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Abstract

The Black and White Travelling Salesman Problem (BWTSP) constitutes a variant of the Travelling
Salesman Problem (TSP). Similarly to the TSP, it is formally defined on a directed graph with a set of
vertices V , a set of arcs A and each arc has an associated cost. Each vertex from V is coloured as either
black or white, thus V can be partitioned into two subsets W and B, the former containing all white
nodes in V and the latter containing all the black ones. The objective of the BWTSP is to determine the
Hamiltonian circuit with minimal cost in the graph which satisfies two conditions: it must not contain
more than Q white nodes between two consecutive black vertices, and the total length between two
consecutive black vertices must not exceed a value L. The BWTSP has real-life applications in the
design of telecommunication networks and in the scheduling of aircraft operations.

In the computational complexity theory, the BWTSP is classified as an NP-hard problem. This
motivates the development of heuristic methods in order to obtain feasible solutions with an associated
value close to the global optimum within a reasonable amount of computational time. Our goal is to
develop heuristics which can be applied on both symmetric and asymmetric instances of the BWTSP, so
that these methods can be used to solve more real-life problems. Due to the additional constraints of the
BWTSP in comparison to the classical TSP, determining an initial feasible solution for a given instance
of the problem is not a simple task, specially when the values of both parameters Q and L are tight.
Therefore, we propose three constructive heuristics for the BWTSP in this dissertation.

An Iterated Local Search (ILS) algorithm was proposed as an improvement heuristic. In order to
justify our choice of parameters for the algorithm, we compared the performance of the ILS considering
different combinations of parameters. Furthermore, we studied in more detail the performance of the ILS
we proposed and analysed the differences regarding the quality of the final solutions between symmetric
and asymmetric instances.

Keywords: Black and White Travelling Salesman Problem, Combinatorial optimization, Heuristic
methods, Iterated local search.
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Resumo

O Black and White Travelling Salesman Problem (doravante denotado por BWTSP) constitui uma vari-
ante do Problema do Caixeiro-Viajante e, à sua semelhança, é formalmente definido num grafo orientado
com um conjunto de vértices V e um conjunto de arcos A, sendo que cada arco tem um custo associado.
Nesta variante, contudo, associa-se a cada vértice do grafo uma de duas cores, branco ou preto. Assim,
temos que V pode ser particionado em dois subconjuntos W e B, onde o primeiro contém todos os
nodos brancos de V e o último contém apenas nodos pretos. O objetivo do BWTSP é determinar um
circuito Hamiltoniano no grafo considerado de modo a que não existam mais do que Q nodos brancos
entre cada dois vértices pretos consecutivos e que não exista mais do que L unidades de comprimento
entre cada dois nodos pretos consecutivos no mesmo circuito, sendo que se considera que os parâmetros
Q e L são previamente conhecidos. Este problema possui aplicações práticas no desenho de redes de
telecomunicações e no planeamento de rotas, principalmente de meios de transporte aéreos. Na teoria da
complexidade computacional, o BWTSP é um problema de otimização combinatória classificado como
NP-difı́cil. A complexidade deste problema motiva o desenvolvimento de algoritmos não-exatos que
determinem uma solução admissı́vel num intervalo de tempo razoável e que, na ausência de garantias de
otimalidade, seja uma solução com um valor próximo do ótimo global.

O BWTSP não só é uma variante do Problema do Caixeiro-Viajante relativamente recente na lit-
eratura, já que o primeiro artigo conhecido que o aborda tem menos de duas décadas, como é pouco
estudado no universo da Investigação Operacional. A maioria dos artigos cientı́ficos conhecidos procu-
ram propor métodos exatos eficientes para a obtenção de um ótimo e o leque de métodos heurı́sticos
conhecidos para o problema é muito reduzido. Adicionalmente, todas as heurı́sticas desenvolvidas ao
longo dos anos relativas ao BWTSP apenas são aplicáveis a instâncias simétricas. Nesse sentido, este
trabalho pretende dar o seu contributo ao desenvolver mais heurı́sticas construtivas e melhorativas para
o problema. Pretende-se também que todas as heurı́sticas desenvolvidas no âmbito desta dissertação
possam ser aplicáveis a instâncias assimétricas de modo a que possam dar resposta a mais casos reais.

Uma heurı́stica construtiva tem como objetivo determinar uma solução inicial admissı́vel para o
problema a que é aplicada, consumindo preferencialmente a menor quantidade de tempo computacional
possı́vel. Devido às restrições adicionais que o BWTSP contém relativamente ao clássico Problema
do Caixeiro-Viajante, encontrar uma solução admissı́vel por si só não é uma tarefa simples, sobretudo
quando os limites superiores de cardinalidade (Q) e comprimento (L) de uma instância são apertados.
Portanto, considerou-se oportuno no âmbito desta dissertação propor três métodos heurı́sticos distintos
para obtenção de soluções iniciais admissı́veis para o BWTSP e efetuar um estudo comparativo sobre os
seus respetivos tempos computacionais, a avaliação do sucesso na obtenção de soluções admissı́veis e
a qualidade das soluções iniciais que cada uma das três heurı́sticas fornece, comparativamente ao valor
ótimo ou a um limite inferior do mesmo. As três heurı́sticas construtivas propostas nesta dissertação
provêm de adaptações a algoritmos conhecidos na literatura para o Problema do Caixeiro-Viajante, em
particular as heurı́sticas Nearest Neighbor (em português é conhecida como a “Heurı́stica Do Vizinho
Mais Próximo”), Farthest Insertion e Random Insertion. Após a construção de um ciclo Hamiltoniano
inicial, cada um dos três algoritmos propostos contém uma fase de correção onde se procura eliminar
eventuais violações das restrições de cardinalidade e de comprimento. Isto é, caso exista algum segmento
entre dois nodos pretos consecutivos com mais do que Q nodos brancos ou com mais do que L unidades
de comprimentos, efetuam-se pequenas alterações à solução para a tornar admissı́vel.

Posteriormente, procurou-se desenvolver um algoritmo eficiente de Iterated Local Search (ILS) como
heurı́stica melhorativa. Este procedimento revela-se muito interessante pois permite aliar um método
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de pesquisa local inicial com perturbações sucessivas, nas quais é aplicado novamente o método de
pesquisa local selecionado e, assim, mais mı́nimos locais podem ser visitados no decorrer do algo-
ritmo melhorativo. Para conseguir tomar partido das perturbações é necessário garantir a combinação
certa de parâmetros de modo a assegurar que não se visite repetidamente o mesmo mı́nimo local. Uma
condição importante para garantir que tal não acontece é escolher uma perturbação “forte”, que neste
contexto significa uma perturbação que não consegue ser facilmente desfeita pelo algoritmo de pesquisa
local utilizado. A perturbação escolhida neste trabalho tem uma componente aleatória, onde ⌈100ω⌉%,
0 < ω < 1, dos nodos do ciclo Hamiltoniano considerado são selecionados aleatoriamente para serem
retirados do mesmo. Efetua-se uma permutação ao conjunto de nodos selecionados e, pela mesma ordem
em que estes aparecem na permutação, são inseridos na aresta do ciclo que conduz ao menor aumento
de distância total. Neste contexto, o parâmetro ω apelida-se de “força da perturbação”, já que à me-
dida que o seu valor é aumentado também aumenta o número de componentes alteradas na solução.
No estudo computacional, foi tomada a decisão de testar dois valores diferentes considerados razoáveis
para o parâmetro ω e, para além disso, também se procurou afinar qual o número máximo adequado de
iterações, denotado por MaxIt, para o algoritmo de ILS desenvolvido. Após uma escolha devidamente
fundamentada para estes dois parâmetros, avaliou-se a eficiência da heurı́stica de ILS.

No estudo computacional foi possı́vel concluir que a nossa amostra de instâncias assimétricas era
mais vulnerável a alterações nos parâmetros ω e MaxIt do que as instâncias simétricas. Os resultados do
ILS em instâncias assimétricas também se mostraram mais dependentes da qualidade da solução inicial
considerada. Estas duas observações conjugadas levaram-nos a concluir que o método de pesquisa local
incorporado no algoritmo de ILS tem mais impacto em instâncias simétricas do que em assimétricas, já
que no primeiro conjunto de instâncias a obtenção de bons resultados não depende tanto da quantidade e
qualidade das perturbações. De um modo geral, a heurı́stica melhorativa de ILS mostra-se eficiente pois
permite diminuir significativamente o valor inicial considerado num tempo computacional simpático
para os dois tipos de simetria, mas há que realçar que os resultados finais tendem a ser mais próximos do
ótimo no caso simétrico.

Palavras-chave: Black and White Travelling Salesman Problem, Otimização combinatória, Métodos
heurı́sticos, Pesquisa local iterada.

iv





Contents

1 Introduction 1
1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Literature review . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.3 Scientific contribution and dissertation overview . . . . . . . . . . . . . . . . . . . . . . 3

2 The Black and White Travelling Salesman Problem 6
2.1 Problem formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

3 Constructive heuristics for the BWTSP 11
3.1 Adapted Nearest Neighbor heuristic . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
3.2 Adapted Farthest Insertion heuristic . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
3.3 Adapted Random Insertion heuristic . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
3.4 Establishing feasibility . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

3.4.1 Correcting cardinality infeasibility . . . . . . . . . . . . . . . . . . . . . . . . . 16
3.4.2 Correcting length infeasibility . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

3.5 Final observations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

4 Iterated Local Search heuristic 24
4.1 Neighborhoods and Local Search procedure . . . . . . . . . . . . . . . . . . . . . . . . 25
4.2 Perturbation method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
4.3 Final observations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

5 Computational study 33
5.1 Test instances . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

5.1.1 Optimal values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
5.2 Comparative study of the constructive heuristics . . . . . . . . . . . . . . . . . . . . . . 41
5.3 Testing parameters for the ILS algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . 49
5.4 Performance of the ILS heuristic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

6 Conclusions 65
6.1 Future work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

A Characterization of instances 72

B Detailed results of the tests on the parameters of the ILS algorithm 78
B.1 Results for ω = 1/3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

B.1.1 Results for a maximum of 1000 iterations . . . . . . . . . . . . . . . . . . . . . 78

vi



CONTENTS

B.1.2 Results for a maximum of 2500 iterations . . . . . . . . . . . . . . . . . . . . . 95
B.1.3 Results for a maximum of 5000 iterations . . . . . . . . . . . . . . . . . . . . . 112

B.2 Results for ω = 1/2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129
B.2.1 Results for a maximum of 1000 iterations . . . . . . . . . . . . . . . . . . . . . 129
B.2.2 Results for a maximum of 2500 iterations . . . . . . . . . . . . . . . . . . . . . 146
B.2.3 Results for a maximum of 5000 iterations . . . . . . . . . . . . . . . . . . . . . 163

vii



List of Figures

2.1 Example of a Hamiltonian circuit. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

3.1 Example of a path segment P with three white vertices and all the feasible 2-exchange
moves on P, which are different from P. . . . . . . . . . . . . . . . . . . . . . . . . . . 19

4.1 On the left, a feasible solution s for an instance of the BWTSP. On the right, an example
of a solution in NB(s). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

4.2 On the left, a feasible solution s for an instance of the BWTSP. On the right, an example
of a solution in NinterW (s). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

4.3 On the left, a feasible solution s for an instance of the BWTSP. On the right, an example
of a solution in NintraW (s). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

4.4 On the left, a feasible solution s for an instance of the BWTSP. On the right, an example
of a solution in Npaths(s). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

4.5 On the left, a feasible solution s for an instance of the BWTSP. On the right, an example
of a solution in N2−exchange(s). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

5.1 Boxplots of the obtained gaps for symmetric instances. . . . . . . . . . . . . . . . . . . 51
5.2 Boxplots of the obtained gaps for asymmetric instances. . . . . . . . . . . . . . . . . . . 52

viii



List of Tables

5.1 Optimal values of the symmetric instances . . . . . . . . . . . . . . . . . . . . . . . . . 35

5.2 Optimal values of the asymmetric instances . . . . . . . . . . . . . . . . . . . . . . . . 39

5.3 Statistics for the comparative study of the ANN, AFI and ARI heuristics . . . . . . . . . 42

5.4 Average CPU time, in seconds, to obtain feasible solutions through the ANN, AFI and
ARI heuristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

5.5 Different combinations of parameters (ω,MaxIt) to test for the ILS heuristic. . . . . . . 49

5.6 Average CPU time, in seconds, to run the ILS heuristic for different combinations of
parameters. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

5.7 Computational results of the ILS algorithm, considering the determined solutions by the
three different constructive heuristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

5.8 Gaps of the upper bounds, as well as the best solutions we obtained through the ILS
algorithm, relatively to the lower bound. . . . . . . . . . . . . . . . . . . . . . . . . . . 60

A.1 Characterization of every instance we used for the computational tests in the dissertation. 72

B.1 Computational results, for ω = 1/3 and MaxIt = 1000, using the solution obtained
through the ANN heuristic as the initial solution. . . . . . . . . . . . . . . . . . . . . . 78

B.2 Computational results, for ω = 1/3 and MaxIt = 1000, using the solution obtained
through the AFI heuristic as the initial solution. . . . . . . . . . . . . . . . . . . . . . . 84

B.3 Computational results, for ω = 1/3 and MaxIt = 1000, using the solution obtained
through the ARI heuristic as the initial solution. . . . . . . . . . . . . . . . . . . . . . . 89

B.4 Computational results, for ω = 1/3 and MaxIt = 2500, using the solution obtained
through the ANN heuristic as the initial solution. . . . . . . . . . . . . . . . . . . . . . 95

B.5 Computational results, for ω = 1/3 and MaxIt = 2500, using the solution obtained
through the AFI heuristic as the initial solution. . . . . . . . . . . . . . . . . . . . . . . 101

B.6 Computational results, for ω = 1/3 and MaxIt = 2500, using the solution obtained
through the ARI heuristic as the initial solution. . . . . . . . . . . . . . . . . . . . . . . 106

B.7 Computational results, for ω = 1/3 and MaxIt = 5000, using the solution obtained
through the ANN heuristic as the initial solution. . . . . . . . . . . . . . . . . . . . . . 112

B.8 Computational results, for ω = 1/3 and MaxIt = 5000, using the solution obtained
through the AFI heuristic as the initial solution. . . . . . . . . . . . . . . . . . . . . . . 118

B.9 Computational results, for ω = 1/3 and MaxIt = 5000, using the solution obtained
through the ARI heuristic as the initial solution. . . . . . . . . . . . . . . . . . . . . . . 123

B.10 Computational results, for ω = 1/2 and MaxIt = 1000, using the solution obtained
through the ANN heuristic as the initial solution. . . . . . . . . . . . . . . . . . . . . . 129

ix



LIST OF TABLES

B.11 Computational results, for ω = 1/2 and MaxIt = 1000, using the solution obtained
through the AFI heuristic as the initial solution. . . . . . . . . . . . . . . . . . . . . . . 135

B.12 Computational results, for ω = 1/2 and MaxIt = 1000, using the solution obtained
through the ARI heuristic as the initial solution. . . . . . . . . . . . . . . . . . . . . . . 140

B.13 Computational results, for ω = 1/2 and MaxIt = 2500, using the solution obtained
through the ANN heuristic as the initial solution. . . . . . . . . . . . . . . . . . . . . . 146

B.14 Computational results, for ω = 1/2 and MaxIt = 2500, using the solution obtained
through the AFI heuristic as the initial solution. . . . . . . . . . . . . . . . . . . . . . . 152

B.15 Computational results, for ω = 1/2 and MaxIt = 2500, using the solution obtained
through the ARI heuristic as the initial solution. . . . . . . . . . . . . . . . . . . . . . . 157

B.16 Computational results, for ω = 1/2 and MaxIt = 5000, using the solution obtained
through the ANN heuristic as the initial solution. . . . . . . . . . . . . . . . . . . . . . 163

B.17 Computational results, for ω = 1/2 and MaxIt = 5000, using the solution obtained
through the AFI heuristic as the initial solution. . . . . . . . . . . . . . . . . . . . . . . 169

B.18 Computational results, for ω = 1/2 and MaxIt = 5000, using the solution obtained
through the ARI heuristic as the initial solution. . . . . . . . . . . . . . . . . . . . . . . 174

x



List of Acronyms

TSP Travelling Salesman Problem

ATSP Asymmetric Travelling Salesman Problem

BWTSP Black and White Travelling Salesman Problem

ARP Aircraft Rotation Problem

VRP Vehicle Routing Problem

RATSP Asymmetric Travelling Salesman Problem with Replenishment Arcs

NN Nearest Neighbor heuristic

FI Farthest Insertion heuristic

RI Random Insertion heuristic

ANN Adapted Nearest Neighbor heuristic

AFI Adapted Farthest Insertion heuristic

ARI Adapted Random Insertion heuristic

ILS Iterated Local Search heuristic

xi





Chapter 1

Introduction

1.1 Motivation

The Travelling Salesman Problem (TSP) is a well-known combinatorial optimization problem in the
field of Operational Research. Let us consider a directed graph G, containing a set of vertices V and
a set of arcs A. The objective of the TSP is to determine a tour which visits each vertex exactly once
and it has minimal cost. For this purpose, a cost matrix is considered and the TSP can be classified as
either symmetric or asymmetric depending on the symmetry of this matrix. Throughout the years this
optimization problem has been an object of research due to its computational complexity. Not only exact
and heuristic methods have been proposed to obtain an optimal, or near-optimal, solution to the classical
TSP, but also to many of its variants. One of these variants is the so-called Black and White Travelling
Salesman Problem (BWTSP).

The BWTSP can be seen as an extension of the TSP since both aim to obtain the cheapest Hamilto-
nian tour in a graph. However, in the BWTSP, the vertex set V is partitioned into two subsets: the set W
containing only white vertices and set B containing only black ones. A feasible solution has to satisfy
two additional conditions: the number of white vertices between each two consecutive black vertices in
the tour is bounded above by a value Q, and the length of the path considered between two consecutive
black vertices cannot exceed a value L. For that matter, the distance between each pair of vertices is also
known.

At first, it might seem unclear to the reader what is the real-life application of this problem due to
how abstract the previous description appears to be. In fact, the Aircraft Rotation Problem (ARP), which
aims to determine the route flown by one single aircraft for a given airline company, can be seen as a
particular case of the BWTSP applied to airline operations. Let us assume the set of arcs A in the graph
G is a set of flight legs and the set of vertices V is a set of connection points, or stations. The reason
why designing a route for a single airplane is so important to the airline company is mainly due to the
economic benefits that arise from assigning a big number of flight legs to one single vehicle, explained by
the “through-value” associated. A “through-value” was defined by Clarke et al. [1997] as “the revenue
that would be expected to be gained from additional passengers who would be attracted to the service
because of being able to stay on the same airplane rather than having to change airplanes at the stopover
point”. However, each vehicle must not fly more than a maximum number of L hours and it must not
sequence more than Q + 1 flight legs (arcs in the graph) without maintenance. Unfortunately, not all
connection points (vertices in the graph) are able to do the required maintenance. The nodes in V which
represent hubs suitable to do the maintenance of an aircraft are the black nodes present in set B ⊂ V .
To schedule a sequence of flights to an aircraft satisfying all the safety constraints is to solve an instance
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CHAPTER 1. INTRODUCTION

of the BWTSP. Applications can be found not only in short-haul airline operations as just described, but
also in telecommunications. When designing fiber networks, it is considered an undirected graph, which
means there is a set of edges instead of arcs between each pair of nodes. The objective is to find the
shortest Hamiltonian cycle, knowing the white vertices represent standard hubs and the black ones are
ring offices. The cycle needs to be determined in a way that ensures the distance between two consecutive
ring offices does not exceed the value L, and the number of hubs between two consecutive ring offices
must not be superior to Q.

Particularly, if we consider an instance of the BWTSP where all the black vertices are positioned
exactly in the same place, an instance of the Vehicle Routing Problem (VRP) is obtained. In this scenario,
the objective is to find ⌈|W |/Q⌉ simple circuits, knowing that each white vertix represents a client with
a unit demand, each vehicle has a capacity of Q units and the length of each route must not exceed L.

1.2 Literature review

The “Black and White Travelling Salesman Problem” name was firstly used by Bourgeois et al. [2003],
even though many previously studied problems could be modeled as the BWTSP (to exemplify, see
Wasem [1991], Clarke et al. [1997], Talluri [1998] and Mak and Boland [2000]). In particular, Mak
and Boland [2000] developed and tested a Simulated Annealing heuristic for the Asymmetric Travelling
Salesman Problem with Replenishment Arcs (RATSP), which is closely related to the BWTSP. Let us
consider a directed graph G = (V,A), where V is a set of nodes, A is a set of arcs, C = {cij : (i, j) ∈ A}
is the cost matrix and each node i ∈ V has a weigth wi. The arc set is partitioned into new subsets: the
set R containing replenishment arcs and A = A \ R containing ordinary arcs. The objective of the
RATSP is to determine the Hamiltonian circuit with minimal cost. However, a circuit is only feasible if
it does not accumulate more than W units of weigth before using a new replenishment arc.

Bourgeois et al. [2003] created three different constructive heuristics to determine a feasible solu-
tion for a given instance of the symmetric BWTSP, and then a 2-opt procedure applied only to feasible
solutions is chosen as an improvement heuristic. In this article, different values of |B|, Q and L were
considered, as well as several levels of dispersion of the black vertices (i.e., choosing black nodes closer
to the center of the square, or choosing positions further from the center). The procedures were tested
on instances with up to 200 vertices. The conducted tests using all of the three constructive heuristics
showed that few feasible solutions were determined not only when the values of the parameters Q and
L were tighter but also when the level of dispersion of the black nodes was lower (i.e., when the black
nodes were positioned closer to each other).

More than a decade later another heuristic approach for the symmetric BWTSP was proposed by Li
and Alidaee [2016], who developed a Tabu Search heuristic and integrated a Branch & Cut algorithm
in it. Even though more computational time was required to solve instances with this hybrid algorithm,
feasible solutions very close to the global optimum were found for instances with a considerable number
of vertices and edges, knowing that the largest instance had 439 vertices. An interesting remark about
the performance of this hybrid approach is that, in instances with a maximum of 100 nodes, it tends to
obtain a feasible solution with a smaller cost when compared to the Tabu Search heuristic or the Branch
& Cut algorithm alone.

Regarding exact methods, Ghiani et al. [2006] modeled the problem, considering an undirected graph
as well, by only associating a binary variable to each edge of the edge set E. Many non-trivial constraints
can be found in the formulation, which motivates the authors to prove all of them are valid inequalities
for the problem. Furthermore, an exact Branch & Cut algorithm is proposed and tested in instances

2



CHAPTER 1. INTRODUCTION

with up to 100 vertices. On the other hand, İbrahim Muter [2015] proposed an extended formulation
for the BWTSP in which, in addition to the binary variables considered before, each white node has a
set of associated variables referencing the black nodes visited before and after. The constraints in this
model are significantly less than the number of constraints in the model proposed by Ghiani et al. [2006],
however more variables are considered. For every pair of black vertices (bi, bj) ∈ B2 (i ̸= j) a block
structure is found in the formulation, and İbrahim Muter [2015] takes advantage of this fact to apply
the Dantzig-Wolfe decomposition to the problem. The column-generation algorithm is embedded in a
Branch & Price algorithm, and was tested on instances with up to 80 vertices.

Gouveia et al. [2017] explored more extended formulations for the BWTSP. An initial formulation
was presented by associating variables to each arc disaggregated by black vertices. Position-dependent
and distance-dependent formulations are also studied, as well as a position-and-distance-dependent re-
formulation. Valid inequalities are introduced to the different models in order to improve the LP bounds.
Furthermore, Branch & Cut algorithms were implemented and tested on a set of instances generated
previously by İbrahim Muter [2015]. The authors also created two sets of randomly generated instances:
the first set of instances was supposed to have a bigger dispersion of the black vertices, in which the first
black node was selected randomly and a new black node was selected iteratively and it had to maximize
the minimal distance to the previously constructed set of black vertices; in the second set the closest
vertices to the center of the square were chosen to be coloured black. A similar observation to Bourgeois
et al. [2003] was made since the authors noted that instances with black nodes closer to each other were
harder to solve. The distance and the cost of each edge on both sets of randomly generated instances in
Gouveia et al. [2017] are set independently from one another; which means that for every edge e ∈ E

its distance de and its cost ce are not necessarily equal, whereas all the previously mentioned articles
consider de = ce, ∀e ∈ E.

1.3 Scientific contribution and dissertation overview

Due to the computational complexity of the BWTSP, finding the optimal solution for an instance of
the problem with a larger set of nodes and edges/arcs becomes very time-consuming. It is important
to develop algorithms which allow us to determine a feasible solution with a value in the objective
function close to the global minimum in a reasonable amount of time. As mentioned before, few heuristic
approaches have been proposed for the problem, and the existing methods do not consider asymmetric
distances or costs between vertices.

We intend to expand the existing heuristic methods available for the BWTSP through this work and
we want to make sure that the developed algorithms can be applied on asymmetric matrices in order to
tackle even more real-life problems. Within the scope of this dissertation, distances and costs of arcs
will be considered to be the same, since most of the literature related to the problem adopted a similar
assumption.

On the current Chapter, our goal was to provide some context to the reader about what the BWTSP
consists of, why it is an interesting problem to study and what are its real-world applications. Further-
more, we summarized the scientific contributions over the last two decades in regards to the problem.
On Chapter 2, we will formally define the BWTSP, address its computational complexity and present
an Integer Linear Programming model for the problem. On Chapter 3, three constructive heuristics are
proposed: we detail the selection and insertion methods of each algorithm, as well as the mechanisms
we developed to attempt to establish feasibility for the resulting solutions. On Chapter 4, we propose
an Iterated Local Search (ILS) algorithm as an improvement heuristic, where we detail the Local Search
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procedure embedded in it as well as the perturbation method we adopted. Finally, on Chapter 5 we
develop a computational study in which, firstly, we compare the performance of the three constructive
heuristics and, secondly, we justify our choices regarding the perturbation method of the ILS and the
maximum number of iterations of the entire algorithm by trying 6 different combinations of parameters,
leading us to the conclusion that our choice matches our purpose for the ILS heuristic. For every instance
we considered during the computational study, we used the feasible solutions provided by each one of
the three constructive heuristics as the initial solution for the ILS in order to analyse the differences in
their respective performances. We also studied the differences in performance of the ILS for symmetric
and asymmetric instances of the BWTSP.
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Chapter 2

The Black and White Travelling Salesman
Problem

The Travelling Salesman Problem (TSP) can be defined on a directed graph G = (V,A), where V is a
set of nodes and A is a set of arcs. If an undirected graph is considered with a set of edges E, a directed
graph can be easily obtained by assigning both directions to each edge; which means that for every edge
{i, j} ∈ E two arcs (i, j) ∈ A and (j, i) ∈ A are created. A distance matrix D = {di,j : (i, j) ∈ A}
containing the travelling time of each arc in the graph is considered. The objective of this problem is to
determine the shortest Hamiltonian circuit in G. Note that a circuit is classified as Hamiltonian if all the
vertices in V are visited exactly once during the tour.

The Black and White Travelling Salesman Problem (BWTSP) is an extension of the TSP. Each node
i ∈ V is coloured as either black or white and the set of vertices is then partitioned into new subsets
W and B, in which the former contains all the white vertices in the graph and the latter contains all the
black vertices. The goal is to find the Hamiltonian circuit in the graph with minimal cost satisfying two
conditions:

(i) The number of white nodes between two consecutive black nodes in the circuit cannot exceed
Q ∈ N;

(ii) The total distance between two consecutive black nodes in the circuit cannot be more than L ∈ R.

In fact, the BWTSP reduces to the TSP considering Q = L = +∞. Since the TSP is classified as an
NP-hard problem according to the computational complexity theory [Garey and Johnson, 1979], then so
is the BWTSP.

If a Hamiltonian circuit s is determined on the graph G, it only constitutes a feasible solution for an
instance of the BWTSP if it satisfies all the cardinality constraints (condition (i)) and all the length
constraints (condition (ii)).

Given an instance for the BWTSP, let us consider a Hamiltonian circuit s. In this case, s can be
divided into |B| segments starting from a black node to the next one in the tour. In short, we will denote
this kind of segments as path segments. All the path segments will be named after their first black node:
if a path starts with the black node b ∈ B, then it will be denoted as Pb to simbolize “the path segment
of node b”. If one of the path segments of a Hamiltonian circuit violates cardinality constraints then it is
cardinality infeasible; if, on the other hand, it violates length constraints then it is length infeasible - in
both scenarios the path segment is infeasible. If at least one of the path segments of a circuit is infeasible,
then the entire circuit is infeasible for the given instance of the problem.
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To illustrate this concept, let G be a directed graph with a set of nodes V = {1, 2, 3, 4, 5, 6, 7, 8} and
A = {(i, j) ∈ V 2 : i, j ∈ V ∧ i ̸= j}. Let us consider the set B = {1, 3, 5}, W = V \ B and the
Hamiltonian circuit s = {(1, 3), (3, 2), (2, 4), (4, 6), (6, 5), (5, 7), (7, 8), (8, 1)}, which is represented in
figure 2.1. This circuit has three path segments: P1 = {(1, 3)}, P3 = {(3, 2), (2, 4), (4, 6), (6, 5)} and
P5 = {(5, 7), (7, 8), (8, 1)}.

Figure 2.1: Example of a Hamiltonian circuit.

For Q ≥ 3 and L ≥ 34, s constitutes a feasible solution. If Q = 2, for example, then the path
segment P3 becomes cardinality infeasible; if L is set to less than 34, then the path P5 becomes length
infeasible. On both scenarios, the overall circuit is infeasible.

2.1 Problem formulation

In this section, an Integer Linear Programming model for the directed BWTSP will be presented and its
structure can be summarized as follows:

1. A formulation for the Asymmetric Travelling Salesman Problem (ATSP);

2. Further addition of cardinality and length constraints to the previous model.

To model the ATSP, a distance matrix (equivalently, cost matrix) is considered for a graph G =

(V,A), and a binary variable xij is associated to each arc (i, j) ∈ A. The first set of variables can be
defined as follows:

xij =

1 if (i, j) is included in the Hamiltonian circuit

0 otherwise
∀(i, j) ∈ A

In order to guarantee the connectivity of the Hamiltonian tour, the improved version of the Miller-
Tucker-Zemlin (MTZ) sub-tour elimination contraints, proposed by Desrochers and Laporte [1991], will
be incorporated. Non-negative integer variables ui will be associated to each node i in the vertex set V
to identify its position in the circuit. An extended formulation for the ATSP can be obtained as follows:
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Min
∑

(i,j)∈A

dijxij (2.1)

s.a.:
∑
i∈V

xij = 1 ∀j ∈ V (2.2)∑
i∈V

xji = 1 ∀j ∈ V (2.3)

ui − uj + (|V | − 1)xij + (|V | − 3)xji ≤ |V | − 2 ∀(i, j) ∈ A, i, j ∈ {2, ..., n} (2.4)

ui ≥ 1 ∀i ∈ {2, ..., n} (2.5)

ui ≤ n− 1 ∀i ∈ {2, ..., n} (2.6)

ui ≥ 0 ∀i ∈ V (2.7)

xij ∈ {0, 1} ∀(i, j) ∈ A (2.8)

The objective of this problem is to minimize the total travelled distance which is established by (2.1).
(2.2) and (2.3) are degree constraints, which aim to assure that each vertex in the set V is visited once,
and only once, during the tour. Constraints (2.4)-(2.6) are the strengthened MTZ sub-tour elimination
constraints. All the variables are non-negative, which is guaranteed by (2.7) and (2.8). Since the set of
variables x = {xij : (i, j) ∈ A} is set to be binary, it becomes unnecessary to specify that the set of
variables u = {ui : i ∈ V } only assumes integer values.

The previous formulation will be taken as the basis of the model for the BWTSP. To incorporate the
additional constraints of the problem, the path segment model proposed in Gouveia et al. [2017] will be
considered. The authors chose to formulate the problem by identifying all the existent path segments on
a Hamiltonian tour. As mentioned before, the path that starts with the black vertex b ∈ B will be denoted
as Pb. For each arc (i, j) ∈ A, new variables ykij , ∀k ∈ B, will be created. This new set of variables can
be defined as follows:

ykij =

1 if (i, j) is included in Pk
0 otherwise

∀(i, j) ∈ A, ∀k ∈ B

The BWTSP can be formulated as follows:

Min
∑

(i,j)∈A

dijxij (2.9)

s.a.: (2.2)− (2.8)∑
k∈B

ykij = xij ∀(i, j) ∈ A (2.10)∑
j∈V

ykkj = 1 ∀k ∈ B (2.11)

∑
j∈B\{k}

∑
i∈V

yjik = 1 ∀k ∈ B (2.12)

∑
j∈V

ykji =
∑
j∈V

ykij ∀k ∈ B, ∀i ∈W (2.13)
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∑
(i,j)∈A

ykij ≤ Q+ 1 ∀k ∈ B (2.14)

∑
(i,j)∈A

dijy
k
ij ≤ L ∀k ∈ B (2.15)

ykij ∈ {0, 1} ∀(i, j) ∈ A,∀k ∈ B (2.16)

(2.10) is a set of linking constraints between the set of variables y = {ykij : (i, j) ∈ A ∧ k ∈ B}
and x = {xij : (i, j) ∈ A}, and it tries to establish that a given arc (i, j) ∈ A cannot belong to any path
segment if it isn’t used in the circuit. Constraints (2.11) ensure that for every black node in the graph
there is one selected outgoing arc. By the previous definion of a path segment every black node is, not
only the first visited vertex in its own path, but also the last to be visited in the path segment of another
black node. The set of constraints (2.12) aims to make sure that it occurs in any feasible solution to the
problem. Another set of logical constraints is (2.13) and it ensures both the ingoing and outgoing arc of
every white node to belong to the same path segment.

Set (2.14) contains all the cardinality constraints: for a generic path segment in the Hamiltonian
circuit Pk, with k ∈ B, all the visited vertices are white except for the first and the last one; meaning that
to restrict the number of white nodes in Pk to Q or less is equivalent to restrict the total number of arcs
in the path to Q + 1 or less. Length constraints are represented in (2.15), by summing the distances of
all arcs in a given path segment and bounding this value to L. Finally, (2.16) is included in the model to
make sure that all the variables in the set y = {ykij : (i, j) ∈ A ∧ k ∈ B} are binary.
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Chapter 3

Constructive heuristics for the BWTSP

The main purpose of a constructive heuristic is to obtain an initial feasible solution for a given problem.
The resulting solution might not hold the best overall value, which motivates the development of a further
improvement heuristic.

Many constructive heuristics for the TSP have been studied, being the Nearest Neighbor (NN) one of
the most intuitive and well-known algorithms. Essentially, a Hamiltonian tour is obtained by iteratively
adding the arc connecting the last visited node to its nearest neighbor. Another important constructive
heuristic is the Farthest Insertion (FI), which starts with the longest tour containing only two vertices
and iteratively chooses the node maximizing the minimal distance to the nodes of the current tour. The
selected node is inserted in the position which leads to the minimal increase of total cost. It is particularly
interesting to study these two heuristics since they differ in the selection method of the next vertex to
insert in the current tour at each step and their results tend to be quite different. The FI procedure seems
to select vertices in a very counterintuitive manner, unlike the NN; however, its resultant solution tends
to hold a value closer to the global optimum when compared to the NN (see Rosenkrantz et al. [1977]).

Since the Black and White variant of the TSP imposes additional restrictions to the original problem,
determining an initial feasible Hamiltonian circuit satisfying all constraints is expected to be a harder
task. This becomes more evident when the proportion of black nodes in the graph is smaller and the
values of the parameters Q and L are tighter, due to the reduced pool of feasible solutions. Therefore,
every constructive heuristic we developed in this dissertation can be divided in two separate “stages”:

1. Construction stage: A Hamiltonian circuit is iteratively constructed, which means that a nonvis-
ited vertex in the graph is selected and inserted in the tour in each iteration. This process stops
when all the vertices in the graph have been already visited by the tour.

2. Correction stage: Cardinality and length feasibility of the previous Hamiltonian circuit is eval-
uated. If this solution happens to be infeasible, the tour will go throught attempts to establish
cardinality and/or length feasibility (see Section 3.4).

Every constructive heuristic within the scope of this dissertation is going to share the same procedures
in the correction stage, thus they only differ amongst each other in the construction stage. Initially two
deterministic heuristics will be proposed. Both are going to be adaptations of the NN and the FI heuristics
with alterations on their selection methods. We will denote these heuristics as Adapted Nearest Neighbor
(ANN) and Adapted Farthest Insertion (AFI), relatively, and they are detailed on Sections 3.1 and 3.2.
Furthermore, a randomized constructive heuristic is proposed (see Section 3.3) as an adaptation of the
Random Insertion heuristic of the TSP and we named it the Adapted Random Insertion (ARI) heuristic.
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3.1 Adapted Nearest Neighbor heuristic

The Nearest Neighbor (NN) heuristic aims to determine a Hamiltonian tour for a given TSP instance,
defined on a directed graph G = (V,A), following the steps:

Step 1 Select an initial node. Let it be denoted by a∗. Let I be the set of visited nodes, then set
I = {a∗};

Step 2 Select a node b∗ in the set V \ {a∗} such that da∗,b∗ = min
b∈V \{a∗}

{da∗,b}. Include arc

(a∗, b∗) ∈ A in the circuit and do I = I ∪ {b∗};

Step 3 Let x∗ be the last inserted vertex. Choose a node y∗ ∈ V \ I for which dx∗,y∗ =

min
y∈V \I

{dx∗,y} and add arc (x∗, y∗) ∈ A to the tour. Do I = I ∪ {y∗}. If V \ I ≠ ∅,

repeat Step 3; otherwise, go to Step 4;

Step 4 Add the arc connecting the last visited node to a∗. STOP.

On the BWTSP, the vertex set V is partitioned into new subsets B and W , the former containing all
the black nodes and the latter containing all the white nodes. Determining an initial feasible solution for
the BWTSP through the original NN can be a hard task, because there might be a tendency, depending
on the distance matrix, to obtain a circuit which visits all the white nodes first and then all the black ones,
for example, which is unbalanced. The Adapted Nearest Neighbor (ANN) heuristic is different from the
original NN because it forces the algorithm to search for the nearest black vertex if Q white nodes have
been already visited since the last black one. However, it only happens if there are still vertices in B left
to include in the tour. This greedy search mechanism tries to ensure that at least the first |B| − 1 path
segments are cardinality feasible. Length feasibility is not guaranteed for any of the built path segments
of the tour. The suggested procedure is detailed in Algorithm 1, and vertex 1 will be chosen as the first
visited node. The notation on the pseudocode is described as follows:

• Tour → The current circuit in every iteration of the algorithm, which is represented as a set of
visited arcs;

• Cost→ The cost of the current tour;

• LastNode/NextNode→ The last/next visited vertex;

• I → set of already included vertices in the Tour;

• nb → Number of black vertices already included in the tour;

• nw → Number of white vertices visited since the last visited black node.

Algorithm 1 Adapted Nearest Neighbor Heuristic
1: Tour ← {}
2: Cost← 0
3: LastNode← 1
4: I ← {1}
5: nb ← 1
6: nw ← 0
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7: while V \ I ≠ ∅ do
8: if nw = Q and nb < |B| then
9: NextNode← arg min

b∈B\I
{d(LastNode,b)}

10: else
11: NextNode← arg min

v∈V \I
{d(LastNode,v)}

12: end if
13: NextArc← (LastNode,NextNode)
14: Tour ← Tour ∪ {NextArc}
15: Cost← Cost+ dNextArc

16: if NextNode ∈W then
17: nw ← nw + 1
18: else
19: nb ← nb + 1
20: nw ← 0
21: end if
22: I ← I ∪ {NextNode}
23: LastNode← NextNode
24: end while
25: Tour ← Tour ∪ {(LastNode, 1)}
26: Cost← Cost+ d(LastNode,1)

27: Tour ← ESTABLISHFEASIBILITY(Tour) ▷ detailed in Section 3.4
28: Update Cost

3.2 Adapted Farthest Insertion heuristic

The Farthest Insertion (FI) heuristic aims to determine a Hamiltonian tour for a given TSP instance,
defined on a directed graph G = (V,A), following the steps:

Step 1 Select two initial nodes a∗, b∗ ∈ V such that da∗,b∗+db∗,a∗ = max
a,b∈V,a̸=b

{da,b+db,a}. The

initial tour only contains the arcs connecting these two selected vertices, (a∗, b∗) ∈ A

and (b∗, a∗) ∈ A. Create the set of nodes already included in the circuit I = {a∗, b∗};

Step 2 Calculate the minimal distance of every vertex in V \ I to the tour. The distance of a
vertex i ∈ V \ I to the tour is calculated as follows:

di,Tour = min
v∈I
{max{di,v, dv,i}} ∀i ∈ V \ I (3.1)

Note that an asymmetric distance matrix can be considered and, for a pair of vertices
i ∈ V and j ∈ V \ {i}, the distance between i and j is not necessarily equal to the
distance from j to i; therefore, we will consider the maximum between these two values
as the distance between i and j. Go to Step 3;

Step 3 After determining the distance of every vertex not included in the set I to the tour, choose
the node x∗ such that dx∗,Tour = max

x∈V \I
{dx,Tour}. Select an arc (i∗, j∗) included in the

circuit such that di∗,x∗ + dx∗,j∗ − di∗,j∗ = min
(i,j)∈Tour

{di,x∗ + dx∗,j − di,j}. Replace arc

(i∗, j∗) with arcs (i∗, x∗) and (x∗, j∗) in the circuit. Do I = I ∪ {x∗}. As long as
V \ I ≠ ∅, repeat Step 2; otherwise, STOP.
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In order to apply this heuristic to the BWTSP, the selection method will be slightly altered. Initially, a
circuit containing only black vertices will be determined according to the selection and insertion methods
of the FI; which means, that Steps 1, 2 and 3 of the FI heuristic are executed by exclusively considering
the set of vertices B, instead of V . When all black vertices are included in the circuit, Steps 2 and 3 of
the FI heuristic are repeated for white nodes. This version of the FI will be called the Adapted Farthest
Insertion (AFI).

In conclusion, the only difference between the original FI and the AFI heuristic is that on the first
algorithm all vertices in V are candidates to be inserted at any stage as long as they have not been
visited yet; on the second algorithm, the selection pool is limited to black vertices until all of them are
included in the tour, only then we consider inserting white nodes. The proposed AFI heuristic is detailed
in Algorithm 2. The notation on the pseudocode is described as follows:

• Tour → The current circuit in every iteration of the algorithm, which is represented as a set of
visited arcs;

• Cost→ The cost of the current tour;

• I → set of already included vertices in the Tour;

• next→ The selected vertex to be inserted in the current iteration of the algorithm;

• (i∗, j∗)→ Selected arc to insert node next.

Algorithm 2 Adapted Farthest Insertion Heuristic
1: Cost← 0
2: for all (i, j) ∈ B2 such that i ̸= j do
3: if di,j + dj,i > Cost then
4: Cost← di,j + dj,i
5: Tour ← {(i, j), (j, i)}
6: I ← {i, j}
7: end if
8: end for
9: while B \ I ≠ ∅ do

10: next← arg max
b∈B\I

{min
i∈I
{max{di,b, db,i}}}

11: (i∗, j∗)← arg min
(i,j)∈Tour

{di,next + dnext,j − di,j}

12: Replace arc (i∗, j∗) in the Tour with arcs (i∗, next) and (next, j∗)

13: I ← I ∪ {next}
14: Cost← Cost+ di∗,next + dnext,j∗ − di∗,j∗

15: end while
16: while V \ I ≠ ∅ do
17: next← arg max

v∈V \I
{min
i∈I
{max{di,v, dv,i}}}

18: (i∗, j∗)← arg min
(i,j)∈Tour

{di,next + dnext,j − di,j}

19: Replace arc (i∗, j∗) in the Tour with arcs (i∗, next) and (next, j∗)

20: I ← I ∪ {next}
21: Cost← Cost+ di∗,next + dnext,j∗ − di∗,j∗

22: end while
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23: Tour ← ESTABLISHFEASIBILITY(Tour) ▷ detailed in Section 3.4
24: Update Cost

3.3 Adapted Random Insertion heuristic

The Random Insertion (RI) heuristic aims to determine a Hamiltonian tour for a given TSP instance,
defined on a directed graph G = (V,A), following the steps:

Step 1 Consider a random permutation of the set of nodes {1, ..., |V |}. Let i1 and i2 be the first
two elements of the permutation. Consider the initial tour {(i1, i2), (i2, i1)}. Do k = 3

and go to Step 2;

Step 2 Choose the next node, ik, in the permutation. Select an arc (x∗, y∗) included in the
circuit such that dx∗,ik + dik,y∗ − dx∗,y∗ = min

(x,y)∈Tour
{dx,ik + dik,y − dx,y}. Replace arc

(x∗, y∗) with arcs (x∗, ik) and (ik, y
∗) in the circuit. As long as k < |V |, set k = k + 1

and repeat Step 2; otherwise, STOP.

Similarly to the AFI procedure, the Random Insertion heuristic is going to be adapted to the BWTSP
by organizing, in the first place, all of the black nodes in the tour and only then white notes will be
selected. This adaptation will be denoted as Adapted Random Insertion (ARI). In this context, two
different permutations are considered: one permutation to the set of black nodes B and the other one to
the set of white nodes W . The proposed ARI heuristic is detailed in Algorithm 3. The notation on the
pseudocode is described as follows:

• Tour → The current circuit in every iteration of the algorithm, which is represented as a set of
visited arcs;

• Cost→ The cost of the current tour;

• Bp (Wp)→ Permutation of black (white) nodes;

• Bp(x)
(
Wp(x)

)
→ The x-ith element in the permutation Bp (Wp).

Algorithm 3 Adapted Random Insertion Heuristic
1: Tour ← {(Bp(1),Bp(2)) , (Bp(2),Bp(1))}
2: Cost← dBp(1),Bp(2) + dBp(2),Bp(1)

3: x← 2
4: while x < |B| do
5: x← x+ 1

6: (i∗, j∗)← arg min
(i,j)∈Tour

{di,Bp(x) + dBp(x),j − di,j}

7: Replace arc (i∗, j∗) in the Tour with arcs (i∗,Bp(x)) and (Bp(x), j∗)
8: Cost← Cost+ di∗,Bp(x) + dBp(x),j∗ − di∗,j∗

9: end while
10: x← 0
11: while x < |W | do
12: x← x+ 1
13: (i∗, j∗)← arg min

(i,j)∈Tour
{di,Wp(x) + dWp(x),j − di,j}
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14: Replace arc (i∗, j∗) in the Tour with arcs (i∗,Wp(x)) and (Wp(x), j∗)
15: Cost← Cost+ di∗,Wp(x) + dWp(x),j∗ − di∗,j∗

16: end while
17: Tour ← ESTABLISHFEASIBILITY(Tour) ▷ detailed in Section 3.4
18: Update Cost

3.4 Establishing feasibility

Mechanisms with the purpose of correcting both cardinality and length infeasibilities of a Hamiltonian
circuit will be developed in this section. A similar approach to Li and Alidaee [2016] will be taken as
the establishment of cardinality feasibility, if unexistent, is done before the attempts to restore length
feasibility.

Algorithm 4 Procedure to establish feasibility
Require: a Hamiltonian circuit, denoted by Tour

1: function ESTABLISHFEASIBILITY(Tour)
2: if Tour is cardinality infeasible then
3: Tour ← CARDINALITYCORRECTION(Tour) ▷ detailed in Subsection 3.4.1
4: end if
5: if Tour is length infeasible then
6: Tour ← LENGTHCORRECTION(Tour) ▷ detailed in Subsection 3.4.2
7: end if
8: return Tour
9: end function

In the following subsections, we will detail the procedures we used to attempt establishing cardinality
and length feasibility for a given BWTSP solution.

3.4.1 Correcting cardinality infeasibility

Restoring cardinality feasibility in a Hamiltonian circuit is always possible as long as |W | ≤ Q × |B|,
considering Q to be the maximum number of white nodes in each path segment, B and W the set of
black and white vertices, respectively. This statement can be easily proven by taking into consideration
that there are as many path segments in a circuit as there are black vertices in a graph (since each black
node b ∈ B determines the beginning of a new path segment Pb). According to a “worst case scenario”,
if |W | = Q|B|, then Q white nodes can be distributed along all the |B| path segments, making the
solution cardinality feasible. If there is at least one more white node in the graph, then at least one of the
path segments has to have Q+ 1 white vertices or more.

Cardinality feasibility can be established by removing a white vertex w ∈ W from a path segment
with more than Q white vertices and by reinserting it in another path with Q − 1 white vertices or less.
Now, it is important to define which white node will be removed and what is the right position to place it.
Note that after restoring cardinality feasibility, the resulting circuit will go through an attempt to restore
length feasibility (which means that each path segment must have a final total length of L or less). During
the procedure to fix cardinality infeasibility, we can try to facilitate length feasibility by ensuring that the
removed white vertex translates into the maximal saving of length in all infeasible paths. Following the
same mindset, we should aim to insert the removed white vertex in the position in the cardinality feasible
path which minimizes the additional length associated with it.
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The proposed algorithm to correct cardinality infeasibility is detailed in Algorithm 5, and it uses the
following notation:

• MaxRemoval→ maximum length saving by removing a white vertex from a cardinality infeasi-
ble path segment;

• wr → white node selected to be removed;

• P r → path segment that includes wr;

• prev(wr), succ(wr)→ vertex which precedes and succeeds, respectively, wr in path P r;

• MinInsert→ minimum length increase, of all cardinality feasible path segments, by reinserting
node wr;

• (xi, yi)→ selected arc to insert node wr;

• P i → path segment that includes (xi, yi);

• Q(∗)→ number of white nodes in the path ∗;

• L(∗)→ total length of the path ∗.

Algorithm 5 Cardinality infeasibility correction
Require: a Hamiltonian circuit, denoted by Tour

1: function CARDINALITYCORRECTION(Tour)
2: while Tour is cardinality infeasible do
3: MaxRemoval← 0
4: for all Pb with Q(Pb) > Q do
5: for all w ∈W in the path Pb do
6: if dprev(w),w + dw,succ(w) − dprev(w),succ(w) > MaxRemoval then
7: MaxRemoval← dprev(w),w + dw,succ(w) − dprev(w),succ(w)

8: P r ← Pb
9: wr ← w

10: end if
11: end for
12: end for
13: MinInsert← +∞
14: for all Pb with Q(Pb) ≤ Q− 1 do
15: for all (x, y) ∈ A in path Pb do
16: if dx,wr + dwr,y − dx,y < MinInsert then
17: MinInsert← dx,wr + dwr,y − dx,y
18: P i ← Pb
19: (xi, yi)← (x, y)
20: end if
21: end for
22: end for
23: Replace arcs (prev(wr), wr) and (wr, succ(wr)) with the arc (prev(wr), succ(wr)) in path

P r

24: Replace the arc (xi, yi) with arcs (xi, wr) and (wr, yi) in path P i
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25: Q(P r)← Q(P r)− 1
26: Q(P i)← Q(P i) + 1
27: Update lengths L(P r) and L(P i)
28: end while
29: return Tour
30: end function

3.4.2 Correcting length infeasibility

After correcting cardinality infeasibility, length feasibility should also be established in the circuit. Both
the selection and the insertion methods will be similar to the ones present in the cardinality infeasibility
correction procedure; the only difference is that now a black node is also a candidate to be removed from
its path and to be reinserted in another position. The selected vertex is inserted on the same path in a
new position or in another one with strictly less than Q white nodes (to make sure that all paths remain
cardinality feasible).

A 2-exchange move exclusive to the path Pb, for b ∈ B, is defined as a path which can de obtained
from Pb by replacing, at most, 2 edges. If the distance matrix is symmetric, then all arcs in the path
can be viewed as edges, since arcs (i, j) and (j, i) share the same distance di,j . After the repositioning
of a node in the circuit, if the distance matrix is symmetric, for every path segment violating length
contraints (i.e., with a total length exceeding the value L) it will be determined the 2-exchange applied to
that specific path segment resulting in the minimal final length. However, in the context of the BWTSP,
we will restrict a 2-exchange move to be considered feasible if the black vertices remain in their original
positions; which means that the first (last) black vertex remains in the beginning (end, respectively) of
the path. This additional constraint is important to make sure that other path segments in the tour do not
go through length changes during this procedure. In order to exemplify this concept, a path segment with
three white vertices is presented and all its feasible 2-exchanges are illustrated in figure 3.1.

When figure 3.1 is analysed, it is evident that a 2-exchange also consists of reversing a subpath of
the original path segment. Since both the first and last black nodes of a path are forced in advance to
remain in the exact same position, then in this particular case a 2-exchange consists of reversing a subpath
which only includes white vertices. Once again, this search procedure will only be performed when a
symmetric distance matrix is considered. If it happens to be asymmetric, then it would be required to
recalculate the cost of the reversed subpath (since all the included arcs would be reversed and their costs
are not guaranteed to be the same), thus this process would demand a lot of computational effort.

The proposed algorithm to correct length infeasibility is detailed in Algorithm 6, and it uses the
following notation:

• nit → number of attempts to correct length infeasibility;

• MaxRemoval → maximal saving of length by removing a white vertex from a cardinality infea-
sible path segment;

• wr → white node selected to be removed;

• P r → path segment that includes wr;

• prev(wr), succ(wr)→ vertex which precedes and succeeds, respectively, wr in path P r;

• MinInsert→ minimal increased length, of all cardinality feasible path segments, by reinserting
node wr;
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Figure 3.1: Example of a path segment P with three white vertices and all the feasible 2-exchange moves
on P, which are different from P.

• (xi, yi)→ selected arc to insert node wr;

• P i → path segment that includes (xi, yi);

• Q(∗)→ number of white nodes in the path ∗;

• L(∗)→ total length of the path ∗.

Algorithm 6 Length infeasibility correction
Require: a cardinality feasible Hamiltonian circuit denoted by Tour and the total number of nodes n

1: function LENGTHCORRECTION(Tour)
2: nit ← 1
3: while Tour is length infeasible and nit < 10ln(n) do
4: MaxRemoval← 0
5: for all Pb with L(Pb) > L do
6: for all node v ∈ Pb do
7: if dprev(v),v + dv,succ(v) − dprev(v),succ(v) > MaxRemoval then
8: MaxRemoval← dprev(v),v + dv,succ(v) − dprev(v),succ(v)
9: P r ← Pb

10: vr ← v
11: end if
12: end for
13: end for
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14: MinInsert← +∞
15: for all Pb, with L(Pb) ≤ L and Q(Pb) ≤ Q− 1, and for the path P r do
16: for all (x, y) ∈ A in the current path P do
17: if dx,vr + dvr,y − dx,y < MinInsert then
18: MinInsert← dx,vr + dvr,y − dx,y
19: P i ← P
20: (xi, yi)← (x, y)
21: end if
22: end for
23: end for
24: if cardinality feasibility of the circuit is not violated then
25: Replace arcs (prev(vr), vr) and (vr, succ(vr)) with the arc (prev(vr), succ(vr)) in P r

26: Replace the arc (xi, yi) with arcs (xi, vr) and (vr, yi) in P i

27: Update the lengths of every path segment that went through changes
28: end if
29: if the distance matrix is symmetric then
30: for all Pb with L(Pb) > L and Q(Pb) > 1 do
31: Pb ← 2-EXCHANGE(Pb) ▷ defined on Algorithm 7
32: Update length L(Pb)
33: end for
34: end if
35: nit ← nit + 1
36: end while
37: end function

There are some BWTSP instances to which we cannot determine a length feasible Hamiltonian circuit
by doing all the procedures we incorporated in Algorithm 6. Therefore, we have decided to restrict the
maximum number of attempts to correct length feasible in order to avoid an infinite loop. This maximum
was defined as a logarithmic function of the number of vertices in the graph, denoted by n.

After selecting a node vr to be removed in path P r and reinserting it in the path P i (P i and P r can
be the same), there is no guarantee that only these two paths suffer length changes (or, this individual
path, if they’re the same). Thus, it is important to note that whenever vr happens to be a black node
in P r, then the path which precedes or succeeds P r also needs an update on its cardinality and length;
mainly because a black vertex determines the beginning and the end of two consecutive path segments.

A feasible 2-exchange move on a path segment Pb is equivalent to reverse a subpath of Pb between
two white nodes, since both black vertices need to remain in the same position. Let us denote wb

i as the
white node in the i-th position after the first black node b in the path Pb. Reversing a path between wb

i

and wb
j , with j ≥ i + 1, means to remove arcs

(
prev(wb

i ), w
b
i

)
and

(
wb
j , succ(w

b
j)
)

in order to insert(
prev(wb

i ), w
b
j

)
and

(
wb
i , succ(w

b
j)
)

. All the arcs between vertices wb
i and wb

j are reversed and the cost
of this reversed path is not changed, because we are assuming a symmetric distance matrix.

We detail in Algorithm 7 how to determine the 2-exchange move with minimum cost on a path
segment Pb, for b ∈ B. The pseudocode contains the following notation:

• MinAddLength → minimal increased length by reversing a path in Pb. If it is equal to 0, then
the current current length of Pb is minimal; if it is less than 0, then there is a 2-exchange move on
Pb which results in a final lower length;

• Q (Pb)→ number of white nodes in the path segment Pb;
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• wb
i → the ith white node in the path segment Pb;

• prev(wb
i ), succ(w

b
i )→ vertex which precedes and succeeds, respectively, wb

i in path P b.

