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Abstract
In this thesis, for 0 < s < 1, we consider the nonlocal operator,

〈Lau, v〉 =

ˆ
Rd

ˆ
Rd
v(x)(u(x)− u(y))a(x, y) dy dx, ∀u, v ∈ Hs

0(Ω)

for a singular kernel a(x, y) satisfying coercivity and boundedness conditions, as well as the fractional operator

〈L̃Au, v〉 :=

ˆ
Rd
A(x)Dsu ·Dsv dx, ∀u, v ∈ Hs

0(Ω)

defined with the distributional Riesz fractional gradient Ds for a bounded, coercive and measurable matrix
A. These operators provide an extension to the fractional Laplacian in two different forms of heteroge-
neous anisotropy. Their eigenfunctions are studied, as well as other properties including T-monotonicity for
La. These two operators coincide with the fractional Laplacian in the homogeneous isotropic case, and a
connection is also drawn between them in the heterogeneous anisotropic case.

In the second part, these operators are introduced into various nonlocal and fractional partial differential
equations, including stationary and evolutionary obstacle-type problems and some nonlinear generalisations,
and Stefan-type problems. Results on existence, regularity, and asymptotic behaviour are obtained, and
also the convergence to the respective problems with classical derivatives when s↗ 1, in the case of the L̃A
operator and the fractional Laplacian.

Keywords: Fractional and nonlocal derivatives, Fractional Dirichlet and Cauchy boundary value prob-
lems, Fractional variational inequalities

2020 Mathematics Subject Classification: 35R11, 35K35, 35R45, 35G46, 80A22

Resumo
Nesta tese, para 0 < s < 1, consideramos o operador não local, coercivo e limitado,

〈Lau, v〉 =

ˆ
Rd

ˆ
Rd
v(x)(u(x)− u(y))a(x, y) dy dx, ∀u, v ∈ Hs

0(Ω)

para um kernel singular a(x, y), e o operador fracionário

〈L̃Au, v〉 :=

ˆ
Rd
A(x)Dsu ·Dsv dx, ∀u, v ∈ Hs

0(Ω)

definido com o gradiente fracionário distribucional de Riesz Ds para uma matriz A com coeficientes limi-
tados, coercivos e mensuráveis. Estes operadores fornecem duas formas diferentes de extensão heterogénea
e anisotrópica do Laplaciano fracionário. Estudam-se as suas funções próprias, assim como outras pro-
priedades tais como a T-monotonia de La. Estes dois operadores coincidem com o Laplaciano fracionário no
caso isotrópico homogéneo, e estabelece-se uma ligação entre eles no caso anisotrópico heterogéneo.

Na segunda parte, estes operadores são introduzidos em diversos problemas com derivadas parciais fra-
cionárias e não locais, tais como problemas do tipo obstáculo estacionários e evolutivos, em generalizações
não lineares e em problemas de tipo Stefan. Obtêm-se resultados sobre a existência, regularidade, e com-
portamento assintótico, e ainda a convergência para os respetivos problemas com derivadas clássicas quando
s↗ 1, no caso do operador L̃A e do Laplaciano fracionário.

Palavras-chave: Derivadas fracionárias e não locais, Problemas fracionários de Dirichlet e de Cauchy,
Inequações variacionais fracionárias

Classificação AMS 2020: 35R11, 35K35, 35R45, 35G46, 80A22

iii



Preface
Most parts of this thesis are already available on arXiv. [1]=[163] covers most of Chapters 2, 3 and 4.
[2]=[165] will appear in Mathematics in Engineering, and covers the Stefan-type problem in Chapter 6 for
the anisotropic fractional case. [3]=[164] gives the content of Chapter 7.
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[1] Catharine W. K. Lo and José Francisco Rodrigues: On a Class of Nonlocal Obstacle Type Prob-
lems Related to the Distributional Riesz Fractional Derivative. In: arXiv: 2101.06863 (2021). DOI:
10.48550/ARXIV.2101.06863.
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Summary
In this thesis, we consider two definitions of fractional derivatives, the distributional Riesz fractional deriva-
tives and the nonlocal derivatives, and their corresponding fractional and nonlocal operators. These operators
are then introduced into various partial differential equations, and results on existence, regularity, asymp-
totic behaviour are obtained, as well as the convergence to the respective problems with classical derivatives
when s↗ 1 in the case of the fractional operator and the fractional Laplacian.

Chapter 1 discusses the fractional Ds gradient and the nonlocal gradient Ds for 0 < s < 1, which form the
basis for the subsequent chapters. Some basic important properties are cited. The fractional Sobolev spaces
the functions lie in are also introduced. These include the Hilbertian Hs

0(Ω) space defined for a bounded
Ω ⊂ Rd using the fractional Ds derivatives, as well as the classical Sobolev-Slobodeckij spaces W s,p

0 (Ω). A
result on the equivalence of various norms related to the different notions of derivatives is given here

‖u‖2Hs0 (Ω) =‖Dsu‖2L2(Rd) =
c2d,s
2

[u]2s,Rd =
∥∥∥(−∆)s/2u

∥∥∥2

L2(Rd)
=
c2d,s
2
‖Dsu‖2L2(Rd×Rd) ,

corresponding to the Hs
0 norm, the L2 norm of the Riesz fractional derivative, the W s,2 semi-norm, the norm

of the half s-fractional Laplacian, and the norm of the nonlocal derivative, respectively. Sobolev embeddings
for these spaces are also considered, and the explicit dependence with respect to s of the constants for the
fractional Sobolev and Poincaré inequalities are also derived.

Chapter 2 discusses the nonlocal operator Lsa given by

Lsau = P.V.

ˆ
Rd

(u(x)− u(y))a(x, y) dy, ∀u ∈ Hs
0(Ω)

for the kernel a(x, y) satisfying some coercivity and boundedness conditions extending the case of the frac-
tional Laplacian. This nonlocal operator is shown to be a closed, coercive, regular (not necessarily symmetric)
Dirichlet form, and so, the associated elliptic problem with non-homogeneous Dirichlet boundary conditions
has a unique solution. This also allows us to apply the truncation property to obtain the new result that
this operator is strictly T-monotone. Next, we give a known result on the continuous dependence of the
eigenfunctions of the operator Lsa on s, in the special case when a = 1

|x−y|d+2s and Lsa corresponds to the

fractional Laplacian (−∆)s.
Chapter 3 introduces the anisotropic fractional operator L̃sA defined by

〈L̃sAu, v〉 :=

ˆ
Rd
A(x)Dsu ·Dsv dx, ∀u, v ∈ Hs

0(Ω)

for a bounded, coercive and measurable matrix A. It is straightforward to see that the associated Dirichlet
problem has a solution, and we give some continuous dependence results for the one-parameter problem.
Next, we prove a novel result on the stability of the eigenvalues and eigenfunctions for the operator L̃sA
in Hs

0(Ω) with respect to s including the convergence s ↗ 1. Finally, we relate this fractional operator
which makes use of the distributional Riesz fractional derivatives to the nonlocal operator from the previous
chapter, by deriving a well-defined kernel kA. However, this kernel obtained has not been shown to satisfy the
conditions required in Chapter 2. We give some counterexamples showing otherwise, as well as an interesting
conjecture for the necessary and sufficient conditions on the matrix A such that the derived kernel kA satisfies
the conditions which are sufficient to make (L̃sA, Hs

0(Ω)) a Dirichlet form.
In Part II, both the fractional and the nonlocal operators are applied to various problems. Firstly, in

Chapter 4, we consider nonlocal obstacle-type problems involving the nonlocal operator Lsa considered with
one obstacle, given by

u ≥ ψ, Lsau− F ≥ 0 and 〈Lsau− F, u− ψ〉 = 0,

as well as the similarly defined two obstacles problem and the N membranes problem. Several results are
derived, such as the weak maximum principle, comparison properties, approximation by bounded penali-
sation, and also the Lewy-Stampacchia inequalities. This provides regularity of the solutions, including a
global estimate in L∞(Ω), local Hölder regularity of the solutions when a is symmetric, and local regularity
in fractional Sobolev spaces when Lsa = (−∆)s corresponds to fractional s-Laplacian obstacle-type problems.
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These novel results are complemented with the extension of the Lewy-Stampacchia inequalities to the order
dual of Hs

0(Ω) and some remarks on the associated s-capacity and the s-fractional obstacle problem. A
convergence result is also obtained when the obstacle problem is defined with the fractional operator L̃sA,
showing the convergence of the fractional obstacle problem to the classical obstacle problem as s↗ 1. This
is a property intrinsic to the fractional operator, resulting from its definition, which is currently not known
for the nonlocal general operator.

Next, in Chapter 5, we extend the results of the previous chapter, by considering the novel nonlocal
nonlinear g-Laplacian L̄sg defined as

〈L̄sgu, v〉 =
1

2

ˆ
Rd

ˆ
Rd
g

(
x, y,

|u(x)− u(y)|
|x− y|s

)
u(x)− u(y)

|x− y|s
v(x)− v(y)

|x− y|s
dx dy

|x− y|d

for a nonlinear kernel g(x, y, r) satisfying some conditions compatible with Hs
0(Ω), and consider the cor-

responding elliptic and parabolic obstacle-type problems. In the first part of this chapter, we show the
existence and uniqueness results as well as the Lewy-Stampacchia inequalities for the nonlocal nonlinear
elliptic obstacle-type problems, namely the one obstacle problem, the two obstacles problem and the N
membranes problem. This generalises Chapter 2 to the nonlinear case, and we similarly obtain local regular-
ity of the solutions in the homogeneous case when g(x, y, r) = g(r). Next, we show that in the homogeneous
case, the one obstacle problem defined with the nonlocal operator L̄sg converges to the solution of the classical
nonlinear elliptic one obstacle corresponding to s = 1, concluding the analysis of the elliptic problem. Then,
we extend this study to the evolutionary problem, obtaining similarly the existence and uniqueness results,
and the Lewy-Stampacchia inequalities for all three obstacle-type problems, as well as local regularity when
L̄sg = Lsa is the linear nonlocal operator. Finally, we show that these problems converge to the stationary
ones.

In Chapter 6, we first consider the non-homogeneous fractional Stefan-type problems with non-zero
Dirichlet boundary conditions, given by

∂

∂t
[β(ϑ)] + L̃sAϑ = f in ]0, T [×Ω,

for a bounded domain Ω in the finite time interval [0, T ], where β is the usual maximal monotone graph
for phase transitions. A unique solution is shown to exist. Several properties of this solution are derived,
including the convergence as s ↗ 1 as we have previously considered for the fractional obstacle problem,
as well as the asymptotic behaviour as T → ∞. Finally, we derive the relationship between the two-phase
Stefan-type problem and the one-phase Stefan-type problem by considering the convergence of their solutions
as one phase disappears.

These results are similarly obtained when the Stefan-type problems are defined using the nonlocal operator
Lsa. In this case, the operator is further shown to be T-accretive in L2(Ω), thereby obtaining a maximum
principle for solutions to the nonlocal Stefan-type problems that is not previously obtained for fractional
Stefan-type problems. Furthermore, we can extend the property to conclude that Lsa is T-accretive for
any Lp(Ω) for all 1 ≤ p < 2. These results only apply to the nonlocal operator, and have not been
previously shown anywhere, to the best of our knowledge. A unique mild solution is thereby obtained for
f ∈ L1(]0, T [×Ω).

Last but not least, in Chapter 7, the class of operators considered in Chapter 2 and 3 are considered in
a quasilinear diffusion system, for u = (u1, . . . , um)(t, x),

u′ + Π(t, x,u,Σu)Au = f(t, x,u,Σu) in ]0, T [×Ω,

u = 0 in ]0, T [×Ωc,

u(0, ·) = u0(·) in Ω

for an open set Ω ⊂ Rd and any T ∈]0,∞[, and u0 ∈ Hs
0(Ω) := [Hs

0(Ω)]m, where Σu(t, x) ∈ Rq for
0 < q ≤ m × d represents nonlocal derivatives or fractional derivatives with order σ with σ < 2s for
all 0 < s ≤ 1, including the classical gradient and derivatives of order greater than 1. We show global
existence results for various quasilinear diffusion systems in non-divergence form, for different linear operators
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A, including local elliptic systems, anisotropic fractional equations and systems, and anisotropic nonlocal
operators, of the following type

(Au)i = −
∑
α,β,j

∂α(Aαβij ∂βu
j), Au = −Ds(A(x)Dsu), and (Au)i =

ˆ
Rd
Aij(x, y)

uj(x)− uj(y)

|x− y|d+2s
dy,

for coercive, invertible matrices Π and suitable vectorial functions f .

vii



Sumário
Nesta tese, consideramos duas definições de derivadas fracionárias, as derivadas fracionárias distribucionais
de Riesz e as derivadas não locais, e os seus correspondentes operadores fracionários e operadores não locais.
Estes operadores são introduzidos em diversos problemas com derivadas parciais fracionárias e não locais,
obtendo-se resultados sobre a existência, regularidade, comportamento assintótico, e ainda a convergência
para os respetivos problemas com derivadas clássicas quando s ↗ 1 no caso do operador fracionário e do
Laplaciano fracionário.

O Caṕıtulo 1 trata o gradiente fracionárioDs e o gradiente não localDs para 0 < s < 1, que formam a base
para os caṕıtulos subsequentes. São revistas algumas propriedades básicas importantes dos espaços Sobolev
fracionários, incluindo o espaço Hilbertiano Hs

0(Ω) para um domı́nio limitado Ω ⊂ Rd, definido usando as
derivadas fracionárias Ds, assim como os clássicos espaços de Sobolev-Slobodeckij W s,p

0 (Ω). Damos um
resultado sobre a equivalência de várias normas relacionadas com as diferentes noções das derivadas

‖u‖2Hs0 (Ω) =‖Dsu‖2L2(Rd) =
c2d,s
2

[u]2s,Rd =
∥∥∥(−∆)s/2u

∥∥∥2

L2(Rd)
=
c2d,s
2
‖Dsu‖2L2(Rd×Rd) ,

correspondendo à norma Hs
0 , a norma L2 da derivada fracionária de Riesz, a norma W s,2 semi-norma,

a norma do s/2-Laplaciano fracionário, e a norma da derivada não local, respetivamente. Consideramos
também as inclusões de Sobolev para estes espaços, bem como obtemos a dependência expĺıcita relativamente
a s das constantes para as desigualdades fracionárias de Sobolev e Poincaré.

No Caṕıtulo 2 consideramos o operador não local, coercivo e limitado Lsa dado por

Lsau = P.V.

ˆ
Rd

(u(x)− u(y))a(x, y) dy, ∀u ∈ Hs
0(Ω)

para um kernel singular a(x, y) estendendo o caso do Laplaciano fracionário. Demonstramos que este op-
erador não local define uma forma de Dirichlet fechada, coerciva, regular (não necessariamente simétrica).
Deste modo, o problema eĺıptico associado com condições de fronteira não homogéneas de Dirichlet tem uma
solução única. Isto permite-nos também aplicar a propriedade de truncatura para obter o novo resultado
de que este operador é estritamente T-monótono. Em seguida, damos um resultado conhecido sobre a de-
pendência cont́ınua das funções próprias do operador Lsa em s, no caso especial em que a = 1

|x−y|d+2s e Lsa
corresponde ao Laplaciano fracionário (−∆)s.

O Caṕıtulo 3 introduz o operador fracionário anisotrópico L̃sA definido por

〈L̃sAu, v〉 :=

ˆ
Rd
A(x)Dsu ·Dsv dx, ∀u, v ∈ Hs

0(Ω)

para uma matriz A com coeficientes limitados, coercivos e mensuráveis. É fácil ver que o problema de
Dirichlet associado tem uma solução, e damos alguns resultados de dependência cont́ınua para o problema
com um parâmetro. A seguir, provamos um resultado novo sobre a estabilidade dos valores próprios e das
funções próprias do operador L̃sA em Hs

0(Ω) em relação a s, incluindo a convergência s ↗ 1. Finalmente,
relacionamos este operador fracionário, que usa as derivadas fracionárias de Riesz, com o operador não local
definido no caṕıtulo anterior, obtendo um kernel bem definido kA. No entanto, este kernel não satisfaz as
condições exigidas no Caṕıtulo 2. Damos alguns contra-exemplos mostrando o contrário, assim como uma
conjetura para as condições necessárias e suficientes na matriz A, de modo que o kernel derivado kA satisfaça
as condições suficientes para fazer (L̃sA, Hs

0(Ω)) uma forma de Dirichlet.
Na Parte II, aplicam-se tanto os operadores fracionários como os não locais a diversos problemas. Em

primeiro lugar, no Caṕıtulo 4, consideramos problemas do tipo obstáculo envolvendo o operador não local
Lsa com um obstáculo, dado por

u ≥ ψ, Lsau− F ≥ 0 e 〈Lsau− F, u− ψ〉 = 0,

assim como o problema dos dois obstáculos definidos de forma semelhante e o problema das N membranas.
Obtêm-se vários resultados, tais como o prinćıpio do máximo fraco, propriedades de comparação, aprox-
imação por penalização limitada, e também as desigualdades de Lewy-Stampacchia. Isto fornece regularidade
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das soluções, incluindo uma estimativa global em L∞(Ω), regularidade local Hölderiana das soluções quando
a é simétrico, e regularidade local em espaços de Sobolev fracionários quando Lsa = (−∆)s corresponde
a problemas fracionários do tipo obstáculo com o s-Laplaciano. Complementam-se estes novos resultados
com a extensão das desigualdades de Lewy-Stampacchia ao dual de order de Hs

0(Ω) e algumas observações
sobre a capacidade associada ao problema do obstáculo s-fracionário. Também se obtém um resultado de
convergência quando o problema do obstáculo é definido com o operador L̃sA, mostrando a convergência do
problema fracionário para o clássico problema do obstáculo quando s↗ 1. Esta é uma propriedade intŕınseca
do operador fracionário L̃sA, que não é ainda conhecida para o operador não local Lsa.

No Caṕıtulo 5, estendemos os resultados do caṕıtulo anterior, considerando os novos g-Laplacianos L̄sg
não lineares e não locais definidos por

〈L̄sgu, v〉 =
1

2

ˆ
Rd

ˆ
Rd
g

(
x, y,

|u(x)− u(y)|
|x− y|s

)
u(x)− u(y)

|x− y|s
v(x)− v(y)

|x− y|s
dx dy

|x− y|d

para um kernel não linear g(x, y, r) satisfazendo algumas condições de compatibilidade comHs
0(Ω), e consider-

amos os correspondentes problemas eĺıpticos e parabólicos com obstáculos. Na primeira parte deste caṕıtulo,
mostramos os resultados de existência e unicidade, assim como as desigualdades de Lewy-Stampacchia para
os problemas não locais e não lineares do tipo obstáculo, especificamente o problema de um obstáculo, o prob-
lema dos dois obstáculos e o problema das N membranas. Isto generaliza o Caṕıtulo 2 para o caso não linear
e, de modo análogo, obtemos a regularidade local das soluções, no caso homogéneo, quando g(x, y, r) = g(r).
A seguir, mostramos que no caso homogéneo, o problema de um obstáculo definido com o operador não local
L̄sg converge para a solução do problema clássico não linear do obstáculo correspondente a s = 1, concluindo
a análise do problema eĺıptico. Seguidamente, estendemos este estudo ao problema evolutivo, obtendo de
forma semelhante os resultados de existência e unicidade, as desigualdades de Lewy-Stampacchia para os
três problemas do tipo obstáculo, assim como a regularidade local quando L̄sg = Lsa é o operador linear não
local. Finalmente, mostramos que estes problemas convergem para os respetivos problemas estacionários.

No Caṕıtulo 6, são considerados os problemas não homogéneos do tipo Stefan fracionário com condições
de fronteira não homogéneas de Dirichlet,

∂

∂t
[β(ϑ)] + L̃sAϑ = f em ]0, T [×Ω,

para um domı́nio limitado Ω no intervalo de tempo finito [0, T ], onde β denota o gráfico máximal monótono
usual para as transições de fase. Obtém-se a existência de uma solução única. Obtêm-se também várias
propriedades desta solução, incluindo a convergência quando s↗ 1, de uma forma semelhante ao que foi con-
siderado anteriormente para o problema do obstáculo fracionário, assim como o comportamento assintótico
quando T → ∞. Finalmente, obtemos a relação entre o problema de tipo Stefan com duas fases e o prob-
lema de tipo Stefan com uma fase, considerando a convergência das respetivas soluções quando uma das
fases desaparece.

Obtêm-se resultados semelhantes para os problemas do tipo Stefan utilizando o operador não local Lsa.
Neste caso, o operador sendo T-acretivo em L2(Ω), permite obter um prinćıpio de comparação de soluções
para os problemas de tipo Stefan não local que não foi posśıvel obter para os problemas de tipo Stefan
fracionário. Além disso, podemos estender a propriedade de Lsa ser T-accretivo em qualquer Lp(Ω) para
todos os 1 ≤ p < 2. Estes novos resultados só se aplicam ao operador não local e permitem obter assim uma
solução suave única para f ∈ L1(]0, T [×Ω).

Por último, no Caṕıtulo 7, os operadores considerados nos Caṕıtulos 2 e 3 são retomados num sistema
de difusão quasilinear para u = (u1, . . . , um)(t, x),

u′ + Π(t, x,u,Σu)Au = f(t, x,u,Σu) em ]0, T [×Ω,

u = 0 em ]0, T [×Ωc,

u(0, ·) = u0(·) em Ω

num conjunto aberto Ω ⊂ Rd, com T ∈]0,∞] e u0 ∈ Hs
0(Ω) := [Hs

0(Ω)]m , onde Σu(t, x) ∈ Rq para
0 < q ≤ m × d representa derivadas não locais ou derivadas fracionárias com ordem σ com σ < 2s para
todos os 0 < s ≤ 1, incluindo o gradiente clássico e derivadas de ordem superior a 1. Mostramos resultados
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de existência global para vários sistemas de difusão quasilineares em forma não-divergente, para diferentes
operadores lineares A, incluindo sistemas eĺıpticos locais, equações e sistemas anisotrópicas fracionárias, e
operadores anisotrópicos não locais, do seguinte tipo

(Au)i = −
∑
α,β,j

∂α(Aαβij ∂βu
j), Au = −Ds(A(x)Dsu), e (Au)i =

ˆ
Rd
Aij(x, y)

uj(x)− uj(y)

|x− y|d+2s
dy,

para matrizes coercivas e invert́ıveis Π e funções vectoriais adequadas f .

x
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Introduction to the Nonlocal and Fractional
Operators
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1 Preliminaries

1.1 Definitions

In this thesis, we consider the Riesz fractional derivative and the nonlocal gradient, which are the basis of
generalisations of the well-known fractional Laplacian in two different ways. The motivation for considering
these two types of derivatives is that, not only can they be used in multi-dimensional situations, but they
are also not subject to the problems of commonly used fractional gradient operators. For instance, the
commonly considered Riemann-Liouville derivative is not 0 when applied on non-zero constant functions,
with its kernel functions being of the form (x − a)s−1. The other commonly used derivative is the Caputo
derivative, which requires at least one derivative to exist. This means that the function is required to be at
least H1, and not just Hs.

1.1.1 The Distributional Riesz Fractional Gradient

We consider first the distributional Riesz fractional gradient Ds of order s ∈]0, 1[: for u ∈ Lp(Rd), p ∈]1,∞[,
we set

Ds
ju =

∂su

∂xsj
=

∂

∂xj
(I1−s ∗ u), 0 < s < 1, j = 1, . . . , d, (1.1)

where ∂
∂xj

is taken in the distributional sense, for every v ∈ C∞c (Rd),〈
∂su

∂xsj
, v

〉
= −

〈
(I1−s ∗ u),

∂v

∂xj

〉
= −

ˆ
Rd

(I1−s ∗ u)
∂v

∂xj
dx,

with Is denoting the Riesz potential of order s, 0 < s < 1:

(Is ∗ u)(x) = γd,s

ˆ
Rd

u(y)

|x− y|d−s
dy, where γd,s =

Γ
(
d−s

2

)
2sπ

d
2 Γ
(
s
2

) . (1.2)

Conversely, by Theorem 1.12 of [213], every u ∈ C∞c (Ω) can be expressed as

u = Is ∗
d∑
j=1

Rj
∂su

∂xsj
, (1.3)

where Rj is the Riesz transform, which we recall, is given by

Rjf(x) :=
Γ
(
d+1

2

)
π(d+1)/2

lim
ε→0

ˆ
{|y|>ε}

yj
|y|d+1

f(x− y) dy, j = 1, . . . , d.

We can also write the s-gradient (Ds) and the s-divergence (Ds·) for sufficiently regular functions u and
vectors φ ([74, 213, 214, 216]) in integral form, respectively, by

Dsu(x) := cd,s lim
ε→0

ˆ
Rd

zu(x+ z)

|z|d+s+1
χε(0, z) dz = cd,s

ˆ
Rd

u(x)− u(y)

|x− y|d+s

x− y
|x− y|

dy (1.4)

and

Ds · φ(x) := cd,s lim
ε→0

ˆ
Rd

z · φ(x+ z)

|z|d+s+1
χε(0, z) dz = cd,s

ˆ
Rd

φ(x)− φ(y)

|x− y|d+s
· x− y
|x− y|

dy (1.5)

for the constant

cd,s = 2sπ−
d
2

Γ
(
d+s+1

2

)
Γ
(

1−s
2

) ,
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where χε(x, z) is the characteristic function of the set {(x, z) : |z − x| > ε} for ε > 0. The second form is
obtained from the first form by making use of the property

ˆ
Rd

z

|z|d+s+1
χε(0, z) dz = 0, ∀ε > 0.

This property also guarantees that Dsc = 0 for all c ∈ R. Sometimes, for brevity, we just replace χε and
limε→0 by the term P.V. signifying the principal value of the integral.

The above fractional operators are dual, in the sense that

ˆ
Rd
u(Ds · φ) dx = −

ˆ
Rd
φ · (Dsu) dx, (1.6)

by Lemma 2.5 of Comi-Stefanie [74], for u ∈ C∞c (Rd), φ ∈ [C∞c (Rd)]d, and by density, for functions in
Hs(Rd).

These fractional operators were first considered by Silhavy [216], who observed that they have the ad-
vantage of satisfying basic physical invariance requirements, and developed a fractional vector calculus for
such operators. These operators are later further developed by Shieh, Spector, Comi, Stefani, and many
others (see for instance, [213, 214], [206], [74, 73],[31]. Indeed, this definition of the fractional derivative does
not depend on the chosen basis, and is translationally invariant, rotationally invariant, and homogeneous of
degree s under isotropic scaling. Moreover, the fractional derivatives are well-defined and continuous oper-
ators in the Schwartz space. On the other hand, since the Riesz kernel is an approximation to the identity
as 1− s→ 0, the s-derivatives approach the classical derivatives as s↗ 1, i.e.

Dsu→ Du,

as it was observed via Fourier transform in the proof of Lemma 1.5 , for u ∈ H1(Rd) and u ∈ H1
0 (Ω), as well

as in Rodrigues-Santos [193], Comi-Stefani [73] and Bellido et al [31].
Moreover, as it was shown in [213] and [216], Ds has nice properties for u ∈ C∞c (Rd), namely it coincides

with the fractional Laplacian as follows:

(−∆)su = −Ds ·Dsu,

where, for 0 < s < 1,

(−∆)su(x) = c2d,s lim
ε→0

ˆ
Rd

u(x)− u(y)

|x− y|d+2s
χε(x, y) dy = −1

2
c2d,s

ˆ
Rd

u(x+ y) + u(x− y)− 2u(x)

|y|d+2s
dy. (1.7)

Observe that for the s-gradient (Ds) and the s-divergence (Ds·) in (1.4)–(1.5), we need to consider the
Cauchy principal value (P.V.) in the first expressions, but not in the second ones. This is because for the
second expressions, we can estimate the integrand, as in [74], by separating the integrals into the parts

{|y−x| ≤ 1} and {|y−x| > 1}. Then the first integral can be controlled by ωd−1 Lip(u)
´ 1

0
r−s dr, while the

second integral can be controlled by 2ωd‖u‖L∞(Rd)

´ +∞
1

r−(1+s) dr, where Lip(u) is the Lipschitz constant

for the function u and ωd is the spherical measure ωd−1 =
´
{|x|=1} dσ. Therefore, the second expressions in

(1.4)–(1.5) are well-defined for all Lipschitz functions u with compact support, in particular for u ∈ C∞c (Rd).
Similarly, the fractional Laplacian for smooth u, by Lemma 3.2 of [95], has two representations, with the

second one being Lebesgue integrable by using a second order Taylor expansion. As a matter of fact, the
s-divergence, s-gradient and s-Laplacian are linear operators from C∞ functions with compact support into
C∞ functions that are rapidly decreasing at ∞ and are in Lp(Rd) for any p ∈ [1,∞].

Observe that for u, v ∈ C∞c (Rd), by using the duality between s-divergence and s-gradient as in (1.6)
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and (1.7), we have

2

ˆ
Rd
Dsu ·Dsv = 2

ˆ
Rd
v(−∆)su

= c2d,s

[ˆ
Rd

lim
ε→0

ˆ
Rd
v(y)

u(y)− u(x)

|x− y|d+2s
χε(x, y) dx dy +

ˆ
Rd

lim
ε→0

ˆ
Rd
v(x)

u(x)− u(y)

|x− y|d+2s
χε(x, y) dy dx

]
= c2d,s

[
lim
ε→0

ˆ
Rd

ˆ
Rd
v(y)

u(y)− u(x)

|x− y|d+2s
χε(x, y) dx dy + lim

ε→0

ˆ
Rd

ˆ
Rd
v(x)

u(x)− u(y)

|x− y|d+2s
χε(x, y) dx dy

]
= c2d,s

ˆ
Rd

ˆ
Rd

(u(x)− u(y))(v(x)− v(y))

|x− y|d+2s
dx dy,

(1.8)

where we have used the above definitions together with the Lebesgue and Fubini theorems.

1.1.2 The Nonlocal Gradient

The second type of fractional derivatives we consider, is the nonlocal gradient Ds and nonlocal divergence
Ds (as used in [109], see also [80, 100, 101, 129]) by

Dsu(x, y) :=
u(x)− u(y)

|x− y| d2 +s
, Dsφ(x) := P.V.

ˆ
Rd

φ(x, y)− φ(y, x)

|x− y| d2 +s
dy (1.9)

for u ∈ Hs(Rd) and φ ∈ L2(Rd × Rd). Sometimes, this nonlocal gradient is also known as the unweighted
gradient, in contrast to the weighted derivative (1.4) which are convolutions with a singular weight.

Observe that if u ∈ Hs(Rd), Dsu ∈ L2(Rd × Rd), so it is well-defined. Furthermore, as with the Riesz
fractional gradients, Ds also coincides with the fractional Laplacian as follows:

(−∆)su =
1

2
c2d,sDs(Dsu)

for 0 < s < 1, and the nonlocal operators are dual in the following sense (see Definition 3.2 of [101] or
Theorem 3.1 of [109]), provided Dsφ ∈ L2(Rd):

ˆ
Rd
u(Dsφ) dx =

ˆ
Rd

ˆ
Rd

(Dsu)φdx dy. (1.10)

1.2 Fractional Sobolev Spaces

The fractional Sobolev spaces Hs(Rd) for all real positive s are defined by

Hs(Rd) = {u ∈ L2(Rd) : {ξ 7→ (1 + |ξ|2)s/2û(ξ)} ∈ L2(Rd)}, (1.11)

with norm
‖u‖Hs(Rd) =

∥∥∥(1 + |ξ|2)s/2û
∥∥∥
L2(Rd)

,

and its dual space
H−s(Rd) := {ξ ∈ S′(Rd) : {1 + |ξ|−sξ̂} ∈ L2(Rd)}, (1.12)

where S is the Schwartz space and S′ the dual, and û(ξ) =
´
Rd e

−2πix·ξu(x) dx is the Fourier transform of u.
For 0 < s < 1, this norm is well known to be equivalent to

‖u‖2Hs(Rd) =‖u‖2L2(Rd) +

ˆ
Rd

ˆ
Rd

|u(x)− u(y)|2

|x− y|d+2s
dx dy =:‖u‖2L2(Rd) + [u]2Hs(Rd). (1.13)

On the other hand, as it was shown in [213] and (1.8), the Hs(Rd)-norm given by (1.13) is in fact equal to

‖u‖2Hs(Rd) =‖u‖2L2(Rd) +
2

c2d,s

ˆ
Rd
|Dsu|2 =‖u‖2L2(Rd) +

2

c2d,s
‖Dsu‖2L2(Rd) . (1.14)
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For other equivalent spaces, see Section 2 of [213]. Then, if Ω has Lipschitz boundary, hence satisfying the
extension property, Hs(Ω) coincides with the space of restrictions to Ω of the elements of Hs(Rd) as in [162]
and [93], with norm

‖u‖Hs(Ω) = inf
U=u a.e. Ω

‖U‖Hs(Rd) . (1.15)

Next, we define the subspace Hs
0(Ω) to be the usual fractional Sobolev space, for 0 < s ≤ 1, given by the

closure of C∞c (Ω) in Hs(Ω) for general open sets Ω ⊂ Rd, as in [162], and H−s(Ω) its dual. Since C∞c (Ω)
is dense in Hs(Ω) if and only if s ≤ 1

2 , in this case, Hs
0(Ω) = Hs(Ω). Otherwise, if s > 1

2 , Hs
0(Ω) is strictly

contained in Hs(Ω). On the other hand, as in [93], for bounded sets with Lipschitz boundary, O ⊂ Rd,
C∞c (Ō) is dense in Hs(O) for all s ≥ 0.

This can be further extended for s > 1, by an abuse of notation, by defining Hs
0(Ω) to be the space

Hs
0(Ω) := {u ∈ Hs(Rd) : supp u ⊂ Ω̄}.

It should also be noted (see Theorem 1.11.5 of [162]) that for Ω bounded with C∞ boundary, and s > 1
2 ,

u ∈ Hs
0(Ω) ⇐⇒ u ∈ Hs(Ω) and

∂ju

∂νj
= 0, ∀0 ≤ j < s− 1

2
,

where ∂ju
∂νj is the normal j-th order derivative of u on ∂Ω, oriented towards the interior of Ω.

Next, we recall the fractional Sobolev-Slobodeckij spaces W s,p
0 (Ω) and its norm

W s,p(Ω) :=

u ∈ Lp(Ω) : [u]W s,p(Ω) :=

(ˆ
Ω

ˆ
Ω

|u(x)− u(y)|p

|x− y|N+sp
dxdy

) 1
p

< +∞

 ,

for 0 < s < 1, with the natural norm

‖u‖pW s,p(Ω)
:=‖u‖pLp(Ω) + [u]pW s,p(Ω).

In the case of p = 2 and the set Ω considered being all of Rd, W s,2(Rd) = Hs(Rd), we write the seminorm as

[·]W s,2(Rd) = [·]s,Rd .

Owing to (1.8), we have the following equality of norms

‖Dsu‖2L2(Rd) =
c2d,s
2

[u]2s,Rd =
∥∥∥(−∆)s/2u

∥∥∥2

L2(Rd)
=
c2d,s
2
‖Dsu‖2L2(Rd×Rd) , (1.16)

for (−∆)s/2 as defined in [95], where u is extended by 0 in Rd\Ω, so that this extension is also in Hs(Rd).
Therefore, our definition of Hs

0(Ω) above is equivalent to W s,2
0 (Ω), which is given by the closure in W s,2(Rd)

of all smooth functions having a compact support contained in Ω. Furthermore, by the Sobolev-Poincaré
inequality (see Theorem 1.7 of [213] and Lemma 1.3 below), we may consider the space Hs

0(Ω) with the
following equivalent norms,

‖u‖2Hs0 (Ω) :=‖Dsu‖2L2(Rd) =
c2d,s
2

[u]2s,Rd :=
c2d,s
2

ˆ
Rd

ˆ
Rd

(u(x)− u(y))2

|x− y|d+2s
dx dy. (1.17)

We can subsequently denote the dual space of Hs
0(Ω) by H−s(Ω) for 0 < s ≤ 1. Then, by the Sobolev-

Poincaré inequalities, we have the embeddings

Hs
0(Ω) ↪→ Lq(Ω), L2#

(Ω) ↪→ H−s(Ω) = (Hs
0(Ω))′

for 1 ≤ q ≤ 2∗, where 2∗ = 2d
d−2s and 2# = 2d

d+2s when s < d
2 , and if d = 1, 2∗ = q for any finite q and

2# = q′ = q
q−1 when s = 1

2 and 2∗ = ∞ and 2# = 1 when s > 1
2 . We recall that those embeddings are

compact for 1 ≤ q < 2∗ (see for example, Theorem 4.54 of [93]). In the whole thesis, we use 2# to indicate
this number that depends on d ≥ 1 and 0 < s ≤ 1.
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Using the norm given in (1.11), we can also equivalently define the Hs
0(Ω) with norm

‖u‖2Hs0 (Ω) :=

¨
DΩ

|u(x)− u(y)|2

|x− y|d+2s
dx dy, (1.18)

where DΩ = Rd ×Rd\(Ωc ×Ωc). The pair (Hs
0(Ω),‖·‖Hs0 (Ω)) yields a Hilbert space (see for instance Lemma

7 of [211] for more details). Note that this norm is different from the classical Sobolev-Slobodeckij norm,
where the integral is only taken over Ω×Ω. This norm is important since we are commonly conducting the
integration over all Rd for nonlocal and fractional operators, rather than just in Ω.

Naturally, we can extend this definition to all Hs,p
0 (Ω), defined by the closure of all functions in C∞c (Ω)

with respect to the norm
∥∥Ds(·)

∥∥
Lp(Rd)

.

We next recall the following useful inequalities.

Lemma 1.1 (Sobolev-Poincaré inequality, Theorem 1.8 of [213]). Let s ∈]0, 1[ such that s < d
2 . Then there

exists a constant CS = C(d, s) > 0 such that

‖u‖L2∗ (Ω) ≤ CS‖D
su‖L2(Rd)

for all u ∈ Hs
0(Ω) or u ∈ Hs,2

0 (Ω), where 2∗ = 2d
d−2s > 0. Here CS is called the Sobolev constant, and is of

the form

CS = C(d)

(
ωd−1

s
+

(
ωd−1

d− 2s

)1/2
)
.

Furthermore, for general p, we have

‖u‖Lp∗ (Ω) ≤ CS‖D
su‖Lp(Ω) ,

where p∗ = pd
d−sp , d > sp.

Remark 1.2. Observe that for s > 0, the order of convergence as s→ 0 is O(1/s).

From this lemma, we have, by the Lp inclusions in bounded domains, the following:

Lemma 1.3 (Fractional Poincaré inequality, Theorem 2.9 of [31]). Let s ∈]0, 1[. Then there exists a constant
CP = C(d,Ω)/s > 0, called the Poincaré constant, such that

‖u‖L2(Ω) ≤ CP ‖D
su‖L2(Rd)

for all u ∈ Hs
0(Ω).

Remark 1.4. From the previous Lemma 1.1, the order of convergence as s → 0 for CP is also given by
O(1/σ), which coincides with that given in Theorem 2.9 of [31].

Here, we provide a proof of Lemma 1.1 to give a better understanding of the constants, following [57].

Proof of Lemma 1.1. First recall the Hardy-Littlewood maximal function Mf of f ∈ C∞c (Rd) defined as

(Mf)(x) := sup
x∈B

1

|B|

ˆ
B

|f |.

It is obvious that
‖Mf‖L∞(Rd) ≤‖f‖L∞(Rd) .

Also, it is well-known that (see Theorem I.1 page 5 of [223] or Theorem 5.6 of [57])

m{(Mf)(x) > α} ≤ C(d)

α

ˆ
Rd
|f |.
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By the interpolation theorem for (p, p) (see Theorem I.5 of [223] or Theorem 4.19 of [57]), we have

‖Mf‖Lp(Rd) ≤
pC

p− 1
‖f‖Lp(Rd)

where C = C(d) depends only on the dimension d.
With these preliminaries, we can derive the Hardy-Littlewood-Sobolev inequality, as in Theorem 8.8 of

[57]. Then

1

γd,s
|Is ∗ f(x)| =

(ˆ
BR(x)

|f(y)|
|x− y|d−s

dy +

ˆ
Rd\BR(x)

|f(y)|
|x− y|d−s

dy

)
=: I(x) + II(x).

By majorisation,

I(x) ≤ (Mf)(x)

ˆ
BR(x)

1

|x− y|d−s
dy ≤ (Mf)(x)ωd−1

ˆ R

0

rs−drd−1 dr = (Mf)(x)
Rs

s
ωd−1,

where ωd is the spherical measure on the d-sphere. For the integral II(x), writing 1/p′ = 1 − 1/p, we use
Hölder’s inequality to obtain

II(x) ≤‖f‖Lp(Rd)

(ˆ
Rd\BR(x)

1

|x− y|p′(d−s)
dy

)1/p′

=‖f‖Lp(Rd)

(
ωd−1

ˆ
r>R

r(s−d)p′rd−1 dr

)1/p′

=‖f‖Lp(Rd)

(
−ωd−1

R(s−d)p′+d

(s− d)p′ + d

)1/p′

=‖f‖Lp(Rd) ω
1/p′

d−1

Rs−d/p(
d−sp
p−1

)1/p′
,

where we require s < d/p for the integral to converge. Choosing R = (‖f‖Lp(Rd) /(Mf)(x))p/d gives

1

γd,s
|Is ∗ f(x)| ≤

ωd−1

s
+

(
ωd−1(p− 1)

d− sp

)1/p′
 (Mf)(x)1−sp/d‖f‖sp/d

Lp(Rd)
.

Raising this inequality to the power pd/(d− sp) = p∗ and integrating then gives∥∥∥∥∥ 1

γd,s
Is ∗ f(x)

∥∥∥∥∥
Lp∗ (Rd)

≤

ωd−1

s
+

(
ωd−1(p− 1)

d− sp

)1/p′
‖f‖sp/d

Lp(Rd)

(ˆ
Rd
|(Mf)(x)|p

)1/p∗

=

ωd−1

s
+

(
ωd−1(p− 1)

d− sp

)1/p′
‖f‖sp/d

Lp(Rd)

∥∥(Mf)(x)
∥∥p/p∗
Lp(Rd)

≤

ωd−1

s
+

(
ωd−1(p− 1)

d− sp

)1/p′
( p

p− 1
C(d)

)1−sp/d

‖f‖1−sp/d
Lp(Rd)

‖f‖sp/d
Lp(Rd)

≤

ωd−1

s
+

(
ωd−1(p− 1)

d− sp

)1/p′
(1 ∨ p

p− 1
C(d)

)
‖f‖Lp(Rd) =: CS‖f‖Lp(Rd)
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using the assumption that sp < d and the interpolation theorem for Mf , for the Sobolev constant Cs given
by

CS = C(p, d)

ωd−1

s
+

(
ωd−1(p− 1)

d− sp

)1/p′
 .

The remaining follows with p = 2 as in the proof of Theorem 1.8 in [213], by noting that u = Is ∗ g,

where g =
∑d
j=1Rj

∂su
∂xsj

as in (1.3).

Finally, we end with a continuous dependence property of the Riesz fractional derivatives as s varies.

Lemma 1.5. For u ∈ Hs′

0 (Ω), Dsu is continuous in [L2(Rd)]d as s varies in [σ, s′] for 0 < σ < s′ ≤ 1. As
a consequence, we have the following estimate: for σ ≤ s ≤ 1,

‖Dσu‖L2(Rd) ≤ cσ‖D
su‖L2(Rd) , (1.19)

for any u ∈ Hs
0(Ω), where the constant cσ is independent of s.

Proof. Consider first u ∈ C∞c (Ω). Recall that the Fourier transform of Dsu is given, by Theorem 1.4 of
[213],

D̂su = (2π)siξ|ξ|−1+sû,

where û is the Fourier transform of u extended by 0 outside Ω. Since u ∈ Hs′

0 (Ω), the mapping s 7→
(2π)siξ|ξ|−1+sû is continuous in [L2(Rd)]d as s varies in [σ, s′]. Therefore, conducting the inverse Fourier
transform, we have lims→t

∥∥Dsu−Dtu
∥∥
L2(Rd)

= 0 for t ∈ [σ, s′] for u ∈ C∞c (Ω). Extending this by density

to all u ∈ Hs′

0 (Ω), we have the continuity result on s. Finally, the estimate (1.19) follows similarly to
Proposition 2.7 of [31] using Lemma 1.3.
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2 The Nonlocal Operator

2.1 Definition and Motivation

The nonlocal (not necessarily symmetric) operator La : Hs
0(Ω)→ H−s(Ω) is defined in the duality sense for

u ∈ Hs
0(Ω) by

Ea(u, v) = 〈Lau, v〉 = P.V.

ˆ
Rd

ˆ
Rd
ṽ(x)(ũ(x)− ũ(y))a(x, y) dy dx ∀v ∈ Hs

0(Ω), (2.1)

with ũ and ṽ being the extension of u, v ∈ Hs
0(Ω) by zero outside the Lipschitz domain Ω. Here ∼ denotes

the zero extension of the function outside Ω, but we will drop all ∼’s from now on. We assume that the
measurable kernel function a(x, y) : Rd × Rd\D → R+

0 for the diagonal {(x, y) ∈ Rd × Rd : x = y} satisfies

a∗ ≤ â := a(x, y)|x− y|d+2s ≤ a∗ ∀x, y ∈ Rd, x 6= y (2.2)

and

sup
x∈Rd

ˆ
{asym(x,y) 6=0}

[aanti(x, y)]2

asym(x, y)
dy ≤ Z <∞ (2.3)

for some a∗, a
∗ > 0 and Z ≥ 1, where asym(x, y) = 1

2 [a(x, y) + a(y, x)] and aanti(x, y) = 1
2 [a(x, y)− a(y, x)]

are the symmetric and anti-symmetric parts of a(x, y) respectively. Also, for u ∈ Hs
0(Ω), we can extend

it by 0 outside Ω to obtain a function in Hs(Rd). The operator La corresponds to the class of uniformly
irreducible random walks that admit a cycle decomposition with bounded range, bounded length of cycles,
and bounded jump rates [94].

Remark 2.1. Supposing a(x, y) satisfies (2.2), we have, by switching x and y,

a∗ ≤ a(y, x)|y − x|d+2s ≤ a∗.

Taking the sum of this with (2.2), we have that (2.2) is satisfied by asym(x, y), i.e.

a∗ ≤ asym(x, y)|x− y|d+2s ≤ a∗ ∀x, y ∈ Rd, x 6= y.

If â is symmetric, making use of nonlocal gradient and nonlocal divergence, we can write

Lasymu =
1

2
Ds(âsymDsu).

Observe that the fractional Laplacian is defined, for all u ∈ Hs
0(Ω), by

(−∆)su(x) = c2d,s lim
ε→0

ˆ
Rd\Bε(x)

ũ(x)− ũ(y)

|x− y|d+2s
dy, (2.4)

which corresponds to the kernel
c2d,s|x− y|−d−2s, (2.5)

where cd,s = 2sπ−
d
2

Γ( d+s+1
2 )

Γ( 1−s
2 )

. Furthermore, by Fubini’s theorem, since a(x, y) satisfies the condition (2.2),

we have

〈Lau, u〉 = P.V.

ˆ
Rd

ˆ
Rd
ũ(x)(ũ(x)− ũ(y))a(x, y) dy dx

=
1

2
P.V.

ˆ
Rd

ˆ
Rd
ũ(x)(ũ(x)− ũ(y))a(x, y) dy dx+

1

2
P.V.

ˆ
Rd

ˆ
Rd
ũ(y)(ũ(y)− ũ(x))a(y, x) dy dx

=
1

2

ˆ
Rd

ˆ
Rd
|ũ(x)− ũ(y)|2asym(x, y) dy dx,

(2.6)
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so we have the bound, applying (2.2) to asym(x, y) as discussed in Remark 2.1,

a∗
c2d,s

∥∥∥(−∆)s/2u
∥∥∥2

L2(Rd)
≤ 〈Lau, u〉 ≤

a∗

c2d,s

∥∥∥(−∆)s/2u
∥∥∥2

L2(Rd)
(2.7)

since it is well-known (see, for example, Proposition 3.6 of [95]) that∥∥∥(−∆)s/2u
∥∥∥2

L2(Rd)
=

1

2
c2d,s

ˆ
Rd

ˆ
Rd

|u(x)− u(y)|2

|x− y|d+2s
dx dy =

ˆ
Rd
u(−∆su) (2.8)

by Fourier transform. Moreover, taking u, v such that u ≡ v ≡ 0 in Ωc, we have (see for example, Equation
(1.5) of [199])

〈LIu, v〉 =

ˆ
Ω

v(−∆)su =

ˆ
Rd

(−∆)s/2u(−∆)s/2v. (2.9)

Also,

1

2
a∗[u]2s,Rd ≤

1

2

ˆ
Rd

ˆ
Rd
â|Dsu|2 dx dy = 〈Lau, u〉 = 〈Lasymu, u〉 =

1

2

ˆ
Rd

ˆ
Rd
asym|Dsu|2 dx dy ≤ 1

2
a∗[u]2s,Rd .

(2.10)
It is known that equations defined with such nonlocal operators arise naturally when we consider stochas-

tic processes with jumps, particularly in Lévy processes, which have a large number of applications, including
in peridynamics [217], diffusion processes [58] and finance [76]. By considering the nonlocal operator in place
of the classical Laplacian, we are able to extend the concept of Brownian motion, to include paths which
are merely stochastically continuous [196]. As such, this nonlocal operator is related to classical studies in
stochastics for Dirichlet forms.

2.2 The Nonlocal Bilinear Form as a Coercive Dirichlet Form

Our first main result is to show that the nonlocal bilinear form together with its domain, (Ea, Hs
0(Ω)), defined

as

Ea(u, v) := P.V.

ˆ
Rd

ˆ
Rd
ṽ(x)(ũ(x)− ũ(y))a(x, y) dy dx, (2.11)

where ũ, ṽ are the zero extensions of u, v ∈ Hs
0(Ω) to Ωc and a : Rd ×Rd → [0,∞[, d ≥ 1 is a not necessarily

symmetric kernel satisfying (2.2)–(2.3), is in fact a regular (not necessarily symmetric) Dirichlet form. This
will also imply that the nonlocal bilinear form is also strictly T-monotone and will give us many properties,
including Harnack’s inequality (see for example [59]), Hölder regularity of solutions of equations involving
this bilinear form (see for instance [138, 139], or [140]), and other results in stochastic processes (as given in
[122]).

We will begin with a remark on the symmetric case.

Proposition 2.2. For given u, v ∈ Hs
0(Ω) and a : Rd × Rd → [0,∞[ symmetric, we have

ˆ
Rd

ˆ
Rd
ṽ(x)(ũ(x)− ũ(y))a(x, y)χε(x, y) dy dx

=
1

2

ˆ
Rd

ˆ
Rd

(ũ(x)− ũ(y))(ṽ(x)− ṽ(y))a(x, y)χε(x, y) dy dx (2.12)

assuming that the integrands are summable for each fixed ε > 0, where we have set χε(x, y) as the charac-
teristic function of the set {|x− y| > ε} for ε > 0.

Proof. We first show the result for u, v ∈ C∞c (Ω), and extend it by density to u, v ∈ Hs
0(Ω). The integral

term

J :=

ˆ
Rd

ˆ
Rd
ṽ(x)(ũ(x)− ũ(y))a(x, y)χε(x, y) dy dx

can also be written in the form, using the symmetry of a,

J =

ˆ
Rd

ˆ
Rd
ṽ(y)(ũ(y)− ũ(x))a(x, y)χε(x, y) dx dy
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Then, by Fubini’s theorem,

J = −
ˆ
Rd

ˆ
Rd
ṽ(y)(ũ(x)− ũ(y))a(x, y)χε(x, y) dy dx.

Taking the sum of this and the first equation above, we obtain the result

2J =

ˆ
Rd

ˆ
Rd

(ṽ(x)− ṽ(y))(ũ(x)− ũ(y))a(x, y)χε(x, y) dy dx.

Remark 2.3. The bilinear form (2.11) in the symmetric case with assumption (2.2) is a coercive and
well-defined quadratic form for u ∈ Hs(Rd). Indeed, we have

a∗

ˆ
Rd

ˆ
Rd

(u(x)− u(y))2

|x− y|d+2s
dx dy

≤ lim
ε→0

ˆ
Rd

ˆ
Rd

(u(x)− u(y))2a(x, y)χε(x, y) dx dy

≤ lim
ε→0

a∗
ˆ
Rd

ˆ
Rd

(u(x)− u(y))2

|x− y|d+2s
χε(x, y) dx dy = a∗[u]2s,Rd .

Remark 2.4. If â is symmetric, making use of the nonlocal derivative Ds, we can write

〈Lasymu, v〉 =
1

2

ˆ
Rd

ˆ
Rd

(âsymDsu)Dsv dx dy.

Now, we have our first main theorem on the anisotropic non-symmetric nonlocal bilinear form.

Theorem 2.5. (Ea, Hs
0(Ω)) with a(x, y) satisfying (2.2) and (2.3) is a closed, regular Dirichlet form in

L2(Ω), which is also bounded and coercive.

Proof. The bilinear form Ea : Hs
0(Ω)×Hs

0(Ω)→ R is bounded in the non-symmetric case, following the ideas
of [207],

Ea(u, v) =

ˆ
Rd

ˆ
Rd
ṽ(x)(ũ(x)− ũ(y))

(
asym(x, y) + aanti(x, y)

)
χε(x, y) dy dx

=
1

2

ˆ
Rd

ˆ
Rd

(ṽ(x)− ṽ(y))(ũ(x)− ũ(y))asym(x, y) dy dx

+

ˆ
Rd

ˆ
Rd
ṽ(x)(ũ(x)− ũ(y))aanti(x, y)χε(x, y) dy dx

≤ 1

2
a∗

ˆ
Rd

ˆ
Rd
|ṽ(x)− ṽ(y)||ũ(x)− ũ(y)||x− y|−d−2s dy dx

+

ˆ
Rd

ˆ
Rd
ṽ(x)(ũ(x)− ũ(y))[asym(x, y)]

1
2 aanti(x, y)[asym(x, y)]−

1
2χε(x, y) dy dx

≤ a∗
1

2

ˆ
Rd

ˆ
Rd

∣∣ṽ(x)− ṽ(y)
∣∣2

|x− y|d+2s
dx dy

1/21

2

ˆ
Rd

ˆ
Rd

∣∣ũ(x)− ũ(y)
∣∣2

|x− y|d+2s
dy dx

1/2

+

(
1

2

ˆ
Rd

ˆ
Rd

∣∣ũ(x)− ũ(y)
∣∣2 asym(x, y) dy dx

)1/2

×

2

ˆ
Rd

ˆ
Rd

∣∣ṽ(x)
∣∣2 ∣∣aanti(x, y)

∣∣2
|asym(x, y)|

χε(x, y) dy dx

1/2

≤ a∗

c2d,s
‖Dsu‖L2(Rd)‖D

sv‖L2(Rd)
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+

1

2
a∗

ˆ
Rd

ˆ
Rd

∣∣ũ(x)− ũ(y)
∣∣2

|x− y|d+2s
dy dx

1/2

×

2

ˆ
Rd

∣∣ṽ(x)
∣∣2 ˆ

Rd

∣∣aanti(x, y)
∣∣2

|asym(x, y)|
χε(x, y) dy

 dx


1/2

≤ a∗

c2d,s
‖Dsu‖L2(Rd)‖D

sv‖L2(Rd) +
(a∗)

1
2

cd,s
‖Dsu‖L2(Rd)

(
2

ˆ
Rd

∣∣ṽ(x)
∣∣2 Z dx)1/2

≤ a∗

c2d,s
‖Dsu‖L2(Rd)‖D

sv‖L2(Rd) +
(2a∗Z)

1
2

cd,s
‖Dsu‖L2(Rd)‖v‖L2(Ω)

≤

(
a∗

c2d,s
+

(2a∗Z)
1
2

cd,sCP

)
‖Dsu‖L2(Rd)‖D

sv‖L2(Rd)

by Lemma 1.3, and coercive

Ea(u, u) ≥ 1

2
a∗

ˆ
Rd

ˆ
Rd

(ũ(x)− ũ(y))2|x− y|−d−2s dy dx =
a∗
c2d,s
‖Dsu‖2L2(Rd) =

a∗
c2d,s
‖u‖2Hs0 (Ω)

by making use of an argument similar to Proposition 2.2.
It is well-known that Hs

0(Ω) is complete with respect to its norm, as in (1.17), therefore Ea is closed.
Furthermore, it can be shown that (Ea, Hs

0(Ω)) is regular, i.e. Hs
0(Ω)∩Cc(Ω) is dense in Hs

0(Ω) in the Hs
0(Ω)-

norm, and dense in Cc(Ω) with uniform norm. The first density result follows from the density of compactly
supported smooth functions in the space Hs

0(Ω). The second density result follows since C∞c (Ω) ⊂ Hs
0(Ω)

and C∞c (Ω) is dense in Cc(Ω) with uniform norm, by considering the mollification of any Cc(Ω) function.
Next, recall that a coercive closed (not necessarily symmetric) bilinear form E on L2(Ω) is a Dirichlet

form ([167] Proposition I.4.7 and equation (4.7) pages 34–35) if and only if the following property holds: For
each ε > 0, there exists a real function φε(t), t ∈ R, such that

φε(t) = t, ∀t ∈ [0, 1] − ε ≤ φε(t) ≤ 1 + ε, ∀t ∈ R, 0 ≤ φε(t′)− φε(t) ≤ t′ − t whenever t < t′ (2.13)

u ∈ Hs
0(Ω) =⇒ φε(u) ∈ Hs

0(Ω),

{
lim infε→0 E(φε(u), u− φε(u)) ≥ 0,

lim infε→0 E(u− φε(u), φε(u)) ≥ 0.
(2.14)

A classic example of φε is the mollification of a cut-off function (see [122] Example 1.2.1). Specifically,
consider a mollifier such as

j(x) =

γe−
1

1−|x|2 for |x| < 1

0 otherwise,

where γ is a positive constant such that ˆ
|x|≤1

j(x) dx = 1.

Set jδ(x) = δ−dj(δ−1x) for δ > 0. For any ε > 0, consider the function ψε(t) = ((−ε) ∨ t) ∧ (1 + ε) on R
(refer to (2.15) for the notations ∨ and ∧) and set φε(t) = jδ ∗ ψε(t) for 0 < δ < ε. Then our choice of φε
satisfies (2.13). Furthermore, it satisfies φε(t) = 1 + ε for t ∈ [1 + 2ε,∞[ and φε(t) = −ε for t ∈ (−∞,−2ε],
and |φε(t)| ≤ |t| with tφε(t) ≥ 0.

Moreover, φε(t) is infinitely differentiable, so for any u ∈ C∞c (Ω), φε(u) ∈ C∞c (Ω). Since C∞c (Ω) is
dense in Hs

0(Ω), we can extend by density any results obtained, thereby obtaining φε(u) ∈ Hs
0(Ω) for all

u ∈ Hs
0(Ω).

With this φε, recalling that a ≥ 0 (as in section II.2(d) of [167]), by Fatou’s lemma,

lim inf
ε→0

Ea(φε(u), u− φε(u))

12



≥P.V.
ˆ
Rd

ˆ
Rd

lim inf
ε→0

[ ˜u(x)− φε(u(x))][ ˜φε(u(x))− ˜φε(u(y))]a(x, y) dy dx

≥P.V.
ˆ
Rd

ˆ
Rd

lim inf
ε→0

[ ˜u(x)− φε(u(x))][− ˜φε(u(y))]a(x, y) dy dx (since φε(u)[u− φε(u)] ≥ 0)

≥P.V.
ˆ
Rd

ˆ
Rd

lim inf
ε→0

{
− [ ˜u(x)− φε(u(x))](−ε)χ{u(x)<0} + 0χ{0≤u(x)≤1}

+ (−ε)(−1− ε)χ{u(x)>1}

}
a(x, y) dy dx

= 0

since u− φε(u) ≤ 0 for u ≤ 0, φε(t) = t for t ∈ [0, 1], and u− φε(u) ≥ u− 1− ε ≥ −ε for u ≥ 1 respectively.
Similarly, taking lim infε→0 in

Ea(u− φε(u), φε(u)) = P.V.

ˆ
Rd

ˆ
Rd

˜φε(u(x))

{
˜[u(x)− φε(u(x))]− ˜[u(y)− φε(u(y))]

}
a(x, y) dx dy,

we conclude that Ea is a Dirichlet form.

From this theorem, we obtain that Ea possesses the property of unit contraction. Indeed, by Proposition
4.3 and Theorem 4.4 of [167], we have the following corollary.

Corollary 2.6. For the regular Dirichlet form Ea the following properties hold:

(a) the unit contraction acts on Ea, i.e. v := (0 ∨ u) ∧ 1 satisfies Ea(v, v) ≤ Ea(u, u);

(b) the normal contraction acts on Ea, i.e. suppose v satisfies

|v(x)− v(y)| ≤ |u(x)− u(y)|, x, y ∈ Rd

|v(x)| ≤ |u(x)|, x ∈ Rd,
then v ∈ Hs

0(Ω) and Ea(v, v) ≤ Ea(u, u).

This result in fact follows from the fact that Ea is a Dirichlet form, and holds even if it is not regular.
As in [108] or Corollary 2.4 of [109], we have the existence of a unique solution to the nonlocal Dirichlet

elliptic problem by the Lax-Milgram theorem.

Theorem 2.7. Let Ω ⊂ Rd be open and bounded. Suppose that f ∈ H−s(Ω) and a is measurable and satisfies
(2.2) and (2.3). Then there exists a unique u ∈ Hs

0(Ω) such that¨
Rd×Rd

(u(x)− u(y))v(x)a(x, y) dx dy =

ˆ
Ω

fv dx

for every v ∈ Hs
0(Ω).

2.3 The Strict T-monotonicity of Ea
We introduce the positive and negative parts of v

v+ ≡ v ∨ 0 and v− ≡ −v ∨ 0 = −(v ∧ 0),

and we have the Jordan decomposition of v given by

v = v+ − v− and |v| ≡ v ∨ (−v) = v+ + v−

and the useful identities

u ∨ v = u+ (v − u)+ = v + (u− v)+,

u ∧ v = u− (u− v)+ = v − (v − u)+.
(2.15)

It is well-known that such operations are closed in Hs
0(Ω) for 0 < s ≤ 1.

