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Atomic resolution with high-eigenmode tapping mode atomic force microscopy
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Atomic surface structure imaging is instrumental for the understanding of surface-related phenomena. Here,
we show that conventional tapping mode atomic force microscopy with high cantilever eigenmodes and
subnanometer amplitudes allow routine atomic imaging at atmospheric pressures. We identify the reasons for
failure of atomic resolution imaging employing low eigenmodes. Strong tip-surface interactions cause significant
differences between the oscillatory behaviors of the inclination of the cantilever as detected by conventional
instruments and of the vertical position of the tip, which prevents correct functioning of instrumental feedback
control loops. However, high effective spring constants of high eigenmodes make it possible to overcome the
problem. Furthermore, the combination of high effective elastic constants of high cantilever eigenmodes with
the high flexibility of the cantilever substantially enhances the imaging stability, thereby universally allowing
atomic imaging of solid surfaces in gaseous environments and at elevated temperatures. Demonstrated imaging
examples include single sulfur vacancies at the surface of MoS2 crystals imaged at temperatures ranging from
room temperature to 250°C and potassium ions on hydrophilic and highly adhesive muscovite mica surfaces.
Moreover, the high imaging stability allows knocking atoms off the MoS2 surface by hard tapping, indicating
the potential for ultrahigh resolution lithography.
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I. INTRODUCTION

The invention of the atomic force microscope (AFM) more
than three decades ago revolutionized surface analyses [1].
The AFM remains one of the most popular tools for the
investigation of surfaces from ångstrom to micron scales in
variable environments, most frequently in air. In its con-
ventional design, AFM employs a sharp tip attached to a
flexible cantilever. Monitoring the deflection of the cantilever
is employed to evaluate the interaction force between the tip
apex and a surface and to maintain this force constant during
imaging by adjusting the cantilever-surface distance. As it was
foreseen already in Ref. [1], it should be possible to resolve
atomic features of surfaces provided that the forces acting
between the front atom of the apex of the tip and surface
atoms can be measured and kept small. While the required
force sensitivity is routinely achieved nowadays, obtaining
atomic resolution in AFM is still an issue, particularly in air.
The problem here is that the contribution of the interaction
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between the front atom of the apex of the tip and surface
atoms, which could give the atomic resolution, should be
separated from all other interactions. The possibility of such
a separation depends on the surface and on the mode of op-
eration of the AFM. For example, contact mode, which uses
the deflection of the cantilever as a feedback parameter, can
reproduce the periodic structure of crystal surfaces but does
not unambiguously reveal single-atom defects known to exist
on the surfaces. A common explanation for this phenomenon
invokes the assumption that, in contact mode, the apex of the
tip becomes flattened by the adhesion forces, and the atoms
of the apex of the tip adapt their periodicity to that of the
substrate in contact mode [2,3].

The development of tapping, called also amplitude modu-
lation (AM) or intermittent contact mode, largely broadened
the use of force microscopy [4]. In tapping mode, the can-
tilever is driven at or close to its resonance frequency. The
tip-sample distance is controlled by keeping the amplitude
of the oscillations of the cantilever constant, with amplitudes
typically >10 nm. Such oscillation amplitudes make it possi-
ble to overcome the short-range adhesion forces. In most of
situations, the lateral resolution of AFM is worse than atomic
also in tapping mode, with the exception of imaging in liquids
discussed further below. Imaging with large amplitudes, albeit
with frequency used as a feedback parameter keeping the
tip-surface force constant, permits to achieve atomic resolu-
tion on reactive surfaces in ultrahigh vacuum (UHV). This
was possible due to extremely large forces of bond forming
between the tip apex and surface dangling bonds [5,6], which
permits to obtain atomic resolution by scanning with large
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oscillation amplitudes (∼30 nm in Ref. [5]), considerably
above the atomic scale. Obtaining atomic resolutions on non-
reactive surfaces requires smaller oscillation amplitudes of the
order of the typical decay length of the short-range repulsive
component of the interatomic force, in practice, amplitudes
<1 nm [7]. Thus, achieving atomic resolution for such sur-
faces is only possible when both the mean tip-to-surface
distance and the oscillation amplitude of the tip are on the
atomic scale, staying within the range of repulsive surface-tip
interactions.

Up to now, imaging with subnanometer amplitudes and
atomic resolution, respectively, can be routinely achieved on
nonreactive surfaces under specific conditions only: in UHV
and in liquids [7,8]. Imaging in UHV is typically done with
stiff tuning forks (qPlus sensors [9]) with frequency as a feed-
back parameter. Imaging in liquids can be done with rather
soft cantilevers in tapping mode. Achieving atomic resolution
under ambient conditions, or more generally under ambient
pressures in gas environments, is more difficult [10]. Claims
of atomic resolution images showing perfect crystal lattices
were proven later to be artifacts of tip flattening due to large
tip-surface forces, like the ones discussed for the contact
mode above [2,3]. An instructive analogy to understand this
artifact is pulling a perfect eggcarton over another one with
one of the pins missing. The missing pin cannot be identified
by the perfect eggcarton sliding over the defected one, even
though the lattice can be identified. Such images were called
pseudo-atomic or lattice resolution images [10]. That is, to
claim a truly atomic resolution, one needs to show imaging of
atomic-scale defects.

To study relevant processes, it is often desired to im-
age samples on the atomic scale under ambient pressures
in gas environments. Publications showing atomic or nearly
atomic resolutions in such environments are limited. It has
been shown that near-atomic resolution on polymer samples
can be achieved with torsional and bimodal tapping modes
[11–13]. However, AFM imaging in tapping mode at ambient
conditions with conventional cantilevers driven at their first
eigenmode does not routinely provide atomic resolution be-
cause the oscillations of the tip with subnanometer amplitudes
become unstable when the tip apex is brought close enough to
a surface. The instability has been attributed to large adhesion
forces caused by the formation of a water meniscus from a
water film, typically covering surfaces under ambient con-
ditions [14,15]. Other contributions may stem from surface
contaminations. A remedy against instabilities was found in
using considerably stiffer qPlus sensors (tuning forks) with
cantilever stiffnesses typically >1 kN/m, possibly extending
the routine UHV imaging to ambient [16]. This permitted
to overcome the amplitude instabilities also under ambient
conditions and made imaging with subnanometer amplitudes
possible [17]. It was even possible to image an ambient water
film coating the surface [16,17]. However, we are aware of
only a few papers which published original data on atomic-
scale resolution under ambient conditions with qPlus sensors
since then [18–25].

Another remedy from such instabilities was found in
the immersion of the AFM tip into a liquid. This reduces
the tip-surface adhesion and prohibits meniscus forma-
tion. The technique allows for imaging with subnanometer

amplitudes at solid-liquid interfaces [8,26], but at the same
time, it reduces the applicability of the approach to situations
when the existence and nature of the liquid phase are not
prohibitive for the observation of structures of interest.

Employing high eigenmodes of conventional cantilevers
has been shown to allow imaging with subnanometer am-
plitudes, improving thereby the resolution and allowing for
manipulation of molecules [27–29]. These works, however,
did not explain the reasons for the success of the approach and
did not point to conditions under which the atomic resolution
can be provided by high-eigenmode scanning. As we proceed
to show, using higher eigenmodes for scanning with conven-
tional cantilevers leads to stable imaging in tapping mode on
a large variety of surfaces. We investigate the reason behind
the enhanced stability of subnanometer amplitudes of high
cantilever eigenmodes and show how and at which conditions
subnanometer amplitudes can be used for achieving atomic
resolution with a conventional AFM appliance. For this, we
combine a theoretical analysis of the situation with experi-
mental tests and demonstrations.

