

2022

UNIVERSIDADE DE LISBOA

FACULDADE DE CIÊNCIAS

DEPARTAMENTO INFORMÁTICA

ALGORITHMS FOR INFINITE SESSION TYPES

Inês Maria Caldeira Sardinha

Mestrado em Informática

Dissertação orientada por:

Prof. Doutor Diogo Miguel Ferreira Poças

e co-orientado pelo Prof. Doutor Vasco Thudichum Vasconcelos

Agradecimentos

Esta tese é o culminar de um percurso académico, longo e árduo, que não poderia ser
feito sem o apoio de quem escolho aqui agradecer.

Em primeiro lugar, aos meus orientadores, professores Diogo Poças e Vasco Vascon-
celos, pelo constante apoio e disponibilidade, por terem sempre mostrado um espı́rito
crı́tico que incentivou a um trabalho cada vez melhor. Em especial ao professor Diogo,
foi um ano de aprendizagem em que grande parte se deve a si. Muito obrigado!

À minha famı́lia, que esteve sempre presente e que mostrou um apoio incondicional.
Aos meus pais, António e Georgina, e irmão, Jorge, que desde o inı́cio me apoiaram em
todas as minhas decições mesmo quando pareciam erradas. Ao significado que deram
a todas as conquistas, que no fim são tão minhas quanto vossas. Agradeço o incentivo
e a educação por parte de todos, por terem celebrado as vitórias comigo e segurado nas
derrotas!

Aos meus amigos, dentro e fora da faculdade, desde Campo Maior até Lisboa, pas-
sando nas Caldas da Rainha e em Alcochete, que me acompanharam ao longo deste per-
curso. Aos que nunca me deixaram sozinha e que tiveram sempre uma palavra de apoio e
motivação para mostrar. Às amizades que são de sempre e às que mudaram o meu ano. A
todos os que tornaram tudo mais fácil desde os primeiros dias de faculdade, obrigado!

i

Aos meus pais.

Resumo

Interações concorrentes complexas geram frequentemente um grande número de tro-
cas de mensagens entre processos. A sua implementação, tanto na ordem como nos tipos
de mensagens, pode levar regularmente a erros por parte dos programadores. Para simpli-
ficar as interações e reduzir a probabilidade destes erros, os tipos de sessão foram criados.
Estes tipos definem uma estrutura para comunicação entre protocolos de trocas de men-
sagens. Os canais de comunicação podem ser lineares ou partilhados. Nas interações
concorrentes existe um canal partilhado por dois, ou mais, processos e é necessário ga-
rantir que se um envia uma mensagem, o outro estará preparado para receber essa mesma
mensagem. Do mesmo modo, se um dos processos apresenta um leque de opções que se
podem escolher, o processo no lado oposto do canal estará pronto para selecionar uma
das opções apresentadas, de forma a garantir a complementaridade das operações.

Existem tipos finitos de mensagem, que repetem as mesmas operações continuamente,
onde se pode realizar um número finito de operações de receção/envio ou oferta/selecção,
como !int.end, que envia um número inteiro e termina a interação. Contudo, os ti-
pos finitos não abrangem todas as interações possı́veis, o que levou à criação dos tipos
infinitos. Este trabalho apresenta-se como uma extensão dos tipos de sessão, já que é ne-
cessários estudar tipos com maior expressividade que os tipos finitos para que se possam
incluir operações mais complexas, que necessitem a constante troca de mensagens.

Os tipos infinitos podem ser representados através de árvores infinitas, que vão sendo
percorridas à medida que as operações vão sendo realizadas. Usando a recursividade
para criar estes tipos infinitos, podemos ter X=!int.X, que se traduz no protocolo que
envia números inteiros repetidamente, X volta a ser chamado sempre depois de se enviar o
inteiro. Na derivação dos tipos recursivos existem os tipos 1-counter, onde é associado um
contador a cada variável cujo valor define que operações vão sendo realizadas. Existem
então duas equações para cada variável, uma que se segue quando o contador chega a
zero e outra que é seguida quando o contador é maior que zero. Assim, as operações são
realizadas variando entre uma destas duas equações, consoante o valor do contador.

Os tipos recursivos e os tipos 1-counter são o principal foco desta tese, já que são duas
abordagens diferentes de tipos infinitos de sessão. Este trabalho é baseado na verificação
de sistemas de equações para os tipos recursivos, os mais simples, e os tipos 1-counter,
uma abordagem pouco estudada.

v

Foram criadas gramáticas para que se pudessem testar sistemas de equações para cada
um destes tipos. Entre as regras das gramáticas é possı́vel enviar (!) e receber (?) men-
sagens, bem como selecionar (⊕) ou oferecer (&) opções. Além disto, existem identifica-
dores de tipos e ainda tipos end, que terminam as operações. Todas estas regras foram
implementadas na linguagem SePi, uma linguagem de programação concorrente baseada
no cálculo-pi que define a semântica das mensagens. Foram também analisadas outras
abordagens que usam tipos de sessão, como os tipos nested, que conseguem definir proto-
colos dentro de protocolos, independentemente do protocolo pai, e os context-free, onde
é introduzida composição sequencial.

Todos os sistemas, quer apresentem um comportamento finito ou infinito, devem ser
testados, e para isso foram contruı́dos algoritmos que possam verificar várias componen-
tes dos sistemas. Os algoritmos construı́dos dividem-se em três tipos: formação, con-
tratividade e equivalência de tipos. A verificação da formação analisa se os sistemas de
equações apresentados seguem as regras das gramáticas construı́das, se todas as variáveis
do sistema são declaradas e se apresentam nomes únicos. Além disto, é também exami-
nada a contratividade, que pretende não deixar que um sistema recursivo fique preso sem
realizar ações. Assim, um sistema que apresente um comportamento cı́clico sem realizar
operações de enviar/receber mensagens ou de selecionar/escolher uma opção, será con-
siderado não contrativo. Estes sistemas não são desejados quando se comparam tipos,
logo esta verificação é realizada mesmo antes de se analisar o comportamento infinito de
ambos. Finalmente, a última verificação baseia-se na comparação dos comportamentos
de dois tipos que podem assumir um comportamento infinito e concluir se são, ou não,
equivalentes.

A equivalência é um dos problemas fundamentais na teoria da computação, que ana-
liza se dois sistemas se comportam de maneira equivalente. Aqui falamos em equivalência
de tipos infinitos, construindo dois algoritmos de forma a decidir se o seu comportamento
se assume como igual ou não.

A nossa implementação utilizou o ANTLR, um gerador de interpretadores para ler,
processar e analisar ficheiros. Usado para construir linguagens a partir de gramáticas, rea-
liza um parser que pode construir e visitar árvores de parser e assim realizar as verificações
que eram pretendidas. Deste modo, as verificações de declaração de variáveis e de nomes
únicos para cada uma delas são realizadas visitando o nó da árvore em que se encontram
e fazendo essa avaliação.

O principal objetivo deste projeto é implementar estes algoritmos de verificação, bem
como testá-los. Deste modo, podemos ter a certeza que tipos com este grau de expressi-
vidade estão corretamente definidos e que podem ser comparados.

Palavras-chave: tipos de sessão, tipos infinitos, algoritmos, formação de tipos,
equivalência de tipos

vi

Abstract

In concurrent interactions there are a large number of messages exchanged between
two or more processes that often lead to coding errors. To simplify these interactions
and reduce the coding errors, session types were created. Session types are an approach
for structuring interaction protocols between multiple parties. When a channel is shared
between two processes it is necessary to ensure that if one is sending a message, the
other is prepared to receive it. In the same way, if a process offers some options, the
complementary is prepared to select one of the options.

There are finite types of messages, that perform an operation and stop, where you can
perform send/receive or offer/select a message and terminate the interaction. However,
not all of the interactions are possible just with finite types. This work presents an exten-
sion of session types into infinity, since it is necessary to study different classes of types
with greater expressive power than finite types.

Recursive and 1-counter types are the main focus of this thesis. We start by designing
grammars so we can test equation systems based on those types. Defining rules in which
the systems of these types can be written is the purpose of the grammars. These rules
include the possibility of sending or receiving messages and selecting or offering a set
of options. The grammars are implemented based on SePi, a concurrent programming
language based on pi-calculus.

All the systems that present a finite and infinite behavior should be tested. Construct-
ing algorithms for type formation and type equivalence of these systems as well as testing
those algorithms is the main goal of this project, so that we can be sure that infinite types,
specifically, with different degrees of expressivity are correctly defined and able to be
compared.

