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Resumo

Neste trabalho de Doutoramento, um modelo de tsunami totalmente combinado (CM) foi de-
senvolvido através do acoplamento de 3 modelos numéricos distintos, com diferentes característi-
cas, para fases particulares do ciclo de vida de um tsunami.

Os códigos computationais que compõe o modelo de tsunami totalmente combinado são o
GeoClaw, um modelo não linear para águas pouco profundas, inserido no package open-source

Clawpack, o FUNWAVE-TVD, um modelo totalmente não linear de Boussinesq, e o código Open-
FOAM, um código de Computational Fluid Dynamics (CFD), composto por vários solvers e utili-
dades e que permite a customização e extensão de funcionalidades pré-existentes. Neste trabalho,
foi utilizado em especial o solver olaFlow inserido no OpenFOAM. O primeiro acoplamento de
modelos foi feito entre o GeoClaw com o FUNWAVE-TVD, tendo sido denominado de modelo
combinado 1 (CM1). Por sua vez, a combinação do FUNWAVE-TVD/CM1 com o código CFD foi
designado como modelo combinado 2 (CM2). A combinação completa dos modelos combinados
CM1 e CM2 resultou no modelo de tsunami totalmente combinado CM.

Para alcançar a combinação faseada dos modelos numéricos, várias metodologias individuais
de acoplamento foram abordadas, testadas e analisadas. Para o CM1, após várias tentativas, escol-
hemos a metodologia de acoplamento de domínio refinado com cobertura de sondas de nível, que
se mostrou bastante competente na passagem de dados entre modelos numéricos. Para o CM2, foi
usada a metodologia de acoplamento baseada na condição timeSeries, aplicando o waveType

wavemaker e a waveTheory tveta, do módulo olaFlow.
A validação individual dos códigos numéricos e de cada modelo combinado em partes foi

feita usando casos de estudo numéricos e físicos. Diversas experiências físicas foram realizadas
no Laboratório de Hidráulica da Faculdade de Engenharia da Universidade do Porto, com vista
estudar e gerar ondas solitárias e ondas N. As ondas N geradas foram leading depression N-

waves, LDN. Existem ainda as leading elevation N-waves, as LEN, que não foram estudadas neste
trabalho.

Nesta parte do trabalho, uma nova formulação teórica de primeira ordem, necessária para a
geração experimental de ondas LDN, através de um sistema de geração de onda do tipo pistão,
foi desenvolvida e detalhada. As expressões teóricas para a trajectória do pistão, velocidade e
aceleração foram derivadas, assim como as expressões teóricas para o stroke da pá, o período
de stroke e as velocidades máximas da pá. Os limites para a velocidade inicial da pá e para a
aceleração foram também estabelecidos.

Na mesma fase do trabalho, foram geradas em laboratório seis ondas LDN com alturas de onda
relativas entre 0.19 e 0.60. Estas ondas foram classificadas de acordo com o parâmetro de Stokes
e deste modo divididas em três grupos: ondas conformes curtas quasi-Boussinesq, com St ∼ 4/3;
ondas mais longas, com St > 10; ondas com comportamento misto, com 3 < St < 10. Os
resultados obtidos foram comparados com os perfis teóricos pretendidos de onda N de Tadepalli –
Synolakis. Desta análise, concluiu-se que as ondas conformes curtas quasi-Boussinesq suportam
uma forte transformação, tendendo para a forma de uma onda solitária, sendo seguidas de uma
cava. Por outro lado, este comportamento não foi observado para as ondas mais longas, que pare-
cem tender para uma onda LDN com forma de bore. Assim, as ondas mais longas apresentaram
os melhores resultados quando comparadas com os perfis teóricos esperados de Tadepalli – Syno-
lakis. As discrepâncias encontradas entre as séries temporais analíticas e experimental podem ser
consequência da elevada razão entre a altura de onda e profundidade das ondas geradas. Outros
autores (Goring 1978, Grilli 1997) descreveram que para as ondas solitárias a razão entre a altura
de onda e a profundidade não deve exceder os 20 %, quando um método de geração de primeira
ordem é utilizado.



As experiências físicas foram realizadas em várias etapas e em várias condições. Numa
primeira fase, foram realizadas num canal instalado no tanque de ondas e em plano. Numa fase
posterior, realizaram-se vários testes numéricos relativos à formulação de celeridade de onda a
adoptar para cada tipo de onda que se pretendia gerar em laboratório. Realizaram-se ainda vários
testes laboratoriais preliminares, após os quais se realizaram finalmente as experiências físicas de
larga escala. Estes ensaios físicos foram feitos num tanque de ondas e numa praia composta por
dois planos inclinados, um plano com inclinação 1:15 e outro plano com inclinação 1:30. Cerca
de 75 conjuntos de experiências, casos de teste, foram realizados, em tanque de ondas com e sem
canal e praia, em profundidades de água de 25 cm e de 50 cm, respectivamente. Após as experiên-
cias, tratamento e análise dos resultados, classificaram-se as ondas solitárias e as ondas N geradas
de acordo com o seu número de Stokes. Das experiências físicas, recolheram-se, para os casos de
estudo, as medições da elevação da superfície livre, as medições do run-in e do run-up e ainda as
medições das pressões no obstáculo colocado no final da praia. Foram propostas leis de run-in,
run-up e pressão para ondas solitárias e ondas N, respectivamente. As medições experimentais
foram ainda comparadas com os resultados de simulações numéricas, com resultados satisfatórios
apesar de subestimados numericamente.

Após as várias fases descritas, o modelo de tsunami totalmente combinado (CM) foi aplicado
na simulação de um sismo de Mw 8.5 e tsunami, atingindo a costa Portuguesa. Os resultados da
simulação mostraram a capacidade do modelo de tsunami totalmente combinado em contemplar
as diversas fases do tsunami. Através de simulação 2DV com o código CFD, utilizando o perfil
batimétrico e topográfico da área da marina de Cascais, foi possível observar os efeitos da vorti-
cidade na zona posterior ao quebramar. Foi possível obter as amplitudes, velocidades e análise de
pressões. Tal permitiu compreender melhor a consequência do impacto de três diferentes cenários
de ondas de tsunami sobre a zona do quebramar de Cascais. Algumas conclusões considerando o
impacto do tsunami foram brevemente expostas.

Os objectivos do desenvolvimento do modelo de tsunami totalmente combinado foram: (1)
a conjunção das características e vantagens de cada modelo individual num único modelo, pre-
tendendo e procurando aumentar a sua precisão e eficiência funcional, assim como o seu regime
de validade, e (2) trazer ainda uma contribuição distinta na abordagem de alguns dos problemas e
desafios existentes na ciência dos tsunamis, tal como a dispersão de frequência na propagação de
tsunamis a longa distância, através do modelo não linear de Boussinesq, FUNWAVE-TVD, assim
como a complexa propagação do tsunami em terra e as interações do fluido em escoamento com
outros cursos de água e com as áreas costeiras e urbanas, através do código CFD OpenFOAM e
do seu solver olaFlow.

