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Abstract—We compare two paradigms for image analysis in vi-
sual sensor networks (VSN). In the compress-then-analyze (CTA)
paradigm, images acquired from camera nodes are compressed
and sent to a central controller for further analysis. Conversely,
in the analyze-then-compress (ATC) approach, camera nodes
perform visual feature extraction and transmit a compressed
version of these features to a central controller. We focus on
state-of-the-art binary features which are particularly suitable
for resource-constrained VSNs, and we show that the ”winning”
paradigm depends primarily on the network conditions. Indeed,
while the ATC approach might be the only possible way to
perform analysis at low available bitrates, the CTA approach
reaches the best results when the available bandwidth enables
the transmission of high-quality images.

I. INTRODUCTION

In the last few years, Visual Sensor Networks (VSN) have
emerged as a potential enabler for a new class of applica-
tions [1] in which vision is a key component. Indeed, object
recognition, traffic/habitat monitoring, surveillance and many
other applications may benefit from the deployment of several
battery-operated wireless sensors with an embedded camera,
which communicate with a central controller where the visual
content (either still images and videos) is analyzed.

The traditional approach to visual analysis is based on
a two steps paradigm, as illustrated in Figure 1(a). First,
the acquired signals are compressed (e.g., using JPEG or
H.264/AVC) in order to be efficiently transmitted over a
network. Then, visual analysis is performed. Since the content
is compressed, the analysis is based on a lossy representation
of the original signals, which might significantly impair effi-
ciency [2][3][4][5][6]. To mitigate this problem, several works
focused on developing feature-preserving image compression
schemes [7][8].

Although the compress-then-analyze (CTA) paradigm is
being successfully employed in a number of application sce-
narios (e.g., video surveillance and smart cameras), recent
results obtained experimenting with real world VSNs have
demonstrated that it might be infeasible to stream visual
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content of sufficient quality such as to enable further analysis
tasks [9]. Empowering energy-constrained VSNs with visual
analysis requires departing from traditional solutions and
pursuing a paradigm shift that affects the way visual data is
sensed, processed and transmitted.

Stimulated by the recent results in the field of mobile visual
search [10], we posit that most visual analysis tasks can be
carried out based on a succinct representation based on local
features, disregarding the underlying pixel-level representa-
tion. This enables to reverse the traditional CTA paradigm, mo-
tivating the adoption of an alternative analyze-then-compress
(ATC) paradigm [11]. In this case, visual features are extracted
from the original signal, compressed with a suitable coding
scheme, and transmitted to the final destination, as illustrated
in Figure 1(b). Visual features extraction may be performed
through state-of-the-art algorithms [12][13][14], or by select-
ing the best features for a particular analysis task through
supervised methods [15] or information theory [16].

In this work, we compare the two approaches in terms of
their rate-accuracy performance for the task of image retrieval.
We consider a state-of-the-art retrieval pipeline, and we focus
on Binary Robust Invariant Scalable Keypoint (BRISK) [14]
visual features, which are tailored for low-power architectures
such as VSNs [17][18].

The remainder of this paper is organized as follows. Sec-
tion II illustrates the background on image retrieval and
introduces the evaluation metrics used to compare the two
paradigms. Section III summarizes the BRISK algorithm for
local features extraction, together with an entropy coding algo-
rithm that can be used to compress the descriptor. Section IV
shows the comparison between the two paradigms and Section
V concludes the paper.

II. BACKGROUND ON IMAGE RETRIEVAL

In this section we revise the process of image retrieval
based on local visual features. That is, given a database of
images and a query image as input, we consider the problem of
ranking the database so that images similar to the query appear
in the first positions. This task can be efficiently carried out by
extracting local visual features from the query image, followed
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Fig. 1. The two different approaches to enable image analysis in visual
sensor networks

by a matching step in which these features are compared
against those extracted from the images in the database.

