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The circadian clock modulates key physiological processes in many organ-

isms. This widespread role of circadian rhythms is typically characterized

at the molecular level by profiling the transcriptome at multiple time

points. Subsequent analysis identifies transcripts with altered rhythms

between control and perturbed conditions, that is, are differentially rhyth-

mic (DiffR). Commonly, Venn diagram analysis (VDA) compares lists of

rhythmic transcripts to catalog transcripts with rhythms in both conditions,

or that have gained or lost rhythms. However, unavoidable errors in rhyth-

micity detection propagate to the final DiffR classification resulting in

overestimated DiffR. We show using artificial experiments on biological

data that VDA indeed produces excessive false DiffR hits both in the pres-

ence and absence of true DiffR transcripts. We review and benchmark

hypothesis testing and model selection approaches that instead compare

circadian amplitude and phase of transcripts between the two conditions.

These methods identify transcripts that ‘gain’, ‘lose’, ‘change’, or have the

‘same’ rhythms; the third category is missed by VDA. We reanalyzed three

studies on the interplay between metabolism and the clock in the mouse

liver that used VDA. We found not only fewer DiffR transcripts than orig-

inally reported, but VDA overlooked many relevant DiffR transcripts. Our

analyses confirmed some and contradicted other conclusions in the original

studies and also generated novel insights. Our conclusions equally apply to

circadian studies using other omics technologies. We believe that avoiding

Venn diagrams and using our convenient R-package COMPARERHYTHMS will

improve the reliability of analyses in chronobiology.

Introduction

Circadian or near-24 h rhythms are present in all king-

doms of life [1]. These rhythms regulate critical physio-

logical processes in many species [2]. In eukaryotes, a

gene-regulatory feedback network involving a small

group of clock genes generates cell-autonomous circa-

dian rhythms. Transcription factors among the clock

genes subsequently drive transcript rhythms in target

clock-controlled genes (CCGs) [3]. Effects of genetic or

environmental perturbations on CCGs and their out-

puts provided insights into the widespread role of cir-

cadian rhythms at the molecular level [4]. Transcripts,

which are the proximal clock output, are easily
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quantified using high-throughput techniques (microar-

ray and bulk RNA sequencing). Therefore, almost all

studies focused on the effects of altered Zeitgebers,

such as light regime and feeding, or genotype on the

circadian transcriptome.

In experiments of this kind, one or more periods of

the rhythm are sampled at regular intervals under the

two conditions of interest. The samples themselves

might consist of pools of individuals or biological

replicates. The datasets obtained are subjected to sta-

tistical analyses to identify transcripts that are differen-

tially rhythmic (DiffR) between the two conditions.

DiffR transcripts are commonly identified using

Venn diagram analysis (VDA), as we term it: A list of

rhythmic transcripts is compiled under each condition

using one of many popular methods (JTKcycle [5],

RAIN [6], harmonic regression/cosinor [7]). The two

lists are compared for overlaps and differences, and

the results are visualized using Venn diagrams.

This approach is inappropriate for two reasons.

First, VDA seemingly finds DiffR features that are

rhythmic in one condition and arrhythmic in the other.

This is, of course, not all we want to know. For exam-

ple, VDA overlooks transcripts that remain rhythmic

but have altered circadian parameters (amplitude,

phase). Second, the analysis even fails to accurately

find transcripts that are rhythmic in one condition but

not the other. One test of rhythmicity in each of the

two conditions is necessary in VDA, but any statistical

test for rhythmicity is inherently imperfect.

Statistical tests make two kinds of errors in classify-

ing transcripts as rhythmic or arrhythmic; false posi-

tives (arrhythmic transcript classified as rhythmic) and

false negatives (rhythmic transcript classified as

arrhythmic). The corresponding correct classifications

are true positives and true negatives. These errors can

result in non-DiffR transcripts incorrectly tagged as

hits in the DiffR analysis and vice versa. For example,

a true DiffR transcript that is a false positive in one

condition and true positive in the other will be consid-

ered a DiffR miss by VDA. Similarly, a transcript that

is true negative and false positive in the two datasets

will be considered a DiffR hit, when it is not. (‘Hit’

and ‘miss’ refer to the algorithm’s prediction of DiffR

transcripts).

Any statistical test involves trade-offs between the

number of false positives and false negatives. Conse-

quently, no choice of threshold (on the P-value or test

statistic) will alleviate this misclassification. Moreover,

in standard situations, false positives are stringently

controlled, while false negatives are tolerated. Thus,

many false negatives can be expected in both condi-

tions. Even if some of these false negatives are true

positives in the other condition, VDA results in overes-

timating the ‘reprogramming’. Our conclusions based

on transcriptomic data also hold true for other high-

throughput datasets (proteomics, metabolomics) mea-

sured under two conditions. This paper examines

whether VDA overestimates the number and identity

of DiffR features in circadian studies and whether the

misclassification of DiffR features affects the interpre-

tation of those studies.

We illustrate using artificial scenarios constructed

from real data that the VDA does indeed perform

poorly and produces too many false DiffR hits. Next,

we present the two different approaches to directly

compare rhythms between the two conditions and

identify the four categories (and not just the three cat-

egories depicted in a Venn diagram) of pertinent

rhythmic transcripts. We provide complete pipelines

of the available approaches in an easy-to-use R-

package COMPARERHYTHMS. We reevaluate the number

and identity of DiffR transcripts in three public circa-

dian transcriptomic datasets that used VDA and com-

pare and contrast our interpretation with theirs. We

found that the extent of ‘remodeling’ is indeed much

smaller than suggested in the original studies, and

despite this overestimation, the VDA analyses over-

looked several DiffR transcripts that our analysis

identified. This discrepancy altered some conclusions,

but confirmed others and our analysis often generated

novel insights.

Results

VDA overestimates the number of DiffR features

We illustrate the shortcomings of VDA using two arti-

ficial scenarios constructed from the circadian tran-

scriptome of the mouse liver. We use these same

artificial scenarios to benchmark the approaches in our

R-package COMPARERHYTHMS and compare them to

VDA in the next section. Mouse liver transcripts were

quantified every hour for 48 h in ref. [8].

