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Abstract— The feedforward control can effectively im-
prove the servo performance in applications with high
requirements of velocity and acceleration. The iterative
feedforward tuning method (IFFT) enables the possibility
of both removing the need for prior knowledge of the
system plant in model-based feedforward and improving
the extrapolation capability for varying tasks of iterative
learning control. However, most of IFFT methods require
to set the number of basis functions in advance, which
is inconvenient to the system design. To tackle this prob-
lem, an adaptive data-driven IFFT based on fast recursive
algorithm (IFFT-FRA) is developed in this paper. Explicitly,
based on FRA the proposed approach can adaptively tune
the feedforward structure, which significantly increases
the intelligence of the approach. Additionally, a data-based
iterative tuning procedure is introduced to achieve the unbi-
ased estimation of parameters optimization in presence of
noise. Comparative experiments on a linear motor confirms
the effectiveness of the proposed approach.

Index Terms— Iterative feedforward tuning, data-based
control, data-driven, fast recursive algorithm, linear motor.

I. INTRODUCTION

THE precision stages driven by the linear motors are
widely employed in the equipment manufacturing fields

where high velocity and high acceleration are required to
improve the performance and quality of the motion control
[1], [2]. The two-degree-of-freedom control strategy consisting
of the feedback control and the feedforward control is a
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conventional control method to guarantee the achievable high
requirements for the servo control performance. Since the
closed-loop system bandwidth is usually limited by various
reasons like the measurement bandwidth, the mechanical res-
onance and so on, it quite challenges to improve performance
only relying on the feedback control. This fact necessitates
introducing the feedforward control to lower the requirements
for the feedback control loop and to improve the tracking
performance [3], [4]. Many practical applications have been
reported where feedforward control facilitates the performance
improvement and relevant research can be summarized into
the model-based feedforward [5], [6] and the iterative learning
control (ILC) [7]–[9].

A relatively accuracy model equalling to the inverse of the
system plant is required in the model-based feedforward [10],
which leads to its high dependence on both the model quality
of the approximate model and the accuracy of the model-
inversion. In contrary, ILC requires less prior knowledge of the
system plant and outperforms the model-based feedforward in
applications executing repeated tracking tasks [11]. However,
ILC is highly sensitive to the variations of the reference
trajectory resulting in limitation of its application. Whereas,
the model-based feedforward is with good extrapolation ca-
pabilities with respect to varying tasks. Taking consideration
of the relative merits of the two approaches, an iterative
feedforward tuning (IFFT) method for fixed structure feed-
forward controller has been established where basis functions
are introduced in ILC [12]–[14]. The IFFT method is a data-
driven control strategy where the feedforward controller design
merely uses the input and output measurement data of the
system and requires no model information about the controlled
plant [15], [16]. Therefore, the IFFT approach including basis
functions perfectly combines the advantages of the model-
based feedforward and ILC, which eliminates the need for the
approximate model of the plant inverse by exploiting results
from the iterative tuning process [17].

Research about IFFT method involving basis functions
emerges in large numbers since using this strategy a trade-
off has been made between requiring no plant model and
excellent extrapolation capability with respect to varying tasks.
However, due to the existence of the measurement noise,
it is essential in keeping the parameters estimation even
the cost function gradient estimation unbiased. To guarantee
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the unbiasedness of parameters estimation, there are diverse
strategies reported in recent years. In [18] and [19], a data-
based approach is utilized where the iterative tuning method
supplies the unbiased estimation by executing multiple closed-
loop experiments per iterative trial. In [20], the feedforward
controller parameters and the disturbance observer parameters
are simultaneously optimized by iterative tuning and the unbi-
ased estimation is obtained through the data-based procedure
which is mentioned before. In aforementioned literature, the
effectiveness of the data-based approach is theoretically proved
and the performances of the IFFT methods are experimentally
evaluated. Except for the data-based methods, introducing the
instrumental variables to the feedforward tuning has been
proven to be very useful in closed-loop system identification
and the experimental results confirm that this strategy can
attain superior performance in the presence of noise [21].
Since standard instrumental variables based method was veri-
fied that it leads to poor accuracy in terms of variance in [17],
[22], a refined instrumental variable approach is exploited to
achieve optimal accuracy and simulation results as well as
experimental results obtained on an industrial nanopositioning
system confirm the practical relevance of the proposed method.
Similarly, the unbiased estimation with zero asymptotic vari-
ances is achieved by the simultaneous use of the Kalman
Filter and the instrumental variable approach in [23], and the
experimental results obtained on a wafer stage demonstrate
the theoretical results. The IFFT strategy with instrumental
variables is also extended to combine with the high-order ILC
[24] and the disturbance rejection control [25] to achieve better
performance improvement.

