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ABSTRACT

Binary descriptors have recently emerged as low-complexity alter-
natives to state-of-the-art descriptors such as SIFT. The descriptor
is represented by means of a binary string, in which each bit is the
result of the pair-wise comparison of smoothed pixel values prop-
erly selected in a patch around each keypoint. Previous works have
focused on the construction of the descriptor neglecting the opportu-
nity of performing lossless compression. In this paper, we propose
two contributions. First, design an entropy coding scheme that seeks
the internal ordering of the descriptor that minimizes the number of
bits necessary to represent it. Second, we compare different selec-
tion strategies that can be adopted to identify which pair-wise com-
parisons to use when building the descriptor. Unlike previous works,
we evaluate the discriminative power of descriptors as a function of
rate, in order to investigate the trade-offs in a bandwidth constrained
scenario.

Index Terms— Visual features, coding.

1. INTRODUCTION

Visual features provide a concise representation of the underlying
content that are robust and invariant to many global and local trans-
formations. In recent years, the focus has been on the design of local
features [1][2][3]. That is, salient keypoints are identified by means
of a detector, and a descriptor is computed from the pixel values
belonging to the image patch around the keypoint. Although the de-
sign of a descriptor assume different forms, in [3] it was shown that
descriptors are typically computed by processing an image patch ac-
cording to three modules: pre-smoothing, transformation and spatial
pooling. For example, the state-of-the-art SIFT descriptor [1] con-
sists of local histograms (pooling) of gradients (transformation) of
patches smoothed with a Gaussian kernel.

Extracting local features from visual content can be computa-
tionally demanding, due to the computation of the detector and the
descriptor. In recent years, several works have addressed the prob-
lem of reducing the complexity while retaining the desirable in-
variance and robustness properties of state-of-the-art visual features.
As for detectors, several low-complexity algorithms have been pro-
posed, in the case of both corner (e.g., FAST [4], AGAST [5], etc.)
and blob (fast Hessian [2], CenSurE [6], etc.) detectors. Similarly,
in the case of descriptors, there are two approaches which have been
pursued in the literature. Some descriptors, e.g., SURF [2], are de-
signed as a fast approximation of SIFT. Instead, a different line of
investigation includes the case of binary descriptors. The simplest
descriptor of this class is BRIEF [7], which generates a binary string
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whose bits are the result of the comparison of pairs of (smoothed)
pixel values selected at random within a patch around the keypoint.
BRISK [8] constraints the pixel locations to be used for the com-
parisons, so as to limit the memory accesses. Long pairs, i.e., those
whose pixel locations are further apart than a threshold, are used to
determine the orientation of the patch, thus achieving rotation invari-
ance. Short pairs are instead used to build the descriptor. The choice
of the pairs to be included in the descriptor is further investigated
by FREAK [9], which proposes a heuristic rule that tries to maxi-
mize the discriminative power of the descriptor. Recently, DBRIEF
was proposed [10]. The elements are the result of the binarization of
discriminative projections that can be computed fast.

In some applications, both complexity and bandwidth represent
a scarce resource. This is the case, for example, of wireless mul-
timedia sensor networks, in which battery-operated nodes are used
to sense the visual scene. Instead of acquiring, compressing and
transmitting data in the pixel domain, an alternative approach con-
sists of computing a feature-based representation, in which features
can be conveniently compressed and sent to a remote node for fur-
ther processing [11]. In our previous work [12], we investigated the
rate-accuracy trade-offs that can be achieved for the case of SURF
descriptors, adopting different lossy coding schemes, inspired by re-
cent works on mobile visual search [13]. For the first time, the prob-
lem of lossless coding of binary descriptors is addressed in this pa-
per. Depending on the available bit budget, the number of pair-wise
comparisons can be varied accordingly. In this context, we study the
discriminative power of the descriptors as a function of rate, when
varying the strategy used to select the most suitable comparisons.
The proposed selection methods are general, and can be applied to
any binary descriptor. In this paper, we present our results in the
case of BRISK and FREAK descriptors. The evaluation method-
ology takes advantage of an annotated database of image patches
extracted from different views of the same scene [3]. In this way, we
are able to focus on the design of the descriptor independently from
the underlying detector. Our results show that an appropriate selec-
tion of the pairs, together with a suitable reordering of them before
lossless coding, enables to significantly improve the discriminative
power. For example, in the case of BRISK, the false positive rate
is reduced from 76% to 58%, when the true positive rate is equal
to 95% and 128 pairwise comparisons are used, which are lossless
compressed using about 80 bits on average.

