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Abstract—This work describes the implementation of an
object recognition service on top of energy and resource-
constrained hardware. A complete pipeline for object recog-
nition based on the BRISK visual features is implemented
on Intel Imote2 sensor devices. The reference implementation
is used to assess the performance of the object recognition
pipeline in terms of processing time and recognition accuracy.
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I. INTRODUCTION

The recent advances in manufacturing of electronic sys-
tem have led to the production of hardware devices featuring
an embedded microprocessor and radio chip on board. The
optimization of the electronic design and the definition of
suitable networking protocols are key elements to enable
low-power data sensing, computation and transmission, i.e.,
the fundamental requirements of a wireless sensor network.
As such, during the last decade, the interest of the scientific
community has experienced a steady growth, as witnessed
by the numerous publications, standardization activities and
events dedicated to WSNs.

As a parallel research line, efforts in the field of visual
communication have led to the development of several image
and video coding architectures. The main objective is to
maximize the quality of the reconstructed pixel-domain
representation under constrained resources expressed, e.g.,
in terms of bandwidth and processing power. Naturally,
scientists have started to envision a long-standing marriage
between WSNs and visual communication technology, with
the promise of empowering sensor nodes with vision. Possi-
ble applications for wireless visual sensor networks include:
i) video surveillance of public places, traffic, parking lots
or remote areas, where no power lines are available or
the deployment of traditional sensors is difficult or time
consuming; ii) environmental monitoring of remote and
inaccessible areas (hazardous areas or animal habitats); iii)
smart homes that provide continuous monitoring of persons
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(quite often elderly people) reporting any unusual behaviour
or emergency.

Thus, initial work has started to address the main chal-
lenges related to wireless multimedia sensor networks, in-
cluding the study of ad hoc networking protocols and ad-
vanced coding solutions. The main research challenges and
consequently efforts in the design of wireless multimedia
sensor networks can be summarized as follows [1], [2], [3],
[4]

• All the layers of the communication stack need to be
re-adapted since most of the existing algorithms and
protocols originally developed for traditional wireless
sensor networks are not suited to support multimedia
communication;

• Cross-layered design approaches are preferable to min-
imize latency thus guarantee the application-specific
Quality of Experience, and further reducing protocol-
overhead;

• In the signal processing area, multimedia encoding
techniques need to be efficiently applied in order to
achieve high coding efficiency and robustness.

• Implementations on commercial hardware are prefer-
able, in order to test effectively the performance of the
proposed techniques throughout extensive experiments
on such testbeds.

However, these efforts have not yet achieved the expected
results, mainly because of the mismatch of computational
resources between offer (sensor node capabilities) and de-
mand (coding complexity requirements). As a matter of fact,
conventional visual communication systems only achieve
significant coding efficiency at the cost of high compu-
tational complexity, especially at the encoder (transmitter)
side. Thus, wireless sensor networks requirements in terms
of node complexity (very low) and transmission bandwidth
(as low as possible to have wide coverage and long battery
life) are hard to achieve with resource-limited hardware and
WMSN requirements cannot be efficiently satisfied by the
traditional video compression followed by image analysis
paradigm, even in a distributed way as demonstrated in
recent works [5], [6].

On the other side, a set of visual analysis applications can
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be effectively carried out based on a succinct representation
of the image, which disregards the underlying pixel-level
representation, whilst capturing only global and local fea-
tures. From the network perspective, this allows to reduce
the required bandwidth to support the target application since
only image features and not the entire image (or video) are
delivered to the final destination(s) in order to enable higher
level visual analysis tasks.

Research in realizing effective platforms for multimedia
support in wireless sensor network is active. In [7], the
authors describe the realization of a smart camera plat-
form with multiple processors, variable number of digital
signal processing units (DSPs) for multimedia processing.
The reference architecture is used to support surveillance
applications such as vehicle tracking.

SenseEye, described in [8], is a multi-tier multimedia
sensor networks which adopts heterogeneous hardware. The
different tiers of the network however, share the same
architecture, featuring an integration platform coupled with
video sensors including CMUCam, Cyclops and Logitech
Web Cams. Object detection applications are developed
on the reference platform through background subtraction
and leveraging the color distribution of the objects to be
recognized.

A similar architecture is proposed in [9], which describes
a visual sensor platform to perform person/object recogni-
tion. The reference hardware is a Beagleboard connected to a
Logitech QuickCam S5500 and to a an RA- Link 802.11b/g
WiFi adapter as well as a SunSPOT mote providing 802.15.4
wireless connectivity.

The work in [10] presents a distributed image search
system on a network of iMote2 sensor nodes equipped with
extended flash storage. The system is based on SIFT [11]
local features, which are extremely slow to compute on such
hardware.