Considering aforementioned literature, it is noted that the
number of the basis functions for the feedforward controller
is required to be set before tuning for all the IFFT approaches,
which is slightly in contradiction with no need for prior
knowledge of the system plant. Sometimes, the order of
the system plant is probably unknown or uncertain, which
challenges the design of the IFFT scheme. This motivates the
paper to propose an adaptive data-driven IFFT approach that
can adaptively tune both the parameters and the structure of the
feedforward controller, which greatly increase the intelligence
of the adaptive algorithm. Compared with the existing meth-
ods, the main contributions of this paper are fourfold. First,
an adaptive tuning framework is designed to autonomously
select the number of the basis functions that is also the order
of the feedforward controller during the iteration. Compared
with the traditional IFFT or fixed-structure feedforward control
methods [22], [26], the proposed tuning framework removes
the need to set the structure of the feedforward controller
in advance, which explores more possibilities to increase the
intelligence of algorithm and reduce the burden of controller
design. Second, a data-based iterative tuning procedure is
presented to achieve the unbiased estimation of both the feed-
forward controller parameters and the optimization criterion in
presence of noise by executing two closed-loop experiments
per iterative trial. Although the iterative procedure is involved,
good extrapolation capability with respect to varying tasks
is still guaranteed by introducing the basis functions into
the feedforward structure, which improves the limitation of
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Fig. 1: Two-degrees-of-freedom control configuration with
IFFT-FRA tuning algorithm. The symbol z denotes the for-
ward shift operator with respect to iteration and the superscript
j denotes the iteration index.

the traditional iterative methods [11], [27]. Third, to avoid
the ill-condition matrix issue during the process of matrix
inversion, the fast recursive algorithm (FRA) [28] is utilized
to iteratively obtain the inversion of matrix in the expression
of the optimization criterion. The FRA method is also a
forward construction that facilitate adding the candidate basis
functions one by one, which is an important part of the
adaptive tuning framework for adaptive tuning the structure of
the feedforward controller. Finally, an application to a linear
motor is implemented to compare the proposed approach with
IFFT method [18] and IFFT method with optimal instrumental
variables [17].

The rest of the article is organized as follows. The problem
statement is formulated in Section II. The adaptive iterative
feedforward tuning approach based on fast recursive algorithm
(IFFT-FRA) is investigated in Section III. Simulation and
experimental results are presented with discussions in Section
IV. Finally, Section V draws the conclusion.

II. PROBLEM STATEMENT

A. Two-degrees-of-freedom Control

The two-degrees-of-freedom control configuration widely
applied to high-precision motion stages is shown in Fig. 1,
where r denotes the system reference trajectory, y and yr
denote the measured system displacement and the real system
displacement respectively, u denotes the system control signal,
and n denotes the measurement noise. Cfb is the feedback
controller, P is the plant model, and Cff is the feedforward
controller. θ is the feedforward controller parameter vector to
be tuned.

According to Fig. 1 without consideration of the iteration,
it holds

yr = SP (Cfb + Cff )r − T · n
e = [I − SP (Cfb + Cff )]r − S · n

(1)

where S is the sensitivity function with expression of S = (1+
PCfb)

−1 and T is the complementary sensitivity function with
expression of T = SPCfb. Introducing the iterative process
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to the above equations, it can obtain as follow

e(j) = [I − SP (Cfb + C
(j)
ff )]r − S · n(j)

e(j−1) = [I − SP (Cfb + C
(j−1)
ff )]r − S · n(j−1)

(2)

The e.q. (2) can be rewritten as

e(j) = e(j−1) − SP ·∆C(j)
ff r − S ·∆n(j) (3)

where ∆C
(j)
ff = C

(j)
ff − C

(j−1)
ff and ∆n(j) = n(j) − n(j−1).

So in order to make e(j) = 0, it follows

e(j−1) = SP ·∆C(j)
ff r + S ·∆n(j) (4)

B. Feedforward Controller Parameterization

The feedforward controller C(j)
ff (θ) can be parameterized

as

C = {C(j)
ff (θ) | C

(j)
ff (θ) = Ψθ(j) =

k∑
i=1

ψiθi} (5)

According to (5), (4) can be rewritten as

e(j−1) = SPΨ ·∆θ(j)r + S ·∆n(j)

= H ·∆θ(j) + S ·∆n(j)
(6)

where H = SPr · Ψ and θ(j) = θ(j−1) + ∆θ(j). According
to the least square method, the solution of (6) is

∆θ̂(j) = (HTH)−1HT · e(j−1) (7)

Thus the parameters of the feedforward controller can be
iteratively tuned by (7).

C. Research Objective

However, due to the existence of the measurement noise
n(j), it is obviously seen that the solution in (7) is not
unbiased. The biased result of the parameter estimation could
result in suboptimal feedforward compensation performance,
which decreases the effectiveness of the feedforward strategy.
Additionally, the above method needs to select the basis
functions ψi, i = 1, 2, . . . , k in advance, so it requires to
know the approximate structure of the system plant, which is
inconvenient for system design. Therefore, for the feedforward
controller expressed as (5) it is essential for the practical
applications to design an effective tuning method to adaptively
select the basis functions. To respond the contributions of this
paper, the specific research objectives are listed as follows.

