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”We are so unwise that we
wander about in times that
do not belong to us, and
do not think of the only
one that does; so vain that
we dream of times that are
not and blindly flee the
only one that is.”
- Blaise Pascal, Pensées
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Abstract

In this thesis we obtain an abstract continuity theorem for the drift associated with a product of
isometries in both Gromov hyperbolic spaces and symmetric spaces as well as the Lyapunov expo-
nents for a product of linear operators over some Hilbert space. We obtain these results by following
a recipe of having large deviations estimates and an avalanche principle; a result which allows us
to take conclusion of global nature from local hypothesis.

As a main example, we apply the results to cocycles over Markov systems, where we prove the
aforementioned large deviations estimates hold, thus providing a large class of examples. Upon
presenting the linear setting we also mention the case of quasi-periodic linear cocycles. Whilst
exploring Markov systems we also obtain a Fürstenberg type formula.

From the perspective of Gromov hyperbolic spaces, we prove their group of isometries is a
topological group and how random products of isometries follow a multiplicative ergodic theorem
for the drift, thus describing the behaviour of typical orbits.

space
Keywords: Large deviation estimates, multiplicative ergodic theory, abstract continuity the-
orem, avalanche principle
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Resumo Alargado

Um tópico que surge naturalmente em diversas áreas da matemática e das suas aplicação é a com-
preensão de produtos aleatórios de operadores, escolhidos segundo alguma regra estocástica ou de-
terminística. Realisticamente, não podemos esperar obter muita informação sobre o produto neste
nível de generalidade, uma vez que tipicamente o comportamento assimptótico do produto deve
divergir para alguma noção de ”infinito” do espaço. Para combater este problema, é costume in-
troduzir alguma informação que descreve o comportamento assimptótico do produto. Um exemplo
paradigmático de tal quantidade descritiva é o exponente de Lyapunov e a filtração deOseledets que,
através do teorema multiplicativo ergódico de Oseledets, descrevem completamente a dinâmica de
um produto aleatório de matrizes.

Pelo teorema subaditivo ergódico deKingman, a forma usual de garantir que tais quantidades de-
scritivas existem é garantir que elas são subaditivas em relação ao produto. Isto acontece tanto com
o maior exponente de Lyapunov como com o drift linear no caso de semicontracções em espaços
métricos. Obtendo assim a existência destas quantidades, tentamos obter um teoremamultiplicativo
que explique o seu comportamento. e assim o comportamento do produto.

Uma vez percebida a dinâmica do produto, uma questão interessante é - o que acontece com
estas quantidades, que podem ser vistas como funções, se perturbarmos subtilmente os elementos
do produto, quer escolhendo elementos semelhantes, quer mudando a forma como são escolhidos?
Chamamos a esta questão o problema da continuidade. Este é um problema bastante rico e complexo
que iremos focar ao longo do resto do texto.

Outro problema interessante ao qual nos dedicaremos será perceber a taxa de convergência
associada ao teorema de Kingman, uma vez que este nada nos diz sobre o tipo de convergência
associado à existência das supracitadas quantidades descritivas. A forma natural de considerar esta
taxa de convergência é utilizando a teoria de grandes desvios. Infelizmente, grandes desvios, tal
como a continuidade, podem ser problemáticos, uma vez que em geral, dada a complexidade da
regra que escolhe os operadores, são difíceis de obter.

Em 2001 Goldstein e Schlag, estabeleceram uma conexão entre os dois problemas provando
que, para cóciclos de Schrödinger, estimativas de grandes desvios levam à continuidade. Além
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disso, esta continuidade pode ser quantificada pela força do desvio. Mais tarde, Duarte e Klein
provam esta relação em geral para o exponente de Lyapunov de operadores lineares em dimensão
finita. A esta conexão entre a propriedade estatistica de grandes desvios e a continuidade chamamos
de teorema abstracto de continuidade.

Nesta tese iremos apresentar vários problemas. Em primeiro lugar iremos resolver é a existência
de um teorema abstracto de continuidade para o drift em espaços hiperpólicos no sentido deGromov.
Por outras palavras, iremos considerar produtos de isometrias destes espaços e ver que omesmo tipo
de resultado obtido por Duarte e Klein para o exponente de Lyapunov também é válido para o drift.
Em segundo lugar iremos abordar o tópico do drift em espaços simétricos. Estes espaços formam
uma class de exemplos one a curvature pode tomar o valor zero para a qual temos várias ferramentas
à nossa disposição. Umas dessas ferramentas das quais iremos fazer uso são as representações
lineares. Assim sendo aproveitamos para apresentar as versões lineares dos resultados que iremos
depois utilizar.

A parte principal do argumento do teorema abstracto de continuidade é a possibilidade de trans-
portar controlos a uma certa escala finita em frente no tempo de forma a obter resultados válidos
nas escalas seguintes. Na base desta possibilidade está um resultado pilar ao qual chamamos prin-
cipio da avalanche. Dito isto, a novidade da tese é a obtenção de princípios da avalanche nos casos
abordados anteriormente. O nome da tese, ”Geometric Avalanche Principle” surge da natureza
geométrica do principio da avalanche e das suas aplicações ao longo do texto.

Dedicamos o capitulo 2 aos espaços hiperbólicos de Gromov. Estes espaços são ferramentas
fundamentais no estudo da teoria geométrica de grupos, uma vez que apresentam uma forma sis-
temática de obter resultados de natureza algébrica a partir de argumentos geométricos para uma
vasta classe de grupos. Grupos hiperbólicos, como são chamados, têm sido objecto de estudo deste
os anos 80 e continuam a inspirar bastante investigação. Neste texto não estamos interessados no
caso mais geral em que um grupo arbitrário, não necessariamente hiperbólico, actua por isometries
nestes espaços. Assim sendo, este capitulo inclui uma breve apresentação dos conceitos essenciais
de dinâmica e ergodicidade necessários. Em particular, provamos aqui um teorema ergódico que
governa o comportamento do produto de isometrias.

No capitulo 3 apresentamos o teorema abstracto de continuidade do drift em espaços hiperbóli-
cos. O resultado é obtido utilizado um argumento indutivo baseado na existência de grandes desvios
e no principio da avalanche. Iremos também para além da continuidade, também podemos obter
um critério abstracto de positividade do drift.

Seguimos então para o capitulo 4, onde iremos aplicar a teoria a sistemas de Markov. Assim
provaremos que sistemas de Markov satisfazem grandes desvios para em seguida aplicar directa-
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mente o teorema abstracto de continuidade. Apresentamos também neste capitulo uma prova directa
de continuidade para passeios aleatórios utilizando a fórmula de Fürstenberg, o que permite uma
formulação mais simples do resultado neste caso. Por fim mostramos que para passeios aleatórios,
se existir um número finito de operadores possíveis, com assumpções fracas o drift é analítico.

É no capitulo 5 que focamos o caso linear em dimensão infinita. O método será novamente o
mesmo, procurar por estimativas de grandes desvios e provar que principio da avalanche é valido
para daí obter um teorema abstracto de continuidade. Em seguida apresentamos um guião sobre
como a vasta literatura sobre estimativas de grandes desvios de cociclos quasi-periódicos se adapta
ao caso em dimensão infinita.

Terminamos a tese com o capitulo 6, onde descrevemos o teorema abstracto de continuidade
para o drift em espaços simétricos. A ideia aqui é que os grupos de isometrias destes espaços
admitem representações lineares, logo o resultado segue do resultado linear, fazendo assim um
simples redução a um caso anterior.

Vários capítulos terminam com uma secção de notas bibliográficas sobre o que foi discutido
ao longo do capitulo. Isto serve para mencionar trabalhos relevantes sobre o tema que não citámos
anteriormente e fazer uma melhor contextualização da tese em relação que é conhecido.

Os ingredientes principais da tese são estimativas de grandes desvios, principio da avalanche e
o teorema abstracto de continuidade. Estes irão aparecer várias vezes em variadas formas e por isso
alertamos o leitor para uma possível fatiga na leitura da tese. Por outro lado isto mostra a força dos
argumentos utilizados. Para reduzir este problema, nos capitulos 5 e 6 os argumentos resumem-se
a reduções a casos anteriores ou feitos em alguma bibliografia. Apesar do baixo destaque dado a
estes capitulos a sua importância para a motivação do trabalho da tese não pode ser desprezada,
sendo assim fundamentais para completar a história deste trabalho.

Uma palavra também é necessária no que toca a pré-requisitos. A tese cobre uma vasto leque de
tópicos e apresentá-los do zero não é o nosso objectivo. Assim sendo, assumimos que o leitor está
familiarizado com tópicos de teoria ergódica e sistemas dinâmicos, algebra multilinear em espaços
de Hilbert, geometria Riemanniana, grupos de Lie e espaços simétricos.

A última nota para o leitor trata o facto de que alguns teorema vêm seguidos de uma referência.
Isto acontece quando ou não foi incluída uma prova para o resultado, ou a prova segue as linhas da
referência citada sem alterações significativas.

space
Palavras-chave: estimativas de grandes desvios, teoria ergódica multiplicativa, teorema ab-
stracto de continuidade, principio da avalanche
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Chapter 1

Introduction

A topic that naturally appears in many areas of mathematics is that of a product of random operators,
which are chosen according to some sensible rule. Realistically, we can’t hope to obtain much
information about the product itself as it may end up going to some notion of ”infinity”, so the typical
solution has been to introduce descriptive information that encodes the asymptotic behaviour of the
product. A paradigmatic example of such an encoding quantity is given by the Lyapunov exponents
and Oseledets filtration which, through the Oseledets multiplicative ergodic theorem, fully govern
the dynamics of random products of matrices.

Following Kingman (1968) ergodic theorem, the typical way to device the existence of such
average limit quantities tracking the product has been to guarantee they are subadditive. This is the
case with the top Lyapunov exponents in the linear case as well as the drift for semicontractions in
metric spaces. Then we try to obtain some sort of multiplicative ergodic theorem that describes the
behaviour of these quantities.

Once we are past understanding the dynamics of the product, an interesting question to consider
is - what would happen to these limit quantities if we were to slightly perturb the elements of the
product, either by choosing similar operators or changing the rule in which they were picked? We
refer to this question as the continuity problem. This is a rich an complex problem which will be
our focus throughout the text.

Despite its remarkable applications, Kingman’s theorem doesn’t tell us anything about the rate
of convergence towards the limiting quantities. The natural way to study this rate of convergence
is in measure, through large deviations estimate, which estimate the probability of being close to
the limit quantity at a finite scale. Large deviations, just like continuity, pose a difficult problem as
they can be hard to obtain since the rule responsible for picking the operators may be complicated
to describe.

Goldstein and Schlag (2001) establish a connection between the two concepts by proving that,
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CHAPTER 1. INTRODUCTION

for Schrödinger cocycles, large deviation estimates lead to continuity. Moreover the modulus of
continuity may be quantified by the strength of the deviation. Later, Duarte et al. (2016), prove
this in general for linear operators of finite dimensional spaces. We call this connection the abstract
continuity theorem.

In this thesis we aim at multiple problems. The main problem we shall tackle is the existence of
an abstract continuity theorem for the drift in hyperbolic spaces. In other words, we will consider a
random product of isometries of a Gromov hyperbolic space, consider its drift, and see if the same
type of results hold. Then we concern ourselves with trying to look for other metric spaces where
this type of results hold. A natural first place to look are symmetric spaces of noncompact type
as these include cases of zero curvature whilst providing a myriad of tools to our study. In this
direction we obtain a reduction of the problem to the heavily studied linear setting.

A pillar step in the argument associated with the abstract continuity is the ability to push local
and finite scale controls forward in time to obtain results of global nature. At the core of this
argument is the Avalanche Principle. With that, one of the novelties of the thesis is obtaining an
avalanche principle for strongly hyperbolic spaces and extending the linear avalanche principle of
Duarte and Klein to Hilbert spaces. To obtain these types of avalanche principles we will focus on
geometric tools, thus the name of the thesis, ”Geometric Avalanche Principle”.

We dedicate chapter 2 to present Gromov hyperbolic spaces. These spaces appear as a funda-
mental tool in geometric group theory as they yield a systematic way to use geometry to obtain
results of algebraic nature about a big class groups. Hyperbolic groups, as they are called, have
been object of study since the late 1980’s and continue to inspire a lot of research. In this text we
study the more general problem of a group, not necessarily hyperbolic, acting on a hyperbolic space.
In this chapter we also briefly discuss dynamics and ergodicity, thus explaining what we meant by
”sensible” rule of choosing the operators. Of special importance here is the dynamics in hyperbolic
spaces, which is governed by a multiplicative ergodic theorem which we introduce.

In chapter 3 we present the abstract continuity theorem for the drift on hyperbolic spaces. We
obtain this result through an inductive argument based on the existence of large deviation estimates
and a tool which quantifies the loss in passage from local to global analysis of the terms of a product.
This tool allows us to transport quantities further in time at the cost of a quantified loss. The same
argument is then used to obtain a criteria for the positivity of the drift.

We then proceed to chapter 4, where we obtain large deviation estimates for the drift in Markov
systems, thus allowing us to obtain continuity. We also do a reinterpretation and simplified proof of
the result for the case of random walks. We will use Markov systems as our main class of examples
for the thesis.

2



CHAPTER 1. INTRODUCTION

Chapter 5 is dedicated to take a closer look at the infinite dimensional linear setting. The method
will once again be the same, look for large deviation estimates and avalanche principle, and then
proceed to obtain an abstract continuity result. As an application we succinctly present how to
obtain large deviations estimates for the quasi-periodic setting.

We end with chapter 6, where we obtain and describe an abstract continuity theorem for the drift
in the case of symmetric spaces. The idea here is that the isometry groups of symmetric spaces admit
linear representations, so the result should follow from the linear one. Thus most of the chapter is
based on representations so we can do this reduction.

Some chapters finish with a section on bibliographic notes on what was discussed. This serves
to mention relevant works on the subject which we didn’t find a way to cite previously without
breaking the flow of the text.

As the reader could notice by now, the three main ingredients of the thesis are large deviation
estimates, the avalanche principle and the abstract continuity theorem. These will appear repeatedly
in multiple form so be ready for some possible exhaustion. We did our best to combat this problem
by reducing some proofs to previous case and attempting to clean the presentation whenever possi-
ble. This makes chapters 5 and 6 a lot less developed from a point of view of examples and rigor,
as there we explore what is known from previous chapters and other texts. On the other hand, we
feel these chapters are essential to tell the story of the thesis.

Another word of caution we give the reader concerns the array of topics we discuss in the thesis.
To fully present these subjects from the ground up would neither be feasible nor a goal of this work.
Thus we assume the reader has some familiarity with ergodic theory (see Viana and Oliveira (2016),
Viana (2014)), multilinear algebra in Hilbert spaces (see Temam (2012)), Riemannian geometry, Lie
groups and symmetric spaces (see Helgason (2001)). We will recall these references during the text
when they are relevant.

The last note to the reader is that in some theorems and propositions we present a reference to
where the result may also be found. We do this when either we didn’t include a proof, thus pointing
the reader to a place where it can be found, or when we include a proof which boils down to a
rewriting of the cited one.

We finish this introduction by mentioning that some of the material in the thesis can be found
on ArXiV in Sampaio (2021) and Sampaio (2022) and is already submitted to peer review.
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Chapter 2

Geometry and Dynamics on Gromov
Hyperbolic Spaces

The theory of negatively curved spaces dates back to the first half of the 19th century, with the ad-
vent of hyperbolic geometry. Since then the theory immensely grew in both depth and applications.
One of the central topics in the study of negatively curved spaces, dating back to Poincaré, is un-
derstanding the behaviour of isometric actions on such spaces, namely when the group responsible
for the action is discrete. For example, such is the case with Fuchsian and Kleinian groups, which
are discrete subgroups of isometries of H2 and H3, respectively.

During the twentieth century, new tools from differential and algebraic geometry allowed for
further developments in the theory. Despite its importance, differential geometry can be too restric-
tive by requesting that our space has some differentiable structure. The realization of this fact led
to an attempt at reconstructing most of the classical Riemannian theory from a purely metric point
of view. One of the pioneers of this work was Alexandrov who reintroduced concepts like angle,
length and curvature among others.

Alexandrov’s notion of CAT(k) space (see Bridson and Haefliger (2013)), which in simplistic
terms is a space whose curvature is bounded above by k, would come to prominence in the 1980’s
at the hand of Gromov, who used CAT(0) spaces to describe the global geometric properties of
such spaces as well as the groups acting isometrically on them. It was known by Gromov’s time
that groups acting cocompactly on negatively curved manifolds had nice properties; for example,
the word problem was solvable in them. Gromov thus attempted to identify directly such groups
independently of the action, which led him to propose another class of negative curved spaces which
are now coined Gromov hyperbolic spaces.

In this chapter we do a light presentation on a Gromov hyperbolic spaces; from definitions to
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basic properties to more intricate results we will need later. For a more thorough exposition on the
topics check Väisälä (2005) and Das et al. (2017).

2.1 Generalities

Let X be a metric space, define the Gromov product in X as

〈x , z〉y :=
1

2
(d(x, y) + d(z, y)− d(x, z)) ∀x, y, z ∈ X.

Definition 1 (Hyperbolic space). We say that X is a Gromov hyperbolic space, or δ-hyperbolic
space when we want to make δ evident, if for every x, y, z and w in X ,

〈x , z〉w ≥ min{〈x , y〉w , 〈y , z〉w} − δ. (2.1)

We call (2.1) the 4-point condition of hyperbolicity or Gromov’s inequality.

We say that a group is word-hyperbolic if its Cayley graph is a Gromov hyperbolic space. Rie-
mannian manifolds with pinched negative sectional curvature, or more generally CAT(-1) spaces,
Cayley metrics on word-hyperbolic groups, Green metrics on word-hyperbolic groups and finitely
punctured oriented surfaces are examples of Gromov hyperbolic spaces. A classical theorem (The-
orem 3.3.7 in Das et al. (2017)) states that, in some sense, almost every finitely generated group is
word-hyperbolic.

A metric space X is said to be geodesic if for every two points x and y in X , there exists an
isometric embedding γ : [0, d(x, y)] → X connecting x to y. Throughout the text X will denote a
separable, geodesic although not necessarily proper hyperbolic metric space. For geodesic spaces,
Gromov hyperbolicity has more geometric flavour (Proposition 4.3.1 in Das et al. (2017)): X is
δ-hyperbolic if there exists δ > 0 such that for every triangle in X , any side is contained in a
3δ-neighbourhood of the other two, in other words, geometrically, triangles are thin.

In this thesis we will be interested in studying the behaviour of sequences approaching infinity
inX , the natural way to deal with this convergence problem is to consider boundaries. Fortunately,
hyperbolic spaces carry a natural boundary, called the Gromov boundary, which we now present.

We say that a sequence (xn) in a hyperbolic spaceX with basepoint x0 is a Gromov sequence if
〈xn , xm〉x0 tends to infinity asm and n tend to infinity. Two Gromov sequences (xn) and (yn) are
equivalent, (xn) ∼ (yn), if 〈xn , yn〉x0 tends to infinity as n tends to infinity. Gromov’s inequality
implies that this is an equivalence relation. The Gromov boundary, denoted by ∂X , is the set of
equivalence classes of Gromov sequences.
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The Gromov product in X may be extended to its Gromov boundary: given ξ, η ∈ ∂X and
y, z ∈ X , let

〈ξ , η〉z := inf
{
lim inf
n,m→∞

〈xn , ym〉z : (xn) ∈ ξ, (ym) ∈ η

}
,

〈x , ξ〉z = 〈ξ , x〉z := inf
{
lim inf
n→∞

〈xn , x〉z : (xn) ∈ ξ
}
.

Denote by BordX the set X ∪ ∂X . Given 1 < b ≤ 2
1
δ and x ∈ X consider the symmetric map

ρx,b : BordX × BordX → R given by

ρx,b(ξ , η) = b−⟨ξ , η⟩x .

Definition 2 (Strongly hyperbolic space). We say that a hyperbolic spaceX is a strongly hyperbolic
space if there exists 1 < b < 21/δ such that for every x ∈ X the map ρx,b satisfies the triangle
inequality, in particular ρx,b defines a metric in ∂X .

In general, ρx,b doesn’t have to be a metric in ∂X , however the Gromov boundary is still
metrizable. Fix x0 ∈ X and denote by ρb := ρx0,b. Using the Gromov inequality, for every
ξ, η, ζ ∈ BordX

ρb(ξ , η) ≤ 2max{ρb(ξ , ζ), ρb(ζ , η)}.

By the classic Frink metrization theorem (see Frink (1937)), the map D̄b : BordX × BordX → R
given by

D̄b(ξ , η) = inf
n−1∑
i=0

ρb(ξi , ξi+1)

where the infimum is taken over finite sequences of points ξi such that ξ0 = ξ and ξn = η, satisfies
the triangle inequality. Moreover the following visual condition holds:

ρb(ξ , η)/4 ≤ D̄b(ξ , η) ≤ ρb(ξ , η) for every ξ, η ∈ ∂X. (2.2)

Using D̄b we are now able to contruct a metric for the whole BordX .

Proposition 1 (in Das et al. (2017)). For every ξ, η ∈ BordX let

Db(ξ, η) := min
{
(log b)d(ξ , η) ; D̄b(ξ , η)

}
,

using the convention d(ξ, η) = ∞ if either ξ or η belong to ∂X and ξ 6= η. Then Db is a metric
in BordX inducing in X the same topology as the metric d. Moreover, if X is complete then so is
BordX .
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Proof. All conditions are immediate except for the triangle inequality. IfDb(ξ, η) = (log b)d(ξ, η)
and Db(η, ζ) = (log b)d(η, ζ), then

Db(ξ, ζ) ≤ (log b)d(ξ, ζ) ≤ (log b)d(ξ, η) + (log b)d(η, ζ) ≤ Db(ξ, η) +Db(η, ζ),

and the same holds if Db(ξ, η) = D̄b(ξ, η) and Db(η, ζ) = D̄b(η, ζ).
So we focus on the case where the minimums are given by different expressions. Without

loss of generality, assume Db(ξ, η) = (log b)d(ξ, η) and Db(η, ζ) = D̄b(η, ζ), fix ε > 0 and take
η = y0, y1, ...yn = ζ , a sequence such that

n−1∑
i=0

b−⟨yi , yi+1⟩x0 ≤ D̄b(η, ζ) + ε.

Consider also another sequence xi = yi for i > 0 and x0 = ξ. Now we use the immediate in-
equalities b−t ≤ s log b + b−(t+s) for every t, s > 0 and 〈x, y〉x0 ≤ 〈x, z〉x0 + d(y, z) for every
x, y, z ∈ BordX , to obtain

b−⟨ξ,y1⟩x0 ≤ log(b)d(ξ, η) + b−⟨η,y1⟩x0 ,

were we used t = 〈ξ, y1〉x0 and s = d(ξ, η). Hence

Db(ξ, ζ) ≤ D̄b(ξ, ζ) ≤
n−1∑
i=0

b⟨xi , xi−1⟩x0

= b−⟨ξ , y1⟩x0 +
n−1∑
i=1

b⟨yi , yi−1⟩x0

≤ (log b)d(ξ, η) + b−⟨ξ , y1⟩x0 +
n−1∑
i=1

b⟨yi , yi−1⟩x0

≤ (log b)d(ξ, η) + D̄b(η, ζ)ε

= Db(ξ, η) +Db(η, ζ) + ε.

Making ε as small as we want we obtain the intended result.
Let (xn) be a converging sequence in X to some x with respect to d, then there exists an order

p ∈ N after which Db(xn, x) = (log b)d(xn, x), so (xn) converges for the metric Db. The reverse
process implies a sequence converging inX with respect toDb converges with respect to d. Hence
the two metric yield the same converging sequences in X , so they induce the same topology.

Finally, suppose X is complete and let (xn) be a Cauchy sequence. Then, for example by
Ramsey’s theorem, (xn) is Cauchy for either D̄b or d. If (xn) is Cauchy with respect to d, then
it converges since X is complete. If (xn) is Cauchy with respect with D̄b, then (xn) is a Gromov
sequence, so it also converges.
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Example 1. Notice that BordX is bounded as Db ≤ 1. Typically one actually wants the boundary
of a space to be compact. Unfortunately that is not always the case. ConsiderX ⊂ R2 a set given by
countably many half-lines emanating from the origin in R2. Given x, y ∈ X , consider the distance

d(x, y) =

||x− y|| , if x and y belong to the same half-line

||x||+ ||y|| , otherwise.

This space is a tree, hence it is 0-hyperbolic. Notice however that the Gromov boundary of X is
N with the discrete topology, which isn’t compact. This is a consequence of the fact that locally
compactness fails at the origin.

Proposition 2 (Proposition 3.4.18 in Das et al. (2017)). The metric space (BordX,Db) is compact
if and only if X is proper.

As a final note, the action of Isom(X), the group of isometries ofX , onX extends to an action
by homeomorphisms on BordX by taking every (xn) ∈ ξ ∈ ∂X to (gxn) ∈ gξ ∈ ∂X . Hence we
equip Isom(X) with the topology of uniform convergence tracking its behaviour in BordX . With
effect, given 1 < b ≤ 21/δ, take

dG(g1, g2) := max
{

sup
ξ∈BordX

Db(g1ξ, g2ξ) ; sup
ξ∈BordX

Db(g
−1
1 ξ, g−1

2 ξ)

}
,

for every g1, g2 ∈ Isom(X). We will prove that Isom(X) is a topological group when equipped
with dG. In particular, dG is a distance.

2.2 Horofunction Compactification

LetX be a Gromov hyperbolic space. From the visual condition (2.2)Db ≤ 1, in particular, BordX
is a bounded space when equipped with this metric. The main drawback of this construction is that
in general BordX does not have to be compact. To remedy this problem we will construct another
boundary of X and relate it to ∂X .

The horofunction compactification, which we present shortly, was also introduced by Gromov
and can be considered for everymetric space. With that said wewill present the general construction
and then explore the properties specific to hyperbolic spaces.

2.2.1 Construction

Let M be a separable metric space with basepoint x0 (up to homeomorphism the construction will
be independent of the choice of x0). Consider the injective map

ρ : M → C(M)

9
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x 7→ hx(·) = d(·, x)− d(x, x0).

where C(M) stands for the set of continuous functions in M . Throughout the text we will also
make use of the forms

hx(z) = d(z, x0)− 2〈z , x〉x0 (2.3)

= 〈x , x0〉z − 〈x , z〉x0 . (2.4)

Notice that hx are all 1-Lipschitz and satisfy hx(x0) = 0.
Endow the space C(M) ⊂ RM with the product topology, that is the topology of pointwise

convergence, which is equivalent to the compact-open topology. Then, using the triangle inequality
one has

−d(z, x0) ≤ hx(z) ≤ d(z, x0),

hence ρ(M) may be identified with a subset of Πz∈X [−d(z, x0), d(z, x0)] which, by Tychonoff’s
theorem, is compact for the product topology. Therefore the closure ρ(X) =: Mh will be a compact
set called the horofunction compactification ofX . The elements inMh are called horofunctions of
M .