Since the assumptions on the kernel a(x, y) imply, in particular, that it is non-negative, we can easily
prove the following important property.
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Theorem 2.8. Ea is also strictly T-monotone in the following sense: La : Hs
0(Ω)→ H−s(Ω) defined by

〈Lau, v〉 = Ea(u, v), (2.16)

satisfies
〈Lav, v+〉 > 0 ∀v ∈ Hs

0(Ω) such that v+ 6= 0.

Proof. La is strictly T-monotone because

Ea(v−, v+) =P.V.

ˆ
Rd

ˆ
Rd
ṽ+(x)(ṽ−(x)− ṽ−(y))a(x, y) dx dy

=− P.V.
ˆ
Rd

ˆ
Rd
ṽ+(x)ṽ−(y)a(x, y) dx dy

≤ 0,

since v+(x)v−(x) = 0 as v+ and v− cannot both be nonzero at the same point x, and v+, v−, a ≥ 0.
Therefore, since a(x, y)|x− y|d+2s ≥ a∗ with a∗ > 0,

〈Lav, v+〉 = Ea(v, v+)

= Ea
(
v+, v+

)
− Ea

(
v−, v+

)
≥ a∗
c2d,s

ˆ
Rd
|Dsv+|2

which is strictly greater than 0 if v+ 6= 0.

2.4 Dependence of Eigenfunctions of (−∆)s on 0 < s ≤ 1

In this section, we consider the special case when a(x, y) = 1
|x−y|d+2s and Lsa corresponds to the fractional

Laplacian (−∆)s. We state a result regarding the continuity of the eigenfunctions of (−∆)s with respect to
the parameter s, 0 < s ≤ 1, as given in Theorem 1.2 of [51] (see also Theorem 5.1 of [111] and Theorem 4.1
of [116]).

Theorem 2.9. Let Ω ⊂ Rd be an open bounded set with Lipschitz boundary. Then the eigenvalue problem

(−∆)su = λu in Ω, u = 0 in Ωc

admits eigenvalues λsm(Ω) with corresponding eigenfunctions usm, such that for any m ∈ N,

lim
s↗1

(1− s)λsm(Ω) = c(d)λ1
m(Ω)

for a constant c(d) depending only on the dimension d, and if ‖usm‖Lp(Ω) = 1, there exists a sequence

{uskm }k∈N ⊂ {usm}s∈]0,1[ such that

lim
k→∞

[uskm − u1
m]W t,q(Rd) = 0, for every 2 ≤ q <∞ and every 0 < t <

2

q
,

where u1
m is the eigenfunction of

−∆u = λu in Ω, u = 0 on ∂Ω

corresponding to the eigenvalue λ1
m such that

∥∥u1
m

∥∥
Lp(Ω)

= 1.

Remark 2.10. While it is possible to obtain the eigenvalues and eigenfunctions of Lsa with a general sym-
metric a(x, y) by considering the Rayleigh quotient (see, for instance, [118] and [173]), an explicit form
of the limit operator is not yet known. Recently, there is a result in Theorem 8.1 of [70] giving a general
compactness result on the convergence of eigenvalues as s↗ 1, provided we know the limit L1

a in the sense of
resolvents. This assumption is known to be satisfied for the restricted and the spectral fractional Laplacian,
but remains open in the case of the general operator Lsa. This is a limitation of the nonlocal operator La,
which, we will see in Section 3.3, does not apply to the fractional operator L̃sA since the fractional s-gradient
Ds is defined for 0 < s ≤ 1.
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3 The Fractional Operator

3.1 Definition and Motivation

The fractional operator L̃sA is defined with the fractional derivatives Ds by the continuous fractional bilinear
form

〈L̃sAu, v〉 :=

ˆ
Rd
A(x)Dsu ·Dsv dx, ∀u, v ∈ Hs

0(Ω) (3.1)

for a matrix A with coefficients bounded and measurable such that

a∗|z|2 ≤ A(x)z · z and A(x)z · z∗ ≤ a∗|z||z∗| (3.2)

for some a∗, a
∗ > 0 for all x ∈ Rd and all z, z∗ ∈ Rd, so that the integral is well defined. This operator extends

the nonlocality of the fractional Laplacian to include anisotropy, which may be useful for situations such
as anomalous fractional diffusion [171]. Furthermore, unlike the nonlocal operator, this fractional operator
is different from pseudodifferential operators, since it involves multiplication with an anisotropic matrix A,
which gives a convolution under Fourier transform. This means that L̃sA does not correspond to a symbol.

In particular, this means that the problems considered with the nonlocal and the fractional operators
are in general not equivalent, except in the isotropic homogeneous case (for more details, see Section 3.4).
Furthermore, in higher dimensions, the Riesz fractional s-gradient, as proposed in [216] and discussed in
Section 1.1.1, is an appropriate fractional operator maintaining translational and rotational invariance, as well
as homogeneity of degree s under isotropic scaling, and so the L̃sA operator gives a natural and appropriate
anisotropic generalisation of the fractional Laplacian.

Next, we give the existence and uniqueness result for the elliptic problem associated to the fractional
operator L̃A, which generalises the result in Theorem 1.13 of [213] to non-symmetric A and for less regular
source function f . This result follows directly from an application of the Lax-Milgram theorem, by the
boundedness and ellipticity of the matrix A.

Theorem 3.1 (Existence of a Unique Solution to the Fractional Dirichlet Elliptic Problem). Let Ω ⊂ Rd be

open and bounded. Suppose that f ∈ L2#

(Ω), g ∈ Hs(Rd) and A : Rd → Rd×d is bounded and measurable
such that

a∗|z|2 ≤ A(x)z · z and A(x)z · z∗ ≤ a∗|z||z∗| (3.2)

for some a∗, a
∗ > 0 for all x ∈ Rd and all z, z∗ ∈ Rd. Then there exists a unique u ∈ Hs(Rd) such that

u = g in Ωc and

〈L̃Au, v〉 =

ˆ
Rd
A(x)Dsu ·Dsv dx =

ˆ
Ω

fv dx

for every v ∈ Hs
0(Ω).

For the fractional operator L̃sA, we are unable to obtain strict T-monotonicity. However, such a limitation
does not prevent us from applying the associated s-vectorial calculus in the study of energy processes in non-
local elasticity or peridynamics (see, for instance, [99]). In fact, the coordinate invariance of this anisotropic
operator makes it more suitable in higher dimensions, thereby providing it with many physical applications,
including in hyperelasticity and peridynamics (see, for instance, [30], [31] and Section 3.5 of [208]), as well
as in diffusion and phase transition problems (see, for instance, [99] and Chapter 6).

Yet, it remains the question of necessary conditions on the matrix A such that we can obtain a T-
monotonicity result and consequently comparison principles. It is known that such results exist for the
fractional Laplacian, when A is given by the identity matrix. Therefore, we propose the following open
problem:

Open Problem. What are the conditions on the matrix A(x) so that the associated fractional operator L̃sA
is T-monotone?
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3.2 The One-Parameter Fractional Dirichlet Problem

In order to consider the homogeneous time-dependent problem, as in the Stefan problem in Chapter 6, we
consider the one-parameter fractional Dirichlet problem, which is a consequence of the continuous dependence
on Dirichlet data. The function g = g(t) is constructed for every fixed t ∈ J , for the interval J = [0, T ] for
all T <∞, (using Theorem 1.13 of [213] as stated above in Theorem 3.1) by solving

ˆ
Rd
ADsg(t) ·Dsv = 0 ∀v ∈ Hs

0(Ω) (3.3)

with the Dirichlet boundary condition given by

g(t) = g̃(t) in Ωc, (3.4)

with g̃(t) defined on Hs(Rd).

Theorem 3.2. Suppose g̃ ∈ BV (0, T ;Hs(Rd)) or Hk(0, T ;Hs(Rd)) for k = 1, 2. Then, for the Dirichlet
problem (3.3)–(3.4), g has the same time regularity as g̃.

Indeed, consider u = g − g̃. Then u satisfies u(t) = 0 in Ωc and

ˆ
Rd
ADsu(t) ·Dsv = −

ˆ
Rd
ADsg̃(t) ·Dsv =: 〈L̃Ag̃(t), v〉 ∀v ∈ Hs

0(Ω) (3.5)

Since L̃A : Hs(Rd)→ H−s(Ω) with g̃(t) ∈ Hs(Rd), L̃Ag̃(t) is a linear functional in H−s(Ω). By the coercivity
and boundedness of L̃A, there exists a unique solution u(t) ∈ Hs

0(Ω) satisfying (3.5) for almost every t ∈ J
by the Lax-Milgram theorem. By the uniqueness of u(t), there exists a unique g(t) := u(t) + g̃(t) ∈ Hs(Rd)
satisfying (3.3) for almost every t ∈ J . It is clear that g ∈ L2(0, T ;Hs(Rd)) if g̃ ∈ L2(0, T ;Hs(Rd)).

Furthermore, by linearity of L̃A, considering two time slices {t} × Ω and {τ} × Ω, we have, taking the
test function to be u(t)− u(τ),

a∗
∥∥u(t)− u(τ)

∥∥2

Hs0 (Ω)
≤
ˆ
Rd
ADsu(t) ·Ds(u(t)− u(τ))−

ˆ
Rd
ADsu(τ) ·Ds(u(t)− u(τ))

= −
ˆ
Rd
ADsg̃(t) ·Ds(u(t)− u(τ)) +

ˆ
Rd
ADsg̃(τ) ·Ds(u(t)− u(τ))

≤ a∗
∥∥g̃(t)− g̃(τ)

∥∥
Hs(Rd)

∥∥u(t)− u(τ)
∥∥
Hs0 (Ω)

,

(3.6)

so taking the sum of all time steps in [ti, ti−1] ⊂ [0, T ], u ∈ BV (0, T ;Hs
0(Ω)) if g̃ ∈ BV (0, T ;Hs(Rd)), and

consequently g = u+ g̃ ∈ BV (0, T ;Hs(Rd)).
Also, from (3.6), we have the continuity of u(t) in time for t ∈ J . Therefore, u ∈ C(J ;Hs

0(Ω)) if g̃(t) is
continuous for t ∈ J . Furthermore, we consider the problem

ˆ
Rd
ADsw(t) ·Dsv = −

ˆ
Rd
ADs ∂g̃

∂t
(t) ·Dsv =

〈
L̃A

∂g̃

∂t
(t), v

〉
∀v ∈ Hs

0(Ω) (3.7)

when ∂g̃
∂t ∈ H

s(Rd), and we can once again apply the argument above to obtain a unique solution w ∈ Hs
0(Ω)

for almost every t ∈ J . It remains to show that

w(t) =
∂u

∂t
(t) a.e. t in Hs

0(Ω).
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But, as in (3.6), we have, using (3.5) and (3.7) and taking the test function to be u(t)−u(t+h)
h − w(t),

a∗

∥∥∥∥u(t)− u(t+ h)

h
− w(t)

∥∥∥∥2

Hs0 (Ω)

≤
ˆ
Rd
ADsu(t)− u(t+ h)

h
·Ds

(
u(t)− u(t+ h)

h
− w(t)

)
−
ˆ
Rd
ADsw(t) ·Ds

(
u(t)− u(t+ h)

h
− w(t)

)
= −

ˆ
Rd
ADs g̃(t)− g̃(t+ h)

h
·Ds

(
u(t)− u(t+ h)

h
− w(t)

)
+

ˆ
Rd
ADs ∂g̃

∂t
(t) ·Ds

(
u(t)− u(t+ h)

h
− w(t)

)
≤ a∗

∥∥∥∥ g̃(t)− g̃(t+ h)

h
− ∂g̃

∂t
(t)

∥∥∥∥
Hs(Rd)

∥∥∥∥u(t)− u(t+ h)

h
− w(t)

∥∥∥∥
Hs0 (Ω)

.

(3.8)

But recall that by definition (see, for instance, Chapter 23.5 of [244]),

g̃(t)− g̃(t+ h)

h
→ ∂g̃

∂t
(t) in Hs(Rd) as h→ 0.

Therefore, for any ε > 0, take a small enough h > 0 such that
∥∥∥ g̃(t)−g̃(t+h)

h − ∂g̃
∂t (t)

∥∥∥
Hs(Rd)

< ε, then∥∥∥u(t)−u(t+h)
h − w(t)

∥∥∥
Hs0 (Ω)

< a∗ε
a∗

. Since ε is arbitrary,

w(t) = lim
h→0

u(t)− u(t+ h)

h
a.e. t in Hs

0(Ω),

and the limit of the difference quotient is, by definition, ∂u∂t . Therefore, ∂g∂t = w(t) + ∂g̃
∂t (t), and we have that

g has the same regularity as g̃ in H1(0, T ;Hs(Rd)). Repeating this argument again by taking a second time
derivative, we have the same result for g if g̃ ∈ H2(0, T ;Hs(Rd)).

Analogously, for g̃ ∈ W 2,1(0, T ;L2(Rd)) ∩ L2(0, T ;Hs(Rd)) for T ∈]0,∞], g is first constructed from
g̃ ∈ H2(0, T ;Hs(Rd)), and then extended by density to obtain also g ∈W 2,1(0, T ;L2(Rd))∩L2(0, T ;Hs(Rd)).

3.3 Dependence of Eigenfunctions of L̃sA on 0 < s ≤ 1

Here we show the continuity of the eigenfunctions of L̃sA with respect to the parameter s, 0 < s ≤ 1.
Recalling the compact embeddings H1

0 (Ω) ↪→ Hs
0(Ω) ↪→ Hσ

0 (Ω) ↪→ L2(Ω) for the bounded open set Ω ⊂
Rd, with Lipschitz boundary, where 0 < σ < s < 1, consider the operator T s : L2(Ω) → Hs

0(Ω) ↪→ L2(Ω),
which depends on s, defined by us = T s(h) ∈ Hs

0(Ω) corresponding to the homogeneous Dirichlet condition:

us ∈ Hs
0(Ω) : 〈L̃sAus, v〉 =

ˆ
Rd
ADsus ·Dsv =

ˆ
Ω

hv, ∀v ∈ Hs
0(Ω). (3.9)

Then, by the fractional Poincaré inequality Lemma 1.3 with Poincaré constant cP /s, we have

‖us‖2L2(Ω) ≤
c2P
s2
‖Dsus‖2L2(Rd)d ≤

c2P
s2a∗

〈L̃sAus, us〉 ≤
c2P
s2a∗

ˆ
Ω

hus ≤ c2P
s2a∗

‖h‖L2(Ω)‖u
s‖L2(Ω) . (3.10)

Therefore, for σ < s,

‖T s‖ = sup
‖h‖L2(Ω)≤1

∥∥T s(h)
∥∥
L2(Ω)

= sup
h∈L2(Ω)

‖us‖L2(Ω)

‖h‖L2(Ω)

≤ c2P
s2a∗

≤ c2P
σ2a∗

.

By the estimate (3.10), for σ ≤ s → r ≤ 1, us converges strongly to some u∗ in L2(Ω). From (3.10),
‖Dsus‖L2(Rd)d ≤ C for some constant C independent of s. Therefore,

Dsus −−−⇀
s→r

ζ in L2(Rd)d-weak
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for some ζ.
Now, for all Φ ∈ C∞c (Rd)d, for s→ r

Ds · Φ→ Dr · Φ in L2(Rd)d,

therefore ˆ
Rd
Dsus · Φ = −

ˆ
Rd
us(Ds · Φ) −−−→

s→r
−
ˆ
Rd
u∗(Dr · Φ).

But by the a priori estimate on Dsus, ∣∣∣∣ˆ
Rd
Dsus · Φ

∣∣∣∣ ≤ C‖Φ‖L2(Rd)d ,

which implies that ∣∣∣∣ˆ
Rd
u∗(Dr · Φ)

∣∣∣∣ ≤ C‖Φ‖L2(Rd)d ∀Φ ∈ C∞c (Rd)d.

This means that Dru∗ ∈ L2(Rd)d, and since Ω has a Lipschitz boundary, u∗ ∈ Hr
0 (Ω).

Furthermore, since Ds · Φ→ Dr · Φ strongly in L2(Rd)d as s→ r, so

ˆ
Rd
Ds(us − u∗) · Φ = −

ˆ
Rd

(us − u∗)(Ds · Φ)→ 0 ∀Φ ∈ C∞c (Rd)d,

therefore
ζ = w − lim

s→r
Dsus = Dru∗ ∈ L2(Rd)d.

Taking test functions ϕ ∈ C∞c (Ω),

ˆ
Rd
ADru∗ ·Drϕ = lim

s→r

ˆ
Rd
ADsus ·Dsϕ = lim

s→r

ˆ
Ω

hϕ =

ˆ
Ω

hϕ ∀ϕ ∈ C∞c (Ω).

Extending this by density to all test functions v ∈ Hr
0 (Ω), by the uniqueness of the solution to the homo-

geneous Dirichlet boundary problem (3.9) with s = r ≤ 1, we have that u∗ = ur. Therefore, for every
h ∈ L2(Ω), T s(h) converges to T r(h) in L2(Ω) as s→ r.

Theorem 3.3. Let 0 < σ ≤ s, r ≤ 1. For the sequence of operators T s : L2(Ω) → L2(Ω) given above, T s

converges to T r strongly in the operator norm as s→ r.

Proof. We first claim that, for each fixed s, it is possible to find an hs in the unit ball of L2(Ω) achieving
the supremum, i.e.

sup
‖h‖L2(Ω)≤1

∥∥T s(h)− T r(h)
∥∥
L2(Ω)

=
∥∥T s(hs)− T r(hs)∥∥

L2(Ω)
.

Indeed, for any maximising sequence {hm}m, we can extract a subsequence which converges weakly to some
hs which also belongs to the unit ball of L2(Ω). Since the embedding from L2(Ω) into H−σ(Ω) ⊂ H−s(Ω)∩
H−r(Ω) is compact, and since T s and T r can also be considered continuous operators from H−s(Ω) into
Hs

0(Ω) and from H−r(Ω) into Hr
0 (Ω), respectively, both operators are also completely-continuous operators

in L2(Ω), and so taking m to infinity we have the conclusion.
Having obtained the sequence {hs}s, since each is the weak limit of a uniformly bounded sequence, there

exists h in the unit ball of L2(Ω) such that hs converge weakly in L2(Ω) and strongly in H−σ(Ω) to h. Then,
by Lemma 1.5 below, for σ ≤ s, we have ‖u‖Hσ0 (Ω) ≤ cσ‖u‖Hs0 (Ω) for u ∈ Hs

0(Ω) and consequently

‖h‖H−s(Ω) = sup
u∈Hs0 (Ω)

〈h, u〉
‖u‖Hs0 (Ω)

≤ cσ‖h‖H−σ(Ω) .

As in (3.10), if u = T s(f) with f ∈ H−s(Ω), we obtain

a∗‖u‖2Hs0 (Ω) = a∗‖Dsu‖2L2(Rd)d ≤ 〈L̃
s
Au, u〉 =

ˆ
Ω

fu ≤‖f‖H−s(Ω)‖u‖Hs0 (Ω) , ∀f ∈ H−s(Ω),
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and then

‖T s‖s = sup
f∈H−s(Ω)

‖u‖Hs0 (Ω)

‖f‖H−s(Ω)

≤ 1

a∗

for the operator norm ‖·‖s as an operator from H−s(Ω) to Hs(Ω). Therefore, it follows that

‖T s‖σ = sup
f∈H−σ(Ω)

∥∥T s(f)
∥∥
Hσ0 (Ω)

‖f‖H−σ(Ω)

≤ c2σ sup
f∈H−s(Ω)

∥∥T s(f)
∥∥
Hs0 (Ω)

‖f‖H−s(Ω)

= c2σ‖T s‖s ≤
c2σ
a∗
.

Similarly, we have

‖T r‖σ ≤
c2σ
a∗
.

Since T s(h) converges to T r(h) in L2(Ω) for every h ∈ L2(Ω), for any ε > 0, we can pick a δ > 0 such that,
for |s− r| ≤ δ, we have

‖hs − h‖H−σ(Ω) ≤
εa∗
4c2σ

and
∥∥T s(h)− T r(h)

∥∥
L2(Ω)

≤ ε

2
.

Therefore,

sup
‖f‖L2(Ω)≤1

∥∥T s(f)− T r(f)
∥∥
L2(Ω)

=
∥∥T s(hs)− T r(hs)∥∥

L2(Ω)

≤
∥∥T s(h)− T r(h)

∥∥
L2(Ω)

+
∥∥T s(hs − h)− T r(hs − h)

∥∥
L2(Ω)

≤ ε

2
+
(
‖T s‖σ +‖T r‖σ

)
‖hs − h‖H−σ(Ω)

≤ ε

2
+

2c2σ
a∗

εa∗
4c2σ

= ε.

As a corollary, by Theorem 2.3.1 of [132], we have

Corollary 3.4. For the operators T s, T r as given in the previous theorem, let λsk = λsk(T s) and λrk =
λrk(T r)be the k-th eigenvalues of T s and of T r respectively for s and for r, 0 < σ ≤ s, r ≤ 1. Then,

|λsk − λrk| ≤‖T s − T r‖ := sup
‖f‖L2(Ω)≤1

∥∥(T s − T r)(f)
∥∥ .

In particular, the map [σ, 1] 3 s 7→ λsk ∈]0,∞[ is continuous.

For each eigenvalue λsk, let hsk be the associated eigenvector of T s such that T s(hsk) = λskh
s
k. Setting

usk := T s(hsk), we have usk = T s(hsk) = λskh
s
k = λskL̃sAusk, so 1/λsk is the eigenvalue of L̃sA with associated

eigenvector usk.

Corollary 3.5. Let usk be the corresponding eigenfunctions of 1/λsk for the operator L̃sA for s ∈ [σ, r],
0 < σ < r ≤ 1. Then, the maps [σ, 1] 3 s 7→ usk ∈ L2(Ω) and ]σ, 1] 3 r 7→ urk ∈ Hσ

0 (Ω) are also continuous.

Proof. Since λsk converges, so does 1/λsk. Therefore,

a∗‖Dsusk‖
2
L2(Rd)d ≤ 〈L̃

s
Au

s
k, u

s
k〉 =

1

λsk
‖usk‖

2
L2(Ω) .

Normalising by
∥∥usk∥∥L2(Ω)

= 1, the convergence of the eigenvalues gives

a∗‖Dsusk‖
2
L2(Rd)d ≤

(
1

λsk
− 1

λrk

)
+

1

λrk
≤ 1 +

1

λrk
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for |r − s| sufficiently small and for r ≤ 1 and k fixed. This means that the Hs
0(Ω) norm of usk is bounded,

so by compactness, there exists a sequence {sn}n∈N with sn → r such that the corresponding sequence of
eigenfunctions {usnk }n∈N converges weakly in Hσ

0 (Ω) and strongly in L2(Ω) to some u∗k for each k. This u∗k
corresponds to a h∗k = 1

λrk
u∗k which is the limit of hsk, where hsk satisfies T s(hsk) = λskh

s
k. Since λsk → λrk,

hsk = 1
λsk
usk converges to h∗k = 1

λrk
u∗k strongly in L2(Ω) as s→ r, and by the convergence of the operator norm

T s → T r,
T s(hsk)→ T r(h∗k) and λsk → λrk as s→ r.

Now, by the definition, the image of T r lies in Hr
0 (Ω), so u∗k = λrkh

∗
k = T r(h∗k) ∈ Hr

0 (Ω). Consequently,
h∗k = hrk, so u∗k = urk. Therefore, for every fixed k and r, usk converges strongly to urk in L2(Ω) as s → r,
with

∥∥urk∥∥L2(Ω)
= 1, which yields the continuity of the map [σ, 1] 3 s 7→ usk ∈ L2(Ω). Since r > σ, by

the compactness of the inclusion Hσ′

0 (Ω) ↪→ Hσ
0 (Ω) for all σ′ > σ, we also have the continuity of the map

]σ, 1] 3 r 7→ urk ∈ Hσ
0 (Ω).

Remark 3.6. For the fractional operator L̃sA, it is possible to identify the limit operator L̃1
A, unlike the

general nonlocal operator Lsa which is an open problem (see also Remark 2.10). This is an advantage of the
fractional operator L̃sA.

3.4 Relationship with the Nonlocal Operator

In this section, we make use the results of the nonlocal vector calculus developed by Du, Gunzburger,
Lehoucq, D’Elia and coworkers in [80, 100, 101, 129] to show that this fractional bilinear form can be
rewritten in the form of the nonlocal integral operator La, with a measurable (not necessarily symmetric)
singular kernel kA : Rd × Rd, d ≥ 1, defined by (3.13), as

EkA(u, v) := P.V.

ˆ
Rd

ˆ
Rd
ṽ(x)(ũ(x)− ũ(y))kA(x, y) dy dx, (3.11)

where ũ, ṽ are the zero extensions of u, v ∈ C∞c (Ω) to Ωc. We were also motivated by the issues raised
by Shieh and Spector in [214], in particular their Open Problem 1.10, which by (1.8) clearly holds when
L̃A = (−∆)s. Discussing this issue with examples, we give a counterexample in Example 3.10, showing
how interesting is their Open Problem 1.10 for general strictly elliptic and bounded matrices A. Then, we
conjecture in the Open Problem that the kernel kA corresponding to L̃A has the required property if and only
if L̃A is approximately a constant multiple of the fractional Laplacian, up to small bounded perturbations.

Theorem 3.7. Given a matrix A : Rd → Rd×d with bounded and measurable coefficients, there exists a
kernel kA(x, y) independent of u, v satisfying

ˆ
Rd
A(x)Dsu(x) ·Dsv(x) dx = P.V.

ˆ
Rd

ˆ
Rd
v(x)(u(x)− u(y))kA(x, y) dy dx (3.12)

for all u, v ∈ C∞c (Rd), where kA(x, y) is given by

kA(x, y) = c2d,s P.V.

ˆ
Rd
A(z)

y − z
|y − z|d+s+1

· z − x
|z − x|d+s+1

dz for x 6= y. (3.13)

Proof. Expanding the fractional bilinear form, we have, setting for simplicity
´
Rd as

´
,

ˆ
A(z)Dsu(z) ·Dsv(z) dz

= c2d,s

ˆ
A(z)

[ˆ
(u(y)− u(z))

y − z
|y − z|d+s+1

dy

]
·
[ˆ

(v(x)− v(z))
(x− z)

|z − x|d+s+1
dx

]
dz

= c2d,s

˚
lim

ε,δ,η→0

[
A(z)(u(y)− u(z))

(y − z)χδ(y, z)
|y − z|d+s+1

· (v(x)− v(z))
(x− z)χε(x, z)
|z − x|d+s+1

χη(x, y)

]
dx dy dz
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= c2d,s lim
ε,δ,η→0

˚
A(z)(u(y)− u(z))

(y − z)χδ(y, z)
|y − z|d+s+1

· (v(x)− v(z))
(x− z)χε(x, z)
|z − x|d+s+1

χη(x, y) dx dy dz,

where χη(x, y) is the characteristic function on the set {|x − y| > η} and similarly defined for χε and χδ.
The limit can be exchanged with the integral by the Fubini and Lebesgue theorems because the integrand
is Lebesgue integrable. Therefore,

ˆ
A(z)Dsu(z) ·Dsv(z) dz

= c2d,s lim
ε,δ,η→0

˚
A(z)(u(y)− u(z))

(y − z)χδ(y, z)
|y − z|d+s+1

· v(x)
(x− z)χε(x, z)
|z − x|d+s+1

χη(x, y) dx dy dz

− c2d,s lim
ε,δ,η→0

˚
A(z)(u(y)− u(z))

(y − z)χδ(y, z)
|y − z|d+s+1

· v(z)
(x− z)χε(x, z)
|z − x|d+s+1

χη(x, y) dx dy dz

= c2d,s lim
ε,δ,η→0

˚
A(z)(u(y)− u(z))

(y − z)χδ(y, z)
|y − z|d+s+1

· v(x)
(x− z)χε(x, z)
|z − x|d+s+1

χη(x, y) dx dy dz

− c2d,s lim
ε,δ→0

¨
A(z)(u(y)− u(z))

(y − z)χδ(y, z)
|y − z|d+s+1

· v(z)

[ˆ
lim
η→0

(x− z)χε(x, z)
|z − x|d+s+1

χη(x, y) dx

]
dy dz

= c2d,s lim
ε,δ,η→0

˚
A(z)(u(y)− u(z))

(y − z)χδ(y, z)
|y − z|d+s+1

χη(x, y) · v(x)
(x− z)χε(x, z)
|z − x|d+s+1

dx dy dz, (3.14)

using the fact that
´ (x−z)χε(x,z)
|x−z|d+s+1 dx = 0 for all ε > 0. Note that we can exchange the limit in η with the

integrals because the functions are Lebesgue integrable as |x− y| → 0.
Adding and subtracting u(x), as u, v ∈ C∞c (Rd), we have

ˆ
A(z)Dsu(z) ·Dsv(z) dz

= c2d,s lim
ε,δ,η→0

˚
A(z)[(u(y)− u(x)) + (u(x)− u(z))]

(y − z)χδ(y, z)
|y − z|d+s+1

· v(x)
(x− z)χε(x, z)
|z − x|d+s+1

χη(x, y) dx dy dz

= c2d,s lim
ε,δ,η→0

˚
A(z)(u(y)− u(x))

(y − z)χδ(y, z)
|y − z|d+s+1

· v(x)
(x− z)χε(x, z)
|z − x|d+s+1

χη(x, y) dx dy dz

+ c2d,s lim
ε,δ,η→0

ˆ
A(z)

[ˆ
(y − z)χδ(y, z)
|y − z|d+s+1

·
[ˆ

(u(x)− u(z))v(x)
(x− z)χε(x, z)
|z − x|d+s+1

χη(x, y) dx

]
dy

]
dz

= c2d,s lim
ε,δ,η→0

˚
A(z)(u(y)− u(x))

(y − z)χδ(y, z)
|y − z|d+s+1

· v(x)
(x− z)χε(x, z)
|z − x|d+s+1

χη(x, y) dx dy dz

+ c2d,s lim
ε,δ→0

ˆ
A(z)

[ˆ
(y − z)χδ(y, z)
|y − z|d+s+1

·
[ˆ

lim
η→0

(u(x)− u(z))v(x)
(x− z)χε(x, z)
|z − x|d+s+1

χη(x, y) dx

]
dy

]
dz

= c2d,s lim
ε,δ,η→0

˚
A(z)(u(y)− u(x))

(y − z)χδ(y, z)
|y − z|d+s+1

· v(x)
(x− z)χε(x, z)
|z − x|d+s+1

χη(x, y) dx dy dz, (3.15)

where we make use of the fact that
´ (y−z)χδ(y,z)
|y−z|d+s+1 · f(z) dy = 0 for all δ > 0 for any finite function f(z). Once

again, the limit in η can be interchanged with triple integrals, because the factor (y−z)χδ(y,z)
|y−z|d+s+1 is integrable

for δ > 0. Also, the function

f(z) := lim
η→0

ˆ
(u(x)− u(z))χη(x, y)v(x)

(x− z)χε(x, z)
|z − x|d+s+1

dx

is a finite function of z, because the integrand has a singularity only at x = z and we have introduced the
characteristic function χε(x, z). Furthermore, the Lipschitz continuity of u guarantees that the singularity
is removable, since we have the factor u(x)− u(z). This is also the reason why we used the first expression
in (1.4) for the expansion of Dsu, rather than the second one, which will only give us a factor of u(x) when
we add and subtract u(x). Therefore, we can take the limit η → 0, so that it is just a function of z.

21



Next, we apply Fubini’s theorem, since the integrand is Lebesgue integrable for fixed ε, δ, η > 0. Therefore,

ˆ
A(z)Dsu(z) ·Dsv(z) dz

= c2d,s lim
ε,δ,η→0

˚
A(z)(u(y)− u(x))

(y − z)χδ(y, z)
|y − z|d+s+1

· v(x)
(x− z)χε(x, z)
|z − x|d+s+1

χη(x, y) dz dy dx.

Finally, regarding this limit as a double limit, in η and separately in ε and δ, which exists, we can consider
the iterated limit in the following form

ˆ
A(z)Dsu(z) ·Dsv(z) dz

= lim
η→0

¨
(u(x)− u(y))v(x)

[
c2d,s lim

ε,δ→0

ˆ
A(z)

(y − z)χδ(y, z)
|y − z|d+s+1

· (z − x)χε(x, z)

|z − x|d+s+1
dz

]
χη(x, y) dy dx

where we may interpret the term in the parentheses as the Cauchy principal value about the singularities
z = x and z = y, i.e. as a function in x, y defined for x 6= y, by

kA(x, y) = c2d,s P.V.

ˆ
A(z)

y − z
|y − z|d+s+1

· z − x
|z − x|d+s+1

dz. (3.13)

Remark 3.8. Note that in general, kA is neither translation nor rotation invariant, unlike the case for the
fractional Laplacian. In particular, kA may not have the form j(x−y)|x−y|−d−2s. Therefore, the kernel kA
may have relevance for non-homogeneous, non-isotropic and nonlocal problems. Even in the case for A being
the constant coefficient matrix when kA is translation invariant, it may not be rotation invariant, unless if
A is a constant multiple of the identity matrix.

Remark 3.9. Suppose that the matrix A is given by αI for a strictly positive finite constant α and the identity
matrix I. Then, by (1.8) and Proposition 2.2, L̃αI defined by (3.1) can also be defined by a symmetric bilinear
form as in (3.12) with a kernel α given by

α(x, y) =
αc2d,s

|x− y|d+2s

which is, up to a constant, the kernel of the fractional Laplacian and satisfies (2.2) and (2.3).
However, we observe that this representation may not be unique, and kαI may not be equal to αc2d,s|x−

y|−d−2s. Indeed, consider an unbounded nonzero L2-integrable function h(x) : Rd → R which integrates to 0
over Rd and has support outside Ω. Let a(x, y) be a kernel satisfying (2.2) and (2.3) and define

ã(x, y) = a(x, y) + h(x)h(y),

which is possible since the kernel is defined over all (Rd ×Rd)\{x = y} and the integrability of h means that
Lã is well defined. Since

´
h = 0 by the construction of h and, for any u, v ∈ C∞c (Ω),

´
ũh = 0 since they

have disjoint supports, we have

〈Lãu, v〉 =P.V.

ˆ
Rd

ˆ
Rd
ṽ(x)(ũ(x)− ũ(y))(a(x, y) + h(x)h(y)) dy dx

=P.V.

ˆ
Rd

ˆ
Rd
ṽ(x)(ũ(x)− ũ(y))a(x, y) dy dx

+ P.V.

ˆ
Rd

ˆ
Rd
ũ(x)ṽ(x)h(x)h(y) dy dx− P.V.

ˆ
Rd

ˆ
Rd
ũ(y)ṽ(x)h(x)h(y) dy dx

=P.V.

ˆ
Rd

ˆ
Rd
ṽ(x)(ũ(x)− ũ(y))a(x, y) dy dx
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+ P.V.

ˆ
Rd
ũ(x)ṽ(x)h(x)

[ˆ
Rd
h(y) dy

]
dx− P.V.

ˆ
Rd
ṽ(x)h(x)

[ˆ
Rd
ũ(y)h(y) dy

]
dx

=P.V.

ˆ
Rd

ˆ
Rd
ṽ(x)(ũ(x)− ũ(y))a(x, y) dy dx = 〈Lau, v〉

This example gives a class of non-uniqueness for the representation of the kernel. There may be more
similar classes, and it will be interesting to know a characterisation for the equivalent class of kernels.
Furthermore, even if the kernel a satisfies the conditions (2.2) and (2.3), since h may change sign and may
be unbounded, our construction of the kernel ã may not satisfy the condition (2.2), nor the weaker conditions{

a∗ ≤ a(x, y)|x− y|d+2s ≤ a∗, |x− y| ≤ 1

a(x, y) ≤M |x− y|−d−s′ , |x− y| > 1
(3.16)

for some a∗, a
∗,M, s′ > 0, as given in equation (1.11) of [214].

However, (2.2) is not satisfied for the kernel kA for a general matrix A. Indeed, we can construct a
numerical counterexample as follows.

Example 3.10. In d = 1, suppose s = 0.8, and consider the matrix A = α(x) where α(x) = 0.01 + 50H(x)
for the smooth approximation H of the characteristic function of the interval [1, 1.5], such that H(x) = 1 in
[1, 1.5] and less than 0.0001 outside [0.9, 1.6]. Then

kA(−0.5, 0.5) = 0.01c21,0.8P.V.

ˆ
R

0.5− z
|0.5− z|2.8

z + 0.5

|z + 0.5|2.8
dz + 50c21,0.8P.V.

ˆ
R
H(z)

0.5− z
|0.5− z|2.8

z + 0.5

|z + 0.5|2.8
dz.

Observe that the function

κ1,0.8(−0.5, 0.5, z) :=
0.5− z
|0.5− z|2.8

z + 0.5

|z + 0.5|2.8

has the shape

Created in Symbolab

Figure 1: Shape of an integrable but not absolutely integrable function

is integrable but not absolutely integrable, and is strictly increasing and strictly negative in the interval
[0.9, 1.6] with values (computed in Wolfram Alpha)

κ1,0.8(−0.5, 0.5, 0.9) = −2.839, κ1,0.8(−0.5, 0.5, 1.5) = −0.287,

ˆ
R
κ1,0.8(−0.5, 0.5, z) dz ≈ 30 < 100.

Then, computing (3.13) for

kA(−0.5, 0.5) = 0.01c21,0.8P.V.

ˆ
R

0.5− z
|0.5− z|2.8

z + 0.5

|z + 0.5|2.8
dz + 50c21,0.8P.V.

ˆ
R
H(z)

0.5− z
|0.5− z|2.8

z + 0.5

|z + 0.5|2.8
dz

< 0.01c21,0.8(100) + 50c21,0.8P.V.

ˆ 1.5

1

0.5− z
|0.5− z|2.8

z + 0.5

|z + 0.5|2.8
dz

+ 50(0.0001)c21,0.8P.V.

ˆ
R\[0.9,1.6]

0.5− z
|0.5− z|2.8

z + 0.5

|z + 0.5|2.8
dz
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= c21,0.8 + 50c21,0.8P.V.

ˆ 1.5

1

0.5− z
|0.5− z|2.8

z + 0.5

|z + 0.5|2.8
dz

+ 0.005c21,0.8

(
P.V.

ˆ
R

0.5− z
|0.5− z|2.8

z + 0.5

|z + 0.5|2.8
dz − P.V.

ˆ 1.6

0.9

0.5− z
|0.5− z|2.8

z + 0.5

|z + 0.5|2.8
dz

)

< c21,0.8 + 50c21,0.8P.V.

ˆ 1.5

1

κ1,0.8(−0.5, 0.5, 1.5) dz

+ 0.005c21,0.8

(
P.V.

ˆ
R
κ1,0.8(−0.5, 0.5, z) dz − P.V.

ˆ 1.6

0.9

κ1,0.8(−0.5, 0.5, 0.9) dz

)
< c21,0.8 + 50c21,0.8(−0.28)(0.5) + 0.005c21,0.8(100− (−2.84)(1.6− 0.9)) = −5.49c21,0.8 < 0

which contradicts (2.2). Compare with Open Problem 1.10 of [214].

Theorem 3.7 and the last two remarks were inspired by the Open Problem 1.10 of [214], which asked
if, given a symmetric matrix A satisfying (3.2), it is possible to find a kernel kA satisfying (3.16) such that
(3.12) holds. Complementing this open problem, we propose the following conjecture (see also Remark 3.1
of [79]):

Open Problem. Suppose A : Rd → Rd×d is a bounded, measurable and strictly elliptic matrix such that

a∗|z|2 ≤ A(x)z · z and A(x)z · z∗ ≤ a∗|z||z∗| (3.2)

for some a∗, a
∗ > 0 for all x ∈ Rd and all z, z∗ ∈ Rd. Let kA be a corresponding kernel which is continuous

outside the diagonal x = y and satisfies

ˆ
Rd
A(x)Dsu(x) ·Dsv(x) dx = P.V.

ˆ
Rd

ˆ
Rd
v(x)(u(x)− u(y))kA(x, y) dy dx

for all u, v ∈ C∞c (Rd). Then, there exists an equivalent kernel kA satisfying

a∗ ≤ kA(x, y)|x− y|d+2s ≤ a∗ ∀x, y ∈ Rd, x 6= y

for some a∗, a
∗ > 0 if and only if A is a bounded small perturbation α̃(x) of the identity matrix (up to a

positive constant α), i.e. A = (α+ α̃(x))I for some strictly positive finite constant α >> supx |α̃(x)|.
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Part II

Applications to Fractional and Nonlocal
Problems
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4 Nonlocal and the Fractional Obstacle-Type Problems

4.1 Introduction

Fractional problems with obstacle-type constraints were first considered by Silvestre as part of his thesis in
2005 in [219], which was published in 2007 in [218]. Since then, many obstacle-type problems with various
nonlocal operators have been considered, extensively for the fractional Laplacian (such as in [60], [88], [177],
[178] and [197]), as well as for other nonlocal operators (see, for example, [2], [14], [61], [87], [205] and [212]),
which are mainly generalisations of the fractional Laplacian to nonlocal one-variable kernels K(y) satisfying
homogeneous and symmetry properties (see in particular, [2] and [61]).

Recall from Section 1.2 the classical fractional Sobolev space Hs
0(Ω) in a bounded domain Ω ⊂ Rd with

Lipschitz boundary, for 0 < s < 1, defined as

Hs
0(Ω) := C∞c (Ω)

‖·‖Hs ,

with
‖u‖2Hs =‖u‖2L2(Rd) +‖Dsu‖2L2(Rd) ,

where u is extended by 0 in Rd\Ω, so that this extension is also in Hs(Rd). By the Sobolev-Poincaré
inequality (see Theorem 1.7 of [213] and Lemma 1.3), we may consider the space Hs

0(Ω) with the following
equivalent norms

‖u‖2Hs0 (Ω) :=‖Dsu‖2L2(Rd) =
c2d,s
2

[u]2s,Rd :=
c2d,s
2

ˆ
Rd

ˆ
Rd

(u(x)− u(y))2

|x− y|d+2s
dx dy. (1.16)

We can subsequently denote the dual space of Hs
0(Ω) by H−s(Ω) for 0 < s ≤ 1. Then, by the Sobolev-

Poincaré inequalities, we have the embeddings

Hs
0(Ω) ↪→ Lq(Ω), L2#

(Ω) ↪→ H−s(Ω) = (Hs
0(Ω))′

for 1 ≤ q ≤ 2∗, where 2∗ = 2d
d−2s and 2# = 2d

d+2s when s < d
2 , and if d = 1, 2∗ = q for any finite q and

2# = q′ = q
q−1 when s = 1

2 and 2∗ = ∞ and 2# = 1 when s > 1
2 . We recall that those embeddings are

compact for 1 ≤ q < 2∗ (see for example, Theorem 4.54 of [93]). In this chapter, we use 2# to indicate this
number that depends on d ≥ 1 and 0 < s ≤ 1.

We consider the closed convex set

Ksψ = {v ∈ Hs
0(Ω) : v ≥ ψ a.e. in Ω},

with a given obstacle ψ, such that Ksψ 6= ∅, and the obstacle problem

u ∈ Ksψ : 〈Lau, v − u〉 ≥ 〈F, v − u〉 ∀v ∈ Ksψ, (4.1)

for F in H−s(Ω). Here, the nonlocal operator La : Hs
0(Ω) → H−s(Ω) is a generalisation of the fractional

Laplacian for a measurable, strictly positive kernel a : Rd×Rd\D →]0,∞[ for the diagonal D = {(x, x) : x ∈
Rd} satisfying (2.2) and (2.3), and is defined in the duality sense for u, v ∈ Hs

0(Ω), extended by zero outside
Ω:

〈Lau, v〉 = P.V.

ˆ
Rd

ˆ
Rd
ṽ(x)(ũ(x)− ũ(y))a(x, y) dy dx. (2.1)

Physically, the operator La corresponds to the class of uniformly irreducible random walks that admit a
cycle decomposition with bounded range, bounded length of cycles, and bounded jump rates [94].

Recall that we have shown, in Section 2.2, that the bilinear form

Ea(u, v) := 〈Lau, v〉 = P.V.

ˆ
Rd

ˆ
Rd
ṽ(x)(ũ(x)− ũ(y))a(x, y) dy dx

is a (not necessarily symmetric) Dirichlet form over Hs
0(Ω)×Hs

0(Ω), where ũ and ṽ are the zero extensions
of u and v outside Ω respectively. This provides us with many known properties of Dirichlet forms that can
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be applied to the bilinear form Ea, including the truncation property, T-monotonicity, and some regularity
results.

Consequently, in Section 4.2, we make use of the comparison property to consider obstacle-type problems
involving the bilinear form Ea, thereby considering the nonlocal obstacle problem for which we derive results
similar to the classical case in H1

0 (Ω) as in [221], [145] and [195], such as the weak maximum principle and
comparison properties.

By considering the approximation of the obstacle problem by semilinear problems using a bounded
penalisation, in Section 4.3, we give a direct proof of the Lewy-Stampacchia inequalities for the obstacle-

type problems. Here we consider the non-homogeneous data F = f ∈ L2#

(Ω) not only for the one obstacle
problem but also for the two obstacles problem and for the N membranes problem in the nonlocal framework,
extending the results of [212]. In particular, we extend the estimates in energy of the difference between the
approximating solutions and the solutions of the one and the two obstacle problems, which may be useful
for numerical applications such as in [45] or [181]. More important is the use of the Lewy-Stampacchia
inequalities that, upon restricting a to the symmetric case, allows the application of the results of [103] to
obtain locally the Hölder regularity of the solutions to those three nonlocal obstacle type problems. Such
regularity results are weaker than those obtained from the fractional Laplacian (such as in [198]) or other
commonly considered nonlocal kernels [106], since a is in general not a constant multiple of |x− y|−d−2s. In
this special case, when La = (−∆)s, the one obstacle problem can be written for f ∈ [L2(Rd)]d

u ∈ Ksψ(Ω) :

ˆ
Rd

(Dsu− f) ·Ds(v − u) dx ≥ 0 ∀v ∈ Ksψ(Ω),

as well as for the corresponding inequalities for the two obstacles and the N membranes problems. We
are then able to use the results of [37] together with the Lewy-Stampacchia inequalities to obtain locally
regular solutions in the fractional Sobolev space W 2s,p

loc (Ω) for p ≥ 2# and also in C1(Ω) for s > 1/2 and
p > d/(2s− 1) when Ds · f ∈ Lp(Rd).

In Section 4.4, we further consider some properties related to the fractional s-capacity extending some
classical results of Stampacchia [221]. We characterise the order dual of Hs

0(Ω) as the dual space of L2
Cs

(Ω),
i.e. the space of quasi-continuous functions with respect to the s-capacity which are in absolute value quasi-
everywhere dominated by Hs

0(Ω) functions, extending results of [24]. That dual space corresponds then to
the elements of H−s(Ω) that are also bounded measures, i.e. (L2

Cs
(Ω))′ = H−s(Ω)∩M(Ω). Therefore, using

the strict T-monotonicity of La, we state the Lewy-Stampacchia inequalities in this dual space. This section
ends with some new remarks on the relations of the Ea obstacle problem and the s-capacity.

Finally, in Section 4.5, we consider the fractional obstacle problem

u ∈ Ksψ : 〈L̃Au, v − u〉 ≥ 〈F, v − u〉 ∀v ∈ Ksψ (4.2)

where L̃A is defined by

〈L̃sAu, v〉 :=

ˆ
Rd
A(x)Dsu ·Dsv dx, ∀u, v ∈ Hs

0(Ω) (3.1)

for the matrix A satisfying coercivity and boundedness properties given in (3.2). Note that the two problems
(4.1) and (4.2) are in general not the same, but they coincide in the case of (−∆)s. Making use of convergence
properties of the fractional derivatives when s↗ 1 to the classical derivatives, as already observed in [193],
[31] and [73], we show that its solution converges to the solution of the classical case corresponding to s = 1.

We start by considering the linear form for F ∈ H−s(Ω) defined by

〈F, v〉 =

ˆ
Ω

f#v +

ˆ
Rd

f ·Dsv

for v ∈ Hs
0(Ω), f = (f1, . . . , fd) ∈ [L2(Rd)]d and f# ∈ L2#

(Ω) where 2# = 2d
d+2s when s < d

2 , and if d = 1,

2# = q for any finite q > 1 when s = 1
2 and 2# = 1 when s > 1

2 . By the Riesz representation theorem, we
have

∃!φ ∈ Hs
0(Ω) :

ˆ
Rd
Dsφ ·Dsv = 〈−Ds ·Dsφ, v〉 = 〈F, v〉, ∀v ∈ Hs

0(Ω).
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Therefore, F ∈ H−s(Ω) may be given by F = −Ds ·Dsφ = −Ds · g for some g = (g1, . . . , gd) ∈ [L2(Rd)]d
and, by the Sobolev-Poincaré inequality, it satisfies

‖g‖[L2(Rd)]d =‖F‖H−s(Ω) ≤ CS
∥∥f#

∥∥
L2#

(Ω)
+‖f‖[L2(Rd)]d .

In order for
F ∼ f# −Ds · f

to lie in the positive cone of H−s(Ω), it is enough for f# to be non-negative almost everywhere in Ω and
Ds · f ≤ 0 in the distributional sense in Rd.

4.2 The Nonlocal Obstacle Problem and Its Properties

As a consequence of the properties of the bilinear form Ea defined by (2.11) in Hs
0(Ω) for 0 < s < 1, we can

derive classical properties of the fractional obstacle problems, following most of the approach of Section 4:5
in [195].

Theorem 4.1 (Obstacle Problem). Let Ω ⊂ Rd be an open bounded domain with Lipschitz boundary,

f# ∈ L2#

(Ω), f ∈ [L2(Rd)]d, and a : Rd × Rd\D →]0,∞[ for the diagonal D = {(x, x) : x ∈ Rd} be
strictly elliptic and measurable satisfying (2.2) and (2.3). Then, for every function ψ, measurable in Ω, and
admissible in the sense that the closed convex set

Ksψ = {v ∈ Hs
0(Ω) : v ≥ ψ a.e. in Ω} 6= ∅,

there exists a unique u ∈ Ksψ such that

Ea(u, v − u) ≥
ˆ

Ω

f#(v − u) +

ˆ
Rd

f ·Ds(v − u) ∀v ∈ Ksψ. (4.3)

Moreover, suppose F, F̂ are given as in the beginning of this section for two different obstacle problems
defined in (4.3), then the solution map F 7→ u is Lipschitz continuous, i.e.

‖u− û‖Hs0 (Ω) ≤
c2d,s
a∗

(
CS

∥∥∥f# − f̂#

∥∥∥
L2#

(Ω)
+
∥∥∥f − f̂

∥∥∥
[L2(Rd)]d

)
.

Proof. This is just a direct application of the Stampacchia theorem, since the bilinear form Ea : Hs
0(Ω) ×

Hs
0(Ω)→ R is bounded and coercive by Theorem 2.5.

For the continuous dependence on data, if u, û are the solutions corresponding to different data F and
F̂ for the obstacle problem respectively, we set v = û in the inequality for u and v = u in the inequality for
û, and take the difference to obtain

Ea(u− û, u− û) ≤
ˆ

Ω

(f# − f̂#)(u− û) +

ˆ
Rd

(f − f̂) ·Ds(u− û).

By the fractional Sobolev inequality and the Cauchy-Schwarz inequality, we have

a∗
c2d,s

∥∥Ds(u− û)
∥∥2

L2(Rd)
≤ Ea(u− û, u− û)

≤
ˆ

Ω

(f# − f̂#)(u− û) +

ˆ
Rd

(f − f̂) ·Ds(u− û)

≤
∥∥∥f# − f̂#

∥∥∥
L2#

(Ω)
‖u− û‖L2∗ (Ω) +

∥∥∥f − f̂
∥∥∥

[L2(Rd)]d

∥∥Ds(u− û)
∥∥

[L2(Rd)]d

≤
(
CS

∥∥∥f# − f̂#

∥∥∥
L2#

(Ω)
+
∥∥∥f − f̂

∥∥∥
[L2(Rd)]d

)∥∥Ds(u− û)
∥∥

[L2(Rd)]d

where CS is the Sobolev constant of Lemma 1.1.

28



Furthermore, we have the following properties of the solution as in the classical case, making use of the
strict T-monotonicity of Ea and the fractional Poincaré inequality. See for example, Chapter IV of [145] or
Section 4:5–6 of [195], where the proofs can be transferred to the nonlocal case almost in the same manner.

Proposition 4.2. (i) (Comparison principle). Suppose u is the solution of the variational inequality (4.3)

with data F and convex set Ksψ, and û be the solution with data F̂ and convex set Ks
ψ̂

. If ψ ≥ ψ̂ and

F ≥ F̂ , then u ≥ û a.e. in Ω.

(ii) (Weak maximum principle). In the obstacle problem (4.3), one has

u ≥ 0 a.e. in Ω, if F ≥ 0; and

u ≤ 0 ∨ sup
Ω
ψ a.e. in Ω, if F ≤ 0.

(iii) (Complementary problem). When ψ ∈ Hs
0(Ω), the variational problem (4.3) is equivalent to the non-

linear complementary problem

u ≥ ψ, Lau− F ≥ 0 and 〈Lau− F, u− ψ〉 = 0. (4.4)

(iv) (Comparison of supersolutions).

(a) If u is the solution to the variational inequality (4.3) and w is any supersolution, then u ≤ w;

(b) If v and w are two supersolutions to the variational inequality (4.3), then v ∧ w is also a super-
solution,

where a supersolution is an element w ∈ Hs
0(Ω) satisfying w ≥ ψ and Law − F ≥ 0 in the sense of

order dual.

(v) The solution u of the obstacle problem (4.3) is the unique function in Hs
0(Ω), such that,

u = min{w ∈ Hs
0(Ω) : Law − F ≥ 0, w ≥ ψ in Ω}.

(vi) (L∞ estimates) The following estimate holds:

‖u− û‖L∞(Ω) ≤ ‖ψ − ψ̂‖L∞(Ω).

Proof of (i). Since u, û are the solutions to the variational inequalities

〈Lau− F, v − u〉 ≥ 0 ∀v ∈ Ksψ

〈Laû− F̂ , v − û〉 ≥ 0 ∀v ∈ Ks
ψ̂

respectively, we take v = u ∨ û = u + (û − u)+ ∈ Ksψ and v = u ∧ û = û − (û − u)+ ∈ Ks
ψ̂

because

(û− u)+ ∈ Hs
0(Ω). Summing the two equations then gives

〈La(û− u), (û− u)+〉+ 〈F − F̂ , (û− u)+〉 ≤ 0.

Since F − F̂ ≥ 0, using Theorem 2.8 that Ea is strictly T-monotone, we have u ≥ û.

Proof of (ii). Take v = u ∨ 0 ∈ Ksψ in (4.1). Then, by the strict T-monotonicity of Ea, we have

0 ≥ −〈F, (0−u)+〉 ≥ −〈Lau, (0−u)+〉 = 〈La(−u), (−u)+〉 ≥ a∗
c2d,s

ˆ
Rd
|Ds(−u)+|2 ≥ a∗

c2d,sC
2
P

ˆ
Ω

|(−u)+|2 ≥ 0

by the fractional Poincaré inequality 1.3. Therefore, (−u)+ = 0 a.e. in Ω, and we have the first result.
Analogously, choosing v = u ∧ (0 ∨ supΩ ψ) < +∞ gives the second result.
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Proof of (iii). Suppose u solves the variational inequality (4.1). Letting v = u+w ≥ ψ for arbitrary w ≥ 0,
we have

〈Lau− F,w〉 ≥ 0 ∀w,
so

Lau− F ≥ 0.

Also, setting v = ψ and v = 2u− ψ, we obtain

0 ≤ 〈Lau− F,ψ − u〉 = −〈Lau− F, u− ψ〉 = −〈Lau− F, (2u− ψ)− u〉 ≤ 0,

so
〈Lau− F,ψ − u〉 = 0.

Conversely, if u solves the nonlinear complementary problem (4.4), then for arbitrary v ≥ ψ, we have

〈Lau− F, v − u〉 = 〈Lau− F, v − ψ〉+ 〈Lau− F,ψ − u〉 ≥ 0.

This is because Lau− F ≥ 0 and v − ψ ≥ 0, so the first term is greater than or equal to 0, while the second
term is equal to 0.

Proof of (iv) and (v). (a) Since both u ≥ ψ and w ≥ ψ, taking v = u ∧ w = u− (u− w)+ in the variational
inequality (4.1), v satisfies v ≥ ψ and

〈Lau− F, (u− w)+〉 ≤ 0.

At the same time, since (u− w)+ ≥ 0 and w is a supersolution, we have

〈Law − F, (u− w)+〉 ≥ 0,

hence
〈Lau− Law, (u− w)+〉 ≤ 0.

By the strict monotonicity of La given in Theorem 2.8, (u− w)+ = 0, i.e. u ≤ w.
(b) Consider, using the Lions-Stampacchia theorem, the unique solution z ∈ Hs

0(Ω) to the complementary
problem

z ≥ v ∧ w, Laz − F ≥ 0 and 〈Laz − F, z − v ∧ w〉 = 0.

Since v and w are still supersolutions to this problem, from part (i), it follows that z ≤ v and z ≤ w, so
z ≤ v ∧ w. Therefore, z = v ∧ w, and since this gives z ≥ ψ, z is also a supersolution to the nonlinear
complementary problem (4.4).

Applying this result to the Dirichlet fractional obstacle problem (4.3), a supersolution w ∈ Hs
0(Ω) to

the operator La − F in Ω is such that w ≥ ψ in Ω. Since the solution u to (4.3) is itself a supersolution,
analogously to part (a) of the (iv), one has the result for (v).

Proof of (vi). Given that u, û are the solutions to the variational inequalities

〈Lau− F, v − u〉 ≥ 0 ∀v ∈ Ksψ

〈Laû− F, v − û〉 ≥ 0 ∀v ∈ Ks
ψ̂

respectively, setting ` =
∥∥∥ψ − ψ̂∥∥∥

L∞(Ω)
<∞, we take v = u+(û−u−`)+ ∈ Ksψ and v = û−(û−u−`)+ ∈ Ks

ψ̂
.

Summing the two equations then gives

〈La(û− u), (û− u− `)+〉 ≤ 〈F − F, (û− u− `)+〉 = 0.

But by the T-monotonicity of Ea given in Theorem 2.8, since ` is a constant,

〈La(û− u), (û− u− `)+〉 = 〈La(û− u− `), (û− u− `)+〉 ≥ a∗
c2d,s

ˆ
Rd
|Ds(û− u− `)+|2 ≥ 0.

Therefore (û− u)+ = 0 and û ≤ u+ `. Repeating with u interchanged with û, we also obtain u ≤ û+ `.
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Similarly, as in Theorem 6.1 of Chapter 4 of [195], we can prove the following additional result for the
Dirichlet form Eλ with λ > 0.

Proposition 4.3. All the results in Proposition 4.2 hold for Eλ when λ > −λs1 for the first eigenvalue λs1 of
La, where

Eλ(u, v) = Ea(u, v) + λ

ˆ
Ω

uv, u, v ∈ Hs
0(Ω). (4.5)

Moreover in this case, when f ≡ 0, the following maximum principle holds a.e. in Ω:

0 ∧ inf
Ω

(
f#

λ

)
≤ u ≤ 0 ∨ sup

Ω
ψ ∨ sup

Ω

(
f#

λ

)
.

Proof. The first part of the proposition follows since Eλ remains strictly T-monotone.
In the obstacle problem (4.3), one has

u ≥ 0 a.e. in Ω, if F ≥ 0; and

u ≤ 0 ∨ sup
Ω
ψ a.e. in Ω, if F ≤ 0.

For the maximum principle, we follow similarly the previous proof of Proposition 4.2(ii), this time choosing

v = u∨m < +∞ and v = u∧M < +∞ in (4.3), where m = 0∧ infΩ

(
f#

λ

)
and M = 0∨ supΩ ψ∨ supΩ

(
f#

λ

)
denote the left and right expressions respectively. Then, by the strict T-monotonicity of Ea, since λm ≤ f#,
we have, for λ > −λs1,

0 ≥ −〈λm− λu, (m− u)+〉 ≥ −〈f# − λu, (m− u)+〉 ≥ −〈Lau, (m− u)+〉 = 〈La(m− u), (m− u)+〉 ≥ 0.

Therefore, u ≥ m a.e. in Ω, and analogously we obtain the other bound.

Remark 4.4. If Ω = Rd and since the kernel a is defined in the whole Rd, the domain of Eλ, D(Eλ), is
instead given by Hs(Rd), and the Dirichlet form Eλ is coercive for λ > 0.

4.3 Lewy-Stampacchia Inequalities and Local Regularity

In this section, we take f = f# and f = 0. We give a direct proof of the Lewy-Stampacchia inequalities.
This will follow much of the approach of Section 5:3.3 in [195] or Chapter IV of [145]. The Lewy-Stampacchia
inequalities will allow us to apply the results of [103], [108] to obtain local Hölder regularity of the solutions
when a is symmetric, and additional regularity on fractional Sobolev spaces when La = (−∆)s using [37].

4.3.1 Bounded penalisation of the obstacle problem in Hs
0(Ω)

Assume now that the obstacle ψ ∈ Hs(Rd), so that we may define Laψ ∈ H−s(Ω) by (2.1) for any test
function v ∈ Hs

0(Ω), and ψ is such that the convex set Ksψ 6= ∅. Consider the approximation to the obstacle
problem, where the penalisation is based on any nondecreasing Lipschitz function θ : R→ [0, 1] such that

θ ∈ C0,1(R), θ′ ≥ 0, θ(+∞) = 1 and θ(t) = 0 for t ≤ 0;

∃Cθ > 0 : [1− θ(t)]t ≤ Cθ, t > 0.

Then, for any ε > 0, consider the family of functions θε(t) = θ
(
t
ε

)
, t ∈ R, which converges as ε → 0

to the multi-valued Heaviside graph. Examples of such sequences of functions include θ(t) = t/(1 + t),
θ(t) = (2/π) arctan t, or from any non-decreasing Lipschitz function 0 ≤ θ ≤ 1 such that θ(t) = 1 for
t ≥ t∗ > 0.