Keywords: session types, recursive types, algorithms, type formation, type equivalence

viii

x

Contents

List of Figures xiii

List of Tables xv

1 Introduction 1
1.1 Motivation . 1
1.2 Contributions . 2
1.3 Confrontation with the initial work plan 2
1.4 Structure of the document . 2

2 Session Types and the SePi language 5
2.1 Finite session types . 5
2.2 Infinite session types . 6
2.3 SePi language . 9

3 Grammars and algorithms 11
3.1 ANTLR . 11
3.2 Recursive types . 11

3.2.1 Grammar . 13
3.2.2 Type formation . 13
3.2.3 Contractivity . 15
3.2.4 Type equivalence . 15

3.3 1-Counter types . 18
3.3.1 Grammar . 19
3.3.2 Type formation . 20
3.3.3 Contractivity . 21
3.3.4 Type equivalence . 24

4 Tests 31

5 Conclusion 35

Bibliography 40

xi

List of Figures

2.1 Infinite tree type . 7
2.2 Offering and selecting options SePi example 9

3.1 Rules for Recursive types . 12
3.2 Pairs from 3.8 system . 17
3.3 Pairs received from 3.9 system . 18
3.4 Rules for 1-Counter types . 19
3.5 Tree representation of the second approach of 3.19 29

4.1 Test classes summary . 32
4.2 Algorithms line and branch coverage . 33

xiii

List of Tables

3.1 EqZeroContext cases replacements(contractivity algorithm) 22
3.2 EqOtherContext cases replacements(contractivity algorithm) 23
3.3 IdContext cases replacements(equivalence algorithm) 25

4.1 Number of tests for recursive types algorithms 31
4.2 Number of tests for 1-counter types algorithms 31

xv

Chapter 1

Introduction

1.1 Motivation

In concurrent interactions there are a large number of message exchanges between two
or more processes that are often the target of coding errors. To make these interactions
simpler and less likely to cause execution errors the session types were built. Session
types for concurrent programming languages were first introduced by Honda et al. [8, 9].
Session types are a framework for communication protocols associated with the channels
that exchange messages and that can be statically checked. The channels can be linear or
shared. In linear channels we have just two threads communicating, however in shared
channels we can have zero or more threads communicating between them, making it much
more realistic for the computation world.

We can consider different protocols that extend finite types to infinite types by means
of systems of equations. The simplest protocols define finite types: a channel can, for
example, send an integer, receive a boolean and end (!int.?bool.end). However,
not all the interactions are that simple and can include recursion or more expressive types.
So, different symbols for representing different operations were thought out. The ! sym-
bol is used for representing the send operation, the ? symbol the reception, the & symbol
offers choices from a finite number of possibilities and finally the ⊕ symbol is used for
selecting one of the possibilities.

For an example of a possible infinite type specifying a choice, the type

T = &{start:!int.?bool.end, go:?string.T}

offers a choice between two different protocols, start and go. If we choose start then we
are facing a finite type, but if we choose go, the channel receives a string and repeats T
again, a potentially endless loop if we keep choosing go.

Systems of equations give rise to the class of recursive types (the above example) but
also other extensions of which we focus on two: context-free types and 1-counter types.
In context-free types we can have a sequential composition of types making it possible to

1

Chapter 1. Introduction 2

represent a stack as a type. In 1-counter types there is a counter for every type that can be
used for the equations that represent that same type.

Session types with different expressivity levels were first studied by Gay et al. [7]. It
is necessary to study fragments of infinite session types such as recursive or 1-counter, in
order to go beyond finite session types. To check these systems we want to implement
type formation, type contractivity and type checking algorithms. Comparing types and
testing if they describe equivalent computations are decidability problems for which we
want an answer in finite time, that is, for which we desire a practical algorithm. These
problems were thought of when constructing the algorithms. The main goal of this thesis
is to develop, implement and test those algorithms for a programming language.

All the grammars created were based in the SePi language, a concurrent programming
language based on the monadic pi-calculus [11], where communication among processes
is governed by linearly refined session types [5].

1.2 Contributions

The main contributions of this work can be resumed as follows:

• Develop algorithms for type formation, type contractivity and type equivalence for
recursive and 1-counter types.

• Implement and test those algorithms for a programming language based on Session
types.

1.3 Confrontation with the initial work plan

This section explains the differences between the original plan thesis and what we actually
did. The first plan was to develop and test the algorithms and implement these algorithms
in a programming language. All the type formation, type contractivity and type equiva-
lence algorithms were made as well as the tests for them. However, we did not implement
our algorithms in a programming language. We estimate that this additional work would
entail some extra months.

1.4 Structure of the document

The present chapter summarizes our work and presents the motivations and contributions.
The next chapters are organized as follow:

• Chapter 2 - reviews the notion of session types and infinite session types followed
by the SePi language.

Chapter 1. Introduction 3

• Chapter 3 – introduces the notions of recursive and 1-counter types and describes
the grammars created for them. Describes all the algorithms made.

• Chapter 4 – explains how the tests were made and how the algorithms were tested.

• Chapter 5 – presents the conclusions and the plan for future work.

Chapter 2

Session Types and the SePi language

In this chapter we review some work related to finite session types (Section 2.1) and how
infinite session types work (Section 2.2). We also present the base language used for this
work, the SePi language (Section 2.3).

2.1 Finite session types

The notion of session types was first introduced to formalize the interactions between
partners running in parallel that communicate by passing messages [14], as a variant of
the pi-calculus [11]. Usually, only two partners are communicating (two threads), being
a linear interaction. However, linearity does not have expressiveness to compute more
complex interactions, so shared objects should be used for a multiple number of threads.
Consider having a partner A, Alice, that wants to process a text sent from partner B, Bob.
In order to do that, Bob should send the text to Alice using a communication channel
defined in the form: !string.end. This way, Alice can read (?string.end) the
text from Bob and print it, for example. The ! operator represents an output and the ?
represents an input. The end type represents the end of the interaction in this channel.
There exists two more forms of interaction, represented by &, for offering a choice, and
⊕, for selecting a choice. The existing complementarity between ! / ? and & / ⊕ guar-
antees good communications when multiple partners are involved and it is called duality.
Automatically we can infer that the dual of input is output and the dual of output is input.
In the same way, the dual of select is offer and the dual of offer is select, finally the dual
of type end is itself. Duality is only defined for session types.

Another feature often found in object-oriented languages is subtyping, being that if T
is a subtype of U, written T ≤ U, then a channel of type T can safely be used wherever a
channel of type U is expected. Gay and Hole [6] define a notion of subtyping for session
types and especially recursive session types. Subtyping allows a channel that accepts a
decimal number can accept an integer too, since the integer can be seen as a subtype of
the decimal. For the output the relation works reversely. In internal and external choices

5

Chapter 2. Session Types and the SePi language 6

something different happens. If a channel offers a choice with a set of labels then it
can be used in a process that selects a choice from a subset of those same labels. A
similar behaviour happens when the channel selects a choice. This concept increases the
flexibility of a system since different protocols can be followed if a relation of subtyping
is defined.

2.2 Infinite session types

We can have different data structures defined by the processes, but for a repetitive session
behavior we have to use recursive types. They perform a behavior where the process is
infinite and is represented as a regular infinite tree. As Pierce [12] explained we can add
a recursive operator so that our operation continues repeatedly. This kind of types can be
used, for example, for reading a stream of strings:

X = &{stop:end, continue:?string.X}

where in label continue we can consume (read) a string and go to X again, continuing
to read other elements. Intuitively this loop inputs strings continuously if the choice is
continue successively. When the stream has no more elements left to read, the label
stop is chosen, which ends the interaction. The representation of this infinite tree is
presented in figure 2.1. We start in the top node of the tree, that is X, and can choose
between option stop or continue. If we choose stop then we arrive at the node end and
we have no more nodes left to choose, the interaction stops. If we choose continue
we arrive to the node ?string.X. This node separates in two other nodes, ?string,
where a string is consumed, and Xwhere we have again the option stop and continue,
and so on.

To represent an infinite behaviour it is common to introduce a fixed point operator
µ, where in µX.Z, X and Z are two different session types and the procedure is repeated.
When defining a language we can achieve the recursion introducing the channel in the
end of the operations. The µ operator expresses the recursion, meaning that

µC.⊕ {get:?int.C, sum:!int.!int.?int.C} (2.1)

denotes the infinite type C of selecting a choice. In this example, every time get or sum
is chosen, it returns to C adding a new part to the structure, not being stuck in the same
operation since integers are send or received. As an alternative to the µ representation for
the infinite behaviour, we can use equation systems, the approach used in this project.

For recursive types and its extensions, contractivity is one of the most important con-
cepts to take into account. Contractivity ensures that the unfolding process stops, exclud-
ing undesirable cycles that don’t perform any operation. For example, a system where

Chapter 2. Session Types and the SePi language 7

Figure 2.1: Infinite tree type

two types call each other without any other operations (X=Y Y=X) is considered a non-
contractive system. Contractivity ensures that types can be interpreted as regular infinite
trees [15].

When comparing two infinite types we have to look at their infinite unfolding, the
equality is proved by coinduction.

