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Abstract: Neutrophils are highly abundant circulating leukocytes that are amongst the first cells to be
recruited to sites of infection or sterile injury. Their ability to generate and release powerful cytotoxic
products ties with their role in host defence from bacterial and fungal infections. Neutrophilic
inflammation is tightly regulated to limit the amount of ‘bystander injury’ caused. Neutrophils were
in the past regarded as short-lived, indiscriminate killers of invading microorganisms. However, this
view has changed quite dramatically in recent years. Amongst other insights, neutrophils are now
recognised to also have important anti-inflammatory functions that are critical for the resolution of
inflammation and return to homeostasis. This minireview focusses on anti-inflammatory neutrophil
functions, placing a particular focus on recent findings linked to neutrophil cell death, several types of
which may be anti-inflammatory (apoptosis, secondary necrosis, and neutrophil extracellular traps).
These are discussed together with features that may further promote the clearance of dead cells by
efferocytosis and reprogramming of macrophages to promote resolution and repair.

Keywords: neutrophil; macrophage; inflammation; apoptosis; neutrophil extracellular trap; efferocytosis;
resolution; repair

1. Introduction

The terminally differentiated neutrophils represent a first cellular response to bacterial
and fungal infections. Upon activation, neutrophils adhere to the vessel wall, undergo
transendothelial migration and migrate to sites of infection or sterile injury by following
gradients of chemokines and chemoattractants. Neutrophils kill germs by making use
of specialised effector functions, phagocytosis, degranulation, release of neutrophil extra-
cellular traps (NETs), employing an arsenal of cytocidal compounds, including, reactive
oxygen species (ROS), powerful proteases, and antimicrobial peptides. These weapons are
released intracellularly following the uptake of microbes, or employed extracellularly to
kill microorganisms [1]. Due to the large number and short lifespan of neutrophils (see also
below) and the indiscriminate action of neutrophilic cytocidal compounds, neutrophils
were long thought of as transcriptionally inactive and rather primitive killers that are
capable of inflicting severe bystander injury. With the advent of improved techniques,
including transcriptome analysis and powerful intravital imaging, this view has been
revised in recent years. Neutrophils are increasingly recognised as a highly plastic, het-
erogenous population of transcriptionally active cells that hold diverse functions in health
and disease [2–8]. Beyond their well-established function in host defence, neutrophils
actively participate in modulating, and indeed orchestrating, the adaptive immune re-
sponse. As part of this, they hold important anti-inflammatory functions in addition to
their much better characterised pro-inflammatory functions [9,10]. This is perhaps most
obvious in the context of sterile injury, which, like infections, causes neutrophil recruitment.
Danger-associated molecular patters (DAMPs) are released by dying host cells, initiating
the generation of neutrophil-active chemokines by tissue resident sentinels. Formylated
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mitochondrial peptides, which bind formylated peptide receptors FPR1/2, are powerful
neutrophil chemoattractants in their own right [11]. The observation that FPR1/2 deficient
mice, in which neutrophil recruitment to sterile wounds is reduced, are characterised
by delayed wound healing [12] suggests the existence of anti-inflammatory neutrophil
functions in sterile wounds. Neutrophils may in such situations promote tissue repair by
clearing necrotic tissue and debris by phagocytosis, preventing the induction of persistent
inflammation by necrotic cells. Clearing of damaged tissue was observed in the liver in
response to burn injury. Interestingly, despite a wealth of evidence supporting neutrophils
promoting liver inflammation [13], depletion of neutrophils in this acute model of liver
injury, as well as in a range of experimental liver inflammation/fibrosis models delayed
repair [14–17]. Similarly, in some other situations, e.g., peripheral nerve damage, neutrophil
depletion again delayed the clearance of debris [18], suggesting that such anti-inflammatory
neutrophil functions may not be unusual.

This review aims to provide a concise update on neutrophil anti-inflammatory func-
tions. In particular, we focus on the notion of anti-inflammatory functions of apoptotic,
necrotic, and viable neutrophils, as well as those associated with NETs.