Assume that
f, (Laψ − f)+ ∈ L2#

(Ω). (4.6)

For ζ ∈ L2#

(Ω) such that
ζ ≥ (Laψ − f)+ a.e. in Ω,
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consider now the one parameter family of approximating semilinear problems in variational form

uε ∈ Hs
0(Ω) : Ea(uε, v) +

ˆ
Ω

ζθε(uε − ψ)v =

ˆ
Ω

(f + ζ)v ∀v ∈ Hs
0(Ω). (4.3ε)

Arguing as in the proof of Theorem 5:3.1 of [195], we have the following theorem.

Theorem 4.5. The unique solution uε of the semilinear boundary value problem (4.3ε) is such that uε ∈ Ksψ
for each ε > 0, and it defines a monotone decreasing sequence, converging as ε→ 0 to the solution u of the
obstacle problem (4.3) with the error estimate

‖u− uε‖2Hs0 (Ω) ≤ ε(Cθc
2
d,s/a∗)‖ζ‖L1(Ω) . (4.7)

Proof. The existence and uniqueness of the solution to (4.3ε) follow easily from the assumptions and the
Lions-Stampacchia theorem, as in the proof of the obstacle problem in Theorem 4.1. Therefore, it remains
to show that uε ∈ Ksψ, i.e. uε ≥ ψ. Observe that for all v ∈ Hs

0(Ω) such that v ≥ 0, we have

〈Laψ − f + f, v〉 ≤ 〈(Laψ − f)+ + f, v〉 ≤
ˆ

Ω

(ζ + f)v (4.8)

since Hs
0(Ω) ∩ C0(Ω̄) is dense in Hs

0(Ω) and (Laψ − f)+ ≥ Laψ − f in the sense of measures. Now, taking
v = (ψ − uε)+ ∈ Hs

0(Ω) (since ψ ∈ Hs(Ω) and ψ ≤ 0 on ∂Ω) which satisfies v ≥ 0 and subtracting (4.3ε)
from the above equation, we have

a∗
c2d,s

∥∥(ψ − uε)+
∥∥2

Hs0 (Ω)
=

a∗
c2d,s

∥∥Ds(ψ − uε)+
∥∥2

L2(Ω)

≤ 〈La(ψ − uε)+, (ψ − uε)+〉
≤ 〈La(ψ − uε), (ψ − uε)+〉
= 〈Laψ, (ψ − uε)+〉 − 〈Lauε, (ψ − uε)+〉

≤
ˆ

Ω

(ζ + f)(ψ − uε)+ +

ˆ
Ω

ζθε(uε − ψ)(ψ − uε)+ −
ˆ

Ω

(f + ζ)(ψ − uε)+

=

ˆ
Ω

ζθε(uε − ψ)(ψ − uε)+

= 0.

The last equality is true because either uε − ψ > 0 which gives (ψ − uε)+ = 0, or uε − ψ ≤ 0 which gives
θε(uε − ψ) = 0 by the construction of θ, thus implying θε(uε − ψ)(ψ − uε)+ = 0. Therefore, (ψ − uε)+ = 0,
i.e. uε ∈ Ksψ for any ε > 0.

To show that uε ≥ uε̂ for ε > ε̂ > 0, we just apply the comparison proposition 4.2(i), since ζ ≥ 0 and
θε(t) ≤ θε̂(t).

To show convergence uε ↘ u, it is sufficient to prove the error estimate. Taking v = w − uε in (4.3ε) for
arbitrary w ∈ Ksψ, we have

Ea(uε, (w − uε)) =

ˆ
Ω

(f + ζ)(w − uε)−
ˆ

Ω

ζθε(uε − ψ)(w − uε)

=

ˆ
Ω

f(w − uε) +

ˆ
Ω

ζ[1− θε(uε − ψ)](w − uε)

≥
ˆ

Ω

f(w − uε) +

ˆ
Ω

ζ[1− θε(uε − ψ)](ψ − uε)

=

ˆ
Ω

f(w − uε)− ε
ˆ

Ω

ζ[1− θε(uε − ψ)]
uε − ψ
ε

≥
ˆ

Ω

f(w − uε)− εCθ
ˆ

Ω

ζ
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since ζ, 1− θε, w − ψ ≥ 0 for w ∈ Ksψ.
Now, taking w = u, we obtain

Ea(uε, (u− uε)) ≥
ˆ

Ω

f(u− uε)− εCθ
ˆ

Ω

ζ,

but taking v = uε ∈ Ksψ in the original obstacle problem (4.3), we have

Ea(u, (uε − u)) ≥
ˆ

Ω

f(uε − u).

Taking the difference of these two equations, we have

〈La(uε − u), (uε − u)〉 = Ea((uε − u), (uε − u)) ≤ εCθ
ˆ

Ω

ζ.

Using the ellipticity of a, we have

εCθ

ˆ
Ω

ζ ≥ 〈La(uε − u), (uε − u)〉 ≥ a∗
c2d,s

∥∥Ds(uε − u)
∥∥2

L2(Ω)
=

a∗
c2d,s
‖uε − u‖2Hs0 (Ω)

by Hs
0(Ω) equivalent norm. Therefore, we have the estimate.

Taking ε↘ 0 gives the convergence uε ↘ u.

Remark 4.6. (i) We can formally interpret the variational equation (4.3ε) as corresponding to the fol-
lowing semilinear boundary value problem:

Lauε + ζθε(uε − ψ) = f + ζ in Ω, uε = 0 on Rd\Ω.

(ii) One can also consider the translated penalisation, given by

θ̄ε(t) = 1− θ
(
− t
ε

)
= θ̄

(
− t
ε

)
for t ∈ R and ε > 0, to approach the solution of the obstacle problem from below using monotonicity.
Then we have that the unique solution ūε of the penalised problem

ūε ∈ Hs
0(Ω) : Ea(ūε, v) +

ˆ
Ω

ζθ̄ε(ūε − ψ)v =

ˆ
Ω

(f + ζ)v ∀v ∈ Hs
0(Ω). (4.3∼ε )

defines a monotone increasing sequence converging to the solution u of the obstacle problem (4.3) weakly
in Hs

0(Ω).

(iii) For special choices of the function θ, we can estimate the uniform convergence for the approximations
of u by penalisation. Suppose that, in addition to the conditions on θ,

θ(t) = 1 for t ≥ 1,

then the approximating solution uε of (4.3ε) verifies, for each ε > 0,

uε − ε ≤ u ≤ uε a.e. in Ω.

If, additionally, θ verifies
t ≤ θ(t) ≤ 1 if 0 ≤ t ≤ 1,

the approximating solution ūε yields

ūε ≤ u ≤ uε and 0 ≤ uε − ūε ≤ ε a.e. in Ω.
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Proof of (ii). The fact that ũε is increasing in ε follows as before from the comparison proposition 4.2(i),
since ũε ≥ ũε̂ and θ̃ε̂(t) ≥ θ̃ε(t) for ε̂ > ε > 0.

Since 0 ≤ θ̃ε ≤ 1, from (4.3∼ε ), we have that ũε is bounded in Hs
0(Ω) independently of ε. Therefore,

ũε ⇀ ũ weakly in Hs
0(Ω) and strongly in L2(Ω) for some subsequence ε → 0. To show that ũ is in fact the

solution u of (4.3), we apply Minty’s Lemma (see, for instance, Lemma 4.2 of [195]) to (4.3∼ε ) to obtain, for
any v ∈ Hs

0(Ω)

〈Lav, (v − ũε)〉 ≥
ˆ

Ω

[f + ζ − ζθ̃ε(ũε − ψ)](v − ũε).

Also, for v ∈ Ksψ, θ̃ε(ũε − ψ) = 1, so we have

〈Lav, (v − ũε)〉 ≥
ˆ

Ω

f(v − ũε).

Taking the limit ε→ 0, we have

〈Lav, (v − ũ)〉 ≥
ˆ

Ω

f(v − ũ).

Therefore, it remains, by Minty’s lemma, to show that ũ ∈ Ksψ, i.e. ũ ≥ ψ in Ω since ũ = limε ũε with

ũε ∈ Hs
0(Ω). But this follows from the fact that (ψ − ũε)

+ → 0 strongly in Hs
0(Ω). Indeed, choosing

v = (ψ − ũε)+ ∈ Hs
0(Ω) in (4.3∼ε ) and recalling (4.8), we have, by the equivalent norm on Hs

0(Ω),

a∗
c2d,s

∥∥(ψ − ũε)+
∥∥2

Hs0 (Ω)
≤ a∗
c2d,s

∥∥Ds(ψ − ũε)+
∥∥2

L2(Ω)

≤ 〈La(ψ − ũε)+, (ψ − ũε)+〉
≤ 〈La(ψ − ũε), (ψ − ũε)+〉
= 〈Laψ, (ψ − ũε)+〉 − 〈Laũε, (ψ − ũε)+〉

≤
ˆ

Ω

(ζ + f)(ψ − ũε)+ +

ˆ
Ω

ζθ̃ε(ũε − ψ)(ψ − ũε)+ −
ˆ

Ω

(f + ζ)(ψ − ũε)+

=

ˆ
Ω

ζθ̃ε(ũε − ψ)(ψ − ũε)+

≤
ˆ

Ω∩{ũε−ψ<0}
ζθ̃ε(ũε − ψ)(ψ − ũε)

≤ εCθ
ˆ

Ω

ζ,

which converges to 0 as ε→ 0.

Proof of (iii). Since uε is decreasing in ε, u ≤ uε. To prove the other inequality, take v = u+(uε−u−ε)+ =
u ∨ (uε − ε) ∈ Ksψ (because u ∈ Ksψ =⇒ u ≥ ψ, and u, uε ∈ Hs

0(Ω) so uε − ε < 0 on ∂Ω and thus

u ∨ (uε − ε) = 0 on ∂Ω) in (4.3) and v = (uε − u − ε)+ ∈ Hs
0(Ω) (because u, uε ∈ Hs

0(Ω), and u, uε = 0 on
∂Ω =⇒ uε − u− ε = −ε < 0 on ∂Ω =⇒ (uε − u− ε)+ = 0 on ∂Ω) in (4.3ε). One has, as before,

a∗
c2d,s

∥∥(uε − u− ε)+
∥∥2

Hs0 (Ω)
≤ 〈La(uε − u− ε), (uε − u− ε)+〉

= 〈Lauε, (uε − u− ε)+〉 − 〈Lau, (uε − u− ε)+〉 since Dsε = 0

≤
ˆ

Ω

(ζ + f)(uε − u− ε)+ −
ˆ

Ω

ζθε(uε − ψ)(uε − u− ε)+ −
ˆ

Ω

f(uε − u− ε)+

=

ˆ
Ω

ζ[1− θε(uε − ψ)](uε − u− ε)+

=

ˆ
Ω∩{uε>u+ε}

ζ[1− θε(uε − ψ)](uε − u− ε)+ = 0

since θε(t) = 1 for t ≥ ε.
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For the other set of inequalities, from the conditions on θ̃ε, we have θ̃ε(t) = 1− θε(−t) ≤ θε(t+ ε). This
is because if 0 ≤ −t ≤ 1, θε(−t) ≥ −t/ε, so 1− θε(−t) ≤ 1 + t

ε , and also, θε(t+ ε) = θ
(
t
ε + 1

)
≥ t

ε + 1 since
1 − 1

ε ≤
t
ε + 1 ≤ 1; and if −t ≤ 0, θε(−t) = 0 and θε(t + ε) = 1, so 1 − θε(−t) ≤ θε(t + ε); and if −t ≥ 1,

θε(−t) = 1 and θε(t + ε) ≥ 0, so 1 − θε(−t) ≤ θε(t + ε). Now, since θ is non-decreasing, this implies the
inequality

θ̃ε(t) ≤ θε(τ) for τ − t > ε.

Hence, setting v = (uε − ũε − ε)+ ∈ Hs
0(Ω) in (4.3ε) and (4.3∼ε ), we have

a∗
c2d,s

∥∥(uε − ũε − ε)+
∥∥2

Hs0 (Ω)
≤ 〈La(uε − ũε), (uε − ũε − ε)+〉

= 〈Lauε, (uε − ũε − ε)+〉 − 〈Laũε, (uε − ũε − ε)+〉

=

ˆ
Ω

[f + ζ − ζθε(uε − ψ)](uε − ũε − ε)+

−
ˆ

Ω

[f + ζ − ζθ̃ε(uε − ψ)](uε − ũε − ε)+

=

ˆ
Ω

ζ[θ̃ε(ũε − ψ)− θε(uε − ψ)](uε − ũε − ε)+

=

ˆ
Ω∩{uε−ũε>ε}

ζ[θ̃ε(ũε − ψ)− θε(uε − ψ)](uε − ũε − ε)+ ≤ 0,

so (uε − ũε − ε)+ = 0, and uε − ũε ≤ ε.
To complete the proof, it remains to show that uε ≥ ũε. But this follows immediately from the comparison

proposition 4.2(i), since θ̃ε(t) = 1 ≥ θε(t) for t ≥ 0 and θ̃ε ≥ θ(t) = 0 for t ≤ 0.

From this theorem, we can derive the Lewy-Stampacchia inequality.

Theorem 4.7 (Lewy-Stampacchia inequality). Under the assumptions (4.6), the solution u of the obstacle
problem satisfies

f ≤ Lau ≤ f ∨ Laψ a.e. in Ω.

In particular, Lau ∈ L2#

(Ω).

Proof. Choosing ζ = (Laψ − f)+ in (4.3ε), and making use of the property of θ that 0 ≤ 1 − θε ≤ 1, then
for any ε > 0 and any v ∈ Hs

0(Ω), v ≥ 0, we have

ˆ
Ω

Lauεv =

ˆ
Ω

[f + (Laψ − f)+(1− θε)]v ≤
ˆ

Ω

[f + (Laψ − f)+]v

from the variational form, and on the other hand

Lauε = f + ζ − ζθε = f + ζ(1− θε) ≥ f

holds a.e. in Ω. Together, these give

ˆ
Ω

fv ≤
ˆ

Ω

Lauεv ≤
ˆ

Ω

[f + (Laψ − f)+]v =

ˆ
Ω

[f ∨ (Laψ)]v.

Using (4.7), we let ε→ 0, so this holds for u. Since v is arbitrary, we have the result.

Remark 4.8. The Lewy-Stampacchia inequalities for nonlocal obstacle problems have been first obtained in
[212] for a class of symmetric integrodifferential operators LK , with even kernels K, which are also strictly
T-monotone and include the fractional Laplacian, and with f and LKψ ∈ L∞(Ω).
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4.3.2 Multiple obstacles problem

Two obstacles problem We next consider the two obstacles problem with a Dirichlet boundary condition
in a bounded domain Ω ⊂ Rd with Lipschitz boundary, which consists of finding u ∈ Ksψ,ϕ such that

Ea(u, v − u) ≥
ˆ

Ω

f(v − u), ∀v ∈ Ksψ,ϕ, (4.9)

where f ∈ L2#

(Ω) and
Ksψ,ϕ = {v ∈ Hs

0(Ω) : ψ ≤ v ≤ ϕ a.e. in Ω}. (4.10)

Assume that ϕ and ψ are measurable and admissible obstacles in Ω such that Ksψ,ϕ 6= ∅. When ϕ,ψ ∈ Hs(Rd),
a sufficient condition for these two assumptions to hold is to assume ϕ ≥ ψ a.e. in Ω and ϕ ≥ 0 ≥ ψ a.e. in
Ωc.

Theorem 4.9. The two obstacles problem has a unique solution. Moreover, if u = u(f, ϕ, ψ) and û =

u(f̂ , ϕ̂, ψ̂) are solutions in Ksψ,ϕ and in Ks
ψ̂,ϕ̂

, respectively, of the two obstacles problem, then

f ≥ f̂ , ϕ ≥ ϕ̂, ψ ≥ ψ̂ implies u ≥ û a.e. in Ω.

In addition, if f = f̂ , we have the L∞ estimate

‖u− û‖L∞(Ω) ≤ ‖ψ − ψ̂‖L∞(Ω) +‖ϕ− ϕ̂‖L∞(Ω) .

Proof. The existence and uniqueness follow, as in the previous sections, from the monotonicity, coercivity,
continuity and boundedness of the operator La and the Stampacchia theorem. The comparison property
follows also as previous by the T-monotonicity of La.

The L∞ estimate follows as well, as in the classical one obstacle problem.

Corresponding to the two obstacles problem, we also have the Lewy-Stampacchia inequality.

Theorem 4.10. The solution u of the two obstacles problem, for f,Laϕ,Laψ ∈ L2#

(Ω) such that ϕ,ψ ∈
Hs(Rd) are compatible and Laϕ,Laψ are given by (2.1), satisfies

f ∧ Laϕ ≤ Lau ≤ f ∨ Laψ a.e. in Ω, (4.11)

and therefore Lau ∈ L2#

(Ω).

Proof. The proof is similar to that of the classical case s = 1, now for two obstacles. Consider the penalised
problem given by

uε ∈ Hs
0(Ω) : 〈Lauε, v〉+

ˆ
Ω

ζψθε(uε − ψ)v −
ˆ

Ω

ζϕθε(ϕ− uε)v =

ˆ
Ω

(f + ζψ − ζϕ)v ∀v ∈ Hs
0(Ω)

for
ζψ ≥ (Laψ − f)+, ζϕ ≥ (Laϕ− f)−,

with θε(t) = 1 for t ≥ ε. Then, there is a unique solution uε ∈ Hs
0(Ω) such that ψ ≤ uε ≤ ϕ + ε for each

ε > 0. Indeed, we obtain the existence and uniqueness of the solution by the Stampacchia theorem as before.
To show that ψ ≤ uε ≤ ϕ+ ε, we have

〈Laψ, v〉 ≤ 〈(Laψ − f)+ + f, v〉 ≤
ˆ

Ω

(ζψ + f)v ∀v ∈ Hs
0(Ω), v ≥ 0, and

〈Laϕ, v〉 = 〈(Laϕ− f) + f, v〉 ≥ 〈f − (Laϕ− f)−, v〉 ≥
ˆ

Ω

(f − ζϕ)v ∀v ∈ Hs
0(Ω), v ≥ 0.

Taking v = (ψ − uε)+ ∈ Hs
0(Ω) and using the strict T-monotonicity of La, we have

a∗
c2d,s

∥∥(ψ − uε)+
∥∥2

Hs0 (Ω)
≤ Ea(ψ, (ψ − uε)+)− Ea(uε, (ψ − uε)+)
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≤
ˆ

Ω

(f + ζψ)(ψ − uε)+ −
ˆ

Ω

{f + ζψ[1− θε(uε − ψ)]− ζϕ[1− θε(ϕ− uε)]}(ψ − uε)+

=

ˆ
Ω

ζψθε(uε − ψ)(ψ − uε)+ −
ˆ

Ω

{ζϕ[1− θε(ϕ− uε)]}(ψ − uε)+

≤ 0

because the first term is non-positive, while the factors in the second term are all non-negative. Therefore,
uε ≥ ψ. Similarly, taking v = (uε − ϕ− ε)+ ∈ Hs

0(Ω) gives

a∗
c2d,s

∥∥(uε − ϕ− ε)+
∥∥2

Hs0 (Ω)
=

a∗
c2d,s

∥∥Ds(uε − ϕ− ε)+
∥∥2

L2(Rd)

≤Ea((uε − ϕ− ε)+, (uε − ϕ− ε)+)

≤Ea(uε − ϕ− ε, (uε − ϕ− ε)+)

≤Ea(uε − ϕ, (uε − ϕ− ε)+)

=
[
Ea(uε, (uε − ϕ− ε)+)− Ea(ϕ, (uε − ϕ− ε)+)

]
≤
ˆ

Ω

{f + ζψ[1− θε(uε − ψ)]− ζϕ[1− θε(ϕ− uε)]}(uε − ϕ− ε)+

−
ˆ

Ω

(f − ζϕ)(uε − ϕ− ε)+

=

ˆ
Ω

{ζψ[1− θε(uε − ψ)]}(uε − ϕ− ε)+ +

ˆ
Ω

[ζϕθε(ϕ− uε)](uε − ϕ− ε)+

=

ˆ
Ω

ζψ[1− θε(uε − ψ)](uε − ϕ− ε)+

≤
ˆ

Ω

ζψ[1− θε(uε − ψ)](uε − ψ − ε)+ since ϕ ≥ ψ

= 0

Therefore, uε ≤ ϕ+ ε.
Now, we can show that uε → u, so ψ ≤ uε ≤ ϕ + ε converges to ψ ≤ u ≤ ϕ. Take v = w − uε in the

penalised problem above for arbitrary w ∈ Ksψ,ϕ, then

Ea(uε, w − uε) =

ˆ
Ω

f(w − uε) +

ˆ
Ω

ζψ[1− θε(uε − ψ)](w − uε)−
ˆ

Ω

ζϕ[1− θε(ϕ− uε)](w − uε)

≥
ˆ

Ω

f(w − uε) +

ˆ
Ω

ζψ[1− θε(uε − ψ)](ψ − uε)−
ˆ

Ω

ζϕ[1− θε(ϕ− uε)](ϕ− uε)

=

ˆ
Ω

f(w − uε)− ε
ˆ

Ω

ζψ[1− θε(uε − ψ)]
uε − ψ
ε

− ε
ˆ

Ω

ζϕ[1− θε(ϕ− uε)]
ϕ− uε
ε

≥
ˆ

Ω

f(w − uε)− εCθ
ˆ

Ω

(ζψ + ζϕ).

Now, taking w = u ∈ Ksψ,ϕ, we obtain

Ea(uε, u− uε) ≥
ˆ

Ω

f(u− uε)− εCθ
ˆ

Ω

(ζψ + ζϕ),

but taking v = uε ∈ Ksψ in the original obstacle problem (4.3), we have

Ea(u, uε − u) ≥
ˆ

Ω

f(uε − u).

Taking the difference of these two equations, by the linearity of Ea, we have

Ea(uε − u, uε − u) ≤ εCθ
ˆ

Ω

(ζψ + ζϕ).
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Using the ellipticity of a, we have

εCθ

ˆ
Ω

(ζψ + ζϕ) ≥ Ea(uε − u, uε − u) ≥ a∗
c2d,s

∥∥Ds(uε − u)
∥∥2

L2(Rd)
=

a∗
c2d,s
‖uε − u‖2Hs0 (Ω) .

Therefore, uε → u in Hs
0(Ω).

Choosing ζψ = (Laψ−f)+ and ζϕ = (Laϕ−f)−, and making use of the property of θ that 0 ≤ 1−θε ≤ 1,
then for any ε > 0 and any v ∈ Hs

0(Ω), v ≥ 0, we haveˆ
Ω

(Lauε)v =

ˆ
Ω

[f + (Laψ − f)+(1− θε)− (Laϕ− f)−(1− θε)]v ≤
ˆ

Ω

[f + (Laψ − f)+]v

and ˆ
Ω

(Lauε)v =

ˆ
Ω

[f + (Laψ − f)+(1− θε)− (Laϕ− f)−(1− θε)]v ≥
ˆ

Ω

[f − (Laϕ− f)−]v.

Therefore,ˆ
Ω

[f ∧ (Laϕ)]v =

ˆ
Ω

[f − (Laϕ− f)−]v ≤
ˆ

Ω

(Lauε)v ≤
ˆ

Ω

[f + (Laψ − f)+]v =

ˆ
Ω

[f ∨ (Laψ)]v.

Letting ε→ 0, this holds for u. Since v is arbitrary, we conclude (4.11).

N membranes problem We consider now the N membranes problem, which consists of: To find u =
(u1, u2, . . . , uN ) ∈ KsN satisfying

N∑
i=1

Ea(ui, vi − ui) ≥
N∑
i=1

ˆ
Ω

f i(vi − ui), ∀(v1, . . . , vN ) ∈ KsN , (4.12)

where KsN is the convex subset of [Hs
0(Ω)]N defined by

KsN = {(v1, . . . , vN ) ∈ [Hs
0(Ω)]N : v1 ≥ · · · ≥ vN a.e. in Ω} (4.13)

and f i, . . . , fN ∈ L2#

(Ω). As in the previous sections, the existence and uniqueness follows easily. Further-
more, the following Lewy-Stampacchia type inequality also holds.

Theorem 4.11. The solution u = (u1, . . . uN ) of the N membranes problem satisfies a.e. in Ω

f1 ∧ Lau1 ≤ f1 ∨ · · · ∨ fN

f1 ∧ f2 ≤ Lau2 ≤ f2 ∨ · · · ∨ fN

...

f1 ∧ · · · ∧ fN−1 ≤ LauN−1 ≤ fN−1 ∨ fN

f1 ∧ · · · ∧ fN ≤ LauN ≤ fN ,

and Lau ∈ [L2#

(Ω)]N .

Proof. Choosing (v, u2, . . . , uN ) ∈ KsN with v ∈ Ksu2
, we see that u1 ∈ Ksu2

solves (4.3) with f = f1 and by
Theorem 4.7

f1 ≤ Lau1 ≤ f1 ∨ Lau2 a.e. in Ω.

Analogously, uj ∈ Ksuj+1,uj−1
solves the two obstacles problem with f = f j , j = 2, 3, . . . , N −1, and satisfies,

by (4.11),
f j ∧ Lauj−1 ≤ Lauj ≤ f j ∨ Lauj+1 a.e. in Ω.

Finally, uN solves the one obstacle problem with an upper obstacle ϕ = uN−1, and so by the symmetric
Lewy-Stampacchia estimates given in Theorem 4.7, we have

fN ∧ LauN−1 ≤ LauN ≤ fN a.e. in Ω.

The proof concludes by simple iteration (see Theorem 5.1 of [194]).
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Remark 4.12. The solution can also be approximated by the bounded penalisation given in [25] by

uε ∈ [Hs
0(Ω)]N : 〈Lauεi , vi〉+

ˆ
Ω

ζiθε(u
ε
i−uεi+1)vi−

ˆ
Ω

ζi−1θε(u
ε
i−1−uεi )vi =

ˆ
Ω

(f i+ζi−ζi−1)vi ∀vi ∈ Hs
0(Ω)

for

ζ0 = max

{
f1 + · · ·+ f i

i
: i = 1, . . . , N

}
,

ζi = iζ0 − (f1 + · · ·+ f i) for i = 1, . . . , N

with θε(t) = 1 for t ≥ ε and uε0 = +∞, uεN+1 = −∞.
As in [25], we then have the strong convergence of uε → u in [Hs

0(Ω)]N , thereby giving the Lewy-
Stampacchia inequalities in Theorem 4.11.

4.3.3 Local regularity of solutions

We make use of the Lewy-Stampacchia inequalities to show local regularity for the three types of nonlocal
obstacle problems, but first it is useful to obtain the global boundedness of the solutions.

Let s ∈]0, 1[. Suppose that

(a) f,Laψ ∈ Lp(Ω) for some p > d
2s for the one obstacle problem,

(b) f ∧ Laϕ and f ∨ Laψ are in Lp(Ω) for some p > d
2s for the two obstacles problem, or

(c) f i ∈ Lp(Ω) for i = 1, . . . , N for some p > d
2s for the N membranes problem.

Theorem 4.13. Let u denote the solutions of the one obstacle problem (4.3), or the two obstacles problem
(4.9), or u = ui for i = 1, . . . , N of the N membranes problem (4.12), respectively, under the assumptions
(a), (b) or (c) above. Then g = Lau ∈ Lp(Ω), with p > d

2s and there exists a constant C, depending only on
a∗, a

∗, d, Ω, ‖u‖Hs0 (Ω), ‖g‖Lp(Ω) and s, such that

‖u‖L∞(Ω) ≤ C.

Proof. Assume that Φ : R → R is a Lipschitz convex function such that Φ(0) = 0, then if u ∈ Hs
0(Ω), we

have, by repeating the proof of Proposition 4 of [154],

Ea(Φ(u), v) ≤ Ea(u, vΦ′(u)) for v ≥ 0, v ∈ Hs
0(Ω), weakly in Ω.

We can then repeat the proof of Theorem 13 of [154] using the Moser technique to obtain the theorem. More
details are given in Section 6.8.2. Here, we focus on showing the local regularity for the solutions to the
obstacle problems.

Observe that in general our kernel does not satisfy the usual regularity of the kernel of the fractional
Laplacian [196, 198] or other commonly considered fractional kernels [61], [106], since in general it does not
satisfy the “symmetry” condition a(x, y) = a(x,−y) unless a is a constant multiple of the kernel of the
fractional Laplacian. However, it will still be possible to obtain local Hölder regularity on the solution with
the properties of our kernel, if we assume it is symmetric, i.e. if it satisfies

a(x, y) = a(y, x). (4.14)

Then, we can make use of the symmetric form as given in (2.12), and apply the results of [154].
By the Lewy-Stampacchia inequalities, as long as the upper and lower bounds are in Lp(Ω) for some

p > d
2s , we can make use of the Dirichlet form nature of the bilinear form, and obtain Hölder regularity

on the solutions on balls independently of the boundary conditions and of the regularity of ∂Ω. Then,
by Theorem 1.6 of [103], since the bilinear form satisfies (2.2) and (2.13)–(2.14), in the symmetric case,
we have the weak Harnack inequality. Furthermore, as in the classical de Giorgi-Nash-Moser theory, the
weak Harnack inequality implies a decay of oscillation-result and local Hölder regularity estimates for weak
solutions.
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Theorem 4.14 (Weak Harnack inequality). Let u denote the solutions of the one obstacle problem (4.3), or
the two obstacles problem (4.9), or u = ui for i = 1, . . . , N of the N membranes problem (4.12), respectively,
under the assumptions (a), (b) or (c) above. Suppose the unit ball about the origin B1 is a subset of Ω, and
a is symmetric. Then,

inf
B1/4

u ≥ c

( 
B1/2

u(x)p0 dx

) 1
p0

− sup
x∈B15/16

ˆ
Rd\B1

u−(z)dµx(dz)−‖Lau‖Lp(B15/16) ,

for dµx(dz) a measure depending on a as defined in [103] and [140], and the positive constants p0 ∈]0, 1[ and
c depend only on d, s, a∗, a

∗.

Theorem 4.15 (Hölder regularity). Let u denote the solutions of the one obstacle problem (4.3), or the two
obstacles problem (4.9), or u = ui for i = 1, . . . , N of the N membranes problem (4.12), respectively, under
the assumptions (a), (b) or (c) above. Suppose Bρ b Ω is a ball of radius ρ and a is symmetric. Then, there
exists cρ ≥ 0 and β ∈]0, 1[, independent of u, such that the following Hölder estimate holds for almost every
x, y ∈ Bρ/2:

|u(x)− u(y)| ≤ cρ|x− y|β
(
‖u‖L∞(Ω) +‖Lau‖Lp(Ω)

)
.

Proof. Since the Lewy-Stampacchia inequalities in Theorems 4.7, 4.10 and 4.11 hold a.e. in Bρ ⊂ Ω for Lau
for the one obstacle, the two obstacles problem and the N membranes problem respectively, and Lau = g in
Bρ, therefore g lies in Lp(Ω) for p > d

2s , and we have the result making use of Theorem 4.14 following the
classical approach.

Remark 4.16. (i) The local Hölder continuity of the solutions of a two membranes problem was obtained
for different operators with translation invariant kernels in [61], as well as the local C1,γ regularity in
the case of the fractional Laplacian as in the case of the regular obstacles of [218].

(ii) The results in Theorems 4.14 and 4.15 can be generalised to arbitrary family of measures satisfying
(2.2) and (2.13)–(2.14), as given in [68].

(iii) Since the L∞ bound also works in the non-symmetric case, we conjecture that the weak Harnack
inequality and the Hölder continuity are also true without the symmetry assumption, but this is an
open problem.

In the case where a corresponds to the kernel of the fractional Laplacian, La = (−∆)s, we can use
Corollary 1.15 of [213] and apply local elliptic regularity of weak solutions in fractional Sobolev spaces W r,p

associated to Dirichlet fractional Laplacian problems as in Theorem 1.4 of [37].

Theorem 4.17. Let u denote the solutions of the one obstacle problem (4.3) for f ∈ L2#

(Ω) in the form

u ∈ Ksψ(Ω) :

ˆ
Rd
Dsu ·Ds(v − u) dx ≥

ˆ
Ω

f(v − u) ∀v ∈ Ksψ,

or the corresponding two obstacles problem (4.9), or u = ui for i = 1, . . . , N of the corresponding N mem-
branes problem (4.12), respectively, under the assumptions (a), (b) or (c) above, with 2# ≤ p < ∞ and
0 < s < 1. Then, (−∆)su ∈ Lploc(Ω) and u ∈ W 2s,p

loc (Ω). In particular, u ∈ C1(Ω) if s > 1/2 and
p > d/(2s− 1), by Theorem 7.57(c) of [5].

This theorem, which seems new, is an extension to nonlocal obstacle type problems of the well-known
W 2,p
loc (Ω) regularity of solutions of the classical local obstacle problem corresponding to s = 1.

4.4 s-capacity and Lewy-Stampacchia Inequalities in H−s(Ω)

In this section, we extend the results on the Lewy-Stampacchia inequalities obtained in the previous section
to data in the dual space H−s(Ω). We first characterise the order dual of Hs

0(Ω), which is related to the
theory of the s-capacity. This follows much of the results in the classical obstacle problem [221], [3], [195].
In [4] and [122], more general capacities are considered for general bilinear forms. Recently the fractional
capacity for the Neumann problem was considered in [242]. In order to extend the results in Theorems 4.7,
4.10 and 4.11 to data in H−s(Ω), we may apply the general results of [175] for the one obstacle problem and
[194] for two obstacles.
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4.4.1 A characterisation of the order dual H−s≺ (Ω) of Hs
0(Ω)

Associated with any Dirichlet form, there is a Choquet capacity. We denote by Cs the capacity associated
to the norm of Hs

0(Ω). For any compact set K ⊂ Ω, it is defined by

Cs(K) = inf
{
‖u‖2Hs0 (Ω) : u ∈ Hs

0(Ω), u ≥ 1 a.e. in K
}
.

For an arbitrary open set G ⊂ Ω,

Cs(G) = sup
{
Cs(K) : K is a compact set in G

}
.

A function u ∈ Hs
0(Ω) is said to be quasi-continuous if for every ε > 0, there exists an open set G ⊂ Ω

such that Cs(G) < ε and u|Ω\G is continuous. A property is said to hold quasi-everywhere (q.e.) if it holds
except for a set of capacity zero.

It is well-known (by [4] Proposition 6.1.2 page 156 or [122] Theorem 2.1.3 page 71) that for every
u ∈ Hs

0(Ω), there exists a unique (up to a set of capacity 0) quasi-continuous function ū : Ω→ R such that
ū = u a.e. on Ω. Therefore, we have the following theorem (see also Theorem 3.7 of [242]).

Theorem 4.18. For every function u ∈ Hs
0(Ω), there exists a unique (up to q.e. equivalence) ū : Ω → R

quasi-continuous function such that u = ū a.e. in Ω.

Thus, it makes sense to identify a function u ∈ Hs
0(Ω) with the class of quasi-continuous functions that

are equivalent quasi-everywhere. Denote the space of such equivalent classes by Qs(Ω). Then, for every
element u ∈ Hs

0(Ω), there is an associated ū ∈ Qs(Ω).
Define the space L2

Cs
(Ω) by

L2
Cs(Ω) = {φ ∈ Qs(Ω) : ∃u ∈ Hs

0(Ω) : ū ≥ |φ| q.e. in Ω}

and
RCs(φ) = inf{‖u‖Hs0 (Ω) : u ∈ Hs

0(Ω), ū ≥ |φ| q.e.},

which is a norm that makes L2
Cs

(Ω) a Banach space (see Proposition 1.2 of [24]). We want to show that the
dual space of L2

Cs
(Ω) can be identified with the order dual of Hs

0(Ω), i.e.

[L2
Cs(Ω)]′ = H−s(Ω) ∩M(Ω) = H−s≺ (Ω) = [H−s(Ω)]+ − [H−s(Ω)]+,

where M(Ω) is the set of bounded measures in Ω. Then we have the following result by Theorem 4.18
(corresponding to the classical case in [24] Proposition 1.7).

Proposition 4.19. The injection of Hs
0(Ω) ∩ Cc(Ω) ↪→ L2

Cs
(Ω) is dense.

Proof. This simply follows from Theorem 4.18, since u ≥ 0 a.e. on Ω implies u ≥ 0 q.e. on Ω.

For K ⊂ Ω, recall that one says that u � 0 on K (or u ≥ 0 on K in the sense of Hs
0(Ω)) if there exists a

sequence of Lipschitz functions uk → u in Hs
0(Ω) such that uk ≥ 0 on K.

Let K ⊂ Ω be any compact subset. Define the nonempty closed convex set of Hs
0(Ω) by

KsK = {v ∈ Hs
0(Ω) : v � 1 on K}.

Consider the following variational inequality

u ∈ KsK : Ea(u, v − u) ≥ 0, ∀v ∈ KsK . (4.15)

This variational inequality has clearly a unique solution and consequently we can also extend to the s-
fractional framework the following theorem which is due to Stampacchia [221] in the case s = 1.
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Theorem 4.20 (Radon measure for the bilinear form Ea). For any compact K ⊂ Ω, the unique solution u
of (4.15), which is called the (s, a)-capacitary potential of K, is such that

u = 1 on K (in the sense of Hs
0(Ω))

µ = Lau ≥ 0 with supp(µ) ⊂ K.

Moreover, for the non-negative Radon measure µ, one has

Cas (K) = Ea(u, u) =

ˆ
Ω

dµ = µ(K)

and this number is called the (s, a)-capacity of K with respect to Ea(·, ·) (or to the operator La).

Proof. The proof follows a similar approach to the classical case ([221] Theorem 3.9 or [195] Theorem 8.1).
Taking v = u ∧ 1 = u− (u− 1)+ ∈ KsK in (4.15), one has

a∗
c2d,s

∥∥(u− 1)+
∥∥2

Hs0 (Ω)
≤ Ea(u− 1, (u− 1)+) = Ea(u, (u− 1)+) ≤ 0

since the s-grad of a constant is zero. Hence u � 1 in Ω. But u ∈ KsK , so u � 1 on K. Therefore, the first
result u = 1 on K follows.

For the second result, set v = u + ϕ ∈ KsK in (4.15) with an arbitrary ϕ ∈ D(Ω), ϕ ≥ 0. Then, by the
Riesz-Schwartz theorem (see for instance [4] Theorem 1.1.3), there exists a non-negative Radon measure µ
on Ω such that

〈Lau, ϕ〉 = Ea(u, ϕ) =

ˆ
Ω

ϕdµ, ∀ϕ ∈ D(Ω).

Moreover, for x ∈ Ω\K, there is a neighbourhood O ⊂ Ω\K of x so that u + ϕ ∈ KsK for any ϕ ∈ D(O).
Therefore,

Ea(u, ϕ) = 0, ∀ϕ ∈ D(Ω\K)

which means µ = Lau = 0 in Ω\K. Therefore, supp(µ) ⊂ K and the third result follows immediately.

We observe that when a corresponds to the kernel of the fractional Laplacian, the (s, a)-capacity corre-
sponds to the s-capacity and the s-capacitary potential of a compact set K is the solution of the obstacle
problem (4.15) when the bilinear form is the inner product in Hs

0(Ω) and we have a simple comparison of
the capacities in the following proposition.

Proposition 4.21. For any compact subset E ⊂ Ω,

a∗
c2d,s

Cs(E) ≤ Cas (E) ≤ a∗2

a∗c2d,s
Cs(E).

Proof. Let u be the (s, a)-capacitary potential of E, and ū be the s-capacitary potential of E. Since ū � 1
on E, we can choose v = ū ∈ KsE in (4.15) to get

Cas (E) = Ea(u, u) ≤ Ea(u, ū)

≤ a∗

c2d,s

(ˆ
Rd
|Dsu|2

) 1
2
(ˆ

Rd
|Dsū|2

) 1
2

≤ a∗
2c2d,s

ˆ
Rd
|Dsu|2 +

a∗2

2a∗c2d,s

ˆ
Rd
|Dsū|2

≤ 1

2
Ea(u, u) +

a∗2

2a∗c2d,s
Cs(E)

=
1

2
Cas (E) +

a∗2

2a∗c2d,s
Cs(E)
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by Cauchy-Schwarz inequality and the coercivity of a. Similarly, we can choose v = u ∈ KsE for (4.15) with
a = 1

|x−y|d+2s for Cs(E) to get, using the coercivity of a,

1

c2d,s
Cs(E) = Ea(ū, ū) ≤ Ea(ū, u)

≤ 1

c2d,s

(ˆ
Rd
|Dsū|2

) 1
2
(ˆ

Rd
|Dsu|2

) 1
2

≤ 1

2c2d,s

ˆ
Rd
|Dsū|2 +

1

2c2d,s

ˆ
Rd
|Dsu|2

≤ 1

2c2d,s
Cs(E) +

1

2a∗
Ea(u, u)

=
1

2c2d,s
Cs(E) +

1

2a∗
Cas (E).

Using this definition of the Radon measure, we recall that two quasi-continuous functions which are equal
(or, ≤) µ-a.e. on an open subset of Rd are also equal (or, ≤) q.e. on that set (see [122] Lemma 2.1.4).

Recall that a Radon measure µ is said to be of finite energy relatively to Hs
0(Ω) if its restriction to

Hs
0(Ω) ∩ Cc(Ω) is continuous for the topology of Hs

0(Ω), by means of

〈µ, v〉 =

ˆ
Ω

v dµ, ∀v ∈ Hs
0(Ω) ∩ Cc(Ω).

Such a finite energy measure can in fact be defined for any Dirichlet form E (see [122] Section 2.2 and
Example 2.2.1 pages 87–91). We denote by E+(Hs

0(Ω)) the cone of positive finite energy measures relative
to Hs

0(Ω). Then µ is of finite energy if and only if there exists wµ ∈ H−s(Ω) such that

〈wµ, v〉 =

ˆ
Ω

v dµ ∀v ∈ Hs
0(Ω) ∩ Cc(Ω),

and E+(Hs
0(Ω)) can be identified with [H−s(Ω)]+, the positive cone of H−s(Ω) = [Hs

0(Ω)]′, by the mapping
µ 7→ wµ. Moreover, whenever µ ∈ E+(Hs

0(Ω)), the mapping u ∈ Hs
0(Ω) 7→ ū is continuous from Hs

0(Ω) into
L1(µ) and whenever u ∈ Hs

0(Ω),
´

Ω
ū dµ = 〈wµ, v〉. Note that in the particular case of the space Hs

0(Ω), the
mapping u ∈ Hs

0(Ω) 7→ ū ∈ L1(µ) is compact; this follows from the fact that
´

Ω
|ūn| dµ = 〈wµ, |un|〉 and that

if un ⇀ 0 in Hs
0(Ω) then |un|⇀ 0 in Hs

0(Ω).
Extending these results to L2

Cs
(Ω), we have the following result.

Proposition 4.22. Let µ ∈ E+(Hs
0(Ω)). Then L2

Cs
(Ω) ⊂ L1(µ) and this inclusion is continuous.

Proof. Let u ∈ L2
Cs

(Ω). There exists v ∈ Hs
0(Ω) such that v̄ ≥ |u| a.e., and therefore µ-q.e.. Since v̄ ∈ L1(µ),

u ∈ L1(µ).
Let (un) be a sequence in L2

Cs
(Ω) such that RCs(un) → 0. Then there exists (vn) ∈ Hs

0(Ω) such that
v̄n ≥ |un| q.e., and therefore µ-q.e., and ‖vn‖Hs0 (Ω) → 0. As a result,

´
Ω
|un| dµ ≤

´
Ω
v̄n dµ = 〈wµ, vn〉 ≤

‖wµ‖H−s(Ω)‖vn‖Hs0 (Ω) → 0. Therefore un → 0 in L1(µ).

Having these results, we can now identify the dual space of L2
Cs

(Ω) with the order dual of Hs
0(Ω), as

given in the following theorem.

Theorem 4.23 (Characterisation of Order Dual). The dual of L2
Cs

(Ω) is the space of finite energy measures

E+(Hs
0(Ω)) − E+(Hs

0(Ω)), that is identified with the order dual H−s≺ (Ω) of Hs
0(Ω). More precisely, L ∈

[L2
Cs

(Ω)]′ if and only if there is a unique µ such as |µ| ∈ E+(Hs
0(Ω)) and L(φ) =

´
Ω
φdµ for all φ ∈ L2

Cs
(Ω).

In addition, the norm of L in [L2
Cs

(Ω)]′ is such that ‖L‖ = ‖w|µ|‖H−s(Ω).
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Proof. According to Proposition 4.19, Cc(Ω) is dense in L2
Cs

(Ω) and moreover this injection is continuous;
therefore the dual of L2

Cs
(Ω) is a space of measures.

Let µ be a Radon measure such that |µ| ∈ E+(Hs
0(Ω)). For any φ ∈ L2

Cs
(Ω) (φ is then µ integrable by

Proposition 4.22), set L(φ) =
´

Ω
φdµ. For any v ∈ Hs

0 such that v̄ ≥ |φ| quasi-everywhere, so µ-a.e., we
have

|L(φ)| =
∣∣∣∣ˆ

Ω

φdµ

∣∣∣∣ ≤ ˆ
Ω

|φ|d|µ| ≤ v̄d|µ| = (w|µ|, v) ≤ ‖w|µ|‖H−s(Ω)‖vn‖Hs0 (Ω) ,

so |L(φ)| ≤ ‖w|µ|‖RCs(φ). Therefore L ∈ [L2
Cs

(Ω)]′ and ‖L‖ ≤ ‖w|µ|‖H−s(Ω).
Conversely, suppose L ∈ [L2

Cs
(Ω)]′. Let K be a compact subset of Ω and ψ ∈ D(Ω) such that ψ ≥ 1 in

K. Whenever φ ∈ Cs(K) such that ‖φ‖∞ ≤ 1, we have ψ ≥ |φ| in Ω, therefore

|L(φ)| ≤‖L‖ ·RCs(ψ).

We deduce that there exists a Radon measure µ in Ω such that

∀φ ∈ Cc(Ω), L(φ) =

ˆ
Ω

φdµ.

In addition |µ| ∈ E+(Hs
0) because, whenever u ∈ Hs

0(Ω) ∩ Cc(Ω),∣∣∣∣ˆ
Ω

ud|µ|
∣∣∣∣ ≤ ˆ

Ω

|u|d|µ|

= sup{L(φ) : φ ∈ Cc(Ω), |φ| ≤ |u|}
≤ sup{‖L‖ ·RCs(φ) : |φ| ≤ |u|}
≤‖L‖ ·RCs(u)

≤‖L‖ ·‖u‖Hs0 (Ω)

and also ‖w|µ|‖H−s(Ω) ≤‖L‖.
Finally, it follows, from the density of Cc(Ω) in L2

Cs
(Ω) and Proposition 4.22, that

∀φ ∈ L2
Cs(Ω), L(φ) =

ˆ
Ω

φdµ.

4.4.2 Lewy-Stampacchia inequalities in H−s≺ (Ω)

For completeness, we state the Lewy-Stampacchia inequalities in the dual space H−s≺ (Ω).

Theorem 4.24. The unique solution u to the obstacle problem (4.3) with compatible obstacle ψ ∈ Hs(Rd)
and F,Laψ ∈ H−s≺ (Ω), satisfies

F ≤ Lau ≤ F ∨ Laψ in H−s≺ (Ω). (4.16)

Proof. Since La is strictly T-monotone, this is a direct consequence of the abstract Lewy-Stampacchia
inequality obtained by Mosco in [175] (see also Theorem 5:2.1 of [195]).

We next consider the generalisations to the two obstacles problem and to the N membranes problem.
Similarly, as a direct consequence of Theorem 4.2 of [194], we may also state the Lewy-Stampacchia

inequality for the two obstacles problem.

Theorem 4.25. The solution u of the two obstacles problem

u ∈ Ksϕ,ψ : Ea(u, v − u) ≥ 〈F, v − u〉 ∀v ∈ Ksϕ,ψ

with Ksϕ,ψ given by (4.10) with data F ∈ H−s≺ (Ω) and Laψ,Laϕ ∈ H−s≺ (Ω) satisfies

F ∧ Laϕ ≤ Lau ≤ F ∨ Laψ in H−s≺ (Ω). (4.17)
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Then, applying the general Lewy-Stampacchia inequalities for the one obstacle and for the two obstacles
problem iteratively in the previous theorem as in the proof of Theorem 4.11, we obtain

Theorem 4.26. The solution u of the N membranes problem

u ∈ KsN :
N∑
i=1

Ea(ui, vi − ui) ≥
N∑
i=1

〈F i, vi − ui〉 ∀(v1, . . . vN ) ∈ KsN

with KsN given by (4.13) with data F = (F 1, . . . , FN ) for F i ∈ H−s≺ (Ω) satisfies

F 1 ∧ Lau1 ≤ F 1 ∨ · · · ∨ FN

F 1 ∧ F 2 ≤ Lau2 ≤ F 2 ∨ · · · ∨ FN

...

F 1 ∧ · · · ∧ FN−1 ≤ LauN−1 ≤ FN−1 ∨ FN

F 1 ∧ · · · ∧ FN ≤ LauN ≤ FN

in H−s≺ (Ω).

Remark 4.27. In the symmetric case, the Lewy-Stampacchia inequalities also follow from the general results
of [125]. The application to Theorem 4.26 for the N membranes problem is new.

4.4.3 The Ea obstacle problem and the s-capacity

As a simple application of s-capacity, we consider the corresponding nonlocal obstacle problem extending
some results of [221] and [3] (see also [195]). In this section we start by the following comparison property
for the (s, a)-capacity, the proof of which is exactly as in Theorem 3.10 of [221], which states that in the case
when the kernel a is symmetric the (s, a)-capacity is an increasing set function.

Proposition 4.28. For any compact subsets E1 ⊂ E2 ⊂ Ω,

Cas (E1) ≤
(

1 +
M

a∗

)2

Cas (E2),

where M = sup 1
2 (Ea(u, v)− Ea(v, u)) for u, v such that ‖u‖Hs0 (Ω) =‖v‖Hs0 (Ω) = 1.

Theorem 4.29. Let ψ be an arbitrary function in L2
Cs

(Ω). Suppose that the closed convex set K̄sψ is such
that

K̄sψ = {v ∈ Hs
0(Ω) : v̄ ≥ ψ q.e. in Ω} 6= ∅.

Then there is a unique solution to

u ∈ K̄sψ : Ea(u, v − u) ≥ 0, ∀v ∈ K̄sψ, (4.18)

which is non-negative and such that

‖u‖Hs0 (Ω) ≤ (a∗/a∗)
∥∥ψ+

∥∥
L2
Cs

(Ω)
; (4.19)

there is a unique measure µ = Lau ≥ 0, concentrated on the coincidence set {u = ψ} = {u = ψ+}, verifying

Ea(u, v) =

ˆ
Ω

v̄ dµ, ∀v ∈ Hs
0(Ω), (4.20)

and

µ(K) ≤

(
a∗2

a
3/2
∗ cd,s

)∥∥ψ+
∥∥
L2
Cs

(Ω)

[
Cas (K)

]1/2
, ∀K b Ω, (4.21)

in particular µ does not charge on sets of capacity zero.

45



Proof. By the maximum principle Proposition 4.2(ii), taking v = u+u−, the solution is non-negative. Hence,
the variational inequality (4.18) is equivalent to solving the variational inequality with K̄sψ replaced by K̄sψ+ .

Since ψ+ ∈ L2
Cs

(Ω), by definition of L2
Cs

(Ω), K̄sψ+ 6= ∅ and we can apply the Stampacchia theorem to obtain
a unique non-negative solution.

Since Ea(u, v − u) ≥ 0,

a∗
c2d,s
‖u‖2Hs0 (Ω) ≤ Ea(u, u) ≤ Ea(u, v) ≤ a∗

c2d,s
‖u‖Hs0 (Ω)‖v‖Hs0 (Ω) ,

we have
‖u‖Hs0 (Ω) ≤ (a∗/a∗)‖v‖Hs0 (Ω) , ∀v ∈ K̄sψ+ ,

which, by the definition of the L2
Cs

(Ω) norm of ψ+, gives (4.19).
The existence of a Radon measure for (4.20) follows exactly as in Theorem 4.20. Finally, recalling the

definitions, it is sufficient to prove (4.21) for any compact subset K ⊂ Ω. But this follows from

µ(K) ≤
ˆ

Ω

v̄ dµ = Ea(u, v) ≤ a∗

c2d,s
‖u‖Hs0 (Ω)‖v‖Hs0 (Ω) ≤ (a∗2/a∗c

2
d,s)
∥∥ψ+

∥∥
L2
Cs

(Ω)
‖v‖Hs0 (Ω) , ∀v ∈ KsK .

Now, recall from Proposition 4.21 that we have

Cas (K) ≥ a∗
c2d,s

Cs(K) =
a∗
c2d,s

inf
v∈KsK

‖v‖2Hs0 (Ω)

thereby obtaining (4.21).

Corollary 4.30. If u and û are the solutions to (4.18) with non-negative compatible obstacles ψ and ψ̂ in
L2
Cs

(Ω) respectively, then

‖u− û‖Hs0 (Ω) ≤ k‖ψ − ψ̂‖
1/2

L2
Cs

(Ω)
,

where

k = (a∗/a∗)
[
‖ψ‖L2

Cs
(Ω) + ‖ψ̂‖L2

Cs
(Ω)

]1/2
.

Proof. Since supp(µ) ⊂ {u = ψ} and supp(µ̂) ⊂ {û = ψ̂} (where µ = Lau and µ̂ = Laû), for an arbitrary
v ∈ K̄s|ψ−ψ̂|, we have

a∗
c2d,s
‖u− û‖2Hs0 (Ω) ≤ Ea(u− û, u− û)

= Ea(u, u− û)− Ea(û, u− û)

=

ˆ
Ω

(u− û) dµ−
ˆ

Ω

(u− û)dµ̂ by setting v̄ = u− û for µ, µ̂ in (4.20)

≤
ˆ

Ω

(ψ − ψ̂) dµ−
ˆ

Ω

(ψ − ψ̂)dµ̂

≤
ˆ

Ω

|ψ − ψ̂|d(µ+ µ̂)

≤
ˆ

Ω

v̄d(µ+ µ̂) since v ∈ K̄s|ψ−ψ̂|

=

ˆ
Ω

v̄ dµ+

ˆ
Ω

v̄dµ̂

= Ea(u, v) + Ea(û, v)

≤ a∗

c2d,s

[
‖u‖Hs0 (Ω) +‖û‖Hs0 (Ω)

]
‖v‖Hs0 (Ω)

≤ a∗2

a∗c2d,s

[
‖ψ‖L2

Cs
(Ω) + ‖ψ̂‖L2

Cs
(Ω)

]
‖v‖Hs0 (Ω) by (4.19)
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≤ a∗2

a∗c2d,s

[
‖ψ‖L2

Cs
(Ω) + ‖ψ̂‖L2

Cs
(Ω)

]
‖ψ − ψ̂‖L2

Cs
(Ω)

since v is arbitrary in K̄s|ψ−ψ̂|, by the definition of the norm of |ψ − ψ̂| in L2
Cs

(Ω).

Remark 4.31. Further properties on the s-capacity and the regularity of the solution to the s-obstacle
problem are an interesting topic to be developed. For instance, as in the classical local case s = 1 [3], it
would be interesting to show that ψ is compatible, i.e. K̄sψ 6= ∅, if and only if

ˆ ∞
0

Cs({|ψ+| > t})dt2 <∞.

4.5 The Fractional s-obstacle Problem and its Convergence as s↗ 1

Consider the fractional obstacle problem given by

u ∈ Ksψ :

ˆ
Rd
ADsu ·Ds(v − u) ≥ 〈F, v − u〉 ∀v ∈ Ksψ

for the same convex set Ksψ, where A : Rd → Rd×d is a bounded, measurable and strictly elliptic matrix
satisfying

a∗|z|2 ≤ A(x)z · z and A(x)z · z∗ ≤ a∗|z||z∗|. (3.2)

We observe that the existence of a solution follows from a direct application of the Stampacchia theorem,
since the bilinear form

〈L̃Au, v〉 =

ˆ
Rd
ADsu ·Dsv

is bounded
〈L̃Au, v〉 ≤ a∗‖u‖Hs0 (Ω)‖v‖Hs0 (Ω) ∀u, v ∈ Hs

0(Ω)

and coercive
〈L̃Au, u〉 ≥ a∗‖Dsu‖2L2(Rd) = a∗‖u‖2Hs0 (Ω) .

As could be expected, we have a continuous transition from the fractional obstacle problem to the classical
local obstacle problem as s↗ 1 in the following sense.

Theorem 4.32. Suppose ψ is such that K1
ψ := {v ∈ H1

0 (Ω) : v ≥ ψ a.e. in Ω} 6= ∅. Let us ∈ Ksψ for
0 < s < 1 be the solution to the fractional obstacle problem, i.e.

ˆ
Rd
ADsus ·Ds(v − us) ≥ 〈F, v − us〉 ∀v ∈ Ksψ,

where A : Rd → Rd×d is a bounded, measurable and strictly elliptic matrix satisfying

a∗|z|2 ≤ A(x)z · z and A(x)z · z∗ ≤ a∗|z||z∗|, (3.2)

and F ∈ H−σ(Ω). Then, there exists a unique solution us ∈ Hs
0(Ω). Furthermore, the sequence (us)s

converges strongly to u in Hσ
0 (Ω) as s ↗ 1 for any fixed 0 < σ < 1, where u ∈ K1

ψ solves uniquely the
obstacle problem for s = 1, i.e.

ˆ
Ω

ADu ·D(v − u) ≥ 〈F, v − u〉 ∀v ∈ K1
ψ.

Proof. Next, we want to show the convergence of the fractional obstacle problem to the classical one. We
first prove an a priori estimate for Dsus. For v1 ∈ K1

ψ =
⋂
σ≤s<1 Ksψ, by Cauchy-Schwarz inequality and

Sobolev inequality,

a∗‖Dsus‖2L2(Rd) ≤
ˆ
Rd
ADsus ·Dsus
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≤
ˆ
Rd
ADsus ·Dsv1 − 〈F, v1 − us〉

≤ a∗2ε

2
‖Dsus‖2L2(Rd) +

1

2ε

∥∥∥Dsv1
∥∥∥2

L2(Rd)
− 〈F, v1〉+

1

2ε′
‖F‖2H−s(Ω) +

ε′

2
‖Dsus‖2L2(Rd)

≤ a∗
4
‖Dsus‖2L2(Rd) +

a∗2

a∗

∥∥∥Dsv1
∥∥∥2

L2(Rd)
− 〈F, v1〉+

c2σ
a∗
‖F‖2H−σ(Ω) +

a∗
4
‖Dsus‖2L2(Rd)

by taking ε = a∗
2a∗2 and ε′ = a∗

2 and c2σ may be chosen independent of s for 0 < s ≤ 1, as a consequence of
(1.19) for the dual norms ‖·‖H−s(Ω). Therefore, we have

‖Dsus‖L2(Rd) ≤ C,

where the constant C = C(σ, a∗, a
∗) > 0 is independent of s ≥ σ.

Also by (1.19), for σ ≤ s < 1, we have

‖Dσus‖L2(Rd) ≤ cσ‖D
sus‖L2(Rd) ≤ C, (4.22)

for some constant C independent of s, σ ≤ s < 1, and we may take a sequence

Dsus −−−⇀
s↗1

ζ in [L2(Rd)]d-weak

for some ζ. By compactness, since us is also uniformly bounded in Hσ
0 (Ω), there exists a subsequence and

a limit u ∈ L2(Ω) such that
us −−−→

s↗1
u strongly in L2(Ω).

Now, by Lemma 1.5, for all Φ ∈ [C∞c (Ω)]d, denoting by Φ̃ the zero extension of Φ outside Ω,

Ds · Φ̃→ D · Φ̃ in [L2(Rd)]d,

therefore ˆ
Rd
Dsus · Φ̃ = −

ˆ
Rd
ũs(Ds · Φ̃) −−−→

s↗1
−
ˆ
Rd
ũ(D · Φ̃).

But by the a priori estimate on Dsus, ∣∣∣∣ˆ
Rd
Dsus · Φ̃

∣∣∣∣ ≤ C‖Φ‖[L2(Ω)]d ,

which implies that ∣∣∣∣ˆ
Rd
ũ(D · Φ̃)

∣∣∣∣ ≤ C‖Φ‖[L2(Ω)]d .

This means that Dũ ∈ [L2(Rd)]d, and since Ω has a Lipschitz boundary, D̃u = Dũ, so Du ∈ [L2(Ω)]d.
Together with the first inequality in (1.19) which implies that u ∈ Kσψ for any σ < 1, we have u ∈ K1

ψ.

Furthermore, by Lemma 1.5, Dsu→ D̃u strongly in [L2(Rd)]d as s↗ 1, so

ˆ
Rd
Ds(us − u) · Φ̃ = −

ˆ
Rd

(ũs − u)(Ds · Φ)→ 0,

therefore
ζ = lim

s↗1
Dsus = D̃u.

Finally, it remains to show that u satisfies the obstacle problem for s = 1. For any v ∈ K1
ψ ⊂ Ksψ,

since Dsus are uniformly bounded, we have, up to a subsequence and using the lower-semicontinuity of
Asym = 1

2 (A+AT ),

ˆ
Ω

ADu ·Dv =

ˆ
Rd
AD̃u · D̃v
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= lim
s↗1

ˆ
Rd
ADsus ·Dsv

≥ lim
s↗1
〈F, v − us〉+ lim inf

s↗1

ˆ
Rd
ADsus ·Dsus

= 〈F, v − u〉+ lim inf
s↗1

ˆ
Rd
AsymD

sus ·Dsus

≥ 〈F, v − u〉+

ˆ
Rd
AsymD̃u · D̃u

= 〈F, v − u〉+

ˆ
Ω

ADu ·Du

since Dsus ⇀ D̃u weakly in [L2(Rd)]d and Dsv → D̃v strongly in [L2(Rd)]d. The conclusion follows by the
compactness of the inclusion of Hσ

0 (Ω) in Hσ′

0 (Ω) when σ > σ′.

Remark 4.33. The case with A = I corresponds to the obstacle problem for the fractional Laplacian and
was first considered by Silvestre in [219]. Indeed, from (1.8), since

ˆ
Rd
Dsu ·Dsv =

c2d,s
2

ˆ
Rd

ˆ
Rd

(u(x)− u(y))(v(x)− v(y))

|x− y|d+2s
dx dy,

also holds for u, v ∈ Hs
0(Ω), Theorem 4.32 gives the convergence of the solution us to the nonlocal obstacle

problem (4.3), which is equivalent, up to a constant, to

us ∈ Ksψ :

ˆ
Rd
Dsus ·Ds(v − us) ≥ 〈F, v − us〉 ∀v ∈ Ksψ

towards the solution u of the classical problem

u ∈ K1
ψ :

ˆ
Ω

Du ·D(v − u) ≥ 〈F, v − u〉 ∀v ∈ K1
ψ.