In this work, based on systems of equations, two approaches are used for an infinite
behaviour. The simplest approach, which we named recursive types and can be repre-
sented as the example in 2.1, and 1-counter types, that are a recent approach. In 1-counter
types, a counter is introduced associated to each type variable. All type equations of a
type depend on this counter. For example, consider the equation system representing a
binary tree with nodes and leaves:

X <0> = end

X <n+1> =⊕ {leaf: !int.X<n>,

node: !int.X<n+2>}

(2.2)

starting from the type X<1>. To send a tree, one can either select that this tree is a leaf,
sending its value, or select that the tree has a node, sending its value, and then sending its
two sub-trees. We could, following the code below, select node and send the number 5,
select leaf and send the number 2, select leaf and send the number 3, and as we arrive
at X<0> the interaction terminates.

Chapter 2. Session Types and the SePi language 8

1 select node -> !5.X<2>
2 select leaf -> !2.X<1>
3 select leaf -> !3.X<0>
4 end

Context-free types are another representation that goes beyond finite session types.
In these types sequential composition is introduced. Thiemann and Vasconcelos [13]
have proposed these session types, studying their metatheory. Sequential composition is
represented by dropping the restriction of tail recursivity. They removed the continuation
from send and receive types and adopted a general form of sequential composition T;U
with unit skip instead of end making it clear that does not necessarily ends a session
type. For example, the following equation represents a stack:

Stack=⊕ {push:?int;Stack;Stack,

pop:!int;skip}
(2.3)

where we can push or pop integer numbers. After pushing a number we call the Stack pro-
tocol again. In the pop option an integer is sent followed by the termination of the recep-
tion. This way, what was !int.end now is just !int and what was !int.!int.end
now is !int;!int. We could also create a communication channel to send this stack
and wait for their response.

Introduced by Demangeon and Honda [4], nested protocols define a subprotocol in-
dependently of its parent protocol, which calls the subprotocol explicitly. This way, it is
allowed to pass value arguments, roles or other protocols. Besides that, a protocol can call
multiple copies of the same protocol one or more times, given different arguments. These
subprotocols are treated as subsessions, where an agent can create a new private session
inviting roles of the parent session or other agents from the network. The authors provide
an example showing that one does not need to update the specifications of applications of
a login protocol in order to enforce the security. Besides that, another advantage of nested
types is the separation of the different branches by inviting participants only when nec-
essary, which reduces the complexity and resources [4]. Also, Das et al. [3] develop the
metatheory of nested types proving that type equivalence in nested types can be translated
to the trace equivalence problem for deterministic first-order grammars.

Also, Gay et al. [7] studied the spectrum of general infinite types: finite-state, 1-
counter, pushdown and 2-counter. The inference rules of this work are based in this study.
They form a strict hierarchy for this types allowing them to establish decidability and
undecidability for type formation and type equivalence. They prove that equivalence,
duality and formation relations are all decidable and we make use of that fact.

Chapter 2. Session Types and the SePi language 9

2.3 SePi language

SePi [5] is a concurrent programming language based on pi-calculus. Pi-calculus is a the-
ory of mobile systems introduced by Milner [10] for defining the semantics of message-
based concurrent languages. This language creates a syntax of core processes and values,
types and formulae that builds the core language. The processes include channel creation,
parallel composition, conditionals, assume, assert and most significant for our work, in-
put and output. In the same way, the pretypes used are very important, including send,
receive, select and branch. Consider the image 2.2 below:

Figure 2.2: Offering and selecting options SePi example

Two new channels are created, called client and server. The process client follows the
selecting choices from lines 2 and 3. The server is prepared to receive from the client two
options, max, where the client sends two integers and receives the biggest, and isZero,
where the client sends an integer and receives a boolean confirming if it is the number 0
or not. The client chooses the option isZero and sends the number 5. After that, the
client is expecting to receive a boolean and print it.

Since each process communicates via bidirectional channels, they synchronously use
the important concept of duality for ensuring the complementarity between two processes
that share a channel. The duality ensures that if one side of the channel sends a message,
the other must receive it. The dualof operator is the abbreviation representing this in
SePi. Besides that, they include a series of other abbreviations such as * , that represent a
common class of shared types.

SePi provide a tool where type development may be tested. It is a language that com-
bines session types with linear refinement types, types qualified by a logical constraint.

Chapter 2. Session Types and the SePi language 10

Chapter 3

Grammars and algorithms

This section explains the grammars used for the recursive and 1-counter types definitions.
For writing the type formation and type equivalence algorithms a grammar for recur-

sive types and a grammar for 1-counter types, were developed using the ANTLR plugin
for Eclipse (section 3.1). In section 3.2 type formation, contractivity and type equiva-
lence algorithms are explained in detail for the recursive types. In section 3.3 the same
algorithms are explained for 1-counter types.

3.1 ANTLR

ANTLR [1] (ANother Tool for Language Recognition) is a parser generator for reading,
processing, executing, or translating structured text or binary files. Given a grammar,
ANTLR creates a parser and this parser can build and visit a parse tree, also created.
This tool was used to generate a parse tree visitor for each of our grammars. Giving
a name to each rule, ANTLR creates a class that provides an empty implementation of
visitors, which can be extended to create a visitor that only needs to handle a subset of
the available methods. This was the process used in this project. When it was necessary
to make some operation in a specific rule, the visitor was extended with a new operation
using the Override annotation. There are two main visitors in this project, one for the
recursive types grammar and one for the 1-counter types grammar. Then, for each class
that uses the visitor, the parse tree created was passed and the tree was visited itself.

In order to use ANTLR in Eclipse, the plugin was installed from the marketplace and
the grammars were written in a g4 file.

3.2 Recursive types

In figure 3.1 we can see the inference rules of a type. The formation of types is based on
four rules. Rule T-end represents a type message end, used here as types that could other-
wise be int, string, or bool. Rule T-Choice includes the external choice &{l : Tl}l∈L,

11

Chapter 3. Grammars and algorithms 12

that receives a label l ∈ L and continues as Tl, and the internal choice ⊕{l : Tl}l∈L, that
selects a label l ∈ L and continues as Tl. T-Msg rule includes the input type ?T.U , that
inputs a type T and continues to U, and the output type !T.U , that outputs a type T and
continues to U. To avoid the repetition of the T-Choice and the T-Msg rules the # and ⋆

symbols are used. Finally, rule T-Id implies that T must be contractive and a valid type.
For the contractivity rules, C-End represents a contractive type end. Rule C-Choice and
rule C-Msg are always contractive since they always operate an action. Rule C-Id requires
that T must be contractive. Finally, rules E-End, E-Choice and E-Msg are essentially syn-
tactic equality. Rule E-EquiL requires that the two types must be contractive and right
side equivalent to the left side, and rule E-EquiR requires that the two types must be
contractive and left side equivalent to the right side.

Polarity and view

::= ? | ! ⋆ ::= & |

Type formation T type

end type T-End

𝑇𝑙 type (∀𝑙 ∈ 𝐿)

⋆{𝑙: 𝑇𝑙}𝑙∈𝐿 type
 T-Choice

𝑇 type 𝑈 type

#𝑇.𝑈 type
 T-Msg

𝑋≐𝑇 𝑇 contr 𝑇 type

𝑋 type
 T-Id

Type contractivity T contr

end contr C-End

⋆ {𝑙: 𝑇𝑙}𝑙∈𝐿 contr C-Choice

#𝑇. 𝑈 contr C-Msg

𝑋≐𝑇 𝑇 contr

𝑋 contr
 C-Id

Type equivalence 𝑇 ≃ 𝑇

end ≃ end E-end

𝑇𝑙≃𝑈𝑙 (∀𝑙 ∈ 𝐿)

⋆{𝑙: 𝑇𝑙}𝑙∈𝐿 ≃⋆{𝑙: 𝑈𝑙}𝑙∈𝐿
 E-Choice

𝑇≃𝑈 V≃𝑊

#𝑇.𝑉 ≃#𝑈.𝑊
 E-Msg

𝑋≐𝑈 𝑈 contr 𝑈≃𝑇

𝑋≃𝑇
 E-EquiL

𝑋≐𝑈 𝑈 contr 𝑈≃𝑇

𝑇≃𝑋
 E-EquiR

Figure 3.1: Rules for Recursive types

Chapter 3. Grammars and algorithms 13

3.2.1 Grammar

We defined a grammar to represent the input of the algorithms following the previous
rules. The non-terminal symbols (I,E,T,F) represent a language, each of them can
be substituted by its definitions. The terminal symbols (end, &, ⊕, !, ?,) form the
definition of the language. The symbol * represents the repetition of the preceding to-
ken zero or more times. The terminal symbol x can be defined as a regular expression
defined by [A-Z][a-zA-Z0-9_]*, representing strings starting with one uppercase
letter followed by any combination of letters, numbers or underscore character, zero or
more times. Finally, the terminal symbol f also can be defined as a regular expression,
[a-z][a-zA-Z0-9_]* that is very similar to x with the difference that the initial let-
ter must be a lowercase letter.
Below we can find the rules used for recursive types. Rule I receives the two compar-
ative types and goes to the equations that define the identifiers, if they exist. Rule E is
the definition of identifiers. Rule T may indicate a select (&) or offer (⊕) labelled choice
defined by F, a receive (?) or send (!) value of type T continuing with T, an end that
terminates a session, a type variable x, or a type T between parentheses. Rule F defines
the composition of labels where f selects the type F from a finite number of options.