2. Neutrophils Are Short-Lived

In humans, 1–2 × 1011 neutrophils are generated every day by haematopoiesis in the
bone marrow [19]. Once fully matured, these neutrophils are released into the circulation
in a circadian fashion in human and mouse [20,21]. Neutrophil trafficking is dependent
upon chemokines and their cognate receptors. In the mouse, CXCL12 (which binds CXCR4)
mediates retention in the bone marrow of nascent cells, while CXCL1/2 (which bind CXCR2)
mediate neutrophil release into the circulation. Over the course of the day, neutrophils
age, with both ageing and lifespan regulated in a gut microbiota-dependent fashion [22,23].
This affects receptor expression, rendering aged neutrophils more responsive to CXCR4
signalling [24,25]. Although the lifespan of activated neutrophils can be significantly
extended [26], aged circulating neutrophils are programmed to home to the bone marrow
to undergo apoptosis and be cleared by efferocytosis by resident macrophages (see below
for details). Outside of the bone marrow, removal of dead neutrophils by macrophages also
occurs in the spleen, and in a Kupffer cell-dependent fashion in the liver [27].

In homeostasis, circulating neutrophil counts are constant due to the balanced pro-
duction of new neutrophils by granulopoiesis and elimination of aged cells at ~1 day. In
acute inflammation or infection, the titre of circulating neutrophils is increased due to an
increase in the lifespan of circulating neutrophils that is driven by the life-extending effect
of pro-inflammatory cytokines (e.g., GM-CSF, G-CSF, IL-8) [28,29] and hypoxia [30,31]. In
contrast, in severe systemic bacterial infection, neutrophil turnover is increased due to
the need to kill invading bacteria, which prompts increased neutrophil death (see below),
promoting emergency haematopoiesis for increased myeloid cell production. This results
in the release of immature neutrophils (band cells) from the bone marrow [32].

3. Neutrophil Cell Death Pathways

Cell death mechanisms that apply to neutrophils include apoptosis, necrosis, ferropto-
sis, necroptosis (also known as regulated necrosis), pyroptosis, as well as NETosis (Figure 1).
The molecular mechanisms of these different types of cell death have been reviewed in
detail elsewhere [33–35] and are not covered here. Rather, we focus on anti-inflammatory
functions of neutrophils undergoing some of these cellular deaths.

In general, neutrophil apoptosis, where the integrity of the plasma membrane is pre-
served, maintains homeostasis, or elicits anti-inflammatory and pro-resolution responses,
respectively. This contrasts with lytic forms of cell death (necrosis, necroptosis, pyroptosis,
ferroptosis, and NETosis) that lead to the rupture of the plasma membrane. Harmful intra-
cellular contents are released, and therefore these types of death are regarded as largely
pro-inflammatory.
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esis and undergo constitutive apoptosis. Phagocytosis induced cell death (PICD), or immune com-
plex induced apoptosis, are dependent upon ROS production. Apoptotic cells display ‘eat-me’ sig-
nals, e.g., PS, are characterised by an intact plasma membrane and condensed chromatin. Note, 
apoptotic blebs/extracellular vesicles are not included into neutrophils undergoing PICD here for 
clarity’s sake. Unless cleared in a timely fashion, apoptotic neutrophils loose membrane integrity 
and undergo secondary necrosis. Due to the apoptotic machinery, secondary necrotic neutrophils 
are characterised by degradation of intracellular proteins and chromatin, rendering their contents 
less inflammatory than those of cells that have undergone primary necrosis. Adverse environmental 
conditions may result in sudden primary necrosis. Plasma membrane integrity is compromised, 
causing release of danger associated molecular patterns (DAMP) into the extracellular milieu. NET 
release is associated with a pro-inflammatory form of cell death, NETosis, which involves exterior-
isation of decondensed chromatin decorated with cytotoxic proteins, including histones, neutrophil 
elastase, myeloperoxidase, as well as antibacterial peptides, indicated here by coloured circles. 
Other highly pro-inflammatory cell deaths include ferroptosis, which occurs as the result of exces-
sive accumulation of intracellular iron; pyroptosis as the result of caspase 1 activation; and necrop-
tosis, a programmed type of necrosis. 
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and see ROS below). Given the anti-inflammatory nature of neutrophil apoptosis, this 
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Figure 1. Overview of neutrophil functions and death. Neutrophils are derived by haematopoiesis
in the bone marrow, and released into the circulation. (A) Effector functions important for host
defence, and relevant to the induction of neutrophil death include phagocytosis, degranulation, and
NET release. Additional neutrophil functions exist but are not included here. (B) Unless activated
and recruited to tissues, after circulating for ~1 day, aged neutrophils home to sites of haematopoiesis
and undergo constitutive apoptosis. Phagocytosis induced cell death (PICD), or immune complex
induced apoptosis, are dependent upon ROS production. Apoptotic cells display ‘eat-me’ signals,
e.g., PS, are characterised by an intact plasma membrane and condensed chromatin. Note, apoptotic
blebs/extracellular vesicles are not included into neutrophils undergoing PICD here for clarity’s sake.
Unless cleared in a timely fashion, apoptotic neutrophils loose membrane integrity and undergo
secondary necrosis. Due to the apoptotic machinery, secondary necrotic neutrophils are characterised
by degradation of intracellular proteins and chromatin, rendering their contents less inflammatory
than those of cells that have undergone primary necrosis. Adverse environmental conditions may
result in sudden primary necrosis. Plasma membrane integrity is compromised, causing release
of danger associated molecular patterns (DAMP) into the extracellular milieu. NET release is
associated with a pro-inflammatory form of cell death, NETosis, which involves exteriorisation of
decondensed chromatin decorated with cytotoxic proteins, including histones, neutrophil elastase,
myeloperoxidase, as well as antibacterial peptides, indicated here by coloured circles. Other highly
pro-inflammatory cell deaths include ferroptosis, which occurs as the result of excessive accumulation
of intracellular iron; pyroptosis as the result of caspase 1 activation; and necroptosis, a programmed
type of necrosis.