Proposition 3. The horofunction compactification is compact, Hausdorff and second countable
(hence metrizable).

Proof. By hypothesis,M is a separable metric space, hence Hausdorff and second countable. Since
R is also Hausdorff and second countable, so is C(M) (for the compact-open topology). However
for the subspace of 1−Lipschitz functions normalized by taking the value 0 at x0, the compact-open
topology and the topology of pointwise convergence agree.

IfM is a proper space then the pointwise convergence coincides with the uniform convergence
on compact sets from the usual construction of the horofunction compactification, in this caseMh

contains M as an open and dense set. In the nonproper case, the image ρ(M) may not be open in
ρ(M), so we may not have a compactification in the usual sense.

Proposition 4. Let Isom(M) be the group of isometries of M . Then the action of Isom(M) in M

extends to an action by homeomorphisms onMh, defined by

g · h(z) := h(g−1z)− h(g−1x0), (2.5)

for g ∈ Isom(M) and h ∈ Mh.
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Proof. We naturally transport the action onM to the action on ρ(M) via g · hx = hgx. Then

g · hx(z) = hgx(z)

= d(z, gx)− d(gx, x0)

= d(g−1z , x)− d(x , g−1x0)

= hx(g
−1z)− hx(g

−1x0),

which we can transport to the whole of Mh. It is immediate that if hn → h pointwisely, then
g · hn → g · h pointwisely, whence the action of Isom(M) onMh is continuous.

In this proof we set the notation g · hx = hgx which we will use henceforth without mention.

2.2.2 Horofunctions of a Gromov Hyperbolic Space

We will now explore the special properties of horofunctions in Gromov hyperbolic spaces. Let X
once again be a Gromov hyperbolic space with basepoint x0. We start by partitioning the horofunc-
tion compactification Xh in two: its finite part

Xh
F := {h ∈ Xh : inf(h) > −∞}

and its infinite part
Xh

∞ := {h ∈ Xh : inf(h) = −∞}

Both Xh
F and Xh

∞ are invariant for the action of Isom(X) on Xh. Clearly one has ρ(X) ⊂ Xh
F

and, in well behaved cases, one may actually get the equality. Another important remark to make
concerns the fact that Xh

∞ need not be compact. Let us look again at example 1.

Example 2. RecallX ⊂ R2 is a set given by countably many half-lines emanating from the origin
in R2. Given x, y ∈ X , consider the distance

d(x, y) =

||x− y|| , if x and y belong to the same half-line

||x||+ ||y|| , otherwise.

The sequence of horofunctions hn given as a limit of sequences hxk
, where xk is the point at distance

k from the origin in the n-th ordered half-line. Let y be a point in n-th half line, then hn(y) = −||y||
whose infimum is −∞, that is, hn ∈ Xh

∞. However that hn → hx0 which belongs to Xh
F , hence

Xh
∞ is not compact.
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Having access to two different boundaries of the space X we need to understand how the two
interact with one another. For our purposes once we relate both boundaries we work withXh when
compactness is needed and ∂X if the problem requires a metric. We will start relating Xh and ∂X
by proving that there exists a continuous, surjectiveG−equivariant map betweenXh

∞ and ∂X . With
that in mind, we will notice that horofunctions inXh

∞ arise as limits of sequences of horofunctions
(hxn) where (xn) is Gromov.

Lemma 5 (Lemma 3.8 in Maher and Tiozzo (2018)). LetX be a δ-hyperbolic space with basepoint
x0. Then for every horofunction h ∈ Xh and points x, y ∈ X , the following inequality holds:

〈x , y〉x0 ≥ min{−h(x) , −h(y)} − δ,

moreover, for every z ∈ X ,

〈x , y〉x0 ≥ min{−hx(z) , −hy(z)} − δ.

Proof. Let z ∈ X . Using the triangle inequality one has

〈x , z〉x0 =
1

2
(d(x0, x) + d(x0, z)− d(x, z))

≥ d(x0, z)− d(x, z)

= −hz(x). (2.6)

Now, from the definition of hyperbolicity

〈x , y〉x0 ≥ min{〈x , z〉x0 , 〈z , y〉x0} − δ

≥ min{−hz(x) , −hz(y)} − δ.

The claim follows from the fact that every horofunction is the pointwise limit of functions of the
form hz.

The second inequality is analogous using 〈x , z〉x0 ≥ −hx(z).

Lemma 6. Let h ∈ Xh
∞ be an horofunction and (xn) a sequence such that hxn → h and (yn) a

sequence such that h(yn) → −∞ . Then the sequences (xn) and (yn) are Gromov.

Proof. Using the first inequality in Lemma 5,

lim
n,m→∞

〈yn , ym〉x0 ≥ lim
n,m→∞

min{−h(yn) , −h(ym)} − δ = +∞,

hence (yn) is Gromov.
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Using Lemma 5 again, for every z ∈ X

〈xn , xm〉x0 ≥ min{−hxn(z),−hxm(z)} − δ.

Taking the limit asm,n go towards infinity yields

lim
n,m→∞

〈xn , xm〉x0 ≥ − inf
z∈X

h(z)− δ = +∞.

Proposition 7. Let h ∈ Xh
∞ be an horofunction. Let (xn) and (yn) be Gromov sequences such that

hxn → h and h(yn) → −∞, respectively. Then (xn) and (yn) are Gromov sequences and (xn) ∼
(yn), in particular all sequences (yn) such that h(yn) → −∞ converge to the same boundary point.

Proof. All that is left to prove is that (xn) and (yn) are equivalent. Using Gromov’s inequality
together with Lemma 6 and (2.6)

〈xn , yn〉x0 ≥ min {〈xn , xm〉x0 , 〈xm , yn〉x0} − δ

≥ min {〈xn , xm〉x0 ,−hxm(yn)} − δ.

Taking the iterated limits towards infinity, we obtain

lim
n→∞

〈xn , yn〉x0 ≥ lim
n→∞

lim inf
m→∞

min {〈xn , xm〉x0 ,−hxm(yn)} − δ

= min
{
lim
n→∞

lim inf
m→∞

〈xn , xm〉x0 , lim
n→∞

−h(yn)
}
− δ

= +∞.

Proposition 7 motivates the following definition:

Definition 3 (Local Minimum Map). Define the local minimum map ϕ : Xh
∞ → ∂X given by

ϕ(h) = lim
n→∞

yn = ξ,

where (yn) ∈ ξ is such that h(yn) → −∞.

The local minimum map is Isom(X)-equivariant, continuous and surjective. Proofs for these
properties of the local minimummap can be found in Maher and Tiozzo (2018), and we will include
them as well for the sake of completeness.

Proposition 8 (Lemma 3.12, Proposition 3.14, Corollary 3.15 in Maher and Tiozzo (2018)). The
local minimum map ϕ : Xh

∞ → ∂X is
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1. Isom(X)−equivariant;

2. continuous;

3. surjective.

Proof. 1. Let h ∈ Xh
∞, take (yn) such that h(yn) → −∞ as n → ∞. Then, by definition of the

action, one has
g · h(gyn) = h(yn)− h(g−1x0) → −∞

hence ϕ(g · h) = gϕ(h).
2. Let (hn) be a sequence of horofunctions inXh

∞ converging to some h ∈ Xh
∞. Pick sequences

(xm) and (ym,n) such that h(xm) → −∞ and hn(ym,n) → −∞ as m → ∞. We will now prove
that limn→∞〈ϕ(hn), ϕ(h)〉x0 = ∞, which implies that limn→∞ ϕ(hn) = ϕ(h).

Let N > 0. Since (xm) is Gromov and h(xm) → −∞, there existsm0 such that

h(xm0) ≤ −N − 1

and for everym,m′ > m0

〈xm, xm′〉x0 ≥ N + 1

Due to h being a pointwise limit, there existsm1 = m1(N,n) such that for everym ≥ m1 ≥ m0

hn(xm) ≤ −N

for n large enough. However, by definition of ym,n, the same remains true for hn(ym,n). Hence by
Lemma 5 we have

〈xm0 , ym,n〉x0 ≥ min {−hn(xm),−hn(ym,n)} ≥ N,

and using Gromov’s inequality, for everym,m′ > m1

〈xm′ , ym,n〉x0 ≥ min{〈xm0 , ym,n〉x0 , 〈xm, xm′〉x0} − δ ≥ N − δ.

Thus 〈ϕ(hn), ϕ(h)〉x0 = sup lim infm,m′〈xm′ , ym,n〉x0 ≥ N − δ, which concludes the proof of point
2.

3. Let ξ ∈ ∂X and take (xn) ∈ ξ. Due to compactness, hxn admits, up to a converging
subsequence, a limit h ∈ Xh. Since infhxn ≤ hxn(xn) = −d(x0, xn) → −∞, h must in fact
belong to Xh

∞. Finally, by Proposition 7, we can see that ϕ(h) = ξ.

The previous proposition points out that ϕ behaves like a quotient map. Consider in Xh the
equivalence relation h1 ∼ h2 if supz∈X |h1(z)−h2(z)| is finite. We dedicate the rest of this section
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to proving that the pre-images of the local minimum map are exactly the equivalence classes of ∼
in Xh

∞. As a consequence we will obtain that Xh
∞/ ∼ is homeomorphic to the Gromov boundary.

This homeomorphism is a well known result for proper spaces (see Coornaert and Papadopoulos
(2001)). In the nonproper cases, a mention of the result can be found in Maher and Tiozzo (2018),
although a proof is not known to the author. We will not use this homeomorphism, although we
believe it may help the reader with a better understanding on hyperbolic spaces.

Let us begin by associating each element ξ in ∂X with a function. Then we proceed to relate
such functions with the limit horofunctions of hxn , where (xn) ∈ ξ.

Definition 4 (Busemann Function). Given ξ ∈ ∂X , we define the Busemann function associated
with ξ as

Bξ(z) = 〈ξ , x0〉z − 〈ξ , z〉x0 ,

for every z ∈ X .

In the following two lemmas we explore the continuity of the Gromov product. With effect we
understand its behaviour upon considering Gromov sequences as arguments. This will also allow us
to understand what we gain when we pass from Gromov hyperbolic to strongly hyperbolic spaces,
as the latter are very well behaved at infinity.

Lemma 9 (Lemma 3.4.7 in Das et al. (2017)). Let (xn) and (yn) be two Gromov sequences in a
δ-hyperbolic space and fix y, z ∈ X . Then

lim sup
n→∞

〈xn , y〉z ≤ lim inf
n→∞

〈xn , y〉z + δ

lim sup
n,m→∞

〈xn , ym〉z ≤ lim inf
n,m→∞

〈xn , ym〉z + 2δ

With the limits existing if the space is strongly hyperbolic.

Proof. Fix n1, n2 ∈ N. By Gromov’s inequality

〈xn1 , y〉z ≥ min {〈xn1 , xn2〉z , 〈xn2 , y〉z} − δ.

Taking the lim inf over n1 and the lim sup over n2 gives

lim inf
n,m→∞

〈xn , y〉z ≥ min
{
lim inf
n1,n2→∞

〈xn1 , xn2〉z , lim sup
n2→∞

〈xn2 , y〉z
}
− δ

= lim sup
n→∞

〈xn , y〉z − δ.

Where the last equality comes from (xn) being a Gromov sequence.
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The second inequality is analogous using the following inequality which is immediate from
iterating the 4-point condition of hyperbolicity:

〈x , w〉u ≥ min{〈x , y〉u , 〈y , z〉u , 〈z , w〉u} − 2δ.

As for the statement regarding strongly hyperbolic spaces, notice we have the inequality

b−⟨xn1 , ym1 ⟩z ≤ b−⟨xn2 , ym2 ⟩z + b−⟨xn1 , xn2 ⟩z + b−⟨ym1 , ym2 ⟩z ,

so taking the lim sup in n1,m1 and the lim inf in n2,m2 gives

b− lim infm,n→∞⟨xn , ym⟩z ≤ b− lim supm,n→∞⟨xn , ym⟩z

and by continuity of the exponential the result follows.

As a consequence, for strongly hyperbolic spaces we have the relation limn,m→∞〈xn , ym〉z =

〈ξ , η〉z, for every (xn) ∈ ξ and (yn) ∈ η. In other words, in strongly hyperbolic spaces, the Gromov
product is continuous. For regular hyperbolic spaces we incur in a loss upon doing the limits.

Lemma 10 (Lemma 3.4.10 in Das et al. (2017)). Fix ξ, η ∈ ∂X and y, z ∈ X . For all (xn) ∈ ξ

and (yn) ∈ η, we have

1. 〈ξ , y〉z − δ ≤ lim infn→∞ 〈xn , y〉z ≤ lim supn→∞ 〈xn , y〉z ≤ 〈ξ , y〉z + δ;

2. 〈ξ , η〉z − 2δ ≤ lim infn,m→∞ 〈xn , ym〉z ≤ lim supn,m→∞ 〈xn , ym〉z ≤ 〈ξ , η〉z + 2δ.

Proof. The two leftmost inequalities are trivial and are included for symmetry We now prove 1. as
the proof of 2. is analogue. Suppose that we are given two sequences (x1

n), (x
2
n) ∈ ξ, let

xn =

x1
n/2 , if n is even

x2
(n+1)/2 , if n is odd.

By the hyperbolicity condition, for every n,

〈xn , x
1
n〉x0 ≥ min

{
〈xn , x

2
n〉x0 , 〈x2

n , x
1
n〉x0

}
− δ,

which yields (xn) ∈ ξ. Applying the previous lemma to xn implies

min
i=1,2

lim sup
n→∞

〈xi
n , y〉z ≤ max

i=1,2
lim inf
n→∞

〈xi
n , y〉z + δ.

Now

lim inf
n→∞

〈x2
n , y〉z − δ ≤ lim sup

n→∞
〈x2

n , y〉z − δ
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≤ lim inf
n→∞

〈x1
n , y〉z

≤ lim sup
n→∞

〈x1
n , y〉z

≤ lim inf
n→∞

〈x2
n , y〉z + δ.

Taking the inf over all (x1
n) ∈ ξ one obtains the statement.

In particular, these two lemmas tell us that in strongly hyperbolic spaces, the Gromov product is
continuous. Finally we show that all horofunctions in Xh

∞ are close to a Busemann function, with
the two concepts agreeing for strongly hyperbolic spaces.

Theorem 11. Fix ξ ∈ ∂X and z ∈ X . For all (xn) ∈ ξ we have

Bξ(z)− 2δ ≤ lim inf
n→∞

hxn(z) ≤ lim sup
n→∞

hxn(z) ≤ Bξ(z) + 2δ

Proof. The proof is a direct application of the previous Lemma to (2.4) and the expression of Buse-
mann functions.

Corollary 12. Let ∼ be the equivalence relation on Xh
∞ given by

h1 ∼ h2 ⇔ sup
z∈X

|h1(z)− h2(z)| < ∞

Then the local minimum map descends to an homeomorphism from Xh
∞/ ∼ onto ∂X . Moreover, if

X is strongly hyperbolic, then ∼ is the equality relation.

Proof. Let us recall that we already have continuity and surjectivity. Using Proposition 7 and The-
orem 11 we have that the image of two horofunctions h1, h2 ∈ Xh

∞ under the local minimum is the
same if and only if ||h1 − h2|| < 4δ; hence it descends to a continuous bijection between Xh

∞/ ∼
and ∂X . Finally, inXh

∞ we consider the induced topology byXh. SinceXh is compact, any closed
set in Xh

∞ is compact, hence its image in ∂X is also compact, thus closed since ∂X is Hausdorff.
This implies that ϕ is closed, hence the local minimum map descends to a closed map. Therefore
Xh

∞/ ∼ and ∂X are homeomorphic.

In our work, we often need to work with arbitrary sequences that escape towards the Gromov
boundary. Thus a bad behaviour of ∂X could make our study a lot more difficult. With that in mind
we will restrict our class of hyperbolic spaces to those with a good behaviour at the boundary

Definition 5 (Basic Assumption). We say that a Gromov hyperbolic space satisfies the basic as-
sumption (BA) if the local minimum map is a homeomorphism.
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Notice that all strongly hyperbolic cases satisfy (BA), so it seems we have lost word-hyperbolic
groups. This is not known however, since it remains as an open problem to know if every hyperbolic
group admits a group of generators for which its Cayley graph satisfies (BA) (see Section 4 of Gilch
and Ledrappier (2013)).

If X satisfies (BA) we set the notation hξ whenever ϕ(hξ) = ξ ∈ ∂X , where ϕ stands for the
local minimum map. Notice that this notation extends the previously used notation hx for points in
X , thus obtaining a consistent notation in BordX .

We finish this subsection by proving a result that should be thought of as saying that the operator
norm ||A||op withA ∈ SL(2,R) and the norm ||A||1 = max{||Ae1||, ||Ae2||}, where {e1, e2} stands
for the canonical basis, are equivalent.

Lemma 13. Let X be a hyperbolic space satisfying (BA) and ξ 6= η ∈ ∂X . Take h1 and h2 such
that ϕ(h1) = ξ and ϕ(h2) = η, then for every g ∈ Isom(X) there exists a constant K(δ, ξ, η)

depending on the hyperbolicity constant δ and the points ξ and η such that

max
i=1,2

hi(gx0) ≤ d(gx0, x0) ≤ max
i=1,2

hi(gx0) +K(δ, ξ, η).

Proof. For every g ∈ G

d(gx0, x0) = hyim
(gx0) + 2〈yim , gx0〉x0 .

Let (yim) be Gromov sequences such that hyim
→ hi for i = 1, 2whence, using the Gromov inequal-

ity

d(gx0, x0) = max
i=1,2

hyim
(gx0) + 2 min

i=1,2
〈yim , gx0〉x0

≤ max
i=1,2

hyim
(gx0) + 2〈y1m , y2m〉x0 + 2δ

By Lemma 6 and Proposition 7 we know (y1m) and (y2m) are not equivalent, so taking the inferior
limit inm one obtains

max
i=1,2

hi(gx0) ≤ d(gx0, x0) ≤ max
i=1,2

hi(gx0) +K(δ, ξ, η),

for a constantK(δ, ξ, η) = 2〈ξ , η〉x0 + 4δ.

2.3 Group of Isometries

Some of the nice properties from hyperbolic spaces pass to their group of isometries Isom(X). In
particular we will prove in this section that Isom(X) is a topological group. We start by noticing
how Isom(X) behaves on the boundary. The results in this chapter can be found in Sampaio (2021).
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Proposition 14. Let X be a Gromov hyperbolic space g ∈ Isom(X) and ξ, η ∈ BordX , and take
h1 and h2 such that ϕ(h1) = ξ and ϕ(h2) = η then

1

C(δ)
b−

1
2 [h1(g−1x0)+h2(g−1x0)] ≤ D̄b(gξ , gη)

D̄b(ξ , η)
≤ C(δ)b−

1
2 [h1(g−1x0)+h2(g−1x0)],

where C(δ) = 4b6δ. Moreover, C(δ) = 1 if X is strongly hyperbolic.

Proof. We start by using the visual condition (2.2)

1

4

ρb(gξ , gη)

ρb(ξ , η)
≤ Db(gξ , gη)

Db(ξ , η)
≤ 4

ρb(gξ , gη)

ρb(ξ , η)
.

Using the definition of Gromov product and some computations yields

〈x , y〉z − 〈x , y〉x0 =
1

2

(
〈x , x0〉z − 〈x , z〉x0 + 〈y , x0〉z − 〈y , z〉x0

)
.

Take (xn) ∈ ξ and (yn) ∈ η. Substituting in the equality above x by xn, y by yn and z = g−1x0 and
taking limits, by Lemmas 9 and 10 we obtain

1

2

(
h1(g

−1x0) + h2(g
−1x0)

)
− 6δ ≤ 〈ξ , η〉g−1x0

− 〈ξ , η〉x0 ≤
1

2

(
h1(g

−1x0) + h2(g
−1x0)

)
+ 6δ.

Finally one has

ρb(gξ , gη)

ρb(ξ , η)
= b−(⟨gξ , gη⟩x0−⟨ξ , η⟩x0) = b−(⟨ξ , η⟩g−1x0

−⟨ξ , η⟩x0),

and the result follows.

Recall now that we set a metric in Isom(X) by the expression

dG(g1, g2) := max
{

sup
ξ∈BordX

Db(g1ξ, g2ξ) ; sup
ξ∈BordX

Db(g
−1
1 ξ, g−1

2 ξ)

}
.

As we alluded to, we now prove the following theorem

Theorem 15. Let X be a Gromov hyperbolic space and Isom(X) its group isometries, then dG is
a metric in Isom(X). Moreover (Isom(X), dG) is a topological group.

Proof. Since Db is a metric, we are left with proving that dG(g1, g2) = 0 implies that g1 = g2.
Suppose dG(g1, g2) = 0 and let x ∈ X . Notice g1x and g2x are both in X so

D̄b(g1x, g2x) ≥ ρb(g1x, g2x)/4 > 0

hence Db(g1x, g2x) = log(b)d(g1x, g2x). Therefore d(g1x, g2x) = 0 for every x ∈ X , implying
g1 = g2.
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All that remains is to see that the map (g, g′) 7→ g−1g′ is continuous. This will follow from a
series of inequalities. First, for every (g, g′), (g1, g′1) ∈ G×G,

dG(g
−1g′, g−1

1 g′1) ≤ dG(g
−1g′, g−1g′1) + dG(g

−1g′1, g
−1
1 g′1).

Clearly dG(g−1g′1, g
−1
1 g′1) ≤ dG(g

−1, g−1
1 ) = dG(g, g1). Moreover, given ξ ∈ BordX we have

d(g−1g′ξ, g−1g′1ξ) = d(g′ξ, g′1ξ).

Next use Proposition 14 to obtain

D̄b(g
−1g′ξ, g−1g′1ξ) =

D̄b(g
−1g′ξ, g−1g′1ξ)

D̄b(g′ξ, g′1ξ)
D̄b(g

′ξ, g′1ξ)

≤ C(δ)b−
1
2
(h1(gx0)+h2(gx0))D̄b(g

′ξ, g′1ξ)

≤ C(δ)bd(gx0,x0)D̄b(g
′ξ, g′1ξ),

for some horofunction h1, h2 ∈ Xh. Splitting into the two possible cases we have either

Db(g
−1g′ξ, g−1g′1ξ) = (log b)d(g−1g′ξ, g−1g′1ξ) ≤ D̄b(g

−1g′ξ, g−1g′1ξ)

or
Db(g

−1g′ξ, g−1g′1ξ) = D̄b(g
−1g′ξ, g−1g′1ξ) ≤ (log b)d(g−1g′ξ, g−1g′1ξ).

In either case, the previous controls yield

Db(g
−1g′ξ, g−1g′1ξ) ≤ C(δ)bd(gx0,x0)dG(g

′, g′1).

Taking the supremum over ξ yields

dG(g
−1g′, g−1

1 g′1) ≤ dG(g, g1) + C(δ)bd(gx0,x0)dG(g
′, g′1). (2.7)

2.4 Generalities on Dynamics and Ergodicity

A dynamical system consists of a trio of notions - space, time and evolution. Typically a point
in the space describes the state of a system at a particular time. The study of dynamical systems
focuses on describing the evolution of points in space. Such problems arise naturally in other parts
of mathematics as well as everyday applications. On top of that, these problems are typically hard,
thus making dynamical systems a very active area of research in mathematics.
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In some systems describing the state of the space is quite difficult, this happens for example if
we try to model an ideal gas inside a container. In such cases, a full deterministic approach may not
be reasonable, as the complexity of the problem is too vast, so we focus on the average behaviour
of the system, thus studying the system as a whole. In such systems we describe dynamics with
respect to some measure, and we call this area of mathematics Ergodic theory.

In this section we very briefly go over ergodic theory although we assume that the reader is
familiar with some terms as well as the main theorems, such as Birkhoff’s and Kingman’s ergodic
theorems. As a reference, the reader can find these topics in Viana and Oliveira (2016) or in the
lecture notes of Sarig (2009). A lot of notations used in Chapter 3 are laid here.

Let (Ω, β, µ) be a standard probability space with measure µ and σ-algebra β. We say T : Ω →
Ω is an ergodic transformation with respect to µ if it is measurable, preserves measure (µ(A) =

µ(T−1A) for every measurable set A) and every measurable invariant set A = T−1A has measure
0 or 1. Typically we denote an ergodic transformation by (T, µ), where Ω and β are implicit in the
measurability of T .

Given a topological group G, we say that G acts by semicontractions onM if for every g ∈ G,
d(gx, gy) ≤ d(x, y). Notice that this includes actions by isometries. Given an ergodic transforma-
tion T , we say that a measurable map a : N×Ω → G is a right multiplicative cocycle in G over T
if a(n+m,ω) = a(n, ω)a(m,T nω). Given a Borel measurable g : Ω → G consider its associated
right multiplicative cocycle

a(n, ω) = g(n)(ω) := g(ω)g(Tω)...g(T n−1ω),

for every n ∈ N and ω ∈ Ω. The cocycle a is thus comprised of the information (g, T,Ω, β),
whenever it is clear we identify the cocycle with g. Fixed a basepoint x0 ∈ M , we will refer to
g(n)(ω)x0 as the process.

Definition 6 (Integrable Cocycle). Let x0 be a basepoint in M . We say that a cocycle (g, T,Ω, β)
is integrable if ∫

Ω

d(g(ω)x0, x0)dµ(ω) < ∞.

One of the fundamental characteristics of an integrable cocycle is its drift

ℓ(g) := lim
n→∞

1

n

∫
Ω

d(g(n)(ω)x0, x0)dµ(ω) = lim
n→∞

1

n
d(g(n)(ω)x0, x0),

where these limits exists by Kingman’s ergodic theorem and the second is constant for almost every
ω due to ergodicity, moreover none of these limits depend on the basepoint x0.
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In this thesis we are mostly interested in exploring continuity of the drift with respect to the
cocycle g, this requires us to choose a space a cocycles and endow it with a topology. We devote
this section to introducing this class of cocycles.

Let G ⊂ Isom(X) be a subgroup of isometries of some Gromov hyperbolic space X . Let
1 ≤ b ≤ 21/δ. Given g : Ω → G we denote by g−1 : Ω → G the map that sends ω to g(ω)−1.
Consider S(Ω, G) to be the space of integrable cocycles g : Ω → G such that g−1 is also measurable
and

d∞(g) := sup
ω∈Ω

bd(g(ω)x0,x0) < ∞

Define the following pseudometric

d∞(g1, g2) := ess supω∈ΩdG(g1(ω) , g2(ω)),

for every g1, g2 ∈ S(Ω, G). Analogously to the construction of L∞, we define the equivalence
relation

g1 ∼ g2 ⇔ d∞(g1, g2) = 0

in S(Ω, G), so the set of equivalence classes S∞(Ω, G) becomes a metric space when equipped with
d∞.