1) Develop a tuning procedure to adaptively tune the
structure of the feedforward controller i.e., to achieve
the function of selecting the basis functions.

2) Design unbiased estimation for controller parameters θ.

3) Achieve better extrapolation capability for varying tasks
i.e. improve the tracking performance for varying tasks.

III. DATA-BASED IFFT APPROACH BASED ON FRA
In light of the limitations of the conventional IFFT method

as discussed in Section II, an IFFT-FRA approach is developed
which exploits data-based iterative tuning procedure to achieve
the unbiased estimation of the feedforward parameters and
the optimization criterion and is based on FRA to adaptively
tuning the structure of feedforward controller.

A. Data-based Iterative Tuning Scheme
Due to the unknown real value of SP , H needs to be

replaced by an estimated value. Furthermore, the influence
of noise for parameter estimation needs to be eliminated.
Therefore, a data-based iterative tuning scheme where two
experiments are executing per iterative trial is proposed in
this section. For the j − th iteration, in presence of noises
n
(j−1)
(1) and n(j−1)

(2) , using the same control signal u(j−1) two

experiments are executed to obtain the position outputs y(j−1)
(1)

and y
(j−1)
(2) respectively and the position errors e

(j−1)
(1) and

e
(j−1)
(2) respectively. In this paper the subscript (1) and (2) refer

to the experiment index within a single iteration. According
to Fig. 1 and the definition of H, the estimation value of H
can be obtained as

H
(j)
(1) = Ψ ·

y
(j−1)
(1)

Cfb + C
(j−1)
ff

= H+V
(j)
n(1)

H
(j)
(2) = Ψ ·

y
(j−1)
(2)

Cfb + C
(j−1)
ff

= H+V
(j)
n(2)

(8)

where

V
(j)
n(1) = Ψ ·

S · n(j−1)
(1)

Cfb + C
(j−1)
ff

V
(j)
n(2) = Ψ ·

S · n(j−1)
(2)

Cfb + C
(j−1)
ff

(9)

To keep the unbiasedness of the estimation result, as-
sumptions need to be stated as follows. Based on the two
assumptions, the following theorem can also be obtained.

Assumption 1: The measurement noise n is zero mean.
Assumption 2: The samples of the noise n is independent

of each other.
Remark 1: Assumption 1 and Assumption 2 are both mild

and easy to be satisfied in practice [19], [22].
Theorem 1: Under the above assumptions, the unbiased

estimation of the feedforward controller parameters can be
constructed as

∆θ̂(j) =
∆θ̂

(j)
(1) +∆θ̂

(j)
(2)

2
(10)

where

∆θ̂
(j)
(1) = (E[H(j)T

(2) H
(j)
(1)])

−1 · E[H(j)T
(2) e

(j−1)
(1) ]

∆θ̂
(j)
(2) = (E[H(j)T

(1) H
(j)
(2)])

−1 · E[H(j)T
(1) e

(j−1)
(2) ]

(11)

and E[·] denotes the operation to obtain solution to the
mathematical expectation.
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Proof: According to (8) and (6), it follows

e
(j−1)
(1) = (H

(j)
(1) −V

(j)
n(1)) ·∆θ(j) + S ·∆n(j)(1)

= H
(j)
(1) ·∆θ(j) −V

(j)
n(1) ·∆θ(j) + S ·∆n(j)(1)

(12)

Multiplying both sides of (12) by H
(j)T
(2) , it can be deduced

as

H
(j)T
(2) e

(j−1)
(1) =H

(j)T
(2) H

(j)
(1)∆θ(j) −H

(j)T
(2) V

(j)
n(1)∆θ(j)

+H
(j)T
(2) S ·∆n(j)(1)

(13)

According to Assumption 1 , Assumption 2 and (9), it
follows

E[H(j)T
(2) V

(j)
n(1)] = E[(HT +V

(j)T
n(2) ) ·V

(j)
n(1)] = 0

E[H(j)T
(2) S ·∆n(j)(1)] = E[(HT +V

(j)T
n(2) )S ·∆n(j)(1)] = 0

(14)

Combining (13) and (14), it can be obtained as

E[H(j)T
(2) e

(j−1)
(1) ] = E[H(j)T

(2) H
(j)
(1)∆θ(j)] (15)

Then the unbiased estimation ∆θ̂
(j)
(1) shown as the first

equation in (11) can be deduced based on the above result.
The derivation principle of ∆θ̂

(j)
(2) is the same as ∆θ̂

(j)
(1). Then

Theorem 1 is proved.

B. Adaptive Tuning for Feedforward Structure
To adaptively tune the structure of feedforward controller,

the number of the basis functions k is introduced into the
iterative tuning procedure. First, the candidate pool of basis
functions can be set to include as many orders as possible in
advance. For j− th iteration, there are already basis functions
with number of (k− 1) and the k− th basis function is to be
selected. Then the feedforward controller can be expressed as
C

(j)
ff (θ) = Ψ

(j)
k θ(j) and correspondingly it follows

H
(j)
k = [H

(j)
1 , H

(j)
2 , . . . ,H

(j)
k ] = [H

(j)
k−1, H

(j)
k ] (16)

where H(j)
k = SPr · ψk.