I::= (T , T) E* InitContext

E::= x = T EquationContext

T::= &{F(,F)*} ChoiceContext

| ⊕ {F(,F)*} ChoiceContext

| ?T.T MessageContext

| !T.T MessageContext

| end EndContext

| x IdContext

| (T) ParContext

F::= f:T FieldContext

x::= [A-Z][a-zA-Z0-9]*

f::= [a-z][a-zA-Z0-9]*

Each rule has a name annotated to the right. The first rule is called InitContext, the
second rule is EquationContext, and so on.

3.2.2 Type formation

For checking the formation it is verified if the types are all defined, are represented with
an equation, and the names of the identifiers are unique. For example, we need to check

Chapter 3. Grammars and algorithms 14

that each type identifier that appears has its definition. If the equation X = P appears,
where P is a type identifier, then there must be an equation for P, and so on. Besides that,
we also verify if all the labels in the choices are unique in each type.

The first thing checked is the unique name of the type identifiers that appear in the
EquationContext rule on the left side, followed by the two comparative types, that appear
in the InitContext, and then if there are any equations they are next. All the definitions of
the equations are checked, the right side of the EquationContext rule, and if it is a choice
we check if the name of the labels is unique, on the FieldContext rule. In this order, when
one of the errors is found the algorithm stops.

In the example (3.1), the definition of type X, which is M, is not defined, an exception
is thrown (BadFormation exception).

(X, Y)

X = M

Y = !end.!end.end

(3.1)

In example (3.2), although all the type identifiers are defined and none of them has a
repeated name, the labels have the same name (one), so an exception of bad formation is
thrown too.

(X, Y)

X = M

M = ?end.!end.end

Y = &{one:!(!end.end), one:end }

(3.2)

In the example (3.3), there are two identifiers called Y which is incorrect too. If all
these three errors were in the same system, then the two Y equations would raise the ex-
ception, that is the exception of the two Y equations have higher priority than the identifier
that is not defined (example (3.1)), followed by the same name in labels (example (3.2)).

(X, Y)

X = end

Y = !end.!end.end

Y = &{one:end, two:end }

(3.3)

Finally, in (3.4) no exception is thrown, since the two comparative types are well
defined, even the Y used in the receiving message has a definition.

(!end.end, ?Y.!end.end)

Y = end
(3.4)

Chapter 3. Grammars and algorithms 15

3.2.3 Contractivity

In the algorithm for contractivity we search whether a cycle is found. A cycle is formed
by type identifiers that do not realize operations. For this algorithm, only the types that
are IdContext and ParContext are checked, since they are the only ones that can create a
cycle without performing any operation. In the ParContext the parenthesis are taken off
until a different type is found, if they are IdContext then the algorithm continues. For
example, in the below systems we follow type identifiers that are defined as other type
identifiers, saving them. We check if some of them go back to the ones that were already
checked, meaning that they were saved.

In (3.5), X is defined by other type, M, so X is saved and the equation of M is followed.
As M is defined by Y (M is saved and Y is followed) and Y by X, a type already checked
(saved), we are facing an infinite loop and an exception of contractivity is thrown. If we
are facing an example as (3.6), as we follow the type identifiers we arrive at Y and its
definition does not allow the existence of an infinite loop since it as a send operation of
end, so it is considered an non-contractive system and no exception is thrown.

(X, Y)

X = M

M = Y

Y = X

(3.5)

(X, Y)

X = M

M = Y

Y = !end.end

(3.6)

In the example (3.7) the P identifier is defined by a ParContext, however inside of it
exist a IdContext that creates an non-contractive system. So a side method is created to
remove the parenthesis until the IdContext is found and we can check the variable M.

(X, Y)

X = end

Y = W

W = P

P =((M))

M = W

(3.7)

3.2.4 Type equivalence

The type equivalence for recursive types is defined as the equality of the infinite regular
trees created when unfolding the types, if necessary. The comparison of infinite types is
proved by coinduction. For example, X=!int.X and Y=!int.!int.Y can be consid-
ered equivalent since they realize the same operations in a infinite perspective (output a
integer continuously) but are defined in different ways.

Chapter 3. Grammars and algorithms 16

So, two types are received by a recursive Java method. The context of the two types
is compared with the existing contexts formed by naming the rules in the grammar (Mes-
sageContext, ChoiceContext, ParContext, IdContext, EndContext).

If a type identifier (IdContext) is given, then it is substituted by its definition, and the
method is called again. If the two types are messages (MessageContext), then the two
symbols (send/receive) are compared; if they are equal, then it is checked the first part
of the operation (in type !T.U the first part of the operation is considered the T type and
the second part the U type). After this, the second part is compared if no exception was
thrown. On the other hand, if the context is a choice (ChoiceContext), the choose/select
symbols are also compared and if they match, then the comparison of the fields starts. The
number and the field names must be equal. If they are, they are treated as a normal type, so
a call to the method is realized for each of the fields. If no exception appears, the following
field is checked, and so on. If the context of a type is the parenthesis (ParContext) then
the method is called again with the inside of the parentheses. Finally, if the two types are
end (EndContext), which means we arrived at the end of the definitions so we can assume
equality in that branch, the algorithm stops the cycle that is being checked. There is one
more way for the algorithm to stop the cycles. All the pairs of types compared are saved,
and if they are both called again, we know this branch can be considered equal.

Following the system 3.8 in figure 3.2 are all the pairs that the algorithm receives to
compare:

(X, Y)

X = !(!end.end).end

Y = M

M = !T.end

T = !end.end

(3.8)

On the right side of figure 3.2, in the first three lines there are just substitutions of the
identifiers when they are received as a type. When line 4 is received, the send (!) symbol
was compared (in 3.2 represented with (!,!) between pairs) so the first argument of
each operation can be checked (i.e the message being send), and line 5 is received. In line
6 it is necessary to replace T by its definition. In line 7 parentheses were taken off and
the send symbol is compared again and in line 8 we compare the first part of the message,
two ends. As these two are the same type, in line 9 the second part of the message checks
that two ends are equal again. Finally, in line 10, the second part of the message, in line 4,
is compared, two ends again. The algorithm stops and they can be considered equivalent.

Chapter 3. Grammars and algorithms 17

Figure 3.2: Pairs from 3.8 system

In the example 3.9 something different happens. The algorithm stops because we find
a pair that was already checked.

(X, Y)

X = ⊕{a : !W.end}
Y = ⊕{a : !(⊕{a : Z}).end}
W = X

Z = !Y.end

(3.9)

Following the figure 3.3 and the entries beside, we can see how the types of this
example are treated. After the first substitutions, we find, in line 3, two select choices
(represented in 3.3 with (+,+)) with the same label name (a), so in line 4, as we can see
a send symbol in both sides, in line 5 the comparison of the messages being sent starts.
Afterwards, more substitutions have to be done as well as taking the parentheses off. A
new pair of choices are presented in line 8, and in line 9 a new type identifier has to be
substituted (Z). After that, in line 12 we find a pair already saved, appearing in line 1, as
a verified pair, the algorithm breaks and the other branch from line 10 is compared (line
13). As they are equal types (end,end) the second branch from line 3 is compared and
they are also equal, so both types are considered equivalent, since no more branches are
left to compare.

Chapter 3. Grammars and algorithms 18

Figure 3.3: Pairs received from 3.9 system

Now, we can easily see that 3.10 will not be considered equivalent. After X is sub-
stituted, the pair received is (!end.end, ?end.end). Although they are both Mes-
sageContext types, one of them has a send symbol (!), and the other has a receive (?)
symbol, so the algorithm stops immediately with an exception.

(X, ?end.end)

X=!end.end
(3.10)

3.3 1-Counter types

In figure 3.4 we can see the new inference rules of a type for 1-counter types, extending
the inference rules for recursive types. The type formation is based on five different rules.
The T-end, T-Choice and T-Msg are the same as in recursive types. The T-z and T-s
introduce natural numbers where all type identifiers X must be defined with the two of
them. The same happens in the rules for contractivity, C-End, C-Choice and C-Msg are
the same as in recursive types and C-z and C-s introduce natural numbers. The two type
equivalence rules are adapted for 1-counter types. In order not to repeat similar rules we
just show the rules for X⟨z⟩ and X⟨sn⟩ on the left-hand side.