The authors of [12] propose a multi-processor architecture
connected to an Omnivision OV7660 VGA to perform
feature extraction tasks. The interested reader is pointed
to the survey in [13] for a more comprehensive review
on the realization of visual sensor networks testbeds and
prototypes. Most of the work in this research track shares the
very same functional architecture, which features a vision
sensor usually equipped with a dedicated micro-processor
or DSP, a motherboard platform and one (or multiple)
communication interface(s). What differentiates the different
proposal is the “power” of the reference hardware compo-
nents, which obviously reflects in the energy consumption
and the reference realization cost.

Along this line, this work also describes the realization
of a visual sensor network supporting object recognition
tasks. As in [10], the hardware building blocks which we
decide to adopt are, to the best of our knowledge, much
less powerful than the reference hardware in the literature.
The reference testbed is built on commercial hardware and

entails the complete pipeline of object recognition visual
tasks including fast feature detection and feature description
implemented on sensor nodes, features delivery to a sink
through a multi-hop communication protocol, and features
matching, implemented at a central controller. The work
widely discusses the critical issues in the practical realization
on such limited hardware and further provides a performance
assessment of the object recognition pipeline in terms of
accuracy and processing time.

The manuscript is organized as follows: in Sec. II, we
briefly revise the fundamentals of the reference feature
extraction algorithms; Section III describes the functional
building blocks of the testbed. In Section IV, the testbed
is adopted to evaluate the performance of the implemented
object recognition task, and finally Section V concludes the
paper.

II. BACKGROUND

The process of object recognition based on local features
proceeds as follows. First, the input image is processed in
order to detect a number of salient keypoints that correspond
to highly distinctive locations of the underlying image. Next,
an algorithm transforms the patch around each key point in
a feature descriptor. Finally, descriptors extracted from the
input image are matched with a set of descriptors extracted
from a database of reference images, and a ranked list with
the most relevant results is returned.

A large number of detector and descriptor algorithms have
been proposed in the literature. Starting from early works in
the 80’s [14], there have been a great effort in producing
detectors which are sensitive to corners, edges, blobs or T-
junctions while being invariant to different viewing condi-
tions, i.e., identifying the same set of keypoints under scale
and rotation transformations.

A lot of research has been done in order to identify robust
descriptors as well, resulting in schemes which are invariant
to changes in scale, rotation and illumination. The ”gold-
standard” descriptor, widely accepted for its performance,
is the Scale Invariant Feature Transform (SIFT) [11], which
combines a DoG detector with a 128-dimensional descriptor
obtained analyzing orientation histograms with 8 bins each
from a 4x4 pixel neighborhood around each keypoint.

For both detectors and descriptors, in the last few years
a lot of attention has been given to fast algorithms tailored
to low-power architectures. This resulted in the development
of high-speed corner [15] and blob detection [16]schemes.
For what concerns descriptors, binary descriptors such as
BRIEF [17] have been recently proposed in order to speedup
both computation and matching, while at the same time
producing a rather compact representation. Working with bi-
nary descriptors is advantageous from different perspectives.
First, they are built by concatenating results of binary tests
on smoothed pixel intensities, which are fast to compute.



Second, since each descriptor element is a bit (by defini-
tion), a binary descriptor size is considerably smaller than
traditional real-valued descriptors. Third, matching binary
descriptors can be done by means of computation of the
Hamming distance, which can be executed in a single XOR
operation on modern architectures. For all these reasons, bi-
nary descriptors are a natural choice for resource constrained
systems such as visual sensor networks.

In this work we focused on the Binary Robust Invariant
Scalable Keypoints (BRISK [18]) algorithm, which extends
the design of BRIEF by adding invariance to scale and
rotation transformations. In the following we provide a brief
description of BRISK.

A. BRISK Detector
The BRISK detector is a multi-scale version of the popular

FAST (Fast Accelerated Segment Test (FAST) [15]) detector.
FAST represented a clear breakthrough in high-speed corner
detectors. It classifies a candidate point p (with intensity Ip)
as a corner if n contiguous pixels in the Bresenham circle of
radius 3 around p are all brighter than Ip + t, or all darker
than Ip − t, with t a predefined threshold. Each corner is
then given a score s, defined as the maximum threshold still
classifying p as a corner. Additionally, the authors presented
a machine learning approach to create decision trees that
allows to classify a candidate point with only a few pixel
tests, thus speeding-up the detection process. It is shown that
using this approach requires, on average, less than 2.3 tests
per pixel to determine whether or not it is a feature.

