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Abstract

Parkinson’s disease is a neurodegenerative disorder predominately affecting

midbrain dopaminergic neurons that results in a broad range of motor and

non-motor symptoms. Sleep complaints are among the most common non-

motor symptoms, even in the prodromal period. Sleep alterations in Parkin-

son’s disease patients may be associated with dysregulation of circadian

rhythms, intrinsic 24-h cycles that control essential physiological functions, or

with side effects from levodopa medication and physical and mental health

challenges. The impact of circadian dysregulation on sleep disturbances in

Parkinson’s disease is not fully understood; as such, we review the systems,

cellular and molecular mechanisms that may underlie circadian perturbations

in Parkinson’s disease. We also discuss the potential benefits of chronobiology-

based personalized medicine in the management of Parkinson’s disease both

in terms of behavioural and pharmacological interventions. We propose that a

fuller understanding of circadian clock function may shed important new light

on the aetiology and symptomatology of the disease and may allow for

improvements in the quality of life for the millions of people with Parkinson’s
disease.
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1 | INTRODUCTION

Parkinson’s disease (PD) is the second most common
age-related neurodegenerative disorder of the central ner-
vous system (CNS) (Bekris et al., 2011) and carries a sig-
nificant and increasing financial and societal global
burden; the prevalence of PD has more than doubled
over 25 years (1990–2015) (GBD 2015 Neurological Disor-
ders Collaborator Group, 2017). It is estimated that there
will be between 8.7 and 9.3 million PD cases in western
Europe’s five, and the world’s 10, most populous nations
by 2030 (Dorsey et al., 2007). The progressive loss of
dopaminergic neurons in the substantia nigra
(SN) resulting from oxidative stress, mitochondrial dys-
function and Lewy body formation are the main patho-
logical mechanisms proposed for PD symptoms
(Dexter & Jenner, 2013). PD patients suffer from motor
symptoms such as akinesia, bradykinesia, tremor, rigidity
and deficits of gait, speech and handwriting (Moustafa
et al., 2016) and non-motor symptoms, which include
depression, sleep disturbances, urinary and bowel distur-
bances and cognitive decline. Both motor and non-motor
symptoms can severely affect the quality of life of patients
and caregivers (Corallo et al., 2017; Martínez-Martín
et al., 2005). Sleep disorders have been reported in
between 40% and 90% of PD patients and may manifest
as somnolence, sleep attacks, rapid eye movement (REM)
sleep behaviour disorder (RBD), insomnia and sleep frag-
mentation (Srinivasan et al., 2014). Many of these sleep
disturbances develop as prodromal non-motor features
preceding the motor symptoms for many years or during
the symptomatic phase of PD years later (Hustad &
Aasly, 2020; Zuzu�arregui & During, 2020). There are sev-
eral potential causes of sleep disturbances in PD patients,
including effects of CNS neurodegeneration and neuroin-
flammation, circadian clock disruptions, ‘classical’ PD
motor symptoms leading to poor bed mobility, dopami-
nergic therapies and co-morbid psychiatric symptoms
(Breen et al., 2014; Chahine et al., 2017; Rye, 2003). In
this review, we discuss the evidence for (1) circadian
clock disruptions in PD and contrast this with other age-
related neurodegenerative conditions; (2) the relationship
between sleep and circadian rhythm disturbances in PD
and their consequences for daytime functioning and
quality of life; and (3) the application of chronotherapeu-
tic principles for improved PD management strategies.

2 | THE CIRCADIAN SYSTEM AND
SLEEP–WAKE TIMING

Circadian rhythms emerged in evolutionary time as adap-
tations to the 24-h light–dark cycle, and these rhythms

are primarily generated by the endogenous circadian
clock system, which imposes a temporal architecture on
cellular, physiological and behavioural processes
(Brody, 2013). Circadian rhythms are modulated through
exposure to external zeitgebers (a German word meaning
‘time-giver’), and the dominant zeitgeber for mammals is
light; the entrainment of the clock to salient environmen-
tal stimuli allows for the maintenance of adaptive
rhythms and synchronization of internal time with exter-
nal cycles (Burke et al., 2015; Farhud & Aryan, 2018;
Jensen et al., 2016; Potter et al., 2016). However, circa-
dian clocks are by definition internally generated and
will persist in the absence of environmental cycles or
time cues (Hastings et al., 2018) and manifest function-
ally in the temporal regulation of emotional (Correa
et al., 2020), cognitive (S. Xu, Akioma, & Yuan, 2021),
behavioural (Krylov et al., 2021), metabolic (Serin & Acar
Tek, 2019) and endocrine processes (Neumann
et al., 2019). Circadian rhythms can be detected at differ-
ent levels through the cyclic expression of molecular
markers, such as clock genes, endocrine markers such as
melatonin and cortisol secretion, physiological markers
such as core body temperature and behavioural markers
such as sleep–wake cycles (Buttgereit et al., 2015).

Sleep in mammals results from an intricate interplay
between two main internal processes, the homeostatic
process and the circadian rhythm (Deboer, 2018). The
two-process model for sleep–wake regulation is deter-
mined by the accumulation of sleep pressure during the
day (process S or homeostatic) and by the circadian pro-
cess controlled by a 24-h circadian rhythm (process C
[circadian]). The circadian drive for wakefulness reaches
its peak in the middle of the day and then gradually
wanes until its nadir coincides with the lowest point of
core body temperature (Taillard et al., 2021). Sleep initia-
tion happens when the homeostatic sleep pressure is high
and the circadian drive for wakefulness is low, leading to
a large ‘area under the curve’ drive towards sleep
(Figure 1). Continuous interactions between homeostatic
and circadian factors, in combination with environmen-
tal and social schedules, optimize the rest and activity
periods in mammals to meet internal homeostatic
demands in the context of an animal’s cyclical environ-
ment (Arns et al., 2021).

Circadian rhythms depend on intrinsic circadian
clocks, circadian input pathways linking the clock to
environmental and internal stimuli and signals and out-
put systems at the molecular, cellular and physiological
levels (Hastings et al., 2018). The suprachiasmatic
nucleus (SCN) serves as the master circadian clock and is
in the anterior hypothalamus above the optic chiasma
and lateral of the third ventricle (Reppert &
Weaver, 2002). There are numerous other circadian
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oscillators in the CNS that function in a semi-
autonomous form to the SCN, including those in the ret-
ina, rodent olfactory bulbs, arcuate nucleus, cerebral cor-
tex, hippocampus and amygdala (Guilding &
Piggins, 2007), and the functional consequences of these
clocks are believed to modulate cognitive and beha-
vioural processes such as memory, emotional regulation
and executive function (Dibner et al., 2010). Clocks are
also situated throughout the periphery, including in
cellular subtypes in the liver, kidney, heart and pancreas
as well as the innate and adaptive immune systems.
Across these tissues and systems, circadian clocks regu-
late cellular, metabolic, endocrine and immune processes
and dysregulation of the circadian regulation of such
results in various morbidities (Christ et al., 2018).

