding (anti-bonding) interactions in the MOs. To
examine this question, we performed constrained geom-
etry optimisations as described in Section 3 for a range of
θ213 angles, varying from very acute through equilateral
to linear.

4.4.1. H+
3

In Figure 4(a), the variations of the occupied MO ener-
gies for the lowest MS = −1 UHF solution of H+

3
are shown for a range of θ213-constrained geometry-
optimised structures with fields B ‖ x (perpendicular

to the molecular plane), where 20◦ ≤ θ213 ≤ 180◦. The
optimal equilateral structure has C3h unitary symme-
try in the perpendicular field and the occupied MOs
adopt A′ and �′ spatial symmetry. In each case, the
orbital energies are presented relative to that of the high-
est occupied molecular orbital (HOMO) at the linear
geometry for each field strength. The plots depict how
each MO is stabilised or destabilised upon distorting the
molecule away from the equilateral geometry and how
this behaviour changes as |B| increases from 0.8B0 to
1.0B0. At all optimal isosceles geometries, the unitary
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group of the system in the field is reduced to Cs and
the spatial symmetry labels of both MOs become A′. At
the optimal linear geometry, the unitary symmetry group
increases slightly to C2h and the two MOs can be dis-
tinguished by spatial symmetry again, having Ag and Bu
labels.

To facilitate the understanding of how the MOs deter-
mine the bonding of the molecule, three-dimensional
isosurface plots are used to illustrate their forms at
the optimal geometries for θ213 = 60◦, 120◦, and 180◦.
Since the MOs are complex-valued in a magnetic field,
the plotting method described in Ref. [83] is utilised
together with VMD [84] to produce representations of
the MOs that faithfully capture their complex phase
structures which, as will become apparent shortly, play
a crucial role in helping to rationalise their bonding
nature.

In both Figure 4(a,b), a vertical dashed line is used to
indicate the optimal equilateral geometry, which is also
the globally optimal geometry. It is clear that there are
two competing effects: at this geometry, the lower MO is
least stable and would suggest a preference for an isosce-
les geometry, whereas the HOMO is most stabilised. As
|B| increases, it can be observed that the HOMO is sta-
bilisedmore significantly at the equilateral geometry than
the lower MO is destabilised relative to the linear geome-
try. This is reflected in the fact that the total energy of the
systemminimises at the equilateral geometry as shown in
Figure 4(b).

The nature of the MOs and the interaction with
the magnetic field described by the Hamiltonian of
Equation (1) rationalise both the observed stabilisation
and de-stabilistion of each MO. The isosurface plots for
the lowerMO in Figure 4(a) reveal that thisMO ismostly
real-valued everywhere, and that the interaction between
each pair of adjacent hydrogens is primarily in-phase
and bonding. This MO is therefore unambiguously a
bonding MO, which is consistent with the fact that its
energy is significantly lower than that of the HOMO.
However, to rationalise the observation that this MO is
most unstable at the equilateral geometry, the confine-
ment effects that lead to contraction of the orbital (and
associated charge density) towards the nuclei must be
considered.

The consequence of these effects is that, when the
structure distorts away from the equilateral form, the
more favourable electron-nuclear interaction energy
arising from this contraction partially offsets the un-
favourable repulsive interactions. For θ213 > 60◦, the
structures are isosceles with the apex at H1 and R12 and
R13 shorten as θ213 increases, enabling closer approaches
of the smaller atoms in a magnetic field and stronger

bonding interaction, thereby reducing the orbital energy.
For θ213 decreasing from 60◦ to ca. 48◦, the structures
remain isosceles with the apex at H1 andwith theR12 and
R13 distances increasing, consistent with maximising the
bonding interaction between one pair of hydrogen atoms
(i.e. H2−H3), whilst minimising the overall repulsion.
At very acute angles θ213 < 48◦, repulsive interactions
dominate and the structures distort further to become
isosceles with the apex at H2 where the R13 distance
becomes longer as the angle becomes more acute. How-
ever, R12 and R23 decrease, and as a result, the orbital
energy continues to fall due to favourable bonding inter-
actions between H1−H2 and H2−H3. The change-over
between the isosceles structures with the apex at H1 and
those with apex at H2 occurs at θ213 ≈ 48◦, which corre-
sponds to the inflexion points on the energy curves for
the lower MO in Figure 4(a).

On the other hand, the HOMO is more difficult to
interpret owing to the generally complex-valued form of
its isosurface plots as seen in Figure 4(a). To obtain a
better appreciation for the bonding nature of this MO,
one can consider an isoelectronic, butmanifestly simpler,
system: that of the lowest MS = −1 state in H2 which
has term symbol 3�+

u in the absence of magnetic fields.
In Figure 5, the occupied MOs of the relevant states in
H+

3 and H2 are compared at the respective geometries
of the two structures optimised in a perpendicular mag-
netic field with strength 1.0B0. With the geometry kept
fixed, each state is also smoothly followed with the aid
of the MOM as the magnetic field is slowly switched off
so that the unfamiliar finite-field complex-valued MOs
can be correlated with themore familiar zero-field orbital
pictures.