O modelo de tsunami totalmente combinado combina várias e interessantes característcas de
cada modelo numérico utilizado, encarando alguns dos problemas e desafios existentes na ciên-
cia dos tsunamis. Utilizando o GeoClaw, foi possível utilizar o modulo de geração de tsunamis
existente no código e, ainda mais relevante, tirar partido da capacidade do GeoClaw de aplicar os
refinamentos temporal e espacial adaptativos de malha estruturada em bloco, através da aplicação
de resoluções de malha mais refinadas em regiões de interesse para o estudo. Esta característica
foi aplicada na metodologia de acoplamento estabelecida entre o Geoclaw e o FUNWAVE-TVD,
com vista obter o CM1. A dispersão em frequência na propagação de longa distância de tsunamis
é tratada através da aplicação do modelo não linear de Boussinesq FUNWAVE-TVD. Para fazer
a modelação dos processos nearshore em domínios a duas e a três dimensões e determinar a in-
teração do tsunami com estruturas costeiras e com as áreas adjacentes, usamos o código CFD
OpenFOAM e solver olaFlow.

O modelo de tsunami totalmente combinado alcançado neste trabalho é uma novidade, na me-
dida em que é composto por uma sequência de modelos numéricos distintos e que inclui ainda uma
componente com a capacidade de simulação numérica tridimensional. Este modelo de tsunami to-
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talmente combinado (CM) e o seu conceito permitem o estudo e simulação de eventos reais de
tsunami, aplicando perfis reais ou sintéticos de onda real de tsunami como condição, com o intuito
de estudar e investigar o impacto e a interação do tsunami com as áreas costeiras.

Palavras-chave:

• modelo de tsunami totalmente combinado

• GeoClaw

• FUNWAVE-TVD

• OpenFOAM – olaFlow

• ondas solitárias e ondas N

iii



Abstract

In this work, a fully combined tsunami model was developed, by coupling a sequence of
3 distinct numerical models, with different characteristics, for particular phases of the tsunami
lifecycle.

The computational codes that compose the fully combined tsunami model are the GeoClaw
code, the FUNWAVE-TVD code and the OpenFOAM code, via the olaFlow solver. The coupling
of GeoClaw with FUNWAVE-TVD was designated as the combined model 1 (CM1) and the com-
bination of FUNWAVE-TVD/CM1 with the CFD code was designated as the combined model 2
(CM2). The full combination of both CM1 and CM2 resulted in the fully combined tsunami model
CM.

To achieve the coupling between numerical models, individual coupling methodologies were
approached, tested and analysed. For the CM1, we choose a refined covered gauge domain cou-
pling methodology and for the CM2 a timeSeries condition coupling methodology was used,
which applied waveType wavemaker and the waveTheory tveta, from the olaFlow module.

The validation of the individual numerical codes and of the combined model patches was
performed with both numerical and physical test cases. Several physical experiments were carried
out to generate both solitary and N-waves and a novel first-order theoretical formulation, necessary
to generate N-waves experimentally, by means of a piston wave generating system, was developed
and detailed in this work.

The large-scale physical experiments were performed in the wave basin and in a beach com-
posed by a 1:15 plane slope and a 1:30 plane slope. The generated solitary and N-waves were
classified according to their Stokes number. Experimental free surface elevation, run-in, run-up
and pressure measurements were retrieved from the physical experiments. Run-in, run-up and
pressure laws were proposed for solitary waves and N-waves respectively. The experimental mea-
surements were compared with numerical simulation results.

The objectives of the development of the fully combined tsunami model were (1) to join the
advantages of the individual models in a single one, attempting to increase the accuracy, efficiency
and regime of validity, and (2) to bring a contribution in the tackling of some of the existing
problems and challenges of tsunami science, such as the frequency dispersion in long distance
tsunami propagation, the complex tsunami on land propagation and fluid flow interactions with
river courses and with the coastal and urban areas.

The fully combined tsunami model CM simulation results for a Mw 8.5 Earthquake and
Tsunami hitting the Portuguese coast showed the ability of the combined model to cover all the
tsunami stages. We show that with a 2DV simulation of the CFD code for the Marina of Cascais
bathymetric and topographic profile it was possible to observe the vortices behind the breakwater.
The analysis of the free surface elevation, velocities and pressure of the tsunami waves was per-
formed. This allowed us to understand the consequence of three diferent tsunami waves scenarios
after the breakwater zone. It was possible to draw some brief conclusions considering the tsunami
impact.

The fully combined tsunami model achieved in this work is a novelty, since it is composed
by a sequence of distinct numerical models, including the three-dimensional component granted
by the CFD code. With this combined model, it is possible to perform the simulation of real case
tsunami events and hypothetical scenarios, applying real or synthetic tsunami-type wave profiles,
studying and researching the impact and the tsunami interaction with the coastal areas.



Keywords:

• fully combined tsunami model

• GeoClaw

• FUNWAVE-TVD

• OpenFOAM – olaFlow

• solitary and N-waves
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Notation

I - Chapters 1, 2, 3, 5, 6 and Appendices

a wave amplitude
a+ amplitude of the wave crest
a− amplitude of the wave trough
c wave velocity
c0 deep water wave celerity
f wave frequency
f Coriolis coefficient
g gravitational acceleration
h total water depth; still water depth
k wavenumber
m empirical coefficient
n Manning’s roughness coefficient
nx number of grid columns
ny number of grid rows
p pressure
s distance to the source
t time
u velocity component along the x-direction
ū depth-averaged horizontal velocity vector
ū depth-averaged horizontal velocity in the x-direction
v̄ depth-averaged horizontal velocity in the y-direction
v velocity component along the y-direction
x horizontal Cartesian coordinate
y horizontal Cartesian coordinate
w velocity component along the z-direction
z vertical Cartesian coordinate
Cd dimensionless bottom friction coefficient
E average energy density per unit area
H wave height
H0 deep water wave height
Ir Iribarren number
K empirical coefficient
L0 deep water wavelength
L2 L2-norm
Lamp relative amplitude deviation
Lat latitude θ

Lon longitude φ

xv



M0 seismic moment
Mw moment magnitude scale
Ri,Rin run-in, which is the maximum inundation distance measured horizontally
R,Rup run-up, which is the vertical maximum rise reached by the tsunami incident wave
RSW maximum run-up of solitary non-breaking waves (Synolakis 1987)
RNW run-up of a N-wave (Synolakis et al. 2007)
St Stokes parameter
T wave period
TTT tsunami travel time
β slope angle of the beach
� nonlinearity parameter
η free surface elevation above a reference level
ηobs observed free surface elevation
ηnum numerical free surface elevation
κ generalized wavenumber
λ wavelength
λ0 deep water wavelength
µ dynamic viscosity
ν turbulent viscosity
ω angular frequency of the wave
ρ fluid density or volumetric mass density
σ shallowness or dispersion parameter
τxx stress tensor component in the x-direction on a face normal to the x-axis
τxy stress tensor component in the y-direction on a face normal to the x-axis
τxz stress tensor component in the z-direction on a face normal to the x-axis
τyx stress tensor component in the x-direction on a face normal to the y-axis
τyy stress tensor component in the y-direction on a face normal to the y-axis
τyz stress tensor component in the z-direction on a face normal to the y-axis
τzx stress tensor component in the x-direction on a face normal to the z-axis
τzy stress tensor component in the y-direction on a face normal to the z-axis
τzz stress tensor component in the z-direction on a face normal to the z-axis
υ ratio between the water depth and the wavelength
ω velocity of rotation of the Earth
∆t time step
∆x grid spacing in the x-direction
∆y grid spacing in the y-direction
Ωx vorticity vector component in the x-direction
Ωy vorticity vector component in the y-direction
Ωz vorticity vector component in the z-direction