Remark 4.34. A similar convergence result as s ↗ 1 for the symmetric nonlinear nonlocal operator L̄sg is
shown in Section 5.3, given by the Γ-convergence of the associated symmetric energy functionals. Such a
result remains open not only for the general non-symmetric case, but also for the linear nonlocal operator
La when the kernel a(x, y) depends on x, y ∈ Rd.
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5 Elliptic and Parabolic Nonlocal Nonlinear Obstacle-Type Prob-
lems

5.1 The Nonlocal Nonlinear g-Laplacian

In this chapter, we consider the nonlocal nonlinear nonhomogeneous g-Laplacian L̄sg : Hs
0(Ω)→ H−s(Ω) as

defined in the homogeneous case of g independent of (x, y) in [113] (see also [77], [204], [90] and [115]) by

〈L̄sgu, v〉 =
1

2

ˆ
Rd

ˆ
Rd
g

(
x, y,

|u(x)− u(y)|
|x− y|s

)
u(x)− u(y)

|x− y|s
v(x)− v(y)

|x− y|s
dx dy

|x− y|d
, (5.1)

and consider the corresponding elliptic and parabolic obstacle-type problems. Here, g(x, y, r) : Rd × Rd ×
R+ → [g∗, g

∗] for some g∗ > 0 is a function symmetric in x and y, i.e. g(x, y, r) = g(y, x, r), is bounded in x
and y for all r > 0, and Lipschitz continuous in r for almost every x, y ∈ Rd, such that

0 < a∗ ≤
r ∂∂rg(x, y, r)

g(x, y, r)
+ 1 ≤ a∗ for r > 0 (5.2)

for some constants 0 < a∗ ≤ 1 ≤ a∗, and limr→0+ rg(x, y, r) = 0. Then, in particular, L̄sg generalises the

symmetric nonlocal operator La which corresponds to the case where g(x, y, r) = â(x, y) = a(x, y)|x−y|d+2s.

Remark 5.1. A different definition of a nonlocal g-Laplacian is given in [143] and [92], where the integral
is instead taken over the domain Ω.

We first observe some properties regarding the strong monotonicity and Lipschitzness of g. Indeed,

Proposition 5.2. For a.e. x, y ∈ Rd, for all ξ, ζ ∈ Rn,

(g(x, y, |ξ|)ξ − g(x, y, |ζ|)ζ) · (ξ − ζ) ≥ a∗g∗|ξ − ζ|2

and
|g(x, y, |ξ|)ξ − g(x, y, |ζ|)ζ| ≤ a∗g∗|ξ − ζ|.

In particular, limr→∞ rg(x, y, r) =∞.

Proof. The proof is similar to that given in page 2 of [69], and for simplicity, we write g(r) for g(x, y, r).
Indeed, setting θr = rξ + (1− r)ζ, we have

(g(|ξ|)ξ − g(|ζ|)ζ) · (ξ − ζ) =

(ˆ 1

0

d

dr
(g(|θr|)θr) dr

)
· (ξ − ζ)

=

(ˆ 1

0

g(|θr|)
dθr
dr

dr

)
· (ξ − ζ) +

(ˆ 1

0

θr
dg(|θr|)
dr

dr

)
· (ξ − ζ)

= |ξ − ζ|2
(ˆ 1

0

g(|θr|) dr

)
+

(ˆ 1

0

θr
θrg
′(|θr|)
|θr|

dθr
dr

dr

)
· (ξ − ζ)

= |ξ − ζ|2
(ˆ 1

0

g(|θr|) dr

)
+ |ξ − ζ|2

(ˆ 1

0

|θr|g′(|θr|) dr

)

≥ |ξ − ζ|2
(ˆ 1

0

g(|θr|) dr

)
+ (a∗ − 1)|ξ − ζ|2

(ˆ 1

0

g(|θr|) dr

)
by (5.2)

= a∗|ξ − ζ|2
(ˆ 1

0

g(|θr|) dr

)
≥ a∗g∗|ξ − ζ|2

which is strictly positive for ξ 6= ζ.
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At the same time, once again by (5.2),

|g(|ξ|)ξ − g(|ζ|)ζ| ≤ |ξ − ζ|

(ˆ 1

0

g(|θr|) dr

)
+ |ξ − ζ|

(ˆ 1

0

|θr|g′(|θr|) dr

)

≤ |ξ − ζ|

(ˆ 1

0

g(|θr|) dr

)
+ (a∗ − 1)|ξ − ζ|

(ˆ 1

0

g(|θr|) dr

)

= a∗|ξ − ζ|

(ˆ 1

0

g(|θr|) dr

)
≤ a∗g∗|ξ − ζ|.

Next, let the mapping ḡ : Rd × Rd × R+ → R be defined by

ḡ(x, y, r) := g(x, y, r)r.

Then, from the properties derived above, it can be seen that ḡ satisfies the following condition:

(1) For all x, y ∈ Rd, ḡ(x, y, ·) : R+ → R+ is an odd, increasing homeomorphism from R+ onto R+,
ḡ(x, y, r) > 0 when r > 0.

Moreover, its primitive G : Rd × Rd × R+ → R+ defined for all x, y ∈ Rd and all r ≥ 0 by

G(x, y, r) :=

ˆ r

0

ḡ(x, y, ρ) dρ

satisfies:

(2) For all x, y ∈ Rd, G(x, y, ·) : [0,∞[→ R is an increasing function, limr→∞ ḡ(x, y, r) =∞, G(x, y, 0) = 0
and G(x, y, r) > 0 whenever r > 0;

(3) For every r ≥ 0, G(·, ·, r) : Rd × Rd → R is a measurable function.

(4) For the same constants a∗ < a∗ as in (5.2),

0 < 1 + a∗ ≤
rḡ(x, y, r)

G(x, y, r)
≤ a∗ + 1, a.e. x, y ∈ Rd, r ≥ 0, (5.3)

so G satisfies the ∆2-condition. (For a definition of the ∆2-condition, see [5] or [151].)

This means that G is a strictly convex Young function. We write G(r) for G(x, y, r) if there is no confusion.
Now, denoting G∗ as the conjugate Young function of G, which is defined by

G∗(x, y, r) = sup
ρ>0
{rρ−G(x, y, ρ)∀r ≥ 0}, for a.e. x, y ∈ Rd

we have the following properties (see Equations (P5) and (2.3)–(2.6) of [113], as well as Equation (G2) of
[168]):

(i) For every a, b ≥ 0, ar ≤ G(b) +G∗(a).

(ii) There exists q > 1 such that b2qG(a) ≤ G(ab) for every a > 0 and 0 ≤ b ≤ 1.

(iii) At the same time, for any 0 < b < 1 and a > 0, G(ab) ≤ bG(a),

(iv) while, for a ≥ 0 and b ≥ 1, G(ab) ≤ ba∗+1G(a).

(v) Also, for all a, b > 0, G(a+ b) ≤ 2a
∗
(1 + a∗)(G(a) +G(b)).

(vi) Finally, G∗(ḡ(r)) = ḡ(r)r −G(r), and
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(vii) G∗(ḡ(r)) ≤ a∗G(r).

As a result, by the assumptions on G in (5.3), L̄sg is the potential operator defined in Hs
0(Ω) with respect

to the convex functional

Γ(v) :=
1

2

ˆ
Rd

ˆ
Rd
G

(
x, y,

|v(x)− v(y)|
|x− y|s

)
dx dy

|x− y|d
(5.4)

(see, for instance, Section 20.4 of [151].)
Furthermore,

Proposition 5.3. The operator L̄sg is strictly coercive, Lipschitz, and strictly T-monotone.

Proof. Writing ξ = u(x)−u(y)
|x−y|s and ζ = v(x)−v(y)

|x−y|s for all u, v ∈ Hs
0(Ω),

〈L̄sgu− L̄sgv, u− v〉 =
1

2

ˆ
Rd

ˆ
Rd
g
(
x, y, |ξ|

)
ξ · (ξ − ζ)

dx dy

|x− y|d
− 1

2

ˆ
Rd

ˆ
Rd
g
(
x, y, |ζ|

)
ζ · (ξ − ζ)

dx dy

|x− y|d

=
1

2

ˆ
Rd

ˆ
Rd

(g(x, y, |ξ|)ξ − g(x, y, |ζ|)ζ) · (ξ − ζ)
dx dy

|x− y|d

≥ 1

2
a∗g∗

ˆ
Rd

ˆ
Rd
|ξ − ζ|2 dx dy

|x− y|d

=
1

2
a∗g∗

ˆ
Rd

ˆ
Rd

∣∣∣∣u(x)− u(y)

|x− y|s
− v(x)− v(y)

|x− y|s

∣∣∣∣2 dx dy

|x− y|d
=
a∗g∗
2c2d,s

‖u− v‖2Hs0 (Ω) ,

so L̄sg is strictly coercive.

Also, L̄sg is Lipschitz since for all u, v, w ∈ Hs
0(Ω) with ‖w‖Hs0 (Ω) = 1,

|〈L̄sgu− L̄sgv, w〉| ≤
1

2

ˆ
Rd

ˆ
Rd
|g(x, y, |ξ|)ξ − g(x, y, |ζ|)ζ| |w(x)− w(y)|

|x− y|s
dx dy

|x− y|d

≤ 1

2
a∗g∗

ˆ
Rd

ˆ
Rd

|ξ − ζ|
|x− y| d2

|w(x)− w(y)|
|x− y|s+ d

2

dx dy ≤ a∗g∗

2c2d,s
‖u− v‖Hs0 (Ω) .

The strict T-monotonicity follows in a similar way to the proof of Proposition 5.2. Once again, setting
θr = rξ + (1− r)ζ and writing w = u− v, we have

〈Lsgu− Lsgv, w+〉

=
1

2

ˆ
Rd

ˆ
Rd

(w+(x)− w+(y))
[
g
(
x, y, |ξ|

)
ξ − g

(
x, y, |ζ|

)
ζ
] dy dx

|x− y|d+s

=
1

2

ˆ
Rd

ˆ
Rd

(w+(x)− w+(y))

[ˆ 1

0

g(x, y, |θr|) dr +

ˆ 1

0

|θr|g′(x, y, |θr|) dr

]
(ξ − ζ)

dy dx

|x− y|d+s

Now, by (5.2),

a∗g∗ ≥ J(x, y) =

ˆ 1

0

g(x, y, |θr|) dr +

ˆ 1

0

|θr|g′(x, y, |θr|) dr ≥ a∗g∗ > 0,

so we have

〈Lsgu− Lsgv, (u− v)+〉 =
1

2

ˆ
Rd

ˆ
Rd
J(x, y)

w+(x)− w−(x)− w+(y) + w−(y)

|x− y|d+2s
(w+(x)− w+(y)) dx dy

=
1

2

ˆ
Rd

ˆ
Rd
J(x, y)

(w+(x)− w+(y))2 + w−(x)w+(y) + w+(x)w−(y)

|x− y|d+2s
dx dy

≥ 1

2

ˆ
Rd

ˆ
Rd
J(x, y)

(w+(x)− w+(y))2

|x− y|d+2s
dx dy > 0

if w+ 6= 0, since w−(x)w+(x) = w−(y)w+(y) = 0.
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Remark 5.4. Since g is symmetric about x and y, as observed in Theorem 6.12 of [113], the operator L̄sg
can also be written as

L̄sgu = P.V.

ˆ
Rd
g

(
x, y,

|u(x)− u(y)|
|x− y|s

)
u(x)− u(y)

|x− y|d+2s
dy.

In the first part of this chapter, we show the existence and uniqueness results for the nonlocal nonlinear
nonhomogeneous elliptic obstacle-type problems, namely the one obstacle problem, two obstacles problem
and the N membranes problem, as well as the Lewy-Stampacchia inequalities, providing local regularity
results in the homogeneous case when g(x, y, r) = g(r). This generalises Chapter 2 to the nonlinear case.
Next, in Section 5.3, we will show that in the homogeneous case, the one obstacle problem defined with the
nonlocal operator L̄sg converges to the solution of the classical nonlinear elliptic one obstacle corresponding to
s = 1, concluding the analysis of the elliptic problem. Following, we will extend this study to the evolutionary
nonhomogeneous problem in Section 5.4, obtaining similarly the existence and uniqueness results, and the
Lewy-Stampacchia inequalities for all three obstacle-type problems, which gives local regularity in the case
when L̄sg = La is the linear nonlocal operator. Finally, we show that these problems converge to the stationary
ones in Section 5.5.

5.2 Elliptic Obstacle-Type Problems

We consider L̄sg which is defined by

〈L̄sgu, v〉 =
1

2

ˆ
Rd

ˆ
Rd
g

(
x, y,

|u(x)− u(y)|
|x− y|s

)
u(x)− u(y)

|x− y|s
v(x)− v(y)

|x− y|s
dx dy

|x− y|d
, (5.1)

to study elliptic obstacle-type problems in a bounded domain Ω ⊂ Rd with Lipschitz boundary. We first
introduce some notations.

For every function u ∈ L2(Ω), we assume it is extended by 0 outside Ω. Recall that for 0 < s ≤ 1, the
classical fractional Sobolev space Hs

0(Ω) is given by the closure of C∞c (Ω) with respect to the‖·‖Hs(Rd) norm,
when Ω has Lipschitz boundary.

We want to consider the elliptic obstacle-type problems, such as the nonlinear nonlocal one obstacle
problem which is given as

u ∈ Ks
ψ : 〈L̄sgu, v − u〉 ≥

ˆ
Ω

f(v − u) ∀v ∈ Ks
ψ, (5.5)

for f ∈ L2(Ω) ⊂ H−s(Ω) and a measurable obstacle function ψ ∈ Hs(Rd), which is admissible in the sense
that the closed convex set

Ks
ψ = {v ∈ Hs

0(Ω) : v ≥ ψ a.e. in Ω} 6= ∅.

We first state the corresponding result for elliptic Dirichlet problems, given as Theorems 6.15 and 6.16
in [113], as well as in [114] and Theorem 2 of [115].

Theorem 5.5. Let 0 < s < 1 and Ω ⊂ Rd be an open bounded domain. For f ∈ L2(Ω), there exists a unique
weak solution u ∈ Hs

0(Ω) to
L̄sgu = f in Ω, u = 0 in Ωc,

which is equivalent to the infimum in L2(Ω) of the functional Gs : L2(Ω)→ R̄ defined by

Gs(v) :=
1

2

ˆ
Rd

ˆ
Rd
G

(
x, y,

|v(x)− v(y)|
|x− y|s

)
dx dy

|x− y|d
−
ˆ

Ω

fv ∀v ∈ Hs
0(Ω) and Gs(v) = +∞ otherwise.

(5.6)
Moreover, when g(x, y, r) = g(r) is the one-parameter homogeneous kernel, assume that Ω is an open

bounded set with Lipschitz boundary, and f ∈ L∞(Ω). Then there exist constants α = α
(
s, d, a∗, a

∗,‖f‖L∞(Ω)

)
∈]0, s] and C1 = C1

(
s, d, a∗, a

∗,‖f‖L∞(Ω) ,Ω
)
> 0 such that the weak solution u ∈ Hs

0(Ω) satisfies

u ∈ Cα(Ω̄) such that ‖u‖Cα(Ω̄) ≤ C1.
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Remark 5.6. Observe that in the results of Bonder et al. [113, 114, 115], the existence result in Hs
0(Ω) is

given for the operator L̄sg with the homogeneous one-parameter nonlinear kernel g(r). However, since L̄sg is
coercive and Lipschitz in Hs

0(Ω), it holds for the three-parameter kernel g(x, y, r).

Remark 5.7. The functional Gs(v) can also be written for all v ∈ L2(Ω) as

Gs(v) :=
1

2

ˆ
Rd

ˆ
Rd
G

(
x, y,

|v(x)− v(y)|
|x− y|s

)
dx dy

|x− y|d
−
ˆ

Ω

fv + IHs0 (Ω)(v)

where IHs0 (Ω)(v) = 0 if v ∈ Hs
0(Ω) and +∞ if v ∈ L2(Ω)\Hs

0(Ω).

Moreover, by the strict T-monotonicity of L̄sg in Hs
0(Ω) given by Proposition 5.3, we have, in addition,

the comparison property.

Proposition 5.8. If u, û denotes the solution corresponding to f, ψ and f̂ , ψ̂ respectively, then

f ≥ f̂ implies u ≥ û a.e. in Ω.

Proof. Taking v = u∨ û ∈ Hs
0(Ω) for the original problem and v̂ = u∧ û ∈ Hs

0(Ω) for the other problem and
adding, we have

〈L̄sgû− L̄sgu, (û− u)+〉+

ˆ
Ω

(f − f̂)(û− u)+ = 0.

Since f ≥ f̂ , the result follows by the strict T-monotonicity of L̄sg.

Next, we want to show similar results for the obstacle-type problems. We begin with the one obstacle
problem.

Theorem 5.9. Let 0 < s < 1 and Ω ⊂ Rd be a Lipschitz bounded domain. The one obstacle problem (5.5) has
a unique solution u = u(f, ψ) ∈ Ks

ψ, and is equivalent to minimizing in Ks
ψ the functional Fs : L2(Ω) → R̄

defined by

Fs(v) :=
1

2

ˆ
Rd

ˆ
Rd
G

(
x, y,

|v(x)− v(y)|
|x− y|s

)
dx dy

|x− y|d
−
ˆ

Ω

fv ∀v ∈ Ks
ψ and Fs(v) = +∞ otherwise.

(5.7)

Moreover, if û denotes the solution corresponding to f̂ and ψ̂, then

f ≥ f̂ , ψ ≥ ψ̂ implies u ≥ û a.e. in Ω.

And, when f = f̂ ,

‖u− û‖L∞(Ω) ≤
∥∥∥ψ − ψ̂∥∥∥

L∞(Ω)
.

Proof. The existence and uniqueness follow directly by Stampacchia theorem (see, for instance Theorem
4:3.1 of [195]) from the coercivity and Lipschitzness of L̄sg in Proposition 5.3. The comparison property is

once again standard and follows from the strict T-monotonicity of L̄sg as given in Proposition 5.3. Indeed,
taking v = u ∨ û ∈ Ks

ψ for the original problem and v̂ = u ∧ û ∈ Ks
ψ̂

for the other problem and adding, we

have

〈L̄sgû− L̄sgu, (û− u)+〉+

ˆ
Ω

(f − f̂)(û− u)+ ≤ 0.

Since f ≥ f̂ and L̄sg is strictly T-monotone, (û− u)+ = 0, i.e. u ≥ û.

The L∞-continuous dependence follows from similarly from taking v = u+

(
û− u−

∥∥∥ψ − ψ̂∥∥∥
L∞(Ω)

)+

∈

Ks
ψ and v̂ = û−

(
û− u−

∥∥∥ψ − ψ̂∥∥∥
L∞(Ω)

)+

∈ Ks
ψ̂

.

Finally, the equivalence with the minimisation problem follows similarly to the elliptic Dirichlet problem
in Theorem 6.15 of [113]. For all v ∈ Ks

ψ, we have, by Property (i) and Property (vi) above,

〈L̄sgu, u〉 −
ˆ

Ω

fu
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≤ 〈L̄sgu, v〉 −
ˆ

Ω

fv

=
1

2

ˆ
Rd

ˆ
Rd
g

(
|u(x)− u(y)|
|x− y|s

)
u(x)− u(y)

|x− y|s
v(x)− v(y)

|x− y|s
dx dy

|x− y|d
−
ˆ

Ω

fv

=
1

2

ˆ
Rd

ˆ
Rd
ḡ

(
|u(x)− u(y)|
|x− y|s

)
u(x)− u(y)

|u(x)− u(y)|
v(x)− v(y)

|x− y|s
dx dy

|x− y|d
−
ˆ

Ω

fv

≤ 1

2

ˆ
Rd

ˆ
Rd
ḡ

(
|u(x)− u(y)|
|x− y|s

)
|u(x)− u(y)|
|u(x)− u(y)|

|v(x)− v(y)|
|x− y|s

dx dy

|x− y|d
−
ˆ

Ω

fv

≤ 1

2

ˆ
Rd

ˆ
Rd
G∗

(
ḡ

(
|u(x)− u(y)|
|x− y|s

))
+G

(
|v(x)− v(y)|
|x− y|s

)
dx dy

|x− y|d
−
ˆ

Ω

fv

=
1

2

ˆ
Rd

ˆ
Rd
ḡ

(
|u(x)− u(y)|
|x− y|s

)
|u(x)− u(y)|
|x− y|s

−G
(
|u(x)− u(y)|
|x− y|s

)
+G

(
|v(x)− v(y)|
|x− y|s

)
dx dy

|x− y|d
−
ˆ

Ω

fv

=
1

2

ˆ
Rd

ˆ
Rd
g

(
|u(x)− u(y)|
|x− y|s

)
|u(x)− u(y)|2

|x− y|2s
−G

(
|u(x)− u(y)|
|x− y|s

)
+G

(
|v(x)− v(y)|
|x− y|s

)
dx dy

|x− y|d
−
ˆ

Ω

fv

= 〈L̄sgu, u〉 −
1

2

ˆ
Rd

ˆ
Rd
G

(
|u(x)− u(y)|
|x− y|s

)
dx dy

|x− y|d
+

1

2

ˆ
Rd

ˆ
Rd
G

(
|v(x)− v(y)|
|x− y|s

)
dx dy

|x− y|d
−
ˆ

Ω

fv

Conversely, suppose u ∈ L2(Ω) such that u ≥ ψ a.e. in Ω is a minimum in Ks
ψ of Fs. In particular,

Fs(u) <∞ so u ∈ Hs
0(Ω). Fix v ∈ Ks

ψ, and define φ : R→ R by

φ(t) := Fs(u+ t(v − u)).

Since u is the infimum of Fs, φ(0) = inft φ(t), so φ′(0) ≥ 0, which is just the the Euler inequality F ′s(u)(v−u)
≥ 0 for the obstacle problem (5.5).

Remark 5.10. This argument also works for p 6= 2 in the framework of the fractional p-Laplacian as given
in [119]. Indeed, the fractional p-Laplacian defined for 1 < p <∞ by

(−∆)spu(x) = P.V.

ˆ
Rd

|u(x)− u(y)|p−2(u(x)− u(y))

|x− y|d+sp
dy

is T-monotone in W s,p
0 (Ω) by a similar proof as in Proposition 5.3.

As a result, we can similarly obtain the comparison property and L∞ estimates for the fractional p-
Laplacian, which coincides, up to a constant, with (−∆)s when p = 2.

Furthermore, as in classical cases, we have the following convergence result, and we give the proof here
for completeness.

Proposition 5.11. Suppose g satisfies (5.2) and un, u ∈ Hs
0(Ω), un ⇀ u weakly in Hs

0(Ω). If

lim sup
n→∞

〈L̄sgun, un − u〉 ≤ 0,

then
un → u strongly in Hs

0(Ω), and L̄sgun → L̄sgu strongly in H−s(Ω).

Proof. Using the coercivity of L̄sg from Proposition 5.3,

g∗
c2d,s
‖un − u‖2Hs0 (Ω) ≤ 〈L̄

s
gun − L̄sgu, un − u〉 ≤ 〈L̄sgun, un − u〉 − 〈L̄sgu, un − u〉.

Then, taking the limsup and using the assumptions, since un ⇀ u in Hs
0(Ω), we have the strong convergence

of un to u in Hs
0(Ω).

Furthermore, since L̄sg is a Lipschitz operator by Proposition 5.3, it follows that L̄sgun → L̄sgu strongly in
H−s(Ω).
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Moreover, using classical bounded penalisation techniques, by the strict T-monotonicity of L̄sg and the
assumption on g in (5.2), we can easily derive the Lewy-Stampacchia inequality, as in Section 4.3.1.

Theorem 5.12. Suppose
f, (L̄sgψ − f)+ ∈ L2(Ω).

Then, the solution u of the nonlinear one obstacle problem (5.5) satisfies

f ≤ L̄sgu ≤ f ∨ L̄sgψ a.e. in Ω. (5.8)

In particular, L̄sgu ∈ L2(Ω).

Proof. The proof follows as in Section 4.3.1, by considering the corresponding penalised problem

uε ∈ Hs
0(Ω) : 〈L̄sguε, v〉+

ˆ
Ω

ζθε(uε − ψ)v =

ˆ
Ω

(f + ζ)v ∀v ∈ Hs
0(Ω).

Then the solution uε ∈ Ks
ψ for each ε > 0, since L̄sg is strictly coercive, we have the error estimate

‖u− uε‖2Hs0 (Ω) ≤ ε(Cθc
2
d,s/g∗)‖ζ‖L1(Ω) ,

which implies that uε converges strongly in Hs
0(Ω) as ε→ 0 to the solution u of the obstacle problem. Then,

choosing ζ = (L̄sgψ − f)+ in the penalised problem, the inequality (5.8) is also satisfied for uε, and since L̄sg
is Lipschitz, (5.8) is therefore satisfied by u at the limit ε→ 0.

Furthermore, as in Chapter 4, we similarly have the result for the two obstacles problem and the N
membranes problem.

Theorem 5.13. Let 0 < s < 1 and Ω ⊂ Rd be a Lipschitz bounded domain. Suppose f ∈ L2(Ω) and the
measurable obstacle functions ψ,ϕ ∈ Hs(Rd) are admissible in the sense that the closed convex set

Ks
ψ,ϕ = {v ∈ Hs

0(Ω) : ψ ≤ v ≤ ϕ a.e. in Ω} 6= ∅.

Then, the two obstacles problem

u ∈ Ks
ψ,ϕ : 〈L̄sgu, v − u〉 ≥

ˆ
Ω

f(v − u) ∀v ∈ Ks
ψ,ϕ, (5.9)

has a unique solution u = u(f, ψ, ϕ) ∈ Ks
ψ,ϕ, and is equivalent to minimizing in Ks

ψ,ϕ the functional Fs
defined similarly as in (5.7).

Moreover, if û denotes the solution corresponding to f̂ , ψ̂ and ϕ̂, then

f ≥ f̂ , ϕ ≥ ϕ̂, ψ ≥ ψ̂ implies u ≥ û a.e. in Ω,

and if f = f̂ , L∞ estimate holds:

‖u− û‖L∞(Ω) ≤ ‖ψ − ψ̂‖L∞(Ω) +‖ϕ− ϕ̂‖L∞(Ω) .

Assume further that
f, (L̄sgψ − f)+, (L̄sgϕ− f)+ ∈ L2(Ω).

Then, the solution u of the nonlinear two obstacles problem (5.9) satisfies

f ∧ L̄sgϕ ≤ L̄sgu ≤ f ∨ L̄sgψ a.e. in Ω,

and so L̄sgu ∈ L2(Ω).
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Proof. The existence and uniqueness follow, as in the previous sections, from the coercivity, continuity and
Lipschitzness of the operator L̄sg in Proposition 5.3 and the Stampacchia theorem. The comparison property

follows also as previous by the strict T-monotonicity of L̄sg.
The L∞ estimate follows as in the one obstacle problem, while the Lewy-Stampacchia inequalities extend

from the one obstacle case as in Theorem 4.10.
It remains to proof the equivalence to the minimisation problem. But the proof is almost similar to

the one obstacle problem, except that in this case, we consider u ∈ L2(Ω) such that ψ ≤ u ≤ ϕ with the
corresponding functional finite only when u ∈ Ks

ψ,ϕ.

Finally, we consider now the N membranes problem, which consists of: To find u = (u1, u2, . . . , uN ) ∈ Ks
N

satisfying
N∑
i=1

〈L̄sgui, vi − ui〉 ≥
N∑
i=1

ˆ
Ω

f i(vi − ui), ∀(v1, . . . , vN ) ∈ Ks
N , (5.10)

where Ks
N is the convex subset of [Hs

0(Ω)]N defined by

Ks
N = {(v1, . . . , vN ) ∈ [Hs

0(Ω)]N : v1 ≥ · · · ≥ vN a.e. in Ω}

and f i, . . . , fN ∈ L2(Ω). As with the one and two obstacles problems, the existence and uniqueness follow
easily, while the equivalence with the minimisation problem over the convex set Ks

N follows since the sequence
is decreasing. Furthermore, the following Lewy-Stampacchia type inequality also holds.

Theorem 5.14. The solution u = (u1, . . . uN ) of the N membranes problem satisfies a.e. in Ω

f1 ∧ L̄sgu1 ≤ f1 ∨ · · · ∨ fN

f1 ∧ f2 ≤ L̄sgu2 ≤ f2 ∨ · · · ∨ fN

...

f1 ∧ · · · ∧ fN−1 ≤ L̄sguN−1 ≤ fN−1 ∨ fN

f1 ∧ · · · ∧ fN ≤ L̄sguN ≤ fN ,

and L̄sgu ∈ [L2(Ω)]N .

Given the Lewy-Stampacchia inequalities, which applies similarly assuming f, L̄sgψ, L̄sgϕ ∈ Lp(Ω) for any
2 < p ≤ ∞, we can show local regularity for the three nonlocal obstacle-type problems, as in Section 4.3.3.
Indeed, as long as the upper and lower bounds are in L∞(Ω), by the Lewy-Stampacchia inequalities, we can
make use of the Dirichlet form nature of the quadratic form, and obtain Hölder regularity on the solutions
on balls independently of the boundary conditions and of the regularity of ∂Ω applying the local elliptic
regularity Theorem 5.5.

Suppose that g(x, y, r) = g(r) is the one-parameter homogeneous kernel, and

(a) f, L̄sgψ ∈ L∞(Ω) for the one obstacle problem,

(b) f ∧ L̄sgϕ and f ∨ L̄sgψ are in L∞(Ω) for the two obstacles problem, or

(c) f i ∈ L∞(Ω) for i = 1, . . . , N for the N membranes problem.

Theorem 5.15. Suppose L̄sg is defined with the one-parameter kernel g(x, y, r) = g(r), Let u denote the
solutions of the one obstacle problem (5.5), or the two obstacles problem (5.9), or u = ui for i = 1, . . . , N of
the N membranes problem (5.10), respectively, under the assumptions (a), (b) or (c) above. Suppose Bρ b Ω

is a ball of radius ρ. Then, there exists cρ ≥ 0 and α = α
(
s, d, a∗, a

∗,‖f‖L∞(Ω)

)
∈]0, s], independent of u,

such that the following Hölder estimate holds for almost every x, y ∈ Bρ/2:

|u(x)− u(y)| ≤ cρ|x− y|α
(
‖u‖L∞(Ω) +

∥∥∥L̄sgu∥∥∥
L∞(Ω)

)
.

Consequently, u ∈ Cα(Ω), i.e. u is locally Hölder continuous.
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Proof. Since the Lewy-Stampacchia inequalities in Theorems 5.12, 5.13 and 5.14 hold a.e. in Bρ ⊂ Ω for L̄sgu
for the one obstacle, the two obstacles problem and the N membranes problem respectively, and L̄sgu = f in
Bρ, therefore f lies in L∞(Ω), and we have the result as in Section 4.3.3 making use of Theorem 5.5 following
the classical approach.

5.3 Convergence of the One Obstacle Problem to the Classical Problem as s↗ 1
in the Homogeneous Case

5.3.1 The Young functions G and their modulars

In this section, we consider the special case of the one-parameter nonlinear kernels g(r). Given the corre-
sponding Young functions G, we can subsequently define the modulars ΦG and Φs,G, following that of [113],
given for 0 < s ≤ 1 and u extended by 0 outside Ω by

ΦG(u) :=

ˆ
Rd
G(|u(x)|) dx,

Φs,G(u) :=


´
Rd

´
Rd G

(
|u(x)−u(y)|
|x−y|s

)
dx dy
|x−y|d if 0 < s < 1,´

Rd G(|∇u(x)|) dx if s = 1.

Observe that Φ1,G(u) = ΦG(|∇u|).

Remark 5.16. Suppose we define the corresponding Orlicz and Orlicz-Sobolev spaces

LG(Rd) :=
{
u : Rd → R,measurable : ΦG(u) <∞

}
,

W s,G(Rd) :=
{
u ∈ LG(Rd) : Φs,G(u) <∞

}
with their corresponding Luxemburg norms (see, for instance, Chapter 8 of [5] or Chapter 2 of [176]), given
by

‖u‖G =‖u‖LG(Rd) := inf

{
λ > 0 : ΦG

(
u

λ

)
≤ 1

}
and

‖u‖s,G =‖u‖W s,G(Rd) :=‖u‖G + [u]s,G,

where

[u]s,G := inf

{
λ > 0 : Φs,G

(
u

λ

)
≤ 1

}
.

LG(Rd) and W s,G(Rd) are known to be reflexive Banach spaces. Then, by Lemma 2.1 of [77] on Page 309,
for a∗ > 1 > a∗ > 0 as given in (5.2),

La
∗+1(Rd) ∩ La∗+1(Rd) ⊂ LG(Rd) ⊂ La

∗+1(Rd) + La∗+1(Rd).

Furthermore, for bounded domains Ω ⊂ Rd,

La
∗+1(Ω) ⊂ LG(Ω) ⊂ La∗+1(Ω).

Moreover, by (5.2),

g∗r
2 ≤ G(r) =

ˆ r

0

g(ρ)ρ dρ ≤
ˆ r

0

g∗ρ dρ = g∗r2, (5.11)

we have

g∗

ˆ
Rd
|u|2 ≤ ΦG(u) ≤ g∗

ˆ
Rd
|u|2,

so the space LG(Rd) equipped with the Luxemburg norm is equivalent to the Lebesgue space L2(Rd).
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Moreover, applying an argument similar to that of Theorem 3.11 of [26], by (5.2),

1 + a∗
r
≤ ḡ(x, y, r)

G(x, y, r)
≤ a∗ + 1

r

for almost every x, y ∈ Rd for all r ≥ 0. Since g is Lipschitz continuous, for every 0 < r0 < r, we have

log(r1+a∗)− log(r1+a∗
0 ) ≤

ˆ r

r0

1 + a∗
r

dr ≤
ˆ r

r0

ḡ(r)

G(r)
dr

= log(G(r))− log(G(r0)) ≤ log(r1+a∗)− log(r1+a∗

0 ).

Exponentiating and integrating with respect to x, y ∈ Rd with measure dx dy
|x−y|d , we have, for any 0 < s < 1,

W s,a∗+1(Rd) ⊂W s,G(Rd) ⊂W s,a∗+1(Rd)

for the fractional Sobolev-Slobodeckij spaces W s,p(Rd).
Furthermore, also by (5.11), Φs,G is equivalent, up to a constant, to the Gagliardo semi-norm

[u]2s,Rd :=

ˆ
Rd

ˆ
Rd

(u(x)− u(y))2

|x− y|d+2s
dx dy.

This means that, as Banach spaces, LG(Rd) and W s,G(Rd), with their corresponding Luxemburg norms,
correspond to L2(Rd) and Hs(Rd) respectively. In particular, these topologies are equivalent, and the home-
omorphisms

LG(Rd) ≈ L2(Rd) and W s,G(Rd) ≈ Hs(Rd)

hold for any 0 < s < 1, with equality in the particular case when G(r) = r2.

Furthermore, the Rellich-type compactness results hold similarly to the classical case, as shown in The-
orem 3.1 of [113]:

Proposition 5.17. Let 0 < s < 1. Then for every bounded sequence {un}n∈N satisfying supn∈N{Φs,G(un) +
ΦG(un)} < ∞, there exists a limit u satisfying the same bound and a subsequence {unk}k∈N such that
unk → u in L2

loc(Rd).

Next, we state some estimates which show how the modular Φs,G remains bounded under regularisation
and truncation, which will be useful for the convergence as s↗ 1.

Denote by ρ ∈ C∞c (Rd) the standard mollifier function with supp(ρ) = B1(0), such that ρε(x) = ε−dρ
(
x
ε

)
is the approximation of the identity with

´
Rd ρε = 1. Then, as usual, we define the regularised functions

uε ∈ L2(Rd) ∩ C∞(Rd) by
uε(x) = u ∗ ρε(x).

Then, as given in Lemma 2.13 of [113],

Lemma 5.18. Suppose u ∈ L2(Rd) and define uε as above. Then, for all ε > 0 and 0 < s < 1,

Φs,G(uε) ≤ Φs,G(u).

We also want to consider truncated functions. Let η ∈ C∞c (Rd) be such that 0 ≤ η ≤ 1 supported in
B2(0) with η = 1 in B1(0) and ‖∇η‖L∞ ≤ 2. For fixed k ∈ N, define ηk(x) = η

(
x
k

)
. Then ηk ∈ C∞c (Rd) is

supported in B2k(0) with |∇ηk| ≤ 2
k . Defining the truncated functions {uk}k∈N, of u ∈ L2(Rd) by uk = ηku,

we have, following Lemma 2.14 of [113] with the constants replaced with the appropriate ones from Property
(v) above,

Lemma 5.19. Let u ∈ L2(Rd) and {uk}k∈N be the corresponding truncated functions. Then

Φs,G(uk) ≤ 2a
∗
(1 + a∗)Φs,G(u) + 22a∗+1(1 + a∗)2ωd−1

(
1

s
+

1

k(1− s)

)
ΦG(u),

where ωd−1 =
´
{|x|=1} dσ is the spherical measure of the unit ball in Rd.
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5.3.2 Convergence as s↗ 1

Given the nonlinear nonlocal problem for 0 < s < 1 as well as the classical nonlinear problem for s = 1, we
want to consider the behaviour as s↗ 1. This follows much of the approach of [113], adopted to the case of
the elliptic obstacle-type problems.

We first begin with a study of the limit function of G when s ↗ 1. Define the bounded function
H : R+ → R as

H(a) := lim inf
s↗1

(1− s)
ˆ 1

0

ˆ
Sd−1

G(a|ω|r1−s)dSω
dr

r
, (5.12)

where Sd−1 is the unit sphere in Rd and ω is the variable on the unit sphere. It is known that the integral
converges, by Remark 2.15 of [113]. Furthermore, H is an Orlicz function (see Proposition 2.16 of [113]), and
there exists a positive constant c = c(d, q) depending on the dimension d and the constant q from Property
(ii) such that

cG(r) ≤ H(r) ≤ ωd−1G(r) for every w ∈ Rd and r > 0.

Correspondingly, we can define h(r) such that H(r) =
´
h(r)r dr by

h(a) := lim inf
s↗1

(1− s)
ˆ 1

0

ˆ
Sd−1

|ω|2r1−2sg(a|ω|r1−s)dSω dr. (5.13)

Remark 5.20. In particular, in the case of the p-Laplacian where G(r) = rp for r ∈ R+,

H(r) =
rp

p
Kd,p

for some constant Kd,p. See Example 2.17 of [113] for more details. Compare this also with the Bourgain-
Brezis-Mironescu result in [47], with a similar constant.

On the other hand, if G = G(x, y, r), an explicit form of the limit Young function similar to (5.12) is not
yet known, although such a limit exists, by the uniform boundedness of g(x, y, r).

Our main convergence result is then as follows

Theorem 5.21. Suppose ψ,ϕ ∈ H1(Rd) is such that

K1
ψ := {v ∈ H1

0 (Ω) : v ≥ ψ a.e. in Ω} 6= ∅,

and define K1
ψ,ϕ and K1

N similarly. Let us ∈ Ks
ψ(Ks

ψ,ϕ,K
s
N ) for 0 < s < 1 be the solution to the nonlinear

nonlocal one obstacle problem

〈L̄sgu, v − u〉 ≥
ˆ

Ω

f

1− s
(v − u) ∀v ∈ Ks

ψ (5.5)

(and the corresponding two obstacles (5.9) and N membranes (5.10) problems). Then, the sequence (us)s
converges strongly to u in L2(Ω) as s ↗ 1, where u ∈ K1

ψ(K1
ψ,ϕ,K

1
N ) solves uniquely the obstacle-type

problems for s = 1, i.e.

〈L̄gu, v − u〉 ≥
ˆ

Ω

f(v − u) ∀v ∈ K1
ψ(K1

ψ,ϕ,K
1
N ), (5.14)

where L̄g is the classical Ladyzhenskaya-Ural’tseva operator

L̄g = −1

2
∇ ·
(
h(|∇u|)∇u

)
(5.15)

for h(r) defined by (5.13).

We will show this via a series of known lemmas, given in Sections 4 and 5 of [113], and is an extension
of the result of Bourgain-Brezis-Mironescu in [47]. For the proofs, refer to [113].

Lemma 5.22. Let u ∈ H1(Rd). Then, for 0 < s < 1,

Φs,G(u) ≤ ωd−1

1− s
ΦG(|∇u|) + 2a

∗+2(1 + a∗)
ωd−1

s
ΦG(u).
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Furthermore, a similar result holds for 0 < s < s′ < 1. See also [8] for further embedding results.

Lemma 5.23. Let 0 < s < s′ < 1 and u ∈ L2(Ω). Then

(1− s)Φs,G(u) ≤ 21−s(1− s′)Φs′,G(u) + 2a
∗+2(1 + a∗)ωd−1

1− s
s

ΦG(u).

Lemma 5.24. Suppose H is as defined above in (5.12). Let u ∈ C2
c (Ω). Then, for every fixed x ∈ Rd,

lim inf
s↗1

(1− s)
ˆ
Rd
G

(
|u(x)− u(y)|
|x− y|s

)
dy

|x− y|d
= H(|∇u(x)|).

As a result of these lemmas, we have the following two results from [113].

Theorem 5.25. Given an Orlicz function G, let H be as defined above in (5.12). Then, for u ∈ L2(Ω) and
0 < s < 1,

lim inf
s↗1

(1− s)Φs,G(u) = ΦH(|∇u|),

where we recall that

ΦH(u) :=

ˆ
Rd
H(|u(x)|) dx.

As a result, by Theorem 5.17 and invoking Lemma 5.23, we have the following result for sequences of
functions, given as Theorem 5.1 of [113].

Theorem 5.26. Given an Orlicz function G, let 0 ≤ sk ↗ 1 and {uk}k∈N ⊂ L2(Ω) be such that

sup
k∈N

(1− sk)Φsk,G(uk) <∞ and sup
k∈N

ΦG(uk) <∞.

Then, there exists u ∈ L2(Ω) and a subsequence {ukj}j∈N such that ukj → u in L2
loc(Rd). Moreover, defining

H as in (5.12), we have that u ∈ H1
0 (Ω) and

ΦH(|∇u|) ≤ lim inf
k→∞

(1− sk)Φsk,G(uk).

Consequently, we can obtain the Γ-convergence of the functionals Fs as defined in (5.7). We first recall
the definition of Γ-convergence.

Definition 5.27. Given a metric space X with F, Fn : X → R̄, Fj Γ-converges to F if for every u ∈ X:

• For every sequence {un}n∈N ⊂ X such that uj → u in X,

F (u) ≤ lim inf
n→∞

Fn(un).

• For every u ∈ X, there exists a sequence {um}m∈N ⊂ X converging to u such that

F (u) ≥ lim sup
m→∞

Fm(um).

Then, by the previous theorem, taking the metric space X to be L2(Ω) with the functionals Fs,f defined
for all u ∈ L2(Ω) such that Fs,f (u) = +∞ for u 6∈ Ks

ψ for 0 < s ≤ 1, we have

Theorem 5.28. Given the functional Fs,f (u) : L2(Ω)→ R̄ as defined above by

Fs,f (v) :=
1

2
Φs,G(v)−

ˆ
Ω

fv ∀v ∈ Ks
ψ and Fs,f (v) = +∞ otherwise, (5.7)

we have that
(1− s)Fs,f/(1−s) Γ-converges as s↗ 1 to F1,f

for F1,f : L2(Ω)→ R̄ defined by

F1,f (v) :=
1

2
ΦH(|∇v|)−

ˆ
Ω

fv ∀v ∈ K1
ψ and F1,f (v) = +∞ otherwise.
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Proof. The lim inf inequality between the modulars (1− s)Φs,G(v) and ΦH(|∇v|) follows from the previous
Theorem 5.26, while the limsup inequality for the modulars follows simply by taking the constant sequence.

Next, we write the functionals as

Fs,f (v) :=
1

2
Φs,G(v)−

ˆ
Ω

fv + IKs
ψ

(v)

and

F1,f (v) :=
1

2
ΦH(|∇v|)−

ˆ
Ω

fv + IK1
ψ

(v)

respectively for the obstacle functionals IK(v) = 0 if v ∈ K and +∞ if v ∈ L2(Ω)\K (see for instance,
Section 3.2 of [123]). Since K1

ψ ⊂ Ks′

ψ ⊂ Ks
ψ for every 0 < s < s′ < 1 is decreasing as s ↗ 1, we also have

the lower semi-continuity of (1− s)IKs
ψ

(v).

Furthermore, since H1
0 (Ω) ⊂ Hs

0(Ω) for all 0 < s < 1, the convex sets K1
ψ ⊂ Ks

ψ for all 0 < s < 1, so
once again taking the constant sequence, we have the lim sup inequality, concluding the Γ-convergence for
the functionals (1− s)IKs

ψ
(v).

Finally, making use of the classic results for sums of Γ-convergent sequences (see for instance, Proposition
6.17 and 6.21 of [83]), we have the Γ-convergence of (1− s)Fs,f/(1−s) to F1,f .

Next, we recall the classic theorem that Γ-convergence implies the convergence of infimum of functionals
(see, for instance, Proposition 7.18 and Corollary 7.20 of [83]).

Theorem 5.29. Given a metric space (X, d), let F, Fj : X → R̄, j ∈ N be such that Fj Γ-converges to F .
Assume that for each j ∈ N, there exists uj ∈ X such that Fj(uj) = infX Fj, and suppose that the sequence
{uj}j∈N ⊂ X is precompact. Then every accumulation point of {uj}j∈N is a minimum of F and

inf
X
F = lim

j→∞
inf
X
Fj .

Finally, we give the proof of the main Theorem 5.21.

Proof of Theorem 5.21. The proof follows similarly as in Theorem 6.9 of [113], applied to the obstacle prob-
lem. Indeed, since the existence of an infimum usj ∈ H

sj
0 (Ω) ⊂ L2(Ω) of the functional Fsj ,f/(1−sj) is

guaranteed from Theorem 5.9, by Theorem 5.26, for 0 < sj ↗ 1, the sequence of infimums {usj}j∈N ⊂ L2(Ω)
of Fsj ,f/(1−sj) is precompact. Therefore, applying the Γ-convergence of (1 − s)Fs,f/(1−s) to F1,f as shown
in Theorem 5.28, by the previous theorem with X = L2(Ω), there exists u ∈ L2(Ω) such that

usj → u in L2(Ω) as s↗ 1

such that
F1,f (u) = inf

v∈L2(Ω)
F1,f (v).

But the infimum usj ∈ K
sj
ψ is unique for each 0 < sj ≤ 1 by Theorem 5.9, since it is the solution

to the nonlocal one obstacle problem for each sj . Therefore, in particular, u ∈ L2(Ω) solves the classical
variational one obstacle problem 5.14 with the potential operator corresponding to F1,f as given by 5.15
(see, for instance, [158]).

Finally, since the convex sets Ks
ψ are sequentially closed in Hs

0(Ω), and for smooth bounded Lipschitz

domains, the imbedding of Hs
0(Ω) into L2(Ω) is compact, by the convergence of usj to u in L2(Ω),

u ∈ {v ∈ L2(Ω) : v ≥ ψ a.e. in Ω}.

Furthermore, u ∈ H1
0 (Ω), because F1,f is finite only for u in that space and the classical one obstacle problem

has a unique solution.
The two obstacles and N membranes problem follow similarly by defining the functional to be infinite

for v 6∈ Ks
ψ,ϕ and v 6∈ Ks

N respectively, and the Mosco convergence of the decreasing sets Ks
ψ,ϕ to K1

ψ,ϕ and

Ks
N to K1

N since H1
0 (Ω) ⊂ Hs′

0 (Ω) ⊂ Hs
0(Ω) for any 0 < s < s′ < 1, as well as the relation

usj ,n−1 ≥ usj ,n ≥ inf
k≥l

usk,n∀j ≥ l =⇒ inf
j≥l

usj ,n−1 ≥ inf
j≥l

usj ,n =⇒ lim inf
j

usj ,n−1 ≥ lim inf
j

usj ,n,

giving the Γ-convergence of the associated functionals of the obstacle-type problems.
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Remark 5.30. Compare this result to the classical result of Attouch as given on pages 126–127 of [82],
where the Γ-convergent functionals are given in H1

0 (Ω) with Mosco-convergent convex sets Kn.

Remark 5.31. In the case where L̄sg corresponds to the symmetric linear nonlocal operator Lsa for u, v ∈
Hs

0(Ω) in Lipschitz domains Ω ⊂ Rd, given by

〈Lsau, v〉 =
1

2

ˆ
Rd

ˆ
Rd
â(x, y)

(u(x)− u(y))(v(x)− v(y))

|x− y|d+2s
dx dy

for a strictly elliptic and bounded kernel a∗ ≤ â(x, y) ≤ a∗, it is possible to consider the corresponding energy
functional

Js(u) :=
1

2

¨
R2d

â(x, y)
|u(x)− u(y)|2

|x− y|d+2s
dx dy

for 0 < s < 1, as in [112]. Then, by the boundedness and ellipticity of â(x, y), Js is equivalent, up to a
constant, to the Gagliardo semi-norm [u]s,Rd . Therefore, we can show similarly that (1−s)KdJs Γ-converges
to some limit J1 for some positive constant Kd. Extending Lemma 2.7 of [111], we have, r > 0,

Js(u+ rvs) = Js(u) + r〈L̄sgu, vs〉+ o(r),

where o(r) depends only on the Gagliardo semi-norm of vs.
Then, following Lemma 2.8 of [111], for every u ∈ H1

0 (Ω) and vk ∈ Hsk
0 (Ω) such that vk → v strongly in

L2(Ω), we have
〈Lsau, vk〉 → 〈L1

au, v〉

for some L1
a corresponding to J1 up to some constants. This gives the convergence of the elliptic obstacle

problems, using Minty’s lemma.
However, unlike the fractional Laplacian, for general a(x, y), we are not able to compute J1 explicitly,

so the form of the corresponding limit operator L1
a is not yet known. On the other hand, in the case when

a(x, y) = 1, the limit operator can be made explicit, and we have the convergence of the fractional Laplacian
to the classical Laplacian, as shown in Section 2.2 of [111]. (See also Sections 3 and 4.1 of [116].) Compare
also with Theorem 2.9.

5.4 Parabolic Nonlinear Nonlocal Obstacle-Type Problems

Next, we consider the parabolic nonlinear nonlocal obstacle-type problems. We begin with the one obstacle
problem, given with initial condition u(0, x) = u0 ≥ ψ(0, x) in Ω for u0 ∈ Hs

0(Ω) by

u ∈ Ksψ :

ˆ
QT

(
∂u

∂t
+ L̄sgu

)
(v − u) ≥

ˆ
QT

f(v − u) ∀v ∈ Ksψ, (5.16)

where QT =]0, T [×Ω, for the non-empty convex set

Ksψ = {u ∈ L2(0, T ;Hs
0(Ω)) : u ≥ ψ a.e. in QT } 6= ∅.

The obstacle ψ ∈ L2(0, T ;Hs(Rd)) ∩H1(0, T ;L2(Ω)) ⊂ C([0, T ];L2(Ω)) is such that ψ(0, x) = ψ0 in Ω and
admissible in the sense that ψ ≤ 0 a.e. in Ωc for a.e. t.

Parabolic fractional obstacle problems were first considered by Caffarelli and Figalli in [62], and later
built upon by Barrios, Figalli and Ros-Oton in [28], both for the fractional Laplacian. However, to the best
of our knowledge, nothing is yet known about parabolic obstacle problems for nonlocal operators defined
with more general kernels. As observed in [28], approaches commonly used in the stationary elliptic case
usually fail to apply to the evolutionary parabolic problem.

We show the main existence result. Observe that we are unable to apply the Stampacchia theorem
directly in the parabolic case, unlike in the stationary case. However, we can still obtain the solution as a
limiting solution to the bounded penalised problem.
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Theorem 5.32. For 0 < s < 1, assume that

f,

(
∂ψ

∂t
+ L̄sgψ − f

)+

∈ L2(QT ). (5.17)

Then, there exists a unique strong solution u ∈ Ksψ with the maximal regularity

u ∈ L2(0, T ;Hs
0(Ω)) ∩H1(0, T ;L2(Ω)) ∩ L∞(0, T ;L2(Ω))

to the parabolic one obstacle problem (5.16).

Remark 5.33. In the case of s = 1, the nonlinear operator L̄1
g is once again given by the classical

Ladyzhenskaya-Ural’tseva operator

L̄1
g = −1

2
∇ ·
(
g(x, |∇u|)∇u

)
for some nonlinear coefficient g(x, r). See also [159] for the s = 1 result.

Proof. Consider a nondecreasing Lipschitz function θ : R→ [0, 1] such that

θ ∈ C0,1(R), θ′ ≥ 0, θ(+∞) = 1 and θ(t) = 0 for t ≤ 0;

∃Cθ > 0 : [1− θ(t)]t ≤ Cθ, t > 0.

Then, for any ε > 0, consider the family of functions

θε(t) = θ

(
t

ε

)
, t ∈ R.

Observe that θε(t) converges as ε→ 0 to the multi-valued Heaviside function

H(t) =


0 if t < 0

[0, 1] if t = 0

1 if t > 0

.

For ζ ∈ L2(QT ) such that

ζ ≥
(
∂ψ

∂t
+ L̄sgψ − f

)+

a.e. in QT ,

consider the bounded penalised problem based on θ given by

∂uε
∂t

+ L̄sguε + ζθε(uε − ψ) = f + ζ a.e. QT , uε = 0 in ]0, T [×Ωc, uε(0, ·) = u0 ∈ Hs
0(Ω). (5.18)

(Observe that it is possible to write L̄sg in this form, by Remark 5.4.) Since L̄sg is strictly coercive and
Lipschitz in Hs

0(Ω) and θε is monotone, it is well-known (see, for instance, [160]) that this problem has a
unique solution

uε ∈ L2(0, T ;Hs
0(Ω)) ∩H1(0, T ;L2(Ω)).

Furthermore, by the regularity of f, ζ ∈ L2(QT ), we have that ∂uε
∂t , L̄

s
guε ∈ L2(QT ).

Furthermore, multiplying (5.18) by ∂uε
∂t , which makes sense since ∂uε

∂t ∈ L2(QT ), and integrating in
Qt =]0, t[×Ω for any t ∈]0, T [ and taking the supremum over all t, we have

ˆ T

0

∥∥∥∥∂uε∂t
∥∥∥∥2

L2(Ω)

+
g∗

2c2d,s
sup
t∈]0,T [

∥∥uε(t)∥∥2

Hs0 (Ω)
− g∗

2c2d,s

∥∥uε(0)
∥∥2

Hs0 (Ω)

≤ sup
t∈]0,T [

ˆ
Qt

(
∂uε
∂t

+ L̄sguε
)
∂uε
∂t
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≤ sup
t∈]0,T [

ˆ
QT

(ζ + f)
∂uε
∂t

+ sup
t∈]0,T [

ˆ
QT

ζθε(uε − ψ)
∂uε
∂t

≤1

4
sup
t∈]0,T [

ˆ t

0

∥∥∥∥∂uε∂t
∥∥∥∥2

L2(Ω)

+ sup
t∈]0,T [

ˆ
Qt

|ζ + f |2 +
1

4
sup
t∈]0,T [

ˆ t

0

∥∥∥∥∂uε∂t
∥∥∥∥2

L2(Ω)

+ sup
t∈]0,T [

ˆ
Qt

|ζ|2|θε(uε − ψ)|2

≤1

4

ˆ T

0

∥∥∥∥∂uε∂t
∥∥∥∥2

L2(Ω)

+

ˆ
QT

|ζ + f |2 +
1

4

ˆ T

0

∥∥∥∥∂uε∂t
∥∥∥∥2

L2(Ω)

+

ˆ
QT

|ζ|2,

so uε is uniformly bounded in H1(0, T ;L2(Ω)) independent of ε.
Then, for all v ∈ L2(0, T ;Hs

0(Ω)) such that v ≥ 0,

ˆ
Ω

(
∂ψ

∂t
+ L̄sgψ

)
v =

ˆ
Ω

(
∂ψ

∂t
+ L̄sgψ − f + f

)
v ≤

ˆ
Ω

[(
∂ψ

∂t
+ L̄sgψ − f

)+

+ f

]
v ≤

ˆ
Ω

(ζ + f)v a.e. t.

Now, taking v = (ψ − uε)+ and subtracting the penalised problem (5.18) from the above equation, we have

1

2

ˆ t

0

∂

∂t

∥∥(ψ − uε)+
∥∥2

L2(Ω)
+

g∗
c2d,s

ˆ t

0

∥∥(ψ − uε)+
∥∥2

Hs0 (Ω)

≤
ˆ
Qt

[
∂(ψ − uε)+

∂t
+ L̄sg(ψ − uε)+

]
(ψ − uε)+

≤
ˆ
Qt

(
∂ψ

∂t
+ L̄sgψ

)
(ψ − uε)+ −

ˆ
Qt

(
∂uε
∂t

+ L̄sguε
)

(ψ − uε)+

≤
ˆ
Qt

(ζ + f)(ψ − uε)+ +

ˆ
Qt

ζθε(uε − ψ)(ψ − uε)+ −
ˆ
Qt

(f + ζ)(ψ − uε)+

=

ˆ
Qt

ζθε(uε − ψ)(ψ − uε)+

=0.

The last equality is true because either uε − ψ > 0 which gives (ψ − uε)+ = 0, or uε − ψ ≤ 0 which gives
θε(uε − ψ) = 0 by the construction of θ, thus implying θε(uε − ψ)(ψ − uε)+ = 0.

Taking the supremum over all t ∈]0, T [, we have

1

2

∥∥(ψ − uε)+
∥∥2

L∞(0,T ;L2(Ω))
+

g∗
c2d,s

∥∥(ψ − uε)+
∥∥2

L2(0,T ;Hs0 (Ω))
≤ 1

2

∥∥(ψ(0, ·)− uε(0, ·))+
∥∥2

L2(Ω)
= 0

since uε(0, ·) = u0 ≥ ψ(0, ·), so uε ∈ Ksψ for any ε > 0.

Therefore, by the uniform boundedness of uε ∈ H1(0, T ;L2(Ω)) ∩ L2(0, T ;Hs
0(Ω)) ∩ L∞(0, T ;L2(Ω)),

passing to a subsequence if necessary, there exists a limit û such that

uε ⇀ û weakly in H1(0, T ;L2(Ω)) ∩ L2(0, T ;Hs
0(Ω)) and strongly in L2(QT ). (5.19)

Finally, we show that this limit is the solution to the parabolic one obstacle problem (5.16), i.e. uε →
û = u. Taking v = w − uε in the penalised problem (5.18) for arbitrary w ∈ Ksψ, we have for any fixed
t ∈]0, T [,

ˆ
Qt

(
∂uε
∂t

+ L̄sguε
)

(w − uε) =

ˆ
Qt

[f + ζ − ζθε(uε − ψ)](w − uε)

=

ˆ
Qt

f(w − uε) +

ˆ
Qt

ζ[1− θε(uε − ψ)](w − uε)

≥
ˆ
Qt

f(w − uε) +

ˆ
Qt

ζ[1− θε(uε − ψ)](ψ − uε)

=

ˆ
Qt

f(w − uε)− ε
ˆ
Qt

ζ[1− θε(uε − ψ)]
uε − ψ
ε
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≥
ˆ
Qt

f(w − uε)− εCθ
ˆ
Qt

ζ

since ζ, 1 − θε, w − ψ ≥ 0 for w ∈ Ksψ. Taking w = û, we see that uε satisfies the assumptions of Lemma
5.34 below, so taking ε ↘ 0, we conclude that û is a solution of the parabolic one obstacle problem (5.16).
Finally, the uniqueness follows as in the classical case, by taking the difference of the two corresponding
problems and observing that the norms of the difference are equal to 0, therefore û = u.

Lemma 5.34. Suppose un ⇀ u weakly in H1(0, T ;L2(Ω)) ∩ L2(0, T ;Hs
0(Ω)) and strongly in L2(QT ). If

un(0, ·)→ u(0, ·) in L2(Ω), and

lim sup
n→∞

ˆ
QT

(
∂un
∂t

+ L̄sgun
)

(un − u) ≤ 0,

then

un → u strongly in L2(0, T ;Hs
0(Ω))∩L∞(0, T ;L2(Ω)), and L̄sgun → L̄sgu strongly in L2(0, T ;H−s(Ω)).

Proof. Using the coercivity of L̄sg from Proposition 5.3,

1

2
‖un − u‖2L∞(0,T ;L2(Ω)) +

g∗
c2d,s
‖un − u‖2L2(0,T ;Hs0 (Ω))

≤
ˆ
QT

∂(un − u)

∂t
(un − u) + 〈L̄sgun − L̄sgu, un − u〉+

1

2

∥∥un(0, ·)− u(0, ·)
∥∥2

L2(Ω)
.

Then, taking the limsup for each term on the left, which is bounded by limsup of the sum on the right,
which, using the assumptions, is given by

lim sup
n→∞

ˆ
QT

∂u

∂t
(u− un) + lim sup

n→∞
〈L̄sgu, u− un〉+

1

2
lim sup
n→∞

∥∥un(0, ·)− u(0, ·)
∥∥2

L2(Ω)
= 0

since un ⇀ u in H1(0, T ;L2(Ω))∩L2(0, T ;Hs
0(Ω)). Therefore, we have the strong convergence of un to u in

L2(0, T ;Hs
0(Ω)) ∩ L∞(0, T ;L2(Ω)).

Furthermore, since L̄sg is a Lipschitz operator by Proposition 5.3, it follows that L̄sgun → L̄sgu strongly in
L2(0, T ;H−s(Ω)).

Remark 5.35. In particular, the error estimate

1

2
‖uε − u‖2L∞(0,T ;L2(Ω)) +

g∗
c2d,s
‖uε − u‖2L2(0,T ;Hs0 (Ω)) ≤ εCθ‖ζ‖L1(QT ) (5.20)

holds. Indeed, taking w = u in the last estimate of the proof of the theorem above, we obtain

ˆ
Qt

(
∂uε
∂t

+ L̄sguε
)

(u− uε) ≥
ˆ
Qt

f(u− uε)− εCθ
ˆ
Qt

ζ,

but taking v = uε ∈ Ksψ in the original obstacle problem (5.16), we have

ˆ
Qt

(
∂u

∂t
+ L̄sgu

)
(uε − u) ≥

ˆ
Qt

f(uε − u).