Here, we shortly discuss the physical situation. A can-
tilever can be modeled as a mechanical oscillator excited on its
resonance frequency, which depends on the mode of the oscil-
lation. The interaction of the cantilever and the surface enters
the description in the form of an effective spring constant k∗ of
an additional spring, connecting the tip of the cantilever and
the surface. The spring constant k∗ is equal to the gradient
of the tip-surface interaction force at the typical (average)
position of the tip. The main parameter governing the behavior
of the oscillation of the cantilever in close vicinity to the
surface is the relation between k∗ and the effective spring
constant kc of the cantilever [30], defining the new resonance
frequency of a beam-surface system. At the first eigenmode
of the cantilever beam [31], the effective spring constant kc

is of the order of the static spring constant of the cantilever
beam.

Stable scanning is possible when the interaction with the
surface does not bring the oscillations too far outside of the
resonance domain. We will show that this condition is fulfilled
when Q k∗

kc
< 1, with Q being the quality factor of the oscilla-

tor. For conventional cantilevers, the ratio k∗
kc

is of the order of
unity, and the quality factors in gaseous environments under
atmospheric pressure are of the order of 102. Accordingly, the
corresponding inequality is not fulfilled, the new resonance
frequency is brought far outside of the resonance domain of
a free oscillating beam, and the oscillations collapse. On the
other hand, using hard cantilevers at their first eigenmode
corresponds to large kc and scanning in a liquid environment
to small Q so that, under these conditions, imaging remains
possible.

One may think that using a phase as a feedback parameter
aiming at restoring the resonance might improve the situation
and allow for stable imaging with conventional cantilevers. As
we proceed to show, such a feedback control loop can hardly
be implemented due to the fact that conventional instruments
use laser beam deflection to detect the tip position of the
cantilever. For strong interactions, the deflection of the beam,
connected with the inclination of the end of the cantilever, gets
out of phase with the displacement of the tip (as discussed
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in Sec. III, see Fig. 4), preventing correct measurement and
feedback control loop functioning, which are only possible
when k∗

kc
� 1.

The effective spring constant kn of the nth mode can be
made very large by choosing n high enough [31]. The con-
dition for stable scanning can always be fulfilled, and neither
amplitude collapse nor dephasing prevent tracking of the dis-
placement of the tip. For example, considerable dephasing at
the third mode takes place for the values of k∗ 30 times larger
than for the first mode.

Moreover, the combination of a high effective spring
constant with a high zero-frequency flexibility (i.e., low
effective spring constant for the zero-frequency response)
of the cantilever provides experimental advantages allow-
ing for stable scanning in close contact with the surface.
Thus, using relatively soft cantilevers relaxes the necessity
for a precise tip-surface distance control and renders imaging
at high eigenmodes with atomic resolution universally possi-
ble.

The structure of this paper is as follows: In Sec. II, we ex-
perimentally investigate the stability of cantilever oscillations
for cantilevers excited at their first and higher eigenmodes; in
Sec. III, we analyze the oscillation instabilities theoretically
and answer why oscillations of the cantilevers are more stable
when excited at high eigenmodes; in Sec, IV, we provide
high-resolution imaging examples.

II. EXPERIMENTAL OBSERVATIONS

To better understand the stability of cantilever oscillations
for cantilevers excited on their first and higher eigenmodes,
we recorded phase, deflection, and amplitude curves for a con-
ventional tapping mode cantilever excited at first and higher
eigenmodes upon approach and then retraction from a MoS2

surface. The distance-dependencies of amplitude and phase of
oscillations recorded without and with active feedback control
loops are shown in Figs. 1 and 2, respectively. The ampli-
tudes of a freely oscillating cantilever were ∼0.8 nm for all
eigenmodes. All sets of curves were offset along the x axis to
match the force curve slopes. The red dotted vertical lines in
Fig. 1 indicate maximum adhesion, i.e., the point where the
tip-surface interactions become dominated by the repulsive
forces; the black dotted line is displaced by 0.8 nm from the
red one to illustrate the amplitude. The lines are guides for
the eye. For the curves taken with no active feedback control
loops, the detected amplitude of the cantilever driven at its first
eigenmode becomes indiscernible before the tip apex starts
sensing the repulsive forces. For the cantilever driven at its
third eigenmode, the amplitudes remain discernable even for
the cantilever being pushed onto the surface. Therefore, the
amplitude of the third eigenmode can be used as a feedback
parameter for imaging. Examples are shown in Sec. IV. Soft
and hard tapping [Figs. 1(a), 1(b), and 5(a)] are achieved by
using larger and smaller amplitude setpoints, respectively. The
optimal imaging amplitude setpoint varied from tip to tip; the
soft-hard sketch in Fig. 1 provides a rough imaging guide.

Figures 1(d)–1(f) show resonance curves taken with the
tip retracted from the surface. The amplitude curve of
the third eigenmode had often but not always satellite peaks.
The amplitude curves were fitted with the solution for the

driven damped harmonic oscillator:

A(ω) = B√(
ω2

0 − ω2
)2 + (

ω0
Q ω

)2
, (1)

where B is a fitting parameter, ω0 is the eigenfrequency, and Q
is the quality factor. The fits are shown as green dashed lines.
The Q factors from the fits of the curves shown in Figs. 1(d)–
1(f) were Q1 = 372, Q2 = 493, and Q3 = 293 for the first,
second, and third eigenmodes, respectively. That is, the Q
factors for all three eigenmodes are essentially quite high and
show a nonmonotonic dependence on the mode number.

The plots shown in Fig. 1 evidence the difficulty to image
with small amplitudes by driving the cantilever at its first
eigenmode. Both phase and amplitude curves exhibit hystere-
ses between approach and retract. Furthermore, the strong and
nonmonotonous dependencies of both phase and amplitude
on tip-surface separation render it practically impossible to
use them as feedback parameters. Even more, the oscillation
amplitudes become indiscernible well before the tip gets de-
flected upwards by the surface, which renders it impossible to
map short-range repulsive forces.

In contrast, the same cantilever driven at its third eigen-
mode continues to oscillate, even when being deflected
upwards by the repulsive forces, i.e., being pushed onto the
surface. There is no hysteresis between approach and retract
curves taken with and without active feedback control loops.
The monotonous dependencies of amplitude, phase, and fre-
quency on the z-piezo extension with no hysteresis between
approach and retract curves render it possible to use both
amplitude and phase as feedback parameters for imaging.
The amplitude monotony makes imaging by exciting the high
eigenmodes to be more stable than the conventional tapping
mode, which is prone to hopping between attractive and re-
pulsive imaging conditions [32]. The dependencies for the
cantilever excited on its second eigenmode fall in between that
of the first and third eigenmode. In the following section, we
will discuss the curves taken with no active feedback control
loops and then extend our discussion to the curves taken with
active feedback control loops.