We can now think of the drift as a map

ℓ : S∞(Ω, G) → R

g 7→ ℓ(g).

The drift is given by the speed at which we move away from the basepoint x0. This is exactly
why we introduced boundaries in the previous section. The following theorem by Karlsson and
Gouëzel makes this notion precise by guaranteeing the existence of a horofunction that tracks the
process. In other words, there exists a specific direction that the trajectory follows towards the
boundary.

Theorem 16 (Theorem 1.3 in Gouëzel and Karlsson (2020)). Let (g, T,Ω, β) be a cocycle, for
almost every ω, there exists an horofunction hω ∈ Mh such that

lim
n→∞

1

n
hω(g

(n)(ω)x0) = −ℓ(g).

Moreover, ifM is separable andΩ is a standard probability space, one can choose the map ω 7→ hω

to be Borel measurable.
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The intuition behind the result is that we can think of eh(z) as the distance between a point
associated to h and z. In other words the theorem states that the sequence g(n)(ω)x0 approaches a
certain point related to h at a linear rate given by the drift. Although the intuition is quite direct and
this result is one of our stepping stones, its proof is quite intricate and long for our purposes.

Notice as well how general the Theorem is, as no hypothesis are placed in M . Less general
versions of the result also exist as in Karlsson and Margulis (1999) or Karlsson and Ledrappier
(2006).

2.5 Dynamics in Hyperbolic Spaces

Our goal in this section is to describe the typical behaviour of g(n)(ω)x0 when X is a hyperbolic
space andG is its group of isometries. We do that by adding information to Karlsson and Gouëzel’s
theorem:

Theorem 17 (HyperbolicMultiplicative Ergodic Theorem). LetX be a separable geodesic Gromov
hyperbolic space and (g, T,Ω, β) a cocycle with positive drift. For almost every ω in Ω there is a
filtration of the horofunction boundary

Xh
−(ω) ⊂ Xh

+(ω) = Xh,

such that:

1. for every h ∈ Xh
+(ω)\Xh

−(ω)

lim
n→∞

1

n
h(g(n)(ω)x0) = ℓ(g);

2. for every h ∈ Xh
−(ω)

lim
n→∞

1

n
h(g(n)(ω)x0) = −ℓ(g),

and given h1, h2 ∈ Xh
−, one has supz∈X |h1(z)− h2(z)| < ∞.

Moreover the filtration is G−invariant, that is,

g(ω) ·Xh
−(ω) = Xh

−(Tω)

and is measurable provided Ω is a standard probability space.

Remark 1. In the case of (BA) and strongly hyperbolic spaces more can be said regarding Xh
−; in

fact it consists of a single horofunction which is picked measurably, that is, the map ω 7→ h−
ω ∈

Xh
−(ω) is measurable. This fact will be very important later when we obtain large deviations for

the Markov setting.
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In this version, the theorem describes the behaviour of all horofunctions. The idea here is that in
negatively curved we are able to see every point at infinity from every other point at infinity as we
can connect them by a quasi-geodesic (or a geodesic if the space is proper). Hence horofunctions
inXh

− see the process getting closer whilst horofunctionsXh
+ see the process going away, however

since they are connected by a quasi-geodesic the rate is the same for both.
When we reach curvature zero curvature the property of connecting points at infinity by quasi-

geodesics, typically called visibility, is lost (see Chapter 9 in Bridson and Haefliger (2013)), hence
the result becomesmore complicated allowing the limit ofh(g(n)x0)/n to take a continuum of values
in the interval [−ℓ(g), ℓ(g)]. For proper CAT(0) spaces, the limit is given by (2 sin(θ/2) − 1)ℓ(g),
where θ is the angular distance between the point at infinity associated to the horofunction and the
hitting point of the process, limn→∞ g(n)x0 (this is a consequence of Karlsson and Margulis (1999)
ray approximation and Proposition 9.8 in Bridson and Haefliger (2013)).

Proof of Theorem 17. By Karlsson-Gouëzel’s theorem, for almost every ω ∈ Ω there is a measur-
ably chosen horofunction such that

lim
n→∞

1

n
h(g(n)(ω)x0) = −ℓ(µ).

This choice being measurable is what makes the filtration measurable.
For such ω ∈ Ω, set

Xh
−(ω) =

{
h ∈ Xh : lim

n→∞

1

n
h(g(n)(ω)x0) = −ℓ(µ)

}
.

Let hξ, hη ∈ Xh
−(ω) for some ξ, η ∈ ∂X . Then, by Proposition 14, for 1 < b ≤ 21/δ we have

D̄b(g
−(n)(ω)ξ , g−(n)(ω)η) ≥ 1

C(δ)
b−

1
2 [hξ(g

(n)(ω)x0)+hη(g(n)(ω)x0)]D̄b(ξ , η). (2.8)

Using the fact ∂X is bounded and taking n large enough, we see that D̄b(ξ , η)must be zero. Clearly,
the same argument using (2.8) shows that there is no other equivalence class of horofunctions for
which limn→∞

1
n
h(g−(n)(ω)x0) takes a negative value.

Now
Xh

+(ω)\Xh
−(ω) =

{
h ∈ Xh : lim inf

n→∞

1

n
h(g(n)(ω)x0) ≥ 0

}
Let h ∈ Xh

+(ω)\Xh
−(ω) and h1 ∈ Xh

−(ω), using (2.8) again together with the fact Db is bounded
from above by 1, we obtain that for every n ∈ N

C ≤ h(g(n)(ω)x0) + h1(g
(n)(ω)x0),
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for some C ∈ R. However, notice that |h(ωnx0)| ≤ d(ωnx0 , x0), whence

C − h1(g
(n)(ω)x0) ≤ h(g(n)(ω)x0) ≤ d(g(n)(ω)x0 , x0)

for every n ∈ N. Dividing both sides by n and taking limits one has

ℓ(µ) = lim
n→∞

− 1

n
h1(g

(n)(ω)x0) ≤ lim
n→∞

1

n
h(g(n)(ω)x0) ≤ ℓ(µ),

which proves the statement.
For the G-invariance of Xh

−, first recall we are using the right action.

lim
n→∞

1

n
g(ω) · h(g(n)ωx0) = lim

n→∞

1

n

(
h(g(ω)−1g(n)(ω)x0)− h(g(ω)−1x0)

)
= lim

n→∞

n− 1

n

1

n− 1

(
h(gn−1(Tω)x0)− h(g(ω)−1x0)

)
= lim

n→∞

1

n− 1
h
(
g(n−1)(Tω)x0

)
,

for every h ∈ Xh, in particular, g0 ·Xh
−(ω) = Xh

−(Tω).

Consider S∞
+ (Ω, G) to be the subspace of S∞(Ω, G) consisting of the elements g ∈ S∞(Ω, G)

with positive drift. By the previous theorem, for every g ∈ S∞
+ (Ω, G) we can consider the almost

everywhere defined map

ξg : Ω → ∂X

ω 7→ ξ(g, ω).

Denote by S1(Ω, ∂X) be the space of bounded measurable maps from Ω to ∂X where we consider
the metric

d1(f1, f2) :=

∫
Ω

Db(f1(ω), f2(ω))dµ(ω),

for every f1, f2 ∈ S1(Ω, ∂X). SinceΩ is standard, ξg belongs to S1(Ω, ∂X) due to the ending point
of Theorem 17. Finally we define the map

ξ : S∞
+ (Ω, G) → S1(Ω, ∂X)

g 7→ ξg.
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Chapter 3

Abstract Continuity Theorem

Our goal in this chapter is to study the continuity of the drift and tracking point maps, ℓ and ξ,
respectively. With effect we are interested in obtaining a general criteria for this continuity to occur.
Duarte et al. (2016) explore the statistical property of large deviation estimates together with the
avalanche principle to obtain this sought after continuity for the Lyapunov exponent. Just like
the Lyapunov exponent, the drift is obtained as a limit of a subadditive process. We explore this
similarity to transport the ideas to the metric setting.

With this in mind, we will start by proving an avalanche principle type result for hyperbolic
spaces. Then we proceed to use large deviations with the avalanche principle in an inductive way to
obtain our continuity result. In this chapter we stick to strongly hyperbolic spaces, as that is where
our avalanche principle will be valid.

By the end of the chapter we also explore a positivity criteria for the drift using the avalanche
principle and a similar inductive process as we have used before for continuity.

3.1 Statement of the Theorem

Let X stand for a strongly hyperbolic metric space with basepoint x0. Define the finite scale drift
of g ∈ S∞(Ω, G) at time n ∈ N as

ℓn(g) :=
1

n

∫
Ω

d(g(n)(ω)x0, x0)dµ(ω),

which clearly satisfies ℓn(g) → ℓ(g) as n goes to∞.
Henceforth we fix C ⊂ S∞(Ω, G) a class of cocycles equipped with some distance dC such that

dC(g1, g2) ≥ d∞(g1, g2). We do this as in some cases we need some extra restriction on the cocycles
we consider, thus making it not enough to work with the entire S∞(Ω, G). In the same spirit we
will denote by C+ the set C ∩ S∞

+ (Ω, G).
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Definition 7 (Large deviation estimates). Fix x0 ∈ X . A cocycle g ∈ C is said to satisfy a uniform
large deviation estimates of exponential type if there are constants r > 0, C, c > 0 and for every
ε > 0 there exists n̄ = n̄(ε) such that

µ

{
ω ∈ Ω :

∣∣∣∣ 1nd(g(n)1 (ω)x0, x0)− ℓn(g1)

∣∣∣∣ > ε

}
< Ce−cε2n

for every g1 ∈ C with dC(g, g1) < r and every n ≥ n̄.

Let b > 1, since en = bn logb(e) one can replace the exponential with any base in the large
deviations. For computational reasons it will make sense to work with the same 1 < b ≤ 21/δ as in
the metric Db.

We are now ready to state the main theorem of the chapter.

Theorem 18. LetX be a strongly hyperbolic metric space and (T,Ω, µ, β) be a measure preserving
dynamical system. Given a class of cocycles C, suppose every g ∈ C+ satisfies a uniform large
deviation estimate, then

1) The drift ℓ : C → R is continuous;

2) The drift ℓ : C+ → R is locally Hölder continuous;

3) Moreover, ξ : C+ → S1(Ω, ∂X) is locally Hölder continuous.

The theorem yields not only continuity but also quantifies it. Exploring the proof one can obtain
the explicit constants associated with the local Hölder continuity as well as the size of the neigh-
bourhood where these hold.

3.2 Avalanche Principle

In its linear form the avalanche principle is a theorem that allows us to take conclusions of global
nature on a product of linear mappings from local hypotheses on each map. Our goal in this section
is to obtain a metric version of the result in hyperbolic spaces, where we are allowed to take con-
clusions of global nature based on the local nature of the objects at hand. The theorem itself will
read as follows.

Theorem 19 (Avalanche Principle). LetX be a strongly hyperbolic space, x0, ..., xn be a sequence
of points in X and ρ, σ > 0 constants such that

G) d(xi−1, xi) ≥ ρ, i = 1, ..., n;
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A) 〈xi−1, xi+1〉xi
≤ σ, i = 1, ..., n− 1;

P) 2σ < ρ− 2δ;

Then, for every 2 ≤ k ≤ n,

1) 〈x0, xk〉xk−1
< σ + 1

log bb
2σ−ρ+2δ,

2) d(x0, xk) > ρ+ (k − 1)(ρ− 2σ − 2δ),

3) and the following inequality holds∣∣∣∣∣d(x0, xk) +
k−1∑
i=2

d(xi−1, xi)−
k−1∑
i=1

d(xi−1, xi+1)

∣∣∣∣∣ ≤ 2(k − 1)
1

log b
b2σ−ρ+2δ.

For CAT(−1) spaces, condition P ) may be replaced with sinh(ρ − σ) > 2 sinh(ρ/2), which is
more general, specially for small values of ρ (see Oregón-Reyes (2020)). Our version applies to
more general spaces and suffices for our applications.

Before we tackle the proof, let us make two remarks; first that the hypothesis imply

〈xi−1, xi+1〉xi
+ 〈xi, xi+2〉xi+1

≤ 2σ < ρ− 2δ ≤ d(xi, xi+1)− 2δ, (3.1)

secondly, that the left-hand side of the conclusion may be rewritten as∣∣∣∣∣d(x0, xk)−
k∑

i=1

d(xi−1, xi) + 2
k−1∑
i=1

〈xi−1, xi+1〉xi

∣∣∣∣∣ . (3.2)

Proof of Theorem 19. We will base the proof in establishing two simple claims.
Claim 1:

|〈x0, xk〉xk−1
− 〈xk−2, xk〉xk−1

| ≤ δ.

Let us use induction: The case k = 2 is trivial. For k > 2, notice that

〈x0, xk−2〉xk−1
= d(xk−1, xk−2)− 〈x0, xk−1〉xk−2

≥ d(xk−1, xk−2)− 〈xk−3, xk−1〉xk−2
− δ by induction,

> 〈xk−2, xk〉xk−1
+ δ by (3.1).

Proceeding with the definition of hyperbolicity

〈xk−2, xk〉xk−1
≥ min{〈x0, xk−2〉xk−1

, 〈xk, x0〉xk−1
} − δ,
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where the minimummust be 〈xk, x0〉xk−1
, otherwise we would get 〈xk−2, xk〉xk−1

> 〈xk−2, xk〉xk−1
.

Whence
〈x0, xk〉xk−1

≤ 〈xk−2, xk〉xk−1
+ δ.

Changing the roles of x0, xk−2 we get the claim.
Claim 2: Our second claim is in fact item 1),

|〈x0, xk〉xk−1
− 〈xk−2, xk〉xk−1

| ≤ 1

log b
b2σ−ρ+2δ.

Applying Lagrange’s mean value theorem with f(x) = b−x, followed by claim 1, the fact that X
is strongly hyperbolic and the inequality 〈x0, xk−2〉xk−1

≥ d(xk−1, xk−2) − 〈xk−3, xk−1〉xk−1
− δ

obtained in claim 1, yields∣∣〈x0, xk〉xk−1
− 〈xk−2, xk〉xk−1

∣∣ ≤ 1

log b
bmax{⟨x0,xk⟩xk−1

,⟨xk−2,xk⟩xk−1
}
∣∣∣b−⟨x0,xk⟩xk−1 − b−⟨xk−2,xk⟩xk−1

∣∣∣
≤ 1

log b
bσ+δb−⟨x0,xk−2⟩xk−1

≤ 1

log b
bσ+δb⟨xk−3,xk−1⟩xk−2

−d(xk−1,xk−2)+δ

≤ 1

log b
b2σ−ρ+2δ.

These claims were motivated by the relation

d(x0, xn) = d(x0, xn−1) + d(xn−1, xn)− 2〈x0, xn〉xn−1 ,

which makes it so by controlling |〈x0, xn〉xn−1 − 〈xn−2, xn〉xn−1 | by some quantity, then (3.2) can
be controlled by (n− 1) times said quantity.

Remark 2. Notice that for hyperbolic spaces in general, claim 1 implies that∣∣∣∣∣d(x0, xn) +
n−1∑
i=2

d(xi−1, xi)−
n−1∑
i=1

d(xi−1, xi+1)

∣∣∣∣∣ ≤ 2(n− 1)δ.

Example 3. Let us look at the hyperbolic plane H2. The hyperbolic plane is strongly hyperbolic
with b = e and for every isometry g, d(gx0, x0) = 2 log ||g||. Consider g0, ..., gi−1 ∈ SL(2,R)
isometries of H2. Finally take x0 = i and xj = g(j)x0. Then the hypothesis read as follows

G) d(xi−1, xi) ≥ ρ ⇔ 2 log ||gi−1|| ≥ ρ ⇔ ||gi−1||2 ≥ eρ := µ;

A) 〈xi−1, xi+1〉xi
≤ σ ⇔ ||gi−1gi||

||gi−1|| ||gi|| ≥ e−σ := ν;

P) µ−1 < e−2δν2,
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whilst the conclusion reads∣∣∣∣∣log ||g(n)||+
n−1∑
i=2

log ||gi−1|| −
n−1∑
i=1

log ||gi−1gi||

∣∣∣∣∣ ≤ 2(n− 1)e2σ−ρ+2δ = 2e2δ(n− 1)
1

µν2
.

Which is a restatement of the SL(2,R) version of the Avalanche principle, from Duarte and Klein
(2017).

3.3 Continuity of the Drift

In this section we prove the first assertion of Theorem 18. This is done by following a specific route
wherewe start by proving the continuity at a finite scale, thenwe transport the control to larger scales
by an inductive step based on the Avalanche principle and the existence of large deviation estimates.

3.3.1 Finite Scale Continuity

Let us start by proving that at a finite scale the drift is continuous aswell as understand this continuity
rate, this is fulcral for the next step where we try to transport these controls forward in time.

Lemma 20. Given C > 0, set GC = {g ∈ G : d(gx0, x0) < C}. The map GC → R defined by
g 7→ d(gx0, x0) is Lipschitz continuous.

Proof. Let g1, g2 ∈ GC . Notice that |d(g1x0, x0)−d(g2x0, x0)| ≤ d(g1x0, g2x0), so ifDb(g1x0, g2x0) =

(log b)d(g1x0, g2x0) we are done, otherwise use the inequality (log b)x < bx/2

|d(g1x0, x0)− d(g2x0, x0)| ≤ d(g1x0, g2x0)

≤ 1

log b
bd(g1x0,g2x0)/2

≤ bd(g1x0,x0)/2+d(x0,g2x0)/2

log b
bd(g1x0,g2x0)/2−d(g1x0,x0)/2−d(x0,g2x0)/2

≤ C

log b
b−⟨g1x0 , g2x0⟩x0 ≤ Db(g1x0, g2x0) ≤ DG(g1, g2).

We will use this trick multiple times throughout the text.

Lemma 21. Let g ∈ S∞(Ω, G), there existC = C(g) > 0 and r > 0 such that if g1, g2 ∈ S∞(Ω, G)

with d∞(gi, g) < r for i = 1, 2, then for every n ∈ N and µ-a.e ω ∈ Ω

1. d∞(g1) < C;

2. dG(g(n)1 (ω), g
(n)
2 (ω)) ≤ nCn−1d∞(g1 , g2).
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Proof. Point 1. is an immediate consequence of the continuity proven before. Denote by T : Ω → Ω

the ergodic transformation at hand. From the proof that Isom(X) is a topological group, for every
ω ∈ Ω, one has

dG(g
(n)
1 (ω), g

(n)
2 (ω)) ≤ dG(g1(ω), g2(ω)) + bd(g1(ω)x0,x0)dG(g

(n−1)
1 (Tω), g

(n−1)
2 (Tω))

≤ d∞(g1, g2) + CdG(g
(n−1)
1 (Tω), g

(n−1)
2 (Tω))

so the claim follows upon taking the supremum.

Proposition 22 (finite scale continuity). Let g ∈ S∞(Ω, G). For every g1, g2 ∈ S∞(Ω, G) and for
almost every ω ∈ Ω there exists C = C(g) > 0,∣∣∣∣ 1nd(g(n)1 (ω)x0, x0)−

1

n
d(g

(n)
2 (ω)x0, x0)

∣∣∣∣ ≤ Cn

log(b)
d∞(g1, g2) ≤

bC1n

log(b)
d∞(g1 , g2).

where C1 := logb (C), in particular,

|ℓn(g1)− ℓn(g2)| <
bC1n

log(b)
d∞(g1, g2).

Recall that ℓn stands for the finite scale drift, hence the bottom inequality in the proposition
follows from the upper one after integration on ω.

Proof. To soften notations, let us omit ω throughout the proof. explore this∣∣∣d(g(n)1 x0, x0)− d(g
(n)
2 x0, x0)

∣∣∣ ≤ d(g
(n)
1 x0, g

(n)
2 x0)

≤ 1

log(b)
bd(g

(n)
1 x0,g

(n)
2 x0)/2

≤ bd(g
(n)
1 x0,x0)/2+d(g

(n)
2 x0,x0)/2

log(b)
b−⟨g(n)

1 x0 , g
(n)
2 x0⟩x0

≤ Cn

log b
dG(g

(n)
1 (ω), g

(n)
2 (ω))

≤ n
C2n

log b
d∞(g1, g2)

Which concludes the proof, by using C2 as the C from the statement in the proposition.

This proposition implies the continuity of the maps ℓn. Since the drift ℓ(g) may be given as
infn≥1 ℓn(g), the upper semi-continuity of ℓ(g) follows from the following lemma.

Lemma 23. Let M be a metric space and fn : M → R be a sequence of upper semi-continuous
functions. Then, f(x) = infn≥1 fn(x), the pointwise infimum of these functions, is upper semi-
continuous.
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Proof. Let x ∈ M and take infn≥1 fn(x) = g(x) < r, there must be i ≥ 1 such that fi(x) < r.
Since fi(x) is upper semi-continuous, there must be a neighbourhood V of x such that for every
y ∈ V one has fi(y) < r. Since gi(y) ≤ fi(y) for every y, we obtain g(y) < r for every y ∈ U

thus proving the Lemma.

Since ℓ is upper semi-continuous, it is continuous in the neighbourhood of the cocycles g ∈ C
in which it is zero. With that said we focus cocycles in C+, where we obtain a stronger modulus of
continuity.

3.3.2 Inductive Step

In this section we will understand how to pass the previously estabilished controls forward through
an inductive step based on the large deviations estimates and the avalanche principle. Throughout
the inductive process we will incur in some errors, we start with a lemma showing these errors are
of the order of magnitude we want to control.

Lemma 24. Let g ∈ S∞(Ω, G), if n, n0, n1, r ∈ N are such that n1 = nn0 + r where 0 ≤ r < n0,
then

−2 logb(C)
n0

n1

+ ℓ(n+1)n0(g) ≤ ℓn1(g) ≤ ℓnn0(g) + 2 logb(C)
n0

n1

.

Proof. Givenn1 = nn0+rwhere 0 ≤ r < n0we have, for everyω, g(n1)(ω) = g(nn0)(ω)g(r)(T nn0ω),
whence

d(g(n1)(ω)x0 , x0) ≤ d(g(nn0)(ω)x0 , x0) + d(g(r)(T nn0ω)x0 , x0),

integrating both sides, one has

ℓn1(g) ≤
nn0

n1

ℓnn0(g) +
r

n1

ℓr(g).

which gives

ℓn1(g) ≤ ℓnn0(g) +
r

n1

[
ℓ(r)(g)− ℓ(nn0)(g)

]
≤ ℓnn0(g) + 2 logb(C)

r

n1

.

For the leftmost inequality write n1 = (n+1)n0+q where q = n0−r and proceed similarly.

The following proposition is the important step towards proving continuity of the drift. Its
content is that if we obtain some control for time n0, then we can transport it to time n1 larger than
n0. To do this we break the orbit at time n1 into smaller pieces of size n0 which we then relate back
with the larger piece of size n1 by using the avalanche principle.
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Proposition 25 (Inductive step). Let g ∈ C+ and c, n be the uniform large deviation parameters.
Fix ε = ℓ(g)/100 > 0 and denote c1 := c

2
ε2. There are constants C = C(g) > 0, r = r(g) > 0,

n0 = n0(g) ∈ N, such that for any n0 > n0, if the inequalities

ℓn0(g1)− ℓ2n0(g1) < η0

|ℓn0(g1)− ℓn0(g)| < θ0

holds for any g1 ∈ C such that d(g1, g) < r and if the positive numbers η0, θ0, satisfy

θ0 + 2η0 < ℓ(g)− 4ε,

then for every n1 such that |n1 − ec1n0 | < 1 one has

|ℓn1(g1) + ℓn0(g1)− 2ℓ2n0(g1)| ≤ C
n0

n1

(3.3)

Furthermore,

ℓn1(g1)− ℓ2n1(g1) < η1 (3.4)

|ℓn1(g1)− ℓn1(g)| < θ1 (3.5)

where

θ1 = θ0 + 4η0 + C
n0

n1

η1 = C
n0

n1

.

From this point on in the text we will use the notation a ≲ b to convey that there exists a
universal constant C such that a ≤ Cb.

Proof. Throughout the proof C will stand for some constant which isn’t a priori always the same.
We start the proof with some assumptions, in particular, making r smaller if necessary, every g1

with d∞(g, g1) < r satisfies large deviation estimates. We can also assume n0 to be large enough
so that |ℓn(g)− ℓ(g)| < ε for n ≥ n0 which comes from the fact ℓn(g) converges to ℓ(g).

With that said, let g1 be in the conditions above. Assume n1 = nn0 as otherwise we obtain an
extra error of order n0/n1 which, by the previous lemma, is along the size of our control. Fix x0 a
basepoint in X and define, for every 0 ≤ i ≤ n− 1, the sequence of points

xi(ω) := g
(n0)
1 (ω)g

(n0)
1 (T n0ω) ... g

(n0)
1 (T (i−1)n0ω) x0,

so that xn = g(n1)(ω)x0 and for every 1 ≤ i ≤ n− 1,

d(xi, xi−1) = d(g
(n0)
1 (T (i−1)n0ω) x0 , x0),
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d(xi−1, xi+1) = d(g
(n0)
1 (T (i−1)n0ω)g

(n0)
1 (T (i)n0ω) x0 , x0) = d(g

(2n0)
1 (T (i−1)n0ω)x0 , x0).

At this point we are going to use the large deviation estimates to verify the conditions of the
avalanche principle are satisfied, with effect for everym > n0 there exists a set Bm whose measure
does not exceed e−cε2m such that for every ω /∈ Bm

−ε ≤ 1

m
d(g(m)x0, x0)− ℓm(g) ≤ ε

in particular, if ω /∈ Bn0

1

n0

d(x1, x0) =
1

n0

d(g
(n0)
1 (ω)x0, x0)

≥ ℓn0(g1)− ε

> ℓn0(g)− θ0 − ε

≥ ℓ(g)− θ0 − ε,

whence,
d(g

(n0)
1 (ω)x0, x0) > n0(ℓ(g)− θ0 − ε) =: ρ0.

Through the same process we obtain for every ω /∈ B2n0

1

2n0

d(g
(2n0)
1 (ω)x0, x0) ≥ ℓ(2n0)(g1)− ε

as well as

1

n0

d(g
(n0)
1 (ω)x0, x0) ≤ ℓn0(g1) + ε

1

n0

d(g
(n0)
1 (T n0ω)x0, x0) ≤ ℓn0(g1) + ε,

for every ω /∈ Bn0 ∪ T−n0Bn0 . Hence, for every ω /∈ B2n0 ∪ Bn0 ∪ T−n0Bn0

〈x0 , x2〉x1
=
〈
x0 , g

(2n0)
1 (ω)x0

〉
g
(n0)
1 (ω)x0

=
1

2

(
d(g

(n0)
1 (ω)x0, x0) + d(g

(n0)
1 (T n0ω)x0, x0)− d(g

(2n0)
1 (ω)x0, x0)

)
≤ n0(ℓn0 − ℓ2n0 + 2ε),

in oher words,
〈x0 , x2〉x1

< n0(η0 + 2ε) =: σ0.