At the molecular level, the circadian rhythms
emerge from a molecular network of circadian clocks
and their protein products (Kamphuis et al., 2005).
The main components in the clock genes network of
the circadian system include brain and muscle
Arnt-like protein 1 (BMAL1), clock, period (PER) 1,2,3,
cryptochrome (CRY)1,2, neuronal PAS domain
protein 2 (NPAS2) and REV-ERB α (Mieda, 2019;
Takahashi, 2017); these genes encode transcription fac-
tors that then form a series of interlocking feedback
and feed-forward loops with periodicities of near 24 h
(Figure 2, [Takahashi, 2017]). These circadian clock
genes also exert widespread influence over the tempo-
ral regulation of the transcriptome; for example, in
mice, 40% of transcripts show 24 h cycles in at least
one tissue (Zhang et al., 2014). In humans, highly pen-
etrant polymorphisms in clock genes have been impli-
cated in pronounced abnormalities of the sleep–wake
cycle (Gentry et al., 2021; Patke et al., 2017).

From a systems perspective, whole-organism circa-
dian timekeeping results from a hierarchical and distrib-
uted system with the SCN at the top of this multi-
oscillator hierarchy (Dibner et al., 2010). SCN neurons
have autonomous rhythmic electrical and metabolic pro-
cesses, even in the absence of neural inputs in dispersed
in vitro settings, and these neurons communicate with
other regions in the brain through both neuronal and
humoral pathways (Shirakawa et al., 2000; Tousson &
Meissl, 2004; Welsh et al., 1995). The majority of SCN
neurons are GABAergic, and subsets of SCN neurons
express neuropeptides such as arginine vasopressin

F I GURE 2 The clock genes network in SCN. CLOCK and

BMAL1 dimers activate the E-box element to initiate the

transcription of other clock genes such as PERs, CRYs, RORs and

REV-ERBs. Binding REV-ERBα to the RORE element of BMAL1

inhibits transcription of this gene. The expression of RORs, PERs

and CRYs reaches peak level at 18:00. During the evening, PER:

CRY:CK1δ/ε complexes translocate to the nucleus, and

CLOCK–BMAL1 dissociates from the E-box of target genes through

CLOCK phosphorylation; consequently, the expression of genes in

downstream will be suppressed. At midnight, RORα binds to the

RORE of the BMAL1 and CLOCK promoters and induces their

transcription. Translation of CLOCK and BMAL1 transcripts

during the early morning leads to the initiation of a new cycle.

Positive action is indicated by solid lines with lines ending in

arrowheads, and negative action is indicated with lines ending in

perpendicular lines. BMAL1, brain and muscle Arnt-like protein 1;

CLOCK, circadian locomotor output cycles protein kaput; CRY,

cryptochrome; PER, period; REV-ERBα, nuclear receptor subfamily

1 group D member; ROR, retinoic acid-related orphan receptor;

RORE, retinoic acid-related orphan receptor response elements

F I GURE 1 Two process model of sleep in mammals. Sleep is

the result of harmony between two processes: The circadian process

that relies on the circadian rhythm of light–dark cycles and the

homeostatic process that depends on sleep pressure and tiredness.

Sleep initiation happens when the distance between sleep pressure

and circadian wakefulness is at the maximum level. Following

sleep, sleep pressure decreases, and this distance reduces gradually;

consequently, wakefulness occurs at the beginning of the next

circadian cycle.

ASADPOORDEZAKI ET AL. 3
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(AVP), vasoactive intestinal peptide (VIP) and gastrin-
releasing peptide (GRP) (Ono et al., 2021). Additionally,
glial cells contribute to circadian function in the SCN
through their own intrinsic clocks and by modulating
neurotransmission (Brancaccio et al., 2019). The SCN
receives afferent inputs from several pathways, the most
significant of which is the retinohypothalamic tract
(RHT). The RHT conveys photic information to the SCN
and arises from a subset of intrinsically photosensitive
retinal ganglion cells, which express the photopigment
melanopsin, and RHT terminals release glutamate and
pituitary adenylate cyclase-activating polypeptide
(PACAP) onto the photorecipient areas of the SCN
(Hughes et al., 2015). The exact mechanisms of how the
SCN produces organism-level circadian rhythmicity and
harmonises the behavioural and physiological cycles
(such as sleep, endocrine secretion and body tempera-
ture) are not fully understood. However, it is known that
the primary recipients of SCN projections are other hypo-
thalamic areas and the midline thalamus (Li et al., 2012).

3 | A FRAMEWORK FOR
UNDERSTANDING CIRCADIAN
RHYTHM DYSFUNCTION IN
PARKINSON ’S DISEASE

In order to consider the evidence linking sleep distur-
bances and disorders, circadian rhythm dysfunction and
motor and other non-motor symptoms of PD, we will dis-
cuss the evidence that (1) older age and other age-related
neurodegenerative conditions are associated with sleep
and circadian rhythm changes; (2) PD is associated with
sleep problems, and the relationship of such problems to
PD symptom type and severity; (3) PD is associated with
dysfunction of the circadian system, and the interplay
between such dysfunction and other symptoms of PD;
(4) the bidirectional relationships between the circadian
and dopaminergic systems, and the implications of these
relationships for understanding circadian dysfunction in
PD; (5) what preclinical/animal models of PD reveal about
the relationships between circadian function and PD; and
(6) how such insights can be leveraged for the improve-
ment in the prevention and management of PD and the
research agenda that will be needed to enable this.

4 | CIRCADIAN RHYTHMS IN
OLDER AGE AND
NEURODEGENERATION

As PD is primarily a disease of older age, appreciating the
impact of healthy ageing on the circadian clock is of

importance in the elucidation of the impact of PD on the
clock. Healthy ageing results in changes in circadian
function in older adults, including reduced circadian
rhythm amplitude in sleep–wake cycles, advanced circa-
dian phase and earlier chronotype, more inter-daily vari-
ability in activity cycles and altered circadian responses
to light (Duncan, 2020; Popa-Wagner et al., 2017). Older
age is also associated with other changes in sleep such as
reduced sleep efficiency, lower total sleep time, reduced
REM sleep time, greater sleep onset latency, periodic
limb movement and increased arousal index (Garbarino
et al., 2021). Some of these changes may be linked to cel-
lular and systemic changes in the circadian network; for
example, ageing may be associated with a higher rate of
cell loss in the SCN and pineal gland (Khuzhakhmetova
et al., 2019), decreased neuroplasticity and altered neuro-
physiology of the SCN neuronal network (Buijink
et al., 2020; Nakamura et al., 2011), and loss of photore-
ceptive retinal ganglion cells (ipRGCs) in the eye and
their reduced projections to the SCN (Buijink &
Michel, 2021). Levels of nocturnal melatonin are also
decreased in older age (Godfrey et al., 2022), and this
decrease may be linked to age-related calcification of the
pineal gland (Bumb et al., 2014). As such, ageing is asso-
ciated with alteration to input pathways to the master cir-
cadian clock, core clock function and output pathways of
the master clock that disseminate the clock’s temporal
signal throughout the body.