4. Neutrophil Apoptosis—A Powerful Anti-Inflammatory Signal

Neutrophil apoptosis is triggered in aged neutrophils as part of homeostasis, but it may
also be induced in specific situations. For example, phagocytosis and intracellular killing
of serum or antibody-opsonised pathogens induces a specialised cellular differentiation
programme that culminates in phagocytosis-induced cell death (PICD) ([36–39] and see
ROS below). Given the anti-inflammatory nature of neutrophil apoptosis, this mechanism
is perfectly suited for promoting tissue repair once the infection has been cleared.



Cells 2022, 11, 4076 4 of 15

In the absence of pathogens, insoluble antibody complexes, powerful pro-inflammatory
stimuli that are abundant in biological fluids in autoimmune disease (e.g., the synovial
fluid in rheumatoid arthritis), are internalised by neutrophils by receptor-dependent
macropinocytosis [40]. Using a separate pathway, the immune complexes also promote
ROS-dependent neutrophil apoptosis. Immune complex-induced neutrophil apoptosis is
mechanistically distinct from PICD [40–42]. This anti-inflammatory mechanism is likely
relevant for immune complex-driven autoimmune diseases, such as rheumatoid arthritis
and lupus [43]. In addition, it may be involved in clearing excess antibody and promoting
repair processes after infectious diseases, when rheumatoid factor, an Fc region binding
IgM, is temporarily expressed, generating large circulating immune complexes [44,45].

4.1. Apoptotic Neutrophils Generate ‘Find-Me’ and ‘Eat-Me’ Signals to Promote Efferocytosis and
Macrophage Polarisation

Irrespective of its mode of induction, by maintaining the integrity of its plasma
membrane, neutrophil apoptosis offers a window of opportunity for clearance of the
dead cells without eliciting inflammation. To this end, apoptotic neutrophils promote
their own clearance by macrophages via a specialised phagocytosis mechanism known
as efferocytosis (Figure 2; reviewed in [46,47]). Efferocytosis not only prevents secondary
necrosis of the apoptotic neutrophils; it is also anti-inflammatory, promotes pro-resolving
pathways, and initiates repair.
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Figure 2. Anti-inflammatory neutrophil functions linked to apoptosis and efferocytosis. (A)Apoptotic
neutrophils and their extracellular vesicles release ‘find-me’ signals, including nucleotides (ATP, UTP),
lysophosphatidylcholine, and sphingosine-1-phosphate to attract macrophages. ‘Find-me’ signals bind
to cognate receptors on macrophages. (B) Apoptotic neutrophils and blebs display ‘eat-me’ signals on
their plasma membrane. These include phosphatidylserine (PS) and lyso-PS, which are recognised by
macrophage receptors (e.g., BAI1 and TIM family) or that are recognised via bridging molecules, such
as protein S and Gas6 that bind to TAM family macrophage receptors. (C) Neutrophil efferocytosis.
Macrophages engulf apoptotic neutrophils and digest them in an immunologically silent fashion in an
efferosome or LAPosome. Released apoptotic cell and fatty acid metabolites ligate metabolite sensing
receptors (LXR, PPAR), upregulating transcription of anti-inflammatory cytokines and potentiating effero-
cytosis. Other signals promoting macrophage reprogramming to the anti-inflammatory phenotype (also
known as M2) include ROS, lyso-PS, and neutrophil extracellular vesicles.
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4.2. ‘Find-Me’ Signals