Similar computations yield the same controls for every 1 ≤ i ≤ n − 1, under appropriate
assumptions. Moreover, by hypothesis, 2σ0 − ρ0 = n0(η0 + 3ε + θ0 − ℓ(g)) ≤ −εn0 so choosing
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n0 large enough so that −εn0 < −2δ, the AP applies outside the set B∗
n0

= ∪n−1
i=0 T

in0Bn0 where we
obtain the control∣∣∣∣∣d(x0, xn) +

n−1∑
i=2

d(xi−1, xi)−
n−1∑
i=1

d(xi−1, xi+1)

∣∣∣∣∣ ≤ 2(n− 1)
1

log(b)
b2σ0−ρ0+2δ,

which translates to∣∣∣∣∣d(x0, g
(n1)(ω)x0) +

n−1∑
i=2

d(g
(n0)
1 (T (i−1)n0ω) x0 , x0)−

n−1∑
i=1

d(g
(2n0)
1 (T (i−1)n0ω)x0 , x0)

∣∣∣∣∣ ≲ nb−εn0 .

Dividing both sides by n1 = nn0, one now obtains∣∣∣∣ 1n1

d(x0, g
(n1)(ω)x0) +

1

n

n−1∑
i=2

1

n0

d(g
(n0)
1 (T (i−1)n0ω) x0 , x0)

− 2

n

n−1∑
i=1

1

2n0

d(g
(2n0)
1 (T (i−1)n0ω)x0 , x0)

∣∣∣∣ ≲ b−εn0 .

Let f(ω) denote the bounded function on the left side. Notice that, for every ω /∈ B∗
n0
, |f(ω)| ≲

b−εn0 , while in B∗
n0

the control |f(ω)| ≤ C remains valid for some C = C(g) since g1 ∈ C. On the
other hand, ∫

Ω

f(ω)dµ(ω) = ℓn1(g1) +
n− 2

n
ℓn0(g1)−

2(n− 1)

n
ℓ2n0(g1),

hence ∣∣∣∣ℓn1(g1) +
n− 2

n
ℓn0(g1)−

2(n− 1)

n
ℓ2n0(g1)

∣∣∣∣ ≤ ∫
Ω

|f(ω)|dµ(ω)∫
Ω\B∗

n0

|f(ω)|dµ(ω) +
∫
B∗
n0

|f(ω)|dµ(ω)

≲ b−εn0 + Cµ(B∗
n0
)

≲ b−εn0 + Cb−c1n0

≲ b−c1n0 < C
n0

n1

Having ∣∣∣∣ℓn1(g1) +
n− 2

n
ℓn0(g1)−

2(n− 1)

n
ℓ2n0(g1)

∣∣∣∣ < C
n0

n1

one may write ∣∣∣∣ℓn1(g1) + ℓn0(g1)− 2ℓ2n0(g1)−
2

n
[ℓn0(g1)− ℓ2n0(g1)]

∣∣∣∣ < C
n0

n1

so that (3.3) holds:
|ℓn1(g1) + ℓn0(g1)− 2ℓ2n0(g1)| < C

n0

n1

.
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The same process may be used to obtain (3.3) at times 2n1. Then by an immediate triangle inequality
one obtains (3.4).

To prove (3.5) start by rewriting (3.3) as

|ℓn1(g1)− ℓn0(g1) + 2[ℓn0(g1)− ℓ2n0(g1)]| < C
n0

n1

.

So

|ℓn1(g1)− ℓn1(g)| ≤ |ℓn1(g1)− ℓn0(g1) + 2[ℓn0(g)− ℓ2n0(g)]|

+ |ℓn1(g)− ℓn0(g) + 2[ℓn0(g)− ℓ2n0(g)]|

+ 2|ℓn0(g1)− ℓ2n0(g1)|+ 2|ℓn0(g)− ℓ2n0(g)|

+ |ℓn0(g)− ℓn0(g1)|

< θ0 + 4η0 + C
n0

n1

=: θ1

3.3.3 Rate of Convergence

In this section we shall use the inductive step to understand exactly how pushing the controls though
the natural numbers affects the convergence rate of the quantities at hand. In particular we obtain
the rate convergence associated with the functions ℓn. These however will be too slow, hence we
also look at −ℓn + 2ℓ2n.

Lemma 26. Let {xn} be a sequence converging to x such that for every n ∈ N,

|xn − x2n| <
logb n
n

,

then, for every n ∈ N
|xn − x| ≲ logb n

n
.

Proof. Let n ∈ N, then we can use a telescopic sum to write

|xn − x| =

∣∣∣∣∣
∞∑
i=0

x2in − x2i+1n

∣∣∣∣∣ ≤
∞∑
i=0

|x2in − x2i+1n|

≤
∞∑
i=0

logb(2in)
2in

≲ logb n
n

,

as the sum of the series is of order logb n
n

.
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Proposition 27. Let g ∈ C. There are constants r1 > 0, n0 ∈ N, c2 > 0, K < ∞ all depending on
g such that the following hold

|ℓ(g1)− ℓn(g1)| < K
logb n
n

|ℓ(g1) + ℓn(g1)− 2ℓ2n(g1)| < b−c2n,

for every n > n0 and g1 ∈ S∞(Ω, G) with d∞(g, g1) < r1.

Proof. Let us use the constants ε, c1, C, r and n0 given in the inductive step. Consider the quan-
tities n−

0 = n0, n+
0 = bc1n0 and set N0 := [n−

0 , n
+
0 ]. We shall also define r1 = min{r, b−3C1n0}.

Then, by the finite scale continuity, for every n0 ∈ N0, we have

|ℓ2n0(g1)− ℓ2n0(g)| < b2C1n0d∞(g1, g2) ≤ b−C1n0 ≤ ε,

choosing n0 large enough for the effect. Likewise

|ℓn0(g1)− ℓn0(g)| < ε =: θ0,

Moreover
|ℓ2n0(g)− ℓn0(g)| < |ℓ2n0(g)− ℓ(g)|+ |ℓ(g)− ℓn0(g)| < 2ε,

so that
|ℓ2n0(g)− ℓn0(g)| < 2ε =: η0,

and we have
θ0 + 2η0 = 5ε < ℓ(g)− 6ε.

Using the inductive process we now have n−
1 = bc1n

−
0 , n+

1 = bc1n
+
0 and define N1 = [n−

1 , n
+
1 ].

If n1 ∈ N1 then n0 ≲ logb(n1). Now,

|ℓn1(g1) + ℓn0(g1)− 2ℓ2n0(g1)| < C
n0

n1

< K
logb n1

n1

,

for some constantK. Moreover

ℓn1(g1)− ℓ2n1(g1) < η1

|ℓn1(g1)− ℓn1(g)| < θ1

where

θ1 = θ0 + 4η0 + C
n0

n1

< 13ε+K
logb n1

n1

,

η1 = C
n0

n1

< K
logb n1

n1

.
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Furthermore,
θ1 + 2η1 ≤ 13ε+ 3K

logb n1

n1

< 16ε < ℓ(g)− 6ε.

Hence we can repeat the process, let n−
2 = bc1n

−
1 , n+

2 = bc1n
+
1 , and define N2 = [n−

2 , n
+
2 ], then, if

n2 ∈ N2, there exists n1 ∈ N1 such that n1 ≲ logb(n2)

|ℓn2(g1) + ℓn1(g1)− ℓ2n1(g1)| < C
n1

n2

< K
logb n2

n2

.

Moreover

ℓn2(g1)− ℓ2n2(g1) < η2

|ℓn2(g1)− ℓn2(g)| < θ2

where

θ2 = θ1 + 4η1 + C
n1

n2

< 13ε+ 5K
logb n1

n1

+K
logb n2

n2

,

η2 = C
n1

n2

< K
logb n2

n2

Inductively repeating the process we obtain intervalsNk whose union cover all natural numbers
greater than n1. Hence given n > n1, there exists k ≥ 0 such that n ∈ Nk+1, so there is also
nk ∈ Nk so that

n = nk+1 = bc1nk .

Moreover
ℓnk+1

(g1)− ℓ2nk+1
(g1) < ηk+1 < K

logb nk+1

nk+1

and

|ℓnk+1
(g1)− ℓnk+1

(g1)| < θk+1

< θk + 4ηk+1 + C
nk

nk+1

< 13ε+ 5K
k∑

i=1

K
logb ni

ni

+K
logb nk+1

nk+1

,

however, since nk increase super-exponentially, the series
∑

i>0
logb ni

ni
is convergent with sum of

order logb n1

n1
.

With that, for every n ≥ n0 we obtain

ℓn(g1)− ℓ2n(g1) < K
logb n
n

39



CHAPTER 3. ABSTRACT CONTINUITY THEOREM

whence
|ℓn(g1)− ℓ(g1)| < K

logb n
n

.

Now, ∣∣ℓnk+1
(g1) + ℓnk

(g1)− 2ℓ2nk
(g1)

∣∣ < K
logb nk+1

nk+1

≤ Kc1nkb
−c1nk < b−

c1
2
n

so
|ℓ(g1) + ℓnk

(g1)− 2ℓ2nk
(g1)| < 2b−

c1
2
nk < b−

c1
3
nk

hence the result follows for n > n0.

3.3.4 Hölder Continuity of the Drift

We are finally ready to prove the first two items of Theorem 18

Proof. Consider n1 ∈ N, r1 > 0, r > 0, c2 as in proposition 27. Let g ∈ C+ with ℓ(g) > 0 and take
the function from C to R

fn := −ℓn + 2ℓ2n

clearly fn(g) → ℓ(g), moreover an exponential rate of convergence holds for every n ≥ n0,

|ℓ(g1)− fn(g1)| = |ℓ(g1) + ℓn(g1)− 2ℓ2n(g1)| ≤ b−c2n.

Consider now d∞(g1, g2) < log(b)b−2(C1+c2)n1 , and pick n ≥ n1 such that

b−4(C1+c2)n < d∞(g1 , g2) < b−2(C1+c2)n.

Then form equal to either n or 2n one has

|ℓm(g1)− ℓm(g2)| ≤
b2C1n

log b
dC(g1, g2) < b−2c2n

thus

|fn(g1)− fn(g2)| ≤ |ℓn(g1)− ℓn(g2)|+ 2|ℓ2n(g1)− ℓ2n(g2)|

≤ 3b−2c2n ≤ b−c2n.

Finally one has

|ℓ(g1)− ℓ(g2)| ≤ |ℓ(g1)− fn(g1)|+ |fn(g1)− fn(g2)|+ |ℓ(g2)− fn(g2)|

≤ 3b−c2n

≤ 3dC(g1 , g2)
α,

where α = c2
4(C1+c2)

.

40



CHAPTER 3. ABSTRACT CONTINUITY THEOREM

3.3.5 Large Deviations Remark

Given g ∈ C+, by the rate of convergence, there exists a neighbourhood V of g in C and n1 ∈ N
such that the finite scale drifts ℓn converge uniformly to ℓ on V for every n > n1. Hence, for every
ε > 0 there exists n(ε) such that for every n ≥ n(ε) and g1 ∈ V ,

|ℓ(g1)− ℓ(g)| < ε

|ℓn(g1)− ℓ(g1)| < ε.

Therefore large deviation estimates can be considered in a stronger manner

Definition 8 (Uniform large deviation estimates). Given g ∈ C+ There exists a neighbourhood
V ⊂ C of g and a constant c > 0 such that for every ε > 0, there exists n0 such that

µ

{
ω ∈ Ω :

∣∣∣∣ 1nd(g(n)1 (ω)x0 , x0)− ℓ(g1)

∣∣∣∣ > ε

}
< b−cnε2 ,

for every g1 ∈ V and n ≥ n0.

3.4 Continuity of the tracking point

Proving the continuity of the tracking point is similar to proving the continuity of the drift although
some of the hard work has already been done.

Let g ∈ C, we start by considering the positional maps

p(n)g : Ω → X

ω 7→ g(n)(ω)x0

and consider their limit in BordX

p(∞)
g (ω) := lim p(n)g (ω),

whose existence we shall discuss later in section 4.4.2. Notice that if g ∈ C+, then for almost every
ω ∈ Ω

ξg(ω) = p(∞)
g (ω).

Given g1, g2 ∈ C we define the quantity

d1(pg1 , pg2) =

∫
Ω

D̄b(g1(ω)x0, g2(ω)x0)dµ(ω). (3.6)

The route to prove continuity of ξ is the same as the one done before for the drift ℓ. We check the
finite scale continuity with respect to d1 first and then we compute the rate of convergence. Since
the space is strongly hyperbolic we then obtain

d1(ξg1(ω), ξg2(ω)) = lim
n→∞

d1(p
(n)
g1

, p(n)g2
).
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3.4.1 Finite Scale Continuity

Proposition 28. Let g ∈ S∞
+ (Ω, G), there exist c = c(g) > 0, r > 0, ε > 0 andC2 = C2(g, ε) < ∞

such that for every g1, g2 ∈ S∞(Ω, G) with d∞(g, gi) < r if n ≥ n(ε) and d∞(g1, g2) < b−C2n, then
for every ω outside a set of measure ≲ b−ncε2

Db(p
(n)
g1

(ω) , p(n)g2
(ω)) ≤ b−ncε2 .

Hence
d1(p

(n)
g1

, p(n)g2
) ≲ b−ncε2 .

Proof. Consider c to be the large deviation parameter. By the continuity of ℓ(g), take 0 < γ1 <

ℓ(g) < γ2 close enough so that

γ1 < inf{ℓ(g∗) : g∗ ∈ S∞(Ω, G) and d∞(g, g∗) < r}

≤ sup{ℓ(g∗) : g∗ ∈ S∞(Ω, G) and d∞(g, g∗) < r} < γ2,

as well as ε > 0 so that
cε2 ≤ γ1 ≤ ℓ(g∗)− ε ≤ ℓ(g∗) + ε ≤ γ2

for every g∗ ∈ S∞(Ω, G) and d∞(g, g∗) < r.
For every n ≥ n(ε), the deviation sets

Bn(g∗) =

{
ω ∈ Ω :

∣∣∣∣ 1nd(g(n)∗ (ω)x0 , x0)− ℓ(g∗)

∣∣∣∣ > ε

}
have their measure bounded by ≲ b−ncε2 .

Let ω /∈ Bn(g1) ∪ Bn(g2), then for i = 1, 2

d(g
(n)
i (ω)x0, x0) < n(ℓ(gi) + ε) < nγ2,

d(g
(n)
i (ω)x0, x0) > n(ℓ(gi)− ε) > nγ1.

At this point, notice as in the proof of Proposition 22

d(g
(n)
1 (ω)x0 , g

(n)
2 (ω)x0) ≤

1

log(b)
bd(g

(n)
1 (ω)x0 , g

(n)
2 (ω)x0)/2

≤ bnγ2

log(b)
d∞(g1, g2).

Finally, choosing C2 > γ2, provided d∞(g1, g2) < bC2n,

Db(p
(n)
g1

(ω) , p(n)g2
(ω)) ≤ b−⟨g(n)

1 (ω)x0 , g
(n)
2 (ω)x0⟩x0

≤ b
1
2

[
d(g

(n)
1 (ω)x0,g

(n)
2 (ω)x0)−d(g

(n)
1 (ω)x0,x0)−d(g

(n)
2 (ω)x0,x0)

]
≤ b−nγ1 ≤ b−ncε2 .
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3.4.2 Rate of Convergence

Proposition 29. Let g ∈ S∞
+ (Ω, G). There are constants r > 0, ε > 0 and n0 ∈ N, all depending

on g, such that
d1(p

(n)
g1

, p(∞)
g1

) ≲ b−ncε2

for all n ≥ n0 and for all g1 ∈ S∞(Ω, G) with d∞(g1, g) < r. In particular, p(∞)
g1 is well defined.

Proof. Consider γ1 and ε given as in the proof of the previous proposition and c the large deviation
paramenter. As well as the deviation sets

Bn(g1) =

{
ω ∈ Ω :

∣∣∣∣ 1nd(g(n)1 (ω)x0 , x0)− ℓ(g1)

∣∣∣∣ > ε

}
Recall the control, d∞(g1) < C, for every ω /∈ Bn(g1)

Db(g
(n)
1 (ω)x0 , g

(n+1)
1 (ω)x0) ≤ b

1
2

[
d(g1(Tnω)x0,x0)−d(g

(n)
1 (ω)x0,x0)−d(g

(n+1)
1 (ω)x0,x0)

]
≤

√
Cb−nγ1

Hence, for everym > n

Db(g
(n)
1 (ω)x0 , g

(m)
1 (ω)x0) ≤

m−1∑
i=n

Db(g
(i)
1 (ω)x0 , g

(i+1)
1 (ω)x0)

≤
√
C

m−1∑
i=n

b−iγ1

≤
√
C

1− b−γ1
b−nγ1 ,

hence g(n)1 (ω)x0 is a Gromov sequence, in particular it converges to some point in ∂X . With this
we obtain Db(p

(n)
g1 , p

(∞)
g1 ) ≲ b−ncε2 . Integrating over ω yiels the result.

The proof of item 3) in Theorem 18 is now analogue to that of item 1).

3.4.3 Large deviations remark

Given g ∈ S∞
+ (Ω, G), by the rate of convergence, there exists a neighbourhood V of g in S+(Ω, G)

and n1 ∈ N such that the finite scale drifts ℓn converge uniformly to ℓ on V . Hence, for every ε > 0

there exists n(ε) such that for every n ≥ n(ε) and g1 ∈ V ,

|ℓ(g1)− ℓ(g)| < ε

|ℓn(g1)− ℓ(g1)| < ε.

Therefore large deviation estimates can be restated in a stronger manner
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Definition 9 (Uniform large deviation estimates). Given g ∈ S∞
+ (Ω, G) There exists a neighbour-

hood V ⊂ S∞(Ω, G) of g and a constant c > 0 such that for every ε > 0, there exists n0 such
that

µ

{
ω ∈ Ω :

∣∣∣∣ 1nd(g(n)1 (ω)x0 , x0)− ℓ(g1)

∣∣∣∣ > ε

}
< b−cnε2 ,

for every g1 ∈ V and n ≥ n0.

3.5 Positivity Argument

In the previous sections we have seen that the avalanche principle can be used to transport continuity
further in time. We now apply these techniques to transport positivity forward. Once again our
secondary tool will be large deviation estimates, which for this purpose don’t need them to be as
strong. We say that a cocycle satisfies large deviation of polynomial type if there are constants
C, σ > 0 such that for every n ∈ N,∫

Ω

∣∣∣∣ 1nd(g(n)(ω))x0 , x0)− ℓn

∣∣∣∣ dµ(ω) ≤ CKn−σ, (3.7)

whereK := supn∈N supω∈Ω 1
n
d(g(n)(ω)x0 , x0).

Theorem 30 (Positivity criteria). Let G be the group of isometries of a δ-hyperbolic space X with
basepoint x0 and let (Ω, β, µ, T ) be an ergodic measure transformation and g : Ω → G. Assume
that there exists q ∈ N such that, for every n > q the large estimates (3.7) hold for some given σ.
Then, there exists n0 = n0(σ, δ) ∈ N such that if n > n0 satisfiesℓn0 > Kn0

−σ/4,

ℓn0 − ℓ2n0 <
ℓn0

8
,

(3.8)

then ℓ > ℓn/2.

Notice that here we only request that our space is hyperbolic, this happens as we will use the
remark to 19, which makes the conclusion of the avalanche principle∣∣∣∣∣d(x0, xn) +

n−1∑
i=2

d(xi−1, xi)−
n−1∑
i=1

d(xi−1, xi+1)

∣∣∣∣∣ ≤ 2(n− 1)δ.

Lemma 31 (Inductive Procedure). Let n0, k > 0 such that, for every n > n0 the polynomial large
deviation estimates are satisfied. If ℓn0 > Kn

−σ/4
0 ,

ℓn0 − ℓ2n0 <
ℓn0

8
,

(3.9)
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and
6κ− 24

8κ
Kn

1−σ/4
0 > 3δ, (3.10)

then defining n1 = n1+τ
0 where τ = 3

8
σ, one has

|ℓn1 − 2ℓ2n0 + ℓn0 | < C(κ)K
n0

n1

. (3.11)

Moreover, ℓn1 > Kn
−σ/4
1 ,

ℓn1 − ℓ2n1 < C(κ)K n0

n1
<

ℓn1

8
.

(3.12)

Proof. Consider q > 0 and r < n0 such that n1 = qn0 + r and, for 0 ≤ i ≤ q set

xi = g(n0)(ω)g(n0)(T n0ω)...g(n0)(T n0(i−1)ω)x0.

Due to Lemma 24, we can once again assume that r = 0 as otherwise we incur in an error of
the order of our control. We also consider σ < 8/3 so that τ < 1. This is not a huge loss, as if
we have large deviation estimates estimates for σ > 8/3, then they also hold for σ < 8/3. The
aforementioned LDT estimate implies

µ
{
ω ∈ Ω : |d(g(n0)(ω)x0, x0)− n0ℓn0 | > Kεn0

}
≤ Cε−1n−σ

0 .

Using the large deviation in this form withKε = ℓn0/κ, one has

min
0≤i<q

d(xi, xi+1) = min
0≤i<q

d
(
g(n0)(T n0i(ω))x0 , x0)

)
> n0ℓn0 −

1

κ
n0ℓn0 =

κ− 1

κ
n0ℓn0 ,

on a set B1 ⊂ Ω such that

µ(Ω\G1) < Cε−1q n−σ
0 = Cq n0 n

−1−3σ/4
0 n

−σ/4
0 ε−1 ≤ κCn1 n

−1−3σ/4
0 ≤ κCn−τ

0 .

In the same fashion, there is a set B2 ⊂ Ω such that µ(Ω\B2) < κCn−τ
0 on which

max
0<i<q

〈xi+1 , xi−1〉xi
= max

0<i<q

1

2

[
d
(
g(n0)(T n0 i(ω))x0 , x0

)
+ d

(
g(n0)(T n0(i−1)(ω))x0 , x0)

)
− d

(
g(n0)(T n0 iω)g(n0)(T n0(i−1)ω)x0 , x0

) ]
≤ 1

2
[n0(ℓn0 +Kε)− n0(ℓ2n0 −Kε)]

= n0

(
ℓn0 − ℓ2n0 +

1

κ
ℓn0

)
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≤ 1

8
n0ℓn0 +

1

κ
n0ℓn0 =

κ+ 8

8κ
n0ℓn0 .

Now, 2κ+8
8κ

n0ℓn0 < κ−1
κ
n0ℓn0 − 2δ is an immediate consequence of condition (3.10), whence

the Avalanche Principle applies,∣∣∣∣∣d (g(n1)(ω)x0 , x0

)
+

q−1∑
i=2

d
(
g(n0)(T n0iω)x0 , x0

)
−

q−1∑
i=1

d
(
g(n0)(T n0(i+1)ω)g(n0)(T n0iω)x0 , x0

) ∣∣∣∣∣ ≤ 2qδ.

Dividing both sides by n1, one has∣∣∣∣∣ 1n1

d
(
g(n1)(ω)x0 , x0

)
+

1

q

q−1∑
i=2

1

n0

d
(
g(n0)(T n0iω)x0 , x0

)
− 2

q

q−1∑
i=1

1

2n0

d
(
g(n0)(T n0(i+1)ω)g(n0)(T n0iω)x0 , x0

) ∣∣∣∣∣ ≤ 2δ

n0

.

Call f(ω) the left-hand side of the inequality, integration over ω yields∫
Ω

f(ω)dµ(ω) =

∫
G1∩G2

f(ω)dµ(ω) +

∫
Ω\G1∩G2

f(ω)dµ(ω)

≤ 2δ

n0

+ 2κKn−τ
0

≤ C1K
n0

n1

,

as n−τ
0 = n0/n1 and τ < 1 (C1 = 2δ + 2κ)) . In other words∣∣∣∣ℓn1 − 2ℓ2n0 + ℓn0 −

2

q
[ℓn0 − ℓ2n0 ]

∣∣∣∣ ≤ C1K
n0

n1

thus proving (3.11), as ℓn0 − ℓ2n0 < ℓn0/8 ≤ K/8.
For the upper inequality in (3.12), notice

ℓn1 ≥ ℓn0 − 2(ℓn0 − ℓ2n0)− C1K
n0

n1

≥ ℓn0 −
2ℓn0

8
− C1K

n0

n1

≥ 3Kn
−σ/4
0

4
− C1K

n0

n1

≥ Kn
−σ/4
1

Provided that n0 is large enough.
For the first lower inequality, simply use the Avalanche Principle once again for the times 2n0

and subtract in (3.11); whilst the second is true provided n0 is large enough.
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Proof of Theorem 30. Making n0 large enough, the existence of κ in Lemma 31 is obvious and
consider C = C(κ) > 0 as in the Lemma. Now given n ≥ n0 in the conditions of Theorem 30, we
will apply the previous Lemma inductively starting with n0 = n to obtain

|ℓnj+1
− 2ℓ2nj

+ ℓnj
| < CK

nj

nj+1

(3.13)

and ℓnj+1
> Kn

−σ/4
j+1

ℓnj+1
− ℓ2nj+1

< CK
nj

nj+1
<

ℓnj+1

8

. (3.14)

where nj+1 = n1+τ
j for τ = 3

8
σ.

Whence

ℓnj+1
> ℓnj

− 2(ℓnj
− ℓ2nj

)− CK
nj

nj+1

> ℓnj
− 3CK

nj−1

nj

> ℓn0 − 2(ℓn0 − ℓ2n0)− 3CK

[
j∑

i=1

ni

ni+1

]

>
3

4
ℓn0 − 3CK

[
j∑

i=1

ni

ni+1

]
.

Since
∑∞

i=1
ni

ni+1
is asymptotic to n−τ

0 , the intended result follows since ℓn0 > Kn
−σ/4
0 .

Having explored the proofs, something more can be said about how large n0 must be. First
assume it is large enough so that there exists κ satisfying

6κ− 24

8κ
Kn0

1−σ/4 > 3δ,

n0(σ) must satisfy
3

4
n0

−σ/4 − (2δ − 2κ)n0
−3σ/8 ≥ n0

−σ(1+3σ/8)/4.