Algorithm 7 Determining the best 2-exchange move on a path Pb
1: function 2-EXCHANGE(Pb)
2: MinAddLength← 0
3: for all i ∈ {1, ...,Q(Pb)− 1} do
4: for all j ∈ {i+ 1, ...,Q(Pb)} do
5: if dprev(wb

i ),w
b
j
+ dwb

i ,succ(w
b
j)
− dprev(wb

i ),w
b
i
− dwb

j ,succ(w
b
j)
< MinAddLength then

6: MinAddLength← dprev(wb
i ),w

b
j
+ dwb

i ,succ(w
b
j)
− dprev(wb

i ),w
b
i
− dwb

j ,succ(w
b
j)

7: i∗ ← i
8: j∗ ← j
9: end if

10: end for
11: end for
12: if MinAddLength < 0 then
13: Remove arcs

(
prev(wb

i∗), w
b
i∗
)

and
(
wb
j∗ , succ(w

b
j∗)

)
14: for all k ∈ {i∗, ..., j∗ − 1} do
15: Replace arc (wb

k, w
b
k+1) with the arc (wb

k+1, w
b
k) in path Pb

16: end for
17: Insert arcs

(
prev(wb

i∗), w
b
j∗

)
and

(
wb
i∗ , succ(w

b
j∗)

)
in path Pb

18: end if
19: return Pb
20: end function

3.5 Final observations

If an infeasible instance of the BWTSP is considered, it is evident that none of the three constructive
heuristics we proposed return feasible solutions for it. On the other hand, even when a feasible instance
of the BWTSP is considered, it is possible that at least one of the three constructive heuristics does not
determine a feasible heuristic solution.

Essentially, the procedure we proposed to correct cardinality infeasibility removes a white vertex
from a path segment with more than Q white nodes and reinserts it in a path with Q − 1 white nodes
or even less. This reinsertion is independent from whether the selected paths are length feasible or not.
If |W | ≤ Q|B|, then it is always possible to determine a solution with a maximum of Q white nodes
in each path segment, which means that cardinality feasibility is always guaranteed under these circun-
stances, as mentioned before. When cardinality feasibility of the Hamiltonian circuit is accomplished,
the algorithm proceeds to correct length infeasiblity when necessary. But now, a condition needs to be
satisfied: the circuit must remain cardinality feasible. This condition leads us to limit the number of pos-
sible alterations in the circuit so that cardinality feasibility is not compromised throughout the procedure.
To sum up, whenever a feasible instance is considered and one of the constructive heuristics cannot reach
a feasible solution, it is mostly due to the restricted variety of moves on the vertices of a circuit when we
try to correct length infeasiblity.

The underlying limitation of the correction stage accentuates the importance of having a good con-
struction method to begin with in every constructive heuristic. Three construction methods were pro-
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posed by adapting already existing heuristics for the original TSP: Nearest Neighbor, Farthest Insertion
and Random Insertion. On further computational tests in this dissertation, the “success rate” of each one
of these constructive heuristics should also be evaluated. The “success rate” of a constructive heuristic
equates to the proportion of feasible BWTSP instances to which that same heuristic was able to determine
a feasible solution.
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Chapter 4

Iterated Local Search heuristic

The previous Chapter of this dissertation focused on the development of methods to determine initial
feasible solutions for the BWTSP. On the current Chapter, we will start with the premise that such
solution is already known, it is denoted by s0 and its value in the objective function of the BWTSP
is V(s0). Our goal is to develop an efficient Iterated Local Search (ILS) heuristic in order to return a
solution s with value V(s) close to the global minimum. The development of an ILS procedure as an
improvement heuristic is motivated by the possibility of evaluating a wider range of solutions in the
feasibility set. This is done by applying perturbations to a solution obtained through a Local Search
procedure, which leads us to visit more than one local minimum and thus we increase our chances of
achieving the global optimum. We refer to Lourenço et al. [2003] for a detailed explanation of the ILS.

Starting from a feasible solution s0, a Local Search procedure is applied to it which results in a
local minimum s∗0. A perturbation is applied to s∗0 and a new solution s1 is obtained. If s1 happens to
be feasible, we apply the same Local Search procedure to s1 which results in a new local minimum s∗1,
hopefully different from s∗0. At this point in the algorithm, two local minimums have been determined: s∗0
and s∗1. For example, let us assume V(s∗0) < V(s∗1). When we are going to apply a second perturbation,
we might wonder whether we should choose the solution with the lowest cost (the incumbent solution
s∗0) or the solution we obtained after the last time we applied the Local Search procedure (the current
solution s∗1). It might be tempting to apply the perturbation to the incumbent solution: since it is the best
local minimum we have found so far, it is normal to wonder if a slight change in it does not lead to a new
solution with lower cost. If we choose this option, we risk repeated perturbations if many iterations go
by and the incumbent solution remains the same. Therefore, it can be interesting to apply perturbations
on the current solution, even if it is not the local minimum with the lowest cost so far, because it can
bring more diversity to our search. We have decided that every 5 iterations the perturbation is applied
to the incumbent solution, whereas on the remaining iterations the perturbation is applied to the current
solution.

The proposed ILS procedure is detailed in Algorithm 8. The notation on the pseudocode is described
as follows:

• Nit → Total number of iterations of the algorithm;

• nchange
it → Number of iterations since the last update of the incumbent solution (iterations without

improvement).

• s→ The latest solution obtained through Local Search in the current iteration;

• s∗ → The incumbent solution in the current iteration;
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Algorithm 8 Iterated Local Search procedure
Require: An initial feasible solution s0 for the BWTSP instance

1: Nit ← 0
2: nchange

it ← 0
3: s← LOCALSEARCH(s0)
4: s∗ ← s
5: while Nit < 2500 do
6: Nit ← Nit + 1
7: if Nit is divisible by 5 then
8: p← PERTURBATION(s∗)
9: else

10: p← PERTURBATION(s)
11: end if
12: if p is a feasible solution for the BWTSP instance then
13: s← LOCALSEARCH(p)
14: if V(s) < V(s∗) then
15: s∗ ← s
16: nchange

it ← 0
17: else
18: nchange

it ← nchange
it + 1

19: end if
20: else
21: nchange

it ← nchange
it + 1

22: end if
23: if nchange

it > 250 and Nit is divisible by 5 then
24: break
25: end if
26: end while
27: return s∗ and V(s∗)

The maximum number of iterations of the algorithm, let it be denoted by MaxIt, is set to 2500.
Furthermore, if more than 10% of MaxIt iterations go by without any improvement on the incumbent
solution we stop the algorithm. In this particular case, if we have more than 250 consecutive iterations
without improvement. Additionally, we decided to only allow the algorithm to stop prematurely if the
last perturbation was applied to the incumbent solution. Since every 5 iterations the perturbation method
is applied to the incumbent solution, we need to verify if the number of the current iteration is divisible
by 5.

Let the outcome of a perturbation be a Hamiltonian circuit denoted by p. We must evaluate whether
or not it is feasible for the given BWTSP instance. If the answer is affirmative, then it is a valid initial
solution for the Local Search procedure. When it happens to be infeasible, the Local Search procedure
is not applied to the solution p and we consider one more iteration without improvement. Both the Local
Search procedure and the perturbation method are going to be defined on the following sections of this
chapter.

4.1 Neighborhoods and Local Search procedure

On this Section, we will define the Local Search procedure we incorporated in the ILS algorithm. First,
it is important to define all the neighborhoods for the BWTSP which are going to be needed later on.
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As mentioned before, a feasible solution for an instance of the BWTSP contains black and white
vertices, and each black vertex determines the beginning of a path segment in the circuit. Let us consider
a feasible solution s for a given instance of the BWTSP. Four neighborhoods can be defined as follows:

NB(s) = {s′ : s′ is a feasible solution which can be obtained by switching a maximum of

two black nodes in s}

NinterW (s) = {s′ : s′ is a feasible solution which can be obtained by switching a maximum

of two white nodes in different path segments in s}

NintraW (s) = {s′ : s′ is a feasible solution which can be obtained by switching in each

path segment of s a maximum of two white vertices }

Npaths(s) = {s′ : s′ is a feasible solution which can be obtained by switching a maximum

of two path segments in s}

Neighborhoods NB(s) and NinterW (s) include s and every other feasible circuit which can be ob-
tained by switching the positions of two nodes in s with the same color, on the first case both nodes need
to be black and on the second case both nodes need to be white and belong to different path segments.

Figure 4.1: On the left, a feasible solution s for an instance of the BWTSP. On the right, an example of a
solution in NB(s).

Swapping the positions of two white nodes inside the same path segment of s will only be allowed
in neighborhood NintraW (s). This neighborhood includes s and any other feasible solution for the
BWTSP instance which can be obtained by switching the position of two white nodes in one or more
path segments of s. On figure 4.3 it is possible to see an example of this neighborhood, where we
consider a solution s with sixteen vertices distributed along four path segments: P1, P5, P9 and P13.
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Figure 4.2: On the left, a feasible solution s for an instance of the BWTSP. On the right, an example of a
solution in NinterW (s).

A different solution from s, let us denote it by s′, was obtained by switching the positions of two white
nodes in the paths P5 and P13. The same thing could occur for both P1 and P9 but, once again, it is just
an example which aims to illustrate the range of different solutions from s contained in NintraW (s).

Figure 4.3: On the left, a feasible solution s for an instance of the BWTSP. On the right, an example of a
solution in NintraW (s).

Neighborhood Npaths(s) contains s and any other feasible solution for the BWTSP instance which
can be obtained from s by swapping the positions of two path segments in s. This neighborhood is
exemplified in figure 4.4, where we consider the same solution s. A different solution from s, let us
denote it by s′, was obtained by swapping the positions of paths P5 and P13. It only makes sense to
search this neighborhood if s contains more than two path segments, which means it can only be used in
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instances with more than two black vertices. Note that when s has exactly two black vertices, then s is
itself the only solution in Npaths(s).

Figure 4.4: On the left, a feasible solution s for an instance of the BWTSP. On the right, an example of a
solution in Npaths(s).

A fifth neighborhood will be searched, but only for symmetric instances:

N2−exchange(s) = {s′ : s′ is a feasible solution for the BWTSP which can be obtained

by reversing, at most, one subpath in s}

Figure 4.5: On the left, a feasible solution s for an instance of the BWTSP. On the right, an example of a
solution in N2−exchange(s).
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This neighborhood is typically used for the original TSP whenever a symmetric distance matrix is
considered. It would be possible to apply it on asymmetric instances, however the cost of the reversed
subpath would have to be recalculated which would demand a lot of computational effort. The same
does not occur for symmetric distance matrices because the cost of every reversed arc is the same, since
di,j = dj,i, ∀(i, j) ∈ A; thus, the cost of the reversed subpath remains unaltered.

Any previously defined neighborhood will be searched following the method which is represented in
Algorithm 9 for a generic neighborhood N and an initial feasible solution s0 for the BWTSP instance.
On the pseudocode, V(∗) denotes the value of a solution ∗ in the objective function of the problem.

Algorithm 9 Search in neighborhood N (s0)

Require: A feasible solution s0 for the BWTSP instance
1: s← s0
2: while stopping condition is not met do
3: if there is a solution s′ ∈ N (s) different from s with V(s′) < V(s) then
4: s← s′

5: else
6: break
7: end if
8: end while
9: return s and V(s)

BeingN one of the five previously defined neighborhoods, it is important to note that when we look
for a solution s′ ∈ N (s) which satisfies V(s′) < V(s) we do not require it to be the solution inN (s) with
the minimal cost. The algorithm stops when a feasible solution s for the BWTSP instance is determined
such that V(s) = min

s′∈N (s)
{V(s′)}.

The basic tools for the Local Search procedure have been established: neighborhoods have been
defined and the adopted search method within each one of these neighborhoods has also been presented.
The overall procedure is represented on Algorithm 10, which contains the same notation as the previous
pseudocode.

Algorithm 10 Local Search procedure
Require: A feasible solution s for the BWTSP instance

1: function LOCALSEARCH(s)
2: while stopping condition is not met do
3: InitialCost← V(s)
4: Search neighborhood NB(s) and obtain s′

5: if s′ ̸= s then
6: s← s′

7: end if
8: Search neighborhood NintraW (s) and obtain s′

9: if s′ ̸= s then
10: s← s′

11: end if
12: Search neighborhood NinterW (s) and obtain s′

13: if s′ ̸= s then
14: s← s′

15: end if
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16: if |B| > 2 then
17: Search neighborhood Npaths(s) and obtain s′

18: if s′ ̸= s then
19: s← s′

20: end if
21: end if
22: if the distance matrix is symmetric then
23: Search neighborhood N2−exchange(s) and obtain s′

24: if s′ ̸= s then
25: s← s′

26: end if
27: end if
28: NewCost← V(s)
29: if NewCost = InitialCost then
30: break
31: end if
32: end while
33: return s and V(s)
34: end function

4.2 Perturbation method

Choosing the appropriate perturbation method for an ILS algorithm is not an easy task. On one hand,
the perturbation should be impactful enough to escape from a local optimum; on the other hand, if it
changes entirely the solution we risk a random restart in every iteration of the ILS. We should take
into consideration the Local Search procedure we decide to use, because a perturbation applied upon a
solution s must not be easily undone by the Local Search procedure and lead to s again.

We have decided to randomize our perturbation method. Let us consider a solution s for an instance
of the BWTSP with n vertices. A total of ⌈ωn⌉ vertices out of n, with 0 < ω < 1, will be randomly
chosen to be removed from the Hamiltonian circuit s. If a node k, 1 ≤ k ≤ n, is selected to be removed
from s, then we remove arcs (prev(k), k) and (k, succ(k)) and insert (prev(k), succ(k)), where prev(k)
and succ(k) denote the vertex which precedes and succeeds k, respectively, in the circuit s. We apply
a permutation on the set of removed vertices and we will denote it by Rp. Successively, we insert each
vertex of the permutationRp (by order) in the position of s which leads to the minimal cost of insertion.
Once this process is over we attempt to establish the feasiblity of the resulting circuit, following the
detailed procedure in Section 3.4. The resultant circuit is considered to be the result of the perturbation
and is denoted by p.

The parameter ω is the strength of the permutation since it controls the portion of vertices in a
Hamiltonian circuit s which are going to be removed and reinserted in s. We are going to set ω = 1/2.
The pseudocode of the perturbation method is present in Algorithm 11 and it contains the notation:

• ω → strength of the permutation (portion of vertices from the initial solution which are going to
be removed and reinserted);

• R → Set of removed vertices from the initial solution

• Rp → Permutation ofR

• Rp(i)→ The i-th element ofRp
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Algorithm 11 Perturbation method
Require: A feasible solution s for the BWTSP instance with n vertices

1: function PERTURBATION(s)
2: R ← {}
3: ω ← 1/2
4: while |R| < ⌈ωn⌉ do
5: Choose a random vertex k∗ in s
6: R ← R∪ {k∗}
7: Replace arcs (prev(k∗), k∗) and (k∗, succ(k∗)) with (prev(k∗), succ(k∗)) in s
8: end while
9: Apply a permutation toR and denote it byRp

10: for i ∈ {1, ..., ⌈wn⌉} do
11: MinInsCost← +∞
12: for (x, y) ∈ s do
13: if dx,Rp(i) + dRp(i),y − dx,y < MinInsCost then
14: MinInsCost← dx,Rp(i) + dRp(i),y − dx,y
15: (x∗, y∗)← (x, y)
16: end if
17: end for
18: Replace the arc (x∗, y∗) with arcs (x∗,Rp(i)) and (Rp(i), y∗) in s
19: end for
20: p← ESTABLISHFEASIBILITY(s) ▷ detailed in Section 3.4
21: return p
22: end function

4.3 Final observations

Our computational study is detailed on Chapter 5. Two parameters were tested for the ILS heuristic:
the strength of the perturbation, denoted by ω, and the maximum number of iterations of the algorithm,
MaxIt. On one hand, the parameter ω controls the proportion of nodes to remove randomly from a
given Hamiltonian circuit s, in order to reinsert them in the position which leads to the minimal increase
of cost for the circuit s (detailed in Section 4.2). On the other hand, the parameter MaxIt represents the
maximum number of iterations of the ILS heuristic and it also regulates when to prematurely terminate
the algorithm.

We tested three options for MaxIt, 1000, 2500 and 5000, meaning that the ILS algorithm stops
after 100, 250 and 500 iterations, relatively, without improvement of the incumbent value. It is more
complex to decide which values for ω are reasonable, but we decided to consider ω as either 1/3 or 1/2.
Reorganizing less than 33% of the nodes in a circuit when a perturbation is being applied seemed to
be useless because we are not changing many componentes in the solution. If we decide to randomly
remove more than 50% of the nodes just to reinsert them later on in the best position, then we risk a
random restart of the full solution.

Therefore, we tested 6 different combinations of the parameters (ω,MaxIt): for both ω = 1/3

and ω = 1/2 we used the three different values for the maximum number of iterations. Our goal is
to justify why we chose to set the parameter ω as 1/2 and the maximum number of iterations to 2500.
Furthermore, we will display a summary of the computational results we obtained for this combination
of parameters.
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Chapter 5

Computational study

Tests were conducted to evaluate the performance of the proposed heuristics. This chapter begins with a
detailed explanation on how to determine all the test instances used within the scope of this dissertation
and their respective optimal values. Then we compare all the previously developed constructive heuristics
regarding their success on obtaining feasible solutions for BWTSP instances, their computational times
and we discuss advantages and disadvantages of each procedure. Finally, we test different combinations
of parameters for the ILS heuristic to justify our choices in the previous chapter and we proceed to
summarize the obtained results for our choice of parameters.

The experiments were conducted on a laptop with a AMD Ryzen 7 5700U processor, with a clock-
speed of 1.80 GHz, and 16 GB RAM. All of the developed heuristics were implemented using Python
3.9.

5.1 Test instances

Let us consider a directed graph G = (V,A) with a distance matrix D = {d(i,j) : (i, j) ∈ A} which
contains the distance of every arc in the set A. We will create test instances from D by adopting a similar
approach to Ghiani et al. [2006]. Using three parameters denoted by α, β and γ, the number of black
vertices as well as the value of Q and L will be determined as follows:

1. If |V | is equal to n, then Q is set to be ⌈αn⌉;

2. Knowing the value of Q, determine bmin as the smallest integer satisfying bmin ≥ ⌈(n−bmin)/Q⌉.
Set the number of black vertices in the instance to be ⌈βbmin⌉;

3. Denote lmax as the length of the longest path segment between two consecutive black vertices
when the current instance of the BWTSP is solved heuristically for L = +∞. Set L = γlmax.

We will consider α = {0.2, 0.35, 0.5}, β = {1, 1.33, 1.67} and γ = {0.95,∞}, which means that
18 different instances can be obtained from the same distance matrix.

As it was mentioned before, a value bmin is calculated in order to determine |B|. Formally bmin can
be defined as the minimal number of required black vertices in the graph to assure cardinality feasibility.
On Section 3.4.1 we stated that a cardinality feasible solution for a BWTSP instance can be obtained
as long as the inequality Q|B| ≥ |W | applies. In other words, bmin is the smallest value |B| can take
to guarantee that the previous inequality is satisfied. Once the number of black vertices in the graph is
accordingly determined, it is important to select which nodes are going to be coloured as black. For
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simplicity’s sake, most of the referenced articles select the first ⌈βbmin⌉ vertices in the graph to be black.
However, we have decided to select node 1 as the initial black node and we iteratively select the next
black node as the vertex which maximizes the minimal distance to the nodes already coloured as black
- this process stops once ⌈βbmin⌉ black vertices have been selected. As mentioned on the literature
review of this dissertations (see Section 1.2), Bourgeois et al. [2003] tested heuristics for the BWTSP on
instances with different levels of dispersion of the black vertices and Gouveia et al. [2017] tested exact
methods for the BWTSP on randomly generated instances, with different levels of dispersion of the black
vertices as well, and both articles emphasize that on instances with tight values of the parameters |B|, Q
and L, a small dispersion of the black nodes tends to hinder solving it to optimality (in regards to exact
methods) or find feasible solutions (in regards to heuristic methods). We refer to these conclusions in
order to justify our selection method for the black nodes in a graph.

It is also worth mentioning that we consider the distance between two different nodes i ∈ V and j ∈
V \ {i} as max{d(i,j), d(j,i)}, since the distance matrix can be asymmetric. The following pseudocode
contains the algorithm we used to select the black vertices in a graph.

Algorithm 12 Determining set B
Require: A set of vertices V , a distance matrix D and the values of parameters β and bmin

1: B ← {1}
2: while |B| < ⌈βbmin⌉ do

3: nextb ← arg max
i∈V \B

{
min
b∈B

{
max{d(i,b), d(b,i)}

}}
4: B ← B ∪ {nextb}
5: end while
6: return B

Furthermore, it is worth mentioning that the original article ([Ghiani et al., 2006]) considered lmax to
be the length of the longest path segment when the BWTSP instance is solved to optimality for L = +∞.
Instead, we chose to use a heuristic solution to define lmax, similarly to İbrahim Muter [2015], because
determining the optimal solution when L = +∞ would demand a lot of computational effort for larger
instances. Therefore, the following approach is considered:

1. Knowing the set B and the value of Q, consider L = +∞ and determine an initial feasible solution
through the ANN heuristic (Section 3.1) and then apply the Local Search procedure (detailed on
Section 4.1). Save the resultant solution as s(ANN+LS).

2. Knowing the set B and the value of Q, consider L = +∞ and determine an initial feasible solution
through the AFI heuristic (Section 3.2) and then apply the Local Search procedure (detailed on
Section 4.1). Save the resultant solution as s(AFI+LS).

3. If V
(
s(ANN+LS)

)
< V

(
s(AFI+LS)

)
, then sh = s(ANN+LS); otherwise, sh = s(AFI+LS).

4. Determine lmax as the length of the longest path segment between two consecutive black vertices
in sh.

Note that we are not using a third heuristic solution, which is the output of the Local Search procedure
applied to an initial solution provided by the Adapted Random Insertion (ARI) heuristic (Section 3.3),
mainly because this constructive heuristic is not deterministic, unlike the ANN and the AFI heuristics.
This means that these two last procedures return the same initial solutions for any BWTSP instance; the
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same does not apply to the ARI heuristic because it has a random component to it. A similar line of
thought justifies why we are using the Local Search procedure as an improvement mechanism at this
stage instead of the Iterated Local Search heuristic: the latter incorporates a random perturbation method
whereas the former searches for feasible solutions within pre-determined neighborhoods. Therefore, we
decided to use two deterministic heuristic solutions to guarantee that the same instance of the BWTSP
has the same value for lmax, for a matter of consistency.

TSPLIB matrices, both symmetric and asymmetric, were used for all the conducted tests with a
number of vertices ranging from 50 to 250. The list of considered matrices is as follows:

• Symmetric instances: berlin52, pr76, kroA100, pr124, pr152, rat195, pr226;

• Asymmetric instances: ft53, ftv64, ft70, kro124p, ftv170.

Since 18 different combinations of parameters are applied on each distance matrix, then 216 instances
are considered during the tests, 126 are symmetric and 90 are asymmetric. The set of black nodes B and
the values of Q and L associated to each instance can be consulted in Appendix A.

5.1.1 Optimal values

In order to evaluate the performance of the heuristics, it is important to compare all the results obtained
heuristically with the corresponding optimal value. In particular, we will use the gap between a heuristic
solution, denoted by xh, and the optimal solution, denoted by x∗, calculated as follows:

Gap =

(
V(xh)− V(x∗)
V(x∗)

)
× 100% (5.1)

To obtain the value of the optimal solution for a given instance, we used IBM® ILOG® CPLEX®

Optimization Studio 20.1.0. It was previously mentioned in this dissertation that the BWTSP is a NP-
hard problem in the theory of computational complexity. As the number of arcs in the considered graph
increases, it becomes more and more time-consuming to determine the optimal solution of the corre-
sponding instance. Therefore, we have decided to impose a time limit of 5 hours (18000 seconds) to
the resolution of every instance in the solver. This limitation did not allow us to determine the optimal
value of some instances, so the corresponding lower and upper bounds of the Branch & Cut algorithm
embedded on the solver were considered as references for the optimal value of every instance where the
time limit was exceeded. Whenever the optimal value was not obtained within 5 hours of resolution, we
will use the knowledge of its respective lower bound, let it be denoted by V(x∗), and replace V(x∗) in
the equation (5.1) with V(x∗) to determine an overestimation of the gap between the value of a heuristic
solution and the optimal one.

All of the considered TSPLIB matrices resulted in 18 different instances, knowing that each one of
these 18 instances is uniquely characterized by a combination of the parameters (α, β, γ). Remember
that α ∈ {0.2, 0.35, 0.5}, β ∈ {1, 1.33, 1.67} and γ ∈ {0.95,∞}. The Integer Linear Programming
model we presented in Section 2.1 was used to obtain the following results:

Table 5.1: Optimal values of the symmetric instances

Matrix name α β γ Optimal value
berlin52 0.2 1 0.95 [7555,+∞[
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Matrix name α β γ Optimal value

berlin52

0.2

1 ∞ [7683, 8742]

1.33
0.95 [7643, 8111]

∞ [7572, 8064]

1.67
0.95 7731
∞ 7731

0.35

1
0.95 7929
∞ 7929

1.33
0.95 7657
∞ 7657

1.67
0.95 7657
∞ 7657

0.5

1
0.95 7779
∞ 7696

1.33
0.95 7834
∞ 7674

1.67
0.95 7657
∞ 7657

pr76

0.2

1
0.95 [106622,+∞[

∞ [107962, 109454]

1.33
0.95 [107867, 108983]

∞ [107863, 108983]

1.67
0.95 [108440, 108863]

∞ [108505, 108863]

0.35

1
0.95 [107552, 112954]

∞ [107652, 112095]

1.33
0.95 109021
∞ 109021

1.67
0.95 108137
∞ 108137

0.5

1
0.95 109021
∞ 109021

1.33
0.95 109021
∞ 109021

1.67
0.95 108422
∞ 108137

kroA100 0.2

1
0.95 [20989,+∞[

∞ [21006, 26766]

1.33
0.95 21247
∞ 21247

1.67
0.95 21247
∞ 21247

36



CHAPTER 5. COMPUTATIONAL STUDY

Matrix name α β γ Optimal value

kroA100

0.35

1
0.95 [21118,+∞[

∞ [20984, 23825]

1.33
0.95 [21009,+∞[

∞ [21191, 21522]

1.67
0.95 21247
∞ 21247

0.5

1
0.95 [20876,+∞[

∞ [21266, 21778]

1.33
0.95 [21232, 21690]

∞ [21228, 21601]

1.67
0.95 21247
∞ 21247

pr124

0.2

1
0.95 [57095,+∞[

∞ [57513, 60724]

1.33
0.95 [54394,+∞[

∞ [54463, 65895]

1.67
0.95 [53664, 72768]

∞ [53633,+∞[

0.35

1
0.95 [55685,+∞[

∞ [55852, 61931]

1.33
0.95 59011
∞ 59011

1.67
0.95 [55354,+∞[

∞ [55713, 60998]

0.5

1
0.95 [56120,+∞[

∞ [56938, 59397]

1.33
0.95 [57868, 59011]

∞ [56564, 59011]

1.67
0.95 59011
∞ 59011

pr152

0.2

1
0.95 [65806,+∞[

∞ [65491,+∞[

1.33
0.95 [65917,+∞[

∞ [65910,+∞[

1.67
0.95 [65576,+∞[

∞ [65647,+∞[

0.35

1
0.95 [67995,+∞[

∞ [67856, 109962]

1.33
0.95 [62309,+∞[

∞ [61545,+∞[

1.67
0.95 [64715,+∞[

∞ [64644, 276764]
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Matrix name α β γ Optimal value

pr152 0.5

1
0.95 [66714,+∞[

∞ [67888, 83637]

1.33
0.95 [67891,+∞[

∞ [67898, 79989]

1.67
0.95 [61666,+∞[

∞ [60341,+∞[

rat195

0.2

1
0.95 [2227,+∞[

∞ [2230,+∞[

1.33
0.95 [2231,+∞[

∞ [2234,+∞[

1.67
0.95 [2231,+∞[

∞ [2233,+∞[

0.35

1
0.95 [2253, 2421]

∞ [2256, 2577]

1.33
0.95 [2247,+∞[

∞ [2243, 4490]

1.67
0.95 [2226,+∞[

∞ [2230,+∞[

0.5

1
0.95 2275
∞ [2273, 2279]

1.33
0.95 [2270, 2272]

∞ [2253, 2332]

1.67
0.95 [2245,+∞[

∞ 2248

pr226

0.2

1
0.95 [72587,+∞[

∞ [72534,+∞[

1.33
0.95 [74300,+∞[

∞ [74334,+∞[

1.67
0.95 [75306,+∞[

∞ [75219,+∞[

0.35

1
0.95 [72888,+∞[

∞ [72589, 112721]

1.33
0.95 [72187,+∞[

∞ [72743, 85851]

1.67
0.95 [73744,+∞[

∞ [73890, 88008]

0.5

1
0.95 [71692,+∞[

∞ [71695, 126677]

1.33
0.95 [72753,+∞[

∞ [72714, 130171]

1.67
0.95 [72419,+∞[

∞ [72714,+∞[
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Table 5.2: Optimal values of the asymmetric instances

Matrix name α β γ Optimal value

ft53

0.2

1
0.95 [6986, 8181]

∞ [7018, 8292]

1.33
0.95 7131
∞ 7131

1.67
0.95 7023
∞ 7023

0.35

1
0.95 7086
∞ 7086

1.33
0.95 7086
∞ 7086

1.67
0.95 6905
∞ 6905

0.5

1
0.95 6905
∞ 6905

1.33
0.95 6905
∞ 6905

1.67
0.95 6905
∞ 6905

ftv64

0.2

1
0.95 1883
∞ 1883

1.33
0.95 1855
∞ 1855

1.67
0.95 1839
∞ 1839

0.35

1
0.95 1846
∞ 1846

1.33
0.95 1846
∞ 1846

1.67
0.95 1839
∞ 1839

0.5

1
0.95 1850
∞ 1850

1.33
0.95 1842
∞ 1842

1.67
0.95 1842
∞ 1842

ft70 0.2

1
0.95 [38785,+∞[

∞ [38776, 39896]

1.33
0.95 38803
∞ 38803

1.67 0.95 38803
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Matrix name α β γ Optimal value

ft70

0.2 1.67 ∞ 38803

0.35

1
0.95 38719
∞ 38719

1.33
0.95 38712
∞ 38712

1.67
0.95 38712
∞ 38712

0.5

1
0.95 38707
∞ 38707

1.33
0.95 38673
∞ 38673

1.67
0.95 38673
∞ 38673

kro124p

0.2

1
0.95 [36396,+∞[

∞ [36447, 43634]

1.33
0.95 36230
∞ 36230

1.67
0.95 36230
∞ 36230

0.35

1
0.95 [36365,+∞[

∞ [36355, 39751]

1.33
0.95 36612
∞ 36612

1.67
0.95 36230
∞ 36230

0.5

1
0.95 [36624, 36873]

∞ [36640, 36873]

1.33
0.95 36650
∞ 36650

1.67
0.95 36230
∞ 36230

ftv170

0.2

1
0.95 [2717, 3879]

∞ [2742, 4299]

1.33
0.95 2758
∞ 2758

1.67
0.95 2758
∞ 2758

0.35

1
0.95 [2742, 2865]

∞ [2754, 2831]

1.33
0.95 2755
∞ 2755

1.67
0.95 2755
∞ 2755
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Matrix name α β γ Optimal value

ftv170 0.5

1
0.95 [2757, 2789]

∞ [2747, 2946]

1.33
0.95 2766
∞ 2766

1.67
0.95 2755
∞ 2755

None of the considered instances were proven to be infeasible. Whenever the optimal integer solution
was not obtained within the established time limit, the solver returns the lower and upper bounds for the
global minimum. In particular, the upper bound corresponds to the value in the objective function of
the feasible integer solution with the lowest cost when the Branch & Cut algorithm stopped. Thus, it is
possible to see for which BWTSP instances no feasible integer solution was found within the established
time limit because their upper bounds appear as +∞.

As the number of vertices increases, so does the number of arcs. Therefore, the number of variables
and constraints in the corresponding Integer Linear Programming model also increases, making it less
likely that the optimal integer solution of the BWTSP instance is determined within the time period of
5 hours, which is clear in Tables 5.1 and 5.2. It is also possible to see for symmetric and asymmetric
instances of similar dimensions, more global optimums were obtained for asymmetric cases.

It is interesting to see that, for a given matrix, it becomes harder to determine the global optimum
within the time limit when we consider the minimum number of black nodes possible (when β = 1). It
also appears to be more time consuming to determine the optimal integer solution whenever α = 0.2.
Remember that Q, the superior limit to the number of white nodes in each path segment of a feasible
circuit of the BWTSP, is equal to ⌈αn⌉; thus, a reduced value for the parameter α will contribute to a
relatively tight Q.

Finally, it is important to note that some of these instances present a large deviation between their
upper and lower bounds. In the following sections, whenever the global optimum is unknown, we will
compare heuristic results with the lower bounds we obtained, which means that we will calculate over-
estimations of the respective real gaps in these instances and it is expected that these overestimations are
very loose.

5.2 Comparative study of the constructive heuristics

On Chapter 3 of this dissertation, three constructive heuristics were proposed: the Adapted Nearest
Neighbor (ANN), the Adapted Farthest Insertion (AFI) and the Adapted Random Insertion (ARI). The
first two methods are deterministic and consist of slight adaptations on the selection methods of the Near-
est Neighbor and the Farthest Insertion heuristics, respectively, for the classic TSP. The third heuristic,
on the other hand, contains a random component, which means that if a given instance is considered and
we try multiple times to determine an initial solution for it through the ARI heuristic, we might obtain
different solutions each time we run this algorithm. Remember that each of these three heuristics can be
divided in two different stages: a construction stage, which is unique for all of them, and a correction
stage, which is common for the three. The correction stage aims to correct cardinality and length infea-
sibility. When we try to establish length feasibility, it is forbidden to return the solution to a cardinality
infeasible state, which restricts the diversity of changes we can attempt to perform onto the considered
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Hamiltonian circuit. Thus, we risk being unsuccessful on the task of transforming a circuit into a feasible
solution for a BWTSP instance.

In order to be able to compare the performance of the three constructive heuristics, we ran 10 times
each of the 216 considered instances to obtain three key informations:

• Regarding the ARI heuristic, out of the 10 runs for each instance, how many of them were suc-
cessful?

• How far from the global minimum of each instance (or its lower bound) are the values of the initial
feasible solutions provided by each of the three constructive heuristics?

• How much CPU time is required to obtain a feasible solution through each of the three constructive
algorithms?

The following table contains the gap (or an overestimation of it, if it is followed by the symbol ∗)
between the corresponding heuristic solution and its global optimum for both the ANN and the AFI
heuristics. For the ARI heuristic, it contains statistics concerning the number of successful runs (out of
10) for each instance. By “successful” we mean a run where a feasible solution was obtained for the
given instance. Furthermore, the minimum, the average and the maximum gaps of the successful runs of
the ARI heuristic are also displayed.

Table 5.3: Statistics for the comparative study of the ANN, AFI
and ARI heuristics

Symmetric instances
Instance ANN AFI ARI

Matrix α β γ Gap Gap
Feasible Gap
solutions Min Average Max

berlin52

0.2

1
0.95 0/10
∞ 43.41% ∗ 23.43% ∗ 10/10 17.4% ∗ 28.94% ∗ 44.4% ∗

1.33
0.95 83.68% ∗ 20.02% ∗ 10/10 13.23% ∗ 21.08% ∗ 43.05% ∗

∞ 30.72% ∗ 21.14% ∗ 10/10 19.16% ∗ 22.82% ∗ 28.04% ∗

1.67
0.95 10.93% 7/10 6.88% 23.2% 63.38%
∞ 20.39% 10.93% 10/10 5.98% 14.54% 24.42%

0.35

1
0.95 30.68% 27.3% 8/10 15.53% 27.22% 47.27%
∞ 43.09% 31.68% 10/10 22.08% 31.52% 48.28%

1.33
0.95 18.9% 38.91% 5/10 17.16% 26.87% 34.16%
∞ 23.81% 21.61% 10/10 5.97% 14.17% 22.2%

1.67
0.95 28.68% 8.29% 10/10 5.86% 11.98% 21.0%
∞ 28.68% 8.29% 10/10 7.76% 10.44% 15.82%

0.5

1
0.95 3/10 6.52% 10.79% 15.17%
∞ 44.76% 20.17% 10/10 1.83% 18.05% 28.78%

1.33
0.95 18.05% 7/10 11.78% 18.74% 25.99%
∞ 29.24% 20.51% 10/10 4.74% 12.46% 20.95%

1.67
0.95 32.38% 33.03% 10/10 7.65% 14.61% 50.01%
∞ 34.3% 8.29% 10/10 3.8% 9.54% 16.42%
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Instance ANN AFI ARI

Matrix α β γ Gap Gap
Feasible Gap
solutions Min Average Max

pr76

0.2

1
0.95 0/10
∞ 36.3% ∗ 46.11% ∗ 10/10 6.93% ∗ 14.28% ∗ 24.92% ∗

1.33
0.95 52.3% ∗ 29.61% ∗ 5/10 8.46% ∗ 33.69% ∗ 55.84% ∗

∞ 48.16% ∗ 16.93% ∗ 10/10 6.4% ∗ 13.6% ∗ 22.38% ∗

1.67
0.95 54.57% ∗ 6.67% ∗ 10/10 2.92% ∗ 7.09% ∗ 10.19% ∗

∞ 42.83% ∗ 6.6% ∗ 10/10 2.66% ∗ 6.79% ∗ 13.79% ∗

0.35

1
0.95 1/10 36.53% ∗ 36.53% ∗ 36.53% ∗

∞ 39.68% ∗ 48.29% ∗ 10/10 17.27% ∗ 31.41% ∗ 51.79% ∗

1.33
0.95 42.49% 24.45% 10/10 7.54% 20.47% 57.16%
∞ 43.97% 16.97% 10/10 9.56% 14.56% 24.89%

1.67
0.95 72.49% 10.67% 10/10 2.7% 11.44% 40.33%
∞ 34.46% 10.67% 10/10 4.36% 9.6% 12.24%

0.5

1
0.95 3/10 4.09% 11.85% 16.64%
∞ 45.57% 23.81% 10/10 5.4% 19.44% 25.67%

1.33
0.95 50.66% 23.81% 10/10 21.89% 32.24% 64.54%
∞ 45.57% 23.81% 10/10 5.65% 19.89% 32.85%

1.67
0.95 41.12% 6/10 2.15% 13.9% 23.47%
∞ 36.89% 10.67% 10/10 4.9% 11.33% 20.74%

kroA100

0.2

1
0.95 1/10 23.4% ∗ 23.4% ∗ 23.4% ∗

∞ 29.91% ∗ 30.46% ∗ 10/10 28.95% ∗ 43.21% ∗ 59.3% ∗

1.33
0.95 5.01% 6/10 2.52% 5.58% 10.15%
∞ 38.03% 5.01% 10/10 3.17% 6.11% 11.87%

1.67
0.95 5.01% 10/10 4.17% 16.69% 46.62%
∞ 30.71% 5.01% 10/10 1.16% 7.97% 16.0%

0.35

1
0.95 0/10
∞ 49.91% ∗ 55.82% ∗ 10/10 33.81% ∗ 55.07% ∗ 69.09% ∗

1.33
0.95 10.97% ∗ 10/10 5.65% ∗ 23.73% ∗ 48.88% ∗

∞ 35.42% ∗ 10.02% ∗ 10/10 4.77% ∗ 14.43% ∗ 34.44% ∗

1.67
0.95 54.52% 63.4% 10/10 4.41% 25.39% 74.42%
∞ 27.27% 9.73% 10/10 4.31% 7.32% 11.6%

0.5

1
0.95 0/10
∞ 30.54% ∗ 31.4% ∗ 10/10 21.62% ∗ 28.47% ∗ 37.27% ∗

1.33
0.95 28.13% ∗ 60.53% ∗ 7/10 12.85% ∗ 47.45% ∗ 56.44% ∗

∞ 30.83% ∗ 29.42% ∗ 10/10 7.84% ∗ 22.93% ∗ 36.68% ∗

1.67
0.95 47.77% 9.73% 10/10 6.28% 13.85% 57.08%
∞ 30.71% 9.73% 10/10 5.48% 9.78% 18.13%

pr124 0.2

1
0.95 19.92% ∗ 0/10
∞ 55.05% ∗ 19.05% ∗ 10/10 14.84% ∗ 25.08% ∗ 41.49% ∗

1.33
0.95 53.58% ∗ 26.4% ∗ 9/10 12.73% ∗ 15.83% ∗ 21.01% ∗

∞ 35.65% ∗ 20.65% ∗ 10/10 14.1% ∗ 21.5% ∗ 26.49% ∗

1.67 0.95 38.88% ∗ 74.27% ∗ 8/10 15.53% ∗ 18.71% ∗ 23.42% ∗
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Instance ANN AFI ARI

Matrix α β γ Gap Gap
Feasible Gap
solutions Min Average Max

pr124

0.2 1.67 ∞ 29.18% ∗ 19.91% ∗ 10/10 13.42% ∗ 17.88% ∗ 29.67% ∗

0.35

1
0.95 2/10 28.75% ∗ 30.13% ∗ 31.51% ∗

∞ 40.81% ∗ 31.54% ∗ 10/10 27.13% ∗ 37.31% ∗ 48.68% ∗

1.33
0.95 1/10 12.15% 12.15% 12.15%
∞ 21.94% 17.58% 10/10 7.26% 13.95% 18.32%

1.67
0.95 18.71% ∗ 10/10 10.96% ∗ 17.56% ∗ 44.75% ∗

∞ 29.15% ∗ 17.94% ∗ 10/10 9.77% ∗ 15.69% ∗ 19.44% ∗

0.5

1
0.95 0/10
∞ 31.11% ∗ 27.57% ∗ 10/10 23.27% ∗ 29.07% ∗ 35.7% ∗

1.33
0.95 13.55% ∗ 8/10 6.59% ∗ 10.49% ∗ 20.2% ∗

∞ 23.4% ∗ 16.17% ∗ 10/10 6.13% ∗ 11.59% ∗ 17.74% ∗

1.67
0.95 24.28% 5/10 5.3% 9.15% 13.67%
∞ 17.41% 11.35% 10/10 3.45% 7.1% 11.73%

pr152

0.2

1
0.95 33.01% ∗ 1/10 28.46% ∗ 28.46% ∗ 28.46% ∗

∞ 33.65% ∗ 53.4% ∗ 10/10 33.11% ∗ 45.28% ∗ 59.65% ∗

1.33
0.95 35.68% ∗ 36.31% ∗ 1/10 35.97% ∗ 35.97% ∗ 35.97% ∗

∞ 35.69% ∗ 36.32% ∗ 10/10 23.73% ∗ 35.96% ∗ 49.39% ∗

1.67
0.95 32.95% ∗ 20.92% ∗ 9/10 17.11% ∗ 21.59% ∗ 28.51% ∗

∞ 32.81% ∗ 20.79% ∗ 10/10 17.84% ∗ 23.74% ∗ 34.83% ∗

0.35

1
0.95 51.61% ∗ 2/10 41.19% ∗ 43.64% ∗ 46.09% ∗

∞ 66.93% ∗ 65.06% ∗ 10/10 45.6% ∗ 71.94% ∗ 97.2% ∗

1.33
0.95 36.7% ∗ 22.7% ∗ 9/10 20.85% ∗ 23.43% ∗ 29.86% ∗

∞ 38.84% ∗ 24.23% ∗ 10/10 23.3% ∗ 29.94% ∗ 41.75% ∗

1.67
0.95 32.33% ∗ 2/10 16.74% ∗ 28.29% ∗ 39.84% ∗

∞ 32.48% ∗ 18.27% ∗ 10/10 17.22% ∗ 23.86% ∗ 35.63% ∗

0.5

1
0.95 0/10
∞ 27.57% ∗ 24.61% ∗ 10/10 11.09% ∗ 26.3% ∗ 44.85% ∗

1.33
0.95 39.51% ∗ 12.61% ∗ 8/10 12.26% ∗ 19.08% ∗ 29.6% ∗

∞ 28.18% ∗ 12.6% ∗ 10/10 12.97% ∗ 25.35% ∗ 44.63% ∗

1.67
0.95 0/10
∞ 41.44% ∗ 26.7% ∗ 10/10 25.36% ∗ 27.12% ∗ 30.0% ∗

rat195

0.2

1
0.95 0/10
∞ 27.26% ∗ 35.43% ∗ 10/10 32.96% ∗ 44.86% ∗ 55.74% ∗

1.33
0.95 1/10 13.18% ∗ 13.18% ∗ 13.18% ∗

∞ 18.04% ∗ 12.09% ∗ 10/10 13.61% ∗ 20.17% ∗ 27.04% ∗

1.67
0.95 20.22% ∗ 12.24% ∗ 10/10 15.15% ∗ 16.76% ∗ 19.72% ∗

∞ 26.47% ∗ 12.14% ∗ 10/10 13.3% ∗ 17.49% ∗ 21.32% ∗

0.35
1

0.95 1/10 19.17% ∗ 19.17% ∗ 19.17% ∗

∞ 30.27% ∗ 20.97% ∗ 10/10 21.45% ∗ 32.27% ∗ 43.44% ∗

1.33
0.95 18.42% ∗ 11.44% ∗ 8/10 13.13% ∗ 16.04% ∗ 18.51% ∗

∞ 18.64% ∗ 11.64% ∗ 10/10 12.8% ∗ 19.11% ∗ 35.18% ∗
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Instance ANN AFI ARI

Matrix α β γ Gap Gap
Feasible Gap
solutions Min Average Max

rat195

0.35 1.67
0.95 1/10 29.38% ∗ 29.38% ∗ 29.38% ∗

∞ 19.33% ∗ 12.29% ∗ 10/10 12.24% ∗ 15.78% ∗ 17.85% ∗

0.5

1
0.95 0/10
∞ 27.76% ∗ 9.11% ∗ 10/10 11.39% ∗ 21.44% ∗ 28.02% ∗

1.33
0.95 19.16% ∗ 32.51% ∗ 1/10 11.41% ∗ 11.41% ∗ 11.41% ∗

∞ 17.49% ∗ 11.14% ∗ 10/10 14.87% ∗ 20.37% ∗ 26.94% ∗

1.67
0.95 18.53% ∗ 11.54% ∗ 10/10 12.69% ∗ 15.88% ∗ 20.94% ∗

∞ 18.37% 11.39% 10/10 13.48% 15.22% 18.77%

pr226

0.2

1
0.95 55.83% ∗ 7/10 63.76% ∗ 87.39% ∗ 96.82% ∗

∞ 55.94% ∗ 55.21% ∗ 10/10 51.76% ∗ 76.35% ∗ 99.06% ∗

1.33
0.95 24.85% ∗ 8/10 13.44% ∗ 20.13% ∗ 24.35% ∗

∞ 31.07% ∗ 24.79% ∗ 10/10 14.72% ∗ 27.19% ∗ 46.91% ∗

1.67
0.95 57.86% ∗ 11.76% ∗ 10/10 10.36% ∗ 23.0% ∗ 91.32% ∗

∞ 25.83% ∗ 11.89% ∗ 10/10 9.12% ∗ 10.47% ∗ 12.73% ∗

0.35

1
0.95 51.18% ∗ 3/10 36.44% ∗ 46.19% ∗ 56.65% ∗

∞ 52.89% ∗ 33.97% ∗ 10/10 35.24% ∗ 54.25% ∗ 69.84% ∗

1.33
0.95 16.59% ∗ 10/10 13.24% ∗ 14.97% ∗ 17.67% ∗

∞ 30.15% ∗ 15.7% ∗ 10/10 13.35% ∗ 15.0% ∗ 17.95% ∗

1.67
0.95 14.13% ∗ 6/10 11.97% ∗ 13.13% ∗ 14.88% ∗

∞ 28.13% ∗ 13.9% ∗ 10/10 11.37% ∗ 13.67% ∗ 16.27% ∗

0.5

1
0.95 50.04% ∗ 0/10
∞ 48.55% ∗ 41.28% ∗ 10/10 24.92% ∗ 38.49% ∗ 60.27% ∗

1.33
0.95 39.57% ∗ 59.78% ∗ 10/10 18.07% ∗ 69.8% ∗ 98.71% ∗

∞ 46.46% ∗ 15.75% ∗ 10/10 12.77% ∗ 14.08% ∗ 15.24% ∗

1.67
0.95 16.22% ∗ 10/10 13.12% ∗ 14.86% ∗ 16.81% ∗

∞ 30.2% ∗ 15.75% ∗ 10/10 12.29% ∗ 14.76% ∗ 17.38% ∗

Asymmetric instances
Instance ANN AFI ARI

Matrix α β γ Gap Gap
Feasible Gap
solutions Min Average Max

ft53

0.2

1
0.95 40.9% ∗ 10/10 29.73% ∗ 51.98% ∗ 74.59% ∗

∞ 40.25% ∗ 54.49% ∗ 10/10 31.73% ∗ 50.77% ∗ 74.41% ∗

1.33
0.95 40.15% 57.96% 10/10 19.17% 30.46% 45.1%
∞ 40.15% 26.36% 10/10 15.13% 26.6% 39.45%

1.67
0.95 44.55% 24.26% 10/10 14.04% 19.56% 25.72%
∞ 33.28% 24.26% 10/10 10.39% 18.0% 32.44%

0.35
1

0.95 51.02% 8/10 12.42% 24.34% 32.44%
∞ 41.8% 39.18% 10/10 20.89% 32.51% 47.05%

1.33
0.95 71.92% 32.49% 10/10 6.66% 32.43% 87.58%
∞ 39.88% 32.49% 10/10 12.15% 23.62% 39.27%
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Instance ANN AFI ARI

Matrix α β γ Gap Gap
Feasible Gap
solutions Min Average Max

ft53

0.35 1.67
0.95 61.13% 21.13% 10/10 14.95% 24.88% 80.48%
∞ 42.65% 21.13% 10/10 12.12% 21.46% 28.81%

0.5

1
0.95 49.47% 18.57% 6/10 22.42% 29.8% 42.26%
∞ 49.47% 18.57% 10/10 14.76% 24.24% 33.83%

1.33
0.95 67.69% 18.57% 10/10 9.41% 21.54% 31.99%
∞ 43.33% 18.57% 10/10 11.53% 22.16% 27.6%

1.67
0.95 67.69% 7.63% 10/10 14.09% 19.26% 26.75%
∞ 43.33% 7.63% 10/10 15.9% 21.07% 34.77%

ftv64

0.2

1
0.95 37.92% 9/10 19.92% 39.45% 69.52%
∞ 56.88% 37.92% 10/10 20.29% 38.8% 66.44%

1.33
0.95 18.27% 10/10 10.73% 18.09% 24.26%
∞ 48.03% 18.27% 10/10 10.51% 20.08% 26.42%

1.67
0.95 60.47% 7/10 13.27% 41.41% 74.5%
∞ 45.08% 15.39% 10/10 12.29% 19.05% 31.32%

0.35

1
0.95 53.41% 45.77% 4/10 31.42% 44.35% 58.94%
∞ 44.2% 45.77% 10/10 20.96% 38.65% 50.81%

1.33
0.95 33.21% 30.5% 10/10 10.83% 28.81% 48.37%
∞ 47.83% 30.5% 10/10 15.44% 22.95% 32.45%

1.67
0.95 69.44% 27.51% 10/10 8.43% 17.43% 27.24%
∞ 43.5% 27.51% 10/10 9.73% 16.65% 27.46%

0.5

1
0.95 44.7% 6/10 11.57% 18.26% 22.49%
∞ 48.38% 43.08% 10/10 22.16% 32.15% 38.65%

1.33
0.95 71.88% 43.7% 10/10 15.15% 21.79% 29.15%
∞ 45.49% 43.7% 10/10 15.04% 23.94% 40.88%

1.67
0.95 65.31% 10/10 13.03% 25.59% 54.23%
∞ 43.27% 28.66% 10/10 9.39% 16.78% 24.92%

ft70

0.2

1
0.95 21.28% ∗ 17.87% ∗ 2/10 17.29% ∗ 18.35% ∗ 19.41% ∗

∞ 16.83% ∗ 14.56% ∗ 10/10 12.54% ∗ 17.34% ∗ 20.76% ∗

1.33
0.95 20.71% 16.36% 10/10 14.83% 20.27% 29.08%
∞ 10.38% 10.76% 10/10 8.75% 11.68% 13.87%

1.67
0.95 18.99% 23.4% 10/10 13.37% 20.68% 25.73%
∞ 10.38% 10.86% 10/10 8.38% 10.95% 13.68%

0.35

1
0.95 17.81% 12.24% 10/10 8.34% 17.04% 28.58%
∞ 13.2% 12.24% 10/10 8.41% 11.65% 14.94%

1.33
0.95 11.97% 18.75% 10/10 7.21% 12.79% 21.79%
∞ 11.97% 11.83% 10/10 6.49% 9.63% 12.12%

1.67
0.95 17.66% 7/10 9.34% 12.9% 17.18%
∞ 11.97% 8.79% 10/10 7.52% 9.54% 11.46%

0.5 1
0.95 9.32% 6/10 6.94% 8.66% 10.46%
∞ 14.95% 9.32% 10/10 8.51% 10.41% 12.51%
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Instance ANN AFI ARI

Matrix α β γ Gap Gap
Feasible Gap
solutions Min Average Max

ft70 0.5
1.33

0.95 7.44% 4/10 8.02% 13.12% 25.26%
∞ 11.47% 7.44% 10/10 7.55% 9.49% 12.37%

1.67
0.95 8.9% 6/10 6.78% 10.96% 14.9%
∞ 11.47% 8.9% 10/10 7.46% 9.49% 12.2%

kro124p

0.2

1
0.95 19.08% ∗ 8/10 18.85% ∗ 29.76% ∗ 37.72% ∗

∞ 42.19% ∗ 18.92% ∗ 10/10 18.7% ∗ 33.83% ∗ 47.13% ∗

1.33
0.95 37.34% 13.15% 7/10 9.53% 18.67% 42.61%
∞ 32.19% 13.15% 10/10 10.04% 14.18% 19.68%

1.67
0.95 31.36% 14.15% 10/10 11.63% 15.21% 19.48%
∞ 31.2% 14.15% 10/10 10.98% 13.63% 18.03%

0.35

1
0.95 0/10
∞ 28.93% ∗ 37.71% ∗ 10/10 26.93% ∗ 35.32% ∗ 44.22% ∗

1.33
0.95 28.02% 15.22% 9/10 8.72% 13.3% 19.79%
∞ 28.02% 15.22% 10/10 10.23% 16.13% 31.44%

1.67
0.95 60.08% 10.29% 10/10 7.57% 11.73% 16.19%
∞ 32.07% 10.29% 10/10 8.77% 13.67% 19.33%

0.5

1
0.95 23.36% ∗ 8/10 20.26% ∗ 23.49% ∗ 27.7% ∗

∞ 29.66% ∗ 23.31% ∗ 10/10 20.07% ∗ 25.89% ∗ 32.14% ∗

1.33
0.95 43.07% 21.31% 10/10 9.72% 20.83% 30.54%
∞ 29.62% 21.31% 10/10 9.13% 19.43% 29.9%

1.67
0.95 71.88% 10.29% 10/10 9.62% 20.62% 51.73%
∞ 31.12% 10.29% 10/10 9.96% 13.49% 18.85%

ftv170

0.2

1
0.95 4/10 40.93% ∗ 46.12% ∗ 50.24% ∗

∞ 45.48% ∗ 40.41% ∗ 10/10 31.4% ∗ 46.61% ∗ 59.88% ∗

1.33
0.95 50.4% 34.74% 10/10 11.64% 35.84% 77.92%
∞ 49.17% 34.74% 10/10 25.09% 32.44% 44.67%

1.67
0.95 64.72% 34.74% 9/10 19.07% 27.72% 38.18%
∞ 43.47% 34.74% 10/10 15.81% 21.92% 31.62%

0.35

1
0.95 34.87% ∗ 6/10 33.84% ∗ 40.98% ∗ 48.83% ∗

∞ 46.95% ∗ 34.28% ∗ 10/10 32.64% ∗ 38.4% ∗ 46.91% ∗

1.33
0.95 28.28% 10/10 13.83% 31.47% 41.85%
∞ 45.15% 28.28% 10/10 19.24% 28.87% 36.99%

1.67
0.95 64.07% 18.91% 10/10 15.28% 22.68% 33.18%
∞ 43.59% 18.91% 10/10 9.98% 24.18% 37.64%

0.5

1
0.95 32.64% ∗ 3/10 20.53% ∗ 25.39% ∗ 29.38% ∗

∞ 36.55% ∗ 33.13% ∗ 10/10 21.15% ∗ 39.03% ∗ 51.8% ∗

1.33
0.95 18.33% 10/10 18.08% 29.52% 41.61%
∞ 46.49% 18.33% 10/10 17.97% 28.05% 39.52%

1.67
0.95 52.63% 18.8% 10/10 13.58% 24.88% 31.22%
∞ 42.4% 18.8% 10/10 19.85% 24.71% 29.33%
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Table 5.4: Average CPU time, in seconds, to obtain feasible solu-
tions through the ANN, AFI and ARI heuristics.