Figures 1(a)–1(c) display the behavior of the oscillations
of the cantilever at different eigenmodes. As the tip ap-
proaches the surface, the phase curves for the first and second
eigenmodes exhibit positive phase shifts, implying that the
attractive forces between the tip and the surface are dom-
inant. The third eigenmode is virtually insensitive to these
weak attractive forces. For the first eigenmode, decreasing
the distance to the surface leads to amplitude collapse ac-
companied by hysteresis between approaching and retracting
the tip. For the second mode, the amplitude also decays quite
rapidly when approaching the surface but shows virtually
no hysteresis. However, the phase behavior in this mode is
quite peculiar: the phase curve shows a sharp peak: the phase
shift first grows >90° and then decays below this value. The
average tip position corresponding to the peak is denoted by
the black dotted vertical line. The red dotted line illustrates
the largest deviation of the tip from its mean position, when
this mean position corresponds to the black line. The red line
coincides with the bottom of the deflection curve, so that the
decay in the phase shift may be attributed to the growing
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FIG. 1. Distance dependencies of (a) average tip-surface forces, (b) normalized deflection amplitudes, and (c) phase shifts between
excitation and cantilever deflection. The data were recorded with a generic tapping mode cantilever (NSC15) excited at frequencies matching
its first (black/gray curves), second (magenta/light magenta), and third (blue/light blue curves) eigenmodes of a freely oscillating cantilever.
The tip was first approaching (black/magenta/blue curves) and then retracting (gray/light magenta/light blue curves) from the MoS2 surface.
The data were taken without active feedback control loops, i.e., excitation frequency and excitation amplitude remained constant. (d) First, (e)
second, and (f) third eigenmode resonance curves taken with the same cantilever. The black and red curves show the amplitudes and phases,
respectively. The green dashed line shows the fits with the solution for the driven damped harmonic oscillator. (c) As evident in the phase
signal, the first mode goes out of resonance as the tip approaches the sample, while the third eigenmode excitation remains near resonance.
The soft/hard tapping bar in (a) and (b) shows roughly the third eigenmode amplitude setpoints used to produce images shown in Figs. 5 and 6
in soft tapping and to knock off atoms in hard tapping. The “soft” imaging is achieved at ∼0 force. The two vertical dotted lines in (a)–(c) are
guides for the eye, illustrating the oscillation amplitude of ∼0.8 nm.

contribution of repulsive forces. On its decaying branch, the
phase curve again passes the value of 90° which, when ne-
glecting losses, would assume that the frequency is now back
to resonance. This behavior of phase is, however, not reflected
in the amplitude of oscillations, which monotonically decays.
The behavior of both the phase shift and the amplitude for the
third eigenmode correspond to a relatively slow monotonic
decay. Our theoretical discussion in Sec. III will provide ex-
planations for the behaviors seen.

III. THEORETICAL DISCUSSION

A. A basic lumped model of the force curves taken
without active feedback control loops

The drastic reduction of the amplitude of the first-
eigenmode oscillation for small tip-surface distances, as seen

in Fig. 1(b), may have two physical causes. One is the con-
siderable shift of the cantilever eigenfrequency due to the
tip-surface interaction, which brings the oscillator out of res-
onance with the excitation. The second cause may be strong
amplitude damping by dissipative interactions with the sur-
face, as might be suggested by the results of Fig. 2(c). There
is reason to consider the first cause as the major contribution
and the second one as unlikely.

The high stability of the cantilever oscillation close to
the surface, when excited in its third eigenmode, implies
insignificant contributions of dissipative interactions with the
surface in the corresponding regime. If the dissipation is weak
for the third eigenmode but strong for the first, one should
assume that the dissipation into the surface must rapidly decay
with frequency. Such a dependence cannot be excluded a
priori, but it is not reproduced by simple models, like the
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FIG. 2. The distance dependences of (a) average forces, (b) fre-
quency shifts, (c) excitation powers, and (d) normalized amplitudes
for first (black/gray curves), second (magenta/light magenta curves),
third eigenmodes (blue/light blue curves). The color coding is the
same as in Fig. 1. Two feedback control loops were on: The first
feedback control loop kept the excitation frequency on resonance
by keeping the phase shift ∼90◦, the second feedback control loop
kept the amplitude constant by adjusting the excitation power. Such
feedback control loops are typically employed in the frequency
modulation (FM) atomic force microscopy (AFM). The frequency
shift near the surface reduces from >70 kHz to a few kilohertz
from first to third eigenmode. Additionally, excitation power required
to keep the inclination amplitude reaches hardware saturation for
the first eigenmode. We discuss that it is a sort of an instrumental
artifact (see discussion)—for strong tip-surface interactions, with
the inclination amplitude not being useful as a feedback parameter.
These results make it evident that the cantilever oscillation when
excited at its third eigenmode is more stable than at its first
eigenmode.

Kelvin-Voigt model of interaction between the tip and the
surface [30], or by standard mechanisms of internal dissipa-
tion in the bulk, which suggest the opposite behavior (unless
one makes additional ad hoc assumptions). Excluding this
mechanism, we however have to seek an alternative expla-
nation for the findings in Fig. 2. As we proceed to show,
such an explanation is indeed found in the analysis of the
measurement procedure, and the situation can be rationalized
assuming the tip-surface interactions to be purely conserva-
tive. The dissipation into the sample can be easily included
into the theory but is not necessary to pinpoint the main effect.

Let us discuss the linearized model of the tip-surface inter-
action, and let us assume that this interaction can be modeled
by an additional spring, with the spring constant k∗ being
equal to the gradient of the surface forces [33]. This is a
rather rough assumption, leaving out all possible nonlinear
effects, which might be of importance [33]. Nevertheless, this
assumption will allow us to discuss the oscillatory behavior
of the cantilevers close to the surface, and it describes our
findings at least qualitatively.

We start from a lumped, point-mass model of a system: a
damped harmonic oscillator. The oscillator has a resonance
frequency being the eigenfrequency of the mode modeled.
The parameters of this effective oscillator for different modes
are discussed in Ref. [34], which shows how the effective
parameters of the oscillator should be connected with the
geometry of the cantilever and the mode number: this, namely,
should be done by matching the kinetic and potential energy
of the cantilever and the virtual work of inertial forces. The
calculations then show that, within such a lumped description,
the mass of the effective oscillating particle stays independent
from the mode number. It is proportional to the total mass
of the cantilever, while the dependence of the eigenfrequency
of oscillations on the mode number is solely described by
changing the effective spring constant of the oscillator for the
nth mode, showing a strong dependence on the mode number.

The interaction between the tip and surface is modeled
by an additional spring with elastic constant k∗, which shifts
the frequency of the oscillator. The new resonance frequency
is now one of a harmonic oscillator with spring constant
(kc + k∗) [33]. The frequency shift between the resonance fre-
quency f0 of the freely oscillating cantilever and the resonance
frequency of the cantilever interacting with the surface is then
[33] � f ≈ − f0

2kc
k∗ or � f /� fFWHM ≈ −Q k∗

2kc
, with cantilever

quality factor Q ≡ f0

� fFWHM
and � fFWHM being the width of the

resonance peak. The second equality implies that the condi-
tion Q k∗

kc
� 1 must hold for the excitation to remain within

the resonance peak. If the opposite is true, the amplitude of
oscillations reduces considerably, and for large detuning, it
may fall beyond the limit at which it can be detected. The
spring constants of conventional tapping mode cantilevers lie
roughly in the range from a few to a hundred Newtons per
meter. The gradients of typical tip-surface forces fall into the
same range [35]. Therefore, the tip-surface interaction readily
shifts the first eigenmode frequency far out of the resonance
with excitation, considering typical cantilever Q factors of
Q � 102 in air [36]. We propose this to be the main reason
for the amplitude collapse for the cantilevers excited on their
first eigenmodes. This also partly explains the stability of
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FIG. 3. Sketch of the model of an atomic force microscopy
(AFM) clamped spring-coupled cantilever with a uniform cross-
section.

oscillations in liquid surroundings: it is not only due to the
elimination of the meniscus formation but also due to simply
reducing the oscillator quality factor Q. Since the effective
spring constants for the higher eigenmodes are considerably
higher (the estimates of Ref. [31] give k2 ≈ 40k1 and k3 ≈
300k1 for a simple rectangular cantilever), the amplitude does
not collapse, the oscillations stay detectable, and imaging is
possible.

The discussion of the lumped model above might suggest
that applying a phase feedback control loop and keeping the
excitation in resonance with the first eigenmode of the can-
tilever should stabilize the subnanometer amplitudes of tip
oscillations, even if the tip is interacting with a surface, when
the frequency shift gets considerable. However, as one readily
infers from Fig. 2, this is not the case. As we proceed to
show, applying feedback control loops when using conven-
tional AFM appliances only makes the situation worse.