Chapter 3. Grammars and algorithms 19

Polarity and view

::= ? | ! ⋆ ::= & |

Natural numbers

𝑛 ∷= z | s𝑛

Type formation T type

end type T-End

𝑇𝑙 type (∀𝑙 ∈ 𝐿)

⋆{𝑙: 𝑇𝑙}𝑙∈𝐿 type
 T-Choice

𝑇 type 𝑈 type

#𝑇.𝑈 type
 T-Msg

𝑋˂z˃≐𝑇 𝑇 contr 𝑇 type

𝑋˂z˃ type
 T-z

𝑋˂s N˃≐𝑇 𝑇[𝑛/N] contr 𝑇 type[𝑛/N]

𝑋˂s𝑛˃ type
 T-s

Type equivalence 𝑇 ≃ 𝑇

end ≃ end E-end

𝑇𝑙≃𝑈𝑙 (∀𝑙 ∈ 𝐿)

⋆{𝑙: 𝑇𝑙}𝑙∈𝐿 ≃⋆{𝑙: 𝑈𝑙}𝑙∈𝐿
 E-Choice

𝑇≃𝑈 V≃𝑊

#𝑇.𝑉 ≃#𝑈.𝑊
 E-Msg

𝑋˂𝑧˃≐𝑈 𝑈 contr 𝑈≃𝑇

𝑋˂𝑧˃≃𝑇
 E-EquiZL

𝑋˂s N˃≐𝑈 𝑈[𝑛/N] contr 𝑈[𝑛/N]≃𝑇

𝑋˂s𝑛˃≃𝑇
 E-EquiSL

Type contractivity T contr

end contr C-End

⋆ {𝑙: 𝑇𝑙}𝑙∈𝐿 contr C-Choice

#𝑇. 𝑈 contr C-Msg

𝑋˂z˃≐𝑇 𝑇 contr

𝑋˂z˃ contr
 C-z

𝑋˂s N˃≐𝑇 𝑇[𝑛/N] contr

𝑋˂s𝑛˃ contr
 C-s

Figure 3.4: Rules for 1-Counter types

3.3.1 Grammar

The grammar for 1-counter types is very similar to the grammar for recursive types, with
the difference that a natural number n parameterizes type identifiers (and equations). We
introduce the symbol + that represents the repetition of the rule at least once. Besides
that, in the left side of equations we can only have x<0> and x<n+1> expressions, but in
the right side we can have any number or expression, for example: X<0>, X<1>, X<2>,
X<n>, X<n+1>, X<n+2>. This is defined by rule M, where j is a natural number and n
is a specific letter. Also, the comparative types can only be x with a natural number, as
opposed to recursive types where just the identifier is used.

Chapter 3. Grammars and algorithms 20

I::= (x<j> , x<j>) E + InitContext

E::= x<0> = T EqZeroContext

| x<n+1> = T EqOtherContext

T::= &{F(,F)*} ChoiceContext

| ⊕ {F(,F)*} ChoiceContext

| ?T.T MessageContext

| !T.T MessageContext

| end EndContext

| x<M> IdContext

| (T) ParContext

F::= f:T FieldContext

M::= j OpNumberContext

| n OpNContext

| n + j OpNplusContext

x::= [A-Z][a-zA-Z0-9]*

f::= [a-z][a-zA-Z0-9]*

j::= 0|[1-9][0-9]*

Each rule has a name annotated to the right. The first rule is called InitContext, the
second rule is EqZeroContext, and so on.

3.3.2 Type formation

The verification of type formation can be divided in three steps: checking the left sides
and the right sides of the equations and if the comparative types exists. The left side
checks if all the type identifiers have a unique name and exactly one equation for x<0>
and x<n+1>. The next thing to check is if the types under comparison also occur in the
left sides of the equations. Then the right side of equations is visited. If a ChoiceContext is
encountered the field names are verified, if an IdContext is encountered more verifications
are needed. In addition to verifying if the two mandatory equations exist for that type
identifier, the x<0> equations can only be defined by other type identifiers if they are
defined with natural numbers. So, if a type identifier depending on n is found we verify
whether the parent is a x<0> equation or not.

Three examples of bad definitions are presented in (3.11), (3.12) and (3.13). In (3.11),
the equation for X<0> is defined twice, and in (3.12) the equation for Y<0> is defined

Chapter 3. Grammars and algorithms 21

with a OpNplusContext instead of a OpNumberContext. Finally, in (3.13) the Y<n+1>
equation is missing.

(X<1>, Y<0>)

X<0> = (&{one:end})
X<0> = end

X<n+1> = Y<n+2>

Y<0> = X<4>

Y<n+1> = ?end.end

(3.11)

(X<2>, Y<3>)

X<0> = !end.end

X<n+1> = end

Y<0> = X<n+1>

Y<n+1> = !X<n+1>.end

(3.12)

(X<2>, Y<3>)

X<0> = Y<0>

X<n+1> = Y<n+3>

Y<0> = X<n+1>

(3.13)

3.3.3 Contractivity

The contractivity in 1-counter types is much more complex than in recursive types since
we have to choose between the two mandatory equations.

One of the simplest situations is when the two main equations call each other, then we
know it is a cycle, for example {X<0>=Y<0> Y<0>=X<0>}. However, we might have
some more difficult situations like (3.14).

(X<2>, Y<3>)

X<0> = X<1>

X<n+1> = Y<2>

Y<0> = end

Y<n+1> = X<0>

(3.14)

Thinking about how the flow of the equations work, the X<0> is defined by X<1>, so
the X<n+1> equation must be followed with n equal to 0, since n+1=1. In X<n+1> we
go to Y<2>, so we follow the definition for Y<n+1>, which is X<0>. At this point we
are facing an already checked type, X<0>, so we know we entered a cycle with no actual
operations, like sending/receiving a message, and can consider this system of equations a
non-contractive one.

For constructing this algorithm, an approach with some helpers was built. A map is
created with two different objects, the key and the corresponding value. Only the types

Chapter 3. Grammars and algorithms 22

that are IdContext are saved in this map. The key is a pair of type identifier and type of
equation, it could be a (x,z) if it is an x⟨0⟩ equation and (x,s) if it is an x⟨n+1⟩ equation.
The value represents the right side of the equations as an object, with three parameters
(id, b, j). The first parameter (id) is the name of the identifier, the second parameter is
a boolean representing whether n occurs in the identifier, and the third one is a number j
(for example, for a type x⟨n⟩, the j is 0). When a new IdContext type appears, the map is
updated. The (3.15) represents how the equations X<0>=Y<5> and X<n+1>=Y<n+2>
are saved.

(X, z) : (Y, false, 5)

(X, s) : (Y, true, 2)
(3.15)

We can have different situations when updating the map. First, let us think about the
x⟨0⟩ cases. Its definition can have other y⟨0⟩, in this case we just have to look for the y⟨0⟩
equation and replace the value of (x,z) in the map for the value of (y,z). However, if its
definition is y⟨j⟩, with j>0, we have to find the y⟨n+1⟩ equation, and here two different
cases can happen. If the definition of y⟨n+1⟩ is just a identifier with number j, then the
value of (x,z) is going to be the value of (y,s). On the other hand, if the definition of
y⟨n+1⟩ has a variable n, then the new value of (x,z) is going to be the identifier with the
result of adding the j and j’ numbers from y and the definition of w, minus 1, since the
n+1 is adding 1 that has to be removed. Table 3.1 summarizes these three cases.

Search for Case Replace
x⟨0⟩=y⟨0⟩ y⟨0⟩ y⟨0⟩=w⟨j’⟩ x⟨0⟩=w⟨j’⟩

x⟨0⟩=y⟨j⟩
j>0 y⟨n+1⟩ y⟨n+1⟩=w⟨j’⟩

y⟨n+1⟩=w⟨n+j’⟩
x⟨0⟩=w⟨j’⟩

x⟨0⟩=w⟨j+j’-1⟩

Table 3.1: EqZeroContext cases replacements(contractivity algorithm)

On the other hand we have the x⟨n+1⟩ cases, that can be summarized in four different
situations. First of all, its definition can be the z equation of an identifier y, so we just
have to replace the value of (x,s) with the value of (y,z). If the definition of x⟨n+1⟩ is not
a y⟨0⟩ case then we have to search for the y⟨n+1⟩ equation. If the definition of y⟨n+1⟩
is a w identifier with a number j, we just have to replace the (x,s) with the value of (y,s).
However, if the definition of y⟨n+1⟩ is a w identifier with an n, then the new value of (x,s)
must be the sum of the numbers j minus 1. The third situation is the simplest, if x⟨n+1⟩
has an identifier y with an n and no j, nothing changes in the map, since this equation
cannot be simplified further. Finally, the last situation occurs when the value is a y with
an n and a j>0. The value of (y,s) can be a w identifier with an j and the value of (x,s) is

Chapter 3. Grammars and algorithms 23

replaced by this value of (y,s), or it can be an n with j’ and the new value of (x,s) is n with
the sum of j and j’ minus 1. Table 3.2 summarizes all these cases.