Type of instance
Constructive heuristic
ANN AFI ARI

Symmetric 0,0239 0,6184 0,0343
Asymmetric 0,0094 0,2426 0,0173

In average, all of the three methods require less than 1 second to determine their respective feasible
solutions. However, it is possible to conclude from Table 5.4 that the AFI heuristic consumes, in aver-
age, 25 and 18 times more CPU time to obtain a feasible solution when compared to the ANN and ARI
heuristics, relatively. This significant difference can be explained by the implementation of the construc-
tion stage of the AFI heuristic, since we determine in every iteration of the corresponding algorithm the
minimal distance of every non-inserted node to the determined circuit in order to select the vertex with
maximal distance as the next node to be inserted, which demands additional CPU time. If we priori-
tize reduced computational time over solution quality and consistency, the ANN and ARI heuristics are
preferable. When we compare the required computational time to determine feasible solutions between
symmetric and asymmetric instances, we might feel tempted to conclude that the constructive algorithms
are three times faster in asymmetric cases. However, it is important to bear in mind that the symmetric
instances we used for this analysis tend to have a larger size relatively to the asymmetric instances, which
might influence some of the disparity of average CPU time.

If we are particularly interested in comparing the performance of both deterministic methods (ANN
and AFI), our sample of instances suggests that the AFI heuristic has a higher success rate for determin-
ing feasible solutions: regarding symmetric instances, it determined feasible solutions for 80% of the
cases, whereas the ANN heuristic obtained feasible solutions only for 75% of them; this is still valid
for asymmetric instances because these two algorithms determined feasible solutions for 92% and 84%

of the cases, respectively. Furthermore, for the vast majority of instances where both methods found
feasible solutions, the solution provided by the AFI has a significantly lower cost. It is true that the ANN
heuristic determines feasible solutions quicker, but the trade-off of this is that the AFI method ensures
solutions with a value in the objective function closer to the global minimum.

Since the ARI method is not deterministic, it obviously does not provide us the same solution in
all of the 10 runs we performed for every instance. On Table 5.3 it is possible to see for the instance
which is defined on the asymmetric matrix “ft53”, for α = 0.35, β = 1.33 and γ = 0.95, that out of
the 10 successful runs of the ARI heuristic, the obtained solution with a lower cost has a gap of 6.66%
from the optimal value, while the solution with the highest cost has a gap of 87.58% from the same
value. This difference of over 80% between the maximum and the minimum gap, out of 10 runs, for
the same instance is a great example of how much the quality of the provided solutions might vary.
In spite of this deviation, it seems to be common, based on our sample, that after 10 runs of the ARI
heuristic for a feasible BWTSP instance at least one of them returns a feasible solution. For symmetric
instances, the ARI heuristic determined at least one feasible solution, out of the 10 runs, for 91% of
the instances. Regarding asymmetric instances, this rate increases to 98%. Out of the two deterministic
methods we proposed in this dissertation, we previously concluded that the AFI heuristic has a higher
success rate at obtaining feasible solutions for the considered instances. On one hand, the AFI algorithm
has the advantage of being more consistent in regards to solution quality relatively to the ARI, which
is not a surprise since it is a deterministic method. On the other hand, it is not negligible that the AFI
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heuristic could not determine feasible solutions for 14% of our entire sample of instances, whereas the
ARI heuristic returned 0 feasible solutions, out of the 10 runs, only for 5.5% of cases. This seems
to suggest that if we prioritize obtaining an initial feasible solution for a BWTSP instance, and we find
negligible its value in the objective function, then the ARI heuristic is an appropriate constructive method.
In fact, one can argue that due to the disparity in CPU time of both algorithms it is possible to replace
an unsuccessful run of the AFI heuristic with 18 runs of the ARI heuristics with the premise that, if the
overall BWTSP instance is feasible, there is a high chance that at least one of those 18 runs will result in
a feasible solution.

At last, the results in Table 5.3 show that whenever we eliminate the length constraint of the BWTSP,
which happens everytime we set L to infinity, our constructive heuristics are always able to determine
feasible solutions for the BWTSP instance we are considering. This confirmations that the limitations of
the methods we developed to determine feasible solutions are based on the procedure we used to correct
length infeasibility, just like we stated in Section 3.5.

5.3 Testing parameters for the ILS algorithm

An Iterated Local Search (ILS) algorithm was proposed on Chapter 4. This algorithm is an improve-
ment heuristic, which means that a feasible solution for the BWTSP is required as a starting point for
the heuristic. For this purpose we have decided to use the solutions provided by the three constructive
heuristics we developed in this dissertation. Since each of these constructive algorithms return solutions
with different values in the objective function of the problem, it is fair to analyse separately the gaps we
obtained through the three different combinations of heuristics, ANN+ILS, AFI+ILS and ARI+ILS. Fur-
thermore, this study could be an additional contribution for the comparative analysis of the constructive
heuristics ANN, AFI and ARI, because it will allow us to take conclusions regarding the impact their
initial solutions can have on the performance of the ILS algorithm.

Our goal in the current section is to test two parameters for the ILS heuristic: the strength of the
perturbation, denoted by ω, and the maximum number of iterations of the algorithm, MaxIt. On one
hand, the parameter ω controls the proportion of nodes to randomly remove from a given Hamiltonian
circuit s, in order to reinsert them in the position which leads to the minimal increase of cost on the circuit
s (detailed in Section 4.2). On the other hand, the parameter MaxIt represents the maximum number
of iterations of the ILS heuristic. It is important to remember that our heuristic stops prematurely if after
0.1 ×MaxIt iterations the incumbent solution has remained unaltered, which means that MaxIt also
regulates when to prematurely terminate the algorithm. Six different combinations of the parameters
(ω,MaxIt) were considered for the tests:

Table 5.5: Different combinations of parameters (ω,MaxIt) to
test for the ILS heuristic.

Parameters Combinations
ω 1/3 1/3 1/3 1/2 1/2 1/2

MaxIt 1000 2500 5000 1000 2500 5000

These tests were conducted on the 216 instances we previously defined, considering the different
solutions the three constructive heuristics determined for each one of these instances. For each combi-
nation of parameters (ω,MaxIt), for every instance and for each constructive heuristic, 5 different runs
were performed. The results we obtained are very extensive and they can be consulted in Appendix B.
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We aim to analyse through these results not only the computational times of the different combinations
of parameters, but also if there are any alterations in the dispersion of the gaps for each of the 6 combi-
nations we tested. It is possible to see on Table 5.6 the average computational time required, in seconds,
to run the ILS algorithm for the different values of ω and MaxIt, considering the three constructive
heuristics. We will display the boxplots of the resultant gaps for each combination of parameters, for
symmetric and asymmetric instances, respectively. On Figure 5.1 we have all the boxplots associated to
the conducted tests on symmetric instances and on Figure 5.2 we present the boxplots associated to the
asymmetric cases.

Table 5.6: Average CPU time, in seconds, to run the ILS heuristic
for different combinations of parameters.

Parameters Symmetric instances Asymmetric instances
ω MaxIt ANN+ILS AFI+ILS ARI+ILS ANN+ILS AFI+ILS ARI+ILS

1/3

1000 22,09 23,86 42,28 9,97 11,63 20,87
2500 48,53 53,63 88,43 19,53 24,25 38,60
5000 88,38 92,61 150,79 35,66 44,73 71,48

1/2

1000 25,70 26,58 57,63 9,99 11,81 44,07
2500 56,22 56,55 112,98 22,55 28,55 50,19
5000 110,72 112,59 225,57 39,38 46,67 94,57

For symmetric instances, most of the gaps which were greater than 5% were in reality overestimations
of the real corresponding gaps, because they are comparisons between an heuristic solution and the lower
bound of the global optimum, which was not determined within the time limit we imposed (see Section
5.1.1). The same applies for most of the gaps which were greater than 10% in the asymmetric case.
Due to these limitations, the purpose of the boxplots we previously displayed is not to individually
analyse them because they are not accurate visual representations of the real quality of the methods we
tested. Instead, our goal is to compare the dispersion of the resultant gaps we obtained through the
ILS algorithm as a consequence of the factors we altered in every test; those factors can either be the
constructive heuristic we used before the ILS, the strength of the perturbation or the maximum number
of iterations. In order to do a comparative analysis of the dispersion of the resultant gaps we will study
the differences regarding three different statistics for each combination of parameters for the ILS: the
first quartile of the gaps, the median values and the third quartile.

It becomes clear from Table 5.6 that when we apply the ILS algorithm on initial solutions provided by
the ARI heuristic it consumes, at least, twice the computational time of the combinations ANN+ILS and
AFI+ILS. In fact, this conclusion is valid for the six different combinations of parameters (ω,MaxIt)

and for both symmetric and asymmetric instances. From Figures 5.1 and 5.2 it is possible to see that,
for each type of instance symmetry and for the same combination of parameters on the ILS heuristic,
the additional CPU time for the ARI+ILS combination did not result in a significantly improved solution
quality. In fact, Lourenço et al. [2003] mentioned that one key advantage of using greedy constructive
heuristics before the ILS algorithm is that it requires less improvement stages during the procedure, in
comparison to initial solutions obtained randomly, which helps us explain the disparity in CPU time
between starting the ILS from a solution we determined through the ARI and the other two constructive
algorithms.

For each combination of parameters (ω,MaxIt) of the ILS heuristic, it is interesting to see that
when we considered initial solutions which had been determined by the AFI algorithm, the interquartile
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Figure 5.1: Boxplots of the obtained gaps for symmetric instances.

range (which means, the difference between the third and the first quartile) of the resultant gaps is less
than the range we observed for gaps which were obtained from the combinations ANN+ILS or ARI+ILS.
Such difference is even more prominent in asymmetric instances.

We can also see from Figures 5.1 and 5.2 that increasing the value of both parameters ω and MaxIt

enhances our chances of determining new local minimums for the BWTSP instances we considered. This
is generalized for symmetric and asymmetric instances because the first quartile, the median value and
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Figure 5.2: Boxplots of the obtained gaps for asymmetric instances.

the third quartile of the gaps we obtained tend to decrease when ω = 1/2, as well as when the maximum
number of iterations increases. It is also interesting to see that this decrease is more accentuated in
the asymmetric case. For example, between the combination of parameters (ω,MaxIt) = (1/3, 1000)

and (ω,MaxIt) = (1/2, 5000), the difference between the two sets of boxplots is very residual for
symmetric instances: the median, the first and third quartiles decreased, at most, 1% in these cases,
regardless of the constructive heuristic we used for the ILS. In contrast, when we compare the two sets of
boxplots associated to the previous combinations of parameters (ω,MaxIt) on asymmetric instances,
the differences between the values of the median, the first and third quartiles are much more abrupt.
This seems to suggest that when we apply the ILS heuristic on asymmetric instances of the BWTSP,
they are more vulnerable not only to the strength of the perturbation method we consider but also to the
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maximum number of iterations we allow. Note that when we allow more iterations of the ILS heuristic,
we are applying more perturbations during the process which might lead us to new local minimums. This
constitutes a confirmation that our Local Search procedure is more impactful on symmetric instances,
because we are not too dependent on the power of our perturbations in these cases to determine feasible
solutions with a good value in the objective function of the BWTSP throughout the ILS algorithm. For
context, it is important to remember that we search an additional neighborhood,N2−exchange, during the
Local Search procedure we incorporated in the ILS whenever we consider a symmetric BWTSP instance,
which can explain the difference in regards to the performance of the Local Search procedure between
symmetric and asymmetric instances.

Due to the fact that the asymmetric instances of the BWTSP appear to be relatively sensitive to the
quality and quantity of the perturbations we apply during the ILS procedure, it is utterly important to
pay attention to the differences regarding the dispersion of the gaps we obtained for the six combinations
of parameters (ω,MaxIt) in the asymmetric case (see Figure 5.2) in order to, finally, select the most
appropriate combination of parameters. We can start by eliminating the possibility of considering MaxIt

as 1000. The conducted tests, regardless of the values of ω, prove that it consumes an impressively low
average of CPU time to run the ILS algorithm when we set the maximum number of iterations to 1000
and we consequently decide to stop the procedure after 100 iterations without improvement. However,
the values of the three main statistics we considered (first and third quartiles, and the median) for the
resultant gaps were the highest, specially on the asymmetric case.

We have four different combinations of parameters of the ILS algorithm left to compare. If we focus
on Figure 5.1, we see that the first quartiles of the gaps we obtained for ω = 1/2, considering MaxIt

as 2500 or 5000, are closer to zero relatively to the first quartiles of the gaps we obtained for ω = 1/3

on symmetric instances. Additional differences can be seen for the asymmetric instances we considered,
where the medians of the gaps we obtained for ω = 1/2, for MaxIt set to 2500 or to 5000, are lower
relatively to the respective medians we obtained when ω = 1/3.

It seems that we only have two interesting combinations of parameters for the ILS heuristic at this
point, both of them consider ω as 1/2 but one sets MaxIt as 2500 while the other sets this value to
5000. For both symmetric and asymmetric instances (Figures 5.1 and 5.2, relatively), we can see that
there is not a significant difference amongst the three boxplots we displayed when MaxIt = 2500 or
when MaxIt = 5000. However, when we consider a maximum of 5000 iterations, the average CPU
time doubles relatively to the scenario where we used 2500 as the maximum number of iterations. There-
fore, we can conclude that, for ω = 1/2, increasing MaxIt from 2500 to 5000 lead to a very modest
improvement of the general gaps we obtained while the required computational time, in comparison,
increased massively. To sum up, we have decided to define ω = 1/2 and MaxIt = 2500 on our ILS
algorithm because it accomplishes our purpose of devoloping an improvement heuristic that determines
solutions with a good value in the objective function within a reasonable amount of computational time,
in comparison to the other five combinations of parameters we analysed.

5.4 Performance of the ILS heuristic

In this section we will summarize the results we obtained for the ILS heuristic we developed. As we
explained in the previous section, we ran each of the 216 instances, for each constructive method, 5
times. We display in Table 5.7 the average gap (or an overestimation of it, if it is followed by the symbol
∗) and the average CPU time, in seconds, we obtained for every instance and for every constructive
heuristic we considered. Whenever the corresponding constructive method did not determine an initial
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feasible solution for a BWTSP instance, we symbolized it with “—-”. In order to see the minimum and
the maximum gap we obtained for each instance, for the different constructive heuristics we used, see
Appendix B.2.2.

Table 5.7: Computational results of the ILS algorithm, considering
the determined solutions by the three different constructive heuris-
tics.

Symmetric instances
Instance ANN+ILS AFI+ILS ARI+ILS

Matrix α β γ Av. Gap Av. CPU Av. Gap Av. CPU Av. Gap Av. CPU

berlin52

0.2

1
0.95
∞ 4.49% ∗ 7.62 4.49% ∗ 8.41 4.65% ∗ 17.03

1.33
0.95 4.43% ∗ 9.95 4.49% ∗ 8.02 4.41% ∗ 12.73
∞ 5.45% ∗ 6.71 5.47% ∗ 5.11 5.38% ∗ 10.72

1.67
0.95 1.04% 9.48 0.52% 18.08
∞ 1.77% 7.44 1.77% 7.05 2.02% 11.91

0.35

1
0.95 0.53% 7.55 0.33% 6.44 0.5% 11.4
∞ 0.41% 7.59 0.18% 6.84 0.08% 15.49

1.33
0.95 0.47% 7.71 0.47% 7.8 1.91% 11.51
∞ 0.75% 5.71 0.0% 6.26 1.12% 12.04

1.67
0.95 0.0% 6.18 0.47% 5.45 0.73% 10.05
∞ 0.0% 6.17 0.47% 5.57 1.06% 10.32

0.5

1
0.95
∞ 0.08% 5.47 0.0% 5.01 0.53% 10.15

1.33
0.95 1.07% 7.3 1.03% 19.76
∞ 0.94% 5.68 0.29% 4.13 0.23% 8.49

1.67
0.95 1.67% 6.75 0.47% 6.16 0.47% 8.09
∞ 0.96% 5.02 0.53% 5.03 0.1% 10.64

pr76

0.2

1
0.95
∞ 1.45% ∗ 13.22 1.81% ∗ 14.8 1.75% ∗ 36.52

1.33
0.95 1.54% ∗ 15.84 3.16% ∗ 19.66 3.86% ∗ 23.5
∞ 1.45% ∗ 15.56 2.14% ∗ 12.92 1.43% ∗ 23.24

1.67
0.95 0.78% ∗ 13.01 0.46% ∗ 14.52 0.63% ∗ 28.86
∞ 0.62% ∗ 12.04 0.37% ∗ 14.38 0.52% ∗ 27.25

0.35

1
0.95 4.22% ∗ 32.67
∞ 4.36% ∗ 17.03 4.28% ∗ 15.44 4.36% ∗ 28.49

1.33
0.95 0.02% 11.57 0.02% 9.75 0.08% 21.19
∞ 0.05% 8.44 0.14% 11.79 0.03% 20.39

1.67
0.95 0.72% 13.56 0.03% 12.23 0.47% 29.48
∞ 0.54% 11.44 0.09% 10.31 0.2% 22.6

0.5
1

0.95
∞ 0.0% 13.74 2.7% 15.09 0.02% 34.97

1.33
0.95 1.53% 11.5 1.16% 25.15
∞ 1.05% 8.99 1.65% 12.02 0.55% 29.56
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Instance ANN+ILS AFI+ILS ARI+ILS
Matrix α β γ Av. Gap Av. CPU Av. Gap Av. CPU Av. Gap Av. CPU

pr76 0.5 1.67
0.95 0.55% 7.28 0.57% 20.75
∞ 0.61% 9.74 0.09% 10.28 0.68% 18.25

kroA100

0.2

1
0.95
∞ 9.05% ∗ 70.24 9.46% ∗ 67.07 8.76% ∗ 184.62

1.33
0.95 0.0% 20.35 0.0% 27.06
∞ 0.02% 16.09 0.0% 15.47 0.01% 34.19

1.67
0.95 0.0% 17.54 0.01% 31.41
∞ 0.13% 18.03 0.0% 16.21 0.02% 32.87

0.35

1
0.95
∞ 6.48% ∗ 55.48 6.33% ∗ 53.12 6.47% ∗ 125.12

1.33
0.95 4.23% ∗ 26.07 3.59% ∗ 81.35
∞ 1.6% ∗ 40.3 1.57% ∗ 57.97 2.55% ∗ 85.45

1.67
0.95 0.01% 14.08 0.0% 16.0 0.02% 33.47
∞ 0.02% 18.84 0.02% 20.44 0.02% 35.63

0.5

1
0.95
∞ 3.06% ∗ 69.86 3.21% ∗ 53.2 3.2% ∗ 104.57

1.33
0.95 2.04% ∗ 56.0 1.92% ∗ 76.34 3.4% ∗ 72.75
∞ 1.79% ∗ 37.56 2.0% ∗ 33.82 1.79% ∗ 63.69

1.67
0.95 0.15% 16.16 0.0% 18.86 0.0% 38.74
∞ 0.0% 18.98 0.0% 21.25 0.0% 35.25

pr124

0.2

1
0.95 6.93% ∗ 46.74
∞ 6.06% ∗ 43.69 5.95% ∗ 32.52 6.52% ∗ 97.4

1.33
0.95 10.06% ∗ 20.79 9.44% ∗ 20.89 9.44% ∗ 42.23
∞ 9.61% ∗ 20.65 9.27% ∗ 28.99 9.61% ∗ 45.28

1.67
0.95 10.93% ∗ 17.66 10.93% ∗ 20.13 11.4% ∗ 37.46
∞ 11.0% ∗ 16.08 11.0% ∗ 18.03 11.1% ∗ 37.11

0.35

1
0.95
∞ 9.67% ∗ 23.6 8.4% ∗ 20.94 8.4% ∗ 31.37

1.33
0.95 1.32% 39.92
∞ 0.35% 23.74 0.42% 20.18 0.24% 50.29

1.67
0.95 7.27% ∗ 31.5 6.99% ∗ 70.67
∞ 6.53% ∗ 17.9 6.61% ∗ 22.25 5.92% ∗ 47.08

0.5

1
0.95
∞ 5.31% ∗ 50.89 4.7% ∗ 36.48 4.9% ∗ 83.85

1.33
0.95 2.15% ∗ 30.89 2.95% ∗ 49.85
∞ 4.58% ∗ 27.22 4.58% ∗ 27.31 4.34% ∗ 42.9

1.67
0.95 0.29% 18.54 0.3% 44.65
∞ 0.0% 16.2 0.36% 27.35 0.59% 40.12

pr152 0.2
1

0.95 14.18% ∗ 95.32 13.99% ∗ 133.75
∞ 14.38% ∗ 83.19 14.54% ∗ 107.5 14.17% ∗ 152.64

1.33
0.95 14.0% ∗ 70.05 14.31% ∗ 86.9 14.43% ∗ 210.35
∞ 13.27% ∗ 90.94 13.58% ∗ 82.15 13.72% ∗ 161.84
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Instance ANN+ILS AFI+ILS ARI+ILS
Matrix α β γ Av. Gap Av. CPU Av. Gap Av. CPU Av. Gap Av. CPU

pr152

0.2 1.67
0.95 13.14% ∗ 60.19 12.97% ∗ 34.82 13.61% ∗ 99.38
∞ 12.95% ∗ 46.68 12.99% ∗ 44.15 12.68% ∗ 101.39

0.35

1
0.95 24.24% ∗ 88.97 24.21% ∗ 96.48
∞ 24.67% ∗ 94.67 24.07% ∗ 74.12 23.71% ∗ 150.04

1.33
0.95 19.63% ∗ 34.82 18.82% ∗ 50.19 18.71% ∗ 86.32
∞ 21.19% ∗ 39.09 20.32% ∗ 42.69 20.55% ∗ 62.26

1.67
0.95 14.68% ∗ 49.3 14.07% ∗ 81.3
∞ 14.77% ∗ 31.16 14.64% ∗ 39.66 14.25% ∗ 86.62

0.5

1
0.95
∞ 9.56% ∗ 42.01 9.14% ∗ 47.87 12.35% ∗ 113.56

1.33
0.95 9.67% ∗ 40.81 9.21% ∗ 37.15 9.08% ∗ 93.77
∞ 9.4% ∗ 34.46 8.89% ∗ 52.69 9.01% ∗ 73.27

1.67
0.95
∞ 23.61% ∗ 36.07 22.93% ∗ 47.79 22.82% ∗ 77.01

rat195

0.2

1
0.95
∞ 5.57% ∗ 259.63 7.04% ∗ 312.71 6.72% ∗ 579.07

1.33
0.95
∞ 3.55% ∗ 150.65 4.54% ∗ 157.73 3.8% ∗ 350.28

1.67
0.95 3.56% ∗ 120.69 4.2% ∗ 134.16 3.26% ∗ 327.07
∞ 3.32% ∗ 114.44 4.42% ∗ 150.29 4.37% ∗ 280.9

0.35

1
0.95
∞ 3.62% ∗ 157.75 3.75% ∗ 202.63 3.7% ∗ 400.48

1.33
0.95 2.46% ∗ 108.91 4.44% ∗ 135.64 3.43% ∗ 315.57
∞ 2.77% ∗ 119.97 4.06% ∗ 155.09 3.76% ∗ 318.29

1.67
0.95
∞ 3.09% ∗ 119.07 4.03% ∗ 146.68 3.52% ∗ 296.32

0.5

1
0.95
∞ 2.51% ∗ 188.67 4.0% ∗ 141.34 3.49% ∗ 334.12

1.33
0.95 1.96% ∗ 181.53 2.21% ∗ 266.81 3.61% ∗ 299.24
∞ 2.21% ∗ 115.46 3.92% ∗ 165.56 3.12% ∗ 268.23

1.67
0.95 2.44% ∗ 155.32 3.48% ∗ 134.59 3.89% ∗ 426.2
∞ 2.36% 98.26 3.19% 160.67 3.31% 269.86

pr226

0.2

1
0.95 24.52% ∗ 213.85 23.4% ∗ 1018.22
∞ 22.76% ∗ 273.37 25.08% ∗ 310.7 25.16% ∗ 715.39

1.33
0.95 10.44% ∗ 222.35 10.72% ∗ 426.14
∞ 10.74% ∗ 204.51 10.47% ∗ 182.47 9.48% ∗ 714.83

1.67
0.95 7.2% ∗ 161.58 6.78% ∗ 162.55 7.01% ∗ 239.59
∞ 7.09% ∗ 149.36 6.94% ∗ 134.94 6.98% ∗ 239.21

0.35
1

0.95 19.4% ∗ 289.47 19.5% ∗ 639.84
∞ 17.41% ∗ 201.95 14.61% ∗ 252.52 15.26% ∗ 523.0

1.33
0.95 11.4% ∗ 166.1 11.46% ∗ 242.18
∞ 11.02% ∗ 140.79 10.63% ∗ 174.28 10.59% ∗ 301.08

56



CHAPTER 5. COMPUTATIONAL STUDY

Instance ANN+ILS AFI+ILS ARI+ILS
Matrix α β γ Av. Gap Av. CPU Av. Gap Av. CPU Av. Gap Av. CPU

pr226

0.35 1.67
0.95 9.18% ∗ 201.06 9.54% ∗ 185.3
∞ 9.07% ∗ 157.68 8.85% ∗ 150.8 9.68% ∗ 232.86

0.5

1
0.95 15.33% ∗ 628.23
∞ 19.47% ∗ 264.38 19.43% ∗ 383.71 19.75% ∗ 510.61

1.33
0.95 10.86% ∗ 246.07 11.58% ∗ 186.87 14.37% ∗ 328.52
∞ 12.11% ∗ 207.03 10.6% ∗ 131.32 10.95% ∗ 212.98

1.67
0.95 11.23% ∗ 153.58 11.31% ∗ 230.0
∞ 10.65% ∗ 132.26 10.6% ∗ 95.24 11.0% ∗ 207.82

Asymmetric instances
Instance ANN+ILS AFI+ILS ARI+ILS

Matrix α β γ Av. Gap Av. CPU Av. Gap Av. CPU Av. Gap Av. CPU

ft53

0.2

1
0.95 17.39% ∗ 14.1 14.01% ∗ 35.44
∞ 16.52% ∗ 18.96 14.44% ∗ 15.23 14.97% ∗ 39.62

1.33
0.95 3.91% 11.01 4.27% 8.59 5.92% 17.4
∞ 5.18% 6.55 5.77% 7.18 4.43% 21.4

1.67
0.95 2.03% 5.1 2.44% 6.23 3.09% 13.32
∞ 1.54% 6.32 2.46% 5.4 2.3% 12.57

0.35

1
0.95 6.16% 12.45 6.17% 15.16
∞ 2.14% 15.35 3.56% 13.31 2.97% 20.22

1.33
0.95 5.12% 10.43 3.7% 9.38 3.36% 19.86
∞ 4.01% 10.49 2.92% 13.94 4.79% 14.32

1.67
0.95 2.25% 4.98 1.12% 5.27 2.62% 10.71
∞ 2.09% 4.68 1.26% 4.83 1.95% 12.38

0.5

1
0.95 2.34% 9.17 3.62% 5.34 1.13% 17.83
∞ 4.72% 8.96 4.43% 5.69 6.0% 11.41

1.33
0.95 0.89% 6.38 2.74% 5.86 2.23% 8.57
∞ 1.98% 5.48 1.84% 6.33 1.94% 8.77

1.67
0.95 1.86% 5.11 2.76% 4.97 5.38% 9.45
∞ 1.27% 4.19 1.13% 5.42 2.29% 10.69

ftv64

0.2

1
0.95 6.73% 13.97 6.05% 22.32
∞ 6.46% 17.08 7.17% 10.9 6.55% 22.92

1.33
0.95 4.47% 6.53 3.09% 12.28
∞ 3.89% 6.65 3.28% 8.36 5.04% 12.23

1.67
0.95 4.6% 9.5 5.38% 12.75
∞ 3.99% 8.96 2.66% 5.97 4.98% 11.22

0.35

1
0.95 2.81% 11.14 2.87% 12.65 4.5% 24.15
∞ 4.51% 9.17 3.5% 11.0 3.1% 25.52

1.33
0.95 3.94% 7.74 2.78% 7.49 4.25% 16.05
∞ 3.39% 5.74 1.97% 7.98 3.48% 11.35

1.67
0.95 2.32% 5.2 4.05% 3.86 3.03% 11.94
∞ 2.56% 5.6 2.81% 6.09 3.37% 10.3
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Instance ANN+ILS AFI+ILS ARI+ILS
Matrix α β γ Av. Gap Av. CPU Av. Gap Av. CPU Av. Gap Av. CPU

ftv64 0.5

1
0.95 3.22% 13.06 1.03% 29.89
∞ 4.81% 9.02 1.75% 9.13 3.45% 14.59

1.33
0.95 3.7% 6.16 1.27% 5.17 3.15% 10.61
∞ 2.28% 7.41 2.6% 5.57 2.54% 14.43

1.67
0.95 2.61% 4.69 1.78% 14.3
∞ 0.71% 4.57 2.13% 4.47 2.39% 9.57

ft70

0.2

1
0.95 6.42% ∗ 19.99 5.98% ∗ 28.18 6.33% ∗ 39.15
∞ 6.2% ∗ 22.0 5.46% ∗ 35.49 5.24% ∗ 40.24

1.33
0.95 3.98% 25.06 4.19% 22.02 3.62% 44.93
∞ 3.15% 17.93 2.46% 25.48 3.02% 38.7

1.67
0.95 3.9% 24.65 3.41% 20.37 3.72% 35.59
∞ 3.84% 16.94 2.69% 17.67 3.03% 30.09

0.35

1
0.95 3.28% 22.47 2.8% 21.67 2.52% 36.07
∞ 2.85% 24.31 3.11% 18.34 3.16% 45.98

1.33
0.95 3.77% 18.69 2.81% 17.91 2.58% 35.88
∞ 2.43% 18.84 2.7% 25.09 3.46% 31.39

1.67
0.95 3.41% 17.15 2.99% 25.1
∞ 2.75% 21.34 3.38% 16.78 3.26% 32.48

0.5

1
0.95 3.09% 28.2 1.43% 150.83
∞ 3.4% 13.1 2.86% 18.01 3.26% 32.39

1.33
0.95 3.4% 16.24 3.37% 24.13
∞ 3.09% 16.64 2.83% 15.01 3.17% 23.58

1.67
0.95 3.15% 16.39 3.55% 30.66
∞ 2.74% 17.77 2.99% 18.15 3.46% 25.75

kro124p

0.2

1
0.95 6.36% ∗ 45.32 8.04% ∗ 91.73
∞ 9.21% ∗ 54.72 6.04% ∗ 57.84 8.76% ∗ 100.51

1.33
0.95 5.11% 31.54 1.96% 24.16 3.86% 43.09
∞ 4.66% 27.79 2.1% 27.81 1.86% 47.02

1.67
0.95 7.94% 31.27 1.14% 31.86 3.48% 50.46
∞ 6.26% 32.83 1.38% 24.19 4.35% 52.33

0.35

1
0.95
∞ 8.48% ∗ 66.12 9.84% ∗ 76.96 10.16% ∗ 129.33

1.33
0.95 5.47% 50.36 2.08% 33.67 1.03% 68.39
∞ 3.98% 36.04 1.65% 30.12 1.83% 74.11

1.67
0.95 7.63% 34.69 1.49% 25.48 1.74% 48.99
∞ 8.31% 26.13 3.74% 19.69 1.9% 63.53

0.5

1
0.95 4.04% ∗ 41.89 4.36% ∗ 60.84
∞ 8.18% ∗ 65.2 4.9% ∗ 43.52 5.6% ∗ 99.93

1.33
0.95 7.36% 40.26 4.33% 32.61 2.35% 98.6
∞ 8.62% 42.8 4.6% 39.21 3.39% 84.63

1.67
0.95 5.89% 42.81 2.79% 29.3 2.22% 73.58
∞ 7.61% 28.53 2.21% 26.49 2.95% 36.46
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Instance ANN+ILS AFI+ILS ARI+ILS
Matrix α β γ Av. Gap Av. CPU Av. Gap Av. CPU Av. Gap Av. CPU

ftv170

0.2

1
0.95
∞ 14.71% ∗ 147.31 7.24% ∗ 134.46 14.6% ∗ 192.87

1.33
0.95 8.93% 61.53 3.81% 72.52 4.89% 124.11
∞ 8.69% 72.25 4.79% 54.44 6.15% 93.23

1.67
0.95 8.55% 54.25 6.58% 52.21 6.38% 119.05
∞ 10.17% 52.86 3.05% 73.86 7.45% 79.12

0.35

1
0.95 11.63% ∗ 91.66 12.13% ∗ 217.51
∞ 7.12% ∗ 105.43 11.41% ∗ 101.41 9.71% ∗ 228.71

1.33
0.95 4.11% 51.59 9.16% 114.31
∞ 9.52% 56.95 6.37% 80.32 7.28% 128.3

1.67
0.95 8.42% 38.32 6.03% 56.42 4.23% 78.42
∞ 6.29% 65.77 3.91% 44.95 8.13% 100.99

0.5

1
0.95 9.81% ∗ 140.17 9.28% ∗ 213.35
∞ 6.72% ∗ 71.2 9.6% ∗ 126.29 10.39% ∗ 143.61

1.33
0.95 6.64% 82.85 8.68% 162.58
∞ 7.91% 48.68 10.16% 80.0 6.58% 114.47

1.67
0.95 8.47% 54.77 3.95% 47.63 6.73% 131.88
∞ 6.85% 48.72 4.44% 48.42 3.48% 124.18

The ILS heuristic requires more CPU time whenever its starting point is determined by the ARI pro-
cedure, which is the only non-deterministic constructive heuristic we used. From Table 5.7, we are able
to confirm that this behavior is consistent throughout all the instances we considered. In fact, the com-
bination ARI+ILS tends to consume, at least, twice the average computational time of the combinations
ANN+ILS and AFI+ILS. Let us consider the average CPU times we obtained for the symmetric instance
which was obtained from the matrix titled “’pr226”, for α = 0.2, β = 1 and γ = 0.95. The AFI heuristic
could not determine a feasible solution for this instance, so we can only compare the final solution of the
ILS when we use initial solutions determined by the ANN and the ARI heuristic. It is possible to see that
it took an average of 1018.22 seconds to run the combination ARI+ILS, whereas it only took an average
of 213.85 seconds to run the combination ANN+ILS for the same exact instance. This is an even more
significant difference because using an initial solution provided by the ARI method took us, not twice,
but five times the average CPU time of running the ILS heuristic when it started from the initial solution
the ANN method provided.

Let us consider the 18 different instances we obtained through each matrix we considered, either
symmetric or asymmetric. For each matrix and value α we considered, it is possible to see that the
average CPU time to run the ILS algorithm decreases as the value of the parameter β increases. This
decrease in computational time happens regardless of the constructive method we decide to adopt before
the ILS. It is important to remember that β regulates the number of black vertices we consider in the
instance as a function of the total number of nodes in the graph, n, and Q (= ⌈αn⌉).

The constructive heuristic we used before the ILS only appears to have a greater impact on the quality
of the final solution in asymmetric instances of the BWTSP with a larger number of nodes. Nevertheless,
the average of the real gaps we presented in Table 5.7 (which are not marked with ∗) indicate that the
value of the solutions we obtained through the ILS heuristic are close to the global optimum for each
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instance we considered. For symmetric instances, the average real gaps are less than 3.5% and the vast
majority of them is even less than 1%. However, for asymmetric instances, the average real gaps are less
than 9% and the majority of them is less than 6%. The average real gaps we previously displayed suggest
that our ILS algorithm determines solutions with a better quality for the symmetric case of the BWTSP.

The detailed results in regards to the gaps, and overestimations of those values in some cases, we
obtained for the 5 different runs of the ANN+ILS, AFI+ILS and ARI+ILS, relatively, for each instance
we considered, show that the difference between the maximum and the minimum gap of each instance
is more accentuated in the asymmetric case. This information can be consulted in Appendix B.2.2.
The resultant maximum and minimum gaps for each symmetric instance rarely differ more than 2%

amongst each other and thus they do not differ significantly from the average gap. This is not the case
for asymmetric instances: in some cases, the maximum and minimum gaps differ in 9%. Therefore,
the ILS consistently returns solutions with an associated value very close to the global minimum for
symmetric instances of the BWTSP, whereas the average gaps on the asymmetric cases are not as low
and as consistent relatively to the values we obtained for the conducted tests on symmetric instances of
the BWTSP. This is a consequence of the conclusion we mentioned in the previous section, which is
that the Local Search procedure we incorporated on the ILS heuristic is more impactful on symmetric
instances, making them less dependent on the quality and quantity of our perturbations to visit new local
minimums, which is important to enable the ILS to decrease its incumbent value.

In comparison to the results we displayed in Section 5.2 regarding the quality of the feasible solu-
tions for the BWTSP provided by the ANN, AFI and ARI heuristics, it is possible to verify a massive
improvement in the quality of the final solutions we obtained for each instance after applying the ILS
heuristic, for both symmetric and asymmetric instances.

Since we are overestimating the gap between the heuristic results we obtained and the optimal value
of some instances, specially the ones with a larger number of nodes, it is hard to evaluate the performance
of the ILS under these circumstances. Therefore, we have decided to additionally compare the quality of
the best solution we obtained through the ILS heuristic and the cost of the best integer solution CPLEX
determined in 18000 seconds (which corresponds to the upper bound of the optimal value), for all the
instances we could not determine the optimal value in that time limit, with the associated lower bound.
The lower and upper bounds we obtained through the solver were presented in Section 5.1.1.

Table 5.8: Gaps of the upper bounds, as well as the best solutions
we obtained through the ILS algorithm, relatively to the lower
bound.

Symmetric instances
Instance Gap relatively to the lower bound

Matrix α β γ
CPLEX ANN+ILS AFI+ILS ARI+ILS

upper bound best solution best solution best solution

berlin52 0.2
1

0.95
∞ 13.78% 4.49% 4.49% 4.49%

1.33
0.95 6.12% 4.4% 4.4% 4.4%

∞ 6.5% 5.38% 5.38% 5.38%

pr76 0.2 1
0.95
∞ 1.38% 1.45% 1.45% 1.45%
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Instance Gap relatively to the lower bound

Matrix α β γ
CPLEX ANN+ILS AFI+ILS ARI+ILS

upper bound best solution best solution best solution

pr76
0.2

1.33
0.95 1.03% 1.54% 1.03% 3.86%

∞ 1.04% 1.04% 1.04% 1.11%

1.67
0.95 0.39% 0.5% 0.39% 0.5%

∞ 0.33% 0.51% 0.33% 0.51%

0.35 1
0.95 5.02% 4.22%

∞ 4.13% 4.13% 4.13% 4.13%

kroA100

0.2 1
0.95
∞ 27.42% 8.25% 8.25% 8.25%

0.35
1

0.95
∞ 13.54% 6.33% 6.33% 6.33%

1.33
0.95 2.79% 2.44%

∞ 1.56% 1.56% 1.56% 1.56%

0.5
1

0.95
∞ 2.41% 2.57% 2.62% 2.41%

1.33
0.95 2.16% 1.76% 1.76% 1.76%

∞ 1.76% 1.78% 1.78% 1.78%

pr124

0.2

1
0.95 6.84%

∞ 5.58% 5.58% 5.04% 6.06%

1.33
0.95 9.44% 9.44% 9.44%

∞ 20.99% 9.23% 9.23% 9.3%

1.67
0.95 35.6% 10.93% 10.93% 10.93%

∞ 11.0% 11.0% 11.0%

0.35
1

0.95
∞ 10.88% 8.4% 8.4% 8.4%

1.67
0.95 6.69% 6.69%

∞ 9.49% 5.92% 5.92% 5.92%

0.5
1

0.95
∞ 4.32% 4.81% 4.32% 4.32%

1.33
0.95 1.98% 1.98% 1.98%

∞ 4.33% 4.33% 4.33% 4.33%

pr152

0.2

1
0.95 13.54% 13.99%

∞ 13.98% 13.95% 14.02%

1.33
0.95 13.55% 13.43% 14.16%

∞ 13.21% 13.19% 13.19%

1.67
0.95 13.07% 12.48% 13.1%

∞ 12.95% 12.36% 12.36%

0.35
1

0.95 23.31% 24.02%

∞ 62.05% 23.56% 22.65% 22.65%

1.33
0.95 19.36% 18.38% 18.38%

∞ 21.19% 19.94% 19.85%
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Instance Gap relatively to the lower bound

Matrix α β γ
CPLEX ANN+ILS AFI+ILS ARI+ILS

upper bound best solution best solution best solution

pr152

0.35 1.67
0.95 14.64% 14.07%

∞ 328.14% 14.77% 14.1% 13.89%

0.5

1
0.95
∞ 23.2% 9.56% 8.65% 8.65%

1.33
0.95 8.64% 9.04% 8.44%

∞ 17.81% 9.34% 8.43% 8.43%

1.67
0.95
∞ 23.61% 22.91% 22.24%

rat195

0.2

1
0.95
∞ 4.53% 5.43% 5.61%

1.33
0.95
∞ 2.82% 4.07% 2.6%

1.67
0.95 2.91% 2.29% 2.38%

∞ 2.6% 3.85% 3.94%

0.35

1
0.95 7.46%

∞ 14.23% 2.44% 3.01% 1.77%

1.33
0.95 1.56% 4.09% 2.98%

∞ 100.18% 2.14% 3.61% 2.27%

1.67
0.95
∞ 2.6% 3.0% 1.88%

0.5

1 ∞ 0.26% 1.28% 2.86% 2.46%

1.33
0.95 0.09% 0.57% 0.88% 3.04%

∞ 3.51% 1.86% 2.4% 2.09%

1.67 0.95 2.05% 2.41% 2.23%

pr226

0.2

1
0.95 22.1% 21.47%

∞ 22.31% 23.19% 22.35%

1.33
0.95 9.19% 9.28%

∞ 9.36% 9.07% 9.25%

1.67
0.95 6.72% 6.72% 6.73%

∞ 6.84% 6.85% 6.89%

0.35

1
0.95 17.99% 14.09%

∞ 55.29% 15.23% 14.51% 14.51%

1.33
0.95 11.34% 11.33%

∞ 18.02% 10.48% 10.48% 10.48%

1.67
0.95 9.12% 9.18%

∞ 19.11% 8.89% 8.76% 8.8%

0.5
1

0.95 14.7%

∞ 76.69% 17.32% 19.16% 19.01%

1.33
0.95 10.48% 11.21% 11.4%

∞ 79.02% 10.57% 10.55% 10.52%
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Instance Gap relatively to the lower bound

Matrix α β γ
CPLEX ANN+ILS AFI+ILS ARI+ILS

upper bound best solution best solution best solution

pr226 0.5 1.67
0.95 11.04% 11.05%

∞ 10.52% 10.55% 10.57%

Asymmetric instances
Instance Gap relatively to the lower bound

Matrix α β γ
CPLEX ANN+ILS AFI+ILS ARI+ILS

upper bound best solution best solution best solution

ft53 0.2 1
0.95 17.11% 13.57% 11.52%

∞ 18.15% 11.58% 11.58% 12.62%

ft70 0.2 1
0.95 4.48% 5.19%

∞ 2.89% 5.5% 4.14% 3.58%

kro124p

0.2 1
0.95 4.58% 7.52%

∞ 19.72% 6.83% 4.81% 6.81%

0.35 1
0.95
∞ 9.34% 6.47% 8.37% 6.59%

0.5 1
0.95 0.68% 2.49% 3.39%

∞ 0.64% 3.74% 2.73% 0.85%

ftv170

0.2 1
0.95 42.77%

∞ 56.78% 8.13% 5.0% 6.49%

0.35 1
0.95 4.49% 6.31% 8.02%

∞ 2.8% 4.07% 7.81% 5.19%

0.5 1
0.95 1.16% 7.54% 5.77%

∞ 7.24% 4.99% 8.41% 6.37%

Let us analyse the results in Table 5.8. The values of the best solutions we obtained through the three
different combinations ANN+ILS, AFI+ILS and ARI+ILS are very similar, except for the asymmetric
instances which were obtained through the matrices “kro124p” and “ftv170”. This is not a surprise since
we previously concluded that the ILS appears to be more dependent on its initial solution whenever we
are solving asymmetric instances with a larger number of nodes.

The best solutions we obtained through the ILS algorithm tend to be similar to the cheapest integer
solution determined by CPLEX after 5 hours of solving the instances we considered, or they are solutions
with a much more reduced cost in the objective function. This is a really good indicator, mainly because
the CPU times we reported in our computational study regarding the ILS heuristic never exceeded 20
minutes. However, when the gap between CPLEX upper and lower bounds is less than 1.8%, for sym-
metric instances, or 8%, for asymmetric instances, the value of at least one of the three best solutions we
obtained through the ILS is greater than the value of the cheapest integer solution CPLEX determined;
nevertheless, the difference in these cases is never greater than 5%.

For some instances of the BWTSP, CPLEX could not determine a feasible integer solution within the
time limit of 5 hours, but at least one of our constructive heuristics returned a feasible solution for that
same instance. In other cases, neither CPLEX nor our constructive heuristics determined feasible integer
solutions for the corresponding BWTSP instance, which makes us wonder whether these instances are
even feasible or not, even though they were never proven to be infeasible.
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Conclusions

The goal of this dissertation was to contribute to the expansion of the existent heuristics for the BWTSP.
We wanted to develop methods for both symmetric and asymmetric instances of the BWTSP, which had
not been previously done in the literature due to the few scientific articles studying this variant of the
TSP.

We developed three constructive heuristics, the Adapted Nearest Neighbor (ANN), the Adapted Far-
thest Insertion (AFI) and the Adapted Random Insertion (ARI). The first two heuristics are deterministic,
and the third one has a random component to it. These heuristics result in adaptations on the selec-
tion methods of the Nearest Neighbor, Farthest Insertion and Random Insertion, which are constructive
heuristics for the classical TSP. The ANN, AFI and ARI heuristics can be separated in two stages: a
construction stage and a correction stage. In the construction stage, a Hamiltonian circuit is determined
according to the selection and insertion methods of each heuristic. This first stage is what sets the dif-
ference between the three constructive algorithms we proposed, because the correction stage is common
amongst the three and follows the same exact procedures. If the Hamiltonian circuit we obtained after
the construction stage is infeasible for the BWTSP, we start by establishing cardinality feasibility and
then we attempt to correct length infeasibility. We were able to conclude from our computational study
(Chapter 5) that the AFI heuristic consumes significantly more CPU time, in average, to determine a
feasible solution for the BWTSP in comparison to the other two methods, being the ANN the fastest of
the three heuristics. The AFI and ARI heuristics proved to be more successful in determining feasible
solutions for the BWTSP instances; nevertheless, the ANN algorithm still managed to determine feasible
solutions for, at least, 3/4 of our sample of BWTSP instances, which is pretty remarkable. Another im-
portant observation is that whenever we eliminated the length constraint of the BWTSP, our constructive
heuristics were always able to determine feasible solutions for the considered instances, which proves
that the algorithm we used to correct length infeasibility is our main limitation to achieving feasible
solutions when cardinality and length constraints are simultaneously considered.

We also developed an Iterated Local Search (ILS) algorithm as an improvement heuristic for the
BWTSP. This algorithm applies a Local Search procedure to the initial solution we consider, and pro-
ceeds to apply the same Local Search procedure onto successive perturbations which were obtained
either from the current or the incumbent solution of our ILS algorithm. In our computational study,
we tested six different combinations of parameters for the ILS and compared the results to justify our
particular choice of parameters. These parameters control the strength of our perturbation method and
the maximum number of iterations of the algorithm. We also studied the performance of the ILS. We
were able to see that the algorithm determined solutions with associated values which were close to the
global minimum, however the gaps between the heuristic solutions and the corresponding optimal values
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were smaller for symmetric instances. When we ran the ILS multiple times for the same instance, the
differences between the maximum and minimum gaps were less significant in the symmetric cases. Nev-
ertheless, the algorithm proved to be efficient since it determined solutions with a relative good quality
while not consuming a lot of computational time. It is also important to mention that for the sample of
BWTSP instances we used where CPLEX could not determine the global optimum within our time limit
of 5 hours, our heuristic results tended to be similar to the cost of the cheapest integer solution determined
by CPLEX after solving the given instance for 5 hours, or significantly less in almost half of the cases.
In these cases, it was not possible to compare our heuristic solutions with the optimal ones, however,
if the ILS returned solutions with similar or better quality than the best integer solutions determined by
CPLEX after 5 hours knowing that the ILS required at least 15 times less computational time, then this
is a good indicator of the efficiency of our improvement heuristic.

6.1 Future work

One of the most evident limitations we faced throughout the computational study of this dissertation
was the fact that the optimal values of some instances had not been previously determined, specially
larger sized instances. It would be useful to know the global minimums of every BWTSP instance
we considered in this dissertation, which could be achieved by imposing a larger time limit on each
problem we solved in CPLEX. Such information would be important to get a more accurate perception
on the quality of the heuristic results we obtained. Furthermore, it would also be interesting to test the
heuristics we developed in symmetric and asymmetric instances with more than 250 nodes.

One of the most important conclusions from our computational study was that asymmetric BWTSP
instances were more sensitive to the quality and quantity of perturbations we applied during the ILS
algorithm in comparison to the symmetric instances we considered. Future computational tests could
be conducted where we allow more iterations on the ILS heuristic in case our instance is asymmetric,
while maintaining the same maximum number of iterations to the symmetric case since the ILS proved
to be efficient in this scenario. Alternatively, for both symmetric and asymmetric BWTSP instances,
we could set the maximum number of iterations of the ILS as a function of the number of nodes in
the graph, n, instead of defining it as a constant, which is 2500 in the algorithm we developed. This
alternative suggestion is motivated by the noticeable difference between the maximum and minimum
gaps we reported for instances with larger sizes, even though this occured more frequently in asymmetric
instances. If we do not want to change the perturbation method or the maximum number of iterations
of the ILS, we could focus on defining different neighborhoods for the BWTSP and redefine the Local
Search procedure we have proposed. This new Local Search procedure could decrease the difference
regarding the performance of the ILS between symmetric and asymmetric BWTSP instances.

There were BWTSP instances where neither CPLEX, considering a time limit of 5 hours, nor our
constructive heuristic were able to determine feasible solutions for them. It would be important to pay
close attention to these cases and analyse whether they are in fact feasible instances for the BWTSP or
not. If they actually happen to be infeasible, then they should not be counted in our statistics regarding
the success rate of the constructive methods we developed in this dissertation. Note that we can only
consider a constructive heuristic unsuccessful on determining feasible solutions for an instance if the
given instance is feasible in the first place. If not, then not determining a feasible solution does not
qualify as an “unsuccess”. Nevertheless, we should strive to improve our methods to correct potential
cardinality and length infeasibilities to increase the reliability of our constructive heuristics to determine
feasible solutions for feasible BWTSP instances, either symmetric or asymmetric.
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Finally, we implemented all our procedures in the Python language, which is an interpreted program-
ming language. The computational times we reported could be even lower if we had implemented our
heuristics in a compiled language, such as C or C++, for example.
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Mélanie Bourgeois, Gilbert Laporte, and Frédéric Semet. Heuristics for the black and white traveling
salesman problem. Computers & Operations Research, 30(1):75–85, 2003. ISSN 0305-0548. doi:
https://doi.org/10.1016/S0305-0548(01)00082-X.

Lloyd Clarke, Ellis Johnson, George Nemhauser, and Zhongxi Zhu. The aircraft rotation problem. Annals
of Operations Research, 69, 01 1997. doi: https://doi.org/10.1023/A:1018945415148.

Martin Desrochers and Gilbert Laporte. Improvements and extensions to the miller-tucker-zemlin sub-
tour elimination constraints. Operations Research Letters, 10(1):27–36, 1991. ISSN 0167-6377. doi:
https://doi.org/10.1016/0167-6377(91)90083-2.

Michael R. Garey and David S. Johnson. Computers and Intractability: A Guide to the Theory of NP-
Completeness. W. H. Freeman and Company, 1979. ISBN 0-7167-1045-5.

Gianpaolo Ghiani, Gilbert Laporte, and Frédéric Semet. The black and white traveling salesman problem.
Operations Research, 54(2):366–378, 2006. doi: https://doi.org/10.1287/opre.1050.0218.

Luı́s Gouveia, Markus Leitner, and Mario Ruthmair. Extended formulations and branch-and-cut algo-
rithms for the black-and-white traveling salesman problem. European Journal of Operational Re-
search, 262(3):908–928, 2017. ISSN 0377-2217. doi: https://doi.org/10.1016/j.ejor.2017.04.061.

Haitao Li and Bahram Alidaee. Tabu search for solving the black-and-white travelling salesman problem.
The Journal of the Operational Research Society, 67(8):1061–1079, 2016. ISSN 01605682, 14769360.

Helena R. Lourenço, Olivier C. Martin, and Thomas Stützle. Iterated Local Search. Springer US, Boston,
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Appendix A

Characterization of instances

This appendix contains the set of black vertices for each BWTSP instance we considered for the com-
putational study, as well as the corresponding values for Q and L, which were determined following the
procedures we detailed in Section 5.1.

Table A.1: Characterization of every instance we used for the com-
putational tests in the dissertation.