After selecting the k basis function, (11) is used to obtain
the parameter estimation results and the position error estima-
tion is

ê
(j−1)
k,(1) = H

(j)
k,(1)(E[H

(j)T
k,(2)H

(j)
k,(1)])

−1 · E[H(j)T
k,(2)e

(j−1)
(1) ]

ê
(j−1)
k,(2) = H

(j)
k,(2)(E[H

(j)T
k,(1)H

(j)
k,(2)])

−1 · E[H(j)T
k,(1)e

(j−1)
(2) ]

(17)

The optimization criterion of both estimating the parameters
and adaptively tuning the feedforward structure can be defined
as

J
(j)
k = E[⟨e(j−1)

(1) − ê
(j−1)
k,(1) , e

(j−1)
(2) − ê

(j−1)
k,(2) ⟩] (18)

Then substituting (17) into (18), Theorem 2 can be obtained
as follow.

Theorem 2: The optimization criterion is unbiased with the
expression of

J
(j)
k = E[e(j−1)T

(1) ] ·R(j)
k · E[e(j−1)

(2) ] (19)

where

R
(j)
k = I − E[H(j)

k,(2)] · (E[H
(j)T
k,(1)H

(j)
k,(2)])

−1 · E[H(j)T
k,(1)] (20)

Proof: According to (19), J (j)
k can be rewritten as

J
(j)
k =E[e(j−1)T

(1) · e(j−1)
(2) ]− E[e(j−1)T

(1) ·H(j)
k,(2)]

· (E[H(j)T
k,(1)H

(j)
k,(2)])

−1 · E[H(j)T
k,(1) · e

(j−1)
(2) ]

(21)

Considering the first item of the right side in (21), it can be
deduced as

E[e(j−1)T
(1) · e(j−1)

(2) ] = E[(e(j−1)T
r + e

(j−1)T
n,(1) )(e(j−1)

r + e
(j−1)
n,(2) )]

= E[e(j−1)T
r · e(j−1)

r ]
(22)

where er is the position error caused by the reference tra-
jectory, en is the position error caused by the noise and its
subscript (1or2) denotes experiment index within a single
iteration.

Considering the second item of the right side in (21), it can
be deduced as

E[H(j)T
k,(1) · e

(j−1)
(2) ] = E[(HT

k +V
(j)T
n,(1))(e

(j−1)
r + e

(j−1)
n,(2) )]

= E[HT
k · e(j−1)

r ]
(23)

Similarly, it holds

E[e(j−1)T
(1) ·H(j)

k,(2)] = E[e(j−1)T
r ·Hk] (24)

E[H(j)T
k,(1)H

(j)
k,(2)] = E[HT

k ·Hk] (25)

Substituting (22), (23), (24) and (25) into (21), J (j)
k can be

rewritten as

J
(j)
k =E[e(j−1)T

r · e(j−1)
r ]− E[e(j−1)T

r ·Hk]

· (E[HT
k ·Hk])

−1 · E[HT
k · e(j−1)

r ]
(26)

Then, the J (j)
k is actually the same as

J
(j)
k = e(j−1)T

r · [I −Hk(H
T
k ·Hk)

−1HT
k ] · e(j−1)

r (27)

Therefore, Theorem 2 is proved. Using the optimization
criterion shown in (19) and (20), the proposed approach can
determine whether to select the k − th basis function or not
and the detailed steps involved in the iterative adaptive tuning
approach will be listed in the following sections.

C. Convergence Analysis
Since the proposed approach involves the iterative learning

process, it is essential to analyze and discuss the convergence
of the algorithm. First, (11) is rewritten to provide more
convenience for the following analysis.

∆θ̂
(j)
(1) = L

(j)
k,(1)e

(j−1)
(1)

∆θ̂
(j)
(2) = L

(j)
k,(2)e

(j−1)
(2)

(28)

where

L
(j)
k,(1) = (H

(j)T
(2) H

(j)
(1))

−1H
(j)T
(2)

L
(j)
k,(2) = (H

(j)T
(1) H

(j)
(2))

−1H
(j)T
(1)

(29)

From the algorithm setup, it can obtained that e(j−1)
(2) −

e
(j−1)
(1) = ∆w(j−1) holds where ∆w(j−1) = Sn

(j−1)
(2) −
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Sn
(j−1)
(1) . Therefore, combining (10), (28) and (29), the fol-

lowing result can be obtained.