First scenario

We compared two datasets comprising the odd and

even time points (Fig. 1A). Without any measurement

or experimental noise, the odd and even time points

would follow the same rhythmic pattern and we expect

no DiffR transcripts under these conditions. However,

ever-present noise could occasionally cause the two sets

of time points to differ resulting in false DiffR hits. We

can thus benchmark using this scenario with no

expected DiffR transcripts whether an approach limits
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the number of false DiffR hits and at what level. VDA

with 0.05 false discovery rate (FDR) threshold called

2296 DiffR hits or 48% of all rhythmic transcripts

(Fig. 1B). With a more stringent FDR threshold for

rhythmicity detection, fewer DiffR hits were called at

the cost of fewer detected rhythmic transcripts

(Fig. 1C). In fact, more than 40% of rhythmic tran-

scripts were incorrectly called DiffR hits across a range

of thresholds (Fig. 1D).

Second scenario

We next created a scenario where a known set of tran-

scripts had altered amplitudes and/or phases of

rhythms between the odd and even time points, that is,

were truly DiffR (Fig. 1A). To that end, we altered

the dataset of odd time points from the first scenario

for an initial set of 500 rhythmic transcripts. We ran-

domly altered the amplitude and phase of these
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Fig. 1. Venn diagram analysis (VDA) of two artificial circadian studies created from Hughes et al. [8] data. (A) Construction of two scenarios

from the high-resolution time series of Hughes et al. [8]. VDA applied to the first scenario comparing odd and even time points for two

different false discovery rate (FDR) thresholds: (B) 0.05 and (C) 0.001. (D) The fraction of rhythmic transcripts incorrectly identified as DiffR

for different FDR thresholds under the first scenario. (E) The result of the VDA of the second scenario, where a known set of 450

transcripts is truly DiffR with changes in both amplitude and phase. (F) Precision-recall curve of the overall performance of VDA under the

second scenario. The circles are two possible operating points (FDR threshold = 1.6 9 10�3 (white fill), 0.05 (gray fill)). (G) VDA results for

the best precision-recall performance point (open circle in (F)). The number of true DiffR transcripts identified in each group is given within

square brackets.
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transcripts and also added noise (Fig. S1A). Only 450

of the initial set of altered transcripts were rhythmic in

either the odd or even time points. Transcripts rhyth-

mic in both even and odd time points had differences

in amplitude and/or phases (Fig. S1B). VDA called

2378 DiffR hits among 4717 rhythmic transcripts (or

50%) (Fig. 1E). Only a small fraction of hits (8.3%)

were true DiffR transcripts. If we chose a random set

of rhythmic transcripts and called them DiffR, we

expect on average about 500/4717 � 11% to be true

DiffR transcripts in the second scenario. Thus, this

random approach would outperform VDA with a

standard choice of FDR threshold.

Precision-recall curves characterize the overall per-

formance of DiffR classification. Precision-recall

curves are particularly informative when true DiffR

transcripts make up only a small fraction of all tran-

scripts in the data [9], which we expect is this case.

Precision is the fraction of DiffR calls that are correct.

Recall is the fraction of true DiffR transcripts recov-

ered. We desire DiffR detection with both high preci-

sion and high recall, or in other words, that is

trustworthy and thorough, respectively.

Precision-recall performance of VDA is poor for all

choices of FDR threshold. This performance metric

can only be computed for the second scenario that

contains a known set of true DiffR transcripts. VDA

never recovered more than 50% of true DiffR tran-

scripts, and no more than 20% of the DiffR hits

were truly DiffR (Fig. 1F). The best performance

achievable (white filled circle in Fig. 1F) is the recov-

ery of 40% of DiffR transcripts with only 20% true

DiffR transcripts among the hits—133 true DiffR

transcripts along with 595 false DiffR hits (Fig. 1G).

This stringent FDR threshold for rhythms

(1.6 9 10�3) greatly reduces the rhythmic transcripts

considered in VDA.

An amplitude threshold does not improve the per-

formance of VDA. Restricting attention to rhythmic

transcripts with a minimum amplitude helps select bio-

logically important results [10] and also considers the

effect size in addition to a P-value [11]. An amplitude

threshold of 0.5 log2 expression reduced the false

DiffR hits called by VDA to ~ 40% of rhythmic tran-

scripts under the first scenario (Fig. S1C,D), but did

not eliminate them for any choice of FDR threshold

(Fig. S1E). Under the second scenario, VDA with an

amplitude threshold recovered fewer true DiffR tran-

scripts and also called fewer false DiffR hits

(Fig. S1F). Moreover, an amplitude threshold does not

improve the best precision-recall performance achiev-

able (Fig. S1G). Note, the fewer false DiffR hits pro-

duced with an amplitude threshold comes at the cost

of fewer rhythmic transcripts considered for DiffR

analysis (Fig. S1H), similar to Fig. 1G.

Thus, the presence of a large number of false DiffR

hits, both in data with and without true DiffR tran-

scripts, confirms our expectation that VDA overesti-

mates the true number of DiffR features.

compareRhythms reliably and thoroughly finds

DiffR transcripts

Clearly, a better approach than VDA is needed to

identify DiffR transcripts. Two types of approaches

have been proposed in the literature—hypothesis test-

ing and model selection (Fig. 2).

Hypothesis testing assesses whether circadian parame-

ters (amplitude and phase) are different between the

two conditions by defining a null hypothesis for DiffR

analysis [12]. Rejecting this null hypothesis produces

results closer to one’s intuitive understanding of DiffR

features. Hypothesis testing produces four groups of

transcripts (Fig. 2, bottom) and not just the three in

VDA. Let us term the two conditions A and B. Among

the prefiltered transcripts rhythmic in either A or B,

there are transcripts that are (i) only rhythmic in A

(and are DiffR hits), (ii) only rhythmic in B (and are

DiffR hits), (iii) rhythmic in A and B (and are DiffR

hits because they have different amplitude and/or

phase), (iv) rhythmic in A and B (and are not DiffR

hits). If A is the control condition, we could equally

term these as (i) loss of rhythms (ii) gain of rhythms

(iii) change of rhythms, and (iv) same rhythms. The dis-

tinction between (iii) and (iv) is nonexistent in VDA.

Note, hypothesis testing is performed on the same set

of prefiltered rhythmic transcripts used in VDA. Hence,

a Venn diagram visualization is best avoided or must

be altered to accommodate the fourth category.