Remark 3. In negatively curved Riemannian manifold with non-negative Ricci curvature, horo-
functions are known to be plurisubharmonic functions (see Cheeger and Gromoll (1971)). Hence
the argument used later in chapter 5 for quasi-periodic cocycles can be applied to this setting.
We chose not to do it as it would require us to introduce additional notation from ergodict theory,
harmonic analysis and potential theory which could disperse the thesis topics even further.
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3.6 Bibliographic Notes

The drift in the metric hyperbolic setting has a quite similar behaviour to the Lyapunov exponents
in the linear cocycle setting. In fact, if we consider SL(2,R) acting isometrically on the hyperbolic
upper-half plane H2 the two concepts overlap. We explore this common playground to use tech-
niques that were originally obtained for the study of the Lyapunov exponents in SL(2,R), while
working around the metric technicalities.

The type of abstract continuity and positivity results obtained in this chapter for hyperbolic
spaces is new. The techniques employed however date back to Goldstein and Schlag (2001), where
the first linear version of the avalanche principle for SL(2,R)-cocycles appears. In their paper,
Goldstein and Schlag (2001) use the avalanche principle to obtain continuity and positivity of the
Lyapunov exponent of quasi-periodic Schrodinger cocycles. The continuity argument for general
SL(d,R)-cocycles as well as cocycles over non-invertible cocycles appeared later in Duarte et al.
(2016). Note that the case of higher dimension Schrödinger cocycles in SL(d,R) can also be found
in Schlag (2013). Han et al. (2020) deals once again with the problem of positivity of the Lyapunov
exponent; here large deviations estimates are replaced with other quatifications of the convergence
sets. The spirit of the argument however remains the same.

The continuity of the tracking point is related to the continuity of the Lyapunov filtration for
SL(2)-cocycles presented in Duarte et al. (2016), in fact for SL(2)-cocycles the two concepts once
again agree.

In this work we decided to use large deviations of exponential type. These can be relaxed to
weaker type of deviations yielding weaker modulus of continuity.

Despite the similarities, there are several interesting natural actions of groups acting by isome-
tries on hyperbolic spaces that escape the linear setting such as rank one semisimple Lie Groups act-
ing on their symmetric spaces, Gromov hyperbolic groups acting on their Cayley graphs, mapping
class groups on their curve complexes, the Cremona group acting on the Picard-Manin hyperbolic
space among others (see Maher and Tiozzo (2018)). In some of these examples the fact we drop
the usual properness condition is quite important.

A gain in our versions of the avalanche principle is that every constant is explicit and the result
verses on chains of points rather than the operators themselves. A first version of the avalanche prin-
ciple for CAT(−1) may be found in Oregón-Reyes (2020). The geometric applications presented
by Oregón-Reyes exhibit the importance of working with chains of points.
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Chapter 4

Markov Systems

In this chapter we apply the abstract continuity theorem to cocycles of isometries of hyperbolic
space, where the base dynamics is governed by Markov systems. In view of the previous chapter
all we must do is prove that exponential type large deviations hold. This path will only lead us to
continuity in strong hyperbolic spaces.

In the second part of the chapter we assume (BA) holds, and prove continuity with respect
to the measure in the case of random walks on the group. Random walks are simple examples of
Markov systems where each successive element is picked in a random independently and identically
distributed way. In other words, a measure on the group is enough to obtain a random walk, as the
elements are picked with respect to this measure. We shall endow the space of probability measures
with a topology to describe continuity in this setting.

4.1 Markov Systems

We now introduce Markov systems. For such systems the current configuration does not depend
on the past nor the future but only on the present. We will begin by introducing the probabilistic
language which we will use later, and then briefly present how to translate it into the dynamical
language used previously through the Markov shift. Our presentation on the subject follows that of
Duarte et al. (2016).

Definition 10 (Markov Kernel). Let Γ be a metric space and letF be its Borel σ-algebra. AMarkov
kernel is a functionK : Γ×F → [0, 1] such that

1. for every ω0 ∈ Γ, E 7→ K(ω0, E) is a probability measure on Γ;

2. The mapping ω0 7→ K(ω0, ·) is continuous with respect to the weak-* topology in Prob(Γ).
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3. for every E ∈ F , the function ω0 7→ K(ω0, E) is F-measurable.

A probability measure µ on (Γ,F) is K-stationary if for every E ∈ F ,

µ(E) =

∫
Γ

K(ω0, E)µ(dω0).

A set E ∈ F is said to be K-invariant when K(ω0, E) = 1 for all ω0 ∈ E and K(ω0, E) = 0 for
all ω0 ∈ Γ\E. AK-stationary measure µ is called ergodic when there is no K-invariant set E ∈ F
such that 0 < µ(E) < 1. Using the usual argument through Krein-Milman’s theorem, ergodic
measures are the extremal points in the convex set of K-stationary measures. A Markov system is
a pair (K,µ), where K is a Markov kernel on (Γ,F) and µ is aK-stationary probability measure.

In Duarte and Klein (2017), the considerations above are only done for compact Γ as this easily
yields the existence of stationary measures, in this work however we will also need to work with
non-compact spaces. Fortunately we will be able to find stationary measures for the non-compact
cases that interest us.

We can define the iterated Markov kernels inductively, settingK1 = K and

Kn+1(ω0, E) =

∫
Γ

Kn(ω1, E)K(ω0, dω1),

for n > 1.
Given (K,µ) a pair formed by a Markov Kernel a not necessarily stationary measure µ ∈

Prob(Γ), consider Ω = ΓN the space of sequences ω = (ωn) in Γ. The product space Ω is metriz-
able. Its Borel σ-algebra B = FN is the product σ-algebra generated by the B-cylinders, that is,
generated by the sets

C(E0, ..., Em) := {ω ∈ Ω : ωj ∈ Ej, for 0 ≤ j ≤ m},

where E0, ..., Em ∈ F .
The set of F-cylinders forms a semi-algebra on which

Pµ[C(E0, ..., Em)] :=

∫
Em

...

∫
E0

µ(dω0)
m∏
j=1

K(ωj−1, dωj).

defines a pre-measure. By Carathéodory’s extension theorem, it extends to a measure, still denoted
Pµ and often called the Kolmogorov extension of (K,µ), on (Ω,B).

Given a random variable ζ : Ω → R, its expected value with respect to µ in (Γ,F) is

Eµ(ζ) :=

∫
Ω

ζdPµ.

If µ is δω0 the Dirac measure at ω, then we soften the notation by setting Pω0 = Pδω0
andEω0 = Eδω0

.
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By construction, the sequence of random variables en : Ω → Γ, given by en(ω) := ωn for
ω = (ωn) ∈ Ω, is a Markov chain with initial distribution µ and transition kernel K, that is, for
every ω ∈ Γ and E ∈ F ,

1. Pµ[e0 ∈ E] = µ(E),

2. Pµ[en ∈ E | en−1 = ωn−1] = K(ωn−1, E).

Moreover the process {en}n∈N is stationarywith respect to (Ω,F ,Pµ) if and only ifµ isK-stationary.
We now proceed to make sense of the dynamics behind Markov systems. Consider the shift

map T : Ω → Ω, T (ωn) = (ωn+1). The shift T is continuous and hence B measurable. It also
preserves the measure Pµ. We call the triplet (Ω,Pµ, T ) a Markov shift.

Definition 11 (Strongly Mixing). Let B be a Banach space contained in L∞(Γ). We say a Markov
system (K,µ) is strongly mixing in B if there are constants C > 0 and 0 < σ < 1 such that for
every f ∈ B, all x ∈ Γ and n ∈ N,∣∣∣∣∫

Γ

f(ω1)K
n(ω0, dω1)−

∫
Γ

f(ω1)µ(dω1)

∣∣∣∣ ≤ Cσn||f ||B.

Strongly mixing property of a Markov system is related Markov shift being mixing.

Definition 12. (Mixing transformation We say that a measure preserving transformation (Ω, T, µ)

is mixing if for all measurable A and B in B

lim
n→∞

µ(A ∩ T−n(B)) = µ(A)µ(B).

If we pick A = B a T -invariant set in the definition of mixing, we obtain µ(A) = µ(A)2, so A
has either measure 0 or 1. In other words, mixing implies ergodic. The converse is not true. The
two concepts of mixing now come together in the following proposition.

Proposition 32 (Proposition 5.1 in Duarte et al. (2016)). If the Markov system (K,µ) is strongly
mixing, then Markov shift (Ω,Pµ, T ) is a mixing dynamical system.

Suppose now that Σ is compact, any continuous g ∈ C(Σ × Σ, G) ⊂ S∞(Σ × Σ, G), where
S∞(Σ×Σ, G) is the subspace of S∞(Ω, G), consisting of cocycles which depend only on the first
two variables, defines a cocycle in G over the Markov shift (Ω,Pµ, T ), a : N× Ω → G given by

a(n, ω) = g(n)(ω) := g(ω0, ω1)g(ω1, ω2)...g(ωn−1, ωn).

From this point on we will also omit the reference to the ω’s in g(n)(ω) whenever there is no room
for confusion, by simply writing g(n).
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4.2 Large deviations for the drift in Markov systems

In this section we obtain that exponential type large deviations hold for the drift over Markov sys-
tems. Although the method used is based in Nagaev (1957), we will apply Duarte et al. (2016)
recipe. In §4.2.1 we describe the recipe and ready the ingredients laid by Duarte and Klein whilst
§4.2.2 is devoted to proving the large deviations. Many of the arguments displayed here are an
adaptation of what was done in Sampaio (2021) for random walks, which will reappear in the next
section.

Let us recall the reader once more thatX stands for a δ-hyperbolic metric space with a basepoint
x0,G for its groups of isometries and b for a real number between 1 and 21/δ. We useΣ for a compact
metric space where a Markov system (K,µ) lives.

Nagaev’s method, also called the spectral method, is based on the contracting properties of suit-
able operators on Banach spaces. In order to ensure such properties hold, we need some hypothesis
on the Markov system. We say that a cocycle g ∈ S∞(Σ × Σ, G) is irreducible with respect to
(K,µ) if there is no map h : Σ → Xh such that

g(ωn−1, ωn)h(ωn−1) = h(ωn)

for Pµ-almost every ωn. We now set I(K) to be the class of irreducible continuous cocycles with
respect to (K,µ) in C(Σ × Σ, G) ⊂ S∞(Σ × Σ, G). One can prove such a class is open in
S∞(Σ× Σ, G).

Theorem 33. Let Σ be a compact metric space, (K,µ) be a strongly mixing Markov system over Σ
and g ∈ I(K) be a cocycle with positive drift. Then g satisfies uniform large deviations estimates.

And as a corollary, by the abstract continuity theorem we finally obtain continuity of the drift
in I(K), moreover this continuity is Hölder in a neighbourhood of cocycles with positive drift.

Theorem 34. Let X be a strongly hyperbolic space, Σ be a compact metric space and (K,µ) be
a strongly mixing Markov system over Σ. Then the drift ℓ : I(K) → R is continuous, moreover it
is locally Hölder continuous when restricted to the subset I(K)+ ⊂ I(K) formed by the cocycles
with positive drift. Lastly, ξ : I(K)+ → S1(Σ× Σ, ∂X) is locally Hölder continuous.

4.2.1 The Method

Consider a Markov system (K,µ) on a metric space Γ and let Ω = ΓN. Given some Borel measur-
able observable ζ : Γ → R, let ζ̂ : Ω → R be the Borel measurable function ζ̂(ω) = ζ(ω0). We call
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a sum process of ζ : Γ → R the sequence of random variables {Sn(ζ)} on (Ω,B),

Sn(ζ)(ω) :=
n−1∑
i=0

ζ̂ ◦ T j(ω) =
n−1∑
i=0

ζ(ωj).

An observed Markov system on Γ is a triple (K,µ, ζ) where (K,µ) is a Markov system on Γ and
ζ : Γ → R is a Borel-measurable function.

Recall that Pω0 stands for the Kolmogorov extension of (K, δω0).

Definition 13 (Large deviations of exponential type). We say that ζ satisfies large deviation of
exponential type if there exist positive constants b, C, k, ε0 and n0 such that for all n > n0, 0 < ε <

ε0 and ω0 ∈ Γ,

Pω0

{
ω ∈ Ω :

∣∣∣∣ 1nSn(ζ)(ω)− Eµ(ζ)

∣∣∣∣ > ε

}
≤ Cb−kε2n.

Wewill obtain the large deviations in Theorem 34 by exploring the properties of contracting op-
erators on suitable Banach spaces. Let us start by introducing the operators. ConsiderK a Markov
kernel on a metric space Γ, the operator QK : L∞(Γ) → L∞(Γ), given by

(QKf)(ω0) =

∫
Γ

f(ω1)K(ω0, dω1),

is called the Markov operator. The Markov operator allows us to characterize stationary measure
in a more useful way, with effect, µ is K-stationary if and only if∫

QKfdµ =

∫
fdµ

for every f ∈ L1(Γ). Let now (K,µ, ζ) be an observed Markov system on a given metric space Γ,
then we call the operator QK,ζ : L

∞(Γ) → L∞(Γ) given by

(QK,ζf)(ω0) :=

∫
Γ

f(ω1)b
ζ(ω1)K(ω0, dω1),

and b > 0 the Laplace-Markov operator.
We will now follow closely Duarte et al. (2016) as we introduce a series of assumptions, eleven

to be exact, which yield an abstract LDT. In the next section we make sense of this setting and
prove the assumptions hold as to obtain the large deviations. The main difference between the two
settings is the fact that we apply these results to not necessarily compact spaces.

Let (M, dist) be a metric space of observed Markov systems (K,µ, ζ) on a given metric space
Γ. Consider as well a scale of Banach algebras (Bα, || · ||α) indexed in α ∈ [0, 1], where each Bα

is a space of bounded Borel measurable functions on Γ. We assume that there exists seminorms
υα : Bα → [0,+∞) such that for every 0 ≤ α ≤ 1,
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A1) ||f ||α = υα(f) + ||f ||∞,

A2) B0 = L∞(Σ) and || · ||0 is equivalent to || · ||∞,

A3) Bα is a lattice, i.e., if f ∈ Bα then f, |f | ∈ Bα,

A4) Bα is a Banach algebra with unity 1 ∈ Bα and υα(1) = 0.

Assume also that for every 0 ≤ α0 < α1 < α2 ≤ 1,

B1) Bα2 ⊂ Bα1 ⊂ Bα0 ,

B2) υα0(f) ≤ υα0(f) ≤ υα0(f), for every f ∈ Bα2 ,

B3) υα1(f) ≤ υα0(f)
α2−α1
α2−α0 υα2(f)

α1−α0
α2−α0 , for every f ∈ Bα2 .

The assuptions A∗) and B∗) exhaust our assuptions on the Banach algebras and will be the sim-
ple part of what is to come. Finally, for our assumptions on M, assume there exists an interval
[α1, α0] ⊂ (0, 1] with α1 < α0/2 such that for every α ∈ [α1, α0] the following properties hold,

C1) (K,µ,−ζ) ∈ M, whenever (K,µ, ζ) ∈ M.

C2) The Markov operators QK : Bα → Bα are uniformly strongly mixing. That is, there exist
C > 0 and 0 < σ < 1 such that for every (K,µ, ζ) ∈ M and f ∈ Bα,∣∣∣∣∣∣∣∣Qn

Kf −
∫
Σ

f(ω0)dµ(ω0)

∣∣∣∣∣∣∣∣
α

≤ Cσn||f ||α.

C3) The operatorsQK,zζ act continuously on the Banach algebraBα uniformly in (K,µ, ζ) ∈ M.
With effect, we assume, there are positive constants c andM such that for i = 0, 1, 2, |z| < c

and f ∈ Bα

QK,zζ(fζ
i) ∈ Bα and ||QK,zζ(fζ

i)|| ≤ M ||f ||α.

C4) Consider the family of maps (K,µ, ζ) → QK,zζ indexed in |z| < c, there exists 0 < θ ≤ 1

such that for every |z| < b, f ∈ Bα and (K1, µ1, ζ1), (K2, µ2, ζ2) ∈ M,

||QK1,zζ1f −QK2,zζ2f ||∞ ≤ M ||f ||αdist ((K1, µ1, ζ1), (K2, µ2, ζ2))
θ .

Under all these assumptions the following abstract LDT theorem holds:
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Theorem 35 (in Duarte et al. (2016)). Given (K0, µ0, ζ0) ∈ M and 0 < s < ∞ large enough
(which can be made precise), there exists a neighbourhood V of (K0, µ0, ζ0) ∈ M, C > 0, ε0 > 0

and n0 ∈ N, such that for every (K,µ, ζ) ∈ V , 0 < ε < ε0, ω0 ∈ Σ and n > n0

Pω0

[∣∣∣∣ 1nSn(ζ)− Eµ(ζ)

∣∣∣∣ ≥ ε

]
≤ Cb−

ε2

s
n.

which averaging over ω0 with respect to µ yields

Pµ

[∣∣∣∣ 1nSn(ζ)− Eµ(ζ)

∣∣∣∣ ≥ ε

]
≤ Cb−

ε2

s
n.

Remark 4. By choosing a large s andn ≥ n̄(ε)we canmakeC = 1, thus obtaining large deviations
as in Definition 13.

4.2.2 Obtaining the Large deviations

Let X be an Hyperbolic metric space, Xh, ∂X denote its horofunctions compactification and Gro-
mov boundary, respectively. We denote by Db the visual metric on ∂X , where 1 < b ≤ 21/δ is
fixed. In this section we use Theorem 35 to obtain our large deviations for the drift. From this point
on Σ stands for a compact metric space and Γ = Σ× Σ× ∂X

Verifying Conditions A*) and B*)

Given 0 ≤ α ≤ 1 and f ∈ L∞(Γ), define

υα(f) := sup
(ω1,ω2)∈Σ×Σ

ξ ̸=η

|f(ω1, ω2, ξ)− f(ω1, ω2, η)|
Db(ξ, η)α

,

||f ||α := ||f ||∞ + υα(f),

and set
Hα(Γ) := { f ∈ L∞(Γ) : ||f ||α < ∞} .

the space of boundary Hölder continuous functions in Γ. We call υα(f) the boundary Hölder expo-
nent of f .

Proposition 36. The family {Hα(Γ)}, for 0 ≤ α ≤ 1, consist of Banach algebras with norm ||f ||α
satisfying the conditions A∗) and B∗).

Proof. It is a standard proof that Hα(Γ) are Banach algebras. Now points A1), A3), B1), B2) are
either clear or follow from some immediate computation. For point A2) notice that for α = 0 we
have ||f ||α ≤ 2||f ||∞. Point A4) follows from the immediate inequality

υα(fg) ≤ ||f ||∞υα(g) + ||g||∞υα(f).
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For point B3), notice that given α0, α2, s ∈ [0, 1],

υsα0+(1−s)α2(f) = sup
(ω1,ω2)∈Σ×Σ

ξ ̸=η

|f(ω1, ω2, ξ)− f(ω1, ω2, η)|s+(1−s)

Db(ξ, η)sα0+(1−s)α2

≤ sup
(ω1,ω2)∈Σ×Σ

ξ ̸=η

|f(ω1, ω2, ξ)− f(ω1, ω2, η)|s

Db(ξ, η)sα0

× sup
(ω1,ω2)∈Σ×Σ

ξ ̸=η

|f(ω1, ω2, ξ)− f(ω1, ω2, η)|(1−s)

Db(ξ, η)(1−s)α2

= υα0(f)
sυα2(f)

1−s,

picking s = α2−α1

α2−α0
the result follows.

Verifying Conditions C*)

Recall the space S∞(Σ × Σ, G) of bounded measurable cocycles g : Σ × Σ → G introduced in
section 1.3. Each cocycle g ∈ S∞(Σ× Σ, G) defines a Markov kernel on Γ given by

Kg(ω0, ω1, ξ) :=

∫
Σ

δ(ω1,ω2,g(ω1,ω2)−1ξ)K(ω1, dω2),

as well as an associated Markov operator Qg : L
∞(Γ) → L∞(Γ) with expression

(Qgf)(ω0, ω1, ξ) :=

∫
Σ

f(ω1, ω2, g(ω1, ω2)
−1ξ)K(ω1, dω2).

The reason for looking at the action of the inverse comes from the relation (2.5). For each g ∈
C(Σ× Σ, G) consider the measurable observable ζg : Γ → R

ζg(ω0, ω1, ξ) := hξ(g(ω0, ω1)x0). (4.1)

where hξ is the horofunction related to ξ through the local minimum map homeomorphism. Mea-
surability of ζg follows from continuity. Notice that the set Ω ⊂ ΓN consisting of sequences
κn = (ωn−1, ωn, ξn), where ξn = (g(ω0, ω1)g(ω1, ω2)...g(ωn−1, ωn))

−1ξ0 and notice that this is
a set of full measure. The sum process in ΣN is

(Snζ)(ω) =
n−1∑
i=0

ζ(ωi, ωi+1, ξi)

=
n−1∑
i=0

hξi(g(ωi, ωi+1)x0)
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=
n−1∑
i=0

(g(ω0, ω1)g(ω1, ω2)...g(ωi, ωi+1))
−1 · hξ0(gix0)

=
n−1∑
i=0

hξ0(g
(i+1)(ω)x0)− hξ0(g

(i)(ω)x0)

= hξ0(g
(n)(ω)x0).

These equalities are mostly a consequence of the property g · hξ = hgξ and (2.5). In what follows
we will prove that provided g ∈ C(Σ× Σ, G) is irreducible with positive drift, then there exists a
unique Kg-stationary measure which we denote by µg. Finally we consider the space of observed
Markov systems

M := {(Kg, µg,±ζg) : g ∈ C(Σ× Σ, G), g is irreducible and ℓ(g) > 0},

where µg is the Kg-stationary measure, with the metric

dist((Kg1 , µg1 , ζg1), (Kg2 , µg2 , ζg2)) := d∞(g1, g2).

Due to themetric used, neighbourhoods inM are naturally identifiedwith neighbourhoods inC(Σ×
Σ, G). Our main goal for the remainder of this section is to prove the following proposition:

Proposition 37. The spaceM satisfies the C∗) conditions.

Notice that the (Qgf)(ω0, ω1, ξ) does not depend on the variable ω0. So we defineHα(Σ×∂X)

to be the space of functions f inHα(Γ) that do not depend on ω0. Notice as well thatHα(Σ× ∂X)

is still a family of Banach algebras satisfyingA∗) andB∗). Our first goal is to prove that this space
is invariant under the action of Qg:

Proposition 38. The spaceHα(Σ× ∂X) is invariant by the action of Qg for α small enough.

The proof of this proposition is based of the Lemmas 39, 40 and 41. First, given g ∈ C(Σ ×
Σ, G) and 0 < α < 1 define the average Hölder constant of g as

kn
α(g) := sup

ω0∈Σ,ξ ̸=η

Eω0

[(
Db(g

−(n)ξ , g−(n)η)

Db(ξ , η)

)α]
.

The relevance of kn
α(g) becomes evident in the following lemma where we relate it with the con-

tracting behaviour of the Markov operator of g.

Lemma 39. Given g ∈ S∞(Σ× Σ, G), f ∈ Hα(Σ× ∂X) and n ∈ N,

υα(Q
n
gf) ≤ kn

α(g)υα(f).
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Proof. Let f ∈ H(Σ×∂X) and (ω0, ξ) ∈ Σ×∂X , recall as well the random variables en : Ω → Σ

given by en(ω) = ωn. Then notice

(Qn
gf)(ω0, ξ) = Eω0

[
f(en, g

−(n)ξ)
]
.

Hence

υα(Q
n
gf) ≤ sup

ω0∈Σ,ξ ̸=η∈∂X

Eω0

∣∣f(en, g−(n)ξ)− f(en, g
−(n)η)

∣∣
Db(ξ , η)

≤ υα(f) sup
ω0∈Σ,ξ ̸=η

Eω0

[(
Db(g

−(n)ξ , g−(n)η)

Db(ξ , η)

)α]
≤ υα(f) k

n
α(g)

Lemma 40. Given g ∈ S∞(Σ× Σ, G), the sequence (kn
α(g)) is sub-multiplicative, that is,

kn+m
α (g) ≤ kn

α(g)k
m
α (g)

Proof. For every ξ, η in ∂X and ω0 ∈ Σ

Eω0

[(
Db(g

−(m+n)ξ , g−(m+n)η)

Db(ξ , η)

)α]
≤ Eω0

[(
Db(g

−(m) ◦ T ng−(n)ξ , g−(m) ◦ T ng−(n)η)

Db(g−(n)ξ , g
−(n)
1 η)

)α(
Db(g

−(n)ξ , g−(n)η)

Db(ξ , η)

)α
]

≤ Eω0

[(
Db(g

−(n)ξ , g−(n)η)

Db(ξ , η)

)α]
sup

ξ′ ̸=η′∈∂X
EKn(ω0,·)

[(
Db(g

−(m)ξ′ , g
−(m)
2 η′)

Db(ξ′ , η′)

)α]
.

Taking the supremum over ξ and η yields the result.

Lemma 41. Given g ∈ S∞(Σ × Σ, G) and n ∈ N, for every 0 < α < 1
n
there exists a constant

C = C(g), such that
kn
α(g) ≤ C(δ)d∞(g).

Proof. Given ω0 ∈ Σ and ξ 6= η in ∂X , using Proposition 14,

Eω0

[(
Db(g

−(n)ξ , g−(n)η)

Db(ξ , η)

)α]
≤ C(δ)Eω0

[
b−

α
2
(hξ(g

(n)x0)+hη(g(n)x0))
]

≤ Eω0

[
bαd(g

(n)x0,x0)
]

≤ Eω0

[
bd(gx0,x0)

]
taking the supremum in ω0 and ξ 6= η we obtain the statement using Lemma 21.
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The following Lemma is where the necessity for the hyperbolic multiplicative ergodic theorem
appears. The last part of the proof is analogous to that of Bougerol (1988) for the uniformity of the
limit for Lyapunov exponents.

Lemma 42. Let g ∈ C(Σ× Σ, G) positive drift,

lim
n→∞

1

n
Eω0

[
h(g(n)x0)

]
= ℓ(g) (4.2)

uniformly on (ω0, h) ∈ Σ×Xh
∞.

We warn the reader that in the following proof we work with Γ1 = Σ×Σ×Xh. We do this as
we need compacity. With that in mind we are going to use the Markov Kernel in Γ1 analogous to
the one used in Γ, that is

Kg(ω0, ω1, h) :=

∫
Σ

δ(ω1,ω2,g(ω1,ω2)−1·h)K(ω1, dω2),

which in turn gives rise to a Markov operator in the typical fashion. By compactness of Γ1, there
exists at least one Kg-stationary measure µ. In what follows we drop the g in Kg and denote by P
the Kolmogorov extension measure with respect to someK-stationary measure in Ω = ΓN

1 .
The strategy of the proof is to first prove that the limit exists for every horofunction h and µ

almost every ω. Then prove it is uniform on h and finally obtain its uniformity on ω0. With that in
mind we will prove four claims, are the Lemma should follow once those are done.
Claim 1: For every h ∈ Xh

∞, limn→∞
1
n
h(g(n)(ω)x0) = ℓ(g) holds for P almost every ω.