Taking the difference of these two equations, we have

ˆ
Qt

(
∂(uε − u)

∂t
+ L̄sguε − L̄sgu

)
(uε − u) ≤ εCθ

ˆ
Qt

ζ.

Using the ellipticity of L̄sg, we take the supremum over all t ∈]0, T [ and obtain (5.20) since ζ ≥ 0.
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Similar to the elliptic case in Theorem 5.9, we also have a comparison property for the solution of the
parabolic nonlocal one obstacle problem (5.16):

Proposition 5.36. Suppose u is the solution of the variational inequality (5.16) with data f and convex set

Ksψ, and û be the solution with data f̂ and convex set Ks
ψ̂

. If ψ ≥ ψ̂ and f ≥ f̂ , then u ≥ û a.e. in QT .

Proof. Taking v = u ∨ û = u + (û − u)+ ∈ Ksψ and v = u ∧ û = û − (û − u)+ ∈ Ks
ψ̂

for the two equations

corresponding to (u, f, ψ) and (û, f̂ , ψ̂) respectively and summing, we have

ˆ
QT

(
∂(û− u)

∂t
+ L̄sgû− L̄sgu

)
(û− u)+ +

ˆ
QT

(f − f̂)(û− u)+ ≤ 0.

Since f − f̂ ≥ 0, by the strict T-monotonicity of the operator in Theorem 5.3, u ≥ û.

Finally, we derive the Lewy-Stampacchia inequality, in a similar form to the classical case given in [128],
and the case for the fractional Laplacian given in [150].

Theorem 5.37 (Lewy-Stampacchia inequality). Under the assumptions (5.17), the solution u ∈ Ksψ of the
parabolic one obstacle problem (5.16) satisfies

f ≤ ∂u

∂t
+ L̄sgu ≤ f ∨

(
∂ψ

∂t
+ L̄sgψ

)
a.e. in QT .

Proof. Choosing ζ =
(
∂ψ
∂t + L̄sgψ − f

)+

in the penalised problem (5.18), and making use of the property of

θ that 0 ≤ 1− θε ≤ 1, then for any ε > 0 and any v ∈ L2(0, T ;Hs
0(Ω)), v ≥ 0, we have

ˆ
QT

(
∂uε
∂t

+ L̄sguε
)
v =

ˆ
QT

[
f +

(
∂ψ

∂t
+ L̄sgψ − f

)+

(1− θε)

]
v ≤

ˆ
QT

[
f +

(
∂ψ

∂t
+ L̄sgψ − f

)+
]
v

and also
∂uε
∂t

+ L̄sguε = f + ζ − ζθε = f + ζ(1− θε) ≥ f

from the boundary value problem. Together, these give

ˆ
QT

fv ≤
ˆ
QT

(
∂uε
∂t

+ L̄sguε
)
v ≤

ˆ
QT

[
f +

(
∂ψ

∂t
+ L̄sgψ − f

)+
]
v =

ˆ
QT

[
f ∨

(
∂ψ

∂t
+ L̄sgψ − f

)]
v.

By the error estimate (5.20), L̄sguε converges strongly to L̄sgu in L2(0, T ;H−s(Ω)), and so in particular,

converges weakly in L2(QT ) because ∂uε
∂t converges weakly to ∂u

∂t in L2(QT ). Therefore, we can take ε→ 0
so that this inequality holds also for u. Since v is arbitrary, we have the result.

Remark 5.38. For s = 1, the parabolic Lewy-Stampacchia inequalities have also been obtained for pseu-
domonotone operators in [226] and [128].

Remark 5.39. For 0 < s < 1, in the linear case, the parabolic obstacle problem defined with the stochastic
fractional Laplacian has also been considered in [98], as well as in [146] for semi-Dirichlet forms which
include the linear nonlocal operator La.

Remark 5.40. In the case when L̄sg = La is linear (c.f. Remark 5.31), it is also possible to extend our
results for the obstacle-type problems for weaker data f ∈ L2(0, T ;H−s(Ω)), as in Section 4.4, with more
general lower semi-continuous obstacles by considering the solution in the positive cone, making use of the
parabolic s-capacity as considered by Pierre in [185, 186, 187]. See also [245] and [148] for the stochastic
case. However, when less regular obstacles are considered, the solution is not unique, as discussed in [172].

Similar results applying the results of Pierre in the consideration of the multiple obstacles problem have
been obtained in [146] for more general nonlocal operators corresponding to semi-Dirichlet forms, by consid-
ering various equivalent notions of nonlocal parabolic capacity in [147].
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Moreover, as in the stationary case, we can extend it to multiple obstacles problems:

Theorem 5.41 (Parabolic Two Obstacles Problem). Suppose

f,

(
∂ψ

∂t
+ L̄sgψ − f

)+

,

(
∂ϕ

∂t
+ L̄sgϕ− f

)+

∈ L2(QT )

and ψ,ϕ ∈ L2(0, T ;Hs(Rd)) ∩H1(0, T ;L2(Ω)) such that ψ ≤ 0 ≤ ϕ a.e. in Ωc for a.e. t. Then, there exists
a unique strong solution u ∈ Ksψ,ϕ with initial condition ψ(0, x) ≤ u(0, x) = u0 ≤ ϕ(0, x) in Ω, u0 ∈ Hs

0(Ω)
for the non-empty convex set

Ksψ,ϕ = {u ∈ L2(0, T ;Hs
0(Ω)) : ψ ≤ u ≤ ϕ a.e. in QT } 6= ∅,

such that
u ∈ L2(0, T ;Hs

0(Ω)) ∩H1(0, T ;L2(Ω)) ∩ L∞(0, T ;L2(Ω))

to the parabolic two obstacles problem

u ∈ Ksψ,ϕ :

ˆ
QT

(
∂u

∂t
+ L̄sgu

)
(v − u) ≥

ˆ
QT

f(v − u) ∀v ∈ Ksψ,ϕ. (5.21)

Furthermore, the solution u satisfies

f ∧
(
∂ϕ

∂t
+ L̄sgϕ

)
≤ ∂u

∂t
+ L̄sgu ≤ f ∨

(
∂ψ

∂t
+ L̄sgψ

)
a.e. in QT .

Proof. The proof is similar to that of the one obstacle problem, now for two obstacles. In this case, we
consider the bounded penalised problem given by

∂uε
∂t

+ L̄sguε + ζψθε(uε − ψ)− ζϕθε(ϕ− uε) = f + ζψ − ζϕ a.e. QT , uε = 0 in ]0, T [×Ωc

with initial condition uε(0, ·) = u0 in Ω for ζψ, ζϕ ∈ L2(QT ) such that

ζψ ≥
(
∂ψ

∂t
+ L̄sgψ − f

)+

, ζϕ ≥
(
∂ϕ

∂t
+ L̄sgϕ− f

)−
a.e. in QT ,

with θε(t) = 1 for t ≥ ε. This penalised problem is known to have a unique solution

uε ∈ L2(0, T ;Hs
0(Ω)) ∩H1(0, T ;L2(Ω)),

uniformly bounded in this space.
Furthermore, as in the stationary case, it is easy to show that ψ ≤ uε ≤ ϕ + ε, and by the uniform

boundedness of uε, it converges to a limit u, with a similar estimate to (5.20), which satisfies the parabolic
two obstacles problem such that ψ ≤ u ≤ ϕ.

Finally, the Lewy-Stampacchia inequalities once again follow from choosing

ζψ =

(
∂ψ

∂t
+ L̄sgψ − f

)+

and ζϕ =

(
∂ϕ

∂t
+ L̄sgϕ− f

)−
in the bounded penalised problem and letting ε→ 0.

Then, by a simple iteration as in Subsection 4.3.2, we have the same result for the parabolic N membranes
problem.

Theorem 5.42 (Parabolic N Membranes Problem). Suppose f i, . . . , fN ∈ L2(QT ). Then, there exists a
unique strong solution u = (u1, u2, . . . , uN ) ∈ KsN with initial condition u1(0, x) ≥ · · · ≥ uN (0, x) in Ω for
the non-empty convex set

KsN = {(u1, . . . , uN ) ∈ [L2(0, T ;Hs
0(Ω))]N : u1 ≥ · · · ≥ uN a.e. in QT } 6= ∅
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such that
ui ∈ L2(0, T ;Hs

0(Ω)) ∩H1(0, T ;L2(Ω)) ∩ L∞(0, T ;L2(Ω))

to the parabolic N membranes problem

u ∈ KsN :
N∑
i=1

ˆ
QT

(
∂ui
∂t

+ L̄sgui
)

(vi − ui) ≥
N∑
i=1

ˆ
QT

f i(vi − ui) ∀(v1, . . . , vN ) ∈ KsN . (5.22)

Furthermore, the solution u = (u1, . . . uN ) satisfies a.e. in QT ,

f1 ∧ ∂u1

∂t
+ L̄sgu1 ≤ f1 ∨ · · · ∨ fN

f1 ∧ f2 ≤ ∂u2

∂t
+ L̄sgu2 ≤ f2 ∨ · · · ∨ fN

...

f1 ∧ · · · ∧ fN−1 ≤ ∂uN−1

∂t
+ L̄sguN−1 ≤ fN−1 ∨ fN

f1 ∧ · · · ∧ fN ≤ ∂uN
∂t

+ L̄sguN ≤ fN .

Furthermore, when L̄sg is given by the linear operator La for a symmetric a(x, y), we can once again
make use of the Lewy-Stampacchia inequalities to show local regularity for the three nonlocal obstacle-type
problems, extending the result in Section 4.3.3 to parabolic nonlinear problems.

Suppose that

(a) f, ∂ψ∂t + L̄sgψ ∈ L∞(QT ) for the one obstacle problem,

(b) f ∧
(
∂ϕ
∂t + L̄sgϕ

)
and f ∨

(
∂ψ
∂t + L̄sgψ

)
are in L∞(QT ) for the two obstacles problem, or

(c) f i ∈ L∞(QT ) for i = 1, . . . , N for the N membranes problem.

Then, making use of the weak Harnack inequality for La as given in Theorem 1.2 of [107] (see also [142]
for more general linear non-symmetric operators), we have

Theorem 5.43. Suppose L̄sg = La for the symmetric kernel a(x, y) satisfying (2.2) for some a∗, a
∗ > 0. Let

u denote the solutions of the parabolic one obstacle problem (5.16), or the parabolic two obstacles problem
(5.21), or u = ui for i = 1, . . . , N of the parabolic N membranes problem (5.22), respectively, under the
assumptions (a), (b) or (c) above. Suppose the ball of radius 2 about the origin B2 is a subset of Ω, and
]t0 − 1, t0 + 1[∈]0, T [ for some t0. Then there is a constant c = c(d, s, a∗, a

∗) such that

‖u‖L1(]t0−1,t0−1+(1/2)2s[×B1/2) ≤ c

(
inf

]t0+1−(1/2)2s,t0+1[×B1/2

u+‖Lau‖L∞(]t0−1,t0+1[×B2)

)
.

Furthermore, as in the classical de Giorgi-Nash-Moser theory, the weak Harnack inequality implies a
decay of oscillation-result and local Hölder regularity estimates for weak solutions, extending Theorem 1.2
of [107] to the nonhomogeneous case.

Theorem 5.44. Let u denote the solutions of the parabolic one obstacle problem (5.16), or the parabolic two
obstacles problem (5.21), or u = ui for i = 1, . . . , N of the N membranes problem (5.22), respectively, under
the assumptions (a), (b) or (c) above, with L̄sg = La for the symmetric kernel a(x, y) satisfying (2.2). Then,
there exists a constant β = β(d, s, a∗, a

∗) such that for every Q′ b QT , the following Hölder estimate holds:

sup
(t,x),(τ,y)∈Q′

|u(t, x)− u(τ, y)|
(|x− y|+ |t− τ |1/2s)β

≤ 1

ηβ

(
‖u‖L∞(]0,T [×Rd) +‖Lau‖L∞(QT )

)
for some η = η(Q′, QT ) > 0.

Consequently, u is locally Cβ in space and also Cβ/2s in time.
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Proof. This once again follows easily from the Lewy-Stampacchia inequalities for the parabolic obstacle-type
problems in Theorems 5.37, 5.41 and 5.42, which hold a.e. in Q′ b QT , and we have the result making use
of the previous weak Harnack inequality Theorem.

Remark 5.45. The s-convergence of the parabolic obstacle-type problems remains an open problem.

5.5 Asymptotic Behaviour as t→∞
Finally, we draw a relation between the evolution nonlinear nonlocal obstacle-type problems and the sta-
tionary ones, by analysing the behaviour of the solutions as t → ∞, in the case of when the obstacles are
independent of time. We first begin with the one obstacle problem.

Theorem 5.46. Let f∞ ∈ L2(Ω) and f ∈ L∞(0, T ;L2(Ω)) such that
´ t+1

t

∥∥f(t)− f∞
∥∥2

L2(Ω)
dt → 0 as

t→∞. Assume ψ is time-independent such that L̄sgψ ∈ L2(Ω), ψ ∈ Hs(Rd) with ψ ≤ 0 a.e. in Ωc. Suppose
u ∈ Ksψ is the solution of the nonlinear nonlocal parabolic one obstacle problem (5.16), i.e.

u(t) ∈ Ks
ψ a.e. t :

ˆ
Ω

(
∂u

∂t
(t) + L̄sgu(t)

)
(v(t)−u(t)) ≥

ˆ
QT

f(t)(v(t)−u(t)) ∀v(t) ∈ Ks
ψ a.e. t ∈]0, T [

(5.23)
with initial condition u(0, x) = u0 ∈ Hs

0(Ω) satisfying u0 ≥ ψ(x). Suppose also that u∞ solves the corre-
sponding stationary one obstacle problem (5.5), i.e.

u∞ ∈ Ks
ψ : 〈L̄sgu∞, v − u∞〉 ≥

ˆ
Ω

f∞(v − u∞) ∀v ∈ Ks
ψ. (5.5)

Then, ∥∥u(t)− u∞
∥∥
L2(Ω)

→ 0 as t→∞.

Proof. Take v = u∞ ≥ ψ ∈ Ks
ψ in (5.23) and v = u(t) ≥ ψ ∈ Ks

ψ in (5.5) for a.e. t and adding, we have

ˆ
Ω

(
∂(u(t)− u∞)

∂t
+ L̄sgu(t)− L̄sgu∞

)
(u(t)− u∞) ≤

ˆ
Ω

(f(t)− f∞)(u(t)− u∞) a.e. t.

Then, by the monotonicity and Lipschitzness of g and the Cauchy-Schwarz inequality, we have

1

2

∂

∂t

∥∥u(t)− u∞
∥∥2

L2(Ω)
+

g∗
c2d,s

∥∥u(t)− u∞
∥∥2

Hs0 (Ω)
≤
c2d,sC

2
P

2g∗

∥∥f(t)− f∞
∥∥2

L2(Ω)
+

g∗
2c2d,sC

2
P

∥∥u(t)− u∞
∥∥2

L2(Ω)
.

In particular, by the inclusion L2(Ω) into Hs
0(Ω) in Lemma 1.3,

∂

∂t

∥∥u(t)− u∞
∥∥2

L2(Ω)
+

g∗
c2d,sC

2
P

∥∥u(t)− u∞
∥∥2

L2(Ω)
≤
c2d,sC

2
P

g∗

∥∥f(t)− f∞
∥∥2

L2(Ω)
.

Applying Lemma 5.47 below,

∥∥u(t)− u∞
∥∥2

L2(Ω)
≤ e
− g∗
c2
d,s

C2
P

t∥∥u(0)− u∞
∥∥2

L2(Ω)
+
c4d,sC

4
P

g2
∗

[
sup
τ≥σ

ˆ τ+1

τ

∥∥f(τ)− f∞
∥∥2

L2(Ω)
dτ ′

]
.

Taking t→∞, the result follows by the convergence of f(t) to f∞ in the hypothesis.

Lemma 5.47. [See, for instance, Page 286 of [131]] Suppose ϕ′(t) + µϕ(t) ≤ η(t) for µ, t > 0, ϕ, η ≥ 0.
Then,

ϕ(σ + t) ≤ e−µtϕ(σ) +
1

µ

[
sup
τ≥σ

ˆ τ+1

τ

η(τ ′)dτ ′

]
for t > 1, σ ≥ 0.
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Proof. Given
ϕ′(t) + µϕ(t) ≤ η(t),

multiplying by the integrating factor eµt, we have(
eµtϕ(t)

)′ ≤ eµtη(t).

Integrating this from σ to σ + t, we have

eµ(t+σ)ϕ(t+ σ)− eµσϕ(σ) ≤
ˆ t+σ

σ

eµτ
′
η(τ ′) dτ ′,

which can be rewritten as

ϕ(t+ σ) ≤e−µtϕ(σ) + e−µ(t+σ)

ˆ t+σ

σ

eµτ
′
η(τ ′) dτ ′

≤e−µtϕ(σ) + e−µ(t+σ)

ˆ σ+t−1

σ

ˆ τ+1

τ

eµτ
′
η(τ ′) dτ ′ dτ

≤e−µtϕ(σ) + e−µ(t+σ)

ˆ σ+t−1

σ

eµ(τ+1)

ˆ τ+1

τ

η(τ ′) dτ ′ dτ

≤e−µtϕ(σ) + e−µ(t+σ)

[
sup
τ≥σ

ˆ τ+1

τ

η(τ ′)dτ ′

] ˆ σ+t−1

σ

eµ(τ+1) dτ

=e−µtϕ(σ) +
e−µ(t+σ)

µ

[
sup
τ≥σ

ˆ τ+1

τ

η(τ ′)dτ ′

] [
eµ(σ+t) − eµ(σ+1)

]
≤e−µtϕ(σ) +

1

µ

[
sup
τ≥σ

ˆ τ+1

τ

η(τ ′)dτ ′

]
.

Furthermore, with exactly the same proof modified to the convex sets Ks
ψ,ϕ, we can show the convergence

of the evolution two obstacles problem to the stationary two obstacles problem, when the obstacles ψ and ϕ
are time-independent.

Theorem 5.48. Let f∞ ∈ L2(Ω) and f ∈ L∞(0, T ;L2(Ω)) such that
´ t+1

t

∥∥f(t)− f∞
∥∥2

L2(Ω)
dt → 0 as

t → ∞. Assume ψ,ϕ are time-independent such that L̄sgψ, L̄sgϕ ∈ L2(Ω), ψ,ϕ ∈ Hs(Rd) with ψ ≤ 0 ≤ ϕ
a.e. in Ωc. Suppose u(t) ∈ Ks

ψ,ϕ is the solution of the nonlinear nonlocal parabolic two obstacles problem
(5.21) for a.e. t satisfying ψ(t) ≤ u(t) ≤ ϕ(t) in Ω for a.e. t with initial condition ψ(0, x) ≤ u(0, x) = u0 ≤
ϕ(0, x) in Ω, u0 ∈ Hs

0(Ω), and u∞ ∈ Ks
ψ,ϕ solves the corresponding stationary two obstacles problem (5.9).

Then, ∥∥u(t)− u∞
∥∥
L2(Ω)

→ 0 as t→∞.

Finally, for the N membranes problem, we have a similar result:

Theorem 5.49. For i = 1, . . . , N , let f i∞ ∈ L2(Ω) and f i ∈ L∞(0, T ;L2(Ω)) such that´ t+1

t

∥∥f i(t)− f i∞∥∥2

L2(Ω)
dt → 0 as t → ∞. Suppose u(t) ∈ Ks

N is the solution of the nonlinear nonlocal

parabolic N membranes problem (5.22) for a.e. t satisfying u1(t) ≥ · · · ≥ uN (t) in Ω for a.e. t with initial
condition u1(0, x) ≥ · · · ≥ uN (0, x) in Ω, and u∞ ∈ Ks

N solves the corresponding stationary N membranes
problem (5.10). Then, ∥∥u(t)− u∞

∥∥
L2(Ω)

→ 0 as t→∞.

Proof. Take v = u∞ ∈ Ks
N in (5.22) where u∞ = (u∞,1, . . . , u∞,N ) satisfies

u∞,1 ≥ · · · ≥ u∞,N a.e. in Ω ∀t ∈]0, T [.
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Take also v = u(t) ∈ Ks
N in (5.10) for a.e. t, where u(t) = (u1(t), . . . , uN (t)) satisfies for fixed t ∈]0, T [,

u1(t) ≥ · · · ≥ uN (t) a.e. in Ω.

Adding the two equations, we have the result as with the one obstacle problem, making use of the strict
monotonicity and Lipschitzness of g as well as Lemma 5.47.

Remark 5.50. Observe that it is necessary for the obstacles ψ,ϕ to be time-independent in the one and two
obstacles problems, so that u ∈ Ksψ implies u(t) ∈ Ks

ψ for a.e. t in the one obstacle problem, and similarly for
the two obstacles problem. For the N membranes problem, no such similar additional assumption is required,
because the “obstacle” is given by the previous component uk−1, which is time-independent for each fixed t.
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6 Anisotropic Fractional and Nonlocal Stefan-Type Problems

6.1 Introduction

The classical Stefan problem, in an open bounded Lipschitz domain Ω 3 x = (x1, . . . , xd) and for time
t ∈ [0, T ], can be formulated in QT =]0, T [×Ω by an evolution equation involving a subdifferential operator

∂

∂t
β(ϑ)−∇ · (A∇ϑ) 3 f, (6.1)

where ϑ(t, x) is the temperature, ∇ is the gradient, A = A(x) is a symmetric, strictly elliptic and bounded
matrix, and β corresponds to a maximal monotone graph, such that β(r) = b(r) + λχ for χ ∈ H(ϑ) for the
maximal monotone graph H(r) associated with the Heaviside function, i.e. H(r) = 0 for r < 0, H(r) = 1
for r > 0, H(0) = [0, 1], and b a given continuous and strictly increasing function, λ > 0 (see Figure 2) with
inverse γ = β−1 satisfying limr→+∞ γ(r) = +∞ and limr→−∞ γ(r) = −∞ for the two-phase problem and
γ(r) = 0 for r ≤ λ for the one-phase problem. The notation β(ϑ) should be understood as follows: there
exists a section η of the multifunction β(ϑ) which satisfies the required conditions. In turn, ϑ is easy to
recover from η since β−1 = γ is a single-valued mapping. For works on the variational formulation of the
classical Stefan problem, see for instance [182, 136, 121], Chapter V.9 of [153], Section 3.3 of [161], [85],
[227], [191], [192] and [239].

We can also consider the one-phase problem (I) as the limit of the two-phase problem (II). Indeed,
physically, for large Stefan number, the liquid phase only contributes exponentially small terms to the
location of the solid–melt interface. Therefore, at times close to complete solidification, the temperature
in the liquid essentially vanishes and the two-phase problem reduces to the one-phase problem. For more
detailed discussions, see [169]. See also [225] for the one-dimensional case in the classical setting.

Here, we consider the corresponding fractional Stefan-type problem, given in QT by

∂

∂t
β(ϑ) + L̃sAϑ 3 f, (6.2)

where L̃sA = −Ds · ADs is a fractional operator defined with the distributional Riesz fractional derivatives,
with anisotropy given by a measurable matrix A = A(x), which is symmetric, strictly uniformly elliptic and
bounded independent of time satisfying

a∗|z|2 ≤ A(x)z · z ≤ a∗|z|2 (6.3)

for almost every x ∈ Rd and all z ∈ Rd. Then, the classical problem (6.1) corresponds to the case s = 1, i.e.
(6.2) with the operator L̃1

A, where D1 = ∇.
In this chapter, we are also concerned with the classical fractional Sobolev space Hs

0(Ω) in a bounded
domain Ω ⊂ Rd with Lipschitz boundary, for 0 < s < 1, defined as

Hs
0(Ω) := C∞c (Ω)

‖·‖Hs ,

with
‖u‖2Hs =‖u‖2L2(Rd) +‖Dsu‖2L2(Rd)d , (6.4)

where u is extended by 0 in Rd\Ω, so that this extension is also in Hs(Rd). By the classical fractional
Poincaré inequality (see Lemma 1.3), we shall consider the space Hs

0(Ω) with the following equivalent norm

‖u‖2Hs0 (Ω) =‖Dsu‖2L2(Rd)d . (6.5)

We subsequently denote the dual space of Hs
0(Ω) by H−s(Ω) for 0 < s ≤ 1. Then, by the Sobolev-Poincaré

inequalities, we have the compact embeddings

Hs
0(Ω) ↪→ Lq(Ω), Lq

′
(Ω) ↪→ H−s(Ω) = (Hs

0(Ω))′

for 1 ≤ q < 2∗, where 2∗ = 2d
d−2s and q′ > 2# = 2d

d+2s when s < d
2 , and if d = 1, 2∗ = q for any finite q and

2# = q
q−1 when s = 1

2 and 2∗ =∞ and 2# = 1 when s > 1
2 . We recall that those embeddings are continuous

also for q = 2∗ when s < d
2 (see for example, Theorem 4.54 of [93]).
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Figure 2: The maximal monotone graphs β as the inverse of the continuous monotone functions γ = β−1 in
the case of the II phases and the I phase Stefan problems

In particular, we call such problems fractional Stefan-type problems, when β is a maximal monotone
graph. This includes the porous medium equation (see for instance [234]), where β−1 is given by a power
law function

β−1(r) := |r|msign(r)

for the single-valued restriction of the signum function

sign(x) :=


{−1} x < 0,

{0} x = 0,

{1} x > 0.

for m > 1, as well as the classical Stefan problem, where β has a jump such that β−1 is given by

β−1(u) = c1(u− L)+ for u ≥ 0, β−1(u) = c2u for u < 0,

where c1, c2 and L are positive constants.
Recall that the nonlocal operator L̃sA = −Ds·ADs may also be defined in the duality sense for u ∈ Hs(Rd):

〈L̃sAu, v〉 :=

ˆ
Rd
ADsu ·Dsv ∀v ∈ Hs

0(Ω), (3.1)

with v extended by zero outside Ω, defining an operator from Hs(Rd) to H−s(Ω) since ADsu ∈ L2(Rd)d. Also
for u ∈ Hs

0(Ω), since we can extend it by 0 outside Ω to obtain a function in Hs(Rd), L̃sA : Hs
0(Ω)→ H−s(Ω)

can also be represented by
L̃sAu = −Ds · (ADsu). (6.6)

Given any g̃ ∈ Hs(Rd), we introduce g ∈ Hs(Rd) defined on the whole space Rd which satisfies g|Ωc = g̃
and is L̃sA-harmonic in Ω, that is to say, we solve the Dirichlet problem with g = g̃ a.e. on Ωc for the equation

L̃sAg = 0 in H−s(Ω) (6.7)

in a weak sense, which means ˆ
Rd
ADsg ·Dsv = 0 ∀v ∈ Hs

0(Ω).
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Note that this is possible and defines g a.e. in Rd by Lax-Milgram theorem (see Section 3.2, and also Theorem
1.13 of [213]), since A is strictly elliptic and bounded.

Next, we introduce the enthalpy function

η(t, x) ∈ β(ϑ(t, x)) for almost every (t, x) ∈ QT (6.8)

with initial condition
η(0) = η0 in H−s(Ω), (6.9)

and we prescribe a Dirichlet boundary condition

ϑ(t) = g̃(t) a.e. in Ωc = Rd \ Ω, for a.e. t ∈]0, T [, (6.10)

for a given g̃(t) ∈ Hs(Rd). For simplicity we shall often describe this Dirichlet condition by saying that
ϑ(t) − g̃(t) ∈ Hs

0(Ω) for a.e. t, which is certainly clear for s > 1/2, by the trace theorem, and an abuse
of notation for s ≤ 1/2. Now, for almost every t ∈ [0, T ], introducing g(t) = g̃(t) in Ωc and such that
L̃sAg(t) = 0 in Ω in the distributional sense, assuming f ∈ L2(0, T ;H−s(Ω)), we then have the following
weak formulation of the Stefan-type problem when viewed as a single-unknown problem:〈

dη

dt
, ξ

〉
+ 〈L̃sA(γ(η)− g), ξ〉 = 〈f, ξ〉, ∀ξ ∈ L2(0, T ;Hs

0(Ω)) (6.11)

with initial data (6.9), where 〈·, ·〉 denotes the duality between L2(0, T ;H−s(Ω)) and L2(0, T ;Hs
0(Ω)). Here

the Lipschitz graph γ, which may have flat parts, is defined as the inverse of the maximal monotone graph
β (see Figure 2). We call the solution η of (6.11) the generalised solution for the enthalpy formulation, by
requiring

η ∈ H1(0, T ;H−s(Ω)) ∩ L2(QT ) with γ(η)− g ∈ L2(0, T ;Hs
0(Ω)).

By the regularity of η, setting β = b + λH, we can write η = [b(ϑ) + λχ] ∈ β(ϑ) with χ ∈ H(ϑ) a.e. in
QT , i.e.

0 ≤ χ{ϑ>0} ≤ χ ≤ 1− χ{ϑ<0} ≤ 1 a.e. in QT .

Suppose we take a more regular test function ξ which additionally satisfies ξ(T ) = 0. Then, using integration
by parts in time, we also have a weak variational formulation, with f ∈ L2(0, T ;L2(Ω)) and η0 ∈ L2(Ω), for
the solution ϑ = γ(η), i.e. ϑ is the weak solution for the temperature formulation:

(ϑ, χ) ∈ [L2(QT )]2, χ ∈ H(ϑ) and ϑ− g ∈ L2(0, T ;Hs
0(Ω)) (6.12)

satisfy

−
ˆ
QT

[b(ϑ) + λχ]
∂ξ

∂t
+

ˆ
Rd×[0,T ]

ADsϑ ·Dsξ =

ˆ
QT

fξ +

ˆ
Ω

η0ξ(0), ∀ξ ∈ ΞsT , (6.13)

where
ΞsT := {ξ ∈ L2(0, T ;Hs

0(Ω)) ∩H1(0, T ;L2(Ω)) : ξ(T ) = 0 in Ω}.

Compare with [182, 136] and Section V.9 of [153] for the classical case with s = 1.

Remark 6.1. Note that the variational problem (6.11) incorporates the Dirichlet condition (6.10) in the
original problem given in (6.2) because of the definition (6.7). Since this implies

´
Rd×[0,T ]

ADsg · Dsξ = 0

for all ξ ∈ ΞsT , we obtain (6.13) without that term.
Although in general η, ϑ may be nonzero outside Ω, except for the bilinear form

´
Rd×[0,T ]

ADsϑ ·Dsξ, the

other integral terms in the variational formulation (6.13) are only integrated over Ω in space, since the test
function ξ is 0 in ]0, T [×Ωc.

Different nonlocal versions of Stefan-type problems have previously been considered, including in [50] and
[71] for nonsingular integral kernels, in [240, 40, 203, 201] for the fractional Caputo derivatives, and in [231,
229, 232, 233, 134] for the fractional Laplacian and its nonlocal integral generalisation in [19]. Stefan-type
problems that are fractional in the time derivative have also been considered (see, for instance, [200, 156,
67].)
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Indeed, when the matrix A is a multiple of the identity matrix, the fractional Stefan-type problem (6.2)
reduces to that with the fractional Laplacian as considered in [231]–[233]. Furthermore, in instances as
described in Section 3.4 when the fractional operator L̃sA is replaced with a nonlocal operator Lsa, corre-
sponding to a Dirichlet form with the kernel a which satisfies some coercivity and boundedness conditions,
(6.2) may also be considered a nonlocal Stefan problem, as considered in [19], and will also be considered in
Sections 6.8–6.8.2. However, an equivalence relation between the fractional operator with the matrix A and
the nonlocal operator with the kernel a cannot be established in general except in the isotropic homogeneous
case (for more details, see Section 3.4), so the two Stefan-type problems with those two operators are not
equivalent.

In this Chapter, we show the existence of a unique solution for the fractional Stefan-type problem with
Dirichlet boundary conditions, where the spatial operator is a general anisotropic non-local singular operator
of fractional type as given by (2.1), and we keep the classical temperature-enthalpy relation illustrated in
Figure 2. This relation in the classical equation (6.1) incorporates, in a generalised form, the free bound-
ary condition relating the balance between the normal velocity of the interface and the jump of the local
anisotropic heat flow. In 1-dimension, the extension of the classical free boundary Stefan condition to frac-
tional diffusion, as in the recent paper [203] with the fractional Caputo derivative in the nonlocal diffusive
term, can be easily made explicit. Similar explicit formulation can be used with the 1-dimensional fractional
Riesz spatial derivative when, for each fixed time, the free boundary is a point.

However, in higher dimensions, the Riesz fractional s-gradient, as proposed in [216], is an appropriate
fractional operator maintaining translational and rotational invariance, as well as homogeneity of degree s
under isotropic scaling, and so the L̃sA operator gives a natural and appropriate anisotropic generalisation of
the fractional Laplacian. Keeping the generalised Stefan condition in the evolution equation (6.2) involving
the maximal monotone operator β is a natural generalisation for the formulation of the anisotropic Stefan
problem, extending [232] and [233], which corresponds to the case where the matrix A is the identity matrix in
the unbounded domain. Such an anisotropic operator is coordinate invariant, which makes it more suitable in
higher dimensions. Furthermore, the use of this L̃sA operator allows us to recover the classical Stefan problem
when s = 1, which is in accordance with a requirement of weak continuity from the nonlocal model to the
local model, when s ↗ 1. However, a main issue remains open in the fractional multidimensional model,
namely what is the physical meaning of the Stefan condition due to the lack of a convenient interpretation
and definition for the fractional heat flux across the solid-liquid interface.

In the first part of this chapter, we show the existence of a unique solution for the fractional Stefan-type
problem with Dirichlet boundary conditions, where the spatial operator is a general anisotropic fractional
singular operator as given by (3.1), which is a generalisation of the results obtained in [203] for the fractional
Caputo derivative, and in [232, 233] for the fractional Laplacian which corresponds to the case where the
matrix A is the identity matrix in the unbounded domain.

In Sections 6.2 and 6.3, we employ Hilbertian techniques to show the existence of a generalised enthalpy
solution and a weak temperature solution to the initial and boundary value two-phase Stefan-type problem
(6.11)–(6.13) following the approach of Damlamian [84]–[85] for the classical case s = 1. This is coupled with
the equivalence with the variational inequality formulation for the two-phase and the one-phase problems in
Section 6.4.

Making use of convergence properties of the fractional derivatives to the classical derivatives when s↗ 1,
we show, in Section 6.5, that the solution of the fractional Stefan-type problem converges to the solution
of the classical case corresponding to s = 1. Next, we consider the asymptotic behaviour of the solution
as t → ∞ in Section 6.6. Such convergence properties apply to both the two-phase problem, and the one-
phase problem, which corresponds to the case of a nonnegative temperature. The one-phase problem (I) is
recovered in Section 6.7 from the two-phase problem (II), when the maximal monotone graph for (II) (see
Figure 2) degenerates to that of the one-phase problem (I).

6.2 Existence of the Generalised Enthalpy Solution η

Let L̃ = L̃sA be the duality mapping defined by

〈L̃u, v〉 =

ˆ
Rd
ADsu ·Dsv =: [u, v]A = (U, V ), (6.14)
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from Hs
0(Ω) to H−s(Ω) with Hs

0(Ω) identified to a subspace of L2(Ω). Here 〈·, ·〉 is the duality between
H−s(Ω) with Hs

0(Ω), with u, v extended by zero outside Ω. The equality of the inner product in H−s(Ω)
given by (·, ·), with the topology endowed from L̃, with the equivalent inner product [·, ·]A in Hs

0(Ω) holds
by Riesz representation theorem, with

U = L̃u and V = L̃v respectively. (6.15)

This is possible by assumption (6.3) and the Poincaré inequality, as long as Ω is bounded.
In this section, we consider the two-phase problem with

γ is Lipschitz with Lipschitz constant Cγ such that γ(0) = 0 and lim inf
|r|→+∞

γ(r)

r
> 0. (6.16)

We prove an existence theorem for the enthalpy η similar to the classical case, as given in [85] and [84] (See
also [239] for further developments). To do so, we need a result of Attouch-Damlamian [22]–[23] in the case
where the Hilbert space H is H−s(Ω).

Proposition 6.2. [Theorem 1 of [22], and [23]] Let (ϕt)t∈[0,T ] be a family of lower semi-continuous convex
functions on a Hilbert space H. Assume that there exists a function a belonging to BV (0, T ) such that the
following holds:

ϕt(V ) ≤ ϕτ (V ) + |a(t)− a(τ)|(ϕτ (V ) + |V |+ 1), ∀0 ≤ τ ≤ t ≤ T, ∀V ∈ H. (6.17)

Then, for U0 ∈ D(ϕ0) = {U0 ∈ H : ϕ0(U0) < +∞} and F ∈ L2(0, T ;H), there is a unique solution
U ∈ H1(0, T ;H) satisfying

dU

dt
+ ∂ϕt(U) = F, U(0) = U0. (6.18)

Furthermore, the following estimates hold independent of ϕ:

‖U‖C([0,T ];H) ≤ C1

(
‖U0‖H ,‖F‖L1(0,T ;H) ,‖a‖BV

)
, (6.19)∥∥∥∥dUdt

∥∥∥∥
L2(0,T ;H)

≤ C2

(
‖U0‖H , ϕ0(U0),‖F‖L2(0,T ;H) ,‖a‖BV

)
, (6.20)

∥∥ϕt(U)
∥∥
L∞(0,T )

≤ C3

(
‖U0‖H , ϕ0(U0),‖F‖L2(0,T ;H) ,‖a‖BV

)
. (6.21)

Making use of this proposition, we can show the following existence result.

Theorem 6.3. Let f ∈ L2(0, T ;H−s(Ω)) and g̃ ∈ BV (0, T ;L2(Ω)) ∩ L2(0, T ;Hs(Rd)), and define g as in
(6.7), so g satisfies the same regularity as g̃ (see Section 3.2). Assume η0 ∈ L2(Ω) and γ satisfies (6.16).
Then there exists a unique generalised enthalpy solution η to the problem (6.11) with initial condition (6.9),
such that

η ∈ L∞(0, T ;L2(Ω)) ∩H1(0, T ;H−s(Ω)) (6.22)

and it satisfies

‖η‖C([0,T ];H−s(Ω)) ≤ C1

(
‖f‖L1(0,T ;H−s(Ω)) ,‖η0‖H−s(Ω) ,‖g‖BV (0,T ;L2(Ω))

)
, (6.23)∥∥∥∥dηdt

∥∥∥∥
L2(0,T ;H−s(Ω))

≤ C2

(
‖f‖L2(0,T ;H−s(Ω)) ,‖η0‖L2(Ω) ,‖g‖BV (0,T ;L2(Ω))

)
, (6.24)

‖η‖L∞(0,T ;L2(Ω)) ≤ C4

(
‖f‖L2(0,T ;H−s(Ω)) ,‖η0‖L2(Ω) ,‖g‖BV (0,T ;L2(Ω))

)
, (6.25)

where C1, C2 are exactly the constants from (6.19)–(6.20), while C4 depends on (6.21) and (6.17). Further-
more, the corresponding weak temperature solution ϑ = γ(η) satisfies

ϑ− g ∈ L2(0, T ;Hs
0(Ω)) (6.26)

and, in addition, it solves (6.13) when f ∈ L2(0, T ;L2(Ω)).
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Proof. We apply Proposition 6.2 with |a(t)− a(τ)| =
∥∥g(t)− g(τ)

∥∥
L2(Ω)

to the following functions φt on the

Hilbert space H−s(Ω) given for each t ∈ [0, T ] by

φt(W ) =

{´
Ω

(j(W )− g(t)W ) dx for W ∈ L2(Ω);

+∞ for W ∈ H−s(Ω)\L2(Ω)
(6.27)

where j is the primitive of γ such that j(0) = 0. Then, j is quadratic and the domain D(φt) of φt is given
by

D(φt) = {W ∈ H−s(Ω) : φt(W ) <∞} = L2(Ω) (6.28)

thanks to the Cauchy-Schwarz inequality and making use of the fact that W lies in L2(Ω). It is well-known
(see for instance, Theorem 17 of [52]) that φt is lower semi-continuous, convex, proper and coercive on
H−s(Ω). Furthermore, there exist constants δ and c such that

δ‖W‖2L2(Ω) ≤ φτ (W ) + c|Ω|+
∥∥g(τ)

∥∥
L2(Ω)

‖W‖L2(Ω) . (6.29)

Consequently, by classical results of subdifferentials (see for instance, [52] or [144]), the subdifferential ∂φt
is a maximal monotone operator of H−s(Ω).

In fact, the subdifferential ∂φt is characterised as follows:

V ∈ ∂φt(U) in H−s(Ω) if and only if U ∈ L2(Ω) and L̃−1(V ) + g = γ(U) a.e. in Ω, (6.30)

and we recall from (6.27) that
γ(U)− g = L̃−1(V ) = v ∈ Hs

0(Ω),

representing the Dirichlet condition in weak form in the trace sense for s > 1
2 and more generally γ(U) = g

in Ωc. Indeed, the characterisation of the subdifferential in terms of the convex conjugate functions involving
(U, V ) for U, V ∈ H−s(Ω) reads as:

V ∈ ∂φt(U) ⇐⇒ φt(U) + φ∗t (V ) = (U, V ) (6.31)

where φ∗t (V ) = supW {(W,V )− φt(W )}. Then for a given V ∈ H−s(Ω),

φ∗t (V ) = sup
W∈L2(Ω)

{〈W, L̃−1V 〉 − φt(W )}

= sup
W∈L2(Ω)

{
〈W, L̃−1V 〉 −

ˆ
Ω

j(W )− gW dx

}
= sup
W∈L2(Ω)

{ˆ
Ω

W (L̃−1V + g)−
ˆ

Ω

j(W ) dx

}
.

Set J(W ) =
´

Ω
j(W ). Recognising the evaluation at the point L̃−1V +g with the convex conjugate on L2(Ω)

of j(W ), by well-known results (see for example Lemma 1 of [53], or [189]), we can associate the convex
conjugate J∗(U) with

´
Ω
j∗(U), so we have

φ∗t (V ) =

ˆ
Ω

j∗(L̃−1V + g) dx,

where j∗ is the convex conjugate of j on R. From (6.31), this means that
ˆ

Ω

j(U)− gU + j∗(L̃−1V + g) = 〈L̃−1V,U〉,

or ˆ
Ω

j(U) + j∗(L̃−1V + g)− U(L̃−1V + g) = 0. (6.32)

Recall (see for example, [21]) that for dual convex functions j and j∗,

j(a) + j∗(b) ≥ ab

78



for all numbers a, b. Therefore, the integrand in (6.32) must be non-negative, and so it is almost everywhere
zero, i.e.

j(U) + j∗(L̃−1V + g)− U(L̃−1V + g) = 0.

This means that the points U and L̃−1V + g are conjugated, i.e. L̃−1V + g ∈ ∂j(U). By definition of j as
the primitive of γ, we have L̃−1V + g = ∂j(U) = γ(U).

Now, we are ready to apply Proposition 6.2 in the space H−s(Ω) with the convex functions φt. For
W ∈ D(φτ ) ∩ D(φt) = D(φ0) since the domain D(φt) as given in (6.28) is independent of t, we have, by
(6.27),

φt(W )− φτ (W ) = −
ˆ

Ω

W (g(t)− g(τ)),

so, by the Cauchy-Schwarz inequality,

|φt(W )− φτ (W )| ≤
∥∥g(t)− g(τ)

∥∥
L2(Ω)

‖W‖L2(Ω) . (6.33)

Also, from (6.29), we have that
‖W‖L2(Ω) ≤ C5(1 + φτ (W )), (6.34)

where C5 depends only on δ, |Ω| and ‖g‖BV (0,T ;L2(Ω)). Therefore, with the given regularity of g inherited

from g̃, (6.17) is satisfied, hence we can apply Proposition 6.2 to solve the Cauchy problem

dη

dt
+ ∂φt(η(t)) 3 f(t) for almost all t ∈ [0, T ], η(0) = η0 in H−s(Ω) (6.35)

with η0 ∈ D(φ0), i.e. η0 ∈ L2(Ω) and j(η0) ∈ L1(Ω), obtaining a unique

η ∈ H1(0, T ;H−s(Ω)).

Moreover, the estimates in Proposition 6.2 and (6.34) give

η ∈ L∞(0, T ;L2(Ω)).

Also, setting ϑ = γ(η) gives
L̃(ϑ− g) ∈ L2(0, T ;H−s(Ω)),

so that
ϑ− g ∈ L2(0, T ;Hs

0(Ω)),

and by (6.30),
∂φt(η(t)) = L̃(γ(η)− g).

Therefore, multiplying (6.35) by a test function ξ ∈ L2(0, T ;Hs
0(Ω)), since η ∈ H1(0, T ;H−s(Ω)), we have〈

dη

dt
, ξ

〉
+ 〈L̃(γ(η)− g), ξ〉 = 〈f, ξ〉,

which is (6.11).
Finally, for ξ ∈ ΞsT , we can integrate in time by parts and obtain (6.13).

Remark 6.4. To apply Proposition 6.2, we see from (6.33) that it is sufficient to require g ∈ BV (0, T ;L2(Ω)),
as in [85]. However, we require additionally that g ∈ L2(0, T ;Hs(Rd)) so that (6.11)–(6.13) is well-defined.

Remark 6.5. We observe that the general result of the above proposition and theorem applies to general
maximal monotone operators of subdifferential type with different functions γ, and so, besides two-phase
Stefan-type problems, it applies also to other models including the porous medium equation. In fact, different
assumptions on γ can be used (see page 12 of [84] for more details), generalising the case of the assumption
(6.16).
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Remark 6.6. Considering the above proposition in the case where the Hilbert space H is H−s(Ω), the
solution to the Cauchy problem (6.18) in H−s(Ω) with the convex function φt, with domain L2(Ω), is ob-
tained by considering the approximated problem with the convex function given by its Yosida approximation
φt,λ(V ) = 1

λ (Id + (Id + λ∂φt)
−1)V . Since the estimate (6.17) carries over to φt,λ, we can apply the Gron-

wall’s inequality to obtain the estimates (6.19) and (6.21) for the solutions to the approximated problem
as in Part 3 of the proof of Theorem 1 in [22]. Next, we make use of the absolute continuity of the map
t 7→ φt,λ(V ) to apply to the (6.18) to obtain the estimate (6.20) from the time derivative. Passing to the
limit for the approximated problems give the corresponding constants C1, C2 and C3 for the problem (6.18)
in H−s(Ω).

Therefore, for σ ≤ s ≤ 1, recalling that we have the continuity of the inclusions H−σ(Ω) ⊂ H−s(Ω) ⊂
H−1(Ω) as a consequence of Lemma 6.19 below, we can bound the H−s(Ω) norms with the H−σ(Ω) norms,
thereby obtaining the solution to (6.18) for all s, σ ≤ s ≤ 1 with the corresponding estimates (6.19)–(6.21)
for the constants C1, C2 and C3 depending only on σ and independent of s.

Since the constant C4 is obtained from (6.21) and (6.34), similarly, we can once again consider the
problem (6.11) in H−s(Ω) for each s, σ ≤ s ≤ 1, and such that the constant C4 in (6.25) may be chosen
depending only on σ and not on s.

Note that we are unable to obtain strict T-monotonicity, since we do not have such a result for the
fractional operator L̃sA (Compare with Section 2.3 for the nonlocal operator La). However, we have the
following continuous dependence result (see also Lemma 3.2 of [86]).

Proposition 6.7. Let η and η̂ denote two generalised enthalpy solutions of the fractional Stefan-type problem
(6.11) corresponding to (f, g, η0) and (f̂ , g, η̂0) respectively, where f, f̂ , g, and η0, η̂0 are as in the assumptions
of Theorem 6.3. Then, for any 0 ≤ t ≤ T :∥∥η(t)− η̂(t)

∥∥
H−s(Ω)

≤‖η0 − η̂0‖H−s(Ω) +

ˆ t

0

∥∥∥f(τ)− f̂(τ)
∥∥∥
H−s(Ω)

dτ (6.36)

and furthermore∥∥∥ϑ− ϑ̂∥∥∥
L2(0,T ;L2(Ω))

≤
√
Cγ‖η0 − η̂0‖H−s(Ω) +

√
3Cγ

2

∥∥∥f − f̂∥∥∥
L1(0,T ;H−s(Ω))

. (6.37)

Proof. Writing ϑ = γ(η) and ϑ̂ = γ(η̂), we have in H−s(Ω),

dη

dt
(τ) = −L̃sA(ϑ(τ)− g(τ)) + f(τ) (6.38)

and
dη̂

dt
(τ) = −L̃sA(ϑ̂(τ)− g(τ)) + f̂(τ) (6.39)

for a.e. τ ∈ [0, T ]. Taking the difference of these two equations and multiplying by η − η̂, we have

d

dτ

∥∥η(τ)− η̂(τ)
∥∥2

H−s(Ω)
= 2

(
η′(τ)− η̂′(τ), η(τ)− η̂(τ)

)
= − 2

(
L̃sA(ϑ(τ)− ϑ̂(τ)− g(τ) + g(τ)), η(τ)− η̂(τ)

)
+ 2

(
f(τ)− f̂(τ), η(τ)− η̂(τ)

)
= − 2

(
L̃sA(ϑ(τ)− ϑ̂(τ)), η(τ)− η̂(τ)

)
+ 2

(
f(τ)− f̂(τ), η(τ)− η̂(τ)

)
for a.e. τ ∈ [0, T ]. Recalling by Theorem 6.3 that ϑ(τ) − ϑ̂(τ) ∈ Hs

0(Ω) ⊂ L2(Ω) and η(τ) − η̂(τ) ∈ L2(Ω)
for a.e. τ , observe that the Lipschitz property of γ give(

L̃sA(ϑ(τ)− ϑ̂(τ)), η(τ)− η̂(τ)
)

=

ˆ
Ω

(
ϑ(τ)− ϑ̂(τ)

) (
η(τ)− η̂(τ))

)
≥ 1

Cγ

∥∥∥ϑ(τ)− ϑ̂(τ)
∥∥∥2

L2(Ω)

by (6.14) and by identifying the duality 〈·, ·〉 with the L2(Ω)-inner product in the framework of the Gelfand
triple Hs

0(Ω) ↪→ L2(Ω) ↪→ H−s(Ω). Therefore, we deduce that

d

dτ

∥∥η(τ)− η̂(τ)
∥∥2

H−s(Ω)
+

2

Cγ

∥∥∥ϑ(τ)− ϑ̂(τ)
∥∥∥2

L2(Ω)
≤ 2

(
f(τ)− f̂(τ), η(τ)− η̂(τ)

)
(6.40)
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for a.e. τ ∈ [0, T ]. Integrating both sides of (6.40) over [0, t] ⊂ [0, T ] for any T > 0 gives∥∥η(t)− η̂(t)
∥∥2

H−s(Ω)
+

2

Cγ

ˆ t

0

∥∥∥ϑ(τ)− ϑ̂(τ)
∥∥∥2

L2(Ω)
dτ

≤‖η0 − η̂0‖2H−s(Ω) + 2

ˆ t

0

(
f(τ)− f̂(τ), η(τ)− η̂(τ)

)
dτ

≤‖η0 − η̂0‖2H−s(Ω) + 2

ˆ t

0

∥∥∥f(τ)− f̂(τ)
∥∥∥
H−s(Ω)

∥∥η(τ)− η̂(τ)
∥∥
H−s(Ω)

dτ

(6.41)

by the Cauchy-Schwarz inequality. Finally, recalling (6.23), we apply these estimates and a Gronwall-type
inequality (see Lemma 6.8 below) to obtain the result (6.36).

Furthermore, applying the Cauchy-Schwarz inequality again, we obtain, applying (6.36) to (6.41),

2

Cγ

ˆ T

0

∥∥∥ϑ(t)− ϑ̂(t)
∥∥∥2

L2(Ω)
dt ≤‖η0 − η̂0‖2H−s(Ω) + 2‖η0 − η̂0‖H−s(Ω)

ˆ T

0

∥∥∥f(t)− f̂(t)
∥∥∥
H−s(Ω)

dt

+ 2

ˆ T

0

∥∥∥f(t)− f̂(t)
∥∥∥
H−s(Ω)

(ˆ t

0

∥∥∥f(τ)− f̂(τ)
∥∥∥
H−s(Ω)

dτ

)
dt

≤‖η0 − η̂0‖2H−s(Ω) + 2‖η0 − η̂0‖H−s(Ω)

∥∥∥f − f̂∥∥∥
L1(0,T ;H−s(Ω))

+ 2

ˆ T

0

∥∥∥f(t)− f̂(t)
∥∥∥
H−s(Ω)

(∥∥∥f − f̂∥∥∥
L1(0,T ;H−s(Ω))

)
dt

≤ 2‖η0 − η̂0‖2H−s(Ω) + 3
∥∥∥f − f̂∥∥∥2

L1(0,T ;H−s(Ω))

which gives (6.37).

Lemma 6.8. Let F ∈ L1(0, T ) and y ∈ L∞(0, T ) be non-negative functions and C > 0 a constant such that

y2(t) ≤
ˆ t

0

F (τ)y(τ) dτ + C for t ∈]0, T [.

Then we have

y(t) ≤ 1

2

ˆ t

0

F (τ) dτ +
√
C for t ∈ [0, T ].

Proof. Let x(t) =
´ t

0
F (τ)y(τ) dτ + C. Then x′ = Fy ≤ F

√
x. Integrating in time of the relation d

dt (
√
x) =

x′

2
√
x
≤ F

2 , we have the result.

Remark 6.9. In general, for γ 6≡ γ̂, g 6= ĝ and an arbitrary time interval 0 ≤ t1 < t2 ≤ T , with a similar
argument we have the fractional version of the continuous dependence property corresponding to Lemma 3.2
of [86] for the classical case s = 1:

∥∥η(t2)− η̂(t2)
∥∥2

H−s(Ω)
+

2

Cγ

ˆ t2

t1

∥∥ϑ(τ)− γ(η̂)(τ)
∥∥2

L2(Ω)
dτ + 2

ˆ t2

t1

〈γ(η̂)(τ)− ϑ̂(τ), η(τ)− η̂(τ)〉 dτ

≤
∥∥η(t1)− η̂(t1)

∥∥2

H−s(Ω)
+ 2

ˆ t2

t1

(
f(τ)− f̂(τ), η(τ)− η̂(τ)

)
dτ + 2

ˆ t2

t1

ˆ
Ω

(g(τ)− ĝ(τ))(η(τ)− η̂(τ)) dx dτ.

(6.42)

As a consequence, we immediately see that if f = f̂ , g = ĝ and γ = γ̂, then∥∥η(t2)− η̂(t2)
∥∥2

H−s(Ω)
+

2

Cγ

ˆ t2

t1

∥∥∥ϑ(τ)− ϑ̂(τ)
∥∥∥2

L2(Ω)
dτ ≤

∥∥η(t1)− η̂(t1)
∥∥2

H−s(Ω)

for any 0 ≤ t1 ≤ t2 ≤ T . Furthermore, in this case, the map t 7→
∥∥η(t)− η̂(t)

∥∥
H−s(Ω)

is non-increasing in

t ∈ [0, T ] for the same given data.
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Also as a consequence of (6.42) with γ = γ̂ and the estimates leading to (6.22) of Theorem 6.3, we have
the following corollary:

Corollary 6.10. The solution of the variational Stefan-type problem (6.11) on the interval [0, T ] de-
pends continuously on f , g and η0 in the following sense: if a sequence fm ∈ L2(0, T ;H−s(Ω)), gm ∈
BV (0, T ;L2(Ω)) ∩ L2(0, T ;Hs(Rd)) and η0,m ∈ L2(Ω), is such that the gm’s and the η0,m’s are uniformly
bounded in those spaces and fm → f in L2(0, T ;H−s(Ω)) and gm → g in L2(0, T ;L2(Ω)) and η0,m → η0 in
H−s(Ω), then the solution ηm converges to η in L2(0, T ;H−s(Ω)) and ϑm = γ(ηm) converges to ϑ = γ(η) in
L2(0, T ;L2(Ω)).

6.3 Regularity of the Weak Temperature Solution ϑ

If we further assume that g has two time derivatives, by the Lipschitz continuity of γ, we can achieve higher
regularity of the weak temperature solution ϑ = γ(η) in (6.13). The proof makes use of the Faedo-Galerkin
method, and follows closely Chapter 6 of [84], and we include it here for completeness.

Let (Fn)n∈N be an increasing set of finite dimensional subspaces of Hs
0(Ω), such that their union is dense

in Hs
0(Ω), generated by the eigenvectors of the operator L̃−1|L2(Ω). This is possible since the inverse of L̃ is

compact in L2(Ω), by the compactness of the injection Hs
0(Ω) ↪→ L2(Ω). We denote F ∗n = L̃(Fn) ⊂ H−s(Ω)

and set
φt,n = φt + IF∗n in H−s(Ω),

where IF∗n is the indicator function of F ∗n , i.e. IF∗n = 0 in F ∗n , IF∗n = +∞ elsewhere.
We first recall a result of Attouch (Theorem 1.10 of [20]), which relates the Mosco convergence of the

convex functionals and the convergence of the solutions of the Cauchy problem in the space H = H−s(Ω).

Proposition 6.11. Let H be a real Hilbert space with a scalar product and associated norm. Let ϕn
M−→ ϕ

be a set of lower semi-continuous convex functions in L2(0, T ;H) that converges in the Mosco sense in H.
Denote by ηn the solutions of the evolution equations

dηn
dt

+ ∂ϕn(ηn) 3 fn, ηn(0) = η0,n (6.43)

where fn ∈ L2(0, T ;H), η0,n ∈ D(ϕn). Suppose that η0,n → η0 in H, fn → f in L2(0, T ;H). Assume also

that dηn
dt is bounded in L2(0, T ;H). Then there exists a limit η ∈ H1(0, T ;H), such that ηn ⇀ η weakly in

H1(0, T ;H), where η is the solution of

dη

dt
+ ∂ϕ(η) 3 f, η(0) = η0. (6.44)

With this proposition, our approach would be to determine the subdifferental of φt,n and show that

they converge to φt in the sense of Mosco. We recall that ϕn
M−→ ϕ if for every x ∈ D(ϕ), there exists an

approximating sequence of elements xn ∈ D(ϕn), converging strongly to x, such that lim supn→∞ ϕn(xn) ≤
ϕ(x), and for any subsequence ϕnk of ϕn such that xk ⇀ x in H, we have lim infk→∞ ϕnk(xk) ≥ ϕ(x).
Then applying Proposition 6.11 to our Faedo-Galerkin approximation, and with the additional estimates we
obtain from Proposition 6.2, we can pass to the limit to get the additional regularity to the solution for the
limit problem.

For simplicity, we drop the parameter t and consider t to be fixed in ]0, T [, and we denote φt,n as φn and
φt = φ. Denote i to be the compact injection of Hs

0(Ω) into L2(Ω) and take En = i(Fn) by considering Fn
as a subspace of Hs

0(Ω). It is clear that i−1 is an isomorphism between En and Fn, with norm depending
on n.

Proposition 6.12. φn
M−→ φ in H−s(Ω).

Proof. Denote i∗ to be the injection map from L2(Ω) to H−s(Ω). Then i∗(En) = i∗ ◦ i(Fn) = F ∗n . Indeed,
for an eigenvector u of L̃|L2(Ω) corresponding to an eigenvalue µ, we have, by definition, L̃u = µi∗ ◦ i(u) in
H−s(Ω), hence the result.
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For i∗(U) ∈ D(φ), we define i∗(Un), where Un = PEnU is the projection of U into En in L2(Ω). Since

∪En
L2

= L2(Ω) by construction, so Un → U in L2(Ω), and therefore i∗(Un) = PF∗n i
∗(U)→ i∗(U) in H−s(Ω).

In addition, since γ satisfies the growth condition (6.16) at ±∞, its primitive j is quadratic at ±∞ (so that
j(r)/|r|2 and its inverse remain bounded as r → ±∞). Therefore, by the dominated convergence theorem,
the map U 7→

´
Ω
j(U) is continuous in L2(Ω), and since i∗(Un) ∈ F ∗n , so φn(i∗(Un)) = φ(i∗(Un))→ φ(i∗(U)).

On the other hand, the sequence φn is decreasing (since Fn is increasing), so we conclude the Mosco
convergence of φn to φ given that φ is known to be lower semi-continuous.

Next, we want to obtain a solution of the approximate Cauchy problem for ηn, making use of Proposition
6.2 as in the proof of Theorem 6.3.

Proposition 6.13. Setting V = L̃v,

V ∈ ∂φn(U) in H−s(Ω) if and only if U ∈ D(φ)∩F ∗n , γ(U)−g ∈ L2(Ω) and i(v)+g−γ(U) ⊥ En in L2(Ω).

Proof. Denote the inf-convolution of two convex functions by the composition operator∇. Then by definition,
we know that the convex conjugate φ∗n = (φ∗∇I∗F∗n )∗∗, where the double asterisk ∗∗ stands for the regularised
l.s.c. function of ψn = φ∗∇I∗F∗n .

Since F ∗n is a subspace of H−s(Ω), we have I∗F∗n = I(F∗n)⊥ , where the orthogonality is inherited from the

duality between Hs
0(Ω) and H−s(Ω). Since L̃(Fn) = F ∗n , (F ∗n)⊥ is also the orthogonal of Fn in Hs

0(Ω). We
therefore have

ψn(w) = φ∗∇I∗F∗n (w) = φ∗∇I(F∗n)⊥(w) = inf
PFn (z−w)=0

ˆ
Ω

j∗(g + z).

Since γ is globally Lipschitz, β satisfies the growth assumption (6.16) at infinity, so the function j∗ is quadratic
at infinity and therefore z 7→

´
Ω
j∗(z) is continuous in L2(Ω). Furthermore, the function z 7→

´
Ω
j∗(z) is

coercive in L2(Ω).
Henceforth, we deduce that there exists z = z(v) in L2(Ω), not necessarily unique, such that ψn(v) =´

Ω
j∗(g + z(v)) with z(v) − i(v) in L2(Ω), such that z(v) − i(v) ⊥ En in L2(Ω). Indeed, z − v ⊥ Fn in

Hs
0(Ω) so 〈L̃ξ, z − v〉 = 0 for all ξ in the basis of Fn. Hence, taking a vector ξ in that basis, we have
L̃ξ = i∗(L̃ξ) = µi∗ ◦ i(ξ), so 0 =

´
Ω
i(ξ)i(z − v) which means that i(z)− i(v) is orthogonal to En in L2(Ω).

