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Resumo

Em otimização, existem problemas que, dadas as suas semelhanças, são agrupados em conjuntos de
problemas. Em logı́stica e gestão de operações, por exemplo, os problemas costumam ser agrupados
em três grupos: problemas de localização (nos quais o objetivo é determinar as melhores localizações
para estabelecimentos como fábricas ou centros de distribuição), problemas de roteamento (nos quais o
objetivo é planear rotas, por exemplo, de veı́culos que efetuem a entrega de produtos a vários clientes)
e problemas de gestão de inventário (nos quais o objetivo é determinar as melhores polı́ticas de gestão
de inventário). Em todos estes problemas, o objetivo é otimizar alguma medida de desempenho - por
exemplo, minimizar o custo - satisfazendo certas restrições.

Ao planear uma cadeia de abastecimento, é habitual resolver problemas de grupos diferentes sepa-
radamente. Por exemplo, pode-se optar por localizar centros de distribuição primeiro, e só depois planear
as rotas para os veı́culos de distribuição. Esta abordagem tem as suas vantagens (incluindo a maior fa-
cilidade em modelar os problemas e a maior celeridade na sua resolução), mas também tem uma grande
desvantagem - a cadeia de abastecimento como um todo pode não ser “ótima”. Regressando ao exemplo
anterior, se os problemas de localizar centros de distribuição e planear as rotas de distribuição forem
resolvidos separadamente, pode acontecer que os centros de distribuição acabem por ser localizados em
zonas mais baratas mas também mais distantes dos clientes, resultando em custos de transporte mais
elevados devido ao maior consumo de combustı́vel, desperdı́cio de tempo, e possivelmente até maiores
custos de manutenção das viaturas de transporte, visto estas necessitarem de percorrer maiores distâncias.

Pode assim ser interessante integrar a otimização de várias áreas da cadeia de abastecimento simul-
taneamente. Apesar das dificuldades anteriormente referidas, como maior dificuldade de modelação e
resolução do problema, o desenho de uma cadeia de abastecimento mais eficiente é um grande incen-
tivo à integração da resolução de problemas de diferentes “grupos”. Pode-se, por exemplo, procurar
resolver simultaneamente problemas de localização e de roteamento - um problema no qual se integre
um problema de localização e um problema de roteamento diz-se um problema de location-routing.

Neste trabalho, é estudado o problema da p-Mediana Hamiltoniana (doravante PpMH), um problema
de otimização combinatória no qual, dado um grafo não orientado G = (V,E) tal que a cada aresta é
associado um custo, o objetivo passa por determinar a forma mais barata de particionar o conjunto dos
nodos em exatamente p subconjuntos tais que cada subconjunto é conexo por um único ciclo hamiltoni-
ano. Este é, portanto, um problema que pode ser visto como uma generalização do problema do Caixeiro
Viajante (ver, por exemplo, [1]) (doravante PCV) - torna-se neste problema quando p = 1 - e pode ser
considerado um problema de location-routing - se em cada ciclo se considerar um dos nodos um depósito
(e muitos dos modelos para este problema podem facilmente ser adaptados para considerar isto mesmo),
este problema não é mais do que um problema da p-Mediana no qual, para cada depósito, se planeia a
rota de distribuição percorrida pela sua viatura.

Ao considerar modelos em Programação Linear Inteira para o PCV, é comum partir-se de um modelo
de afetação que tem como conjunto de soluções admissı́veis o conjunto de todas as possı́veis partições do
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grafo num qualquer número de ciclos, sendo depois necessário acrescentar restrições a este modelo que
excluam soluções com dois ou mais ciclos. De forma análoga, ao considerar modelos em Programação
Linear Inteira para o PpMH, são também necessários conjuntos de restrições que excluam soluções com
mais de p ciclos, e estes conjuntos de restrições são muitas vezes semelhantes aos utilizados para o PCV,
apesar de precisarem de algumas modificações. No entanto, estes conjuntos não são suficientes para
assegurar que qualquer solução admissı́vel para o modelo inclui exatamente p ciclos, visto continuarem
a ser admissı́veis soluções com menos de p ciclos. De forma a excluir estas soluções, podem ser incluı́dos
conjuntos de restrições adicionais, e serão estes conjuntos de restrições o foco desta dissertação.

Assim, este trabalho começa com uma breve introdução ao problema e uma revisão bibliográfica. São
depois apresentadas várias formulações compactas para este problema. A apresentação destes modelos
será separada em três partes.

Na primeira parte, são apresentados conjuntos de restrições e variáveis que são comuns a todos os
modelos aqui apresentados. Em todos estes modelos são também incluı́das variáveis que indicam se um
nodo age como depósito do ciclo ao qual pertence - isto mesmo que, na prática, não exista a necessidade
de designar certos nodos como depósitos. Nos modelos aqui apresentados é sempre necessário considerar
certos nodos como depósitos, pois estes modelos excluem soluções com mais (ou menos) de p ciclos
indicando que devem existir exatamente p depósitos e que cada ciclo deve incluir no mı́nimo (ou no
máximo) um depósito.

Na segunda parte, é apresentado um conjunto de restrições que é uma adaptação das restrições apre-
sentadas em [2] para o PCV e que visa excluir soluções com mais de p ciclos. Neste modelo, as variáveis
adicionais indicam a posição de um nodo no circuito ao qual este pertence.

Na terceira parte, são apresentados dois modelos distintos (mas semelhantes) que visam excluir
soluções com menos de p ciclos. Ambos os modelos utilizam variáveis que associam “etiquetas” a
nodos - a diferença entre os modelos está nos valores que estas etiquetas podem tomar. No primeiro
modelo, são utilizadas variáveis que associam nodos a depósitos. Por outras palavras, para cada nodo, o
valor que a etiqueta toma é o ı́ndice do nodo que age como depósito do ciclo ao qual o nodo pertence. É
evidente, portanto, que a etiqueta de qualquer nodo que seja um depósito é o ı́ndice do próprio nodo. Já
no segundo modelo, são utilizadas variáveis que associam nodos a ciclos. Neste modelo, os ciclos são
numerados de 1 a p, e para cada nodo, o valor que a sua etiqueta toma é o número associado ao ciclo.
Por outras palavras, se um nodo pertence ao k-ésimo ciclo, a sua etiqueta tomará o valor k. Este último
modelo parece não ter sido referido na literatura anterior a esta dissertação, ao passo que um modelo
bastante semelhante ao primeiro modelo parece ter sido referido pela primeira vez para um problema
semelhante ao HpMP em [3]. Para cada modelo foram ainda propostas algumas modificações visando
melhorar as relaxações lineares e os tempos computacionais.

Por fim, o trabalho termina com a discussão dos resultados obtidos de uma experiência computacional
que visa comparar os modelos aqui apresentados e de possı́veis trabalhos futuros relacionados com esses
mesmos modelos. A experiência computacional mostra que algumas das modificações propostas para
os modelos em que nodos são associados a ciclos resultam em melhorias nos tempos computacionais,
mas não todas. Esta experiência permite ainda concluir que apesar das melhorias resultantes de algumas
das modificações propostas, os modelos em que os nodos são associados a depósitos têm o melhor de-
sempenho, permitindo obter em várias instâncias tempos de resolução muito mais reduzidos do que os
obtidos utilizando os modelos em que nodos são associados a ciclos.

Palavras-chave: Otimização Combinatória, Problema do Caixeiro Viajante, Problema da p-Mediana,
Problema da p-Mediana Hamiltoniana, Formulações Compactas
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Abstract

In this dissertation we study the Hamiltonian p-Median Problem, a combinatorial optimization problem
in which, given an undirected graph G = (V,E) and a cost for each edge, the objective is to find the
cheapest way to partition the set of nodes into p subsets with each subset being connected by a single
cycle. This is a problem which may therefore be seen as a generalization of the Travelling Salesman
Problem (TSP).

When working with MILP models for the TSP, sets of constraints to prevent feasible solutions with
more than one cycle are added to an assignment formulation. Similarly, when working with such models
for the HpMP, sets of constraints to prevent feasible solutions with more than p cycles can also be added
to an assignment formulation, and these are often very similar to sets of constraints already used in
models for the TSP, albeit with some modifications. However, these sets are not sufficient to guarantee
every feasible solution has exactly p cycles, since it may have fewer than p cycles. To this end, additional
sets of constraints for preventing solutions with less than p cycles may be introduced, and these will be
the focal point of this work.

The work begins with a brief introduction to the problem and some literature review. After that,
several compact formulations for this problem are presented. The presentation of these models will be
split into three parts. In the first part, a model upon which all other models are built is presented. The
second part focuses on a model used to prevent solutions with more than p cycles, while the third part
focuses on two models used to prevent solutions with less than p cycles (in which nodes are assigned to
depots or cycles), accompanied by some valid inequalities. Finally, some of the models presented in this
work are tested and the results and possibilities for future work are discussed.

Keywords: Combinatorial Optimization, Travelling Salesman Problem, p-Median Problem, Hamilto-
nian p-Median Problem, Compact Formulations
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Chapter 1

Introduction

In optimization, there are problems which, given their similarities, are often grouped into broader sets
of problems. For instance, in logistics and operations management (a field which greatly benefits from
the application of tools from Operational Research), problems are often split into three groups: location
problems (in which the goal is to determine the best locations for facilities, such as distribution centers),
routing problems (in which the goal is to plan routes, such as the routes travelled by vehicles delivering
products to several clients) and inventory management problems (in which the goal is to determine the
best inventory control policies). In all these problems, the goal is to optimize some performance metric
- that usually means minimize costs - satisfying certain constraints.

When planning a supply chain, problems from different groups are often solved separately, and there-
fore, the whole supply chain is not planned simultaneously. For instance, one may choose to locate the
facilities first, and after having decided where to locate the facilities, plan the routes for the distribution
vehicles. This approach, while having some advantages (such as the ease of mathematically modelling
and solving the problems), also presents a remarkable disadvantage - the final solution (that is, the supply
chain as a whole) will most likely be suboptimal. Returning to the example of locating facilities before
planning routes, for example, if these problems are solved separately, it may be the case that the facilities
end up being located in cheap locations but further away from all the other clients to be supplied, mean-
ing the delivery costs will be greater than they could be since more fuel and time will be spent, and the
vehicles used to deliver products to clients may require more frequent maintenance as they travel more.

Regardless, in spite of the additional difficulties, it is possible to optimize different areas of a supply
chain simultaneously. For example, the authors of [4] consider a location-inventory problem in which
the goal is to simultaneously minimize the facility locating and inventory costs.

The TSP (see, for instance, [1]) is one of the most popular combinatorial optimization problems of
all time. In this problem, given a set of locations to visit and knowing the cost of travelling between any
pair of two different locations, the goal is to determine the cheapest route that visits all locations exactly
once and returns to the starting point. This is therefore a routing problem.

On the other hand, the p-Median Problem [5] is a location problem. In this problem, given a set
of locations whose demands must be satisfied, the goal is to satisfy the demand of those locations by
installing exactly p facilities in some of those locations and assigning each location to exactly one facility.
The costs of serving the total demand of any location with a facility in some other location are known,
and so are the costs of placing a facility in each location. It is also assumed that if a facility is installed
in some location, the demand of that location is fulfilled for free by that same facility. The goal is
to determine where to locate the p facilities and which locations to assign to each facility in order to
minimize the total cost of locating facilities and fulfilling the demand from all locations.
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It may therefore be of interest to solve both these problems simultaneously - even though this will
result in a more complex problem, it should also result in a better solution, allowing for a more efficient
supply chain. The HpMP is a location-routing problem which is a natural generalization of the Travelling
Salesman and p-Median problems. Given a set of locations that must be visited and knowing the cost of
travelling between each pair of locations and the costs of locating facilities (which will be referred to as
“depots” throughout the rest of this work), the goal is to determine where to locate each of the p depots,
which locations to visit from each depot, and the cheapest route departing from each depot that visits all
the locations assigned to that depot exactly once and returns to the depot, making sure that each location
is assigned to exactly one depot. This is a problem which arises in practical applications such as school
location, multi-depot vehicle routing or the laser multi-scanner problem [6], showing this problem may
also be applied outside the domain of logistics.

This problem may also be stated without considering the locations of the depots, at which point
it becomes a problem of determining the cheapest set of p cycles such that each location belongs to
exactly one cycle. This is the problem covered in this dissertation, and we specifically focus on MILP
formulations for the HpMP.

MILP formulations for the TSP are usually built upon an assignment model for which, with no
additional constraints, the set of feasible solutions corresponds to the set of all possible partitions of the
graph in any number of cycles. Therefore, in order to avoid solutions with more than one cycle, additional
constraints are added to the original assignment model. Something similar is done for the HpMP - starting
with a formulation very similar to the assignment formulation used for the TSP, additional constraints
are added to limit the number of cycles in any feasible solution to exactly p.

Every model presented in this work uses a set of binary edge variables uij ∈ {0, 1}, ∀(i, j) ∈ E,
which take value 1 if edge (i, j) is part of any cycle in the solution. In every model presented in this
dissertation, one of the nodes in each cycle also acts as the “depot” of that cycle - this is because these
models prevent solutions with less than p cycles by stating that there must be exactly p depots and by
introducing additional constraints which imply each cycle must include exactly one depot. To this end,
every model presented here also uses a set of binary variables yi ∈ {0, 1}, ∀i ∈ V , which indicate if the
corresponding node acts as the depot of the cycle it belongs to.

It was previously mentioned that, similarly to what is done for the TSP, additional constraints are
added to an assignment formulation in order to set the number of cycles of any feasible solution to
exactly p. This is often achieved by combining two (usually independent) sets of constraints - one which
sets the maximum number of cycles to p and one which sets the minimum number of cycles to p.

In order to set the maximum number of cycles in a feasible solution to p, one adaptation of a compact
model (that is, a model with a polynomial number of variables and constraints) first presented in [2] for
the TSP is presented. This model requires the introduction of a new set of integer variables ui ∈ N, ∀i ∈
V - for each node, the corresponding ui variable indicates the position of the node in the circuit it belongs
to (the position of each depot is 0).

The main part of this dissertation, however, focuses on compact models to prevent solutions with less
than p cycles. This is motivated by the fact that constraints known for this purpose seem to be less well
known than constraints which prevent solutions with more than p cycles. To this end, we present and
discuss two such models, from which other “improved” models can be built.

Both models prevent solutions with less than p cycles by assigning “labels” to nodes. The main
differences lie in one characteristic of the models - the values these labels take (for a given node i, for
instance, they can indicate which cycle node i belongs to, assuming each cycle is numbered from 1 to p,
or which node serves as the depot of the cycle node i belongs to).

2
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Following the framework we have just mentioned, the model we begin with also considers a set of
integer variables ki ∈ N, ∀i ∈ V , which take the value of the label of the corresponding node. In this
model, the label of a node is the index of the node that plays the role of depot of the cycle node i belongs
to (in other words, ki = d if and only if node d acts as the depot of the cycle to which node i belongs).
This also means that a node d acts as a depot if and only if kd = d. An additional set of valid inequalities
for this model are also included.

This model also considers that the depot of any given cycle must always be the node with the lowest
index which belongs to it. It is not apparent how to model the problem using these variables and linear
constraints without imposing that condition - however, this restriction seems to benefit the model, as it
also reduces the number of equivalent solutions. From now on, we will refer to any way of reducing the
number of equivalent solutions as a symmetry breaking strategy (SB strategy).

The last model includes instead a set of integer variables vi ∈ N, ∀i ∈ V , which, just like the ki

variables, also take the value of the label of the corresponding node. However, this time, the label of a
node is the cycle to which the node belongs (in other words, vi = k if and only if node i belongs to the
k-th cycle), instead of being the index of the node that plays the role of depot of the cycle node i belongs
to.

We also observe that this model requires both nodes to act as depots and the cycles to be numbered
(it is always assumed these are numbered from 1 to p), which results in even more equivalent solutions
(a given cycle may be the first, or the second or third cycle, for instance). In this case, as an SB strategy,
it is both considered that the depot of a cycle is the node with the lowest index which belongs to it and
that all cycles are sorted by ascending order of the indices of their depots. It turns out that, similarly to
what happens when considering the first model, it is also not apparent how to prevent less than p cycles
using the vi variables without imposing both these SB strategies. Similarly to the first model, sets of
valid inequalities and improvements to known inequalities are presented for this model.

This work begins with a brief introduction to the problem and a literature review, followed by several
extended formulations for the HpMP. These formulations are all built upon a “BASE” formulation (the
aforementioned model similar to the assignment model used for the TSP), to which two additional sets of
constraints are added, as previously described. The presentation of this “BASE” formulation is followed
by three sections. The first section includes a set of constraints which is an adaptation of a popular
set first introduced in [2] for the TSP. The second and third sections include the previously mentioned
models used to prevent solutions with less than p cycles, which assign nodes to depots or to cycles, and
some valid inequalities for each model. The work ends with the discussion of results obtained from a
computational experiment conducted in order to compare the models presented here and the possibility
of further research regarding compact formulations for this problem.
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Chapter 2

The Hamiltonian p-Median Problem

In this chapter we define the HpMP. The chapter begins with a description of the problem followed by a
brief review of past literature concerning this problem.

2.1 Problem Description

The HpMP is defined on a complete undirected graph G = (V,E), where V = {1, . . . , n} is the vertex
set and E = {(i, j), ∀i, j ∈ V : i < j} is the edge set. To every edge (i, j) ∈ E we associate a cost cij .
In the HpMP, given this graph and set of costs, the objective is to find the cheapest way to partition the
vertex set into p subsets of vertices, with each partition being connected by a single cycle.

It is easy to see that, for p = 1, the HpMP becomes the classical TSP (since it only asks what the
cheapest cycle that goes through all the nodes in the graph is). Since the TSP is NP-hard, the HpMP is
also NP-hard. That also means that, for p = 1, any models and methods already used for the TSP may
also be applied to the HpMP. However, for p > 1, this is not the case - those models and algorithms may
need to be modified considerably, and different models or algorithms may be necessary.

Three observations are in order: first, throughout this work, it is assumed that any feasible solution
must not include cycles with two nodes. This assumption is considered due to some challenges that arise
when modelling this problem in an undirected graph allowing for cycles with two nodes. While it is
possible to model such problems, some modifications are required (a good example of this may be seen
in [7]).

Second, this problem may also be defined on a directed graph. The adaptation of most models
included in this work to allow for problems defined on directed graphs is very straightforward. Although
considering the problem to be defined on a directed graph allows for a more general version of the
problem, considering an undirected graph means the mathematical models for the HpMP may feature
less variables, which means these may be easier to solve, and in many practical applications, modelling
the problem using an undirected graph is reasonable. These two last observations mean the distinction
between symmetrical and asymmetrical problems is important.

The last observation is that assuming the graph is complete is also not restrictive, since, for every
non-existent edge, it may be assumed that that edge exists with an arbitrarily large cost.
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2.2 Literature Review

For some of the reasons outlined in chapter 1, location-routing problems have been a subject of interest
for a long time - as mentioned in [8], some of the earliest articles on location-routing problems are almost
50 years old as of the time of writing this dissertation.

However, the HpMP does not seem to be as old, having been introduced for the first time in [9],
where it is presented as a mixed routing location problem embedding the p-Median problem and the
TSP. While this is not taken into consideration in this dissertation, many models and solving methods
for the HpMP may be easily adapted to consider fixed costs when setting certain nodes as depots - this
includes every extended MILP formulation for the HpMP presented in the following pages. The authors
of [9] also presented some formulations and several heuristics for the HpMP and for the capacitated
HpMP, a generalization of this problem in which each node is considered to have a certain “demand”,
and for each depot, the total demand it serves (that is, the demand of all the nodes in the cycle it belongs
to) must be within a certain range, and tested the heuristics on instances with up to 100 nodes.

Ten years later, Glabb and Pott [6] studied a new formulation for the asymmetric HpMP which uses
variables that assign arcs to circuits and investigated the basic properties of the associated Hamiltonian
p-Median polytope. This formulation featured an exponential number of constraints, but given the fo-
cus of the work was on the polytope associated with that formulation, no branch-and-cut algorithms
were presented and no computational experiments were conducted, making this a more theoretical work
which differs considerably from most of the work cited in this dissertation. To the best of the author’s
knowledge, very little work focusing on the HpMP was published between [9] and [6], and only after [6]
did the HpMP start attracting more attention.

In 2011, Gollowitzer et al. [10] presented and compared three different models for the HpMP. Just
like some of the models presented in this dissertation, Gollowitzer et al. [10] also used variables which
assign nodes to cycles - although the models presented in [10] to prevent solutions with less than p

cycles seem to be related to some of the models presented in this dissertation (those in which nodes are
assigned to cycles), these are not the same. However, the focus of Gollowitzer et al.’s [10] work is on
sets of constraints used to prevent solutions with more than p cycles, while the focus of this dissertation
is on sets of constraints used to prevent solutions with less than p cycles.

More recently, Gollowitzer et al. [11] presented new formulations for the HpMP and compared these
with other models previously presented in other literature. While [11] includes proofs that a set par-
titioning model based on a similar model first introduced in [9] produces better LR bounds than the
other models for the HpMP presented in [11], it does not include any practical results, since this model
includes an exponentially large number of variables, and determining the cost of each variable in the
objective function implies solving a TSP, which is an NP-hard problem. Gollowitzer et al. [11] also find
that a p-Median based model seems to have the best LR bounds out of all the models studied in [11] (ex-
cept for the set partitioning model mentioned earlier), although when it comes to computational times,
it seems to perform worse than other natural formulations. One other interesting observation is that the
aforementioned p-Median based model also seems to be related to some of the models presented in this
dissertation (in particular, to those in which nodes are assigned to depots).

Only two years later, Erdogan et al. [12] proposed and tested a branch-and-cut algorithm (based on
a model to which we will simply refer as Erdogan et al.’s model), a giant tour heuristic and an iterated
local search algorithm for the HpMP which showed promising results. In particular, Erdogan et al. [12]
compared their model with two models presented in [11] (one of them being the aforementioned p-
Median model, which Gollowitzer et al. denoted by “Model 3”, and the other being a formulation on
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the natural variable space denoted by “Model 1”) and found the branch-and-cut algorithm performed
substantially better than those models, providing both better LR bounds and better computational times.

Marzouk et al. [13] presented and tested a branch-and-price algorithm based on a modified version
of the set partitioning model presented in [11], and compared it against Model 1 from [11]. For large
values of p, this algorithm performed quite well, and was able to solve instances with up to 200 nodes in
one hour or less, and for many values of p, it got close to solving instances with up to 318 nodes in the
same time limit.