Seismic fault

d focal depth
A rupture area along the fault
D average slip or displacement offset between both sides of the fault
L fault length
W fault width
G shear modulus or modulus of rigidity
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GeoClaw

F fluxes
G shear modulus or modulus of rigidity
H bottom surface elevation relative to the mean sea level
Qn

ij cell average of solution variable in cell (i, j) at time tn
ν Poisson’s ratio

FUNWAVE-TVD

c wave velocity
f Coriolis term
h local still water depth
iz unit vector in the z-direction
n unit vector
r radial coordinate
r0 radius of the sphere
u velocity component in the horizontal φ-direction
v velocity component in the horizontal θ-direction
ū depth-averaged horizontal velocity in the φ-direction
v̄ depth-averaged horizontal velocity in the θ-direction
u2 depth-dependent correction at O

�

µ2
�

ū2,t time derivative dispersive term
ū2 depth-averaged O

�

µ2
�

contribution to the horizontal velocity field
uα velocity at reference elevation z = zα
zα reference level
A divergence of the momentum at reference elevation z = zα
B divergence of the velocity at reference elevation z = zα
C wave celerity vector
Cd drag coefficient
Cdw wind drag coefficient
Cr Courant number
H total local water depth
M horizontal volume flux
Mglob global dimension in x-direction
Nglob global dimension in y-direction
P flux in the x-direction
Q flux in the y-direction
R diffusive and dissipative terms (including bottom friction and subgrid lateral turbulent mixing)
Rw wind stress forcing
Sp spherical coordinate correction factor
U10 wind velocity vector, at a reference height of 10 m above the sea surface
V1 dispersive Boussinesq term
V�

1,t time derivative dispersive term
V2 dispersive Boussinesq term
V3 represents the O

�

µ2
�

contribution ω × u = u

α coordinate denoting latitude (horizontal Northerly direction)
β constant
η local free surface elevation
δ shallow water nonlinearity parameter

xvii



µ ratio between the water depth and wavelength
ω vorticity
φ coordinate denoting longitude (horizontal Easterly direction)
φ0 reference longitude
θ0 reference latitude
ρ water density
ρa air density
ε constant
(ξ1, ξ2) coordinates in the longitude and latitude directions
Ψ vector of conserved variables
Θ(Ψ) flux vector function

OpenFOAM/olaFlow

fe sum of all the volume forces
fR resistance force exerted by the porous media
fσ force due to the free surface tension
p pressure
ū� average velocity fluctuation
C2 inertial coefficient
Kp media permeability
I unit tensor
T stress tensor
S flow deformation rate tensor
S̄ deformation rate of the average flow
alpha.water volume of fluid term
prgh pressure term
α volume fraction
µ dynamic viscosity of the fluid
ν kinematic viscosity of the fluid
νd damping function used to absorb the waves
φ instantaneous fluid flow variables
φ̄ average component of φ
φ

�

fluctuation
φ(xi, t) Reynolds average
τ viscosity forces tensor

Combined Model

c wave velocity
c1 wave celerity determined according to (5.6)
c2 wave celerity determined according to (5.5)
u depth-averaged velocity vector
ū depth-averaged velocity in the x-direction
v̄ depth-averaged velocity in the y-direction
δφ longitude grid spacing
δθ latitude grid spacing
µwater dynamic viscosity of the water
µair dynamic viscosity of the air
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ρwater fluid density of the water
ρair fluid density of the air
σ friction coefficient between two phases

Appendices

d still water depth
f frequency
h total water depth
q non-hydrostatic pressure
qb non-hydrostatic pressure at the bottom
t time
u depth-averaged velocity in x-direction
v depth-averaged velocity in y-direction
x Cartesian coordinate
y Cartesian coordinate
z Cartesian coordinate
A amplitude of the wave
Cd dimensionless bottom friction coefficient
H wave height
T wave period
η surface elevation measured from the still water level
κ wavenumber
λ wavelength
ω angular frequency
τxx, τxy, τyx, τyy horizontal turbulent stress
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Notation

II - Chapter 4

a+ amplitude of the wave crest
a+obs observed amplitude of the wave crest
a+TS expected amplitude of the wave crest
a− amplitude of the wave trough
a−obs observed amplitude of the wave trough
a−TS expected amplitude of the wave trough
c wave velocity
c0 leading ascending zero wave velocity
c+ leading wave crest wave velocity
c− leading wave trough wave velocity
c̄ weighted averaged wave velocity
c̄∗ weighted averaged wave velocity without wg8–wg7 run
c̄1−4 average wave velocity between gauges 1 and 4
c̄4−5 average wave velocity between gauges 4 and 5
c̄5−7 average wave velocity between gauges 5 and 7
c̄7−8 average wave velocity between gauges 7 and 8
c̄8−3 average wave velocity between gauges 8 and 3
ccnoidalBoussinesq wave celerity of a cnoidal Boussinesq wave
d undisturbed water depth
f(x) linear regression function
g gravity acceleration
m elliptic parameter
s total paddle path length
t time
t0 initial time instant
u particle velocity in front of the wave-maker
ū depth-averaged particle velocity
x horizontal coordinate
x1 horizontal coordinate for the location of the wave crest of a solitary wave at t = 0
x2 horizontal coordinate for the location of the inflexion point of a N-wave at t = 0
D total displacement of the paddle
F integration function
K(m) complete elliptic integral of the first kind
E(m) complete elliptic integral of the second kind
P experimental pressure exerted on a rectangular obstacle
Pnum numerical pressure exerted on a rectangular obstacle
Qs nonlinear mass flux
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R2 coefficient of determination of f(x)
Ri,Rin run-in, which is the maximum inundation distance measured horizontally
R,Rup run-up, which is the vertical maximum rise reached by the tsunami incident wave
S paddle stroke
Smin minimum paddle stroke
St Stokes number
T apparent wave period
Uc current speed
α parameter relating λ and λB

δ eccentricity parameter
� nonlinearity parameter
η free surface elevation above a reference level
θ generalized coordinate
κ generalized wavenumber
λ apparent wavelength
λB wavelength of a Boussinesq solitary wave
νt turbulent viscosity
nut turbulent viscosity in OpenFOAM
ε scale factor
ξ paddle trajectory of the wave-maker
ξ̇ paddle velocity of the wave-maker
ξf final paddle position of the wave-maker
ξmax maximum space travelled by the paddle
ξmin minimum space travelled by the paddle
τ stroke period
ϕ integration variable
φ integration variable

Physical experiments

f1 2 × f2
f2 ratio between δ and λ

RupNW N-wave run-up power law
RupSW solitary wave run-up power law
β1 slope angle
β2 slope angle
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Chapter 1