The model selection approach [13] forgoes the

choice of a null hypothesis (Fig. 2). Instead, the four

rhythm categories identified by hypothesis testing

along with an arrhythmic category are fit using a

nested collection of harmonic regression (cosinor)

models [7]. The ‘best’ model (rhythm category) is cho-

sen based on an information-theoretic criterion, such

as Akaike information criterion (AIC) or the Bayesian

Information Criterion (BIC). Furthermore, the best

model needs to be significantly better (determined by

user-defined threshold set) than the second best model

based on the same criterion in order to have confi-

dence in the classification. Otherwise, the transcript is

left unclassified.

We have implemented both these approaches in an

R-package COMPARERHYTHMS (https://github.com/bhara

thananth/compareRhythms). The hypothesis testing

6608 The FEBS Journal 289 (2022) 6605–6621 ª 2021 The Authors. The FEBS Journal published by John Wiley & Sons Ltd on behalf of

Federation of European Biochemical Societies

Detecting circadian differential rhythmicity A. Pelikan et al.

https://github.com/bharathananth/compareRhythms
https://github.com/bharathananth/compareRhythms


approach can be implemented for microarray data (us-

ing limma [14]), RNA-seq data (using DESeq2 [15],

edgeR [16] or limma-voom), or generic prenormalized

data (using RAIN and DODR [12]). There are often

two ways of analyzing the same data using hypothesis

testing. For example, microarray data can be either

normalized and analyzed using DODR or directly ana-

lyzed accounting for microarray properties using

limma. We evaluate the effect of this choice of ‘imple-

mentation’ on our conclusions as appropriate. The

model selection approach can be directly applied to

any generic prenormalized data. A single command

performs the standard analysis on the two datasets

with the chosen approach.

Both methods in COMPARERHYTHMS (without ampli-

tude thresholds) called negligible number of false

Fig. 2. The two approaches for DiffR identification implemented in COMPARERHYTHMS. Rhythmic transcripts (features) are classified into four

categories: loss, gain, change, and same rhythm in condition 2 with respect to condition 1. ’rhythm_fdr’, ’compare_fdr’, ’amp_cutoff’, and

’schwarz_wt_cutoff’ are parameters controlling different thresholds within the analysis.

6609The FEBS Journal 289 (2022) 6605–6621 ª 2021 The Authors. The FEBS Journal published by John Wiley & Sons Ltd on behalf of

Federation of European Biochemical Societies

A. Pelikan et al. Detecting circadian differential rhythmicity



DiffR hits in the first scenario with no true DiffR

transcripts (Fig. 1A). Hypothesis testing called the

‘same’ rhythms in all 4750 rhythmic transcripts (DiffR

test with FDR < 0.05) and no DiffR transcripts

between odd and even time points. On the other hand,

model selection called 189 false DiffR hits and 4244

transcripts with ‘same’ rhythms (compare with

Fig. 1B). Different implementations of hypothesis test-

ing in COMPARERHYTHMS also did not call any DiffR

transcripts.

Hypothesis testing called significantly fewer false

DiffR transcripts than model selection to recover

~ 75% of the true DiffR transcripts in the second sce-

nario. The analysis without an amplitude threshold

aims to recover all true DiffR transcripts (Fig. 3, left).

Hypothesis testing almost perfectly recalled 70% of

the true DiffR transcripts or 80% of the true DiffR

transcripts with precision above 80% (independent of

its implementation in COMPARERHYTHMS as described

above (Fig. S2)). On the other hand, model selection

suffered from a poor 50% precision in recovering 75%

of the true DiffR transcripts. Nevertheless, both these

methods performed significantly better than VDA.

Both methods were equally good at finding DiffR

transcripts with biological relevance based on rhythm

amplitude. If only rhythmic transcripts with

sufficiently large amplitude are considered relevant, we

can run both methods with a suitable amplitude

threshold, which is default in COMPARERHYTHMS. Both

model selection and hypothesis testing recalled 80% of

true DiffR transcripts at about 80% precision in the

second scenario (Fig. 3, right). The amplitude thresh-

old deteriorated the performance of hypothesis testing

slightly, but improved model selection. Note, the

default setting in COMPARERHYTHMS achieves the best

trade-off between precision and recall (circles in Fig. 3,

right).

Although VDA clearly overestimates DiffR tran-

scripts, its impact on studies that used VDA is unclear.

To that end, we reanalyzed three studies using COMPAR-

ERHYTHMS to re-assess changes in rhythmicity and

whether novel biological insights might have been

overlooked.

High-fat diet mainly affects the core circadian

clock in the liver

We reanalyzed an early high-resolution study that

characterized changes in the circadian liver transcrip-

tome in response to a nutritional challenge, that is,

high-fat diet (HFD) [17]. In order to validate our

reanalysis, we analyzed DiffR in response to HFD
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Fig. 3. Precision-recall performance of different COMPARERHYTHMS approaches applied to the second scenario. (Left) Performance of

hypothesis testing and model selection on the data analyzed in Fig. 1E–G without an amplitude threshold (Acutoff) for rhythmic transcripts.

(Right) Performance of the two approaches with an amplitude threshold on data analyzed in Fig. 1E–G aimed at recovering the true DiffR

transcripts with biologically relevance (with amplitudes > 0.5 log2 expression). Performance at the default setting in COMPARERHYTHMS is

marked with circles. The corresponding performance of VDA (from Fig. 1F, Fig. S1G) is shown in gray for reference. The curves were

constructed by varying ’compare_fdr’ for hypothesis testing and ’schwarz_wt_cutoffE for model selection.
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quantified using high-throughput sequencing from an

independent study, that neither used VDA nor per-

formed DiffR analyses [18].

Hypothesis testing and model selection called less

than a tenth and about a third of rhythmic transcripts,

respectively, to be DiffR across both studies (Fig. 4A,

Table S1). Hypothesis testing called only 90 and 160

DiffR hits in the microarray and RNA-seq data

respectively. Model selection, on the other hand, called

328 and 791 DiffR hits in the two studies. The higher

number of DiffR transcripts called by model selection

is consistent with the second scenario, where model

selection called more false DiffR hits compared to

hypothesis testing in some situations (Fig. 3). Many

more rhythmic transcripts were detected in the RNA-

seq data by both methods (Fig. 4A, Fig. S3A). Inter-

estingly, the fraction of rhythmic transcripts called

DiffR by hypothesis testing is higher with than with-

out an amplitude threshold mainly due to an increase

in the detected number of rhythmic transcripts in the

latter (Fig. S3A).