Search for Case Replace
x⟨n+1⟩=y⟨0⟩ y⟨0⟩ y⟨0⟩=w⟨j’⟩ x⟨n+1⟩=w⟨j’⟩

x⟨n+1⟩=y⟨j⟩
j>0 y⟨n+1⟩ y⟨n+1⟩=w⟨j’⟩

y⟨n+1⟩=w⟨n+j’⟩
x⟨n+1⟩=w⟨j’⟩

x⟨n+1⟩=w⟨j+j’-1⟩

x⟨n+1⟩=y⟨n⟩

x⟨n+1⟩=y⟨n+j⟩
j>0 y⟨n+1⟩ y⟨n+1⟩=w⟨j’⟩

y⟨n+1⟩=w⟨n+j’⟩
x⟨n+1⟩=w⟨j’⟩

x⟨n+1⟩=w⟨n+j+j’-1⟩

Table 3.2: EqOtherContext cases replacements(contractivity algorithm)

In addition to all these cases in which there may be changes in the map, we still have
to think about one last case: when the left part of the equation is the definition (value) of
an identifier. Consider the example 3.14. When the first line is read, the map is {(X,z): (X,
false, 1)}. However, when the second line is visited, although we do not make changes
on the right side because there are no (Y,s) in the map yet, we must change the first entry
since there is an equation that uses (X,s) as value. Now the map is updated to {(X,z): (Y,
false, 2), (X,s): (Y, false, 2)}. When the last equation is visited, we have to find (X,z) in
the map and replace with its value, following the line 1 in the table 3.2, and then find
all the equations that use (Y,s) as values. The final map is : {(X,z): (Y, false, 2), (X,s):
(Y, false, 2), (Y,s): (Y, false, 2}). Based on this map we can conclude that the system is
not contractive. The equation represented by the entry (Y,s): (Y, false, 2), uses itself, so
creates a infinite loop.

Following a more complex example, (3.16), the first pair inserted on the map is
{(X,z):(Y, false, 2)}. Next, the pair ((X,s): (Y, false, 0)) is also inserted without any
replacements. When Y<n+1> is visited, the entry ((Y,s): (Z, true, 0)) is added and the
substitutions are made. The pair (X,z), that use Y variable with j>0 is replaced with the
new value (Z, false, 1). The map now looks like: {(X,z):(Z, false, 1), (X,s): (Y, false, 0),
(Y,s): (Z, true, 0)}. Finally, the Z<n+1> equation is visited and the last replacements
are made, using line 4 of table 3.2. The final map 3.17 is shown below. The system is
contractive, since no loop is created.

(X<2>, Y<3>)

X<0> = Y<2>

X<n+1> = Y<0>

Y<0> = end

Y<n+1> = Z<n>

Z<0> = end

Z<n+1> = X<n+2>

(3.16)

Chapter 3. Grammars and algorithms 24

(X, z) : (X, false, 2),

(X, s) : (Y, false, 0),

(Y, s) : (Z, true, 0),

(Z, s) : (Y, false, 1)

(3.17)

After the final map is obtained there are three cases that can determine whether a
system of equations is non-contractive.

(x,z):(x,false,0)
(x,s):(x,false,j>0)
(x,s):(x,true,j>0)

The first case is when a z equation is equal to itself, like Y<0>=Y<0>. The second case is
when a s equation is defined by the same variable and a j>0 number, like Y<n+1>=Y<4>.
The last case is when an s equation is defined by the same variable and an n+j with j>0
like Y<n+1>=Y<n+2>. If any of these cases is found, then the system is non-contractive
and an exception is thrown.

3.3.4 Type equivalence

The equivalence in 1-counter types is proved by coinduction, as it happens in the recursive
types, unfolding types if necessary. However, 1-counter types work with a counter that
represents the type. So, this algorithm always saves the counter of both types, decreasing
or increasing, according to the way the type is going.

A method that receives two types and their respective counters was developed to com-
pare them. Depending on the context of the types, different things can happen. The
simplest case is when the two types are EndContext, it just stops. If one of the types is
ParContext, then the algorithm is called again with the type inside the parentheses, and
all the other parameters are the same. Very similarly to what happens in recursive types
when the two types are MessageContext, the polarity symbol(!/?) is compared and if it
is equal, then the first part of the messages is sent to the algorithm again as independent
types, with the respective counters. If no exception is thrown, the second part of the mes-
sage is also compared. Also, the ChoiceContext is very similar to the recursive types.
When the two types are ChoiceContext and the symbols(&/⊕) are equal, then they are
treated in a different method. The names of the fields are compared, and if they are equal,
then the algorithm is called with both fields and the counters that were when they were
compared. The last case is when one of them is IdContext, they are sent to a different
method. Depending on the context of the interior of the IdContext (OpNumberContext,
OpNContext, OpNplusContext) the algorithm is called with different parameters.

Chapter 3. Grammars and algorithms 25

Search for Call
x⟨j⟩, c
j=0 x⟨0⟩=T T, 0

x⟨j⟩, c
j>0 x⟨n+1⟩=T T, j-1

x⟨n⟩, c
c=0 x⟨0⟩=T T, 0

x⟨n⟩, c
c>0 x⟨n+1⟩=T T, c-1

x⟨n+j⟩, c
j>0 x⟨n+1⟩=T T, c+j-1

Table 3.3: IdContext cases replacements(equivalence algorithm)

Following the table 3.3, the first column shows all the different types of IdContext
cases with the different counters (c). So, if the context is OpNumberContext and the j
number is 0, then the algorithm is called again with the definition of x⟨0⟩ and a counter
of 0. If the j number is bigger than 0, we search for the definition of x⟨n+1⟩ and call the
algorithm with it and a counter of j-1. In case the context is OpNContext and the counter
is 0, then the algorithm is called with the definition of x⟨0⟩ and a 0 counter. On the other
hand, if the counter is bigger than 0, then is the definition of x⟨n+1⟩ that is used and a
counter of c-1. The last case is when the context is OpNplusContext and here we always
search for the type of the equation x⟨n+1⟩ and the algorithm is called with and a counter
of c+j-1.

In example 3.18, on the left side we have the equation system, and on the right side
we find all the entries that the algorithm takes. The first entries that the algorithm takes is
always the first substitution from the comparative types with the counters from them. In
this case, the second entries are just the substitution of the identifier W with its definition
and the respective counter. In line 2 the two types are messages, so in line 3 the first part
starts their comparison, and as they are equal types (end, end) (the pair (end, end) is
the only case that the types are considered equal independently of the counters), in line 5
the second part is compared as well. As they end to be equal types, again (end, end), we
can affirm that X<1> and Y<1> are equivalent.

Chapter 3. Grammars and algorithms 26

(X<1>, Y<1>)

X<0>=end

X<n+1>=W<1>

Y<0>=end

Y<n+1>=!end.end

W<0>=end

W<n+1>=!Z<1>.P<1>

Z<0>=end

Z<n+1>=end

P<0>=end

P<n+1>=end

(3.18)

1 (W<1>, 1, !end.end, 1)
2 (!Z<1>.P<1>, 0, !end.end, 1)
3 (Z<1>, 0, end, 1)
4 (end, 0, end, 1)
5 (P<1>, 0, end, 1)
6 (end, 0, end, 1)

In this example 3.19 something different happens. We know this example may not be
considered equal just by looking at the comparative types. To prove this, we can look at
the entries below, the counters are decreasing as the algorithm progress. In the end, two
different type contexts are given, and we can assume that they are not equivalent.

(X<4>, X<3>)

X<0>=end

X<n+1>=!end.X<n>

(3.19)

1 !end.X<n>, 4, !end.X<n>, 3
2 end, 4, end, 3
3 X<n>, 4, X<n>, 3
4 !end.X<n>, 3, X<n>, 3
5 !end.X<n>, 3, !end.X<n>, 2
6 end, 3, end, 2
7 X<n>, 3, X<n>, 2

8 !end.X<n>, 2, X<n>, 2
9 !end.X<n>, 2, !end.X<n>, 1

10 end, 2, end, 1
11 X<n>, 2, X<n>, 1
12 !end.X<n>, 1, X<n>, 1
13 !end.X<n>, 1, end, 0

There are two more ways to stop the algorithm’s cycle that have nothing to do with
the different contexts. Since every pair of types and their counters are saved in a map,
the algorithm stops if a new entry in the algorithm is equal to a saved one. Another way
is if the two types and their counters are the same, then we know that the operations will
always be equal, so they can be considered equivalent and the algorithm can stop too.
These two stops make the algorithm more efficient since we can take a conclusion from
these branches immediately.