Recognition of apoptotic cells by macrophages is promoted via soluble mediators, or
‘find-me’ signals, that are actively released by apoptotic cells and/or extracellular vesicles
(Figure 2A; reviewed by [48]). Low concentrations of nucleotides ATP and UTP released
by apoptotic neutrophils act as ‘find-me’ signals that bind to the macrophage P2Y2 puriner-
gic receptor [49], while the lipid mediators lysophosphatidylcholine (LPC) and sphingosine
1-phosphate bind to macrophage G2A and S1P1-5 receptors, respectively [50,51]. Besides act-
ing as chemoattractants, ‘find-me’ signals were also reported to have immunomodulatory func-
tions, enhancing the phagocytic activity of macrophages, and mediating anti-inflammatory
effects by modulating cytokine production [52–54], although some of the underlying mecha-
nisms remain to be fully explored. A recent metabolomics analysis performed with a range of
apoptotic immune cells suggested that shared core metabolites act in a cooperative fashion as
‘find-me’ signals [55].

4.3. ‘Eat-Me’ Signals

Apoptotic cells also display prominent ‘eat-me’ signals on their surface. These ‘eat-me’
signals are recognised by specialised phagocytic receptors (Figure 2B) and trigger inter-
nalisation of the apoptotic corpse. The most prominent ‘eat-me’ signal is the display of
the membrane lipid phosphatidylserine (PS) on the outside of the cell. Viable cells are
characterised by phospholipid asymmetry. This is due to flippase transporters, which
actively limit PS to the inner leaflet of the plasma membrane. In apoptotic cells, flippases
are inactivated in a caspase-dependent fashion; simultaneously, scramblases are activated,
further disturbing PS asymmetry [56–58]. Recognition of PS can be direct via PS receptors,
including BAI1 or TIM (T cell/transmembrane, immunoglobulin, and mucin) family re-
ceptors. In addition, Tyro/Axl/Mer (TAM) family receptors recognise PS indirectly via
soluble bridging molecules, such as protein S and Gas6 (reviewed by [59]). Interestingly,
in addition to enabling efferocytosis, TAM receptor activation was reported to elicit addi-
tional anti-inflammatory functions, suppressing inflammatory cytokine production and
promoting macrophage polarisation toward an alternative or M2-like phenotype [60,61].
A number of ‘eat-me’ signals other than PS exist, e.g., calreticulin and pentraxin 3; these
may be expressed in a cell type-specific fashion and act to further promote efferocytosis
alongside PS.

In contrast with apoptotic neutrophils, viable cells display ‘do not eat-me signals’ on
their surface which interfere with their uptake by macrophages by efferocytosis. ‘Do not
eat-me signals’ even counteract the internalisation of PS-displaying cells [62]. For example,
the ‘do not eat-me’ signal CD47 binds to its macrophage receptor SIRPα, interfering with
the internalisation of bound cells by employing the phosphatase SHP1/2 (for details see
review [63]).

4.4. Efferocytosis

Following uptake of the apoptotic neutrophil by the macrophage by efferocytosis,
degradation of the apoptotic cell ensues (Figure 2C). Degradation was reported to occur
by a Rab5, Rab7, and Rab17-dependent variant of the traditional endocytic pathway in
an immunologically silent fashion [64,65]. Separately, efferocytosis was also reported
to occur via an LC3-associated phagocytosis pathway, short LAP, a non-canonical form
of autophagy [66]. LAP stands in sharp contrast to the pro-inflammatory degradative
pathway by which degradation of microbes occurs following phagocytosis. LAP employs
the phagocyte’s autophagic machinery to degrade the internalised apoptotic material in
an anti-inflammatory fashion. Instead of generating an autophagosome, in LAP, LC3 is
conjugated to the phagosome or ‘LAPosome’ [66,67]. LAP-deficient animals accumulate
apoptotic bodies in their tissues that are reminiscent of the dead cells found in the circulation
of systemic lupus erythematosus (SLE) patients, and genetic links between autoimmunity
and defective LAP have been identified [68,69]. As with classical autophagy, LAP ultimately
results in the release of apoptotic metabolites into the macrophage; it upregulates fatty
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acid oxidation, which has been proposed to be critical for the anti-inflammatory nature
of efferocytosis.