It was shown by Lange et al. in Ref. [28] that the
1σ ∗ anti-bonding MO in H2, which is shown as the
�+

u (D∞h) MO at zero field in Figure 5, is stabilised by
a perpendicular magnetic field, and that this stabilisa-
tion ismore effective for shorter internuclear separations.
An examination of the �+

u (D∞h) → Bu(C2h) MO of
H2 in Figure 5 sheds light on this observation: as the
magnetic field is applied perpendicular relative to the
molecule, the mirror plane perpendicular to the H−H
bond, which enforces the nodal plane in the �+

u (D∞h)

MO at zero field, is annihilated. Consequently, this MO,
which has Bu(C2h) symmetry in finite perpendicular
fields, is allowed to have non-vanishing electron densi-
ties in the internuclear region and thus becomes partially
bonding — this can be seen most prominently at |B⊥| =
1.0B0. Furthermore, the lack of a nodal plane means that
points symmetric about this would-be plane are now no
longer completely out-of-phase (i.e. they can now have
phase differences less than π , which can be verified by
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Figure 5. Isosurfaces of occupied MOs in the lowestMS = −1 UHF solutions in H+
3 and H2 in the presence of a perpendicular magnetic

field. For each molecule, the optimal geometry at |B⊥| = 1.0B0 is used to calculate the UHF solution, which is then tracked smoothly
to B = 0 with the help of the MOM as the field is switched off while keeping the geometry fixed. This is to generate the corresponding
MOs at zero field for investigation purposes. The isosurface for MO ϕi(r) is plotted at |ϕi(r)| = 0.08, and the colour at each point r on the
isosurface indicates the phase angle argϕi(r) ∈ (−π ,π ] at that point according to the colour wheel shown in Figure 4.
†,‡ These MOs turn out to be slightly symmetry-broken at zero field, both of which having actual symmetry A′

1 ⊕ E′. This symmetry
breaking, however, is not discernible from the isosurface plots and thus does not affect the qualitative argument given in the main text.
Furthermore, as the perpendicular field is introduced, the MOs become symmetry-conserved.

examining the colouring of the isosurfaces in Figure 5).
This therefore helps reduce the anti-bonding character of
this MO.

This understanding can be transferred almost wholly
to the MS = −1 state in H+

3 . Let us consider first the
optimal equilateral geometry of this system at |B⊥| =
1.0B0 for which the form of the HOMO is shown in
Figure 4(a) and also in Figure 5. A quick compari-
son to its zero-field counterpart, which has symmetry
label E′(D3h) in Figure 5, shows that the perpendicular
magnetic field destroys the vertical nodal plane pass-
ing through one of the protons (H1 using the labelling
scheme in Figure 1) and perpendicular to the bond
between the other two (H2−H3). This enables electron
density to build up in the internuclear region between
H2 and H3 in the HOMO in the MS = −1 state of H+

3 .
However, this is where the similarity with the MS = −1
state in H2 ends: the possibility of a third proton, H1,
to now support electron density implies that there can
now be electron interactions including all three H−H
pairs.Moreover, the fact that thisMOhas symmetry�′ in
C3h, and thus a character of exp(2π i/3) under C3, means
that C3-equivalent points in this MO are out-of-phase by
only 2π/3. Consequently, each H−H pair admits some
weak bonding interaction, thereby reducing the overall
anti-bonding character of this MO.

In light of the above description, it is now possible
to return to Figure 4(a) to rationalise the shape of the
energy curve for the HOMO in H+

3 . As the molecule
distorts away from the equilateral geometry, for θ213 >

60◦, R23 increases, and as a result, some of the stabili-
sation from the weak bonding interaction between H2
and H3 is lost, thus raising the energy of the orbital.
For θ213 < 60◦, nuclear repulsive effects dominate, caus-
ing the structure to adjust in the same way as described
previously for the lower MO, leading to larger separa-
tions between the atoms on average, further reducing
the weak bonding interaction and resulting in the orbital
energy increasing. At θ213 = 60◦, the average distance
between the atoms is minimised. As explained by sym-
metry, all three atoms can participate equally tomaximise
the stabilisation of the HOMO, which is the dominant
factor in determining the overall equilateral molecular
structure.

The orbital correlation plots in Figure 4 are some-
what similar to the classic Walsh diagrams [85] where
the behaviour of the HOMO energy as a function of a
molecular internal coordinate is used to rationalise the
structure adopted. Typically, in constructing aWalsh dia-
gram, only the coordinate of interest is varied, with all
others kept fixed. However, preliminary studies in this
work revealed that it is actually necessary to allow the
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internuclear distances to relax in order to observe the
(de-)stabilisation of the MOs shown in Figure 4(a). This
emphasises the need to traverse the potential energy
curve along the lowest energy pathway corresponding to
the distortion of the molecule.