DiffR hits called by hypothesis testing were a subset

of DiffR hits called by model selection in both studies.

All but 9 transcripts called DiffR by hypothesis testing

were also called DiffR by model selection in the

microarray data (Fig. S3B, Table S1). These 9 tran-

scripts could not be classified by model selection, since

multiple rhythm categories matched the expression

pattern equally well. The excess DiffR hits in model

selection were mostly (203) called rhythmic but non-

DiffR and a few (44) were called arrhythmic by

hypothesis testing. In the RNA-seq data, the DiffR

hits from hypothesis testing not also called DiffR by

model selection were almost all left unclassified

(Fig. S3C, Table S1). Again, the excess DiffR hits in

model selection were mostly categorized ‘same’ by

hypothesis testing.

The proportion of transcripts in the different rhythm

categories was similar across studies, but overlap of

DiffR hits was poor. The two methods categorized

DiffR transcripts similarly as ‘loss’, ‘change’, and

‘gain’ in each study (Fig. S3B,C). Differences in classi-

fication of common DiffR transcripts resulted from

different assignment between ‘gain’ or ‘loss’ and

‘change’ in the two methods. Comparing the studies,

hypothesis testing predicted similar fractions of DiffR

transcripts in the ‘loss’, ‘change’ and ‘gain’ categories

(Fig. 4B). Differences in assays and annotations lim-

ited the number of commonly rhythmic transcripts to

736 (Fig. S3D). Of these, only 10 transcripts were

called DiffR in both, while 635 were called not DiffR

in both. The remaining DiffR hits in each study were

called ‘same’ or arrhythmic in the other.

DiffR estimates from VDA greatly exceeded the esti-

mates from hypothesis testing, but still missed relevant

DiffR transcripts. VDA in the original microarray

study [17] called about three-quarters of rhythmic tran-

scripts DiffR (Fig. S3E), and our recomputed VDA

was only slightly smaller (Table 1). The number and

fraction of DiffR transcripts from VDA exceeded the

estimates from hypothesis testing both with and with-

out amplitude thresholds. Only 25 of 90 DiffR hits

from hypothesis testing were also DiffR hits in the

original VDA (Fig. S3F). As expected, VDA missed 31

(of 90) DiffR transcripts that showed altered circadian

parameters and classified them as rhythmic in ‘both’.

70% of the excess DiffR hits from VDA were called

arrhythmic by our reanalysis and 19% were classified

as ‘same’. The RNA-seq study [18] that we included to

validate our DiffR estimates did not report any DiffR

analysis including VDA.

DiffR transcripts showed a consistent phase advance

in HFD; however, DiffR hits were not significantly

enriched for any process. We observed a consistent

phase advance of between 2 and 4 h in almost all the

DiffR transcripts across both studies (Fig. 4C). Gene

enrichment analysis typically follows DiffR analysis in

order to generate hypotheses. The small DiffR tran-

script set (Fig. 4B) was expected to make enrichment

analysis less statistically powerful. Nevertheless, circa-

dian rhythms and metabolism-related terms constituted

the top five enriched KEGG categories among the

DiffR transcripts (Fig. 4D); we always used all the

rhythmic transcripts in either group as the back-

ground.

The individual transcript time courses were also

remarkably similar between the studies (Fig. 4E). All

the core clock genes in Fig. 4E except Nr1d2 and Per1

were DiffR in at least one study and even the two

exceptions showed a trend toward earlier phases under

HFD seen for the DiffR transcripts (Fig. 4C).

In summary, all the core clock genes and a few

CCG transcripts were DiffR under HFD with a very

consistent phase advance.

A ketogenic diet significantly activates circadian

immune response in the mouse liver

We next reanalyzed microarray data on the effect of a

ketogenic diet (KD) on the mouse liver transcriptome

[19] (Fig. 5).

DiffR hits from model selection contained hits from

hypothesis testing as with HFD, and both methods

predicted that most DiffR transcripts gained rhythms

under KD in the liver. Hypothesis testing and model

selection called 271 and 457 DiffR transcripts in
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Fig. 4. Effect of a high-fat diet (HFD) on the mouse liver clock. (A) The number of rhythmic transcripts (open bars) and DiffR transcripts

(filled bars) called by the two approaches in the microarray data [17] and the analogous RNA-seq data [18] using COMPARERHYTHMS with default

parameters. The percentage of rhythmic transcripts called DiffR is displayed within the bars. (B) The classification of DiffR hits predicted by

hypothesis testing into those that ‘change’, ‘gain’, or ‘lose’ rhythms. Rhythmic DiffR misses have the ‘same’ rhythms in the two groups. (C)

Circular plot representing the phase and amplitude change in the DiffR transcripts between control and HFD. Amplitude changes are

represented as radial deviations from the solid gray circle and angular phase (in h) are positive for delays and negative for advances. (D) The

top five KEGG enrichment categories for DiffR transcripts in each study. (E) The raw data as log2 expression for the 9 core clock genes, out

of which 7 are DiffR in either the microarray or RNA-seq datasets. The lines are the mean LOESS-smoothed expression profiles for visual

comparison.
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response to KD (Fig. 5A, Table S2). Except for 32

transcripts that could not be reliably categorized by

model selection, all DiffR hits from hypothesis testing

were called DiffR by model selection (Fig. S4A).

Moreover, the common DiffR hits were categorized

identically. The additional DiffR transcripts called by

model selection were considered to be mostly non-

DiffR and the remaining arrhythmic by hypothesis

testing. The proportions of different categories, how-

ever, of DiffR transcripts were similar between the two

methods.

VDA overestimated the number of DiffR hits rela-

tive to hypothesis testing and missed several DiffR hits

in our reanalysis. VDA (reported and recomputed)

predicted about 75–80% of rhythmic transcripts were

DiffR (Table 1). 75% of the DiffR transcripts called

by VDA also showed novel rhythms under KD

(Fig. S4B, compare with Fig. 5A). Nonetheless, only

151 of the 271 DiffR transcripts overlapped between

the reanalysis and the original VDA (Fig. S4C).