It is of interest to examine the circadian and sleep
changes associated with other neurodegenerative condi-
tions to appreciate transdiagnostic features of sleep and
rhythm disturbances across such conditions vs diagnosis-
specific changes. Circadian rhythm changes observed in
age-related neurodegenerative conditions, such as Alzhei-
mer’s disease (AD), are found to be markedly more pro-
nounced than those observed in healthy ageing (Coogan
et al., 2013; Hunt et al., 2022). Circadian function is
found to be progressively impaired in AD, with a marked
decrease in the amplitude of the sleep–wake cycle being
a prominent feature of a moderate-to-severe disease
(Coogan et al., 2013). Although AD is not associated with
large-scale neurodegeneration in the SCN (Fernandez
et al., 2021), there may be a loss of specific neurochemi-
cal neuronal phenotypes in the SCN, such as cells expres-
sing neuropeptides strongly implicated in normal
circadian function such as neurotensin, VIP and AVP,
reduced expression of the MT1 melatonin receptor and
reduced GABA signalling, dysregulated redox in the SCN
and reduced BMAL1 expression in activated astrocytes of
SCN (Singer & Alia, 2022). As such, the integrity of the
SCN neuronal network may be reduced and circadian
timing impacted through this. Outside of the SCN, other
neurochemical and neuropathological changes in AD

4 ASADPOORDEZAKI ET AL.
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that have been linked to declined circadian and sleep
function are reduced expression of orexin A and adeno-
sine A1 receptor (Liu et al., 2019), degeneration and atro-
phy of cholinergic neurons and cholinergic nuclei in the
basal forebrain and degeneration of hypothalamic orexin
neurons (Matsumoto & Tsunematsu, 2021).

Although the exact mechanistic link between circa-
dian rhythms disruption and neurodegeneration is not
clear, it has been reported that dysregulation in circadian
rhythmicity drives astrocyte and microglial activation
and polarization, activation of NFκB and NLRP3 inflam-
masome mediated inflammation pathways in the CNS,
lower levels of expression in redox defence-related genes
like Nqo1 and Aldh2 in the CNS and increases in
α-synuclein aggregation (Griffin et al., 2019; Huang
et al., 2018; Kou et al., 2022; Lananna et al., 2018; Liu
et al., 2022; Musiek, 2015). Results from several studies
suggest a bi-directional relationship between neurode-
generation and circadian rhythms (Colwell, 2021): neuro-
degeneration leads to circadian dysregulation, and
dysregulated circadian processes contribute to neurode-
generation (Nassan & Videnovic, 2022). For instance,
amyloid-β (Aβ) accumulation in AD leads to sleep com-
plaints, and sleep disorders increase the risk of amyloid
deposition and dementia development in affected individ-
uals (Ju et al., 2014). It has been hypothesized that there
is an age effect on the association between sleep prob-
lems and Aβ accumulation, as both intensify with age
and may interact to result in increased neuropathology
and cognitive and behavioural decline (Chong
et al., 2022). There is evidence from pre-clinical models
that long-lasting neuroinflammation in the absence of
neurodegeneration can induce persistent circadian
changes (O’Callaghan et al., 2012), that geriatric micro-
glia have been implicated in age-relate declines in sleep

quality (Choudhury et al., 2021) and that decreased circa-
dian rhythmicity in microglia is implicated in age-related
neuroinflammation (Fonken et al., 2016); all of these fea-
tures suggest that neuroinflammation may be an impor-
tant link between the circadian clock and
neurodegenerative disorders.

Of interest when considering sleep and circadian
rhythm changes in PD, sleep disturbances are common
in the prodromal stages of AD (Duncan et al., 2021).
Impaired circadian rhythmicity may be both an early
symptom of neurodegenerative diseases and also a risk
factor for the subsequent development of neurodegenera-
tive conditions (Kumar et al., 2022). Some studies have
also reported that lower circadian rhythmicity is associ-
ated with greater cognitive decline in older adults who do
not have a diagnosis of dementia, although more investi-
gation is required to determine the aetiology and signifi-
cance of such findings (Cochrane et al., 2012; Rogers-
Soeder et al., 2018; Walsh et al., 2014). Given that demen-
tia is common in PD patients (Goetz, 2009), the emerging
literature on sleep and circadian factors as early prodro-
mal markers and/or risk factors for AD suggests that
future focus on such issues in PD may identify novel risk
factors and opportunities for intervention (Figure 3;
Lananna & Musiek, 2020; Nassan & Videnovic, 2022;
Leng et al., 2019).

5 | SLEEP DISORDERS AND
DISTURBANCES IN PARKINSON ’S
DISEASE

A variety of sleep disorders and disturbances are observed
in PD patients including, RBD, insomnia disorder,
obstructive sleep apnea (OSA), sleep fragmentation,

F I GURE 3 A bidirectional relationship

between circadian/sleep disturbances and PD

diagnosis/progression. Neuroinflammation and

neurodegeneration in dopaminergic neurons,

originating from various genetic and

environmental factors, lead to PD incidence. It

seems that circadian and sleep alteration is not

only an early symptom of PD but also an

etiologic factor for PD occurrence. Furthermore,

there is an association between sleep and

circadian rhythm function with exacerbation of

PD symptoms. There is also some evidence that

long-term L-Dopa treatment may accelerate

sleep and circadian rhythm manifestations in

PD patients. PD, Parkinson’s disease

ASADPOORDEZAKI ET AL. 5
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decreases in the quantity of non-rapid eye movement
(NREM) sleep, low sleep efficiency and excessive daytime
sleepiness (EDS) (Comella, 2006; Stavitsky et al., 2012).
These sleep problems affect the quality of life in PD
patients in both prodromal and symptomatic stages of
the disease, with patients with poorer quality sleep
experiencing more severe motor and non-motor symp-
toms (Al-Qassabi et al., 2017). Post-mortem analysis of
PD patients’ brains has revealed that α-synuclein pathol-
ogy and neuronal loss in some brain’s regions are associ-
ated with sleep alterations in PD (Braak et al., 2004;
Thannickal et al., 2007). However, as sleep alterations are
present during the prodromal stage of PD, possibly
without pathologically significant neuronal loss, sleep
alterations may become manifest at levels of neurodegen-
eration below the threshold to cause classic PD motor
symptoms and clinical diagnosis. There is a reported
association between sleep fragmentation and Lewy body
pathology and substantia nigra degeneration in patients
without a clinical diagnosis of PD, indicating a potential
for a more generalised link between neurodegeneration
and neuropathology with sleep problems independently
of classic features of parkinsonism and that sleep frag-
mentation may represent a risk factor for progression to
PD (Sohail et al., 2017).

Interestingly, aside from neurodegeneration in the
substantia nigra, loss of non-dopaminergic neurons, such
as hypocretin, norepinephrine and serotonin-releasing
neurons, is also associated with sleep disturbances in PD
patients. For example, the early onset of narcolepsy-like
sleep manifestations, such as frequent wakening and day-
time sleepiness, in PD patients may originate partially
from loss of hypocretin neurons in the hypothalamus,
and the rate of loss of hypocretin neurons increases
with advancing Braak staging of PD neuropathology
(Braak et al., 2003; Thannickal et al., 2007). The results of
a recent study using positron emission tomography (PET)
scanning with a highly selective radioligand for the nor-
adrenergic transporter revealed that the density of nor-
adrenaline transporter decreases in arousal prompting
locus coeruleus and raphe nuclei in PD patients (Doppler
et al., 2021); both these midbrain regions are known to
play key roles in homeostatic sleep regulation and vigi-
lance state setting (Osorio-Forero et al., 2022), and as
such, their perturbation in PD may be of particular signif-
icance for understanding sleep problems in the disease. In
addition, the results of PET scanning in PD patients high-
light the potential roles of serotonergic neurons in sleep
disorders in PD patients, with some regions that are criti-
cal in sleep regulation, such as the ventral striatum, thala-
mus, hypothalamus, raphe nuclei, caudate and putamen
showing lower expression of serotonin transporter in PD
patients with sleep disturbances (Wilson et al., 2018).