∆θ̂
(j)
k =

L
(j)
k,(1) + L

(j)
k,(2)

2
e
(j−1)
(1) +

L
(j)
k,(2)

2
∆w(j−1) (30)

According to (3), it follows

e(j) = e
(j−1)
(1) − SPrΨk ·∆θ̂

(j)
k − S∆n(j) (31)

Thus substituting (30) into (31), it holds

e(j) = L̃
(j)
k e

(j−1)
(1) − (SPrΨk

L
(j)
k,(2)

2
∆w(j−1) + S∆n(j))

(32)

where

L̃
(j)
k = 1− SPrΨk

L
(j)
k,(1) + L

(j)
k,(2)

2
(33)

From the above expression, it can be found that

SPrΨk
L

(j)

k,(2)

2 ∆w(j−1) + S∆n(j) is the error caused by the
stochastic noise which cannot be compensated for by the
feedforward strategy and would not be considered when ana-
lyzing the convergence condition. Therefore, the convergence
condition of the proposed approach can be expressed as

|1− SPrΨk

L
(j)
k,(1) + L

(j)
k,(2)

2
| < 1 (34)

Using H
(j)
(1) and H

(j)
(2) can usually guarantee that (34) holds

in the practical applications where the signal to noise ratio
is high enough, which can guarantee the convergence of the
proposed algorithm.

D. Recursive Calculation for Obtaining Matrix Inversion
It is noted that there is matrix inversion to be obtained in

(20). To avoid the ill-conditioned matrix issue when calculat-
ing (H

(j)T
k,(1)H

(j)
k,(2))

−1, the recursive calculation method based
on FRA needs to be deduced, which is detailedly described in
this section. Based on the above analysis, there is a definition
with the expression of

Mk = (H
(j)T
k,(1) ·H

(j)
k,(2))

−1 (35)

Then according to (16), it follows

H
(j)T
k,(1) ·H

(j)
k,(2) =

[
H

(j)T
k−1,(1)

H
(j)T
k,(1)

]
·
[
H

(j)
k−1,(2) H

(j)
k,(2)

]
=

[
H

(j)T
k−1,(1) ·H

(j)
k−1,(2) H

(j)T
k−1,(1) ·H

(j)
k,(2)

H
(j)T
k,(1) ·H

(j)
k−1,(2) H

(j)T
k,(1) ·H

(j)
k,(2)

]
(36)

Using the well-known matrix result for obtaining inversion
of the block matrix [28] , the corresponding expression is

A = H
(j)T
k−1,(1) ·H

(j)
k−1,(2)

B = H
(j)T
k−1,(1) ·H

(j)
k,(2)

C = H
(j)T
k,(1) ·H

(j)
k−1,(2)

D = H
(j)T
k,(1) ·H

(j)
k,(2)

(37)

TABLE I: IFFT-FRA APPROACH

Procedure for proposed iterative feedforward tuning method.
Initialization

1) Set a candidate pool consisting of N basis functions.
2) Set θ(0) = 0, j = 1, 2, . . . and k = 1, 2, . . . .

While (|ej(t)| ≤ ϵ) (ϵ > 0 is the expected boundary of the tracking
error.)

1) Execute two experiments with exactly the same control signal
u(j−1), and then respectively obtain the system position outputs
y
(j−1)
(1)

and y
(j−1)
(2)

as well as the system position tracking errors

e
(j−1)
k−1,(1)

and e
(j−1)
k−1,(2)

(for (j − 1) iteration, the feedforward
controller consists of k−1 basis functions). If the tracking error
converges, terminate the iterations, else

2) Calculate J
(j)
k−1 using (19), (20), (35), (39), (40) and (41).

3) For the remaining basis functions of the candidate pool with the
number of N−(k−1), construct H(j)

m ,m = 1, 2, N−(k−1)
using (8). Add every remaining basis functions into Cff one
by one and construct H(j)

km = [H
(j)
k−1, H

(j)
m ].

4) Temporarily determine k − th basis function by solving k =

argmin
m

∥J(j)
k (H

(j)
km)∥ and calculate the relative J

(j)
k using

(19), (20), (35), (39), (40) and (41).
5) If J

(j)
k < J

(j)
k−1, confirm to reserve this k − th basis function

and remove it from the candidate pool and set k = k + 1, else
put it back to the candidate pool.

6) Update the controller parameters by θ̂(j) = θ(j−1) + ˆ∆θ(j),
where ˆ∆θ(j) is updated by Theorem 1 .

7) j = j + 1

End

Then according to (35), if follows

A−1 = (H
(j)T
k−1,(1) ·H

(j)
k−1,(2))

−1 =Mk−1 (38)

and it is defined that

wk,(1) = H
(j)T
k−1,(1) ·H

(j)
k,(2) = B

wk,(2) = H
(j)T
k−1,(2) ·H

(j)
k,(1) = CT

(39)

Finally, the inversed matrix result is

Mk =

[
Mk−1 0
0 0

]
+

1

Q
(j)
k

[
Mk−1wk,(1)w

T
k,(2)Mk−1 −Mk−1wk,(1)

−wT
k,(2)Mk−1 1

]
(40)

where

Q
(j)
k = H

(j)T
k,(1) ·H

(j)
k,(2) − wT

k,(2)Mk−1wk,(1) (41)

E. Summary of Data-based IFFT-FRA Approach

Based on all the aforementioned results, the steps involved
in the proposed data-based adaptive IFFT based on FRA
(IFFT-FRA) approach are listed in Table I, which also contains
the determination of the parameters and the basis functions
in the proposed algorithm. It is noteworthy that the cut-
off condition in the circulation procedure can be designed
according to the practical demand.