4.5. Neutrophil-Dependent Macrophage Reprogramming

Efferocytosis has long been regarded as non-inflammatory. This is (i) because it avoids
the release of neutrophil granule contents, limiting tissue injury [70], and (ii) because
uptake of apoptotic neutrophils by macrophages was observed to induce their production
of anti-inflammatory cytokines (e.g., TGF-β and IL-10) and pro-resolving lipid species
(resolvins D1, D2, E4, lipoxin A4 and maresin) at the expense of pro-inflammatory cy-
tokines (e.g., TNF, IL-1β and IL-12) (Figure 2C; [71–73]). This stands in sharp contrast to the
pro-inflammatory cytokine profile observed after phagocytosis of microbes and nurtured
the notion that efferocytosis promotes macrophage polarisation towards a pro-resolution
phenotype (also referred to as M2). While the mechanism underpinning the switch from
pro- to anti-inflammatory cytokines has not yet been elucidated in its entirety, recent studies
have suggested an involvement of metabolic modulation of macrophages post-efferocytosis
in conjunction with metabolite sensing nuclear receptors to fine-tune anti-inflammatory
processes and regulate the transcription of pro- and anti-inflammatory cytokines. Apoptotic
cell-derived metabolites were shown to drive enhanced transcription of engulfment-related
genes, including PS receptors and bridging molecules, further increasing macrophage
efferocytosis capacity. In addition, genetic experiments identified roles of nuclear fatty acid
liver X receptors (LXR) and peroxisome-proliferator-activated receptors (PPAR) for upregu-
lation of TGF-β and IL-10, and the suppression of TNF, IL-1β, and IL-12 [74–76]. Recent
elegant studies identified that oxidative fatty acid metabolism specifically promotes IL-10
production by macrophages [11]. Additionally, amino acids obtained from apoptotic cells,
such as arginine, are metabolised promoting the long-term potentiation of efferocytosis
and contributing to the resolution of inflammation [77].

4.6. Neutrophil Extracellular Vesicles

In recent years, extracellular vesicles (EVs) have emerged as a means by which cells
communicate with one another in a range of situations. Neutrophilic EVs (sometimes
also referred to as microvesicles or ectosomes) are produced by membrane blebbing
(Figure 2) in response to a range of stimuli, including chemokines, cytokines, bacteria,
and bacterial products at sites of inflammation. They contain membrane receptors, surface
proteins, including the anti-inflammatory annexin-1 and PS, as well as active neutrophilic
enzymes [78–80]. Although neutrophilic inflammatory EVs were reported to be generated
under certain conditions [81,82], in many other studies, EVs generated by living or apop-
totic neutrophils were shown to limit excessive inflammation in their surroundings. EVs
are reported to orchestrate anti-inflammatory reprogramming of macrophages, reducing
production of pro-inflammatory cytokines and increasing production of pro-resolving
cytokines and lipid mediators, as well as their ability to efferocytose [79,83,84]. Indeed,
neutrophilic EVs were shown to dampen inflammation, even in chronic inflammation,
such as the rheumatic joint, acting on a range of cell types to protect cartilage [85,86].
Mechanistically, the ability of neutrophil EV to reprogramme macrophages relies on their
exposure of PS and annexin-1. Annexin-1 binding to the macrophage FRP2 receptor was
shown to be required for TGF-β expression. In contrast, PS exposure by EVs modulated
macrophage expression of IL-1β, IL10, and IL-12. PS-binding to macrophage MerTK was
moreover required to enhance the efferocytic activity of macrophages [86]. One recent
study reported macrophage reprogramming by living or apoptotic neutrophils, even in the
absence of efferocytosis, and identified that this involved transcriptional reprogramming
of the macrophages and suppression of NF-κB activation [87]. However, it remains to be
formally established whether this observation was indeed due to neutrophil EVs.
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4.7. Reactive Oxygen Species (ROS)