Since z(v) is the weak limit in L2(Ω), considering a minimising sequence of such i(z), we have the result.
Futhermore, using the coercivity of the integral of j∗ in L2(Ω) again, we see that ψn is lower semi-

continuous in Hs
0(Ω), so ψn = φ∗n.

Therefore, V ∈ ∂φn(U) if and only if i∗(U) ∈ F ∗n , and there exists z(v) ∈ L2(Ω) with z(v) − i(v) ∈ E⊥n
and, as in (6.32), ˆ

Ω

j(U) + j∗(g + z) = 〈U, g + z〉.

But since U ∈ D(φ) ∩ F ∗n ⊂ L2(Ω), we can rewrite this as

ˆ
Ω

j(U) + j∗(g + z)− U(g + z) = 0,

so, as in the proof of Theorem 6.3, we have that the points U and g+ z are conjugated by j, thus z(v) + g =
∂j(U) = γ(U) a.e. in Ω. The reverse is also clearly true.

Now, setting fn = PEnf for f ∈ L2(0, T ;L2(Ω)) and for η0 ∈ L2(Ω), we apply the Proposition 6.2 for
(φt,n)t∈[0,T ] to solve

dηn
dt

+ ∂φt,n(ηn) 3 i∗(fn), ηn(0) = η0,n, (6.45)

where η0,n is constructed as in the proof of Proposition 6.12 such that η0,n ∈ D(φ0,n) with η0,n → η0 ∈ D(φ0)

strongly in H−s(Ω) and φ0,n(η0,n)→ φ0(η0). Then by (6.20), dηndt is bounded in L2(0, T ;H−s(Ω)). Moreover,
as in Proposition 6.12, for all U ∈ L2(0, T ;H−s(Ω)), we have

ϕn(U) :=

ˆ T

0

φt,n(U(t)) dt
M−→ ϕ(U) :=

ˆ T

0

φt(U(t)) dt
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in the sense of Mosco.
Therefore, applying Proposition 6.11, we conclude that ηn converges weakly in H1(0, T ;H−s(Ω)) to the

solution η of
dη

dt
+ ∂φt(η) 3 i∗(f), η(0) = η0.

Having obtained the approximation ηn ⇀ η for the enthalpy η, we want to pass to the limit in the
temperatures ϑn = γ(ηn) → ϑ = γ(η). To do so, we require some estimates on the derivative of the
temperatures.

Proposition 6.14. Suppose f ∈ L2(0, T ;L2(Ω)) and g̃ ∈ W 2,1(0, T ;L2(Rd)) ∩ L∞(0, T ;Hs(Rd)). Assume
η0 ∈ L2(Ω) and, setting ϑ(0) = γ(η0), assume ϑ(0) − g(0) ∈ Hs

0(Ω). Denote by ηn ∈ H1(0, T ;F ∗n), and
η̃n ∈ H1(0, T ;En) such that ηn = i∗(η̃n), the generalised solution associated to the approximate Cauchy
problem (6.45), corresponding to the Faedo-Galerkin method as described above. Then, the integral

ˆ T

0

ˆ
Ω

∣∣∣∣∂γ(η̃n)

∂t

∣∣∣∣2 ≤ C6,
∥∥PFn(γ(η̃n)− g)

∥∥
L∞(0,T ;Hs0 (Ω))

≤ C7 (6.46)

is uniformly bounded in n, with the bounds C6, C7 dependent on the Lipschitz constant Cγ and the given
data f, g, η0.

Proof. Since ηn ∈ H1(0, T ;F ∗n), there exists η̃n ∈ H1(0, T ;En) such that ηn = i∗(η̃n), vn = γ(η̃n)− g, and,
by Proposition 6.13 applied to η̃n, satisfies

∂ηn
∂t

+ L̃vn = i∗(fn), vn ∈ L2(0, T ;Hs
0(Ω)) with i(vn) + g − γ(η̃n) ⊥ En in L2(Ω). (6.47)

Since γ is Lipschitz, we have γ(η̃n) ∈ H1(0, T ;L2(Ω)) and γ(η̃n)− g ∈ H1(0, T ;L2(Ω)). Let hn = PFnvn
and h̃n = PEn(γ(η̃n)− g). Then

hn ∈ H1(0, T ;Fn) and h̃n ∈ H1(0, T ;En). (6.48)

Indeed, we have γ(η̃n)− g ∈ H1(0, T ;L2(Ω)), so h̃n = PEn(γ(η̃n)− g) ∈ H1(0, T ;En). Since h̃n = PEni(vn),
so by the choice of Fn, we have PEn ◦ i = i ◦ PFn , and we deduce that i(hn) = h̃n. Therefore, since i gives
an isomorphism between Fn and En, we obtain the properties in (6.48).

Making use of these properties, we can therefore multiply (6.47) by ∂hn
∂t ∈ L

2(0, T ;Fn) to obtain

ˆ
Ω

∂η̃n
∂t

[
i

(
∂hn
∂t

)]
+

[
vn,

∂hn
∂t

]
A

=

ˆ
Ω

fn

[
i

(
∂hn
∂t

)]
(6.49)

by (6.15). Now,[
∂hn
∂t

, vn

]
A

=

[
∂hn
∂t

,PFnvn
]
A

=

[
∂hn
∂t

, hn

]
A

=

ˆ
Rd
ADs ∂hn

∂t
·Dshn =

1

2

∂

∂t

ˆ
Rd
ADshn ·Dshn,

and from fn = PEnf , we obtain

ˆ
Ω

∂η̃n
∂t

∂h̃n
∂t

+
1

2

∂

∂t

ˆ
Rd
ADshn ·Dshn =

ˆ
Ω

fn
∂h̃n
∂t

. (6.50)

Now, recalling the definition of h̃n, we observe that

ˆ
Ω

(
∂η̃n
∂t
− fn

)
∂h̃n
∂t

=

ˆ
Ω

(
∂η̃n
∂t
− fn

)
∂

∂t
PEn(γ(η̃n)− g) =

ˆ
Ω

(
∂η̃n
∂t
− fn

)
PEn

∂

∂t
(γ(η̃n)− g),

so since ∂η̃n
∂t − fn ⊥ L

2(Ω)\En, we have

ˆ
Ω

(
∂η̃n
∂t
− fn

)
∂

∂t
(γ(η̃n)− g) +

1

2

∂

∂t

ˆ
Rd
ADshn ·Dshn = 0. (6.51)
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Integrating this over [0, t] for t ≤ T , we obtain, by the coercivity of A in (6.3) and integrating by parts in
time,

ˆ t

0

ˆ
Ω

∂η̃n
∂t

∂γ(η̃n)

∂t
+

1

2
a∗
∥∥hn(t)

∥∥2

Hs0 (Ω)

≤ 1

2
a∗
∥∥hn(0)

∥∥2

Hs0 (Ω)
+

ˆ t

0

ˆ
Ω

fn
∂γ(η̃n)

∂t
+

ˆ t

0

ˆ
Ω

∂η̃n
∂t

∂g

∂t
−
ˆ t

0

ˆ
Ω

fn
∂g

∂t

=
1

2
a∗
∥∥hn(0)

∥∥2

Hs0 (Ω)
+

ˆ t

0

ˆ
Ω

fn
∂γ(η̃n)

∂t
−
ˆ t

0

ˆ
Ω

η̃n
∂2g

∂t2

+

ˆ
Ω

η̃n(t)
∂g

∂t
(t)−

ˆ
Ω

η̃n(0)
∂g

∂t
(0)−

ˆ t

0

ˆ
Ω

fn
∂g

∂t
.

(6.52)

Now, we know by (6.21) that φt,n(ηn(t)) is bounded independent of n and t, so ‖η̃n‖L∞(0,T ;L2(Ω)) is

bounded independent of n (see also (6.23)). Then, by the Cea-type lemma (see, for instance, Proposition
2.5 of [15]) given by

‖PFnw‖
2
Hs0 (Ω) ≤

a∗

a∗
‖w‖2Hs0 (Ω) ∀w ∈ Hs

0(Ω),

we have, by the compatibility of the initial condition giving hn(0) = PFn(γ(η̃n(0))−g(0)) = PFn(ϑ(0)−g(0)),

ˆ t

0

ˆ
Ω

∂η̃n
∂t

∂γ(η̃n)

∂t
+

1

2
a∗
∥∥hn(t)

∥∥2

Hs0 (Ω)

≤ 1

2

a∗2

a∗

∥∥ϑ(0)− g(0)
∥∥2

Hs0 (Ω)
+

ˆ t

0

ˆ
Ω

fn
∂γ(η̃n)

∂t
−
ˆ t

0

ˆ
Ω

η̃n
∂2g

∂t2

+

ˆ
Ω

η̃n(t)
∂g

∂t
(t)−

ˆ
Ω

η̃n(0)
∂g

∂t
(0)−

ˆ t

0

ˆ
Ω

fn
∂g

∂t
. (6.53)

Now, letting Cγ be the Lipschitz constant of γ, we have

∂η̃n
∂t

∂γ(η̃n)

∂t
≥ 1

Cγ

∣∣∣∣∂γ(η̃n)

∂t

∣∣∣∣2 a.e. QT . (6.54)

Also, observe the boundedness of η̃n in L∞(0, T ;L2(Ω)), since ηn is obtained as a solution to the Faedo-
Galerkin finite dimensional approximated problem (6.45) and therefore also satisfies (6.25). Therefore,

applying the Cauchy-Schwarz inequality to the term
´ t

0

´
Ω
fn

∂γ(η̃n)
∂t and making use of the assumption ϑ(0)−

g(0) ∈ Hs
0(Ω) gives the first uniform bound

´ T
0

´
Ω

∣∣∣∂γ(η̃n)
∂t

∣∣∣2 ≤ C6.

Using again (6.53), we can easily take the supremum over all time to obtain the second uniform bound∥∥PFn(γ(η̃n)− g)
∥∥
L∞(0,T ;Hs0 (Ω))

=‖hn‖L∞(0,T ;Hs0 (Ω)) ≤ C7.

Remark 6.15. For fixed σ > 0 and s such that σ ≤ s ≤ 1, similarly to Remark 6.6, we observe that
η̃n ∈ L∞(0, T ;L2(Ω)), and η̃n can be bounded for each s by a constant depending on σ but independent of
s, by the continuity of the eigenfunctions (in Section 3.3), and depending explicity on T and γ. Similarly,
by Section 3.3, the ηn’s are bounded independent of s ≥ σ in H1(0, T ;F ∗n). This allows us to consider the
convergence of the variational problem as s varies.

In addition, when we have a sequence of Lipschitz functions γn, we can also obtain (6.54) by considering
a Lipschitz constant Cγ given by the supremum of all the Lipschitz constants Cγn .

Now, we can finally proceed to show the existence of more regular solutions to the variational problem
(6.13). Indeed, we have the following result:

Theorem 6.16. Let f ∈ L2(0, T ;L2(Ω)) and g̃ ∈ W 2,1(0, T ;L2(Rd)) ∩ L∞(0, T ;Hs(Rd)), and define g as
in (6.7) with the same regularity (see Section 3.2). Assume η0 ∈ L2(Ω), and setting ϑ(0) = γ(η0) assume
ϑ(0) − g(0) ∈ Hs

0(Ω). Then there exists a unique weak temperature solution ϑ to the variational problem
(6.11)–(6.13), such that

ϑ ∈ L∞(0, T ;Hs(Rd)) ∩H1(0, T ;L2(Ω)). (6.55)
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Proof. From Proposition 6.14, hn is bounded in L∞(0, T ;Hs
0(Ω)). Furthermore, if we recall the definition of

h̃n as the projection onto En, we have∥∥∥∥∥∂h̃n∂t
∥∥∥∥∥
L2(Ω)

≤
∥∥∥∥ ∂∂t (γ(η̃n)− g)

∥∥∥∥
L2(Ω)

,

so h̃n is bounded in H1(0, T ;L2(Ω)).
By Proposition 6.11, we know that ηn ⇀ η in H1(0, T ;H−s(Ω)) and η̃n ⇀ η weakly∗ in L∞(0, T ;L2(Ω)),

and

L̃(vn) = ∂φt,n(ηn) = i∗(fn)− ∂ηn
∂t

⇀ i∗(f)− ∂η

∂t
= ∂φt(η) = L̃v in L2(0, T ;H−s(Ω)).

Therefore, on applying L̃−1, vn tends to v = γ(η)− g weakly in L2(0, T ;Hs
0(Ω)).

Since vn = hn + kn for some kn ∈ F⊥n , we deduce that kn ⇀ 0 in L2(0, T ;Hs
0(Ω)) and hn ⇀ γ(η)− g also

in this space, so h̃n ⇀ i(γ(η)− g) in L2(0, T ;L2(Ω)). Therefore, by (6.46), γ(η)− g lies in L∞(0, T ;Hs
0(Ω))

and i(γ(η)− g) ∈ H1(0, T ;L2(Ω)). Finally as ϑ = γ(η), we have the desired regularity (6.55).

Remark 6.17. It can be seen that the bounds in (6.46) can be made to depend only on σ > 0 and independent
of s for σ ≤ s ≤ 1, by the continuity of the eigenfunctions as shown in Section 3.3. Then, as in Remark 6.15,

the bounds
∥∥Ds(ϑ− g)

∥∥
L∞(0,T ;L2(Rd)d)

and
∥∥∥∂ϑ∂t ∥∥∥

L2(0,T ;L2(Ω))
in (6.55) only depend only on σ and independent

of s, allowing us to consider the convergence of the variational problem as s varies.

6.4 The Variational Inequality Formulations

We observe that the formulation given in (6.13) can be formally transformed into a variational inequality
formulation with fractional derivatives (see for example [192] or Chapter VII of [84]). Indeed, consider an
element w ∈ Hs

0(Ω) independent of t and taking in (6.11) the test function ξ(τ, x) = w(x) for τ ∈]t− ε, t+ ε[
and ξ(τ, x) = 0, dividing by 2ε and letting ε → 0, denoting now by 〈·, ·〉 the duality between H−s(Ω) and
Hs

0(Ω), we obtain〈
dη

dt
(t), w

〉
+ 〈L̃sA(γ(η(t))− g(t)), w〉 = 〈f(t), w〉 for a.e. t for all w ∈ Hs

0(Ω).

Then, integrating with respect to time and using the regularity of η and its initial condition, we have,

ˆ
Ω

η(t)w +

ˆ t

0

ˆ
Rd
ADs(ϑ) ·Dsw =

ˆ t

0

ˆ
Ω

fw +

ˆ
Ω

η0w (6.56)

for almost all t ∈ [0, T ] and w ∈ Hs
0(Ω) by recalling that

´ t
0

´
Rd AD

sg · Dsw = 0 for all w. We write
η(t) = b(ϑ(t)) + λχ(t) for a.e. t for λ > 0 and b a given continuous and increasing function (see Figure 2).
Then, denoting

Θ(t) =

ˆ t

0

ϑ(τ) dτ and F(t) =

ˆ t

0

f(τ) dτ,

we observe that b(ϑ(t)) = b
(
∂Θ
∂t (t)

)
∈ L2(Ω) a.e. t. On the other hand, since H(r) is the subdifferential of

the convex function r+, we have the inequality

sχ ≤ (r + s)+ − r+. (6.57)

So, we obtain from (6.56) the nonlocal variational inequality

ˆ
Ω

b

(
∂Θ

∂t
(t)

)
w +

ˆ
Rd
ADsΘ(t) ·Dsw +

ˆ
Ω

λ

(
∂Θ

∂t
(t) + w

)+

≥
ˆ

Ω

λ

(
∂Θ

∂t
(t)

)+

+

ˆ
Ω

(F(t) + η0)w (6.58)

for all w ∈ Hs
0(Ω) for a.e. t.
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By Theorem 6.3, ϑ− g ∈ L2(0, T ;Hs
0(Ω)), so Θ satisfies

Θ ∈ H1(0, T ;Hs(Rd)), Θ(0) = 0, and Θ(t)−
ˆ t

0

g(τ) dτ = 0 in Ωc for a.e. t, (6.59)

and defining
K(t) := Hs

0(Ω) + g(t) for a.e. t ∈]0, T [,

from (6.58) with w = w̃(t)− ∂Θ
∂t (t), where w̃(t) ∈ K(t), we obtain, for almost every t,

ˆ
Ω

b

(
∂Θ

∂t

)(
w̃ − ∂Θ

∂t

)
+

ˆ
Rd
ADsΘ ·Ds

(
w̃ − ∂Θ

∂t

)
+

ˆ
Ω

λw̃+ −
ˆ

Ω

λ

(
∂Θ

∂t

)+

≥
ˆ

Ω

(F(t) + η0)

(
w̃ − ∂Θ

∂t

)
, ∀w̃(t) ∈ K(t), (6.60)

which corresponds to the variational inequality formulations of Duvaut and Frémond (see [84, 227, 228, 192]).
With the same assumptions on f , g̃ and η0, we can obtain a solution Θ to (6.60), (6.59) using the Faedo-
Galerkin method (refer to [228] or Chapter 3 of [192] for a proof starting from the variational inequality
formulation (6.60), using the special basis of Appendix 3.3. A similar result can also be obtained using the
Rothe method (refer to Section 3.1 of [239]).

Making use of the notation given in (6.60), we can derive a continuous dependence relation of Θ on f , g
and η0.

Proposition 6.18. Let Θ and Θ̂ denote the weak temperature solutions of two fractional Stefan-type prob-
lems (6.60) corresponding to (γ, f, g, η0) and (γ, f̂ , ĝ, η̂0) respectively, where f, f̂ , g, ĝ, and η0, η̂0 satisfy the
assumptions of Theorem 6.16. Then,

b∗
4

ˆ t

0

ˆ
Ω

∣∣∣∣∣∂Θ

∂t
− ∂Θ̂

∂t

∣∣∣∣∣
2

+
a∗
2

ˆ
Rd
|Ds(Θ(t)− Θ̂(t))|2

≤
(
b∗

2b∗
+
b∗
4

+ 2b

)ˆ t

0

ˆ
Ω

∣∣∣∣∣∂G∂t − ∂Ĝ

∂t

∣∣∣∣∣
2

+
2

b∗

ˆ t

0

ˆ
Ω

|F− F̂|2 +
a∗

2

ˆ
Rd
|Ds(G(t)− Ĝ(t))|2 +

2t

b∗

ˆ
Ω

|η0− η̂0|2.

(6.61)

Proof. Suppose Θ and Θ̂ are two solutions of (6.60) corresponding to (F,G, η0) and (F̂, Ĝ, η̂0) respectively,
i.e.

ˆ
Ω

b

(
∂Θ

∂t

)(
w̃ − ∂Θ

∂t

)
+

ˆ
Rd
ADs(Θ−G) ·Ds

(
w̃ − ∂Θ

∂t

)
+

ˆ
Ω

bw̃+ −
ˆ

Ω

b

(
∂Θ

∂t

)+

≥
ˆ

Ω

(F + η0)

(
w̃ − ∂Θ

∂t

)
,

and

ˆ
Ω

b

(
∂Θ̂

∂t

)(
w̃ − ∂Θ̂

∂t

)
+

ˆ
Rd
ADs(Θ̂− Ĝ) ·Ds

(
w̃ − ∂Θ̂

∂t

)
+

ˆ
Ω

bw̃+ −
ˆ

Ω

b

(
∂Θ̂

∂t

)+

≥
ˆ

Ω

(F̂ + η̂0)

(
w̃ − ∂Θ̂

∂t

)
,

Taking the test function w̃ to be ∂Θ̂
∂t + ḡ = ∂Θ̂

∂t + g(t)− ĝ(t) = ∂Θ̂
∂t + ∂G

∂t −
∂Ĝ
∂t in the first equation, and

∂Θ
∂t − ḡ in the second, we compare the two equations to obtain

ˆ
Ω

b

(
∂Θ

∂t

)(
∂Θ̂

∂t
+ ḡ − ∂Θ

∂t

)
+

ˆ
Rd
ADs(Θ−G) ·Ds

(
∂Θ̂

∂t
+ ḡ − ∂Θ

∂t

)
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+

ˆ
Ω

b

(
∂Θ̂

∂t
+ ḡ

)+

−
ˆ

Ω

b

(
∂Θ

∂t

)+

−
ˆ

Ω

(F + η0)

(
∂Θ̂

∂t
+ ḡ − ∂Θ

∂t

)

≥ −
ˆ

Ω

b

(
∂Θ̂

∂t

)(
∂Θ

∂t
− ḡ − ∂Θ̂

∂t

)
−
ˆ
Rd
ADs(Θ̂− Ĝ) ·Ds

(
∂Θ

∂t
− ḡ − ∂Θ̂

∂t

)

−
ˆ

Ω

b

(
∂Θ

∂t
− ḡ
)+

+

ˆ
Ω

b

(
∂Θ̂

∂t

)+

+

ˆ
Ω

(F̂ + η̂0)

(
∂Θ

∂t
− ḡ − ∂Θ̂

∂t

)

=

ˆ
Ω

b

(
∂Θ̂

∂t

)(
∂Θ̂

∂t
+ ḡ − ∂Θ

∂t

)
+

ˆ
Rd
ADs(Θ̂− Ĝ) ·Ds

(
∂Θ̂

∂t
+ ḡ − ∂Θ

∂t

)

−
ˆ

Ω

b

(
∂Θ

∂t
− ḡ
)+

+

ˆ
Ω

b

(
∂Θ̂

∂t

)+

+

ˆ
Ω

(F̂ + η̂0)

(
∂Θ

∂t
− ḡ − ∂Θ̂

∂t

)
.

Observe that for any r, s,

r+ − s+ =
|r|+ r

2
− |s| − s

2
=

1

2
[(|r| − |s|) + (r − s)] ≤ 1

2
[|r − s|+ |r − s|] = |r − s|

by the triangle inequality, therefore

ˆ
Ω

(
∂Θ̂

∂t
+ ḡ

)+

−
ˆ

Ω

(
∂Θ

∂t

)+

+

ˆ
Ω

(
∂Θ

∂t
− ḡ
)+

−
ˆ

Ω

(
∂Θ̂

∂t

)+

=

ˆ
Ω

(
∂Θ̂

∂t
+ ḡ

)+

−
ˆ

Ω

(
∂Θ̂

∂t

)+
+

[ˆ
Ω

(
∂Θ

∂t
− ḡ
)+

−
ˆ

Ω

(
∂Θ

∂t

)+
]

≤
ˆ

Ω

|ḡ|+
ˆ

Ω

| − ḡ| = 2

ˆ
Ω

|ḡ|.

Also,

ˆ
Rd
ADs(Θ−G) ·Ds

(
∂Θ̂

∂t
+ ḡ − ∂Θ

∂t

)
−
ˆ
Rd
ADs(Θ̂− Ĝ) ·Ds

(
∂Θ̂

∂t
+ ḡ − ∂Θ

∂t

)

=

ˆ
Rd
ADs(Θ−G− Θ̂ + Ĝ) ·Ds

[
∂

∂t

(
Θ̂ + G− Ĝ−Θ

)]
≤ − a∗

1

2

∂

∂t

ˆ
Rd
|Ds(Θ−G− Θ̂ + Ĝ)|2.

Finally, suppose that b is bilipschitz, i.e. there exists b∗ ≥ b∗ > 0 such that

b∗|p− q|2 ≤ [b(p)− b(q)](p− q) ≤ b∗|p− q|2.

Then

ˆ
Ω

b

(
∂Θ

∂t

)(
∂Θ̂

∂t
+ ḡ − ∂Θ

∂t

)
−
ˆ

Ω

b

(
∂Θ̂

∂t

)(
∂Θ̂

∂t
+ ḡ − ∂Θ

∂t

)

=

ˆ
Ω

b(∂Θ

∂t

)
− b

(
∂Θ̂

∂t

)(∂Θ̂

∂t
− ∂Θ

∂t

)
+

ˆ
Ω

b(∂Θ

∂t

)
− b

(
∂Θ̂

∂t

) ḡ
≤ −

ˆ
Ω

b∗

∣∣∣∣∣∂Θ̂

∂t
− ∂Θ

∂t

∣∣∣∣∣
2

+

ˆ
Ω

b(∂Θ

∂t

)
− b

(
∂Θ̂

∂t

) ḡ
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≤ −
ˆ

Ω

b∗

∣∣∣∣∣∂Θ̂

∂t
− ∂Θ

∂t

∣∣∣∣∣
2

+
b∗
2b∗

ˆ
Ω

∣∣∣∣∣∣b
(
∂Θ

∂t

)
− b

(
∂Θ̂

∂t

)∣∣∣∣∣∣
2

+
b∗

2b∗

ˆ
Ω

|ḡ|2

≤ −
ˆ

Ω

b∗

∣∣∣∣∣∂Θ̂

∂t
− ∂Θ

∂t

∣∣∣∣∣
2

+
b∗
2b∗

ˆ
Ω

b∗

∣∣∣∣∣∂Θ

∂t
− ∂Θ̂

∂t

∣∣∣∣∣
2

+
b∗

2b∗

ˆ
Ω

|ḡ|2

= − b∗
2

ˆ
Ω

∣∣∣∣∣∂Θ

∂t
− ∂Θ̂

∂t

∣∣∣∣∣
2

+
b∗

2b∗

ˆ
Ω

|ḡ|2.

Combining these results, we have

b∗
2

ˆ
Ω

∣∣∣∣∣∂Θ

∂t
− ∂Θ̂

∂t

∣∣∣∣∣
2

+
a∗
2

∂

∂t

ˆ
Rd
|Ds(Θ−G− Θ̂ + Ĝ)|2

≤ b∗

2b∗

ˆ
Ω

|ḡ|2 + 2

ˆ
Ω

b|ḡ|+
ˆ

Ω

(F̂− F)

(
∂Θ̂

∂t
+ ḡ − ∂Θ

∂t

)
+

ˆ
Ω

(η̂0 − η0)

(
∂Θ̂

∂t
+ ḡ − ∂Θ

∂t

)

≤
(
b∗

2b∗
+ 2b

)ˆ
Ω

|ḡ|+ 2

b∗

ˆ
Ω

|F− F̂|2 +
b∗
4

ˆ
Ω

∣∣∣∣∣∂Θ

∂t
− ∂G

∂t
− ∂Θ̂

∂t
+
∂Ĝ

∂t

∣∣∣∣∣
2

+
2

b∗

ˆ
Ω

|η0 − η̂0|2.

Integrating with respect to time from 0 to t, we have

b∗
2

ˆ t

0

ˆ
Ω

∣∣∣∣∣∂Θ

∂t
− ∂Θ̂

∂t

∣∣∣∣∣
2

+
a∗
2

ˆ
Rd
|Ds(Θ− Θ̂)|2 − a∗

2

ˆ
Rd
|Ds(G− Ĝ)|2

≤ b∗
2

ˆ t

0

ˆ
Ω

∣∣∣∣∣∂Θ

∂t
− ∂Θ̂

∂t

∣∣∣∣∣
2

+
a∗
2

ˆ
Rd
|Ds(Θ−G− Θ̂ + Ĝ)|2

≤
(
b∗

2b∗
+ 2b

)ˆ t

0

ˆ
Ω

|ḡ|2 +
2

b∗

ˆ t

0

ˆ
Ω

|F− F̂|2 +
b∗
4

ˆ t

0

ˆ
Ω

∣∣∣∣∣∂Θ

∂t
− ∂G

∂t
− ∂Θ̂

∂t
+
∂Ĝ

∂t

∣∣∣∣∣
2

+
2

b∗

ˆ t

0

ˆ
Ω

|η0 − η̂0|2

≤
(
b∗

2b∗
+ 2b

)ˆ t

0

ˆ
Ω

|ḡ|2 +
2

b∗

ˆ t

0

ˆ
Ω

|F− F̂|2 +
b∗
4

ˆ t

0

ˆ
Ω

∣∣∣∣∣∂Θ

∂t
− ∂Θ̂

∂t

∣∣∣∣∣
2

+
b∗
4

ˆ t

0

ˆ
Ω

∣∣∣∣∣∂G∂t − ∂Ĝ

∂t

∣∣∣∣∣
2

+
2t

b∗

ˆ
Ω

|η0 − η̂0|2

=

(
b∗

2b∗
+ 2b

)ˆ t

0

ˆ
Ω

|ḡ|2 +
2

b∗

ˆ t

0

ˆ
Ω

|F− F̂|2 +
b∗
4

ˆ t

0

ˆ
Ω

∣∣∣∣∣∂Θ

∂t
− ∂Θ̂

∂t

∣∣∣∣∣
2

+
b∗
4

ˆ t

0

ˆ
Ω

|ḡ|2 +
2t

b∗

ˆ
Ω

|η0 − η̂0|2

by the triangle inequality, which can be rewritten as

b∗
4

ˆ t

0

ˆ
Ω

∣∣∣∣∣∂Θ

∂t
− ∂Θ̂

∂t

∣∣∣∣∣
2

+
a∗
2

ˆ
Rd
|Ds(Θ− Θ̂)|2

≤
(
b∗

2b∗
+
b∗
4

+ 2b

)ˆ t

0

ˆ
Ω

∣∣∣∣∣∂G∂t − ∂Ĝ

∂t

∣∣∣∣∣
2

+
2

b∗

ˆ t

0

ˆ
Ω

|F− F̂|2 +
a∗

2

ˆ
Rd
|Ds(G− Ĝ)|2 +

2t

b∗

ˆ
Ω

|η0 − η̂0|2.

Recalling that f, f̂ ∈ L2([0, T ];H−s(Ω)), g, ĝ ∈W 2,1([0, T ];L2(Ω))∩L∞([0, T ];Hs(Rd)), and η0, η̂0 ∈ L2(Ω),
we obtain continuous dependence of Θ on F,G and η0.

Similarly, for the one phase problem (in Section 6.7 below) we can also obtain an equivalent variational
inequality formulation, now of obstacle type. Indeed, governed by γo, the weak temperature solution ϑo
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obtained in (6.131ph) is non-negative at all times t ∈ [0, T ]. Therefore, its primitive

Θo(t) =

ˆ t

0

ϑo(τ) dτ

is also always non-negative, and satisfies

Θo ∈ H1(0, T ;Hs(Rd)), Θo(0) = 0 and Θo(t) ≥ 0, Θo(t)−
ˆ t

0

g(τ) dτ = 0 in Ωc for a.e. t ∈]0, T [,

(6.59o)
and from (6.56), denoting χo ∈ H(ϑo),

ˆ
Ω

b

(
∂Θo

∂t
(t)

)
w +

ˆ
Rd
ADsΘo(t) ·Dsw +

ˆ
Ω

λχo(t)w =

ˆ
Ω

F(t)w +

ˆ
Ω

η0w, for a.e. t, ∀w ∈ Hs
0(Ω).

(6.56o)
Now introduce

K+(t) :=

{
v ∈ Hs(Rd) : v ≥ 0 a.e. in Ω, v =

ˆ t

0

g(τ) dτ in Ωc

}
, for a.e. t ∈]0, T [.

Assuming that χ{ϑo(t)>0} = χ{Θo(t)>0} and χ{ϑo(t)<0} = χ{Θo(t)<0} for a.e. t ∈]0, T [, we can once again
make use of the inequality (6.57) to obtain

λχo(v −Θo) ≤ λ(v+ −Θo+) = λ(v −Θo)

when v(t),Θo(t) ≥ 0. Therefore, we can rewrite the equation (6.56o) with w = v −Θo(t) for v ∈ K+(t) as a
variational inequality to obtain the following evolutionary obstacle-type problem for Θo(t) ∈ K+(t):

ˆ
Ω

b

(
∂Θo

∂t
(t)

)
(v −Θo(t)) +

ˆ
Rd
ADsΘo(t) ·Ds(v −Θo(t)) ≥

ˆ
Ω

(F(t) + η0 − λ)(v −Θo(t)) ∀v ∈ K+(t).

This corresponds to the nonlocal version of the parabolic variational inequality obtained by Duvaut [102] for
the one-phase Stefan problem for the classical case s = 1. See also [191, 192] or [239].

6.5 Convergence to the Classical Problem as s↗ 1

Next, as s ↗ 1 the s-fractional derivatives converge to the classical derivatives, we show that the cor-
responding solutions to the fractional Stefan-type problem converge in appropriate spaces to the classical
one.

To consider the convergence of the problem as s↗ 1, we start with a continuous dependence property of
the Riesz derivatives as s varies, which can be easily shown using Fourier transform first for u(t) ∈ C∞c (Ω),
and extended by density as in Lemma 1.5 adopted to the time-dependent case.

Lemma 6.19. For u ∈ L∞(0, T ;Hs′

0 (Ω)), Dsu is continuous in L∞(0, T ;L2(Rd)d) as s varies in [σ, s′] for
0 < σ < s′ ≤ 1. As a consequence, we have the following estimate: for σ ≤ s ≤ 1,∥∥Dσu(t)

∥∥
L2(Rd)d

≤ cσ
∥∥Dsu(t)

∥∥
L2(Rd)d

, (6.62)

for any u(t) ∈ Hs
0(Ω) for a.e. t ∈ [0, T ], where the constant cσ is independent of s and t.

Consequently, we have a continuous transition from the fractional Stefan-type problem to the classical
Stefan-type problem as s↗ 1 in the following sense.

Theorem 6.20. Let (ηs, ϑs) be the solution to the fractional Stefan-type problem for 0 < σ ≤ s < 1 for
fs ∈ L2(0, T ;L2(Ω)), g̃s ∈W 2,1(0, T ;L2(Rd)) ∩ L∞(0, T ;Hs(Rd)), i.e. ϑs = γ(ηs) for a.e. x, t ∈ QT and

−
ˆ
QT

ηs
∂ξ

∂t
+

ˆ
Rd×[0,T ]

ADsϑs ·Dsξ =

ˆ
QT

fsξ +

ˆ
Ω

η0,sξ(0), ∀ξ ∈ ΞsT (6.13)
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with Dirichlet boundary condition ϑs = gs on ]0, T [×Ωc, initial condition ηs(0) = η0,s ∈ L2(Ω), and setting
ϑs(0) = γ(η0,s) assume ϑs(0) − gs(0) ∈ Hs

0(Ω) is bounded uniformly in s for 0 < σ ≤ s < 1. Suppose that
there exists η0 ∈ L2(Ω), f ∈ L2(0, T ;L2(Ω)) and g̃ ∈W 2,1(0, T ;L2(Rd)) ∩ L∞(0, T ;H1(Rd)) such that

η0,s ⇀ η0 in L2(Ω),

fs ⇀ f in L2(0, T ;L2(Ω)), and

g̃s ⇀ g̃ in W 2,1(0, T ;L2(Rd))-weak and in L∞(0, T ;Hσ(Rd))-weak∗.

(6.63)

Then, the sequence (ηs, ϑs)s converges weakly to (η, ϑ) in the sense that

ηs ⇀ η in L∞(0, T ;L2(Ω))-weakly∗ and in H1(0, T ;H−1(Ω))-weak, (6.64)

and
ϑs ⇀ ϑ in L∞(0, T ;Hσ(Ω))-weak∗, in H1(0, T ;L2(Ω))-weak and in C([0, T ];L2(Ω)) (6.65)

as s ↗ 1, where (η, ϑ) solves uniquely the Stefan problem for s = 1 with ϑ = γ(η) and initial condition
η(0) = η0 in Ω, and Dirichlet boundary condition ϑ = g on ]0, T [×∂Ω, and

−
ˆ
QT

η
∂ξ

∂t
+

ˆ
QT

ADϑ ·Dξ =

ˆ
QT

fξ +

ˆ
Ω

η0ξ(0), ∀ξ ∈ Ξ1
T . (6.66)

Proof. Recall that ηs ∈ L∞(0, T ;L2(Ω)) ∩H1(0, T ;H−1(Ω)) independent of φt, by Remark 6.6. Moreover,
invoking the continuity of the inclusions H−σ(Ω) ⊂ H−s(Ω) ⊂ H−1(Ω), we have, by (6.25),

‖ηs‖L∞(0,T ;L2(Ω)) ≤ C4

(∥∥η0,s

∥∥
L2(Ω)

,‖fs‖L2(0,T ;H−s(Ω)) ,‖gs‖BV (0,T ;L2(Ω))

)
≤ C ′4 (6.67)

for a constant C ′4 depending on σ but independent of s by assumption (6.63). Then, by Lemma 1.3

‖fs‖L2(0,T ;H−s(Ω)) ≤
CP
σ
‖fs‖L2(0,T ;L2(Ω)) .

Similarly, by (6.24) and (6.63),

1

c1

∥∥∥∥∂ηs∂t
∥∥∥∥
L2(0,T ;H−1(Ω))

≤
∥∥∥∥∂ηs∂t

∥∥∥∥
L2(0,T ;H−s(Ω))

≤ C2

(∥∥η0,s

∥∥
L2(Ω)

,‖fs‖L2(0,T ;L2(Ω)) ,‖gs‖BV (0,T ;L2(Ω))

)
.

(6.68)
Therefore, ηs is bounded in L∞(0, T ;L2(Ω)) ∩H1(0, T ;H−1(Ω)) uniformly with respect to s, and, up to a
subsequence, (ηs)s is converging in H1(0, T ;H−1(Ω))-weak and in L∞(0, T ;L2(Ω))-weak∗ to some η as in
(6.64).

Furthermore, for ϑs − gs ∈ L∞(0, T ;Hs
0(Ω)), we have∥∥Ds(ϑs − gs)

∥∥
L∞(0,T ;L2(Rd)d)

≤ C (6.69)

by (6.63) and Remarks 6.15 and 6.17 for some constant C independent of s depending on σ ≤ s and on the
data. By the Poincaré inequality, ϑs − gs is also bounded, so

ϑs − gs −−−⇀
s↗1

ϑ− g in L∞(0, T ;L2(Rd))-weak∗ and Ds(ϑs − gs) −−−⇀
s↗1

ζ in L∞(0, T ;L2(Rd)d)-weak∗

for some ϑ, ζ.
Now, by the convergence Lemma 6.19, for all Φ ∈ L2(0, T ;C∞c (Ω)d), denoting by Φ̃ the zero extension of

Φ outside Ω,

Ds · Φ −−−→
s↗1

D̃ · Φ = D · Φ̃ in L2(0, T ;L2(Rd)d),

therefore,

ˆ T

0

ˆ
Rd
Ds(ϑs − gs) · Φ̃ = −

ˆ T

0

ˆ
Rd

(ϑs − gs)(Ds · Φ) −−−→
s↗1

−
ˆ T

0

ˆ
Rd

(ϑ− g) ˜(D · Φ).
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But by the a priori estimate on Ds(ϑs − gs),∣∣∣∣∣
ˆ T

0

ˆ
Rd
Ds(ϑs − gs) · Φ

∣∣∣∣∣ ≤ C‖Φ‖L2(0,T ;L2(Rd)d) ,

which implies, in the limit, that∣∣∣∣∣
ˆ T

0

ˆ
Ω

(ϑ− g)(D · Φ)

∣∣∣∣∣ =

∣∣∣∣∣
ˆ T

0

ˆ
Rd

(ϑ− g) ˜(D · Φ)

∣∣∣∣∣ ≤ C‖Φ‖L2(0,T ;L2(Rd)d) .

Therefore we have D(ϑ− g) ∈ L2(0, T ; [L2(Ω)]d) and hence

−
ˆ T

0

ˆ
Rd

(ϑ− g) ˜(D · Φ) =

ˆ T

0

ˆ
Rd
D(ϑ− g) · Φ̃

so ζ = D(ϑ− g). Moreover, since ϑ− g = w − lims↗1(ϑs − gs) = 0 outside Ω, and the boundary of Ω being
Lipschitz, we may conclude ϑ− g ∈ L∞(0, T ;H1

0 (Ω)).
We claim that (η, ϑ) satisfies the Stefan-type problem for s = 1. Indeed, for any ξ ∈ Ξ1

T ⊂ ΞsT ,

−
ˆ
QT

η
∂ξ

∂t
+

ˆ T

0

ˆ
Ω

AD(ϑ− g) ·Dξ = −
ˆ
QT

η
∂ξ

∂t
+

ˆ T

0

ˆ
Rd
AD(ϑ− g) · D̃ξ

= lim
s↗1

{
−
ˆ
QT

ηs
∂ξ

∂t
+

ˆ T

0

ˆ
Rd
ADs(ϑs − gs) ·Dsξ

}
= lim
s↗1

{ˆ
QT

fξ +

ˆ
Ω

η0,sξ(0)

}
=

ˆ
QT

fξ+

ˆ
Ω

η0ξ(0)

since Ds(ϑs−gs) ⇀ D(ϑ−g) in L∞(0, T ;L2(Rd)d)-weak∗, ηs ⇀ η in L∞(0, T ;L2(Ω))-weak∗, and Dsξ → D̃ξ
strongly in L2(0, T ;L2(Rd)d) by Lemma 6.19. Therefore, (η, ϑ) satisfies (6.66).

Moreover, by Remark 6.17, ∂ϑs∂t is bounded in L2(0, T ;L2(Ω)), so we can take the limit as s↗ 1 to obtain
that

∂ϑs
∂t

⇀
∂ϑ

∂t
in L2(0, T ;L2(Rd))-weak.

Since ∂gs
∂t ⇀

∂g
∂t in L2(0, T ;L2(Rd))-weak,

ϑs − gs ⇀ ϑ− g in L∞(0, T ;Hσ
0 (Ω))-weak∗ and in H1(0, T ;L2(Ω))-weak

as s↗ 1, and so by compactness (see, for instance, Corollary 4 of [220]),

ϑs − gs → ϑ− g in C([0, T ];L2(Ω)),

giving the convergence (6.65) as desired using the convergence of gs to g in (6.63).
Finally, it remains to show that ϑ = γ(η) a.e. in ]0, T [×Ω, or equivalently η ∈ β(ϑ). Indeed, since

ϑs = γ(ηs) a.e. in ]0, T [×Ω with ηs ⇀ η weakly in L2(0, T ;L2(Ω)) and ϑs → ϑ in C([0, T ];L2(Ω)), by the
maximal monotonicity of β (see, for instance, Proposition 2.5 of [54]), we have η ∈ β(ϑ) and η0 ∈ β(ϑ(0))
satisfying (6.66). Subsequently, we obtain the solution ϑ = γ(η) a.e. in ]0, T [×Ω, with initial condition
ϑ(0) = lims↗1 γ(η0,s) = γ(η0) by the convergence of η0,s to η0 in L2(Ω).

6.6 Asymptotic Behaviour as t→∞
In this section, we derive the asymptotic behaviour of the weak solutions as t→∞, following the approach
of the classical case in [86]. We first begin with a well-known asymptotic convergence result for the solutions
of differential equations with maximal monotone operators.

Proposition 6.21 (See, for instance, Theorem 3.11 of [54]). Let ϕ be a lower semi-continuous convex
functional on a Hilbert space H. Suppose that for all C ∈ R, the set {x ∈ H : ϕ(x) + |x|2 ≤ C} is compact.
Let f∞ ∈ H and let f(t) be a function such that f − f∞ ∈ L1(t0,∞;H). Suppose U ∈ C(t0,∞;H) is a weak
solution to the equation dU

dt + ∂ϕ(U) 3 f . Then limt→+∞ U(t) = U∞ in H exists and f∞ ∈ ∂ϕ(U∞).
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With this proposition, we can directly obtain the convergence of the generalised enthalpy solutions η(t)→
η∞ in the case where g̃(t) = g̃∞ for all t ≥ t0, i.e. the Dirichlet data is independent of time, with f(t)−f∞ ∈
L1(t0,∞;H−s(Ω)). For more general g̃(t) converging to some g̃∞, we may also have a characterisation of
the asymptotic behaviour of the generalised enthalpy solution towards the stationary solution, which can be
written in terms of the stationary Dirichlet problem ϑ∞ = g∞ in Ωc for the temperature ϑ∞:

ˆ
Rd
ADsϑ∞ ·Dsξ = 〈f∞, ξ〉 , ∀ξ ∈ Hs

0(Ω). (6.70)

Theorem 6.22. Let f , g̃ and η0 satisfy the assumptions in Theorem 6.3 such that f − f∞ ∈
L1(0,∞;H−s(Ω)) ∩ L2(0,∞;H−s(Ω)) and g̃ − g̃∞ ∈ W 1,1(0,∞;L2(Ω)) for given f∞ ∈ H−s(Ω) and
g̃∞ ∈ Hs(Rd). (We can subsequently define g∞ and g(t) in the same spaces using (6.7) as explained in
the Section 3.2.) Let η ∈ β(ϑ) be the generalised enthalpy solution to the fractional Stefan-type problem
(6.11) for all T > 0. Then, there exists an η∞ ∈ L2(Ω) such that

η(t)→ η∞ strongly in H−s(Ω) and weakly in L2(Ω) as t→∞,

where η∞ is such that ϑ∞ = γ(η∞) satisfies (6.70) with ϑ∞ = g∞ in Ωc.

Proof. We first note that, while η∞ is not unique in general, there exists a unique weak temperature solution
ϑ∞ = γ(η∞) to (6.70) with ϑ∞ = g∞ in Ωc by the Riesz representation theorem for A coercive and bounded,
since we have the equivalent norms (1.17) in Hs

0(Ω).
Furthermore, under our assumptions, by a similar approach to the Proposition 3.2 and its Corollary in

[86], there is a positive constant M such that

sup
t≥0

∥∥η(t)
∥∥
L2(Ω)

≤M. (6.71)

Let ε be any positive number. Since g is bounded, we can take a number tε such that

ˆ ∞
tε

∥∥g(τ)− g∞
∥∥
L2(Ω)

+
∥∥f(τ)− f∞

∥∥
H−s(Ω)

dτ ≤ ε.

Also, let wε be the solution of the fractional Stefan-type problem (6.11) corresponding to (f∞, g∞) on [tε,∞[
with initial value wε(tε) = η(tε), i.e.

dwε
dt

(t) + ∂φ∞(wε) =
dwε
dt

(t) + L̃sA(γ(wε(t))− g∞) = f∞. (6.72)

By Proposition 6.21 in the interval [tε,∞[ with H = H−s(Ω) and ϕ given by the convex functional φ∞ as
defined in (6.27) for the Dirichlet boundary condition g∞, since the set {W ∈ H−s(Ω) : φ∞(W )+ |W |2 ≤ C}
is a bounded set in L2 and therefore compact in H−s(Ω), we have that

wε(t) converges in H−s(Ω) as t→∞ to a point w∞ε ∈ L2(Ω)

satisfying
f∞ ∈ ∂φ∞(w∞ε ), or equivalently L̃sA(γ(w∞ε )− g∞) = f∞. (6.73)

Therefore, there is a number t′ε ≥ tε such that∥∥wε(t)− wε(τ)
∥∥
H−s(Ω)

≤ ε ∀t, τ ≥ t′ε.

Also, as in Remark 6.9, we have that

1

2

d

dτ

∥∥η(τ)− wε(τ)
∥∥2

H−s(Ω)
+

2

Cγ

∥∥γ(η)(τ)− γ(wε)(τ)
∥∥2

L2(Ω)

≤ 2
(
f(τ)− f∞, η(τ)− wε(τ)

)
+ 2

ˆ
Ω

(g(τ)− g∞)(η(τ)− wε(τ)),
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so in particular,

d

dτ

∥∥η(τ)− wε(τ)
∥∥2

H−s(Ω)
≤ K

(∥∥f(τ)− f∞
∥∥
H−s(Ω)

+
∥∥g(τ)− g∞

∥∥
L2(Ω)

)
for some constant K for a.e. τ ≥ tε. Integrating both sides over [tε, t], we have∥∥η(t)− wε(t)

∥∥2

H−s(Ω)
≤ Kε (6.74)

for any t ≥ tε. Therefore, if t, s ≥ t′ε,∥∥η(t)− η(s)
∥∥
H−s(Ω)

≤
∥∥η(t)− wε(t)

∥∥
H−s(Ω)

+
∥∥wε(t)− wε(s)∥∥H−s(Ω)

+
∥∥wε(s)− η(s)

∥∥
H−s(Ω)

≤ 2
√
Kε+ ε.

This implies that η(t) converges in H−s(Ω) as t→∞ to some η∞ ∈ H−s(Ω). Also, since (6.74) holds for all
t ≥ tε and limt→∞ wε(t) = w∞ε , we have that w∞ε → η∞ in H−s(Ω) as ε ↘ 0. Since w∞ε satisfies (6.73), so
does η∞.

Finally, defining ϑ∞ = γ(η∞), taking the limit in ε in (6.73), we have ϑ∞ = (L̃sA)−1f∞ + g∞.

Remark 6.23. In addition, if we assume f − f∞ ∈W 1,1(0,∞;H−s(Ω)), we have that the solution η to the
fractional Stefan-type problem (6.11) satisfies η − η∞ ∈ H1(0,∞, H−s(Ω)). This follows as in the proof of
Theorem 2.1 of [86], and it can be shown that the energy functional J(t) given by

J(t) := φt(η(t)) +

ˆ t

0

∥∥∥∥dηdt (τ)

∥∥∥∥2

H−s(Ω)

dτ − C
ˆ t

0

(∥∥∥∥∂g∂t (τ)

∥∥∥∥
L2(Ω)

+

∥∥∥∥dfdt (τ)

∥∥∥∥
H−s(Ω)

)
dτ for t ≥ 0

is bounded and non-increasing on ]0,∞[. So limt→∞ J(t) exists and

dη

dt
∈ L2(0,∞, H−s(Ω)). (6.75)

We can also increase the regularity of g̃ as in Theorem 6.16 to obtain the convergence of ϑ.

Theorem 6.24. Let f − f∞ ∈ L1(0,∞;H−s(Ω)) ∩ L2(0,∞;L2(Ω)) and g̃ − g̃∞ ∈ W 2,1(0,∞;L2(Rd)) ∩
H1(0,∞;L2(Rd)) ∩ L2(0,∞;Hs(Rd)) (and so similarly with g − g∞), and η0 ∈ L2(Ω), where f∞ ∈ L2(Ω)
and g̃∞ ∈ Hs(Rd). Suppose that ϑ is the weak temperature solution to the fractional Stefan-type problem
(6.13), and ϑ∞ is the stationary weak temperature solution to (6.70) with ϑ∞ = g∞ in Ωc. Then

ϑ(t)→ ϑ∞ in L2(Ω) and in Hs(Rd)-weak as t→∞.

In addition, if f − f∞ ∈W 1,1(0,∞;H−s(Ω)), we have

ϑ(t)− g(t)→ ϑ∞ − g∞ strongly in Hs
0(Ω) as t→∞.

In particular, if g(t)→ g∞ in Hs(Rd) as t→∞, then ϑ(t)→ ϑ∞ strongly in Hs(Rd) as t→∞.

Proof. Let (η, ϑ) be the solution to the fractional Stefan-type problem (6.13), so that their finite-
dimensional approximations (ηn, γ(ηn)) satisfy the inequality (6.53). Since the ηn’s are uniformly bounded
in L∞(0,∞;L2(Ω)) by Theorem 6.22 applied to the approximated problem, we have∣∣∣∣∣

ˆ ∞
0

ˆ
Ω

η̃n
∂2g

∂t2

∣∣∣∣∣ ≤‖η̃n‖L∞(0,∞;L2(Ω))

∥∥∥∥∥∂2g

∂t2

∥∥∥∥∥
L1(0,∞;L2(Ω))

,

lim
t→∞

ˆ
Ω

η̃n(t)
∂g

∂t
(t) = 0 since

∂g

∂t
→ 0 in L2(Ω),∣∣∣∣ˆ

Ω

η̃n(0)
∂g

∂t
(0)

∣∣∣∣ ≤∥∥η̃n(0)
∥∥
L2(Ω)

∥∥∥∥∂g∂t (0)

∥∥∥∥
L2(Ω)

,
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and∣∣∣∣ˆ ∞
0

ˆ
Ω

fn
∂g

∂t

∣∣∣∣ ≤‖fn‖L2(0,∞;L2(Ω))

∥∥∥∥∂g∂t
∥∥∥∥
L2(0,∞;L2(Ω))

=‖PEnf‖L2(0,∞;L2(Ω))

∥∥∥∥∂g∂t
∥∥∥∥
L2(0,∞;L2(Ω))

≤ a∗

a∗
‖f‖L2(0,∞;L2(Ω))

∥∥∥∥∂g∂t
∥∥∥∥
L2(0,∞;L2(Ω))

and, passing to the limit in n in (6.53), we conclude

ϑ− g ∈ L∞(0,∞;Hs
0(Ω)) ∩H1(0,∞;L2(Ω)). (6.76)

Let w∗ be any accumulation point of {ϑ(t) − g(t)} in Hs
0(Ω) for the weak topology as t → ∞, and let

{tn}n be a sequence in [0,∞[ such that tn ↗∞ and ϑ(tn)− g(tn) ⇀ w∗ weakly in Hs
0(Ω) as n→∞. Then,

by the convergence of g and the compactness of Hs
0(Ω) in L2(Ω),

ϑ(tn)→ w∗ + g∞ in L2(Ω).

Also, from Theorem 6.22, there exists an η∞ such that

η(tn) ⇀ η∞ in L2(Ω)-weak.

As ϑ(tn) = γ(η(tn)), by the property of maximal monotone operators in L2(Ω), the limit of any subsequence
as tn →∞ satisfies

w∗ + g∞ = γ(η∞) = ϑ∞.

Therefore, w∗ = ϑ∞ − g∞, and we have the convergence

ϑ(t)→ ϑ∞ in L2(Ω) as t→∞ (6.77)

and
ϑ(t)− g(t) ⇀ ϑ∞ − g∞ in Hs

0(Ω)-weak as t→∞. (6.78)

In order to obtain the strong convergence in (6.78), we define the function E(t) by

E(t) :=
1

Cγ

ˆ t

0

∥∥∥∥∂ϑ(τ)

∂t

∥∥∥∥2

L2(Ω)

dτ +
1

2
〈L̃sA(ϑ(t)− g(t)), ϑ(t)− g(t)〉−

ˆ
Ω

η(t)
∂g(t)

∂t
−
〈
f(t), ϑ(t)− g(t)

〉
(6.79)

for t ≥ 0. Then, using again the inequality (6.53) in the limit n → ∞ with the integral taken over the
interval [t1, t2] and incorporating the Lipschitz property in (6.54), we obtain

1

Cγ

ˆ t2

t1

∥∥∥∥∂ϑ(τ)

∂t

∥∥∥∥2

L2(Ω)

dτ +
1

2
〈L̃sA(ϑ(t2)− g(t2)), ϑ(t2)− g(t2)〉

−
ˆ

Ω

η(t2)
∂g

∂t
(t2)−

〈
f(t2), ϑ(t2)− g(t2)

〉
≤ 1

2
〈L̃sA(ϑ(t1)− g(t1)), ϑ(t1)− g(t1)〉 −

ˆ
Ω

η(t1)
∂g

∂t
(t1)−

〈
f(t1), ϑ(t1)− g(t1)

〉
−
ˆ t2

t1

〈
∂f(τ)

∂t
, ϑ(τ)− g(τ)

〉
dτ −

ˆ t2

t1

ˆ
Ω

η(τ)
∂2g(τ)

∂t2
dτ,

or

E(t2) ≤ E(t1)−
ˆ t2

t1

{〈
∂f(τ)

∂t
, ϑ(τ)− g(τ)

〉
+

ˆ
Ω

η(τ)
∂2g(τ)

∂t2

}
dτ. (6.80)

Recalling (6.71) and (6.76), we have η ∈ L∞(0, T ;L2(Ω)) and ϑ− g ∈ L∞(0, T ;Hs
0(Ω)), and so

ˆ t2

t1

(〈
∂f(τ)

∂t
, ϑ(τ)− g(τ)

〉
+

ˆ
Ω

η(τ)
∂2g(τ)

∂t2

)
dτ ≤ K1

ˆ t2

t1

∥∥∥∥∂f(τ)

∂t

∥∥∥∥
H−s(Ω)

dτ +K2

ˆ t2

t1

∥∥∥∥∥∂2g(τ)

∂t2

∥∥∥∥∥
L2(Ω)

dτ
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for some constants K1,K2 ≥ 0 for any t2 ≥ t1 ≥ 0. Setting H to be the function

H(·) := K1

∥∥∥∥∂f(·)
∂t

∥∥∥∥
H−s(Ω)

+K2

∥∥∥∥∥∂2g(·)
∂t2

∥∥∥∥∥
L2(Ω)

∈ L1(0,∞),

it follows that

E(t2)−
ˆ t2

0

H(τ) dτ ≤ E(t1)−
ˆ t1

0

H(τ) dτ for all t2 ≥ t1 ≥ 0.

This implies that limt→∞E(t) exists, which we write as E∞ and, by definition (6.79),

lim
t→∞
〈L̃sA(ϑ(t)− g(t)), ϑ(t)− g(t)〉 = 2E∞ −

2

Cγ

ˆ ∞
0

∥∥∥∥∂ϑ(τ)

∂t

∥∥∥∥2

L2(Ω)

dτ + 2 〈f∞, ϑ∞ − g∞〉 =: l∞ (6.81)

since η is bounded in L2(Ω) and ∂g(t)
∂t → 0 in L2(Rd) as t→∞.

Next, taking a sequence {tn}n with tn →∞ so that

dη

dt
(tn)→ 0 in H−s(Ω),

which is always possible by (6.75), we have, recalling that ϑ∞ is the weak temperature solution to (6.70),

L̃sA(ϑ(tn)− g(tn)) = f(tn)− dη

dt
(tn)→ f∞ = L̃sA(ϑ∞ − g∞) in H−s(Ω). (6.82)

Therefore, by (6.78), (6.82) and (6.81),

〈L̃sA(ϑ(tn)− g(tn)), ϑ(tn)− g(tn)〉 → 〈L̃sA(ϑ∞ − g∞), ϑ∞ − g∞〉 = l∞. (6.83)

Finally, since the duality in the left-hand-side of (6.81) is equivalent to the square of the Hs
0(Ω) norm of

ϑ(t)− g(t) by (6.14), we may conclude the strong convergence result

ϑ(t)− g(t)→ ϑ∞ − g∞ in Hs
0(Ω) as t→∞.

Remark 6.25. Since η(t) = b(ϑ(t))+χ(t), χ(t) ∈ H(ϑ(t)), and η(t) −−−⇀
t→∞

η∞ in L2(Ω)-weak and ϑ(t)→ ϑ∞

in L2(Ω), we have the existence of a χ∞ ∈ H(ϑ∞), such that χ(t) −−−⇀
t→∞

χ∞ in L∞(Ω)-weak∗.

Remark 6.26. Similar asymptotic results as t→∞ for the case s = 1 have been obtained in [86] considering
other variants on the asymptotic behaviour of f and g̃.

Earlier asymptotic behaviour results for s = 1 were obtained in Remarks 9 and 11 of [228] in the varia-
tional inequality form in a special case.

6.7 From Two Phases to One Phase

Let ν be a parameter such that (6.13) written with the Lipschitz graph γν corresponds to the two-phase
problem when ν > 0, and to the one-phase problem when ν = 0. In this section, we obtain the solution to
the one-phase problem, making use of the solution to the two-phase problem.

Consider the one-phase problem given with data fo, g̃o ≥ 0 by

−
ˆ
QT

ηo
∂ξ

∂t
+

ˆ
Rd
ADsϑo ·Dsξ =

ˆ
QT

foξ +

ˆ
Ω

ηo0ξ(0), ∀ξ ∈ ΞsT (6.131ph)

with initial condition ηo(0, x) = ηo0(x) with regularity as in Theorem 6.16 and ϑo = γo(ηo) such that
ϑo(0) − go(0) ∈ Hs

0(Ω). In this section, we use the lower subscript o to indicate the one-phase problem,
and the upper superscript 0 to indicate the initial condition. We first show that there exists a solution to
this problem, by obtaining the solution as the limit of a sequence of solutions to two-phase problems. The
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main idea is that we flatten the left leg of the monotone Lipschitz graph γ to obtain γo which has range
[0,∞[. Then γo will still satisfy the same conditions (6.16) at r = +∞. Furthermore, we define the convex
functional φot by

φot (W ) =

{´
Ω

(jo(W )− go(t)W ) dx for W ∈ L2(Ω);

+∞ for W ∈ H−s(Ω)\L2(Ω)

for the primitive jo of γo chosen such that jo vanishes at 0.

Remark 6.27. Observe that the image of γo is [0,∞[. Therefore, given any ηo0 ∈ L2(Ω), ϑo(0) = γo(ηo0) ≥ 0.
This also applies to ηo(t) ∈ L2(Ω) at general time t ∈ [0, T ], so we have ϑo(t) = γo(ηo(t)) ≥ 0 for all t. As
such, it is necessary that the Dirichlet boundary condition go is non-negative in ]0, T [×Ωc.

Theorem 6.28. Let fo ∈ L2(0, T ;L2(Ω)) and g̃o ∈W 2,1(0, T ;L2(Rd))∩L∞(0, T ;Hs(Rd)), and define go as
in (6.7) (and subsequently with the same regularity). Assume ηo0 ∈ L2(Ω) and, setting 0 ≤ ϑo(0) = γo(ηo0),
assume g̃o ≥ 0 in ]0, T [×Ωc and ϑo(0) − go(0) ∈ Hs

0(Ω). Then, there exist a unique generalised enthalpy
solution ηo and a weak temperature solution ϑo to the variational problem (6.131ph) with

ηo ∈ βo(ϑo) and ϑo = γo(ηo) ≥ 0,

such that
ηo ∈ L∞(0, T ;L2(Ω)) ∩H1(0, T ;H−s(Ω)) (6.84)

and
ϑo ∈ L∞(0, T ;Hs(Rd)) ∩H1(0, T ;L2(Ω)) (6.85)

with ϑo = go in Ωc.

Proof. We construct ηo and ϑo as the limit of an approximating sequence of ην and ϑν . (See also the proof
of Theorem A.1 in [233].)

Indeed, since γo is non-negative,

lim
|r|→+∞

γo(r)

r
≥ 0.