While [3] handles a somewhat different problem, this work is also mentioned in this literature review
for one reason: the model presented in section 3.3 is heavily inspired by the model first introduced by
Burger et al. in [3], which showed promising results. In [3], the authors study the fixed-destination
multi-depot multiple-salesmen TSP, a problem in which, given a set of depots (with each depot having a
certain number of salesmen available), a set of clients and a set of costs for travelling between any pair of
nodes, the objective is to find the cheapest routes each salesman must take such that each client is visited
exactly once and each salesman returns to the depot it started from.

Another branch-and-cut algorithm presented by Bektas et al. [14] also had interesting results. This
algorithm, based on a formulation denoted by “PQR”, is compared with a model denoted by “x-v”, which
is an adaptation of Erdogan et al.’s model presented in [12]. Unlike Erdogan et al.’s model, however, x-v
allows solutions including circuits with only two nodes and may be applied to the asymmetrical HpMP.
In many instances, PQR outperformed x-v.

Interestingly, while some work has been dedicated to compact formulations for this problem (for
instance, the p-Median model presented in [11]), it seems most of the work conducted so far regarding
this problem has either focused on heuristic algorithms or on MILP formulations with an exponential
number of variables (such as the set partitioning model presented in [9]) or constraints (such as the PQR
model presented in [14] or Erdogan et al.’s model presented in [12]), which may then be solved using
sophisticated branch-and-price or branch-and-cut algorithms. While these often perform well and have
good LR bounds, the implementation of the algorithms used to solve these models means these are not as
accessible as other alternatives, such as compact formulations which may be solved using MILP solvers
(such as CPLEX or Gurobi) and without implementing specific algorithms to solve pricing or separation
problems.

The focus of this work is therefore on the aforementioned compact formulations for the HpMP. Great
emphasis is given to sets of constraints aimed at preventing any solutions that feature less than p cycles.
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Chapter 3

Formulations

In this chapter, we present and discuss several MILP formulations for the HpMP. Section 3.1 will include
a generic formulation upon which all other formulations for the HpMP presented here are built. Section
3.2 includes one set of constraints and variables used to prevent solutions with more than p cycles, while
sections 3.3 and 3.4 include sets of constraints and variables used to prevent solutions with less than p

cycles.
The model covered in section 3.1 is very similar to the assignment formulations from which most

models for the TSP are built, and similarly, the constraints presented in section 3.2 are a modified version
of the constraints first presented in [2] for the TSP.

Sections 3.3 and 3.4, however, are the focal point of this dissertation. This focus on models used to
prevent solutions with less than p cycles is motivated by the fact that constraints known for this purpose
seem to be less well known than inequalities which prevent solutions with more than p cycles.

Both those models prevent solutions with less than p cycles by assigning “labels” to nodes. The main
differences lie in one characteristic of the models - what these labels are (for a given node i, for instance,
they can indicate which cycle node i belongs to, assuming each cycle is numbered from 1 to p, or which
node serves as the depot of the cycle node i belongs to).

One observation is in order: in this work, only extended formulations (as opposed to natural formu-
lations) for the HpMP are studied. A formal definition of natural formulations for combinatorial opti-
mization problems may be found in [15]. More informally, the difference between natural and extended
formulations is that natural formulations include minimal sets of variables, while extended formulations
include additional sets of variables that may not be strictly necessary to model the problem, but usually
make it easier to accurately model the problem. For instance, a natural formulation for the HpMP only
includes one variable per edge. Although the smaller number of variables in natural formulations may
be seen as an advantage, natural formulations are not without their drawbacks - these often include ex-
ponentially large sets of constraints (which extended formulations often do not), meaning they cannot be
solved in a regular computer the same way many extended formulations can. Instead, more sophisticated
branch-and-cut algorithms are required.

The extended formulations studied here, then, although having larger sets of variables, have the
advantage of often being more accessible and easier to implement. Unlike the aforementioned natural
formulations (which usually feature exponentially large sets of constraints and require specific algorithms
to be solvable in any ordinary computer), most extended formulations (including all the formulations
presented in this work) can simply be implemented in a modelling language (such as OPL or Mosel)
and solved using a commercial MILP solver, allowing for the usage of generic branch-and-bound (or
branch-and-cut) algorithms which could be used to solve any MILP.
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3.1 BASE Formulation

We start by presenting the generic formulation upon which all other formulations in this work are built.
All models presented here are for the symmetric HpMP defined on a complete undirected graph G =

(V,E), where E = {(i, j), ∀i, j ∈ V : i < j} and solutions containing cycles with only two nodes
are not allowed. This is a consequence of the additional complexity of modelling cycles with two nodes
on undirected graphs (although this is not impossible to model - a good example of this may be seen in
[7]). In this formulation (which we will denote by “BASE”), binary variables uij ∈ {0, 1}, ∀(i, j) ∈ E,
will take value 1 if the edge (i, j) ∈ E belongs to one of the p cycles and 0 otherwise, while the binary
variables yi ∈ {0, 1}, ∀i ∈ V indicate whether the corresponding node acts as the depot of the cycle
it belongs to or not. To simplify the notation in the following pages while maintaining rigour, similarly
to what is done in [12], we denote the ordered vertex pairs of every edge (i, j) ∈ E as γ(i, j) =

{(i, j), (j, i)}. We also denote by δ(i) = {(i, j), ∀j ∈ V : (i, j) ∈ E} ∪ {(j, i), ∀j ∈ V : (j, i) ∈ E}
the set of all edges between a node i and any other node in the graph. The BASE formulation is as
follows:

Min.
∑

(i,j)∈E

cijuij (3.1)

s.t.:
∑
e∈δ(i)

ue = 2, ∀i ∈ V (3.2)

∑
i∈V

yi = p, (3.3)

{(i, j) ∈ E : uij = 1} forms at most p cycles, (3.4)

{(i, j) ∈ E : uij = 1} forms at least p cycles, (3.5)

uij ∈ {0, 1}, ∀(i, j) ∈ E (3.6)

yi ∈ {0, 1}, ∀i ∈ V (3.7)

Constraints (3.2) are similar to the degree constraints also found in most models for the TSP, stating
that each node is included in exactly one cycle and that exactly two edges featuring this node must be
used. Constraints (3.6) define the uij variables as binary. A solution to the model described by the uij

variables alone is composed of several disjoint cycles covering all nodes of the graph such that each cycle
includes at least three nodes - this is an important detail, since it implies that any feasible solution to any
model built upon this will also be composed of several disjoint cycles covering all nodes of the graph.

Constraint (3.3) states that there must be exactly p depots (exactly one depot per cycle) and con-
straints (3.7) simply state the yi variables are binary. While it may seem unnecessary to designate some
nodes as depots (since the problem we are considering simply consists of finding the lowest cost partition
of the graph in exactly p cycles), this is necessary for every model presented in this dissertation. This
happens because the model presented to prevent solutions with more than p cycles does so by stating that
each cycle must include at least one depot, and likewise, the models presented to prevent solutions with
less than p cycles do so by stating that each cycle must include at most one depot. This, when combined
with constraint (3.3), implies each feasible solution must have exactly p cycles.

However, setting some nodes as depots raises an issue: if the choice of depots is irrelevant (which
is not always the case - for instance, if there are fixed costs for considering a node to be a depot),
this assignment results in many equivalent solutions, which may worsen the computational times. To
exemplify, consider a cycle with m nodes. If any node in the cycle can act as a depot, using the yi
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variables, this cycle can be represented in m different ways - the only difference from one representation
of this cycle to another is the node which acts as a depot. For instance, assuming the cycle with m

nodes includes nodes i1, . . . , im, one representation can consider node i1 to be the depot (and therefore
consider yi1 = 1 and yi = 0 for every other node i in the cycle), whereas another representation can
consider node i2 to be the depot (and therefore consider yi2 = 1 and yi = 0 for every other node i in the
cycle), and so on. These different representations of what is, in practice, the same solution, are what we
refer to as “equivalent solutions”, and since these representations are what comprises the set of feasible
solutions for the mathematical models, having multiple different representations for the same solution
means the set of feasible solutions is much larger than it should be, which can worsen the performance of
the model. It is therefore of interest to consider ways of reducing the number of equivalent solutions as
much as possible - we refer to such strategies as SB strategies. Every model presented in this dissertation
features at least one SB strategy - only the node with the lowest index in a cycle can act as the depot of
that cycle. As a matter of fact, it is not apparent how to adapt the models presented in sections 3.3 and
3.4 to allow solutions in which this SB strategy is violated.

It must also be noted that depending on the problem which is being modelled, this may or may not
be irrelevant. In particular, if the choice of depots is relevant, the adoption of this SB strategy does not
necessarily mean these formulations cannot be used to model the problem. Suppose, for example, that
there are fixed costs for setting nodes as depots of their cycles. While this seems to invalidate these
models, since one cannot pick the depots of a given cycle, this might not be true - assuming the goal is
to simply pick the “cheapest” solution, the nodes can be sorted by ascending order of fixed costs. In that
case, given any possible cycle, the node with the lowest index (which acts as a depot) and the node with
the lowest fixed cost will always coincide, which means these models may be applied to such situations.

Constraints (3.4) and (3.5) are generic sets of constraints which can be written in many different
ways - in sections 3.2, 3.3 and 3.4, some ways of writing such constraints are studied in depth. In this
work, however, greater emphasis is given to sets aimed at preventing solutions with less than p cycles.

We conclude this section with the following example, which helps illustrate the set of feasible solu-
tions for an instance of this problem. Consider a complete undirected graph with ten nodes, and consider
the HpMP defined on that graph for p = 2. From the solutions seen in figure 3.1, only solution 3 is
feasible (since it includes exactly p cycles). Solution 1 is not feasible (since it includes three cycles) and
neither is solution 2 (since it only includes one cycle).

Figure 3.1: Three different solutions for an instance of the HpMP, but only one is feasible
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3.2 Preventing more than p Cycles - Adapted DL Constraints

In this section we present a set of constraints and variables which is an adaptation of a set of constraints
first introduced in [2] for the TSP and may be used to prevent solutions with more than p cycles. Many
other sets of constraints used to model the TSP can also be adapted to prevent solutions featuring mode
than p cycles for this problem. This set of constraints can therefore replace the generic constraints (3.4).

Before resuming, an observation must be made. It is not clear how to adapt the DL constraints to
prevent solutions with more than p cycles using the uij variables previously presented. Therefore, to
be able to utilize these constraints, a new set of variables must be used. Let xij ∈ {0, 1}, ∀i, j ∈ V

be a binary variable indicating whether nodes i and j belong to the same cycle and node j immediately
follows node i (these variables may also be seen as simply indicating whether the arc (i, j) is used, in
case the graph is directed). In that case, if these variables are added to the BASE model, two new sets of
constraints must be added relating the uij and the xij variables and stating the xij variables are binary,
as follows:

uij = xij + xji, ∀(i, j) ∈ E (3.8)

xij ∈ {0, 1}, ∀i, j ∈ V (3.9)

This relation is clearly true: if node i immediately follows node j or node j immediately follows
node i, then, the edge (i, j) must be used, and if neither happens, then the edge (i, j) is not being used.

The xij variables can also entirely replace the uij variables - if the uij variables are removed, con-
straints (3.2), (3.6) and (3.8) must be removed and replaced by the following:

xij + xji ≤ 1, ∀(i, j) ∈ E (3.10)∑
j∈V :j ̸=i

xij = 1, ∀i ∈ V (3.11)

∑
j∈V :j ̸=i

xji = 1, ∀i ∈ V (3.12)

(3.9)

In every other constraint presented in this dissertation and in the objective function, considering
(i, j) ∈ E and i < j, it is enough to replace each uij variable with xij + xji. Constraints (3.11) and
(3.12) are often found on MILP formulations for the ATSP, and constraints (3.10) are a consequence
of constraints (3.6) and (3.8). One observation regarding the replacement of variables uij with xij is
in order - although constraints (3.10) should be included, these are always implied by other constraints
presented later on, and will therefore never be included in the models tested in this work, since any of
these models always includes constraints that imply these.

The nomenclature used throughout the remainder of this section reflects the fact that this adaptation
consists of turning a problem defined on an undirected graph into a problem defined on a directed graph
(in particular, the terms “cycle” and “edge” are replaced by “circuit” and “arc” respectively).

Other than the xij variables, the set of constraints presented in this subsection also uses non-negative
integer variables ui ∈ N, i ∈ V with the property that uj ≥ ui + 1 when xij = 1 and yj = 0, and
uj = ui+1 when xij = 1 and yi = yj = 0. These variables can be interpreted as indicating the position
of a node in the circuit it is in (assuming the depot’s position is 0). Consider the following inequalities:
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uj ≥ ui + 1−M(1− xij + yj) + (M − 2)xji, ∀i, j ∈ V (3.13)

1− yi ≤ ui ≤ (1− yi)(M − 1), ∀i ∈ V (3.14)

In inequalities (3.13) and (3.14), the value M equals n − 3(p − 1) (or n − 2(p − 1) if 2-circuits
are allowed), which is the size of the largest circuit in any feasible solution. Inequalities (3.13) are an
adaptation of the well-known DL inequalities presented in [2], guaranteeing that the position of two
consecutive nodes in a circuit must increase by at least 1 unless the node that follows is a depot. The
adaptation includes the yj variable in order to guarantee this last condition. Inequalities (3.14) state that
if a node acts as a depot, its position must equal 0, and otherwise, it must be some value between 1 and
M − 1. Although not strictly necessary, these constraints are used to possibly improve the LR of the
model and simplify the interpretation of the ui variables.

These inequalities, when added to the BASE model, eliminate solutions with more than p circuits.
To see this, consider a solution with more than p circuits. At least one of these circuits does not have a
depot, and thus, for all the arcs in that circuit, inequalities (3.13) become the standard DL inequalities.
By using these inequalities in a circular fashion along the circuit, we obtain uj ≥ ui+1 for each arc (i, j)
in the circuit, leading to a contradiction. An example of this can be seen in figure 3.2 - in this circuit, we
assume no node is considered to be a depot. We notice we arrive at a contradiction if, for instance, we
start from node 0 and keep considering the respective constraints for each arc in the circuit. Eventually,
we find that u0 ≥ u0 +m, which is obviously false, given m is a positive integer.

Figure 3.2: Circuit with no depots, violating some of the adapted DL constraints

Reusing the example from before, it is easy to see the introduction of a depot (for instance, node 0)
changes this and allows this circuit to exist. This is illustrated in figure 3.3. Now, the lower bound on the
value of u0 remains 0 and no contradiction results from this.

Figure 3.3: Circuit with one depot, respecting all of the adapted DL constraints
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3.3 Preventing less than p Cycles - Node-Depot Assignment

The first formulation aimed at preventing solutions with less than p cycles (and which can therefore
replace the generic constraints (3.5)) includes the integer variables kj ∈ N, ∀j ∈ V , which indicate the
“label” of node j. In this case, we consider that the “label” of node j is given by the index of the node
that plays the role of depot of the cycle node j belongs to (for example, if node j belongs to a cycle with
depot d, then, kj = d). These variables can be used to formulate a valid model to prevent solutions with
less than p cycles, which may be achieved if the following constraints are added:

kj ≤ j − 1 + yj , ∀j ∈ V (3.15)

kj ≥ (j − 1)yj + 1, ∀j ∈ V (3.16)

ka ≤ kb + (a− 1)(1− uij), ∀(i, j) ∈ E, ∀(a, b) ∈ γ(i, j) (3.17)

1 ≤ kj ≤ j, ∀j ∈ V (3.18)

Inequalities (3.15) state that the label of node j must be less than or equal to j−1, unless j acts as the
depot of the cycle it belongs to, in which case it may also equal j. Inequalities (3.16) state that the label
of node j must be greater than or equal to 1, unless j acts as the depot of the cycle it belongs to, in which
case it must be greater than or equal to j. Together, these constraints imply kj = j if and only if j acts as
the depot of the cycle it belongs to. When yj = 0, these two constraints guarantee that 1 ≤ kj ≤ j − 1

- this reflects the SB strategy mentioned when the BASE formulation was first presented (the only node
which can act as the depot of a cycle is the node with the lowest index which belongs to that cycle). To
model the HpMP using these variables without imposing that SB strategy, it seems necessary to find a
way to state kj ̸= j if yj = 0, which is not obvious using linear constraints.

Inequalities (3.17) guarantee that the label of two adjacent nodes is the same (in other words, the
depot of the cycle to which two adjacent nodes belong must be the same for both nodes). The coefficient
“(a − 1)” in these inequalities follows from the SB strategy - if this strategy was not considered, this
coefficient would have to be increased to “(|V | − 1)”. Inequalities (3.18) simply define lower and upper
bounds for the kj variables - the upper bounds are also a consequence of the SB strategy. Observe that
these kj variables can be defined as continuous. This is a consequence of constraints (3.15) and (3.16)
(which imply the label of each node d that acts as a depot must be exactly d, which is always an integer
value) combined with constraints (3.17) (which, as shown below, imply the label of any two nodes in
the same cycle must be the same). As previously mentioned, any feasible solution for this formulation
considers that the only node which can act as the depot of a cycle is the node with the lowest index which
belongs to it.

We show next that the formulation composed by BASE augmented with constraints (3.15), (3.16),
(3.17) and (3.18) prevents solutions with less than p cycles. We do so by first observing that given a cycle
with nodes {i1, . . . , im}, the following holds:

kij = kik , ∀j, k ∈ {1, . . . ,m}

This is an immediate consequence of the fact that, given two adjacent nodes ij , ij+1, constraints
(3.17) imply kij = kij+1 , which in turn implies the equality above for the entire cycle.

To show that BASE augmented with constraints (3.15)-(3.18) prevents solutions with less than p

cycles, we begin by considering a solution with less than p cycles. In such a solution, there will be at
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least one cycle with at least two depots (this follows from (3.3)) - for instance, nodes i, j such that i ̸= j.
Constraints (3.15) and (3.16) imply ki = i and kj = j. However, this contradicts what was observed
before - because since i and j are in the same cycle, ki = kj should hold. This contradiction is a
consequence of having multiple depots in a cycle, and therefore, this set of constraints prevents solutions
with less than p cycles.

3.3.1 A Valid Inequality

Constraints (3.17) can be improved for a < b, and therefore, these can be replaced by:

ki ≤ kj + (i− 1)(1− uji), ∀(j, i) ∈ E (3.19)

ki ≤ kj + (i− 1)(1− uij)− (j − 1)yj , ∀(i, j) ∈ E (3.20)

Constraints (3.19) were already included in constraints (3.17), but constraints (3.20) are new and
clearly imply constraints (3.17) for a < b (as demonstrated below). These may be interpreted as both
stating that two adjacent nodes must be assigned to the same depot and that a node j which acts as a
depot cannot be adjacent to any node i such that i < j. This happens because, if j is a depot and it is
adjacent to some smaller node i, the corresponding constraint (3.20) for this pair becomes ki ≤ 1, which
is false (recall that i and j are adjacent and, since j is a depot, ki = j should hold).

Proposition 1. Constraints (3.20) are valid for the HpMP.

Proof. Considering a pair of nodes i, j such that i < j, we begin by observing that yj = 0 results
in constraints already assumed to be valid, and therefore, it will always be assumed that yj = 1. As
previously mentioned, this implies kj = j (this is a consequence of constraints (3.15) and (3.16)).
Considering the SB strategy, i and j cannot be adjacent if j is a depot, since that would imply j is the
depot of a cycle containing nodes with indexes smaller than j. This means uij = 0. The constraint
therefore becomes:

ki ≤ i

But this is simply the upper bound featured in constraints (3.18), meaning constraints (3.20) are valid
if yj = 1, and they were already valid when yj = 0. Therefore, constraints (3.20) are valid.

Lemma 1. Constraints (3.7) and (3.20) imply constraints (3.17) for a < b.

Proof. Consider constraint (3.20) for some edge (i, j) ∈ E. This constraint can be written as:

ki + (j − 1)yj ≤ kj + (i− 1)(1− uij)

Since constraints (3.7) imply yj ≥ 0 and j − 1 ≥ 0 also holds, the inequality above implies:

ki ≤ kj + (i− 1)(1− uij)

Therefore, for any edge (i, j) ∈ E, the corresponding constraint (3.20), combined with constraints
(3.7), implies the corresponding constraint (3.17) for a < b. Therefore, constraints (3.20) and (3.7) imply
constraints (3.17) for a < b.

It can also be proven that constraints (3.16) are implied by constraints (3.20):
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Lemma 2. Constraints (3.15), (3.18) and (3.20) imply constraints (3.16).

Proof. To see this, consider some node j. For node j, the corresponding constraints (3.16) and (3.20)
are:

kj ≥ (j − 1)yj + 1,

kj ≥ (j − 1)yj + ki − (i− 1)(1− uij), ∀i ∈ V : i < j

Considering constraint (3.20) for node j and i = 1, and knowing ki = 1 (which is implied by con-
straints (3.15) and (3.18)), we observe that it equals constraint (3.16) for node j. Therefore, constraints
(3.16) are redundant if constraints (3.15), (3.18) and (3.20) are used.

3.4 Preventing less than p Cycles - Node-Cycle Assignment

Consider now the additional integer variables vi ∈ N, ∀i ∈ V , indicating the “label” of node i. In
these models, we consider the “label” of a node to be given by the cycle to which node i belongs (for
instance, vi = k if and only if node i is in the k-th cycle). These variables can be used to create the
following constraints, which prevent solutions with less than p cycles (and can therefore replace the
generic constraints (3.5)):

va ≤ vb + (p− 1)(1− uij), ∀(i, j) ∈ E, ∀(a, b) ∈ γ(i, j) (3.21)

vi ≥
i∑

j=1

yj − (p− 1)(1− yi), ∀i ∈ V (3.22)

vi ≤
i∑

j=1

yj , ∀i ∈ V (3.23)

1 ≤ vi ≤ p, ∀i ∈ V (3.24)

Constraints (3.21) indicate that the labels of adjacent nodes must have the same value (that is, adja-
cent nodes must belong to the same cycle). Constraints (3.22) and (3.23) relate the vi variables with the
yi variables, respectively indicating that if a node is a depot, then the label of that node must be greater
than or equal to the number of depots among all nodes before and including it, and that regardless of
whether a node is a depot or not, the label of that node can never exceed the number of depots before
and including it. Constraints (3.24) define lower and upper bounds for the vi variables. Observe that
these variables may be continuous (the reasoning for this is similar to that for the models presented in
the previous section).