4.4.2. H3
Given that the presence of a strong external magnetic
field strongly stabilises states with unpaired β-electrons
via the spin-Zeeman interaction, it is interesting to con-
sider a similar orbital correlation plot for the lowest
energyMS = −3/2 UHF solution of H3 with B ‖ x (per-
pendicular to the molecular plane) in the range 0.5B0 ≤
|B| ≤ 1.5B0. The additional occupied MO is found to
have �̄′(C3h) symmetry at the equilateral geometry, that
reduces to A′(Cs) and Ag(C2h) symmetry at isosceles and
linear geometries, respectively. The orbital energies are
plotted relative to the energy of this HOMO in the linear
geometry. As noted in Section 4.2, much stronger fields
are required to induce significant binding in H3. This is
reflected in the total energy shown in Figure 6(a), which
shows a minimum at the equilateral structure relative to
the linear structure at a field strength of 1.5B0. This min-
imum has a similar depth to that observed for H+

3 at a
weaker field strength of 1.0B0.

The orbital correlation plots in Figure 6(b–e) show
that the θ213-variations of the energies of the lowest two
occupied MOs, which shall henceforth be referred to as
HOMO−1 and HOMO−2, are similar to those of the
corresponding occupiedMOs inH+

3 . However, these two
MOs are much closer in energy in H3 than in H+

3 . As
|B| increases, the HOMO−1 is stabilised at the equilat-
eral structure whilst the HOMO−2 is destabilised. Since
these MOs have different symmetries at the equilateral
C3h geometry, they do not interact via the Fock operator,
and so their energy curves may, and indeed do, approach
each other closely [Figure 6(b–c)] and eventually cross at
|B| ≈ 0.9B0, resulting in a switch-around in the C3h sym-
metry labels for these twoMOs [Figure 6(d–e)].However,
at isosceles Cs geometries, both MOs, together also with
the HOMO, are subduced to the same A′ symmetry and
can therefore all interact with one another via the Fock
operator. Hence, their energy curves can no longer cross,
and if one were to plot orbital energy curves as functions
of |B| at any fixed θ213 in the vicinity of 60◦, one would
observe an avoided crossing between the HOMO−1 and
HOMO−2 around |B| ≈ 0.9B0.

In a similar fashion to the HOMO in the MS = −1
state of H+

3 discussed in Section 4.4.1, the HOMO−1
in the MS = −3/2 state of H3 is progressively more sta-
bilised at the equilateral geometry relative to the linear
one as |B| increases. However, this is counterbalanced by

both the HOMO and the HOMO−2 now being desta-
bilised at this geometry with increasing |B|. In both cases,
however, the destabilisation of these orbitals relative to
the linear geometry is less significant than the stabili-
sation of the HOMO−1. Therefore, and rather interest-
ingly, for H3, it is then the behaviour of the HOMO−1
that determines the molecular structure. Isosurfaces for
the three MOs at θ213 = 60◦, 120◦, and 180◦ are also
shown in Figure 6. Clearly, the behaviours of HOMO−1
and HOMO−2 can be rationalised in a similar manner
to those of the occupied MOs in H+

3 . For the HOMO,
the preferred orientation is linear, with bending of the
molecule leading to an increase in orbital energy. This
example therefore highlights that the structure adopted
under a strong magnetic field reflects the response of
all of the occupied MOs to the field and may not be
determined simply by the HOMO.

4.5. Consistency with the Jahn–Teller theorem

Thus far, the forms and variations of the occupied MOs
have been analysed in detail to rationalise the observed
optimal geometries of H+

3 and H3 in a number of elec-
tronic states. However, it is important to examine if and
how these results are consistent with the more general
symmetry-based predictions from the Jahn–Teller (JT)
theorem [86]. To this end, let us first revisit the zero-
field ground 1A′

1(D3h) state in equilateral H+
3 . This state

has no spatial degeneracy and is the only state that arises
from the underlying electronic configuration (a′

1)
2, so

the JT theorem posits that this state has a minimum at a
high-symmetryD3h geometry as there is no need for any
molecular distortion to lift any degeneracy. The geome-
try optimisation results in Table 1 indeed confirm this.
As a magnetic field is introduced along the y-axis, the
molecule then responds by distorting away from the equi-
lateral geometry, but this distortion is not of JT-type and
can only be accounted for by a consideration of how the
occupied MOs interact with the applied field, as done in
Section 4.3.