6 IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS, VOL. XX, NO. XX, XXXX

0 0.1 0.2 0.3 0.4

t [s]

0

0.02

0.04

0.06

0.08
R

ef
er

en
ce

 [
m

]

0

0.1

0.2

0.3

V
el

o
ci

ty
 [

m
/s

]

-10

-5

0

5

10

A
cc

el
er

at
io

n
 [

m
/s

2
]

Fig. 2: Reference trajectory in the simulation test. (−blue)
Reference; (−−red) velocity; (−·green) acceleration.

IV. RESULTS

In this section, the theoretical results of the proposed IFFT-
FRA approach are validated through numerical simulation for
a two-mass spring damper system and experimental tests on a
precision motion stage driven by linear motor respectively.

A. Simulation Results
1) Simulation Setup: To validate the proposed approach,

a numerical simulation will be provided in this section to
illustrate that the FRA based adaptive tuning procedure can
properly select the basis functions and effectively tune the
feedforward controller structure. Consider the system plant
given by

P (q) =
4.146× 10−11q4

q4 − 3.969q3 + 5.922q2 − 3.938q + 0.9845
(42)

where q denotes the forward shift operator with respect to time.
(42) corresponds a two-mass spring damper system widely
researched in high precision motion control [4], [29], [30]. The
feedback controller is designed according to the loop shaping
method and given by

Cfb =
2.697× 105q2 − 5.362× 105q + 2.665× 105

q3 − 2.04q2 + 1.117q − 0.07766
(43)

The measurement noise n is set as the Gaussian white noise
with zero mean and the standard deviation λε = 2.5× 10−8.
The closed-loop system is excited by a fourth-order point-
to-point reference signal as shown in Fig. 2. The reference
trajectory is set with the displacement of 0.07m, the maximum
velocity of 0.25m/s, the maximum acceleration of 10m/s2,
the maximum jerk of 1000m/s3 and the maximum snap of
5× 105m/s4.

The basis functions are defined as

Ψ(q) = {ψi(q) = (
q − 1

qTs
)i, i = 1, 2, . . . , 5} (44)

with the sampling time Ts of 2 × 10−4s, which correspond
to the velocity feedforward, the acceleration feedforward, the
jerk feedforward, the snap feedforward and the third deriva-
tive of acceleration feedforward, respectively. The following
parametrization is proposed to depict the ideal feedforward
controller with the expression of

Cff (q, θ) = ψ2(q)θ2 + ψ4(q)θ4 (45)

with the true parameter vector given by θ = [15, 3.7995 ×
10−5]T . It is noted that with the true θ the feedfoward
controller shown in (45) can perfectly describe the inversion
of the system plant shown in (42).

To better illustrate the feedforward controller structure
adaptive tuning strategy included in the proposed approach,
the conventional iterative feedforward tuning method (IFFT)
[18] and the iterative feedforward tuning method with an
optimal instrument variables (IFFT-OIV) [17] are selected
as the comparative group. To provide a fair comparison,
the completely same closed-loop system setup and reference
trajectory are used in the numerical simulation to test the three
methods. The unknown structure of the feedforward controller
is set as

Ĉff (q, θ) =

5∑
i=1

ψi(q)θi (46)

It is noted that with the above setup the optimal tuning result
can be defined as [θ̂2, θ̂4]T ⇒ θ and [θ̂1, θ̂3, θ̂5]

T ⇒ 0. For the
comparative group, the initial parameter vector of θ is set as
05×1. Additionally, for the proposed IFFT-FRA since the basis
functions will be selected one by one, the parameter θi related
to the basis function which is abandoned in the tuning process
will be set as 0. With this setup, it will be more convenient
to clearly observe and compare the parameter tuning results
among the three methods. Moreover, Monte Carlo simulations
are performed for numerical illustration, where the number
of samples and the realizations are given by N = 2000 and
M = 100 respectively.

2) Simulation Results: Under the same simulating condi-
tions, IFFT, IFFT-OIV and IFFT-FRA are performed for 6 it-
erations, respectively. To observe the parameter tuning results,
the feedforward controller parameter estimated results [θ̂2, θ̂4]
are shown in Fig. 3 and some conclusions can be drawn.
First, for variance of the acceleration feedforward parameter
θ̂2, IFFT-OIV significantly outperforms the other two methods
and the proposed IFFT-FRA is slightly better than IFFT with
the last iteration. On the other hand, for variance of the
snap feedforward parameter θ̂4, IFFT-FRA and IFFT-OIV is
comparable and both these two methods are smaller than IFFT.
Therefore, above observations confirm the effectiveness and
the relatively good asymptotic parameter estimation accuracy
of the proposed approach.