Introduction

1.1 Framework and scope of study

Water waves are surface waves, composed by both longitudinal and transverse waves, which can
be described as deformations of the sea surface. These waves occur at the sea surface and at the
surface of other bodies of water, such as lakes, rivers and canals. Waves are typically separated
into short waves, which are waves with maximum periods of around 20 s, and long waves, with
periods that range from 20 s to 40 min. Short waves, also designated as deep water waves (h/λ
≥ 1/2), show dispersion, which means that their wave speed depends on the wave period. Longer
period waves have longer wavelengths and move faster than shorter period waves. Therefore, in
opposition to short waves, longer waves or shallow water waves (h/λ< 1/20) are non-dispersive.
Intermediate waves are situated between deep water waves and shallow water waves. The speed
of shallow water waves depends solely on the water depth and are therefore independent of the
wave period. The wave celerity c of a shallow water wave is given by

c =
�

g · h , (1.1)

where g is the gravitational acceleration and h is the water depth.
Tsunami waves are described as long, shallow water waves. A wave is characterized as a

shallow water wave when its wavelength λ is much larger than the water depth h it is propagating
in, so the ratio of the water depth h and the wavelength λ is very small. A common approach is
to model tsunamis as solitary waves both in experimental and numerical studies. Madsen et al.
(2008) discussed the solitary wave paradigm in tsunami research and concluded that, in general,
tsunamis do not generate solitons in the ocean or on the continental shelf. Therefore, Madsen
et al. (2008) questioned the geophysical importance of the experimental studies of breaking short
solitary waves by Li (2000) and Li and Raichlen (2001, 2002, 2003). Madsen et al. (2008) stated
that the breaking observed in tsunamis, before reaching the shoreline, is most likely due to short
waves breaking on top of the tsunami, hence run-up will not be influenced by the breaking process.
These authors also stated that combining relatively strong input nonlinearities with cnoidal or soli-
tary theory, as performed in the previously cited experimental studies, is unrealistic in connection
with geophysical tsunamis.

On the other hand, not all tsunami events are alike and reports of shoreline receding support
the concept of tsunami waves with N-type shape. The concept of N-waves was introduced by
Tadepalli and Synolakis (1994) and the authors suggested that a N-wave is more adequate to
describe the main tsunami wave. N-waves can be described as having a leading trough, which
are leading depression N-waves (LDN), or as having a leading crest, which are leading elevation
N-waves (LEN). Like solitary waves, N-waves can be described by the wave height H and the
water depth h.
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The dispersion in tsunamis was generally disregarded in the tsunami propagation modelling,
as it was believed that its contribution was neglectable. Yet, the importance of dispersive effects
in tsunami propagation has increased, supported by several studies such as those by González
and Kulikov (1993), Kulikov (2005b) and Horrillo et al. (2006), which presented empirical argu-
ments on the relevance of the dispersive effects in the tsunami propagation. Also Dao and Tkalich
(2007) showed how dispersion inclusion is fundamental in transoceanic tsunami simulation, as it
contributes to the wave amplitude variation.

In their study, Glimsdal et al. (2013) distinguished the dispersive effects in deep water prop-
agation and the first part of the shoaling, when earthquake tsunamis are linear, and the dispersive
effects that may arise in shallow waters, effects which are connected to the nonlinearity and that
originate undular bores. They found that moderate-magnitude earthquakes tend to display more
dispersive tsunamis than the larger ones and observed strong directivity of the dispersion, follow-
ing the amplitude directivity, due to the elongated shapes of the source regions (Glimsdal et al.
2013).

Numerical models are commonly used to simulate the several physical processes that compose
the lifespan of a tsunami. The shallow water equations have shown to be competent to describe
the tsunami waves characteristics throughout several flow regimes. In his thesis, George (2006)
pointed out the additional computational costs of solving more computationally expensive sys-
tems, even if a more accurate numerical solution is achieved and the outcome justifies the time
consumption. In the scientific modern world, time consuming numerical models can be easily
disregarded, when compared to the very common computationally low-cost tsunami models avail-
able. Expeditious results with low time consuming modeling is preferred. Yet, a more complete
insight and description—preferably 3D—of the coastal tsunami behaviour and inland impact is
necessary, prevailing as an open challenge to the scientific community. Although many devel-
opments have been achieved in tsunami science, ultimately what is aimed is an approximate yet
improved knowledge about the consequences of a tsunami in the coast, the flooding, maximum wa-
ter levels, level of risk and which are the possibly protected zones along the vulnerable coastline.
This is most probably possible by means of more complete tsunami models, contemplating all the
lifecycle of the phenomenon, able to model all the involved physical processes—from generation
to transformation, breaking and inundation—and to determine the properties and characteristics
of the tsunami interaction with the coastal structures and the surrounding areas. The ultimate goal
is to predict as accurately as possible the tsunami impact and avoid at all costs the loss of lives and
properties.

1.2 Objectives, methods and thesis overview

The main objective of this thesis is to study and numerically implement a fully combined tsunami
model CM, by parts, considering all the tsunami lifecycle stages. The development of the fully
combined tsunami model is based on GeoClaw (Clawpack Development Team 2014b), a tsunami
global generation-propagation model, which is part of Clawpack (Clawpack Development Team
2014a), the fully nonlinear dispersive Boussinesq (FNLB) code FUNWAVE-TVD (Shi et al. 2012b,
Kirby et al. 2013) for wave propagation, breaking and inundation analysis, and the CFD code
OpenFOAM (OpenCFD Limited 2019) and the OpenFoam solver olaFlow (Higuera 2019) for
wave-structure impact and 3D-breaking analysis.

The individual objectives of this work are:

• to design and implement the final combined model, composed by three single open source
codes;

• to study and find the theoretical formulations and assumptions necessary to achieve the
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main mathematical formulations for the generation of N-waves in laboratory, by means of a
piston-type wave-maker;

• to study and verify the ability to generate N-waves in the laboratory, based on the main
mathematical formulations found, through the laboratory experimenting of the propagation
of leading depression N-waves (LDN-waves).

Answering this open question will enable a more complete calibration of both individual
and combined models and the achievement of this objetive will contribute to the combined
model validation;

• to study and evaluate the propagation, run-in, run-up and pressure impact forces of both
solitary waves (SW) and leading depression N-waves (LDN-waves), by means of large
laboratory-scale experimenting of SW and LDN-waves;

• to perform the numerical modelling of the case tests generated in the laboratory-scale ex-
periments and compare the numerical results with the experimental measurements retrieved
in the laboratory;

• to perform and analyse a final case study, of tsunami generation, propagation, dispersion,
breaking and attack on the Portuguese coast, as well as the interaction with the existing
coastal defense structures and overall coastal impact, by applying the developed final com-
bined tsunami model CM;

• to identify and address the gaps in the understanding and perception of the tsunami propa-
gation and tsunami waves attack on the coast—such as a better description of the tsunami
waves propagation inland, as a consequence of the turbulent nature and randomness of the
fluid flow involved—, its interaction with the coastal defense structures, tsunami flow in the
coastal and inhabited areas and its overall coastal impact.

It is intended that these challenges are mostly answered by applying the proposed fully
combined tsunami model CM, with its 3D component description of the phenomenon.

This thesis is organized in the following manner:

• In Chapter 1, the framework and scope of study of this PhD thesis are presented, as well as
the objectives, methods and thesis overview.

• In Chapter 2, the physics of tsunamis and the principles of the generation of tsunamis are
presented, as well as the principles of tsunami modelling and numerical methods applied.
Concepts on tsunami flow regimes and coastal interactions, from the deep ocean to the
shoreline, as well as inundation and coastal interactions, are presented.

• In Chapter 3, the computational models used in this thesis are described and the results for
case study applications, using each model, are presented.

• In Chapter 4, the laboratory experiments of propagation and transformation performed for
solitary and N-waves are described and the principles of the generation of N-waves are
presented. The comparison between the laboratory measurements of the propagation and
transformation of solitary and N-waves and the numerical simulations is presented.