Analyzing the situation, we identified a further reason for
the measured amplitude instability, now for measurements
with active feedback control loops, which is of instrumental
nature. Most commercial equipment detects cantilever incli-
nation α instead of the z position of the tip and recalculate
the latter from the former. In the following, we demonstrate
that, while for a free oscillating cantilever, the z position of
its tip and inclination change nearly in phase, and amplitudes
of the z-tip motion Az and of cantilever inclination Aα are
proportional to each other, the situation with surface interac-
tions may be vastly different. The z position of the tip and
inclination move out of phase, and the phase shift may get
large when the interaction gets stronger. To show this, we
perform model calculations for a cantilever clamped on one
end and connected to a surface with a spring with spring
constant k∗ on the other end (Fig. 3). Specifically, we calculate
the phase shift between the z coordinate of the tip and the
inclination of the free end of the cantilever for the case when
the cantilever is excited on one of its eigenfrequencies.

B. A beam model for a cantilever

We adapt here the model detailed previously in Ref. [30]
and depicted in Fig. 3. A brief description of the mechan-
ical model is as follows. The cantilever is assumed to be
a homogenous beam with a rectangular cross-section. It is
clamped on one end (x = 0), and its other end has a coordinate
x = L. The tip-surface interaction is linearized and modeled

by a spring with the spring constant k∗ connecting the tip
at L with the surface. This model introduced in Ref. [30] is
extended by introducing the damping and driving forces. The
equation of motion of a driven cantilever beam is now

EI
∂4u

∂x4
+ μutt + γ ut + EIη

∂

∂t

(
∂4u

∂x4

)

= h(x, t ); 0 < x〈L, t〉0, (2)

where u = u(x, t ), x is the coordinate in the longitudinal di-
rection of the cantilever, E is the Young’s modulus of the
material of the beam, ρ is its mass density, γ is the external
damping coefficient, and η is the internal damping coefficient.
For a beam of rectangular cross-section A = ab with width a
and thickness b, the area moment of inertia I = ab3/12. The
combination EI is the bending stiffness, and μ = ρA is the
mass per unit length. Here, the external damping term models
Stokes’ friction for the motion of the cantilever in ambient air
(see, e.g., Ref. [37]), and the internal damping term follows
from the Kelvin-Voigt model, for which the stress-strain rela-
tion is σ = εE + ηε̇E , where ε is the strain in the cantilever
(see, e.g., Ref. [38]). The article in Ref. [39] devoted to a
fractional variant of the model contains additional references
to the normal approach. All other mechanisms of damping
(say, acoustic emission) are neglected. The right-hand side of
the equation models the driving force; the way it is introduced
will be discussed later.

For the model in Fig. 3, the boundary condition at x = 0 is

u(0, t ) = 0, ux(0, t ) = 0, (3)

and the boundary condition at x = L reads

uxx(L, t ) = 0, uxxx(L, t ) = k∗

EI
u(L, t ). (4)

When putting down the last condition, we assume that
the driving amplitude is small compared wih the oscillation
amplitude of the free end of the cantilever. Note that, when
k∗ → 0 (very soft spring) and k∗ → ∞ (very stiff spring),
we obtain the boundary conditions that correspond to the
clamped-free case and the clamped-pinned case, respectively.

1. Eigenmodes of oscillations without external driving

First, we study the undamped cantilever (γ = 0, η = 0) in
the absence of external forcing h(x, t ) = 0. In this case, the
solution of Eq. (2) becomes separable in space and time, so
that this solution can be put in a form

u(x, t ) = ψ (κ, x)F (t ), (5)

with the time-dependent function F (t ) corresponding to a
harmonic oscillation. The argument κ of ψ (κ, x) is equal to
κ = k∗/kc with kc = 3EIL−3 being the spring constant of the
cantilever. The explicit use of this argument in Eq. (5) is
necessary since the further results will be plotted as functions
of this parameter. Under substitution of the solution in Eq. (5),
Eq. (2) reduces to the equation (the eigenvalue problem) for
ψ (κ, x):

d4ψ (κ, x)

dx4
= β4ψ (κ, x); 0 < x < L, (6)
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FIG. 4. We explain the instability of the first eigenmode cantilever deflection amplitudes with the shift of the eigenfrequency out of the
resonance with the excitation due to tip-surface interactions (see also discussion). The shift out of the resonance is influenced by the changes
in the shape of the oscillating cantilever. (a) Model calculations reveal that the cantilever inclination amplitudes (An

α) in the nth mode at the
end of a rectangular cantilever undergo a transition from being in phase to being out of phase with the tip oscillation (An

z ), as the tip-surface
interactions (k∗) increase. Thus, neither phase nor cantilever inclination amplitude in the first eigenmode should be used as the feedback
parameter for the strong tip-surface interactions. The large effective spring constant of the third eigenmode renders the detected cantilever
amplitudes to be more stable. The sketch in (b) schematically illustrates the transition from in-phase to out-of-phase oscillations of tip position
and cantilever inclination driven in resonance with its first eigenmode.

where the function ψ (κ, x) must satisfy the appropriate
boundary conditions. Inserting Eq. (5) into Eqs. (3) and (4)
and eliminating the time dependence, we obtain boundary
conditions similar in form to Eqs. (3) and (4), with the excep-
tion that u(x, t ) is replaced by ψ (κ, x) and partial derivatives
with respect to x by total derivatives with respect to x. Thus,
the eigenfunctions for the model in Fig. 4 are

ψ (κ, x) = cosh βx − cos βx − D(κ, L)(sin βx − sinh βx),
(7)

with D(κ, L) being

D(κ, L) = α(κ )(cosh βL − cos βL) + sin βL − sinh βL

α(κ )(sin βL − sinh βL) + cosh βL + cos βL
,

(8)
where α(κ ) = 3κ (βL)−3, κ = k∗/kc, and eigenvalues βL for
all the boundary conditions can be obtained by solving the
(transcendental) characteristic equation:

1 + cosh βL cos βL + α(κ )(sin βL coshβL

− sinh βL cosβL) = 0. (9)

The relationship between eigenvalues and undamped
eigenfrequencies is ω = β2

√
EIμ−1. The eigenfunctions

ψ (κ, x), under proper normalization, build a complete or-
thonormal system of functions (see Appendix B), over which
the solutions for the forced case will be expanded.

In Fig. 4(a), we show how the vertical displacement of
the cantilever ψn(κ, L) and its inclination [slope ∂ψn( κ,x)

∂x |x=L

at the free end] depend on κ for the first three eigenmodes
(in the absence of damping). Here, n is the eigenmode
number. To do so, we obtain the eigenvalues βnL by nu-
merically solving the characteristic equation, Eq. (9), for
different values of κ = k∗/kc. For example, for the first three
eigenmodes when k∗/kc = 1, we have β1L = 2.2135, β2L =
4.7234, and β3L = 7.86097; more exemplary values can be
found in table IV in Ref. [30]. Then we calculate the mode

forms ψn(κ, L) and plot the displacement of the cantilever
end and inclination as a function of κ . Note that, for each
mode n, there exists a value of κn at which the slope (inclina-
tion) changes its sign with respect to the position. Hence, for
k∗/kc � κn, the vertical position of the cantilever and the slope
are shifted in phase by π relative to each other. The estimated
numerical values of the corresponding κn are κ1 = 9.5, κ2 =
83, κ3 = 280, and κ4 = 660. Thus, the value of κn increases
with the increase of the mode number n. Figures explicitly
showing the form of the modes [i.e., the functions (κ, x) ] can
be found, e.g., in Ref. [34].