The algorithm stops in one more situation without throwing a NotEquivalent excep-
tion. As we can see in 3.20 some systems can grow infinitely and never be considered not
equivalent. A recursion limit was implemented so that the algorithm can break at some
point.

Chapter 3. Grammars and algorithms 27

(X<2>, Y<3>)

X<0>=end

X<n+1>=!end.Y<n+2>

Y<0>=end

Y<n+1>=!end.Y<n+2>

(3.20)

1 !end.Y<n+2>, 2, !end.Y<n+2>, 3
2 end, 2, end, 3
3 Y<n+2>, 2, Y<n+2>, 3
4 !end.Y<n+2>, 3, Y<n+2>, 3

5 !end.Y<n+2>, 3, !end.Y<n+2>, 4
6 end, 3, end, 4
7 Y<n+2>, 3, Y<n+2>, 4
8 ...

A recursion limit is necessary since unfolding types can be infinite, so if this number
is reached, the algorithm stops, and the types are considered equivalent in that branch.
If no exception is thrown below the limit, then there is a good probability that they may
be equivalent. Two different implementations of this recursion limit were made. Given
the limit number, if any of the counters reaches it, the algorithm stops in that branch, and
we record that at least one branch reached the limit. The other approach keeps the depth
of the unfolding types and if it reaches the limit number the algorithm breaks and once
more we record that the limit was reached in one branch. The algorithm goes back to the
previous types before entering that branch and continues the comparison.

(X<7>, Y<9>)

X<0>=end

X<n+1>=+{a:!end.Y<n+2>,b:!end.end}
Y<0>=end

Y<n+1>=+{a:!end.Y<n+2>,b:W<1>}
W<0>=end

W<n+1>=!Z<1>.!Z<1>.end

Z<0>=end

Z<n+1>=end

(3.21)

We illustrate the two approaches for the recursion limit with example 3.21. Looking at
the system, we know the algorithm must throw a NotEquivalent exception since the field
b is not equivalent in the two types, regardless of the counters. Limiting the recursion
limit to 10, in the first version of the algorithm the entries will be as follows:

1 +{a:!end.Y<n+2>,b:!end.end}, 7, +{a:!end.Y<n+2>,b:W<1>}, 9
2 !end.Y<n+2>, 7, !end.Y<n+2>, 9
3 end, 7, end, 9

Chapter 3. Grammars and algorithms 28

4 Y<n+2>, 7, Y<n+2>, 9
5 +{a:!end.Y<n+2>,b:W<1>}, 8, Y<n+2>, 9
6 +{a:!end.Y<n+2>,b:W<1>}, 8, +{a:!end.Y<n+2>,b:W<1>}, 10
7 !end.end, 7, W<1>, 9
8 !end.end, 7, !Z<1>.!Z<1>.end, 0
9 end, 7, Z<1>, 0

10 end, 7, end, 0
11 end, 7, !Z<1>.end, 0

The algorithm is performing normally until line 6. At this point, one of the counters
reaches the limit, so the branch that was being checked (field a) stops and the other
branch (field b) initiates the comparison. As none of the counters reaches 10 again and
two different types are given to be compared (end,!Z<1>.end), the algorithm stops
with a NotEquivalent exception.

In the second approach, the entries will be as follows (the last parameter is the depth):

1 +{a:!end.Y<n+2>,b:!end.end}, 7, +{a:!end.Y<n+2>,b:W<1>}, 9, depth=0
2 !end.Y<n+2>, 7, !end.Y<n+2>, 9, depth=1
3 end, 7, end, 9, depth=2
4 Y<n+2>, 7, Y<n+2>, 9, depth=2
5 +{a:!end.Y<n+2>,b:W<1>}, 8, Y<n+2>, 9, depth=2
6 +{a:!end.Y<n+2>,b:W<1>}, 8, +{a:!end.Y<n+2>,b:W<1>}, 10, depth=3
7 !end.Y<n+2>, 8, !end.Y<n+2>, 10, depth=4
8 end, 8, end, 10, depth=5
9 Y<n+2>, 8, Y<n+2>, 10, depth=5

10 +{a:!end.Y<n+2>,b:W<1>}, 9, Y<n+2>, 10, depth=5
11 +{a:!end.Y<n+2>,b:W<1>}, 9, +{a:!end.Y<n+2>,b:W<1>}, 11, depth=6
12 !end.Y<n+2>, 9, !end.Y<n+2>, 11, depth=7
13 end, 9, end, 11, depth=8
14 Y<n+2>, 9, Y<n+2>, 11, depth=8
15 +{a:!end.Y<n+2>,b:W<1>}, 10, Y<n+2>, 11, depth=8
16 +{a:!end.Y<n+2>,b:W<1>}, 10, +{a:!end.Y<n+2>,b:W<1>}, 12, depth=9
17 !end.Y<n+2>, 10, !end.Y<n+2>, 12, depth=10
18 W<1>, 10, W<1>, 12, depth=10
19 W<1>, 9, W<1>, 11, depth=7
20 !Z<1>.!Z<1>.end, 0, W<1>, 11, depth=7
21 !Z<1>.!Z<1>.end, 0, !Z<1>.!Z<1>.end, 0, depth=8
22 W<1>, 8, W<1>, 10, depth=4
23 !Z<1>.!Z<1>.end, 0, W<1>, 10, depth=4
24 !Z<1>.!Z<1>.end, 0, !Z<1>.!Z<1>.end, 0, depth=5
25 !end.end, 7, W<1>, 9, depth=1
26 !end.end, 7, !Z<1>.!Z<1>.end, 0, depth=2
27 end, 7, Z<1>, 0, depth=3
28 end, 7, end, 0, depth=4
29 end, 7, !Z<1>.end, 0, depth=3

In the first six lines the algorithm behaves as in the first approach. However, instead
of stopping there it continues until the intended depth is reached. In line 17 it breaks,
and the second branch from line 16 (field b) starts the comparison. The depth is reached
right away since we go down a level and we go back to line 11 for the comparison of the
next field. In line 21, two equal types are given with the same counters so the algorithm
breaks in that branch and go back to the next comparison of line 6 (filed b). In line 24,

Chapter 3. Grammars and algorithms 29

two equal types and counters are given again and the same happens, the algorithm stops
in that branch and the field b of line 1 is compared (line 25). Finally, the comparison
of the types (!end.end, !Z<1>.!Z<1>.end) ends up throwing the NotEquivalent
exception. The tree representation of these steps is represented in figure 3.5. On the right
side of the figure we find the depth and some annotations of the breaks.

As we can see, the two algorithmic approaches lead to different performances. The
second approach takes longer to throw the exception.

Figure 3.5: Tree representation of the second approach of 3.19

The decision of the best recursion limit was a problem to take into account. Böhm
et al. [2] prove that the 1-counter automata equivalence problem is NL-complete. In
particular, they show that two deterministic 1-counter automata are not equivalent if and
only if there is a distinguishing word of polynomial size. This leads us to the conclusion
that two 1-counter types are equivalent if and only if they are equivalent up to n depth,
being n polynomial on the input side. We can use this conclusion since Gay et al. [7]
show that 1-counter types can be converted to 1-counter automata. We can say that exists
a large enough recursion limit n that it will give us the right answer. However in Böhm
et al. [2] the proof is very technical and does not immediately give rise to the concrete
polynomial n. Using the experience of our tests, a heuristic was made to find the a good
choice of recursion limit to be used. The general limit number used is 10, however if there

Chapter 3. Grammars and algorithms 30

exists a j number higher or a higher number of equations, the limit becomes that number.
As an example, in 3.22 the recursion limit would be 12.

(X<11>, X<12>)

X<0>=end

X<n+1>=!end.X<n+1>

(3.22)

The decidability of the algorithm is shown in different ways; either an exception is
thrown, the limit number is reached, the types are equal, the types were already checked,
or it ends in an equal type. If a NotEquivalent exception is thrown, then we know for
certain that they do not perform the same behaviour. However, if they are considered
equivalent two things could have happened. The types could actually be equivalent or, if
the roof was reached in one branch, they are considered equal but with a LimitExceeded
exception since we can not ensure that if the algorithm had continued the types were
equivalent.

Chapter 4

Tests

One of the goals of this thesis was to create an extensive pool of tests for our algorithms,
making different systems of equations to check a specific possible fail. The test suite was
developed incrementally in order to follow the construction of the algorithms, and then
more tests were added to the initial set. So, when a new version of an algorithm was made
or a new algorithm was made, the old tests were used to validate it and new tests were
introduced.

JUnit5 was used to test all the TXT files created that contain the equation systems
that we want to test. The tests were divided in four different categories: grammar, con-
struction, contractivity and equivalence. For each category there are valid and invalid
tests.