• In Chapter 5, the coupling methodologies applied between the numerical models described
in Chapter 3 are detailed and results for several case studies, using each combined model,
are presented.
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• In Chapter 6, the final case study of a large earthquake event, hitting the coast of Portugal,
is simulated using the final combined model CM and the tsunami event results are plotted,
analysed and discussed.

• In Chapter 7, the final conclusions about the work developed in this PhD thesis are drawn
and the future work is outlined.

The state-of-the-art is introduced chapter by chapter, in relation to the subject covered in each
chapter.

The work of this thesis was presented and published in:

• Vânia Veloso Lima, Baptista, M.A., Miranda J.M. (2014). Tsunami impact study using the
Cornell Multi-grid Coupled Tsunami Model (COMCOT). 13th International workshop on
Multiscale (Un)-structured mesh numerical Modeling for coastal, shelf, and global ocean
dynamics, LNEC, Lisbon, Portugal, 25-27 August 2014. http://imum2014.lnec.

pt/text/program.html .

• Vânia Lima, Maria Ana Baptista, Paulo Avilez-Valente, Miguel Miranda (2016). A com-
bined model for tsunami generation and propagation. Geophysical Research Abstracts
Vol. 18, EGU2016-10028, EGU General Assembly 2016, http://adsabs.harvard.
edu/abs/2016EGUGA..1810028L , https://meetingorganizer.copernicus.
org/EGU2016/EGU2016-10028.pdf

• Vânia Lima, Maria Ana Baptista, Paulo Avilez-Valente e Miguel Miranda (2016). A com-
bined model for tsunami propagation, transformation and coastal interactions. ICUR 2016,
Lisboa, Portugal, 30 Junho – 2 Julho 2016, http://www.ceru-europa.pt/icur2016/
ICUR2016_Proceedings.pdf .

• Vânia Veloso Lima, P. Avilez-Valente, M.A. Baptista, J.M. Miranda (2019). Generation of
N-waves in laboratory. Coastal Engineering, Volume 148, June 2019, Pages 1-18, https:
//doi.org/10.1016/j.coastaleng.2019.02.012 .

• Vânia Veloso Lima, P. Avilez-Valente, M.A. Baptista, J.M. Miranda (2020). Laboratory
and numerical studies of solitary and N- waves. 6as Jornadas de Engenharia Hidrográ-

fica / 1as Jornadas Luso-Espanholas de Hidrografia, Instituto Hidrográfico da Marinha,

Lisboa, Portugal, 3 – 5 Novembro 2020, https://jornadas.hidrografico.pt/
recursos/files/documentos/Livro_Atas_6JEH_2020.pdf .

• Vânia Veloso Lima, P. Avilez-Valente, M.A. Baptista, J.M. Miranda. Laboratory studies of
solitary-like waves and N-waves. – in preparation.
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Chapter 2

The physics of tsunamis

2.1 Introduction: What are tsunamis?

A tsunami is a series of ocean waves resulting from sudden changes in the water equilibrium po-
sition, which cause the displacement of a large volume of water. Tsunamis are described as very
long water waves, which can be triggered by different kinds of natural or artificial events. The
word tsunami comes from the Japanese language, probably because Japan has a long history of
tsunami events, and is translated to English as harbour wave, with tsu standing as harbour and
nami standing as wave. The generation mechanisms of these large waves can be related to sudden
seafloor displacements—such as submarine seismic events, underwater mass movements—, inter-
nal or external disruptions of a body of water—such as landslides, volcanic activity or meteorite
impacts—or any other vertical disturbance of a waterbody. The most frequent tsunami triggering
mechanisms are earthquakes and landslides. Lately, more focus is being placed on landslide and
especially volcanic eruption originated tsunamis. Because of their sudden occurrence, tsunamis
are extremely dangerous to the coastal communities. The lifecycle of a tsunami can be shortly de-
scribed by three main stages: (1) the wave generation, (2) the wave propagation and transformation
and (3) the coastal impact and coastal inundation.

Munk (1950) proposed a classification of the ocean waves according to the wave period, rep-
resented in the scheme in Figure 2.1. In the figure, ocean waves and the respective generating and
restoring forces are indicated and the relative energy content in the ocean surface is represented
by the curve on the bottom.

Figure 2.1: Classification of ocean waves, according to the wave period (adapted from Munk,
1950).
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Waves generated by the wind typically present wave periods of 5 to 20 s and wavelengths of
100 to 200 m. Tsunami waves can present wave periods that range from minutes to hours and
wavelengths of hundreds of kilometres.

2.1.1 Periodic waves

Periodic waves are characterised by specific physical characteristics, such as the wave height H ,
the wavelength λ and the wave period T (Figure 2.2). A periodic wave is described by two con-
secutive crests. The wave crest (peak) is the highest or maximum point of positive displacement
of the wave, from its resting position. The wave trough, the opposite of the wave crest, is the
lowest point or point of maximum negative displacement of the wave. The wave height H is the
distance between the wave crest and the wave trough. The wavelength λ is the distance between
two consecutive wave crests or wave troughs. In Figure 2.2, η is the water surface elevation, x is
the coordinate in the direction of the wave propagation, z is the coordinate in the vertical direction,
t is the time and d is the still water depth. A wave is also characterised by its wave period T , which
is the time lag necessary for a wave to complete one cycle, corresponding to one full wavelength
passing a stationary point. The wave frequency f is the inverse of the wave period. The wave
celerity c = λ/T is the velocity of propagation of the wave.

Figure 2.2: Characteristics of a periodic wave.

Frequency dispersion occurs as travelling waves of different wavelengths move with distinct
wave velocities. The dispersion relation of the linear theory (Airy theory or Stokes first order
theory—Dean and Dalrymple 1991) can be written as:

ω2 = g k tanh(kh), (2.1)

where ω = 2π/T is the angular frequency of the wave, k = 2π/λ is the wavenumber and h = d+η

is the total water depth. Therefore, as c = λ/T = ω/k, the dispersion relation can be written in
terms of the wave celerity c as:

c =

�

gh
tanh(kh)

kh
, (2.2)

or

c =
g

ω
tanh(kh). (2.3)

For deep water, kh → ∞ and tanh(kh) → 1, then:
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c0 =
g

ω
, (2.4)

where the subscript 0 denotes deep water conditions.
For shallow water, kh → 0, tanh(kh) → 0 and tanh(kh)/(kh) → 1, thus:

c =
�

gh. (2.5)

The dispersion relation (2.2) can be re-written for the wavelength as:

λ =
g T 2

2π
tanh(kh). (2.6)

When kh is large, water wave propagates in deep waters. If kh is small, water depth is much
smaller than the wavelength and therefore the wave propagation regime is classified as shallow
waters.

In deep water, kh → ∞ and tanh(kh) → 1, thus λ → λ0 = g T 2/2π, where the subscript 0
denotes deep water values. Therefore,

λ = λ0 tanh(kh). (2.7)

Thus, the wavelength continually decreases with decreasing depth for a constant wave period.
It can be shown (Dean and Dalrymple, 1991) that the average energy density per unit area is

proportional to the square of the wave height:

E =
1

8
ρgH2 . (2.8)

For a wave radiating at a constant depth from a generation area (see Figure 2.3), the energy be-
tween two consecutive wave crests must remain constant. As the crest length linearly increases
with the distance from the source, while the wavelength remains constant, so does the energy
density, E, decreases linearly with the distance from the source. Therefore, the wave height, H ,
slowly decreases with the distance from the source s in such a way that

H ∝ s−1/2 . (2.9)

Thus, a wave that at 1000 m distance from the source centre is 1 m high, would have its height
reduce to less than 10 cm at 100 km from the centre and to 3 cm at a distance of 1000 km.