Before continuing to the discussion of the driven cantilever,
we study the effect of damping to estimate the relative role
of external and internal contributions at different frequencies.
We start from the discussion of the eigenmodes of oscillations.
The equation of motion Eq. (2) for the cantilever with damp-
ing and h(x, t ) = 0 reads

utt + c2 ∂4u

∂x4
+ γ̃ ut + c2η

∂

∂t

(
∂4u

∂x4

)
= 0; 0 < x〈L, t〉0,

(10)
with c2 = EIμ−1, and γ̃ = γμ−1. We seek the solution of
Eq. (10) in the form

u(x, t ) = u0exp[i(ωnt − knx)]. (11)

After substitution of Eq. (11) into Eq. (10), for each mode
ωn, we obtain

−ω2
n + iγ̃ ωn + iηc2ωnk4

n + c2k4
n = 0, (12)

and

k4
n = k̃4

n

1 − iγ̃ ω−1
n

1 + iηωn
, (13)

with k̃4
n = ω2

n
c2 when γ = 0 and η = 0. From Eq. (13), we get

kn = k̃n
[
1 − i4−1

(
γ̃ ω−1

n + ηωn
)] + h.o.t., (14)
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when γ̃ ω−1
n � 1 and ηωn � 1 with h.o.t. denoting the

higher-order terms. Now we substitute Eq. (14) into Eq. (11)
and obtain

u0exp[i(ωnt − k̃nx) − (γn + ηn)x], (15)

where γn = 4−1k̃nγ̃ ω−1
n , and ηn = 4−1k̃nηωn. Thus, we have

shown that the solution to Eq. (10) decays, and the measure of
its decay is the imaginary part of kn in Eq. (14). In the higher
modes, the external damping ratios are

γn = γ1
ω1

ωn
, (16)

and for the internal damping ratios, we obtain

ηn = η1
ωn

ω1
. (17)

In our model, the damping can be specified as in Eqs. (16)
and (17) with γ1 = 2−1γ̃ ω−1

1 and η1 = 2−1ηω1—the first
mode damping ratios in the cases of external and inter-
nal damping correspondingly. This implies that the external
damping ratios for the higher modes decrease with increasing
n, whereas the internal damping ratios increase with increas-
ing n. Thus, the effect of the internal damping is strong at
higher modes, and the effect of the external damping is strong
at lower modes.

2. Oscillations under external driving

We turn to the discussion of the motion of the cantilever
under external driving. The driving force is introduced by
changing to a comoving frame of the clamped end of the
cantilever. Let the clamped end of the cantilever be driven
with amplitude A0 at frequency ω. In a comoving frame of
the end [where this is immobile and where thus the clamped
boundary condition in Eq. (3) now applies], this creates a
homogeneous force field h(x, t ) = A0ω

2μ cosωt�(L − x) =
a0�(L − x) cos ωt per unit length, with �(x) being the Heav-
iside function. The coordinate and the time dependencies in
the force separate: h(x, t ) = f (x)g(t ). The spatial part of the
driving force h(x, t ) = f (x)g(t ) is expressed in terms of the
orthogonal cantilever functions [in Eq. (7)] as

f (x) =
∞∑

n=1

fnψn(κ, x), (18)

where

fn = 1

L

∫ L

0

√
χ (κ ) f (x)ψn(κ, x)dx, (19)

with χ (κ ) being the normalization constant for the eigenfunc-
tions (see Appendix B). The solution to Eq. (2) is given in the
form

u(x, t ) =
∞∑

n=1

ψn(κ, x)vn(t ). (20)

After the substitution of this equation into Eq. (2), for the
time-dependent part of the solution vn(t ), we obtain the set

of uncoupled ordinary differential equations for the normal
coordinates:

v̈n + 2ζnωnv̇n + ω2
nvn = μ−1 f cos ωt, (21)

where ζn = ηn + γn = 2−1ηωn + 2−1γ̃ ω−1
n , and f = a0 fn.

The general solution to this equation is

vn(t ) = Bnexp(−ζnωnt ) cos �t + Cn(ω) cos(ωt + ϕn), (22)

and for the steady state solutions (for t → ∞) we have

vn(t ) = Cn(ω) cos(ωt + ϕn), (23)

where the amplitude is

Cn(ω) = μ−1a0 fn√(
ω2

n − ω2
)2 + 4ζ 2

n (ωnω)2
, (24)

and the phase is

ϕn = tan−1 2ζnωω−1
n

ω2ω−2
n − 1

. (25)

Now by comparing the Eq. (24) with Eq. (1), we get the
connection between the quality factor Q and the damping
coefficients γ and η:

Q (ωn) = 1

2ζn
= 1

2ηn + 2γn
= 1

ηωn + γ (μωn)−1 . (26)

Finally, the solution to Eq. (2) for a cantilever driven at a
frequency close (within the resonance domain) to the eigen-
frequency of the nth mode of oscillation is

u(x, t ) = un(x, t ) = ψn(κ, x)vn(t )

= ψn(κ, x)Cn(ω) cos(ωt + ϕn). (27)

The analysis of Eqs. (24) and (25) reveals that the vibration
of the cantilever lags behind the excitation. In the absence of
the damping, the phase of the driven vibration changes dis-
continuously by π at ω = ωn—the function vn(t ) in Eq. (22)
changes the sign, and in the presence of damping, this discon-
tinuity is smoothed out. Note that Eq. (26) following from our
model calculations suggests that the quality factor Q(ωn) is
a nonmonotonic function of the mode frequency ωn, which
might explain our experimental findings for the first three
modes.

We illustrate in Fig. 4(b) that an increasing tip-surface
interaction leads to out-of-phase oscillations of z and α. More-
over, the amplitudes of z-tip motion and cantilever inclination
do not remain proportional to each other. For instance, for
intermediate tip-surface interactions, the amplitude of can-
tilever inclination Aα becomes zero, while the tip continues
to oscillate.

Thus, using neither phase nor amplitude of inclination as
feedback parameters would guarantee stable imaging at low
eigenmodes. Even if we keep the detected inclination am-
plitude constant in the frequency modulated (FM) imaging
mode, the real tip oscillation amplitude might substantially
exceed the nanometer amplitudes needed to obtain the atomic
resolution. This explains the findings of Fig. 2(d), where the
excitation may essentially power large-amplitude oscillations
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of the cantilever, which cannot be detected because the incli-
nation amplitude stays small. Thus, both AM and FM imaging
modes significantly impair atomic resolution for cantilevers
excited on their first eigenmode under a conventional laser-
deflection measurement constellation. The case with higher
eigenmodes is much less dramatic since, here, the value of
k∗/kc is considerably smaller than unity.

C. Lessons from the theoretical analysis

We start our discussion with the coarse model detailed in
Sec. III A. Increasing the cantilever spring constant reduces
Q k∗

kn
and the relative shift of the resonance frequency, respec-

tively. For a conventional rectangular cantilever, the effective
spring constant can be increased significantly by employing
higher eigenmodes. For example, for the third eigenmode, the
effective spring constant k3 is 308 times larger than k1 of the
first eigenmode. Thus, k3 of the cantilevers used to acquire
the curves shown in Fig. 2 is ∼12.3 kN m–1, which is an order
of magnitude larger than the spring constant of quartz tuning
forks [21]. The high effective spring constant of the third
eigenmode renders the tip oscillation effectively insensitive to
long-range weak attractive forces, the phase shift noticeably
changes only when the tip gets close enough to the surface
to sense the steep repulsive forces, and the excitation remains
within the resonance peak. Thus, both amplitude and phase
depend monotonically on the tip-surface separation. Using
even higher eigenmodes should allow imaging of surfaces
with arbitrary k∗. Furthermore, the average tip-surface force
(Figs. 1 and 2) for a cantilever excited on its high eigenmodes
is defined by the rather soft zero-frequency spring constant,
which is almost identical to k1. This makes it easier to keep
the tip-surface forces below the damage threshold of tip and
surface (Fig. 2). Using stiff cantilevers with k1 on the order
of 10 kN m–1 should hypothetically allow imaging with sub-
nanometer amplitudes and correspondingly atomic resolution
under ambient conditions. However, a higher stiffness of can-
tilevers imposes also more constraints on the precision of the
tip-sample distance control, making it challenging to employ
stiff cantilevers for uneven samples. Moreover, imaging with
subnanometer amplitudes is expected to remain stable in a
broad range of temperatures. The damping of cantilever vi-
brations, and thus the Q factor, is largely dominated by the
internal damping, and the viscous damping of the cantilever
environment. Cantilever material properties and the effective
spring constants are not expected to vary largely over a broad
temperature range, and thus, high-resolution imaging should
be possible at variable temperatures [40].