Symmetric instances
Instance Characterization

Matrix name α β γ Q L Set of black nodes

berlin52

0.2

1
0.95 11 2261.0 {1, 52, 33, 2, 47}
+∞ 11 +∞ {1, 52, 33, 2, 47}

1.33
0.95 11 2334.15 {1, 52, 33, 2, 47, 9, 12}
+∞ 11 +∞ {1, 52, 33, 2, 47, 9, 12}

1.67
0.95 11 1597.9 {1, 52, 33, 2, 47, 9, 12, 17, 29}
+∞ 11 +∞ {1, 52, 33, 2, 47, 9, 12, 17, 29}

0.35

1
0.95 19 4233.2 {1, 52, 33}
+∞ 19 +∞ {1, 52, 33}

1.33
0.95 19 2963.05 {1, 52, 33, 2}
+∞ 19 +∞ {1, 52, 33, 2}

1.67
0.95 19 2891.8 {1, 52, 33, 2, 47, 9}
+∞ 19 +∞ {1, 52, 33, 2, 47, 9}

0.5

1
0.95 26 4541.95 {1, 52}
+∞ 26 +∞ {1, 52}

1.33
0.95 26 3585.3 {1, 52, 33}
+∞ 26 +∞ {1, 52, 33}

1.67
0.95 26 3276.55 {1, 52, 33, 2}
+∞ 26 +∞ {1, 52, 33, 2}

pr76 0.2

1
0.95 16 24905.2 {1, 73, 70, 74, 34}
+∞ 16 +∞ {1, 73, 70, 74, 34}

1.33
0.95 16 25915.05 {1, 73, 70, 74, 34, 45, 66}
+∞ 16 +∞ {1, 73, 70, 74, 34, 45, 66}

1.67 0.95 16 26552.5 {1, 73, 70, 74, 34, 45, 66, 9, 62}
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Instance Characterization
Matrix name α β γ Q L Set of black nodes

pr76

0.2 1.67 +∞ 16 +∞ {1, 73, 70, 74, 34, 45, 66, 9, 62}

0.35

1
0.95 27 49431.35 {1, 73, 70}
+∞ 27 +∞ {1, 73, 70}

1.33
0.95 27 48803.4 {1, 73, 70, 74}
+∞ 27 +∞ {1, 73, 70, 74}

1.67
0.95 27 33440.95 {1, 73, 70, 74, 34, 45}
+∞ 27 +∞ {1, 73, 70, 74, 34, 45}

0.5

1
0.95 38 74484.75 {1, 73}
+∞ 38 +∞ {1, 73}

1.33
0.95 38 66127.6 {1, 73, 70}
+∞ 38 +∞ {1, 73, 70}

1.67
0.95 38 43238.3 {1, 73, 70, 74}
+∞ 38 +∞ {1, 73, 70, 74}

kroA100

0.2

1
0.95 20 6168.35 {1, 41, 95, 26, 99}
+∞ 20 +∞ {1, 41, 95, 26, 99}

1.33
0.95 20 4702.5 {1, 41, 95, 26, 99, 35, 69}
+∞ 20 +∞ {1, 41, 95, 26, 99, 35, 69}

1.67
0.95 20 4382.35 {1, 41, 95, 26, 99, 35, 69, 17, 31}
+∞ 20 +∞ {1, 41, 95, 26, 99, 35, 69, 17, 31}

0.35

1
0.95 35 9107.65 {1, 41, 95}
+∞ 35 +∞ {1, 41, 95}

1.33
0.95 35 8579.45 {1, 41, 95, 26}
+∞ 35 +∞ {1, 41, 95, 26}

1.67
0.95 35 7011.95 {1, 41, 95, 26, 99, 35}
+∞ 35 +∞ {1, 41, 95, 26, 99, 35}

0.5

1
0.95 50 11651.75 {1, 41}
+∞ 50 +∞ {1, 41}

1.33
0.95 50 11759.1 {1, 41, 95}
+∞ 50 +∞ {1, 41, 95}

1.67
0.95 50 11695.45 {1, 41, 95, 26}
+∞ 50 +∞ {1, 41, 95, 26}

pr124

0.2

1
0.95 25 19168.15 {1, 105, 124, 13, 66}
+∞ 25 +∞ {1, 105, 124, 13, 66}

1.33
0.95 25 15241.8 {1, 105, 124, 13, 66, 85, 41}
+∞ 25 +∞ {1, 105, 124, 13, 66, 85, 41}

1.67
0.95 25 13168.9 {1, 105, 124, 13, 66, 85, 41, 57, 34}
+∞ 25 +∞ {1, 105, 124, 13, 66, 85, 41, 57, 34}

0.35

1
0.95 44 28759.35 {1, 105, 124}
+∞ 44 +∞ {1, 105, 124}

1.33
0.95 44 19089.3 {1, 105, 124, 13}
+∞ 44 +∞ {1, 105, 124, 13}

1.67 0.95 44 18031.95 {1, 105, 124, 13, 66, 85}
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Instance Characterization
Matrix name α β γ Q L Set of black nodes

pr124

0.35 1.67 +∞ 44 +∞ {1, 105, 124, 13, 66, 85}

0.5

1
0.95 62 36572.15 {1, 105}
+∞ 62 +∞ {1, 105}

1.33
0.95 62 29530.75 {1, 105, 124}
+∞ 62 +∞ {1, 105, 124}

1.67
0.95 62 20465.85 {1, 105, 124, 13}
+∞ 62 +∞ {1, 105, 124, 13}

pr152

0.2

1
0.95 31 27932.85 {1, 140, 9, 124, 68}
+∞ 31 +∞ {1, 140, 9, 124, 68}

1.33
0.95 31 17092.4 {1, 140, 9, 124, 68, 48, 108}
+∞ 31 +∞ {1, 140, 9, 124, 68, 48, 108}

1.67
0.95 31 17283.35 {1, 140, 9, 124, 68, 48, 108, 13, 121}
+∞ 31 +∞ {1, 140, 9, 124, 68, 48, 108, 13, 121}

0.35

1
0.95 54 38967.1 {1, 140, 9}
+∞ 54 +∞ {1, 140, 9}

1.33
0.95 54 30402.85 {1, 140, 9, 124}
+∞ 54 +∞ {1, 140, 9, 124}

1.67
0.95 54 18048.1 {1, 140, 9, 124, 68, 48}
+∞ 54 +∞ {1, 140, 9, 124, 68, 48}

0.5

1
0.95 76 38455.05 {1, 140}
+∞ 76 +∞ {1, 140}

1.33
0.95 76 38102.6 {1, 140, 9}
+∞ 76 +∞ {1, 140, 9}

1.67
0.95 76 24822.55 {1, 140, 9, 124}
+∞ 76 +∞ {1, 140, 9, 124}

rat195

0.2

1
0.95 39 583.3 {1, 195, 106, 52, 183}
+∞ 39 +∞ {1, 195, 106, 52, 183}

1.33
0.95 39 449.35 {1, 195, 106, 52, 183, 117, 57}
+∞ 39 +∞ {1, 195, 106, 52, 183, 117, 57}

1.67
0.95 39 683.05 {1, 195, 106, 52, 183, 117, 57, 151, 9}
+∞ 39 +∞ {1, 195, 106, 52, 183, 117, 57, 151, 9}

0.35

1
0.95 69 954.75 {1, 195, 106}
+∞ 69 +∞ {1, 195, 106}

1.33
0.95 69 909.15 {1, 195, 106, 52}
+∞ 69 +∞ {1, 195, 106, 52}

1.67
0.95 69 534.85 {1, 195, 106, 52, 183, 117}
+∞ 69 +∞ {1, 195, 106, 52, 183, 117}

0.5

1
0.95 98 1218.85 {1, 195}
+∞ 98 +∞ {1, 195}

1.33
0.95 98 1105.8 {1, 195, 106}
+∞ 98 +∞ {1, 195, 106}

1.67 0.95 98 910.1 {1, 195, 106, 52}
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Instance Characterization
Matrix name α β γ Q L Set of black nodes

rat195 0.5 1.67 +∞ 98 +∞ {1, 195, 106, 52}

pr226

0.2

1
0.95 46 34803.25 {1, 155, 217, 38, 64}
+∞ 46 +∞ {1, 155, 217, 38, 64}

1.33
0.95 46 20424.05 {1, 155, 217, 38, 64, 92, 136}
+∞ 46 +∞ {1, 155, 217, 38, 64, 92, 136}

1.67
0.95 46 20424.05 {1, 155, 217, 38, 64, 92, 136, 190, 111}
+∞ 46 +∞ {1, 155, 217, 38, 64, 92, 136, 190, 111}

0.35

1
0.95 80 41523.55 {1, 155, 217}
+∞ 80 +∞ {1, 155, 217}

1.33
0.95 80 31902.9 {1, 155, 217, 38}
+∞ 80 +∞ {1, 155, 217, 38}

1.67
0.95 80 19851.2 {1, 155, 217, 38, 64, 92}
+∞ 80 +∞ {1, 155, 217, 38, 64, 92}

0.5

1
0.95 113 56832.8 {1, 155}
+∞ 113 +∞ {1, 155}

1.33
0.95 113 50361.4 {1, 155, 217}
+∞ 113 +∞ {1, 155, 217}

1.67
0.95 113 31902.9 {1, 155, 217, 38}
+∞ 113 +∞ {1, 155, 217, 38}

Asymmetric instances
Instance Characterization

Matrix name α β γ Q L Set of black nodes

ft53

0.2

1
0.95 11 2865.2 {1, 50, 33, 35, 29}
+∞ 11 +∞ {1, 50, 33, 35, 29}

1.33
0.95 11 2762.6 {1, 50, 33, 35, 29, 25, 6}
+∞ 11 +∞ {1, 50, 33, 35, 29, 25, 6}

1.67
0.95 11 2335.1 {1, 50, 33, 35, 29, 25, 6, 42, 31}
+∞ 11 +∞ {1, 50, 33, 35, 29, 25, 6, 42, 31}

0.35

1
0.95 19 3886.45 {1, 50, 33}
+∞ 19 +∞ {1, 50, 33}

1.33
0.95 19 3886.45 {1, 50, 33, 35}
+∞ 19 +∞ {1, 50, 33, 35}

1.67
0.95 19 3152.1 {1, 50, 33, 35, 29, 25}
+∞ 19 +∞ {1, 50, 33, 35, 29, 25}

0.5

1
0.95 27 5501.45 {1, 50}
+∞ 27 +∞ {1, 50}

1.33
0.95 27 4537.2 {1, 50, 33}
+∞ 27 +∞ {1, 50, 33}

1.67
0.95 27 4537.2 {1, 50, 33, 35}
+∞ 27 +∞ {1, 50, 33, 35}

ftv64 0.2 1
0.95 13 710.6 {1, 24, 63, 13, 7}
+∞ 13 +∞ {1, 24, 63, 13, 7}
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Instance Characterization
Matrix name α β γ Q L Set of black nodes

ftv64

0.2
1.33

0.95 13 634.6 {1, 24, 63, 13, 7, 15, 34}
+∞ 13 +∞ {1, 24, 63, 13, 7, 15, 34}

1.67
0.95 13 416.1 {1, 24, 63, 13, 7, 15, 34, 59, 28}
+∞ 13 +∞ {1, 24, 63, 13, 7, 15, 34, 59, 28}

0.35

1
0.95 23 1046.9 {1, 24, 63}
+∞ 23 +∞ {1, 24, 63}

1.33
0.95 23 809.4 {1, 24, 63, 13}
+∞ 23 +∞ {1, 24, 63, 13}

1.67
0.95 23 875.9 {1, 24, 63, 13, 7, 15}
+∞ 23 +∞ {1, 24, 63, 13, 7, 15}

0.5

1
0.95 33 1370.85 {1, 24}
+∞ 33 +∞ {1, 24}

1.33
0.95 33 1238.8 {1, 24, 63}
+∞ 33 +∞ {1, 24, 63}

1.67
0.95 33 948.1 {1, 24, 63, 13}
+∞ 33 +∞ {1, 24, 63, 13}

ft70

0.2

1
0.95 14 9689.05 {1, 67, 47, 36, 41}
+∞ 14 +∞ {1, 67, 47, 36, 41}

1.33
0.95 14 8033.2 {1, 67, 47, 36, 41, 50, 20}
+∞ 14 +∞ {1, 67, 47, 36, 41, 50, 20}

1.67
0.95 14 8027.5 {1, 67, 47, 36, 41, 50, 20, 46, 45}
+∞ 14 +∞ {1, 67, 47, 36, 41, 50, 20, 46, 45}

0.35

1
0.95 25 17130.4 {1, 67, 47}
+∞ 25 +∞ {1, 67, 47}

1.33
0.95 25 16268.75 {1, 67, 47, 36}
+∞ 25 +∞ {1, 67, 47, 36}

1.67
0.95 25 13874.75 {1, 67, 47, 36, 41, 50}
+∞ 25 +∞ {1, 67, 47, 36, 41, 50}

0.5

1
0.95 35 21829.1 {1, 67}
+∞ 35 +∞ {1, 67}

1.33
0.95 35 18450.9 {1, 67, 47}
+∞ 35 +∞ {1, 67, 47}

1.67
0.95 35 18450.9 {1, 67, 47, 36}
+∞ 35 +∞ {1, 67, 47, 36}

kro124p
0.2

1
0.95 20 11474.1 {1, 71, 95, 26, 99}
+∞ 20 +∞ {1, 71, 95, 26, 99}

1.33
0.95 20 8776.1 {1, 71, 95, 26, 99, 35, 40}
+∞ 20 +∞ {1, 71, 95, 26, 99, 35, 40}

1.67
0.95 20 10059.55 {1, 71, 95, 26, 99, 35, 40, 17, 31}
+∞ 20 +∞ {1, 71, 95, 26, 99, 35, 40, 17, 31}

0.35 1
0.95 35 15836.5 {1, 71, 95}
+∞ 35 +∞ {1, 71, 95}

76



APPENDIX A. CHARACTERIZATION OF INSTANCES

Instance Characterization
Matrix name α β γ Q L Set of black nodes

kro124p

0.35
1.33

0.95 35 14595.8 {1, 71, 95, 26}
+∞ 35 +∞ {1, 71, 95, 26}

1.67
0.95 35 15536.3 {1, 71, 95, 26, 99, 35}
+∞ 35 +∞ {1, 71, 95, 26, 99, 35}

0.5

1
0.95 50 26600.95 {1, 71}
+∞ 50 +∞ {1, 71}

1.33
0.95 50 24275.35 {1, 71, 95}
+∞ 50 +∞ {1, 71, 95}

1.67
0.95 50 17048.7 {1, 71, 95, 26}
+∞ 50 +∞ {1, 71, 95, 26}

ftv170

0.2

1
0.95 35 974.7 {1, 67, 163, 11, 146}
+∞ 35 +∞ {1, 67, 163, 11, 146}

1.33
0.95 35 930.05 {1, 67, 163, 11, 146, 160, 49}
+∞ 35 +∞ {1, 67, 163, 11, 146, 160, 49}

1.67
0.95 35 863.55 {1, 67, 163, 11, 146, 160, 49, 162, 111}
+∞ 35 +∞ {1, 67, 163, 11, 146, 160, 49, 162, 111}

0.35

1
0.95 60 1507.65 {1, 67, 163}
+∞ 60 +∞ {1, 67, 163}

1.33
0.95 60 1442.1 {1, 67, 163, 11}
+∞ 60 +∞ {1, 67, 163, 11}

1.67
0.95 60 1213.15 {1, 67, 163, 11, 146, 160}
+∞ 60 +∞ {1, 67, 163, 11, 146, 160}

0.5

1
0.95 86 2107.1 {1, 67}
+∞ 86 +∞ {1, 67}

1.33
0.95 86 1931.35 {1, 67, 163}
+∞ 86 +∞ {1, 67, 163}

1.67
0.95 86 2203.05 {1, 67, 163, 11}
+∞ 86 +∞ {1, 67, 163, 11}
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Appendix B

Detailed results of the tests on the
parameters of the ILS algorithm

B.1 Results for ω = 1/3

B.1.1 Results for a maximum of 1000 iterations

ANN as the constructive heuristic

Table B.1: Computational results, for ω = 1/3 and MaxIt =

1000, using the solution obtained through the ANN heuristic as
the initial solution.

Symmetric instances

Matrix α β γ Minimum Average Maximum Average CPU
name Gap Gap Gap time (seconds)

berlin52

0.2

1
0.95
∞ 4.49% ∗ 4.68% ∗ 5.45% ∗ 2.75

1.33
0.95 4.4% ∗ 4.68% ∗ 5.04% ∗ 2.15
∞ 5.38% ∗ 6.01% ∗ 7.81% ∗ 2.19

1.67
0.95
∞ 0.69% 1.98% 3.26% 2.27

0.35

1
0.95 0.0% 0.72% 1.17% 2.44
∞ 0.23% 0.6% 1.17% 1.88

1.33
0.95 0.0% 1.44% 4.28% 2.58
∞ 0.0% 1.63% 3.55% 1.74

1.67
0.95 0.0% 0.98% 1.95% 1.23
∞ 0.0% 0.78% 1.95% 1.35

0.5

1
0.95
∞ 0.0% 0.97% 4.87% 2.2

1.33
0.95
∞ 1.11% 2.19% 3.7% 1.66

1.67
0.95 0.51% 2.49% 3.87% 1.56
∞ 0.14% 2.07% 3.12% 1.65
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APPENDIX B. DETAILED RESULTS OF THE TESTS ON THE PARAMETERS OF THE ILS
ALGORITHM

Matrix α β γ Minimum Average Maximum Average CPU
name Gap Gap Gap time (seconds)

pr76

0.2

1
0.95
∞ 1.45% ∗ 1.63% ∗ 1.88% ∗ 4.45

1.33
0.95 1.54% ∗ 2.19% ∗ 3.25% ∗ 6.19
∞ 1.13% ∗ 2.36% ∗ 5.72% ∗ 3.79

1.67
0.95 0.58% ∗ 1.55% ∗ 2.64% ∗ 3.76
∞ 0.46% ∗ 0.71% ∗ 0.8% ∗ 4.01

0.35

1
0.95
∞ 4.13% ∗ 4.54% ∗ 5.42% ∗ 7.47

1.33
0.95 0.01% 0.1% 0.26% 3.24
∞ 0.01% 0.06% 0.14% 3.76

1.67
0.95 0.86% 1.31% 1.86% 5.49
∞ 0.26% 0.82% 1.08% 3.38

0.5

1
0.95
∞ 0.01% 1.54% 4.81% 6.67

1.33
0.95 0.0% 0.05% 0.09% 4.18
∞ 0.0% 0.4% 1.38% 7.35

1.67
0.95 0.55% 0.57% 0.63% 3.34
∞ 0.82% 0.98% 1.1% 3.16

kroA100

0.2

1
0.95
∞ 8.25% ∗ 9.23% ∗ 10.09% ∗ 34.05

1.33
0.95
∞ 0.0% 0.29% 0.95% 6.63

1.67
0.95
∞ 0.0% 0.06% 0.09% 7.12

0.35

1
0.95
∞ 6.33% ∗ 6.6% ∗ 6.88% ∗ 24.3

1.33
0.95
∞ 1.56% ∗ 2.66% ∗ 4.93% ∗ 19.86

1.67
0.95 0.0% 0.01% 0.04% 6.23
∞ 0.0% 0.29% 0.55% 8.07

0.5

1
0.95
∞ 2.62% ∗ 3.92% ∗ 4.72% ∗ 21.54

1.33
0.95 1.79% ∗ 2.38% ∗ 3.39% ∗ 20.43
∞ 1.69% ∗ 2.07% ∗ 3.27% ∗ 16.36

1.67
0.95 0.0% 0.13% 0.61% 8.48
∞ 0.0% 0.2% 0.47% 6.85

pr124 0.2

1
0.95
∞ 5.04% ∗ 6.87% ∗ 7.78% ∗ 17.16

1.33
0.95 9.44% ∗ 10.1% ∗ 11.22% ∗ 7.27
∞ 9.3% ∗ 9.73% ∗ 9.83% ∗ 6.15

1.67 0.95 10.93% ∗ 10.93% ∗ 10.93% ∗ 7.26
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APPENDIX B. DETAILED RESULTS OF THE TESTS ON THE PARAMETERS OF THE ILS
ALGORITHM

Matrix α β γ Minimum Average Maximum Average CPU
name Gap Gap Gap time (seconds)

pr124

0.2 1.67 ∞ 11.0% ∗ 11.06% ∗ 11.1% ∗ 8.66

0.35

1
0.95
∞ 8.4% ∗ 11.62% ∗ 14.72% ∗ 7.17

1.33
0.95
∞ 0.78% 0.86% 0.88% 7.8

1.67
0.95
∞ 6.56% ∗ 6.78% ∗ 6.9% ∗ 7.08

0.5

1
0.95
∞ 6.18% ∗ 6.32% ∗ 6.87% ∗ 15.38

1.33
0.95
∞ 5.24% ∗ 5.24% ∗ 5.24% ∗ 7.73

1.67
0.95
∞ 0.0% 0.0% 0.0% 6.14

pr152

0.2

1
0.95 13.48% ∗ 14.4% ∗ 15.24% ∗ 32.85
∞ 13.98% ∗ 14.99% ∗ 15.8% ∗ 31.73

1.33
0.95 13.2% ∗ 14.28% ∗ 15.41% ∗ 26.47
∞ 13.21% ∗ 13.62% ∗ 13.99% ∗ 37.42

1.67
0.95 13.07% ∗ 13.38% ∗ 14.53% ∗ 25.69
∞ 13.4% ∗ 14.33% ∗ 15.12% ∗ 20.01

0.35

1
0.95 23.38% ∗ 24.75% ∗ 27.38% ∗ 34.45
∞ 24.31% ∗ 25.07% ∗ 26.81% ∗ 35.6

1.33
0.95 19.7% ∗ 19.85% ∗ 20.46% ∗ 18.08
∞ 20.94% ∗ 21.09% ∗ 21.19% ∗ 18.64

1.67
0.95 13.98% ∗ 14.51% ∗ 14.64% ∗ 20.18
∞ 14.1% ∗ 15.24% ∗ 16.76% ∗ 19.79

0.5

1
0.95
∞ 9.56% ∗ 9.6% ∗ 9.78% ∗ 24.99

1.33
0.95 9.55% ∗ 10.89% ∗ 11.4% ∗ 24.26
∞ 9.43% ∗ 10.73% ∗ 11.17% ∗ 22.08

1.67
0.95
∞ 23.61% ∗ 23.61% ∗ 23.61% ∗ 15.56

rat195

0.2

1
0.95
∞ 5.47% ∗ 7.7% ∗ 8.79% ∗ 76.99

1.33
0.95
∞ 2.82% ∗ 4.1% ∗ 6.04% ∗ 70.25

1.67
0.95 3.45% ∗ 3.88% ∗ 4.39% ∗ 43.52
∞ 3.0% ∗ 3.34% ∗ 3.63% ∗ 41.14

0.35
1

0.95
∞ 2.08% ∗ 4.12% ∗ 6.07% ∗ 71.36

1.33
0.95 2.23% ∗ 2.74% ∗ 3.16% ∗ 36.73
∞ 1.78% ∗ 2.69% ∗ 3.25% ∗ 39.89
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ALGORITHM

Matrix α β γ Minimum Average Maximum Average CPU
name Gap Gap Gap time (seconds)

rat195

0.35 1.67
0.95
∞ 2.51% ∗ 3.1% ∗ 3.86% ∗ 35.3

0.5

1
0.95
∞ 2.16% ∗ 2.72% ∗ 3.56% ∗ 65.6

1.33
0.95 1.1% ∗ 2.11% ∗ 2.82% ∗ 52.26
∞ 2.4% ∗ 2.74% ∗ 3.33% ∗ 41.22

1.67
0.95 2.63% ∗ 2.82% ∗ 3.07% ∗ 39.46
∞ 2.05% 2.21% 2.36% 41.63

pr226

0.2

1
0.95 22.79% ∗ 26.82% ∗ 33.29% ∗ 133.62
∞ 22.12% ∗ 23.76% ∗ 28.09% ∗ 139.03

1.33
0.95
∞ 10.54% ∗ 11.7% ∗ 12.84% ∗ 49.39

1.67
0.95 6.82% ∗ 7.55% ∗ 7.98% ∗ 67.81
∞ 6.83% ∗ 7.31% ∗ 7.79% ∗ 66.7

0.35

1
0.95 17.99% ∗ 20.84% ∗ 24.78% ∗ 143.51
∞ 17.67% ∗ 18.27% ∗ 18.63% ∗ 60.79

1.33
0.95
∞ 10.47% ∗ 10.94% ∗ 11.26% ∗ 65.68

1.67
0.95
∞ 8.77% ∗ 9.21% ∗ 9.81% ∗ 44.17

0.5

1
0.95 14.87% ∗ 21.34% ∗ 32.29% ∗ 231.01
∞ 14.79% ∗ 17.64% ∗ 20.26% ∗ 107.87

1.33
0.95 10.95% ∗ 12.35% ∗ 14.27% ∗ 66.62
∞ 10.6% ∗ 12.53% ∗ 18.18% ∗ 97.75

1.67
0.95
∞ 10.84% ∗ 11.16% ∗ 11.35% ∗ 57.56

Asymmetric instances

Matrix α β γ Minimum Average Maximum Average CPU
name Gap Gap Gap time (seconds)

ft53

0.2

1
0.95 13.71% ∗ 20.05% ∗ 23.76% ∗ 7.16
∞ 17.17% ∗ 20.04% ∗ 23.92% ∗ 8.67

1.33
0.95 4.46% 6.33% 7.78% 2.91
∞ 5.69% 8.2% 10.19% 2.36

1.67
0.95 2.55% 4.97% 7.96% 1.9
∞ 2.75% 5.66% 10.58% 2.47

0.35

1
0.95 5.81% 8.01% 11.11% 6.37
∞ 3.39% 7.16% 9.81% 5.44

1.33
0.95 3.67% 6.96% 11.16% 4.44
∞ 5.26% 7.47% 10.25% 5.26

1.67
0.95 2.39% 3.96% 4.91% 2.32
∞ 4.2% 7.56% 9.11% 1.41
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ALGORITHM

Matrix α β γ Minimum Average Maximum Average CPU
name Gap Gap Gap time (seconds)

ft53 0.5

1
0.95 6.68% 8.7% 11.34% 5.16
∞ 1.23% 2.82% 3.78% 2.32

1.33
0.95 0.0% 4.5% 12.43% 2.12
∞ 3.39% 7.19% 10.89% 1.69

1.67
0.95 3.26% 5.77% 7.83% 1.81
∞ 2.74% 7.12% 13.11% 2.4

ftv64

0.2

1
0.95
∞ 3.88% 7.47% 12.06% 6.36

1.33
0.95
∞ 3.29% 8.27% 11.59% 3.02

1.67
0.95 3.7% 6.46% 10.44% 3.42
∞ 3.64% 7.21% 11.69% 2.89

0.35

1
0.95 4.6% 8.04% 14.36% 5.03
∞ 0.98% 4.1% 8.34% 4.38

1.33
0.95 2.87% 6.05% 11.27% 3.16
∞ 3.3% 5.18% 8.67% 2.46

1.67
0.95 1.79% 3.81% 6.47% 2.24
∞ 4.89% 8.48% 11.47% 2.24

0.5

1
0.95 5.03% 7.88% 12.54% 7.4
∞ 2.49% 7.44% 10.76% 4.43

1.33
0.95 2.06% 5.47% 7.17% 1.85
∞ 0.98% 6.04% 10.64% 2.39

1.67
0.95 1.79% 3.77% 6.68% 2.79
∞ 1.85% 3.59% 4.72% 2.22

ft70

0.2

1
0.95 3.84% ∗ 5.22% ∗ 6.51% ∗ 9.81
∞ 4.14% ∗ 5.9% ∗ 7.49% ∗ 10.56

1.33
0.95 2.89% 4.12% 4.55% 9.42
∞ 1.97% 3.56% 4.44% 6.34

1.67
0.95 2.67% 3.92% 5.34% 9.44
∞ 3.75% 3.99% 4.21% 6.29

0.35

1
0.95 2.56% 3.72% 4.33% 7.99
∞ 2.68% 3.8% 5.41% 7.53

1.33
0.95 2.08% 3.22% 4.08% 9.6
∞ 2.91% 3.89% 4.91% 6.83

1.67
0.95
∞ 3.34% 4.02% 5.16% 6.82

0.5
1

0.95
∞ 1.81% 3.24% 4.3% 7.09

1.33
0.95
∞ 1.61% 3.11% 3.78% 6.68
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ALGORITHM

Matrix α β γ Minimum Average Maximum Average CPU
name Gap Gap Gap time (seconds)

ft70 0.5 1.67
0.95
∞ 2.47% 3.9% 5.33% 6.47

kro124p

0.2

1
0.95
∞ 7.37% ∗ 11.15% ∗ 14.41% ∗ 25.18

1.33
0.95 1.38% 6.25% 9.43% 17.32
∞ 1.47% 6.15% 9.63% 14.58

1.67
0.95 4.08% 7.92% 12.81% 17.91
∞ 7.64% 9.15% 11.27% 12.97

0.35

1
0.95
∞ 9.45% ∗ 10.66% ∗ 12.69% ∗ 17.75

1.33
0.95 4.42% 6.63% 8.32% 18.89
∞ 4.33% 5.83% 6.91% 14.62

1.67
0.95 9.0% 10.91% 13.83% 14.35
∞ 3.99% 7.9% 12.7% 13.02

0.5

1
0.95
∞ 2.89% ∗ 9.34% ∗ 17.74% ∗ 26.72

1.33
0.95 5.45% 7.53% 9.42% 17.66
∞ 8.66% 9.45% 11.51% 18.9

1.67
0.95 5.21% 6.63% 9.82% 15.38
∞ 9.07% 10.33% 11.67% 16.66

ftv170

0.2

1
0.95
∞ 6.13% ∗ 16.81% ∗ 28.26% ∗ 55.17

1.33
0.95 7.61% 10.42% 13.67% 39.68
∞ 11.2% 12.23% 13.27% 24.72

1.67
0.95 5.91% 9.2% 13.2% 30.07
∞ 8.23% 12.6% 17.66% 19.95

0.35

1
0.95
∞ 7.66% ∗ 10.03% ∗ 13.54% ∗ 48.79

1.33
0.95
∞ 4.75% 9.07% 16.48% 33.83

1.67
0.95 7.22% 8.86% 10.85% 26.39
∞ 5.41% 9.34% 11.62% 24.4

0.5

1
0.95
∞ 9.14% ∗ 10.56% ∗ 13.07% ∗ 22.91

1.33
0.95
∞ 4.77% 10.74% 14.61% 32.86

1.67
0.95 7.51% 9.57% 11.87% 20.04
∞ 6.13% 11.18% 16.52% 21.06
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ALGORITHM

AFI as the constructive heuristic

Table B.2: Computational results, for ω = 1/3 and MaxIt =

1000, using the solution obtained through the AFI heuristic as the
initial solution.

Symmetric instances

Matrix α β γ Minimum Average Maximum Average CPU
name Gap Gap Gap time (seconds)

berlin52

0.2

1
0.95
∞ 4.49% ∗ 4.49% ∗ 4.49% ∗ 2.11

1.33
0.95 4.27% ∗ 4.65% ∗ 5.36% ∗ 2.69
∞ 5.38% ∗ 5.48% ∗ 5.74% ∗ 2.69

1.67
0.95 1.99% 2.28% 3.41% 1.87
∞ 1.99% 2.03% 2.16% 1.72

0.35

1
0.95 0.0% 0.36% 1.17% 1.85
∞ 0.23% 0.52% 1.17% 1.52

1.33
0.95 0.0% 0.25% 1.24% 2.58
∞ 0.0% 1.81% 4.31% 1.75

1.67
0.95 1.92% 2.73% 4.38% 1.87
∞ 0.0% 1.66% 4.38% 2.02

0.5

1
0.95
∞ 0.0% 0.59% 2.95% 2.32

1.33
0.95 1.07% 1.25% 1.44% 2.61
∞ 0.29% 0.95% 3.61% 1.48

1.67
0.95 0.0% 2.42% 3.87% 1.99
∞ 0.56% 1.42% 2.53% 1.58

pr76

0.2

1
0.95
∞ 1.78% ∗ 2.02% ∗ 2.18% ∗ 6.19

1.33
0.95 1.1% ∗ 2.75% ∗ 3.86% ∗ 4.96
∞ 1.87% ∗ 3.21% ∗ 3.84% ∗ 3.86

1.67
0.95 0.39% ∗ 0.61% ∗ 1.16% ∗ 4.4
∞ 0.46% ∗ 0.7% ∗ 1.44% ∗ 4.13

0.35

1
0.95
∞ 4.13% ∗ 4.36% ∗ 5.27% ∗ 7.89

1.33
0.95 0.0% 0.02% 0.08% 4.21
∞ 0.08% 0.67% 1.11% 3.62

1.67
0.95 0.07% 0.89% 2.82% 3.86
∞ 0.0% 1.26% 2.97% 4.97

0.5
1

0.95
∞ 2.15% 3.32% 4.07% 4.66

1.33
0.95 2.13% 2.62% 2.74% 4.16
∞ 2.74% 2.74% 2.74% 4.55
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ALGORITHM

Matrix α β γ Minimum Average Maximum Average CPU
name Gap Gap Gap time (seconds)

pr76 0.5 1.67
0.95
∞ 0.07% 1.36% 2.82% 3.61

kroA100

0.2

1
0.95
∞ 8.25% ∗ 9.83% ∗ 11.88% ∗ 40.75

1.33
0.95 0.0% 0.0% 0.0% 8.76
∞ 0.0% 0.22% 0.46% 8.2

1.67
0.95 0.0% 0.19% 0.46% 8.24
∞ 0.0% 0.27% 0.46% 7.95

0.35

1
0.95
∞ 6.63% ∗ 7.01% ∗ 7.73% ∗ 29.98

1.33
0.95 2.44% ∗ 3.65% ∗ 5.3% ∗ 18.68
∞ 1.74% ∗ 3.3% ∗ 4.4% ∗ 11.94

1.67
0.95 0.0% 0.83% 3.33% 8.83
∞ 0.0% 0.02% 0.09% 11.0

0.5

1
0.95
∞ 3.32% ∗ 4.53% ∗ 5.13% ∗ 25.1

1.33
0.95 1.76% ∗ 2.45% ∗ 4.72% ∗ 19.54
∞ 1.78% ∗ 2.8% ∗ 4.8% ∗ 19.19

1.67
0.95 0.0% 0.09% 0.46% 8.28
∞ 0.0% 0.09% 0.45% 7.81

pr124

0.2

1
0.95 6.84% ∗ 8.09% ∗ 9.74% ∗ 19.58
∞ 5.91% ∗ 6.72% ∗ 8.7% ∗ 16.06

1.33
0.95 9.44% ∗ 10.07% ∗ 11.0% ∗ 9.08
∞ 9.3% ∗ 10.21% ∗ 10.86% ∗ 9.42

1.67
0.95 10.86% ∗ 10.96% ∗ 11.14% ∗ 11.95
∞ 11.0% ∗ 11.35% ∗ 12.57% ∗ 8.43

0.35

1
0.95
∞ 8.4% ∗ 8.4% ∗ 8.4% ∗ 8.15

1.33
0.95
∞ 0.0% 0.37% 0.98% 10.35

1.67
0.95 7.25% ∗ 7.81% ∗ 9.07% ∗ 14.9
∞ 5.92% ∗ 6.69% ∗ 7.44% ∗ 12.44

0.5

1
0.95
∞ 5.27% ∗ 5.27% ∗ 5.27% ∗ 12.29

1.33
0.95 1.98% ∗ 2.51% ∗ 2.87% ∗ 13.03
∞ 4.95% ∗ 5.13% ∗ 5.24% ∗ 12.67

1.67
0.95 0.6% 0.71% 0.78% 9.9
∞ 0.88% 0.88% 0.88% 9.6

pr152 0.2
1

0.95
∞ 13.95% ∗ 15.49% ∗ 18.84% ∗ 42.26

1.33 0.95 15.2% ∗ 15.73% ∗ 15.92% ∗ 26.43
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ALGORITHM

Matrix α β γ Minimum Average Maximum Average CPU
name Gap Gap Gap time (seconds)

pr152

0.2
1.33 ∞ 14.23% ∗ 14.77% ∗ 15.26% ∗ 30.67

1.67
0.95 12.48% ∗ 12.97% ∗ 13.1% ∗ 14.56
∞ 12.98% ∗ 13.24% ∗ 14.01% ∗ 22.78

0.35

1
0.95
∞ 24.35% ∗ 25.04% ∗ 26.22% ∗ 23.35

1.33
0.95 19.12% ∗ 19.32% ∗ 20.08% ∗ 19.06
∞ 19.94% ∗ 20.45% ∗ 20.6% ∗ 26.12

1.67
0.95
∞ 14.73% ∗ 15.08% ∗ 15.74% ∗ 16.34

0.5

1
0.95
∞ 9.33% ∗ 9.86% ∗ 10.21% ∗ 20.65

1.33
0.95 8.73% ∗ 9.23% ∗ 9.42% ∗ 21.72
∞ 9.32% ∗ 9.35% ∗ 9.41% ∗ 18.88

1.67
0.95
∞ 23.01% ∗ 23.6% ∗ 24.0% ∗ 17.95

rat195

0.2

1
0.95
∞ 6.64% ∗ 8.13% ∗ 9.37% ∗ 98.61

1.33
0.95
∞ 4.34% ∗ 5.22% ∗ 6.04% ∗ 67.52

1.67
0.95 3.94% ∗ 4.83% ∗ 6.14% ∗ 54.31
∞ 3.99% ∗ 5.08% ∗ 6.0% ∗ 54.82

0.35

1
0.95
∞ 3.63% ∗ 5.07% ∗ 7.18% ∗ 71.12

1.33
0.95 4.58% ∗ 5.06% ∗ 5.34% ∗ 75.1
∞ 3.61% ∗ 5.41% ∗ 7.94% ∗ 58.83

1.67
0.95
∞ 3.27% ∗ 4.44% ∗ 6.86% ∗ 60.82

0.5

1
0.95
∞ 3.87% ∗ 4.58% ∗ 5.28% ∗ 59.34

1.33
0.95 1.32% ∗ 2.17% ∗ 2.95% ∗ 118.79
∞ 2.53% ∗ 4.01% ∗ 5.06% ∗ 57.54

1.67
0.95 3.16% ∗ 5.23% ∗ 6.46% ∗ 81.51
∞ 3.38% 4.28% 5.16% 79.22

pr226
0.2

1
0.95
∞ 22.35% ∗ 29.13% ∗ 38.4% ∗ 160.58

1.33
0.95 9.68% ∗ 10.62% ∗ 12.19% ∗ 70.07
∞ 9.12% ∗ 10.33% ∗ 12.17% ∗ 117.81

1.67
0.95 6.8% ∗ 6.95% ∗ 7.25% ∗ 51.77
∞ 6.84% ∗ 7.12% ∗ 7.52% ∗ 59.5

0.35 1
0.95
∞ 14.52% ∗ 14.66% ∗ 14.84% ∗ 84.45
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Matrix α β γ Minimum Average Maximum Average CPU
name Gap Gap Gap time (seconds)

pr226

0.35
1.33

0.95 11.45% ∗ 11.92% ∗ 12.31% ∗ 58.0
∞ 10.47% ∗ 10.68% ∗ 10.9% ∗ 63.27

1.67
0.95 9.12% ∗ 9.18% ∗ 9.24% ∗ 63.57
∞ 8.77% ∗ 8.88% ∗ 8.98% ∗ 70.75

0.5

1
0.95
∞ 19.22% ∗ 19.85% ∗ 20.53% ∗ 154.95

1.33
0.95 11.28% ∗ 11.66% ∗ 11.91% ∗ 82.33
∞ 10.52% ∗ 10.83% ∗ 11.46% ∗ 75.18

1.67
0.95 10.97% ∗ 11.07% ∗ 11.23% ∗ 68.98
∞ 10.65% ∗ 10.87% ∗ 11.13% ∗ 50.05

Asymmetric instances

Matrix α β γ Minimum Average Maximum Average CPU
name Gap Gap Gap time (seconds)

ft53

0.2

1
0.95
∞ 14.14% ∗ 16.53% ∗ 19.38% ∗ 7.36

1.33
0.95 0.32% 3.33% 5.57% 4.24
∞ 3.28% 6.72% 10.71% 3.39

1.67
0.95 5.0% 8.87% 11.12% 2.5
∞ 8.71% 9.32% 10.05% 2.52

0.35

1
0.95
∞ 4.11% 7.06% 8.52% 4.79

1.33
0.95 3.67% 5.59% 7.08% 3.09
∞ 3.77% 5.65% 8.03% 3.7

1.67
0.95 0.94% 5.32% 12.4% 3.37
∞ 1.38% 9.49% 14.44% 2.23

0.5

1
0.95 4.2% 6.21% 9.96% 4.83
∞ 4.24% 6.23% 9.75% 2.42

1.33
0.95 1.71% 3.22% 5.1% 2.94
∞ 1.12% 5.68% 8.5% 2.14

1.67
0.95 1.96% 3.45% 5.24% 1.39
∞ 1.71% 2.92% 4.08% 1.63

ftv64

0.2

1
0.95 4.83% 9.03% 12.9% 4.94
∞ 3.77% 5.98% 8.6% 6.02

1.33
0.95 0.97% 4.84% 8.03% 2.4
∞ 3.88% 6.4% 7.71% 3.26

1.67
0.95
∞ 2.28% 5.47% 7.78% 2.52

0.35
1

0.95 2.82% 6.15% 10.18% 6.65
∞ 2.6% 7.43% 9.91% 3.82

1.33
0.95 2.82% 4.47% 8.02% 2.45
∞ 1.57% 7.5% 12.08% 3.98
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Matrix α β γ Minimum Average Maximum Average CPU
name Gap Gap Gap time (seconds)

ftv64

0.35 1.67
0.95 2.28% 3.85% 5.38% 2.73
∞ 3.1% 4.31% 6.36% 2.0

0.5

1
0.95
∞ 1.35% 3.81% 6.16% 3.31

1.33
0.95 0.98% 4.76% 8.63% 2.76
∞ 0.87% 3.9% 7.33% 2.72

1.67
0.95
∞ 0.87% 2.17% 3.04% 1.86

ft70

0.2

1
0.95 5.02% ∗ 5.66% ∗ 6.38% ∗ 10.19
∞ 4.07% ∗ 5.34% ∗ 6.86% ∗ 11.15

1.33
0.95 2.89% 4.49% 7.44% 8.49
∞ 1.02% 2.5% 4.29% 8.2

1.67
0.95 2.5% 3.48% 5.05% 10.83
∞ 2.24% 3.12% 4.79% 7.38

0.35

1
0.95 1.98% 3.05% 4.48% 8.82
∞ 1.4% 3.01% 5.19% 10.49

1.33
0.95 2.57% 3.04% 3.66% 9.08
∞ 1.11% 3.27% 5.8% 8.82

1.67
0.95 2.68% 3.33% 4.26% 7.37
∞ 2.82% 3.5% 4.46% 5.85

0.5

1
0.95 2.23% 3.33% 4.66% 15.55
∞ 3.11% 4.03% 4.99% 5.73

1.33
0.95 2.5% 3.53% 5.3% 9.02
∞ 3.03% 3.78% 4.77% 4.8

1.67
0.95 1.98% 4.63% 6.24% 6.92
∞ 2.72% 4.0% 4.94% 5.68

kro124p

0.2

1
0.95 5.95% ∗ 7.47% ∗ 9.78% ∗ 15.78
∞ 5.58% ∗ 8.51% ∗ 10.96% ∗ 15.85

1.33
0.95 0.54% 3.09% 4.4% 12.81
∞ 3.65% 4.34% 4.79% 14.38

1.67
0.95 0.61% 1.38% 2.3% 12.02
∞ 0.72% 1.51% 2.03% 8.84

0.35

1
0.95
∞ 11.3% ∗ 13.68% ∗ 16.76% ∗ 20.74

1.33
0.95 0.48% 1.65% 2.86% 13.29
∞ 2.14% 2.5% 3.29% 9.71

1.67
0.95 0.64% 2.0% 3.33% 10.98
∞ 1.9% 3.4% 4.37% 12.24

0.5
1

0.95 4.67% ∗ 5.5% ∗ 6.07% ∗ 23.46
∞ 5.57% ∗ 7.28% ∗ 8.44% ∗ 19.47

1.33 0.95 2.22% 3.9% 7.37% 13.78
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Matrix α β γ Minimum Average Maximum Average CPU
name Gap Gap Gap time (seconds)

kro124p 0.5
1.33 ∞ 2.63% 3.28% 3.69% 16.72

1.67
0.95 2.24% 3.14% 3.63% 9.92
∞ 2.22% 3.22% 4.18% 12.72

ftv170

0.2

1
0.95
∞ 6.46% ∗ 9.79% ∗ 12.51% ∗ 56.52

1.33
0.95 5.69% 10.78% 20.16% 25.3
∞ 5.47% 9.7% 19.04% 23.75

1.67
0.95 5.51% 7.21% 10.8% 26.92
∞ 5.91% 7.19% 9.35% 28.51

0.35

1
0.95 9.81% ∗ 13.41% ∗ 17.87% ∗ 32.5
∞ 13.87% ∗ 16.27% ∗ 18.3% ∗ 29.3

1.33
0.95 4.39% 7.33% 12.45% 29.57
∞ 5.26% 8.01% 12.99% 33.26

1.67
0.95 4.21% 8.64% 11.4% 16.93
∞ 4.79% 7.99% 12.89% 20.57

0.5

1
0.95 10.23% ∗ 12.96% ∗ 17.92% ∗ 58.18
∞ 6.19% ∗ 11.56% ∗ 18.67% ∗ 45.2

1.33
0.95 9.91% 12.22% 15.04% 36.64
∞ 9.18% 10.59% 12.87% 38.08

1.67
0.95 2.0% 5.38% 8.71% 24.06
∞ 2.43% 8.54% 12.85% 18.18

ARI as the constructive heuristic

Table B.3: Computational results, for ω = 1/3 and MaxIt =

1000, using the solution obtained through the ARI heuristic as the
initial solution.

Symmetric instances

Matrix α β γ Minimum Average Maximum Average CPU
name Gap Gap Gap time (seconds)

berlin52

0.2

1
0.95
∞ 4.49% ∗ 4.51% ∗ 4.57% ∗ 4.88

1.33
0.95 4.4% ∗ 4.67% ∗ 4.96% ∗ 6.4
∞ 5.38% ∗ 5.63% ∗ 6.02% ∗ 3.46

1.67
0.95 1.01% 2.44% 3.57% 5.25
∞ 0.69% 1.73% 1.99% 5.29

0.35
1

0.95 0.42% 0.42% 0.42% 3.91
∞ 0.33% 0.99% 1.32% 3.2

1.33
0.95 0.0% 2.47% 4.34% 3.31
∞ 1.24% 1.87% 2.91% 2.61
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ALGORITHM

Matrix α β γ Minimum Average Maximum Average CPU
name Gap Gap Gap time (seconds)

berlin52

0.35 1.67
0.95 0.0% 1.38% 2.93% 2.69
∞ 0.0% 0.39% 1.04% 2.62

0.5

1
0.95
∞ 0.0% 0.22% 1.08% 3.59

1.33
0.95 0.42% 0.42% 0.42% 7.17
∞ 0.29% 0.76% 2.67% 3.02

1.67
0.95 0.0% 1.5% 3.41% 4.12
∞ 0.0% 1.13% 3.63% 2.81

pr76

0.2

1
0.95
∞ 1.45% ∗ 1.85% ∗ 2.16% ∗ 10.26

1.33
0.95 1.03% ∗ 1.03% ∗ 1.03% ∗ 14.52
∞ 1.55% ∗ 2.24% ∗ 3.83% ∗ 9.74

1.67
0.95 0.67% ∗ 1.52% ∗ 2.23% ∗ 8.22
∞ 0.61% ∗ 1.47% ∗ 2.64% ∗ 6.69

0.35

1
0.95
∞ 4.13% ∗ 5.11% ∗ 6.59% ∗ 12.97

1.33
0.95 0.0% 1.1% 2.39% 10.55
∞ 0.0% 0.1% 0.21% 11.18

1.67
0.95 0.07% 0.73% 0.95% 6.54
∞ 0.0% 0.42% 1.02% 6.8

0.5

1
0.95
∞ 0.0% 0.86% 2.22% 12.66

1.33
0.95 0.01% 0.9% 2.21% 8.4
∞ 0.07% 1.79% 2.8% 9.84

1.67
0.95 0.63% 0.63% 0.63% 5.28
∞ 0.0% 0.54% 1.55% 10.95

kroA100

0.2

1
0.95
∞ 9.09% ∗ 10.15% ∗ 11.48% ∗ 70.62

1.33
0.95 0.93% 0.93% 0.93% 12.26
∞ 0.0% 0.0% 0.0% 14.51

1.67
0.95 0.0% 0.18% 0.46% 14.52
∞ 0.0% 2.37% 5.67% 12.21

0.35

1
0.95
∞ 6.33% ∗ 7.44% ∗ 8.08% ∗ 45.21

1.33
0.95 3.26% ∗ 4.86% ∗ 5.88% ∗ 28.86
∞ 1.56% ∗ 2.76% ∗ 4.09% ∗ 29.93

1.67
0.95 0.0% 0.0% 0.0% 17.83
∞ 0.0% 0.0% 0.0% 16.89

0.5
1

0.95
∞ 2.97% ∗ 3.97% ∗ 5.41% ∗ 48.71

1.33 0.95 1.76% ∗ 2.76% ∗ 4.3% ∗ 33.1
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Matrix α β γ Minimum Average Maximum Average CPU
name Gap Gap Gap time (seconds)

kroA100 0.5
1.33 ∞ 1.79% ∗ 2.83% ∗ 4.48% ∗ 29.9

1.67
0.95 0.0% 0.77% 1.99% 14.72
∞ 0.0% 0.49% 0.88% 19.0

pr124

0.2

1
0.95
∞ 5.04% ∗ 6.1% ∗ 8.23% ∗ 24.02

1.33
0.95 9.45% ∗ 10.87% ∗ 11.85% ∗ 14.55
∞ 9.3% ∗ 10.24% ∗ 10.86% ∗ 17.06

1.67
0.95 10.93% ∗ 11.27% ∗ 11.94% ∗ 19.29
∞ 11.0% ∗ 11.31% ∗ 12.57% ∗ 19.31

0.35

1
0.95
∞ 8.4% ∗ 9.18% ∗ 12.28% ∗ 16.35

1.33
0.95
∞ 0.0% 0.51% 0.88% 15.42

1.67
0.95 6.69% ∗ 7.9% ∗ 8.78% ∗ 18.02
∞ 5.92% ∗ 7.07% ∗ 7.82% ∗ 19.03

0.5

1
0.95
∞ 4.32% ∗ 6.27% ∗ 6.92% ∗ 31.65

1.33
0.95 2.88% ∗ 3.56% ∗ 4.35% ∗ 21.48
∞ 4.33% ∗ 5.12% ∗ 6.45% ∗ 15.54

1.67
0.95 2.04% 2.04% 2.04% 20.32
∞ 0.0% 0.3% 0.88% 21.17

pr152

0.2

1
0.95
∞ 14.02% ∗ 14.48% ∗ 15.83% ∗ 72.46

1.33
0.95 13.46% ∗ 14.17% ∗ 16.35% ∗ 69.16
∞ 13.26% ∗ 14.57% ∗ 15.99% ∗ 54.81

1.67
0.95 12.57% ∗ 13.26% ∗ 13.98% ∗ 36.46
∞ 12.46% ∗ 13.65% ∗ 15.51% ∗ 38.53

0.35

1
0.95
∞ 23.05% ∗ 26.73% ∗ 38.32% ∗ 40.62

1.33
0.95 18.38% ∗ 19.13% ∗ 19.7% ∗ 27.69
∞ 19.94% ∗ 21.0% ∗ 22.3% ∗ 45.64

1.67
0.95
∞ 13.89% ∗ 14.7% ∗ 15.15% ∗ 33.51

0.5

1
0.95
∞ 9.25% ∗ 12.1% ∗ 19.04% ∗ 45.45

1.33
0.95 8.44% ∗ 9.21% ∗ 10.87% ∗ 29.41
∞ 8.43% ∗ 8.87% ∗ 9.41% ∗ 24.85

1.67
0.95
∞ 22.58% ∗ 23.22% ∗ 23.53% ∗ 40.64

rat195 0.2 1
0.95
∞ 4.66% ∗ 6.55% ∗ 7.76% ∗ 250.16
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rat195

0.2
1.33

0.95
∞ 3.67% ∗ 4.53% ∗ 5.95% ∗ 124.08

1.67
0.95 3.94% ∗ 4.94% ∗ 6.28% ∗ 115.08
∞ 3.94% ∗ 5.63% ∗ 9.0% ∗ 103.67

0.35

1
0.95
∞ 3.24% ∗ 5.24% ∗ 7.45% ∗ 172.07

1.33
0.95 3.65% ∗ 4.7% ∗ 5.38% ∗ 115.14
∞ 3.66% ∗ 5.28% ∗ 7.85% ∗ 159.48

1.67
0.95
∞ 2.91% ∗ 4.62% ∗ 5.87% ∗ 120.37

0.5

1
0.95
∞ 2.77% ∗ 3.77% ∗ 4.58% ∗ 197.64

1.33
0.95 1.76% ∗ 2.75% ∗ 3.74% ∗ 161.34
∞ 3.11% ∗ 4.44% ∗ 5.86% ∗ 112.7

1.67
0.95 4.23% ∗ 5.11% ∗ 6.01% ∗ 77.43
∞ 2.62% 3.79% 5.2% 169.47

pr226

0.2

1
0.95 23.27% ∗ 23.73% ∗ 24.2% ∗ 375.52
∞ 20.98% ∗ 25.09% ∗ 28.31% ∗ 218.83

1.33
0.95 9.36% ∗ 11.15% ∗ 13.58% ∗ 148.88
∞ 9.24% ∗ 13.03% ∗ 17.16% ∗ 153.83

1.67
0.95 6.76% ∗ 6.83% ∗ 6.92% ∗ 125.85
∞ 6.84% ∗ 7.31% ∗ 7.96% ∗ 142.93

0.35

1
0.95 20.28% ∗ 20.99% ∗ 21.71% ∗ 119.51
∞ 14.79% ∗ 17.58% ∗ 22.2% ∗ 126.83

1.33
0.95 11.38% ∗ 11.86% ∗ 12.56% ∗ 94.68
∞ 10.72% ∗ 11.34% ∗ 11.74% ∗ 101.59

1.67
0.95 9.3% ∗ 9.87% ∗ 10.26% ∗ 80.87
∞ 9.47% ∗ 12.32% ∗ 20.38% ∗ 107.86

0.5

1
0.95
∞ 19.44% ∗ 19.81% ∗ 20.5% ∗ 184.99

1.33
0.95 11.0% ∗ 13.41% ∗ 17.41% ∗ 194.99
∞ 10.57% ∗ 12.73% ∗ 20.0% ∗ 105.26

1.67
0.95 10.97% ∗ 11.35% ∗ 12.17% ∗ 164.5
∞ 10.55% ∗ 10.77% ∗ 10.96% ∗ 89.45

Asymmetric instances

Matrix α β γ Minimum Average Maximum Average CPU
name Gap Gap Gap time (seconds)

ft53 0.2
1

0.95 13.43% ∗ 16.12% ∗ 21.19% ∗ 15.63
∞ 12.6% ∗ 15.72% ∗ 20.4% ∗ 11.9

1.33
0.95 2.51% 7.72% 13.01% 9.52
∞ 1.02% 4.18% 7.94% 8.35

92
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ALGORITHM

Matrix α β γ Minimum Average Maximum Average CPU
name Gap Gap Gap time (seconds)

ft53

0.2 1.67
0.95 0.2% 5.0% 9.43% 3.83
∞ 1.05% 2.14% 3.77% 5.84

0.35

1
0.95 3.39% 3.39% 3.39% 8.87
∞ 5.39% 9.56% 13.63% 9.33

1.33
0.95 1.65% 5.61% 10.92% 7.37
∞ 0.0% 5.21% 10.4% 8.41

1.67
0.95 0.88% 3.1% 6.18% 6.1
∞ 2.51% 6.2% 12.48% 3.69

0.5

1
0.95 3.64% 6.45% 8.25% 6.24
∞ 3.75% 6.54% 11.83% 5.04

1.33
0.95 3.36% 9.86% 13.79% 3.36
∞ 1.06% 5.78% 8.92% 4.76

1.67
0.95 0.65% 7.94% 15.39% 4.96
∞ 2.61% 6.07% 8.57% 4.11

ftv64

0.2

1
0.95 6.37% 9.02% 12.16% 7.98
∞ 6.37% 9.45% 15.51% 9.96

1.33
0.95 4.37% 6.61% 9.6% 5.26
∞ 3.45% 6.33% 9.81% 4.17

1.67
0.95 3.75% 5.89% 7.83% 5.83
∞ 3.37% 4.08% 5.17% 5.16

0.35

1
0.95 3.03% 9.75% 14.08% 7.54
∞ 3.14% 6.49% 11.81% 9.11

1.33
0.95 1.63% 3.28% 6.93% 5.26
∞ 2.87% 4.29% 5.8% 5.34

1.67
0.95 4.46% 5.61% 7.29% 4.74
∞ 1.85% 4.97% 5.87% 4.35

0.5

1
0.95 5.68% 6.95% 9.41% 8.17
∞ 2.7% 8.0% 14.11% 5.77

1.33
0.95 2.93% 7.25% 10.48% 6.87
∞ 2.06% 5.44% 9.28% 4.18

1.67
0.95 2.99% 3.95% 6.35% 4.26
∞ 2.71% 5.52% 10.8% 3.34

ft70

0.2

1
0.95 4.76% ∗ 5.46% ∗ 6.37% ∗ 21.93
∞ 5.46% ∗ 6.12% ∗ 7.71% ∗ 14.6

1.33
0.95 2.68% 4.9% 6.56% 14.48
∞ 1.63% 2.58% 3.22% 21.68

1.67
0.95 2.22% 3.91% 4.75% 19.44
∞ 2.06% 3.0% 3.9% 13.01

0.35
1

0.95 1.98% 3.46% 4.41% 15.43
∞ 2.05% 3.41% 5.04% 12.92

1.33 0.95 2.26% 3.55% 4.14% 11.99
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ALGORITHM

Matrix α β γ Minimum Average Maximum Average CPU
name Gap Gap Gap time (seconds)

ft70

0.35
1.33 ∞ 1.92% 2.8% 3.32% 11.61

1.67
0.95 1.52% 2.74% 4.05% 16.34
∞ 2.59% 3.34% 4.49% 13.72

0.5

1
0.95 2.39% 2.39% 2.39% 28.58
∞ 2.16% 2.91% 4.3% 18.2

1.33
0.95 1.99% 2.54% 3.07% 16.56
∞ 1.91% 2.49% 2.87% 10.82

1.67
0.95 2.55% 2.87% 3.18% 16.4
∞ 1.29% 2.92% 4.18% 12.23

kro124p

0.2

1
0.95 6.74% ∗ 9.53% ∗ 13.11% ∗ 41.79
∞ 5.39% ∗ 8.5% ∗ 11.22% ∗ 53.23

1.33
0.95 0.98% 3.45% 5.69% 25.97
∞ 0.1% 1.89% 4.7% 26.5

1.67
0.95 0.93% 2.91% 7.81% 16.07
∞ 0.43% 1.94% 3.78% 21.68

0.35

1
0.95
∞ 7.7% ∗ 10.7% ∗ 15.01% ∗ 50.65

1.33
0.95 0.23% 1.12% 3.14% 31.15
∞ 1.53% 2.76% 5.12% 25.28

1.67
0.95 0.33% 2.25% 3.99% 27.24
∞ 0.45% 2.64% 6.35% 20.7

0.5

1
0.95 4.91% ∗ 7.74% ∗ 12.66% ∗ 26.82
∞ 2.0% ∗ 4.49% ∗ 7.49% ∗ 45.75

1.33
0.95 1.22% 4.06% 6.9% 25.78
∞ 1.17% 2.86% 5.8% 22.25

1.67
0.95 0.67% 3.37% 5.4% 27.16
∞ 0.23% 1.89% 5.58% 24.26

ftv170

0.2

1
0.95
∞ 10.98% ∗ 15.91% ∗ 20.31% ∗ 116.4

1.33
0.95 5.84% 11.82% 14.47% 53.82
∞ 3.34% 6.24% 10.66% 37.44

1.67
0.95 4.5% 7.14% 10.91% 41.23
∞ 5.11% 8.27% 14.14% 33.24

0.35

1
0.95 8.75% ∗ 11.75% ∗ 13.93% ∗ 91.48
∞ 10.75% ∗ 15.34% ∗ 24.0% ∗ 72.62

1.33
0.95 7.22% 9.52% 11.76% 59.88
∞ 6.82% 9.57% 11.58% 46.34

1.67
0.95 7.11% 8.89% 10.85% 36.67
∞ 5.84% 7.46% 9.4% 39.5

0.5 1
0.95 9.18% ∗ 9.61% ∗ 10.05% ∗ 101.9
∞ 11.72% ∗ 13.07% ∗ 17.15% ∗ 79.35
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ALGORITHM

Matrix α β γ Minimum Average Maximum Average CPU
name Gap Gap Gap time (seconds)

ftv170 0.5
1.33

0.95 8.57% 11.31% 14.39% 63.99
∞ 7.48% 9.96% 11.28% 40.04

1.67
0.95 5.84% 8.65% 10.74% 41.51
∞ 5.7% 8.43% 10.74% 32.67

B.1.2 Results for a maximum of 2500 iterations

ANN as the constructive heuristic

Table B.4: Computational results, for ω = 1/3 and MaxIt =

2500, using the solution obtained through the ANN heuristic as
the initial solution.