To more clearly illustrate the ability of proposed method
to tune the feedforward controller structure, the parameter
estimated results [θ̂1, θ̂3, θ̂5] are presented in Fig. 4. According
to the algorithm setup, IFFT-FRA can set the parameter θi
related to the basis function which is abandoned in the tuning
process as 0. From Fig. 4, it can be found that IFFT-FRA
obtains results of 0 for [θ̂1, θ̂3, θ̂5] while the estimated results
are still obtained with both IFFT and IFFT-OIV although they
are small. Above results validate that IFFT-FRA can perfectly
select the right basis functions while the other two methods
cannot realize this function, which confirms the effectiveness
of the proposed approach for tuning feedforward structure.

To further illustrate the accuracy of the parameter tuning re-
sults, an evaluation criterion dθ named the Euclidean distance
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Fig. 3: Parameter θ̂ as a function of iteration for M = 100
realizations for IFFT (left), IFFT-OIV (middle) and IFFT-FRA
(right).

Fig. 4: Parameter [θ̂1, θ̂3, θ̂5] as a function of iteration for
M = 100 realizations for IFFT (left), IFFT-OIV (middle) and
IFFT-FRA (right). Their ideal results are thought to infinitely
approximate to 0.

is defined as

dθ = ∥θ − θ̂∥2 (47)

The Euclidean distance dθ can depict the distance between
the true parameter value and the estimated parameter value
in the multi-dimensional space, which is shown in Fig. 5.
The conclusion can be drawn that both IFFT-OIV and IFFT-
FRA are with great superiority of parameter tuning accuracy
compared with IFFT. Furthermore, according to the partial
enlarged view in Fig. 5, IFFT-FRA is with better performance
than IFFT-OIV in aspects of minimum value, maximum value,
median value and quantile values, which further confirms
the superiority of IFFT-FRA in improving parameter tuning
accuracy.

B. Experimental Results
1) Experimental Setup: To better prove the effectiveness

of the proposed approach, experiments were performed on a
precision stage driven by a linear motor, where the experi-
mental setup is shown in Fig. 6. The VxWorks is selected
as the real-time operating system. The motion control card
and the mainboard are integrated into a VME64x card cage
from the Germany company ELMA. A commercial motor
driver with the product model of Soloist CL is used, which
can make the bandwidth of the current loop achieve 1500Hz
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Fig. 5: Boxplot of the Euclidean distance dθ for feedforward
parameters estimation.
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Fig. 6: Block diagram of the experimental setup.

and which peak current is 10A. To more conveniently verify
the algorithm, a two-mass spring damper setup is installed
on the linear motor mover. The linear motor platform is
mounted on an air bearing with 400kPa air pressure. The
absolute displacement of the two-mass spring damper setup
is composed of two parts, where the absolute displacement
of the linear motor mover is measured by a linear encoder
and the relative displacement between the linear motor mover
and the two-mass spring damper setup is measured by an
eddy current sensor. The linear encoder with analog output
is from Heidenhain company, which is with the accuracy
of 0.1µm after being subdivided by the IBV101 subdivided
box. The eddy current sensor is from Micro-Epsilon and with
the measurement accuracy of 0.2µm. The sampling period is
Ts = 200µs. The feedback controller Cfb is a PI controller
with a lead correction that is similar to (43).

In the experimental validation, there is a training trajectory
and a testing trajectory used for tuning feedforward controller
parameters and testing the tuned parameters, respectively.
Their structures are the same as the reference trajectory in
the simulation test as shown in Fig. 2 and their parameters
are shown in Table II. In Fig. 6, it can be noticed that
there are cables used for signal transmission. In practice, an
aluminium flake is sandwiched between the cables to support
the soft cables. However, the aluminium flake does introduce a
low-frequency characteristic of about 7.5Hz into the closed-
loop system, which will significantly influence the tracking
performance under the trajectories with high acceleration.
Therefore, an input shaper is involved to adjust the reference
trajectories and reduce the vibration of cables, which is with
the frequency of 7.53296Hz and the damping ratio of 0.001.

Except for the above setup, the other setup for experimental
validation is the same as that for simulation, including the
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TABLE II: Parameters for Training Trajectory and Testing
Trajectory

Parameters Training Trajectory Testing Trajectory
Displacement s[m] 0.1 0.1

Maximum Velocity v[m/s] 0.20 0.25
Maximum Acceleration a[m/s2] 5 10

Maximum Jerk a′[m/s3] 400 800
Maximum Snap a′′[m/s4] 5× 104 1× 105

Maximum a′′′[m/s5] 5× 107 1× 108

TABLE III: Parameters Tuning Process of IFFT-FRA

Iteration θ̂1 θ̂2 θ̂3 θ̂4 θ̂5
1 16.5860
2 16.7233 16.6202
3 16.7194 17.3014 1.1756×10−4

4 16.6803 17.2767 1.1366×10−4

5 16.6652 17.2786 1.1330×10−4

The magenta font represents the parameter corresponding to the basis
function which is selected in the current iteration. The blue font
represents the updated parameters corresponding to the basis functions
which have been selected in the previous iterations.

candidate pool of basis functions.
2) Experimental Results: Similar to the simulation test,

IFFT, IFFT-OIV and the proposed IFFT-FRA are compared
under the exactly same conditions and performed for 5 itera-
tions. The parameter tuning process of IFFT-FRA is shown in
Table III and the final tuning results of IFFT and IFFT-OIV
are shown in Table IV.