We show next that the formulation composed by BASE augmented with constraints (3.21), (3.22),
(3.23) and (3.24) prevents solutions with less than p cycles. We do so by first observing that given a cycle
with nodes {i1, . . . , im}, the following holds:

vij = vik , ∀j, k ∈ {1, . . . ,m}

This is an immediate consequence of the fact that, given two adjacent nodes ij , ij+1, constraints
(3.21) imply vij = vij+1 , which in turn implies the equality above for the entire cycle.

To show that BASE augmented with constraints (3.21)-(3.24) prevents solutions with less than p

cycles, we begin by considering a solution with less than p cycles. In such a solution, there will be at
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least one cycle with at least two depots (this follows from (3.3)) - for instance, nodes i, j such that i > j.
Constraints (3.22) and (3.23) imply vi =

∑i
k=1 yk ≥ 1 +

∑j
k=1 yk = 1 + vj . However, this contradicts

what was observed before - because since i and j are in the same cycle, vi = vj should hold. This
contradiction is a consequence of having multiple depots in a cycle, and therefore, this set of constraints
prevents solutions with less than p cycles.

Similarly to the model presented in the previous section, this model also considers, as an SB strategy,
that the only node which may act as the depot of a cycle is the node with the lowest index which belongs
to it. And also similarly to the model presented in section 3.3, it is not apparent how to model the
problem using these variables without imposing this SB strategy. However, we also observe that, unlike
the first model (in which the cycles are not numbered), this model requires the cycles to be numbered (it
is always assumed these are numbered from 1 to p), which may result in multiple equivalent solutions (a
given cycle may be the first, or the second or third cycle, for instance). In this case, as an SB strategy, it
is also considered that all cycles are sorted by ascending order of the indices of their depots. It turns out
that it is also not apparent how to prevent less than p cycles using the vi variables without imposing this
SB strategy.

Curiously, the argument used to show that the formulation composed by BASE augmented with
constraints (3.21), (3.22), (3.23) and (3.24) prevents solutions with less than p cycles also shows why
these SB strategies are implied by this model. Regarding the strategy which consists of considering the
node with the lowest index in a given cycle to be the only possible depot for that cycle, recall that if two
nodes belong to the same cycle, these are assigned the same label. Consider now some pair i, j such that
i > j and i acts as a depot - then, vi =

∑i
k=1 yk ≥ 1+

∑j
k=1 yk > vj holds. But if vi > vj , these nodes

cannot have the same label, and therefore, they cannot belong to the same cycle. Similarly, to show that
this model implies the second SB strategy (which consists of sorting the cycles by ascending order of the
indices of their depots), consider two depots i, j such that i > j. For these two depots, constraints (3.22)
and (3.23) imply vi =

∑i
k=1 yk ≥ 1+

∑j
k=1 yk = 1+vj > vj . In other words, the label of a depot with

index i must be larger than the label of a depot with some index j such that j < i, implying the second
SB strategy.

3.4.1 A Valid Inequality

The SB strategy used in this model allows for the improvement of some of the inequalities shown in the
previous subsection - in particular, constraints (3.21) may be replaced by the following:

vi ≤ vj + (p− 1)(1− uij)− pyj , ∀(i, j) ∈ E (3.25)

vi ≤ vj + (p− 1)(1− uji), ∀(j, i) ∈ E (3.26)

Constraints (3.26) are clearly valid - they are a subset of constraints (3.21), which are valid. But the
same is not so clear for constraints (3.25), which imply constraints (3.21) for a < b (as demonstrated
below).

Proposition 2. Constraints (3.25) are valid for the HpMP.

Proof. We begin by observing that, for a given pair of nodes i, j such that i < j, assuming yj = 0 results
in constraints already considered to be valid. We therefore assume yj = 1. But if node j acts as a depot,
the SB strategy states that it cannot be adjacent to any node i such that i < j, which means uij = 0. All
this means that, in order to prove the validity of these constraints, it is only necessary to prove that the
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following inequality is valid under the assumptions mentioned previously:

vi ≤ vj − 1

This is clearly valid. To see this, observe that under these assumptions (yj = 1 and uij = 0),
constraints (3.22) and (3.23) imply the following:

vj =

j∑
l=1

yl =

j−1∑
l=1

yl + 1 ≥
i∑

l=1

yl + 1 ≥ vi + 1

Therefore, assuming yj = 1 and uij = 0 implies vi ≤ vj − 1, and constraints (3.25) are valid.

Lemma 3. Constraints (3.7) and (3.25) imply constraints (3.21) for a < b.

Proof. Consider constraint (3.25) for some edge (i, j) ∈ E. This constraint can be written as:

vi + pyj ≤ vj + (p− 1)(1− uij)

Since constraints (3.7) imply yj ≥ 0 and p− 1 ≥ 0 also holds, the inequality above implies:

vi ≤ vj + (p− 1)(1− uij)

Therefore, for any edge (i, j) ∈ E, the corresponding constraint (3.25), combined with constraints
(3.7), implies the corresponding constraint (3.21) for a < b. Therefore, constraints (3.25) and (3.7) imply
constraints (3.21) for a < b.

It can also be proven that constraints (3.25) and (3.26) are sufficient to prevent feasible solutions with
less than p cycles. In other words, when these constraints are used, constraints (3.22) and (3.23) are no
longer necessary to model the problem. To prove this, we first observe that similarly to what happens
with the model using constraints (3.21), given a cycle with nodes {i1, . . . , im}, the following holds:

vij = vik , ∀j, k ∈ {1, . . . ,m}

To see this, observe that, given two adjacent nodes ij , ij+1, constraints (3.25) and (3.26) imply
respectively (it is assumed here that ij > ij+1, but it is simple to see that the same can be done for
ij < ij+1):

vij ≥ vij+1 + pyij

vij+1 ≥ vij

Since vij+1 ≥ vij , we can see that vij ≥ vij + pyij , and therefore, these inequalities imply yij = 0

and also imply vij = vij+1 . Since this equality holds for any pair of adjacent nodes, we can conclude
that it also holds for any pair of nodes belonging to the same cycle.

To show that constraints (3.25) and (3.26) alone prevent solutions with less than p cycles, we begin
by considering a solution with less than p cycles. In such a solution, there will be at least one cycle with
at least two depots (this follows from (3.3)) - for instance, nodes i, j such that i < j. The corresponding
constraint (3.25) for this pair implies that vi ≤ vj + (p − 1)(1 − uij) − pyj , and since yj = 1, this
inequality implies vi ≤ vj − 1. However, this contradicts what was observed before - because since i
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and j are in the same cycle, vi = vj should hold. This contradiction is a consequence of having multiple
depots in a cycle, and therefore, constraints (3.25) and (3.26) prevent solutions with less than p cycles.

3.4.2 Improving Constraints

For the following improvements, it is important to observe that constraints (3.7) and (3.23) imply vi ≤ i.
We now resume with the improvements, modifying constraints (3.21):

va ≤ vb +min{p− 1, a− 1}(1− uij), ∀(i, j) ∈ E, ∀(a, b) ∈ γ(i, j) (3.27)

Constraints (3.21) and (3.27) are very similar - the only difference is the term (p − 1) in (3.21) is
replaced by min{p− 1, a− 1} in (3.27).

Proposition 3. Constraints (3.27) are valid for the HpMP.

Proof. In this proof, it may be assumed that a < p, since a ≥ p turns these constraints into constraints
already assumed to be valid. It may also be considered that uij = 0, since uij is a binary variable and
uij = 1 makes the proposed modification irrelevant, since the only modified constant is multiplied by 0.
Therefore, it is only necessary to prove the following constraint is valid under all these assumptions:

va ≤ vb + a− 1

But vb ≥ 1, and therefore, vb + a− 1 ≥ a ≥ va, proving the validity of va ≤ vb + a− 1 under these
assumptions, and therefore, the validity of constraints (3.27).

Lemma 4. Constraints (3.6) and (3.27) imply constraints (3.21).

Proof. Given any edge (i, j) ∈ E and pair (a, b) ∈ γ(i, j), constraints (3.27) and (3.21) are equivalent
if a ≥ p. Therefore, it is now only necessary to prove that constraints (3.27) and (3.6) imply constraints
(3.21) if a < p. We begin by considering some edge (i, j) ∈ E and the corresponding constraints (3.6)
and a constraint (3.27) such that a < p. Since a < p, the latter constraint becomes:

va ≤ vb + (a− 1)(1− uij)

Constraints (3.6) imply 0 ≤ 1 − uij . If this inequality is added (p − a) times to the corresponding
constraint (3.27) (recall that p− a is a positive integer), the following inequality is obtained:

va + (p− a)0 ≤ vb + (a− 1)(1− uij) + (p− a)(1− uij) ⇔

⇔ va ≤ vb + (p− 1)(1− uij)

Therefore, since constraints (3.27) are equivalent to constraints (3.21) for a ≥ p and, combined with
constraints (3.6), also imply constraints (3.21) for a < p, this means constraints (3.27) and (3.6) imply
constraints (3.21).

Likewise, constraints (3.22) can also be modified:

vi ≥
i∑

j=1

yj −min{p− 1, i− 2}(1− yi), ∀i ∈ V (3.28)
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Proposition 4. Constraints (3.28) are valid for the HpMP.

Proof. In this proof, it is considered that i−2 < p−1, since considering otherwise turns these constraints
into constraints already assumed to be valid. It may also be considered that yi = 0, since considering
yi = 1, once again, results in inequalities already known to be valid under that assumption. To prove the
validity of constraints (3.28), then, it is only necessary to prove the validity of the following inequality
under all these assumptions:

vi ≥
i−1∑
j=1

yj − (i− 2)

But since yj ≤ 1, ∀j ∈ V , this inequality is implied by vi ≥ 1, which is already assumed to be valid.
Therefore, constraints (3.28) are valid.

Lemma 5. Constraints (3.7) and (3.28) imply constraints (3.22).

Proof. Given any node i ∈ V , constraints (3.28) and (3.22) are equivalent if i−2 ≥ p−1, and therefore,
it is only necessary to prove that constraints (3.28) and (3.7) imply constraints (3.22) if i− 2 < p− 1.

We begin by considering some node i ∈ V such that i − 2 < p − 1. Since i − 2 < p − 1, the
corresponding constraint (3.28) becomes:

vi ≥
i∑

j=1

yj − (i− 2)(1− yi)

Constraints (3.7) imply 0 ≥ −(1−yi). If this inequality is added (p−i+1) times to the corresponding
constraint (3.28) (recall that (p− i+ 1) is a positive integer), the following inequality is obtained:

vi + (p− i+ 1)0 ≥
i∑

j=1

yj − (i− 2)(1− yi)− (p− i+ 1)(1− yi) ⇔

⇔ vi ≥
i∑

j=1

yj − (p− 1)(1− yi)

Therefore, since constraints (3.28) are equivalent to constraints (3.22) for i−2 ≥ p−1 and, combined
with constraints (3.7), also imply constraints (3.22) for i− 2 < p− 1, this means constraints (3.28) and
(3.7) imply constraints (3.22).

And finally, very similarly to what was done for constraints (3.27), constraints (3.25) can also be
improved as follows:

vi ≤ vj +min{p− 1, i− 1}(1− uij)−min{p, i}yj , ∀(i, j) ∈ E (3.29)

Proposition 5. Constraints (3.29) are valid for the HpMP.

Proof. In this proof, it is considered that i < p, since considering otherwise would result in constraints
already known to be valid. It is also assumed that yj = 1, since considering yj = 0 turns these constraints
into (3.27), which are valid. According to the SB strategy employed in these models, if yj = 1 and i < j,
then, i and j must not belong to the same cycle (otherwise the depot of the cycle to which j belongs would
be some node with an index which is less than or equal to i). If i and j are not in the same cycle, they
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are not adjacent, and therefore, uij = 0. Therefore, to prove the validity of these constraints, all that is
necessary is to prove, under all these assumptions, the validity of the following inequality:

vi ≤ vj − 1

Under these assumptions this inequality has already been shown to be valid in the proof of proposition
2. Therefore, constraints (3.29) are valid for the HpMP.

It must be observed that, unlike what happened with constraints (3.27) and (3.28), constraints (3.29)
do not seem to imply constraints (3.25). However, these imply constraints (3.27):

Lemma 6. Constraints (3.7) and (3.29) imply constraints (3.27).

Proof. Consider constraint (3.29) for some edge (i, j) ∈ E. This constraint can be written as:

vi +min{p, i}yj ≤ vj +min{p− 1, i− 1}(1− uij)

Since constraints (3.7) imply yj ≥ 0 and min{p, i} ≥ 0 also holds, the inequality above implies:

vi ≤ vj +min{p− 1, i− 1}(1− uij)

Therefore, for any edge (i, j) ∈ E, the corresponding constraint (3.29), combined with constraints
(3.7), implies the corresponding constraint (3.27). Therefore, constraints (3.29) and (3.7) imply con-
straints (3.27).

3.5 An Overview of the Models

We can now build models using the variables and constraints presented in the previous pages. Given
the focus of this work is on constraints used to prevent solutions with less than p cycles, we consider
both models which include constraints aimed at preventing solutions with more than p cycles (referred
to as “complete models”) and models which do not feature those constraints (referred to as “incomplete
models”). Although this means the feasible solutions for the latter models feature p or more cycles, and
not only p cycles, this methodology does not seem inadequate, as the purpose of this dissertation is to
compare the constraints used to prevent solutions with less than p cycles, which does not seem reliant
on the addition of the adapted DL constraints (or any other set of constraints which serves the same
purpose).

The tables below feature every model built with variables and constraints presented throughout this
dissertation. Each row corresponds to a different model, and the tables include two columns. The first
column includes the name of the model, and the second column includes the constraints that comprise
the corresponding model. Observe that since every model includes the depot variables yi and constraints
(3.3) and (3.7), these constraints are not included in the table. It is also not necessary to explicitly state
which variables are included in each model, since that is implicit in the constraints.

In these models, “D” stands for “Desrochers and Laporte”, “NC” stands for “Node-Cycle Assign-
ment”, “SNC” stands for “Strengthened NC”, “ND” stands for “Node-Depot Assignment”, “SND”
stands for “Strengthened ND” and “(SB)” stands for “(Symmetry Breaking)”.

Models featuring “ND” include the ki variables and some of the constraints presented in section 3.3,
and models featuring “NC” include the vi variables and some of the constraints presented in section 3.4.
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Model Constraints
DNC (3.11); (3.12); (3.13); (3.21); (3.22); (3.23); (3.9); (3.14); (3.24)
SDNC- (3.11); (3.12); (3.13); (3.25); (3.26); (3.9); (3.14); (3.24)
SDNC (3.11); (3.12); (3.13); (3.25); (3.26); (3.22); (3.23); (3.9); (3.14); (3.24)
DNC(SB) (3.11); (3.12); (3.13); (3.27); (3.28); (3.23); (3.9); (3.14); (3.24)
SDNC-(SB) (3.11); (3.12); (3.13); (3.27) (for a > b); (3.29); (3.9); (3.14); (3.24)
SDNC(SB) (3.11); (3.12); (3.13); (3.27) (for a > b); (3.29); (3.28); (3.23); (3.9); (3.14); (3.24)
DND (3.11); (3.12); (3.13); (3.15); (3.16); (3.17); (3.9); (3.14); (3.18)
SDND (3.11); (3.12); (3.13); (3.15); (3.19); (3.20); (3.9); (3.14); (3.18)

Table 3.1: Constraints used in each complete model

Model Constraints
NC (3.2); (3.21); (3.22); (3.23); (3.6); (3.24)
SNC- (3.2); (3.25); (3.26); (3.6); (3.24)
SNC (3.2); (3.25); (3.26); (3.22); (3.23); (3.6); (3.24)
NC(SB) (3.2); (3.27); (3.28); (3.23); (3.6); (3.24)
SNC-(SB) (3.2); (3.27) (for a > b); (3.29); (3.6); (3.24)
SNC(SB) (3.2); (3.27) (for a > b); (3.29); (3.28); (3.23); (3.6); (3.24)
ND (3.2); (3.15); (3.16); (3.17); (3.6); (3.18)
SND (3.2); (3.15); (3.19); (3.20); (3.6); (3.18)

Table 3.2: Constraints used in each incomplete model

If a model is given a name which includes “D” without an “N” before it (for instance, “DNC” or
“SDND”), the uij variables have been replaced by the xij variables, with some constraints also being
replaced as stated in section 3.2. Compared to their counterparts without “D”, these models also include
the ui variables and constraints (3.13) and (3.14). The difference between a model with “D” and a model
without “D”, therefore, is that the former only considers feasible solutions with exactly p cycles, whereas
the latter also considers feasible solutions with more than p cycles.

Regarding the “Strengthened” models (those with names starting with “S”), if they use variables
which assign nodes to cycles, these replace constraints (3.21) (or (3.27) if the name of the model ends
with “(SB)”) for i < j with constraints (3.25) (or (3.29) if the name of the model ends with “(SB)”).
Additionally, if the “Strengthened” models use variables which assign nodes to depots, constraints (3.16)
and (3.17) are replaced by (3.19) and (3.20).

As the listed constraints show, the only differences between a model and its “(SB)” counterpart are
the replacement of constraints (3.21), (3.22) and (3.25) with constraints (3.27), (3.28) and (3.29) where
applicable. The naming, therefore, reflects the fact that these modifications are a consequence of the SB
strategy.

As mentioned after the introduction of the improved constraints featured in the “Strengthened” mod-
els in which nodes are assigned to cycles, a model featuring constraints (3.25) and (3.26) no longer
requires constraints (3.22) and (3.23) to prevent solutions with less than p cycles. The difference be-
tween an “NC” model and the corresponding model with a “-” in the name, then, is that the model with
“-” does not include (3.22) (or (3.28), if the name of the model includes “(SB)”) and (3.23), whereas the
original model does.

We can now formally relate some of the models presented in this dissertation. While the lemmas
presented in the previous sections relating different constraints were only presented for the inequalities
found in the incomplete models, it is simple to see these also apply to the inequalities found in the
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complete models (where the uij variables have been replaced by the xij variables as instructed in section
3.2), and therefore, the following propositions also apply to the corresponding complete models. This
happens because, for each implication in which it is necessary to consider uij ≤ 1 (and therefore, in the
complete models, xij + xji ≤ 1), the complete models said to implicate other complete models always
include inequalities which imply xij + xji ≤ 1, ∀(i, j) ∈ E, and therefore, the implications are also
valid for the corresponding complete models.

Proposition 6. The LR bound obtained with SNC is always greater than or equal to the LR bound
obtained with NC.

Proof. We prove this by showing every constraint found in NC is implied by constraints found in SNC.
If this implication holds, that implies that every feasible solution for the LR of SNC is also feasible for
the LR of NC, implying the LR bound of SNC is always greater than or equal to the LR bound of NC.

Every constraint in NC other than constraints (3.21) is also found in SNC. Therefore, it is only
necessary to prove the constraints found in SNC imply constraints (3.21). Constraints (3.21) for b < a are
featured in SNC (they are constraints (3.26)) and constraints (3.21) for a < b are implied by constraints
(3.25) and (3.7), which are both also featured in SNC. Therefore, constraints (3.21) are implied by
constraints found in SNC, and thus, the LR bound obtained with SNC is always greater than or equal to
the LR bound obtained with NC.

Proposition 7. The LR bound obtained with SNC is always greater than or equal to the LR bound
obtained with SNC-.

Proof. Every constraint found in SNC- can also be found in SNC. This means every solution which is
feasible for the LR of SNC is also feasible for the LR of SNC-, which means the LR bound obtained
with SNC is always greater than or equal to the LR bound obtained with SNC-.

Proposition 8. The LR bound obtained with SNC(SB) is always greater than or equal to the LR bound
obtained with NC(SB).

Proof. We prove this by showing every constraint found in NC(SB) is implied by constraints found in
SNC(SB). If this implication holds, that implies that every feasible solution for the LR of SNC(SB) is
also feasible for the LR of NC(SB), implying the LR bound of SNC(SB) is always greater than or equal
to the LR bound of NC(SB).

Every constraint in NC(SB) other than constraints (3.27) is also found in SNC(SB). Therefore, it is
only necessary to prove the constraints found in SNC(SB) imply constraints (3.27). Constraints (3.27)
for b < a are featured in SNC(SB) and constraints (3.27) for a < b are implied by constraints (3.29) and
(3.7), which are both also featured in SNC(SB). Therefore, constraints (3.27) are implied by constraints
found in SNC(SB), and thus, the LR bound obtained with SNC(SB) is always greater than or equal to
the LR bound obtained with NC(SB).

Proposition 9. The LR bound obtained with SNC(SB) is always greater than or equal to the LR bound
obtained with SNC-(SB).

Proof. Every constraint found in SNC-(SB) can also be found in SNC(SB). This means every solution
which is feasible for the LR of SNC(SB) is also feasible for the LR of SNC-(SB), which means the
LR bound obtained with SNC(SB) is always greater than or equal to the LR bound obtained with SNC-
(SB).
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Proposition 10. The LR bound obtained with NC(SB) is always greater than or equal to the LR bound
obtained with NC.

Proof. We prove this by showing every constraint found in NC is implied by constraints found in
NC(SB). If this implication holds, that implies that every feasible solution for the LR of NC(SB) is
also feasible for the LR of NC, implying the LR bound of NC(SB) is always greater than or equal to the
LR bound of NC.

Every constraint in NC other than constraints (3.21) and (3.22) is also found in NC(SB). Therefore,
it is only necessary to prove the constraints found in NC(SB) imply constraints (3.21) and (3.22). Con-
straints (3.27) and (3.6) imply constraints (3.21), whereas constraints (3.28) and (3.7) imply constraints
(3.22). In conclusion, every constraint found in NC is implied by constraints found in NC(SB), which
means the LR bound obtained with NC(SB) is always greater than or equal to the LR bound obtained
with NC.

Proposition 11. The LR bound obtained with SND is always greater than or equal to the LR bound
obtained with ND.

Proof. We prove this by showing every constraint found in ND is implied by constraints found in SND.
If this implication holds, that implies that every feasible solution for the LR of SND is also feasible for
the LR of ND, implying the LR bound of SND is always greater than or equal to the LR bound of ND.