B. BRISK Descriptor
The BRISK descriptor uses a pattern of points pi for

sampling the neighborhood of each keypoint. The pattern
defines two sets of sampling point pairs, namely long-
distance pairings and short-distance pairings. The long-
distance set is composed by all those pairs (i, j) such that
|pi − pj |2 > δmin and they are used to estimate the
orientation of the keypoint by local gradient averaging. Once
the keypoint orientation is estimated, the sampling pattern is
rotated accordingly and the short-distance pairings (whose
sampling point distance is less than a threshold δmax) are
used to build the descriptor. First, for each pi, an intensity
value is obtained by Gaussian smoothing with standard
deviation σi, proportional to the distance between pi and
the center of the pattern. To efficiently retrieve pattern points
locations and smoothing information, a look-up table of all
possible orientations is built offline and stored in memory.
As an example, for 1024 pre-computed angles, the look-
up table size is as large as 40 MB. To construct the actual
descriptor, a binary string is built by concatenating the result
of all the short distance intensity comparisons of point pairs
(pi,pj) such that each bit b corresponds to:

b =

{
1, I(pj , σj) > I(pi, σi)
0, otherwise

(1)

Figure 1. Testbed architecture.

where I(pi, σi) denotes the smoothed intensity value at pi.
In the original implementation of BRISK from the authors,
δmax is tuned so that the resulting descriptor has 512 bits.

C. Matching

Matching two BRISK descriptors requires the computa-
tion of their Hamming distance, which can be computed very
efficiently on today’s architectures by means of a bitwise
XOR. Two descriptors are said to match if their Hamming
distance is smaller than a predefined threshold value θH .

III. PROTOTYPE DEVELOPMENT

As illlustrated in Figure 1, the reference visual sensor net-
work architecture includes a camera sensor node, relaying
nodes and a central controller. From the functional point of
view, the camera sensor node is responsible for acquiring
images, performing key point detection and description and,
finally, sending the descriptors to the central controller. The
relay nodes only perform communication functionalities,
routing the information (stream of descriptors) to the central
controller that performs object recognition leveraging the
descriptors received from the camera sensor node. In the
remainder part of this section the hardware/software charac-
teristics of these three components are described.

A. Camera Sensor Node

The camera sensor, built around the Intel Imote2 plat-
form, is composed of three main building blocks: the
low-power PXA271 XScale CPU, the Imote2 Multimedia
Board (IMB400), and the TI CC2420 radio transceiver. The
CPU can operate in a low voltage (0.85V), low frequency
(13MHz) mode, hence enabling very low power operation.
The IMB400 board adds multimedia capabilities to the
Imote2 platform and allows to capture images and video,
through a OmniVision OV7670 camera chip. The CC2420
radio transceiver supports a 250kb/s data rate with 16
channels in the 2.4GHz band. The technical details of the
hardware used for realizing the camera sensor node are
reported in Table I.

The camera sensor node is operated by Linux, Kernel
version 2.6.29. OpenCV libraries are also ported to the



Table I
TESTBED HARDWARE DETAILS

Clock Speed 416 Mhz
Program Flash 32 MB

RAM 256 KB + 32 MB external
Data rate 250 kbps

Image Resolution 640x480

camera node. The camera node also runs the software
implementation of BRISK available on the BRISK authors’
web site [19].

B. Relay Node

The relay node is responsible for routing the stream
of features generated by the camera node to the central
controller. In the testbed, the relay nodes are equipped with
CC2420 transceivers. The relay node (and the camera node)
also implement a simple communication protocol to support
multi-hop communication. In details, the camera node gen-
erates 802.15.4-compliant packets carrying the descriptors
generated by the feature extraction process. The packet size
is set to 77 bytes, including 13 bytes for the packet header.
The remaining 64 bytes are used to carry exactly one BRISK
descriptor. The descriptors are received and forwarded in
the same order of generation from the camera node, and
then reconstructed at the central controller for matching.
The relay nodes also implement a dynamic distance vector
routing protocol with the hop count used as routing metrics.

C. Central Controller

The central controller receives the streams of features
from the camera and runs the matching task. In the reference
testbed, the central controller is an Intel I5 architecture,
which implements a conventional matching algorithm. More
precisely, visual features received from the visual sensor
network are matched against features extracted from each
image in a database. Two features are considered to be
matching if their Hamming distance is less than a threshold
equal to θH = 90 bits. After this step, a ranked list of all
the image in the database is computed, where images are
sorted in descending order of number of matching features.
Optionally, a geometric consistency check with RANSAC
can be applied, to remove those matches which do not
respect the geometric structure between the query image and
the images in the database. Given the ranked list of database
images, an accuracy measure can be computed. In this work
we rely on the Mean of Average Precision (MAP), which is
widely used in the field of multimedia information retrieval.
For each query q a rank of N documents in the database is
obtained. The Average Precision (AP) for the retrieved list
of a query q is defined as

APq =
∑n

k=1 Pq(k)rq(k)
Rq

, (2)
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Figure 2. Average time for executing BRISK detector when varying the
number of detected keypoints and the resolution of the images.
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Figure 3. Average time for calculating BRISK descriptors when varying
the number of keypoints.