Hypothesis testing placed about 40% of DiffR hits

missed by VDA (as rhythmic in ‘both’) in the ‘change’

category, a category absent in VDA. The fraction of

rhythmic transcripts called DiffR by hypothesis testing

is smaller without compared to with an amplitude

threshold due to increases in the number of DiffR hits

but also the number of rhythmic transcripts (Table 1).

DiffR transcripts generally increased amplitude

under KD and were enriched for immune response

pathways. A majority of DiffR transcripts placed in

the ‘gain’ category and DiffR transcripts in the

‘change’ category showed a rhythm amplitude increase

but no clear trend in the phase change (Fig. 5B).

Rhythm parameter changes cannot be estimated accu-

rately when the transcript is arrhythmic in one condi-

tion (‘gain’ and ‘loss’ categories). The significantly

enriched KEGG pathways were all associated with

responses to infectious disease—COVID-19, influenza

A, hepatitis C, and herpes (Fig. 5C). In agreement, the

DiffR transcripts were highly over-represented for hall-

mark genes upregulated in response to Interferon a
and c according to the MSigDB database [20]. More-

over, most immune response associated DiffR tran-

scripts acquired rhythmicity under KD (Fig. 5D and

Table S2).

In a nutshell, KD induced more rhythm changes in

the liver than HFD including de novo rhythms in a

large subset of DiffR transcripts. These DiffR tran-

scripts were closely associated with immune response

pathways.

Disruption of endogenous H2O2 rhythms

activates circadian oncogenic signaling

We reanalyzed finally the RNA-seq data on the effect

of disrupting endogenous H2O2 rhythms by knocking-

out (KO) p66Shc on the circadian liver transcriptome

[21].

Both methods similarly categorized DiffR transcripts

with hypothesis testing hits included in model selection

hits yet again. Hypothesis testing and model selection

called 414 and 1522 DiffR transcripts (Fig. 6A,

Table 1, Table S3). This result was insensitive to the

implementation of hypothesis testing in COMPAR-

ERHYTHMS (not shown). As before, all but 88 DiffR

transcript calls by hypothesis testing agreed with

model selection; 71 of these could not be reliably clas-

sified by model selection (Fig. S5A). About 70% of

the excess DiffR hits from model selection were classi-

fied as having ‘same’ rhythms by hypothesis testing.

Nevertheless, the proportion of the different DiffR cat-

egories was conserved across approaches, with most

DiffR hits in ‘change’ followed by ‘gain’ and then

‘loss’.

Table 1. DiffR transcripts called in mouse liver by the original studies and our reanalyses. VDA results are presented as reported in the

original studies. Results from hypothesis testing are provided both without an amplitude threshold (directly comparable to reanalyzed VDA)

and with an amplitude threshold (default in COMPARERHYTHMS). We recomputed the VDA numbers using the same filtered rhythmic transcripts

and rhythmicity detection used in hypothesis testing (without an amplitude threshold). ‘rhy.’ Is the number of transcripts rhythmic in either

condition and ‘diffR’ is the total diffR transcripts in the ‘gain’, ‘loss’, and ‘change’ categories.

Study

VDA (reported) VDA (recomputed)

Hypothesis testing (no

min amp.)

Hypothesis testing

(with min amp.)

diffR rhy. % diffR rhy. % diffR rhy. % diffR rhy. %

Eckel-Mahan et al. [17] 2048 2826 72 2042 3103 66 57 3059 2 90 1113 8

Quagliarini et al. [18] – – – 3534 4728 75 120 4728 3 160 2981 5

Tognini et al. [19] 3058 3859 79 2973 4034 74 508 4034 13 271 1203 23

Pei et al. [21] 2083 2503 83 3189 5346 60 424 5346 8 414 4473 9
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We observed a large mismatch between VDA in the

original study and hypothesis testing. VDA called

about 84% of the rhythmic transcriptome DiffR in the

original study (Fig. S5B, Table 1). Our recomputed

VDA predicted a lower fraction (60%) to be DiffR,

since we identified many more rhythmic transcripts by

accounting for a batch effect (see Methods) unnoticed

in the original analysis. Two-thirds of the hypothesis

testing DiffR hits were overlooked (Fig. S5C) and over

80% of these were considered arrhythmic by VDA.

Unlike the previous two studies, the amplitude thresh-

old had no effect on the hypothesis testing results

(Table 1). Surprisingly, more than 2500 transcripts

with the same rhythms in both conditions were consid-

ered not expressed or arrhythmic in the original VDA.

DiffR transcripts were enriched in vasculature devel-

opment. The phase and amplitude shifts in the

‘change’ DiffR transcripts did not show a specific

trend (Fig. 6B). However, there appeared to be two

cluster of phase shifts: those that are phase advanced

by ~ 4 h and those that are phase delayed by ~ 8 h.

The DiffR set was significantly over-represented for

the GO categories ‘angiogenesis’ and ‘blood vessel

morphogenesis’ (Fig. 6C). ‘Genes upregulated by

KRAS signaling’ were also significantly enriched in the

DiffR set. Most genes that overlapped with this hall-

mark set gained rhythms in the knockout (Fig. 6D).

To sum up, altering the endogenous H2O2 rhythms

cause gain, loss, and change in rhythms in the liver

and these DiffR transcripts are associated with the cir-

culatory system development and oncogenic KRAS

signaling.

Discussion

High-throughput time series profiling of a control and

an experimental group is the standard approach to

characterize the response of the circadian clock system
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to a treatment. Many such studies in high-impact jour-

nals discovered large-scale circadian changes resulting

from the treatment and often described this phenom-

ena as ‘circadian reprogramming’ or ‘circadian remod-

eling’. Most of these studies used VDA to determine

the number and identity of DiffR transcripts. VDA

finds rhythmic transcripts in the two groups separately

and then compares these lists to predict DiffR and

non-DiffR transcripts. Analyses of high-throughput

data stringently control for false discoveries at the cost

of missing many true discoveries. In this work, we

questioned the validity of the VDA due to the propa-

gation of false discoveries and missed true discoveries

from two individual rhythmicity tests to the determina-

tion of DiffR transcripts.