Every constraint in ND other than constraints (3.16) and (3.17) is also found in SND. Therefore, it
is only necessary to prove the constraints found in SND imply constraints (3.16) and (3.17). Constraints
(3.16) are implied by constraints (3.15), (3.18) and (3.20), whereas constraints (3.17) for b < a are the
same as constraints (3.19) and constraints (3.17) for a < b are implied by constraints (3.7) and (3.20).
Therefore, every constraint found in ND is implied by constraints found in SND, which implies the LR
bound obtained with SND is always greater than or equal to the LR bound obtained with ND.
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Chapter 4

Computational Experiment

In this chapter we conduct a computational experiment with the goal of evaluating the performance and
comparing all of the compact formulations for the HpMP listed in section 3.5.

4.1 Hardware / Software Configurations and Test Instances

All tests were run on a computer with an Intel® CoreTM i7-4790 CPU, 8GB of DDR3-1600 RAM running
Windows 10 Pro, Version 21H2, within which CPLEX 20.1.0 Concert Technology for C++ was used.

The models are tested on a set of instances available for free from TSPLIB (http://comopt.ifi.uni-
heidelberg.de/software/TSPLIB95/) - these are gr24 (24 nodes), fri26 (26 nodes), bayg29 (29 nodes),
swiss42 (42 nodes), att48 (48 nodes), gr48 (48 nodes), hk48 (48 nodes), eil51 (51 nodes), berlin52
(52 nodes), brazil58 (58 nodes), st70 (70 nodes), eil76 (76 nodes), pr76 (76 nodes), rat99 (99 nodes),
kroA100 (100 nodes), kroB100 (100 nodes), kroC100 (100 nodes), kroD100 (100 nodes), kroE100
(100 nodes), rd100 (100 nodes). The instances whose names are bold had their edge weight functions
changed from the original functions to the euclidian distance (without rounding to integer values) - this
was done to remain consistent with recent literature (for instance, [12] and [14]).

Each one of the models presented in section 3.5 is tested in each one of these instances and for
different values of p. The complete models are tested for five values of p for every instance (assuming n

is the number of nodes in the graph, the values of p for which the tests were carried out are p1 = ⌊ n
10⌋,

p2 = ⌊n7 ⌋, p3 = ⌊n5 ⌋, p4 = ⌊n4 ⌋ and p5 = ⌊n3 ⌋), and the incomplete models are tested for three values of
p for every instance (assuming n is the number of nodes in the graph, the values of p for which the tests
were carried out are p∗1 = ⌊n4 ⌋, p∗2 = ⌈p

∗
1+p∗3
2 ⌉ and p∗3 = ⌊n3 ⌋). Every test has a time limit of one hour -

if the instance is not solved within the first hour, an optimal value is not obtained, being instead replaced
by an interval to which the optimal value is guaranteed to belong.

4.2 Test Results

Before presenting the test results, we recall that the LR gap of a model can be calculated as GAP =

1− LR
OPT , where OPT is the optimal value of the instance and LR is the LR bound of the model for that

instance.
Each one of the tables with test results (which may be found in appendix A) has 8 columns. From

left to right, they indicate the number of cycles of each feasible solution (“p”), the optimal value of the
corresponding instance (“OPT”), the model which was tested (“Model”), the LR bound (“LR”), the lower
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bound on the optimal value (“LB”), the upper bound on the optimal value (“UB”), the computational time
(in seconds) (“Time (s)”) and the LR gap (“GAP (%)”). The computational times to determine the LR
bounds are not included as these were always negligible.

In each one of these tables, a set of test results is also preceded by a row with an instance name
(meaning the test results that follow were obtained for that instance). Each instance name is also ac-
companied by a constant (denoted by p′), which represents the value of p for which the optimal value
is lowest for the corresponding graph (in other words, the optimal solution for the problem considering
only constraints (3.2) and (3.6)).

Regarding the OPT values, an observation is in order - for some of the instances, no optimal value
was known at the time of writing this dissertation. Therefore, some of the OPT values are simply the
value of the best solution found in either [12] or [14] without proof of optimality (if the OPT value is
followed by “*”).

Before resuming, we recall that the models studied here are compared considering two metrics -
the quality of their LR bounds (higher is better) and the computational times necessary to solve the
problems (lower is better). If, when comparing two models, CPLEX was unable to solve an instance
with either model within the time limit, the models are instead compared considering the proximity of
the corresponding LB and UB values (closer values are better).

Considering this, given an instance, when comparing LR gaps, some model is said to perform better
than some other model if the LR gap is lower (in other words, if the LR bound is larger). When comparing
computational times, some model is said to perform better than some other model if the corresponding
computational time is at least 0.1 seconds lower. If, for both models, CPLEX was unable to solve the
problem within one hour (in other words, if the computational time is 3600 seconds for both models),
some model A is said to perform better than some other model B if UBA−LBA ≤ UBB −LBB − 0.1.
These small tolerances when comparing computational times mean that, in some instances, there can be
draws between pairs of models. When comparing two models it is also considered that if CPLEX ran
out of memory when solving the problem using one of the models but not the other, the model for which
CPLEX did not run out of memory performed better. If CPLEX ran out of memory with both models, it
is considered a draw.

We begin by analysing the test results obtained for every complete model (these results may be found
in appendix A), and for those, we start with the LR gaps - the following table features the average LR
gaps for every complete model presented in table 3.1 for each value of p:

DNC SDNC- SDNC DNC(SB) SDNC-(SB) SDNC(SB) DND SDND
p1 1.52% 1.52% 1.52% 1.52% 1.52% 1.52% 1.52% 1.52%
p2 1.18% 1.18% 1.18% 1.18% 1.18% 1.18% 1.18% 1.18%
p3 1.85% 1.85% 1.85% 1.85% 1.85% 1.84% 1.85% 1.84%
p4 3.16% 3.16% 3.15% 3.16% 3.16% 3.15% 3.16% 3.13%
p5 9.62% 9.55% 9.48% 9.62% 9.53% 9.46% 9.61% 9.33%

Table 4.1: Average gaps for complete models for every value of p

As this table shows, the differences between the LR gaps of all the models are small. The differences
between the gaps are greater for larger values of p, and even for p5 = ⌊n3 ⌋, the largest difference between
gap averages is 0.29% (between DNC and SDND). It must also be observed that, while the LR bounds
improve as p grows, this improvement is not very substantial. For some models, the LR bounds always
remain the same regardless of p (this seems to apply to DNC and DNC(SB)), while for every other model,
the LR bounds only improve slightly as p grows closer to ⌊n3 ⌋ (and sometimes do not improve at all).
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Interestingly, the “(SB)” models have very similar gaps to their counterparts without “improved” con-
straints, with very negligible improvements even for p5. One observation is in order - in some instances
(for example, rat99 for p = 33), some “(SB)” models actually have worse LR gaps than their correspond-
ing models without “(SB)”. This can only happen for SDNC- and SDNC, and is to be expected, since
the “(SB)” counterparts of these models are obtained by replacing, among others, constraints (3.25) with
(3.29), and these two constraints cannot be related, unlike most other constraints found in the “(SB)”
models which imply the constraints they replace.

The addition of constraints (3.25) (or (3.29)) also does not seem to result in large improvements to
the LR bounds. However, models including these constraints and not including constraints (3.22) (or
(3.28)) and (3.23) seem to have slightly better LR bounds than models which include constraints (3.22)
(or (3.28)) and (3.23) but do not include constraints (3.25) (or (3.29)).

We now proceed to analyse the performance of these models in regards to computational times. The
following tables are relevant for this analysis: the first table (4.2) indicates, for each pair of complete
models, the number of times the first model performed better than the second, while table 4.3 indicates
the number of tests CPLEX was unable to solve within the time limit for each complete model and each
value of p. Finally, table 4.4 features the average times for tests in which CPLEX did not reach the time
limit with any complete model.

DNC SDNC- SDNC DNC(SB) SDNC-(SB) SDNC(SB) DND SDND
DNC N/A 10 4 44 8 9 6 3

SDNC- 83 N/A 33 84 52 46 22 18
SDNC 90 55 N/A 90 56 51 26 23

DNC(SB) 48 12 7 N/A 8 8 7 4
SDNC-(SB) 88 40 34 86 N/A 38 17 11
SDNC(SB) 88 47 39 88 50 N/A 24 11

DND 87 66 67 86 76 68 N/A 34
SDND 92 71 69 93 81 77 52 N/A

Table 4.2: Number of times the model in the row performed better than the model in the column (for
complete models)

DNC SDNC- SDNC DNC(SB) SDNC-(SB) SDNC(SB) DND SDND
p1 4 3 3 4 3 4 4 2
p2 4 2 1 2 2 1 2 1
p3 9 8 7 9 8 8 5 5
p4 11 9 9 11 10 9 7 7
p5 16 16 16 15 15 15 15 15

Table 4.3: Number of times the time limit was reached (for complete models)

DNC SDNC- SDNC DNC(SB) SDNC-(SB) SDNC(SB) DND SDND
p1 270.9 205 148.7 205.5 147.2 123.5 101.8 89.9
p2 370.5 96.4 65 311.6 98.4 37.3 104.2 30.4
p3 144.1 77.9 150.3 180.9 74.3 71.6 19.9 17.9
p4 361 46.7 47.8 919.9 66.5 61.8 15.4 14.3
p5 38.6 8.3 5.5 107.7 38.6 25.7 10.1 9.7

Table 4.4: Average times for tests in which CPLEX never reached the time limit (for complete models)
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As far as computational times are concerned, none of the complete models presented in this work
seems to perform well for large instances and large values of p - most models reached the one hour time
limit for most tests featuring large instances, especially for large values of p. Regardless, some perform
much better than others.

Comparing these models with each other, we can begin by observing something which is made
evident by tables 4.2, 4.3 and 4.4 - models DNC and DNC(SB) are clearly the worst performers of the
group, often performing worse than most other models. Not only do they result in the worst LR bounds,
then, they also result in the worst computational times out of all the models.

We also observe that the “(SB)” models do not consistently perform better than their original counter-
parts. DNC performs much better than DNC(SB) in instances such as att48 (for p = 12) and DNC(SB)
performs much better than DNC in instances such as hk48 (for p = 16). The conclusions are similar
when comparing SDNC- with SDNC-(SB) and SDNC with SDNC(SB).

Comparing SDNC and SDNC- shows the former performs slightly better than the latter, although
SDNC- outperforms SDNC in some cases (for example, gr48 (for p = 9) and hk48 (for p = 12)). A
similar conclusion is arrived at when comparing SDNC-(SB) and SDNC(SB).

Considering DND and SDND, we conclude that these models seem to perform the best out of all
complete models. When compared with one another, SDND seems to perform somewhat better, although
DND also performs better than SDND in many instances, sometimes having a substantial lead over its
“strengthened” counterpart (for example, rd100 (for p = 20)).

In conclusion, SDND appears to be the best model, followed by DND and SDNC. DNC and DNC(SB),
on the other hand, perform the worst out of all the models.

We now proceed to analyse the performance of the incomplete models (the results are found in
appendix A). We begin, once again, by analysing the LR gaps - the following table features the average
LR gaps for every incomplete model presented here and for every value of p.

NC SNC- SNC NC(SB) SNC-(SB) SNC(SB) ND SND
p∗1 3.16% 3.16% 3.15% 3.16% 3.16% 3.15% 3.16% 3.13%
p∗2 4.86% 4.83% 4.81% 4.86% 4.83% 4.80% 4.86% 4.75%
p∗3 9.62% 9.55% 9.48% 9.62% 9.53% 9.46% 9.61% 9.33%

Table 4.5: Average gaps for incomplete models for every value of p

In regards to LR gaps, the results are very similar to the results obtained when testing the complete
models. There seem to be no additional observations to be made.

Similarly to what was done for the complete models, we analyse the computational times obtained
with the incomplete models with the aid of tables 4.6, 4.7 and 4.8. Table 4.6 indicates, for each pair
of incomplete models, the number of times the first model performed better than the second. Table 4.7
indicates the number of tests CPLEX was unable to solve within the time limit for each incomplete model
and each value of p. Finally, table 4.8 features the average times for tests in which CPLEX did not reach
the time limit with any incomplete model.

As far as computational times are concerned, although they perform much better than their complete
counterparts, none of the incomplete models presented in this work still seem to perform well for the
largest instances and the largest values of p - most models reached the one hour time limit for most
tests featuring large instances and very large values of p. However, the incomplete models must still be
compared with each other.
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NC SNC- SNC NC(SB) SNC-(SB) SNC(SB) ND SND
NC N/A 13 8 30 25 11 3 4

SNC- 44 N/A 23 41 39 25 4 7
SNC 49 32 N/A 47 41 31 8 9

NC(SB) 28 16 10 N/A 26 16 6 4
SNC-(SB) 33 17 15 32 N/A 20 3 1
SNC(SB) 48 30 23 40 35 N/A 9 4

ND 55 53 49 52 50 47 N/A 28
SND 55 50 48 54 54 51 26 N/A

Table 4.6: Number of times the model in the row performed better than the model in the column (for
incomplete models)

NC SNC- SNC NC(SB) SNC-(SB) SNC(SB) ND SND
p∗1 3 1 2 2 3 3 1 0
p∗2 8 7 4 8 6 7 2 3
p∗3 13 11 11 12 14 12 11 11

Table 4.7: Number of times the time limit was reached (for incomplete models)

NC SNC- SNC NC(SB) SNC-(SB) SNC(SB) ND SND
p∗1 328.8 286.9 132.8 322.5 291.3 95.1 9.6 7.9
p∗2 149.1 66.2 83.7 190.0 270.9 87.2 18.3 19.6
p∗3 272.8 88.7 64.1 287 165.1 196.4 82 101.5

Table 4.8: Average times for tests in which CPLEX never reached the time limit (for incomplete models)

Similarly to what happened for the complete models, we observe that models NC and NC(SB) are
the worst performers of the incomplete models, often performing worse than most other models. In-
terestingly, though, NC and NC(SB) are not the only poor performers among the incomplete models.
Although CPLEX ran out of memory once with the NC(SB) model, it also ran out of memory in nine
different tests with the SNC-(SB) model. This makes SNC-(SB) the second model with which CPLEX
ran out of memory or reached the time limit the most, only behind NC.

We also observe that the “(SB)” models do not consistently perform better than their original coun-
terparts, and this seems to depend on the instance (for instance, NC performs much better than NC(SB)
in instances such as rat99 (for p = 24) and NC(SB) performs much better than NC in instances such as
kroD100 (for p = 25)). Curiously, the “(SB)” models seem to perform slightly worse on average than
their original counterparts.

Comparing SNC and SNC- shows that, similarly to what happened when comparing SDNC and
SDNC-, the former performs slightly better than the latter, although SNC- outperforms SNC considerably
in some cases (for example, pr76 (for p = 25) and kroE100 (for p = 25)). A similar conclusion is arrived
at when comparing SNC-(SB) and SNC(SB).

Considering ND and SND, we conclude that these models perform the best out of all incomplete
models, and unlike what happened with the complete models (where SDND seemed to have a slight
edge over DND), it seems hard to pick one model as the best.

In conclusion, ND and SND appear to be the best models, followed by SNC. NC, NC(SB) and
SNC-(SB), on the other hand, perform the worst out of all the models.
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We finish this chapter by observing that the values of the LR bounds allow us to state that the LR
bounds of some models cannot be related. These observations are only made for the incomplete models,
but they also apply to the corresponding complete models.

We begin with the LR bounds of SNC- and SNC-(SB), which cannot be related, since there are
instances for which SNC-(SB) has a strictly better LR bound than SNC- (such as eil51 for p = 17) and
there are instances for which SNC- has a strictly better LR bound than SNC-(SB) (such as rat99 for
p = 33).

The LR bounds of SNC- and ND also cannot be related, since there are instances for which ND has
a strictly better LR bound than SNC- (such as eil51 for p = 17) and there are instances for which SNC-
has a strictly better LR bound than ND (such as berlin52 for p = 17).

Additionally, the LR bounds of SNC-(SB) and ND cannot be related, since there are instances for
which ND has a strictly better LR bound than SNC-(SB) (such as eil51 for p = 17) and there are instances
for which SNC-(SB) has a strictly better LR bound than ND (such as berlin52 for p = 17).

Finally, the LR bounds of SNC and SNC(SB) cannot be related as there are instances for which
SNC(SB) has a strictly better LR bound than SNC (such as eil51 for p = 17) and there are instances for
which SNC has a strictly better LR bound than SNC(SB) (such as rat99 for p = 33).

The diagram below illustrates the relations that have been established between the LR bounds of
different incomplete models, both from the observations above and from the propositions at the end of
section 3.5. This diagram also applies to the corresponding complete models. In this diagram, if there
exists a full arrow going from the name of some model A to the name of some other model B, then,
the LR bound of model B is always at least as good as that of model A. However, if there is a dashed
line between a pair of models A and B, then, the LR bounds of both models cannot be related. In other
words, there are instances for which model A has a strictly better LR bound than model B, and there are
instances for which model B has a strictly better LR bound than model A.

Figure 4.1: Diagram relating the LR bounds of incomplete models
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Chapter 5

Conclusions and Future Work

This chapter, which marks the end of this dissertation, starts with an overview of the purpose and con-
tributions of this dissertation, followed by conclusions drawn from the computational study. The chapter
ends with a brief discussion of possible future work.

5.1 Main Conclusions

In this thesis, we defined the HpMP, a location-routing problem which combines the p-Median and
Travelling Salesman problems, and in which the goal is to, given an undirected graph, determine the
cheapest way to partition the graph in exactly p cycles (this problem can also clearly be defined on
directed graphs, and the models presented in this work are very simple to adapt for this scenario). The
purpose of this work was to study valid compact formulations which prevent solutions featuring less than
p cycles.

We began by presenting a formulation upon which all models for the HpMP presented in this work are
built, followed by one set of constraints which is an adaptation of the constraints presented by Desrochers
and Laporte [2] for the TSP used to prevent solutions with more than p cycles and some sets of constraints
used to prevent solutions with less than p cycles. To this end, we began by presenting a formulation in
which nodes are assigned to depots (which is very similar to a formulation first presented in [3]). This
was followed by a valid inequality which results in slight improvements to LR bounds. This model was
followed by a new formulation in which nodes are assigned to cycles. Additional valid inequalities and
improvements to some of the constraints for this model were also presented, with the potential to improve
LR bounds and computational times.

All these models were implemented using Concert Technology for C++ and a set of instances
was downloaded from TSPLIB (http://comopt.ifi.uni-heidelberg.de/software/TSPLIB95/). Each instance
from this set was then solved using CPLEX (version 20.1), for many different numbers of cycles.

Finally, the results from the aforementioned computational experiment were analysed. These results
show that some of the modifications presented for the model in which nodes are assigned to cycles result
in better computational times, while others do not result in substantial improvements. The results also
show that the models in which nodes are assigned to depots result in the lowest computational times out
of all the models presented in this dissertation. These results also allowed us to draw more conclusions
regarding the LR bounds of the models - namely, that the LR bounds of some models cannot be related.
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5.2 Future Work

Regarding future work, there is still much to be done, both regarding compact formulations for this prob-
lem in general and regarding the formulations presented in this dissertation. Some compact formulations
presented in other literature - in particular, the formulation presented in [10] to prevent solutions with
less than p cycles and the p-Median model presented in [11] - may be related to the compact formulations
presented in this dissertation, and it may be worth studying the aforementioned models and comparing
these to the (more) compact formulations presented in this dissertation.

It may also be interesting to perform a computational experiment in which the models presented in
this dissertation are tested for asymmetric instances, and for either symmetric or asymmetric instances
allowing cycles with two nodes. The modification of most models to allow for cycles (or circuits) with
two nodes is very straightforward - for instance, if the models have been modified to replace the uij

variables with the xij variables as instructed in section 3.2, all that is necessary is to remove constraints
(3.10), remove the term (M − 2)xji from constraints (3.13), modify the constant M used in constraints
(3.13) and (3.14) (turning it into n−2(p−1)) and replace xij +xji with xij in constraints (3.17), (3.19),
(3.20), (3.21), (3.25), (3.26), (3.27) and (3.29).

Additionally, and especially considering the SB strategies considered throughout this work (which
depend on the ordering of the nodes), it may also be of interest to test whether the ordering of the nodes
has a significant impact on the computational times.
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Appendix A

Test Results

The test results for all complete models are presented in tables A.1 through to A.20, followed by the
test results for all incomplete models, which are presented in tables A.21 through to A.30. Each one of
the tables with test results has 8 columns. From left to right, they indicate the number of cycles of each
feasible solution (“p”), the optimal value of the corresponding instance (“OPT”), the model which was
tested (“Model”), the LR bound (“LR”), the lower bound on the optimal value (“LB”), the upper bound
on the optimal value (“UB”), the computational time (in seconds) (“Time (s)”) and the LR gap (“GAP
(%)”). The computational times to determine the LR bounds are not included as these were always
negligible.

In each one of these tables, a set of test results is also preceded by a row with an instance name
(meaning the test results that follow were obtained for that instance). Each instance name is also ac-
companied by a constant (denoted by p′), which represents the value of p for which the optimal value is
lowest for the corresponding graph.