The rest of this paper is organized as follows. Section 2 in-
troduces the necessary background and formulates the problem ad-
dressed in this paper. Section 3 describes the proposed lossless cod-
ing strategy, and Section 4 the different selection strategies that can
be used to build the descriptor. Experimental results are reported in
Section 5 and Section 6 concludes the paper.
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Fig. 1. (a) The BRISK sampling pattern withN = 60 points and (b)
the FREAK sampling pattern with N = 43 points. The red crosses
denote the position of the sampling points; the blue circles repre-
sent the patch of pixels used to smooth the intensity of a particular
sampling point.

2. PROBLEM STATEMENT

Let I denote an image that is processed to extract a set of local fea-
tures D. First, a scale invariant detector is applied, to identify stable
keypoints in the scale-space domain. The number of detected key-
points M = |D| depends on both the image content and on the
type and parameters of the adopted detector. Then, the (oriented)
patches around the detected keypoints are further processed to com-
pute the corresponding descriptors. Hence, dm ∈ D is a descrip-
tor, which consists of two components: i) a 4-dimensional vector
cm = [xm, ym, σm, θm]T , indicating the position (xm, ym), the
scale σm of the detected keypoint, and the orientation angle θm of
the image patch; ii) a D-dimensional vector dm, which represents
the descriptor associated to the keypoint cm.

In this paper, we study the class of binary descriptors, i.e., dm ∈
{0, 1}D . Each descriptor element is a bit, which represents the result
of a binary test evaluated based on the content of the patch associ-
ated to the keypoint ci. In particular, we consider two state-of-the-art
descriptors, namely BRISK [8] and FREAK [9], which follow a sim-
ilar construction. Indeed, in both cases, each binary test compares
the (smoothed) intensity values of a pair of pixels, whose possible
locations within the patch are illustrated, respectively, by the sam-
pling patterns in Figure 1(a) and Figure 1(b). More formally, let
pim ∈ R2, i = 1, . . . , N , denote the position of a sampling point
defined in a coordinate system centered at (xm, ym), rotated with
an angle θm, and properly scaled according to σm. Let I(pim, ρi)
denote an intensity value obtained by averaging the pixel values at
locations around pim. Although different averaging filters can be
used, the publicly available implementation of BRISK and FREAK
adopt a simple box mean filter with floating point boundaries and
side length equal to ρi. The value of ρi depends on the distance
from the center of the sampling pattern. In BRISK it is chosen so
as to avoid overlap between neighboring sampling points, while in
FREAK it allows for sampling points to overlap (so that less points
are used).

Consider the set A of all sampling point pairs

A = {(pim,pjm) ∈ R2 × R2|i < N ∧ j < N ∧ i, j ∈ N}. (1)

Given a patch corresponding to the detected keypoint cm, it is possi-
ble to compute up to N(N − 1)/2 binary comparisons, i.e., one for
each pair in A. That is,

b =


1, I(pjm, ρj) > I(pim, ρi)
0, otherwise (2)

The total number of possible binary tests depends on the configura-
tion of the sampling pattern. The standard BRISK sampling pattern
consist of N = 60 points, thus |A| = 1770. Instead, the proposed
FREAK sampling pattern employs N = 43 points, thus |A| = 903.

In this paper, we study different strategies that can be used to
select a subset of the pairs, subject to a constraint on the target size
of the descriptor D. In addition, we propose to lossless code the de-
scriptor, in such a way that it can be represented with R ≤ D bits,
on average. Our main contribution consists in the proposal of novel
selection strategies that take explicitly into account: i) the discrim-
inative power of each pair, which can be obtained by considering
sets of matching and non-matching patches; ii) the cost, in bits, of
encoding the descriptor.

3. CODING THE DESCRIPTOR

Regardless of the specific selection strategy, further detailed in Sec-
tion 4, the descriptor will consist of a string of D bits, each rep-
resenting the outcome of a binary test. Since the binary tests are
not statistically independent, it is possible to model the descriptor
as a binary source with memory and perform lossless coding using
a number of bits R ≤ D. Let H(πn), n = 1, . . . , D, denote the
entropy of the n-th element of the descriptor, which is computed as

H(πn) = −pn(0) log2 pn(0)− pn(1) log2 pn(1) (3)

In a similar way, it is possible to compute the conditional en-
tropy H(πn1 |πn2). The statistics used to compute H(πn) and
H(πn1 |πn2) can be obtained by analyzing a training set of descrip-
tors extracted from an image collection. Let π̃n, n = 1, . . . , D,
denote a permutation of the D selected pairs, which indicates the
sequential order used for encoding the descriptor. The average code
length needed to lossless code the descriptor is lower bounded by

R =

DX
n=1

H(π̃n|π̃n−1, . . . , π̃1) (4)