IV. ATOMIC RESOLUTION IN HIGH-EIGENMODE AFM

The visualization of single atom defects is considered a di-
rect confirmation of imaging to provide true atomic resolution.
As a test sample, we selected natural crystals of MoS2, which
is known to exhibit atomic defects on its surface [43], and we
imaged it with both tapping mode AFM and scanning tun-
neling microscopy (STM; Fig. 5 and Supplemental Material
[41]). Imaging in tapping mode AFM was carried out with
subnanometer amplitudes by exciting high eigenmodes and
readily revealed a periodic hexagonal pattern with the unit

cell matching the one expected for the sulfur atoms on the
surface of MoS2 [44]. Most of the AFM images also revealed
point defects. The contrast of the defects varied from tip to
tip, and it could also change during imaging (see, e.g., the
Supplemental Material [41]), possibly due to the differences
in tip apex structure. The image in Fig. 5(a) exemplifies
a strong contrast. Imaging with some tips resulted in dou-
ble and sometimes even multiple tip artifacts (Supplemental
Material [41]). The contrast variation and the formation of
the double tip artifacts are difficult to discuss due to un-
known tip structures and possible passivation of the atomic
defects by ambient molecules [45]. However, both AFM and
STM imaging of MoS2 reveal the same defect density, which
we consider direct proof that the imaging can provide true
atomic resolution. The high amplitude stability allowed us
to tap the surfaces harder. Even though the hard tapping
resulted in most cases in tip damage and correspondingly
inferior image quality, it was possible to image knocking
off the atoms with one diamond tip (AD-40-SS, fourth eigen-
mode).

Next, we selected graphite for its smaller unit cell to test
the resolution limits [Fig. 5(b), NSC15, third eigenmode]. Re-
solving the honeycomb structure of a graphite surface allows
us to hypothesize that the lateral resolution we obtain here
is approaching the C-C bond length, i.e., the lateral resolu-
tion is better than 2 Å. To demonstrate that the imaging by
exciting high eigenmodes inherits the capability of tapping
mode to image soft structures, we imaged a layer of arachidic
acid molecules on a graphite surface [Fig. 5(c), NSC15, third
eigenmode]. The individual molecules, self-assembled into
lamellae, could be readily resolved, like in STM at solid-liquid
interfaces [46]. The packing can be assigned to an alternating
arrangement of the head groups, as also observed by STM
[42]. To demonstrate that also corrugated surfaces can be
imaged with atomic resolution, we imaged a MoS2 monolayer
grown on a substrate with a roughness on the nanometer scale
[Fig. 5(d), qp-fast long, third eigenmode] [47].

To test the imaging stability on hydrophilic surfaces, we
imaged muscovite mica under dry nitrogen (Fig. 6, qp-fast
long, third eigenmode). Mica is a layered mineral with an
archetypical hydrophilic surface [48]. The aluminosilicate
layers of mica bear negative charge on their surfaces. The
layers are held together by the interlayer potassium cations.
Roughly half of the cations remain on either side upon cleav-
age of mica [49]. Imaging of mica under dry nitrogen readily
reveals its unit cell, as one can see in the fast Fourier trans-
forms of the images (white arrows in the inset of Fig. 6).
Moreover, the images reveal patterns of irregularly distributed
dots, and it is tempting to attribute them to potassium ions.
Unfortunately, it was rather difficult to prove the stability of
the patterns to answer the question whether the K+ ions be-
come displaced by the AFM tip during imaging. We attempted
to image mica a number of times, and in most imaging ses-
sions, we could resolve patterns like that shown in Fig. 6.
However, the image quality in most attempts did not remain
stable enough to acquire two subsequent high-resolution im-
ages on the same area. Figure 6 shows one successful attempt
to take two subsequent images on one area. Images (a) and (b)
were taken with the slow scan directions downward and up-
ward, respectively. Careful inspection of the images reveals a
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FIG. 5. High-resolution atomic force microscopy (AFM) images using higher eigenmodes on various surfaces. (a) Phase image of the
cleavage plane of a natural MoS2 crystal. The dashed rectangle highlights the area, which was subsequently tapped harder (Supplemental
Material [41]); the inset (full rectangle) shows the same area after hard tapping. A few atoms were knocked off from the highlighted area.
The white arrows highlight three atomic defects, which exist before and after the hard tapping; the red arrows highlight four newly created
defects. A movie of knocking off the atoms is provided in the Supplemental Material [41]. (b) Phase image of a graphite surface. The white
sketch in the figure the atomic scale honeycomb structure of graphene. (c) Phase image of an arachidic acid layer on a graphite surface. Inset
shows height image taken simultaneously. The white sketch shows to scale the structure of an arachidic acid monolayer; the yellow dashed
parallelogram shows the unit cell (adapted from Ref. [42]); the sketch was positioned to visually match the imaged pattern. (d) Height image
of a MoS2 monolayer on an amorphous quartz substrate revealing defects and domain boundaries. Inset shows the fast Fourier transform (FFT)
of the image, revealing a few domains. One of the domains is highlighted with white circles in the FFT and with lines in the topography image,
respectively.

close similarity of the patterns at the bottom of the images and
less similarity at the top of the images. This implies that the
cations are mobile, but the mobility is intrinsic and not caused
by the AFM tip because the patterns are recognizable on a
short time scale but change on longer time scales. The images
shown in Fig. 6 prove that also imaging of the hydrophilic
surfaces is possible. A discussion of the K+ patterns and their
mobility here is rather difficult due to the limited statistics;
this will be done elsewhere.

To further explore the prospects on imaging stability, we
performed imaging of MoS2 at temperatures of up to 250 °C,
and the imaging with subnanometer amplitudes was readily

possible. Imaging of atomic scale defects was rather challeng-
ing at high temperatures due to high drifts and an instability
of the cantilever coating, yet it was possible (Supplemental
Material [41]). Imaging under ambient conditions was also
possible albeit providing poorer image quality, possibly due to
water molecules covering the surface (Supplemental Material
[41]). Subsequent drying of the sample improved the image
quality and allowed visualizing the atomic defects. This sup-
ports our conclusion on conservative tip-surface interactions
to dominate the imaging stability since, otherwise, an ambient
water meniscus forming between tip and surface is expected
to affect the imaging stability.
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FIG. 6. (a) and (b) Two subsequently acquired phase images of
muscovite mica in dry nitrogen. The images were cropped from
larger images, corrected for thermal drift using the mica unit cell as a
reference. Inset shows the fast Fourier transform (FFT) of the respec-
tive image; the white arrows highlight the mica unit cell frequencies.
The black arrows show the slow scan directions.

Imaging with the tip oscillating with subnanometer am-
plitudes at a controlled distance to a surface is inherently
like noncontact (nc) AFM. Therefore, we expect that the
demonstrated atomic resolution can be further expanded with
the nc-AFM developments; for instance, improving lateral
resolution of force spectroscopy shown in Fig. 1 might allow
chemical identification of atoms with the advantage of a direct
measurement of the force acting between tip apex and surface
atoms [Fig. 1(a)] [50,51]. Also, like nc-AFM, we expect that
the resolution and reproducibility might be further improved
by improving the control over the tip apex structure [52,53].