Regarding the OPT values, an observation is in order - for some of the instances, no optimal value
was known at the time of writing this dissertation. Therefore, some of the OPT values are simply the
value of the best solution found in either [12] or [14] without proof of optimality (if the OPT value is
followed by “*”).
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p OPT Model LR LB UB Time (s) GAP (%)
gr24 (p′ = 4)

2 1238

DNC 1224.5 1238 1238 0.3 1.09%
SDNC- 1224.5 1238 1238 0.3 1.09%
SDNC 1224.5 1238 1238 0.2 1.09%
DNC(SB) 1224.5 1238 1238 0.3 1.09%
SDNC-(SB) 1224.5 1238 1238 0.2 1.09%
SDNC(SB) 1224.5 1238 1238 0.1 1.09%
DND 1224.5 1238 1238 0.3 1.09%
SDND 1224.5 1238 1238 0.1 1.09%

3 1227

DNC 1224.5 1227 1227 0.1 0.20%
SDNC- 1224.5 1227 1227 0.1 0.20%
SDNC 1224.5 1227 1227 0.1 0.20%
DNC(SB) 1224.5 1227 1227 0.1 0.20%
SDNC-(SB) 1224.5 1227 1227 0.1 0.20%
SDNC(SB) 1224.5 1227 1227 0.1 0.20%
DND 1224.5 1227 1227 0.1 0.20%
SDND 1224.5 1227 1227 0.1 0.20%

4 1227

DNC 1224.5 1227 1227 0.2 0.20%
SDNC- 1224.5 1227 1227 0.1 0.20%
SDNC 1224.5 1227 1227 0.1 0.20%
DNC(SB) 1224.5 1227 1227 0.1 0.20%
SDNC-(SB) 1224.5 1227 1227 0.1 0.20%
SDNC(SB) 1224.5 1227 1227 0.1 0.20%
DND 1224.5 1227 1227 0.1 0.20%
SDND 1224.5 1227 1227 0.1 0.20%

6 1266

DNC 1224.5 1266 1266 1.9 3.28%
SDNC- 1224.5 1266 1266 1.4 3.28%
SDNC 1224.5 1266 1266 1.3 3.28%
DNC(SB) 1224.5 1266 1266 1.5 3.28%
SDNC-(SB) 1224.5 1266 1266 0.9 3.28%
SDNC(SB) 1224.5 1266 1266 0.9 3.28%
DND 1224.5 1266 1266 1 3.28%
SDND 1224.61 1266 1266 0.7 3.27%

8 1317

DNC 1224.5 1317 1317 3.3 7.02%
SDNC- 1226.5 1317 1317 1.6 6.87%
SDNC 1228.06 1317 1317 1.3 6.75%
DNC(SB) 1224.5 1317 1317 19.2 7.02%
SDNC-(SB) 1227.33 1317 1317 1.7 6.81%
SDNC(SB) 1228.38 1317 1317 1.6 6.73%
DND 1224.5 1317 1317 1.2 7.02%
SDND 1231.34 1317 1317 1.1 6.50%

Table A.1: Test results for complete models (instance: gr24)
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APPENDIX A. TEST RESULTS

p OPT Model LR LB UB Time (s) GAP (%)
fri26 (p′ = 7)

2 911

DNC 880 911 911 0.6 3.40%
SDNC- 880 911 911 0.6 3.40%
SDNC 880 911 911 0.5 3.40%
DNC(SB) 880 911 911 0.4 3.40%
SDNC-(SB) 880 911 911 0.7 3.40%
SDNC(SB) 880 911 911 0.5 3.40%
DND 880 911 911 0.6 3.40%
SDND 880 911 911 0.6 3.40%

3 903

DNC 880 903 903 0.6 2.55%
SDNC- 880 903 903 1.3 2.55%
SDNC 880 903 903 0.6 2.55%
DNC(SB) 880 903 903 0.7 2.55%
SDNC-(SB) 880 903 903 0.7 2.55%
SDNC(SB) 880 903 903 0.8 2.55%
DND 880 903 903 0.7 2.55%
SDND 880 903 903 1 2.55%

5 893

DNC 880 893 893 0.6 1.46%
SDNC- 880 893 893 0.6 1.46%
SDNC 880 893 893 0.6 1.46%
DNC(SB) 880 893 893 0.8 1.46%
SDNC-(SB) 880 893 893 0.4 1.46%
SDNC(SB) 880 893 893 0.5 1.46%
DND 880 893 893 0.5 1.46%
SDND 880 893 893 0.5 1.46%

6 886

DNC 880 886 886 0.5 0.68%
SDNC- 880 886 886 0.1 0.68%
SDNC 880 886 886 0.3 0.68%
DNC(SB) 880 886 886 0.5 0.68%
SDNC-(SB) 880 886 886 0.2 0.68%
SDNC(SB) 880 886 886 0.3 0.68%
DND 880 886 886 0.4 0.68%
SDND 880 886 886 0.3 0.68%

8 885

DNC 880 885 885 0.8 0.56%
SDNC- 881.29 885 885 0.1 0.42%
SDNC 881.47 885 885 0.2 0.40%
DNC(SB) 880 885 885 0.5 0.56%
SDNC-(SB) 881.4 885 885 0.1 0.41%
SDNC(SB) 881.59 885 885 0.1 0.38%
DND 880 885 885 0.2 0.56%
SDND 881.02 885 885 0.1 0.45%

Table A.2: Test results for complete models (instance: fri26)
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APPENDIX A. TEST RESULTS

p OPT Model LR LB UB Time (s) GAP (%)
bayg29 (p′ = 3)

2 1562

DNC 1546 1562 1562 0.3 1.02%
SDNC- 1546 1562 1562 0.3 1.02%
SDNC 1546 1562 1562 0.3 1.02%
DNC(SB) 1546 1562 1562 0.5 1.02%
SDNC-(SB) 1546 1562 1562 0.4 1.02%
SDNC(SB) 1546 1562 1562 0.3 1.02%
DND 1546 1562 1562 0.3 1.02%
SDND 1546 1562 1562 0.3 1.02%

4 1549

DNC 1546 1549 1549 0.2 0.19%
SDNC- 1546 1549 1549 0.2 0.19%
SDNC 1546 1549 1549 0.2 0.19%
DNC(SB) 1546 1549 1549 0.8 0.19%
SDNC-(SB) 1546 1549 1549 0.2 0.19%
SDNC(SB) 1546 1549 1549 0.3 0.19%
DND 1546 1549 1549 0.4 0.19%
SDND 1546 1549 1549 0.2 0.19%

5 1555

DNC 1546 1555 1555 0.7 0.58%
SDNC- 1546 1555 1555 0.3 0.58%
SDNC 1546 1555 1555 0.4 0.58%
DNC(SB) 1546 1555 1555 0.6 0.58%
SDNC-(SB) 1546 1555 1555 0.3 0.58%
SDNC(SB) 1546 1555 1555 0.3 0.58%
DND 1546 1555 1555 0.7 0.58%
SDND 1546 1555 1555 0.3 0.58%

7 1618

DNC 1546 1618 1618 19.1 4.45%
SDNC- 1546 1618 1618 7.9 4.45%
SDNC 1546 1618 1618 6.1 4.45%
DNC(SB) 1546 1618 1618 18.2 4.45%
SDNC-(SB) 1546 1618 1618 18 4.45%
SDNC(SB) 1546.03 1618 1618 19.5 4.45%
DND 1546 1618 1618 20.7 4.45%
SDND 1546.26 1618 1618 12.2 4.43%

9 1676

DNC 1546 1676 1676 24.8 7.76%
SDNC- 1546 1676 1676 15.1 7.76%
SDNC 1546 1676 1676 11.5 7.76%
DNC(SB) 1546 1676 1676 122.6 7.76%
SDNC-(SB) 1546.56 1676 1676 141.1 7.72%
SDNC(SB) 1546.97 1676 1676 81.2 7.70%
DND 1546.09 1676 1676 30.6 7.75%
SDND 1547.61 1676 1676 28 7.66%

Table A.3: Test results for complete models (instance: bayg29)
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APPENDIX A. TEST RESULTS

p OPT Model LR LB UB Time (s) GAP (%)
swiss42 (p′ = 7)

4 1232

DNC 1214.5 1232 1232 2.4 1.42%
SDNC- 1214.5 1232 1232 2.3 1.42%
SDNC 1214.5 1232 1232 1.2 1.42%
DNC(SB) 1214.5 1232 1232 3.8 1.42%
SDNC-(SB) 1214.5 1232 1232 1.9 1.42%
SDNC(SB) 1214.5 1232 1232 3.4 1.42%
DND 1214.5 1232 1232 0.9 1.42%
SDND 1214.5 1232 1232 1.5 1.42%

6 1231

DNC 1214.5 1231 1231 1.8 1.34%
SDNC- 1214.5 1231 1231 1.3 1.34%
SDNC 1214.5 1231 1231 1.2 1.34%
DNC(SB) 1214.5 1231 1231 2.5 1.34%
SDNC-(SB) 1214.5 1231 1231 1.9 1.34%
SDNC(SB) 1214.5 1231 1231 1.9 1.34%
DND 1214.5 1231 1231 1.7 1.34%
SDND 1214.5 1231 1231 1.8 1.34%

8 1231

DNC 1214.5 1231 1231 3.2 1.34%
SDNC- 1214.5 1231 1231 1.1 1.34%
SDNC 1214.5 1231 1231 1.3 1.34%
DNC(SB) 1214.5 1231 1231 2.5 1.34%
SDNC-(SB) 1214.5 1231 1231 0.9 1.34%
SDNC(SB) 1214.5 1231 1231 1.7 1.34%
DND 1214.5 1231 1231 1.5 1.34%
SDND 1214.5 1231 1231 1.7 1.34%

10 1238

DNC 1214.5 1238 1238 5.6 1.90%
SDNC- 1214.5 1238 1238 2.9 1.90%
SDNC 1214.5 1238 1238 1.7 1.90%
DNC(SB) 1214.5 1238 1238 16.5 1.90%
SDNC-(SB) 1214.5 1238 1238 2.7 1.90%
SDNC(SB) 1214.5 1238 1238 3.5 1.90%
DND 1214.5 1238 1238 2.2 1.90%
SDND 1214.5 1238 1238 3.2 1.90%

14 1292

DNC 1214.5 1292 1292 125.6 6.00%
SDNC- 1214.5 1292 1292 16.2 6.00%
SDNC 1215.56 1292 1292 9 5.92%
DNC(SB) 1214.5 1292 1292 288.5 6.00%
SDNC-(SB) 1214.67 1292 1292 11.6 5.99%
SDNC(SB) 1215.89 1292 1292 19.9 5.89%
DND 1214.5 1292 1292 8.3 6.00%
SDND 1219.87 1292 1292 9.7 5.58%

Table A.4: Test results for complete models (instance: swiss42)

39



APPENDIX A. TEST RESULTS

p OPT Model LR LB UB Time (s) GAP (%)
att48 (p′ = 5)

4 31903.3

DNC 31669.3 31903.3 31903.3 1.8 0.73%
SDNC- 31669.3 31903.3 31903.3 1 0.73%
SDNC 31669.3 31903.3 31903.3 1 0.73%
DNC(SB) 31669.3 31903.3 31903.3 2.4 0.73%
SDNC-(SB) 31669.3 31903.3 31903.3 1.4 0.73%
SDNC(SB) 31669.3 31903.3 31903.3 1.6 0.73%
DND 31669.3 31903.3 31903.3 0.9 0.73%
SDND 31669.3 31903.3 31903.3 0.9 0.73%

6 31836.1

DNC 31669.3 31836.1 31836.1 2.1 0.52%
SDNC- 31669.3 31836.1 31836.1 0.6 0.52%
SDNC 31669.3 31836.1 31836.1 0.9 0.52%
DNC(SB) 31669.3 31836.1 31836.1 1.8 0.52%
SDNC-(SB) 31669.3 31836.1 31836.1 1.2 0.52%
SDNC(SB) 31669.3 31836.1 31836.1 0.8 0.52%
DND 31669.3 31836.1 31836.1 0.6 0.52%
SDND 31669.3 31836.1 31836.1 0.6 0.52%

9 32195.5

DNC 31669.3 32195.5 32195.5 11.4 1.63%
SDNC- 31669.3 32195.5 32195.5 7.4 1.63%
SDNC 31669.3 32195.5 32195.5 6.1 1.63%
DNC(SB) 31669.3 32195.5 32195.5 83.3 1.63%
SDNC-(SB) 31669.3 32195.5 32195.5 30.4 1.63%
SDNC(SB) 31669.3 32195.5 32195.5 14.9 1.63%
DND 31669.3 32195.5 32195.5 5.6 1.63%
SDND 31669.3 32195.5 32195.5 9.1 1.63%

12 32742.9

DNC 31669.3 32742.9 32742.9 88.7 3.28%
SDNC- 31669.3 32742.9 32742.9 24.4 3.28%
SDNC 31669.5 32742.9 32742.9 17.7 3.28%
DNC(SB) 31669.3 32742.9 32742.9 918.5 3.28%
SDNC-(SB) 31669.3 32742.9 32742.9 173.6 3.28%
SDNC(SB) 31669.8 32742.9 32742.9 98.9 3.28%
DND 31669.3 32742.9 32742.9 38.6 3.28%
SDND 31671.1 32742.9 32742.9 23.8 3.27%

16 37068.82

DNC 31669.3 34598.2 37329.1 3600 14.57%
SDNC- 31669.3 35688.3 37068.8 3600 14.57%
SDNC 31693.9 34443.9 37068.8 3600 14.50%
DNC(SB) 31669.3 33002.3 37561.9 3600 14.57%
SDNC-(SB) 31673.7 35601.8 37068.8 3600 14.55%
SDNC(SB) 31710.8 34731.2 37068.8 3600 14.45%
DND 31669.7 35512 37068.8 3600 14.57%
SDND 31780.7 34802 37329.1 3600 14.27%

Table A.5: Test results for complete models (instance: att48)
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APPENDIX A. TEST RESULTS

p OPT Model LR LB UB Time (s) GAP (%)
gr48 (p′ = 6)

4 4841

DNC 4769 4841 4841 12.3 1.49%
SDNC- 4769 4841 4841 12.6 1.49%
SDNC 4769 4841 4841 9.3 1.49%
DNC(SB) 4769 4841 4841 9.9 1.49%
SDNC-(SB) 4769 4841 4841 6.9 1.49%
SDNC(SB) 4769 4841 4841 13.5 1.49%
DND 4769 4841 4841 4.2 1.49%
SDND 4769 4841 4841 7.2 1.49%

6 4805

DNC 4769 4805 4805 1.9 0.75%
SDNC- 4769 4805 4805 0.7 0.75%
SDNC 4769 4805 4805 0.8 0.75%
DNC(SB) 4769 4805 4805 1.4 0.75%
SDNC-(SB) 4769 4805 4805 1.2 0.75%
SDNC(SB) 4769 4805 4805 0.9 0.75%
DND 4769 4805 4805 0.6 0.75%
SDND 4769 4805 4805 0.6 0.75%

9 4926

DNC 4769 4926 4926 899.5 3.19%
SDNC- 4769 4926 4926 703.3 3.19%
SDNC 4769 4926 4926 1598.3 3.19%
DNC(SB) 4769 4926 4926 1412.5 3.19%
SDNC-(SB) 4769 4926 4926 703.2 3.19%
SDNC(SB) 4769 4926 4926 677.2 3.19%
DND 4769 4926 4926 171.2 3.19%
SDND 4769 4926 4926 151.5 3.19%

12 5011

DNC 4769 4936.62 5011 3600 4.83%
SDNC- 4769 5011 5011 523.6 4.83%
SDNC 4769 4940.43 5011 3600 4.83%
DNC(SB) 4769 4922.22 5011 3600 4.83%
SDNC-(SB) 4769 4956.07 5011 3600 4.83%
SDNC(SB) 4769 5011 5011 1812.8 4.83%
DND 4769 5011 5011 826 4.83%
SDND 4769 5011 5011 574.2 4.83%

16 5445

DNC 4769 5072.72 5445 3600 12.42%
SDNC- 4769 5258.41 5445 3600 12.42%
SDNC 4769 5392.45 5445 3600 12.42%
DNC(SB) 4769 5057.99 5445 3600 12.42%
SDNC-(SB) 4769 5121.84 5445 3600 12.42%
SDNC(SB) 4769.49 5140.28 5445 3600 12.41%
DND 4769 5329.13 5445 3600 12.42%
SDND 4776.57 5261.85 5445 3600 12.28%

Table A.6: Test results for complete models (instance: gr48)
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APPENDIX A. TEST RESULTS

p OPT Model LR LB UB Time (s) GAP (%)
hk48 (p′ = 6)

4 11271

DNC 11197 11271 11271 9.9 0.66%
SDNC- 11197 11271 11271 6.8 0.66%
SDNC 11197 11271 11271 10.9 0.66%
DNC(SB) 11197 11271 11271 11 0.66%
SDNC-(SB) 11197 11271 11271 8.2 0.66%
SDNC(SB) 11197 11271 11271 6.6 0.66%
DND 11197 11271 11271 6.9 0.66%
SDND 11197 11271 11271 18.1 0.66%

6 11197

DNC 11197 11197 11197 0.3 0.00%
SDNC- 11197 11197 11197 0.2 0.00%
SDNC 11197 11197 11197 0.3 0.00%
DNC(SB) 11197 11197 11197 0.2 0.00%
SDNC-(SB) 11197 11197 11197 0.2 0.00%
SDNC(SB) 11197 11197 11197 0.2 0.00%
DND 11197 11197 11197 0.1 0.00%
SDND 11197 11197 11197 0.2 0.00%

9 11292

DNC 11197 11292 11292 68.7 0.84%
SDNC- 11197 11292 11292 30.5 0.84%
SDNC 11197 11292 11292 13.6 0.84%
DNC(SB) 11197 11292 11292 54.4 0.84%
SDNC-(SB) 11197 11292 11292 36.6 0.84%
SDNC(SB) 11197 11292 11292 17.4 0.84%
DND 11197 11292 11292 7.3 0.84%
SDND 11197 11292 11292 7.8 0.84%

12 11450

DNC 11197 11450 11450 1193.7 2.21%
SDNC- 11197 11450 11450 99.3 2.21%
SDNC 11197 11450 11450 216.3 2.21%
DNC(SB) 11197 11450 11450 3428.2 2.21%
SDNC-(SB) 11197 11450 11450 141.2 2.21%
SDNC(SB) 11197 11450 11450 257.8 2.21%
DND 11197 11450 11450 23.3 2.21%
SDND 11197.1 11450 11450 44.3 2.21%

16 12215

DNC 11197 12031.8 12215 3600 8.33%
SDNC- 11197 11969.3 12215 3600 8.33%
SDNC 11197.2 12115.8 12215 3600 8.33%
DNC(SB) 11197 12215 12215 2612.7 8.33%
SDNC-(SB) 11198.5 12215 12215 2029.7 8.32%
SDNC(SB) 11199.7 12215 12215 1286.6 8.31%
DND 11197 12215 12215 1583.7 8.33%
SDND 11202.7 12215 12215 1265.1 8.29%

Table A.7: Test results for complete models (instance: hk48)

42



APPENDIX A. TEST RESULTS

p OPT Model LR LB UB Time (s) GAP (%)
eil51 (p′ = 3)

5 422.323

DNC 418.69 422.32 422.32 5.4 0.86%
SDNC- 418.69 422.32 422.32 4.1 0.86%
SDNC 418.69 422.32 422.32 2.9 0.86%
DNC(SB) 418.69 422.32 422.32 6.2 0.86%
SDNC-(SB) 418.69 422.32 422.32 2.8 0.86%
SDNC(SB) 418.69 422.32 422.32 1.4 0.86%
DND 418.69 422.32 422.32 2.8 0.86%
SDND 418.69 422.32 422.32 1.6 0.86%

7 424.356

DNC 418.69 424.36 424.36 35.1 1.34%
SDNC- 418.69 424.36 424.36 61.7 1.34%
SDNC 418.69 424.36 424.36 6.1 1.34%
DNC(SB) 418.69 424.36 424.36 68.3 1.34%
SDNC-(SB) 418.69 424.36 424.36 10.8 1.34%
SDNC(SB) 418.69 424.36 424.36 10.5 1.34%
DND 418.69 424.36 424.36 7.2 1.34%
SDND 418.73 424.36 424.36 10.6 1.32%

10 432.489

DNC 418.69 428.32 432.49 3600 3.19%
SDNC- 418.69 427.88 432.49 3600 3.19%
SDNC 418.7 432.49 432.49 1379.3 3.19%
DNC(SB) 418.69 427.08 432.49 3600 3.19%
SDNC-(SB) 418.71 431.42 432.49 3600 3.19%
SDNC(SB) 418.83 432.49 432.49 1889.7 3.16%
DND 418.75 432.49 432.49 1941.9 3.18%
SDND 419.02 432.49 432.49 910.5 3.11%

12 436.587

DNC 418.69 425.57 436.59 3600 4.10%
SDNC- 418.69 431.71 436.59 3600 4.10%
SDNC 418.84 436.59 436.59 3286.5 4.07%
DNC(SB) 418.69 429.04 436.59 3600 4.10%
SDNC-(SB) 418.78 433.15 436.59 3600 4.08%
SDNC(SB) 419.06 434.02 436.59 3600 4.02%
DND 418.87 436.59 436.59 2796.2 4.06%
SDND 419.28 436.59 436.59 3024.4 3.96%

17 473.977

DNC 418.69 438.02 475.89 3600 11.67%
SDNC- 418.76 450.05 475.56 3600 11.65%
SDNC 419.69 449.3 473.98 3600 11.45%
DNC(SB) 418.69 442.38 473.98 3600 11.67%
SDNC-(SB) 419.2 444.1 473.98 3600 11.56%
SDNC(SB) 419.99 448.66 475.89 3600 11.39%
DND 419.32 454.71 473.98 3600 11.53%
SDND 420.25 449.75 475.56 3600 11.34%

Table A.8: Test results for complete models (instance: eil51)
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APPENDIX A. TEST RESULTS

p OPT Model LR LB UB Time (s) GAP (%)
berlin52 (p′ = 7)

5 7182.23

DNC 7166.3 7182.23 7182.23 7.2 0.22%
SDNC- 7166.3 7182.23 7182.23 5.6 0.22%
SDNC 7166.3 7182.23 7182.23 4.3 0.22%
DNC(SB) 7166.3 7182.23 7182.23 4.9 0.22%
SDNC-(SB) 7166.3 7182.23 7182.23 5.5 0.22%
SDNC(SB) 7166.3 7182.23 7182.23 5.1 0.22%
DND 7166.3 7182.23 7182.23 5 0.22%
SDND 7166.3 7182.23 7182.23 3.3 0.22%

7 7167.2

DNC 7166.3 7167.2 7167.2 1.4 0.01%
SDNC- 7166.3 7167.2 7167.2 1 0.01%
SDNC 7166.3 7167.2 7167.2 0.7 0.01%
DNC(SB) 7166.3 7167.2 7167.2 2.1 0.01%
SDNC-(SB) 7166.3 7167.2 7167.2 0.4 0.01%
SDNC(SB) 7166.3 7167.2 7167.2 0.4 0.01%
DND 7166.3 7167.2 7167.2 0.6 0.01%
SDND 7166.3 7167.2 7167.2 0.5 0.01%

10 7206.7

DNC 7166.3 7206.7 7206.7 86.6 0.56%
SDNC- 7166.3 7206.7 7206.7 60.5 0.56%
SDNC 7166.3 7206.7 7206.7 12.2 0.56%
DNC(SB) 7166.3 7206.7 7206.7 60.1 0.56%
SDNC-(SB) 7166.3 7206.7 7206.7 12.2 0.56%
SDNC(SB) 7166.32 7206.7 7206.7 24.4 0.56%
DND 7166.3 7206.7 7206.7 7.4 0.56%
SDND 7166.32 7206.7 7206.7 4.2 0.56%