Proof of Claim 1. Consider the observable ζ : Γ1 → R defined by

ζ(ω0, ω1, h) := h(g(ω0, ω1)x0)

which is clearly continuous. Denote by ProbK(Γ1) the space ofK-stationary probability measures
on Γ1, which is non-empty by compactness of Γ1. Just as before, consider the sum process Snζ

generated by ζ along a K-Markov process on Γ1 with initial state (ω0, ω1, h0) ∈ Γ. This sum
process can be realized as the process on Ω = ΣN defined by

(Snζ)(ω) :=
n−1∑
j=0

ζ(ωi, ωi+1, hi) = h0(g
(n)(ω) x0)

where hi+1 = g(ωi−1, ωi)
−1 · hi for every i ≥ 0.

By Furstenberg-Kifer Theorems 1.1 and 1.4 in Furstenberg and Kifer (1983), letting

β := sup
{∫

Γ

ζ dη : η ∈ ProbK(Γ1)

}
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then for P-almost every ω ∈ Ω

lim sup
n→∞

1

n
h0(g

(n)(ω)x0) = lim sup
n→∞

1

n
(Snζ)(ω) ≤ β.

We claim now that
∫
Γ1
ζ dη = β for every measure η ∈ ProbK(Γ1). Then changing ζ by −ζ ,

the same argument implies that for P-almost every ω

lim
n→∞

1

n
h0(g

(n)(ω)x0) = β.

By the Theorem 17 and its remark we must have β = ℓ(g).

Claim 2:
∫
Γ1
ζ dη = β for every measure η ∈ ProbK(Γ1).

Proof of Claim 2. If the claim were false there would be an ergodic measure η ∈ ProbK(Γ1) such
that

∫
Γ1
ζ dη = β1 < β. Consider the map

F : Ω×Xh → Ω×Xh

(ω, h) 7→ (σω, g(ω0, ω1)
−1 · h)

which preserves the ergodic measure P× η. The observable ζ can be extended to ζ̄ : Ω×Xh → R,
ζ(ω, h) = ζ(ω0, ω1, h). Moreover, with this notation, (Snζ)(ω) =

∑n−1
j=0 ζ(F

j(ω, h0)) is a Birkhoff
sum. By Birkhoff’s ergodic theorem, for η-almost every h0 ∈ Xh and P-almost every ω ∈ Ω,

lim
n→∞

1

n
h0(g

(n)(ω)x0) = lim
n→∞

1

n

n−1∑
j=0

ζ̄(F j(ω, h0)) = β1

which together with Theorem 17 implies that β1 = −ℓ(g) and h0 ∈ Xh
−(ω). Next consider the

family of sets
Sω0 :=

{
h ∈ Xh : Pω0{ω ∈ Ω : h ∈ Xh

−(ω)} = 1
}
.

The previous argument shows that Sω0 6= ∅ for P-almost every ω ∈ Ω. Again by the remark to
Theorem 17 the set Sω0 must be a single horofunction Sω0 = {s(ω0)} and the function s : Σ → Xh

is measurable. The invariance of Xh
− in Theorem 17 now implies that g(ω0, ω1) · s(ω0) = s(ω1),

which proves that g is not irreducible. This contradiction implies that the claim is true.

Claim 3: The convergence is uniform h.

Proof of Claim 3. Let us start by proving the uniformity in h, arguing by absurd, suppose there is
a sequence of horofunctions (hn) ⊂ Xh

∞ converging to some h in Xh
∞ and ε > 0 such that

lim
n→∞

1

n
Eω0

[
hn(g

(n)x0)
]
< ℓ(g)− ε
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Due to the compactness of Xh we can assume that hn converges. Take (ynm)m ∈ X and ξn ∈ ∂X

two families of sequences such that hynm → hn =: hξn and ynm → ξn asm → ∞. Then

lim
n→∞

hn(g
(n)x0)− d(g(n)x0 , x0) = lim

n→∞
lim

m→∞
hynm(g

(n)x0)− d(g(n)x0 , x0)

= lim
n→∞

lim
m→∞

d(ynm , g(n)x0)− d(ynm , x0)− d(g(n)x0 , x0)

= lim
n→∞

lim
m→∞

−2〈ynm, g(n)x0〉x0

= lim
n→∞

−2〈ξn, g(n)x0〉x0 ,

where the last equality is a consequence of the continuity of the Gromov product in strongly hy-
perbolic spaces. Notice that the quantity 〈ξn, g(n)x0〉x0 goes to infinity if and only if both ξn and
g(n)x0 converge to the same point in ∂X . If this were the case, by Proposition 4 in Sampaio (2021),
limn→∞ h(g(n)x0) = −∞, hence h ∈ Xh

−(ω). Therefore 〈ξn, g(n)x0〉x0 must Pω0 almost surely be
finite as otherwise h ∈ Sω0 = ∅. Using dominated convergence theorem again,

lim
n→∞

1

n
Eω0

[
hn(g

(n)x0)
]
= lim

n→∞

1

n
Eω0

[
d(g(n)x0 , x0)

]
+ lim

n→∞

1

n
Eω0

[
hn(g

(n)x0)− d(g(n)x0 , x0)
]

= ℓ(g) + 0 = ℓ(g),

which yields the claim.

Claim 4: The convergence is uniform in ω0.

Proof of Claim 4. Consider now, for ω0 ∈ Σ

qn(ω0) = sup
{∣∣∣∣ 1nEω0

[
h(g(n)x0)

]
− ℓ(g)

∣∣∣∣ : h ∈ Xh

}
,

and notice the uniform bound |qn(ω0)| ≤ logb(d∞(g)) + ℓ(g). Due to the uniform limit in h proven
above, using dominated convergence theorem

lim
n→∞

∫
Σ

pn(σ)dµ(σ) = 0.

Let ε > 0. Consider n > p to be specified later and take a = a(p) := supω0
qp(ω0)∣∣∣∣ 1nEω0

[
h(g(n)x0)

]
− ℓ(g)

∣∣∣∣ ≤ ∣∣∣∣ 1nEω0

[
g−(p) · h(g(n−p)x0) + h(g(p)x0)

]
− ℓ(g)

∣∣∣∣
≤
∣∣∣∣ 1nEω0

[
g−(p)h(g(n−p)x0)

]
− ℓ(g)

∣∣∣∣+ 1

n
Eω0

[
h(g(p)x0)

]
≤
(
n− p

n

) ∣∣∣∣Eω0

[
1

n− p
Eωp

[
g−(p)h(g(n−p)x0)

]
− ℓ(g)

]∣∣∣∣+ p

n
(ℓ(g) + a),
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from which
qn(ω0) ≤ (Qpqn−p)(ω0) +

p

n
(ℓ(g) + a).

Now, taking p and n large enough, one has the following inequalities

p

n
(ℓ(g)− a)/n < ε/3,

as well as ∫
Σ

qn−p(σ)dµ(σ) < ε/3,

moreover, by the strongly mixing condition

sup
ω0∈Σ

∣∣∣∣(Qpqn−p)(ω0)−
∫
Σ

qn−p(σ)dµ(σ)

∣∣∣∣ ≤ ε/3,

provided p is large enough and taking n large enough. Hence

qn(ω0) ≤
∫
Σ

qn−p(σ)dµ(σ) + 2ε/3 < ε.

In the following proposition we will use the relation, which is an immediate consequence of
Proposition 14,

kn
α(g) ≤ sup

ω∈Σ, ξ∈∂X
Eω

[
b−αhξ(g

(n)x0)
]
.

Proposition 43. Given g1 ∈ I(K) with positive drift, there exists a neighbourhood V of g1 in
C(Σ × Σ, G) and constants n0 ∈ N, 0 < α1 < α0/2 < α0, C = C(g1) > 0, and 0 ≤ σ < 1 such
that

kn
α(g2) ≤ Cσn,

for all g2 ∈ V , n > n0, α ∈ [α0, α1] and f ∈ Hα(Σ× ∂X).

Proof. By Lemma 55,
lim
n→∞

sup
ξ∈∂X

∣∣Eω0

[
hξ(g

(n)x0)
]
− ℓ(g1)

∣∣ = 0.

In particular, there exists n0 ∈ N such that Eω0

[
hξ(g

(n0)x0)
]
≥ 1

log b > 0 for every ξ ∈ ∂X .
Let r > 0 to be specified later and consider in C(Σ× Σ, G) the neighbourhood of g1 given by

the ball
V = Br(g1) := {g2 ∈ C(Σ× Σ, G) : d∞(g1 , g2) < r}.

Let g2 ∈ Br(g1), ω0 ∈ Σ, ξ in ∂X . Use the inequality

bx < 1 + log(b)x+ log(b)2
x2

2
b|x|,
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to obtain,

Eω0

[
b−αhξ(g

(n0)
1 x0)

]
≤ 1− α log(b)Eω0

[
hξ(g

(no)
1 x0)

]
+ log(b)2

α2

2
Eω0

[
(hξ(g

(n0)
1 x0))

2b|αhξ(g
(n0)
1 x0)|

]
≤ 1− α + α2bα

(
log(b)2

2
n2
0 logb(C)2Cn0 log b

)
,

where C is a constant depending on g1. Hence there exists α small enough so that the right-hand
side becomes smaller than 1, which implies the existence of constants α0 and α1 < α0/2 such that
kn0
α (g1) < ρ < 1.
To extend this control to nearby cocycles let us introduce the following continuity type relation,

using the mean value theorem and the argument around finite scale continuity in Proposition 22

Eω0

∣∣∣b−αhξ(g
(n0)
1 x0) − b−αhξ(g

(n0)
2 x0)

∣∣∣ ≤ (log b)max
i=1,2

bd(g
(n0)
i x0,x0)

∣∣∣hξ(g
(n0)
1 x0)− hξ(g

(n0)
2 x0)

∣∣∣
≤ Cn0d(g

(n0)
1 x0, g

(n0)
2 x0)

≤ n0C
2n0d∞(g1, g2)

We can now choose r small enough to ensure there exists ρ∗ ∈ (ρ, 1) such that

Eω0

∣∣∣b−αhξ(g
(n0)
1 x0) − b−αhξ(g

(n0)
2 x0)

∣∣∣ ≤ ρ∗ − ρ.

Hence

Eω0

[
b−αhξ(g

(n0)
2 x0)

]
≤ Eω0

[
b−αhξ(g

(n0)
1 x0)

]
+
∣∣∣Eω0

[
b−αhξ(g

(n0)
2 x0)

]
− Eω0

[
b−αhξ(g

(n0)
1 x0)

]∣∣∣
≤ Eω0

[
b−αhξ(g

(n0)
1 x0)

]
+ Eω0

∣∣∣b−αhξ(g
(n0)
1 x0) − b−αhξ(g

(n0)
2 x0)

∣∣∣
≤ ρ+ (ρ∗ − ρ) = ρ∗ < 1

Due to the submultiplicativity, picking σ = (ρ∗)
1
n0 , for every n ∈ N there exists a constant

C > 0 such that
kn
α(g2) ≤ Eω0

[
b−αhξ(g

(n)
2 x0)

]
< Cσn,

which completes the proof.

The previous proposition now allows us to obtain the existence and uniqueness of the Kg sta-
tionary measures µg in a neighbourhood of g irreducible with positive drift.

Proposition 44. Let g ∈ S∞(Σ× Σ, G) have positive drift. If for some n ∈ N and α < 1

kn
α(g)

1/n < 1,

then there exists a uniqueKg stationary measure.
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Proof. The proof is mostly taken from Sampaio (2021). The seminorms υα are norms in the space
Hα(Γ)/C1. Since Qn

g1 = 1, by hypothesis, Qn
g acts in Hα(Γ)/C1 as a contraction. Using spectral

theory (see chapter IX in Riesz and Nagy (2012) for example), there exists and invariant spaceH0,
isomorphic to Hα(Γ)/C1, such that Hα(Γ) = H0 ⊕ C1. Given f ∈ Hα(Γ) we may write it as
c1+ h where c ∈ C and h ∈ H0. With that in mind, define

Λ : Hα(Γ) → C

c1+ h 7→ c.

Now notice that Qg is a positive operator, therefore so is Λ as

c1 = lim
n→∞

(
c1+Qn

g (h)
)
= lim

n→∞
Qn

g (f) ≥ 0,

provided f ≥ 0. Hence c = Λ(f) ≥ 0. Positivity also implies continuity with respect to the
uniform norm as

|Λ(φ)| ≤ |Λ(||φ||∞1)|| = ||φ||∞.

Now since Γ is a metric space, the set of bounded Lipschitz functions in ∂X is dense in the
space of bounded uniformly continuous functions Cb(Γ). With effect, given f ∈ Cb(Γ) one can
take the functions

fn(ξ) = inf
η∈Γ

{f(η)− nDb(ξ, η)},

which are all bounded Lipschitz and uniformly converge to f . Since the space is bounded, the set
of Lipschitz functions is contained in the space of Hölder functions, so Hα(Γ) is dense in Cb(Γ).
Hence, Λ extends to a positive linear continuous functional Λ̂ : Cb(Γ) 7→ C.

Riesz-Kakutani-Markov for non-compact spaces (Theorem 1.3 in Sentilles (1972)) applies, so
there exists a measure ν ∈ Prob(Γ) such that Λ̂(f) =

∫
Γ
fdν for every f ∈ Cb(Γ). Finally, writing

f once again as c1+ h yields∫
Γ

Qgfdν = Λ̂(Qgf) = c = Λ̂(f) =

∫
Γ

fdν.

By yet another density argument, this holds for all f ∈ L1(Γ), therefore ν is Kg-stationary. This
density of Cb(∂X) in L1(Γ) also justifies the uniqueness of the measure satisfying Λ̂(f) =

∫
Γ
fdν.

Henceforth M is welll defined and condition C1) is immediate. We now focus the remaining
conditions.
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Proposition 45 (Proposition 5.22 in Duarte et al. (2016)). Given g1 ∈ C(Σ × Σ, G) such that
(Kg1 , µg1 , ζg1) ∈ M, there exist a neighborhood V of g1 in C(Σ × Σ, G), constants 0 < α1 <

α0/2 < α0 < 1, C > 0 and 0 < σ < 1 such that for all g2 ∈ V , and f ∈ Hα(Σ× ∂X),∣∣∣∣∣∣∣∣Qn
g2
f −

∫
Σ

f(ω)dµg2(ω)

∣∣∣∣∣∣∣∣
α

≤ Cσn||f ||α.

Proof. Take the neighbourhood V from the previous proposition, given g2 ∈ V and any Kg2 sta-
tionary measure µg2 ,

υα

(
Qn

g2
f −

∫
Σ

f(ω)dµg2(ω)

)
= υα(Q

n
g2
f) ≤ υα(f)k

n
α(g2) ≤ Cσn||f ||α. (4.3)

So it remains to prove∣∣∣∣∣∣∣∣Qn
g2
f −

∫
Σ

f(ω)dµg2(ω)

∣∣∣∣∣∣∣∣
∞

≤ 2
∣∣∣∣Qn

g2
f
∣∣∣∣
∞ ≤ Cσn||f ||α, (4.4)

for possibly some other C < ∞ and 0 < σ < 1.
For this purpose, consider as well as the operator Q : L∞(Σ) → L∞(Σ)

(Qf)(ω1) :=

∫
Σ

f(ω2) dKω1(ω2).

There is a natural projection π : Σ × ∂X → Σ which induces a bounded linear embedding
π∗ : L∞(Σ) → Hα(Σ×∂X), π∗f := f ◦π. Notice that the range of this embedding is the subspace

π∗L∞(Σ) =
{
f ∈ Hα(Σ×Xh) : vα(f) = 0

}
and the following diagram commutes for every n ∈ N

L∞(Σ)
Qn

−−−→ L∞(Σ)

π∗

y yπ∗

Hα(Σ× ∂X) −−−→
Qn

Hα(Σ× ∂X).

Given f ∈ Hα(Σ × Xh), by (4.3) the iterates Qnf converge exponentially fast to the closed
subspace L∞(Σ) ≡ π∗L∞(Σ) ⊆ Hα(Σ × Xh). On the other hand by assumption Q is strongly
mixing on L∞(Σ). Combining these two properties and the fact that Markov operators do not
expand we get (4.4).

The Laplace-Markov operator Qg,z of the observed Markov system (Kg, µg, ζg) is given by

(Qg,zf)(ω0, ω1, ξ) =

∫
Σ

f(ω1, ω2, g(ω1, ω2)
−1ξ)bzhξ(g(ω1,ω2)x0) K(ω1, dω2).
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Lemma 46. Given g1, g2 ∈ S∞(Σ× Σ, G) and b > 0, there is a constant C2 > 0 such that for all
f ∈Hα(Σ× ∂X) and all z ∈ C such that Re z ≤ c,

||Qg1,zf −Qg2,zf ||∞ ≤ C2d∞(g1, g2)
α||f ||α.

Moreover, C2 is bounded on a neighborhood of g1.

Proof. Let ξ ∈ ∂X . Start by noticing that writting z = x+ yi with x ≤ c

|bzhξ(g1x0) − bzhξ(g2x0)| ≤ max
i=1,2

bc d(gix0,x0) |c hξ(g1x0)− c hξ(g2x0)|

≤ c d∞(g1, g2)max
i=1,2

d∞(gi)
c.

Hence

|Qg1,zf −Qg2,zf | ≤ Eω0

[
|bzhξ(g1x0)f(e1, g

−1
1 ξ)− bzhξ(g2x0)f(e1, g

−1
2 ξ)|

]
≤ ||f ||∞Eω0

[
|bzhξ(g1x0) − bzhξ(g2x0)|

]
+max

i=1,2
d∞(gi)

cEω0

[
|f(e1, g−1

1 ξ)− f(e1, g
−1
2 ξ)|

]
≤ c d∞(g1, g2)max

i=1,2
d∞(gi)

c||f ||∞ +max
i=1,2

d∞(gi)
cυα(f)Eω0

[
Db(g

−1
1 ξ, g−1

2 ξ)α
]

≤ C2||f ||αd∞(g1, g2)
α.

where C2 = max {c maxi=1,2 d∞(gi)
c,maxi=1,2 d∞(gi)

c} which are bounded in a neighbourhood
g1. The last inequality is a consequence of d∞(g1, g2) < d∞(g1, g2)

α < 1 and Db(g
−1
1 ξ, g−1

2 ξ) ≤
d∞(g1, g2).

Proof of Proposition 37. PointC1) is obvious. ForC3) recall from (4.1) that ||bζg ||∞ = ||bh(gx0)||∞ ≤
d∞(g) which is finite, hence ζg ∈ Hα(Σ× ∂X). Therefore Qg,zζ acts onHα(Σ× ∂X) as the latter
is a Banach algebra. Point C2) is a consequence of Proposition 45 while C4) follows from the
previous Lemma.

With this, we can now obtain the large deviations.

Proof of Theorem 34. Using Theorem 35, there exists V a neighbourhood of g ∈ S∞(K) and con-
stants ε0, C, k > 0 such that for every g2 ∈ V , 0 < ε < ε0, h ∈ Xh

∞ and n ∈ N

Pµ

[∣∣∣∣ 1nh(g(n)2 x0)− ℓ(g2)

∣∣∣∣ > ε

]
≤ Cb−kε2n.

Using Lemma 5 in Sampaio (2021), one obtains that there exists an horofunction h ∈ Xh
∞ such that

h(g
(n)
2 x0) ≤ d(g

(n)
2 x0, x0) ≤ h(g

(n)
2 x0) +K(δ).

whereK(δ) is a constant depending on δ. Using this inequality we obtain the large deviations with
a possible loss in the constant C.
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4.3 RandomWalks Setting

In this section we slightly adjust the setting. Here we will be interested in random walks, in other
words, we consider probability measures on the group and then tackle the same problems we have
worked so far in this case. This change in setting requires that we reintroduce some concepts.

Let now Prob(M) and Probc(M) denote, respectively, the space of Borel probability measures
and its subspace of with Borel probability measures with compact support in some metric spaceM .
Let G be a topological group acting on a metric spaceM , we define the convolution

⋆ : Probc(G)× Prob(M) → Prob(M)

(µ, ν) 7→ µ ⋆ ν :=

∫
G

gνdµ(g),

where gν is the pushforward of ν under the action of g, in other words, the convolution is the average
of the pushforwards with respect to µ. In particular, G acts on itself on the right, this allows for the
definition of µn for every µ ∈ Probc(G) as the n− th convolution of µ with itself. Let us stress the
fact we are considering G acting on itself through the right action. As a side-note recall that if both
µ and ν have compact support then so does µ ⋆ ν.

Working in the degree of generality we intend to keep in this thesis, a problem could arise here.
We need G to be second countable in order for the support of a measure in Prob(G) to be well
defined. Whence we restrict our attention to closed separable groups of isometries G ⊂ Isom(X).
With this in mind, throughout this section G always stands for a closed separable groups of isome-
tries acting on a hyperbolic space X satisfying (BA).

Let µ ∈ Probc(G) then we will consider the product measure µN which has compact support in
Ω = GN. Given ω = (g0, g1, ..., gn, ...) ∈ Ω we set the notation

ωn = g0g1...gn−1,

as well as defining the Bernoulli shift T : Ω → Ω sending ω = (g0, g1, ...gn, ...) to Tω =

(g1, ..., gn, ...). We will denote by ω−n the inverse of ωn, that is, (ωn)−1. Notice that T is an ergodic
transformation with respect to µN.

Given µ ∈ Probc(G), by compacity we have∫
G

d(gx0, x0)dµ(g) < ∞,

so we can define the drift

ℓ(µ) := lim
n→∞

1

n

∫
G

d(gx0, x0)dµ
n(g) = lim

n→∞

1

n

∫
G

d(ωnx0, x0)dµ
N(ω).
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Notice that the measurability of the integrand functions follows from continuity. Moreover, due
to ergodicity, by Kingman’s Ergodic Theorem the limit is µN-almost surely equal to the limit of
d(ωnx0, x0)/n.

Our goal this time is to understand the behaviour of ℓ(µ) with respect to both small perturba-
tions in µ. To understand what we mean by small perturbations in µ we shall introduce the Hölder
Wasserstein distance. Let L∞(G) stand for the space of Borel measurable functions φ : G → R
bounded in the sup norm. For every 0 < α ≤ 1 and φ ∈ L∞(G) define the α-Hölder constant

υG
α (φ) := sup

g,g′∈G, g ̸=g′

|φ(g)− φ(g′)|
dG(g, g′)α

.

For every µ, ν ∈ Probc(G), we define the Wasserstein distance between them as

Wα(µ, ν) = sup
φ∈L∞(G), υG

α (φ)≤1

∣∣∣∣∫
G

φdµ−
∫
G

φdν

∣∣∣∣ .
A detailed discussion on Wasserstein distances can be found in Villani (2009). One now feels

tempted to consider the continuity of the drift with respect to the Wasserstein distance. This may be
problematic as we could consider very close measures µ and µ1 where the support of µ1 contains
elements that expand an arbitrarily large quantity which are picked with an equally small probabil-
ity. Then the distance between µ and µ1 would be small but the drift could be incommensurably
different. To work around this problem, given 1 < b ≤ 21/δ for every λ > 0 set

Gλ :=
{
g ∈ G : bd(gx0,x0) < λ

}
.

For Markov systems we introduced the concept of irreducibility. We now reintroduce it in the
language of random walks.

Definition 14 (Irreducible measure). We say that µ ∈ Probc(G) is irreducible if there is no horo-
function h ∈ Xh such that g · h = h for µ-almost every g.

One can prove (see Proposition 5.3 in Duarte and Klein (2017)) that being irreducible is an open
condition in Probc(G). Density seems a bit more delicate since in some cases, such asX = R, there
are no irreducible measures. However, due to the convexity of the space of probabilities, irreducible
measures, if they exist, form a dense set. Thus the set of irreducible measures is either generic or
empty.

Let once again M be a metric space on which G acts. Given µ ∈ Probc(G), a measure ν ∈
Probc(M) is µ-stationary if µ⋆ν = ν. The existence of stationary measures is extremely important
to us. It is actually easy to see that when M = Xh the existence of stationary measures follows
from compactness. Our technique will actually allow for the existence of stationary measures in
∂X , which will require a finer treatment similar to what we have done in the previous section.
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Theorem 47 (Furstenberg type formula). Let X be a hyperbolic space satisfying (BA) and G be a
closed separable group of isometries of X . Let µ be an irreducible measure in Probc(G). Then for
every µ-stationary measure ν ∈ Prob(∂X)

ℓ(µ) =

∫
G

∫
∂X

hξ(gx0)dν(ξ)dµ(g).

The Fürstenberg type formmula is a consequence of Claims 1 and 2 of the proof of Lemma 55.
Notice that a µ stationary measure in ∂X yields a stationary measure in Xh

∞ ⊂ Xh by pushing
forward through the inverse of the local minimum map. Hence the result follows.

Notice that it also makes sense to define a Wasserstein distance in Prob(∂X). Using this fact,
show that every measure in a neighourhood of an irreducible measure with positive drift admits a
unique stationary measure. Then we show that is stationary measure varies continuously to obtain
the following theorem.

Theorem 48. Let X be a hyperbolic space satisfying (BA) and G be a closed separable group of
isometries of X . Given λ > 0, let µ ∈ Probc(Gλ) be irreducible and ℓ(µ) > 0. Then there are
constants 0 < α ≤ 1, C < ∞ and r > 0 such that for every µ1, µ2 ∈ Probc(Gλ) if Wα(µi, µ) < r,
i = 1, 2, then

|ℓ(µ1)− ℓ(µ2)| ≤ CWα(µ1, µ2).

4.3.1 Wasserstein Distance and Convolution

Let now G ⊂ Isom(X) be a closed separable group. In this section we will explore the interplay
between the Wasserstein distance and convolution.

Proposition 49. Given λ > 0, let µ1, µ2, ν1, ν2 ∈ Probc(Gλ), for every 0 < α ≤ 1

Wα(µ1 ⋆ µ2, ν1 ⋆ ν2) ≤ Wα(µ1, ν1) + C(δ)αλαWα(µ2, ν2).

Proof. Some parts of this proof will feel similar to the proof of Theorem 15. We also start with an
inequality of the type

Wα(µ1 ⋆ µ2, ν1 ⋆ ν2) ≤ Wα(µ1 ⋆ µ2, µ1 ⋆ ν2) +Wα(µ1 ⋆ ν2, ν1 ⋆ ν2).

Let φ ∈ L∞(G) with υG
α (φ) ≤ 1, using the ideas from the previous proof,∣∣∣∣∫

G

φ(g1g)dµ1(g1)−
∫
G

φ(g1g
′)dµ1(g1)

∣∣∣∣ ≤ ∫
G

|φ(g1g)− φ(g1g
′)| dµ1(g1)

≤
∫
G

dG(g1g, g1g
′)αdµ1(g1)
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≤ C(δ)αλαdG(g, g
′)α.