Then, consider the strictly increasing approximation given by

γν(r) = γo(r) + νr (6.86)

for ν > 0. Assuming γo is Lipschitz continuous, so is γν . Also, γν clearly converges to γo uniformly on
compact sets as ν tends to zero. Furthermore,

lim inf
|r|→+∞

γν(r)

r
≥ ν + lim inf

|r|→+∞

γo(r)

r
> 0,

so (6.16) is satisfied. The corresponding maximal monotone graph βν is then given by

βν(r) =
1

ν
(r − (Id+ νβo)−1(r)), (6.87)

which is Lipschitz continuous with constant 1
ν . Therefore, from Theorem 6.3 and Theorem 6.16, we obtain

the unique generalised enthalpy and weak temperature solutions ην and ϑν of the approximate regularised
problem with approximating compatible functions fν , gν and ην0 in the same spaces as the ones of the data

−
ˆ
QT

ην
∂ξ

∂t
+

ˆ
Rd×[0,T ]

ADsϑν ·Dsξ =

ˆ
QT

fνξ +

ˆ
Ω

ην0 ξ(0), ∀ξ ∈ ΞsT , (6.13ν)

such that ην = βν(ϑν) are uniformly bounded in H1(0, T ;H−s(Ω) ∩ L∞(0, T ;L2(Ω)) for ν < 1, since the
estimates (6.67)–(6.68) are independent of ν with

φνt,n(ην0 ) =

ˆ
Ω

(jν(ην0 ) + gν(0)ην0 ) + IF∗n
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=

ˆ
Ω

(jo(ην0 ) + ν|ην0 |2 + gν(0)ην0 ) + IF∗n

≤
ˆ

Ω

(jo(ην0 ) + |ην0 |2 + gν(0)ην0 ) + IF∗n

for uniformly bounded ην0 , g
ν(0) ∈ L2(Ω). We recall that (Fn)n∈N is an increasing set of finite dimensional

subspaces of Hs
0(Ω), F ∗n = L(Fn) ⊂ H−s(Ω), and IF∗n is the indicator function of F ∗n , i.e. IF∗n = 0 in F ∗n ,

IF∗n = +∞ elsewhere.
Henceforth, taking Cγ = Cγo + 1 in (6.54) and making use of (6.53) at the limit n→∞, we obtain that

∂ϑν

∂t is bounded in L2(0, T ;L2(Ω)) and ϑν−gν is bounded in L∞(0, T ;Hs
0(Ω)) independently of ν. Passing to

the limit as ν tends to zero, since ην is bounded in H1(0, T ;H−s(Ω)) as a solution to (6.13ν), we have (ηνn)n
converging in H1(0, T ;H−s(Ω))-weak and in L∞(0, T ;L2(Ω)) in the weak∗ topology, to some ηo. Similarly,
(ϑνn)n =

(
γνn(ηνn)

)
n

converges weakly in H1(0, T ;L2(Ω)) ∩ L∞(0, T ;Hs(Rd)), and by compactness also in

C([0, T ];L2(Ω)), to some ϑo such that ϑo(t)−go(t) ∈ Hs
0(Ω) a.e. t. Passing to the limit, ϑo satisfies (6.131ph)

with the required regularity (6.85). Also, by the maximal monotonicity of βo and the Mosco convergence of
βν to βo, we have ηo ∈ βo(ϑo) and ηo0 ∈ βo(ϑo(0)) satisfying (6.131ph) and (6.84). Subsequently, ϑo = γo(ηo)
a.e. in ]0, T [×Ω and ϑo(0) = limν→0 γ

ν(ην0 ) = γo(ηo0) by the convergence of ην0 to ηo0 in L2(Ω). Since the
range of γo is [0,∞[, ϑ ≥ 0 and we obtain the solution of the one-phase problem.

Having obtained a unique solution to the limiting one-phase problem, we now show that the solutions of
the two-phase problem given by

− ην
ˆ
QT

∂ξ

∂t
+

ˆ
Rd×[0,T ]

ADs(ϑν − gν) ·Dsξ =

ˆ
QT

fνξ +

ˆ
Ω

ην0 ξ(0) ∀ξ ∈ ΞsT (6.132ph)

with ϑν = γν(ην) in fact converges to the one-phase problem (6.131ph). For the classical case of s = 1, see
also [225], as well as the proof of Theorem 6.1 on pages 44-45 of [84]).

Theorem 6.29. Assume that for each ν ≥ 0, fν ∈ L2(0, T ;L2(Ω)), g̃ν ∈ W 2,1(0, T ;L2(Ω)) ∩
L∞(0, T ;Hs(Rd)) bounded independently of ν, and ην0 ∈ D(φνt ). Writing ϑν = γν(ην) for the Lipschitz
graph γν with a uniform Lipschitz constant Cγ for all ν ≥ 0, assume that ην0 ∈ L2(Ω) and, setting
0 ≤ ϑν(0) = γν(ην0 ), assume g̃ν ≥ 0 in ]0, T [×Ωc and ϑν(0)− gν(0) ∈ Hs

0(Ω) is bounded uniformly in ν for
ν ≥ 0. Let (ην , ϑν) be the unique solution of the fractional two-phase Stefan-type problem (6.132ph), while
(ηo, ϑo) is the unique solution of the fractional one-phase Stefan-type problem (6.131ph) with 0 ≤ ϑo = γo(ηo).
Suppose that ην0 ⇀ ηo0 in L2(Ω), fν ⇀ fo in L2(0, T ;L2(Ω)), gν ⇀ go in W 2,1(0, T ;L2(Rd))-weak and in
L∞(0, T ;Hs(Rd))-weak∗, and γν converges to γo uniformly on compact sets as ν tends to zero. Then,

ην ⇀ ηo in H1(0, T ;H−s(Ω))-weak and in L∞(0, T ;L2(Ω))-weak∗ as ν ↘ 0

and

ϑν ⇀ ϑo in H1(0, T ;L2(Ω))-weak, in L∞(0, T ;Hs(Rd))-weak∗ and in C([0, T ];L2(Ω)) as ν ↘ 0.

Proof. Indeed, as in the previous theorem, since ην ∈ βν(ϑν) is a solution to (6.132ph), it is bounded in
H1(0, T ;H−s(Ω)). Passing to a subsequence, we have (ηνn)n converging in H1(0, T ;H−s(Ω))-weak and in
L∞(0, T ;L2(Ω)) in the weak∗ topology, to some ηo.

Furthermore,

L̃sA(γν(ην)−gν) = ∂φνt (ην) = fν−∂η
ν

∂t
⇀ fo−∂η

o

∂t
= ∂φot (η

o) = L̃sA(γo(ηo)−go) weakly in L2(0, T ;H−s(Ω).

Therefore, by applying (L̃sA)−1, wν = γν(ην)− gν converges weakly to wo = γo(ηo)− go in L2(0, T ;Hs
0(Ω)).

But ην is in L∞(0, T ;L2(Ω)) for each ν by Theorem 6.3 since ην is the generalised enthalpy solution to
the Stefan-type problem (6.132ph), bounded independent of ν > 0 for ν small enough. Therefore, by the
assumptions, we can again obtain a priori estimates on ϑν = γν(ην) in L∞(0, T ;Hs(Rd))∩H1(0, T ;L2(Ω)),
and the conclusion follows as in the proof of the previous theorem.

Remark 6.30. Similarly to the convergence of the two-phase problem, it is possible to extend the results of
Sections 4 and 5 to the one-phase problem.
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6.8 Nonlocal Stefan-Type Problems

In this next part of the chapter, we consider the Stefan-type problems defined instead with the nonlocal
operator La from Chapter 2. Much work has been done to investigate such problems, in particular in the
case where γ is given by the power law as for porous medium-type equations. In particular, the author in
[237] made use of the fractional Laplacian to replace the non-linear graph in the porous medium equation (see
also [11],[65], [64], [210], [235], [38], [63], [222], [7] and [149] for other works considering nonlocal interaction
terms, as well as [66] for a derivation, from microscopic dynamics, of the equation defined with the fractional
Laplacian), which was shown to be in fact equivalent to the nonlocal bilinear form of the fractional Laplacian.
Assuming an m-accretive operator on L1(Ω), he generalised the result to various types of non-degenerate and
degenerate kernels, as well as to the fractional p-Laplacian, which is a generalisation of results from [236].
Similarly, the homogeneous porous medium equation with no source term and no boundary data with the
spectral fractional Laplacian was considered in [43] and [36] with no further assumptions on the operator,
and a generalisation of the spectral fractional Laplacian to the killed semigroup of Brownian motion was
considered for the Cauchy problem in [170]. A porous medium-type equation with nonlocal operators has
also been considered in [105] for operators that are obtained as generators of Lévy processes with even kernels
of the form a(x, y) = a(x− y) = a(y−x), and in [81] for nonlocal operators with a finite horizon, while more
general nonlocal operators similar to ours have been considered in [209], [230] and [137] for the homogeneous
Cauchy problem on unbounded domains.

In this section, we first show the existence and uniqueness of the Stefan-type problem given similarly
by (6.11), but with the nonlocal operator La. This follows exactly the same proof as for the fractional L̃A,
with simple minor modifications, and is a generalisation of the result given in [42] which considered only the
restricted fractional Laplacian and the spectral fractional Laplacian.

Next, extending the T-monotonicity of La given in Section 2.3, we have, in addition, that La ◦ γ is
T-accretive, thereby allowing us to extend to the case with L1 data in the next section 6.8.2 to obtain mild
solutions using the results of [44]. Finally, we conclude this section by observing some properties of the mild
solutions.

6.8.1 Existence and uniqueness of solution to nonlocal Stefan-type problems

Indeed, repeating the proof of Theorem 6.3 with the same convex function φt, we have the equivalent of
(6.30) given by

V ∈ ∂φt(U) in H−s(Ω) if and only if U ∈ L2(Ω) and L−1
a (V ) + g = γ(U) a.e. in Ω, (6.88)

which gives 〈
dη

dt
, ξ

〉
+ 〈La(γ(η)− g), ξ〉 = 〈f, ξ〉, ∀ξ ∈ L2(0, T ;Hs

0(Ω))

and the regularity
η ∈ L∞(0, T ;L2(Ω)) ∩H1(0, T ;H−s(Ω))

with
γ(η)− g ∈ L2(0, T ;Hs

0(Ω)).

Therefore, we have the following theorem

Theorem 6.31. Suppose a(x, y) is symmetric. Let f ∈ L2(0, T ;H−s(Ω)) and g ∈ BV (0, T ;L2(Ω)) ∩
L2(0, T ;Hs(Rd)). Assume η0 ∈ L2(Ω) and γ satisfies (6.16). Then there exists a unique generalised solution
u to the problem 〈

dη

dt
, ξ

〉
+ 〈La(γ(η)− g), ξ〉 = 〈f, ξ〉, ∀ξ ∈ L2(0, T ;Hs

0(Ω)) (6.89)

with initial data
η(0) = η0 in H−s(Ω),

such that
η ∈ L∞(0, T ;L2(Ω)) ∩H1(0, T ;H−s(Ω)), γ(η)− g ∈ L2(0, T ;Hs

0(Ω)).

Furthermore, the generalised solution satisfies (6.23)–(6.25).
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Remark 6.32. Observe that the symmetry of the kernel a(x, y) is necessary so that we can use the operator
L−1
a in order to work with the inner product in dual space.

This result generalises that of [19] and [42] which only considered homogeneous data and zero boundary
conditions. See also Theorem 1.1 of [190] or Corollary 1.2 of [39] for similar results for Dirichlet forms using
other approaches.

Next, we have the important result that the operator La ◦ γ is T-accretive in L2 for a(x, y) symmetric,
i.e.

Proposition 6.33. Suppose a(x, y) is symmetric. Let η and η̂ denote two solutions of the nonlocal Stefan-

type problems corresponding to (f, η0) and (f̂ , η̂0) respectively with the same Dirichlet boundary condition

g, where f, f̂ ∈ L2(0, T ;L2(Ω)) such that f − f̂ ∈ L1(QT ) and η0, η̂0 satisfying the same assumptions as
Theorem 6.31. Then, the following energy estimates hold for every t > 0:

ˆ
Ω

(η(t)− η̂(t))+ ≤
ˆ

Ω

(η0 − η̂0)+ +

ˆ t

0

ˆ
Ω

(f − f̂)+

and ˆ
Ω

|η(t)− η̂(t)| ≤
ˆ

Ω

|η0 − η̂0|+
ˆ t

0

ˆ
Ω

|f − f̂ |.

Proof. Multiplying (6.11) by a test function ξ ∈ L2(0, T ;Hs
0(Ω)), we obtain, for the difference of the two

equations corresponding to η and η̂,

ˆ T

0

〈
∂

∂t
(η − η̂), ξ

〉
+ 〈La(v − v̂), ξ〉 =

ˆ T

0

〈
f − f̂ , ξ

〉
, ∀ξ ∈ L2(0, T ;Hs

0(Ω)),

where we have written v := γ(η). Now we take the test function ξ to be ϕδ(w(τ, x))χ[0,t](τ), where ϕδ(w) is
the approximation of the sign+ (Heaviside) function, given by

ϕδ(w) =


1
δ (w − (Id+ δsign+)−1w) = sign+(w) for w ≥ δ
w/δ for w ≤ δ
0 for w ≤ 0,

where w = v − v̂.
Recall that for symmetric a(x, y) ≥ 0,

〈Lau, v〉 =
1

2

ˆ
Rd

ˆ
Rd

(v(x)− v(y))(η(x)− η(y))a(x, y) dx dy a.e.x 6= y.

Since ϕδ is monotone in w and ϕδ(0) = 0, we have

(ϕδ(w(x))− ϕδ(w(y)))(w(x)− w(y)) = (ϕδ(w(x))− ϕδ(w(y)))(w(x)− w(y)) ≥ 0 ∀w ∈ Hs
0(Ω).

Making use of the positivity of a(x, y), we thus have

〈Law,ϕδ(w)〉 =
1

2
(τ)

ˆ
Rd

ˆ
Rd

(ϕδ(w(x))− ϕδ(w(y)))(w(x)− w(y))a(x, y) dx dy ≥ 0 ∀w ∈ Hs
0(Ω),

so the bilinear term with test function ϕδ(w(τ, x))χ[0,t](τ) is non-negative. Therefore, rewriting w = (v −
g)− (v̂ − g) = v − v̂, we have

ˆ t

0

〈
∂

∂t
(η − η̂), ϕδ(v − v̂)

〉
≤
ˆ t

0

〈
f − f̂ , ϕδ(v − v̂)

〉
.

Observe that since γ is strictly increasing, sign+(v − v̂) = sign+(η − η̂). Thus, observing that 0 ≤ ϕδ ≤ 1,
letting δ → 0 gives

ˆ t

0

〈
∂

∂t
(η − η̂), sign+(η − η̂)

〉
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=

ˆ t

0

〈
∂

∂t
(η − η̂), lim

δ→0
ϕδ(v − v̂)

〉
= lim
δ→0

ˆ t

0

〈
∂

∂t
(η − η̂), ϕδ(v − v̂)

〉
≤ lim
δ→0

ˆ t

0

〈
f − f̂ , ϕδ(v − v̂)

〉
=

ˆ t

0

〈
(f − f̂)+, sign+(η − η̂)

〉
−
ˆ t

0

〈
(f − f̂)−, sign+(η − η̂)

〉
≤
ˆ t

0

〈
(f − f̂)+, sign+(η − η̂)

〉
≤
ˆ t

0

ˆ
Ω

(f − f̂)+

by Lebesgue’s dominated convergence theorem, since we can pass to the limit in δ using the weak lower
semi-continuity of the L1 norm on L2(Ω). Computing the integral over time on the left-hand-side gives

∥∥(η(t)− η̂(t))+
∥∥
L1(Ω)

≤
∥∥(η0 − η̂0)+

∥∥
L1(Ω)

+

ˆ t

0

∥∥∥(f − f̂)+
∥∥∥
L1(Ω)

,

which can be rewritten as the first estimate.
To obtain the second estimate, we exchange η and η̂, and then add the two inequalities.

Remark 6.34. Observe that g is fixed, since we only have a relationship between η and v, and not between
η and v − g. Suppose otherwise that we have g and ĝ. Then the first term (time-derivative term) involves a
duality between ∂

∂t (η− η̂) and (v− v̂)− (g− ĝ), which needs to be considered separately, but when considered
separately, is no longer in Hs

0(Ω) and the duality no longer makes sense.

However, having obtained La ◦γ is T-accretive, we also have the operator A defined by Aη := La ◦γ(η)−
Lag being T-accretive, since Lag = 0 a.e. in Ω. As a result, we are still able to consider inhomogeneous
Dirichlet boundary conditions.

Remark 6.35 (Comparison Principle). Consequently, if f ≥ 0 and g ≥ −λ for any fixed λ > 0, then the
weak solution v = γ(η) satisfies v ≥ −λ a.e. in ]0, T [×Ω, provided v(0) ≥ −λ.

Remark 6.36. It is not known whether the bilinear term 〈Law,ϕδ(w)〉 is non-negative when a(x, y) is
not symmetric. However, the solution to the generalised Stefan-type problem only exists when a(x, y) is
symmetric, so we only consider the symmetric case.

By the T-accretivity of the operator La◦γ in L2(Ω), we can obtain that the solution exponentially decays
to the stationary solution, making use of the classical results of Pazy [184] (see also Proposition 19.1 of [34]).

Corollary 6.37 (Asymptotic Behaviour of Solution in L2). There exists a unique η∞ ∈ L2(Ω) such that
La(γ(η∞)) 3 f . Moreover, for every solution η,

lim
t→∞

e−t(La◦γ)η = η∞.

As a result, we have that the functions t 7→ |η(t)| and t 7→
∣∣∣dudt (t)

∣∣∣ are nonincreasing on [0,+∞[.

6.8.2 The L1 framework for the nonlocal Stefan-type problem

In this next subsection, we will extend the results from the previous section, to the L1 framework. Much
of the analysis has been done in [44], which assumed that the operator has L1-contraction properties. They
gave the nonlocal operator La as an example of such an operator, in Section 3.3 of [44], but did not show
that La does possess the L1-contraction property. Here, we complete the proof and show that, in fact, the
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nonlocal operator La with a not necessarily symmetric kernel a(x, y) can be used to extend the L1-contraction
property from the Hilbertian framework in Proposition 6.33.

As such, the Stefan-type problem defined with La for a symmetric a(x, y) possesses the properties derived
in [44], which is a generalisation of the classical result given in [234], a generalisation of the results obtained
in [183] for the fractional Laplacian which corresponds to a specific kernel as given in (2.5), and is also more
general than the kernels considered in [105]. It is not known how a similar theory for Neumann boundary
conditions can be developed, but works based on non-singular kernels such as Chapter 5 of [13] or for the
spectral Laplacian such as in [1] may provide some insights.

Consider the operator L = La : Hs
0(Ω)→ H−s(Ω), and the stationary homogeneous Dirichlet problem

Lpu = f for f ∈ Lp(Ω), 1 ≤ p <∞

such that Lp is the restriction of the image of La to Lp(Ω). For p = 2, the natural definition of the domain
D(L2) is given by

D(L2) = {u ∈ Hs
0(Ω) : L2u ∈ L2(Ω)}.

In this case, L2 corresponds to La, so the Lax-Milgram theorem gives a solution to the Dirichlet problem by
Theorem 2.5.

Furthermore, we note that the existence result in Theorem 6.31 holds for all f ∈ L2(0, T ;Lp(Ω)) for
2 ≥ p > 2# = 2d

d+2s by the Sobolev embedding theorem 1.1, while the L1-contraction Proposition 6.33 given

above holds for all f ∈ L2(0, T ;L2(Ω)). We want to further extend these results to f ∈ L2(0, T ;Lp(Ω)) for
all 1 ≤ p ≤ 2. To do so, we recall some definitions:

Recall that for bounded domains Ω ⊂ Rd with Lipschitz boundary, we can define

Hs
0(Ω) := {u ∈ Hs(Rd) : u = 0 a.e. in Rd\Ω} (6.90)

with norm

‖u‖2Hs0 (Ω) :=

¨
DΩ

|u(x)− u(y)|2

|x− y|d+2s
dx dy (1.18)

for DΩ = Rd × Rd\(Ωc × Ωc). Also, for p 6= 2, we denote Hs,p
0 (Ω) to be the closure of C∞c (Ω) with respect

to the norm
∥∥Ds(·)

∥∥
Lp(Rd)

, as given in Section 1.2.

For f ∈ L2(Ω), we first recall that La with a (not necessarily symmetric) kernel a(x, y) is T-monotone,
i.e. it satisfies

〈Lav, v+〉 > 0 ∀v ∈ Hs
0(Ω) such that v+ 6= 0,

as given in Theorem 2.8 of Section 2.3.
For f ∈ L1(Ω), the natural domain is

D(L1) = {u ∈ Hs,1
0 (Ω) : u = 0 in Ωc and u,L1u ∈ L1(Ω)}.

Our main result is to show the L1-contraction of the nonlocal linear operator L1, which will directly lead to
the existence of unique mild solutions by the Crandall-Liggett theory (Theorem A and Theorem I of [78]),
as shown in [44]. This is given as follows:

Theorem 6.38. (a) D(L1) is dense, and (Id+ λL1)−1 is a contraction on L1(Ω) for each λ > 0.

(b) D(L1) ⊂ W 1,q
0 (Ω) for 1 ≤ q < d/(d− s) and there is a constant c = c(q) > 0 such that c‖u‖W 1,q(Ω) ≤

‖L1u‖L1(Ω) for u ∈ D(L1).

(c) L1 is the L1-closure L̄2 of L2.

(d) supΩ(Id + λL1)−1f ≤ supΩ f
+ for each λ > 0 and f ∈ L1(Ω), that is

∥∥(Id+ λL1)−1f
∥∥
L∞(Ω)

≤∥∥f+
∥∥
L∞(Ω)

.

We will show this via a series of lemmas and theorems.

Lemma 6.39. D(L2) ⊂ D(L1).
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Proof. It is clear that if Lu ∈ L2(Ω), then Lu ∈ L1(Ω) for a bounded set Ω, by the Cauchy-Schwarz
inequality. We also claim that Hs,2

0 (Ω) ⊂ Hs,1
0 (Ω), so we have D(L2) ⊂ D(L1) since u = 0 in Ωc for both

D(L2) and D(L1). Indeed, by Hölder’s inequality and an elementary estimate involving the measure of finite
measurable sets Ω (see, for example, Lemma 6.1 of [95]), and recalling u ≡ 0 outside Ω, we have that

1

cd,s

ˆ
Rd\BR(Ω)

|Dsu(x)| dx =

ˆ
Rd\BR(Ω)

∣∣∣∣ˆ
Rd

u(x)− u(y)

|x− y|d+s
dy

∣∣∣∣ dx
=

ˆ
Rd\BR(Ω)

∣∣∣∣ˆ
Rd

−u(y)

|x− y|d+s
dy

∣∣∣∣ dx
=

ˆ
Rd\BR(Ω)

∣∣∣∣ˆ
Ω

−u(y)

|x− y|d+s
dy

∣∣∣∣ dx
≤
ˆ
Rd\BR(Ω)

ˆ
Ω

|u(y)|
|x− y|d+s

dy dx

≤
ˆ
Rd\BR(Ω)

(ˆ
Ω

|u(y)|
d
d−s dy

) d−s
d
(ˆ

Ω

|x− y|− ds (d+s) dy

) s
d

dx

≤‖u‖
L

d
d−s (Ω)

ˆ
Rd\BR(Ω)

(ˆ
Ω

|x− y|− ds (d+s)

) s
d

dy dx

≤‖u‖
L

d
d−s (Ω)

ˆ
Rd\BR(y)

(ˆ
Ω

|x− y|− ds (d+s) dy

) s
d

dx

≤ C(ω)‖u‖
L

d
d−s (Ω)

R−s

since BR(y) ⊆ BR(Ω) for y ∈ Ω, where C(ω) is a constant depending on the spherical measure ω. Then, by
the Cauchy-Schwarz inequality and the Sobolev inequality (Lemma 1.1) since d

d−s <
2d
d−2s (see also Lemma

8 of [211]), for a constant C(|Ω|) depending on the measure of Ω,

ˆ
Rd
|Dsu(x)| dx =

ˆ
Rd\BR(Ω)

|Dsu(x)| dx+

ˆ
BR(Ω)

|Dsu(x)| dx

≤ C(ω)cd,s‖u‖
L

d
d−s (Ω)

R−s + C(|Ω|)‖Dsu‖L2(BR(Ω))

≤ C ′(ω, s, d)‖Dsu‖L1(Rd)R
−s + C(|Ω|)‖Dsu‖L2(Rd) .

Taking R large enough such that Rs = 2C ′(ω, s, d). Then we have ‖Dsu‖L1(Rd) ≤ 2C(|Ω|)‖Dsu‖L2(Rd) and

Hs,2
0 (Ω) ⊂ Hs,1

0 (Ω). Since ‖u‖L1(Rd) ≤‖u‖L2(Rd), we have D(L2) ⊂ D(L1).

Having obtained the inclusions of the domains, we now want to show the inclusions of the operators, i.e.
L1 ⊃ L̄2, where L̄2 is the closure of L2 with respect to the L1-topology. Observe that, see also Proposition
4 of [154] for the symmetric case, for a Lipschitz convex function Φ : R→ R such that Φ(0) = 0,

Ea(Φ(u), v) ≤ Ea(u, vΦ′(u)) for v ≥ 0, v ∈ Hs
0(Ω), weakly in Ω (6.91)

for u ∈ Hs
0(Ω), where

Ea(u, v) = 〈Lau, v〉.

Indeed, since Φ(a)− Φ(b) ≤ Φ′(a)(a− b) for all a, b if Φ is convex, we have, by the positivity of a(x, y),

P.V.

ˆ
Rd

ˆ
Rd
v(x)(Φ(u(x))− Φ(u(y)))a(x, y) dy dx ≤ P.V.

ˆ
Rd

ˆ
Rd
v(x)Φ′(u(x))(u(x)− u(y))a(x, y) dy dx

∀v ≥ 0.

The reverse inequality holds true for Φ concave.
We can then adapt the proof of Theorem 13 of [154] using the Moser technique to obtain the following

theorem.
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Theorem 6.40. Let f ∈ Lm(Ω) with m > d/2s. Suppose Ω ⊂ Rd is a bounded domain with Lipschitz
boundary. Then, there exists a constant C, depending only on a∗, a

∗, d, Ω, ‖u‖Hs0 (Ω), ‖g‖Lp(Ω) and s, such

that the weak solution of
Lu = f in Ω, u = 0 in Ωc

satisfies
‖u‖L∞(Ω) ≤ C.

Proof. Assume, without loss of generality, that |Ω| = 1. For β > 1 and T > 0 large, set the following convex
function

Φ(σ) = ΦT (σ) =

{
σβ if 0 ≤ σ < T,

βT β−1σ − (β − 1)T β , if σ ≥ T.

Since Φ is Lipschitz (with Lipschitz constant βT β−1) and Φ(0) = 0, we have Φ(u) ∈ Hs
0(Ω) and as previously

discussed, we have
Ea(Φ(u), v) ≤ Ea(u, vΦ′(u)) ∀v ≥ 0, v ∈ Hs

0(Ω). (6.91)

Since Φ is positive, taking v = Φ(u) in the bilinear form, we use the Sobolev-Poincaré Lemma 1.1 and the
symmetric form in Proposition 2.2 to obtain

a∗
c2d,sC

2
S

∥∥Φ(u)
∥∥2

L2∗ (Ω)
≤ a∗

2

¨
DΩ

|Φ(u(x))− Φ(u(y))|2

|x− y|d+2s
dx dy

≤ 1

2

¨
DΩ

[Φ(u(x))− Φ(u(y))]2asym(x, y) dx dy

=

¨
DΩ

Φ(u(x))[Φ(u(x))− Φ(u(y))]a(x, y) dx dy

= 〈Φ(u),LΦ(u)〉.

Applying (6.91) then gives

a∗
c2d,sC

2
S

∥∥Φ(u)
∥∥2

L2∗ (Ω)
≤〈Φ(u),LΦ(u)〉

≤ 〈Φ(u)Φ′(u),Lu〉
= 〈Φ(u)Φ′(u), f〉
≤
∥∥Φ(u)Φ′(u)

∥∥
L

m
m−1 (Ω)

‖f‖Lm(Ω)

≤
∥∥∥βu2β−1

∥∥∥
L

m
m−1 (Ω)

‖f‖Lm(Ω)

since Φ(r) ≤ rβ and Φ′(r) ≤ βrβ−1.
Setting q = 2m′ where m′ satisfies 1

m + 1
m′ = 1, and letting T →∞, we have, by the lower-semicontinuity

of liminfs as Φ(r) ≤ rβ and the Cauchy-Schwarz inequality,(ˆ
Ω

|u|2
∗β

) 1
2∗β

=‖u‖L2∗β(Ω)

= lim inf
T→∞

∥∥Φ(u)
∥∥ 1
β

L2∗ (Ω)
≤

(
βc2d,sC

2
S

a∗
‖f‖Lm(Ω)

) 1
2β (ˆ

Ω

|u|
2β−1

2 q

) 1
βq

≤

(
βc2d,sC

2
S

a∗
‖f‖Lm(Ω)

) 1
2β
(ˆ
{|u|≤1}

|u|
2β−1

2 q +

ˆ
{|u|≥1}

|u|
2β−1

2 q

) 1
βq

≤

(
βc2d,sC

2
S

a∗
‖f‖Lm(Ω)

) 1
2β
(ˆ
{|u|≤1}

1 +

ˆ
{|u|≥1}

|u|βq
) 1
βq

since β, q ≥ 1
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≤

(
βc2d,sC

2
S

a∗
‖f‖Lm(Ω)

) 1
2β (
|Ω|+

ˆ
Ω

|u|βq
) 1
βq

=

(
βc2d,sC

2
S

a∗
‖f‖Lm(Ω)

) 1
2β (

1 +

ˆ
Ω

uβq
) 1
βq

The rest follows by a standard iteration process. Indeed, take β0 = 1 and define βj =
(

2∗

q

)j
(which is

greater than 1 since m > d
2s ) so that

βj+1q = 2∗βj .

Denote

Aj =

(ˆ
Ω

u2∗βj

) 1
2∗βj

, cj =

(
βjc

2
d,sC

2
S

a∗
‖f‖Lm(Ω)

) 1
2βj

.

Then, we have the recurrence formula

Aj+1 ≤ cj+1(1 +A
2∗βj
j )

1
2∗βj .

Renormalising if necessary, we may assume, without loss of generality, that A0 = 1. Then, since we are in a
bounded domain Ω, by Lp-embeddings (Hölder’s inequality), Aj ≥ 1 for all j. Taking logarithms,

logAj+1 ≤ log cj+1 +
1

2∗βj
log
(

1 +A
2∗βj
j

)
≤ log cj+1 +

1

2∗βj
+ logAj ,

by making use of the inequality log(1 + x) ≤ 1 + log x if x ≥ 1. By iteration,

logAj+1 ≤
j+1∑
k=1

log cj+1 +

j∑
k=1

1

2∗βj
+ logA0. (6.92)

Recall that by Sobolev embedding theorem (Lemma 1.1), A0 ≤‖u‖Hs0 (Ω). Also, observe that the two series

∞∑
k=1

log cj+1 =

∞∑
k=1

1

2βk
log

(
βkc

2
d,sC

2
S

a∗
‖f‖Lm(Ω)

)
,

∞∑
k=1

1

2∗βj

are convergent, since βk > 1 for all k, so the ratio of the k + 1-th term to the k-th term is always less than
1. Taking (6.92) to infinity gives the result, since limj→∞Aj =‖u‖L∞(Ω).

Now, we take f ∈ Lm(Ω) for 1 ≤ m ≤ 2d
d+2s and consider the following problem

Lu = f in Ω, u = 0 in Ωc

in distributional sense, i.e. u ∈ L1(Ω) is a weak solution to the problem if for f ∈ L1(Ω),

ˆ
Ω

uψ dx =

ˆ
Ω

fφ dx, (6.93)

for any
φ ∈ T (Ω) := {φ : Lφ = ψ in Ω, φ = 0 in Ωc, ψ ∈ C∞c (Ω)}

with ψ ∈ C∞c (Ω).

Remark 6.41. Observe that if we consider ψ ∈ Lm(Ω), m > d/2 for the test function space, we recover the
classical definition of duality solution as in [221] (see also, for instance, [6]). Therefore, we can obtain a
solution of the adjoint problem if we have a weak solution in L1(Ω).

Indeed, using Theorem 6.40, φ is bounded and consequently all the terms in the identity (6.93) make
sense.
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Next, we develop the existence theorem for L1-data, following the ideas of [154] but with a non-symmetric
kernel. We need to introduce the truncation function Tk := −k∨ (k∧u) for every k ≥ 0, which will be useful
for the proof.

Remark 6.42. Observe that for v ≥ 0, the given definition of Tk gives

[v(x)− Tk(v(x))][Tk(v(x))− Tk(v(y))] ≥ 0 a.e. in Ω× Ω.

Indeed,
v(x)− Tk(v(x)) = v(x)− v(x) = 0 if v(x) ≤ k since Tk(v(x)) = v(x),

Tk(v(x))− Tk(v(y)) = k − k = 0 if v(x) ≥ k and v(y) ≥ k,
[v(x)− Tk(v(x))][Tk(v(x)− Tk(v(y))] = [v(x)− k][k − v(y)] ≥ 0 if v(x) ≥ k and v(y) ≤ k.

In particular, this means that

v(x)[Tk(v(x)− Tk(v(y))] ≥ Tk(v(x))[Tk(v(x)− Tk(v(y))] a.e. in Ω× Ω,

or, by the positivity of a(x, y),
Ea(Tk(v), v) ≥ Ea(Tk(v), Tk(v)).

By symmetry and a similar analysis, we also have

|v(x)− y(y)|2 ≥ [v(x)− v(y)][Tk(v(x)− Tk(v(y))] ≥ [Tk(v(x)− Tk(v(y))]2 a.e. in Ω× Ω.

Also, observe that Tk(v) is a Lipschitz function of v with Lipschitz constant 1, so for v ≥ 0, since
Tk(v) ≥ 0, we have

Tk(v(x))[Tk(v(x))− Tk(v(y))] ≤ Tk(v(x))[v(x)− v(y)] a.e. in Ω× Ω.

Theorem 6.43. There is a unique weak solution to

Lu = f (6.94)

for any f ∈ L1(Ω), which is positive if f is positive. Furthermore,

∀k ≥ 0, Tk(u) := −k ∨ (k ∧ u) ∈ Hs
0(Ω), (6.95)

u ∈ Lq(Ω) ∀q ∈
]
1,

d

d− 2s

[
(6.96)

and

|Dsu| ∈ Lr(Ω) ∀r ∈
]
1,

d

d− s

[
. (6.97)

Proof. The uniqueness follows since for f1 = f2,
´

Ω
(u1 − u2)ψ dx = 0 for any ψ ∈ C∞c (Ω), so u1 ≡ u2.

For positivity, we first observe that for any v,

Ea(v+, v−) = P.V.

ˆ
Rd

ˆ
Rd
v−(x)(v+(x)− v+(y))a(x, y) dx dy = −P.V.

ˆ
Rd

ˆ
Rd
v−(x)v+(y)a(x, y) dx dy ≤ 0,

since v+(x)v−(x) = 0 as v+ and v− cannot both be nonzero at the same point x, and v+, v−, a(x, y) ≥ 0.
Therefore, considering the test function v = u− for positive f , we have

0 ≤
ˆ

Ω

fu− = 〈Lu, u−〉 = Ea(u, u−) = Ea
(
u+, u−

)
− Ea

(
u−, u−

)
≤ −Ea

(
u−, u−

)
≤ 0

by the positivity of a, so u− ≡ 0.
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Therefore, we can restrict the problem (6.94) to positive data which give positive solutions. The general
case can then be obtained by decomposing the data into its positive and negative parts and then dealing
with the two data separately, making use of the linearity of the operator.

To prove the existence of a solution, we obtain the solution as a limit of solutions to approximated
problems.

Consider fn ∈ L∞(Ω) (fn ≥ 0) such that fn → f in L1(Ω), and let un ∈ Hs
0(Ω) be the solution to the

problem
Lun = fn in Ω, un = 0 in Ωc.

Multiplying this equation by Tk(un) for k ≥ 0 and integrating over Ω, we have

a∗
c2d,s

∥∥Tk(un)
∥∥2

L2∗ (Ω)

≤ a∗
c2d,s

CS
∥∥DsTk(un)

∥∥2

L2(Rd)
by Lemma 1.1

≤ 1

2
CS P.V.

¨
DΩ

(Tk(un)(x)− Tk(un)(y))2a(x, y) dy dx by the coercivity of a in (2.2)

= CS P.V.

¨
DΩ

Tk(un)(x)(Tk(un)(x)− Tk(un)(y))a(x, y) dy dx

≤ CS P.V.
¨
DΩ

Tk(un)(x)(un(x)− un(y))a(x, y) dy dx by Remark 6.42

= CS〈Lun, Tk(un)〉
= CS〈fn, Tk(un)〉
≤ CSk‖fn‖L1(Ω) since Tk ≤ k (6.98)

since un can be assumed to be positive, by taking positive f by the first part of this proof. Also, by the
definition of Tk and 2∗, we have

km{x ∈ Ω : un(x) ≥ k}
d−2s

2d =
∥∥Tk(un)

∥∥
L2∗ ({un≥k})

≤
∥∥Tk(un)

∥∥
L2∗ (Ω)

.

Combining both inequalities, we have that

m{x ∈ Ω : un(x) ≥ k} ≤ C

(
‖fn‖L1(Ω)

k

) d
d−2s

(6.99)

for some constant C, so un is bounded in the Marcinkiewicz spaceM
d

d−2s (Ω) (see, for example, Chapter V.3
of [224] for the definition of Marcinkiewicz spaces), and consequently (6.96) holds true.

It remains to show (6.97). Inspired by the results of [154] for the symmetric Dirichlet form, we prove a
similar result here for the more general non-symmetric case. Fix λ > 0, we want to estimate the measure of
the set {x ∈ Ω : |Dsun(x)| ≥ λ}. Observe that this set can be rewritten, for any positive k, as

{x ∈ Ω : |Dsun(x)| ≥ λ} = {x ∈ Ω : |Dsun(x)| ≥ λ, un < k} ∪ {x ∈ Ω : |Dsun(x)| ≥ λ, un ≥ k},

and therefore

{x ∈ Ω : |Dsun(x)| ≥ λ} ⊂ {x ∈ Ω : |Dsun(x)| ≥ λ, un < k} ∪ {x ∈ Ω : un ≥ k}. (6.100)

For the first set, applying the reverse inequality of (6.91) to the concave function Φ(un) = Tk(un) when
restricted to positive values for the kernel

kI :=
1

|x− y|d+2s

which corresponds to the fractional Laplacian (up to a constant), we have, for non-negative un ∈ Hs
0(Ω),

EI(Tk(un), v) ≥ EI
(
un, vχ{x∈Ω,un<k}

)
∀v ∈ Hs

0(Ω), v ≥ 0.
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Taking v = Tk(un) (since un ≥ 0 implies Tk(un) ≥ 0) with the kernel function kI gives∥∥DsTk(un)
∥∥
L2(Rd)

=
1

2
c2d,s

ˆ
Rd

ˆ
Rd

|Tk(un(x))− Tk(un(y))|2

|x− y|d+2s
dx dy

= c2d,s

ˆ
Rd

ˆ
Rd
Tk(un(x))(Tk(un(x))− Tk(un(y)))

1

|x− y|d+2s
dx dy

≥ c2d,s
ˆ
Rd

ˆ
Rd
Tk(un(x))χ{x∈Ω,un<k}(un(x)− un(y))

1

|x− y|d+2s
dx dy

= c2d,s

ˆ
Rd

ˆ
Rd
un(x)χ{x∈Ω,un<k}(un(x)− un(y))

1

|x− y|d+2s
dx dy

since Tk(un) = un for 0 < un < k. Therefore, we have

m{x ∈ Ω : |Dsun(x)| ≥ λ, un < k} ≤ 1

λ2

ˆ
{x∈Ω,un<k}

|Dsun|2 =
1

λ2

∥∥DsTk(un)
∥∥2

L2(Rd)
≤
kc2d,s
λ2a∗

‖fn‖L1(Ω)

by (6.98).
For the second set, we just make use of the inequality (6.99). Therefore, combining the inequalities for

both sets of (6.100), we have that, for every k > 0,

m{x ∈ Ω : |Dsun(x)| ≥ λ} ≤
kc2d,s
λ2a∗

‖fn‖L1(Ω) + C

(
‖fn‖L1(Ω)

k

) d
d−2s

.

Minimising in k, we obtain

m{x ∈ Ω : |Dsun(x)| ≥ λ} ≤ C ′
(
‖fn‖L1(Ω)

λ

) d
d−s

(6.101)

for a constant C ′ depending on C and a∗. Therefore, |Dsun| is bounded in the Marcinkiewicz spaceM
d
d−s (Ω),

and so (6.97) holds true.
Finally, we want to pass to the limit, and show that the limit is the solution of the original problem

(6.94). By linearity, for any m,n ∈ N, un − um solves

L(un − um) = fn − fm in Ω, un = um = 0 in Ωc.

Choosing, for any k > 0, Tk(un − um) as the test function, we can deduce, in a similar manner as done for
(6.99), that

m{x ∈ Ω : |un − um| ≥ k} ≤ C

(
‖fn − fm‖L1(Ω)

k

) d
d−2s

.

As fn, fm → f in L1(Ω), for n,m large enough, we obtain that {un} is a Cauchy sequence in measure.
Consequently, up to subsequences, it converges in Ω almost everywhere, towards some function u.

Also, using the embedding of Mp(Ω) spaces into Lp(Ω) for p finite, we have that un also converges to u
in Lq(Ω) for any 1 ≤ q ≤ d

d−2s . This allows us to pass to the limit in the equation and obtain a weak solution
of (6.94), which, by uniqueness, is u. Since the whole sequence converges to u in Lq(Ω), (6.96) holds for u.

Similarly, since (6.101), we have that

m{x ∈ Ω : |Ds(un − um)| ≥ λ} ≤ C ′
(
‖fn − fm‖L1(Ω)

λ

) d
d−s

,

thus Dsun is a Cauchy sequence in measure in Ω, and therefore, up to a subsequence, Dsun converges a.e. in
Ω. By Fatou’s lemma, (6.95) follows from (6.98). Again, by Fatou’s lemma and (6.101), (6.97) follows.
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Remark 6.44. This Theorem 6.43 corresponds, for s = 1, to the classical result where the weak solutions u

are such that |∇u| ∈ Lr(Ω) for r ∈
]
1, d

d−1

[
and u ∈ Lq(Ω) for q ∈

]
1, d

d−2

[
. Furthermore, similar embedding

results for fractional Sobolev spaces can be obtained for fractional-type operators using semigroup theory (See
[166]).

As a result of this theorem, we have the following result.

Lemma 6.45. L1 ⊃ L̄2 and L̄2 satisfies Proposition 6.33(b). Here L̄2 is the closure of L2 with respect to
the L1-topology.

Proof. Indeed, since the graph of L1 is closed in Hs,1
0 (Ω)× L1(Ω), it follows that L̄2 ⊂ L1.

Now, by Theorem 2.8, we have the L1-contraction for L̄2, and we want to extend this to L1 using the
density of the operators, which will require the following two results.

Lemma 6.46. L1 is one-to-one.

Proof. Since Theorem 6.43 holds, by Remark 6.41, for each f ∈ Lp(Ω), p > d/2, there is a solution v of the
adjoint problem associated to the formal adjoint L′ of L:

v ∈ D(L1) : 〈L′v, w〉 =

ˆ
Ω

fw, ∀w ∈ C∞c (Ω).

By density and the definition of Hs,p
0 (Ω), we can let w ∈ Hs,1

0 (Ω). Taking w = u and supposing that L1u = 0,
we obtain ˆ

Ω

fu = 〈v,L1u〉 = 0

for any f ∈ Lp(Ω), so u = 0.

As a corollary, we have the following result.

Corollary 6.47. Id+ λL1 is one-to-one for each λ > 0.

We now complete the proof of the following theorem for L1 contraction for L1.

Proof of Theorem 6.38. We have shown that L̄2 ⊂ L1, Id + λL̄2 is onto and Id + λL1 is one-to-one. Thus
L̄2 = L1, and (a) and (c) are proved since L̄2 satisfies (a) by Proposition 2.8. Also, Theorem 6.43 gives
(b), so all of Proposition 6.38 is proved except (d). But we know that L2 satisfies (d) by Proposition
2.8. To show that L1 satisfies (d), let f ∈ L1(Ω) and choose fε ∈ L2(Ω) such that fε → f in L1(Ω),
fε(x)→ f(x), fε(x) ≤ f(x)+, and uε(x) = (Id+λL2)−1fε(x)→ u(x) a.e. x ∈ Ω. Then let n→∞ to obtain

uε(x) ≤
∥∥∥fε+

∥∥∥
L∞(Ω)

≤
∥∥f+

∥∥
L∞(Ω)

, and we obtain the result.

Remark 6.48. Note that Proposition 6.33(b) gives a regularity result.

Having obtained the L1 contraction for f ∈ L1(Ω), we want to conduct interpolation, which will require an
analogue of the Gagliardo-Nirenberg-Sobolev inequality (stated as Theorem 6 in [154]) and the corresponding
interpolation between W s,p spaces.

Theorem 6.49. Let u be a function in Lp(Rd) such that Dsu ∈ Lq(Rd) with p, q ≥ 1. Then there exists a
positive constant c = c(d, s, p, q) such that

‖u‖Lr(Rd) ≤ c‖D
su‖θLq(Rd)‖u‖

1−θ
Lp(Rd)

for every r and θ satisfying 1 ≤ r < +∞ and 0 ≤ θ ≤ 1 such that

1

r
= θ

(
1

q
− s

d

)
+ (1− θ)1

p
.
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Lemma 6.50 (Corollary III.2 of [55]). Assume that u ∈ W s1,p1(Rd) ∩ W s2,p2(Rd) for some si, pi > 0,
i = 1, 2. Then, for 0 ≤ s1 < s2 <∞, 1 < p1, p2 <∞, we have

‖u‖W s,p(Rd) ≤ c‖u‖W s1,p1 (Rd)‖u‖W s2,p2 (Rd)

for some constant c, where

s = θs1 + (1− θ)s2,
1

p
=

θ

p1
+

1− θ
p2

for any 0 ≤ θ ≤ 1.

As a result, by interpolation between W s,1(Rd) and W s,2(Rd), we have the following corollary.

Corollary 6.51. The associated operator Lp with domain

D(Lp) = {u ∈ Hs,p
0 (Ω) : u,Lpu ∈ Lp(Ω), u = 0 in Ωc} for 1 ≤ p ≤ 2

is closed and densely-defined in Lp(Ω), i.e. there is a solution u for the Dirichlet problem Lpu = f ∈ Lp(Ω)
for each 1 ≤ p ≤ 2. Furthermore, (Id+ λLp)−1 is a contraction for each λ > 0.

Observe that all the results in this section does not require the kernel a(x, y) to be symmetric, since the
non-symmetric operator La is T-accretive. Symmetry is only required for the nonlinear operator La ◦ γ, as
in Proposition 6.33.

6.8.3 Existence of unique mild solutions and other properties

We first recall (from Definition 1.3(ii) of [34] or Definition 10.6(ii) of [234]) that for a Banach space B,
u :]0, T [→ B is called a mild solution of the Cauchy problem

du

dt
+Au 3 f in ]0, T [

for an operator A, if there exists a sequence {(un, fn)} such that un is a strong solution of the problem with
fn for any n, and for fn → f strongly in L1(0, T ;B), un → u in B locally uniformly in ]0, T [. Furthermore,
we have the following classical theorem characterising mild solutions (see for example, Theorem 3.3 of [34],
Theorem 1.17 of [234], or Theorem 5.6.1 of [239]).

Theorem 6.52. Let B be a Banach space and A : B → 2B be an m-accretive operator. Then if f ∈
L1(0, T ;B) and u0 ∈ D(L), then the corresponding Cauchy problem with initial data u0 has a unique mild
solution that satisfies L1-contraction property.

Remark 6.53. The idea of mild solutions follow from the classical method of change of pivot spaces Hs
0(Ω) ⊂

L2(Ω) ⊂ H−s(Ω) (see, for instance, Chapter 2.3 of [161] or Section II.6 of [238]). Indeed, by making use of
the Riesz representation given in (6.14) applied to the nonlocal operator La, we have

〈Lau, v〉 = [u, v]a = (U, V ). (6.14)

As a result, the equations〈
dη

dt
, ξ

〉
+ 〈La(γ(η)), ξ〉 = 〈f, ξ〉, ∀ξ ∈ L2(0, T ;Hs

0(Ω))

and (
dη

dt
, ξ

)
+ 〈γ(η), ξ〉 = (f, ξ), ∀ξ ∈ L2(0, T ;L2(Ω))

are equivalent.

As a result, we have the existence, uniqueness of mild solutions to the nonlocal Stefan-type problem
(6.89) using the classic Brezis-Strauss theory (see, for instance, Corollary 12 of [56] and Theorem II.9.2 of
[215] for the classical case), as in [44], which also showed other quantitative properties such as absolute upper
bounds, smoothing effects, and weighted L1 estimates.

Furthermore, considering instead the operator Lau−Lag−f , which is equally T-accretive, we can include
Dirichlet boundary conditions and a source function to obtain
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Theorem 6.54. Let f ∈ L1(QT ) and g ∈ BV (0, T ;L2(Ω)) ∩ L2(0, T ;W s,1(Rd)) such that Lag ∈ L1(Ω).
Assume u0 ∈ L1(Ω) such that γ satisfies (6.16). Then there exists a unique mild solution η to the problem
(6.89) such that γ(η) = g on Ωc.

Remark 6.55. Since γ is a general maximal monotone operator satisfying some Lipschitz condition, this
includes the Stefan problem as well as the porous medium equation.

Remark 6.56. Recall also that this mild solution can be explicitly written out as η(t) = limn→∞(Id+ t
n (La ◦

γ))−nx as in [78], if we enlarge the state space. Otherwise, this solution need not be in the domain of L, or
even be differentiable for any t ≥ 0, as noted on page 243 of [184]

Remark 6.57. For the case Ω = Rd, it is well-known, from [33], that there exists a unique mild solution
to the classical Stefan-type problem with the classical derivative with data in L1(Rd). A similar existence
theorem for linear parabolic equations with data in L1 has been obtained in [110] for unbounded domains Ω.
However, the proof of the boundedness of the solution in Theorem 6.40 using the Moser technique requires
that Ω is a bounded Lipschitz domain. To extend the existence result for nonlinear parabolic equations
to unbounded domains, we may require similar concentration-compactness principles as obtained in [110],
making use of asymptotics derived in [12]. Otherwise, solutions may have infinite speed of propagation, as
shown in [41].

On the other hand, the spectral fractional Laplacian has already previously been considered on geometri-
cally non-trivial spaces, (see for instance, [1], [35], [180]), and for more general models for bounded domains
(see, for example, [133]).

Remark 6.58. The result can also similarly be extended to kernels that correspond to the p-Laplacian,
making use of the L2 Hilbertian theory given in [236], probably in a similar way as was done for the half-
Laplacian in [183].

Finally, once again, by the results of Pazy [184], we have a similar asymptotic behaviour for these mild
solutions

Corollary 6.59 (Asymptotic Behaviour of Solution in L1). There exists a unique η∞ ∈ L1(Ω) such that
La(γ(η∞)) 3 f . Moreover, for every mild solution η,

lim
t→∞

e−t(La◦γ)η = η∞.

At the same time, the solutions have an infinite speed of propagation, as shown in [41].

Remark 6.60. Since we require L2-norms for the s-convergence theory, we are unable to apply the results
of Section 5.3 to L1-solutions.

111



7 Global Nonlocal Non-Isotropic Quasilinear Diffusion Systems

7.1 Introduction

Consider the quasilinear diffusion problem for u = (u1, . . . , um) = u(t, x)
u′ + Π(t, x,u,Σu)Au = f(t, x,u,Σu) in ]0, T [×Ω,

u = 0 in ]0, T [×Ωc,

u(0, ·) = u0(·) in Ω

(7.1)

for an open (bounded or unbounded) set Ω ⊂ Rd, u0 ∈ Hs
0(Ω) := [Hs

0(Ω)]m and any T ∈]0,∞[, where
Σu ∈ Rq for 0 < q ≤ m × d represents fractional or nonlocal derivatives in the form Dσu or Dσu for
σ < 2s, 0 < s ≤ 1, σ possibly equal or greater than 1 including the classical gradient, A is symmetric
time-independent local or nonlocal operator, which is bounded and L2(Ω) = [L2(Ω)]m-coercive, i.e.

〈Au,v〉 ≤ a∗‖u‖Hs
0(Ω)‖v‖Hs

0(Ω) for some a∗ > 0, ∀u,v ∈ Hs
0(Ω), and

〈Au,u〉+ µ‖u‖2L2(Ω) ≥ a∗‖u‖
2
Hs

0(Ω) for some µ ≥ 0, a∗ > 0, ∀u ∈ Hs
0(Ω),

(7.2)

for the classical Sobolev space Hs
0(Ω), 0 < s ≤ 1, so that A : Hs

0(Ω) → H−s(Ω) is linear and continuous.
Suppose also that f :]0, T [×Ω× Rm × Rq → Rm is measurable such that it is continuous with respect to u
and Σu for almost every (t, x) and satisfies a linear growth condition with respect to the last variable, and
Π :]0, T [×Ω×Rm ×Rq → Rm×m is a measurable, coercive, invertible matrix such that it is continuous with
respect to u and Σu for almost every (t, x) and

γ|ξ|2 ≤ Πξ · ξ and Πξ · ξ∗ ≤ γ̄|ξ||ξ∗| for all ξ, ξ∗ ∈ Rm (7.3)

for all u and Σu and almost all (t, x) with 0 < γ ≤ γ̄.
The main purpose of this chapter is to prove the existence of a solution u to Problem (7.1) in the space

H1(0, T ; L2(Ω)) ∩ L2(0, T ; L2
A) ∩ C([0, T ]; Hs

0(Ω)).

Here L2
A = D(A) is the domain of the operator A, associated with homogeneous Dirichlet boundary condition

when Au ∈ L2(Ω), given by
L2
A = D(A) := {u ∈ Hs

0(Ω) : Au ∈ L2(Ω)},

as A may be regarded as an operator in the classical framework Hσ
0 (Ω) ⊂ L2(Ω) ⊂ H−s(Ω). Then, because

the operator A is closed, the space L2
A is a Hilbert space when equipped with the graph norm for any Ω ⊆ Rd.

Subsequently, the Bochner space L2(0, T ; L2
A) is also a Hilbert space.

Note that here fu(t, x) = f(t, x,u(t, x),Σu(t, x)) and Πu(t, x) = Π(t, x,u(t, x),Σu(t, x)) are functions
in L2(0, T ; L2(Ω)) and L∞(]0, T [×Ω) respectively. Problem 7.1 generalises the quasilinear equation defined
with the classical gradient in [16] to systems of equations with more general derivatives.

Recall from Section 1.1.1, and extending to the vectorial case as in [30], for 0 < s < 1, the Riesz fractional
gradient Dsu may be defined component-wise in integral form for vectors u = (u1, u2, . . . , um) ∈ Hs

0(Ω),
respectively, by

Ds
i u
j(x) := cd,s

ˆ
Rd

uj(x)− uj(y)

|x− y|d+s

xi − yi
|x− y|

dy, i = 1, . . . , d, j = 1, . . . ,m (7.4)

where cd,s = 2sπ−
d
2

Π( d+s+1
2 )

Π( 1−s
2 )

is given in terms of the Gamma-function, and u is extended by 0 outside

Ω, supposed to satisfy the extension property if s > 1/2, so that we can assume that the extension of u
is in Hs(Rd) whenever u ∈ Hs

0(Ω). Similarly, the nonlocal gradient Dsu is defined using Section 1.1.2
component-wise, as in [101], by

Dsuj(x, y) :=
uj(x)− uj(y)

|x− y| d2 +s
, j = 1, . . . ,m. (7.5)
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For 1 < s < 2, we consider only the fractional gradients, defined by

Ds
i u
j = Ds−1

i (∂iu
j), (7.6)

for the classical partial derivative ∂i = ∂
∂xi

. This is possible by making use of the semigroup property of the
Riesz potentials and the property of the distributional Riesz fractional gradients which can be given through
the convolution with it (Theorem 1.2 of [213]). Note that it is not possible to define a higher order nonlocal
gradient, since Dsuj 6∈ L2(Rd × Rd) for s > 1.

A may be given by linear combinations of the classical gradient ∂, Ds or Ds, as long as it is bounded and
L2(Ω)-coercive, as in the following examples. When s = 1, this includes the local operator given by

〈Au,v〉 = 〈Lu,v〉 =
∑
α,β,i,j

ˆ
Ω

Aαβij ∂βu
j · ∂αvi (7.7)

with a bounded, coercive tensor A = (Aαβij (x)), symmetric in α and β, where 〈Au,v〉 is understood as the

duality between H−1(Ω) and H1
0(Ω). The sum here is taken between 1 to d for α and β, and between 1 to

m for i and j. A may also be the anisotropic fractional operator, extended from Chapter 3 to the vectorial
case,

〈Au,v〉 = 〈L̃sAu,v〉 =
∑
α,β,i,j

ˆ
Rd
Aαβij D

s
βu

j ·Ds
αv

i (7.8)

for s ≤ 1, where Ds
α coincides with ∂α in the classical case of s = 1, where 〈Au,v〉 is understood as the

duality between H−s(Ω) and Hs
0(Ω).

We can also consider the anisotropic nonlocal operator A : Hs
0(Ω) → H−s(Ω), similarly extending that

from Chapter 2 to the vectorial case,

Au = LsAu = P.V.

ˆ
Rd
A(x, y)

u(x)− u(y)

|x− y|d+2s
dy (7.9)

defined for a symmetric, bounded, coercive matrix kernel A = Aij(x, y), i.e. for almost all (x, y) in Rd×Rd,

a∗|ξ|2 ≤ Aξ · ξ ≤ a∗|ξ|2 for all ξ ∈ Rm,

for s < 1, so that, for all u,v ∈ Hs
0(Ω),

〈LsAu,v〉 =

ˆ
Rd

ˆ
Rd
A(x, y)

u(x)− u(y)

|x− y| d2 +s
· v(x)− v(y)

|x− y| d2 +s
dy dx ≤ a∗‖u‖Hs

0(Ω)‖v‖Hs
0(Ω) ,

and
〈LsAu,u〉 ≥ a∗‖u‖

2
Hs

0(Ω) .

Recall from Section 1.2 that the fractional Sobolev spaces Hs(Rd) for all real s are defined by

Hs(Rd) = {u ∈ L2(Rd) : {ξ 7→ (1 + |ξ|2)s/2û(ξ)} ∈ L2(Rd)},

with norm
‖u‖Hs(Rd) =

∥∥∥(1 + |ξ|2)s/2û
∥∥∥
L2(Rd)

,

where û is the Fourier transform of u. For 0 < s < 1, this norm is well known to be equivalent to

‖u‖2Hs(Rd) =‖u‖2L2(Rd) +

ˆ
Rd

ˆ
Rd

|u(x)− u(y)|2

|x− y|d+2s
dx dy =:‖u‖2L2(Rd) + [u]2Hs(Rd). (1.13)

On the other hand, as it was shown in [213] and (1.8), the Hs(Rd)-norm given by (1.13) is in fact equal to

‖u‖2Hs(Rd) =‖u‖2L2(Rd) +
2

c2d,s

ˆ
Rd
|Dsu|2 =‖u‖2L2(Rd) +

2

c2d,s
‖Dsu‖2L2(Rd) . (1.14)
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Then, if Ω has Lipschitz boundary, hence satisfying the extension property, Hs(Ω) coincides with the
space of restrictions to Ω of the elements of Hs(Rd) as in [162] and [93], with norm

‖u‖Hs(Ω) = inf
U=u a.e. Ω

‖U‖Hs(Rd) . (1.15)

Here, the subspace Hs
0(Ω) is the usual Sobolev space, for 0 < s ≤ 1, given by the closure of C∞c (Ω) in

Hs(Ω) for general open sets Ω ⊂ Rd, as in [162], and H−s(Ω) its dual. Since C∞c (Ω) is dense in Hs(Ω) if
and only if s ≤ 1

2 , in this case, Hs
0(Ω) = Hs(Ω). Otherwise, if s > 1

2 , Hs
0(Ω) is strictly contained in Hs(Ω).

On the other hand, as in [93], for bounded sets with Lipschitz boundary, O ⊂ Rd, C∞c (Ō) is dense in Hs(O)
for all s ≥ 0.

This can be further extended for s > 1, by an abuse of notation, by defining Hs
0(Ω) to be the space

Hs
0(Ω) := {u ∈ Hs(Rd) : supp u ⊂ Ω̄}.

Consider the maximal regularity space

MR := H1(0, T ; L2(Ω)) ∩ L2(0, T ; L2
A),

equipped with the norm for 0 < s ≤ 1

‖u‖2MR :=

ˆ T

0

∥∥u′(t)∥∥2

L2(Ω)
+

ˆ T

0

∥∥u(t)
∥∥2

Hs
0(Ω)

+

ˆ T

0

∥∥Au(t)
∥∥2

L2(Rd)
, (7.10)

so that the linear inhomogeneous problem

u′(t) + Au(t) = f(t) for a.e. t ∈]0, T [, u(0) = 0

is well-defined with a source term f ∈ L2(0, T ; L2(Ω)).
Classically, parabolic quasilinear systems in non-divergence form have frequently been considered (see

[120], [104] [153], [135], [10], [188], [130], [18] and their references), with multiple physical, chemical and
biological applications such as in reaction-diffusion systems (see, for example, [174]), phase-field models (see,
for example, [179]) and population models (see, for instance, [155] and [32]). Parabolic equations have also
been extended to the case of nonlocal reaction-diffusion (see, for instance, [29] and [58]).

In Section 7.2, we will first consider the linear problem, extending the approach of [16] to systems by
introducing a suitable time-dependent matrix Υ, thereby obtaining the solution to the non-autonomous
linear problem given with the well-known maximal regularity and exemplifying with three linear systems
of the above type, which may have additional regularity in bounded Lipschitz domains. Next, we will
extend the result by a fixed point argument to obtain the result for the quasilinear problem. Limited by
the currently known regularity of the Dirichlet problems associated to the operator A, in Section 7.3, we
obtain the existence of a solution for the global quasilinear nondivergent systems for the general operators A
satisfying (7.2), first for σ < s and also for particular operators satisfying additional regularity properties, up
to and including σ = s ≤ 1. This extends the nonlocal vectorial problem with no source function considered
in [152], as well as the vectorial semilinear case in [9], [174] and [17]. This also generalises [16] to systems of
the form (7.1) defined in a bounded or unbounded open set Ω ⊂ Rd, for more general derivatives that can
take any positive order less than s, which is an improvement even in the classical case of s = 1.