where Pq(k) is the precision (i.e., the fraction of relevant
documents retrieved) considering the top-k results in the
ranked list; rq(k) is and indicator function which is equal
to 1 if the item at rank k is relevant for the query, and
zero otherwise; Rq is the total number of relevant document
for the query q and n is the total number of documents in
the list. The Mean Average Precision (MAP) for a set of
Q queries is the arithmetic mean of the AP across different
queries:

MAP =

∑Q
q=1APq

Q
(3)

IV. PERFORMANCE EVALUATION

In this section we report the results of the performance
evaluation of the proposed testbed. We focused our analysis
on different performance indicators, including processing



time of both detector and descriptor and accuracy of the
matching task with respect to different system parameters
(detection thresholds t and memory occupancy) and network
conditions.

A. Processing Time Analysis

As a first experiment, we evaluated the processing time
needed for keypoint detection and description. For BRISK,
the detection time depends on two factors: i) the number of
detected keypoints , which can be varied by suitably tuning
the threshold t of the detector; and ii) the size of the input
image. For the evaluation, we considered L = 10 images of
different resolutions (512 x 384, 768 x 756 and 1024 x 768
pixels) randomly selected from the ZuBuD image database
[20] and loaded on the considered platform. For each image,
we set the BRISK threshold t to the following values [10
30 60 90 120].

Figure 2 and Figure 3 report the average processing
time for detecting keypoints and computing descriptors with
BRISK for images with variable visual content and different
resolutions. From Fig. 2, the detector processing time has
an offset which depends on image resolution, and grows
linearly with the number of detected keypoints, while the
keypoint description time is a linear function of the number
of keypoints. Hence, selecting how many points to detect
(i.e., by choosing an appropriate value for the detection
threshold t) will eventually determine an upper bound on the
processing frame rate. As an example, for object recognition,
two to three hundred keypoints are enough to saturate
performance . This means, in our system, that each image
could require 3-5 seconds to be completely processed (i.e.
keypoints detection and description). However, for other
applications (e.g., object tracking) such low frame rates may
not be sufficient to obtain good results.

B. BRISK Memory Issues

As explained in Section II, BRISK leverages a look-
up table of discrete rotated and scaled sampling pattern
versions to speed up the computation of the descriptor.
The original lookup table stores 1024 rotations at 30 scales
which calls for a memory space of about 40 MB on the
Imote2. Since such space is not available (only 32 MB
of memory available), the table sized has been reduced in
our tested implementation. We obtained a smaller lookup
table by computing only a subset of rotated patterns, while
the scale resolution was not changed. This is motivated
by the fact that, in most analysis tasks suited for visual
sensor networks (e.g. traffic monitoring or face recognition),
invariance to scale is much more important than rotation
invariance. To evaluate the impact of different lookup table
sizes on the feature matching accuracy, the task of feature
detection was simulated for different sizes of the lookup
table. For each lookup table size, we performed the task of
object recognition, based on the 53Obj dataset in [21], which
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Figure 4. Mean of Average Precision of the object recognition task for
the 53Obj dataset under different values of the BRISK lookup table size.
For the detection phase we set the threshold t to 60, while for matching
descriptors we used θH = 90 bits.
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Figure 5. MAP versus packet error rate for BRISK pipeline. The four
lines correspond to detection threshold values t of [120 90 60 30], from
the bottom up.

contains 213 images of 53 different objects under 4 different
viewpoints, together with one query image per object. For
each configuration of the lookup table, we computed the
Mean of Average Precision (MAP) as accuracy measure.
Results are reported in Figure 4 which shows that the MAP
is minimally affected by the reduction of the number of
rotated patterns.

C. BRISK Robustness to Errors

It is worth analyzing the robustness of the complete object
recognition pipeline based on BRISK to transmission and
communication errors. To this extent, we artificially inserted
packet errors on the wireless channel which cause the loss
of BRISK descriptors. The channel errors were emulated by



randomly dropping packets transmitted by the camera node
with a given average rate γ. Packets were dropped according
to a uniform distribution, and the test was performed 10
times, averaging the results. Figure 5 shows the MAP of
the complete BRISK pipeline when varying the packet error
rate γ for different values of the number of keypoints per
processed image, which can be adjusted by properly tuning
the detection threshold t. The BRISK pipeline is extremely
robust to channel errors; the MAP remains almost constant
for values of γ up to 50% regardless of the number of
detected keypoints.

V. CONCLUSIONS

This work describes the realization of an object recogni-
tion service on resource-constrained camera sensor nodes.
The realized testbed was used to assess the performance
of the recognition task in terms of processing time and
recognition accuracy. For features extraction, 3 to 5 seconds
per image were required.
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