We showed using two artificial experiments designed

on real liver transcriptomic data that VDA produces

excessive false DiffR hits (Fig. 1, Fig. S1). VDA called

DiffR hits even when DiffR transcripts are unex-

pected. When true DiffR transcripts were present, not

only were more than three-quarters of the returned

hits incorrect, but VDA never recovered more than

half the true DiffR transcripts. This failing of VDA

could not be overcome by being very conservative

(very low FDR threshold) or being permissive (larger

FDR threshold) with rhythm detection in either group.

This issue with VDA generalizes to high-throughput

data beyond transcriptomes and, in fact, to any effect

(not just rhythmicity) measured independently in two

datasets.

We thus argue that VDA is defective and ought to

be avoided. First, VDA is the high-throughput coun-

terpart to a well-known statistical error—see ‘Inter-

preting comparisons between two effects (here
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rhythms) without directly comparing them’ in ref. [3].

Second, VDA leaves to chance the fraction of returned

DiffR hits that are false-positive akin to failing to cor-

rect for multiple testing in high-throughput data analy-

ses (Fig. 1D). Third, in our benchmarking (Fig. 1F),

VDA recovered < 50% of the DiffR transcripts.

Fourth, VDA estimated at least 2–3 times the number

of DiffR transcripts estimated by hypothesis testing

(which was superior in our benchmarking), even

assuming the latter conservatively recovers only 50%

of true DiffR transcripts. The goal of DiffR analysis is

to find gene sets and so we cannot be certain about

individual hits. Nevertheless, we infer many individual

hits from VDA are incorrect, since DiffR transcripts

from hypothesis testing are much smaller in number

than VDA’s prediction.

We presented model selection and hypothesis testing

to identify DiffR features (Fig. 2) with implementa-

tions for different datatypes in a convenient to use R-

package COMPARERHYTHMS. Both approaches address

two key drawbacks of VDA. First, these methods

explicitly (hypothesis testing) or implicitly (model

selection) control false DiffR hits in the analysis. In

other words, we can set a desired significance cutoff

for DiffR analysis just as we set one for rhythmicity

analysis. For instance, we compared (not shown) WT

control time series (from [17] and [19]) performed

under identical conditions (age, mouse strain, lighting,

feeding), using the same assay in the same laboratory.

In this situation where no DiffR is expected, VDA and

hypothesis testing predicted 75% and 6% DiffR tran-

scripts among rhythmic transcripts. While the former

does not control false hits, the latter controls them at

the chosen 5% threshold. Both methods in COMPAR-

ERHYTHMS recovered at least 75% of the true DiffR

transcripts, as benchmarked by the second scenario

(Fig. 3). While > 80% of hypothesis testing calls were

correct, only 50% of model selection calls were correct

for some parameter settings. The default settings in

our implementation correspond to the best perfor-

mance trade-off between recovery of true DiffR tran-

scripts and reliability of the DiffR calls.

Second, by directly comparing amplitudes and

phases between control and experimental groups, the

methods inCOMPARERHYTHMS also call transcripts with

changed rhythms. Model selection and hypothesis test-

ing further classify rhythmic transcripts into four cate-

gories: transcripts that gain rhythms, lose rhythms,

whose rhythms have changed (amplitude and/or

phase), or have the same rhythms between the control

and experimental groups. VDA analysis completely

disregards the third category of transcripts. The seem-

ingly intuitive set-theoretic approach underlying VDA

only demarcates three groups from two lists of rhyth-

mic transcripts (sets).

To evaluate our conclusions further, we reanalyzed

three studies that used VDA (and one that did not

report such an analysis for validation) to quantify the

effect of metabolic changes on the mouse liver circa-

dian transcriptome. Across all studies, hypothesis test-

ing and model selection called between 8–23% and

between 34–51% of rhythmic transcripts to be DiffR,

respectively (Table 1). VDA (as reported) estimated

72–85% of rhythmic transcripts were DiffR, while our

recomputed VDA (which is matched to hypothesis

testing) estimated 60–75% of rhythmic transcripts were

DiffR. The absolute number of DiffR hits was also

much higher with VDA. The difference between VDA

and hypothesis testing was not due to differences in

the analyzed set of rhythmic transcripts (Table 1). KD

elicited DiffR in a larger fraction of rhythmic tran-

scripts compared to H2O2 rhythm disruption and

HFD, which were equal, according to our reanalysis.

The fraction of rhythmic transcripts called DiffR in

response to HFD was also consistent across two iden-

tical studies performed in different laboratories and on

different assays (Fig. 4). Assuming a conservative 50%

recovery of DiffR transcripts (Fig. 3), the true DiffR

number is at most twice our hypothesis testing esti-

mates, which has high precision. This reinforces our

conclusion that VDA overestimates the true extent of

circadian ‘reprogramming’.

DiffR analysis produces sets of transcripts that can

be functionally interpreted using pathway, gene ontol-

ogy, or reactome analysis. We might expect from

VDA’s tendency to overestimate DiffR transcripts and

call many false DiffR hits that the DiffR hits in the

reanalysis are contained among the VDA hits. Surpris-

ingly, between 43–73% of DiffR hits called by hypoth-

esis testing were absent in the DiffR hits called by the

originally reported VDA. As expected, many of the

misses were DiffR transcripts deemed in the ‘change’

category that were classified as non-DiffR by VDA.

However, the hits from hypothesis testing were con-

tained in the hits from model selection. This is consis-

tent with our insight from benchmarking that model

selection produces more false positives than hypothesis

testing. In summary, VDA neglects all DiffR hits with

altered rhythm parameters, since VDA is not designed

to find these.

We next explored whether changes in the number

and identity of DiffR hits affected the conclusions of

the original studies. Under HFD, we confirmed that

most DiffR hits lost rhythms or amplitude and were

phase advanced (Fig. 4B,E), albeit in a small DiffR

transcript set. But, we found no evidence for ‘massive
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induction of de novo oscillating transcripts’ [17].