Symmetric instances

Matrix α β γ Minimum Average Maximum Average CPU
name Gap Gap Gap time (seconds)

berlin52

0.2

1
0.95
∞ 4.49% ∗ 4.92% ∗ 5.97% ∗ 6.03

1.33
0.95 4.4% ∗ 4.63% ∗ 5.04% ∗ 6.9
∞ 5.38% ∗ 5.57% ∗ 5.94% ∗ 7.28

1.67
0.95
∞ 0.83% 2.06% 3.49% 5.71

0.35

1
0.95 0.0% 0.31% 1.17% 4.9
∞ 0.33% 0.54% 0.87% 6.44

1.33
0.95 0.0% 0.78% 3.88% 5.36
∞ 0.0% 0.56% 1.41% 5.78

1.67
0.95 0.0% 0.0% 0.0% 4.5
∞ 0.0% 0.0% 0.0% 3.37

0.5

1
0.95
∞ 0.0% 0.63% 3.14% 4.24

1.33
0.95
∞ 0.29% 2.12% 3.09% 3.68

1.67
0.95 0.0% 1.77% 3.12% 4.88
∞ 0.46% 1.83% 3.87% 4.97

pr76
0.2

1
0.95
∞ 1.38% ∗ 1.67% ∗ 1.88% ∗ 8.25

1.33
0.95 1.54% ∗ 1.89% ∗ 3.25% ∗ 13.25
∞ 1.11% ∗ 2.0% ∗ 4.26% ∗ 8.64

1.67
0.95 0.39% ∗ 0.8% ∗ 1.27% ∗ 8.47
∞ 0.76% ∗ 1.09% ∗ 2.4% ∗ 9.09

0.35 1 0.95
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ALGORITHM

Matrix α β γ Minimum Average Maximum Average CPU
name Gap Gap Gap time (seconds)

pr76

0.35

1 ∞ 4.13% ∗ 4.13% ∗ 4.13% ∗ 13.78

1.33
0.95 0.0% 0.06% 0.08% 6.5
∞ 0.0% 0.04% 0.08% 8.26

1.67
0.95 0.84% 1.01% 1.49% 9.83
∞ 0.82% 0.86% 0.91% 6.55

0.5

1
0.95
∞ 0.0% 1.55% 4.84% 10.03

1.33
0.95 0.0% 0.04% 0.09% 6.63
∞ 0.0% 0.82% 2.52% 7.87

1.67
0.95 0.55% 0.55% 0.55% 7.35
∞ 0.82% 0.87% 1.08% 8.99

kroA100

0.2

1
0.95
∞ 8.31% ∗ 10.43% ∗ 11.38% ∗ 49.03

1.33
0.95
∞ 0.0% 0.36% 1.8% 13.32

1.67
0.95
∞ 0.0% 0.06% 0.09% 12.47

0.35

1
0.95
∞ 6.33% ∗ 6.33% ∗ 6.33% ∗ 32.71

1.33
0.95
∞ 1.56% ∗ 3.01% ∗ 3.95% ∗ 30.5

1.67
0.95 0.0% 0.0% 0.0% 15.3
∞ 0.0% 0.06% 0.09% 15.82

0.5

1
0.95
∞ 2.62% ∗ 2.9% ∗ 3.19% ∗ 80.82

1.33
0.95 1.76% ∗ 1.88% ∗ 2.38% ∗ 51.54
∞ 1.79% ∗ 2.26% ∗ 2.81% ∗ 39.36

1.67
0.95 0.0% 0.0% 0.0% 21.51
∞ 0.0% 0.02% 0.04% 16.66

pr124

0.2

1
0.95
∞ 6.06% ∗ 6.59% ∗ 8.7% ∗ 40.67

1.33
0.95 9.44% ∗ 9.75% ∗ 11.0% ∗ 22.04
∞ 9.3% ∗ 9.73% ∗ 9.83% ∗ 16.65

1.67
0.95 10.93% ∗ 10.93% ∗ 10.94% ∗ 18.84
∞ 11.0% ∗ 11.0% ∗ 11.0% ∗ 16.33

0.35

1
0.95
∞ 8.4% ∗ 9.67% ∗ 14.72% ∗ 18.19

1.33
0.95
∞ 0.6% 0.79% 0.88% 21.8

1.67
0.95
∞ 6.56% ∗ 6.65% ∗ 6.85% ∗ 22.57
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Matrix α β γ Minimum Average Maximum Average CPU
name Gap Gap Gap time (seconds)

pr124 0.5

1
0.95
∞ 4.86% ∗ 5.68% ∗ 6.18% ∗ 46.34

1.33
0.95
∞ 4.95% ∗ 5.13% ∗ 5.24% ∗ 19.8

1.67
0.95
∞ 0.0% 0.0% 0.0% 16.13

pr152

0.2

1
0.95 14.57% ∗ 14.7% ∗ 14.8% ∗ 78.34
∞ 14.02% ∗ 14.67% ∗ 15.23% ∗ 88.43

1.33
0.95 13.37% ∗ 13.99% ∗ 14.79% ∗ 61.38
∞ 13.21% ∗ 13.64% ∗ 14.02% ∗ 62.8

1.67
0.95 13.07% ∗ 13.9% ∗ 15.25% ∗ 42.45
∞ 12.95% ∗ 13.34% ∗ 14.89% ∗ 42.44

0.35

1
0.95 23.18% ∗ 24.34% ∗ 26.82% ∗ 75.32
∞ 24.39% ∗ 26.03% ∗ 29.31% ∗ 80.5

1.33
0.95 19.46% ∗ 19.65% ∗ 19.7% ∗ 42.98
∞ 20.94% ∗ 21.35% ∗ 21.71% ∗ 31.91

1.67
0.95 14.01% ∗ 16.14% ∗ 18.45% ∗ 79.77
∞ 14.1% ∗ 14.79% ∗ 16.21% ∗ 33.32

0.5

1
0.95
∞ 9.56% ∗ 9.56% ∗ 9.56% ∗ 54.59

1.33
0.95 8.64% ∗ 10.13% ∗ 11.18% ∗ 57.47
∞ 8.43% ∗ 9.59% ∗ 11.08% ∗ 44.66

1.67
0.95
∞ 22.58% ∗ 23.28% ∗ 23.61% ∗ 58.5

rat195

0.2

1
0.95
∞ 5.07% ∗ 6.47% ∗ 9.1% ∗ 181.68

1.33
0.95
∞ 2.95% ∗ 3.6% ∗ 4.57% ∗ 108.43

1.67
0.95 2.87% ∗ 3.28% ∗ 3.54% ∗ 89.13
∞ 2.55% ∗ 2.83% ∗ 3.09% ∗ 88.87

0.35

1
0.95
∞ 2.7% ∗ 4.12% ∗ 5.45% ∗ 130.16

1.33
0.95 2.18% ∗ 2.56% ∗ 2.85% ∗ 82.56
∞ 2.72% ∗ 3.25% ∗ 4.99% ∗ 84.63

1.67
0.95
∞ 2.2% ∗ 3.09% ∗ 3.81% ∗ 83.81

0.5
1

0.95
∞ 2.2% ∗ 2.98% ∗ 4.71% ∗ 112.3

1.33
0.95 1.32% ∗ 2.3% ∗ 3.13% ∗ 121.79
∞ 1.82% ∗ 2.41% ∗ 2.93% ∗ 96.98
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Matrix α β γ Minimum Average Maximum Average CPU
name Gap Gap Gap time (seconds)

rat195 0.5 1.67
0.95 2.05% ∗ 2.43% ∗ 3.21% ∗ 142.83
∞ 1.2% 2.4% 3.6% 82.86

pr226

0.2

1
0.95 21.32% ∗ 24.36% ∗ 27.83% ∗ 231.62
∞ 22.53% ∗ 23.05% ∗ 23.83% ∗ 244.96

1.33
0.95
∞ 10.5% ∗ 11.41% ∗ 11.81% ∗ 183.84

1.67
0.95 6.73% ∗ 7.19% ∗ 7.49% ∗ 146.81
∞ 6.87% ∗ 7.26% ∗ 7.85% ∗ 142.59

0.35

1
0.95 17.93% ∗ 17.99% ∗ 18.05% ∗ 158.56
∞ 17.73% ∗ 18.57% ∗ 21.12% ∗ 146.21

1.33
0.95
∞ 10.47% ∗ 10.65% ∗ 11.17% ∗ 193.13

1.67
0.95
∞ 8.75% ∗ 9.66% ∗ 12.46% ∗ 153.66

0.5

1
0.95 17.32% ∗ 19.93% ∗ 28.55% ∗ 690.93
∞ 15.63% ∗ 18.26% ∗ 20.39% ∗ 211.81

1.33
0.95 10.53% ∗ 13.21% ∗ 17.09% ∗ 156.15
∞ 11.34% ∗ 14.66% ∗ 18.16% ∗ 100.46

1.67
0.95
∞ 10.51% ∗ 10.92% ∗ 11.32% ∗ 152.66

Asymmetric instances

Matrix α β γ Minimum Average Maximum Average CPU
name Gap Gap Gap time (seconds)

ft53

0.2

1
0.95 16.83% ∗ 20.37% ∗ 22.39% ∗ 13.43
∞ 14.31% ∗ 19.69% ∗ 21.89% ∗ 13.27

1.33
0.95 4.46% 5.55% 7.24% 4.37
∞ 2.2% 4.46% 6.91% 4.9

1.67
0.95 0.14% 4.17% 7.28% 7.1
∞ 5.38% 7.01% 9.33% 4.78

0.35

1
0.95 3.16% 6.8% 10.1% 13.58
∞ 1.89% 4.5% 7.37% 10.04

1.33
0.95 3.05% 5.78% 7.59% 7.91
∞ 4.67% 7.01% 8.58% 6.71

1.67
0.95 2.26% 4.88% 8.33% 3.95
∞ 2.61% 6.39% 8.33% 3.23

0.5

1
0.95 2.9% 7.68% 11.43% 7.68
∞ 0.0% 5.24% 10.18% 7.34

1.33
0.95 0.0% 3.79% 8.73% 3.36
∞ 3.36% 5.88% 6.53% 2.9

1.67
0.95 0.0% 6.98% 11.54% 4.46
∞ 2.74% 6.31% 11.34% 3.31
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ALGORITHM

Matrix α β γ Minimum Average Maximum Average CPU
name Gap Gap Gap time (seconds)

ftv64

0.2

1
0.95
∞ 3.13% 7.25% 11.58% 10.78

1.33
0.95
∞ 0.97% 4.89% 7.76% 5.52

1.67
0.95 1.14% 6.07% 10.82% 5.06
∞ 1.25% 4.33% 8.37% 5.87

0.35

1
0.95 0.05% 3.22% 12.84% 6.95
∞ 0.05% 4.42% 12.24% 6.02

1.33
0.95 2.87% 3.03% 3.41% 4.25
∞ 3.14% 4.7% 6.83% 5.68

1.67
0.95 2.18% 3.86% 4.89% 4.78
∞ 2.83% 4.72% 7.5% 4.57

0.5

1
0.95 1.89% 5.61% 8.86% 12.31
∞ 2.49% 5.74% 8.54% 8.25

1.33
0.95 0.98% 3.94% 9.83% 5.74
∞ 3.47% 4.95% 6.35% 3.25

1.67
0.95 0.98% 3.27% 5.65% 7.19
∞ 0.33% 1.75% 3.47% 4.17

ft70

0.2

1
0.95 3.61% ∗ 5.01% ∗ 6.05% ∗ 25.55
∞ 3.9% ∗ 4.31% ∗ 4.76% ∗ 27.76

1.33
0.95 2.62% 3.35% 4.56% 23.12
∞ 2.29% 3.26% 4.3% 12.23

1.67
0.95 1.52% 2.87% 4.52% 21.43
∞ 0.63% 2.2% 3.1% 12.39

0.35

1
0.95 1.46% 2.56% 4.34% 18.3
∞ 2.12% 3.3% 4.31% 17.87

1.33
0.95 3.15% 3.84% 4.45% 12.11
∞ 1.11% 1.89% 3.25% 20.79

1.67
0.95
∞ 1.95% 2.73% 4.71% 12.66

0.5

1
0.95
∞ 1.83% 2.83% 3.64% 15.2

1.33
0.95
∞ 1.67% 2.68% 3.16% 14.56

1.67
0.95
∞ 1.25% 2.26% 2.92% 10.93

kro124p 0.2

1
0.95
∞ 5.77% ∗ 10.04% ∗ 13.19% ∗ 49.82

1.33
0.95 2.26% 4.69% 6.5% 33.47
∞ 2.87% 6.02% 8.1% 26.89

1.67 0.95 4.76% 8.38% 9.94% 28.14
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Matrix α β γ Minimum Average Maximum Average CPU
name Gap Gap Gap time (seconds)

kro124p

0.2 1.67 ∞ 3.96% 6.42% 11.42% 33.05

0.35

1
0.95
∞ 6.88% ∗ 8.26% ∗ 9.49% ∗ 67.09

1.33
0.95 5.11% 6.5% 9.02% 32.36
∞ 3.05% 5.25% 8.03% 48.77

1.67
0.95 4.56% 8.15% 10.92% 26.91
∞ 3.95% 7.89% 11.5% 27.02

0.5

1
0.95
∞ 4.19% ∗ 7.8% ∗ 10.86% ∗ 46.31

1.33
0.95 7.03% 8.48% 9.89% 23.22
∞ 7.74% 8.87% 10.41% 38.6

1.67
0.95 5.39% 6.41% 8.05% 37.43
∞ 6.38% 8.91% 10.71% 24.32

ftv170

0.2

1
0.95
∞ 12.07% ∗ 17.74% ∗ 20.86% ∗ 116.57

1.33
0.95 5.44% 8.02% 12.94% 52.82
∞ 5.51% 9.53% 11.71% 62.4

1.67
0.95 6.31% 11.04% 13.42% 44.5
∞ 6.16% 10.4% 12.84% 41.45

0.35

1
0.95
∞ 8.06% ∗ 10.04% ∗ 14.2% ∗ 58.32

1.33
0.95
∞ 5.48% 7.96% 10.2% 60.47

1.67
0.95 6.72% 9.2% 10.64% 52.07
∞ 6.03% 8.44% 10.16% 51.67

0.5

1
0.95
∞ 7.43% ∗ 8.35% ∗ 9.36% ∗ 51.68

1.33
0.95
∞ 5.42% 11.06% 13.38% 49.26

1.67
0.95 7.73% 9.38% 11.51% 51.97
∞ 5.88% 7.44% 10.42% 52.08

100



APPENDIX B. DETAILED RESULTS OF THE TESTS ON THE PARAMETERS OF THE ILS
ALGORITHM

AFI as the constructive heuristic

Table B.5: Computational results, for ω = 1/3 and MaxIt =

2500, using the solution obtained through the AFI heuristic as the
initial solution.

Symmetric instances

Matrix α β γ Minimum Average Maximum Average CPU
name Gap Gap Gap time (seconds)

berlin52

0.2

1
0.95
∞ 4.49% ∗ 4.49% ∗ 4.49% ∗ 6.79

1.33
0.95 4.76% ∗ 4.98% ∗ 5.36% ∗ 5.51
∞ 5.24% ∗ 5.49% ∗ 6.02% ∗ 6.07

1.67
0.95 0.39% 1.23% 1.99% 7.31
∞ 1.99% 1.99% 1.99% 5.14

0.35

1
0.95 0.0% 0.25% 0.87% 6.3
∞ 0.0% 0.6% 1.17% 6.48

1.33
0.95 0.0% 0.0% 0.0% 6.08
∞ 0.0% 1.4% 2.93% 4.56

1.67
0.95 0.46% 2.26% 3.93% 4.43
∞ 0.0% 1.45% 3.32% 4.31

0.5

1
0.95
∞ 0.0% 0.96% 4.79% 4.59

1.33
0.95 0.0% 1.08% 1.39% 6.64
∞ 0.29% 0.29% 0.29% 3.66

1.67
0.95 0.0% 1.91% 3.87% 5.76
∞ 0.0% 1.13% 1.65% 5.25

pr76

0.2

1
0.95
∞ 1.45% ∗ 1.9% ∗ 2.21% ∗ 12.27

1.33
0.95 1.1% ∗ 2.62% ∗ 3.86% ∗ 11.24
∞ 1.13% ∗ 2.4% ∗ 3.25% ∗ 7.31

1.67
0.95 0.5% ∗ 0.68% ∗ 0.82% ∗ 11.02
∞ 0.33% ∗ 0.51% ∗ 1.1% ∗ 10.42

0.35

1
0.95
∞ 4.13% ∗ 4.28% ∗ 4.89% ∗ 8.15

1.33
0.95 0.0% 0.32% 1.53% 7.81
∞ 0.0% 0.28% 0.97% 11.49

1.67
0.95 0.0% 0.62% 2.82% 11.33
∞ 0.0% 0.17% 0.26% 7.86

0.5
1

0.95
∞ 4.07% 4.07% 4.07% 7.05

1.33
0.95 2.74% 2.74% 2.74% 8.65
∞ 2.74% 2.74% 2.74% 7.3
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ALGORITHM

Matrix α β γ Minimum Average Maximum Average CPU
name Gap Gap Gap time (seconds)

pr76 0.2 1.67
0.95
∞ 0.07% 0.74% 2.82% 7.65

kroA100

0.2

1
0.95
∞ 8.77% ∗ 9.56% ∗ 11.68% ∗ 42.59

1.33
0.95 0.0% 0.01% 0.04% 17.24
∞ 0.0% 0.09% 0.46% 19.38

1.67
0.95 0.0% 0.09% 0.46% 15.09
∞ 0.0% 0.18% 0.46% 12.99

0.35

1
0.95
∞ 6.33% ∗ 7.1% ∗ 8.19% ∗ 44.9

1.33
0.95 2.44% ∗ 4.05% ∗ 4.96% ∗ 38.54
∞ 1.91% ∗ 3.23% ∗ 4.4% ∗ 38.41

1.67
0.95 0.0% 0.06% 0.13% 21.09
∞ 0.0% 0.29% 0.91% 18.4

0.5

1
0.95
∞ 2.66% ∗ 3.98% ∗ 6.08% ∗ 52.51

1.33
0.95 1.76% ∗ 2.52% ∗ 4.3% ∗ 57.57
∞ 1.69% ∗ 1.77% ∗ 1.81% ∗ 40.19

1.67
0.95 0.0% 0.01% 0.04% 20.92
∞ 0.0% 0.0% 0.0% 20.9

pr124

0.2

1
0.95 6.84% ∗ 7.9% ∗ 8.93% ∗ 35.83
∞ 6.06% ∗ 6.59% ∗ 8.7% ∗ 42.71

1.33
0.95 9.44% ∗ 9.75% ∗ 11.0% ∗ 23.9
∞ 9.23% ∗ 9.6% ∗ 10.86% ∗ 22.21

1.67
0.95 10.86% ∗ 11.01% ∗ 11.47% ∗ 28.64
∞ 11.0% ∗ 11.0% ∗ 11.0% ∗ 20.82

0.35

1
0.95
∞ 8.4% ∗ 8.4% ∗ 8.4% ∗ 20.92

1.33
0.95
∞ 0.0% 0.61% 0.88% 20.66

1.67
0.95 6.69% ∗ 7.01% ∗ 7.3% ∗ 40.49
∞ 5.92% ∗ 6.54% ∗ 7.44% ∗ 22.97

0.5

1
0.95
∞ 5.27% ∗ 5.27% ∗ 5.27% ∗ 28.52

1.33
0.95 1.98% ∗ 2.51% ∗ 2.87% ∗ 31.74
∞ 4.33% ∗ 4.69% ∗ 5.24% ∗ 21.18

1.67
0.95 0.0% 0.59% 0.78% 21.81
∞ 0.0% 0.63% 0.88% 19.26

pr152 0.2
1

0.95
∞ 13.95% ∗ 14.11% ∗ 14.54% ∗ 76.47

1.33 0.95 14.48% ∗ 15.42% ∗ 15.79% ∗ 60.51
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ALGORITHM

Matrix α β γ Minimum Average Maximum Average CPU
name Gap Gap Gap time (seconds)

pr152

0.2
1.33 ∞ 13.5% ∗ 14.58% ∗ 15.8% ∗ 46.95

1.67
0.95 13.1% ∗ 13.3% ∗ 14.12% ∗ 28.81
∞ 12.36% ∗ 12.78% ∗ 13.33% ∗ 47.7

0.35

1
0.95
∞ 23.76% ∗ 24.08% ∗ 24.35% ∗ 54.67

1.33
0.95 18.38% ∗ 19.02% ∗ 20.08% ∗ 45.58
∞ 20.51% ∗ 20.54% ∗ 20.6% ∗ 40.47

1.67
0.95
∞ 14.1% ∗ 14.86% ∗ 15.74% ∗ 46.16

0.5

1
0.95
∞ 9.25% ∗ 9.26% ∗ 9.33% ∗ 61.12

1.33
0.95 9.04% ∗ 9.24% ∗ 9.33% ∗ 36.69
∞ 9.03% ∗ 9.24% ∗ 9.32% ∗ 42.9

1.67
0.95
∞ 22.91% ∗ 23.36% ∗ 24.0% ∗ 47.17

rat195

0.2

1
0.95
∞ 5.52% ∗ 6.8% ∗ 8.12% ∗ 256.8

1.33
0.95
∞ 3.85% ∗ 4.91% ∗ 6.58% ∗ 126.07

1.67
0.95 3.77% ∗ 4.47% ∗ 5.38% ∗ 142.18
∞ 2.19% ∗ 4.44% ∗ 6.09% ∗ 138.05

0.35

1
0.95
∞ 3.15% ∗ 4.17% ∗ 5.01% ∗ 160.68

1.33
0.95 3.38% ∗ 4.75% ∗ 5.92% ∗ 124.35
∞ 3.7% ∗ 4.78% ∗ 5.93% ∗ 127.79

1.67
0.95
∞ 3.32% ∗ 3.97% ∗ 5.25% ∗ 160.4

0.5

1
0.95
∞ 2.73% ∗ 2.97% ∗ 3.34% ∗ 210.07

1.33
0.95 2.25% ∗ 3.31% ∗ 5.07% ∗ 147.45
∞ 2.35% ∗ 3.41% ∗ 4.04% ∗ 138.22

1.67
0.95 3.07% ∗ 3.71% ∗ 4.72% ∗ 166.53
∞ 2.22% 3.72% 4.72% 101.52

pr226
0.2

1
0.95
∞ 22.37% ∗ 24.81% ∗ 26.08% ∗ 294.33

1.33
0.95 9.17% ∗ 9.92% ∗ 10.34% ∗ 277.02
∞ 9.43% ∗ 10.37% ∗ 11.58% ∗ 326.59

1.67
0.95 6.76% ∗ 6.87% ∗ 7.04% ∗ 114.76
∞ 6.84% ∗ 6.88% ∗ 6.9% ∗ 128.58

0.35 1
0.95
∞ 14.56% ∗ 15.12% ∗ 15.44% ∗ 239.37
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ALGORITHM

Matrix α β γ Minimum Average Maximum Average CPU
name Gap Gap Gap time (seconds)

pr226

0.35
1.33

0.95 11.32% ∗ 11.35% ∗ 11.42% ∗ 158.3
∞ 10.47% ∗ 10.51% ∗ 10.56% ∗ 142.31

1.67
0.95 9.07% ∗ 9.11% ∗ 9.18% ∗ 142.41
∞ 8.77% ∗ 8.81% ∗ 8.85% ∗ 141.28

0.5

1
0.95
∞ 19.4% ∗ 19.74% ∗ 20.34% ∗ 280.94

1.33
0.95 10.72% ∗ 11.16% ∗ 11.43% ∗ 273.89
∞ 10.51% ∗ 10.62% ∗ 10.87% ∗ 195.56

1.67
0.95 10.96% ∗ 11.07% ∗ 11.19% ∗ 147.64
∞ 10.52% ∗ 10.56% ∗ 10.59% ∗ 149.7

Asymmetric instances

Matrix α β γ Minimum Average Maximum Average CPU
name Gap Gap Gap time (seconds)

ft53

0.2

1
0.95
∞ 13.22% ∗ 15.84% ∗ 18.07% ∗ 16.34

1.33
0.95 0.52% 4.68% 6.59% 4.64
∞ 4.89% 7.28% 9.2% 4.15

1.67
0.95 0.7% 5.33% 10.52% 4.75
∞ 0.14% 4.37% 9.84% 4.81

0.35

1
0.95
∞ 7.03% 8.38% 10.27% 6.26

1.33
0.95 1.82% 5.76% 10.29% 7.92
∞ 0.85% 3.64% 7.95% 10.2

1.67
0.95 0.0% 2.06% 4.48% 6.69
∞ 0.0% 1.16% 2.49% 4.37

0.5

1
0.95 2.61% 5.58% 6.75% 5.25
∞ 2.61% 6.41% 9.75% 4.19

1.33
0.95 1.12% 2.87% 5.43% 3.81
∞ 2.3% 3.36% 3.98% 3.91

1.67
0.95 3.19% 3.4% 3.56% 2.12
∞ 2.88% 3.39% 3.62% 2.65

ftv64

0.2

1
0.95 7.81% 9.64% 12.32% 9.11
∞ 3.61% 6.95% 10.2% 7.93

1.33
0.95 0.97% 4.28% 6.42% 5.14
∞ 4.04% 5.22% 6.25% 4.57

1.67
0.95
∞ 3.32% 5.64% 7.5% 3.8

0.35
1

0.95 0.98% 4.86% 8.88% 9.07
∞ 3.14% 9.62% 13.87% 6.76

1.33
0.95 2.82% 3.99% 8.07% 4.87
∞ 2.82% 4.51% 6.55% 5.0
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ALGORITHM

Matrix α β γ Minimum Average Maximum Average CPU
name Gap Gap Gap time (seconds)

ftv64

0.35 1.67
0.95 3.37% 4.57% 6.04% 3.66
∞ 2.28% 3.58% 5.6% 4.18

0.5

1
0.95
∞ 0.27% 3.35% 11.84% 6.46

1.33
0.95 0.87% 1.32% 2.01% 4.11
∞ 0.0% 1.64% 3.75% 4.77

1.67
0.95
∞ 0.71% 1.69% 3.15% 6.79

ft70

0.2

1
0.95 3.64% ∗ 5.06% ∗ 5.89% ∗ 21.44
∞ 4.16% ∗ 5.13% ∗ 5.98% ∗ 18.97

1.33
0.95 2.54% 3.78% 5.38% 18.89
∞ 1.48% 2.43% 4.26% 20.0

1.67
0.95 0.66% 2.95% 4.3% 22.94
∞ 1.53% 2.39% 3.12% 17.23

0.35

1
0.95 1.12% 2.19% 3.18% 20.59
∞ 1.14% 2.72% 3.65% 17.02

1.33
0.95 1.22% 2.77% 3.82% 15.12
∞ 2.12% 2.75% 4.02% 13.81

1.67
0.95 1.66% 2.21% 2.54% 18.51
∞ 1.93% 2.67% 3.59% 17.43

0.5

1
0.95 2.0% 2.8% 3.49% 23.57
∞ 2.06% 2.79% 3.21% 17.83

1.33
0.95 1.53% 2.39% 3.1% 14.17
∞ 1.54% 2.17% 3.35% 13.13

1.67
0.95 2.65% 3.05% 3.38% 15.01
∞ 2.07% 2.81% 3.76% 15.31

kro124p

0.2

1
0.95 4.42% ∗ 5.12% ∗ 6.2% ∗ 70.22
∞ 5.98% ∗ 7.02% ∗ 8.19% ∗ 37.21

1.33
0.95 0.15% 2.95% 3.97% 19.9
∞ 1.56% 2.54% 3.39% 17.76

1.67
0.95 0.03% 1.14% 3.05% 22.43
∞ 0.18% 1.48% 2.89% 22.37

0.35

1
0.95
∞ 7.64% ∗ 9.68% ∗ 12.76% ∗ 59.59

1.33
0.95 0.43% 1.86% 2.6% 26.58
∞ 1.24% 2.22% 3.5% 21.02

1.67
0.95 0.1% 1.95% 4.18% 28.24
∞ 0.31% 2.39% 4.78% 22.22

0.5
1

0.95 2.17% ∗ 4.54% ∗ 7.08% ∗ 49.3
∞ 0.86% ∗ 3.97% ∗ 6.04% ∗ 49.91

1.33 0.95 1.98% 3.23% 4.47% 29.38

105



APPENDIX B. DETAILED RESULTS OF THE TESTS ON THE PARAMETERS OF THE ILS
ALGORITHM

Matrix α β γ Minimum Average Maximum Average CPU
name Gap Gap Gap time (seconds)

kro124p 0.5
1.33 ∞ 2.41% 2.96% 4.07% 35.78

1.67
0.95 0.03% 2.66% 4.05% 21.35
∞ 0.43% 2.71% 3.76% 18.73

ftv170

0.2

1
0.95
∞ 6.93% ∗ 11.07% ∗ 17.21% ∗ 65.2

1.33
0.95 5.73% 6.85% 7.51% 41.91
∞ 3.7% 5.72% 8.59% 48.05

1.67
0.95 6.56% 8.16% 10.08% 32.82
∞ 4.64% 7.68% 13.34% 46.54

0.35

1
0.95 9.81% ∗ 12.83% ∗ 15.17% ∗ 91.85
∞ 10.2% ∗ 13.49% ∗ 17.94% ∗ 91.38

1.33
0.95 3.96% 5.32% 9.11% 66.99
∞ 5.81% 7.49% 9.26% 49.63

1.67
0.95 2.79% 5.51% 8.13% 45.05
∞ 1.63% 4.65% 7.84% 67.38

0.5

1
0.95 8.09% ∗ 11.59% ∗ 16.25% ∗ 138.39
∞ 8.74% ∗ 9.84% ∗ 13.03% ∗ 113.75

1.33
0.95 9.76% 10.67% 12.73% 74.28
∞ 7.85% 9.19% 12.73% 72.19

1.67
0.95 3.34% 5.74% 7.01% 44.33
∞ 2.9% 3.46% 4.1% 39.55

ARI as the constructive heuristic

Table B.6: Computational results, for ω = 1/3 and MaxIt =

2500, using the solution obtained through the ARI heuristic as the
initial solution.

Symmetric instances

Matrix α β γ Minimum Average Maximum Average CPU
name Gap Gap Gap time (seconds)

berlin52

0.2

1
0.95
∞ 4.49% ∗ 4.49% ∗ 4.49% ∗ 10.74

1.33
0.95 4.27% ∗ 4.95% ∗ 6.62% ∗ 10.65
∞ 5.38% ∗ 5.46% ∗ 5.74% ∗ 8.25

1.67
0.95 0.0% 0.89% 1.99% 17.08
∞ 1.99% 2.49% 3.26% 11.2

0.35
1

0.95 0.0% 0.27% 0.87% 14.85
∞ 0.37% 1.01% 1.17% 9.91

1.33
0.95 0.0% 0.72% 2.36% 9.28
∞ 0.0% 1.43% 2.93% 7.6
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ALGORITHM

Matrix α β γ Minimum Average Maximum Average CPU
name Gap Gap Gap time (seconds)

berlin52

0.35 1.67
0.95 0.0% 1.28% 2.46% 7.64
∞ 0.0% 0.09% 0.46% 10.03

0.5

1
0.95
∞ 0.0% 0.0% 0.0% 8.61

1.33
0.95 1.34% 1.34% 1.34% 10.51
∞ 0.0% 0.45% 1.37% 7.47

1.67
0.95 0.51% 1.96% 3.26% 9.5
∞ 0.0% 0.37% 1.33% 12.64

pr76

0.2

1
0.95
∞ 1.45% ∗ 1.64% ∗ 1.77% ∗ 18.52

1.33
0.95 1.03% ∗ 1.03% ∗ 1.03% ∗ 26.87
∞ 1.55% ∗ 1.99% ∗ 3.25% ∗ 17.07

1.67
0.95 0.5% ∗ 1.21% ∗ 2.7% ∗ 15.88
∞ 0.43% ∗ 0.75% ∗ 1.6% ∗ 17.45

0.35

1
0.95
∞ 4.13% ∗ 4.78% ∗ 5.86% ∗ 25.47

1.33
0.95 0.0% 0.61% 1.44% 12.77
∞ 0.0% 0.27% 0.97% 13.62

1.67
0.95 0.0% 0.72% 1.02% 19.7
∞ 0.0% 0.44% 1.21% 14.4

0.5

1
0.95
∞ 0.07% 0.85% 2.22% 22.36

1.33
0.95 0.0% 1.79% 2.74% 18.32
∞ 0.0% 1.24% 2.74% 26.0

1.67
0.95 0.55% 0.59% 0.62% 19.86
∞ 0.0% 0.36% 0.83% 15.78

kroA100

0.2

1
0.95
∞ 8.25% ∗ 9.38% ∗ 11.09% ∗ 109.47

1.33
0.95 0.0% 0.0% 0.0% 30.59
∞ 0.0% 0.46% 1.83% 34.48

1.67
0.95 0.0% 0.03% 0.09% 28.5
∞ 0.0% 0.0% 0.0% 33.08

0.35

1
0.95
∞ 6.33% ∗ 6.92% ∗ 7.8% ∗ 109.73

1.33
0.95 2.44% ∗ 4.08% ∗ 6.05% ∗ 64.74
∞ 1.56% ∗ 2.27% ∗ 3.6% ∗ 69.18

1.67
0.95 0.0% 0.06% 0.09% 39.21
∞ 0.0% 0.04% 0.09% 32.15

0.5
1

0.95
∞ 2.62% ∗ 3.07% ∗ 3.74% ∗ 94.1

1.33 0.95 1.76% ∗ 3.04% ∗ 4.15% ∗ 74.91
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ALGORITHM

Matrix α β γ Minimum Average Maximum Average CPU
name Gap Gap Gap time (seconds)

kroA100 0.5
1.33 ∞ 1.78% ∗ 2.02% ∗ 3.0% ∗ 79.46

1.67
0.95 0.0% 1.05% 3.98% 40.11
∞ 0.0% 0.17% 0.8% 39.87

pr124

0.2

1
0.95
∞ 5.04% ∗ 6.26% ∗ 7.85% ∗ 76.42

1.33
0.95 9.44% ∗ 9.55% ∗ 9.97% ∗ 40.13
∞ 9.3% ∗ 10.24% ∗ 10.86% ∗ 46.45

1.67
0.95 10.93% ∗ 10.93% ∗ 10.94% ∗ 45.37
∞ 11.0% ∗ 11.68% ∗ 12.8% ∗ 45.99

0.35

1
0.95
∞ 8.4% ∗ 8.4% ∗ 8.4% ∗ 39.69

1.33
0.95
∞ 0.0% 0.51% 0.88% 34.99

1.67
0.95 7.08% ∗ 7.87% ∗ 9.09% ∗ 35.82
∞ 5.92% ∗ 7.11% ∗ 8.37% ∗ 64.24

0.5

1
0.95
∞ 5.27% ∗ 5.72% ∗ 6.87% ∗ 50.39

1.33
0.95 1.98% ∗ 2.76% ∗ 3.51% ∗ 56.88
∞ 4.33% ∗ 4.65% ∗ 5.25% ∗ 43.7

1.67
0.95 0.0% 0.0% 0.0% 32.88
∞ 0.0% 0.87% 2.32% 40.03

pr152

0.2

1
0.95
∞ 14.02% ∗ 14.52% ∗ 16.19% ∗ 128.94

1.33
0.95 13.69% ∗ 13.69% ∗ 13.69% ∗ 194.3
∞ 13.17% ∗ 13.98% ∗ 15.8% ∗ 108.67

1.67
0.95 12.8% ∗ 13.81% ∗ 15.21% ∗ 57.68
∞ 12.36% ∗ 13.23% ∗ 15.35% ∗ 58.47

0.35

1
0.95
∞ 23.95% ∗ 24.36% ∗ 24.97% ∗ 115.21

1.33
0.95 18.38% ∗ 19.19% ∗ 19.7% ∗ 50.01
∞ 19.85% ∗ 20.54% ∗ 21.21% ∗ 61.8

1.67
0.95
∞ 13.89% ∗ 14.52% ∗ 14.84% ∗ 67.27

0.5

1
0.95
∞ 9.33% ∗ 10.24% ∗ 12.25% ∗ 121.77

1.33
0.95 8.44% ∗ 9.44% ∗ 10.09% ∗ 97.89
∞ 8.43% ∗ 9.38% ∗ 9.85% ∗ 81.05

1.67
0.95
∞ 22.95% ∗ 23.5% ∗ 23.97% ∗ 73.86

rat195 0.2 1
0.95
∞ 3.95% ∗ 7.48% ∗ 8.88% ∗ 613.16
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ALGORITHM

Matrix α β γ Minimum Average Maximum Average CPU
name Gap Gap Gap time (seconds)

rat195

0.2
1.33

0.95
∞ 2.86% ∗ 3.66% ∗ 5.24% ∗ 329.79

1.67
0.95 3.09% ∗ 3.57% ∗ 3.99% ∗ 255.28
∞ 2.24% ∗ 4.7% ∗ 8.91% ∗ 196.28

0.35

1
0.95
∞ 3.72% ∗ 4.6% ∗ 5.27% ∗ 250.09

1.33
0.95 3.2% ∗ 4.37% ∗ 6.1% ∗ 255.49
∞ 3.52% ∗ 4.08% ∗ 4.99% ∗ 276.2

1.67
0.95
∞ 2.96% ∗ 4.13% ∗ 5.47% ∗ 270.79

0.5

1
0.95
∞ 1.72% ∗ 3.32% ∗ 4.8% ∗ 371.02

1.33
0.95 1.28% ∗ 2.78% ∗ 3.92% ∗ 275.97
∞ 1.15% ∗ 2.81% ∗ 4.93% ∗ 250.7

1.67
0.95 2.58% ∗ 3.83% ∗ 5.03% ∗ 233.0
∞ 2.09% 3.63% 4.72% 234.86

pr226

0.2

1
0.95 23.43% ∗ 26.18% ∗ 28.93% ∗ 563.23
∞ 22.41% ∗ 25.38% ∗ 28.44% ∗ 400.92

1.33
0.95 11.48% ∗ 11.7% ∗ 11.93% ∗ 304.15
∞ 9.17% ∗ 12.22% ∗ 17.34% ∗ 406.13

1.67
0.95 6.72% ∗ 7.04% ∗ 7.58% ∗ 272.89
∞ 6.86% ∗ 8.54% ∗ 11.24% ∗ 222.5

0.35

1
0.95 14.04% ∗ 15.17% ∗ 17.38% ∗ 486.58
∞ 14.52% ∗ 14.7% ∗ 14.99% ∗ 317.47

1.33
0.95 11.34% ∗ 12.0% ∗ 12.56% ∗ 183.08
∞ 10.48% ∗ 11.51% ∗ 14.71% ∗ 254.29

1.67
0.95 9.07% ∗ 9.07% ∗ 9.07% ∗ 217.8
∞ 8.79% ∗ 9.45% ∗ 11.92% ∗ 241.13

0.5

1
0.95
∞ 18.98% ∗ 19.46% ∗ 20.14% ∗ 490.25

1.33
0.95 10.98% ∗ 13.05% ∗ 16.95% ∗ 229.34
∞ 10.54% ∗ 10.74% ∗ 11.09% ∗ 229.44

1.67
0.95 11.0% ∗ 12.1% ∗ 14.65% ∗ 223.33
∞ 10.52% ∗ 10.7% ∗ 11.1% ∗ 279.47

Asymmetric instances

Matrix α β γ Minimum Average Maximum Average CPU
name Gap Gap Gap time (seconds)

ft53 0.2
1

0.95 13.04% ∗ 14.64% ∗ 17.32% ∗ 21.6
∞ 11.09% ∗ 14.42% ∗ 17.17% ∗ 30.17

1.33
0.95 3.2% 5.33% 8.58% 15.0
∞ 4.43% 6.32% 6.98% 10.45

109



APPENDIX B. DETAILED RESULTS OF THE TESTS ON THE PARAMETERS OF THE ILS
ALGORITHM

Matrix α β γ Minimum Average Maximum Average CPU
name Gap Gap Gap time (seconds)

ft53

0.2 1.67
0.95 0.0% 4.25% 10.21% 8.84
∞ 0.2% 1.07% 2.65% 7.28

0.35

1
0.95 4.67% 6.41% 7.99% 14.15
∞ 1.98% 4.1% 7.92% 15.77

1.33
0.95 4.5% 6.97% 8.55% 11.33
∞ 3.19% 7.94% 11.63% 14.64

1.67
0.95 0.88% 3.13% 6.02% 8.67
∞ 0.88% 3.88% 9.51% 7.55

0.5

1
0.95 4.32% 6.39% 8.47% 10.01
∞ 2.61% 4.87% 7.18% 6.79

1.33
0.95 1.71% 4.55% 9.92% 6.98
∞ 1.12% 4.88% 9.12% 9.5

1.67
0.95 0.06% 4.37% 11.17% 6.95
∞ 3.43% 5.05% 7.14% 8.06

ftv64

0.2

1
0.95 4.62% 6.49% 10.25% 20.33
∞ 3.56% 7.71% 13.01% 18.6

1.33
0.95 4.91% 6.25% 8.41% 11.87
∞ 0.0% 5.53% 9.27% 12.35

1.67
0.95 3.86% 5.4% 7.83% 8.21
∞ 1.03% 3.33% 5.33% 9.4

0.35

1
0.95 0.98% 7.89% 13.06% 15.62
∞ 2.76% 5.21% 7.53% 16.27

1.33
0.95 2.38% 3.59% 5.31% 7.87
∞ 2.87% 4.46% 8.23% 8.82

1.67
0.95 3.15% 4.71% 7.88% 5.49
∞ 2.28% 3.81% 6.25% 9.55

0.5

1
0.95 7.78% 8.54% 9.14% 16.82
∞ 1.19% 4.18% 7.19% 13.19

1.33
0.95 0.81% 2.65% 4.78% 9.5
∞ 0.98% 2.27% 4.18% 10.82

1.67
0.95 2.01% 5.04% 8.85% 7.73
∞ 2.66% 4.26% 6.13% 9.98

ft70

0.2

1
0.95 4.84% ∗ 4.84% ∗ 4.84% ∗ 48.75
∞ 3.52% ∗ 4.33% ∗ 5.38% ∗ 46.52

1.33
0.95 2.13% 3.53% 6.01% 51.67
∞ 1.25% 1.95% 2.63% 37.83

1.67
0.95 1.65% 3.29% 5.3% 37.28
∞ 2.05% 2.38% 2.9% 37.06

0.35
1

0.95 1.56% 2.71% 3.85% 25.8
∞ 1.76% 2.52% 3.43% 23.62

1.33 0.95 1.98% 2.66% 3.66% 33.02
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Matrix α β γ Minimum Average Maximum Average CPU
name Gap Gap Gap time (seconds)

ft70

0.35
1.33 ∞ 2.36% 2.91% 4.45% 32.67

1.67
0.95 1.81% 2.12% 2.65% 31.57
∞ 2.08% 3.04% 4.98% 22.7

0.5

1
0.95 1.53% 2.69% 4.01% 49.71
∞ 1.06% 2.31% 2.81% 34.88

1.33
0.95 2.12% 2.14% 2.17% 26.53
∞ 0.94% 2.48% 3.93% 28.42

1.67
0.95 1.53% 1.53% 1.53% 22.78
∞ 1.16% 2.23% 3.55% 26.14

kro124p

0.2

1
0.95 6.42% ∗ 7.83% ∗ 8.46% ∗ 91.71
∞ 4.11% ∗ 7.28% ∗ 10.01% ∗ 80.91

1.33
0.95 0.53% 2.39% 5.48% 42.18
∞ 0.1% 0.59% 1.71% 39.95

1.67
0.95 1.4% 3.09% 4.74% 54.52
∞ 0.1% 2.61% 5.52% 43.76

0.35

1
0.95
∞ 7.86% ∗ 11.52% ∗ 14.42% ∗ 71.66

1.33
0.95 0.86% 1.17% 1.55% 48.15
∞ 0.36% 1.76% 5.06% 63.77

1.67
0.95 0.31% 2.41% 5.51% 50.45
∞ 0.18% 0.74% 1.85% 30.23

0.5

1
0.95 0.78% ∗ 4.03% ∗ 6.88% ∗ 104.61
∞ 1.64% ∗ 3.52% ∗ 6.52% ∗ 90.43

1.33
0.95 0.03% 1.83% 4.94% 64.83
∞ 0.93% 3.11% 6.68% 49.4

1.67
0.95 0.1% 1.89% 2.69% 74.86
∞ 0.91% 2.73% 5.31% 30.52

ftv170

0.2

1
0.95
∞ 10.28% ∗ 16.55% ∗ 21.99% ∗ 138.52

1.33
0.95 5.95% 8.03% 10.26% 95.82
∞ 1.56% 5.79% 8.99% 107.82

1.67
0.95 2.76% 5.9% 11.17% 86.15
∞ 3.95% 7.08% 8.96% 66.98

0.35

1
0.95 9.26% ∗ 9.26% ∗ 9.26% ∗ 268.76
∞ 8.57% ∗ 11.68% ∗ 14.52% ∗ 114.17

1.33
0.95 3.01% 6.74% 14.23% 92.58
∞ 3.52% 6.63% 9.15% 94.12

1.67
0.95 3.59% 7.08% 9.22% 82.43
∞ 3.96% 7.34% 10.31% 110.95

0.5 1
0.95 5.55% ∗ 5.55% ∗ 5.55% ∗ 131.17
∞ 6.95% ∗ 11.96% ∗ 15.03% ∗ 143.24
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Matrix α β γ Minimum Average Maximum Average CPU
name Gap Gap Gap time (seconds)

ftv170 0.5
1.33

0.95 5.82% 8.98% 11.97% 105.14
∞ 8.35% 9.18% 11.86% 91.24

1.67
0.95 7.11% 7.91% 8.53% 75.17
∞ 3.59% 6.9% 10.31% 99.05

B.1.3 Results for a maximum of 5000 iterations

ANN as the constructive heuristic

Table B.7: Computational results, for ω = 1/3 and MaxIt =

5000, using the solution obtained through the ANN heuristic as
the initial solution.

Symmetric instances

Matrix α β γ Minimum Average Maximum Average CPU
name Gap Gap Gap time (seconds)

berlin52

0.2

1
0.95
∞ 4.49% ∗ 4.49% ∗ 4.49% ∗ 11.89

1.33
0.95 4.4% ∗ 4.4% ∗ 4.4% ∗ 8.34
∞ 5.38% ∗ 5.58% ∗ 5.74% ∗ 9.16

1.67
0.95
∞ 0.0% 1.4% 3.26% 14.72

0.35

1
0.95 0.0% 0.6% 1.17% 11.09
∞ 0.0% 0.41% 1.17% 11.06

1.33
0.95 0.0% 0.0% 0.0% 10.11
∞ 0.0% 1.48% 2.36% 7.87

1.67
0.95 0.0% 0.23% 1.14% 6.99
∞ 0.0% 0.09% 0.46% 7.25

0.5

1
0.95
∞ 0.0% 0.53% 2.64% 6.72

1.33
0.95
∞ 1.11% 1.11% 1.11% 6.37

1.67
0.95 1.33% 1.33% 1.33% 7.64
∞ 0.0% 0.81% 2.74% 8.21

pr76
0.2

1
0.95
∞ 1.38% ∗ 1.44% ∗ 1.45% ∗ 17.34

1.33
0.95 1.54% ∗ 1.88% ∗ 3.25% ∗ 19.31
∞ 1.04% ∗ 1.75% ∗ 3.05% ∗ 26.25

1.67
0.95 0.39% ∗ 0.73% ∗ 1.27% ∗ 19.93
∞ 0.52% ∗ 0.89% ∗ 2.4% ∗ 22.27

0.35 1 0.95
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Matrix α β γ Minimum Average Maximum Average CPU
name Gap Gap Gap time (seconds)

pr76

0.35

1 ∞ 4.13% ∗ 4.43% ∗ 4.89% ∗ 19.77

1.33
0.95 0.01% 0.04% 0.08% 11.34
∞ 0.0% 0.03% 0.08% 13.52

1.67
0.95 0.0% 0.79% 1.08% 13.25
∞ 0.82% 0.84% 0.91% 15.33

0.5

1
0.95
∞ 0.08% 1.49% 2.74% 28.01

1.33
0.95 0.0% 0.01% 0.02% 13.47
∞ 0.08% 1.47% 2.74% 16.96

1.67
0.95 0.55% 0.55% 0.55% 13.41
∞ 0.26% 0.76% 1.08% 14.57

kroA100

0.2

1
0.95
∞ 8.45% ∗ 9.06% ∗ 9.73% ∗ 136.74

1.33
0.95
∞ 0.0% 0.0% 0.0% 31.22

1.67
0.95
∞ 0.0% 0.04% 0.09% 24.97

0.35

1
0.95
∞ 6.33% ∗ 7.01% ∗ 8.25% ∗ 86.79

1.33
0.95
∞ 1.56% ∗ 1.77% ∗ 2.62% ∗ 68.51

1.67
0.95 0.0% 0.0% 0.0% 30.2
∞ 0.0% 0.04% 0.09% 31.71

0.5

1
0.95
∞ 2.52% ∗ 2.77% ∗ 3.33% ∗ 107.23

1.33
0.95 1.76% ∗ 1.88% ∗ 2.38% ∗ 104.94
∞ 1.78% ∗ 1.79% ∗ 1.81% ∗ 66.24

1.67
0.95 0.0% 0.29% 0.71% 31.74
∞ 0.0% 0.0% 0.0% 35.67

pr124

0.2

1
0.95
∞ 5.04% ∗ 5.86% ∗ 6.06% ∗ 63.3

1.33
0.95 9.44% ∗ 10.07% ∗ 11.0% ∗ 34.78
∞ 9.31% ∗ 9.98% ∗ 11.08% ∗ 35.99

1.67
0.95 10.93% ∗ 10.93% ∗ 10.94% ∗ 36.35
∞ 10.92% ∗ 11.0% ∗ 11.1% ∗ 29.57

0.35

1
0.95
∞ 8.4% ∗ 8.4% ∗ 8.4% ∗ 33.82

1.33
0.95
∞ 0.78% 0.84% 0.88% 36.35

1.67
0.95
∞ 6.56% ∗ 6.63% ∗ 6.75% ∗ 39.8
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Matrix α β γ Minimum Average Maximum Average CPU
name Gap Gap Gap time (seconds)

pr124 0.5

1
0.95
∞ 5.05% ∗ 5.45% ∗ 6.18% ∗ 78.11

1.33
0.95
∞ 4.95% ∗ 5.11% ∗ 5.24% ∗ 40.91

1.67
0.95
∞ 0.0% 0.0% 0.0% 28.24

pr152

0.2

1
0.95 13.48% ∗ 13.96% ∗ 14.67% ∗ 113.64
∞ 14.02% ∗ 14.62% ∗ 15.19% ∗ 204.19

1.33
0.95 13.19% ∗ 13.39% ∗ 13.69% ∗ 162.68
∞ 13.21% ∗ 13.98% ∗ 15.18% ∗ 111.48

1.67
0.95 13.07% ∗ 13.53% ∗ 15.0% ∗ 83.0
∞ 12.36% ∗ 13.04% ∗ 13.95% ∗ 101.32

0.35

1
0.95 22.92% ∗ 23.7% ∗ 24.33% ∗ 120.46
∞ 24.39% ∗ 27.11% ∗ 30.17% ∗ 106.79

1.33
0.95 19.46% ∗ 19.65% ∗ 19.7% ∗ 78.63
∞ 20.94% ∗ 21.14% ∗ 21.19% ∗ 76.35

1.67
0.95 14.64% ∗ 15.1% ∗ 16.89% ∗ 58.13
∞ 14.1% ∗ 15.07% ∗ 16.67% ∗ 58.77

0.5

1
0.95
∞ 9.56% ∗ 9.56% ∗ 9.56% ∗ 64.0

1.33
0.95 8.64% ∗ 10.29% ∗ 11.09% ∗ 85.93
∞ 9.34% ∗ 9.5% ∗ 9.56% ∗ 73.0

1.67
0.95
∞ 23.61% ∗ 23.61% ∗ 23.61% ∗ 64.53

rat195

0.2

1
0.95
∞ 5.07% ∗ 6.1% ∗ 7.31% ∗ 361.05

1.33
0.95
∞ 2.86% ∗ 3.43% ∗ 3.98% ∗ 227.83

1.67
0.95 2.73% ∗ 3.27% ∗ 3.77% ∗ 146.23
∞ 2.55% ∗ 2.76% ∗ 2.96% ∗ 130.29

0.35

1
0.95
∞ 2.08% ∗ 3.18% ∗ 5.14% ∗ 289.48

1.33
0.95 1.47% ∗ 2.18% ∗ 2.58% ∗ 187.32
∞ 1.65% ∗ 2.2% ∗ 2.72% ∗ 183.95

1.67
0.95
∞ 2.2% ∗ 2.77% ∗ 3.63% ∗ 198.27

0.5
1

0.95
∞ 1.32% ∗ 3.11% ∗ 4.84% ∗ 274.86

1.33
0.95 1.19% ∗ 1.81% ∗ 3.04% ∗ 229.81
∞ 1.86% ∗ 2.28% ∗ 2.89% ∗ 172.68
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Matrix α β γ Minimum Average Maximum Average CPU
name Gap Gap Gap time (seconds)

rat195 0.5 1.67
0.95 1.74% ∗ 2.53% ∗ 2.94% ∗ 183.09
∞ 1.73% 1.88% 2.05% 138.13

pr226

0.2

1
0.95 22.2% ∗ 22.41% ∗ 22.8% ∗ 615.85
∞ 20.98% ∗ 23.08% ∗ 26.16% ∗ 434.57

1.33
0.95
∞ 10.61% ∗ 11.18% ∗ 11.74% ∗ 254.31

1.67
0.95 6.71% ∗ 7.02% ∗ 7.57% ∗ 258.67
∞ 6.83% ∗ 7.51% ∗ 9.88% ∗ 282.82

0.35

1
0.95 17.93% ∗ 18.46% ∗ 20.4% ∗ 342.82
∞ 17.73% ∗ 18.0% ∗ 18.31% ∗ 335.91

1.33
0.95
∞ 10.48% ∗ 10.94% ∗ 11.21% ∗ 248.01

1.67
0.95
∞ 8.76% ∗ 9.16% ∗ 9.38% ∗ 207.57

0.5

1
0.95 14.22% ∗ 15.36% ∗ 18.35% ∗ 1010.99
∞ 14.14% ∗ 22.66% ∗ 32.84% ∗ 326.29

1.33
0.95 10.46% ∗ 10.73% ∗ 11.24% ∗ 380.99
∞ 10.52% ∗ 10.76% ∗ 11.21% ∗ 315.25

1.67
0.95
∞ 10.51% ∗ 10.66% ∗ 11.19% ∗ 217.56

Asymmetric instances

Matrix α β γ Minimum Average Maximum Average CPU
name Gap Gap Gap time (seconds)

ft53

0.2

1
0.95 12.94% ∗ 14.35% ∗ 16.0% ∗ 30.17
∞ 11.34% ∗ 14.86% ∗ 16.96% ∗ 25.17

1.33
0.95 3.0% 5.15% 7.33% 10.09
∞ 1.74% 4.55% 6.75% 8.03

1.67
0.95 0.14% 2.91% 6.15% 10.82
∞ 1.47% 5.38% 10.78% 9.53

0.35

1
0.95 3.39% 6.04% 9.3% 17.54
∞ 0.85% 5.94% 12.48% 19.9

1.33
0.95 3.05% 6.27% 10.89% 13.78
∞ 0.48% 1.76% 3.12% 19.92

1.67
0.95 0.88% 4.95% 8.33% 6.17
∞ 0.0% 5.34% 9.41% 6.16

0.5

1
0.95 0.0% 3.91% 8.81% 13.36
∞ 0.06% 3.43% 5.56% 8.61

1.33
0.95 0.0% 5.34% 9.27% 6.87
∞ 0.0% 4.78% 7.7% 6.74

1.67
0.95 1.03% 4.05% 6.52% 8.56
∞ 0.0% 3.63% 7.83% 7.82
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Matrix α β γ Minimum Average Maximum Average CPU
name Gap Gap Gap time (seconds)

ftv64

0.2

1
0.95
∞ 6.05% 7.24% 9.13% 14.31

1.33
0.95
∞ 0.38% 2.96% 6.15% 19.12

1.67
0.95 3.37% 5.39% 10.28% 12.59
∞ 1.31% 4.72% 8.43% 11.19

0.35

1
0.95 0.05% 1.54% 4.39% 14.25
∞ 0.05% 5.11% 11.32% 15.93

1.33
0.95 1.68% 3.27% 5.42% 11.3
∞ 3.74% 5.32% 6.99% 15.22

1.67
0.95 1.31% 3.2% 6.36% 11.31
∞ 1.25% 4.14% 5.76% 11.5

0.5

1
0.95 1.62% 4.39% 7.03% 24.24
∞ 1.84% 4.91% 8.05% 15.75

1.33
0.95 2.06% 3.57% 4.29% 8.97
∞ 1.19% 5.12% 11.56% 11.03

1.67
0.95 0.87% 4.77% 10.04% 12.46
∞ 0.71% 1.86% 3.09% 7.11

ft70

0.2

1
0.95 4.05% ∗ 5.27% ∗ 6.63% ∗ 29.67
∞ 2.92% ∗ 3.91% ∗ 4.86% ∗ 44.63

1.33
0.95 2.78% 3.82% 6.14% 43.61
∞ 2.19% 2.87% 3.57% 28.08

1.67
0.95 1.1% 2.25% 3.02% 38.0
∞ 0.96% 2.78% 4.29% 35.41

0.35

1
0.95 1.77% 2.25% 2.92% 39.79
∞ 2.58% 3.02% 3.29% 29.43

1.33
0.95 1.36% 2.19% 3.07% 29.97
∞ 1.13% 2.18% 2.8% 33.17

1.67
0.95
∞ 1.63% 2.87% 3.46% 26.87

0.5

1
0.95
∞ 1.55% 2.2% 2.77% 25.17

1.33
0.95
∞ 0.64% 2.19% 3.39% 36.73

1.67
0.95
∞ 1.45% 2.0% 3.15% 31.41

kro124p 0.2

1
0.95
∞ 6.0% ∗ 8.83% ∗ 11.0% ∗ 116.3

1.33
0.95 5.52% 6.12% 7.69% 62.76
∞ 0.91% 4.96% 7.08% 43.56

1.67 0.95 3.44% 5.67% 10.3% 55.7
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Matrix α β γ Minimum Average Maximum Average CPU
name Gap Gap Gap time (seconds)

kro124p

0.2 1.67 ∞ 4.12% 7.31% 10.23% 83.13

0.35

1
0.95
∞ 5.91% ∗ 6.39% ∗ 7.18% ∗ 103.27

1.33
0.95 2.96% 4.66% 6.02% 86.05
∞ 3.75% 5.43% 6.65% 63.12

1.67
0.95 7.09% 8.2% 9.28% 63.59
∞ 7.23% 9.1% 10.41% 52.4

0.5

1
0.95
∞ 4.13% ∗ 6.93% ∗ 8.96% ∗ 104.38

1.33
0.95 8.13% 9.13% 10.46% 44.32
∞ 6.86% 8.74% 10.79% 58.86

1.67
0.95 3.18% 5.47% 8.23% 73.9
∞ 3.2% 7.28% 9.94% 49.22

ftv170

0.2

1
0.95
∞ 10.58% ∗ 13.92% ∗ 20.57% ∗ 145.3

1.33
0.95 6.49% 13.01% 17.4% 98.37
∞ 4.82% 8.83% 10.22% 96.85

1.67
0.95 5.8% 8.49% 11.93% 79.69
∞ 6.06% 9.01% 11.82% 53.41

0.35

1
0.95
∞ 7.37% ∗ 9.53% ∗ 15.21% ∗ 108.68

1.33
0.95
∞ 4.61% 6.23% 8.46% 112.17

1.67
0.95 5.84% 8.2% 10.82% 80.95
∞ 5.19% 7.45% 10.85% 87.56

0.5

1
0.95
∞ 7.43% ∗ 8.42% ∗ 10.67% ∗ 119.3

1.33
0.95
∞ 7.05% 9.23% 12.4% 70.5

1.67
0.95 4.68% 7.84% 10.45% 82.34
∞ 5.74% 8.23% 11.14% 94.64
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AFI as the constructive heuristic

Table B.8: Computational results, for ω = 1/3 and MaxIt =

5000, using the solution obtained through the AFI heuristic as the
initial solution.