Our joint theoretical and experimental analysis leads us
to the following general recipe to obtain atomic resolution
in tapping mode AFM with conventional cantilevers under
atmospheric pressure in gas environments. In test runs, one
induces the oscillations of the cantilever with subnanometer
amplitudes and investigates the stability of these oscillations
without active feedback control loops under approaching the
surface. For lower modes, one observes two effects: the am-
plitude collapse and a sharp phase change, both due to leaving
the resonance domain. These two effects cannot be compen-
sated by the feedback control loops, which makes these modes
unsuitable for obtaining atomic resolution. Higher modes with

much higher effective elastic constants show only gradual
changes in phase and will universally make atomic resolu-
tion possible. If the atomic structure is not resolved under
corresponding conditions with an atomically sharp tip, one
can assume that the corresponding surface does not have a
stable atomic structure (e.g., atoms or molecules covering the
surface are mobile).

V. CONCLUSIONS

We showed that the common instabilities of subnanometer
amplitudes of conventional cantilevers excited on their first
eigenmodes are due to the fact that, upon interaction with the
surface, the eigenfrequencies of the cantilevers shift out of
resonance. Selecting appropriately high effective spring con-
stants of high eigenmodes allows us to sense arbitrarily steep
short-range forces. The combination of the high effective elas-
tic constant of a higher mode with the high flexibility of the
whole cantilever provides experimental advantages compared
with the use of stiff cantilevers, relaxing the necessity for the
precise tip-surface distance control. As a result, imaging of
solid surfaces with subnanometer amplitudes in gas environ-
ments should be universally possible by exciting cantilevers at
high eigenmodes.

We demonstrate imaging of a few different surfaces with
cantilevers oscillating with subnanometer amplitudes. We
demonstrate furthermore that the enhanced amplitude stability
of high eigenmodes allows us to image knocking off atoms
by tapping surfaces harder, indicating potential for atomically
resolved lithography. Even more, the high stability and low
noise of high eigenmodes allows atomic resolution at elevated
temperatures. Obtaining atomically resolved images at ele-
vated temperatures is of potential interest for research of phase
transitions.

We expect that imaging surfaces with tapping mode
force microscopy at high cantilever eigenmodes exhibiting
resolutions down to atomic features in variable gaseous
environments and temperatures with commonly available in-
struments and cantilevers will advance our understanding of
surface-related phenomena.
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APPENDIX A: MATERIALS AND METHODS

To acquire force spectroscopy curves, the cantilever was
oscillated with ∼0.8 nm amplitude, being driven at its first,
second, and third eigenmode frequencies, upon approaching
and then retracting from a molybdenum disulfide (MoS2) sur-
face. The measurements were performed on a freshly cleaved
sample in dry nitrogen. The AFM tip was plasma-cleaned to
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remove possible organic contaminations. This experimental
design minimizes the probability of formation of molecular
meniscus between tip and surface, simplifying the discussion
of the curves. The cantilever was tuned to one of the reso-
nances with the tip retracted from the surface (Fig. 1). The
curves were acquired (1) with no active feedback control loops
(Fig. 1) and (2) with active amplitude and phase feedback
control loops (Fig. 2). In the second case, the phase feedback
control loop kept the phase shift between excitation and tip os-
cillation constant, thereby presumably keeping the excitation
on the resonance with the cantilever, and the amplitude feed-
back control loop adjusted excitation to keep the amplitude
constant. The curves shown in Figs. 1 and 2 are representative
examples. Similar curves were reproduced with >10 different
cantilevers.

Molybdenum disulfide (MoS2, natural crystal, 2D Semi-
conductors Inc.) and highly oriented pyrolytic graphite
(HOPG, Momentive Performance Inc.) were fixed onto metal
sample holders with double-sided adhesive tape. The samples
were cleaved under ambient conditions before imaging. A
layer of arachidic acid was deposited onto a freshly cleaved
HOPG surface by spin-coating its solution in chloroform un-
der ambient conditions. The samples were placed into AFM
sample cell (Cypher-ES, Asylum Research Oxford Instru-
ments Inc.). The instrument was equipped with a standard
laser module with 10 × 30 μm nominal spot size for can-
tilever deflection sensing. The cell was then dried with a
flow of dry nitrogen (Linde group, 99.999% purity as spec-
ified by the manufacturer), unless specified. Imaging was
performed in AM mode, also called tapping mode, typi-
cally using photothermal excitation of cantilevers. That is,
all images were acquired with constant excitation ampli-
tudes and frequencies. The excitation frequencies were set
to match the resonances of free oscillating cantilevers. Re-
ported images were made with the following cantilevers:
three different qp-fast cantilevers (Nanosensors) with the first
eigenmodes at ∼250, 420, and 800 kHz were driven at their
third (∼4.4 MHz), third (∼7.4 MHz), and second (∼5 MHz)
eigenmodes, respectively; NSC15 cantilevers (Mikromasch)
with the first eigenmode at ∼325 kHz were driven at their
third eigenmode (∼5.7 MHz); AD-40-SS cantilevers (Adama
Innovations) with the first eigenmode at ∼160 kHz were
driven at either their third (∼2.8 MHz), fourth (∼5.5 MHz),
or fifth (∼9 MHz) eigenmodes. The AD-40-SS cantilevers
had a single-crystal diamond tip. Amplitude sensitivities were
not estimated for all cantilevers used for imaging. Instead,
at least one cantilever of each type used for imaging was
calibrated. Imaging conditions were individually optimized
for each cantilever. Optimal amplitudes were roughly <1
nm, assuming similar amplitude sensitivities across the same
cantilever types. The amplitude sensitivities were estimated
with the combination of thermal tuning and Sader’s meth-
ods as implemented in the “GetReal” calibration procedure
(Asylum Research Oxford Instruments Inc.) [54]. Deflections
in nanometers and then forces for all eigenmodes in Figs. 1
and 2 were calculated using the first eigenmode amplitude
sensitivity and effective spring constant, respectively. For the
calculations of the forces, the deflection curves were shifted
along the y axis to match zero with the baseline. All can-
tilevers, unless indicated, were cleaned with air plasma with a

Zepto instrument (Diener electronics Inc.) at 50% power for 1
min. The treatment possibly removed organic contaminations
from the tip surface, improving thereby the image quality,
and it possibly also modified the tip apex functionalization
contributing to phase contrasts. For imaging of the mica sur-
face, cantilevers were treated with Ar plasma with the same
instrument, and settings following the methodology suggested
in Ref. [55]. The images were typically acquired at line scan
speeds between 3 and 20 Hz and resolutions of either 512 ×
512 or 1024 × 1024 pixels. The images were processed with
SPIP (Image Metrology). The images were typically line flat-
tened by subtracting either zero or the first-order polynomials.

The raw image data are available from the corresponding
authors on reasonable request.

APPENDIX B: THE ORTHOGONALITY OF EIGENMODES
OF UNDAMPED CANTILEVER WITHOUT DRIVING

In this Appendix, we consider the orthogonality and the
normalization of eigenfunctions of Eq. (7). Denoting two
distinct solutions of the eigenvalue problem in Eq. (6) by
ψm(κ, x) and ψn(κ, x), we can write

d4ψm(κ, x)

dx4
= β4

mψm(κ, x); 0 < x < L, (B1)

d4ψn(κ, x)

dx4
= β4

nψn(κ, x); 0 < x < L. (B2)

Next, we multiply Eqs. (B1) and (B2) by ψn(κ, x) and
ψm(κ, x), respectively, integrate by parts over the domain
0 < x < L and, further, subtract the modified Eq. (B2) from
the modified Eq. (B2). We finally obtain

(
β4

m − β4
n

) ∫ L

0
ψm(κ, x)ψn(κ, x)dx

=
[
ψn(κ, x)

d3ψm(κ, x)

dx3

]L

0

−
[

dψn(κ, x)

dx

d2ψm(κ, x)

dx2

]L

0

−
[
ψm(κ, x)

d3ψn(κ, x)

dx3

]L

0

+
[

dψm(κ, x)

dx

d2ψn(κ, x)

dx2

]L

0

.