Under KD, we could corroborate the gain of rhythms

in a plurality of DiffR transcripts (Fig. 5A). However,

we found neither KEGG enrichment of ‘metabolism’

or ‘PPAR signaling’ among DiffR transcripts (Fig. 5C)

nor trends in the phase changes (Fig. 5B). On altering

H2O2 rhythms, we found a bias in DiffR hits toward

‘gained’ or ‘change’ categories (Fig. 6A) not present in

the original study. We also found no enrichment of

‘oxidation-reduction process’ or ‘metabolic process’

among DiffR transcripts (Fig. 6C). To sum up, some

conclusions held up under the reanalysis, some did not

and others could not be evaluated. Therefore, high-

throughput circadian studies using VDA must be re-

assessed individually.

We wondered next whether our reanalysis revealed

novel insights overlooked in the original studies. The

effect of HFD (based on both studies) on the circadian

system is rather modest and restricted to the core clock

and a few additional transcripts that show a consistent

~ 4 h phase advance of rhythms (Fig. 4E). We conjec-

ture that Nampt alone (Fig. 4C), with no role played

by PPARc, drives a similar pattern in the metabolome

(The metabolome is also easily reanalyzed using COM-

PARERHYTHMS). Enrichment analysis strongly suggested

that KD activates viral defense (including against

COVID-19) and interferon a,c response pathways by

inducing de novo transcript rhythms in these pathways

(Fig. 5D). Recently, KD was shown to provide protec-

tion against influenza infection [22] and this effect is

likely in part mediated by the circadian system.

Finally, DiffR transcripts in response to redox changes

overlapped significantly with transcripts upregulated in

KRAS signaling (Fig. 6C,D). We propose that the

complex interaction between redox balance and cancer

[23] is also circadian clock mediated with a possible

role for blood vessel development. Our novel insights

thus involve circadian clock modulation of the interac-

tion between physiological processes.

Analysis using COMPARERHYTHMS uses an amplitude

threshold by default. We recommend using an ampli-

tude threshold to filter transcripts considered for DiffR

analysis for four reasons. First, statisticians recom-

mend considering the effect size (amplitude in this

case) in addition to statistical significance (P-values)

[11]. Second, the subsequent DiffR analysis compares

circadian parameters that are unreliably estimated

from low amplitude rhythms. Third, in high-

throughput analyses often less is more, since multiple

testing corrections penalize P-values in relation to the

size of the search set. This is seen in the complex

changes in the number of DiffR hits on removal of the

amplitude threshold (Table 1). Four, it is arguable that

only rhythms with sufficiently large amplitude are bio-

logically relevant. In our benchmarking, an amplitude

threshold improved model selection performance to

match hypothesis testing (Fig. 3). In the reanalyses,

amplitude threshold removal increased numbers of

rhythmic transcripts more than the number of DiffR

hits and did not affect our general conclusions.

Our conclusions must be nonetheless viewed within

the context of the presented approaches. We identify

DiffR hits using changes in circadian parameters esti-

mated assuming sinusoidal rhythm patterns, which

might be unsuitable in certain situations (e.g., long/

short photoperiods). The DiffR hits in response to

HFD from the microarray and RNA-seq data showed

limited overlap (Fig. S3D) despite well-matched experi-

mental conditions (mouse strain, age, food, lighting),

since the superior RNA-seq detected many more

rhythmic transcripts than the microarray for the

default settings in COMPARERHYTHMS. Combining data

across assays is beyond the scope of this work andCOM-

PARERHYTHMS. All bioinformatic analyses involve

choosing multiple thresholds, which requires consider-

able thought. We measured DiffR in terms of hits as a

fraction of rhythmic transcripts, since they were less

sensitive to thresholds than absolute numbers. Biologi-

cally, it is unclear, which of the two is more relevant.

The choice of approach in COMPARERHYTHMS must

consider, beyond performance, the nature of the data

(transcriptomic vs. nontranscriptomic data), covariates,

effects of experimental batches, waveforms of interest

(sinusoidal vs. nonsinusoidal), size of the datasets/

speed, and experimental design complexity. We sum-

marize the trade-offs involved in Table 2. We focused

on transcriptomic data due to their sheer abundance in

public archives, but our tool can be easily applied to

any normalized (according to the particular datatype)

data, such as metabolomic and proteomic data, from

any organism. Our tool can currently only compare

two groups with one categorical variable to account

for covariates, such as batch or sex. We also disregard

changes in mean expression between the two groups.

We lent toward simplicity and performance in COMPAR-

ERHYTHMS at the cost of including many different

experimental designs (e.g., [24,25]).

Although COMPARERHYTHMS provides multiple

approaches for different datatypes in one convenient

package, the shortcomings of VDA can be combated

using other approaches too. However, none of these

approaches use an amplitude threshold, that is, con-

sider the size of the effect in DiffR identification.

LimoRhyde, CircaCompare, diffCircadian, and Cosi-

norPy are all cosinor-based [7] and fall within the

hypothesis testing framework in Fig. 2. LimoRhyde
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[26] allows for more complex experimental designs

than COMPARERHYTHMS (such as changes in mean

expression) at the cost of simplicity for DiffR analysis

of transcriptomics datasets. An alternative formula-

tion, fit by nonlinear regression, is used in CircaCom-

pare to analyze DiffR in any normalized data, and it

can additionally provide statistical significance for dif-

ferences in particular circadian parameters [27]. How-

ever, nonlinear regression is not robust to violations of

assumptions, does not account for particular proper-

ties of transcriptomic data, and the analysis does not

handle multiple testing needed in high-throughput

datasets. diffCircadian [28] present a likelihood-ratio

test-based DiffR analysis for generic prenormalized

data, which our implementations (except DODR)

already use for transcriptomic datasets. CosinorPy [29]

is the only package that allows for simple DiffR analy-

sis in Python. dryR [30] is a newer version of model

selection approach that specifically accounts for prop-

erties of RNA-seq data and allows more complex

designs with the drawback of having a combinatorial

explosion of rhythm categories. Finally, MOSAIC [31]

uses hierarchical modeling, nonlinear regression, and

assumptions regarding rhythms in the transcriptome

and proteome to address DiffR analysis in a specific

multi-omics context.

Conclusion

Problems with statistics and experimental design are

often cited as one of the main causes for the repro-

ducibility crisis in science [32]. The deficiency of the

common approach to DiffR analysis is related to a

common mistake of comparing two experimental

effects without directly comparing them [33,34] and

afflicts many more studies than those we reanalyzed.