Symmetric instances

Matrix α β γ Minimum Average Maximum Average CPU
name Gap Gap Gap time (seconds)

berlin52

0.2

1
0.95
∞ 4.49% ∗ 4.49% ∗ 4.49% ∗ 8.53

1.33
0.95 4.4% ∗ 4.41% ∗ 4.45% ∗ 9.49
∞ 5.24% ∗ 5.52% ∗ 5.74% ∗ 7.51

1.67
0.95 0.0% 0.64% 1.99% 12.82
∞ 1.99% 1.99% 1.99% 8.56

0.35

1
0.95 0.0% 0.27% 0.42% 9.31
∞ 0.0% 0.33% 0.78% 10.84

1.33
0.95 0.0% 0.0% 0.0% 12.16
∞ 0.0% 0.0% 0.0% 7.92

1.67
0.95 0.0% 1.07% 2.46% 7.86
∞ 0.0% 0.98% 2.46% 6.37

0.5

1
0.95
∞ 0.0% 0.55% 2.74% 5.89

1.33
0.95 0.0% 0.66% 1.34% 11.8
∞ 0.29% 0.29% 0.29% 5.88

1.67
0.95 0.0% 1.24% 2.74% 7.37
∞ 0.91% 1.53% 2.74% 6.97

pr76

0.2

1
0.95
∞ 1.45% ∗ 1.74% ∗ 2.23% ∗ 14.32

1.33
0.95 1.03% ∗ 2.05% ∗ 3.84% ∗ 20.45
∞ 1.04% ∗ 1.62% ∗ 3.84% ∗ 19.76

1.67
0.95 0.39% ∗ 0.53% ∗ 0.59% ∗ 15.39
∞ 0.33% ∗ 0.38% ∗ 0.46% ∗ 18.06

0.35

1
0.95
∞ 4.13% ∗ 4.13% ∗ 4.13% ∗ 18.32

1.33
0.95 0.0% 0.0% 0.01% 15.25
∞ 0.0% 0.29% 0.97% 22.54

1.67
0.95 0.0% 0.12% 0.26% 27.22
∞ 0.0% 0.11% 0.26% 21.51

0.5
1

0.95
∞ 3.97% 4.05% 4.07% 15.11

1.33
0.95 0.08% 2.21% 2.74% 20.5
∞ 0.0% 2.19% 2.74% 22.19
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ALGORITHM

Matrix α β γ Minimum Average Maximum Average CPU
name Gap Gap Gap time (seconds)

pr76 0.5 1.67
0.95
∞ 0.07% 0.74% 2.82% 14.74

kroA100

0.2

1
0.95
∞ 8.25% ∗ 8.52% ∗ 9.09% ∗ 107.26

1.33
0.95 0.0% 0.0% 0.0% 30.56
∞ 0.0% 0.0% 0.0% 27.67

1.67
0.95 0.0% 0.18% 0.46% 24.29
∞ 0.0% 0.18% 0.46% 28.42

0.35

1
0.95
∞ 6.33% ∗ 7.14% ∗ 8.88% ∗ 59.17

1.33
0.95 2.44% ∗ 2.99% ∗ 4.5% ∗ 63.78
∞ 1.56% ∗ 2.45% ∗ 3.95% ∗ 59.21

1.67
0.95 0.0% 0.0% 0.0% 30.46
∞ 0.0% 0.12% 0.52% 26.23

0.5

1
0.95
∞ 2.77% ∗ 3.49% ∗ 4.52% ∗ 105.85

1.33
0.95 1.76% ∗ 2.21% ∗ 4.02% ∗ 69.99
∞ 1.78% ∗ 2.75% ∗ 4.8% ∗ 85.55

1.67
0.95 0.0% 0.03% 0.17% 32.91
∞ 0.0% 0.0% 0.0% 28.79

pr124

0.2

1
0.95 6.84% ∗ 7.45% ∗ 8.93% ∗ 81.59
∞ 5.58% ∗ 5.94% ∗ 6.06% ∗ 67.02

1.33
0.95 9.44% ∗ 9.44% ∗ 9.44% ∗ 38.71
∞ 9.23% ∗ 9.6% ∗ 10.86% ∗ 47.99

1.67
0.95 10.86% ∗ 11.19% ∗ 12.44% ∗ 37.14
∞ 11.0% ∗ 11.0% ∗ 11.0% ∗ 34.05

0.35

1
0.95
∞ 8.4% ∗ 8.4% ∗ 8.4% ∗ 36.76

1.33
0.95
∞ 0.0% 0.47% 0.88% 30.96

1.67
0.95 7.25% ∗ 8.11% ∗ 8.78% ∗ 47.91
∞ 5.92% ∗ 6.54% ∗ 6.75% ∗ 32.89

0.5

1
0.95
∞ 5.0% ∗ 5.21% ∗ 5.27% ∗ 33.41

1.33
0.95 1.98% ∗ 2.33% ∗ 2.87% ∗ 53.15
∞ 4.33% ∗ 4.94% ∗ 5.24% ∗ 39.89

1.67
0.95 0.0% 0.63% 0.78% 31.62
∞ 0.0% 0.18% 0.88% 34.58

pr152 0.2
1

0.95
∞ 13.95% ∗ 14.79% ∗ 15.86% ∗ 134.01

1.33 0.95 13.21% ∗ 14.28% ∗ 15.17% ∗ 209.25
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Matrix α β γ Minimum Average Maximum Average CPU
name Gap Gap Gap time (seconds)

pr152

0.2
1.33 ∞ 13.5% ∗ 14.23% ∗ 15.69% ∗ 92.4

1.67
0.95 12.48% ∗ 12.48% ∗ 12.48% ∗ 67.76
∞ 12.36% ∗ 12.66% ∗ 13.07% ∗ 60.12

0.35

1
0.95
∞ 23.56% ∗ 24.18% ∗ 25.08% ∗ 107.65

1.33
0.95 18.38% ∗ 18.77% ∗ 19.03% ∗ 81.1
∞ 20.51% ∗ 20.54% ∗ 20.6% ∗ 88.94

1.67
0.95
∞ 14.19% ∗ 14.62% ∗ 14.73% ∗ 84.22

0.5

1
0.95
∞ 9.25% ∗ 9.25% ∗ 9.25% ∗ 87.52

1.33
0.95 9.04% ∗ 9.18% ∗ 9.33% ∗ 103.44
∞ 8.72% ∗ 8.98% ∗ 9.41% ∗ 73.44

1.67
0.95
∞ 22.24% ∗ 23.01% ∗ 24.0% ∗ 76.1

rat195

0.2

1
0.95
∞ 5.7% ∗ 6.3% ∗ 7.09% ∗ 474.05

1.33
0.95
∞ 3.49% ∗ 4.29% ∗ 5.15% ∗ 307.67

1.67
0.95 3.72% ∗ 4.69% ∗ 5.92% ∗ 165.5
∞ 2.51% ∗ 3.61% ∗ 4.34% ∗ 239.07

0.35

1
0.95
∞ 2.79% ∗ 4.16% ∗ 5.63% ∗ 321.04

1.33
0.95 2.63% ∗ 3.92% ∗ 4.98% ∗ 215.03
∞ 3.12% ∗ 4.42% ∗ 5.08% ∗ 261.47

1.67
0.95
∞ 2.69% ∗ 3.87% ∗ 5.2% ∗ 246.57

0.5

1
0.95
∞ 1.67% ∗ 2.19% ∗ 3.21% ∗ 335.04

1.33
0.95 0.62% ∗ 1.86% ∗ 2.78% ∗ 295.32
∞ 1.46% ∗ 2.87% ∗ 4.08% ∗ 264.28

1.67
0.95 1.6% ∗ 2.66% ∗ 3.96% ∗ 278.85
∞ 1.82% 3.21% 4.85% 179.14

pr226
0.2

1
0.95
∞ 22.36% ∗ 24.46% ∗ 26.01% ∗ 511.54

1.33
0.95 9.12% ∗ 9.84% ∗ 10.95% ∗ 428.2
∞ 9.43% ∗ 9.66% ∗ 10.24% ∗ 599.85

1.67
0.95 6.71% ∗ 6.76% ∗ 6.91% ∗ 250.16
∞ 6.83% ∗ 6.98% ∗ 7.51% ∗ 249.06

0.35 1
0.95
∞ 14.45% ∗ 14.53% ∗ 14.67% ∗ 316.27
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Matrix α β γ Minimum Average Maximum Average CPU
name Gap Gap Gap time (seconds)

pr226

0.35
1.33

0.95 11.32% ∗ 11.4% ∗ 11.54% ∗ 231.12
∞ 10.49% ∗ 10.55% ∗ 10.63% ∗ 243.66

1.67
0.95 9.07% ∗ 9.11% ∗ 9.14% ∗ 243.86
∞ 8.76% ∗ 8.77% ∗ 8.81% ∗ 217.34

0.5

1
0.95
∞ 18.91% ∗ 19.1% ∗ 19.5% ∗ 601.77

1.33
0.95 11.12% ∗ 11.2% ∗ 11.36% ∗ 361.21
∞ 10.51% ∗ 10.55% ∗ 10.62% ∗ 267.21

1.67
0.95 10.96% ∗ 11.01% ∗ 11.13% ∗ 214.54
∞ 10.52% ∗ 10.56% ∗ 10.61% ∗ 224.76

Asymmetric instances

Matrix α β γ Minimum Average Maximum Average CPU
name Gap Gap Gap time (seconds)

ft53

0.2

1
0.95
∞ 11.09% ∗ 14.86% ∗ 19.75% ∗ 26.89

1.33
0.95 1.92% 4.15% 7.78% 14.25
∞ 3.42% 4.75% 7.35% 15.69

1.67
0.95 0.0% 2.14% 9.07% 7.41
∞ 0.0% 3.98% 9.61% 8.05

0.35

1
0.95
∞ 3.08% 5.44% 8.3% 19.56

1.33
0.95 0.17% 4.42% 8.0% 22.38
∞ 2.64% 5.74% 10.54% 17.37

1.67
0.95 0.0% 2.81% 6.65% 8.63
∞ 1.01% 2.35% 4.97% 8.0

0.5

1
0.95 4.43% 6.62% 9.75% 11.45
∞ 3.35% 4.59% 7.1% 9.87

1.33
0.95 3.98% 5.34% 5.78% 6.99
∞ 0.06% 2.37% 3.98% 8.72

1.67
0.95 1.56% 2.72% 3.43% 5.44
∞ 1.03% 3.18% 5.17% 5.96

ftv64

0.2

1
0.95 2.76% 5.44% 8.87% 18.82
∞ 5.31% 8.34% 12.59% 20.27

1.33
0.95 1.67% 4.28% 7.71% 15.71
∞ 3.07% 5.6% 10.89% 11.04

1.67
0.95
∞ 2.28% 5.13% 7.5% 7.86

0.35
1

0.95 7.69% 8.48% 9.91% 12.23
∞ 2.44% 6.53% 11.48% 23.85

1.33
0.95 1.57% 3.48% 6.18% 12.27
∞ 1.57% 2.6% 3.68% 11.51

121



APPENDIX B. DETAILED RESULTS OF THE TESTS ON THE PARAMETERS OF THE ILS
ALGORITHM

Matrix α β γ Minimum Average Maximum Average CPU
name Gap Gap Gap time (seconds)

ftv64

0.35 1.67
0.95 1.96% 3.55% 4.57% 6.93
∞ 2.28% 3.53% 4.57% 8.09

0.5

1
0.95
∞ 0.27% 3.31% 10.76% 13.18

1.33
0.95 0.49% 2.14% 3.15% 10.5
∞ 0.49% 1.41% 3.15% 8.56

1.67
0.95
∞ 0.71% 2.1% 4.67% 7.82

ft70

0.2

1
0.95 3.57% ∗ 4.67% ∗ 5.47% ∗ 44.93
∞ 2.6% ∗ 3.96% ∗ 5.16% ∗ 44.38

1.33
0.95 1.47% 2.32% 3.13% 35.23
∞ 0.93% 1.77% 2.52% 32.02

1.67
0.95 1.29% 2.2% 2.7% 52.56
∞ 1.6% 2.22% 2.99% 32.38

0.35

1
0.95 1.23% 2.36% 3.55% 31.79
∞ 1.24% 2.46% 3.96% 31.98

1.33
0.95 1.39% 2.07% 2.93% 25.44
∞ 1.43% 1.89% 3.05% 32.9

1.67
0.95 0.82% 2.21% 3.81% 24.24
∞ 0.97% 1.89% 3.21% 33.1

0.5

1
0.95 1.44% 2.09% 2.59% 55.37
∞ 1.4% 2.14% 2.86% 37.53

1.33
0.95 1.87% 2.52% 3.04% 28.77
∞ 0.79% 1.28% 1.75% 44.5

1.67
0.95 1.28% 2.33% 3.05% 26.33
∞ 0.83% 2.57% 4.04% 29.22

kro124p

0.2

1
0.95 4.21% ∗ 5.95% ∗ 7.43% ∗ 85.66
∞ 4.5% ∗ 5.44% ∗ 6.37% ∗ 76.35

1.33
0.95 2.8% 3.74% 5.42% 41.95
∞ 1.16% 2.77% 4.12% 46.17

1.67
0.95 0.36% 0.72% 1.53% 41.58
∞ 0.03% 0.3% 0.46% 46.67

0.35

1
0.95
∞ 7.01% ∗ 8.28% ∗ 10.3% ∗ 134.12

1.33
0.95 1.15% 1.5% 2.01% 42.52
∞ 1.08% 1.54% 2.34% 64.03

1.67
0.95 2.24% 2.77% 4.12% 33.97
∞ 0.15% 2.09% 3.08% 39.04

0.5
1

0.95 5.1% ∗ 6.18% ∗ 8.14% ∗ 81.1
∞ 1.84% ∗ 3.49% ∗ 5.19% ∗ 89.42

1.33 0.95 2.2% 2.46% 3.0% 72.74
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ALGORITHM

Matrix α β γ Minimum Average Maximum Average CPU
name Gap Gap Gap time (seconds)

kro124p 0.5
1.33 ∞ 2.27% 2.72% 3.65% 67.8

1.67
0.95 2.24% 2.83% 3.56% 39.58
∞ 2.31% 2.9% 3.67% 45.45

ftv170

0.2

1
0.95
∞ 5.07% ∗ 9.42% ∗ 14.81% ∗ 136.01

1.33
0.95 3.99% 5.45% 6.96% 101.75
∞ 3.52% 5.32% 7.11% 84.68

1.67
0.95 3.05% 5.54% 7.51% 86.12
∞ 3.84% 5.63% 9.61% 93.2

0.35

1
0.95 12.22% ∗ 13.54% ∗ 14.55% ∗ 174.94
∞ 9.77% ∗ 11.57% ∗ 12.6% ∗ 165.67

1.33
0.95 4.17% 6.74% 9.58% 68.02
∞ 1.92% 4.05% 8.38% 119.2

1.67
0.95 4.1% 5.36% 6.5% 80.07
∞ 4.17% 6.35% 8.13% 57.1

0.5

1
0.95 6.31% ∗ 9.82% ∗ 13.06% ∗ 232.52
∞ 9.17% ∗ 10.86% ∗ 15.58% ∗ 166.85

1.33
0.95 7.23% 9.67% 13.3% 139.42
∞ 5.46% 8.64% 11.64% 90.16

1.67
0.95 1.02% 2.88% 3.77% 63.49
∞ 2.4% 3.85% 4.94% 88.97

ARI as the constructive heuristic

Table B.9: Computational results, for ω = 1/3 and MaxIt =

5000, using the solution obtained through the ARI heuristic as the
initial solution.

Symmetric instances

Matrix α β γ Minimum Average Maximum Average CPU
name Gap Gap Gap time (seconds)

berlin52

0.2

1
0.95
∞ 4.49% ∗ 4.49% ∗ 4.49% ∗ 23.26

1.33
0.95 4.27% ∗ 4.48% ∗ 4.96% ∗ 15.09
∞ 5.38% ∗ 5.64% ∗ 5.94% ∗ 16.4

1.67
0.95 0.0% 0.41% 0.83% 24.54
∞ 1.99% 2.25% 3.26% 19.66

0.35
1

0.95 0.14% 0.52% 1.17% 15.92
∞ 0.0% 0.11% 0.33% 20.55

1.33
0.95 0.0% 0.0% 0.0% 26.24
∞ 0.0% 1.7% 2.36% 14.01
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Matrix α β γ Minimum Average Maximum Average CPU
name Gap Gap Gap time (seconds)

berlin52

0.35 1.67
0.95 0.0% 0.73% 3.63% 13.27
∞ 0.0% 0.79% 2.36% 15.98

0.5

1
0.95
∞ 0.0% 0.22% 1.08% 16.47

1.33
0.95 0.0% 0.84% 1.44% 21.61
∞ 0.29% 0.45% 1.11% 14.34

1.67
0.95 0.0% 0.74% 1.33% 21.48
∞ 0.0% 0.37% 1.33% 17.14

pr76

0.2

1
0.95
∞ 1.45% ∗ 1.8% ∗ 2.16% ∗ 35.14

1.33
0.95 1.12% ∗ 1.56% ∗ 2.05% ∗ 38.27
∞ 1.04% ∗ 1.68% ∗ 3.25% ∗ 38.14

1.67
0.95 0.39% ∗ 0.74% ∗ 1.27% ∗ 39.25
∞ 0.43% ∗ 0.51% ∗ 0.61% ∗ 40.95

0.35

1
0.95
∞ 4.13% ∗ 4.21% ∗ 4.52% ∗ 38.38

1.33
0.95 0.0% 0.11% 0.21% 29.25
∞ 0.0% 0.04% 0.21% 23.15

1.67
0.95 0.0% 0.79% 1.08% 31.95
∞ 0.07% 0.64% 0.95% 33.68

0.5

1
0.95
∞ 0.0% 1.65% 3.97% 38.79

1.33
0.95 0.0% 0.62% 2.8% 41.25
∞ 0.0% 1.4% 2.74% 35.02

1.67
0.95 0.55% 0.65% 0.82% 39.46
∞ 0.0% 0.36% 0.95% 27.7

kroA100

0.2

1
0.95
∞ 8.85% ∗ 9.78% ∗ 11.56% ∗ 196.66

1.33
0.95 0.0% 0.01% 0.04% 41.37
∞ 0.0% 0.01% 0.04% 56.76

1.67
0.95 0.0% 0.02% 0.09% 59.72
∞ 0.0% 0.01% 0.04% 51.33

0.35

1
0.95
∞ 6.33% ∗ 6.51% ∗ 6.88% ∗ 158.77

1.33
0.95 2.44% ∗ 2.8% ∗ 3.51% ∗ 92.51
∞ 1.56% ∗ 2.5% ∗ 4.24% ∗ 126.76

1.67
0.95 0.0% 0.05% 0.09% 74.46
∞ 0.0% 0.01% 0.04% 52.96

0.5
1

0.95
∞ 2.62% ∗ 2.92% ∗ 3.3% ∗ 204.61

1.33 0.95 1.76% ∗ 1.95% ∗ 2.72% ∗ 134.91

124



APPENDIX B. DETAILED RESULTS OF THE TESTS ON THE PARAMETERS OF THE ILS
ALGORITHM

Matrix α β γ Minimum Average Maximum Average CPU
name Gap Gap Gap time (seconds)

kroA100 0.5
1.33 ∞ 1.78% ∗ 1.79% ∗ 1.81% ∗ 110.47

1.67
0.95 0.0% 0.0% 0.0% 62.4
∞ 0.0% 0.12% 0.61% 60.26

pr124

0.2

1
0.95
∞ 5.04% ∗ 5.66% ∗ 6.54% ∗ 128.92

1.33
0.95 9.37% ∗ 10.05% ∗ 11.0% ∗ 67.59
∞ 9.3% ∗ 9.68% ∗ 11.17% ∗ 65.43

1.67
0.95 10.86% ∗ 11.77% ∗ 12.51% ∗ 85.55
∞ 11.0% ∗ 11.1% ∗ 11.53% ∗ 78.15

0.35

1
0.95
∞ 8.4% ∗ 9.38% ∗ 13.28% ∗ 65.26

1.33
0.95
∞ 0.0% 0.28% 0.78% 61.27

1.67
0.95 6.69% ∗ 7.59% ∗ 8.78% ∗ 81.9
∞ 5.92% ∗ 7.02% ∗ 8.37% ∗ 75.26

0.5

1
0.95
∞ 4.32% ∗ 5.56% ∗ 7.08% ∗ 78.89

1.33
0.95 2.87% ∗ 3.61% ∗ 4.42% ∗ 74.28
∞ 4.33% ∗ 4.64% ∗ 5.9% ∗ 66.12

1.67
0.95 0.0% 0.26% 0.78% 72.21
∞ 0.0% 0.41% 1.44% 84.09

pr152

0.2

1
0.95
∞ 14.02% ∗ 14.79% ∗ 15.99% ∗ 291.31

1.33
0.95 13.21% ∗ 13.21% ∗ 13.21% ∗ 371.82
∞ 13.15% ∗ 13.87% ∗ 15.22% ∗ 229.49

1.67
0.95 12.57% ∗ 13.13% ∗ 14.15% ∗ 107.32
∞ 12.36% ∗ 13.1% ∗ 15.09% ∗ 120.19

0.35

1
0.95
∞ 23.74% ∗ 24.27% ∗ 24.92% ∗ 148.8

1.33
0.95 18.71% ∗ 19.26% ∗ 19.46% ∗ 145.08
∞ 19.85% ∗ 20.61% ∗ 21.21% ∗ 112.64

1.67
0.95
∞ 13.89% ∗ 14.22% ∗ 14.52% ∗ 136.47

0.5

1
0.95
∞ 8.65% ∗ 9.09% ∗ 9.64% ∗ 147.32

1.33
0.95 8.64% ∗ 9.65% ∗ 10.19% ∗ 100.2
∞ 8.43% ∗ 9.17% ∗ 9.63% ∗ 130.98

1.67
0.95
∞ 22.24% ∗ 22.62% ∗ 23.26% ∗ 121.8

rat195 0.2 1
0.95
∞ 5.38% ∗ 6.3% ∗ 8.07% ∗ 805.57

125



APPENDIX B. DETAILED RESULTS OF THE TESTS ON THE PARAMETERS OF THE ILS
ALGORITHM

Matrix α β γ Minimum Average Maximum Average CPU
name Gap Gap Gap time (seconds)

rat195

0.2
1.33

0.95
∞ 2.64% ∗ 3.65% ∗ 4.83% ∗ 384.77

1.67
0.95 2.55% ∗ 4.23% ∗ 6.54% ∗ 438.46
∞ 2.64% ∗ 3.66% ∗ 4.43% ∗ 296.02

0.35

1
0.95
∞ 1.68% ∗ 3.34% ∗ 4.21% ∗ 516.25

1.33
0.95 2.71% ∗ 3.31% ∗ 4.63% ∗ 360.05
∞ 2.76% ∗ 3.51% ∗ 4.28% ∗ 438.76

1.67
0.95
∞ 3.18% ∗ 3.93% ∗ 4.66% ∗ 301.19

0.5

1
0.95
∞ 1.8% ∗ 2.98% ∗ 4.49% ∗ 607.38

1.33
0.95 2.56% ∗ 3.45% ∗ 4.63% ∗ 385.43
∞ 1.42% ∗ 3.84% ∗ 5.46% ∗ 469.13

1.67
0.95 2.67% ∗ 3.4% ∗ 3.92% ∗ 423.09
∞ 2.09% 2.5% 3.29% 473.49

pr226

0.2

1
0.95 28.79% ∗ 28.79% ∗ 28.79% ∗ 797.45
∞ 22.31% ∗ 22.86% ∗ 23.29% ∗ 1029.84

1.33
0.95 9.49% ∗ 11.2% ∗ 12.81% ∗ 426.8
∞ 9.55% ∗ 11.27% ∗ 12.86% ∗ 493.35

1.67
0.95 6.72% ∗ 6.77% ∗ 6.93% ∗ 370.65
∞ 6.84% ∗ 6.88% ∗ 7.04% ∗ 510.86

0.35

1
0.95 17.66% ∗ 17.69% ∗ 17.71% ∗ 680.79
∞ 14.45% ∗ 16.37% ∗ 20.12% ∗ 725.06

1.33
0.95 11.32% ∗ 11.63% ∗ 12.4% ∗ 429.53
∞ 10.47% ∗ 11.24% ∗ 14.02% ∗ 374.75

1.67
0.95 9.75% ∗ 9.75% ∗ 9.75% ∗ 402.66
∞ 8.75% ∗ 9.54% ∗ 11.84% ∗ 426.1

0.5

1
0.95
∞ 18.96% ∗ 19.26% ∗ 19.54% ∗ 895.39

1.33
0.95 10.46% ∗ 10.77% ∗ 11.3% ∗ 723.91
∞ 10.53% ∗ 10.96% ∗ 11.36% ∗ 411.6

1.67
0.95 10.97% ∗ 11.05% ∗ 11.36% ∗ 495.28
∞ 10.52% ∗ 10.53% ∗ 10.56% ∗ 477.99

Asymmetric instances

Matrix α β γ Minimum Average Maximum Average CPU
name Gap Gap Gap time (seconds)

ft53 0.2
1

0.95 10.56% ∗ 14.0% ∗ 20.05% ∗ 51.17
∞ 11.34% ∗ 13.61% ∗ 16.22% ∗ 48.27

1.33
0.95 1.23% 4.94% 7.52% 26.16
∞ 1.14% 3.52% 7.24% 23.35
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Matrix α β γ Minimum Average Maximum Average CPU
name Gap Gap Gap time (seconds)

ft53

0.2 1.67
0.95 0.01% 1.12% 2.45% 12.36
∞ 0.0% 2.09% 7.11% 14.91

0.35

1
0.95 1.27% 3.91% 6.08% 32.83
∞ 3.98% 7.74% 12.57% 29.63

1.33
0.95 3.44% 7.81% 10.64% 15.23
∞ 1.1% 6.05% 10.53% 24.92

1.67
0.95 2.46% 4.65% 9.82% 16.73
∞ 4.61% 6.91% 10.34% 19.28

0.5

1
0.95 9.98% 9.98% 9.98% 51.37
∞ 0.0% 5.36% 7.6% 11.16

1.33
0.95 0.06% 5.83% 9.66% 14.97
∞ 0.0% 2.91% 6.57% 12.18

1.67
0.95 0.0% 3.29% 7.33% 16.69
∞ 0.0% 2.2% 3.98% 14.33

ftv64

0.2

1
0.95 5.47% 7.66% 9.82% 35.74
∞ 3.98% 6.48% 9.13% 31.05

1.33
0.95 1.35% 5.07% 8.68% 24.25
∞ 3.45% 5.24% 7.92% 23.76

1.67
0.95 1.14% 4.39% 9.03% 30.28
∞ 4.79% 5.69% 8.48% 16.47

0.35

1
0.95 0.05% 2.33% 5.09% 25.68
∞ 0.98% 6.02% 10.13% 33.79

1.33
0.95 2.87% 3.02% 3.3% 27.2
∞ 2.82% 4.36% 6.72% 17.1

1.67
0.95 2.28% 3.74% 5.98% 14.24
∞ 3.26% 4.56% 7.23% 13.07

0.5

1
0.95 4.22% 5.0% 5.78% 37.3
∞ 0.38% 3.05% 5.89% 21.43

1.33
0.95 2.06% 4.07% 5.97% 15.95
∞ 0.98% 3.76% 7.0% 19.23

1.67
0.95 2.88% 4.04% 4.72% 13.18
∞ 2.12% 3.63% 4.89% 11.91

ft70

0.2

1
0.95 3.89% ∗ 3.89% ∗ 3.89% ∗ 57.97
∞ 3.21% ∗ 4.23% ∗ 5.06% ∗ 102.92

1.33
0.95 2.03% 2.67% 3.57% 125.4
∞ 1.95% 2.47% 3.65% 63.69

1.67
0.95 1.52% 2.56% 4.17% 61.86
∞ 0.85% 1.6% 2.66% 50.64

0.35
1

0.95 1.63% 2.3% 2.92% 75.09
∞ 1.34% 2.09% 2.82% 89.08

1.33 0.95 1.24% 1.81% 2.34% 73.53
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Matrix α β γ Minimum Average Maximum Average CPU
name Gap Gap Gap time (seconds)

ft70

0.35
1.33 ∞ 1.06% 2.34% 3.48% 57.29

1.67
0.95 1.71% 2.51% 2.9% 45.9
∞ 1.08% 2.22% 3.46% 48.58

0.5

1
0.95 1.85% 1.94% 2.04% 62.57
∞ 0.85% 2.14% 3.73% 65.91

1.33
0.95 2.23% 2.6% 2.96% 54.92
∞ 1.03% 2.25% 3.33% 41.85

1.67
0.95 1.03% 1.52% 2.16% 65.29
∞ 1.75% 2.25% 3.08% 44.12

kro124p

0.2

1
0.95 6.68% ∗ 6.68% ∗ 6.68% ∗ 162.11
∞ 5.27% ∗ 6.8% ∗ 11.66% ∗ 159.43

1.33
0.95 0.03% 2.04% 4.08% 83.89
∞ 0.24% 2.34% 4.63% 102.32

1.67
0.95 0.03% 1.7% 3.87% 98.25
∞ 0.23% 2.42% 5.22% 84.79

0.35

1
0.95
∞ 7.07% ∗ 9.46% ∗ 10.97% ∗ 180.77

1.33
0.95 0.16% 1.86% 2.93% 88.5
∞ 0.16% 0.98% 2.08% 91.22

1.67
0.95 0.26% 0.53% 1.08% 64.1
∞ 0.03% 1.56% 4.47% 80.42

0.5

1
0.95 2.0% ∗ 4.8% ∗ 7.5% ∗ 179.39
∞ 2.48% ∗ 5.14% ∗ 10.39% ∗ 154.43

1.33
0.95 0.62% 1.73% 3.43% 136.19
∞ 1.33% 2.12% 3.38% 110.08

1.67
0.95 0.03% 1.14% 1.79% 106.89
∞ 0.33% 1.95% 3.69% 121.76

ftv170

0.2

1
0.95
∞ 8.28% ∗ 11.74% ∗ 13.93% ∗ 257.09

1.33
0.95 2.68% 5.18% 7.51% 166.01
∞ 5.22% 7.29% 9.03% 142.09

1.67
0.95 4.02% 5.74% 7.03% 147.06
∞ 1.2% 4.42% 7.47% 141.6

0.35

1
0.95 8.32% ∗ 11.07% ∗ 14.33% ∗ 172.67
∞ 9.48% ∗ 13.68% ∗ 16.19% ∗ 244.53

1.33
0.95 1.67% 6.21% 9.84% 142.13
∞ 3.38% 7.19% 8.86% 220.65

1.67
0.95 3.41% 6.64% 9.98% 126.72
∞ 4.72% 6.26% 9.07% 138.92

0.5 1
0.95 16.43% ∗ 16.43% ∗ 16.43% ∗ 967.64
∞ 9.06% ∗ 11.29% ∗ 14.89% ∗ 244.25
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Matrix α β γ Minimum Average Maximum Average CPU
name Gap Gap Gap time (seconds)

ftv170 0.5
1.33

0.95 5.35% 7.74% 9.83% 128.79
∞ 9.07% 10.07% 11.1% 190.91

1.67
0.95 2.61% 6.79% 8.86% 189.01
∞ 2.47% 7.13% 11.07% 115.25

B.2 Results for ω = 1/2

B.2.1 Results for a maximum of 1000 iterations

ANN as the constructive heuristic

Table B.10: Computational results, for ω = 1/2 and MaxIt =

1000, using the solution obtained through the ANN heuristic as
the initial solution.

Symmetric instances

Matrix α β γ Minimum Average Maximum Average CPU
name Gap Gap Gap time (seconds)

berlin52

0.2

1
0.95
∞ 4.49% ∗ 4.49% ∗ 4.49% ∗ 3.57

1.33
0.95 4.4% ∗ 4.41% ∗ 4.45% ∗ 3.74
∞ 5.43% ∗ 5.73% ∗ 6.02% ∗ 1.97

1.67
0.95
∞ 0.0% 0.89% 1.99% 3.34

0.35

1
0.95 0.23% 0.76% 1.17% 2.78
∞ 0.33% 0.94% 1.32% 1.85

1.33
0.95 0.0% 0.0% 0.0% 3.17
∞ 0.0% 1.2% 2.36% 2.49

1.67
0.95 0.0% 0.17% 0.52% 2.12
∞ 0.0% 0.15% 0.46% 2.61

0.5

1
0.95
∞ 0.0% 0.12% 0.36% 1.88

1.33
0.95
∞ 0.29% 0.69% 1.11% 1.63

1.67
0.95 0.52% 1.53% 2.74% 2.24
∞ 0.0% 1.04% 3.12% 2.22

pr76 0.2

1
0.95
∞ 1.38% ∗ 1.66% ∗ 2.13% ∗ 6.08

1.33
0.95 1.12% ∗ 1.4% ∗ 1.54% ∗ 11.24
∞ 1.13% ∗ 2.12% ∗ 3.62% ∗ 7.54

1.67
0.95 0.52% ∗ 0.75% ∗ 1.16% ∗ 5.43
∞ 0.52% ∗ 0.85% ∗ 1.2% ∗ 4.61
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Matrix α β γ Minimum Average Maximum Average CPU
name Gap Gap Gap time (seconds)

pr76

0.35

1
0.95
∞ 4.13% ∗ 4.51% ∗ 5.27% ∗ 6.84

1.33
0.95 0.0% 0.03% 0.08% 3.9
∞ 0.0% 0.03% 0.08% 3.95

1.67
0.95 0.07% 0.63% 0.95% 4.13
∞ 0.83% 0.93% 1.08% 4.44

0.5

1
0.95
∞ 0.01% 0.11% 0.24% 6.31

1.33
0.95 0.0% 0.03% 0.09% 4.82
∞ 0.0% 0.4% 1.12% 6.02

1.67
0.95 0.55% 0.66% 0.87% 3.7
∞ 0.82% 0.84% 0.9% 6.43

kroA100

0.2

1
0.95
∞ 8.85% ∗ 9.76% ∗ 11.01% ∗ 32.9

1.33
0.95
∞ 0.0% 0.01% 0.04% 8.36

1.67
0.95
∞ 0.0% 0.03% 0.09% 8.36

0.35

1
0.95
∞ 6.33% ∗ 6.49% ∗ 6.61% ∗ 20.64

1.33
0.95
∞ 1.56% ∗ 2.08% ∗ 3.11% ∗ 25.46

1.67
0.95 0.0% 0.0% 0.0% 9.65
∞ 0.09% 0.09% 0.09% 7.99

0.5

1
0.95
∞ 2.78% ∗ 3.28% ∗ 4.26% ∗ 25.72

1.33
0.95 1.76% ∗ 2.12% ∗ 2.8% ∗ 19.21
∞ 1.78% ∗ 1.79% ∗ 1.81% ∗ 19.07

1.67
0.95 0.04% 0.04% 0.04% 11.01
∞ 0.0% 0.3% 0.46% 7.56

pr124

0.2

1
0.95
∞ 6.06% ∗ 6.63% ∗ 7.36% ∗ 22.86

1.33
0.95 9.44% ∗ 9.96% ∗ 11.0% ∗ 13.34
∞ 9.23% ∗ 9.46% ∗ 9.83% ∗ 9.66

1.67
0.95 10.93% ∗ 10.93% ∗ 10.93% ∗ 7.14
∞ 11.0% ∗ 11.0% ∗ 11.0% ∗ 7.24

0.35

1
0.95
∞ 8.4% ∗ 11.65% ∗ 13.28% ∗ 9.13

1.33
0.95
∞ 0.6% 0.69% 0.88% 13.04

1.67 0.95
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Matrix α β γ Minimum Average Maximum Average CPU
name Gap Gap Gap time (seconds)

pr124

0.35 1.67 ∞ 6.56% ∗ 6.56% ∗ 6.56% ∗ 11.32

0.5

1
0.95
∞ 4.81% ∗ 5.54% ∗ 6.54% ∗ 20.43

1.33
0.95
∞ 4.33% ∗ 4.94% ∗ 5.24% ∗ 12.14

1.67
0.95
∞ 0.0% 0.0% 0.0% 6.7

pr152

0.2

1
0.95 14.06% ∗ 14.56% ∗ 14.82% ∗ 51.93
∞ 13.98% ∗ 14.48% ∗ 15.23% ∗ 64.44

1.33
0.95 13.55% ∗ 13.96% ∗ 14.63% ∗ 36.01
∞ 13.62% ∗ 14.17% ∗ 15.18% ∗ 31.59

1.67
0.95 13.07% ∗ 13.07% ∗ 13.07% ∗ 27.22
∞ 12.95% ∗ 13.71% ∗ 14.89% ∗ 18.41

0.35

1
0.95 26.55% ∗ 26.86% ∗ 27.38% ∗ 26.79
∞ 24.51% ∗ 25.51% ∗ 27.08% ∗ 42.5

1.33
0.95 18.71% ∗ 19.41% ∗ 19.8% ∗ 22.6
∞ 20.94% ∗ 21.14% ∗ 21.29% ∗ 18.32

1.67
0.95 14.64% ∗ 14.79% ∗ 14.93% ∗ 19.4
∞ 14.8% ∗ 14.97% ∗ 15.05% ∗ 16.18

0.5

1
0.95
∞ 9.56% ∗ 9.56% ∗ 9.56% ∗ 22.71

1.33
0.95 8.64% ∗ 10.33% ∗ 11.18% ∗ 32.56
∞ 9.34% ∗ 10.09% ∗ 11.08% ∗ 15.62

1.67
0.95
∞ 22.24% ∗ 23.07% ∗ 23.61% ∗ 27.55

rat195

0.2

1
0.95
∞ 4.3% ∗ 5.65% ∗ 7.58% ∗ 175.33

1.33
0.95
∞ 3.8% ∗ 3.92% ∗ 4.03% ∗ 88.97

1.67
0.95 3.85% ∗ 3.96% ∗ 4.03% ∗ 52.67
∞ 3.49% ∗ 3.7% ∗ 3.94% ∗ 35.86

0.35

1
0.95
∞ 3.86% ∗ 4.55% ∗ 5.59% ∗ 99.01

1.33
0.95 2.23% ∗ 2.6% ∗ 2.8% ∗ 52.93
∞ 2.54% ∗ 3.03% ∗ 3.92% ∗ 63.19

1.67
0.95
∞ 2.69% ∗ 3.02% ∗ 3.36% ∗ 50.37

0.5
1

0.95
∞ 2.64% ∗ 3.06% ∗ 3.56% ∗ 100.79

1.33
0.95 2.38% ∗ 2.92% ∗ 3.7% ∗ 83.8
∞ 2.71% ∗ 2.9% ∗ 3.2% ∗ 91.81
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Matrix α β γ Minimum Average Maximum Average CPU
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rat195 0.5 1.67
0.95 2.85% ∗ 3.22% ∗ 3.88% ∗ 68.49
∞ 2.22% 2.4% 2.62% 31.86

pr226

0.2

1
0.95 22.47% ∗ 22.53% ∗ 22.6% ∗ 136.55
∞ 22.82% ∗ 23.16% ∗ 23.53% ∗ 101.22

1.33
0.95
∞ 11.58% ∗ 12.03% ∗ 12.6% ∗ 50.92

1.67
0.95 6.89% ∗ 7.26% ∗ 7.5% ∗ 47.42
∞ 6.92% ∗ 7.39% ∗ 7.64% ∗ 76.98

0.35

1
0.95 18.11% ∗ 18.92% ∗ 20.54% ∗ 98.45
∞ 18.23% ∗ 19.36% ∗ 21.59% ∗ 93.09

1.33
0.95
∞ 10.87% ∗ 11.05% ∗ 11.36% ∗ 59.99

1.67
0.95
∞ 8.83% ∗ 9.07% ∗ 9.41% ∗ 82.48

0.5

1
0.95 14.3% ∗ 16.8% ∗ 18.05% ∗ 273.81
∞ 17.9% ∗ 19.16% ∗ 19.8% ∗ 100.8

1.33
0.95 11.26% ∗ 13.68% ∗ 16.0% ∗ 71.2
∞ 10.63% ∗ 11.99% ∗ 14.18% ∗ 69.96

1.67
0.95
∞ 10.59% ∗ 10.63% ∗ 10.69% ∗ 56.86

Asymmetric instances

Matrix α β γ Minimum Average Maximum Average CPU
name Gap Gap Gap time (seconds)

ft53

0.2

1
0.95 15.93% ∗ 19.96% ∗ 25.88% ∗ 6.97
∞ 12.33% ∗ 16.7% ∗ 20.69% ∗ 6.82

1.33
0.95 4.47% 6.71% 10.76% 3.81
∞ 3.3% 4.27% 5.03% 5.6

1.67
0.95 3.13% 4.98% 6.44% 2.25
∞ 0.0% 2.62% 5.33% 3.0

0.35

1
0.95 2.16% 5.32% 7.48% 5.2
∞ 7.27% 8.14% 9.78% 5.38

1.33
0.95 3.37% 3.66% 4.15% 4.86
∞ 0.48% 4.22% 7.07% 5.43

1.67
0.95 1.64% 3.0% 4.88% 4.39
∞ 1.01% 4.69% 6.53% 1.67

0.5

1
0.95 3.07% 5.64% 9.89% 5.47
∞ 0.0% 0.8% 2.35% 3.22

1.33
0.95 4.87% 7.63% 10.76% 3.0
∞ 0.0% 1.77% 3.75% 2.47

1.67
0.95 0.06% 2.78% 5.66% 1.39
∞ 1.03% 6.62% 12.24% 1.97
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ftv64

0.2

1
0.95
∞ 4.78% 5.98% 7.65% 6.61

1.33
0.95
∞ 3.77% 6.47% 11.7% 4.08

1.67
0.95 5.6% 7.07% 8.16% 3.4
∞ 2.77% 6.8% 9.57% 2.96

0.35

1
0.95 0.05% 3.05% 9.05% 4.31
∞ 0.05% 0.65% 1.84% 5.16

1.33
0.95 2.87% 3.47% 4.66% 2.75
∞ 1.68% 3.34% 4.28% 2.25

1.67
0.95 2.61% 3.92% 5.22% 2.05
∞ 3.1% 4.21% 5.87% 2.28

0.5

1
0.95 6.32% 8.0% 10.32% 4.55
∞ 1.19% 2.5% 3.51% 4.7

1.33
0.95 4.29% 5.05% 6.08% 2.08
∞ 4.29% 4.87% 5.16% 2.12

1.67
0.95 0.87% 2.95% 4.89% 3.1
∞ 1.85% 4.92% 9.45% 2.38

ft70

0.2

1
0.95 5.15% ∗ 6.07% ∗ 7.05% ∗ 9.86
∞ 4.8% ∗ 5.95% ∗ 7.09% ∗ 12.57

1.33
0.95 3.45% 4.08% 4.65% 9.92
∞ 3.81% 4.0% 4.12% 11.58

1.67
0.95 4.49% 5.77% 6.68% 6.29
∞ 3.67% 4.0% 4.4% 6.5

0.35

1
0.95 3.61% 4.24% 4.86% 9.47
∞ 2.04% 3.06% 4.04% 9.64

1.33
0.95 2.84% 3.3% 4.22% 9.07
∞ 3.16% 3.91% 4.97% 7.25

1.67
0.95
∞ 3.22% 3.91% 4.38% 6.84

0.5

1
0.95
∞ 3.03% 3.21% 3.4% 7.65

1.33
0.95
∞ 2.86% 3.14% 3.57% 5.77

1.67
0.95
∞ 2.59% 2.89% 3.2% 7.59

kro124p 0.2

1
0.95
∞ 10.19% ∗ 11.58% ∗ 13.01% ∗ 23.84

1.33
0.95 0.9% 4.19% 6.96% 18.53
∞ 4.02% 7.26% 9.68% 13.9

1.67 0.95 9.48% 11.66% 14.91% 11.15
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kro124p

0.2 1.67 ∞ 6.31% 9.29% 11.5% 13.64

0.35

1
0.95
∞ 7.58% ∗ 9.82% ∗ 12.13% ∗ 14.21

1.33
0.95 4.75% 6.47% 8.4% 14.39
∞ 5.07% 5.93% 7.62% 12.14

1.67
0.95 9.67% 11.73% 12.78% 12.34
∞ 6.2% 9.25% 11.86% 12.59

0.5

1
0.95
∞ 10.37% ∗ 11.3% ∗ 12.97% ∗ 18.99

1.33
0.95 7.55% 8.46% 9.81% 16.5
∞ 10.28% 10.75% 11.59% 12.89

1.67
0.95 4.74% 6.21% 8.41% 25.18
∞ 4.76% 6.82% 9.91% 18.09

ftv170

0.2

1
0.95
∞ 9.48% ∗ 13.88% ∗ 17.51% ∗ 44.51

1.33
0.95 8.41% 9.37% 9.97% 25.51
∞ 8.48% 9.21% 10.33% 23.98

1.67
0.95 5.18% 7.88% 9.64% 29.04
∞ 10.7% 12.59% 15.92% 21.19

0.35

1
0.95
∞ 8.61% ∗ 10.28% ∗ 12.78% ∗ 61.11

1.33
0.95
∞ 6.57% 7.99% 10.42% 35.88

1.67
0.95 7.01% 8.22% 9.8% 30.57
∞ 5.08% 7.89% 11.8% 24.01

0.5

1
0.95
∞ 10.19% ∗ 11.64% ∗ 13.65% ∗ 30.78

1.33
0.95
∞ 6.04% 7.66% 9.15% 31.19

1.67
0.95 8.35% 10.74% 15.21% 28.07
∞ 5.23% 7.38% 9.36% 27.94
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AFI as the constructive heuristic

Table B.11: Computational results, for ω = 1/2 and MaxIt =

1000, using the solution obtained through the AFI heuristic as the
initial solution.

Symmetric instances

Matrix α β γ Minimum Average Maximum Average CPU
name Gap Gap Gap time (seconds)

berlin52

0.2

1
0.95
∞ 4.49% ∗ 4.49% ∗ 4.49% ∗ 4.73

1.33
0.95 4.4% ∗ 4.54% ∗ 4.84% ∗ 2.53
∞ 5.24% ∗ 5.58% ∗ 5.74% ∗ 3.41

1.67
0.95 1.99% 1.99% 1.99% 2.53
∞ 1.99% 2.05% 2.16% 2.61

0.35

1
0.95 0.0% 0.21% 0.42% 3.68
∞ 0.0% 0.14% 0.42% 2.84

1.33
0.95 0.0% 0.41% 1.24% 3.05
∞ 0.0% 0.83% 1.24% 2.67

1.67
0.95 0.0% 0.15% 0.46% 3.38
∞ 0.51% 1.78% 2.46% 1.92

0.5

1
0.95
∞ 0.0% 0.0% 0.0% 2.1

1.33
0.95 1.34% 1.37% 1.39% 2.88
∞ 0.29% 0.42% 0.69% 1.66

1.67
0.95 0.0% 0.89% 1.33% 3.43
∞ 1.33% 1.33% 1.33% 1.44

pr76

0.2

1
0.95
∞ 1.77% ∗ 2.13% ∗ 2.4% ∗ 4.87

1.33
0.95 1.05% ∗ 1.76% ∗ 3.1% ∗ 7.18
∞ 1.06% ∗ 2.0% ∗ 3.84% ∗ 6.49

1.67
0.95 0.59% ∗ 0.83% ∗ 1.16% ∗ 5.63
∞ 0.33% ∗ 0.33% ∗ 0.33% ∗ 5.1

0.35

1
0.95
∞ 4.13% ∗ 4.38% ∗ 4.89% ∗ 7.15

1.33
0.95 0.0% 0.03% 0.08% 4.36
∞ 0.0% 0.14% 0.21% 4.47

1.67
0.95 0.0% 0.09% 0.26% 7.06
∞ 0.0% 0.18% 0.26% 5.16

0.5
1

0.95
∞ 0.0% 2.27% 4.07% 8.91

1.33
0.95 2.74% 2.74% 2.74% 5.38
∞ 2.74% 2.74% 2.74% 6.68
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Matrix α β γ Minimum Average Maximum Average CPU
name Gap Gap Gap time (seconds)

pr76 0.5 1.67
0.95
∞ 0.0% 0.09% 0.26% 4.36

kroA100

0.2

1
0.95
∞ 8.85% ∗ 9.9% ∗ 11.59% ∗ 31.07

1.33
0.95 0.0% 0.0% 0.0% 7.95
∞ 0.0% 0.01% 0.04% 6.65

1.67
0.95 0.0% 0.15% 0.46% 8.58
∞ 0.0% 0.06% 0.17% 8.29

0.35

1
0.95
∞ 6.33% ∗ 6.55% ∗ 6.99% ∗ 32.23

1.33
0.95 2.56% ∗ 3.51% ∗ 4.71% ∗ 15.37
∞ 3.15% ∗ 3.6% ∗ 4.06% ∗ 8.78

1.67
0.95 0.0% 0.03% 0.09% 10.11
∞ 0.0% 0.0% 0.0% 10.38

0.5

1
0.95
∞ 2.52% ∗ 3.12% ∗ 4.29% ∗ 40.49

1.33
0.95 1.76% ∗ 2.85% ∗ 4.15% ∗ 22.21
∞ 1.78% ∗ 1.83% ∗ 1.93% ∗ 21.67

1.67
0.95 0.0% 0.01% 0.04% 9.09
∞ 0.0% 0.27% 0.8% 9.67

pr124

0.2

1
0.95 7.32% ∗ 7.86% ∗ 8.69% ∗ 23.09
∞ 6.06% ∗ 6.06% ∗ 6.06% ∗ 14.14

1.33
0.95 9.44% ∗ 9.44% ∗ 9.44% ∗ 9.92
∞ 9.3% ∗ 9.3% ∗ 9.3% ∗ 13.65

1.67
0.95 10.86% ∗ 11.09% ∗ 11.47% ∗ 12.57
∞ 11.0% ∗ 11.0% ∗ 11.0% ∗ 12.37

0.35

1
0.95
∞ 8.4% ∗ 8.4% ∗ 8.4% ∗ 11.82

1.33
0.95
∞ 0.0% 0.49% 0.88% 9.7

1.67
0.95 8.14% ∗ 8.17% ∗ 8.23% ∗ 10.53
∞ 6.0% ∗ 6.37% ∗ 6.56% ∗ 12.66

0.5

1
0.95
∞ 4.81% ∗ 5.12% ∗ 5.27% ∗ 18.15

1.33
0.95 1.98% ∗ 1.98% ∗ 1.98% ∗ 13.6
∞ 4.33% ∗ 4.84% ∗ 5.24% ∗ 9.92

1.67
0.95 0.0% 0.49% 0.88% 18.03
∞ 0.0% 0.0% 0.0% 9.48

pr152 0.2
1

0.95
∞ 14.02% ∗ 15.16% ∗ 16.87% ∗ 41.15

1.33 0.95 14.38% ∗ 14.89% ∗ 15.79% ∗ 37.86
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ALGORITHM

Matrix α β γ Minimum Average Maximum Average CPU
name Gap Gap Gap time (seconds)

pr152

0.2
1.33 ∞ 14.07% ∗ 14.27% ∗ 14.38% ∗ 26.61

1.67
0.95 12.48% ∗ 12.92% ∗ 13.19% ∗ 18.3
∞ 12.45% ∗ 12.83% ∗ 13.07% ∗ 19.08

0.35

1
0.95
∞ 24.35% ∗ 24.63% ∗ 25.08% ∗ 22.93

1.33
0.95 19.12% ∗ 19.2% ∗ 19.36% ∗ 18.85
∞ 20.6% ∗ 20.64% ∗ 20.7% ∗ 18.53

1.67
0.95
∞ 14.19% ∗ 14.66% ∗ 15.05% ∗ 21.26

0.5

1
0.95
∞ 9.25% ∗ 9.28% ∗ 9.33% ∗ 15.44

1.33
0.95 9.33% ∗ 9.62% ∗ 10.21% ∗ 20.91
∞ 9.03% ∗ 9.19% ∗ 9.32% ∗ 23.99

1.67
0.95
∞ 23.01% ∗ 23.34% ∗ 24.0% ∗ 15.63

rat195

0.2

1
0.95
∞ 5.52% ∗ 7.13% ∗ 8.92% ∗ 136.5

1.33
0.95
∞ 3.13% ∗ 3.55% ∗ 3.76% ∗ 112.69

1.67
0.95 2.73% ∗ 3.35% ∗ 3.77% ∗ 82.91
∞ 3.9% ∗ 4.55% ∗ 4.88% ∗ 75.7

0.35

1
0.95
∞ 2.13% ∗ 2.9% ∗ 3.37% ∗ 80.68

1.33
0.95 5.47% ∗ 5.64% ∗ 5.79% ∗ 48.34
∞ 3.66% ∗ 4.93% ∗ 6.02% ∗ 78.79

1.67
0.95
∞ 3.14% ∗ 4.65% ∗ 5.7% ∗ 71.61

0.5

1
0.95
∞ 2.46% ∗ 3.18% ∗ 4.58% ∗ 94.99

1.33
0.95 2.16% ∗ 3.1% ∗ 3.66% ∗ 79.09
∞ 3.51% ∗ 4.85% ∗ 6.75% ∗ 73.02

1.67
0.95 4.41% ∗ 5.29% ∗ 5.88% ∗ 71.66
∞ 3.69% 4.42% 5.2% 59.01

pr226
0.2

1
0.95
∞ 27.08% ∗ 27.66% ∗ 28.7% ∗ 135.45

1.33
0.95 10.23% ∗ 11.31% ∗ 12.15% ∗ 66.46
∞ 9.67% ∗ 11.81% ∗ 16.02% ∗ 90.94

1.67
0.95 6.79% ∗ 6.83% ∗ 6.87% ∗ 65.58
∞ 6.91% ∗ 7.06% ∗ 7.18% ∗ 55.73

0.35 1
0.95
∞ 14.57% ∗ 14.73% ∗ 14.85% ∗ 111.61
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ALGORITHM

Matrix α β γ Minimum Average Maximum Average CPU
name Gap Gap Gap time (seconds)

pr226

0.35
1.33

0.95 11.38% ∗ 11.63% ∗ 11.77% ∗ 78.8
∞ 10.48% ∗ 10.54% ∗ 10.6% ∗ 123.3

1.67
0.95 9.17% ∗ 9.34% ∗ 9.61% ∗ 111.29
∞ 8.83% ∗ 8.85% ∗ 8.87% ∗ 81.7

0.5

1
0.95
∞ 19.51% ∗ 19.54% ∗ 19.56% ∗ 169.15

1.33
0.95 11.3% ∗ 11.38% ∗ 11.47% ∗ 63.29
∞ 10.58% ∗ 10.6% ∗ 10.61% ∗ 90.67

1.67
0.95 10.96% ∗ 11.39% ∗ 11.98% ∗ 89.39
∞ 10.59% ∗ 10.61% ∗ 10.63% ∗ 80.23

Asymmetric instances

Matrix α β γ Minimum Average Maximum Average CPU
name Gap Gap Gap time (seconds)

ft53

0.2

1
0.95
∞ 16.61% ∗ 16.98% ∗ 17.5% ∗ 5.82

1.33
0.95 2.36% 4.98% 9.45% 3.87
∞ 0.74% 2.8% 4.88% 6.24

1.67
0.95 0.71% 3.79% 9.24% 3.41
∞ 0.0% 6.17% 9.84% 2.99

0.35

1
0.95
∞ 6.18% 7.75% 8.89% 3.78

1.33
0.95 2.55% 3.9% 5.56% 3.01
∞ 3.33% 3.51% 3.66% 5.02

1.67
0.95 1.25% 4.47% 8.3% 1.99
∞ 0.0% 0.77% 1.38% 2.31

0.5

1
0.95 3.98% 5.1% 7.33% 3.43
∞ 4.2% 4.83% 5.87% 4.04

1.33
0.95 2.39% 3.95% 5.78% 1.88
∞ 0.06% 1.57% 3.42% 3.0

1.67
0.95 1.56% 2.76% 3.43% 2.59
∞ 1.56% 2.26% 3.26% 1.83

ftv64

0.2

1
0.95 11.15% 11.9% 12.37% 5.68
∞ 6.85% 7.59% 8.71% 5.26

1.33
0.95 3.02% 5.01% 7.12% 3.81
∞ 5.44% 6.06% 6.42% 3.2

1.67
0.95
∞ 2.28% 3.1% 3.53% 6.44

0.35
1

0.95 0.98% 3.95% 9.05% 4.53
∞ 5.74% 6.01% 6.39% 4.4

1.33
0.95 1.57% 2.28% 3.41% 3.62
∞ 1.9% 3.83% 4.93% 2.29
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ALGORITHM

Matrix α β γ Minimum Average Maximum Average CPU
name Gap Gap Gap time (seconds)

ftv64

0.35 1.67
0.95 1.96% 3.57% 5.44% 2.14
∞ 4.46% 5.13% 5.98% 2.9

0.5

1
0.95
∞ 0.43% 1.26% 2.0% 2.62

1.33
0.95 0.98% 1.94% 2.77% 4.01
∞ 0.81% 4.65% 8.31% 1.99

1.67
0.95
∞ 1.14% 1.56% 2.06% 2.34

ft70

0.2

1
0.95 6.13% ∗ 6.45% ∗ 6.99% ∗ 7.85
∞ 5.67% ∗ 6.0% ∗ 6.18% ∗ 9.85

1.33
0.95 3.36% 4.46% 5.2% 7.13
∞ 3.22% 3.49% 3.89% 5.31

1.67
0.95 4.97% 5.55% 6.69% 8.47
∞ 3.21% 3.9% 4.58% 6.36

0.35

1
0.95 2.61% 3.3% 4.59% 7.9
∞ 2.15% 3.05% 3.64% 9.1

1.33
0.95 3.46% 3.67% 3.98% 5.69
∞ 3.23% 4.06% 5.03% 9.11

1.67
0.95 2.81% 3.6% 4.55% 6.28
∞ 1.6% 2.88% 4.02% 6.71

0.5

1
0.95 2.9% 3.62% 4.26% 9.18
∞ 2.35% 3.54% 4.73% 8.3

1.33
0.95 2.44% 3.06% 3.58% 9.34
∞ 2.25% 3.2% 4.25% 8.26

1.67
0.95 2.94% 4.01% 5.13% 7.1
∞ 2.91% 3.88% 4.78% 7.19

kro124p

0.2

1
0.95 5.86% ∗ 7.42% ∗ 9.09% ∗ 29.12
∞ 5.5% ∗ 7.41% ∗ 9.62% ∗ 26.38

1.33
0.95 0.68% 2.14% 4.85% 10.66
∞ 0.72% 3.84% 6.01% 8.62

1.67
0.95 0.7% 1.17% 1.79% 9.33
∞ 0.67% 1.71% 3.16% 12.75

0.35

1
0.95
∞ 7.25% ∗ 10.19% ∗ 15.44% ∗ 22.92

1.33
0.95 2.14% 3.4% 4.4% 10.02
∞ 2.25% 2.67% 3.27% 10.87

1.67
0.95 2.88% 4.19% 5.4% 5.31
∞ 2.38% 3.26% 4.03% 7.84

0.5
1

0.95 5.45% ∗ 7.41% ∗ 8.5% ∗ 16.43
∞ 3.26% ∗ 5.15% ∗ 7.21% ∗ 27.09

1.33 0.95 2.49% 4.28% 5.91% 15.71
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ALGORITHM

Matrix α β γ Minimum Average Maximum Average CPU
name Gap Gap Gap time (seconds)

kro124p 0.5
1.33 ∞ 1.19% 3.59% 5.81% 13.7

1.67
0.95 3.07% 3.44% 4.15% 14.23
∞ 2.88% 4.29% 5.48% 17.21

ftv170

0.2

1
0.95
∞ 7.59% ∗ 9.6% ∗ 10.76% ∗ 47.75

1.33
0.95 4.64% 6.93% 9.17% 24.2
∞ 9.97% 10.44% 10.7% 17.64

1.67
0.95 6.49% 7.84% 10.01% 23.19
∞ 4.39% 6.21% 8.16% 26.58

0.35

1
0.95 10.76% ∗ 14.69% ∗ 18.27% ∗ 42.87
∞ 14.05% ∗ 17.62% ∗ 19.86% ∗ 35.51

1.33
0.95 5.19% 7.07% 8.49% 32.0
∞ 4.79% 6.76% 9.95% 32.33

1.67
0.95 2.47% 5.13% 6.64% 22.01
∞ 4.36% 6.05% 7.51% 17.94

0.5

1
0.95 6.78% ∗ 8.63% ∗ 10.45% ∗ 44.75
∞ 5.39% ∗ 7.81% ∗ 12.09% ∗ 59.36

1.33
0.95 10.12% 12.62% 13.99% 21.76
∞ 5.97% 9.01% 11.35% 49.89

1.67
0.95 1.63% 3.17% 4.43% 27.18
∞ 1.74% 2.67% 3.88% 29.93

ARI as the constructive heuristic

Table B.12: Computational results, for ω = 1/2 and MaxIt =

1000, using the solution obtained through the ARI heuristic as the
initial solution.