13 7298.63

DNC 7166.3 7298.63 7298.63 1155.4 1.81%
SDNC- 7166.3 7298.63 7298.63 91.4 1.81%
SDNC 7166.4 7298.63 7298.63 107.9 1.81%
DNC(SB) 7166.3 7298.63 7298.63 2475.9 1.81%
SDNC-(SB) 7166.32 7298.63 7298.63 131.1 1.81%
SDNC(SB) 7166.43 7298.63 7298.63 134.3 1.81%
DND 7166.3 7298.63 7298.63 29 1.81%
SDND 7166.46 7298.63 7298.63 24.8 1.81%

17 7800.77

DNC 7166.3 7248.42 17148.4 3600 8.13%
SDNC- 7166.48 7515.56 7800.77 3600 8.13%
SDNC 7168.01 7557.95 7800.77 3600 8.11%
DNC(SB) 7166.3 7372.17 7800.77 3600 8.13%
SDNC-(SB) 7166.65 7447.52 7800.77 3600 8.13%
SDNC(SB) 7168.34 7353.14 9436.62 3600 8.11%
DND 7166.33 7590.22 7800.77 3600 8.13%
SDND 7173.26 7557.56 7800.77 3600 8.04%

Table A.9: Test results for complete models (instance: berlin52)
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APPENDIX A. TEST RESULTS

p OPT Model LR LB UB Time (s) GAP (%)
brazil58 (p′ = 12)

5 21744

DNC 20896 21353.6 21744 3600 3.90%
SDNC- 20896 21364.3 21744 3600 3.90%
SDNC 20896 21378.7 21744 3600 3.90%
DNC(SB) 20896 21389.6 21744 3600 3.90%
SDNC-(SB) 20896 21331.4 21744 3600 3.90%
SDNC(SB) 20896 21364.5 21744 3600 3.90%
DND 20896 21384.8 21937 3600 3.90%
SDND 20896 21455.2 21744 3600 3.90%

8 21289

DNC 20896 21289 21289 1015.6 1.85%
SDNC- 20896 21289 21289 670.8 1.85%
SDNC 20896 21289 21289 631 1.85%
DNC(SB) 20896 21289 21289 892.6 1.85%
SDNC-(SB) 20896 21289 21289 597.8 1.85%
SDNC(SB) 20896 21289 21289 238.2 1.85%
DND 20896 21289 21289 1517.3 1.85%
SDND 20896 21289 21289 328 1.85%

11 21080

DNC 20896 21080 21080 7.7 0.87%
SDNC- 20896 21080 21080 3 0.87%
SDNC 20896 21080 21080 2.7 0.87%
DNC(SB) 20896 21080 21080 4 0.87%
SDNC-(SB) 20896 21080 21080 2.9 0.87%
SDNC(SB) 20896 21080 21080 2.4 0.87%
DND 20896 21080 21080 4.2 0.87%
SDND 20896 21080 21080 2.2 0.87%

14 21221

DNC 20896 21221 21221 74.7 1.53%
SDNC- 20896 21221 21221 10.6 1.53%
SDNC 20896 21221 21221 13.5 1.53%
DNC(SB) 20896 21221 21221 120.3 1.53%
SDNC-(SB) 20896 21221 21221 54.7 1.53%
SDNC(SB) 20896 21221 21221 7 1.53%
DND 20896 21221 21221 5.1 1.53%
SDND 20896 21221 21221 5.1 1.53%

19 22635

DNC 20896 21238.8 35277 3600 7.68%
SDNC- 20896 21972.7 22635 3600 7.68%
SDNC 20900.6 21784.2 22635 3600 7.66%
DNC(SB) 20896 21299.1 22635 3600 7.68%
SDNC-(SB) 20896.7 21927.2 22635 3600 7.68%
SDNC(SB) 20909.1 21818.1 22635 3600 7.62%
DND 20896 22217.9 22635 3600 7.68%
SDND 20924.6 22243.3 22635 3600 7.56%

Table A.10: Test results for complete models (instance: brazil58)
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APPENDIX A. TEST RESULTS

p OPT Model LR LB UB Time (s) GAP (%)
st70 (p′ = 12)

7 638.221

DNC 628.5 638.22 638.22 1151.5 1.52%
SDNC- 628.5 638.22 638.22 1172.1 1.52%
SDNC 628.5 638.22 638.22 1069.4 1.52%
DNC(SB) 628.5 638.22 638.22 563.7 1.52%
SDNC-(SB) 628.5 638.22 638.22 686.6 1.52%
SDNC(SB) 628.5 638.22 638.22 786.8 1.52%
DND 628.5 638.22 638.22 447.6 1.52%
SDND 628.5 638.22 638.22 346.1 1.52%

10 632.54

DNC 628.5 632.54 632.54 87.4 0.64%
SDNC- 628.5 632.54 632.54 46.2 0.64%
SDNC 628.5 632.54 632.54 56.5 0.64%
DNC(SB) 628.5 632.54 632.54 226 0.64%
SDNC-(SB) 628.5 632.54 632.54 83.9 0.64%
SDNC(SB) 628.5 632.54 632.54 53 0.64%
DND 628.5 632.54 632.54 58 0.64%
SDND 628.5 632.54 632.54 52.8 0.64%

14 630.902

DNC 628.5 630.9 630.9 23.2 0.38%
SDNC- 628.5 630.9 630.9 45.7 0.38%
SDNC 628.5 630.9 630.9 7.8 0.38%
DNC(SB) 628.5 630.9 630.9 79 0.38%
SDNC-(SB) 628.5 630.9 630.9 6.3 0.38%
SDNC(SB) 628.5 630.9 630.9 6.5 0.38%
DND 628.5 630.9 630.9 4 0.38%
SDND 628.5 630.9 630.9 3.2 0.38%

17 636.194

DNC 628.5 636.19 636.19 709.6 1.21%
SDNC- 628.5 636.19 636.19 182.1 1.21%
SDNC 628.5 636.19 636.19 64.9 1.21%
DNC(SB) 628.5 636.19 636.19 1299.7 1.21%
SDNC-(SB) 628.5 636.19 636.19 76.3 1.21%
SDNC(SB) 628.5 636.19 636.19 34 1.21%
DND 628.5 636.19 636.19 18.5 1.21%
SDND 628.52 636.19 636.19 14.3 1.21%

23 694.495

DNC 628.5 641.54 1069.9 3600 9.50%
SDNC- 628.5 646.28 696.42 3600 9.50%
SDNC 628.67 647.81 694.49 3600 9.48%
DNC(SB) 628.5 639.01 1343.1 3600 9.50%
SDNC-(SB) 628.63 643.39 1192.82 3600 9.48%
SDNC(SB) 628.72 647.8 695.8 3600 9.47%
DND 628.5 652.26 694.49 3600 9.50%
SDND 629.6 654.32 694.49 3600 9.34%

Table A.11: Test results for complete models (instance: st70)
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APPENDIX A. TEST RESULTS

p OPT Model LR LB UB Time (s) GAP (%)
eil76 (p′ = 4)

7 542.954

DNC 540.72 542.95 542.95 304.3 0.41%
SDNC- 540.72 542.95 542.95 109.6 0.41%
SDNC 540.72 542.95 542.95 39.1 0.41%
DNC(SB) 540.72 542.95 542.95 169.7 0.41%
SDNC-(SB) 540.72 542.95 542.95 188.8 0.41%
SDNC(SB) 540.72 542.95 542.95 86.8 0.41%
DND 540.72 542.95 542.95 36.3 0.41%
SDND 540.72 542.95 542.95 31.9 0.41%

10 545.021

DNC 540.72 543.89 545.02 3600 0.79%
SDNC- 540.72 545.02 545.02 1118.2 0.79%
SDNC 540.72 545.02 545.02 635.5 0.79%
DNC(SB) 540.72 545.02 545.02 2962.5 0.79%
SDNC-(SB) 540.72 545.02 545.02 2568.6 0.79%
SDNC(SB) 540.72 545.02 545.02 1071.4 0.79%
DND 540.72 545.02 545.02 129.9 0.79%
SDND 540.72 545.02 545.02 85.3 0.79%

15 552.149

DNC 540.72 542.08 560.18 3600 2.07%
SDNC- 540.72 546.22 552.15 3600 2.07%
SDNC 540.72 543.53 552.33 3600 2.07%
DNC(SB) 540.72 542.15 552.33 3600 2.07%
SDNC-(SB) 540.72 544.8 552.15 3600 2.07%
SDNC(SB) 540.72 544.98 552.15 3600 2.07%
DND 540.72 545.68 552.15 3600 2.07%
SDND 540.72 546.46 552.15 3600 2.07%

19 563.955

DNC 540.72 542.43 689.72 3600 4.12%
SDNC- 540.72 547.77 564.24 3600 4.12%
SDNC 540.72 545.78 563.95 3600 4.12%
DNC(SB) 540.72 542.31 566.24 3600 4.12%
SDNC-(SB) 540.72 545.2 563.95 3600 4.12%
SDNC(SB) 540.74 544.75 563.95 3600 4.12%
DND 540.72 547.85 564.24 3600 4.12%
SDND 540.89 547.52 563.95 3600 4.09%

25 601.71

DNC 540.72 544.4 2.00E+12 3600 10.14%
SDNC- 540.72 552.57 734.06 3600 10.14%
SDNC 541.09 551.29 792.27 3600 10.07%
DNC(SB) 540.72 543.43 1.00E+12 3600 10.14%
SDNC-(SB) 540.74 548.21 1.00E+12 3600 10.13%
SDNC(SB) 541.27 550.9 727.75 3600 10.04%
DND 540.8 552.91 629.28 3600 10.12%
SDND 541.59 555.94 816.26 3600 9.99%

Table A.12: Test results for complete models (instance: eil76)
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APPENDIX A. TEST RESULTS

p OPT Model LR LB UB Time (s) GAP (%)
pr76 (p′ = 8)

7 101401

DNC 98993.9 101401 101401 43.8 2.37%
SDNC- 98993.9 101401 101401 12.9 2.37%
SDNC 98993.9 101401 101401 31.1 2.37%
DNC(SB) 98993.9 101401 101401 86.3 2.37%
SDNC-(SB) 98993.9 101401 101401 15.8 2.37%
SDNC(SB) 98993.9 101401 101401 24.9 2.37%
DND 98993.9 101401 101401 27.2 2.37%
SDND 99001.5 101401 101401 17.1 2.37%

10 101779

DNC 98993.9 101779 101779 727.1 2.74%
SDNC- 98993.9 101779 101779 129.6 2.74%
SDNC 98993.9 101779 101779 66.6 2.74%
DNC(SB) 98993.9 101779 101779 1192.1 2.74%
SDNC-(SB) 98993.9 101779 101779 167.6 2.74%
SDNC(SB) 98993.9 101779 101779 132.2 2.74%
DND 98993.9 101779 101779 30.9 2.74%
SDND 99046 101779 101779 28.2 2.69%

15 103663

DNC 98993.9 101450 103868 3600 4.50%
SDNC- 98993.9 102539 103724 3600 4.50%
SDNC 99043.8 102332 103663 3600 4.46%
DNC(SB) 98993.9 101269 103663 3600 4.50%
SDNC-(SB) 99009.2 103051 103724 3600 4.49%
SDNC(SB) 99062.9 102316 103663 3600 4.44%
DND 98993.9 102744 103663 3600 4.50%
SDND 99130.4 102783 103663 3600 4.37%

19 104482

DNC 98993.9 101753 104482 3600 5.25%
SDNC- 99044.7 103793 104482 3600 5.20%
SDNC 99143.5 103080 104482 3600 5.11%
DNC(SB) 98993.9 102007 104482 3600 5.25%
SDNC-(SB) 99072.2 103167 104482 3600 5.18%
SDNC(SB) 99163.4 102746 104482 3600 5.09%
DND 98998.5 103106 104482 3600 5.25%
SDND 99241.4 104452 104482 3600 5.02%

25 110074

DNC 98993.9 101581 1.00E+12 3600 10.07%
SDNC- 99292.6 105447 237642 3600 9.79%
SDNC 99463.1 104937 113866 3600 9.64%
DNC(SB) 98993.9 102209 1.00E+12 3600 10.07%
SDNC-(SB) 99361.9 104374 209562 3600 9.73%
SDNC(SB) 99477.8 105101 127427 3600 9.63%
DND 99030.3 106351 110074 3600 10.03%
SDND 99742.8 106973 110300 3600 9.39%

Table A.13: Test results for complete models (instance: pr76)
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APPENDIX A. TEST RESULTS

p OPT Model LR LB UB Time (s) GAP (%)
rat99 (p′ = 8)

9 1209.09

DNC 1203.53 1209.09 1209.09 258.6 0.46%
SDNC- 1203.53 1209.09 1209.09 72.4 0.46%
SDNC 1203.53 1209.09 1209.09 33.4 0.46%
DNC(SB) 1203.53 1209.09 1209.09 177.2 0.46%
SDNC-(SB) 1203.53 1209.09 1209.09 62.4 0.46%
SDNC(SB) 1203.53 1209.09 1209.09 23.5 0.46%
DND 1203.53 1209.09 1209.09 42.8 0.46%
SDND 1203.53 1209.09 1209.09 21.8 0.46%

14 1224.1

DNC 1203.53 1209.54 1224.74 3600 1.68%
SDNC- 1203.53 1213.95 1224.09 3600 1.68%
SDNC 1203.53 1211.41 1224.09 3600 1.68%
DNC(SB) 1203.53 1208.78 1230.39 3600 1.68%
SDNC-(SB) 1203.53 1213.81 1224.09 3600 1.68%
SDNC(SB) 1203.53 1211.19 1224.09 3600 1.68%
DND 1203.53 1214.63 1224.09 3600 1.68%
SDND 1203.53 1214.48 1224.09 3600 1.68%

19 1245.16

DNC 1203.53 1208.31 1245.16 3600 3.34%
SDNC- 1203.53 1218.04 1252.59 3600 3.34%
SDNC 1203.53 1214.85 1253.33 3600 3.34%
DNC(SB) 1203.53 1208.32 1250.31 3600 3.34%
SDNC-(SB) 1203.53 1218.49 1250.31 3600 3.34%
SDNC(SB) 1203.53 1216.22 1251.82 3600 3.34%
DND 1203.53 1223.71 1251.82 3600 3.34%
SDND 1203.94 1221.79 1245.16 3600 3.31%

24 1273.23

DNC 1203.53 1208.34 1276.04 3600 5.47%
SDNC- 1204.43 1236.66 1273.23 3600 5.40%
SDNC 1204.74 1229.53 1275.6 3600 5.38%
DNC(SB) 1203.53 1208.44 1.00E+12 3600 5.47%
SDNC-(SB) 1204.38 1233.17 1273.23 3600 5.41%
SDNC(SB) 1204.75 1228.66 1273.23 3600 5.38%
DND 1203.53 1242.56 1273.23 3600 5.47%
SDND 1205.3 1237.8 1274.17 3600 5.34%

33 1373.37

DNC 1203.53 1218.81 3.00E+12 3600 12.37%
SDNC- 1213.93 1285.93 1904.8 3600 11.61%
SDNC 1215.37 1287.42 3.00E+12 3600 11.50%
DNC(SB) 1203.53 1223.66 3.00E+12 3600 12.37%
SDNC-(SB) 1213.01 1267.16 3.00E+12 3600 11.68%
SDNC(SB) 1214.65 1281.15 3.00E+12 3600 11.56%
DND 1203.53 1291.43 1798.62 3600 12.37%
SDND 1217.58 1307.1 1726.59 3600 11.34%

Table A.14: Test results for complete models (instance: rat99)
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APPENDIX A. TEST RESULTS

p OPT Model LR LB UB Time (s) GAP (%)
kroA100 (p′ = 13)

10 19900.9

DNC 19380.7 19603.3 19900.9 3600 2.61%
SDNC- 19380.7 19635.2 19900.9 3600 2.61%
SDNC 19380.7 19650.5 19900.9 3600 2.61%
DNC(SB) 19380.7 19585.4 19900.9 3600 2.61%
SDNC-(SB) 19380.7 19657.6 19900.9 3600 2.61%
SDNC(SB) 19380.7 19633.3 19900.9 3600 2.61%
DND 19380.7 19623.2 19900.9 3600 2.61%
SDND 19380.7 19629.7 19900.9 3600 2.61%

14 19637.5

DNC 19380.7 19637.5 19637.5 953 1.31%
SDNC- 19380.7 19637.5 19637.5 204 1.31%
SDNC 19380.7 19637.5 19637.5 169.7 1.31%
DNC(SB) 19380.7 19637.5 19637.5 869.5 1.31%
SDNC-(SB) 19380.7 19637.5 19637.5 480.3 1.31%
SDNC(SB) 19380.7 19637.5 19637.5 25.7 1.31%
DND 19380.7 19637.5 19637.5 13.9 1.31%
SDND 19380.7 19637.5 19637.5 18.2 1.31%

20 19868.6

DNC 19380.7 19566.9 19868.6 3600 2.46%
SDNC- 19380.7 19675.5 19868.6 3600 2.46%
SDNC 19380.7 19793 19868.6 3600 2.46%
DNC(SB) 19380.7 19567.4 20062.9 3600 2.46%
SDNC-(SB) 19380.7 19767.8 19868.6 3600 2.46%
SDNC(SB) 19380.7 19711.2 19868.6 3600 2.46%
DND 19380.7 19868.6 19868.6 870.3 2.46%
SDND 19380.7 19868.6 19868.6 971.6 2.46%

25 20279.5

DNC 19380.7 19569.6 20429.1 3600 4.43%
SDNC- 19380.7 19763.7 20321.2 3600 4.43%
SDNC 19380.7 19870.6 20279.5 3600 4.43%
DNC(SB) 19380.7 19568.3 20483.5 3600 4.43%
SDNC-(SB) 19380.7 19719.6 20279.5 3600 4.43%
SDNC(SB) 19380.7 19798.9 20279.5 3600 4.43%
DND 19380.7 19934.3 20279.5 3600 4.43%
SDND 19383.9 20064.9 20279.5 3600 4.42%

33 22303.23*

DNC 19380.7 19670.1 2.00E+12 3600 13.10%
SDNC- 19380.7 19969 34793.3 3600 13.10%
SDNC 19411.7 20266.4 29329.6 3600 12.96%
DNC(SB) 19380.7 19697.5 1.00E+12 3600 13.10%
SDNC-(SB) 19383.7 19829.2 28585.1 3600 13.09%
SDNC(SB) 19418.2 20087 66499.7 3600 12.94%
DND 19380.7 20573.3 24007.6 3600 13.10%
SDND 19478.9 20462.4 28846.8 3600 12.66%

Table A.15: Test results for complete models (instance: kroA100)
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APPENDIX A. TEST RESULTS

p OPT Model LR LB UB Time (s) GAP (%)
kroB100 (p′ = 20)

10 20823.1

DNC 20336 20753.9 20921.3 3600 2.34%
SDNC- 20336 20770.9 20823.1 3600 2.34%
SDNC 20336 20780.7 20823.1 3600 2.34%
DNC(SB) 20336 20786.2 20823.1 3600 2.34%
SDNC-(SB) 20336 20780.7 20823.1 3600 2.34%
SDNC(SB) 20336 20807.1 20823.1 3600 2.34%
DND 20336 20793.2 20823.1 3600 2.34%
SDND 20336 20823.1 20823.1 2327.1 2.34%

14 20762.9

DNC 20336 20675.9 20762.9 3600 2.06%
SDNC- 20336 20715.4 20762.9 3600 2.06%
SDNC 20336 20762.9 20762.9 1834.3 2.06%
DNC(SB) 20336 20683 20762.9 3600 2.06%
SDNC-(SB) 20336 20723.2 20762.9 3600 2.06%
SDNC(SB) 20336 20762.9 20762.9 2750.9 2.06%
DND 20336 20724.3 20762.9 3600 2.06%
SDND 20336 20762.9 20762.9 2962.5 2.06%

20 20660

DNC 20336 20660 20660 483.1 1.57%
SDNC- 20336 20660 20660 4.1 1.57%
SDNC 20336 20660 20660 9.8 1.57%
DNC(SB) 20336 20660 20660 292.4 1.57%
SDNC-(SB) 20336 20660 20660 23.6 1.57%
SDNC(SB) 20336 20660 20660 42.7 1.57%
DND 20336 20660 20660 16 1.57%
SDND 20336 20660 20660 16.2 1.57%

25 20786.9

DNC 20336 20682.2 20786.9 3600 2.17%
SDNC- 20336 20786.9 20786.9 1146.7 2.17%
SDNC 20336 20786.9 20786.9 464.2 2.17%
DNC(SB) 20336 20662.7 20786.9 3600 2.17%
SDNC-(SB) 20336.1 20786.9 20786.9 953.8 2.17%
SDNC(SB) 20336.1 20786.9 20786.9 127.2 2.17%
DND 20336 20786.9 20786.9 146.7 2.17%
SDND 20338 20786.9 20786.9 53.9 2.16%

33 22923.4*

DNC 20336 20685.5 2.00E+12 3600 11.29%
SDNC- 20346.6 21026.4 28989.3 3600 11.24%
SDNC 20372.3 21152.3 31443.6 3600 11.13%
DNC(SB) 20336 20703.3 1.00E+12 3600 11.29%
SDNC-(SB) 20356.8 20933.7 1.00E+12 3600 11.20%
SDNC(SB) 20376.3 21006.7 1.00E+12 3600 11.11%
DND 20336 21309 23365.2 3600 11.29%
SDND 20418.3 21301.9 22923.4 3600 10.93%

Table A.16: Test results for complete models (instance: kroB100)
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APPENDIX A. TEST RESULTS

p OPT Model LR LB UB Time (s) GAP (%)
kroC100 (p′ = 13)

10 19923.3

DNC 19703.3 19892.2 19923.3 3600 1.10%
SDNC- 19703.3 19923.3 19923.3 2976.9 1.10%
SDNC 19703.3 19923.3 19923.3 1663 1.10%
DNC(SB) 19703.3 19895.5 19923.3 3600 1.10%
SDNC-(SB) 19703.3 19923.3 19923.3 3343.6 1.10%
SDNC(SB) 19703.3 19902.3 19923.3 3600 1.10%
DND 19703.3 19891.9 19923.3 3600 1.10%
SDND 19703.3 19923.3 19923.3 1802.1 1.10%