Due to their essential function in microbial killing by neutrophils, ROS are vital for
host immunity, but excessive ROS generation can drive oxidative damage to the host; for
this reason, the generation of ROS is tightly controlled. Key to the generation of ROS is
the activation of the NADPH oxidase, which occurs in a strictly regulated fashion that
involves phosphoinositide-driven translocation events, as well as protein phosphorylation.
The NADPH oxidase is assembled at a membrane (typically either phagosomal or plasma
membrane); it is made up of membrane associated (gp91phox and p22phox) and cytosolic
components (p67phox, p47phox, p40phox) in the presence of activated (GTP-loaded) Rac
which binds p67phox (reviewed in [88]). Once assembled, the NADPH oxidase transfers
NADPH-derived electrons to molecular oxygen, generating superoxide on the outside of
the cell (which may be the inside of the phagosome). Further enzymatic reactions that
are less tightly controlled generate increasingly more cytotoxic species, culminating in
the generation of hypochlorous acid from hydrogen peroxide by myeloperoxidase, which
is delivered from primary/azurophilic granules [88]. Missense mutations in any one of
the subunits of the NADPH oxidase affect its function in human and mouse, causing
chronic granulomatous disease (CGD) in humans [89]. Fascinatingly, ROS also have anti-
inflammatory functions, at least some of which are due to their key role in apoptosis.
Phagocytosis of microorganisms triggers activation of the NADPH oxidase, which in
turn promotes PICD ([36,90] and Figure 1B). The same observation applies to immune
complex-induced neutrophil apoptosis [40]. Experimental evidence suggests that the
NADPH oxidase promotes efferocytosis of apoptotic PS-exposing neutrophils for the
optimal resolution of inflammation. NADPH oxidase-dependent oxidation of the fatty
acyl groups of PS culminated in the generation of lyso-PS, generating improved ligands
for PS receptors, including CD36 and G2A [91,92]. Interestingly, ROS-dependent lyso-PS
generated by viable neutrophils even promoted efferocytosis of these non-apoptotic cells,
suggesting a potential role of lyso-PS in orchestrating the removal of excess neutrophils
following their recruitment to inflammatory sites [93].

In keeping with these observations, mice lacking NADPH oxidase components were
found to be prone to acute hyperinflammatory reactions in sterile inflammation models,
exhibiting excessive inflammatory cell infiltrates and pro-inflammatory cytokine signa-
tures (e.g., [94,95]). Failure of prompt efferocytosis of apoptotic cells promoted not only
acute inflammation, but, in the long run, development of autoimmune disease, including
SLE [96]. Genome-wide association studies identified patients carrying NADPH oxidase
subunit mutations that reduced its activity in SLE cohorts (e.g., [68,97]). These observations
also held true in mouse models [98–100]. Efferocytosis of apoptotic neutrophils by CGD
macrophages, or those from CGD mouse models, was also reported to be affected: CGD
macrophages were found to suffer from poor efferosome acidification and delayed clearance
of ingested apoptotic cells [101]. Impaired efferocytosis resulted in poor macrophage repro-
gramming from pro-inflammatory (M1) to pro-resolving (M2), and reduced generation of
anti-inflammatory mediators, including TGF-β and prostaglandin D2 (PGD2) [102–104]. In
this regard, it is also interesting that, in the context of liver repair after acute acetaminophen
(paracetamol) injury in the mouse, H2O2 released by neutrophils was sufficient to promote
inflammatory monocyte differentiation to pro-repair macrophages by activating AMPK [17],
even in the absence of neutrophil apoptosis and efferocytosis.

Taken together, these observations suggest important anti-inflammatory roles of
NADPH oxidase-mediated generation of ROS, that counterintuitively suppress excessive
bystander host injury from being generated due to neutrophilic inflammation.