A. Local features extraction

The extraction of local features from an image proceeds in a
two-steps algorithm. First, the image is processed by means of
a detector, which identifies a set of salient keypoints. Several
algorithms have been proposed in the past that detect keypoints
occurring in correspondence of corner-like structures [19] or
blob-like structures [12] of an image. Typically, state-of-the-
art detectors are scale and rotation invariant, being able to
identify keypoints which are stable in the scale-space domain.
A keypoint is generally described by a 5-dimensional vector
[xm, ym, σm, θm, tm] indicating the position (xm, ym) and the
scale σm of the detected keypoint, the orientation angle θm of
the patch of pixels surrounding the keypoints, and the strength
tm of the keypoint. Next, for each detected keypoint, the
surrounding patch of pixels is encoded in a D-dimensional
descriptor vector dm, which captures the photometric char-
acteristics of the patch. Again, several algorithms have been
proposed in the literature to compute descriptors, ranging
from approaches based on histograms of local gradients [12],
[20], to computationally simpler alternatives such as binary
descriptors [21], [14], [22].

B. Local features matching

Visual features extracted from the query image are matched
against features (of the same type) extracted from the database
of images. Matching consists in pair-wise comparisons of
features extracted from, respectively, the query and database
image. Depending on the type of feature, either Euclidean or
Hamming distance are adopted to compare the corresponding
descriptors. Two descriptors are labeled as matching if their
distance is below a pre-defined threshold, or if they satisfy
the so called ratio-test [12] (i.e., if the ratio between the
distance from the nearest neighbour and the second nearest
neighbour is less than a pre-defined value). Hence, the images
in the database can be ranked according to the number of

matches with the query image. Additionally, a geometric
consistency check (GCC) step can be applied to filter out
outliers. In principle, this process is repeated for all images
in the database. In the case of large databases, the process
described above is typically applied to re-rank the top-k results
obtained using a faster method, e.g., based on bag-of-visual
words.

C. Mean Average Precision

Average Precision (AP) is commonly adopted to assess the
performance of image retrieval. Given a query q, AP is defined
as:

APq =

∑n
k=1 Pq(k)rq(k)

Rq
, (1)

where Pq(k) is the precision (i.e., the fraction of relevant
documents retrieved) considering the top-k results in the
ranked list; rq(k) is and indicator function which is equal
to 1 if the item at rank k is relevant for the query, and zero
otherwise; Rq is the total number of relevant document for the
query q and n is the total number of documents in the list.
The Mean Average Precision (MAP) for a set of Q queries is
the arithmetic mean of the AP across different queries:

MAP =

∑Q
q=1APq

Q
(2)

III. BRISK LOCAL FEATURES

Several algorithms are available for extracting local features.
In this paper, we consider the state-of-the-art BRISK algo-
rithm [14], which is optimized for fast computation, and thus
suitable for low-power and low-complexity hardware, which
is often used when deploying visual sensor networks [17][18].
Similarly to other binary descriptors, BRISK has a set of nice
properties. First, the descriptor is built by concatenating results
of binary tests on smoothed pixel intensities, which are fast to
compute. Second, since each descriptor element is a bit (by
definition), the size of the descriptor is considerably smaller
than that of traditional real-valued descriptors. Third, matching
binary descriptors is performed by means of the Hamming
distance, which can be executed in a single XOR operation on
modern architectures. In the following, we revise the basics of
BRISK, focusing our attention on the design of the descriptors.
We also illustrate a method introduced in [23] for lossless
coding of binary descriptors, in order to further reduce their
size.

A. Building the descriptor

BRISK leverages a very simple, yet effective, multi-scale
and rotation-invariant corner detector and a binary descriptor
algorithm. That is, each descriptor element is a bit, represent-
ing the result of a binary test evaluated based on the content of
the patch associated to the keypoint. Indeed, each binary test
compares the (smoothed) intensity values of a pair of pixels,
whose locations within the patch are defined by a concentric
sampling pattern.

More formally, let pim ∈ R2, i = 1, . . . , N , denote the
position of a sampling point defined in a coordinate system



centered at (xm, ym), rotated with an angle θm, and properly
scaled according to σm. Let I(pim, ρi) denote an intensity
value obtained by averaging the pixel values at locations
around pim. Although different averaging filters can be used,
the publicly available implementation of BRISK adopts a
simple box mean filter with floating point boundaries and side
length equal to ρi. The value of ρi depends on the distance
from the center of the sampling pattern.