On the other hand, as the wave approaches a coastline, the water depth decreases. Thus, the
wavelength decreases, and so does the wave celerity as the wave period remains constant. Far away
from the source zone, the wave crests become straight lines, and thus the wave energy density per
unit area becomes inversely proportional to the wavelength, or to the wave celerity, which for
shallow water is given by expression (2.5). Assuming that there is no energy dissipation, the wave
energy density becomes E ∝ h−1/2, and the wave height is H ∝ h−1/4. Thus, a wave that at a
depth of 1000 m would have a height of 1 m, will become almost 4 m high at a depth of 5 m. This
process is known as shoaling (see Figure 2.4).

2.1.2 Non-periodic waves

Real tsunami waves are non-periodic and nonlinear waves. They are better described as some sort
of solitary wave, or as a train of almost solitary waves resulting from the fission of the leading
tsunami wave. Usually, the leading tsunami wave can be described as an N-shaped wave, either
with a leading trough or depression, a so-called leading depression N-wave, or with a leading crest
or elevation, a so-called leading elevation N-wave (see Figure 2.5).
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Figure 2.3: Wave radiating from a source zone (tsunami generation area).

Figure 2.4: Tsunami wave propagation and the shoaling process.

The wave height H of the N-wave is obtained as H = a+ + a−, where a+ is the amplitude of
the wave crest, and a− is the amplitude of the wave trough.

The wave celerity of a solitary wave is given at the leading order by

c =
�

g(d+H) . (2.10)

Considering an average oceanic depth of 3700 m, it can be easily found that a tsunami wave travels
at a speed close to 685 km/h, as H � d. These waves are frequently unnoticeable when prop-
agating in the ocean because of their large wavelengths. Wind-generated waves usually present
wavelengths of about 100 to 200 m, while tsunami waves can have wavelengths greater than 500
km. The wavelength and/or period of a tsunami are dependent on the type of triggering mecha-
nism and size of the event. Tsunami wave energy loss due to bottom friction in deep waters is very
small and usually it only becomes significant when the wave interacts with the continental shelf
or with islands.

The arrival of the tsunami waves can be characterised by a noticeable rise or by a fall of the
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coastal waters mean level. When the tsunami wave is a trough leading wave, which causes a
considerable drop in the sea level, we are in the presence of a drawback phenomenon. The trough
of the tsunami wave is then followed by its crest and therefore by a sudden rise of the sea level.
On the other hand, when there are a train of tsunami waves, their interaction with the coast can
last for a few hours. For instance, for λ = 500 km at a depth circa 4000 m, it results that c = 700
km/h, and as c = λ/T , it means that T ∼ 1 h. For that reason, successive waves can take several
hours to reach the coast.

✞

�

� ✁☛

✁✂

✄

Figure 2.5: N-wave profile with wave height H and wavelength λ.

2.1.3 Tsunami generation

There are several different types of mechanisms that can trigger a tsunami event. Tsunamis can be
triggered by earthquakes, landslides (underwater or sub-aerial), volcanic eruptions and other types
of impact to a volume of water, such as meteorites. In this thesis, the focus will be exclusively on
earthquake-triggered tsunamis. Nevertheless, for further reading on tsunamis triggered by volcanic
events and tsunamis triggered by landslides, please refer respectively to Løvholt et al. (2008) and
Grilli and Grilli (2013), and to Watts et al. (2003) and Tappin et al. (2014).

Earthquakes are caused by a sudden displacement (or slip) on a fault, which is a fracture zone
along two blocks of the Earth’s crust moving relative to each other. Although slowly, the tectonic
plates are in constant movement. Tensions between the tectonic plates accumulate as they get
stuck due to friction, and its energy, in the form of waves, is then released through an earthquake.
Tectonic earthquakes cause the deformation of the Earth’s crust and consequent shaking. The
point of origin of an earthquake is called focus or hypocentre and the point at the surface directly
above the focus is the epicentre (see Figure 2.6).

Some specific kinds of faults can cause earthquakes. Faults are classified according to their dip,
which is the fault angle relative to the surface, and to the slip direction along the fault. Generally,
faults are classified into four categories: normal faults, reverse faults (called thrust fault when
having a small dip angle), strike-slip faults, and oblique-slip faults. The different types of faults
are a consequence of the combination of different types of forces on the rocks. Thus, faults and
earthquakes are originated by existing stresses and strains.
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Figure 2.6: Scheme illustrating the location of the focus or hypocentre (yellow star) and the epi-
centre (red dot).

Following the definitions by the USGS* (see Figure 2.7):

• a strike-slip fault is a fault on which the two blocks slide past one another; it can be left-
lateral or right-lateral. In a left-lateral strike-slip fault, the displacement of the far block is
to the left when viewed from either side. In a right-lateral strike-slip fault, the displacement
of the far block is to the right when viewed from either side;

• a normal fault is a dip-slip fault, with the block above the fault moving downward relative
to the block below. It is a type of faulting which occurs in response to extension;

• a thrust fault is a dip-slip fault, with the upper block, above the fault plane, moving up and
over the lower block. It is a type of faulting common in areas of compression.

Dip-slip faults move along the direction of the dip plane, and are described as normal or reverse
(thrust) faults, depending on their motion. Strike-slip or transform faults move horizontally and
can be classified as left-lateral or right-lateral. Oblique-slip faults are a composition of dip-slip
and strike-slip motion.

Faults are characterized by several parameters (Figure 2.8), defined as:

• length L of the fault;

• width W of the fault;

• location of the hypocentre or focus;

• focal depth d, which is the depth of an earthquake hypocentre;

• slip of the fault, which is the relative displacement of formerly adjacent points on opposite
sides of a fault, measured on the fault surface;

• strike, which is the trend of the line that defines the intersection between the fault and the
horizontal axis or ground;

• dip, which is the angle that the fault does with the horizontal axis or the ground.
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(a) Normal fault (b) Thrust fault

(c) Strike-slip fault

(d) Oblique-slip fault

Figure 2.7: Schemes illustrating the types of faults that generate earthquakes.

*https://www.usgs.gov/
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Figure 2.8: Scheme of the fault plane dimensions and geometry.