Venn diagrams that are symptomatic of VDA ought

to serve as a warning flag. We trust that chronobiolo-

gists will find our tool an easy way to avoid this pitfall

and generate reliable hypotheses to best utilize their

resources.

Methods

All analysis and statistics were performed using R 3.6.3

[35].

Data sources

All data used in this study were gathered from Gene

Expression Omnibus (GEO) database [36] or the Short

Read Archive. The accession numbers for the different

studies are listed in Table 3.

Data preprocessing

Raw microarray data were loaded using custom chip defini-

tion files from Brainarray (v24.0.0) [37] with probes

arranged and annotated according to Ensembl gene ID.

They were subsequently normalized using the RMA algo-

rithm in the OLIGO package (v1.50.0) [38] to obtain final

log2 expression values. The included subset of gene IDs

had a minimum log2 expression of 5 in at least 70% of the

samples in each condition.

Table 2. Advantages and disadvantages of the analysis pipelines in COMPARERHYTHMS. Linear modeling encompasses all implementations of

hypothesis testing other than DODR, that is, limma, voom, DESeq2, edgeR.

Hypothesis testing

Model selectionDODR Linear modeling

+ straightforward + very fast + simple, elegant and fast

+ rhythm detection using RAIN + blends easily into standard pipelines

for transcriptomic data

+ directly provides all DiffR categories

+ works on any normalized data + can include other covariates and

batch variables

+ works on any normalized data

� mixes parametric (for DiffR detection) and

nonparametric methods (for rhythm detection)

� rhythm and DiffR detection based on

sinusoidal rhythm pattern

+ can include other covariates and batch

variables

� slow � exponential growth in models with

rhythm categories of interest

� cannot include other covariates in pipeline � more false hits in some situations

Table 3. Accession numbers of the public data from GEO analyzed

in this study.

Publication Accession number Data type

Hughes et al. [8] GSE11923 Microarray

Eckel-Mahan et al. [17] GSE52333 Microarray

Quagliarini et al.[18] GSE108688 RNA-seq

Tognini et al. [19] GSE87425 Microarray

Pei et al. [21] PRJNA449625 RNA-seq
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Raw RNA-seq reads were quantified using SALMON

(v1.1.0) [39] with Mus musculus reference genome GEN-

CODE build M24 [40]. The salmon-quantified transcript

expression was converted to gene expression using TXIM-

PORT package (v1.14.2) [41]. We retained for the analysis all

genes that had at least 10 reads per 1 million mapped reads

in at least 70% of samples in each condition.

Exploratory data analysis was performed on all datasets

using principal component analysis (PCA) to identify

potential outlier samples and batch effects (see Vignette in

COMPARERHYTHMS for a practical guide). A batch effect was

identified in one dataset [21], where replicates one and two

separated into two different clusters after PCA.

Artificial scenarios

The 450 true DiffR transcripts for the second scenario were

created as follows: we selected 500 transcripts with harmonic

regression (cosinor) adjusted P-values below 0.05 for the

complete 48 time point dataset and peak-to-trough ampli-

tudes above 0.26 (the median amplitude of rhythmic tran-

scripts). We altered the amplitudes in the odd dataset by

scaling mean-subtracted expression for each chosen tran-

script by a random number in [0,1]. We then shifted time

labels of odd dataset for each transcript by a number of

places chosen randomly in [1,24]; there are 24 time points in

the odd dataset. Finally, we added Gaussian noise with

standard deviation of 0.25 times the transcript amplitude to

the odd dataset (see example in Fig. S1A).

50 of the 500 transcripts were no longer rhythmic in

either group leaving 450 true DiffR transcripts. Since the

transcripts were chosen based on all 48 time points, chosen

transcripts were occasionally rhythmic in only one or the

other dataset even without sample alteration (i.e., the first

scenario). 198 of the 450 chosen transcripts were rhythmic

in only one of the two datasets in the second scenario. The

remaining 252 chosen transcripts were rhythmic in both

datasets and had differences in amplitude and/or phase of

expression (Fig. S1B).

DiffR identification

The hypothesis testing and model selection approaches are

outlined in Fig. 2 and in the text and were implemented in

the package COMPARERHYTHMS v0.99.0 (https://github.com/

bharathananth/compareRhythms). Expression values of the

expressed genes were processed with default parameter val-

ues using limma [14], DODR [12] or model selection [14]

pipelines for microarray and voom [42] or DESeq2 [15]

pipelines for RNA-seq data. For the hypothesis testing-

based approaches, all P-values were false discovery adjusted

using Benjamini–Hochberg correction and adjusted P-values

were thresholded at 0.05 (unless otherwise mentioned). The

amplitude threshold was set at 0.5 log2 expression with

amplitude measured peak-to-trough.

The implementation of VDA for the two artificial scenar-

ios was based on rhythm detection using RAIN [6] with the

resulting P-values adjusted using the Benjamini–Hochberg

(BH) approach. For VDA with an amplitude threshold, the

peak-to-trough amplitudes were determined using harmonic

regression of the normalized expression values. The VDA

reported in the studies (Table 1) used an unadjusted P-value

significance threshold of 0.01. We recomputed VDA numbers

using the rhythmicity calls from the prefiltering step in

hypothesis testing applied to that dataset.

Gene enrichment

Gene enrichment analysis was performed using the CLUSTER-

PROFILER package (v3.14.3) [43] with KEGG database [44]

and MSIGDBR (v7.1.1) [45] package translation of Molecular

Signatures database [20].
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HFD predicted by different approaches including

VDA in the original study.

Fig. S4. Comparison of the DiffR hits called in

response to KD by different approaches including

VDA in original study.

Fig. S5. Comparison of the DiffR hits called in

response to p66Shc KO by different approaches

including VDA in the original VDA study.

Table S1. DiffR analysis results of the effect of high

fat diet on the liver circadian transcriptome.

Table S2. DiffR analysis results of the effect of keto-

genic diet on the liver circadian transcriptome.

Table S3. DiffR analysis results of the effect of p66Shc

KO on the liver circadian transcriptome.

Appendix S1. The R code and associated data to per-

form all the analyses in the manuscript.
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