Next, let us revisit the zero-field excited state 3E′(D3h)

in equilateral H+
3 . This state now has a double spatial

degeneracy, and the JT theorem indicates that this state
cannot be a minimum in the potential energy surface at
D3h geometries. The fact that the geometry optimisation
results in Table 1 reveal the dissociative nature of this
state is entirely consistent with the prediction by the JT
theorem. However, as a magnetic field is applied perpen-
dicular to the molecule, the double spatial degeneracy is
lifted, and there is now no longer any requirement by the
JT theorem for themolecule to distort to remove any spa-
tial degeneracy to stabilise itself. The optimal form for the
molecule is therefore equilateral, as observed.
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Figure 6. Variation of the lowestMS = −3/2UHF solution of H3 in the presence of a uniformmagnetic fieldB ‖ x across a range of θ213-
constrained geometry-optimised structures. For each constrained value of θ213, all three H−H bond lengths in H3 are allowed to relax to
attain an optimal geometry. (a) Energy of theMS = −3/2 UHF solution along this path, plotted relative to the value at the θ213 = 180◦
geometry-optimised structure in each field strength. (b)–(e) Energies of the three occupied β MOs plotted relative to the energy of the
HOMO of the θ213 = 180◦ geometry-optimised structure in each field strength. The forms of the β MOs at 60◦, 120◦, and 180◦ are also
shown: the isosurface for MO ϕi(r) is plotted at |ϕi(r)| = 0.08, and the colour at each point r on the isosurface indicates the phase angle
argϕi(r) ∈ (−π ,π ] at that point according to the colour wheel shown in Figure 4.
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Finally, consider the zero-field excited state 4A′
2(D3h)

in equilateral H3. The fact that this state is not stable at
D3h geometries in the absence of a field (Table 1) despite
the non-spatial-degeneracy can be surprising at first, but
as the underlying electronic configuration for this state is
(a′

1)
1(e′)2, two additional states, 2E′(D3h) and 2A′

1(D3h),
arise owing to the (e′)2 contribution. These two states can
interact through a ‘hidden’ pseudo-JT effect (cf. Section 4
of Ref. [86]) to give rise to a minimum lower than the
original 4A′

2(D3h) state at a distorted geometry. Intro-
ducing a perpendicular magnetic field lifts the degener-
acy of the underlying e′ MOs and removes the need for
the pseudo-JT distortion, thus allowing the equilateral
structure to become a minimum on the potential energy
surface, as observed.

5. Conclusions

We have shown how the use of the MOM in a magnetic
field not only gives access to excited states and their prop-
erties in a simple manner, but also facilitates the inter-
pretation of molecular structure under strong field con-
ditions using a simple MO picture. Indeed, under these
conditions, the MOM approach may be more readily
applicable than in the absence of a field in some regards.
For example, the MS = 0 manifold maybe less relevant
under such conditions since the spin-Zeeman interaction
favours the unpairing of β-electrons, and so, complica-
tions with open-shell singlet states and associated spin
purification schemes may be less frequent.

The nature of chemical bonding for H+
3 and H3

was examined under strong field conditions. In many
regards, features of the perpendicular paramagnetic
bonding mechanism for H2 examined in Ref. [28] are
also observed in H+

3 and H3, as may be expected. How-
ever, the additional nucleus provides additional struc-
tural degrees of freedom and these prototypical systems
reveal how molecular structure may be distorted under
strong field conditions. In particular, the lowest MS = 0
state of H+

3 was observed to adopt an isosceles structure
with its largest H−H separation aligned with the applied
magnetic field. In contrast, the lowest energy MS = −1
state of H+

3 and the MS = −3/2 state of H3 were found
to orient preferentially perpendicular to the applied field
with equilateral geometries.

To investigate why these structures are preferred, we
constructed orbital correlation diagrams similar to those
put forward byWalsh [85], using theMOs determined by
MOM calculations with constrained geometry optimisa-
tion. The changes in the orbital energies along the lowest
energy pathway for bending the molecules revealed that
the structure of the lowestMS = −1 state of H+

3 is deter-
mined by its HOMO, which is significantly stabilised at

the equilateral geometry. Interestingly, for H3, this MO,
despite not being the HOMO, is still key to determining
themolecular structure under high fields— its preference
for an equilateral geometry outweighing the preference
of the other occupiedMOs for a linear or isosceles geom-
etry. In spite of this, the lowest MS = −3/2 state of H3
was found to become significantly bound only at quite
high fields of strength 1.5B0. This is in contrast to the low-
estMS = −1 state of H+

3 which is significantly bound in
fields on the order of 1.0B0.

Overall, the results suggest that H+
3 in its lowestMS =

−1 should be considered as a possible candidatemolecule
for observation on stellar bodies such as magnetic white
dwarf stars. We expect that the simple MOM-based
approach presented in this work will also be useful in
qualitatively interpreting the behaviour of more complex
species under strong magnetic fields.
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