In other words the map g 7→
∫
G
φ(g1g)dµ1(g1) is α-Hölder with constant ≤ C(δ)αλαdG(g, g

′)α.
Hence∣∣∣∣∫

G

∫
G

φ(g1g2)dµ1(g1)dµ2(g2)−
∫
G

∫
G

φ(g1g2)dµ1(g1)dν2(g2)

∣∣∣∣ ≤ C(δ)αλαWα(µ2, ν2).

Transporting the inequalities from the proof of Theorem 15 once again, we obtain

|φ(gg2)− φ(g′g2)| ≤ dG(gg2, g
′g2)

α ≤ dG(g, g
′)α,

hence∣∣∣∣ ∫
G

∫
G

φ(g1g2)dµ1(g1)dν2(g2)−
∫
G

∫
G

φ(g1g2)dν1(g1)dν2(g2)

∣∣∣∣ ≤
≤
∫
G

∣∣∣∣∫
G

φ(g1g2)dµ1(g1)−
∫
G

φ(g1g2)dν1(g1)

∣∣∣∣ dν2(g2)
≤ Wα(µ1, ν1),

taking the supremums over φ in the conditions above yields the result.

Corollary 50. Given λ > 0, let µ, ν ∈ Probc(Gλ). Then µn ∈ Probc(Gλn) and for every 0 < α ≤ 1

and n ∈ N

Wα(µ
n, νn) ≤ Wα(µ, ν)

n−1∑
i=0

C(δ)iαλiα.

Proof. For the first statement, notice that by the triangle inequality, for every g1, g2 ∈ Gλ

bd(g1g2x0,x0) ≤ bd(g1x0,x0)+d(g2x0,x0) = bd(g1x0,x0)bd(g2x0,x0) ≤ λ2.

Direct applications of the previous Proposition yield the second statement as

Wα(µ
n, νn) ≤ Wα(µ

n, µ ⋆ νn−1) +Wα(µ ⋆ νn−1, νn)

≤ Wα(µ, ν) + C(δ)αλαWα(µ
n−1, νn−1)

≤ Wα(µ, ν)
n−1∑
i=0

C(δ)iαλiα.
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4.3.2 Existence and Uniqueness of the Stationary Measure

For every f ∈ L∞(∂X) and 0 < α ≤ 1 define

υα(f) := sup
ξ ̸=η∈∂X

|f(ξ)− f(η)|
Db(ξ, η)α

,

||f ||α := ||f ||∞ + υα(f).

Set
Hα(∂X) := { f ∈ L∞(∂X) : ||f ||α < ∞} .

the space of boundary Hölder continuous functions in ∂X . We call υα(f) the Hölder constant of f .
The spaceHα(∂X) is Banach algebra with unity 1.

Given µ ∈ Probc(G), define the Markov operator Qµ : Lp(∂X) → Lp(∂X) by

(Qµf)(ξ) :=

∫
G

f(g−1ξ)dµ(g),

for 1 ≤ p ≤ ∞. A simple computation yields that for every ν ∈ Prob(∂X) and f ∈ L1(∂X)∫
∂X

(Qµf)(ξ)dν(ξ) =

∫
∂X

∫
G

f(g−1ξ)dµ(g)dν(ξ)

=

∫
∂X

f(ξ)dµ ⋆ ν(ξ),

which yields the following proposition.

Proposition 51. Let µ ∈ Probc(G), then ν ∈ Prob(∂X) is µ−stationary if and only if for every
f ∈ L1(∂X) ∫

∂X

(Qµf)dν =

∫
∂X

fdν

We also have the following identity

(Qn
µf)(ξ) =

∫
G

f(g−1ξ)dµn(g)

=

∫
G

∫
G

f(g−1
n−1g

−1ξ)dµn−1(g)dµ(gn−1)

=

∫
G

Qµn−1f(g−1
n−1ξ)dµ(gn−1)

= (Qµ(Qµn−1f))(ξ),

in other words, for every n ∈ N, Qµn = Qn
µ.

Given µ ∈ Probc(G) and 0 < α < 1 define the average Hölder constant of µ as

kn
α(µ) := sup

ξ ̸=η∈∂X

∫
G

(
Db(g

−1ξ , g−1η)

Db(ξ , η)

)α

dµn(g).
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Lemma 52. For every f ∈ Hα(∂X)

υα(Qµnf) ≤ kn
α(µ)υα(f).

Proof. The proof is analogue to the proof of Lemma 39.

In particular, the previous Lemma implies that the Markov operator restricts to a well defined
operator in Qµ : Hα(∂X) → Hα(∂X). In the following Lemma we prove kn

α(µ) is submultiplica-
tive, which emphasises the spectral character of the measurement kα

n .

Lemma 53. Let µ ∈ Probc(G), for everym,n ∈ N

km+n
α (µ) ≤ km

α (µ)k
n
α(µ).

Proof. The proof is analogue to the proof of Lemma 40.

Proposition 54. Let µ ∈ Probc(G). If for some n ∈ N and 0 < α ≤ 1

kn
α(µ)

1/n < 1,

then there exists a unique µ-stationary measure ν ∈ Prob(∂X). Moreover, for every f ∈ Hα(∂X),

lim
n→∞

Qn
µ(f) =

(∫
∂X

fdνµ

)
1.

Proof. For the second assertion, the seminorms υα are norms in the space Hα(∂X)/C1. Since
Qn

µ1 = 1, by hypothesis, Qn
µ acts in H0 = Hα(∂X)/C1 as a contraction. Then limQn

µ(f) must be
a constant function; by Proposition 51 it must be the constant function displayed in the statement.
The remainder of the statement is equal to the Markov case.

We will now focus on proving kn
α(µ1) < 1 in a neighbourhood of µ, provided µ is irreducible

and ℓ(µ) > 0.

Lemma 55. Let µ ∈ Probc(G) be irreducible and ℓ(µ) > 0, then

lim
n→∞

1

n

∫
G

h(gx0)dµ
n(g) = ℓ(µ)

uniformly on h ∈ Xh
∞.

Proof. Is an immediate adaptation of the Markov version.
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Applying Proposition 14 one now has the inequality

kn
α(µ) ≤ C(δ)α sup

h∈Xh

∫
G

b−αh(gx0)dµn(g).

Since for every horofunction h ∈ Xh and g1, g2 ∈ G

h(g1g2x0) = (h(g1g2x0)− h(g1x0)) + (h(g1x0)− h(x0))

= g−1
1 · h(g2x0) + h(g1x0),

one can easily verify that the process suph∈Xh

∫
G
b−αh(gx0)dµn(g) is submultiplicative. This fact is

relevant to us since it allows us to pass from the spectral quantity kn
α(µ) to a more manageable one

at the loss of a multiplicative constant. With that in mind we now take a closer look at the quantity
on the right, in particular, next lemma tells us that g 7→ b−αh(gx0) is Hölder continuous.

Lemma 56. Given λ > 0, for every g1, g2 ∈ Gλ one has∣∣b−αh(g1x0) − b−αh(g2x0)
∣∣ ≤ λ2αdG(g1, g2)

α.

Proof. Start by noticing that x 7→ xα is α-Hölder with Hölder constant 1. Then we only need to
control |b−h(g1x0) − b−h(g2x0)|, which we can do using the mean value theorem and the fact horo-
functions are Lipschitz∣∣b−h(g1x0) − b−h(g2x0)

∣∣ ≤ log(b)λ |h(g1x0)− h(g2x0)| ≤ λ(log b)d(g1x0, g2x0).

If Db(g
−1
1 x0, g

−1
2 x0) = log(b)d(g−1

1 x0, g
−1
2 x0) we are done, otherwise and immediate computation

yields

(log b)d(g1x0, g2x0) ≤ bd(g1x0,g2x0)/2 ≤ b(d(g1x0,x0)+d(g2x0,x0))/2b−⟨g1x0 , g2x0⟩x0

≤ λDb(g1x0, g2x0)

so we are done.

Remark 5. In the course of this result we have proven that g 7→ h(gx0) is Lipschitz.

Proposition 57. Given λ > 0 let µ ∈ Probc(Gλ) be an irreducible measure with ℓ(µ) > 0. There
are numbers r > 0, 0 < α ≤ 1, 0 < k < 1 and n ∈ N such that for every µ1 ∈ Probc(Gλ) satisfying
Wα(µ, µ1) < r one has kn

α(µ) ≤ k.

Proof. We can mimic the proof of proposition to obtain the existence of 0 < ρ < 1 and α small
enough so that

∫
G
b−αh(gx0)dµn(g) ≤ ρ. Fix such α and ρ for the remainder of the proof.
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To extend this control to close measures notice that by the previous lemma g 7→ b−αh(gx0) is
α-Hölder with Hölder constant λ2α for every h ∈ Xh. So taking µ, µ1 with Wα(µ, µ1) ≤ r, where
r is at least smaller than 1 and chosen later,∣∣∣∣∫

G

b−αh(gx0)µn0(g)−
∫
G

b−αh(gx0)µn0
1 (g)

∣∣∣∣ ≤ λ2αWα(µ
n0 , µn0

1 )

≤ Wα(µ, µ1)
n−1∑
i=0

C(δ)iαλ(i+2)α.

So we can now choose r small enough to ensure there exists ρ∗ ∈ (ρ, 1)∣∣∣∣∫
G

b−αh(g−1x0)µn0(g)−
∫
G

b−αh(g−1x0)µn0
1 (g)

∣∣∣∣ ≤ ρ∗ − ρ.

Hence∫
G

b−αh(gx0)µn0
1 (g) ≤

∫
G

b−αh(gx0)µn0(g) +

∣∣∣∣∫
G

b−αh(gx0)µn0(g)−
∫
G

b−αh(gx0)µn0
1 (g)

∣∣∣∣
≤ ρ∗ < 1.

Due to the submultiplicativity, picking σ = (ρ∗)
1
n0 , for every n ∈ N there exists a constant

C > 0 such that
sup
h∈Xh

∫
G

b−αh(gx0)dµn(g) < Cσn.

Finally as observed before we now have

kn
α(µ1) ≤ C(δ)α C σn,

for every µ1 withWα(µ, µ1) < δ. In particular, there exists n ∈ N for which this quantity is smaller
than 1.

4.3.3 Continuity

In the previous section we have proven that in a neighbourhood of every irreducible measure in G

with positive drift all measures admit a unique stationary measure in ∂X . In the next Lemma we
explore how the stationary measures behave under perturbations on the measure in G.

Lemma 58. Given λ > 0, let µ1, µ2 ∈ Probc(Gλ) and νµ1 , νµ2 ∈ Prob(∂X) their respective
stationary measures. Suppose for some 0 < α ≤ 1, max{kn

α(µ1), k
n
α(µ2)} ≤ k < 1 (in particular,

νµ1 and νµ2 exist), then for every n ∈ N and f ∈ Hα(∂X)∣∣∣∣∫
∂X

fdνµ1 −
∫
∂X

fdνµ2

∣∣∣∣ ≤ υα(f)

1− k
Wα(µ1, µ2).
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Proof. The Markov operators satisfy

||Qµ1f −Qµ2f ||∞ ≤ sup
ξ∈∂X

∣∣∣∣∫
G

f(g−1ξ)dµ1(g)−
∫
G

f(g−1ξ)dµ2(g)

∣∣∣∣
≤ υα(f)Wα(µ1, µ2).

For the powers we get∣∣∣∣Qn
µ1
f −Qn

µ2
f
∣∣∣∣

∞ ≤
n∑

i=0

||Qi
µ2
(Qµ1 −Qµ2)(Q

n−i−1
µ1

(f))||∞

≤
n∑

i=0

||(Qµ1 −Qµ2)(Q
n−i−1
µ1

(f))||∞

≤ Wα(µ1, µ2)
n∑

i=0

υα(Q
n−i−1
µ1

(f))

≤ Wα(µ1, µ2)υα(f)
n∑

i=0

kn−i−1

≤ υα(f)

1− k
Wα(µ1, µ2).

Now limn→∞ Qµ1f = (
∫
∂X

fdνµ1)1 and limn→∞ Qµ2f = (
∫
∂X

fdνµ2)1 so∣∣∣∣∫
∂X

fdνµ1 −
∫
∂X

fdνµ2

∣∣∣∣ ≤ sup
n

∣∣∣∣Qn
µ1
f −Qn

µ2
f
∣∣∣∣

∞ ,

from which we obtain the result.

Proof of Theorem 48. Let ν ∈ Prob(∂X), for every g, g′ ∈ Gλ, applying the mean value theorem
with x 7→ b−αx as well as Lemma 56∣∣∣∣ ∫

∂X

hξ(gx0)dν(ξ)−
∫
∂X

hξ(g
′x0)dν(ξ)

∣∣∣∣ ≤ ∫
∂X

|hξ(gx0)− hξ(g
′x0)| dν(ξ)

≤ max{bd(gx0,x0), bd(g
′x0,x0)}

α log b

∫
∂X

|b−αhξ(gx0) − b−αhξ(g
′x0)|dν(ξ)

≤ λ

α log b

∫
∂X

|b−αhξ(gx0) − b−αhξ(g
′x0)|dν(ξ)

≤ λ3

α log b
dG(g, g

′)α,

in particular, the map g 7→
∫
∂X

h(g−1x0)dν(g) is Hölder continuous.
Let µ ∈ Probc(Gλ) be irreducible with ℓ(µ) > 0. Then there exist 0 < α ≤ 1 and a neighbour-

hood of µ in which all measures satisfy kn
α(µ1) < 1. Let µ1, µ2 be in a neighbourhood of µ and

νµ1 , νµ2 their respective stationary measures. Using the Furstenberg type formula.

|ℓ(µ1)− ℓ(µ2)| ≤
∣∣∣∣∫

G

∫
∂X

hξ(gx0)dνµ1(ξ)dµ1(g)−
∫
G

∫
∂X

hξ(gx0)dνµ2(ξ)dµ2(g)

∣∣∣∣
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≤
∣∣∣∣∫

G

∫
∂X

hξ(gx0)dνµ1(ξ)dµ1(g)−
∫
G

∫
∂X

hξ(gx0)dνµ1(ξ)dµ2(g)

∣∣∣∣
+

∣∣∣∣∫
G

∫
∂X

hξ(gx0)dνµ1(ξ)dµ2(g)−
∫
G

∫
∂X

hξ(gx0)dνµ2(ξ)dµ2(g)

∣∣∣∣
≤ λ3

α log b
Wα(µ1, µ2) +

λ3

α(log b)(1− k)
Wα(µ1, µ2).

4.4 Analyticity of the Drift

Gouëzel (2017), proved that the drift is analytic for random walks on word hyperbolic groups pro-
vided the measures have a fixed finite support. Despite solving the case of hyperbolic groups,
Gouëzel left open the question of general groups acting on a hyperbolic space, which we now
tackle. The argument is similar to Gouëzel’s and dates back to Peres (1991). The method will boil
down to applying the same ideas from the previous sections once again.

We are interested in considering measures supported in a fixed finite set of isometries, say
F = {g1, ..., gd}. A probability measure µ in F is directly identified with probability vector
p = (p1, p2, ..., pd) by

µp =
d∑

i=1

piδgi ,

where δgi stands for the Dirac measure at gi. We will prove that the drift is analytic provided µ is
irreducible and the drift ℓ(µ) is positive. This section is a joint work with Jamerson Bezerra and the
result of discussions between the two.

Theorem 59. Let F = {g1, g2, ..., gd} be isometries of an hyperbolic spaceX satisfying (BA). Let
p = (p1, p2, ..., pd) be a probability vector and µp =

∑d
i=1 piδgi a probability measure. If ℓ(µp) > 0,

µp is irreducible and pi > 0 for every 1 ≤ i ≤ d, then ℓ is an analytic function in a neighbourhood
of (p1, p2, ..., pd).

Proof. The first step of the work is to consider our probability vector as living inC as this allows for
a direct description of analyticity through holomorphic functions. Sowe consider z = (z1, z2, ..., zd)

such that
∑d

i=1 zi = 1, and take its Markov operator Qz : L
∞(∂X) → L∞(∂X)

(Qzf)(ξ) =
n∑

i=1

zif(g
−1
i ξ).

Notice that for each ξ, (Qn
zf)(ξ) are polynomials of degree n in the variables (z1, z2, ..., zd), hence

holomorphic. Next we use the results from the previous section regarding the contractive behaviour
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of the Markov operator. Notice as well that since µ is irreducible and the drift is positive, as in
Proposition 57, we have

kn
α(µp) ≤ C(δ)α C σn. (4.5)

where C > 0, C(δ) is as defined in 14 and σ < 1.
We will now see that provided f is Lipschitz, then Qn

zf converges uniformly for every z in

Ω =

{
(z1, z2, ..., zd) ∈ Cn :

n∑
i=1

zi = 1,
|zi|
pi

< σ0 for 1 ≤ i ≤ d

}
,

where 1 < σ0 < σ−1 for the sigma given above. With effect, given ξ, η ∈ ∂X , we have

|(Qn
zf)(ξ)− (Qn

zf)(η)| ≤
d∑

i=1

|zi(Qn−1
z f)(g−1

i ξ)− zi(Q
n−1
z f)(g−1

i η)|

≤ σ0

d∑
i=1

|pi(Qn−1
z f)(g−1

i ξ)− pi(Q
n−1
z f)(g−1

i η)|

= σ0

∫
F

|(Qn−1
z f)(g−1

i ξ)− (Qn−1
z f)(g−1

i η)|dµp(g),

hence by induction

|(Qn
zf)(ξ)− (Qn

zf)(ξ)| ≤ σn
0

∫
Fn

|f(g−1ξ)− f(g−1η)|dµn
p (g).

Assuming f is L−Lipschitz, using (4.5), we obtain

|(Qn
zf)(ξ)− (Qn

zf)(ξ)| ≤ CLσn
0σ

nDb(ξ, η). (4.6)

Since
∑d

i=1 zi = 1, applying the previous equation with η = g−1
i ξ, we obtain

∣∣(Qn+1
z f)(ξ)− (Qn

zf)(ξ)
∣∣ = ∣∣∣∣∣

d∑
i=1

zi(Q
n
zf)(g

−1
i ξ)− (Qn

zf)(ξ)

∣∣∣∣∣
=

∣∣∣∣∣
d∑

i=1

zi
[
(Qn

zf)(g
−1
i ξ)− (Qn

zf)(ξ)
]∣∣∣∣∣

≤ dσ0CL(σσ0)
n,

thus obtaining the intended uniform convergence as σσ0 < 1. We can project the first d − 1 co-
ordinates of Ω onto an open set of Cd−1, which defines an analytic structure on Ω. The uniform
convergence now implies that limn→∞(Qn

zf)(ξ) is an analytic function of z, which by (4.6), doesn’t
depend on ξ.
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Now we use fi(ξ) = hξ(gix0). Notice that by the remark to Lemma 56 these are Lipschitz
functions. So the limit of the functions

Pn(z) =
d∑

i=1

zi(Qzfi)(ξ)

converges uniformly inΩ to an analytic functionP . Now let q = (q1, q2, ..., qn) ∈ Ω be a probability
vector. Then for every fi

(Qn
q fi)(ξ) =

∫
Fn

fi(g
−1ξ)dµn

q (g)

Hence

Pn(q) =
d∑

i=1

qi(Qqfi)(ξ) =

∫
Fn

(
d∑

i=1

qihg−1ξ(gix0)

)
dµn

q (g),

where the rightmost side converges to the drift by the Fürstenberg type formula argument (claims
1 and 2 in Lemma 55).

4.5 Bibliographic Notes

In this chapter we explored Markov systems in hyperbolic spaces. This has been done very scarcely
in this degree of generality as most of the literature in the area sticks to random walks alone. In fact
Goldsborough and Sisto (2021) made a proposal towards the study of problems regarding Markov
chains in hyperbolic-like groups very recently. Thus the remainder of the references we present
here will be based on the random walks case alone.

When it comes to large deviations, one may find the case of random walks in Sampaio (2021),
which I decided to not include in the thesis as it intersects the more interesting case of Markov
systems. Our work in this problemmeets Boulanger et al. (2020), where a large deviations principle
is proven in the setting of non-elementarymeasures in a countable groupG. More recently Aoun and
Sert (2022) obtained large deviation estimates as well as continuity in the proper case for cocompact
actions ofG inX . Our large deviations are weaker in the sense that the constants are local, although
they apply more generally. The local nature of our results are a consequence of the methods applied.
More precisely, we will use spectral techniques motivated by Duarte et al. (2016). Such methods
have also been used in the case of hyperbolic groups in Björklund (2010), where a central limit
theorem is presented.

Regarding continuity, it was known that if µ is non-elementary and supported on a finite set
of some hyperbolic group, the drift is known to be analytic with respect to measures supported in
the same set (see Gouëzel (2017); Gouëzel et al. (2018); Gilch and Ledrappier (2013)), here we
expand this result to the case outside hyperbolic groups. As mentioned before, in the proper case
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our continuity results are also similar to the ones in Aoun and Sert (2022). Note however that
our work allows Hölder continuity in compactly supported measures. As a consequence, we can
consider more general measures and also allow for closeby isometries to be considered.

Although we define irreducible measures, the case where µ is non-elementary is also interesting
to us. In Maher and Tiozzo (2018), it was proven that in this case the drift is positive; however,
non-elementary measures are always irreducible by definition, in other words, our results apply in
such situations.

The Fürstenberg type formula is another place where we borrow from Lyapunov exponents,
namely from Furstenberg and Kifer (1983). Multiple metric versions appear in many papers, in-
cluding the ones previously cited. Other references such as Carrasco et al. (2017) and Karlsson and
Ledrappier (2011) are also relevant. We reprove the statement as these works don’t relate back with
irreducibility.
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Chapter 5

On the Linear Setting

In this chapter we present a different setting where the operators are now linear, instead of isometries
of some metric space, and we try to understand the average expanding factor of their product. It is
well known, see Lian and Lu (2010), that the dynamics of product of linear operators are governed
by the multiplicative ergodic theorem of Oseledets and the top Lyapunov will take the role of the
drift.

Once again, questions regarding continuity of these limit quantities arises naturally. As is the
theme of the thesis, we will present an avalanche principle and large deviations estimates to obtain
an abstract continuity theorem; this time simply explaining how the tools for the finite dimensional
case still exist in the infinite dimensional one of what changes from the previous cases. The finite
dimensional version of these results can be found in Duarte et al. (2016). Here we will work with
Hilbert spaces, which is why we mentioned Lian and Lu (2010). We recommend chapter 5 of
Temam (2012) for a more thorough presentation of the prerequisites for this chapter, namely when
it comes to exterior products and other multilinear algebra considerations regarding Hilbert spaces.

5.1 Generalities

Let H be a separable Hilbert space. We denote the natural norm in H by | · | and the operator
norm in H by || · ||. Denote as well by L(H) the space of bounded linear operators from H to
itself. Given a bounded linear operator we will denote by A∗ its adjoint operator, which satisfies
〈Au, v〉 = 〈u,A∗v〉 for every u, v ∈ H .

Definition 15. (Singular values) Given a bounded linear operatorA : H → H , we define it’s k−th
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singular value by the expression

sk(A) = sup
F⊂H

dimF=k

inf
u∈F
|u|=1

|Au|.

Trivially s1(A) = ||A||, but we also have our disposal the relation s1(A)s2(A) = ||∧2A||, where
∧2 stands for the exterior power. In finite dimensions, we can assert that there are orthonormal
vectors u1, ..., un ∈ H such that |Aui| = si(A). These vectors are the singular vectors and si(A)

are the singular values from the singular value decomposition. For the infinite dimensional case,
singular value decomposition exists for example when A is compact. Nevertheless something may
be said in the noncompact case. With effect, since sk(A) are decreasing, define

s∞(A) = lim
k→∞

sk(A) = inf
k≥1

sk(A).

Then we obtain the following theorem in the spirit of the singular value decomposition.

Theorem 60 (Chapter V, Proposition 1.3 in Temam (2012)). Let H be a Hilbert space and B its
unit ball. Let A ∈ L(H) and assume sk(A) > s∞(A) for some k ∈ N. Then there exists a closed
subspace space E ⊂ H of dimension k such that A(B) is included in an ellipsoid E which is a
product of the ball centered at 0 with radius and s∞(A) in E⊥, and of the ellipsoid of E, whose
axes are directed along the vectorsAvi, with length si(A), where vi are the orthogonal eigenvectors
of A∗A spanning E.

In particular, in the conditions of the theorem there exist two sets of orthonormal vectors {u1, ...uk}
and {v1, ..., vk} such that Aui = si(A)vi and A∗vi = si(A)vi. We call ui’s the singular direction
of A. Notice for example that if s1 > s2 the theorem implies that there exists a unique direction u

such that Au = s1(A)u.

Theorem 61 (Avalanche Principle). Let A1, ..., An ∈ L(H) be such that for every 1 ≤ i ≤ n.
There are universal constants 0 < C1 < 1, C2 > 0 such that if for 0 ≤ i ≤ n− 1

G) gr(Ai) :=
||Ai||
s2(Ai)

≥ a;

A) ||Ai Ai−1||
||Ai|| ||Ai−1|| ≥ b;

P) a−1 ≤ C1b
2.

Then, setting A(n) = AnAn−1...A1∣∣∣∣∣log ||A(n)||+
n−1∑
i=2

log ||Ai−1|| −
n−1∑
i=1

log ||AiAi−1||

∣∣∣∣∣ ≤ C2
n

ab
.
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ConditionG) asserts that there exists a gap between the two first singular values, which implies
some sort of contraction towards the most expanding direction, whereas condition A) requires a
certain alignment between the most expanded direction of a map and the most expanding direction
of the subsequent map. Finally condition P ) quantitatively relates the two. Then we obtain a
conclusion saying that the product satisfies a similar relationship of being aligned with its parcels
in a quantifiable way.

Proof. See Duarte and Klein (2017). Having introduced the singular values and singular vectors,
the proofs follow as in the finite dimensional case.

Let (Ω, β, µ) be a standard space, given an ergodic transformation T : Ω → Ω, we say that a
measurable map a : N× Ω → L(H) is a multiplicative cocycle in L(H) over T if a(n +m,ω) =

a(m,T nω)a(n, ω). To every Borel measurable A : Ω → L(H) we associate a right multiplicative
cocycle

a(n, ω) = A(n)(ω) := A(T n−1ω)...A(Tω)A(ω),

where n ∈ N and ω ∈ Ω. A cocycle is thus comprised of the information (A, T,Ω, β), whenever it
is clear we denote it simply by A. Cocycles of this kind are also called linear cocycles.

Definition 16 (Integrable Cocycle). We say that a linear cocycle (A, T,Ω, β) is integrable if∫
Ω

log+ ||A(ω)||dµ(ω) < ∞,

where log+(x) = max{log(x), 0}.