RBD is a sleep disorder characterised by a failure of
muscle atonia during REM resulting in dream enactment
and other sleep behaviours (Schütz et al., 2022). RBD
is a common early sleep complaint in neurodegenerative
α-synucleinopathy diseases (Boeve et al., 2001) and is
reported in up to 60% of PD patients; its prevalence is
associated with age, male sex, disease severity, duration
of motor symptoms and dopaminergic therapy (Lee
et al., 2010; Zhu et al., 2017). The result of a multi-centre
study has indicated that RBD is a prodromal marker for
PD, with 73% of RBD patients being diagnosed with neu-
rodegenerative syndromes within 12 years of follow-up,
and 57% of the patients developed Parkinsonism as the
first disease symptom (Postuma et al., 2019). RBD is also
a prognostic factor for PD outcome; patients with RBD
have poorer prognoses in motor and non-motor symp-
toms, autonomic functions and mortality rate compared
with non-RBD patients (Kim et al., 2018; Romenets
et al., 2012). Postulated reasons for the association
between RBD and PD severity include the suggestion that
the underlying neurodegeneration patterns in patients
with or without RBD are different, with RBD being
associated with the shrinkage of critical brain regions
such as the pontomesencephalic tegmentum, hypothala-
mus, thalamus, medullary reticular formation, anterior
cingulate cortex, putamen and amygdala (Boucetta
et al., 2016). It has recently been suggested that the circa-
dian system influences the brainstem circuits implicated
in RBD, and as such, the circadian clock may represent a
novel therapeutic target for RBD (Venner et al., 2019).
Further, recent evidence has suggested that the circadian
regulation of nocturnal dipping of blood pressure is
disrupted in RBD (Terzaghi et al., 2022) and that RBD is
associated with reduced robustness of the diurnal
sleep–wake cycle (Liguori et al., 2021). These findings
suggest that RBD may be associated with core deficits in
circadian function, although further work is clearly
required to better understand the circadian contributions
and consequences of RBD.

Insomnia disorder is characterised by having diffi-
culty falling asleep or staying asleep or experiencing
unrefreshing sleep over a sustained period and has a
reported prevalence of approximately 10% in the general
adult population (Riemann et al., 2022). Insomnia disor-
der is reported in 55% of PD patients (Sobreira-Neto
et al., 2017), with associated risk factors including female
gender, PD duration, anxiety, depression, circadian dys-
function, inadequate use of medications and medication
adverse effects (Gros & Videnovic, 2017; Mizrahi-Kliger
et al., 2022). The frequency of sleep–wake disturbances in
PD progressively increases over time, and insomnia is the
most frequent sleep complaint in PD at any given time
(Z. Xu, Anderson, et al., 2021). PD patients with
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insomnia disorder have longer REM sleep onset latency
compared to those without, suggesting problems relating
to sleep initiation (Sobreira-Neto et al., 2020). Associa-
tions between insomnia symptoms and severity of motor
symptoms in PD are reported to vary from positive associ-
ations (Caap-Ahlgren & Dehlin, 2001) to no association
(Chung et al., 2013), but insomnia symptoms severity
clearly associate with other non-motor symptoms, such
as mood disorders, in PD (S. Xu, Akioma, & Yuan, 2021).
Circadian clocks have been strongly implicated in the
aetiology and symptomatology of insomnia disorder
(Nobre et al., 2021), and as such, circadian dysfunction in
PD may be an important contributor to the high level of
insomnia reported in PD.

OSA is a common sleep disorder in the general popu-
lation (�20% according to the apnea–hypopnea index)
and is characterised by recurring instances of the collapse
of the upper airway during sleep leading to apnea and
hypopnea (Franklin & Lindberg, 2015). OSA has a high
prevalence in PD, with 62% of patients with PD reported
fulfilling the diagnostic criteria (Kaminska et al., 2015).
Risk factors for OSA in PD include high body mass index,
older age and being male (Dziewas et al., 2008). In the
general population, insomnia disorder and OSA are fre-
quently comorbid, and this may well be the case in PD
(Cruz et al., 2021). OSA is described as having a strong
circadian component in its aetiology (von Allmen
et al., 2018), and as such, understanding the roles of cir-
cadian rhythms in PD may contribute to the understand-
ing of the high prevalence of OSA in PD, as well as its co-
morbidity with insomnia disorder.

EDS, which presents as difficulty staying awake or
alert and an increased tendency to fall asleep during the
day, is a common complaint in PD, being reported by
20%–60% of PD patients (Chahine et al., 2017). EDS in
PD is associated with greater age, male gender, postural
instability and gait disorder, depressive symptoms,
cognitive impairment, anxiety, sleep fragmentation at
night, levodopa (L-Dopa) equivalent daily dosage and
pain (Borek et al., 2006; Feng et al., 2021; Gera &
Comella, 2022; Höglund et al., 2015, 2019). EDS is associ-
ated with nigrostriatal degeneration in PD but may also
be associated with dopamine agonist treatments
(Gjerstad et al., 2006; Happe et al., 2007; Paus et al., 2003;
Prudon et al., 2014). EDS risk and severity in PD patients
increase over time, with prevalence in PD being reported
to increase from 5.6% at baseline to 41% after 8 years of
follow-up (Gjerstad et al., 2006). PD patients with EDS
have more severe motor and non-motor PD symptoms
and lower quality of sleep (Xiang et al., 2019), lower qual-
ity of life, more impaired daily functioning and increased
burden of disease (Sobreira-Neto et al., 2017). EDS is
linked with circadian function, possibly through a

reduced circadian drive to sleep during the night and to
arousal during the day (Gandhi et al., 2021). EDS is also
strongly associated with insomnia disorder and OSA and
so may be prominent in PD as a result of co-morbid sleep
problems.

6 | CIRCADIAN RHYTHMS IN
PARKINSON ’S DISEASE

Findings from studies using wrist-worn actigraphy indi-
cate the presence of changes in the daily rhythm of
sleep–wake cycles in PD patients compared to age-
matched controls. Obayashi et al. (2021) show a phase
advance of the sleep–wake cycle in later stage PD and a
decrease in the amplitude of the rhythm due to the pres-
ence of greater nocturnal activity and lower daytime
activity. Brooks et al. (2020) report similar findings,
highlighting the importance of clinical staging in
sleep–wake alterations in PD and the usefulness of acti-
graphy in the identification of such changes. More vari-
ability in the day-to-day sleep–wake rhythm in PD was
found to be associated with poorer executive, visuospatial
and psychomotor functions (Wu et al., 2018). Actigraphy
has also revealed that RBD is associated with sleep–wake
rhythm fragmentation, and these changes serve as predic-
tive indicators of clinically diagnosed α-synucleinopathy
(Feng et al., 2020). Further, Leng et al. (2020) describe
that patients at an elevated risk of developing PD show
lower circadian rhythm amplitude and robustness in the
sleep–wake cycle but did not show changes in acrophase
of the rhythm. As such, it may be that PD is associated
primarily with fragmentation and increased variability of
the daily sleep–wake rhythm and that later stage disease
is associated with an altered circadian phase. In terms of
rhythms in physiological processes, PD patients have
been reported to experience circadian rhythm dysregula-
tions manifested in alterations in diurnal profiles of blood
pressure (71% of PD patients do not express rhythms;
Berganzo et al., 2013).