In order to optimize the coding efficiency, it is useful to find the
permutation that minimizes the lower bound in (4). In our work,
we adopted a greedy strategy, which assumes that the descrip-
tor can be modeled as a Markov source of the first order, i.e.,
H(π̃n|π̃n−1, . . . , π̃1) = H(π̃n|π̃n−1). Therefore, we propose to
reorder the descriptor selecting the elements iteratively. Specifically,
the n-th element is chosen as the one that minimizes the conditional
entropy with respect to the previously selected element

π̃n = arg min
πn

H(πn|π̃n−1) (5)

As for the first element, we opted for selecting the one with the low-
est entropy, although we verified that this heuristic choice does not
significantly affect the coding rate.

4. BUILDING THE DESCRIPTOR

In this section we consider different selection strategies. We start
considering the methods adopted in the reference implementations of
BRISK and FREAK, i.e., brisk and freak, respectively. Then,
we describe the proposed strategies, i.e., matching-based,
coding-based and hybrid, which are then evaluated in Sec-
tion 5.



4.1. brisk

The construction of the BRISK descriptor proceeds by identifying
the subset of short-distance pairs S and long-distance pairs L:

S = {(pim,pjm) ∈ A|‖pjm − pim‖ < δmax} (6)

L = {(pim,pjm) ∈ A|‖pjm − pim‖ > δmin} (7)

The long-distance pairs are used in BRISK to estimate the orienta-
tion of the patch θm. Instead, the descriptor is obtained by concate-
nating the binary tests corresponding to the short-distance pairs as
in (6), such that (pim,p

j
m) ∈ S. Hence, the number of elements

D of the descriptors depends on the value of the threshold distance
δmax. In [8], δmax was set equal to 13.67σm, so as to achieve a
descriptor with D = |S| = 512 elements. In our experimental eval-
uation we will vary δmax to test different sizes of the descriptor.

4.2. freak

The FREAK descriptor [9] introduced a heuristic algorithm to se-
lect the set of binary tests used to construct the descriptor. During a
training phase, FREAK analyses all the N(N − 1)/2 possible pairs
in the set A, for a large number of patches extracted from several
images. Let D ∈ {0, 1}N(N−1)/2×Q a matrix containing the result
of the binary tests for all Q patches. FREAK computes the variance
of each pair (row), and selects as first pair the one with the largest
variance. This is equivalent to selecting the pair for which the oc-
currences of zeros and ones are more evenly distributed, i.e., the row
with the largest entropy. Then, the other pairs are iteratively selected,
by choosing the row that minimizes the correlation with the previ-
ously selected one. Hence, the algorithm is greedy in nature and,
at each step, tries to select a pair so as to maximize diversity. The
algorithm terminates when the budget D is exhausted.

4.3. matching-based

The selection strategy adopted in FREAK considers the statisti-
cal distribution of binary tests computed on a large number of
patches. However, it does not consider how good the selected pairs
are when matching descriptors extracted from different images of
the same scene. We propose a novel selection strategy, named
matching-based, that explicitly considers the joint distribution
of binary tests computed in the case of matching and non-matching
patches. Specifically, we exploit the availability of the dataset in-
troduced in [3], which includes a large set of patches extracted
from several images of the same scene and acquired from different
viewpoints. In addition, the dataset provides the information about
which patches correspond to the same physical keypoint, i.e., the
matching patches. As for FREAK, let D ∈ {0, 1}N(N−1)/2×Q a
matrix containing the result of the binary tests for all Q patches. Let
M denote the set of indexes of matching pairs, i.e.,

M = {(q1, q2)| dq1 and dq1 are matching keypoints} (8)

Similarly, it is possible to define a setN of indexes of non-matching
pairs. Then, for each of the pairs in A, it is possible to compute the
mutual information IM(πn), n = 1, . . . , N(N − 1)/2,

IM(πn) =
X
x∈0,1

X
y∈0,1

pMn (x, y) log2

pMn (x, y)

pn(x) · pn(y)
, (9)

where pn(0) and pn(1) are the probabilities of observing, respec-
tively, zero or one, as the output of the binary test involving the n-th

pair in A. The probability pMn (x, y) measures the joint occurrences
of zeros and ones in pairs of matching descriptors. For example,
pMn (0, 0) is the probability that both descriptors in a matching pair
contain a zero in the element corresponding to the n-th binary test.
Similarly, it is possible to define the mutual information for non-
matching pairs, i.e., INn . For each pair inA, we compute the follow-
ing scoring function

Jn = IM(πn)− IN (πn), (10)

and we rank pairs in decreasing order of Jn. The proposed selection
strategy chooses the top-D pairs with the highest value of Jn.