(B3)

For the system with boundary conditions in Eqs. (3) and
(4), the right-hand side of Eq. (B3) vanishes, and this equation
reduces to

(
β4

m − β4
n

) ∫ L

0
ψm(κ, x)ψn(κ, x)dx = 0. (B4)

Since ψm(κ, x) and ψn(κ, x) are eigenfunctions corre-
sponding to distinct eigenvalues β4

m �= β4
n , for m �= n, we

obtain
∫ L

0
ψm(κ, x)ψn(κ, x)dx = 0, m �= n. (B5)

Thus, eigenfunctions ψm(κ, x) and ψn(κ, x) are orthogonal.
When m = n, the integral in Eq. (B5) is positive except for
the case of the trivial solution, which is of no interest. Hence,
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we can normalize the natural modes by writing

1

L

∫ L

0
χ (κ )ψm(κ, x)ψn(κ, x)dx = δmn, m, n = 1, 2, . . .

(B6)

where δmn is the Kronecker delta. The function χ (κ ) (a
normalization factor depending on κ) is chosen so that the

condition in Eq. (B6) is satisfied, and χ (κ ) = 1 for κ → 0 and
κ → ∞ in the case of the very soft and the very stiff spring,
respectively. Thus, the eigenfunctions ψ (κ, x) in Eq. (7) for a
given set of boundary conditions in Eqs. (3) and (4) form an
orthogonal set and are normalized as in Eq. (B6). The natural
modes satisfying Eq. (B6) are referred to as normal modes in
the main text.
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[38] M. Gürgöze, A. N. Doǧruoǧlu, and S. Zeren, On the eigenchar-
acteristics of a cantilevered visco-elastic beam carrying a tip
mass and its representation by a spring-damper-mass system,
J. Sound Vib. 301, 420 (2007).

[39] J. Freundlich, Transient vibrations of a fractional Kelvin-Voigt
viscoelastic cantilever beam with a tip mass and subjected to a
base excitation, J. Sound Vib. 438, 99 (2019).

[40] D. A. Ivanov, Z. Amalou, and S. N. Magonov, Real-time evolu-
tion of the lamellar organization of poly(ethylene terephthalate)
during crystallization from the melt: high-temperature atomic
force microscopy study, Macromolecules 34, 8944 (2001).

[41] See Supplemental Material at http://link.aps.org/supplemental/
10.1103/PhysRevResearch.4.023149. It contains a movie show-
ing the creation of point defects by hard tapping and additional
images for several situations discussed in this paper.

[42] L. K. Thomas, A. Kühnle, S. Rode, U. Beginn, and M.
Reichling, Monolayer structure of arachidic acid on graphite,
J. Phys. Chem. C 114, 18919 (2010).

[43] R. Addou, L. Colombo, and R. M. Wallace, Surface defects on
natural MoS2, ACS Appl. Mater. Interfaces 7, 11921 (2015).

[44] R. A. Bromley, R. B. Murray, and A. D. Yoffe, The band
structures of some transition metal dichalcogenides. III. Group
VIA: trigonal prism materials, J. Phys. C Solid State Phys. 5,
759 (1972).

[45] S. Barja, S. Refaely-Abramson, B. Schuler, D. Y. Qiu, A.
Pulkin, S. Wickenburg, H. Ryu, M. M. Ugeda, C. Kastl, C.
Chen, C. Hwang, A. Schwartzberg, S. Aloni, S.-K. Mo, D.
F. Ogletree, M. F. Crommie, O. V. Yazyev, S. G. Louie,
J. B. Neaton, and A. Weber-Bargioni, Identifying substitutional
oxygen as a prolific point defect in monolayer transition metal
dichalcogenides, Nat. Commun. 10, 3382 (2019).

[46] J. P. Rabe and S. Buchholz, Commensurability and mobility in
two-dimensional molecular patterns on graphite, Science 253,
424 (1991).

[47] N. Mutz, T. Meisel, H. Kirmse, S. Park, N. Severin, J. P. Rabe,
E. List-Kratochvil, N. Koch, C. T. Koch, S. Blumstengel, and S.
Sadofev, Pulsed thermal deposition of binary and ternary tran-
sition metal dichalcogenide monolayers and heterostructures,
Appl. Phys. Lett. 114, 162101 (2019).

[48] H. K. Christenson and N. H. Thomson, The nature of the air-
cleaved mica surface, Surf. Sci. Rep. 71, 367 (2016).

[49] K. Müller and C. C. Chang, Electric dipoles on clean mica
surfaces, Surf. Sci. 14, 39 (1969).

[50] Y. Sugimoto, P. Pou, M. Abe, P. Jelinek, R. Pérez, S. Morita,
and Ó. Custance, Chemical identification of individual surface
atoms by atomic force microscopy, Nature (London) 446, 64
(2007).

[51] S. P. Jarvis, A. M. Sweetman, L. Kantorovich, E. McGlynn,
and P. Moriarty, in Imaging and Manipulation of Adsorbates
Using Dynamic Force Microscopy, edited by P. Moriarty and
S. Gauthier (Springer, Cham, 2015), pp. 1.

[52] F. Mohn, B. Schuler, L. Gross, and G. Meyer, Different tips
for high-resolution atomic force microscopy and scanning tun-
neling microscopy of single molecules, Appl. Phys. Lett. 102,
073109 (2013).

[53] L. Gross, F. Mohn, N. Moll, P. Liljeroth, and G. Meyer, The
chemical structure of a molecule resolved by atomic force mi-
croscopy, Science 325, 1110 (2009).

[54] A. Labuda, M. Kocun, M. Lysy, T. Walsh, J. Meinhold, T.
Proksch, W. Meinhold, C. Anderson, and R. Proksch, Calibra-
tion of higher eigenmodes of cantilevers, Rev. Sci. Instrum. 87,
073705 (2016).

[55] S. M. R. Akrami, H. Nakayachi, T. Watanabe-Nakayama, H.
Asakawa, and T. Fukuma, Significant improvements in stability
and reproducibility of atomic-scale atomic force microscopy in
liquid, Nanotechnology 25, 455701 (2014).

023149-14

https://doi.org/10.1038/s41467-019-09571-6
https://doi.org/10.1063/1.1147409
https://doi.org/10.1103/PhysRevB.78.172101
https://doi.org/10.1016/S0006-3495(00)76712-9
https://doi.org/10.1016/S0169-4332(98)00552-2
https://doi.org/10.1063/1.2767173
https://doi.org/10.1016/S0167-5729(02)00077-8
https://doi.org/10.1063/1.365935
https://doi.org/10.1016/j.jsv.2006.10.002
https://doi.org/10.1016/j.jsv.2018.09.006
https://doi.org/10.1021/ma010809b
http://link.aps.org/supplemental/10.1103/PhysRevResearch.4.023149
https://doi.org/10.1021/jp105205y
https://doi.org/10.1021/acsami.5b01778
https://doi.org/10.1088/0022-3719/5/7/007
https://doi.org/10.1038/s41467-019-11342-2
https://doi.org/10.1126/science.253.5018.424
https://doi.org/10.1063/1.5088758
https://doi.org/10.1016/j.surfrep.2016.03.001
https://doi.org/10.1016/0039-6028(69)90044-2
https://doi.org/10.1038/nature05530
https://doi.org/10.1063/1.4793200
https://doi.org/10.1126/science.1176210
https://doi.org/10.1063/1.4955122
https://doi.org/10.1088/0957-4484/25/45/455701