Firstly, Table III indicates that the acceleration related, the
velocity related and the snap related basis functions were
selected in sequence through the IFFT-FRA algorithm. Ac-
cording to the control theory, it is known that the two-mass
spring damper system exhibits the acceleration related and
snap related characteristics, while the experimental platform
cables introduce a velocity related characteristic. Therefore,
Table III fully verifies that the IFFT-FRA is with the ability to
adaptively and properly tuning the structure of feedforward
controller. Whereas, Table IV shows that with redundant
basis functions both IFFT and IFFT-OIV cannot tell whether
a particular basis function is needed and the data-driven
procedure enables them to fit all the parameters regardless
of the reasonability. In other words, IFFT and IFFT-OIV
took the measurement noise as useful information to fit the
feedforward controller parameters when the characteristics of
controlled object are priorly unknown and the feedforward
controller is with redundant basis functions, which leads to
an overfitting issue. The overfitting for the measurement noise
undoubtedly causes performance deterioration when a varying
task is performed since the inaccurate feedforward output is

TABLE IV: Final Parameters Tuning Results of IFFT and
IFFT-OIV

Method θ̂1 θ̂2 θ̂3 θ̂4 θ̂5
IFFT 15.4927 17.2898 -0.0036 1.1299×

10−4
−4.9681×
10−8

IFFT-OIV
15.5042 17.2902 -0.0032 1.1405×

10−4
−4.4335×
10−8
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Fig. 7: Comparative results of tracking errors and cumulative
power spectrum when the testing reference trajectory was
performed with the tuned parameters for the feedforward
controllers.

TABLE V: Statistical Comparison under Testing Trajectory

Method Peak Error CPS Variance RMS
[µm] [(µm)2] [(µm)2] [µm]

IFFT 18.3620 50.5539 24.0887 5.1449
IFFT-OIV 17.3248 48.8852 23.2516 5.0634
IFFT-FRA 13.1843 48.4697 23.0459 5.0427

involved. Therefore, the comparative results between Table III
and Table IV validate the ability of the proposed approach to
adaptively tune the structure of feedforward thereby avoiding
the overfitting issue for the measurement noise.

To more clearly verify the proposed method, using the tuned
feedforward controllers parameters shown in Table III and
Table IV, the testing reference trajectory was performed and
the comparative tuning results can be illustrated in terms of
tracking errors and cumulative power spectrum (CPS), which
is shown in Fig. 7. It is noted that the testing trajectory is with
higher requirements than the training trajectory.

From Fig. 7 it can be observed that the proposed approach
outperformed IFFT and IFFT-OIV at the improving tracking
performance especially in the acceleration phase, decelera-
tion phase and their corresponding adjustment phase. Above
observation indicates that using the feedforward controller
tuned by IFFT-FRA better facilitates improving tracking per-
formance than IFFT and IFFT-OIV, which further proves that
the aforementioned overfitting issue in IFFT and IFFT-OIV
leads to poor extrapolation capability for varying tasks and
convincingly illustrates the effectiveness and the superiority
of the proposed IFFT-FRA approach.

Furthermore, the statistical comparison under the testing
reference trajectory among the three methods is reported here
to further demonstrate the superiority of the proposed approach
in improving the tracking performance, which is shown in
Table V. The statistical comparison results present that the
proposed approach is superior to the two other methods in
terms of the peak error, the cumulative power spectrum,
variance and root-mean-square.

V. CONCLUSION

The main contribution of this brief lies in the proposal of
an adaptive data-driven iterative feedforward tuning approach
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based on fast recursive algorithm for synchronously tuning
both the structure and the parameters of the feedforward
controller. The simulation results fully confirm the ability of
the proposed approach to properly tuning feedforward struc-
ture and significantly improving parameter tuning accuracy.
The experimental results indicate that using the proposed
approach a better tradeoff is made between requiring less
prior knowledge of the system plant and improving the ex-
trapolation capability with respect to varying tasks. Moreover,
the above results reveal that adopting the proposed approach
increases the intelligence of algorithm and reduces the labor
cost of designing the controller to some extent, which is
attractive for practical applications. Due to the presence of
the external disturbance in practice, the proposed control
scheme can be extended to tuning feedforward controller and
simultaneously solving the influence caused by disturbance as
well. Additionally, the proposed feedforward tuning approach
only investigated the parameters and structure tuning for the
feedforward controller with the structure expressed as (5). The
feedforward controller with the rational basis functions will
quite challenge the proposed approach, which is expected to
be solved in future works.
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