The magnitude of an earthquake is measured by the seismic moment. The seismic moment is
based on the fault rupture area, the average amount of slip and the force necessary to overcome the
friction between the moving blocks. The seismic moment M0 is generally defined as (Aki, 1966):

M0 = GAD, (2.11)

where G is the rigidity or resistance of a moving fault, quantified as the shear modulus of the
material, A is the rupture area along the earthquake fault and D is the average slip or displace-
ment offset between both sides of the fault (Figure 2.8). The rigidity of the Earth’s crust is around
32 GPa, while the rigidity of its mantle is about 75 GPa. Nevertheless, the seismic moment is
usually estimated from the amplitude spectra of the seismic waves. The non-dimensional moment
magnitude scale Mw, introduced by Kanamori (1977), is a measure of the magnitude of the earth-
quake, translated by a number that characterises the relative size of the earthquake. It is based on
the concept of the seismic moment M0 and is often used to compare the different magnitudes of
earthquakes, being specially useful for large earthquakes. Hanks and Kanamori (1979) deduced
the moment magnitude Mw relation with the seismic moment M0 as:

M0 = 101.5Mw+16.1, (2.12)

when the seismic moment is expressed in C.G.S. units. When S.I. units are used, that relation
becomes

M0 = 101.5Mw+9.1. (2.13)

The magnitude of the earthquake event is one factor that can contribute to the tsunami gen-
eration. Most importantly, the earthquake must be of shallow depth and corresponding to an
underwater event (although a tsunami could be generated by an event very close to the water and
not underwater), then the sudden seafloor deformation caused by the earthquake can trigger a
tsunami. As stated before, strike-slip faults cause crustal horizontal movements, and normal and
thrust faults cause vertical movements. The vertical movement of normal and thrust faults can gen-
erate tsunamis: as a consequence of the seafloor bottom suddenly rising or descending, the mass
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of water immediately above the seafloor is impelled to rise or descend as well, which disturbs its
equilibrium, initiating the motion of the water free surface. Therefore, the most prominent type
of faulting that generates tsunamis are the thrust earthquakes. Although not common, there are
records of small tsunamis occurring from large (Mw > 8) strike-slip earthquakes, such as the 12th

January 2010 Mw 7.0 event at Haiti (Hornbach et al., 2010).
To determine the initial deformation of the ocean sea bottom caused by an earthquake, it is a

common approach to use the elastic displacement model in a homogeneous half-space (Mansinha
and Smylie, 1971; Okada, 1985). It is assumed that the bottom displacement corresponds to an
instantaneous vertical displacement translated towards the free surface as an initial condition. The
flow is assumed to be incompressible and the initial deformation of the ocean surface is used as the
initial condition of the propagation model. However, some authors have argued about the impor-
tance of the horizontal motion of the fault in tsunami generation (see for instance Rivera, 2006),
which would invalidate the shallow water hypothesis (cf. Chapter 1), as the vertical variation of the
horizontal momentum would have to be taken into account. Nevertheless, the possible horizontal
motion contribution is traditionally disregarded, as it is widely believed that it does not affect the
ocean free surface (Synolakis et al., 1997).

Summing up, to model the tsunami generation stage, one needs to know the origin of the
earthquake responsible for the tsunami and the earthquake source parameters, to determine the
initial deformation of the seafloor caused by the earthquake, and finally the free surface initial
position and movement of the waterbody.

2.1.4 The physics of fluid flow—3D models

2.1.4.1 The Navier-Stokes equations

To describe the flow of a fluid, two basic equations are necessary: the equation of continuity
from the principle of conservation of mass, and the Navier-Stokes equations from the principle of
conservation of momentum.

The continuity equation is written as

∂ρ

∂t
+ ρ∇ · u = 0 , (2.14)

where u = (u, v, w)T is the velocity vector, with components u, v e w, in the x, y and z directions
respectively, and ∇ is the vector differential operator given by:

∇ =

�

∂

∂x
,
∂

∂y
,
∂

∂z

�

. (2.15)

For an incompressible flow, expression (2.14) can be shown to be equivalent to:

∇ · u = 0 . (2.16)

Newton’s second law of motion can be written, for a fluid particle with volume, dV = dx dy dz,
and per unit of volume of that particle, as

ρ
Du

Dt
= f , (2.17)

where f = fbody + fsurface is the applied force per unit volume on the fluid particle, which
has been divided into body forces and surface forces. Body forces are those forces that apply to
the entire mass of the fluid element and that are usually due to external forces such as gravity.
Therefore, the gravitational body force is

fbody = ρg , (2.18)
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Figure 2.9: Normal and shear stresses at a fluid particle.

where g = (0, 0,−g)T is the vector acceleration of gravity. The surface forces are those applied
by external stresses on the sides of the element (cf. Figure 2.9). Stresses on a surface can be
represented by a tensor, T , given by:

T =





τxx τxy τxz
τyx τyy τyz
τzx τzy τzz



 . (2.19)

Thus, the surface forces per unit volume in the x-direction, for instance, are given by:

fsurface,x =
∂τxx

∂x
+

∂τxy

∂y
+

∂τxz

∂z
, (2.20)

which is the divergence of vector (τxx, τxy, τxz), which is the upper row of the stress tensor.
Similarly, fsurface,y and fsurface,z are the divergences of the second and third rows of T . Thus, the
surface force is

fsurface = ∇ · T , (2.21)

where the divergence of T is to be interpreted in the tensor sense, so that the result is a vector.
Newton’s law per unit volume of fluid, equation (2.17), now becomes

ρ
Du

Dt
= ρg +∇ · T . (2.22)

According to White (2005), the deformation law for a homogeneous and isotropic Newtonian
fluid can be written as

T = −p I + 2µS + λ (∇ · u) I , (2.23)

where p is the thermodynamic pressure, I is the identity tensor, µ and λ are two coefficients of
viscosity, and S is the rate of strain tensor, given by

S =
1

2

�

∇u+∇uT
�

. (2.24)

Assuming that the flow is incompressible, then ∇ · u = 0 and the deformation law simplifies as

T = −p I + 2µS . (2.25)

The conservation of momentum equation for the incompressible flow of a Newtonian fluid
is obtained by substituting expression (2.25) into Newton’s law (2.22), resulting the so-called
Navier-Stokes equation:

ρ
Du

Dt
= ρg −∇p+ 2∇ · (µS) , (2.26)
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and the thermodynamic pressure coincides with the mechanical pressure, defined as negative nor-
mal stress numerically equal to the trace of the stress tensor, i.e.

p = −τxx + τyy + τzz

3
. (2.27)

If viscosity, µ, can be assumed constant too and using the continuity equation (2.16), after some
algebra the final form of the momentum equation becomes:

ρ
Du

Dt
= ρg −∇p+ µ∇2 u , (2.28)

or, in a Eulerian framework, it is

ρ

�

∂u

∂t
+ (u ·∇)u

�

= ρg −∇p+ µ∇2 u . (2.29)

2.1.4.2 The RANS equations

In turbulent flows, high frequency velocity fluctuations arise, which would require a very fine
space and time discretization if the Navier-Stokes equations were used to model the fluid motion.
To overcome this problem, the so-called Reynolds Averaged Navier-Stokes (RANS), or just the
Reynolds equations, were proposed.

The RANS equations are obtained from a Reynolds decomposition of the instantaneous flow
variables in the Navier-Stokes equations. The Reynolds decomposition is a statistical technique
that separates a quantity into its time-averaged component and its fluctuation. In terms of a generic
fluid flow, one can write this as:

φ (x, y, z, t) = φ (x, y, z, t) + φ� (x, y, z, t) , (2.30)

where φ stands for the instantaneous fluid flow variable, φ̄ is the average component of φ and φ�

is its fluctuation. The definition of the time-averaged component at a fixed position (x, y, z) and
at instant t is (see for instance Erhard et al., 2010):

φ (x, y, z, t) =
1

T

� t+T/2

t−T/2
φ (x, y, z, t) dt , (2.31)

where the time interval T shall be large enough so that an increase in T would not induce any
change in φ̄.