In the discussion and appraisal of findings from acti-
graphy in PD patients, it should be noted that these
devices and their analytical algorithms are often only val-
idated in healthy individuals, and it is often unclear as to
how their validity translates to studies in patients with
movement disorders and other symptoms that impact on
motor activity (Xue et al., 2022). It has been shown that
actigraphy can be usefully used in PD and validated
against ‘gold-standard’ polysomnography, although it is
not clear which adjustment to the scoring algorithm is
optimal for accuracy and specificity and that there is a
high level of inter-patient variability comparing auto-
graphic scores to polysomnography outcomes (Maglione

ASADPOORDEZAKI ET AL. 7

 14609568, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/ejn.15859 by H

E
A

L
T

H
 R

E
SE

A
R

C
H

 B
O

A
R

D
, W

iley O
nline L

ibrary on [01/01/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



et al., 2013). The placement of the actigraphy device
between dominant and non-dominant arms does not
appear to exert an important effect on outcomes in PD,
although there were differences between upper limb and
lower limb device placement (Prasad & Brown, 2017).
Other studies have sought to pilot novel ambulatory
multi-sensory devices for sleep monitoring in PD, and
such approaches may ultimately provide enhanced sensi-
tivity above traditional actigraphy (Madrid-Navarro
et al., 2019). At present, findings in PD from actigraphy
should be interpreted with the caveat of the limited vali-
dation of such approaches in the specific context of PD.

Polymorphisms in clock genes have been associated
with PD incidence (D’Alessandro et al., 2017; Gu
et al., 2015; Zou et al., 2020). Single-nucleotide polymor-
phisms purported to be associated with PD include ones
in the clock genes CLOCK; BMAL-1; PER1,2; and CRY1,2,
and it has been proposed that alterations in clock genes
might contribute to PD pathogenesis through alteration
of circadian modulation of process such as mitochondrial
bioenergetics, autophagy and alteration in neuroendo-
crine function (Shkodina et al., 2022). Dysregulation in
the expression of circadian genes has been indicated in
PD patients by several studies using approaches such as
expression in peripheral blood mononuclear cells or
ex vivo approaches utilizing assays in primary fibroblasts
derived from PD patients (Breen et al., 2014; Cai
et al., 2010; Pacelli et al., 2019). A negative association
has been reported between the strength of the rhythmic
expression of clock genes and RBD and/or excessive day-
time sleepiness in PD patients (Li et al., 2021). There is
also a reported positive correlation between the nocturnal
expression of BMAL1 and PD symptom severity (Cai
et al., 2010). The precise nature, mechanisms and conse-
quences of alterations in the expression of clock genes in
PD are far from well elucidated, and factors such as
altered epigenetic regulation of clock genes in PD may
play a role in such changes (Lin et al., 2012; Liu
et al., 2008).

Circadian rhythm dysregulation reported in PD is also
manifest in the timing of rhythmic secretion of cortisol
and melatonin and core body temperature rhythms
(Raupach et al., 2020; Zhong et al., 2013). PD patients
were reported to have arrhythmic cortisol profiles or later
cortisol rhythm acrophase and greater area under the
curve of cortisol (Breen et al., 2014; Soares et al., 2019).
For melatonin, PD patients were reported to have lower
rhythm amplitude and area-under-curve (Videnovic
et al., 2014) and lower secretion levels (Breen et al., 2014;
Sanchez-Barcelo et al., 2017; however, a higher plasma
melatonin level [Li et al., 2020] and a blunted peak of the
rhythm [Zuzu�arregui & During, 2020] have also been
reported). Furthermore, there are reported associations

between melatonin levels and PD severity, with increas-
ing symptom severity or hypothalamic volume associated
with more alterations in melatonin secretion profiles
(Breen et al., 2016; Li et al., 2020). Pineal gland calcifica-
tion, loss of hypothalamic grey matter and lower density
of MT1 and MT2 receptors in the amygdala and substan-
tia nigra have been suggested to associate with altered
melatonin output and sleep disturbance in PD (Adi
et al., 2010). A correlation between excessive daytime
sleepiness and lower nocturnal serum melatonin has also
been reported (Uysal et al., 2018).

Assessment of dim light melatonin onset (DLMO), a
biomarker for the circadian clock phase, in PD patients
has demonstrated that the phase angle of entrainment
(the discrepancy between circadian phase and sleep/
activity onset) is larger in PD patients on medication
compared to PD un-medicated patients, indicating a role
for PD medication in alterations of melatonin rhythms
and the relationship between the circadian and the
sleep–wake cycles, in that dopaminergic therapy was
associated with delayed sleep onset relative to the circa-
dian phase as estimated by DLMO (Bolitho et al., 2014).
Alterations in melatonin rhythmicity are also implicated
in RBD in PD (Weissov�a et al., 2018): Although some
studies have failed to observe a significant difference in
the 24-h melatonin rhythm between RBD patients and
healthy controls (Breen et al., 2014), other results indi-
cate that melatonin rhythmicity differs between PD/RBD
patients and controls in that the melatonin rhythm is
delayed by approximately 2 h, in parallel with a 1 h delay
in habitual sleep phase (Weissov�a et al., 2018). These
findings suggest that previously reported inconsistent
findings regarding alteration in the circadian phase in PD
as derived from DLMO or core body measurements
(Bolitho et al., 2014; Videnovic et al., 2014; Zhong
et al., 2021) may be partly due to differing clinical charac-
teristics of the cohorts examined in terms of medication
status, disease severity and presence of RBD.

7 | CIRCADIAN RHYTHMS,
DOPAMINE AND DOPAMINERGIC
THERAPY

As degeneration of substantia nigra dopaminergic neu-
rons is primarily implicated in the pathophysiology of
PD, it is important to understand the links between the
circadian system, dopamine and PD. In considering such
relationships, there is a strong potential for bidirectional-
ity: PD-related loss of dopaminergic neurons may alter
core circadian function, whereas circadian rhythm dis-
ruption may increase PD risk (Leng et al., 2020). Further,
as frontline pharmacotherapy for PD involves drugs that
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act on the dopaminergic system, it is of clinical impor-
tance to appreciate how such treatments may influence,
and be influenced by, the circadian system. Further,
homeostatic sleep changes related to neurodegeneration
in PD and PD drug treatment may themselves interact
with circadian processes to indirectly produce circadian
rhythm abnormalities (Borbély et al., 2016). Although it
is beyond the scope of the current review to overview all
of the circadian dopamine, below, we will focus on some
of the facets of these relationships that may be most perti-
nent for PD.