14 19938.8

DNC 19703.3 19891.8 19938.8 3600 1.18%
SDNC- 19703.3 19938.8 19938.8 562.2 1.18%
SDNC 19703.3 19938.8 19938.8 1222.5 1.18%
DNC(SB) 19703.3 19938.8 19938.8 2487.7 1.18%
SDNC-(SB) 19703.3 19938.8 19938.8 2073.4 1.18%
SDNC(SB) 19703.3 19938.8 19938.8 1006.1 1.18%
DND 19703.3 19938.8 19938.8 304.7 1.18%
SDND 19703.3 19938.8 19938.8 602.7 1.18%

20 20135

DNC 19703.3 19860.5 20841.3 3600 2.14%
SDNC- 19703.3 19976.9 20135 3600 2.14%
SDNC 19703.3 19885.6 20135 3600 2.14%
DNC(SB) 19703.3 19860.5 20292.3 3600 2.14%
SDNC-(SB) 19703.3 19946.1 20135 3600 2.14%
SDNC(SB) 19703.3 19903.6 20135 3600 2.14%
DND 19703.3 19991 20135 3600 2.14%
SDND 19703.5 20021.6 20135 3600 2.14%

25 20428

DNC 19703.3 19860.7 20466.6 3600 3.55%
SDNC- 19703.3 19949.8 20428 3600 3.55%
SDNC 19703.3 19941.4 20428 3600 3.55%
DNC(SB) 19703.3 19860.5 20450.9 3600 3.55%
SDNC-(SB) 19703.3 19967.9 20450.9 3600 3.55%
SDNC(SB) 19703.9 19947.9 20469.3 3600 3.54%
DND 19703.3 20068.5 20428 3600 3.55%
SDND 19710.6 20123.1 20428 3600 3.51%

33 22465.73*

DNC 19703.3 19910.9 3.00E+12 3600 12.30%
SDNC- 19704.1 20162.8 25151.2 3600 12.29%
SDNC 19720.9 20481.6 43844 3600 12.22%
DNC(SB) 19703.3 19894.9 2.00E+12 3600 12.30%
SDNC-(SB) 19711.2 20219.5 1.00E+12 3600 12.26%
SDNC(SB) 19726 20266.5 37156.3 3600 12.20%
DND 19703.7 20594.8 25947 3600 12.29%
SDND 19753.7 20537.2 28482.4 3600 12.07%

Table A.17: Test results for complete models (instance: kroC100)
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APPENDIX A. TEST RESULTS

p OPT Model LR LB UB Time (s) GAP (%)
kroD100 (p′ = 14)

10 20270.6

DNC 19951.3 20270.6 20270.6 780.2 1.58%
SDNC- 19951.3 20270.6 20270.6 134.9 1.58%
SDNC 19951.3 20270.6 20270.6 104.3 1.58%
DNC(SB) 19951.3 20270.6 20270.6 1016.6 1.58%
SDNC-(SB) 19951.3 20270.6 20270.6 55.5 1.58%
SDNC(SB) 19951.3 20270.6 20270.6 75.4 1.58%
DND 19951.3 20270.6 20270.6 17.1 1.58%
SDND 19951.3 20270.6 20270.6 39.4 1.58%

14 20267.2

DNC 19951.3 20267.2 20267.2 928.4 1.56%
SDNC- 19951.3 20267.2 20267.2 24.1 1.56%
SDNC 19951.3 20267.2 20267.2 42.8 1.56%
DNC(SB) 19951.3 20267.2 20267.2 396.8 1.56%
SDNC-(SB) 19951.3 20267.2 20267.2 53.9 1.56%
SDNC(SB) 19951.3 20267.2 20267.2 58.1 1.56%
DND 19951.3 20267.2 20267.2 3.4 1.56%
SDND 19951.3 20267.2 20267.2 18 1.56%

20 20457

DNC 19951.3 20267.2 20469 3600 2.47%
SDNC- 19951.3 20327.7 20469 3600 2.47%
SDNC 19951.3 20323.3 20457 3600 2.47%
DNC(SB) 19951.3 20267.2 20469 3600 2.47%
SDNC-(SB) 19951.3 20310.8 20457 3600 2.47%
SDNC(SB) 19951.4 20321.7 20469 3600 2.47%
DND 19951.3 20361.5 20457 3600 2.47%
SDND 19952.2 20366.9 20457 3600 2.47%

25 20671.2

DNC 19951.3 20267.2 20761.9 3600 3.48%
SDNC- 19951.3 20294.3 59378.8 3600 3.48%
SDNC 19952.3 20325.6 20671.2 3600 3.48%
DNC(SB) 19951.3 20267.2 20671.2 3600 3.48%
SDNC-(SB) 19951.3 20350 20671.2 3600 3.48%
SDNC(SB) 19953.1 20338.8 20671.2 3600 3.47%
DND 19951.6 20470.7 20671.2 3600 3.48%
SDND 19955.6 20436.2 20671.2 3600 3.46%

33 22238.56*

DNC 19951.3 20287.5 2.00E+12 3600 10.29%
SDNC- 19951.3 20420.1 1.00E+12 3600 10.29%
SDNC 19965.7 20677.8 54850.1 3600 10.22%
DNC(SB) 19951.3 20288.9 1.00E+12 3600 10.29%
SDNC-(SB) 19953.1 20479.8 1.00E+12 3600 10.28%
SDNC(SB) 19970.6 20604.5 29562.4 3600 10.20%
DND 19952.9 20873.6 23427.3 3600 10.28%
SDND 19997.8 20753.3 26002.5 3600 10.08%

Table A.18: Test results for complete models (instance: kroD100)
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APPENDIX A. TEST RESULTS

p OPT Model LR LB UB Time (s) GAP (%)
kroE100 (p′ = 12)

10 20766.4

DNC 20618.9 20766.4 20766.4 850.2 0.71%
SDNC- 20618.9 20766.4 20766.4 345.7 0.71%
SDNC 20618.9 20766.4 20766.4 510.3 0.71%
DNC(SB) 20618.9 20766.4 20766.4 164.5 0.71%
SDNC-(SB) 20618.9 20766.4 20766.4 347.3 0.71%
SDNC(SB) 20618.9 20766.4 20766.4 299.7 0.71%
DND 20618.9 20766.4 20766.4 316.4 0.71%
SDND 20618.9 20766.4 20766.4 248.9 0.71%

14 20777.7

DNC 20618.9 20777.7 20777.7 1581.4 0.76%
SDNC- 20618.9 20777.7 20777.7 108.2 0.76%
SDNC 20618.9 20777.7 20777.7 32.4 0.76%
DNC(SB) 20618.9 20777.7 20777.7 934.3 0.76%
SDNC-(SB) 20618.9 20777.7 20777.7 152.6 0.76%
SDNC(SB) 20618.9 20777.7 20777.7 43.5 0.76%
DND 20618.9 20777.7 20777.7 15.7 0.76%
SDND 20618.9 20777.7 20777.7 12.6 0.76%

20 20937.4

DNC 20618.9 20750.9 20937.4 3600 1.52%
SDNC- 20618.9 20937.4 20937.4 2455.1 1.52%
SDNC 20618.9 20937.4 20937.4 2391.2 1.52%
DNC(SB) 20618.9 20750.9 20944 3600 1.52%
SDNC-(SB) 20618.9 20937.4 20937.4 1915.4 1.52%
SDNC(SB) 20618.9 20885.2 20937.4 3600 1.52%
DND 20618.9 20937.4 20937.4 663.9 1.52%
SDND 20618.9 20937.4 20937.4 759.9 1.52%

25 21174.9

DNC 20618.9 20754.8 21181.7 3600 2.63%
SDNC- 20618.9 20870.9 21174.9 3600 2.63%
SDNC 20619 20979.2 21174.9 3600 2.63%
DNC(SB) 20618.9 20751.4 24417.6 3600 2.63%
SDNC-(SB) 20619 20938.9 21174.9 3600 2.63%
SDNC(SB) 20620.8 20901.2 21174.9 3600 2.62%
DND 20618.9 21083.9 21174.9 3600 2.63%
SDND 20622.4 21109 21174.9 3600 2.61%

33 22782.98

DNC 20618.9 20831.1 2.00E+12 3600 9.50%
SDNC- 20627.6 21169.3 1.00E+12 3600 9.46%
SDNC 20650.7 21276.2 24897 3600 9.36%
DNC(SB) 20620.8 20848.5 2.00E+12 3600 9.50%
SDNC-(SB) 20632.5 21053.7 1.00E+12 3600 9.44%
SDNC(SB) 20652.6 21213.2 24170 3600 9.35%
DND 20618.9 21508.6 35955.1 3600 9.50%
SDND 20681.9 21528.6 26286.1 3600 9.22%

Table A.19: Test results for complete models (instance: kroE100)
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APPENDIX A. TEST RESULTS

p OPT Model LR LB UB Time (s) GAP (%)
rd100 (p′ = 13)

10 7524.07

DNC 7336.96 7524.07 7524.07 905.9 2.49%
SDNC- 7336.96 7524.07 7524.07 1399.4 2.49%
SDNC 7336.96 7524.07 7524.07 561.7 2.49%
DNC(SB) 7336.96 7524.07 7524.07 1070.9 2.49%
SDNC-(SB) 7336.96 7524.07 7524.07 970.1 2.49%
SDNC(SB) 7336.96 7524.07 7524.07 647.1 2.49%
DND 7336.96 7524.07 7524.07 719.1 2.49%
SDND 7336.96 7524.07 7524.07 699.9 2.49%

14 7500.44

DNC 7336.96 7500.44 7500.44 592.2 2.18%
SDNC- 7336.96 7500.44 7500.44 292.5 2.18%
SDNC 7336.96 7500.44 7500.44 30.3 2.18%
DNC(SB) 7336.96 7500.44 7500.44 397.2 2.18%
SDNC-(SB) 7336.96 7500.44 7500.44 21.4 2.18%
SDNC(SB) 7336.96 7500.44 7500.44 29.3 2.18%
DND 7336.96 7500.44 7500.44 16.6 2.18%
SDND 7336.96 7500.44 7500.44 12.4 2.18%

20 7537.98

DNC 7336.96 7500.63 7537.98 3600 2.67%
SDNC- 7336.96 7510.55 7556.02 3600 2.67%
SDNC 7336.96 7509.35 7556.02 3600 2.67%
DNC(SB) 7336.96 7501.13 7571.43 3600 2.67%
SDNC-(SB) 7336.96 7508.21 7537.98 3600 2.67%
SDNC(SB) 7336.96 7509.41 7537.98 3600 2.67%
DND 7336.96 7537.98 7537.98 1737.8 2.67%
SDND 7336.96 7537.98 7537.98 2874.6 2.67%

25 7555.83

DNC 7336.96 7501.25 7555.83 3600 2.90%
SDNC- 7336.96 7521.18 7555.83 3600 2.90%
SDNC 7336.96 7513.84 7555.83 3600 2.90%
DNC(SB) 7336.96 7500.58 7555.83 3600 2.90%
SDNC-(SB) 7336.96 7525.78 7555.83 3600 2.90%
SDNC(SB) 7336.96 7525.26 7555.83 3600 2.90%
DND 7336.96 7555.83 7555.83 1281.5 2.90%
SDND 7336.96 7555.83 7555.83 1636.5 2.90%

33 8131.25*

DNC 7336.96 7506.08 1.00E+12 3600 9.77%
SDNC- 7336.96 7569.15 1.00E+12 3600 9.77%
SDNC 7337.79 7587.86 1.00E+12 3600 9.76%
DNC(SB) 7336.96 7508.6 3.00E+12 3600 9.77%
SDNC-(SB) 7336.98 7550.91 1.00E+12 3600 9.77%
SDNC(SB) 7339.19 7571.04 9499.03 3600 9.74%
DND 7336.96 7623.47 8131.25 3600 9.77%
SDND 7344.99 7640.96 8682.87 3600 9.67%

Table A.20: Test results for complete models (instance: rd100)
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APPENDIX A. TEST RESULTS

p OPT Model LR LB UB Time (s) GAP (%)
gr24 (p′ = 4)

6 1266

NC 1224.5 1266 1266 0.4 3.28%
SNC- 1224.5 1266 1266 0.5 3.28%
SNC 1224.5 1266 1266 0.4 3.28%
NC(SB) 1224.5 1266 1266 0.6 3.28%
SNC-(SB) 1224.5 1266 1266 0.3 3.28%
SNC(SB) 1224.5 1266 1266 0.3 3.28%
ND 1224.5 1266 1266 0.2 3.28%
SND 1224.61 1266 1266 0.3 3.27%

7 1288

NC 1224.5 1288 1288 1 4.93%
SNC- 1225.19 1288 1288 0.6 4.88%
SNC 1225.36 1288 1288 0.6 4.86%
NC(SB) 1224.5 1288 1288 0.9 4.93%
SNC-(SB) 1225.12 1288 1288 0.4 4.88%
SNC(SB) 1225.31 1288 1288 0.7 4.87%
ND 1224.5 1288 1288 0.4 4.93%
SND 1225.9 1288 1288 0.4 4.82%

8 1317

NC 1224.5 1317 1317 1.3 7.02%
SNC- 1226.5 1317 1317 1.2 6.87%
SNC 1228.06 1317 1317 0.8 6.75%
NC(SB) 1224.5 1317 1317 3.4 7.02%
SNC-(SB) 1227.33 1317 1317 1.3 6.81%
SNC(SB) 1228.38 1317 1317 2.4 6.73%
ND 1224.5 1317 1317 0.5 7.02%
SND 1231.34 1317 1317 1.1 6.50%

fri26 (p′ = 7)

6 886

NC 880 883 883 0.1 0.68%
SNC- 880 883 883 0.1 0.68%
SNC 880 883 883 0.1 0.68%
NC(SB) 880 883 883 0.1 0.68%
SNC-(SB) 880 883 883 0 0.68%
SNC(SB) 880 883 883 0 0.68%
ND 880 883 883 0 0.68%
SND 880 883 883 0 0.68%

7 883

NC 880 883 883 0.1 0.34%
SNC- 880.083 883 883 0.1 0.33%
SNC 880.092 883 883 0.1 0.33%
NC(SB) 880 883 883 0.1 0.34%
SNC-(SB) 880.083 883 883 0 0.33%
SNC(SB) 880.141 883 883 0 0.32%
ND 880 883 883 0 0.34%
SND 880.079 883 883 0 0.33%

8 885

NC 880 885 885 0.5 0.56%
SNC- 881.286 885 885 0.1 0.42%
SNC 881.474 885 885 0.1 0.40%
NC(SB) 880 885 885 0.4 0.56%
SNC-(SB) 881.4 885 885 0.1 0.41%
SNC(SB) 881.594 885 885 0.1 0.38%
ND 880 885 885 0 0.56%
SND 881.019 885 885 0.1 0.45%

Table A.21: Test results for incomplete models (instances: gr24, fri26)
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APPENDIX A. TEST RESULTS

p OPT Model LR LB UB Time (s) GAP (%)
bayg29 (p′ = 3)

7 1618

NC 1546 1618 1618 2.6 4.45%
SNC- 1546 1618 1618 2.1 4.45%
SNC 1546 1618 1618 2.5 4.45%
NC(SB) 1546 1618 1618 3.3 4.45%
SNC-(SB) 1546 1618 1618 2.2 4.45%
SNC(SB) 1546.03 1618 1618 2.1 4.45%
ND 1546 1618 1618 1.8 4.45%
SND 1546.26 1618 1618 2 4.43%

8 1642

NC 1546 1642 1642 5.2 5.85%
SNC- 1546 1642 1642 3.2 5.85%
SNC 1546 1642 1642 2.6 5.85%
NC(SB) 1546 1642 1642 6.5 5.85%
SNC-(SB) 1546.17 1642 1642 5 5.84%
SNC(SB) 1546.41 1642 1642 2.3 5.82%
ND 1546 1642 1642 2.8 5.85%
SND 1546.64 1642 1642 1.5 5.81%

9 1676

NC 1546 1676 1676 7.5 7.76%
SNC- 1546 1676 1676 5.2 7.76%
SNC 1546 1676 1676 5.4 7.76%
NC(SB) 1546 1676 1676 13.3 7.76%
SNC-(SB) 1546.56 1676 1676 4 7.72%
SNC(SB) 1546.97 1676 1676 7.3 7.70%
ND 1546.09 1676 1676 3.9 7.75%
SND 1547.61 1676 1676 3.5 7.66%

swiss42 (p′ = 7)

10 1238

NC 1214.5 1238 1238 1.5 1.90%
SNC- 1214.5 1238 1238 1 1.90%
SNC 1214.5 1238 1238 0.9 1.90%
NC(SB) 1214.5 1238 1238 1 1.90%
SNC-(SB) 1214.5 1238 1238 0.7 1.90%
SNC(SB) 1214.5 1238 1238 0.9 1.90%
ND 1214.5 1238 1238 0.8 1.90%
SND 1214.5 1238 1238 0.3 1.90%

12 1256

NC 1214.5 1256 1256 8.1 3.30%
SNC- 1214.5 1256 1256 2.7 3.30%
SNC 1214.5 1256 1256 2.9 3.30%
NC(SB) 1214.5 1256 1256 3.9 3.30%
SNC-(SB) 1214.5 1256 1256 4.2 3.30%
SNC(SB) 1214.5 1256 1256 1.5 3.30%
ND 1214.5 1256 1256 0.7 3.30%
SND 1215.28 1256 1256 1.4 3.24%

14 1292

NC 1214.5 1292 1292 65.8 6.00%
SNC- 1214.5 1292 1292 19.9 6.00%
SNC 1215.56 1292 1292 31.5 5.92%
NC(SB) 1214.5 1292 1292 17.6 6.00%
SNC-(SB) 1214.67 1292 1292 26.5 5.99%
SNC(SB) 1215.89 1292 1292 18.9 5.89%
ND 1214.5 1292 1292 35.6 6.00%
SND 1219.87 1292 1292 9.6 5.58%

Table A.22: Test results for incomplete models (instances: bayg29, swiss42)
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APPENDIX A. TEST RESULTS

p OPT Model LR LB UB Time (s) GAP (%)
att48 (p′ = 5)

12 32742.9

NC 31669.3 32742.9 32742.9 7.9 3.28%
SNC- 31669.3 32742.9 32742.9 8 3.28%
SNC 31669.5 32742.9 32742.9 10.7 3.28%
NC(SB) 31669.3 32742.9 32742.9 11 3.28%
SNC-(SB) 31669.3 32742.9 32742.9 8 3.28%
SNC(SB) 31669.8 32742.9 32742.9 11 3.28%
ND 31669.3 32742.9 32742.9 2.4 3.28%
SND 31671.1 32742.9 32742.9 2.1 3.27%

14 33679.2

NC 31669.3 33679.2 33679.2 132.6 5.97%
SNC- 31669.3 33679.2 33679.2 86.4 5.97%
SNC 31675.8 33679.2 33679.2 65.8 5.95%
NC(SB) 31669.3 33679.2 33679.2 79.3 5.97%
SNC-(SB) 31669.5 33679.2 33679.2 94.5 5.97%
SNC(SB) 31679.6 33679.2 33679.2 98.4 5.94%
ND 31669.4 33679.2 33679.2 13.6 5.97%
SND 31696.5 33679.2 33679.2 22.8 5.89%

16 37068.82

NC 31669.3 34664 37329.1 3600 14.57%
SNC- 31669.3 34941.8 37068.8 3600 14.57%
SNC 31693.9 35092.5 37329.1 3600 14.50%
NC(SB) 31669.3 OUT OF MEMORY 14.57%
SNC-(SB) 31673.7 34532.2 37878.2 3600 14.55%
SNC(SB) 31710.8 34680.6 37329.1 3600 14.45%
ND 31669.7 35314.1 37561.9 3600 14.57%
SND 31780.7 35263.2 37561.9 3600 14.27%

gr48 (p′ = 6)

12 5011

NC 4769 5011 5011 48.8 4.83%
SNC- 4769 5011 5011 28.2 4.83%
SNC 4769 5011 5011 20.8 4.83%
NC(SB) 4769 5011 5011 44.6 4.83%
SNC-(SB) 4769 5011 5011 59.4 4.83%
SNC(SB) 4769 5011 5011 35.5 4.83%
ND 4769 5011 5011 8.2 4.83%
SND 4769 5011 5011 8.5 4.83%

14 5120

NC 4769 5120 5120 109.9 6.86%
SNC- 4769 5120 5120 66.4 6.86%
SNC 4769 5120 5120 80.8 6.86%
NC(SB) 4769 5120 5120 129.9 6.86%
SNC-(SB) 4769 5120 5120 94.8 6.86%
SNC(SB) 4769 5120 5120 73.5 6.86%
ND 4769 5120 5120 30 6.86%
SND 4769.31 5120 5120 22.4 6.85%

16 5445

NC 4769 5445 5445 2885.2 12.42%
SNC- 4769 5445 5445 1250.1 12.42%
SNC 4769 5445 5445 1219 12.42%
NC(SB) 4769 5445 5445 2030.9 12.42%
SNC-(SB) 4769 5340.56 5445 3600 12.42%
SNC(SB) 4769.49 5445 5445 1156.7 12.41%
ND 4769 5445 5445 1191.5 12.42%
SND 4776.57 5445 5445 989.6 12.28%

Table A.23: Test results for incomplete models (instances: att48, gr48)
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APPENDIX A. TEST RESULTS

p OPT Model LR LB UB Time (s) GAP (%)
hk48 (p′ = 6)

12 11450

NC 11197 11450 11450 13.4 2.21%
SNC- 11197 11450 11450 10.8 2.21%
SNC 11197 11450 11450 6.8 2.21%
NC(SB) 11197 11450 11450 15.4 2.21%
SNC-(SB) 11197 11450 11450 6.5 2.21%
SNC(SB) 11197 11450 11450 7.1 2.21%
ND 11197 11450 11450 1.3 2.21%
SND 11197.1 11450 11450 1.4 2.21%

14 11600

NC 11197 11600 11600 26.3 3.47%
SNC- 11197 11600 11600 29 3.47%
SNC 11197 11600 11600 10.2 3.47%
NC(SB) 11197 11600 11600 29.6 3.47%
SNC-(SB) 11197 11600 11600 35 3.47%
SNC(SB) 11197.1 11600 11600 8.6 3.47%
ND 11197 11600 11600 3.4 3.47%
SND 11197.4 11600 11600 8.4 3.47%

16 12215

NC 11197 12215 12215 1289.1 8.33%
SNC- 11197 12215 12215 417.2 8.33%
SNC 11197.2 12215 12215 282.6 8.33%
NC(SB) 11197 12215 12215 1400.2 8.33%
SNC-(SB) 11198.5 12215 12215 793.5 8.32%
SNC(SB) 11199.7 12215 12215 953.4 8.31%
ND 11197 12215 12215 369.8 8.33%
SND 11202.7 12215 12215 493.6 8.29%

eil51 (p′ = 3)