This result is then further generalised to larger s < σ < 2s in the case of Ω bounded with Lipschitz
boundary, making use of known regularity results for vectorial local and nonlocal operators in Section 7.4, in
particular generalising to quasilinear diffusion systems the classical scalar Dirichlet case of [16]. As a result,
we can also consider quasilinear diffusion equations and systems with derivatives of order σ > s such that
σ may be greater than 1, generalising the results of [16], [17] and [152]. These results may provide useful
applications, particularly in population models and advection-diffusion systems, as we try to exemplify in
model problems.

7.2 A Non-autonomous Linear Problem

We first consider the linear problem for a system, for 0 < s ≤ 1 up to and including the classical case of
s = 1, as in [17] but for a different maximal regularity space, by extending the approach of [16] to systems
by introducing a suitable matrix Υ.
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We first observe that, by the definition of A as a symmetric time-independent operator, for u ∈ MR,
Au(t) ∈ L2(Ω) for a.e. t ∈]0, T [, so we have the following well-known result (see, for instance, [89], page
480), which we include here for completeness.

Lemma 7.1. Let u ∈MR. Then
´

Ω
Au(·) · u(·) ∈W 1,1(0, T ) and

d

dt

ˆ
Ω

Au(t) · u(t) = 2

ˆ
Ω

Au(t) · u′(t) for a.e. t ∈]0, T [.

Furthermore, the continuous embedding holds

MR ↪→ C([0, T ]; Hs
0(Ω)).

Proof. We first take u ∈ C1([0, T ]; L2
A). Then, since A is symmetric and time-independent, we have

ˆ
Ω

Au(t) · u′(t) =
1

2

(ˆ
Ω

Au(t) · u′(t) +

ˆ
Ω

u(t) · Au′(t)
)

=
1

2

d

dt

ˆ
Ω

Au(t) · u(t).

Then, the result holds for arbitrary u ∈MR by an approximation by density.
The second part of the lemma may be proved as in Proposition 3.6 of [96]. Indeed, since

´
Ω
Au(·) ·u(·) ∈

W 1,1(0, T ) ⊂ C([0, T ]), together with the continuous embedding MR ↪→ C([0, T ]; L2(Ω)) and the coercivity
(7.2) yields MR ⊂ L∞(0, T ; Hs

0(Ω)). Now, it is well-known that C([0, T ]; L2(Ω)) ∩ L∞(0, T ; Hs
0(Ω)) ⊂

C([0, T ]; Hs
0(Ω)-weak) (see, for instance, Lemma 3.3 of [96]). Then, as τ → t for fixed t,

a∗
∥∥u(t)− u(τ)

∥∥2

Hs
0(Ω)
≤
ˆ

Ω

A(u(t)− u(τ)) · (u(t)− u(τ)) + µ
∥∥u(t)− u(τ)

∥∥2

L2(Ω)

= 2

ˆ
Ω

A(u(t)− u(τ)) · u(t) +

ˆ
Ω

[
Au(τ) · u(τ)− Au(t) · u(t)

]
+ µ

∥∥u(t)− u(τ)
∥∥2

L2(Ω)
.

The three terms tend to 0: the first one by the weak continuity of u(·) in Hs
0(Ω), the second one by the

continuity of the map τ 7→
´

Ω
Au(τ)·u(τ) and the third one again by the embedding MR ↪→ C([0, T ]; L2(Ω)).

Recall, for instance from [89], the following well-known maximal regularity result: for all f ∈
L2(0, T ; L2(Ω)), u0 ∈ Hs

0(Ω), there exists a unique solution to the autonomous problem

u ∈ H1(0, T ; L2(Ω)) ∩ L2(0, T ; L2
A),

u′(t) + Au(t) = f(t) for a.e. t ∈]0, T [, (7.11)

u(0) = u0.

We consider now a linear non-autonomous problem, obtained by a multiplicative perturbation.

Theorem 7.2. Let Υ = Υ(t, x) :]0, T [×Ω → Rm×m is a measurable, coercive, invertible matrix satisfying
(7.3). Then, for every f ∈ L2(0, T ; L2(Ω)), u0 ∈ Hs

0(Ω), there exists a unique solution of the problem

u ∈ H1(0, T ; L2(Ω)) ∩ L2(0, T ; L2
A) ∩ C([0, T ]; Hs

0(Ω)),

u′(t) + Υ(t, ·)Au(t) = f(t) for a.e. t ∈]0, T [, (7.12)

u(0) = u0.

Moreover, there exists a constant c = c(γ, γ̄, a∗, a
∗, µ, T ) > 0 independent of f and u0 such that

‖u‖MR ≤ c
(
‖f‖L2(0,T ;L2(Ω)) +‖u0‖Hs

0(Ω)

)
(7.13)

for each solution u of (7.12)
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Proof. We use the method of continuity (c.f. Section 5.2 of [126]) as in Theorem 3.2 of [16]. For every
λ ∈ [0, 1], consider the matrix Υλ := (1 − λ)I + λΥ for the identity matrix I of dimension m ×m and the
bounded operator

Bλ : MR→ L2(0, T ; L2(Ω))×Hs
0(Ω)

given by

Bλu =

ˆ
Ω

(u′ + ΥλAu) · u0.

Then B : [0, 1]→ L(MR,L2(0, T ; L2(Ω))×Hs
0(Ω)) (where L denotes the space of linear bounded operators)

is continuous and B0 is invertible by the maximal regularity result for the linear autonomous problem (7.11).
Therefore, by Theorem 5.2 of [126], it suffices to prove the a priori estimate

‖u‖MR ≤‖Bλu‖ = c1

(∥∥u′ + ΥλAu
∥∥
L2(0,T ;L2(Rd))

+‖u0‖Hs
0(Ω)

)
∀λ ∈ [0, 1],∀u ∈MR, (7.14)

for some constant c1 = c1(γ, γ̄, a∗, a
∗, T ) > 0, which gives (7.13) for λ = 1.

Let λ ∈ [0, 1]. Let u ∈MR be such that

u′ + ΥλAu = f and u(0) = u0.

Then, multiplying the equation by [Υ∗λ]−1u′(t), where [Υ∗λ]−1 is the inverse of the adjoint of Υλ, we have,
for almost every t ∈ [0, T ],

ˆ
Ω

[Υ∗λ]−1u′(t) · u′(t) +

ˆ
Ω

ΥλAu · [Υ∗λ]−1u′(t) =

ˆ
Ω

f · [Υ∗λ]−1u′(t),

which by Lemma 7.1 and the Cauchy-Schwarz inequality, givesˆ
Ω

[Υ∗λ]−1u′(t) · u′(t) +
1

2

d

dt

ˆ
Ω

Au · u′(t) ≤ γ̄

2

ˆ
Ω

[
[Υ∗λ]−1f(t)

]2
+

1

2γ̄

ˆ
Ω

[
u′(t)

]2
.

Integrating over time on ]0, t[ for every finite t ∈]0, T [ and using the estimate (7.3), it follows by (7.2) that

1

2γ̄

ˆ t

0

∥∥u′(τ)
∥∥2

L2(Ω)
dτ +

a∗
2

∥∥u(t)
∥∥2

Hs
0(Ω)
≤ a∗

2
‖u0‖2Hs

0(Ω) +
µ

2

∥∥u(t)
∥∥2

L2(Ω)
+

γ̄

2γ2

ˆ t

0

∥∥f(τ)
∥∥2

L2(Ω)
dτ,

Observe that by the Cauchy-Schwarz inequality,∥∥u(t)
∥∥2

L2(Ω)
=
∥∥u(0)

∥∥2

L2(Ω)
+

ˆ t

0

d

dτ

∥∥u(τ)
∥∥2

L2(Ω)
dτ

=‖u0‖2L2(Ω) + 2

ˆ t

0

ˆ
Ω

u(τ) · u′(τ) dτ

≤‖u0‖2L2(Ω) + 2µγ̄

ˆ t

0

∥∥u(τ)
∥∥2

L2(Ω)
dτ +

1

2µγ̄

ˆ t

0

∥∥u′(τ)
∥∥2

L2(Ω)
dτ, (7.15)

and so we have

1

2γ̄

ˆ t

0

∥∥u′(τ)
∥∥2

L2(Ω)
dτ + a∗

∥∥u(t)
∥∥2

Hs
0(Ω)

≤ a∗‖u0‖2Hs
0(Ω) + µ‖u0‖2L2(Ω) +

γ̄

γ2
‖f‖2L2(0,T ;L2(Ω)) + 2µ2γ̄

ˆ t

0

∥∥u(τ)
∥∥2

L2(Ω)
dτ

≤ a∗‖u0‖2Hs
0(Ω) + µ‖u0‖2L2(Ω) +

γ̄

γ2
‖f‖2L2(0,T ;L2(Ω)) + 2µ2γ̄cS

ˆ t

0

∥∥u(τ)
∥∥2

Hs
0(Ω)

dτ (7.16)

where cS is the constant for the Sobolev embedding Hs
0(Ω) ↪→ L2(Ω). Applying the integral form of

Gronwall’s lemma to the second term on the left-hand-side, there exists a constant c2 = c2(γ, γ̄, a∗, a
∗, µ, T ) >

0 such that
sup
t∈[0,T [

∥∥u(t)
∥∥2

Hs
0(Ω)
≤ c2

(
‖u0‖2Hs

0(Ω) +‖f‖2L2(0,T ;L2(Ω))

)
.
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Inserting this into (7.16), we obtain that

ˆ T

0

∥∥u′(τ)
∥∥2

L2(Ω)
dτ ≤ c3

(
‖u0‖2Hs

0(Ω) +‖f‖2L2(0,T ;L2(Ω))

)
for some constant c3 = c3(γ, γ̄, a∗, a

∗, µ, T ) > 0.
Finally, since

ˆ T

0

∥∥Au(τ)
∥∥2

L2(Rd)
dτ ≤ 1

γ2

ˆ T

0

∥∥ΥλAu(τ)
∥∥2

L2(Rd)
dτ =

1

γ2

ˆ T

0

∥∥u′(τ)− f(τ)
∥∥2

L2(Ω)
dτ,

the MR norm of u can be estimated giving (7.13) and by Lemma 7.1, the proof is complete.

Remark 7.3. If µ = 0 in (7.2), this theorem is a special case of Theorem 1.1 of [27].

Next, we identify local and nonlocal vectorial operators to which we can apply Theorem 7.2.

Example 1: Local operators
As a first example of A, we consider the local operator L, such that the i-th component of Lu is given by

(Lu)i = −
∑
α,β,j

∂α(Aαβij ∂βu
j) + biju

j (7.7)

for bij ∈ L∞(Ω) and Aαβij ∈ L∞(Ω). Then, the linear non-autonomous problem for f ∈ L2(0, T ; L2(Ω)) and

u0 ∈ H1
0(Ω) given by

u′(t) + Υ(t, ·)Lu(t) = f(t), for a.e. t ∈]0, T [

has a solution u ∈ H1(0, T ; L2(Ω)) ∩ L2(0, T ; L2
L). This extends the results of [16].

Furthermore, we can explicitly write out the space L2
L for the following special case of A = L using the

following proposition:

Proposition 7.4 (Theorem 4.9 of [124]). Let Ω be an open domain in Rd. Suppose in addition that Aαβij ∈
C0,1
loc (Ω) is continuous up to the boundary of Ω̄ and satisfies the Legendre-Hadamard condition∑

α,β,i,j

Aαβij νανβξ
iξj ≥ a∗|ξ|2|ν|2 ∀ξ ∈ Rm, ν ∈ Rd. (7.17)

Then, for all weak solutions u of the equation with f ∈ L2
loc(Ω),

Lu = f in Ω,

u ∈ H2
loc(Ω).

If, in addition, by Theorem 6 of [97], Ω is bounded with C1,1 boundary and Aαβij ∈ C0,1(Ω̄), we can extend
the result globally up to the boundary of Ω for the unique solution of the homogeneous Dirichlet problem for
f ∈ L2(Ω), so that the unique solution u ∈ H1

0(Ω) lies in H2(Ω).

It is well-known (see for instance, Section 5 of [117]) to show using Fourier transform that the Legendre-
Hadamard condition (7.17) for tensors A continuous up to the boundary of Ω̄ implies coercivity (7.2), which
we recall, is given by G̊arding’s inequality

〈Lu,u〉+ µ‖u‖2L2(Ω) ≥ a∗‖u‖
2
H1

0(Ω) ∀u ∈ H1
0(Ω). (7.2)

(Recall also that this is not true if u does not have support in Ω̄.) Therefore, as a corollary, we have
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Corollary 7.5. Suppose L is of the form (7.7) such that Aαβij is locally Lipschitz and continuous up to the

boundary of Ω̄ satisfying the Legendre-Hadamard condition (7.17), then the linear non-autonomous Cauchy
problem for f ∈ L2(0, T ; L2(Ω)) and u0 ∈ H1

0(Ω) given by

u′(t) + Υ(t, ·)Lu(t) = f(t), for a.e. t ∈]0, T [

has a solution u ∈ H1(0, T ; L2(Ω)) ∩ C([0, T ]; H1
0(Ω)) ∩ L2(0, T ; H2

loc(Ω)).

If, in addition, Ω is bounded with C1,1 boundary and Aαβij ∈ C0,1(Ω̄), then u ∈ H1(0, T ; L2(Ω)) ∩
C([0, T ]; H1

0(Ω)) ∩ L2(0, T ; H2(Ω)).

Example 2: Anisotropic fractional operators
Vectorial fractional operators L̃sA : Hs

0(Ω)→ H−s(Ω) can also be considered, given for 0 < s ≤ 1 by

〈L̃sAu,v〉 =
∑
α,β,i,j

ˆ
Rd
Aαβij D

s
βu

j ·Ds
αv

i (7.8)

for a bounded, coercive tensor Aαβij symmetric in α, β, i.e.∑
α,i

a∗|ξαi |2 ≤
∑
α,β,i,j

Aαβij ξ
α
i · ξ

β
j ≤ a

∗
∑
α,i

|ξαi |2 for all ξ ∈ Rm×d.

Here, Ds
α coincides with the classical derivative ∂α in the classical case of s = 1, and L̃sA in (7.8) reduces to

L in (7.7) when s = 1.
Then, the linear non-autonomous problem for f ∈ L2(0, T ; L2(Ω)) and u0 ∈ Hs

0(Ω) given by

u′(t) + Υ(t, ·)L̃sAu(t) = f(t), for a.e. t ∈]0, T [

has a solution u ∈ H1(0, T ; L2(Ω)) ∩ L2(0, T ; L2
L̃sA

).

In the particular case when Aαβ is given by a diagonal constant matrix, L̃sA corresponds to a system of
equations defined with the fractional Laplacian.

Recall that the fractional Laplacian is defined, for u ∈ Hs
0(Ω), by

(−∆)su(x) := c2d,s P.V.

ˆ
Rd

u(x)− u(y)

|x− y|d+2s
dy. (2.4)

Then, by Theorem 7.1 of [127], or Theorem 4.1 and Remark 7 of [46], we have

Proposition 7.6. Suppose Ω ⊂ Rd is a bounded Lipschitz domain. Let f ∈ L2(Ω) and s ∈] 1
2 , 1[. Then the

solution to the homogeneous Dirichlet problem

(−∆)su = f in Ω, u = 0 in Ωc

lies in the Besov space

u ∈ Ḃs+1/2
2,∞ (Ω) ⊂ Hmin{2s,s+1/2}−ε(Ω)

for any positive ε < min{2s, s+ 1/2}. (For the definition and more discussion on Besov spaces, see [46] and
the references therein.)

Considering the vectorial fractional Laplacian (−∆)sm defined by

(−∆)sm =


c1(−∆)s 0

. . .

0 cm(−∆)s


for constants c1, · · · , cm > 0. Then, applying Proposition 7.6 component-wise, we have
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Corollary 7.7. Suppose Ω ⊂ Rd is a bounded Lipschitz domain. The linear non-autonomous Cauchy
problem for f ∈ L2(0, T ; L2(Ω)) and u0 ∈ Hs

0(Ω) given by

u′(t) + Υ(t, ·)(−∆)smu(t) = f(t), for a.e. t ∈]0, T [

has a solution u ∈ H1(0, T ; L2(Ω)) ∩ C([0, T ]; Hs
0(Ω)) ∩ L2(0, T ; Hmin{2s,s+1/2}−ε(Ω)) for any positive ε <

min{2s, s+ 1/2}.

Example 3: Anisotropic nonlocal operators
Next, we consider the anisotropic nonlocal operator LsA : Hs

0(Ω)→ H−s(Ω)

LsAu = P.V.

ˆ
Rd
A(x, y)

u(x)− u(y)

|x− y|d+2s
dy (7.9)

defined for a symmetric, bounded, coercive matrix kernel A(x, y) for 0 < s < 1. Then, once again, the linear
non-autonomous problem for f ∈ L2(0, T ; L2(Ω)) and u0 ∈ Hs

0(Ω) given by

u′(t) + Υ(t, ·)LsAu(t) = f(t), for a.e. t ∈]0, T [

has a solution u ∈ H1(0, T ; L2(Ω)) ∩ L2(0, T ; L2
LsA

).

Suppose in addition, m = d and the kernel A(x, y) is a measurable, translation-invariant matrix of the
form

A(x, y) =
â(x− y)

|x− y|d+2s
χC∩Br(0)(x− y)

(
x− y
|x− y|

⊗ x− y
|x− y|

)
, (7.18)

where â is an even, coercive and bounded function such that 0 < a∗ ≤ â ≤ a∗ < ∞ for some constants
a∗, a

∗ > 0, 0 < r ≤ ∞, and C is a double cone with apex, i.e.

C =

{
h ∈ Rd\{0} :

h

|h|
∈ O ∪ (−O) for any open subset O of the unit sphere Sd−1

with positive Hausdorff measure

}
.

Defining the space Hs
loc(Ω) by {u ∈ L2(Ω) : ηu ∈ Hs(Ω) ∀η ∈ C∞c (Ω)}, by Theorem 3.1 of [141], we have

the following local regularity result for LsA for this special case:

Proposition 7.8. Let Ω ⊂ Rd be an open set, and f ∈ L2(Ω) extended by 0 outside. Then the weak solution
to

LsAu = f in Ω, u = 0 in Ωc

lies in H2s
loc(Ω). Moreover, for any η ∈ C∞c (Ω), there exists a constant C such that

‖ηu‖H2s(Rd) ≤ C‖f‖L2(Ω) .

Remark 7.9. Observe that LsA can be viewed as the nonlocal version of Example 1, as explained in pages
1304–1305 of [141]. See also Lemma 3.1 of [108].

As a corollary, we once again have

Corollary 7.10. The linear non-autonomous Cauchy problem for f ∈ L2(0, T ; L2(Ω)) and u0 ∈ Hs
0(Ω)

given by
u′(t) + Υ(t, ·)LsAu(t) = f(t), for a.e. t ∈]0, T [

has a solution u ∈ H1(0, T ; L2(Ω)) ∩ C([0, T ]; Hs
0(Ω)) ∩ L2(0, T ; H2s

loc(Ω)).

119



7.3 The Nonlinear Problem σ ≤ s ≤ 1

We next consider the quasilinear vectorial problem, when 0 < σ < s ≤ 1, extending the nonlocal vectorial
problem with no source function considered in [152], as well as the vectorial semilinear case in [9], [174] and
[17]. This also generalises [16] to systems of the form (7.1) defined in a bounded or unbounded open set
Ω ⊂ Rd. We will apply the Schaefer fixed point theorem, which is a generalisation of the Leray-Schauder
fixed point theorem to locally convex spaces, to the approximating bounded subsets Ωk ⊂ Ω̊, as in [16], so
that the regularity of the boundary of Ω can be ignored.

Assume
D(A) = L2

A ⊂ Hs+θ
loc (Ω) for some θ ≥ 0. (7.19)

Note that this assumption is weaker than the one given in Equation (4.2) of [16], and allows us to cover the
fractional derivatives as well.

Then, we have the following main result:

Theorem 7.11. Suppose Ω ⊂ Rd is an open set. Let A satisfy (7.19) for θ ≥ 0, and

Π :]0, T [×Ω× Rm × Rq → Rm×m

be a measurable, invertible matrix Π = Π(t, x,u,p) satisfying

γ|ξ|2 ≤ Πξ · ξ and Πξ · ξ∗ ≤ γ̄|ξ||ξ∗|, 0 < γ ≤ γ̄, for all ξ, ξ∗ ∈ Rm, (7.3)

such that Π is continuous in u and p for almost every (t, x). Let

f :]0, T [×Ω× Rm × Rq → Rm

be a measurable vector function that is continuous in u and p for almost every (t, x), satisfying

|f(t, x,u,p)| ≤ F (t, x) + Λ1|u|+ Λ2|p| for some F ∈ L2(0, T ;L2(Ω)),Λ1,Λ2 ≥ 0. (7.20)

Then for every u0 such that u0 ∈ Hs
0(Ω), there exists

u ∈ H1(0, T ; L2(Ω)) ∩ L2(0, T ; L2
A) ∩ C([0, T ]; Hs

0(Ω)), (7.21)

solving the problem

u′(t) + Π(t, x,u,Σu)Au(t) = f(t, x,u,Σu) for a.e. t ∈]0, T [,

u(0) = u0

(7.22)

where Σ represents fractional derivatives of order σ ≤ s with 0 < σ < s+ θ for 0 < s ≤ 1. Moreover, there
exists a constant c′ = c′(γ, γ̄, a∗, a

∗,Λ1,Λ2, T ) > 0 such that for every solution u of (7.22),

‖u‖MR ≤ c
′
(
‖F‖L2(0,T ;L2(Ω)) +‖u0‖Hs

0(Ω)

)
. (7.23)

Remark 7.12. In general, this solution is not unique.

Remark 7.13. This extends the results for the classical derivatives with s = θ = 1 so that s + θ = 2 with
σ = 1 as considered in [16] for the scalar problem, as well as [17] and [152] for the semilinear vectorial
problem and quasilinear vectorial problem respectively. In particular, we can consider fractional or nonlocal
derivatives of any order σ ≤ s ≤ 1. This generalises the classical gradient, and is conceptually similar to the
ideas of Boussandel (see [48] and [49]), where he considers the classical gradient weighted by a measure.

For general operators A satisfying (7.2), the theorem applies with θ = 0 and σ < s ≤ 1. For special
operators satisfying (7.19) with θ > 0, we can consider derivatives of order σ up to and including σ = s
for s ≤ 1, as in Section 7.3.2. This includes the classical vectorial operator L with s = θ = 1 as given in
Proposition 7.4, as well as the nonlocal vectorial operator LsA with θ = s < 1 in Proposition 7.8. Observe
that the latter includes the case of the fractional Laplacian (−∆)sm of Proposition 7.6, with 0 < θ < 1

2 for
s > 1

2 and θ < s for s < 1
2 . Furthermore, when A = (−∆)sm, Σu can involve both the fractional and the

nonlocal derivatives. This is because the fractional Laplacian (−∆)s can be represented by both the fractional
derivatives Ds and the nonlocal derivatives Ds i.e. (−∆)su = −Ds ·Dsu = c2d,sDs · Dsu when considered in

Rd.
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We shall also use the Schaefer fixed point theorem, as it is reproduced in Theorem 2.2 of [15], which we
state here for reference. Note that if E is a Banach space, this theorem reduces to the Leray-Schauder fixed
point theorem (see, for instance, Theorem 11.3 of [126]).

Theorem 7.14 (Schaefer Fixed Point Theorem). Let E be a complete locally convex vector space and let
S : E → E be a continuous mapping. Assume that there exists a continuous seminorm p : E → R+, a
constant R > 0, and a compact set K ⊂ E such that the Schaefer set

S = {u ∈ E : u = λSu for some λ ∈ [0, 1]}

is included in
C := {u ∈ E : p(u) < R}

such that
SC ⊂ K.

Then S has a fixed point.

Recalling that Σu ∈ Rq for 0 < q ≤ m × d represents fractional or nonlocal derivatives in the form
Dσu or Dσu, we observe that for any Lipschitz bounded open set O such that Ō ⊂ Ω ⊂ Rd, for every
v ∈ L2(0, T ; Hσ(O)), the extension ṽ ∈ L2(0, T ; Hσ(Rd)) and

‖Σṽ‖L2(0,T ;L2(O)) ≤ C‖v‖L2(0,T ;Hσ(O)) (7.24)

for some constant C depending on O.

7.3.1 Proof of Theorem 7.11

Let (Ωk)k be an increasing sequence of open bounded subsets of Rd with Lipschitz boundaries such that
Ωk ⊂ Ω and

⋃
k∈N Ωk = Ω. Consider the locally convex space

E := L2(0, T ; Hσ
loc(Ω))

:= {u ∈ L2
loc(]0, T [×Ω) : u|]0,T [×Ωk ∈ L

2(0, T ; Hσ(Ωk)) for every k ∈ N},

which is a Fréchet space for the sequence of seminorms given by ‖·‖L2(0,T ;Hσ(Ωk), k ∈ N, as defined in (1.15)
for each Ωk.

Recall that for a Lipschitz open bounded set O ⊂ Rd (c.f. Theorem 7.26 of [126]), the Sobolev embedding
Hσ′(O) ↪→ Hσ(O) is compact for σ < σ′ by the Rellich-Kondrachov theorem. Then, by Aubin-Lions lemma
(Lemma II.7.7 of [202]), we have the compact embedding

H1(0, T ; L2(O)) ∩ L2(0, T ; Hσ′(O)) ↪→ L2(0, T ; Hσ(O)), (7.25)

and this embedding is continuous by the closed graph theorem. Since L2
A ⊂ Hs+θ

0 (Ω) by Assumption (7.19),
applying (7.25) for σ′ = s+ θ for θ ≥ 0 for the open bounded sets Ωk, it follows that

MR = H1(0, T ; L2(Ω)) ∩ L2(0, T ; L2
A) ↪→ L2(0, T ; Hσ

loc(Ω)) = E (7.26)

for σ < s+ θ is also compact, for any set Ω ⊆ Rd.
Fix T and u0 ∈ Hs

0(Ω). We first show the result for every k, i.e. for every k, the problem for u = uk

u ∈MR = H1(0, T ; L2(Ω)) ∩ L2(0, T ; L2
A),

u′(t) + Π(t, x,u,Σu)Au(t) = χΩk(x)f(t, x,u,Σu) for a.e. t ∈]0, T [, (7.27)

u(0) = u0

admits a solution such that for every solution u, we have

‖u‖MR ≤ c
′
(
‖F‖L2(0,T ;L2(Ω)) +‖u0‖Hs

0(Ω)

)
(7.23)
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for some constant c′ = c′(γ, γ̄, a∗, a
∗, µ,Λ1,Λ2, T ) > 0 independent of k. Here χΩk(x) is the scalar charac-

teristic function which is 1 if x ∈ Ωk and 0 otherwise.
For each fixed k ∈ N and for every v ∈ E, we set

Πv(t, x) := Π(t, x,v(t, x),Σṽ(t, x)), and

fv,k(t, x) := χΩk(x)f(t, x,v(t, x),Σṽ(t, x)).

Then, Πv inherits the same properties as Π, while fv,k is measurable and satisfies

∥∥fv,k

∥∥2

L2(0,T ;L2(Ω))
≤
ˆ T

0

ˆ
Ωk

F (t, x) + Λ2
1|v|2 + Λ2

2|Σv|2

≤‖F‖2L2(0,T ;L2(Ω)) + Λ2
1‖v‖

2
L2(0,T ;L2(Ωk)) + C2

kΛ2
2‖v‖

2
L2(0,T ;Hσ(Ωk)) <∞

for the same constant Ck = C(Ωk) as in (7.24). Then, by Theorem 7.2, there exists a unique solution
u =: Tkv ∈MR of the problem

u′(t) + Πv(t, ·)Au(t) = fv,k(t, ·) for a.e. t ∈]0, T [, and (7.28)

u(0) = u0

such that u ∈MR, satisfying the inequality

‖u‖MR ≤ c
(∥∥fv,k

∥∥
L2(0,T ;L2(Ω))

+‖u0‖Hs
0(Ω)

)
≤ c4

(
‖F‖2L2(0,T ;L2(Ω)) +‖v‖2L2(0,T ;Hσ(Ωk)) +‖u0‖Hs

0(Ω)

)
(7.29)

for some constant c4 = c4(c, k,Λ1,Λ2), where c is the same constant from Theorem 7.2. In this way, we have
defined an operator Tk : E →MR ⊂ E.

Next, let vi → v in E, and denote ui = Tkvi and u = Tkv. We want to show that Tk is continuous, i.e.
ui → u in E. Since (ui)i is bounded in MR by the estimate (7.29) which is uniform in i for fixed k, and
since MR is a Hilbert space, we may assume, after passing to a subsequence, that there exists a w ∈ E such
that

ui ⇀ w in MR. (7.30)

Passing to a further subsequence, we may in addition assume that

u′i ⇀ w′ in L2(0, T ; L2(Ω)), and (7.31)

Aui ⇀ Aw in L2(0, T ; L2(Ω)). (7.32)

We show that w = u. Since vi → v in E, passing to a further subsequence and using a diagonalisation
argument, there exists a function Vk ∈ L2(]0, T [×Ωk) such that

(vi,Σvi)→ (v,Σv) a.e. on ]0, T [×Ω, ∀i ∈ N, and

|vi|+ |Σvi| ≤ Vk a.e. on ]0, T [×Ωk, ∀i ∈ N
(7.33)

by the continuity of Σ which involves the ∂, Ds and Ds operators.
By the continuity of Π and f , we have

Πvi(t, x) := Π(t, x,vi,Σvi)→ Π(t, x,v,Σv) =: Πv(t, x), and

fvi,k(t, x) := χΩk(x)f(t, x,vi,Σvi)→ χΩk(x)f(t, x,v,Σv) =: fv,k(t, x) a.e. on ]0, T [×Ω.

Moreover, by the growth assumption on f in (7.20) and uniform domination of vi by Vk in (7.33), we have

|fvi,k| ≤ F + (Λ1 + Λ2)Vk a.e. in ]0, T [×Ωk, ∀i ∈ N. (7.34)

Recall that, for every i ∈ N, ui satisfies the problem

u′i + ΠviAui = fvi . (7.35)
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By the Dominated Convergence Theorem and (7.34),

fvi,k → fv,k strongly in L2(0, T ; L2(Ω)).

Also, by the Dominated Convergence Theorem, since Πvi is uniformly bounded as in (7.3), we have, for
every ϕ ∈ L2(0, T ; L2(Ω)),

Π∗viϕ→ Π∗vϕ in L2(]0, T [×Ω).

By (7.32), it follows that for every ϕ ∈ L2(0, T ; L2(Ω)),

ˆ T

0

ˆ
Ω

ΠviAui · ϕ =

ˆ T

0

ˆ
Ω

Aui ·Π∗viϕ→
ˆ T

0

ˆ
Ω

Aw ·Π∗vϕ =

ˆ T

0

ˆ
Ω

ΠvAw · ϕ,

or equivalently
ΠviAui ⇀ ΠvAw weakly in L2(0, T ; L2(Ω)). (7.36)

Therefore, taking i→∞ in (7.35) gives

w′(t) + ΠvAw(t) = fv,k(t) in Ω for a.e. t ∈]0, T [.

Since MR ↪→ C([0, T ]; Hs
0(Ω)) by Lemma 7.1, the weak convergence of w ⇀ u in MR gives

w(0) = lim
i→∞

ui(0) = u0.

But u is also the solution of the problem (7.28) which is unique by Theorem 7.2, so w = u.
Since ui ⇀ u in MR, by the compact embedding MR ↪→ E, we obtain, passing to a subsequence if

necessary,
ui → u strongly in E,

so Tk is continuous.
In the next step, we show that there exists a non-negative constant depending on γ, γ̄, a∗, a

∗, µ,Λ1,Λ2

and T independent of k such that for every element u in the Schaefer set

Sk = {v ∈ E : v = αTkv for some α ∈ [0, 1]},

the estimate (7.23) holds.
Assume that u = αTk(u) for some α ∈ [0, 1], i.e. u satisfies

u′(t) + Π(t, ·,u,Σu)Au(t) = αχΩk(x)f(t, ·,u,Σu) for a.e. t ∈]0, T [, and

u(0) = u0.
(7.37)

Multiplying the equation by [Π∗u]−1u′(t) and integrating over Ω, we obtain, by Lemma 7.1 and the
Cauchy-Schwarz inequality,

ˆ
Ω

[Π∗u]−1u′(t) · u′(t) +
1

2

d

dt

ˆ
Ω

Au · u =

ˆ
Ω

[Π∗u]−1u′(t) · u′(t) +

ˆ
Ω

Au · u′(t)

= α

ˆ
Ωk

f · [Π∗u]−1u′(t) ≤ γ̄

2

ˆ
Ω

|[Π∗u]−1f |2 +
1

2γ̄

ˆ
Ω

|u′(t)|2 ≤ γ̄

2γ2

ˆ
Ω

|f |2 +
1

2γ̄

ˆ
Ω

|u′(t)|2,

by the positivity of Π and since α ∈ [0, 1]. Making use of the coercivity and boundedness of Πu in (7.3), we
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integrate over time on ]0, t[ for every finite t ∈]0, T [ to obtain, by (7.2) and (7.15), that

1

γ̄

ˆ t

0

∥∥u′(τ)
∥∥2

L2(Ω)
dτ + a∗

∥∥u(t)
∥∥2

Hs
0(Ω)

≤ a∗‖u0‖2Hs
0(Ω) + µ

∥∥u(t)
∥∥2

L2(Ω)
+

1

2γ

ˆ t

0

∥∥f(τ)
∥∥2

L2(Ω)
dτ

≤ a∗‖u0‖2Hs
0(Ω) + 2µ2γ̄

ˆ t

0

∥∥u(τ)
∥∥2

L2(Ω)
dτ +

1

2γ̄

ˆ t

0

∥∥u′(τ)
∥∥2

L2(Ω)
dτ

+
γ̄

2γ2

ˆ t

0

∥∥F (τ)
∥∥2

L2(Ω)
dτ +

Λ2
1γ̄

2γ2

ˆ t

0

∥∥u(τ)
∥∥2

L2(Ω)
dτ +

Λ2
2γ̄

2γ2

ˆ t

0

[u(τ)]2Hσ(Rd) dτ

≤ a∗‖u0‖2Hs
0(Ω) +

γ̄

2γ2
‖F‖2L2(0,T ;L2(Ω))

+

(
2µ2γ̄ + γ̄

Λ2
1 + cSΛ2

2

2γ2

) ˆ t

0

∥∥u(τ)
∥∥2

Hs
0(Ω)

dτ +
1

2γ̄

ˆ t

0

∥∥u′(τ)
∥∥2

L2(Ω)
dτ

(7.38)

by the Sobolev embedding Hσ
0 (Ω) ↪→ Hs

0(Ω) with Sobolev constant cS for σ ≤ s. Then, applying Gronwall’s
lemma, we can argue as in the proof of Theorem 7.2 to get the estimate (7.23) for every u ∈ Sk.

This means that Sk is bounded in MR. By the definition of the MR norm, this implies that there exists
an R > 0 such that

Sk ⊂ Ck := {v ∈ E :‖v‖L2(0,T ;Hσ(Ωk)) < R},

because clearly ‖·‖L2(0,T ;Hσ(Ωk)) ≤‖·‖L2(0,T ;Hσ(Ω)). It follows from the definition of Tk and (7.29) that TkCk
is contained in a bounded subset of MR. By compactness of the embedding (7.26), TkCk is contained in a
compact subset of E. Therefore, by Schaefer’s fixed point theorem (Theorem 7.14), the mapping Tk admits
a fixed point u such that u ∈ MR. By the definition of Tk, this element u is a solution of the problem
(7.27), and since u ∈ Sk, u satisfies (7.23).

Finally, we extend the result to show that (7.22) admits a solution. For every k ∈ N, we choose a solution
uk of the problem (7.27). Since every such solution is an element of Sk and satisfies the estimate (7.23)
which is independent of k, the sequence (uk)k is bounded in MR. Since MR is a Hilbert space, we may
assume (after passing to a subsequence) that there exists a limit u ∈ E such that uk ⇀ u in MR. By
the compactness of the embedding (7.26), passing to a subsequence again if necessary, we obtain, through a
diagonalisation argument, that

u′k ⇀ u′ in L2(0, T ; L2(Ω)),

Auk ⇀ Au in L2(0, T ; L2(Ω)),

(uk,Σuk)→ (u,Σu) a.e. on ]0, T [×Ω, and

|uk|+ |Σuk| ≤ U a.e. on ]0, T [×Ω, ∀k ∈ N,

(7.39)

for some U ∈ L2
loc(]0, T [×Ω).

By continuity of Π and f , since Ωk is increasing to Ω,

Π(t, x,uk,Σuk)→ Π(t, x,u,Σu), and

χΩk(x)f(t, x,uk,Σuk)→ f(t, x,u,Σu) a.e. on ]0, T [×Ω.

By the uniform boundedness of fuk,k in (7.34) and the domination of uk by U in (7.39), we have

|χΩk(x)f(t, x,uk,Σuk)| ≤ F + (Λ1 + Λ2)U a.e. on ]0, T [×Ω, ∀k ∈ N.

Also, as in (7.36), the convergences in (7.39) imply that

Π(t, x,uk,Σuk)Auk ⇀ Π(t, x,u,Σu)Au weakly in L2(0, T ; L2(Ω)). (7.40)
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Therefore,

χΩk(x)f(t, x,uk,Σuk) = u′k + Π(t, x,uk,Σuk)Auk converges weakly in L2(0, T ; L2(Ω)).

On the other hand, for every ϕ ∈ L2(0, T ; Cc(Ω)) compactly supported in ]0, T [×Ω, we have
ˆ T

0

ˆ
Ω

χΩkf(t, x,uk,Σuk) · ϕ→
ˆ T

0

ˆ
Ω

f(t, x,u,Σu) · ϕ

by the dominated convergence theorem. Since compactly supported functions are dense in L2(0, T ; L2(Ω)),
we have the weak convergence

χΩkf(t, x,uk,Σuk) ⇀ χΩf(t, x,u,Σu) = f(t, x,u,Σu) weakly in L2(0, T ; L2(Ω)).

Letting k →∞ in the problem (7.27), we therefore obtain that u satisfies the original problem

u′ + Π(t, x,u,Σu)Au = f(t, x,u,Σu) in Ω for a.e. t ∈]0, T [.

Furthermore, invoking the continuity MR ↪→ C([0, T ]; Hs
0(Ω)) by Lemma 7.1 as before, uk(0) ⇀ u(0) in

Hs
0(Ω), so u(0) = u0. Thus, u is a solution to the problem (7.23). Furthermore, since the estimate (7.38) is

independent of k, we can pass to the limit to obtain the estimate (7.23).

Remark 7.15. It is also possible to consider a different nonlocal vectorial operator Au = (A1u
1, . . . ,Amum)

for each equation in the system

u′ + Π(t, x,u,Σu)Au = f(t, x,u,Σu) in ]0, T [×Ω,

for Ai given by (possibly different) scalar operators satisfying (7.2), which may be of the form (7.7), (7.8) or
(7.9), and Π satisfy the same assumptions.

Remark 7.16. The results in Theorem 7.11 can in fact be extended to the inhomogeneous Dirichlet boundary
problem u = g in ]0, T [×Ωc.

Indeed, writing MR(Rd) for

MR(Rd) := H1(0, T ; L2(Rd)) ∩ {u ∈ Hs(Rd) : Au ∈ L2(Rd)},

let g ∈MR(Rd)∩L2(0, T ; Hs+θ(Rd))∩C([0, T ]; Hs(Rd)), such that g(0) ∈ Hs(Rd). Considering ū = u−g,
we can solve the problem for ū ∈MR(Ω), for the corresponding translated problem.

7.3.2 Examples

Quasilinear System with the Classical Laplacian. As a first example, we consider the classical Lapla-
cian ∆ in the case of s = 1 as in Example 5.1 of [16], extended to the case of a system of equations.

Considering the vectorial Laplacian (−∆)m defined by

(−∆)m =


−c1∆ 0

.. .

0 −cm∆


for constants c1, · · · , cm > 0. Then, applying Theorem 7.11 for A = (−∆)m, we have

Corollary 7.17. Suppose Π and f satisfy the assumptions of Theorem 7.11 with Ω being an open bounded
Lipschitz domain. Then, writing for the gradient ∂ = (∂1, . . . , ∂n), for every u0 ∈ H1

0(Ω), the nonlinear
problem given by {

u′(t) + Π(t, x,u, ∂u)(−∆)mu(t) = f(t, x,u, ∂u) for a.e. t ∈]0, T [,

u = 0 a.e. on ]0, T [×∂Ω, u(0, ·) = u0(·) a.e. in Ω

has a solution u ∈ H1(0, T ; L2(Ω)) ∩ L2(0, T ; H2(Ω)) ∩C([0, T ]; H1
0(Ω)) for any T ∈]0,∞[. Moreover, there

exists a constant c′ = c′(γ, γ̄,Λ1,Λ2, T ) > 0 such that every solution u satisfies

‖u‖MR ≤ c
′
(
‖F‖L2(0,T ;L2(Ω)) +‖u0‖H1

0(Ω)

)
.

In particular, this extends the results of [16] to system of equations.
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Approximation Models for Interacting Nonlocal Diffusive Species Populations. We also consider
a nonlocal version of cross-diffusive systems modelling two interacting species, given for 0 < s ≤ 1 by

u′ = −D1(u, v,Σu,Σv)(−∆)su+R1(u, v,Σu,Σv),

v′ = −D2(u, v,Σu,Σv)(−∆)sv +R2(u, v,Σu,Σv),
x ∈ Ω, t > 0

u(0, x) = u0(x), v(0, x) = v0(x), x ∈ Ω, (7.41)

u(t, x) = v(t, x) = 0 x ∈ Ωc, t > 0,

where Σ has order σ with 0 < σ ≤ s < 1. The diffusion coefficients D1 and D2 are bounded and strictly
positive, describing a controlled nonlocal nonlinear spreading of the biological population which is dependent
both on the size and density of the species itself and the other species. The interaction between the two
species is both in terms of space competition with regard to diffusion, as well as in the linear bounded reaction
terms R1(u, v) and R2(u, v). Here, the spreading can be represented by any of the operators in Section 7.2,
and can be both nonlocal, as described by the nonlocal operator LsA, or local, given by the classical operator
L. Such systems with constant diffusion coefficients may appear in activator-inhibitor systems with linear
or sublinear kinetic functions (see, for instance, Chapter 9 of [243]).

This model can also be obtained as an approximation of Lotka–Volterra-type models, where the reaction
terms are obtained from linearising quadratic terms describing predator-prey, competition or cooperation
interactions. For instance, the Shigesada-Kawasaki-Teramoto system (see, for instance, [157] and [72]) given
by

u′ +D(−∆)s2u = R x ∈ Ω

for u = (u1, u2) with diffusion matrix

D =


d1 + qρ11u

q
1 + ρ12u

q
2

+qρ13(Dsu1)q + ρ14(Dsu2)q
qρ12u1u

q−1
2

qρ21u
q−1
1 u2

d2 + qρ22u
q
2 + ρ21u

q
1

+qρ23(Dsu2)q + ρ24(Dsu1)q


and reaction term

R = (R1, R2), Ri = (a1,i − b1,iu1 − c1,iu2)ui + (a2,i − b2,iDsu1 − c2,iDsu2)Dsui

can be approximated via the logistic function, which is a bounded nonlinearity,

ui ∼
ui

1 + ε|ui|
=: ũi ε > 0

Dsui ∼
Dsui

1 + ε|Dsui|
=: D̃sui ε > 0

to obtain the system
u′ +Dapprox(−∆)su = Rapprox x ∈ Ω

where Dapprox is of the form

Dapprox =


d1 + qρ11ũ

q
1 + ρ12ũ

q
2

+qρ13(D̃su1)q + ρ14(D̃su2)q
qρ12ũ1ũ

q−1
2

qρ21ũ
q−1
1 ũ2

d2 + qρ22ũ
q
2 + ρ21ũ

q
1

+qρ23(D̃su2)q + ρ24(D̃su1)q


and

Rapprox =

[
(a1,1 − b1,1ũ1 − c1,1ũ2)u1 + (a2,1 − b2,1D̃su1 − c2,1D̃su2)Dsu1

(a1,2 − b1,2ũ1 − c1,2ũ2)u2 + (a2,2 − b2,2D̃su1 − c2,2D̃su2)Dsu2

]

126



so that Dapprox is bounded, under appropriate assumptions on ρij and u, and Rapprox has a linear growth
on u1 and u2 for any fixed ε, fulfilling our assumptions.

Supposing Dapprox satisfies (7.3), which is obtained by taking the sufficient assumption that u1, u2 are
positive and that the diffusion coefficients ρij > 0 are bounded, and the derivatives are of order s, by Theorem
7.11, this problem admits a global solution u in

u ∈ H1(0, T ; L2(Ω)) ∩ L2(0, T ; Hs′(Ω)) ∩ C([0, T ]; Hs
0(Ω)),

where s′ = min{2s, s+ 1
2} − ε for any ε > 0. This means that we can consider a more general case of cross-

diffusion involving nonlocal operators, and obtaining a regularity result that is comparable to the classical
cases in Theorem B of [157] and Theorem 1.3 of [32].

7.4 The Nonlinear Problem s < σ < 2s ≤ 2 with Ω Bounded

In this section, we want to further extend the result to higher order derivatives σ > s > 0. In particular,
σ may be greater than 1, generalising the scalar quasilinear diffusion equations in the classical case in [16].
Here, we focus on the classical elliptic operator L as given in Example 1 of Section 7.2 defined by (7.7),
as well as the nonlocal fractional Laplacian defined in Example 2 of Section 7.2 defined by (2.4), since we
have additional regularity results for those cases. Then, by the results of [97], and [127] and [46], we know
that there exists a unique solution to the Dirichlet problem associated with L and with (−∆)s, given by
Propositions 7.4 and 7.6 respectively. Therefore, the spaces L2

L and L2
(−∆)sm

make sense. Furthermore, it is

clear that L and (−∆)sm are bounded and L2(Ω)-coercive.
We first recall the following Poincaré inequality concerning the embedding of L2(Ω) in Hs

0(Ω). See, for
instance, Theorem 2.2 of [30], which gives the vectorial case of Lemma 1.3.

Lemma 7.18 (Poincaré inequality). Let s ∈]0, 1]. Then for any open bounded set Ω ⊂ Rd, there exists a
constant CP > 0 depending only on Ω, d and s such that

‖u‖L2(Ω) ≤ CP ‖D
su‖2L2(Rd) .

for all u ∈ Hs
0(Ω). In particular, we have the equivalence of the norms ‖·‖L2(Ω) and ‖·‖Hs

0(Ω).

Assume A satisfies L2
A := {u ∈ Hs

0(Ω) : Au ∈ L2(Ω)} ⊂ Hσ′(Ω) for some s < σ′ < 2s for Ω bounded and
Lipschitz domain, i.e. there exists a constant CA > 0 and µ′ ≥ 0 such that

‖u‖L2(0,T ;Hσ′ (Ω)) ≤ CA‖Au‖L2(0,T ;L2(Ω)) + µ′‖u‖L2(0,T ;L2(Ω)) . (7.42)

In particular, σ′ = 2 for A = L, and σ′ = min{2s, s + 1
2} for A = (−∆)sm where 0 < s < 1. Therefore,

applying the compact embedding (7.25), we obtain that

MR = H1(0, T ; L2(Ω)) ∩ L2(0, T ; L2
A) ↪→ L2(0, T ; Hσ(Ω)) = Ẽ (7.43)

is compact for any open Lipschitz bounded set Ω ⊆ Rd, for any σ < σ′.
Also, by the Sobolev embeddings, there exists a Sobolev constant 0 < cS < 1 depending on s < σ′ < 2s,

σ and Ω, such that

cS‖v‖2L2(0,T ;Hσ(Ω)) ≤‖v‖
2
L2(0,T ;Hσ′ (Ω)) ∀v ∈ L2(0, T ; Hσ′(Ω)). (7.44)

Then, assuming f :]0, T [×Ω× Rm × Rq → Rm satisfy the assumptions of Theorem 7.11 such that

|f(t, x,u,p)| ≤ F (t, x) + Λ1|u|+ Λ2|p|α (7.45)

for some F ∈ L2(0, T ;L2(Ω)), Λ1,Λ2 ≥ 0, such that either

(i) 0 < α < 1, or

(ii) α = 1 with

0 < Λ2 ≤ γ
√
cS
CA

, (7.46)
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we have the following result:

Theorem 7.19. Suppose Ω ⊂ Rd is a Lipschitz bounded open set. Let Π :]0, T [×Ω × Rm × Rq → Rm×m
satisfy the assumptions of Theorem 7.11, and f :]0, T [×Ω× Rm × Rq → Rm satisfy the assumptions (7.45)
above for either condition (i) or (ii). Suppose A satisfies (7.42) for some s < σ′ < 2s ≤ 2. Then, for any
σ < σ′ and every u0 such that u0 ∈ Hs

0(Ω) ∩Hσ(Ω), there exists

u ∈ H1(0, T ; L2(Ω)) ∩ L2(0, T ; L2
A) ∩ L2(0, T ; Hσ(Ω)) ∩ C([0, T ]; Hs

0(Ω)) (7.47)

solving the problem

u′(t) + Π(t, x,u,Σu)Au(t) = f(t, x,u,Σu) for a.e. t ∈]0, T [,

u(0) = u0,
(7.48)

where Σ represents fractional derivatives of order σ which may be greater than 1. Moreover, there exists a
constant c′′ = c′′(Ω, γ, γ̄, a∗, a

∗, CA,Λ1,Λ2, T, α) > 0 such that for every solution u of (7.48),

‖u‖MR ≤ c
′′
(
‖F‖L2(0,T ;L2(Ω)) +‖u0‖Hσ

0 (Ω)

)
. (7.49)

Proof. Most of the proof follows the argument of Theorem 7.11, this time applying the Leray-Schauder fixed
point theorem for the fixed point constructed in the Banach space Ẽ in (7.43), for σ < σ′, where MR is
compactly embedded. In particular, this means that we do not have to consider the sequence of sets Ωk,
and we can directly consider the compact map T defined by u =: T v ∈MR of the problem

u′(t) + Πv(t, ·)Au(t) = fv(t, ·) for a.e. t ∈]0, T [, and

u(0) = u0

A major modification lies in the proof that the Leray-Schauder set

S = {u ∈ Ẽ : u = λT u for some λ ∈ [0, 1]} (7.50)

is bounded. In particular, the proof of the a priori estimate in (7.38) needs to be modified for the case of
σ ≥ s.

Indeed, we obtain the bound on ‖u‖L2(0,T ;Hσ
0 (Ω)) for σ ≥ s as follows: Multiplying the equation (7.37)

by Au and integrating over Ω, we obtain, by the bounds (7.3) and making use of Lemma 7.1 and the
Cauchy-Schwarz inequality, for a.e. t > 0,

1

2

d

dt

ˆ
Ω

u · Au + γ‖Au‖2L2(Ω)

≤
ˆ

Ω

u′ · Au +

ˆ
Ω

ΠuAu · Au =

ˆ
Ω

f · Au

≤ 1

2γ
‖f‖2L2(Ω) +

γ

2
‖Au‖2L2(Rd) .

Integrating over time on ]0, t[ for any t ≤ T , it follows by (7.2) that

a∗
∥∥u(t)

∥∥2

Hs
0(Ω)

+ γ

ˆ t

0

‖Au‖2L2(Ω) ≤ a
∗‖u0‖2Hs

0(Ω) + µ
∥∥u(t)

∥∥2

L2(Ω)
+

1

γ

ˆ t

0

‖f‖2L2(Ω) ,

and so, taking the supremum over t ∈]0, T [ and making use of (7.15), we have

a∗‖u‖2L∞(0,T ;Hs
0(Ω)) + γ‖Au‖2L2(0,T ;L2(Ω)) ≤ a

∗‖u0‖2Hs
0(Ω) + µ‖u0‖2L2(Ω) + 2µ2γ̄‖u‖2L2(0,T ;L2(Ω))

+
1

2γ̄

∥∥u′∥∥2

L2(0,T ;L2(Ω))
+

1

γ
‖f‖2L2(0,T ;L2(Ω)) .
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Considering only the term‖Au‖2L2(0,T ;L2(Ω)) on the left-hand-side of the inequality and applying Assumptions

(7.42) and (7.20) then gives

γ

CA
‖u‖2L2(0,T ;Hσ′ (Ω)) ≤

µ′

CA
‖u‖2L2(0,T ;L2(Ω)) + a∗‖u0‖2Hs

0(Ω) + µ‖u0‖2L2(Ω)

+ 2µ2γ̄‖u‖2L2(0,T ;L2(Ω)) +
1

2γ̄

∥∥u′∥∥2

L2(0,T ;L2(Ω))
+

1

γ
‖f‖2L2(0,T ;L2(Ω))

≤ a∗‖u0‖2Hs
0(Ω) + µ‖u0‖2L2(Ω) +

(
µ′

CA
+ 2µ2γ̄ +

Λ2
1

γ

)
‖u‖2L2(0,T ;L2(Ω))

+
1

2γ̄

∥∥u′∥∥2

L2(0,T ;L2(Ω))
+

1

γ
‖F‖2L2(0,T ;L2(Ω)) +

Λ2
2

γ

ˆ T

0

‖Dσu‖2αL2(Rd) .

Next, we argue as in estimate (7.38) to control the H1(0, T ; L2(Ω))-norm of u, and there exists a constant
c5 = c5(γ, γ̄, a∗, a

∗, µ,Λ1,Λ2, T ) > 0 such that

γ

CA
‖u‖2L2(0,T ;Hσ′ (Ω)) ≤ c5

(
‖u0‖2Hs

0(Ω) +‖F‖2L2(0,T ;L2(Ω))

)
+

Λ2
2

γ

ˆ T

0

‖Dσu‖2αL2(Rd) .

Therefore, by (7.44),

cSγ

CA
‖u‖2L2(0,T ;Hσ(Ω)) ≤ c5

(
‖u0‖2Hs

0(Ω) +‖F‖2L2(0,T ;L2(Ω))

)
+

Λ2
2

γ
‖u‖2αL2(0,T ;Hσ(Ω)) .

By the Assumption (7.45) with either Condition (i) with α < 1 or Condition (ii) with α = 1 and Λ2 < γ
√

cS
CA

,

we obtain an a priori bound on the term ‖u‖L2(0,T ;Hσ(Ω)).

Also, as in the estimate (7.38), the Leray-Schauder set S given by (7.50) is bounded in MR. Making
use of the Aubin-Lions compactness lemma MR ↪→ Ẽ, by the Leray-Schauder principle, T has a fixed point
u satisfying (7.47) and (7.49) solving the problem (7.48).

Remark 7.20. The theorem holds with σ′ = 2 for A = L as well as with σ′ = min{2s, s+ 1
2} for A = (−∆)sm

for 0 < s < 1, with derivatives of order s < σ < σ′, which may possibly be of order greater than 1. However,
while derivatives of order less than 1 may take the form of Ds or Ds as defined by (7.4) and (7.5) respectively,
the derivatives of order greater than 1 is only defined by (7.6), and Dsu is not defined for s > 1. The
derivatives of order equal to 1 is just the classical gradient.

Remark 7.21. As in Remark 7.16, the results in Theorem 7.19 can also be extended to the inhomogeneous
Dirichlet boundary problem u = g in ]0, T [×Ωc, for g ∈ MR(Rd) ∩ L2(0, T ; Hs+θ(Rd)) ∩ C([0, T ]; Hs(Rd))
such that g(0) ∈ Hs(Rd).

As a result, we can consider quasilinear diffusion equations and systems with derivatives of order σ > s
such that σ may be greater than 1, generalising the results of [16], [17] and [152]. This provides many useful
applications, particularly in advection-diffusion systems, as seen in Section 7.4.1.

7.4.1 Examples

A System with the Classical Laplacian with Dσ-Quasilinearity 1 < σ < 2. As a first application,
we take a relook at the vectorial classical Laplacian (−∆)m in Section 7.3.2, this time, with the Dσ fractional
derivatives for any 1 < σ < 2 as defined in (7.6).

Corollary 7.22. Suppose Π and f satisfy the assumptions of Theorem 7.19 with f fulfilling either Conditions
(i) or (ii) of (7.45). Then, for 1 < σ < 2 and every u0 ∈ H1

0(Ω) ∩Hσ(Ω), the nonlinear problem given by

u′(t) + Π(t, x,u, Dσu)(−∆)mu(t) = f(t, x,u, Dσu) for a.e. t ∈]0, T [,

has a solution u ∈ H1(0, T ; L2(Ω))∩L2(0, T ; H2(Ω))∩C([0, T ]; H1
0(Ω)) satisfying (7.49) for any T ∈]0,∞[.

In particular, this further extends the results of [16] to include the fractional derivatives Dσ of order
1 < σ < 2.
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Anisotropic Advection-Diffusion Fractional Equations for s > 1
2 . Our last application is a semilin-

ear anisotropic advection-diffusion system of equations. Such a system may be useful to transport models
with fractional diffusion and is inspired, in the scalar case, by the 2-dimensional forced subcritical surface
quasi-geostrophic flows with nonlocal dissipation (see, for instance, [75]) and the 2-dimensional Navier-Stokes
equation.

Suppose s > 1
2 . Let v(t, x) be a bounded velocity field in ]0, T [×Ω in a bounded Ω ⊂ Rd such that

‖v‖L∞(]0,T [×Ω) ≤ C# <∞, C# depending on Ω, γ, s and A as in (7.46). (7.51)

For f ∈ L2(0, T ; L2(Ω)) and u0 ∈ Hs
0(Ω) ∩H1(Ω), the equation is given by

u′(t, x) + ΠAu(t, x) = −
d∑

α=1

vα(t, x)∂αu(t, x) + f(t, x,u), (t, x) ∈]0, T [×Ω

u(t, x) = 0, (t, x) ∈]0, T [×Ωc,

u(0, x) = u0(x), x ∈ Ω,

where A = (−∆)sm or L. Observe that this means that since 1
2 < s < 1, we have a convective term given by

the classical gradient of u.
Since v is bounded as in (7.51), we can apply Theorem 7.19 with σ = 1 and with the source function

given by the term −
∑
α v

α(t, x)∂αu(t, x) + f(t, x,u), such that (7.45) is satisfied with α = 1. As a result,
the problem admits a global solution

u ∈ H1(0, T ; L2(Ω)) ∩ L2(0, T ; H1(Ω)) ∩ C([0, T ]; Hs
0(Ω))

for 0 < s ≤ 1 with 1 = σ < σ′ < 2s = 2 for A = L and 1 = σ < σ′ < min{2s, s+ 1
2} for A = (−∆)sm.

Furthermore, we do not require that v is divergence-free, which means that our result applies to com-
pressible fluids as well. Such a result is new, as far as we know, since v is different from those considered
in other works such as [241] and [91]. However, by (7.51), v must be bounded, which is a severe restriction,
and therefore, in general, it may not cover the subcritical quasi-geostrophic model where v is given by the
vorticity function of the Riesz transform of u.

Moreover, limited by the elliptic regularity of (−∆)s in Proposition 7.6, we are only able to consider the
subcritical s > 1

2 case, and unable to obtain the critical s = 1
2 nor the supercritical s < 1

2 cases.
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Inst. H. Poincaré Anal. Non Linéaire 34.4 (2017), pp. 899–932. issn: 0294-1449. doi: 10.1016/j.anihpc.2016.05.006.

[62] Luis Caffarelli and Alessio Figalli: Regularity of solutions to the parabolic fractional obstacle problem. In: J. Reine
Angew. Math. 680 (2013), pp. 191–233. issn: 0075-4102. doi: 10.1515/crelle.2012.036.

[63] Luis Caffarelli, Maria Gualdani, and Nicola Zamponi: Existence of weak solutions to a continuity equation with space
time nonlocal Darcy law. In: Comm. Partial Differential Equations 45.12 (2020), pp. 1799–1819. issn: 0360-5302. doi:
10.1080/03605302.2020.1814325.

[64] Luis Caffarelli, Fernando Soria, and Juan Luis Vázquez: Regularity of solutions of the fractional porous medium flow.
In: J. Eur. Math. Soc. (JEMS) 15.5 (2013), pp. 1701–1746. issn: 1435-9855. doi: 10.4171/JEMS/401.

[65] Luis Caffarelli and Juan Luis Vazquez: Nonlinear porous medium flow with fractional potential pressure. In: Arch.
Ration. Mech. Anal. 202.2 (2011), pp. 537–565. issn: 0003-9527. doi: 10.1007/s00205-011-0420-4.
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cations Sciences Mathématiques, Univ. Pierre et Marie Curie (1976).

[85] Alain Damlamian: Some results on the multi-phase Stefan problem. In: Comm. Partial Differential Equations 2.10
(1977), pp. 1017–1044. issn: 0360-5302. doi: 10.1080/03605307708820053.

[86] Alain Damlamian and Nobuyuki Kenmochi: Asymptotic behavior of solutions to a multiphase Stefan problem. In: Japan
J. Appl. Math. 3.1 (1986), pp. 15–36. issn: 0910-2043. doi: 10.1007/BF03167089.

[87] Donatella Danielli, Arshak Petrosyan, and Camelia A. Pop: Obstacle problems for nonlocal operators. In: New devel-
opments in the analysis of nonlocal operators. Vol. 723. Contemp. Math. Pp. 191–214. doi: 10.1090/conm/723/14570.

[88] Donatella Danielli and Sandro Salsa: Obstacle problems involving the fractional Laplacian. In: Recent developments in
nonlocal theory, pp. 81–164. doi: 10.1515/9783110571561-005.

[89] Robert Dautray and Jacques-Louis Lions: Mathematical analysis and numerical methods for science and technology.
Vol. 5. Evolution problems. I, With the collaboration of Michel Artola, Michel Cessenat and Hélène Lanchon, Translated
from the French by Alan Craig. Springer-Verlag, Berlin, 1992, pp. xiv+709. isbn: 3-540-50205-X; 3-540-66101-8. doi:
10.1007/978-3-642-58090-1.
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