5. Necrosis

Primary, or accidental, necrosis is an unregulated cell death that occurs in response
to extreme exogenous stress (Figure 1). Primary necrosis is associated with cytoplasmic
swelling, dilation of organelles, plasma membrane rupture, mitochondrial hyperpolarisa-
tion, oxidative burst, and release of intracellular contents into the environment. Neutrophil
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primary necrosis can be triggered in response to a range of situations, including some infec-
tions. Due to the release of intracellular damage-associated molecular patterns (DAMPs)
into the environment, necrosis is pro-inflammatory, activating an array of mostly TLR recep-
tors on innate immune cells. In this way, primary necrotic cells may induce NF-κB activation
in viable macrophages and fibroblasts, stimulating the production of pro-inflammatory
cytokines, including IL-1 and neutrophil-active chemokines [105].

Apoptotic neutrophils undergo secondary necrosis if not cleared in a timely fashion
(Figure 1). Although secondary necrotic neutrophils are also characterised by a loss of
plasma membrane integrity, they are less pro-inflammatory than their counterparts that
have undergone primary necrosis. This is because the inflammatory activity of DAMPs
released by secondary necrotic neutrophils is limited due to degradation mediated by the
apoptotic machinery [106]. In some pathological situations, secondary necrotic neutrophils
persist, e.g., if the ability of macrophages to efferocytose apoptotic cells is overwhelmed,
or due to a genetic defect. Contrasting with primary necrotic cells, secondarily necrotic
neutrophils stimulate the adaptive immune response, promoting the generation of autoan-
tibodies, as observed in SLE.

Perhaps surprisingly, there are some reports of anti-inflammatory functions, even of
necrotic neutrophils. Elastase released by neutrophils that had undergone primary necrosis
activated pro-inflammatory cytokine secretion of resting macrophages. This contrasted
with mixed populations of apoptotic and secondary necrotic neutrophils, which behaved
similarly to early apoptotic neutrophils in terms of cytokine production elicited [107].
According to one report, even highly enriched secondary necrotic neutrophils (>95% purity)
were taken up as efficiently as early apoptotic neutrophils by macrophages. This suggests
that, even after undergoing secondary necrosis, these neutrophils retained some anti-
inflammatory features [108]. Further studies also identified anti-inflammatory functions
of apoptotic, but also primary and secondary necrotic neutrophils, on monocyte-derived
human, or bone marrow derived mouse, neutrophils. Mediated by a soluble factor, the
antibacterial peptide, α-defensin, released by apoptotic and necrotic neutrophils, but not
other necrotic cell types, were able to inhibit the production of pro-inflammatory cytokines
by macrophages in vitro, while also augmenting their antibacterial capacity in vivo [109],
suggesting that even necrotic neutrophils have some anti-inflammatory functions. Follow-
up studies identified the mechanism for this unexpected finding. α-defensins that had been
released by dying neutrophils entered and accumulated in macrophages to inhibit bulk
protein translation, but not transcription, RNA stability, or protein synthesis [110].

6. NETosis—Anti-Inflammatory Functions of Neutrophil Extracellular Traps

NETs are web-like structures that consist of strands of decondensed chromatin dec-
orated with cytocidal proteins, including citrullinated histones, neutrophil proteases,
myeloperoxidase, and antibacterial peptides (Figure 1). Although described as a neutrophil
cell death mechanism, vital NET release by neutrophils has since also been demonstrated.
NET generation is dependent upon peptidyl arginine deiminase 4 (PAD4) mediated histone
citrullination, which in turn promotes chromatin decondensation. NET release is moreover
dependent upon ROS and myeloperoxidase-mediated activation of neutrophil elastase,
which processes histones such that chromatin packaging is disrupted [111]. NETs are
released in response to a range of stimuli, including bacteria, immune complexes, uric acid
crystals, phorbol esthers, and calcium ionophores. They hold an important function in host
defence, trapping and killing pathogens, but they are also inflammatory and immunogenic
(reviewed in [111]).