12 436.587

NC 418.686 436.585 436.585 56.7 4.10%
SNC- 418.686 436.585 436.585 37 4.10%
SNC 418.838 436.585 436.585 27.8 4.07%
NC(SB) 418.686 436.585 436.585 97.2 4.10%
SNC-(SB) 418.775 436.585 436.585 96.7 4.08%
SNC(SB) 419.056 436.585 436.585 31.8 4.02%
ND 418.87 436.585 436.585 10.3 4.06%
SND 419.278 436.585 436.585 14.1 3.96%

15 445.925

NC 418.686 445.925 445.925 534.2 6.11%
SNC- 418.686 445.925 445.925 189 6.11%
SNC 419.212 445.925 445.925 373.3 5.99%
NC(SB) 418.686 445.925 445.925 648.9 6.11%
SNC-(SB) 418.999 445.925 445.925 1595 6.04%
SNC(SB) 419.497 445.925 445.925 337.8 5.93%
ND 419.108 445.925 445.925 61.2 6.01%
SND 419.791 445.925 445.925 93.2 5.86%

17 473.977

NC 418.686 451.19 490.556 3600 11.67%
SNC- 418.755 466.974 478.026 3600 11.65%
SNC 419.685 468.417 475.886 3600 11.45%
NC(SB) 418.686 465.885 475.557 3600 11.67%
SNC-(SB) 419.204 OUT OF MEMORY 11.56%
SNC(SB) 419.992 460.94 475.886 3600 11.39%
ND 419.319 462.975 475.557 3600 11.53%
SND 420.249 473.978 473.978 3275.4 11.34%

Table A.24: Test results for incomplete models (instances: hk48, eil51)
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APPENDIX A. TEST RESULTS

p OPT Model LR LB UB Time (s) GAP (%)
berlin52 (p′ = 7)

13 7298.63

NC 7166.3 7298.63 7298.63 11.5 1.81%
SNC- 7166.3 7298.63 7298.63 4.6 1.81%
SNC 7166.4 7298.63 7298.63 6.6 1.81%
NC(SB) 7166.3 7298.63 7298.63 24.5 1.81%
SNC-(SB) 7166.32 7298.63 7298.63 7.4 1.81%
SNC(SB) 7166.43 7298.63 7298.63 7.7 1.81%
ND 7166.3 7298.63 7298.63 1.4 1.81%
SND 7166.46 7298.63 7298.63 2.2 1.81%

15 7429.59

NC 7166.3 7429.59 7429.59 76.3 3.54%
SNC- 7166.3 7429.59 7429.59 51.3 3.54%
SNC 7166.52 7429.59 7429.59 14 3.54%
NC(SB) 7166.3 7429.59 7429.59 133.5 3.54%
SNC-(SB) 7166.38 7429.59 7429.59 17.7 3.54%
SNC(SB) 7166.55 7429.59 7429.59 14.7 3.54%
ND 7166.31 7429.59 7429.59 8.4 3.54%
SND 7167.45 7429.59 7429.59 12 3.53%

17 7800.77

NC 7166.3 7716.85 7804.09 3600 8.13%
SNC- 7166.48 7800.77 7800.77 527.8 8.13%
SNC 7168.01 7800.77 7800.77 368.8 8.11%
NC(SB) 7166.3 7800.77 7800.77 1226.5 8.13%
SNC-(SB) 7166.65 7800.77 7800.77 818.8 8.13%
SNC(SB) 7168.34 7800.77 7800.77 1601.2 8.11%
ND 7166.33 7800.77 7800.77 302.2 8.13%
SND 7173.26 7800.77 7800.77 532.6 8.04%

brazil58 (p′ = 12)

14 21221

NC 20896 21221 21221 2.9 1.53%
SNC- 20896 21221 21221 1.8 1.53%
SNC 20896 21221 21221 1.5 1.53%
NC(SB) 20896 21221 21221 4.1 1.53%
SNC-(SB) 20896 21221 21221 2.2 1.53%
SNC(SB) 20896 21221 21221 2.5 1.53%
ND 20896 21221 21221 0.9 1.53%
SND 20896 21221 21221 1 1.53%

17 21847

NC 20896 21847 21847 565.4 4.35%
SNC- 20896 21847 21847 161.1 4.35%
SNC 20896 21847 21847 287.3 4.35%
NC(SB) 20896 21847 21847 700.6 4.35%
SNC-(SB) 20896 21847 21847 1283.8 4.35%
SNC(SB) 20897.8 21847 21847 337.7 4.34%
ND 20896 21847 21847 58.4 4.35%
SND 20904 21847 21847 49.5 4.32%

19 22635

NC 20896 22635 22635 1462 7.68%
SNC- 20896 22635 22635 960.7 7.68%
SNC 20900.6 22635 22635 228.2 7.66%
NC(SB) 20896 22635 22635 1351.6 7.68%
SNC-(SB) 20896.7 22131.8 109324 3600 7.68%
SNC(SB) 20909.1 22160.7 98619 3600 7.62%
ND 20896 22635 22635 458.4 7.68%
SND 20924.6 22635 22635 633.4 7.56%

Table A.25: Test results for incomplete models (instances: berlin52, brazil58)
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APPENDIX A. TEST RESULTS

p OPT Model LR LB UB Time (s) GAP (%)
st70 (p′ = 12)

17 636.194

NC 628.5 636.191 636.191 11.8 1.21%
SNC- 628.5 636.191 636.191 10.6 1.21%
SNC 628.5 636.191 636.191 5 1.21%
NC(SB) 628.5 636.191 636.191 16.9 1.21%
SNC-(SB) 628.5 636.191 636.191 2.1 1.21%
SNC(SB) 628.5 636.191 636.191 2.5 1.21%
ND 628.5 636.191 636.191 2.3 1.21%
SND 628.516 636.191 636.191 1.3 1.21%

20 645.145

NC 628.5 645.145 645.145 161.3 2.58%
SNC- 628.5 645.145 645.145 60.9 2.58%
SNC 628.5 645.145 645.145 32.6 2.58%
NC(SB) 628.5 645.145 645.145 55.7 2.58%
SNC-(SB) 628.5 645.145 645.145 43.7 2.58%
SNC(SB) 628.544 645.145 645.145 34.3 2.57%
ND 628.5 645.145 645.145 12 2.58%
SND 628.671 645.145 645.145 3.2 2.55%

23 694.495

NC 628.5 663.444 2006.28 3600 9.50%
SNC- 628.5 668.257 3285.09 3600 9.50%
SNC 628.669 662.392 3073.84 3600 9.48%
NC(SB) 628.5 656.746 3292.69 3600 9.50%
SNC-(SB) 628.626 663.857 3044.02 3600 9.48%
SNC(SB) 628.718 660.568 3092.89 3600 9.47%
ND 628.5 673.009 694.493 3600 9.50%
SND 629.601 664.423 2812.45 3600 9.34%

eil76 (p′ = 4)

19 563.955

NC 540.723 554.461 563.955 3600 4.12%
SNC- 540.723 563.955 563.955 3098.9 4.12%
SNC 540.723 563.955 563.955 2807.9 4.12%
NC(SB) 540.723 563.955 563.955 1973.2 4.12%
SNC-(SB) 540.723 553.662 894.548 3600 4.12%
SNC(SB) 540.739 556.987 564.243 3600 4.12%
ND 540.723 563.955 563.955 612.9 4.12%
SND 540.89 563.955 563.955 1022 4.09%

22 573.182

NC 540.723 557.346 586.244 3600 5.66%
SNC- 540.723 562.153 958.698 3600 5.66%
SNC 540.749 565.879 573.182 3600 5.66%
NC(SB) 540.723 564.593 575.923 3600 5.66%
SNC-(SB) 540.727 560.964 1385.38 3600 5.66%
SNC(SB) 540.871 561.837 1213.99 3600 5.64%
ND 540.73 570.106 573.182 3600 5.66%
SND 541.212 569.056 573.182 3600 5.58%

25 601.71

NC 540.723 563.269 2099.68 3600 10.14%
SNC- 540.723 572.766 1831.77 3600 10.14%
SNC 541.091 573.6 1932.28 3600 10.07%
NC(SB) 540.723 561.768 1978.3 3600 10.14%
SNC-(SB) 540.738 568.388 2006.14 3600 10.13%
SNC(SB) 541.273 571.345 1790.53 3600 10.04%
ND 540.803 571.329 1797.7 3600 10.12%
SND 541.586 571.517 1904.49 3600 9.99%

Table A.26: Test results for incomplete models (instances: st70, eil76)
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APPENDIX A. TEST RESULTS

p OPT Model LR LB UB Time (s) GAP (%)
pr76 (p′ = 8)

19 104482

NC 98993.9 104482 104482 160.1 5.25%
SNC- 99044.7 104482 104482 37.2 5.20%
SNC 99143.5 104482 104482 46.1 5.11%
NC(SB) 98993.9 104482 104482 113 5.25%
SNC-(SB) 99072.2 104482 104482 39 5.18%
SNC(SB) 99163.4 104482 104482 41.1 5.09%
ND 98998.5 104482 104482 18.6 5.25%
SND 99241.4 104482 104482 16.5 5.02%

22 105996

NC 98993.9 105996 105996 168.3 6.61%
SNC- 99160.6 105996 105996 143.3 6.45%
SNC 99277.4 105996 105996 134.3 6.34%
NC(SB) 98993.9 105996 105996 491.6 6.61%
SNC-(SB) 99207.3 105996 105996 77.1 6.40%
SNC(SB) 99291 105996 105996 136.7 6.33%
ND 99014.4 105996 105996 28.2 6.59%
SND 99405 105996 105996 20.1 6.22%

25 110074

NC 98993.9 108262 110300 3600 10.07%
SNC- 99292.6 110074 110074 1674.3 9.79%
SNC 99463.1 110074 110074 2285.4 9.64%
NC(SB) 98993.9 108831 110074 3600 10.07%
SNC-(SB) 99361.9 108030 178261 3600 9.73%
SNC(SB) 99477.8 110074 110074 1314.3 9.63%
ND 99030.3 110074 110074 2383.9 10.03%
SND 99742.8 108783 110074 3600 9.39%

rat99 (p′ = 8)

24 1273.23

NC 1203.53 1273.23 1273.23 1560.6 5.47%
SNC- 1204.43 1273.23 1273.23 398 5.40%
SNC 1204.74 1273.23 1273.23 363.7 5.38%
NC(SB) 1203.53 1254.19 4083.85 3600 5.47%
SNC-(SB) 1204.38 1273.23 1273.23 413.1 5.41%
SNC(SB) 1204.75 1273.23 1273.23 396.1 5.38%
ND 1203.53 1273.23 1273.23 70.6 5.47%
SND 1205.3 1273.23 1273.23 135.9 5.34%

29 1311.42

NC 1203.53 1291.45 1313 3600 8.23%
SNC- 1207.6 1311.42 1311.42 873.1 7.92%
SNC 1208.49 1311.42 1311.42 1139.1 7.85%
NC(SB) 1203.53 1291.25 1315 3600 8.23%
SNC-(SB) 1207.29 1300.34 1311.42 3600 7.94%
SNC(SB) 1208.15 1311.42 1311.42 794.7 7.87%
ND 1203.53 1311.42 1311.42 386.9 8.23%
SND 1210.05 1311.42 1311.42 196.2 7.73%

33 1373.37

NC 1203.53 1314.25 1522.48 3600 12.37%
SNC- 1213.93 1329.28 1486.28 3600 11.61%
SNC 1215.37 1331.79 1522.48 3600 11.50%
NC(SB) 1203.53 1307.27 1514.99 3600 12.37%
SNC-(SB) 1213.01 OUT OF MEMORY 11.68%
SNC(SB) 1214.65 1334.58 1463.57 3600 11.56%
ND 1203.53 1331.07 1476.96 3600 12.37%
SND 1217.58 1330.04 1434 3600 11.34%

Table A.27: Test results for incomplete models (instances: pr76, rat99)
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p OPT Model LR LB UB Time (s) GAP (%)
kroA100 (p′ = 13)

25 20279.5

NC 19380.7 20279.5 20279.5 2790.4 4.43%
SNC- 19380.7 20279.5 20279.5 2272.5 4.43%
SNC 19380.7 20279.5 20279.5 1499.5 4.43%
NC(SB) 19380.7 20279.5 20279.5 3027.5 4.43%
SNC-(SB) 19380.7 20279.5 20279.5 2001.8 4.43%
SNC(SB) 19380.7 20279.5 20279.5 644.1 4.43%
ND 19380.7 20279.5 20279.5 22.8 4.43%
SND 19383.9 20279.5 20279.5 21.4 4.42%

29 20773.3

NC 19380.7 20337.6 49438 3600 6.70%
SNC- 19380.7 20467.9 101552 3600 6.70%
SNC 19380.7 20773.3 20773.3 1779.6 6.70%
NC(SB) 19380.7 20312.7 52410.7 3600 6.70%
SNC-(SB) 19381.4 OUT OF MEMORY 6.70%
SNC(SB) 19389.8 20426.2 21099.3 3600 6.66%
ND 19380.7 20773.3 20773.3 394.3 6.70%
SND 19411 20681.2 20773.3 3600 6.56%

33 22303.23*

NC 19380.7 20685.7 165276 3600 13.10%
SNC- 19380.7 20890.2 158225 3600 13.10%
SNC 19411.7 20948.1 159356 3600 12.96%
NC(SB) 19380.7 20673.4 153253 3600 13.10%
SNC-(SB) 19383.7 OUT OF MEMORY 13.09%
SNC(SB) 19418.2 20926.1 132250 3600 12.94%
ND 19380.7 21015.3 156051 3600 13.10%
SND 19478.9 21057.4 160746 3600 12.66%

kroB100 (p′ = 20)

25 20786.9

NC 20336 20786.9 20786.9 301.7 2.17%
SNC- 20336 20786.9 20786.9 461.7 2.17%
SNC 20336 20786.9 20786.9 57.3 2.17%
NC(SB) 20336 20786.9 20786.9 727.5 2.17%
SNC-(SB) 20336.1 20786.9 20786.9 228.4 2.17%
SNC(SB) 20336.1 20786.9 20786.9 33 2.17%
ND 20336 20786.9 20786.9 16.6 2.17%
SND 20338 20786.9 20786.9 9.5 2.16%

29 21094.6

NC 20336 20933.1 106271 3600 3.60%
SNC- 20336 20955 101498 3600 3.60%
SNC 20338.2 21094.6 21094.6 694.7 3.59%
NC(SB) 20336 20979.8 122075 3600 3.60%
SNC-(SB) 20339.4 21094.6 21094.6 689.2 3.58%
SNC(SB) 20344.1 20957.4 123257 3600 3.56%
ND 20336 21094.6 21094.6 174 3.60%
SND 20356.2 21094.6 21094.6 59 3.50%

33 22923.4*

NC 20336 21234.9 136378 3600 11.29%
SNC- 20346.6 21284.8 142074 3600 11.24%
SNC 20372.3 21319.8 148805 3600 11.13%
NC(SB) 20336 21272.8 140267 3600 11.29%
SNC-(SB) 20356.8 OUT OF MEMORY 11.20%
SNC(SB) 20376.3 21249.8 146709 3600 11.11%
ND 20336 21374.7 141884 3600 11.29%
SND 20418.3 21674.2 138607 3600 10.93%

Table A.28: Test results for incomplete models (instances: kroA100, kroB100)
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p OPT Model LR LB UB Time (s) GAP (%)
kroC100 (p′ = 13)

25 20428

NC 19703.3 20077.4 20469.3 3600 3.55%
SNC- 19703.3 20118.5 20428 3600 3.55%
SNC 19703.3 20092.4 20428 3600 3.55%
NC(SB) 19703.3 20088.1 20428 3600 3.55%
SNC-(SB) 19703.3 20031.5 118761 3600 3.55%
SNC(SB) 19703.9 20072.9 20428 3600 3.54%
ND 19703.3 20328.8 20428 3600 3.55%
SND 19710.6 20428 20428 2902.6 3.51%

29 20923.6

NC 19703.3 20273.9 149110 3600 5.83%
SNC- 19703.3 20202.4 133042 3600 5.83%
SNC 19707.7 20295.1 145279 3600 5.81%
NC(SB) 19703.3 20199.5 140783 3600 5.83%
SNC-(SB) 19703.4 20644 20923.8 3600 5.83%
SNC(SB) 19711.8 20361.9 36260 3600 5.79%
ND 19703.3 20343.8 128569 3600 5.83%
SND 19725.9 20423.1 20923.8 3600 5.72%

33 22465.73*

NC 19703.3 20569.7 179980 3600 12.30%
SNC- 19704.1 20532.2 175156 3600 12.29%
SNC 19720.9 20653.3 176827 3600 12.22%
NC(SB) 19703.3 20521.1 155538 3600 12.30%
SNC-(SB) 19711.2 OUT OF MEMORY 12.26%
SNC(SB) 19726 20589.4 172457 3600 12.20%
ND 19703.7 20776.4 106155 3600 12.29%
SND 19753.7 21051.6 165446 3600 12.07%

kroD100 (p′ = 14)

25 20671.2

NC 19951.3 20671.2 20671.2 895.9 3.48%
SNC- 19951.3 20671.2 20671.2 1499.8 3.48%
SNC 19952.3 20671.2 20671.2 357.5 3.48%
NC(SB) 19951.3 20671.2 20671.2 571.2 3.48%
SNC-(SB) 19951.3 20671.2 20671.2 1862.5 3.48%
SNC(SB) 19953.1 20671.2 20671.2 418.8 3.47%
ND 19951.6 20671.2 20671.2 42.9 3.48%
SND 19955.6 20671.2 20671.2 31.7 3.46%

29 21043.2

NC 19951.3 20663.2 21060.8 3600 5.19%
SNC- 19951.3 20746.8 111253 3600 5.19%
SNC 19954.5 20776.2 90719.4 3600 5.17%
NC(SB) 19951.3 20695.6 103147 3600 5.19%
SNC-(SB) 19951.5 20819.7 21043.2 3600 5.19%
SNC(SB) 19956.9 20749.3 98707.8 3600 5.16%
ND 19952.1 21043.2 21043.2 2067 5.19%
SND 19969.1 21043.2 21043.2 2926.7 5.10%

33 22238.56*

NC 19951.3 20946.8 141789 3600 10.29%
SNC- 19951.3 21054.5 150113 3600 10.29%
SNC 19965.7 21125.1 157067 3600 10.22%
NC(SB) 19951.3 20850.3 156280 3600 10.29%
SNC-(SB) 19953.1 OUT OF MEMORY 10.28%
SNC(SB) 19970.6 21081.1 126916 3600 10.20%
ND 19952.9 21205 136323 3600 10.28%
SND 19997.8 21126.4 153238 3600 10.08%

Table A.29: Test results for incomplete models (instances: kroC100, kroD100)
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p OPT Model LR LB UB Time (s) GAP (%)
kroE100 (p′ = 12)

25 21174.9

NC 20618.9 21016.5 21174.9 3600 2.63%
SNC- 20618.9 21174.9 21174.9 1908 2.63%
SNC 20619 20969.9 98689.7 3600 2.63%
NC(SB) 20618.9 21174.9 21174.9 3293.2 2.63%
SNC-(SB) 20619 20982.6 117409 3600 2.63%
SNC(SB) 20620.8 20943.7 106210 3600 2.62%
ND 20618.9 21174.9 21174.9 216.8 2.63%
SND 20622.4 21174.9 21174.9 281.6 2.61%

29 21386.1

NC 20618.9 21158.4 125844 3600 3.59%
SNC- 20618.9 21204.5 148424 3600 3.59%
SNC 20628.1 21160.9 136671 3600 3.54%
NC(SB) 20618.9 21202.9 51613.9 3600 3.59%
SNC-(SB) 20621 21386.1 21386.1 763.7 3.58%
SNC(SB) 20630.2 21157.1 74431.2 3600 3.53%
ND 20618.9 21386.1 21386.1 255.2 3.59%
SND 20641.5 21386.1 21386.1 313.6 3.48%

33 22782.98

NC 20618.9 21383.6 164284 3600 9.50%
SNC- 20627.6 21414.8 172007 3600 9.46%
SNC 20650.7 21598.3 176203 3600 9.36%
NC(SB) 20618.9 21338.9 165824 3600 9.50%
SNC-(SB) 20632.5 OUT OF MEMORY 9.44%
SNC(SB) 20652.6 21481 173693 3600 9.35%
ND 20618.9 21643.5 169903 3600 9.50%
SND 20681.9 21946.2 159909 3600 9.22%

rd100 (p′ = 13)

25 7555.83

NC 7336.96 7555.83 7555.83 954.9 2.90%
SNC- 7336.96 7555.83 7555.83 215.1 2.90%
SNC 7336.96 7555.83 7555.83 81.7 2.90%
NC(SB) 7336.96 7555.83 7555.83 502.9 2.90%
SNC-(SB) 7336.96 7555.83 7555.83 344.2 2.90%
SNC(SB) 7336.96 7555.83 7555.83 283.8 2.90%
ND 7336.96 7555.83 7555.83 23.4 2.90%
SND 7336.96 7555.83 7555.83 14.3 2.90%

29 7684.52

NC 7336.96 7583.12 36281.9 3600 4.52%
SNC- 7336.96 7612.57 7696.21 3600 4.52%
SNC 7336.96 7684.52 7684.52 3316 4.52%
NC(SB) 7336.96 7649.54 7684.52 3600 4.52%
SNC-(SB) 7336.96 7621.62 7696.21 3600 4.52%
SNC(SB) 7336.99 7620.16 7696.21 3600 4.52%
ND 7336.96 7684.52 7684.52 451.6 4.52%
SND 7338.66 7684.52 7684.52 146.6 4.50%

33 8131.25*

NC 7336.96 7656.96 45970.8 3600 9.77%
SNC- 7336.96 7706.64 49154.4 3600 9.77%
SNC 7337.79 7747.51 41237.3 3600 9.76%
NC(SB) 7336.96 7682.43 45821.4 3600 9.77%
SNC-(SB) 7336.98 OUT OF MEMORY 9.77%
SNC(SB) 7339.19 7706.42 49829.6 3600 9.74%
ND 7336.96 7760.02 46293.8 3600 9.77%
SND 7344.99 7748.59 46108.9 3600 9.67%

Table A.30: Test results for incomplete models (instances: kroE100, rd100)
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