Symmetric instances

Matrix α β γ Minimum Average Maximum Average CPU
name Gap Gap Gap time (seconds)

berlin52

0.2

1
0.95
∞ 4.49% ∗ 4.81% ∗ 5.45% ∗ 6.32

1.33
0.95 4.4% ∗ 4.41% ∗ 4.45% ∗ 7.15
∞ 5.24% ∗ 5.47% ∗ 5.74% ∗ 4.03

1.67
0.95 0.0% 1.37% 3.29% 5.96
∞ 0.88% 2.04% 3.25% 3.96

0.35
1

0.95 1.17% 1.17% 1.17% 3.62
∞ 0.33% 0.66% 1.25% 6.52

1.33
0.95 0.0% 1.76% 2.93% 5.08
∞ 0.0% 1.76% 2.91% 3.64
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ALGORITHM

Matrix α β γ Minimum Average Maximum Average CPU
name Gap Gap Gap time (seconds)

berlin52

0.35 1.67
0.95 0.0% 0.79% 2.36% 4.26
∞ 0.0% 0.38% 1.14% 4.46

0.5

1
0.95 0.87% 1.54% 2.2% 6.31
∞ 0.0% 0.0% 0.0% 5.0

1.33
0.95 1.07% 1.28% 1.44% 7.17
∞ 0.29% 0.69% 1.11% 3.23

1.67
0.95 0.0% 0.34% 0.52% 4.42
∞ 0.0% 0.0% 0.0% 3.41

pr76

0.2

1
0.95
∞ 1.45% ∗ 1.45% ∗ 1.45% ∗ 12.91

1.33
0.95 1.05% ∗ 1.05% ∗ 1.05% ∗ 20.77
∞ 1.06% ∗ 1.26% ∗ 1.62% ∗ 10.4

1.67
0.95 0.74% ∗ 0.96% ∗ 1.27% ∗ 8.09
∞ 0.33% ∗ 0.48% ∗ 0.61% ∗ 10.15

0.35

1
0.95 8.03% ∗ 8.03% ∗ 8.03% ∗ 18.75
∞ 4.13% ∗ 4.13% ∗ 4.13% ∗ 14.81

1.33
0.95 0.07% 0.16% 0.21% 7.38
∞ 0.0% 0.07% 0.21% 8.73

1.67
0.95 0.07% 0.36% 0.95% 12.98
∞ 0.95% 2.14% 2.97% 10.93

0.5

1
0.95 0.0% 1.59% 2.61% 15.25
∞ 0.07% 1.45% 2.74% 16.07

1.33
0.95 0.0% 0.03% 0.07% 8.6
∞ 0.0% 0.87% 2.52% 12.14

1.67
0.95 0.55% 0.56% 0.56% 10.74
∞ 0.82% 0.84% 0.86% 11.09

kroA100

0.2

1
0.95
∞ 8.92% ∗ 10.55% ∗ 11.89% ∗ 82.98

1.33
0.95 0.0% 0.02% 0.04% 15.19
∞ 0.0% 0.15% 0.46% 13.75

1.67
0.95 0.0% 0.0% 0.0% 15.32
∞ 0.0% 0.03% 0.09% 17.33

0.35

1
0.95
∞ 6.33% ∗ 6.45% ∗ 6.69% ∗ 48.97

1.33
0.95 2.44% ∗ 3.71% ∗ 5.88% ∗ 35.9
∞ 1.95% ∗ 2.08% ∗ 2.21% ∗ 35.93

1.67
0.95 0.09% 0.11% 0.13% 22.34
∞ 0.0% 0.19% 0.45% 17.36

0.5
1

0.95
∞ 2.78% ∗ 3.38% ∗ 3.94% ∗ 41.2

1.33 0.95 1.76% ∗ 1.81% ∗ 1.93% ∗ 45.49
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Matrix α β γ Minimum Average Maximum Average CPU
name Gap Gap Gap time (seconds)

kroA100 0.5
1.33 ∞ 1.78% ∗ 1.78% ∗ 1.79% ∗ 39.95

1.67
0.95 0.0% 0.0% 0.0% 25.61
∞ 0.0% 0.27% 0.8% 19.13

pr124

0.2

1
0.95
∞ 5.04% ∗ 7.01% ∗ 8.7% ∗ 32.08

1.33
0.95 9.44% ∗ 9.62% ∗ 9.97% ∗ 19.07
∞ 9.3% ∗ 9.3% ∗ 9.3% ∗ 20.84

1.67
0.95 11.47% ∗ 11.47% ∗ 11.47% ∗ 29.97
∞ 11.0% ∗ 11.13% ∗ 11.41% ∗ 27.2

0.35

1
0.95 8.73% ∗ 8.73% ∗ 8.73% ∗ 16.22
∞ 8.4% ∗ 8.4% ∗ 8.4% ∗ 24.69

1.33
0.95 0.88% 0.88% 0.88% 22.42
∞ 0.0% 0.0% 0.0% 28.21

1.67
0.95 6.69% ∗ 7.78% ∗ 8.52% ∗ 25.93
∞ 5.92% ∗ 6.43% ∗ 7.44% ∗ 22.07

0.5

1
0.95
∞ 4.81% ∗ 5.12% ∗ 5.27% ∗ 39.33

1.33
0.95 2.87% ∗ 3.3% ∗ 3.51% ∗ 25.35
∞ 4.33% ∗ 5.03% ∗ 6.45% ∗ 26.55

1.67
0.95 0.0% 0.2% 0.6% 18.88
∞ 0.07% 0.7% 1.44% 17.23

pr152

0.2

1
0.95 13.48% ∗ 14.21% ∗ 14.95% ∗ 96.62
∞ 14.35% ∗ 15.47% ∗ 16.43% ∗ 127.05

1.33
0.95 13.7% ∗ 13.88% ∗ 14.06% ∗ 56.65
∞ 13.19% ∗ 13.78% ∗ 14.43% ∗ 94.94

1.67
0.95 12.57% ∗ 13.65% ∗ 15.19% ∗ 48.38
∞ 12.36% ∗ 12.74% ∗ 13.39% ∗ 69.64

0.35

1
0.95 24.23% ∗ 24.23% ∗ 24.23% ∗ 40.8
∞ 24.03% ∗ 24.63% ∗ 25.39% ∗ 63.05

1.33
0.95 18.38% ∗ 18.59% ∗ 19.03% ∗ 29.95
∞ 20.51% ∗ 20.85% ∗ 21.19% ∗ 70.8

1.67
0.95 14.72% ∗ 14.72% ∗ 14.72% ∗ 26.24
∞ 14.1% ∗ 14.66% ∗ 15.05% ∗ 34.65

0.5

1
0.95
∞ 8.65% ∗ 12.99% ∗ 15.41% ∗ 68.68

1.33
0.95 8.44% ∗ 8.8% ∗ 9.33% ∗ 36.32
∞ 9.27% ∗ 10.04% ∗ 11.31% ∗ 36.73

1.67
0.95
∞ 22.01% ∗ 22.84% ∗ 23.26% ∗ 29.74

rat195 0.2 1
0.95
∞ 7.53% ∗ 7.79% ∗ 8.21% ∗ 228.19
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Matrix α β γ Minimum Average Maximum Average CPU
name Gap Gap Gap time (seconds)

rat195

0.2
1.33

0.95 5.06% ∗ 5.06% ∗ 5.06% ∗ 205.58
∞ 5.24% ∗ 5.7% ∗ 6.0% ∗ 104.72

1.67
0.95 4.75% ∗ 5.69% ∗ 6.45% ∗ 140.44
∞ 2.6% ∗ 3.61% ∗ 4.16% ∗ 176.47

0.35

1
0.95 4.35% ∗ 4.35% ∗ 4.35% ∗ 202.66
∞ 2.22% ∗ 3.61% ∗ 4.43% ∗ 172.91

1.33
0.95 2.31% ∗ 3.52% ∗ 4.23% ∗ 233.65
∞ 4.73% ∗ 5.41% ∗ 5.97% ∗ 169.35

1.67
0.95
∞ 3.72% ∗ 4.47% ∗ 5.56% ∗ 140.06

0.5

1
0.95
∞ 1.54% ∗ 2.38% ∗ 3.65% ∗ 153.03

1.33
0.95 2.33% ∗ 2.33% ∗ 2.33% ∗ 139.8
∞ 3.02% ∗ 3.14% ∗ 3.24% ∗ 143.61

1.67
0.95 3.65% ∗ 4.37% ∗ 5.08% ∗ 117.4
∞ 2.22% 3.45% 4.63% 109.52

pr226

0.2

1
0.95 21.45% ∗ 24.61% ∗ 28.2% ∗ 460.71
∞ 21.97% ∗ 22.93% ∗ 23.52% ∗ 458.94

1.33
0.95 9.39% ∗ 11.06% ∗ 11.94% ∗ 103.13
∞ 9.34% ∗ 9.88% ∗ 10.42% ∗ 208.54

1.67
0.95 6.91% ∗ 7.3% ∗ 7.53% ∗ 100.0
∞ 6.89% ∗ 6.96% ∗ 7.05% ∗ 170.25

0.35

1
0.95 17.62% ∗ 17.62% ∗ 17.62% ∗ 223.39
∞ 14.68% ∗ 14.73% ∗ 14.8% ∗ 243.15

1.33
0.95 11.4% ∗ 11.71% ∗ 12.28% ∗ 146.92
∞ 11.18% ∗ 12.33% ∗ 14.19% ∗ 167.04

1.67
0.95 9.07% ∗ 10.59% ∗ 12.11% ∗ 127.2
∞ 8.84% ∗ 9.15% ∗ 9.64% ∗ 130.97

0.5

1
0.95
∞ 19.09% ∗ 19.57% ∗ 19.86% ∗ 291.4

1.33
0.95 10.51% ∗ 10.81% ∗ 11.14% ∗ 251.97
∞ 10.72% ∗ 10.72% ∗ 10.73% ∗ 106.47

1.67
0.95 11.03% ∗ 11.56% ∗ 12.04% ∗ 146.6
∞ 10.58% ∗ 11.14% ∗ 11.57% ∗ 127.53

Asymmetric instances

Matrix α β γ Minimum Average Maximum Average CPU
name Gap Gap Gap time (seconds)

ft53 0.2
1

0.95 13.13% ∗ 15.59% ∗ 17.55% ∗ 10.27
∞ 14.82% ∗ 16.39% ∗ 18.37% ∗ 12.38

1.33
0.95 0.0% 1.88% 3.0% 9.2
∞ 4.08% 5.45% 7.75% 6.83
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Matrix α β γ Minimum Average Maximum Average CPU
name Gap Gap Gap time (seconds)

ft53

0.2 1.67
0.95 1.57% 2.78% 4.66% 7.43
∞ 1.47% 2.03% 2.52% 5.2

0.35

1
0.95 3.32% 5.27% 7.58% 8.61
∞ 2.23% 5.41% 8.14% 9.22

1.33
0.95 3.36% 5.56% 7.69% 6.88
∞ 4.29% 5.75% 6.96% 11.09

1.67
0.95 2.26% 4.35% 6.2% 4.27
∞ 1.01% 5.09% 10.25% 3.77

0.5

1
0.95 0.06% 4.15% 6.6% 7.15
∞ 2.93% 4.99% 8.28% 7.15

1.33
0.95 0.0% 1.39% 2.61% 3.51
∞ 2.55% 4.75% 7.33% 4.12

1.67
0.95 0.0% 1.82% 4.42% 6.26
∞ 3.07% 4.29% 6.49% 4.34

ftv64

0.2

1
0.95 4.83% 7.65% 9.35% 7.13
∞ 3.19% 5.36% 8.28% 12.13

1.33
0.95 2.32% 5.89% 10.3% 5.6
∞ 3.29% 5.5% 7.71% 3.77

1.67
0.95 1.31% 4.4% 7.5% 4.1
∞ 1.25% 4.64% 10.39% 4.88

0.35

1
0.95 4.93% 10.17% 14.79% 10.45
∞ 4.23% 7.04% 8.88% 7.05

1.33
0.95 4.71% 8.31% 10.73% 6.92
∞ 1.35% 3.32% 4.71% 6.91

1.67
0.95 2.18% 3.37% 4.68% 4.15
∞ 2.28% 3.73% 5.44% 4.23

0.5

1
0.95 0.27% 1.01% 2.49% 14.58
∞ 1.41% 2.99% 5.41% 3.87

1.33
0.95 0.81% 2.73% 6.57% 6.35
∞ 2.44% 3.44% 4.18% 4.89

1.67
0.95 3.31% 5.36% 6.68% 5.07
∞ 3.09% 3.49% 4.29% 3.34

ft70

0.2

1
0.95 5.45% ∗ 6.15% ∗ 6.81% ∗ 15.3
∞ 5.81% ∗ 6.11% ∗ 6.53% ∗ 17.12

1.33
0.95 4.03% 4.79% 5.18% 12.66
∞ 3.02% 3.68% 4.04% 17.11

1.67
0.95 3.07% 4.28% 5.63% 11.19
∞ 2.71% 3.06% 3.5% 14.4

0.35
1

0.95 2.77% 3.85% 4.61% 10.29
∞ 3.18% 4.21% 5.09% 17.84

1.33 0.95 3.07% 3.4% 4.05% 14.03
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Matrix α β γ Minimum Average Maximum Average CPU
name Gap Gap Gap time (seconds)

ft70

0.35
1.33 ∞ 2.54% 3.39% 4.3% 9.2

1.67
0.95 2.88% 3.17% 3.44% 14.96
∞ 3.88% 4.18% 4.66% 10.57

0.5

1
0.95 3.46% 4.02% 4.58% 20.25
∞ 2.0% 3.44% 4.56% 13.71

1.33
0.95 3.0% 3.24% 3.48% 16.74
∞ 2.64% 3.23% 4.21% 13.32

1.67
0.95 2.33% 3.51% 4.7% 17.0
∞ 1.71% 2.67% 3.59% 16.09

kro124p

0.2

1
0.95 7.47% ∗ 9.51% ∗ 12.6% ∗ 39.06
∞ 7.6% ∗ 9.26% ∗ 10.14% ∗ 38.4

1.33
0.95 0.71% 2.89% 5.03% 41.67
∞ 1.92% 4.5% 6.65% 14.24

1.67
0.95 1.46% 1.89% 2.58% 22.11
∞ 4.25% 6.7% 9.08% 17.96

0.35

1
0.95
∞ 12.55% ∗ 15.72% ∗ 17.55% ∗ 39.29

1.33
0.95 1.92% 3.4% 5.55% 12.79
∞ 1.29% 1.54% 1.75% 24.07

1.67
0.95 1.29% 1.45% 1.74% 15.8
∞ 1.05% 1.28% 1.54% 21.81

0.5

1
0.95 4.03% ∗ 5.51% ∗ 7.63% ∗ 37.43
∞ 3.67% ∗ 5.59% ∗ 8.59% ∗ 31.5

1.33
0.95 2.29% 4.05% 4.94% 42.96
∞ 1.27% 3.03% 4.33% 22.37

1.67
0.95 2.94% 3.46% 4.03% 21.96
∞ 1.77% 2.51% 3.47% 17.15

ftv170

0.2

1
0.95 18.03% ∗ 18.03% ∗ 18.03% ∗ 78.33
∞ 16.3% ∗ 17.43% ∗ 18.23% ∗ 76.59

1.33
0.95 6.45% 10.91% 18.35% 49.62
∞ 5.0% 6.04% 6.85% 42.9

1.67
0.95 4.13% 6.08% 8.01% 40.68
∞ 3.92% 5.18% 6.96% 33.95

0.35

1
0.95 10.94% ∗ 12.31% ∗ 13.24% ∗ 122.81
∞ 11.95% ∗ 12.25% ∗ 12.45% ∗ 88.52

1.33
0.95 5.99% 8.26% 10.82% 59.13
∞ 7.26% 7.97% 8.46% 57.38

1.67
0.95 6.86% 7.95% 8.71% 53.56
∞ 6.42% 8.42% 11.29% 43.57

0.5 1
0.95 10.3% ∗ 11.28% ∗ 12.08% ∗ 82.13
∞ 8.63% ∗ 11.99% ∗ 16.93% ∗ 53.53
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Matrix α β γ Minimum Average Maximum Average CPU
name Gap Gap Gap time (seconds)

ftv170 0.5
1.33

0.95 8.97% 12.5% 16.09% 55.46
∞ 8.42% 10.0% 12.47% 48.8

1.67
0.95 7.22% 10.28% 12.99% 55.13
∞ 6.13% 7.49% 8.49% 67.86

B.2.2 Results for a maximum of 2500 iterations

ANN as the constructive heuristic

Table B.13: Computational results, for ω = 1/2 and MaxIt =

2500, using the solution obtained through the ANN heuristic as
the initial solution.

Symmetric instances

Matrix α β γ Minimum Average Maximum Average CPU
name Gap Gap Gap time (seconds)

berlin52

0.2

1
0.95
∞ 4.49% ∗ 4.49% ∗ 4.49% ∗ 7.62

1.33
0.95 4.4% ∗ 4.43% ∗ 4.45% ∗ 9.95
∞ 5.38% ∗ 5.45% ∗ 5.74% ∗ 6.71

1.67
0.95
∞ 0.88% 1.77% 1.99% 7.44

0.35

1
0.95 0.14% 0.53% 1.17% 7.55
∞ 0.0% 0.41% 1.17% 7.59

1.33
0.95 0.0% 0.47% 2.36% 7.71
∞ 0.0% 0.75% 2.36% 5.71

1.67
0.95 0.0% 0.0% 0.0% 6.18
∞ 0.0% 0.0% 0.0% 6.17

0.5

1
0.95
∞ 0.0% 0.08% 0.4% 5.47

1.33
0.95
∞ 0.29% 0.94% 1.11% 5.68

1.67
0.95 1.33% 1.67% 2.74% 6.75
∞ 0.0% 0.96% 1.65% 5.02

pr76
0.2

1
0.95
∞ 1.45% ∗ 1.45% ∗ 1.45% ∗ 13.22

1.33
0.95 1.54% ∗ 1.54% ∗ 1.54% ∗ 15.84
∞ 1.04% ∗ 1.45% ∗ 1.55% ∗ 15.56

1.67
0.95 0.5% ∗ 0.78% ∗ 1.27% ∗ 13.01
∞ 0.51% ∗ 0.62% ∗ 0.8% ∗ 12.04

0.35 1 0.95
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Matrix α β γ Minimum Average Maximum Average CPU
name Gap Gap Gap time (seconds)

pr76

0.35

1 ∞ 4.13% ∗ 4.36% ∗ 5.27% ∗ 17.03

1.33
0.95 0.0% 0.02% 0.08% 11.57
∞ 0.0% 0.05% 0.08% 8.44

1.67
0.95 0.0% 0.72% 0.95% 13.56
∞ 0.0% 0.54% 0.91% 11.44

0.5

1
0.95
∞ 0.0% 0.0% 0.0% 13.74

1.33
0.95
∞ 0.0% 1.05% 2.8% 8.99

1.67
0.95 0.55% 0.55% 0.55% 7.28
∞ 0.0% 0.61% 1.08% 9.74

kroA100

0.2

1
0.95
∞ 8.25% ∗ 9.05% ∗ 10.52% ∗ 70.24

1.33
0.95
∞ 0.0% 0.02% 0.04% 16.09

1.67
0.95
∞ 0.0% 0.13% 0.44% 18.03

0.35

1
0.95
∞ 6.33% ∗ 6.48% ∗ 6.76% ∗ 55.48

1.33
0.95
∞ 1.56% ∗ 1.6% ∗ 1.74% ∗ 40.3

1.67
0.95 0.0% 0.01% 0.04% 14.08
∞ 0.0% 0.02% 0.09% 18.84

0.5

1
0.95
∞ 2.57% ∗ 3.06% ∗ 3.8% ∗ 69.86

1.33
0.95 1.76% ∗ 2.04% ∗ 2.72% ∗ 56.0
∞ 1.78% ∗ 1.79% ∗ 1.81% ∗ 37.56

1.67
0.95 0.0% 0.15% 0.71% 16.16
∞ 0.0% 0.0% 0.0% 18.98

pr124

0.2

1
0.95
∞ 5.58% ∗ 6.06% ∗ 6.54% ∗ 43.69

1.33
0.95 9.44% ∗ 10.06% ∗ 11.0% ∗ 20.79
∞ 9.23% ∗ 9.61% ∗ 9.83% ∗ 20.65

1.67
0.95 10.93% ∗ 10.93% ∗ 10.93% ∗ 17.66
∞ 11.0% ∗ 11.0% ∗ 11.0% ∗ 16.08

0.35

1
0.95
∞ 8.4% ∗ 9.67% ∗ 14.72% ∗ 23.6

1.33
0.95
∞ 0.0% 0.35% 0.88% 23.74

1.67
0.95
∞ 5.92% ∗ 6.53% ∗ 6.85% ∗ 17.9
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Matrix α β γ Minimum Average Maximum Average CPU
name Gap Gap Gap time (seconds)

pr124 0.5

1
0.95
∞ 4.81% ∗ 5.31% ∗ 6.18% ∗ 50.89

1.33
0.95
∞ 4.33% ∗ 4.58% ∗ 4.95% ∗ 27.22

1.67
0.95
∞ 0.0% 0.0% 0.0% 16.2

pr152

0.2

1
0.95 13.54% ∗ 14.18% ∗ 14.67% ∗ 95.32
∞ 13.98% ∗ 14.38% ∗ 15.08% ∗ 83.19

1.33
0.95 13.55% ∗ 14.0% ∗ 15.17% ∗ 70.05
∞ 13.21% ∗ 13.27% ∗ 13.52% ∗ 90.94

1.67
0.95 13.07% ∗ 13.14% ∗ 13.42% ∗ 60.19
∞ 12.95% ∗ 12.95% ∗ 12.95% ∗ 46.68

0.35

1
0.95 23.31% ∗ 24.24% ∗ 26.55% ∗ 88.97
∞ 23.56% ∗ 24.67% ∗ 27.37% ∗ 94.67

1.33
0.95 19.36% ∗ 19.63% ∗ 19.7% ∗ 34.82
∞ 21.19% ∗ 21.19% ∗ 21.19% ∗ 39.09

1.67
0.95 14.64% ∗ 14.68% ∗ 14.72% ∗ 49.3
∞ 14.77% ∗ 14.77% ∗ 14.77% ∗ 31.16

0.5

1
0.95
∞ 9.56% ∗ 9.56% ∗ 9.56% ∗ 42.01

1.33
0.95 8.64% ∗ 9.67% ∗ 11.32% ∗ 40.81
∞ 9.34% ∗ 9.4% ∗ 9.67% ∗ 34.46

1.67
0.95
∞ 23.61% ∗ 23.61% ∗ 23.61% ∗ 36.07

rat195

0.2

1
0.95
∞ 4.53% ∗ 5.57% ∗ 7.26% ∗ 259.63

1.33
0.95
∞ 2.82% ∗ 3.55% ∗ 4.79% ∗ 150.65

1.67
0.95 2.91% ∗ 3.56% ∗ 3.9% ∗ 120.69
∞ 2.6% ∗ 3.32% ∗ 3.76% ∗ 114.44

0.35

1
0.95
∞ 2.44% ∗ 3.62% ∗ 5.54% ∗ 157.75

1.33
0.95 1.56% ∗ 2.46% ∗ 3.52% ∗ 108.91
∞ 2.14% ∗ 2.77% ∗ 3.52% ∗ 119.97

1.67
0.95
∞ 2.6% ∗ 3.09% ∗ 3.54% ∗ 119.07

0.5
1

0.95
∞ 1.28% ∗ 2.51% ∗ 3.17% ∗ 188.67

1.33
0.95 0.57% ∗ 1.96% ∗ 2.56% ∗ 181.53
∞ 1.86% ∗ 2.21% ∗ 2.4% ∗ 115.46
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Matrix α β γ Minimum Average Maximum Average CPU
name Gap Gap Gap time (seconds)

rat195 0.5 1.67
0.95 2.05% ∗ 2.44% ∗ 3.21% ∗ 155.32
∞ 1.91% 2.36% 2.98% 98.26

pr226

0.2

1
0.95 22.1% ∗ 24.52% ∗ 27.94% ∗ 213.85
∞ 22.31% ∗ 22.76% ∗ 23.35% ∗ 273.37

1.33
0.95
∞ 9.36% ∗ 10.74% ∗ 11.74% ∗ 204.51

1.67
0.95 6.72% ∗ 7.2% ∗ 7.58% ∗ 161.58
∞ 6.84% ∗ 7.09% ∗ 7.75% ∗ 149.36

0.35

1
0.95 17.99% ∗ 19.4% ∗ 20.98% ∗ 289.47
∞ 15.23% ∗ 17.41% ∗ 18.42% ∗ 201.95

1.33
0.95
∞ 10.48% ∗ 11.02% ∗ 11.25% ∗ 140.79

1.67
0.95
∞ 8.89% ∗ 9.07% ∗ 9.32% ∗ 157.68

0.5

1
0.95 14.17% ∗ 15.33% ∗ 16.94% ∗ 628.23
∞ 17.32% ∗ 19.47% ∗ 21.59% ∗ 264.38

1.33
0.95 10.48% ∗ 10.86% ∗ 11.15% ∗ 246.07
∞ 10.57% ∗ 12.11% ∗ 18.18% ∗ 207.03

1.67
0.95
∞ 10.52% ∗ 10.65% ∗ 10.91% ∗ 132.26

Asymmetric instances

Matrix α β γ Minimum Average Maximum Average CPU
name Gap Gap Gap time (seconds)

ft53

0.2

1
0.95 13.57% ∗ 17.39% ∗ 19.61% ∗ 14.1
∞ 11.58% ∗ 16.52% ∗ 18.25% ∗ 18.96

1.33
0.95 0.74% 3.91% 7.1% 11.01
∞ 3.55% 5.18% 7.67% 6.55

1.67
0.95 0.57% 2.03% 5.38% 5.1
∞ 0.0% 1.54% 2.65% 6.32

0.35

1
0.95 3.63% 6.16% 9.22% 12.45
∞ 0.0% 2.14% 6.05% 15.35

1.33
0.95 0.0% 5.12% 9.4% 10.43
∞ 1.74% 4.01% 6.34% 10.49

1.67
0.95 0.06% 2.25% 5.01% 4.98
∞ 0.0% 2.09% 5.4% 4.68

0.5

1
0.95 0.06% 2.34% 3.68% 9.17
∞ 3.35% 4.72% 10.17% 8.96

1.33
0.95 0.0% 0.89% 2.62% 6.38
∞ 0.0% 1.98% 3.36% 5.48

1.67
0.95 0.0% 1.86% 3.75% 5.11
∞ 0.0% 1.27% 2.55% 4.19
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Matrix α β γ Minimum Average Maximum Average CPU
name Gap Gap Gap time (seconds)

ftv64

0.2

1
0.95
∞ 3.88% 6.46% 7.65% 17.08

1.33
0.95
∞ 1.67% 3.89% 7.01% 6.65

1.67
0.95 3.37% 4.6% 6.47% 9.5
∞ 3.37% 3.99% 5.06% 8.96

0.35

1
0.95 0.05% 2.81% 9.05% 11.14
∞ 0.05% 4.51% 9.48% 9.17

1.33
0.95 2.44% 3.94% 6.01% 7.74
∞ 1.79% 3.39% 6.5% 5.74

1.67
0.95 0.76% 2.32% 3.37% 5.2
∞ 0.98% 2.56% 4.4% 5.6

0.5

1
0.95 1.41% 3.22% 6.7% 13.06
∞ 0.38% 4.81% 8.54% 9.02

1.33
0.95 0.98% 3.7% 10.21% 6.16
∞ 0.0% 2.28% 4.29% 7.41

1.67
0.95 0.87% 2.61% 4.18% 4.69
∞ 0.33% 0.71% 1.19% 4.57

ft70

0.2

1
0.95 5.55% ∗ 6.42% ∗ 7.0% ∗ 19.99
∞ 5.5% ∗ 6.2% ∗ 6.73% ∗ 22.0

1.33
0.95 3.25% 3.98% 4.87% 25.06
∞ 2.56% 3.15% 3.89% 17.93

1.67
0.95 2.73% 3.9% 4.83% 24.65
∞ 3.25% 3.84% 4.74% 16.94

0.35

1
0.95 2.77% 3.28% 4.12% 22.47
∞ 2.22% 2.85% 3.87% 24.31

1.33
0.95 2.15% 3.77% 5.01% 18.69
∞ 2.12% 2.43% 2.97% 18.84

1.67
0.95
∞ 2.29% 2.75% 4.16% 21.34

0.5

1
0.95
∞ 2.31% 3.4% 4.45% 13.1

1.33
0.95
∞ 2.4% 3.09% 3.33% 16.64

1.67
0.95
∞ 1.9% 2.74% 4.1% 17.77

kro124p 0.2

1
0.95
∞ 6.83% ∗ 9.21% ∗ 13.35% ∗ 54.72

1.33
0.95 4.1% 5.11% 5.95% 31.54
∞ 3.2% 4.66% 6.91% 27.79

1.67 0.95 6.01% 7.94% 11.12% 31.27

150



APPENDIX B. DETAILED RESULTS OF THE TESTS ON THE PARAMETERS OF THE ILS
ALGORITHM

Matrix α β γ Minimum Average Maximum Average CPU
name Gap Gap Gap time (seconds)

kro124p

0.2 1.67 ∞ 3.87% 6.26% 10.89% 32.83

0.35

1
0.95
∞ 6.47% ∗ 8.48% ∗ 10.69% ∗ 66.12

1.33
0.95 3.88% 5.47% 6.68% 50.36
∞ 1.73% 3.98% 5.28% 36.04

1.67
0.95 5.67% 7.63% 10.1% 34.69
∞ 3.61% 8.31% 11.82% 26.13

0.5

1
0.95
∞ 3.74% ∗ 8.18% ∗ 11.49% ∗ 65.2

1.33
0.95 5.09% 7.36% 9.66% 40.26
∞ 7.06% 8.62% 10.43% 42.8

1.67
0.95 5.13% 5.89% 7.02% 42.81
∞ 3.94% 7.61% 11.65% 28.53

ftv170

0.2

1
0.95
∞ 8.13% ∗ 14.71% ∗ 17.18% ∗ 147.31

1.33
0.95 3.63% 8.93% 12.22% 61.53
∞ 6.09% 8.69% 11.06% 72.25

1.67
0.95 7.22% 8.55% 11.78% 54.25
∞ 9.35% 10.17% 11.97% 52.86

0.35

1
0.95
∞ 4.07% ∗ 7.12% ∗ 8.32% ∗ 105.43

1.33
0.95
∞ 5.74% 9.52% 12.38% 56.95

1.67
0.95 6.1% 8.42% 12.45% 38.32
∞ 5.41% 6.29% 8.68% 65.77

0.5

1
0.95
∞ 4.99% ∗ 6.72% ∗ 8.99% ∗ 71.2

1.33
0.95
∞ 4.84% 7.91% 12.47% 48.68

1.67
0.95 5.84% 8.47% 13.58% 54.77
∞ 5.88% 6.85% 7.84% 48.72
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AFI as the constructive heuristic

Table B.14: Computational results, for ω = 1/2 and MaxIt =

2500, using the solution obtained through the AFI heuristic as the
initial solution.

Symmetric instances

Matrix α β γ Minimum Average Maximum Average CPU
name Gap Gap Gap time (seconds)

berlin52

0.2

1
0.95
∞ 4.49% ∗ 4.49% ∗ 4.49% ∗ 8.41

1.33
0.95 4.4% ∗ 4.49% ∗ 4.76% ∗ 8.02
∞ 5.38% ∗ 5.47% ∗ 5.74% ∗ 5.11

1.67
0.95 0.0% 1.04% 1.99% 9.48
∞ 0.88% 1.77% 1.99% 7.05

0.35

1
0.95 0.0% 0.33% 1.17% 6.44
∞ 0.0% 0.18% 0.23% 6.84

1.33
0.95 0.0% 0.47% 2.36% 7.8
∞ 0.0% 0.0% 0.0% 6.26

1.67
0.95 0.0% 0.47% 2.36% 5.45
∞ 0.0% 0.47% 2.36% 5.57

0.5

1
0.95
∞ 0.0% 0.0% 0.0% 5.01

1.33
0.95 0.0% 1.07% 1.34% 7.3
∞ 0.29% 0.29% 0.29% 4.13

1.67
0.95 0.0% 0.47% 1.33% 6.16
∞ 0.0% 0.53% 1.33% 5.03

pr76

0.2

1
0.95
∞ 1.45% ∗ 1.81% ∗ 2.23% ∗ 14.8

1.33
0.95 1.03% ∗ 3.16% ∗ 3.86% ∗ 19.66
∞ 1.04% ∗ 2.14% ∗ 3.84% ∗ 12.92

1.67
0.95 0.39% ∗ 0.46% ∗ 0.74% ∗ 14.52
∞ 0.33% ∗ 0.37% ∗ 0.52% ∗ 14.38

0.35

1
0.95
∞ 4.13% ∗ 4.28% ∗ 4.89% ∗ 15.44

1.33
0.95 0.0% 0.02% 0.08% 9.75
∞ 0.0% 0.14% 0.21% 11.79

1.67
0.95 0.0% 0.03% 0.07% 12.23
∞ 0.0% 0.09% 0.26% 10.31

0.5
1

0.95
∞ 0.0% 2.7% 4.07% 15.09

1.33
0.95 0.0% 1.53% 2.74% 11.5
∞ 0.0% 1.65% 2.74% 12.02
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Matrix α β γ Minimum Average Maximum Average CPU
name Gap Gap Gap time (seconds)

pr76 0.5 1.67
0.95
∞ 0.0% 0.09% 0.26% 10.28

kroA100

0.2

1
0.95
∞ 8.25% ∗ 9.46% ∗ 10.98% ∗ 67.07

1.33
0.95 0.0% 0.0% 0.0% 20.35
∞ 0.0% 0.0% 0.0% 15.47

1.67
0.95 0.0% 0.0% 0.0% 17.54
∞ 0.0% 0.0% 0.0% 16.21

0.35

1
0.95
∞ 6.33% ∗ 6.33% ∗ 6.33% ∗ 53.12

1.33
0.95 2.79% ∗ 4.23% ∗ 4.85% ∗ 26.07
∞ 1.56% ∗ 1.57% ∗ 1.6% ∗ 57.97

1.67
0.95 0.0% 0.0% 0.0% 16.0
∞ 0.0% 0.02% 0.04% 20.44

0.5

1
0.95
∞ 2.62% ∗ 3.21% ∗ 4.75% ∗ 53.2

1.33
0.95 1.76% ∗ 1.92% ∗ 2.57% ∗ 76.34
∞ 1.78% ∗ 2.0% ∗ 2.9% ∗ 33.82

1.67
0.95 0.0% 0.0% 0.0% 18.86
∞ 0.0% 0.0% 0.0% 21.25

pr124

0.2

1
0.95 6.84% ∗ 6.93% ∗ 7.32% ∗ 46.74
∞ 5.04% ∗ 5.95% ∗ 6.54% ∗ 32.52

1.33
0.95 9.44% ∗ 9.44% ∗ 9.44% ∗ 20.89
∞ 9.23% ∗ 9.27% ∗ 9.3% ∗ 28.99

1.67
0.95 10.93% ∗ 10.93% ∗ 10.93% ∗ 20.13
∞ 11.0% ∗ 11.0% ∗ 11.0% ∗ 18.03

0.35

1
0.95
∞ 8.4% ∗ 8.4% ∗ 8.4% ∗ 20.94

1.33
0.95
∞ 0.0% 0.42% 0.88% 20.18

1.67
0.95 6.69% ∗ 7.27% ∗ 8.14% ∗ 31.5
∞ 5.92% ∗ 6.61% ∗ 7.44% ∗ 22.25

0.5

1
0.95
∞ 4.32% ∗ 4.7% ∗ 5.27% ∗ 36.48

1.33
0.95 1.98% ∗ 2.15% ∗ 2.87% ∗ 30.89
∞ 4.33% ∗ 4.58% ∗ 4.95% ∗ 27.31

1.67
0.95 0.0% 0.29% 0.78% 18.54
∞ 0.0% 0.36% 0.6% 27.35

pr152 0.2
1

0.95
∞ 13.95% ∗ 14.54% ∗ 15.37% ∗ 107.5

1.33 0.95 13.43% ∗ 14.31% ∗ 15.11% ∗ 86.9
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Matrix α β γ Minimum Average Maximum Average CPU
name Gap Gap Gap time (seconds)

pr152

0.2
1.33 ∞ 13.19% ∗ 13.58% ∗ 14.13% ∗ 82.15

1.67
0.95 12.48% ∗ 12.97% ∗ 13.1% ∗ 34.82
∞ 12.36% ∗ 12.99% ∗ 14.24% ∗ 44.15

0.35

1
0.95
∞ 22.65% ∗ 24.07% ∗ 25.08% ∗ 74.12

1.33
0.95 18.38% ∗ 18.82% ∗ 19.12% ∗ 50.19
∞ 19.94% ∗ 20.32% ∗ 20.6% ∗ 42.69

1.67
0.95
∞ 14.1% ∗ 14.64% ∗ 14.82% ∗ 39.66

0.5

1
0.95
∞ 8.65% ∗ 9.14% ∗ 9.33% ∗ 47.87

1.33
0.95 9.04% ∗ 9.21% ∗ 9.33% ∗ 37.15
∞ 8.43% ∗ 8.89% ∗ 9.32% ∗ 52.69

1.67
0.95
∞ 22.91% ∗ 22.93% ∗ 23.01% ∗ 47.79

rat195

0.2

1
0.95
∞ 5.43% ∗ 7.04% ∗ 8.12% ∗ 312.71

1.33
0.95
∞ 4.07% ∗ 4.54% ∗ 4.83% ∗ 157.73

1.67
0.95 2.29% ∗ 4.2% ∗ 6.01% ∗ 134.16
∞ 3.85% ∗ 4.42% ∗ 5.06% ∗ 150.29

0.35

1
0.95
∞ 3.01% ∗ 3.75% ∗ 4.26% ∗ 202.63

1.33
0.95 4.09% ∗ 4.44% ∗ 5.12% ∗ 135.64
∞ 3.61% ∗ 4.06% ∗ 4.5% ∗ 155.09

1.67
0.95
∞ 3.0% ∗ 4.03% ∗ 5.38% ∗ 146.68

0.5

1
0.95
∞ 2.86% ∗ 4.0% ∗ 4.93% ∗ 141.34

1.33
0.95 0.88% ∗ 2.21% ∗ 4.01% ∗ 266.81
∞ 2.4% ∗ 3.92% ∗ 6.66% ∗ 165.56

1.67
0.95 2.41% ∗ 3.48% ∗ 4.94% ∗ 134.59
∞ 2.14% 3.19% 4.63% 160.67

pr226
0.2

1
0.95
∞ 23.19% ∗ 25.08% ∗ 27.76% ∗ 310.7

1.33
0.95 9.19% ∗ 10.44% ∗ 12.12% ∗ 222.35
∞ 9.07% ∗ 10.47% ∗ 11.83% ∗ 182.47

1.67
0.95 6.72% ∗ 6.78% ∗ 6.83% ∗ 162.55
∞ 6.85% ∗ 6.94% ∗ 7.1% ∗ 134.94

0.35 1
0.95
∞ 14.51% ∗ 14.61% ∗ 14.89% ∗ 252.52
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Matrix α β γ Minimum Average Maximum Average CPU
name Gap Gap Gap time (seconds)

pr226

0.35
1.33

0.95 11.34% ∗ 11.4% ∗ 11.47% ∗ 166.1
∞ 10.48% ∗ 10.63% ∗ 11.14% ∗ 174.28

1.67
0.95 9.12% ∗ 9.18% ∗ 9.24% ∗ 201.06
∞ 8.76% ∗ 8.85% ∗ 8.9% ∗ 150.8

0.5

1
0.95
∞ 19.16% ∗ 19.43% ∗ 19.71% ∗ 383.71

1.33
0.95 11.21% ∗ 11.58% ∗ 11.91% ∗ 186.87
∞ 10.55% ∗ 10.6% ∗ 10.68% ∗ 131.32

1.67
0.95 11.04% ∗ 11.23% ∗ 11.83% ∗ 153.58
∞ 10.55% ∗ 10.6% ∗ 10.66% ∗ 95.24

Asymmetric instances

Matrix α β γ Minimum Average Maximum Average CPU
name Gap Gap Gap time (seconds)

ft53

0.2

1
0.95
∞ 11.58% ∗ 14.44% ∗ 21.69% ∗ 15.23

1.33
0.95 0.74% 4.27% 7.46% 8.59
∞ 3.27% 5.77% 7.6% 7.18

1.67
0.95 0.0% 2.44% 4.13% 6.23
∞ 0.0% 2.46% 9.5% 5.4

0.35

1
0.95
∞ 0.85% 3.56% 5.43% 13.31

1.33
0.95 2.84% 3.7% 4.37% 9.38
∞ 0.85% 2.92% 4.3% 13.94

1.67
0.95 0.0% 1.12% 3.16% 5.27
∞ 0.0% 1.26% 2.59% 4.83

0.5

1
0.95 2.61% 3.62% 4.23% 5.34
∞ 2.61% 4.43% 7.6% 5.69

1.33
0.95 1.71% 2.74% 3.48% 5.86
∞ 0.06% 1.84% 3.98% 6.33

1.67
0.95 1.56% 2.76% 4.4% 4.97
∞ 0.06% 1.13% 1.96% 5.42

ftv64

0.2

1
0.95 3.88% 6.73% 9.72% 13.97
∞ 2.81% 7.17% 10.14% 10.9

1.33
0.95 2.53% 4.47% 5.44% 6.53
∞ 0.97% 3.28% 6.36% 8.36

1.67
0.95
∞ 2.28% 2.66% 3.48% 5.97

0.35
1

0.95 0.05% 2.87% 6.39% 12.65
∞ 0.05% 3.5% 6.39% 11.0

1.33
0.95 0.22% 2.78% 5.8% 7.49
∞ 1.57% 1.97% 2.82% 7.98
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Matrix α β γ Minimum Average Maximum Average CPU
name Gap Gap Gap time (seconds)

ftv64

0.35 1.67
0.95 2.28% 4.05% 5.33% 3.86
∞ 1.96% 2.81% 4.57% 6.09

0.5

1
0.95
∞ 0.43% 1.75% 3.08% 9.13

1.33
0.95 0.98% 1.27% 1.95% 5.17
∞ 0.98% 2.6% 4.67% 5.57

1.67
0.95
∞ 0.98% 2.13% 3.53% 4.47

ft70

0.2

1
0.95 4.48% ∗ 5.98% ∗ 7.11% ∗ 28.18
∞ 4.14% ∗ 5.46% ∗ 6.42% ∗ 35.49

1.33
0.95 3.45% 4.19% 5.08% 22.02
∞ 2.14% 2.46% 2.72% 25.48

1.67
0.95 2.08% 3.41% 4.28% 20.37
∞ 1.7% 2.69% 4.12% 17.67

0.35

1
0.95 2.19% 2.8% 3.74% 21.67
∞ 2.13% 3.11% 4.74% 18.34

1.33
0.95 1.65% 2.81% 3.93% 17.91
∞ 2.09% 2.7% 3.54% 25.09

1.67
0.95 3.05% 3.41% 3.97% 17.15
∞ 2.28% 3.38% 4.89% 16.78

0.5

1
0.95 1.96% 3.09% 4.59% 28.2
∞ 2.11% 2.86% 3.42% 18.01

1.33
0.95 2.43% 3.4% 5.37% 16.24
∞ 1.32% 2.83% 3.9% 15.01

1.67
0.95 2.02% 3.15% 4.11% 16.39
∞ 2.46% 2.99% 3.69% 18.15

kro124p

0.2

1
0.95 4.58% ∗ 6.36% ∗ 7.29% ∗ 45.32
∞ 4.81% ∗ 6.04% ∗ 6.99% ∗ 57.84

1.33
0.95 0.77% 1.96% 5.59% 24.16
∞ 0.15% 2.1% 4.92% 27.81

1.67
0.95 0.62% 1.14% 1.72% 31.86
∞ 0.81% 1.38% 2.39% 24.19

0.35

1
0.95
∞ 8.37% ∗ 9.84% ∗ 11.63% ∗ 76.96

1.33
0.95 1.01% 2.08% 2.97% 33.67
∞ 0.53% 1.65% 2.13% 30.12

1.67
0.95 0.43% 1.49% 3.08% 25.48
∞ 3.09% 3.74% 4.13% 19.69

0.5
1

0.95 2.49% ∗ 4.04% ∗ 5.29% ∗ 41.89
∞ 2.73% ∗ 4.9% ∗ 6.45% ∗ 43.52

1.33 0.95 3.12% 4.33% 6.13% 32.61
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ALGORITHM

Matrix α β γ Minimum Average Maximum Average CPU
name Gap Gap Gap time (seconds)

kro124p 0.5
1.33 ∞ 3.38% 4.6% 6.28% 39.21

1.67
0.95 1.13% 2.79% 3.83% 29.3
∞ 0.8% 2.21% 3.78% 26.49

ftv170

0.2

1
0.95
∞ 5.0% ∗ 7.24% ∗ 9.41% ∗ 134.46

1.33
0.95 1.2% 3.81% 5.44% 72.52
∞ 3.23% 4.79% 6.42% 54.44

1.67
0.95 3.26% 6.58% 9.83% 52.21
∞ 1.23% 3.05% 4.64% 73.86

0.35

1
0.95 6.31% ∗ 11.63% ∗ 13.53% ∗ 91.66
∞ 7.81% ∗ 11.41% ∗ 16.88% ∗ 101.41

1.33
0.95 2.87% 4.11% 5.74% 51.59
∞ 2.4% 6.37% 9.55% 80.32

1.67
0.95 4.36% 6.03% 6.93% 56.42
∞ 3.16% 3.91% 4.97% 44.95

0.5

1
0.95 7.54% ∗ 9.81% ∗ 14.04% ∗ 140.17
∞ 8.41% ∗ 9.6% ∗ 10.96% ∗ 126.29

1.33
0.95 4.84% 6.64% 9.36% 82.85
∞ 4.27% 10.16% 12.94% 80.0

1.67
0.95 2.4% 3.95% 7.7% 47.63
∞ 3.16% 4.44% 5.7% 48.42

ARI as the constructive heuristic

Table B.15: Computational results, for ω = 1/2 and MaxIt =

2500, using the solution obtained through the ARI heuristic as the
initial solution.