Consider the set A of all sampling point pairs

A = {(pim,pjm) ∈ R2 ×R2|i < N ∧ j < N ∧ i, j ∈ N}. (3)

Given a patch corresponding to the detected keypoint, it is
possible to compute up to N(N − 1)/2 binary comparisons,
i.e., one for each pair in A. That is,

b =

{
1, I(pjm, ρj) > I(pim, ρi)
0, otherwise (4)

The total number of possible binary tests depends on the
configuration of the sampling pattern. The original BRISK
sampling pattern consists of N = 60 points, thus |A| = 1770.
The construction of the BRISK descriptor proceeds by iden-
tifying the subset of short-distance pairs S and long-distance
pairs L:

S = {(pim,pjm) ∈ A|‖pjm − pim‖ < δmax} (5)

L = {(pim,pjm) ∈ A|‖pjm − pim‖ > δmin} (6)

The long-distance pairs are used in BRISK to estimate the
orientation of the patch θm. Instead, the descriptor is obtained
by concatenating the binary tests corresponding to the short-
distance pairs as in (5), such that (pim,p

j
m) ∈ S . Hence, the

number of elements D of the descriptor depends on the value
of the threshold distance δmax. In [14], δmax was set equal to
13.67σm, so as to achieve a descriptor with D = |S| = 512
elements. In our experimental evaluation we vary δmax to test
different sizes of the descriptor.

B. Coding the descriptor

The binary tests are not statistically independent. Hence it
is possible to model the descriptor as a binary source with
memory and perform lossless coding using a number of bits
R ≤ D. Let H(πn), n = 1, . . . , D, denote the entropy of the
n-th element of the descriptor, which is computed as

H(πn) = −pn(0) log2 pn(0)− pn(1) log2 pn(1). (7)

In a similar way, it is possible to compute the conditional
entropy H(πn1

|πn2
). The statistics used to compute H(πn)

and H(πn1 |πn2) can be obtained by analyzing a training set
of descriptors extracted from an image collection. Let π̃n, n =
1, . . . , D, denote a permutation of the D selected pairs, which
indicates the sequential order used for encoding the descriptor.
The average code length needed to lossless code the descriptor
is lower bounded by

R =

D∑
n=1

H(π̃n|π̃n−1, . . . , π̃1) (8)

In order to optimize the coding efficiency, it is useful to find
the permutation that minimizes the lower bound in (8). In our
work, we adopted a greedy strategy, which assumes that the
descriptor can be modeled as a Markov source of the first
order, i.e., H(π̃n|π̃n−1, . . . , π̃1) = H(π̃n|π̃n−1). Therefore,
we propose to reorder the descriptor selecting the elements
iteratively. Specifically, the n-th element is chosen as the one
that minimizes the conditional entropy with respect to the
previously selected element

π̃n = argmin
πn

H(πn|π̃n−1) (9)

As for the first element, we opted for selecting the one with the
lowest entropy, although we verified that this heuristic choice
does not significantly affect the coding rate. After reordering,
each descriptor is encoded using a context-based arithmetic
encoder, where each bit is encoded based on the previous one
in the descriptor.

IV. EXPERIMENTS

We implemented an image retrieval pipeline following the
scheme illustrated in Section II and performed our experiments
on two widely used datasets:

• ZuBuD: Zurich Building Database1, which contains 1005
images from 201 buildings of the city of Zurich. The
dataset also provides 115 QVGA query images (320 ×
240 pixels).

• Oxford: Oxford Building Database2, which contains im-
ages from 16 buildings in Oxford. Only the subsets
tagged as GOOD and OK were used, for a total of 568
images. The dataset also provides 55 XGA query images
(1024×768 pixels).

The pipeline receives as input a set of visual fea-
tures for the query image, which differs depending on the
adopted paradigm, i.e., compress-then-analyze and analyze-
then-compress

In the compress-then-analyze (CTA) case, image queries are
first compressed with JPEG at different rates by varying the
JPEG quality factor QF from 1 to 100. The images are then
sent to a central controller, which extracts local features from
(compressed) query images and matches them against the fea-
tures extracted from (uncompressed) images in the database.
Since the analysis is carried out at the central controller, we
considered two options, i.e., either SIFT or BRISK features
were extracted from compressed query images. SIFT features
are considered as the gold standard in visual analysis, as
they typically achieve state-of-the-art performance in most
applications. At the same time, extracting and matching SIFT
features is costly. Hence, we also consider the option of using
BRISK at the central controller, which is a suitable alternative
when computational resources are limited.