Grammar Construction Contractivity Equivalence
Valid 100 20 10 20

Invalid 10 20 10 20

Table 4.1: Number of tests for recursive types algorithms

Grammar Construction Contractivity Equivalence V1 Equivalence V2
Valid 160 10 20 20 20

Invalid 10 20 30 20 20

Table 4.2: Number of tests for 1-counter types algorithms

No tests were specifically made for valid grammars since all the other tests require a
valid grammar in order to test their main category, so they are the sum of all the other
tests. The wrong grammar tests have errors from the ANTLR itself, because a wrong
token or a no viable input is given, so we do not advance to our classes.

All invalid tests expect an exception, so if no exception is received, then a warning is
shown with each test that has failed. There are four types of exceptions: BadFormation
exception for construction, NotContractive exception for contractivity, NotEquivalent ex-
ception for equivalence, and there exists one more when the recursion limit is achieved,

31

Chapter 4. Tests 32

the LimitExceeded exception. For valid tests, if the respective exception appears then it is
printed since it should not exist.

The two versions of equivalence algorithm for 1-counter types use the same set of
tests. There are a total of 240 distinct tests, divided into 100 valid tests and 140 invalid
tests.

Figure 4.1 show all the tests for 1-counter types (TestCT) and recursive types (TestRC).
As we can see, the two approaches for the equivalence algorithm in 1-counter types, both
in valid and invalid tests, take similar time to execute.

Figure 4.1: Test classes summary

In order to assist verification of the tests, we used a Java code coverage tool for Eclipse
called EclEmma. EclEmma is based on the JaCoCo code coverage library that presents
the line and branch coverage results immediately summarized and highlighted in the Java
source code editors. All the lines in the code are colored with green if they are executed,
yellow if the lines are partly covered (not all the instructions associated with this line have
been executed), or red if they are not executed. This way, we ensure that all the options in
the algorithms are visited. The tool was taken from the Eclipse Marketplace and the test
files run with it. The ANTLR classes were excluded of the evaluation, since we are just
interested in the algorithms we implemented.

As we can see in figure 4.2 the full coverage of the project is 90.7%, however this
counts with the coverage of all the classes, including the test classes (can not be removed
from the set) that have multiple try/catch that are not visited unless some test goes wrong,
which lowers the percentage. If we calculate the coverage without the test package then
we achieve a line and branch coverage of 99.43%.

Chapter 4. Tests 33

Figure 4.2: Algorithms line and branch coverage

Chapter 4. Tests 34

Chapter 5

Conclusion

In this thesis we studied two different extensions of session types, recursive and 1-counter
types. We presented and implemented type formation, type contractivity and type equiv-
alence algorithms for them. We also developed a battery of tests for our algorithms.
Extending session types into infinity and studying different classes of types was neces-
sary.

All the algorithms aim to establish correctness of the finite and infinite session types
systems. The grammars created with ANTLR helped defining multiple rules for the input.
With this tool we were able to search for a specific rule and make our verifications.

From the simplest to the more complex protocols, it is important to verify equiva-
lence/inequivalence between representation of types. The comparison of the equivalent
computations in finite time was accomplished in a practical algorithm, a problem that was
thought of at the beginning of this work. We used a tree-like search for each branch that
was extended from unfolding the types in the system, and made a recursion limit for the
infinite unfolding of them so that a conclusion could be made at some point. The contrac-
tivity problem in the systems was also resolved since no system can be compared if they
are not contractive, as a necessary intermediate step in solving the equivalence problem.
This way, we are not stuck in systems that have no operation to be considered.

The tests created increase the algorithm reliability. Various tests were made trying
to catch a specific error or rule. Each algorithm has multiple systems that visit a part of
the code. The systems of equations that we tested can be used for future verifications of
languages that use session types as their bases such as SePi.

There are some aspects of the algorithms that we leave for future work. For the equiv-
alence of 1-counter types finding the perfect recursion limit for all cases is one of them,
since the one written is based in our test experience and a mathematically provably cor-
rect limit would make the algorithms formally reliable. Another important aspect is to
implement these algorithms for the SePi language, since it was one of the purposes of this
thesis and would increase both our algorithms as well as the SePi language itself. A type
checking algorithm could also be considered for future work. A type checking algorithm

35

Chapter 5. Conclusion 36

receives a type as well as a program and verifies whether the program is correctly typed.
This algorithm would also be valuable for session type languages, verifying the assign-
ment of types to values in various circumstances. Finally, another very useful future work
would be a creation of an automatic test generator tool to increase the confidence of our
algorithms, by generating a large number of random tests, the probability of discovering
code errors would improve.

Bibliography

[1] Antlr. https://www.antlr.org/.

[2] Stanislav Böhm, Stefan Göller, and Petr Jancar. Equivalence of deterministic one-
counter automata is NL-complete. CoRR, abs/1301.2181, 2013.

[3] Ankush Das, Henry DeYoung, Andreia Mordido, and Frank Pfenning. Nested ses-
sion types. CoRR, abs/2010.06482, 2020.

[4] Romain Demangeon and Kohei Honda. Nested protocols in session types. In Maciej
Koutny and Irek Ulidowski, editors, CONCUR 2012 - Concurrency Theory - 23rd
International Conference, CONCUR 2012, Newcastle upon Tyne, UK, September
4-7, 2012. Proceedings, volume 7454 of Lecture Notes in Computer Science, pages
272–286. Springer, 2012.

[5] Juliana Franco and Vasco Thudichum Vasconcelos. A concurrent programming
language with refined session types. In Steve Counsell and Manuel Núñez, edi-
tors, Software Engineering and Formal Methods - SEFM 2013 Collocated Work-
shops: BEAT2, WS-FMDS, FM-RAIL-Bok, MoKMaSD, and OpenCert, Madrid,
Spain, September 23-24, 2013, Revised Selected Papers, volume 8368 of Lecture
Notes in Computer Science, pages 15–28. Springer, 2013.

[6] Simon J. Gay and Malcolm Hole. Subtyping for session types in the pi calculus.
Acta Informatica, 42(2-3):191–225, 2005.

[7] Simon J. Gay, Diogo Poças, and Vasco T. Vasconcelos. The different shades of
infinite session types. In Patricia Bouyer and Lutz Schröder, editors, Foundations
of Software Science and Computation Structures - 25th International Conference,
FOSSACS 2022, Held as Part of the European Joint Conferences on Theory and
Practice of Software, ETAPS 2022, Munich, Germany, April 2-7, 2022, Proceedings,
volume 13242 of Lecture Notes in Computer Science, pages 347–367. Springer,
2022.

[8] Kohei Honda. Types for dyadic interaction. In Eike Best, editor, CONCUR ’93,
4th International Conference on Concurrency Theory, Hildesheim, Germany, August

39

https://www.antlr.org/

Bibliography 40

23-26, 1993, Proceedings, volume 715 of Lecture Notes in Computer Science, pages
509–523. Springer, 1993.

[9] Kohei Honda, Vasco Thudichum Vasconcelos, and Makoto Kubo. Language primi-
tives and type discipline for structured communication-based programming. In Chris
Hankin, editor, Programming Languages and Systems - ESOP’98, 7th European
Symposium on Programming, Held as Part of the European Joint Conferences on
the Theory and Practice of Software, ETAPS’98, Lisbon, Portugal, March 28 - April
4, 1998, Proceedings, volume 1381 of Lecture Notes in Computer Science, pages
122–138. Springer, 1998.

[10] Robin Milner. Communicating and mobile systems - the Pi-calculus. Cambridge
University Press, 1999.

[11] Robin Milner, Joachim Parrow, and David Walker. A calculus of mobile processes,
I. Inf. Comput., 100(1):1–40, 1992.

[12] Benjamin C. Pierce. Types and programming languages. MIT Press, 2002.

[13] Peter Thiemann and Vasco T. Vasconcelos. Context-free session types. In Jacques
Garrigue, Gabriele Keller, and Eijiro Sumii, editors, Proceedings of the 21st ACM
SIGPLAN International Conference on Functional Programming, ICFP 2016, Nara,
Japan, September 18-22, 2016, pages 462–475. ACM, 2016.

[14] Vasco T. Vasconcelos. Sessions, from types to programming languages. Bull.
EATCS, 103:53–73, 2011.

[15] Vasco T. Vasconcelos. Fundamentals of session types. Inf. Comput., 217:52–70,
2012.

	List of Figures
	List of Tables
	Introduction
	Motivation
	Contributions
	Confrontation with the initial work plan
	Structure of the document

	Session Types and the SePi language
	Finite session types
	Infinite session types
	SePi language

	Grammars and algorithms
	ANTLR
	Recursive types
	Grammar
	Type formation
	Contractivity
	Type equivalence

	1-Counter types
	Grammar
	Type formation
	Contractivity
	Type equivalence

	Tests
	Conclusion
	Bibliography