Symmetric instances

Matrix α β γ Minimum Average Maximum Average CPU
name Gap Gap Gap time (seconds)

berlin52

0.2

1
0.95
∞ 4.49% ∗ 4.65% ∗ 5.27% ∗ 17.03

1.33
0.95 4.4% ∗ 4.41% ∗ 4.45% ∗ 12.73
∞ 5.38% ∗ 5.38% ∗ 5.38% ∗ 10.72

1.67
0.95 0.0% 0.52% 0.88% 18.08
∞ 0.88% 2.02% 3.26% 11.91

0.35
1

0.95 0.0% 0.5% 1.29% 11.4
∞ 0.0% 0.08% 0.42% 15.49

1.33
0.95 0.0% 1.91% 2.93% 11.51
∞ 0.0% 1.12% 2.93% 12.04
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Matrix α β γ Minimum Average Maximum Average CPU
name Gap Gap Gap time (seconds)

berlin52

0.35 1.67
0.95 0.0% 0.73% 3.63% 10.05
∞ 0.0% 1.06% 2.91% 10.32

0.5

1
0.95
∞ 0.0% 0.53% 2.64% 10.15

1.33
0.95 0.83% 1.03% 1.34% 19.76
∞ 0.0% 0.23% 0.29% 8.49

1.67
0.95 0.0% 0.47% 1.33% 8.09
∞ 0.0% 0.1% 0.52% 10.64

pr76

0.2

1
0.95
∞ 1.45% ∗ 1.75% ∗ 2.16% ∗ 36.52

1.33
0.95 3.86% ∗ 3.86% ∗ 3.86% ∗ 23.5
∞ 1.11% ∗ 1.43% ∗ 1.86% ∗ 23.24

1.67
0.95 0.5% ∗ 0.63% ∗ 0.74% ∗ 28.86
∞ 0.33% ∗ 0.52% ∗ 0.82% ∗ 27.25

0.35

1
0.95 4.22% ∗ 4.22% ∗ 4.22% ∗ 32.67
∞ 4.13% ∗ 4.36% ∗ 5.27% ∗ 28.49

1.33
0.95 0.0% 0.08% 0.21% 21.19
∞ 0.0% 0.03% 0.08% 20.39

1.67
0.95 0.0% 0.47% 0.95% 29.48
∞ 0.0% 0.2% 0.95% 22.6

0.5

1
0.95
∞ 0.0% 0.02% 0.07% 34.97

1.33
0.95 0.0% 1.16% 2.74% 25.15
∞ 0.0% 0.55% 2.74% 29.56

1.67
0.95 0.55% 0.57% 0.59% 20.75
∞ 0.0% 0.68% 0.95% 18.25

kroA100

0.2

1
0.95
∞ 8.25% ∗ 8.76% ∗ 9.52% ∗ 184.62

1.33
0.95 0.0% 0.0% 0.0% 27.06
∞ 0.0% 0.01% 0.04% 34.19

1.67
0.95 0.0% 0.01% 0.04% 31.41
∞ 0.0% 0.02% 0.09% 32.87

0.35

1
0.95
∞ 6.33% ∗ 6.47% ∗ 6.93% ∗ 125.12

1.33
0.95 2.44% ∗ 3.59% ∗ 4.92% ∗ 81.35
∞ 1.56% ∗ 2.55% ∗ 5.69% ∗ 85.45

1.67
0.95 0.0% 0.02% 0.09% 33.47
∞ 0.0% 0.02% 0.09% 35.63

0.5
1

0.95
∞ 2.41% ∗ 3.2% ∗ 4.38% ∗ 104.57

1.33 0.95 1.76% ∗ 3.4% ∗ 4.3% ∗ 72.75
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name Gap Gap Gap time (seconds)

kroA100 0.5
1.33 ∞ 1.78% ∗ 1.79% ∗ 1.81% ∗ 63.69

1.67
0.95 0.0% 0.0% 0.0% 38.74
∞ 0.0% 0.0% 0.0% 35.25

pr124

0.2

1
0.95
∞ 6.06% ∗ 6.52% ∗ 7.19% ∗ 97.4

1.33
0.95 9.44% ∗ 9.44% ∗ 9.44% ∗ 42.23
∞ 9.3% ∗ 9.61% ∗ 10.86% ∗ 45.28

1.67
0.95 10.93% ∗ 11.4% ∗ 12.82% ∗ 37.46
∞ 11.0% ∗ 11.1% ∗ 11.53% ∗ 37.11

0.35

1
0.95
∞ 8.4% ∗ 8.4% ∗ 8.4% ∗ 31.37

1.33
0.95 0.6% 1.32% 2.04% 39.92
∞ 0.0% 0.24% 0.6% 50.29

1.67
0.95 6.69% ∗ 6.99% ∗ 8.22% ∗ 70.67
∞ 5.92% ∗ 5.92% ∗ 5.92% ∗ 47.08

0.5

1
0.95
∞ 4.32% ∗ 4.9% ∗ 5.27% ∗ 83.85

1.33
0.95 1.98% ∗ 2.95% ∗ 3.44% ∗ 49.85
∞ 4.33% ∗ 4.34% ∗ 4.4% ∗ 42.9

1.67
0.95 0.0% 0.3% 0.6% 44.65
∞ 0.0% 0.59% 1.51% 40.12

pr152

0.2

1
0.95 13.99% ∗ 13.99% ∗ 13.99% ∗ 133.75
∞ 14.02% ∗ 14.17% ∗ 14.33% ∗ 152.64

1.33
0.95 14.16% ∗ 14.43% ∗ 14.94% ∗ 210.35
∞ 13.19% ∗ 13.72% ∗ 15.17% ∗ 161.84

1.67
0.95 13.1% ∗ 13.61% ∗ 14.59% ∗ 99.38
∞ 12.36% ∗ 12.68% ∗ 12.98% ∗ 101.39

0.35

1
0.95 24.02% ∗ 24.21% ∗ 24.39% ∗ 96.48
∞ 22.65% ∗ 23.71% ∗ 24.48% ∗ 150.04

1.33
0.95 18.38% ∗ 18.71% ∗ 19.7% ∗ 86.32
∞ 19.85% ∗ 20.55% ∗ 21.19% ∗ 62.26

1.67
0.95 14.07% ∗ 14.07% ∗ 14.07% ∗ 81.3
∞ 13.89% ∗ 14.25% ∗ 14.94% ∗ 86.62

0.5

1
0.95
∞ 8.65% ∗ 12.35% ∗ 19.11% ∗ 113.56

1.33
0.95 8.44% ∗ 9.08% ∗ 9.64% ∗ 93.77
∞ 8.43% ∗ 9.01% ∗ 9.63% ∗ 73.27

1.67
0.95
∞ 22.24% ∗ 22.82% ∗ 23.36% ∗ 77.01

rat195 0.2 1
0.95
∞ 5.61% ∗ 6.72% ∗ 8.21% ∗ 579.07
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Matrix α β γ Minimum Average Maximum Average CPU
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rat195

0.2
1.33

0.95
∞ 2.6% ∗ 3.8% ∗ 5.51% ∗ 350.28

1.67
0.95 2.38% ∗ 3.26% ∗ 4.57% ∗ 327.07
∞ 3.94% ∗ 4.37% ∗ 5.37% ∗ 280.9

0.35

1
0.95
∞ 1.77% ∗ 3.7% ∗ 6.69% ∗ 400.48

1.33
0.95 2.98% ∗ 3.43% ∗ 4.18% ∗ 315.57
∞ 2.27% ∗ 3.76% ∗ 5.93% ∗ 318.29

1.67
0.95
∞ 1.88% ∗ 3.52% ∗ 4.17% ∗ 296.32

0.5

1
0.95
∞ 2.46% ∗ 3.49% ∗ 5.32% ∗ 334.12

1.33
0.95 3.04% ∗ 3.61% ∗ 4.19% ∗ 299.24
∞ 2.09% ∗ 3.12% ∗ 5.28% ∗ 268.23

1.67
0.95 2.23% ∗ 3.89% ∗ 4.81% ∗ 426.2
∞ 2.36% 3.31% 3.83% 269.86

pr226

0.2

1
0.95 21.47% ∗ 23.4% ∗ 25.89% ∗ 1018.22
∞ 22.35% ∗ 25.16% ∗ 27.28% ∗ 715.39

1.33
0.95 9.28% ∗ 10.72% ∗ 14.93% ∗ 426.14
∞ 9.25% ∗ 9.48% ∗ 9.6% ∗ 714.83

1.67
0.95 6.73% ∗ 7.01% ∗ 7.39% ∗ 239.59
∞ 6.89% ∗ 6.98% ∗ 7.3% ∗ 239.21

0.35

1
0.95 14.09% ∗ 19.5% ∗ 26.77% ∗ 639.84
∞ 14.51% ∗ 15.26% ∗ 17.97% ∗ 523.0

1.33
0.95 11.33% ∗ 11.46% ∗ 11.53% ∗ 242.18
∞ 10.48% ∗ 10.59% ∗ 10.74% ∗ 301.08

1.67
0.95 9.18% ∗ 9.54% ∗ 9.82% ∗ 185.3
∞ 8.8% ∗ 9.68% ∗ 12.4% ∗ 232.86

0.5

1
0.95
∞ 19.01% ∗ 19.75% ∗ 20.45% ∗ 510.61

1.33
0.95 11.4% ∗ 14.37% ∗ 19.61% ∗ 328.52
∞ 10.52% ∗ 10.95% ∗ 11.62% ∗ 212.98

1.67
0.95 11.05% ∗ 11.31% ∗ 11.6% ∗ 230.0
∞ 10.57% ∗ 11.0% ∗ 11.31% ∗ 207.82

Asymmetric instances

Matrix α β γ Minimum Average Maximum Average CPU
name Gap Gap Gap time (seconds)

ft53 0.2
1

0.95 11.52% ∗ 14.01% ∗ 19.2% ∗ 35.44
∞ 12.62% ∗ 14.97% ∗ 19.56% ∗ 39.62

1.33
0.95 3.28% 5.92% 10.1% 17.4
∞ 1.72% 4.43% 7.82% 21.4
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Matrix α β γ Minimum Average Maximum Average CPU
name Gap Gap Gap time (seconds)

ft53

0.2 1.67
0.95 2.09% 3.09% 4.43% 13.32
∞ 0.2% 2.3% 6.22% 12.57

0.35

1
0.95 0.85% 6.17% 11.49% 15.16
∞ 1.88% 2.97% 5.05% 20.22

1.33
0.95 0.72% 3.36% 6.48% 19.86
∞ 2.6% 4.79% 6.49% 14.32

1.67
0.95 0.06% 2.62% 9.85% 10.71
∞ 0.0% 1.95% 3.3% 12.38

0.5

1
0.95 0.0% 1.13% 3.32% 17.83
∞ 2.61% 6.0% 8.96% 11.41

1.33
0.95 0.0% 2.23% 4.3% 8.57
∞ 0.0% 1.94% 5.95% 8.77

1.67
0.95 1.03% 5.38% 10.07% 9.45
∞ 1.06% 2.29% 2.74% 10.69

ftv64

0.2

1
0.95 1.75% 6.05% 11.31% 22.32
∞ 4.62% 6.55% 7.97% 22.92

1.33
0.95 0.16% 3.09% 5.77% 12.28
∞ 1.62% 5.04% 10.13% 12.23

1.67
0.95 2.99% 5.38% 6.91% 12.75
∞ 2.28% 4.98% 6.91% 11.22

0.35

1
0.95 2.98% 4.5% 9.97% 24.15
∞ 0.05% 3.1% 5.25% 25.52

1.33
0.95 1.84% 4.25% 8.78% 16.05
∞ 0.65% 3.48% 8.29% 11.35

1.67
0.95 1.96% 3.03% 4.79% 11.94
∞ 2.66% 3.37% 4.46% 10.3

0.5

1
0.95 1.03% 1.03% 1.03% 29.89
∞ 0.54% 3.45% 5.84% 14.59

1.33
0.95 0.98% 3.15% 7.06% 10.61
∞ 0.81% 2.54% 6.51% 14.43

1.67
0.95 0.6% 1.78% 3.53% 14.3
∞ 0.87% 2.39% 3.47% 9.57

ft70

0.2

1
0.95 5.19% ∗ 6.33% ∗ 7.07% ∗ 39.15
∞ 3.58% ∗ 5.24% ∗ 6.73% ∗ 40.24

1.33
0.95 2.86% 3.62% 4.4% 44.93
∞ 2.25% 3.02% 4.02% 38.7

1.67
0.95 2.19% 3.72% 4.51% 35.59
∞ 1.76% 3.03% 4.1% 30.09

0.35
1

0.95 1.26% 2.52% 3.45% 36.07
∞ 2.36% 3.16% 4.63% 45.98

1.33 0.95 1.79% 2.58% 3.16% 35.88
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ft70

0.35
1.33 ∞ 2.49% 3.46% 5.23% 31.39

1.67
0.95 2.46% 2.99% 3.76% 25.1
∞ 2.69% 3.26% 3.78% 32.48

0.5

1
0.95 1.43% 1.43% 1.43% 150.83
∞ 2.49% 3.26% 3.75% 32.39

1.33
0.95 2.8% 3.37% 3.71% 24.13
∞ 1.55% 3.17% 4.78% 23.58

1.67
0.95 2.46% 3.55% 4.24% 30.66
∞ 2.09% 3.46% 4.3% 25.75

kro124p

0.2

1
0.95 7.42% ∗ 8.04% ∗ 8.74% ∗ 91.73
∞ 6.81% ∗ 8.76% ∗ 10.54% ∗ 100.51

1.33
0.95 0.48% 3.86% 6.37% 43.09
∞ 0.76% 1.86% 5.04% 47.02

1.67
0.95 0.53% 3.48% 5.18% 50.46
∞ 2.2% 4.35% 5.66% 52.33

0.35

1
0.95
∞ 6.59% ∗ 10.16% ∗ 15.13% ∗ 129.33

1.33
0.95 0.34% 1.03% 1.97% 68.39
∞ 0.71% 1.83% 3.0% 74.11

1.67
0.95 0.7% 1.74% 5.03% 48.99
∞ 0.47% 1.9% 6.45% 63.53

0.5

1
0.95 3.39% ∗ 4.36% ∗ 5.11% ∗ 60.84
∞ 0.85% ∗ 5.6% ∗ 9.8% ∗ 99.93

1.33
0.95 0.52% 2.35% 3.74% 98.6
∞ 2.16% 3.39% 4.4% 84.63

1.67
0.95 0.51% 2.22% 4.29% 73.58
∞ 0.91% 2.95% 5.02% 36.46

ftv170

0.2

1
0.95
∞ 6.49% ∗ 14.6% ∗ 22.54% ∗ 192.87

1.33
0.95 2.25% 4.89% 11.06% 124.11
∞ 3.95% 6.15% 9.28% 93.23

1.67
0.95 1.45% 6.38% 10.48% 119.05
∞ 3.81% 7.45% 9.68% 79.12

0.35

1
0.95 8.02% ∗ 12.13% ∗ 16.05% ∗ 217.51
∞ 5.19% ∗ 9.71% ∗ 15.25% ∗ 228.71

1.33
0.95 7.04% 9.16% 10.74% 114.31
∞ 6.46% 7.28% 8.53% 128.3

1.67
0.95 1.67% 4.23% 8.64% 78.42
∞ 5.59% 8.13% 9.87% 100.99

0.5 1
0.95 5.77% ∗ 9.28% ∗ 13.71% ∗ 213.35
∞ 6.37% ∗ 10.39% ∗ 16.16% ∗ 143.61
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Matrix α β γ Minimum Average Maximum Average CPU
name Gap Gap Gap time (seconds)

ftv170 0.5
1.33

0.95 7.05% 8.68% 11.06% 162.58
∞ 4.7% 6.58% 8.35% 114.47

1.67
0.95 4.46% 6.73% 7.59% 131.88
∞ 0.73% 3.48% 6.21% 124.18

B.2.3 Results for a maximum of 5000 iterations

ANN as the constructive heuristic

Table B.16: Computational results, for ω = 1/2 and MaxIt =

5000, using the solution obtained through the ANN heuristic as
the initial solution.

Symmetric instances

Matrix α β γ Minimum Average Maximum Average CPU
name Gap Gap Gap time (seconds)

berlin52

0.2

1
0.95
∞ 4.49% ∗ 4.49% ∗ 4.49% ∗ 15.11

1.33
0.95 4.4% ∗ 4.54% ∗ 4.76% ∗ 10.57
∞ 5.24% ∗ 5.29% ∗ 5.38% ∗ 11.21

1.67
0.95
∞ 1.99% 1.99% 1.99% 10.38

0.35

1
0.95 0.23% 0.41% 0.78% 12.74
∞ 0.0% 0.18% 0.33% 10.11

1.33
0.95 0.0% 0.0% 0.0% 11.12
∞ 0.0% 0.0% 0.0% 10.18

1.67
0.95 0.0% 0.0% 0.0% 7.11
∞ 0.0% 0.0% 0.0% 8.82

0.5

1
0.95
∞ 0.0% 0.0% 0.0% 7.68

1.33
0.95
∞ 1.11% 1.11% 1.11% 6.19

1.67
0.95 0.0% 0.61% 1.33% 10.9
∞ 0.0% 0.44% 1.33% 9.0

pr76
0.2

1
0.95
∞ 1.45% ∗ 1.45% ∗ 1.45% ∗ 22.08

1.33
0.95 1.54% ∗ 1.54% ∗ 1.54% ∗ 22.17
∞ 1.55% ∗ 1.55% ∗ 1.55% ∗ 21.53

1.67
0.95 0.39% ∗ 0.53% ∗ 0.61% ∗ 22.66
∞ 0.44% ∗ 0.49% ∗ 0.52% ∗ 21.32

0.35 1 0.95

163



APPENDIX B. DETAILED RESULTS OF THE TESTS ON THE PARAMETERS OF THE ILS
ALGORITHM

Matrix α β γ Minimum Average Maximum Average CPU
name Gap Gap Gap time (seconds)

pr76

0.35

1 ∞ 4.13% ∗ 4.13% ∗ 4.13% ∗ 20.73

1.33
0.95 0.0% 0.03% 0.08% 12.94
∞ 0.0% 0.03% 0.08% 14.97

1.67
0.95 0.0% 0.05% 0.07% 27.04
∞ 0.82% 0.82% 0.82% 13.72

0.5

1
0.95
∞ 0.0% 0.03% 0.08% 23.73

1.33
0.95 0.0% 0.0% 0.0% 20.22
∞ 0.0% 0.01% 0.01% 21.12

1.67
0.95 0.55% 0.55% 0.55% 14.7
∞ 0.82% 0.82% 0.82% 12.81

kroA100

0.2

1
0.95
∞ 8.25% ∗ 8.62% ∗ 8.85% ∗ 132.7

1.33
0.95
∞ 0.0% 0.0% 0.0% 35.31

1.67
0.95
∞ 0.0% 0.0% 0.0% 28.75

0.35

1
0.95
∞ 6.33% ∗ 6.33% ∗ 6.33% ∗ 90.15

1.33
0.95
∞ 1.56% ∗ 1.57% ∗ 1.6% ∗ 69.68

1.67
0.95 0.0% 0.0% 0.0% 26.24
∞ 0.0% 0.0% 0.0% 32.79

0.5

1
0.95
∞ 2.62% ∗ 2.7% ∗ 2.81% ∗ 96.81

1.33
0.95 1.76% ∗ 1.76% ∗ 1.76% ∗ 113.09
∞ 1.78% ∗ 1.78% ∗ 1.79% ∗ 80.65

1.67
0.95 0.0% 0.0% 0.0% 30.09
∞ 0.0% 0.01% 0.04% 31.98

pr124

0.2

1
0.95
∞ 6.06% ∗ 6.06% ∗ 6.06% ∗ 63.32

1.33
0.95 9.44% ∗ 10.14% ∗ 11.0% ∗ 46.5
∞ 9.3% ∗ 9.66% ∗ 9.83% ∗ 37.22

1.67
0.95 10.93% ∗ 10.93% ∗ 10.93% ∗ 35.68
∞ 11.0% ∗ 11.0% ∗ 11.0% ∗ 35.64

0.35

1
0.95
∞ 8.4% ∗ 8.4% ∗ 8.4% ∗ 34.96

1.33
0.95
∞ 0.0% 0.49% 0.88% 45.7

1.67
0.95
∞ 5.92% ∗ 6.34% ∗ 6.56% ∗ 37.95
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pr124 0.5

1
0.95
∞ 4.51% ∗ 4.94% ∗ 5.27% ∗ 103.68

1.33
0.95
∞ 4.33% ∗ 4.54% ∗ 4.95% ∗ 48.56

1.67
0.95
∞ 0.0% 0.0% 0.0% 30.11

pr152

0.2

1
0.95 13.9% ∗ 14.16% ∗ 14.6% ∗ 154.29
∞ 14.35% ∗ 14.43% ∗ 14.48% ∗ 224.51

1.33
0.95 13.19% ∗ 13.43% ∗ 13.61% ∗ 182.26
∞ 13.21% ∗ 13.64% ∗ 14.02% ∗ 156.43

1.67
0.95 13.07% ∗ 13.07% ∗ 13.08% ∗ 94.24
∞ 12.95% ∗ 13.06% ∗ 13.3% ∗ 78.77

0.35

1
0.95 22.79% ∗ 23.01% ∗ 23.31% ∗ 221.02
∞ 23.18% ∗ 24.6% ∗ 27.37% ∗ 157.68

1.33
0.95 19.7% ∗ 19.7% ∗ 19.7% ∗ 63.09
∞ 19.85% ∗ 20.07% ∗ 20.19% ∗ 124.9

1.67
0.95 13.98% ∗ 14.29% ∗ 14.93% ∗ 86.39
∞ 14.1% ∗ 14.32% ∗ 14.77% ∗ 65.5

0.5

1
0.95
∞ 8.65% ∗ 9.25% ∗ 9.56% ∗ 90.22

1.33
0.95 9.35% ∗ 9.69% ∗ 10.19% ∗ 85.09
∞ 8.43% ∗ 9.1% ∗ 9.54% ∗ 82.08

1.67
0.95
∞ 22.24% ∗ 23.07% ∗ 23.61% ∗ 91.52

rat195

0.2

1
0.95
∞ 4.39% ∗ 5.53% ∗ 6.19% ∗ 544.14

1.33
0.95
∞ 2.78% ∗ 3.09% ∗ 3.31% ∗ 247.94

1.67
0.95 3.09% ∗ 3.56% ∗ 4.26% ∗ 243.03
∞ 2.82% ∗ 2.9% ∗ 2.96% ∗ 219.16

0.35

1
0.95
∞ 1.29% ∗ 2.41% ∗ 3.06% ∗ 296.49

1.33
0.95 2.27% ∗ 2.31% ∗ 2.4% ∗ 261.0
∞ 2.45% ∗ 2.84% ∗ 3.08% ∗ 217.0

1.67
0.95
∞ 2.2% ∗ 2.56% ∗ 3.09% ∗ 240.35

0.5
1

0.95
∞ 2.07% ∗ 2.73% ∗ 3.17% ∗ 302.52

1.33
0.95 1.28% ∗ 1.63% ∗ 1.85% ∗ 422.47
∞ 2.22% ∗ 2.32% ∗ 2.49% ∗ 316.6
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Matrix α β γ Minimum Average Maximum Average CPU
name Gap Gap Gap time (seconds)

rat195 0.5 1.67
0.95 1.92% ∗ 2.49% ∗ 2.81% ∗ 230.01
∞ 2.0% 2.36% 3.02% 243.94

pr226

0.2

1
0.95 22.56% ∗ 23.44% ∗ 25.1% ∗ 628.43
∞ 22.01% ∗ 22.83% ∗ 23.83% ∗ 749.82

1.33
0.95
∞ 11.23% ∗ 11.51% ∗ 12.04% ∗ 250.9

1.67
0.95 6.72% ∗ 6.92% ∗ 7.28% ∗ 304.72
∞ 6.87% ∗ 7.06% ∗ 7.41% ∗ 258.09

0.35

1
0.95 17.93% ∗ 17.94% ∗ 17.96% ∗ 361.73
∞ 17.67% ∗ 17.88% ∗ 18.25% ∗ 265.2

1.33
0.95
∞ 10.55% ∗ 10.72% ∗ 10.97% ∗ 314.51

1.67
0.95
∞ 8.77% ∗ 8.79% ∗ 8.81% ∗ 247.12

0.5

1
0.95 14.21% ∗ 16.27% ∗ 20.17% ∗ 1002.22
∞ 16.56% ∗ 18.98% ∗ 21.41% ∗ 1047.23

1.33
0.95 11.03% ∗ 12.66% ∗ 15.9% ∗ 296.81
∞ 10.51% ∗ 13.3% ∗ 18.12% ∗ 348.91

1.67
0.95
∞ 10.52% ∗ 10.54% ∗ 10.58% ∗ 411.64

Asymmetric instances

Matrix α β γ Minimum Average Maximum Average CPU
name Gap Gap Gap time (seconds)

ft53

0.2

1
0.95 11.64% ∗ 12.16% ∗ 13.15% ∗ 33.85
∞ 14.85% ∗ 15.97% ∗ 17.81% ∗ 24.1

1.33
0.95 0.74% 2.07% 4.45% 13.93
∞ 2.55% 4.45% 6.21% 13.82

1.67
0.95 0.14% 0.98% 2.65% 9.21
∞ 0.14% 3.23% 4.81% 6.75

0.35

1
0.95 0.0% 5.43% 10.16% 11.01
∞ 1.55% 2.8% 4.66% 16.46

1.33
0.95 2.22% 6.14% 11.15% 11.54
∞ 0.85% 2.7% 4.7% 18.52

1.67
0.95 0.0% 2.18% 5.6% 9.82
∞ 0.0% 0.91% 1.78% 6.57

0.5

1
0.95 0.0% 0.04% 0.06% 10.66
∞ 3.36% 4.09% 5.56% 10.04

1.33
0.95 0.06% 1.11% 1.71% 5.53
∞ 0.06% 0.89% 1.56% 8.62

1.67
0.95 0.06% 1.61% 2.39% 8.94
∞ 1.03% 1.21% 1.56% 11.39
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Matrix α β γ Minimum Average Maximum Average CPU
name Gap Gap Gap time (seconds)

ftv64

0.2

1
0.95
∞ 2.6% 3.65% 5.74% 18.93

1.33
0.95
∞ 1.94% 2.79% 3.4% 14.57

1.67
0.95 3.37% 3.5% 3.7% 15.69
∞ 0.6% 2.12% 3.37% 13.49

0.35

1
0.95 0.05% 5.81% 9.05% 16.61
∞ 0.05% 2.24% 4.82% 19.35

1.33
0.95 0.22% 2.49% 4.39% 11.31
∞ 0.22% 1.81% 2.87% 12.95

1.67
0.95 1.47% 2.19% 3.26% 8.92
∞ 0.87% 2.61% 5.0% 8.32

0.5

1
0.95 1.03% 2.02% 2.54% 22.96
∞ 0.38% 2.72% 4.54% 10.78

1.33
0.95 2.01% 3.46% 4.61% 12.79
∞ 2.06% 2.97% 4.78% 6.59

1.67
0.95 0.33% 0.54% 0.87% 10.21
∞ 0.33% 0.54% 0.98% 8.54

ft70

0.2

1
0.95 4.52% ∗ 5.06% ∗ 5.89% ∗ 41.16
∞ 4.46% ∗ 5.05% ∗ 5.6% ∗ 35.22

1.33
0.95 3.5% 4.18% 4.74% 31.56
∞ 1.61% 2.96% 4.59% 35.15

1.67
0.95 1.84% 2.6% 3.24% 67.5
∞ 1.91% 3.08% 3.76% 33.37

0.35

1
0.95 2.13% 2.32% 2.53% 51.03
∞ 2.82% 3.07% 3.34% 31.0

1.33
0.95 2.32% 2.85% 3.59% 24.11
∞ 1.8% 2.19% 2.58% 45.34

1.67
0.95
∞ 2.31% 2.89% 3.27% 35.11

0.5

1
0.95
∞ 1.99% 2.64% 3.06% 31.44

1.33
0.95
∞ 2.38% 2.63% 3.07% 37.31

1.67
0.95
∞ 1.22% 2.04% 3.27% 30.78

kro124p 0.2

1
0.95
∞ 8.24% ∗ 10.36% ∗ 11.49% ∗ 99.49

1.33
0.95 5.19% 6.16% 6.7% 57.94
∞ 3.25% 4.56% 6.46% 84.95

1.67 0.95 4.21% 6.16% 8.66% 57.1
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Matrix α β γ Minimum Average Maximum Average CPU
name Gap Gap Gap time (seconds)

kro124p

0.2 1.67 ∞ 2.9% 4.7% 7.05% 68.53

0.35

1
0.95
∞ 5.9% ∗ 6.8% ∗ 8.31% ∗ 173.9

1.33
0.95 1.84% 3.44% 5.62% 74.42
∞ 3.32% 4.85% 5.98% 45.31

1.67
0.95 5.29% 5.68% 6.35% 67.28
∞ 4.58% 5.74% 6.39% 67.04

0.5

1
0.95
∞ 7.33% ∗ 8.04% ∗ 9.43% ∗ 127.05

1.33
0.95 5.1% 6.49% 7.88% 85.02
∞ 7.61% 9.21% 10.47% 64.97

1.67
0.95 4.88% 5.85% 6.41% 56.27
∞ 5.2% 6.98% 9.19% 61.19

ftv170

0.2

1
0.95
∞ 7.91% ∗ 14.59% ∗ 20.13% ∗ 188.1

1.33
0.95 4.46% 7.34% 10.88% 95.02
∞ 5.08% 6.5% 8.34% 96.64

1.67
0.95 3.08% 5.6% 7.25% 114.8
∞ 7.54% 8.58% 10.26% 68.69

0.35

1
0.95
∞ 6.9% ∗ 8.38% ∗ 9.95% ∗ 126.99

1.33
0.95
∞ 5.19% 8.2% 10.6% 105.41

1.67
0.95 4.14% 5.84% 7.26% 75.22
∞ 9.58% 12.08% 14.45% 94.93

0.5

1
0.95
∞ 6.19% ∗ 6.6% ∗ 7.39% ∗ 181.21

1.33
0.95
∞ 5.89% 8.06% 10.77% 78.6

1.67
0.95 3.48% 6.36% 9.07% 77.97
∞ 4.61% 8.25% 12.09% 77.13
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AFI as the constructive heuristic

Table B.17: Computational results, for ω = 1/2 and MaxIt =

5000, using the solution obtained through the AFI heuristic as the
initial solution.

Symmetric instances

Matrix α β γ Minimum Average Maximum Average CPU
name Gap Gap Gap time (seconds)

berlin52

0.2

1
0.95
∞ 4.49% ∗ 4.49% ∗ 4.49% ∗ 11.83

1.33
0.95 4.4% ∗ 4.41% ∗ 4.45% ∗ 10.59
∞ 5.24% ∗ 5.37% ∗ 5.43% ∗ 14.54

1.67
0.95 0.39% 1.07% 1.99% 17.18
∞ 1.99% 1.99% 1.99% 8.39

0.35

1
0.95 0.0% 0.08% 0.23% 9.9
∞ 0.0% 0.0% 0.0% 10.66

1.33
0.95 0.0% 0.0% 0.0% 10.89
∞ 0.0% 0.79% 2.36% 9.17

1.67
0.95 0.0% 0.0% 0.0% 10.05
∞ 0.0% 0.0% 0.0% 9.78

0.5

1
0.95
∞ 0.0% 0.0% 0.0% 8.62

1.33
0.95 0.0% 0.91% 1.39% 14.26
∞ 0.29% 0.29% 0.29% 6.54

1.67
0.95 0.0% 0.89% 1.33% 9.06
∞ 0.0% 0.36% 0.56% 9.6

pr76

0.2

1
0.95
∞ 1.45% ∗ 1.68% ∗ 2.13% ∗ 24.49

1.33
0.95 1.03% ∗ 1.04% ∗ 1.05% ∗ 27.87
∞ 1.04% ∗ 1.78% ∗ 3.25% ∗ 22.23

1.67
0.95 0.39% ∗ 0.43% ∗ 0.5% ∗ 18.1
∞ 0.33% ∗ 0.37% ∗ 0.44% ∗ 17.44

0.35

1
0.95
∞ 4.13% ∗ 4.13% ∗ 4.13% ∗ 20.23

1.33
0.95 0.0% 0.03% 0.08% 13.92
∞ 0.0% 0.07% 0.21% 15.74

1.67
0.95 0.0% 0.0% 0.0% 19.9
∞ 0.0% 0.0% 0.0% 22.13

0.5
1

0.95
∞ 0.0% 0.0% 0.01% 28.76

1.33
0.95 0.0% 1.63% 2.74% 28.43
∞ 0.0% 1.83% 2.74% 27.09
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pr76 0.5 1.67
0.95
∞ 0.0% 0.0% 0.0% 19.11

kroA100

0.2

1
0.95
∞ 8.76% ∗ 9.27% ∗ 10.28% ∗ 130.76

1.33
0.95 0.0% 0.0% 0.0% 36.02
∞ 0.0% 0.0% 0.0% 33.85

1.67
0.95 0.0% 0.0% 0.0% 30.89
∞ 0.0% 0.0% 0.0% 27.22

0.35

1
0.95
∞ 6.69% ∗ 6.69% ∗ 6.69% ∗ 118.11

1.33
0.95 2.44% ∗ 3.24% ∗ 4.5% ∗ 79.92
∞ 1.56% ∗ 2.24% ∗ 3.6% ∗ 86.32

1.67
0.95 0.0% 0.0% 0.0% 29.23
∞ 0.0% 0.0% 0.0% 32.08

0.5

1
0.95
∞ 2.69% ∗ 2.96% ∗ 3.32% ∗ 115.64

1.33
0.95 1.76% ∗ 1.76% ∗ 1.76% ∗ 105.72
∞ 1.78% ∗ 1.78% ∗ 1.79% ∗ 63.89

1.67
0.95 0.0% 0.0% 0.0% 31.04
∞ 0.0% 0.0% 0.0% 35.56

pr124

0.2

1
0.95
∞ 6.06% ∗ 6.86% ∗ 8.45% ∗ 51.8

1.33
0.95 9.37% ∗ 9.42% ∗ 9.44% ∗ 51.72
∞ 9.3% ∗ 9.8% ∗ 10.79% ∗ 39.94

1.67
0.95 10.86% ∗ 10.91% ∗ 10.93% ∗ 54.92
∞ 11.0% ∗ 11.52% ∗ 12.57% ∗ 38.14

0.35

1
0.95
∞ 8.4% ∗ 8.4% ∗ 8.4% ∗ 35.35

1.33
0.95
∞ 0.0% 0.2% 0.6% 52.88

1.67
0.95 6.69% ∗ 6.69% ∗ 6.69% ∗ 83.61
∞ 5.92% ∗ 6.13% ∗ 6.56% ∗ 47.74

0.5

1
0.95
∞ 4.51% ∗ 4.97% ∗ 5.27% ∗ 75.4

1.33
0.95 1.98% ∗ 1.98% ∗ 1.98% ∗ 76.16
∞ 4.33% ∗ 4.33% ∗ 4.33% ∗ 62.99

1.67
0.95 0.0% 0.2% 0.6% 57.93
∞ 0.0% 0.0% 0.0% 49.01

pr152 0.2
1

0.95
∞ 13.98% ∗ 14.16% ∗ 14.48% ∗ 186.73

1.33 0.95 13.21% ∗ 13.94% ∗ 14.89% ∗ 231.68
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pr152

0.2
1.33 ∞ 12.76% ∗ 13.03% ∗ 13.17% ∗ 227.31

1.67
0.95 13.1% ∗ 13.1% ∗ 13.1% ∗ 76.76
∞ 12.45% ∗ 12.62% ∗ 12.98% ∗ 76.83

0.35

1
0.95
∞ 23.25% ∗ 24.02% ∗ 24.44% ∗ 139.16

1.33
0.95 18.38% ∗ 18.59% ∗ 19.03% ∗ 116.99
∞ 19.94% ∗ 20.32% ∗ 20.51% ∗ 98.56

1.67
0.95
∞ 14.1% ∗ 14.52% ∗ 14.73% ∗ 99.19

0.5

1
0.95
∞ 8.65% ∗ 9.05% ∗ 9.25% ∗ 112.68

1.33
0.95 8.44% ∗ 8.78% ∗ 9.24% ∗ 71.44
∞ 9.03% ∗ 9.22% ∗ 9.32% ∗ 82.66

1.67
0.95
∞ 22.24% ∗ 22.49% ∗ 23.01% ∗ 102.05

rat195

0.2

1
0.95
∞ 5.65% ∗ 6.41% ∗ 7.35% ∗ 451.02

1.33
0.95
∞ 3.72% ∗ 4.3% ∗ 4.7% ∗ 312.2

1.67
0.95 3.05% ∗ 4.09% ∗ 5.51% ∗ 219.02
∞ 3.05% ∗ 3.73% ∗ 4.43% ∗ 253.73

0.35

1
0.95
∞ 2.66% ∗ 3.25% ∗ 3.68% ∗ 366.06

1.33
0.95 2.14% ∗ 2.89% ∗ 4.32% ∗ 428.57
∞ 3.92% ∗ 4.84% ∗ 6.24% ∗ 250.37

1.67
0.95
∞ 3.09% ∗ 4.01% ∗ 4.53% ∗ 343.82

0.5

1
0.95
∞ 2.64% ∗ 3.28% ∗ 4.0% ∗ 397.98

1.33
0.95 1.32% ∗ 2.06% ∗ 3.48% ∗ 509.68
∞ 3.15% ∗ 3.74% ∗ 4.48% ∗ 259.54

1.67
0.95 2.32% ∗ 2.57% ∗ 3.07% ∗ 505.87
∞ 2.54% 3.13% 4.0% 236.75

pr226
0.2

1
0.95
∞ 22.75% ∗ 23.81% ∗ 24.73% ∗ 621.84

1.33
0.95 9.31% ∗ 9.74% ∗ 10.19% ∗ 392.6
∞ 9.25% ∗ 9.86% ∗ 10.31% ∗ 677.99

1.67
0.95 6.72% ∗ 6.75% ∗ 6.77% ∗ 251.28
∞ 6.84% ∗ 6.87% ∗ 6.89% ∗ 301.07

0.35 1
0.95
∞ 14.51% ∗ 14.62% ∗ 14.84% ∗ 462.89
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Matrix α β γ Minimum Average Maximum Average CPU
name Gap Gap Gap time (seconds)

pr226

0.35
1.33

0.95 11.33% ∗ 11.38% ∗ 11.42% ∗ 301.72
∞ 10.53% ∗ 10.53% ∗ 10.54% ∗ 242.16

1.67
0.95 9.09% ∗ 9.13% ∗ 9.19% ∗ 396.78
∞ 8.76% ∗ 8.81% ∗ 8.86% ∗ 277.82

0.5

1
0.95
∞ 19.13% ∗ 19.52% ∗ 19.78% ∗ 391.66

1.33
0.95 10.56% ∗ 10.87% ∗ 11.36% ∗ 371.93
∞ 10.52% ∗ 10.56% ∗ 10.59% ∗ 344.3

1.67
0.95 10.97% ∗ 11.04% ∗ 11.11% ∗ 333.43
∞ 10.52% ∗ 10.54% ∗ 10.58% ∗ 359.47

Asymmetric instances

Matrix α β γ Minimum Average Maximum Average CPU
name Gap Gap Gap time (seconds)

ft53

0.2

1
0.95
∞ 10.66% ∗ 12.33% ∗ 14.22% ∗ 26.3

1.33
0.95 2.51% 5.28% 7.87% 14.84
∞ 3.28% 5.26% 6.98% 13.05

1.67
0.95 0.0% 2.89% 8.66% 17.3
∞ 0.0% 0.0% 0.0% 7.37

0.35

1
0.95
∞ 0.48% 1.74% 4.25% 21.3

1.33
0.95 1.89% 2.75% 4.13% 27.96
∞ 2.55% 3.26% 3.67% 13.33

1.67
0.95 0.06% 1.09% 2.26% 9.05
∞ 1.01% 1.74% 2.84% 6.17

0.5

1
0.95 2.61% 4.52% 7.6% 6.91
∞ 2.61% 3.22% 3.68% 8.21

1.33
0.95 1.06% 2.55% 3.98% 8.03
∞ 1.06% 1.79% 2.74% 7.29

1.67
0.95 0.0% 1.0% 1.97% 9.71
∞ 0.06% 0.7% 1.03% 9.22

ftv64

0.2

1
0.95 1.38% 3.1% 6.32% 30.38
∞ 2.76% 5.77% 8.18% 34.03

1.33
0.95 0.97% 3.72% 6.42% 8.24
∞ 2.53% 3.58% 5.12% 13.25

1.67
0.95
∞ 2.28% 2.28% 2.28% 10.81

0.35
1

0.95 0.0% 2.82% 5.09% 15.75
∞ 2.6% 4.04% 6.39% 14.29

1.33
0.95 1.84% 4.53% 8.94% 8.35
∞ 0.05% 1.53% 2.71% 15.21
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Matrix α β γ Minimum Average Maximum Average CPU
name Gap Gap Gap time (seconds)

ftv64

0.35 1.67
0.95 1.96% 3.17% 4.46% 7.94
∞ 1.96% 2.94% 3.53% 11.62

0.5

1
0.95
∞ 1.19% 2.27% 3.62% 11.64

1.33
0.95 0.81% 1.66% 3.37% 8.23
∞ 1.25% 1.59% 2.06% 13.09

1.67
0.95
∞ 0.98% 1.18% 1.47% 8.74

ft70

0.2

1
0.95 4.29% ∗ 5.09% ∗ 6.15% ∗ 38.99
∞ 4.22% ∗ 5.22% ∗ 6.27% ∗ 53.44

1.33
0.95 2.49% 2.92% 3.57% 39.71
∞ 1.91% 3.1% 4.28% 30.38

1.67
0.95 2.43% 3.45% 5.02% 48.01
∞ 1.61% 2.0% 2.62% 32.1

0.35

1
0.95 2.12% 2.47% 2.67% 27.94
∞ 2.21% 2.47% 2.8% 30.4

1.33
0.95 1.68% 2.08% 2.36% 35.52
∞ 1.54% 2.46% 2.92% 33.76

1.67
0.95 1.76% 2.18% 2.88% 39.23
∞ 1.9% 2.91% 4.06% 28.8

0.5

1
0.95 1.4% 1.93% 2.31% 56.79
∞ 1.97% 2.9% 4.27% 35.09

1.33
0.95 2.15% 3.2% 4.27% 45.53
∞ 1.97% 2.29% 2.54% 24.43

1.67
0.95 1.11% 1.95% 2.86% 39.22
∞ 2.27% 2.92% 3.88% 24.18

kro124p

0.2

1
0.95 5.05% ∗ 5.46% ∗ 6.23% ∗ 103.69
∞ 3.81% ∗ 4.89% ∗ 5.71% ∗ 145.88

1.33
0.95 0.15% 2.38% 4.19% 53.75
∞ 0.33% 1.77% 4.2% 52.33

1.67
0.95 0.73% 0.95% 1.29% 32.35
∞ 0.3% 0.44% 0.67% 48.93

0.35

1
0.95
∞ 9.11% ∗ 10.66% ∗ 12.63% ∗ 89.61

1.33
0.95 0.83% 2.15% 2.97% 39.56
∞ 1.22% 1.54% 1.81% 46.39

1.67
0.95 0.53% 1.24% 2.31% 55.25
∞ 0.26% 1.83% 3.94% 43.22

0.5
1

0.95 3.62% ∗ 4.56% ∗ 6.27% ∗ 61.44
∞ 4.25% ∗ 4.69% ∗ 4.92% ∗ 70.91

1.33 0.95 2.59% 3.7% 5.12% 67.48
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Matrix α β γ Minimum Average Maximum Average CPU
name Gap Gap Gap time (seconds)

kro124p 0.5
1.33 ∞ 2.21% 2.73% 3.23% 67.74

1.67
0.95 2.53% 3.07% 3.46% 50.21
∞ 2.55% 2.81% 3.27% 36.08

ftv170

0.2

1
0.95
∞ 4.81% ∗ 8.36% ∗ 10.87% ∗ 220.22

1.33
0.95 1.74% 3.26% 4.35% 106.3
∞ 2.94% 5.05% 6.35% 78.19

1.67
0.95 3.3% 4.64% 5.37% 78.07
∞ 2.5% 4.25% 5.47% 143.57

0.35

1
0.95 5.54% ∗ 8.25% ∗ 11.45% ∗ 147.67
∞ 5.99% ∗ 9.95% ∗ 13.29% ∗ 158.38

1.33
0.95 4.28% 5.83% 6.9% 126.06
∞ 2.98% 3.67% 4.83% 105.53

1.67
0.95 3.01% 3.88% 5.59% 85.24
∞ 3.05% 5.58% 7.66% 90.22

0.5

1
0.95 4.64% ∗ 7.31% ∗ 9.14% ∗ 185.31
∞ 5.68% ∗ 11.44% ∗ 18.27% ∗ 138.55

1.33
0.95 4.99% 6.63% 9.87% 91.87
∞ 8.28% 10.17% 12.44% 93.29

1.67
0.95 2.11% 2.53% 3.3% 105.83
∞ 1.2% 2.52% 3.56% 99.97

ARI as the constructive heuristic

Table B.18: Computational results, for ω = 1/2 and MaxIt =

5000, using the solution obtained through the ARI heuristic as the
initial solution.

Symmetric instances

Matrix α β γ Minimum Average Maximum Average CPU
name Gap Gap Gap time (seconds)

berlin52

0.2

1
0.95
∞ 4.49% ∗ 4.49% ∗ 4.49% ∗ 32.19

1.33
0.95 4.4% ∗ 4.41% ∗ 4.45% ∗ 16.76
∞ 5.24% ∗ 5.35% ∗ 5.43% ∗ 29.99

1.67
0.95 0.0% 0.13% 0.39% 34.82
∞ 1.99% 1.99% 1.99% 15.87

0.35
1

0.95 0.0% 0.11% 0.23% 22.94
∞ 0.0% 0.08% 0.23% 23.96

1.33
0.95 0.0% 0.98% 2.93% 30.09
∞ 2.36% 2.55% 2.93% 16.88
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Matrix α β γ Minimum Average Maximum Average CPU
name Gap Gap Gap time (seconds)

berlin52

0.35 1.67
0.95 0.0% 0.0% 0.0% 17.29
∞ 0.0% 0.0% 0.0% 20.68

0.5

1
0.95
∞ 0.0% 0.36% 1.08% 17.43

1.33
0.95 0.0% 0.65% 1.34% 33.73
∞ 0.29% 0.29% 0.29% 11.9

1.67
0.95 0.0% 0.61% 1.33% 17.45
∞ 0.0% 0.44% 1.33% 18.19

pr76

0.2

1
0.95
∞ 1.45% ∗ 1.79% ∗ 1.95% ∗ 49.17

1.33
0.95 1.05% ∗ 1.3% ∗ 1.54% ∗ 37.51
∞ 1.04% ∗ 1.18% ∗ 1.48% ∗ 59.03

1.67
0.95 0.58% ∗ 0.61% ∗ 0.67% ∗ 34.02
∞ 0.61% ∗ 0.61% ∗ 0.61% ∗ 42.13

0.35

1
0.95
∞ 4.13% ∗ 4.13% ∗ 4.13% ∗ 44.11

1.33
0.95 0.0% 0.07% 0.21% 25.87
∞ 0.0% 0.0% 0.01% 24.51

1.67
0.95 0.0% 0.63% 0.95% 31.9
∞ 0.0% 0.27% 0.82% 29.59

0.5

1
0.95 0.0% 0.0% 0.0% 54.68
∞ 0.0% 0.0% 0.0% 37.34

1.33
0.95 0.01% 0.72% 2.13% 39.38
∞ 0.0% 0.0% 0.0% 30.04

1.67
0.95 0.0% 0.3% 0.59% 52.83
∞ 0.0% 0.31% 0.86% 35.88

kroA100

0.2

1
0.95
∞ 8.25% ∗ 8.89% ∗ 9.32% ∗ 272.76

1.33
0.95 0.0% 0.0% 0.0% 57.31
∞ 0.0% 0.0% 0.0% 63.46

1.67
0.95 0.0% 0.03% 0.09% 58.07
∞ 0.0% 0.03% 0.09% 57.38

0.35

1
0.95
∞ 6.33% ∗ 6.33% ∗ 6.33% ∗ 167.46

1.33
0.95 2.44% ∗ 2.44% ∗ 2.44% ∗ 169.48
∞ 1.56% ∗ 2.7% ∗ 3.6% ∗ 124.93

1.67
0.95 0.0% 0.03% 0.09% 68.36
∞ 0.0% 0.03% 0.09% 60.99

0.5
1

0.95
∞ 2.41% ∗ 2.5% ∗ 2.58% ∗ 228.7

1.33 0.95 1.76% ∗ 1.76% ∗ 1.76% ∗ 189.73
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Matrix α β γ Minimum Average Maximum Average CPU
name Gap Gap Gap time (seconds)

kroA100 0.5
1.33 ∞ 1.78% ∗ 1.78% ∗ 1.78% ∗ 169.45

1.67
0.95 0.0% 0.0% 0.0% 60.53
∞ 0.0% 0.0% 0.0% 61.74

pr124

0.2

1
0.95
∞ 5.04% ∗ 5.88% ∗ 6.54% ∗ 107.24

1.33
0.95 9.44% ∗ 9.44% ∗ 9.44% ∗ 82.96
∞ 9.3% ∗ 9.3% ∗ 9.3% ∗ 83.1

1.67
0.95 10.93% ∗ 11.11% ∗ 11.47% ∗ 71.15
∞ 11.0% ∗ 11.5% ∗ 12.5% ∗ 71.2

0.35

1
0.95 8.73% ∗ 8.73% ∗ 8.73% ∗ 68.25
∞ 8.4% ∗ 8.4% ∗ 8.4% ∗ 66.95

1.33
0.95 0.6% 0.6% 0.6% 67.68
∞ 0.0% 0.02% 0.07% 85.78

1.67
0.95 6.69% ∗ 6.87% ∗ 7.25% ∗ 123.21
∞ 5.92% ∗ 6.13% ∗ 6.56% ∗ 96.66

0.5

1
0.95
∞ 4.32% ∗ 4.64% ∗ 5.27% ∗ 173.49

1.33
0.95 1.98% ∗ 2.95% ∗ 3.44% ∗ 87.76
∞ 4.33% ∗ 4.83% ∗ 5.82% ∗ 75.47

1.67
0.95 0.0% 0.0% 0.0% 72.81
∞ 0.0% 0.48% 1.44% 78.28

pr152

0.2

1
0.95 13.43% ∗ 13.43% ∗ 13.43% ∗ 652.38
∞ 14.33% ∗ 14.86% ∗ 15.69% ∗ 296.29

1.33
0.95 13.13% ∗ 13.13% ∗ 13.13% ∗ 274.61
∞ 13.15% ∗ 13.3% ∗ 13.54% ∗ 279.43

1.67
0.95 12.57% ∗ 12.82% ∗ 13.07% ∗ 229.96
∞ 12.36% ∗ 13.01% ∗ 14.0% ∗ 215.15

0.35

1
0.95 23.31% ∗ 23.47% ∗ 23.64% ∗ 220.23
∞ 23.4% ∗ 24.48% ∗ 25.39% ∗ 269.62

1.33
0.95 18.38% ∗ 19.04% ∗ 19.36% ∗ 156.53
∞ 19.85% ∗ 20.1% ∗ 20.6% ∗ 108.77

1.67
0.95 14.72% ∗ 14.72% ∗ 14.72% ∗ 121.77
∞ 14.1% ∗ 14.42% ∗ 14.73% ∗ 145.13

0.5

1
0.95
∞ 8.65% ∗ 11.06% ∗ 14.9% ∗ 234.11

1.33
0.95 8.44% ∗ 9.14% ∗ 9.64% ∗ 116.41
∞ 8.43% ∗ 8.73% ∗ 9.03% ∗ 129.7

1.67
0.95
∞ 22.24% ∗ 22.83% ∗ 23.36% ∗ 146.76

rat195 0.2 1
0.95
∞ 5.78% ∗ 7.03% ∗ 8.79% ∗ 966.38
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rat195

0.2
1.33

0.95
∞ 3.31% ∗ 4.22% ∗ 5.24% ∗ 582.64

1.67
0.95 2.96% ∗ 3.05% ∗ 3.18% ∗ 537.51
∞ 2.24% ∗ 3.9% ∗ 5.02% ∗ 617.38

0.35

1
0.95
∞ 1.91% ∗ 2.17% ∗ 2.53% ∗ 779.2

1.33
0.95 2.23% ∗ 2.92% ∗ 3.78% ∗ 520.69
∞ 3.08% ∗ 3.46% ∗ 4.24% ∗ 761.13

1.67
0.95 3.82% ∗ 3.82% ∗ 3.82% ∗ 738.46
∞ 2.74% ∗ 4.04% ∗ 4.84% ∗ 631.08

0.5

1
0.95
∞ 1.1% ∗ 1.41% ∗ 1.58% ∗ 722.28

1.33
0.95 1.94% ∗ 2.22% ∗ 2.51% ∗ 844.75
∞ 2.0% ∗ 2.63% ∗ 3.77% ∗ 458.0

1.67
0.95 2.58% ∗ 3.22% ∗ 3.88% ∗ 504.93
∞ 1.87% 2.45% 3.16% 523.7

pr226

0.2

1
0.95 20.93% ∗ 22.68% ∗ 25.1% ∗ 2439.54
∞ 25.76% ∗ 26.93% ∗ 27.82% ∗ 1234.05

1.33
0.95 9.17% ∗ 9.6% ∗ 9.81% ∗ 662.38
∞ 9.14% ∗ 9.35% ∗ 9.68% ∗ 736.6

1.67
0.95 6.71% ∗ 6.84% ∗ 7.03% ∗ 375.8
∞ 6.84% ∗ 6.94% ∗ 7.0% ∗ 623.46

0.35

1
0.95 14.21% ∗ 15.96% ∗ 17.72% ∗ 951.22
∞ 14.56% ∗ 16.77% ∗ 21.07% ∗ 960.84

1.33
0.95 11.33% ∗ 11.67% ∗ 12.29% ∗ 504.8
∞ 10.47% ∗ 10.48% ∗ 10.48% ∗ 524.06

1.67
0.95 9.12% ∗ 9.12% ∗ 9.12% ∗ 553.3
∞ 8.77% ∗ 9.83% ∗ 11.83% ∗ 547.87

0.5

1
0.95
∞ 19.1% ∗ 19.45% ∗ 20.1% ∗ 1069.6

1.33
0.95 10.46% ∗ 10.84% ∗ 11.15% ∗ 969.31
∞ 10.58% ∗ 11.88% ∗ 14.49% ∗ 486.41

1.67
0.95 11.03% ∗ 11.3% ∗ 11.7% ∗ 662.47
∞ 10.53% ∗ 11.13% ∗ 11.74% ∗ 647.0

Asymmetric instances

Matrix α β γ Minimum Average Maximum Average CPU
name Gap Gap Gap time (seconds)

ft53 0.2
1

0.95 13.27% ∗ 16.39% ∗ 20.23% ∗ 57.9
∞ 11.44% ∗ 13.19% ∗ 14.55% ∗ 77.84

1.33
0.95 0.0% 1.6% 4.8% 37.15
∞ 4.64% 6.38% 8.41% 22.49
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ft53

0.2 1.67
0.95 0.14% 0.75% 1.41% 27.02
∞ 0.14% 0.77% 1.47% 20.76

0.35

1
0.95 0.85% 2.05% 3.25% 39.65
∞ 2.6% 3.22% 3.7% 26.65

1.33
0.95 1.72% 4.67% 7.66% 46.15
∞ 0.85% 1.01% 1.27% 54.17

1.67
0.95 0.94% 2.03% 4.2% 19.19
∞ 0.0% 2.63% 4.97% 19.03

0.5

1
0.95 0.06% 3.89% 7.72% 16.18
∞ 0.0% 3.18% 6.26% 19.04

1.33
0.95 0.06% 1.11% 1.71% 15.07
∞ 0.0% 0.82% 2.4% 17.76

1.67
0.95 1.03% 3.61% 6.52% 9.65
∞ 0.0% 1.28% 3.84% 14.71

ftv64

0.2

1
0.95 4.62% 5.93% 6.8% 25.59
∞ 6.37% 7.42% 8.71% 46.52

1.33
0.95 2.75% 3.38% 3.88% 28.92
∞ 1.19% 2.93% 5.44% 23.8

1.67
0.95 0.6% 2.41% 3.75% 27.47
∞ 2.23% 2.27% 2.28% 22.32

0.35

1
0.95 3.14% 3.86% 4.28% 26.24
∞ 0.98% 2.24% 2.98% 24.17

1.33
0.95 0.22% 2.56% 4.6% 29.83
∞ 1.84% 2.89% 3.9% 23.47

1.67
0.95 3.26% 4.64% 5.87% 14.52
∞ 1.96% 3.63% 4.89% 15.46

0.5

1
0.95 0.43% 3.08% 4.86% 44.11
∞ 0.27% 1.59% 3.95% 37.29

1.33
0.95 0.0% 1.56% 3.85% 23.12
∞ 0.81% 0.89% 0.98% 19.83

1.67
0.95 0.87% 2.86% 3.85% 14.46
∞ 0.81% 0.98% 1.14% 16.17

ft70

0.2

1
0.95 5.17% ∗ 5.55% ∗ 5.88% ∗ 58.17
∞ 5.05% ∗ 5.22% ∗ 5.33% ∗ 88.94

1.33
0.95 3.0% 3.76% 4.22% 82.37
∞ 2.1% 3.01% 3.52% 57.18

1.67
0.95 2.65% 3.64% 5.03% 103.87
∞ 2.16% 2.2% 2.26% 65.32

0.35
1

0.95 1.52% 1.9% 2.3% 90.67
∞ 1.73% 2.63% 3.9% 81.71

1.33 0.95 1.75% 2.7% 3.48% 37.61
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ft70

0.35
1.33 ∞ 1.83% 2.07% 2.32% 46.57

1.67
0.95 2.1% 2.77% 3.35% 63.73
∞ 1.88% 2.71% 3.27% 54.39

0.5

1
0.95 2.52% 2.61% 2.7% 88.48
∞ 2.58% 2.93% 3.22% 53.89

1.33
0.95 2.4% 2.79% 3.18% 53.34
∞ 1.9% 2.28% 2.68% 55.25

1.67
0.95 1.84% 2.29% 3.08% 64.35
∞ 2.11% 3.08% 4.07% 48.46

kro124p

0.2

1
0.95 6.81% ∗ 7.95% ∗ 9.47% ∗ 122.26
∞ 5.05% ∗ 6.08% ∗ 6.78% ∗ 187.51

1.33
0.95 1.78% 5.12% 7.6% 69.63
∞ 4.28% 4.83% 5.27% 82.35

1.67
0.95 0.8% 1.77% 3.05% 84.82
∞ 0.63% 1.65% 3.65% 105.35

0.35

1
0.95
∞ 5.86% ∗ 8.45% ∗ 11.15% ∗ 271.6

1.33
0.95 1.49% 1.84% 2.4% 120.65
∞ 0.36% 1.11% 2.13% 97.34

1.67
0.95 0.35% 0.51% 0.61% 116.81
∞ 0.15% 0.99% 1.57% 60.89

0.5

1
0.95 3.15% ∗ 4.21% ∗ 4.77% ∗ 216.52
∞ 1.73% ∗ 3.18% ∗ 5.8% ∗ 172.8

1.33
0.95 1.15% 1.8% 2.68% 112.52
∞ 0.46% 1.6% 2.83% 130.99

1.67
0.95 0.35% 3.6% 6.85% 124.9
∞ 0.63% 1.56% 3.27% 90.43

ftv170

0.2

1
0.95 10.82% ∗ 13.88% ∗ 16.93% ∗ 449.9
∞ 9.63% ∗ 14.15% ∗ 17.36% ∗ 323.29

1.33
0.95 5.33% 6.85% 8.67% 200.74
∞ 3.7% 6.22% 10.62% 134.36

1.67
0.95 5.33% 5.81% 6.35% 175.81
∞ 2.54% 4.09% 5.69% 194.31

0.35

1
0.95 9.7% ∗ 10.1% ∗ 10.32% ∗ 326.3
∞ 8.02% ∗ 10.14% ∗ 11.4% ∗ 485.49

1.33
0.95 5.34% 5.8% 6.24% 186.95
∞ 6.86% 9.32% 11.65% 166.46

1.67
0.95 6.06% 7.94% 9.11% 126.08
∞ 5.63% 7.36% 10.45% 162.96

0.5 1
0.95 5.44% ∗ 9.65% ∗ 13.86% ∗ 320.53
∞ 8.99% ∗ 9.73% ∗ 10.27% ∗ 263.53
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APPENDIX B. DETAILED RESULTS OF THE TESTS ON THE PARAMETERS OF THE ILS
ALGORITHM

Matrix α β γ Minimum Average Maximum Average CPU
name Gap Gap Gap time (seconds)

ftv170 0.5
1.33

0.95 6.36% 7.81% 8.57% 198.44
∞ 3.72% 5.4% 7.19% 285.81

1.67
0.95 5.92% 7.51% 9.4% 249.9
∞ 2.83% 5.35% 9.0% 242.04
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