Dopamine exerts a direct effect on circadian rhythm
regulation as dopamine receptors are expressed widely
within the SCN, and midbrain dopaminergic neurons
innervate the SCN and can induce phase shifts of SCN-
driven behavioural rhythms and mice null for the dopa-
mine receptor Drd1 show altered photic entrainment of
their circadian rhythms in an SCN-dependent manner
(Grippo et al., 2017). Treatment of the SCN in vitro/
ex vivo with dopamine or dopaminergic agonists can
induce circadian changes (Grippo & Güler, 2019), and
dopamine treatment can also alter the rhythmic expres-
sion of clock genes outside of the SCN; for example,
dopamine treatment decreases PER1 and PER2 rhythmic-
ity as well as CRY1 and PER genes expression in human
dermal fibroblast cultures (Faltraco et al., 2021). As such,
there are reasonably strong indicators that dopamine can
alter behavioural and molecular circadian processes, and
as such, the loss of dopaminergic signalling in PD may
directly contribute to alterations in circadian rhythms.

The next issue is to appreciate how the circadian sys-
tem may influence dopamine signalling and how such
processes may be related to PD pathogenesis/physiology.
Substantia nigra slice cultures display rhythmic expres-
sion of per2, indicating the presence of at least a semi-
autonomous circadian clock in the SNc (Natsubori
et al., 2014). Dopamine biosynthesis displays circadian
rhythmicity through the cyclic expression of tyrosine
hydroxylase (th), which is regulated by competition
between rev-erbα and nuclear receptor-related 1 protein
(nurr1) (Chung et al., 2014; Kim et al., 2017). Dopamine
has two main types of G-proteins coupled receptors: Gs-
coupled (D1 and D5) and Gi-coupled receptors (D2, D3
and D4) (Beaulieu & Gainetdinov, 2011). In addition to
the diurnal rhythm in dopamine release (Poceta
et al., 2009), dopamine receptors also may have a circa-
dian rhythm that relies mostly on the site of receptor
expression. For example, the D3 receptor has a circadian
variation in the ventral striatum (Myslivecek, 2021). As
such, there are a number of points in the nigrostriatal
pathway that may operate under control by the circadian
clock. There are strong indications that the mesolimbic,
mesocortical and other dopaminergic pathways are

strongly influenced by the circadian system (Pradel
et al., 2022), and such influences may be important in the
consideration of conditions such as schizophrenia
(Ashton & Jagannath, 2020).

PD treatment is primarily aimed at symptomatic
relief, with the mainstay of clinical management of PD
being L-Dopa usually in combination with an inhibitor of
aromatic amino acid decarboxylase enzyme, which
reduces the required L-dopa dose. Treatment regimens
are titrated to disease stage, symptom severity and indi-
vidual patient profile (Ahlskog, 2011; Pezzoli &
Zini, 2010). L-Dopa is absorbed in the small intestine,
taken up by striatal terminals from the substantia nigra
and converted into dopamine by intraneuronal enzymes
(Pezzoli & Zini, 2010). Oral dopamine agonists such as
pramipexole and ropinirole are associated with risks of
sedation and sleep attacks (Frucht et al., 1999); therefore,
they are not recommended in PD patients with sleep–
wake disorders. It has been observed that other drug
treatments that target the dopaminergic system, such as
antipsychotics, impact circadian processes (Coogan
et al., 2011), and dopamine also impacts circadian
rhythms (Faltraco et al., 2021); such findings provide a
context to appreciate the impact of pharmaceutical drug
therapies on circadian processes in PD.

Some investigations of L-Dopa’s impact on circadian
rhythms in PD have revealed that PD patients with L-
Dopa treatment display an advanced circadian phase
(Bordet et al., 2003; Martino et al., 2018) and levodopa
treatment may be an important contributor to circadian
rhythm disruptions in PD (Figure 3, Liu et al., 2021). L-
Dopa treatment is strongly associated with sleep com-
plaints such as insomnia, daytime somnolence, vivid
dreams, nocturnal vocalisation and myoclonus (Nausieda
et al., 1982). The timing of treatment may be important
as it has been demonstrated that administration of levo-
dopa at night significantly delays its absorption rate and
reduces the maximum concentrations of levodopa at
night, suggesting that the circadian system has a strong
effect on gastric emptying and consequently the absorp-
tion rate of L-Dopa (Nyholm et al., 2010). From pre-
clinical studies, L-Dopa administration once daily at
15:00 for 21 consecutive days in an animal model of PD
(6-OHDA-treated rats) improves motor deficiencies but
also leads to phase delays and a lower amplitude in the
expression of clock genes in the SCN and striatum whilst
also eliminating the rhythm of striatal dopamine and
increasing the average amount of dopamine in the stria-
tum (Li et al., 2017). Conversely, there is some evidence
that lower L-Dopa metabolites in cerebrospinal fluid
(CSF) are associated with sleep complaints (Chong
et al., 2022). Thus, the dose and timing of L-Dopa admin-
istration could possibly be optimized based on
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chronobiology to mitigate undesirable effects on circa-
dian rhythms and sleep.

An important aspect of L-Dopa therapy is the ‘early
morning off (EMO)’ effect, wherein symptoms recur
whilst medication is wearing off in the morning and
occurs in more than 50% of PD patients receiving dopa-
minergic treatment (Han et al., 2020). Delay in time to
ON (the symptoms improved after taking the medication)
is the strongest predictor of motor function fluctuations
in PD patients using L-Dopa treatment (Han et al., 2020;
Stocchi et al., 2019). Furthermore, non-motor symptoms
fluctuations including pain, paresthesia, akathisia, tight-
ening, tingling sensations and sensory dyspnea are fre-
quent in PD patients with both longer duration of disease
onset and higher L-Dopa dose (Bayulkem & Lopez, 2011;
Brun et al., 2014; Raudino, 2001; Witjas et al., 2002).
Appreciating how circadian and sleep factors influence
L-Dopa pharmacokinetics and therapeutic actions may
be helpful in identifying patients at the greatest risk for
EMO and mitigating such risks. For example, there is a
reported association between higher sleep efficiency and
lower sleep fragmentation with shorter early-morning
akinesia, an association that is independent of confound-
ing factors such as age, disease stage, daily activity level,
sleep medications, levodopa equivalent dose and RBD
symptoms (Kataoka et al., 2020). It may be that the effect
of better sleep quality and a subsequent reduction of
morning akinesia is related to the upregulation of dopa-
mine D2 receptors and a reduction in dopamine release
during night-time, allowing for more dopamine release in
the morning leading to lower morning akinesia (Kalia &
Lang, 2015). Conversely, if L-Dopa levels decline during
the night, low morning dopamine levels and EMO may
occur (Swope, 2004). Thus, circadian rhythm regulation,
good quality sleep and appropriate timing of L-Dopa
administration may reduce the incidence of EMO.