Interestingly, in addition to the direct and indirect antibacterial effects of NETs, and nu-
merous reports on NET-dependent augmentation of inflammation, including in the context
of autoimmune disease, there is also accumulating evidence for anti-inflammatory effects of
NETs. Loss of function of the protease cathepsin C, as occurs in Papillon–Lefèvre syndrome,
profoundly affects neutrophil ability to generate NETs, but not bacterial killing [112,113].
Interestingly Papillon–Lefèvre patients suffer from early onset periodontitis and severe skin
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inflammation resembling psoriasis [114]. Strikingly, mice with an impaired ability to gener-
ate NETs developed more severe disease in the pristane-model of SLE [115], suggesting that
NETs may be anti-inflammatory in this context, although this finding is model-dependent
with other animal models of SLE being promoted by NETs (e.g., [116,117]. NET-associated
proteases were also proposed to have anti-inflammatory effects in gout, where uric acid
crystals are surrounded by dense NETs that are located amongst (activated) immune cells.
NET-associated proteases were shown to reduce the local concentration of proinflammatory
cytokines and chemokines, many of which are highly susceptible to proteolytic degradation.
In doing so, neutrophils may, via aggregated NETs, inhibit the development of excessive
inflammation in certain situations [118,119]. Outside of experimental models in the mouse,
aggregated NETs were shown to be active in the healthy human eye where they degrade
inflammatory mediators which may accumulate during sleep at night [120]. Finally, NETs
in thrombotic events, which are frequently described in pathological situations [121,122],
have recently also been associated with a pro-repair function in healing the gut. Biopsies
from ulcerative colitis patients suggest that mucosal erosions feature fibrin deposits that
include blood clots harbouring aggregated neutrophils and NETs. Experimentally inflicted
damage in the gut of mice, even in the absence of bacteria, identified an important contribu-
tion of neutrophil NET release to generating durable blood clots in lesion repair, reducing
rectal bleeding. Interestingly, neutrophils involved displayed an altered transcriptional
signature, which included the specific upregulation of Padi4, suggesting that the release of
anti-inflammatory aggregated NETs in this context is an actively regulated process. Indeed,
PAD4-deficient animals were characterised by diminished clot remodelling on gut lesions
and delayed wound repair in a mouse model of colitis [123].

7. Concluding Remarks

Acute and chronic inflammation pose formidable challenges, representing the most
significant cause of death in the world today. Therapeutic interventions remain limited,
with few options available to date that are able to promote the resolution of inflamma-
tion. Neutrophils are generally regarded as pro-inflammatory cells that generate signif-
icant ‘bystander’ host injury. Yet, as discussed here, neutrophils also hold important
anti-inflammatory functions. The best understood of these is that apoptotic neutrophils
orchestrate their own efferocytosis and subsequent reprogramming of macrophages to
promote resolution and tissue repair. Many aspects related to this are being explored
for potential translation in the clinic. Approaches used to promote neutrophil apoptosis
and macrophage reprogramming that successfully reduced inflammation in a range of
in vivo models include cyclin-dependent kinase inhibitors and nanoparticles [124–127].
One recent study for example employed engineered apoptotic neutrophil bodies to enhance
macrophage efferocytosis and reprogramming. Therapeutic administration of the engi-
neered apoptotic neutrophil bodies three days after the induction of myocardial infarction
in an animal model promoted the resolution of inflammation and subsequent cardiac tissue
repair compared to sham controls [128].

As is evident from the above brief discussion of anti-inflammatory functions of NETs,
mechanisms outside of neutrophil apoptosis exist by which neutrophils promote repair.
In some cases, neutrophil cell death does not appear to be involved at all. Two recent
studies reported neutrophil-mediated repair of the inflamed liver in two different liver
inflammation/fibrosis models in the mouse, with two different mechanisms proposed to
regulate macrophage reprogramming. In carbon-tetrachloride induced liver inflammation,
neutrophils reprogrammed macrophages via microRNA miR-223, which downregulated
NLRP3 inflammasome activity [16]. In contrast, in paracetamol-induced liver inflammation,
reactive oxygen species (H2O2), were found to promote macrophage reprogramming [17].
At present, it remains unclear whether the validity of some of these insights may be re-
stricted to particular disease models, or whether they may work together and/or in tandem
with the more established anti-inflammatory functions involving neutrophil apoptosis.
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Moreover, macrophages are clearly not the only cell type via which neutrophils exert
anti-inflammatory functions. A recent report identified that neutrophilic lyso-PS triggered
tissue repair in an experimental model of colitis. In this scenario, tissue repair was shown to
be due to GPR34 receptor-mediated activation of type III innate lymphoid cell-dependent IL-
22 production [129]. Clearly, the full functional complexity of neutrophil anti-inflammatory
functions remains to be unravelled. Additional future work will be required to fully
elucidate the mechanisms that underpin anti-inflammatory neutrophil functions, and
successfully translate insights to the clinic.
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