4.4. coding-based

The coding-based selection strategy proceeds by building a de-
scriptor of D elements, with the goal of minimizing the number of
bits necessary for coding it. The selection strategy follows the same
approach already described in Section 3 but, at each iteration of the
greedy algorithm, is considers all the possible N(N − 1)/2 pairs
rather than a subset of D pairs. The algorithm terminates when D
pairs are selected.

4.5. hybrid

The hybrid approach combines the matching-based with the
coding-based approach. The D elements of the descriptors are
selected by means of the following greedy strategy

π̃n = arg max
πn

α(IM(πn)−IN (πn))−(1−α)H(πn|π̃n−1) (11)

As for the first pair π̃1, the termH(πn|π̃n−1) is replaced byH(πn).
The parameter α enables to trade-off the goodness of matching with
the cost of coding the descriptor.

5. EXPERIMENTS

To compare the performance of the proposed methods we adopted
the data set described in [3], which contains patches extracted from
images representing different views of the same scene. The data set
is divided in three sets of patches, each corresponding to a scene,
namely, Yosemite, Liberty and Notredame. In our experiments, one
was used for training, and a different one for testing. Each set con-
tains approximately 250k patches. From each set, we extracted two
matrices D ∈ {0, 1}N(N−1)/2×Q, using, respectively, the BRISK
and FREAK patterns shown in Figure 1. In addition, the data set pro-
vides the ground truth regarding the pairs of matching patches. We
created an equal number of non-matching pairs by sampling pairs
at random. We considered different target lengths of the descriptors
in the set D ∈ {16, 32, 64, 128, 256, 512}. For each value of D,
we used the descriptors extracted from the training set to learn the
selected pairs using one of the methods illustrated in Section 4. In
our results, we adopt the notation PATTERN-selection to de-
note both the sampling pattern used (i.e., BRISK or FREAK) and
the selection method. For the hybrid scheme we set α = 0.75.

Results were evaluated on descriptors extracted from a test set.
For each pair of descriptors, we computed the Hamming distance be-
tween them. The descriptors were considered to be matching if the
Hamming distance was below a given threshold. Due to the avail-
ability of the ground truth, we were able to trace the Receiver Oper-
ating Characteristic (ROC) curve, as illustrated in Figure 2 by vary-
ing such a threshold. The true positive rate indicates the fraction of
matching descriptors that were correctly identified to be so. The false
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Fig. 2. ROC curves for a) BRISK and b) FREAK. We show the original implementations at different bitrates versus the matching-based
method. The black curve shows the performance of SIFT on the same dataset.
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Fig. 3. a) False positive rate at true positive rate equal to 95%. b) Area under the curve.

positive rate indicates the fraction of non-matching descriptors that
were considered to be matching. In Figure 2 training is performed
on Liberty and testing on Notredame. We observe that, for a given
descriptor, e.g., BRISK-brisk and BRISK-matching-based,
the discriminative power decreases when decreasing D and, conse-
quently, the rateR needed to encode the descriptor. Overall, BRISK-
matching-based tends to outperform BRISK-brisk for low-
positive rates and large descriptor lengths. In order to summarize
the ROC curve in a single value, we considered two options: i) the
value of false positive rate when the true positive rate is equal to
95% (FP@95), as in [3][10]; ii) the area under the curve (AUC).
Figure 3(a) and 3(b) show the discriminative power of the differ-
ent methods using the same training and test sets as for Figure 2.
Similar results were obtained for different combinations of training
and testing, but were omitted due to space limitations. By fixing
the sampling pattern, we observed that the matching-based and
hybrid selection methods performed best, with an improvement as
high as 20% in terms of FP@95 and 5% in terms of AUC. Between
the sampling patterns, BRISK obtained better results at high bitrates,

while at low bitrates (i.e., less than 50 bits/descriptor) FREAK was
preferable. Note that the coding scheme described in Section 3 en-
abled to significantly reduce the bit budget. For example, the original
BRISK descriptor with {512, 256, 128, 64} bits was encoded using,
respectively, approximately {285, 150, 80, 40} bits on average.

6. CONCLUSIONS

In this paper we studied lossless coding for binary descriptors and its
implication on their discriminative power. We presented an entropy
coding scheme that operates on binary descriptors so as to minimize
the number of bits necessary to represent them. We also presented
methods to select only those descriptor elements which maximize
the discriminative power. Experiments on two state-of-the-art binary
descriptors show that substantial improvements can be achieved. In
our future investigations we plan to study the effects of the proposed
methods on a complete image retrieval pipeline, as well as using the
proposed schemes for compressing binarized SIFT descriptors [14].
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