If L-Dopa treatment is associated with sleep and cir-
cadian rhythm disturbance, then chronotherapy, such as
the use of light therapy and/or melatonin treatment, may
be useful treatment adjunct to minimise such effects
(Fifel & Videnovic, 2019; Smolensky et al., 2016). Light
therapy in PD patients receiving L-dopa treatment was
reported to improve sleep, motor function and depression
indicating that part of the circadian dysfunction in PD
may be due to pharmacotherapy (Endo et al., 2020; Sun
et al., 2022). Indeed, evidence that such an effect arises
from the amelioration of circadian dysfunction is sup-
ported by findings of rapid attenuation of oscillations in
in vitro clock genes expression in mouse immortalized
SCN neurons following chronic dopaminergic treatment
(Endo et al., 2020). Further investigation of the potential
of chronotherapy for the alleviation of disease-and-treat-
ment-related sleep and motor symptoms in PD is

warranted as the current evidence base may be of suffi-
cient quality to draw clinically useful conclusions (Huang
et al., 2021).

8 | CIRCADIAN RHYTHMS IN
ANIMAL MODELS OF PD

Conducting circadian rhythm research in human popula-
tions brings many challenges, including achieving ade-
quate statistical power, clinical heterogeneity of study
samples, limitations on the period of sleep–wake moni-
toring and the high demand characteristics for sampling
regimes required for assays of rhythmic biomarkers, envi-
ronmental variables and social factors and transcultural
differences in daily schedules and norms and difficulties
in attaining mechanistic insights or establishing causality
in relationships (Blatter & Cajochen, 2007). As such, the
coordination of clinical studies and those utilizing pre-
clinical models has significant potential to advance the
understanding of the interplay of PD with the circadian
system and sleep (Hunt et al., 2022; Mizrahi-Kliger
et al., 2022). Pre-clinical investigations allow for tight
control of environmental and genetic factors, in-depth
circadian phenotyping at the behavioural, physiological
and molecular levels, relative ease of longitudinal analy-
sis and assessment of pharmacological, environmental
and behavioural interventions that would be highly chal-
lenging in human studies. In chronobiology research, the
use of pre-clinical models has been essential to the field
and has led to important translation to human health sci-
ence; for example, the 2017 Nobel Prize for Physiology or
Medicine was awarded for fundamental work on the
genetic basis of the circadian clock in Drosophila Melano-
gaster that translated to the understanding of the genetic
basis of familiar circadian rhythm sleep disorders
(Huang, 2018). As such, there is burgeoning interest in
the use of animal models for investigating sleep and cir-
cadian function in PD (Table 1; [Hunt et al., 2022]).

Studies on a transgenic mouse model of PD that over-
expressed the SNCA gene that encodes α-synuclein dem-
onstrated some alterations in sleep and circadian rhythm
parameters, including a reduction in the firing rate of
SCN neurons, dampened circadian rhythms with ageing
and disease progression and a significant increase in
sleep onset latency following a lower power in circadian
rhythm (Kudo et al., 2011). The same model was also
reported to display alterations in sleep homeostasis,
including a reduction in REM sleep over a 24-h period,
increased NREM sleep during the quiescent phase and
alterations in oscillatory EEG activity (McDowell
et al., 2014). Some studies in the Tfam genetic-based
(MitoPark) model study found no remarkable changes in
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sleep latency (Langley et al., 2021), whereas others have
shown that MitoPark mice have lower amplitude and
higher rate of fragmentation in circadian rhythms and
behavioural arrhythmia in constant conditions with age-
ing that develops in parallel with the progressive degen-
eration of midbrain dopaminergic neurons (Fifel &
Cooper, 2014). Gradual reduction of endogenous dopa-
mine levels and lower dopamine D2 receptors in dopami-
nergic neurons are reported as responsible for such
alterations in circadian rhythms in the MitoPark model
(Branch et al., 2016).

The effect of age-related degeneration of dopaminer-
gic neurons on the lengthening of the circadian period in
the absence of circadian amplitude alteration was shown
in a study with the neurotoxic MPTP mouse model, indi-
cating that PD-like circadian phenotypes might not be
confined to decreased rhythm amplitude and/or robust-
ness (Tanaka et al., 2012). Changes in the expression of
clock genes have been shown in an animal model of PD
employing 6-OHDA, with levels of expression of bmal1,
per2 and clock genes, which were decreased in this
model, but the transcription of rorα was increased and

TAB L E 1 Circadian rhythm changes in animal models of PD

Model Intervention Species Circadian phenotype

Genetic based
models

PARK & PINK1
mutant

Drosophila
Melanogaster

Greater sleep fragmentation and lower
circadian power (Valadas et al., 2018)

LRRK2 mutant Mouse Lower Clock expression and reduced REM,
NREM and total sleep time with an increased
wake time in transgenic mice compared to
control (Liu et al., 2022)

α-SYN overexpression Mouse Increased sleep onset latency, lower power in
circadian rhythm (Kudo et al., 2011), increased
NREM sleep, decreased REM sleep and altered
oscillatory EEG activity (McDowell
et al., 2014)

Mutant α-SYN
(A53T)

Mouse Reduced NREM sleep and reduced total sleep
time (Peters et al., 2020)

MitoPark Mouse Increased sleep onset latency (Langley
et al., 2021) and reduced circadian rhythm
amplitude and stability (Fifel & Cooper, 2014;
Peters et al., 2020)

Neurotoxin based
models

MPTP Mouse Lengthened free-running period (Tanaka
et al., 2012), alterations of clock genes
expression and reduced amplitude of
circadian rhythm in locomotor activities
(Hayashi et al., 2013)

Non-human
primates

Sleep alterations during the day and night
(Choudhury & Daadi, 2018), loss of rhythmic
locomotor outputs without environmental
cues (Fifel et al., 2014) and no alteration in
circadian rhythm (Franke et al., 2016)

6-OHDA Rat Alterations in clock genes expression
(Li et al., 2017; Wang et al., 2018), in
parameters of locomotor circadian rhythm
(Souza et al., 2018), and in circadian rhythms
of blood pressure and body temperature
(Yang et al., 2021)

Rotenone Rat Alterations in clock genes expression (Mattam &
Jagota, 2015), reduced rhythm amplitudes and
increased fragmentation in rhythm
(Lax et al., 2012)

Abbreviations: α-SYN, α-synuclein; 6-OHDA, 6-hydroxydopamine; EEG, electroencephalogram; LRRK2, leucine-rich repeat kinase 2; NREM, non-rapid eye
movement; MPTP, 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine; PARK, Parkin; PINK1, PTEN-induced kinase 1; REM sleep, rapid eye movement sleep; TST,
total sleep time.
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acetylation of bmal1 promoter was increased due to the
reduction in NAD-dependent deacetylase sirtuin-1
(Wang et al., 2018). In addition, it has been reported that
in 6-OHDA lesioned rats, the loss of dopaminergic
neurons in the substantia nigra results in a phase
advance of circadian locomotor rhythms (Souza
et al., 2018), as well as a reduction in levels of
BMAL1 transcription (Li et al., 2017). In the rotenone
lesion model of PD, changes in the rhythmic
expression of clock genes in the SCN, such as a phase
delay in bmal1 or a phase advance in per1 expression
(Mattam & Jagota, 2015), and lower amplitude of
locomotor and body temperature rhythms and greater
rhythm fragmentation (Lax et al., 2012) suggest a level of
circadian rhythm dysfunction that may be of
functional significance in the overall phenotype of the
model. Studies in neurotoxic non-human primate
models of PD reveal alterations in sleep architecture
including disturbed REM sleep and excessive
daytime sleepiness (Hyacinthe et al., 2014), sleep attacks
and reduced activity during the day, higher sleep
fragmentation and sleep onset latency at night
(Choudhury & Daadi, 2018) and reduced amplitude and
power of circadian rhythms in activity (Fifel et al., 2014);
however, normal circadian rhythms are reported in
some non-human primate models of PD, whereas the
number and total duration of daytime activity increased
in the absence of detectable Parkinson pathology
(Franke et al., 2016).