One of the fundamental characteristics of an integrable cocycle is its top Lyapunov exponent

L1(A) := lim
n→∞

1

n

∫
Ω

log ||A(n)(ω)||dµ(ω) = lim
n→∞

1

n
log ||A(n)(ω)||,

where the first limit exists by Kingman’s ergodic theorem whilst the second equality is true for
almost every ω due to ergodicity. The Lyapunov exponent describes the exponential growth rate of
the norm along orbits. By Kingman’s ergodic theorem, the limits

λj(A) = lim
n→∞

1

n
log || ∧j A(n)(ω)|| = lim

n→∞

1

n

j∑
i=1

log
(
si(A

(n)(ω))
)
,

where ∧jA denotes the j exterior power of A, also exist and are almost everywhere independent of
ω. Then we may define the j-th Lyapunov exponent as

Lj(A) = λj(A)− λj−1(A) = lim
n→∞

1

n
log
(
sj(A

(n))
)
.
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Just as before we can now consider a class of cocycles where we tackle regularity problems.
Consider Cm indexed onm ∈ N to be the space of integrable cocycles A : Ω → L(H) such that

|| ∧i A||∞ := sup
ω∈Ω

|| ∧i A(ω)||

is finite, for 1 ≤ i ≤ m. Equipped with some metric d such that d(A,B) ≥ ||A− B||∞, for every
A,B ∈ Cm.

We can now think of the Lyapunov exponents as maps

Lk : Cm → R

A 7→ Lk(A).

5.2 Abstract Continuity Theorem

Having the avalanche principle at our disposal an abstract continuity theorem for the top Lyapunov
exponent can now be proven. Just as in the metric setting, in order to apply the avalanche principle,
we need large deviations, however there is a small caveat this time, as the base dynamics provided
by the ergodic transformation also needs to satisfy some type large deviation estimates.

Definition 17. An observable ζ : Ω → R satisfies a base large deviation estimates if for every ε > 0

there exist c > 0 and n0 depending on (ζ, ε) and C depending on ζ such that for every n ≥ n0

µ

{
ω ∈ Ω :

∣∣∣∣∣ 1n
n−1∑
j=0

ζ(T jω)−
∫
Ω

ζdµ

∣∣∣∣∣ > ε

}
< Ce−cn.

We will need these base large deviation estimates to prove that the conditions of the avalanche
principle remain true through the inductive process as we will discuss later. Given a cocycle A

define
Ln
i (A) =

1

n

∫
Ω

log
(
si(A

(n)(ω))
)
dµ(ω).

Definition 18. We say that a cocycle A ∈ Cm satisfies uniform (fiber) large deviation estimates of
exponential type if there are constants r, C, c > 0 and for every ε > 0 there exists n̄ = n̄(ε) such
that

µ

{
ω ∈ Ω :

∣∣∣∣ 1n log ||A(n)
1 (ω)|| − Ln

1 (A1)

∣∣∣∣ > ε

}
< e−cε2n

for every A1 ∈ Cm with d(A,Ai) < r and every n ≥ n̄.

Theorem 62 (Abstract continuity theorem). Consider an ergodic system (Ω, β, µ, T ), a space of
measurable cocycles C2 and a space of observables Θ. Assume the following
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1. Θ is dense in L1(Ω, µ);

2. Every observable ζ ∈ Θ satisfies a base large deviation estimate;

3. Every cocycleA in C2 such thatL1−L2 > 0 satisfies a uniform fiber large deviation estimates.

Then the top Lyapunov exponent is continuous. Moreover it is locally Hölder continuous when
restricted to the cocycles satisfying L1(A) > L2(A).

Remark 6. In the finite dimensional case we can work with determinants, which allows for a
stronger result, namely that if A ∈ Cn, where dimH = n, such that L1 − L2 > 0 satisfies a
fiber large deviation estimates, then every Lyapunov exponent is continuous. One can find this in
Corollary 3.1 in Duarte et al. (2016).

5.3 Large Deviations for Quasi-periodic Cocycles

Let T stand for the quotient group R/Z. Here R is the universal cover of T, thus making sense
of a topology, differentiable structure and Lebesgue measure µ in T (which agrees with the Haar
measure). Let α ∈ T, we consider the map

Tα : T → T

x 7→ x+ α mod 1.

Proposition 63. The transformation Tα is ergodic with respect to µ if and only if α is irrational.

Proof. SinceT is compact, an alternative yet simple to verify it is equivalent, definition of ergodicity
is that a system (Tα, µ) is ergodic if and only if all the functions f ∈ L2(Ω, µ) satisfying f ◦Tα = f

almost everywhere are constant almost everywhere.
Thus let f ∈ L2(Ω, µ) and expand it in its Fourier series f(x) =

∑
k∈Z f̂(k)e

2πikx and f ◦
Tα(x) =

∑
k∈Z f̂(k)e

2πikxe2πikα. Now since e2πikx are linearly independent and αi are irrational,
f = f ◦Tα if and only if f̂(k) = 0 for every n 6= 0. With that we have proven (Tα, µ) is ergodic.

For the remainder of the section we assume Tα is ergodic, in other words, α is irrational. How-
ever, in order to obtain the type of large deviations we want we must place an additional arithmetic
assumption on α, namely that it can’t be approximated by rationals with small denominators.

Definition 19. We say that α ∈ T satisfies a Diophantine condition if

d(k · α,Z) ≥ γ

|k|(log |k|)2
.

for some γ and every k ∈ Z\{0}.
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The group, R/Z can be identified with the interval [0, 1] with the endpoints identified, in other
words the circle S ⊂ C. Explicitly, T → S given by x 7→ e2πix is a homeomorphism. Using
this identification, we say that a function f on T has holomorphic extension to an open domain
T ⊂ Ω ⊂ C, if there is an holomorphic function f̂ : Ω → C, such that f̂(x) = f(x) for every
x ∈ T. Holomorphic extensions, when they exist, are unique by the interior uniqueness theorem.

Let now r > 0 and consider the annulus region of width r around T given by

Ar := {z ∈ C : 1− r ≤ |z| ≤ 1 + r}.

Definition 20. Let H be a separable Hilbert space, L(H) the space of bounded linear operators
fromH toH with the operator norm and L(H)∗ its dual. Now we set GL(H) as the set of invertible
bounded linear operators in H . We define Cω

r (T,GL(H)) to be the set of all functions A : Td →
GL(H), such that for every f ∈ L(H)∗, f ◦ A admits an holomorphic extension to Ar.

In Cω
r (T,GL(H)) we define the distance

d(A,B) = sup
z∈Ar

||A(z)− B(z)||,

making Cω
r (T,GL(H)) a complete metric space, since it is a closed subspace of the space of func-

tions T → GL(H) with the L∞ norm.

Adapting the argument in Chapter 6 of Duarte et al. (2016) we obtain the follow large deviation
estimates theorem:

Theorem 64. LetA ∈ Cω
r (T,GL(H)) be a cocycle over an irrational rotation Tα, where α satisfies

a Diophantine condition. Let C < ∞ be a constant such that log supz∈Ar
|A(z)| < C.

For every small ε > 0 there is c = c(C) and n̄ = n̄(ε, C) ∈ N such that for every n ≥ n̄

µ

{
x ∈ T :

∣∣∣∣ 1n log ||A(n)(x)|| − L(n)(A)

∣∣∣∣ > ε

}
< e−cε2n,

Notice that since deviation constants c, n̄ only depend on the constant C, it is uniform. Thus the
abstract continuity apply, whence:

Theorem 65. LetA ∈ Cω
r (T,GL(H)) be a cocycle over an irrational rotation Tα, where α satisfies

a Diophantine condition. Then the Lyapunov exponent L : Cω
r (T,GL(H)) is continuous.

Moreover, if A ∈ Cω
r (T,GL(H)) has positive Lyapunov exponent, L1(A) > L2(A), then the

Lyapunov exponent is locally Hölder continuous around A.
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5.3.1 The argument

In this subsection we explore the argument behind theorem 64. The argument will use mostly
harmonic analysis, potential theory and number theory. No proofs will be included as these can be
found in Duarte et al. (2016); this is mostly a simple exposition on the steps.

Definition 21. A function u : Ω → [−∞,∞) is called subharmonic in the domain Ω ⊂ C if for
every z ∈ Ω, u is upper semicontinuous at z and there exists r0(z) such that ht mean value property

u(z) ≤
∫ 1

0

u(z + re2πiθ)dθ,

for every r ≤ r0(z).

A classical method for obtaining subharmonic functions is by considering log |f(z)| for some
analytic function f . Moreover, the supremum of a collection of subharmonic functions is subhar-
monic, provided it is upper semicontinuous, thus given an analytic A : Ω → GL(H),

u(z) := log ||A(z)|| = sup
||v||=||w||=1

log |〈A(z)v , w〉|

is subharmonic in Ω. The same arguments yields that u(n)
A (z) = 1

n
log ||A(n)(z)|| are subharmonic.

Moreover, one can easily prove that u(n)
A (z) are uniformly bounded in z, n and A.

At this point we note that for every x ∈ T

1

n
log ||A(n)(x)|| − 1

n
log ||A(n)(Tx)|| = 1

n
log

||A(T nx)−1A(n)(Tx)A(x)||
||A(n)(Tx)||

≤ 1

n
log ||A(T nx)−1|| ||A(x)||

≤
2 supz∈Ar

log ||A(z)||
n

and an analogous control holds for 1
n
log ||A(n)(Tx)|| − 1

n
log ||A(n)(x)||, so that we get the invari-

ance principle

|u(n)
A (x)− u

(n)
A (Tx)| ≤ C

n
.

Using then the triangle inequality one has

|u(n)
A (x)− u

(n)
A (T jx)| ≤ Cj

n
.

Thus picking R to be the integer part of log(n) for all x ∈ T we have∣∣∣∣∣u(n)
A (x)− 1

R

n−1∑
j=0

u
(n)
A (T jx)

∣∣∣∣∣ ≤ CR

n
.
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Obtaining the invariance principle is why we require that our operators are invertible.
However, by Birkhoff’s ergodic theorem for almost every x ∈ T

lim
R→∞

1

R

R−1∑
j=0

u
(n)
A (T jx) =

∫
T
u
(n)
A = L(n)(A).

This reduces the proof of large deviations to obtaining a quantitative version of Birkhoff’s ergodic
theorem, in other words we need to prove

µ

{
x ∈ T :

∣∣∣∣∣ 1R
R−1∑
j=0

u
(n)
A (T jx)−

∫
T
u
(n)
A

∣∣∣∣∣ > ε

}
≤ e−cε2n,

holds uniformly in a neighbourhood of A. The first step in this direction is writing the observable
u as its Fourier series u(x) =

∑
k∈Z û(k)e

2πikx. Since û(0) =
∫
T u we have

u(x)−
∫
T
u =

∑
k ̸=0

û(k)e2πikx,

so with the Birkhoff averages we have

1

R

R−1∑
j=0

u
(n)
A (T jx)−

∫
T
u
(n)
A =

∑
k ̸=0

û(k)
1

R

R−1∑
j=0

e2πikxe2πikjα.

At this point we must control both the Fourier coefficients and the functions e2πikjα. Controlling
Fourier coefficients is where we use the subharmonic properties. It is known that Fourier coeffi-
cients decay sublinearly (û(k) ≲ 1/|k|) for continuously differentiable functions. Using Riesz
representation theorem one can prove the same holds for subharmonic functions. The part e2πikjα

is where the Diophantine condition is used. By quantifying how far jα is from being irrational we
also control how small |e2πikjα| is.

5.4 Bibliographic Notes

We have now reached an important point in the thesis where the reader has tools for the drift,
Lyapunov exponent and, risking repetition, virtually any subadditive quantity over a dynamical
system. Albeit less relevant, we find that the drift yields a simple presentation of the topics, hence
we were more thorough with its presentation. With that said, the theory developed for Markov
systems also works for Lyapunov exponents, although one must be careful with substituting the
horofunctions compactification with the unit ball equipped with the weak* topology.

As we have asserted before, the finite dimensional linear case was treated in Duarte et al. (2016).
During our talks, Duarte P. asked me about the possibility of an abstract continuity theorem in
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infinite dimensions. That is the novelty of our work here, the operators live in some arbitrary Hilbert
space. This may open new doors in the study of higher dimensional quasi-periodic Schrödinger
cocycles (see Embree and Fillman (2019) for the setting).

Literature on one-dimensional quasi-periodic cocycles is quite vast, namely on the continuity
problem. The study as expanded in multiple directions such as dropping the Diophantine condition
(see Avila et al. (2014); Jitomirskaya and Marx (2012)), this however comes at the cost of not being
able to quantify it in terms of Hölder continuity, which at times is important; reduce the regularity
of the cocycles such as in Wang and Zhang (2015) or the noninvertible case allowing singularities
in Avila et al. (2014).

The higher dimensional case (in Td) is more involved and complex (see Duarte and Klein
(2017)). This is where the power of the abstract continuity theorem shows through. Our results
in section 5.3 work for rational independent rotations of the torus with the appropriate Diophantine
condition. Such treatment requires further analytic tools, for instance, pluri-subharmonic functions
that we didn’t want to touch upon in the thesis.
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Chapter 6

Drift in Symmetric Spaces

In this chapter we showcase a class of Riemannian manifolds - symmetric spaces - where despite
not having a direct avalanche principle, one can explore the algebraic properties associated with
the group of isometries to represent it in a linear group thus using the linear avalanche principle
and continuity theorems. Exploring these representations actually yields the correct framework as
under mild assumptions the contracting behaviour fails for the horofunction compactification.

Symmetric spaces are also interesting as they come with quite large groups of isometries, typ-
ically larger than the space itself. Our considerations on symmetric spaces done in this chapter
follow Helgason (2001) and Borel and Ji (2005).

6.1 Generalities

LetG be a Lie Group and g its Lie algebra. We denote byCg the conjugation by g. Its differential at
e is the adjoint representation of G, Adg ∈ Aut(g). The map Ad : G → Aut(g) given by g → Adg

is differentiable, and its derivative is the adjoint representation of g, ad : g → Der(g). It is well
known that, adx(y) = [x, y].

The symmetric bilinear form on g

B(x, y) = tr(adx ◦ ady)

is called the Killing form. A Lie algebra is semisimple if it is non-abelian and its only ideals are {0}
and g. A classical result asserts that a finite dimension Lie algebra over a field of characteristic zero
is semisimple if and only if its Killing form is non-degenerate. Finally, a Lie group is semisimple
if its Lie algebra is.

Given g a Lie algebra and B its Killing form. We say that θ is a Cartan involution if Bθ(x, y) =

−B(x, θy) is positive definite. Any semisimple Lie algebra admits a Cartan involution, which is

91



CHAPTER 6. DRIFT IN SYMMETRIC SPACES

unique up to conjugation by automorphisms. For matrix groups, x → −x∗ is a Cartan involution.
Since θ is an involution, it admits only the eigenvalues±1. We denote by k and p the eigenspaces

corresponding to 1 and−1, respectively. This yields aAd(K)−invariant decomposition of g = k⊕p

where
[k, k] ⊂ k, [k, p] ⊂ p, [p, p] ⊂ k, (6.1)

k is the Lie algebra of K and p may be identified with the tangent space Tx0M of the symmetric
space M = G/K. Moreover the restriction of B to k× k is negative definite. This decomposition
is called the Cartan decomposition and it is orthogonal with respect to the Killing form. Moreover
any subalgebra of p is abelian and all maximal abelian subalgebras are conjugate byK. This yields
a new Cartan decomposition of G, namely, if A = exp a, G = KAK.

Example 4. Let us considerG = SL(d,R) andK = SO(d,R). The associated symmetric spaceX
is the space of symmetric positive definite matrices. The lie algebra is the set sl(d,R) of trace zero
matrices. θ(A) = −AT is the Cartan involution, yielding k = so(d) as the set of antisymmetric
matrices and p = sym(d) as the set of symmetric matrices of trace zero. The Cartan decomposition
is simply the known decomposition

x =
1

2
(x− xT ) +

1

2
(x+ xT ).

The Cartan decomposition of G = KAK is given by the singular value decomposition.

6.2 Gap Ratios

In previous iterations of the abstract continuity theorem we had either the distance between iterates
or the gap ratio playing a fundamental role in the description of the problem. In either case, the
requirement came from the contractive actions it would imply. In the case of symmetric spaces
M = G/K, the generalized algebraic varieties will take the role of the contracted space. These
appear naturally as quotients of G by its parabolic subgroups.

6.2.1 Roots

Consider G = SL(d,C). One way to obtain the gap ratios is as eigenvalues of the map

Adg : g → g

A 7→ gAg−1.

We shall use this idea to obtain gap ratios in this more general setting.
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Since the maximal subalgebras of p are conjugate underK, let a be one of them. A linear form
λ ∈ a∗ is a root (or restricted root) if it is a nonzero form and the root space

gλ = {x ∈ g : adh(x) = [h, x] = λ(h)x, ∀h ∈ a} 6= 0.

The set of roots is a root system in a∗ denoted ϕ = ϕ(g, a). The Weyl group W = W (g, a) may
be identified with NK(a)/ZK(a), where NK(a) and ZK(a) are, respectively, the normalizer and
centralizer of a:

NK(a) = {h ∈ a : Adk(h) ∈ a}

ZK(a) = {h ∈ a : Adk(h) = 0}

Roots define hyperplanes Hα = kerα. The connected components of a − ∪α∈ϕHα are called
the Weyl chambers. The action of the Weyl group can also be defined as the the group of reflections
on Hα. This group acts simply transitively in the set of Weyl chambers of a. Hence we will fix a
Weyl chamber, to be denoted by a+. We define the set of positive roots as

ϕ+ = ϕ+(g, a) = {α ∈ ϕ : α > 0 on a+}.

Analogously we can define ϕ−, the set of negative roots. An element of ϕ+ that cannot be written as
a sum of two other positive roots is called simple. The set of simple roots is denoted by∆ = ∆(g, a).
Let

n =
∑
α>0

gα, n− =
∑
α<0

gα

By construction, these are nilpotent algebras exchanged by θ, normalized by a such that

g = n− ⊕ z(a)⊕ n,

where z(a) is the centralizer of a. Notice as well that z(a) = k ∩ z(a)⊕ a, we will denote by m the
space k ∩ z(a).

The roots can also be transported to A = exp a. Namely, given a ∈ A and α a root. We define
aα = expα(log a). We will call these maps the roots of A. We also set a positive Weyl chamber
A+. The Cartan decomposition of G = KA+K yields a well defined map µ : G → A+ called the
Cartan projection. Due to the Cartan projection, we will define the roots on all G as gα = µ(g)α.
Root spaces can be defined directly through G as

gλ = {x ∈ g : Ada(x) = aλx, ∀a ∈ A}
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Example 5. Let us consider the lie algebra sl(d,C), where we fix the maximal abelian algebra a,
consisting of trace zero real diagonal matrices. The set of roots is given by {αij ∈ a∗}, i 6= j, where

αij : a → R

diag(a1, ..., ad) 7→ ai − aj

and gαi,j
consists of matrices whose entries besides the entry (i, j) are zero. The Weyl group is iso-

morphic to Sd, it acts by permuting coordinates on the diagonal. We fix the positive Weyl chamber

a+ = {diag(a1, ..., ad) : a1 > a2 > ... > ad}.

Then the set of positive roots is given by {αi,j ∈ a∗ : i > j}, while the simple roots are of the form
αi,i+1.

The roots in A are of the form diag(a1, ..., ad)αi,j = ai/aj . Hence for a matrix in g ∈ SL(d,C)
one has gαi,j = si/sj where si stands for the i-th singular value of g.

6.3 Representations

As we have stated before, the theory for these groups will boil down to the linear theory since
they all admit a linear representation. In this section we broadly present the technicalities of this
approach. Most of the details may be found for example in Benoist and Quint (2016).

6.3.1 Weights

Denote a representation ρ : G → SL(V ) by (ρ, V ). As an abuse of language, we will also call the
tangent representation g → sl(V ) by (ρ, V ). Our representations are assumed to be faithful. For
every character χ ∈ a∗, set its weight space

Vχ = {v ∈ V : ∀a ∈ a, ρ(a)v = χ(a)v}.

Call the elements χ ∈ a∗ such that Vχ 6= 0 weights of ρ. The roots from the previous section are
the weights for the adjoint representation.

A representation (ρ, V ) is said to be irreducible if there is no proper nonzero subrepresentation
(ρ|W ,W ), W ⊂ V . Suppose now that (ρ, V ) is irreducible. In that case, if we endow the set of
weights with a partial order given by

χ1 ≤ χ2 ⇔ χ2 − χ1 is a linear combination of positive roots with positive coefficients
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then there is a largest weight, called the highest weight. Let χ be the highest weight and N the
unipotent radical subgroup of G (whose tangent space at the identity is n), set VN := {v ∈ V :

ρ(N)v = v} and denote by VN,χ the intersection VN ∩ Vχ which we call the parabolic weight space
of χ. We say a representation is proximal if dimVN,χ = 1.

Recall that the Killing form defined an inner product on g which is transported to g∗. For every
simple root α ∈ ∆ we define its associated fundamental weight ϖα, by

2
〈ϖα , λ〉
〈λ , λ〉

= δα,λ, ∀λ ∈ ∆.

Theorem 66. (in Tits (1971)) If G is a connected semisimple Lie group. For every simple root
α ∈ ∆, there exists an irreducible proximal algebraic representation (ρα, Vα) whose highest weight
χα is a multiple of ϖα, the fundamental weight associated with α.

Remark 7. Due to the defining expression of fundamental weights, one has that the roots for
(ρα, Vα) are of the form χα, χα − α and χα − α−

∑
β∈∆−α mββ, wheremβ ∈ N.

6.3.2 Good Norms

We are finally ready to build the promised good norms which will relate to the avalanche principle
via the presentations we have just constructed.

Lemma 67. LetG be a connected semisimple Lie group and (V, ρ) be an irreducible representation
of G with highest weight χ. Then there exists an hermitian scalar product ϕ on V such that

• ϕ is K−invariant;

• ∀a ∈ A, ρ(a) is symmetric and diagonal;

• χ(logµ(g)) = log |ρ(g)|.

Proof. Let gC be the complexification of the Lie algebra ofG and ĝ = k+ ip its compact real form.
Denote by Ĝ ∈ SL(V ) a compact Lie group whose Lie algebra equals ĝ. Given an inner product
〈 , 〉 on V , define the Ĝ-invariant inner product

ϕ(x, y) =

∫
Ĝ

〈kx, ky〉dk.

By construction of Ĝ, this inner product is clearly K-invariant. Moreover ρ(a) are symmetric as
they are both real and hermitian. For every a ∈ a+, the eigenvalues of ρ(ea) are the real numbers
eχ

′(x) where χ′ is some weight, since χ is the highest weight, one must have χ(a) = log |ρ(ea)|,
thus proving the third point.
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6.4 Continuity of Lyapunov Exponents to the continuity of the
Drift

Let g ∈ G and x0 be a base point in X , then d(gx0, x0) = c| logµ(g)|, for some constant c > 0.
This makes the distance dependent solely on logµ(g). However, logµ(g) belongs to a+, a subset
of a for which there exists a basis given by the representatives of the simple roots. That is, given
the simple roots∆, the elements {aα} ∈ a, such that α(·) = 〈·, a〉, form a basis of a. Moreover, by
definition of fundamental weight ϖα,

logµ(g) =
∑
α∈∆

〈aα, aα〉
2

ϖα(logµ(g)).

which is a closed formula depending on ϖα(logµ(g)). With that said, the continuity of the drift
depends only on the continuity of limn→∞ ϖα(

1
n
logµ(g(n)(ω))) for every simple root α.

Using Theorem 66 recall thatϖα(logµ(g)) equals to log |ρα(g)| up to a multiplicative constant.
Thus, given a cocycle g : Ω → M , the drift ℓ(g) is related to the Lyapunov exponents of ρα(g).

Definition 22. A space of measurable cocycles C is any class of measurable bounded g : Ω → G.
We say that a map g : Ω → G is bounded if supω∈Ω |ρα ◦g(ω)| is finite for every simple root α ∈ ∆.

We will assume that C is equipped with a metric d, such that

d(g, h) > sup
α∈∆

sup
ω∈Ω

|ρα ◦ g(ω)− ρα ◦ h(ω)|.

Since by assumption g is bounded, ||ρα ◦ g|| ∈ L∞(µ). We then have log ||ρα ◦ g|| ∈ L1(µ), so
by Kesten’s theorem we can define the finite scale α-Lyapunov exponent

L(n)
α (g) =

∫
Ω

1

n
log ||ρα ◦ A(n)||dµ(x)

and the α-Lyapunov exponent Lα(g). In what follows, stronger conditions on 1
n
log |ρα ◦ A(n)| are

needed, namely we need large deviations.

Definition 23. An observable ζ : Ω → R satisfies a base LDT if for every ε > 0 there exist C > 0,
0 < b ≤ 1 and n0 depending on (ζ, ε) such that for every n ≥ n0

µ

{
ω ∈ Ω :

∣∣∣∣∣ 1n
n−1∑
j=0

ζ(T jω)−
∫
Ω

ζdµ

∣∣∣∣∣ > ε

}
< Ce−c(ε)nb

.

We also need a large deviation for the cocycle itself.
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Definition 24. A cocycle g ∈ C is said to satisfy an α−LDT estimate if for every ε > 0 there exist
C > 0, 0 < b ≤ 1 and n0 depending on (ζ, ε) such that for every n ≥ n0

µ

{
ω ∈ Ω :

∣∣∣∣ 1n log |ρα ◦ g(n)(ω)| − Lα(g)

∣∣∣∣ > ε

}
< Ce−c(ε)nb

.

In order to obtain continuity on the cocycle one needs a stronger conditions, namely, that the
LDT estimates are uniform on a neighbourhood of the given one.

Definition 25. A cocycle g ∈ C is said to satisfy a uniform α−LDT estimate if for every ε > 0

there exist δ = δ(g, ε) and a C > 0, 0 < b ≤ 1 and n0 depending on (ζ, ε) such that if h ∈ C with
d(g, h) < δ and n ≥ n0 then

µ

{
ω ∈ Ω :

∣∣∣∣ 1n log |ρα ◦ h(n)(ω)| − Lα(h)

∣∣∣∣ > ε

}
< Ce−c(ε)nb

.

We finish with the theorem in this setting.

Theorem 68 (Abstract Continuity Theorem). Consider an ergodic system (Ω, β, µ, T ) a space of
measurable cocycles C and a space of observables Θ. Assume the following

1. Θ is dense in L1(Ω, µ);

2. Every observable ζ ∈ Θ satisfies a base LDT .

3. For every α ∈ ∆, every g ∈ C for which gα > 0 satisfies a uniform fiber α−LDT estimate.

Then, for every α ∈ ∆, Lα : C → [−∞,∞) are continuous functions of the cocycle over the
distance d.

Moreover, if gα > 0 for every α ∈ ∆, then the drift is locally Hölder continuous.
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