Conversely, in the analyze-then-compress (ATC) case,
BRISK visual features are extracted from uncompressed query
images, encoded with the algorithm detailed in Section III-B,

1http://www.vision.ee.ethz.ch/showroom/zubud/index.en.html
2http://www.robots.ox.ac.uk/ vgg/data/oxbuildings/
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Fig. 2. Rate-accuracy curves using the ATC approach and BRISK features: a) ZuBuD dataset; b) Oxford dataset. Each solid colored line represents the
rate-accuracy curve for a different number of features M . For a fixed M , the curve is obtained by varying the dimension of each BRISK feature (i.e, the
number of computed binary tests). In particular, we tested the following descriptor lengths D: {32, 64, 128, 256, 512}. The curve corresponding to the label
ALL is obtained by using all the detected features for matching.
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Fig. 3. Comparison between the rate-accuracy curves of the compress-then-analyze and the analyze-then-compress paradigms

and matched with the features extracted from the database
images. In this case, the rate is varied by tuning: (i) the
dimension D (in bits) of each BRISK descriptor; and (ii)
the number of features M to be transmitted to the central
controller. To select a subset of features from the whole set,
we sorted the features in descending order of their associated
keypoint strength tm, and we selected the top-M features. This
allowed us to obtain a family of curves in the rate-accuracy
plane, as illustrated in Figure 2. As discussed in [11], we are
interested in working on the envelope of such family of curves,
which represents the best rate-accuracy tradeoff that can be
obtained.

For extracting BRISK features, we used the implementation
from the authors3, setting the detection threshold γdet to 60.
For the CTA approach using SIFT, we used the OpenCV

3http://www.asl.ethz.ch/people/lestefan/personal/BRISK

v.2.4.3 implementation. For both CTA and ATC approaches,
matching features is performed computing either Euclidean
or Hamming distances (for SIFT and BRISK, respectively),
and filtering matches using the ratio-test and a geometric
consistency check with RANSAC.

Figure 3(a) and 3(b) show the experimental results for the
ZuBuD and the Oxford datasets, respectively. In each figure,
we include the rate-accuracy curves obtained for the following
configurations: (i) CTA, when SIFT features are extracted at
the central controller; (ii) CTA, when BRISK features are
extracted at the central controller; and (iii) ATC, when BRISK
features are extracted and compressed at the remote nodes. In
this case, the curves correspond to the envelopes in Figure 2.

These results indicate that the choice of the paradigm is
dictated by the bandwidth constraints imposed by the network.
Indeed, at low bitrates, the analyze-then-compress approach is
not only the preferable solution, but also the only one that



can be adopted. This is particularly visible in the case of
the Oxford dataset, which is characterized by query images at
higher spatial resolution, which are more difficult to encode
with JPEG. In this case, the minimum rate for the compress-
then-analyze approach is equal to 20 kB/query (MAP =
0.45), whereas, in the case of ATC, the rate is as little as
8 kB/query for the same target MAP. Conversely, when the
network allows to send high-quality query images at high
bitrates, extracting features at the central controller is the
best choice. However, note that this is a condition which is
seldom met in visual sensor networks. In this case, the analysis
relies on a large number of features extracted from the query
image. Moreover, if the central controller is not subject to
computational constraints, the use of non-binary features like
SIFT is to be preferred to BRISK.

V. CONCLUSIONS

We compared the CTA and ATC approaches for image
analysis in visual sensor networks. Our results indicate that
the choice of the approach to use depends on the network
conditions, which may impose a constraint on the maximum
query size. The ATC paradigm allows to obtain good results
especially at low bitrates, while at high bitrates the CTA
paradigm leverages the computational resources at the central
controller to obtain the best performance.

In the case of the ATC paradigm, it is worth emphasizing
the fact that several improvements may be applied to the
design of binary descriptors. In this work, we simply varied
the size of the BRISK descriptor by changing the δmax
threshold. However, as discussed in our previous work [23],
a smart selection of the binary tests to use for building the
descriptor may significantly increase the performance of the
image retrieval task, thus reducing the gap between SIFT and
BRISK.

Future research directions include the analysis of the two
paradigms when applied to other analysis tasks, e.g., target
tracking and scene classification, and the study of optimal
resource allocation schemes in the wireless sensor network
which adapt the visual analysis paradigm on the network
conditions (query rate, available bandwidth, multiple camera
nodes).
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