An important question that may be partially
answered using pre-clinical models is the extent to
which circadian rhythm changes in PD models
resemble those abnormalities reported in pre-clinical
models of other neurodegenerative conditions (Nassan &
Videnovic, 2022). For example, many models of other
neurodegenerative conditions such as Alzheimer’s
disease and Huntington’s disease display circadian
rhythm fragmentation/decreased circadian amplitude as
a prominent feature, suggesting that there might be a
commonality in the mechanisms resulting in such
circadian rhythm changes, such neuroinflammation
(Lananna & Musiek, 2020). It may be that only through
the examination of several different PD models and the
identification of phenotypic commonalities between
these models, in terms of sleep and circadian function,
can translatable insight be derived to enhance and inform
the study of sleep and circadian rhythms in clinical PD
populations. Further, given the high level of co-morbidity
of PD with other neurodegenerative conditions, cross-
comparison of animal models of PD and other neurode-
generative diseases may provide further insight into cir-
cadian rhythms and sleep disturbances across the clinical
spectrum of PD.

9 | FUTURE RESEARCH AGENDA

Circadian perspectives are gradually becoming a main-
stream consideration in medicine (Kramer et al., 2022).
As such, the examination of chronobiological processes
and the application of chronotherapeutic approaches
may be of clinical utility in the management of PD (Lee
et al., 2021). However, to advance this important area, a
conceptually and logistically coherent approach will be
required to formulate and address key questions. We pro-
pose that some of these issues are as follows:

1. To systematically describe on a multi-modal level the
nature of circadian rhythm changes that precede, and
occur in, PD. Such assessments may involve longitudi-
nal samples in well-powered studies that embrace
clinical heterogeneity rather than try to ‘control’ it
away. Further, delineating the circadian impacts of
PD pathology from the circadian impacts of PD medi-
cation will be key in identifying practical steps that
may be taken to improve circadian function and sleep
health in PD patients.

The literature on circadian rhythms and PD, like in many
adjacent areas, is currently dominated by relatively small
studies with inconsistent protocols between studies
(e.g., Huang et al., 2021). Multi-centred interdisciplinary
work may address these concerns by enabling large-scale
work, although of course funders will play a key role in
enabling this. Secondary analysis of the data sets arising
from prospective studies, especially in those that have
included actigraphy measures at some point, may also be
of use (Sambou et al., 2021; Windred et al., 2021). How-
ever, the utility of such analyses will be constrained by
the construction of the protocols for these large cohorts;
for example, the UK Biobank has actigraphy from 7 days
from a sub-sample of participants, whereas bespoke stud-
ies would be designed to incorporate more extensive acti-
graphy data. In terms of the assessment of circadian
function, the use of new circadian assessment
approaches, such as single time point molecular ascer-
tainment of the circadian phase (Wittenbrink
et al., 2018), may be usefully deployed alongside more
established techniques.

2. Clinical studies should be systemically coordinated
with studies in pre-clinical PD animal models. Animal
models have great potential to augment and comple-
ment clinical studies, but their use needs to be care-
fully considered in the design of studies. Such work
may include the adoption of standardized protocols
across collaborating sites, the use of several models to
uncover commonalities that may be the most relevant

12 ASADPOORDEZAKI ET AL.

 14609568, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/ejn.15859 by H

E
A

L
T

H
 R

E
SE

A
R

C
H

 B
O

A
R

D
, W

iley O
nline L

ibrary on [01/01/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



to PD rather than ‘one off’ observations in single
models that may not well recapitulate the clinical pic-
ture of PD, the use of both male and female mice to
avoid bias and the use of mice across all life stages.
Furthermore, for the use of transgenic mouse model
consideration needs to be given to the background
strain, as there can be large differences in circadian
function in wild-type animals between commonly
used in-bred strains (Schwartz & Zimmerman, 1990).
Pre-clinical models have significant potential to reveal
the nature of the links between circadian function,
sleep, neurodegeneration, neuroinflammation, motor
and non-motor PD symptoms.

3. The circadian system is a highly distributed one that
exerts a pervasive influence across physiological sys-
tems and as such may impact PD through a variety of
systems and processes. For example, much attention is
currently directed to the role of the gut microbiome in
brain health and disease (Cryan & Mazmanian, 2022)
and more specifically the role of the gut microbiota in
PD (Dong et al., 2022). The gut flora is under
strong circadian control and contributes to regulating
whole-organism circadian rhythms (Teichman
et al., 2020). Future work may usefully explore these
interactions for novel insight into the aetiology and
symptomatology of PD. Another interesting facet that
may be explored is the link between type 2 diabetes
and PD because type 2 diabetes patients are at
increased risk of developing PD (Xxxx et al., 2022).
Circadian rhythms are recognized as significant in type
2 diabetes, as circadian processes are central to the tem-
poral organization of metabolism (Kelly et al., 2020).
Furthermore, PD and diabetic complications such as
retinopathy may share overlapping pathophysiological
changes in circadian rhythms, α-synuclein aggregation,
dopaminergic system, neurotrophic factors release and
Wnt signalling (Zhang et al., 2022). Therefore, future
investigations may usefully explore the nature of the
circadian-metabolic health-PD axis.

4. How does real-world circadian disruption affect PD
risk? It is recognized that a large proportion of the
population lives under social and working conditions
that result in circadian rhythm disturbance (Lunn
et al., 2017). For example, approximately one fifth of
workers are shift workers, which results in the dysre-
gulation of circadian processes and a heightened risk
of common chronic disorders (Boivin et al., 2022).
Further, non-shift workers may experience circadian
dysfunction because of conflicts between internal bio-
logical time and social time (‘social jetlag’), which is
implicated as a risk factor for poorer physical and psy-
chological health (Caliandro et al., 2021). Determina-
tion if either shift work or social jetlag serves as risk

factors for developing PD would have significant pub-
lic health implications.

5. Further, develop and validate actigraphic and wear-
able device procedures and scoring algorithms for
their use specifically in PD. As most actigraphic scores
are validated in healthy cohorts, it is currently unclear
as to how the motor symptoms of PD may impact
measures derived from those processes. As such, there
should be a focussed effort on validating established
actigraphic procedures and new and emerging tech-
nologies specifically within the clinical context of PD.

10 | CONCLUSION

Circadian rhythm disturbances in PD appear to be
common, may be important contributors to other sleep
disorders and problems in PD such as insomnia and
excessive daytime sleepiness and may be exacerbated by
dopaminergic therapy for PD. Such circadian dysfunc-
tions may be tractable through the application of
circadian medicine, but to advance this important area, a
coherent research agenda will be needed to develop the
depth and quality of the research evidence base to the
point that clinical practice can be informed and advanced
for better patient outcomes.
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