If the generic variables φ and ϕ are considered, the Reynolds averages have the following
properties:

• linearity:
φ+ ϕ = φ+ ϕ ,

aφ = aφ ,
(2.32)

where a is a constant, i.e. a = a;

• commutativity in derivation and integration:

∂φ

∂s
=

∂φ

∂s
,

�

φ ds =

�

φ ds ;

(2.33)
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• generalized idempotency:

φϕ = φϕ . (2.34)

Therefore,
φ = φ ,

φ� = 0 ,

φϕ = φϕ ,

u v� = 0 ,

(2.35)

and the average product of two variables results in:

φϕ = φϕ+ φ� ϕ� . (2.36)

The term φ� ϕ� in expression (2.36) represents the covariance and is null when the variables are cor-
related. The correlation represents the degree of association between variables (Mesquita, 2013).

Applying the Reynolds decomposition to the velocity variables in the continuity equation
(2.16), this becomes:

∇ · ū = 0 . (2.37)

Applying the Reynolds decomposition to the velocity and pressure variables in the momentum
equation (2.29) for incompressible fluid flow with constant viscosity, one gets

∂ū

∂t
+ (ū ·∇) ū+ (u� ·∇)u� = g − 1

ρ
∇p̄+ ν∇2 ū , (2.38)

where ν = µ/ρ is the kinematic viscosity coefficient. The momentum equation can be written as

∂ū

∂t
+ (ū ·∇) ū = g − 1

ρ
∇p̄+ ν∇2 ū−∇

�

u�u�T
�

. (2.39)

The term u�u�T on this equation is related to the so-called Reynolds stress, that accounts from the
turbulent fluctuations of the momentum. The Reynolds stress tensor, τR is defined as

τR = ρu�u�T . (2.40)

To compute the Reynolds stresses, the Boussinesq eddy viscosity hypothesis (Boussinesq, 1877)
is used, according to which:

1

ρ
τR = −2 νT S̄ , (2.41)

where

S̄ =
1

2

�

∇ū+∇ūT
�

. (2.42)

Finally, the RANS momentum equation for incompressible flow is usually written as

∂ū

∂t
+ (ū ·∇) ū = g − 1

ρ
∇p̄+∇

�

2 (νT + ν) S̄
�

. (2.43)

In the remaining of this work, the average symbol in the variables is omitted, and the molecular
kinematic viscosity, ν, is assumed to be much smaller than the eddy viscosity, νT , and thus νT +
ν ≈ νT .
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Figure 2.10: Reference frame on the surface of the Earth.

2.1.4.3 RANS equations on a rotating frame

The previous description of a fluid flow is valid on an inertial frame. The motion of water in
the Earth’s surface is described in a local coordinate system that rotates with the Earth around
its South-North axis. A rotating frame is a non-inertial frame, and a fictitious force, the Coriolis
force, must be added to the momentum equation. The Earth bounded non-inertial local frame is
set up with the horizontal x-axis due East, the horizontal y-axis due North, the vertical z-axis in
the upward direction, and origin at latitude θ (see Figure 2.10). Then, the Coriolis acceleration is
given by (e.g. Alonso and Finn, 1972):

aC = −2Ω× u , (2.44)

where Ω = ω (0, cos θ, sin θ)T is the Earth’s rotation vector on the local frame, and ω is the
angular velocity of the Earth. The RANS equation in an Earth’s bounded rotating frame is then:

∂u

∂t
+ (u ·∇)u = g − 1

ρ
∇p+∇ (2 νT S)− 2Ω× u . (2.45)

When the vector product in expression (2.44) is expanded, one gets

aC = 2ω (v sin θ − w cos θ,−u sin θ, u cos θ)T . (2.46)

In ocean dynamics, the vertical velocity, w, is small, so it can be assumed to be null. Beside that,
the vertical upwards centrifugal component is very small when compared to the gravity accel-
eration. Therefore, the Coriolis acceleration is restricted to the horizontal plane, and the RANS
equation for ocean dynamics becomes

∂u

∂t
+ (u ·∇)u = g − 1

ρ
∇p+∇ (2 νT S) + f uC , (2.47)
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where f = 2ω sin θ is the co-called Coriolis parameter, and uC = (v,−u, 0)T .
For the sake of completeness, the time-averaged (RANS) continuity and momentum equations

for the incompressible flow of a fluid in a reference frame bounded to the Earth’s surface, in a
scalar form, are:

∂u

∂x
+

∂v

∂y
+

∂w

∂z
= 0, (2.48)

∂u

∂t
+u

∂u

∂x
+ v

∂u

∂y
+ w

∂u

∂z
=

− 1

ρ

∂p

∂x
+

∂

∂x

�

2νT
∂u

∂x

�

+
∂

∂y

�

νT

�

∂u

∂y
+

∂v

∂x

��

+
∂

∂z

�

νT

�

∂u

∂z
+

∂w

∂x

��

+ fv ,

(2.49)

∂v

∂t
+u

∂v

∂x
+ v

∂v

∂y
+ w

∂v

∂z
=

− 1

ρ

∂p

∂y
+

∂

∂x

�

νT

�

∂u

∂y
+

∂v

∂x

��

+
∂

∂y

�

2νT
∂v

∂y

�

+
∂

∂z

�

νT

�

∂v

∂z
+

∂w

∂y

��

− fu ,

(2.50)

∂w

∂t
+u

∂w

∂x
+ v

∂w

∂y
+ w

∂w

∂z
=

− 1

ρ

∂p

∂z
+

∂

∂x

�

νT

�

∂u

∂z
+

∂w

∂x

��

+
∂

∂y

�

νT

�

∂v

∂z
+

∂w

∂y

��

+
∂

∂z

�

2νT
∂w

∂z

�

− g .

(2.51)

2.1.5 The physics of fluid flow—2DH models

Tsunami propagation is a special case of the general water-wave problem (Dias and Dutykh, 2007).
As stated before, the propagation of water waves is governed by the so-called dynamic balance
equations, the continuity equation for the conservation of mass and the Navier-Stokes equations
for the conservation of momentum. The dynamic balance equations describe the motion of viscous
fluids and come from applying Newton’s second law to fluid motion, with the additional concept of
viscous flow, as presented in the previous section. Usually the RANS equations are used, instead of
the Navier-Stokes equations, and the solution of the dynamic balance equations are time-averaged
flow velocity and pressure fields.

To achieve the most complete water wave description, the three-dimensional RANS equations
should be applied, especially in case studies involving complex fluid flow interactions. Neverthe-
less, tsunami waves are in general modelled by a set of depth-integrated long wave models—the
so-called 2DH (two dimensions horizontal) models—and it is common in tsunami modelling to
use shallow water models (Chapter 1), and Boussinesq-type models, besides computational fluid
dynamic models. Energy dissipation is included in the models, although often disregarded: Dias
and Dutykh (2007) argued that there are several dissipative mechanisms present in tsunami prop-
agation, with bottom friction being arguably the most relevant energy sink, especially in the last
stages of the tsunami lifecycle.
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2.1.5.1 The shallow waters equations

The Saint-Venant or shallow water equations (SWE) are a system of nonlinear quasi-hyperbolic
partial differential equations (PDE), resulting from the analytical integration of the RANS equa-
tions in the vertical direction, assuming a hydrostatic pressure distribution. The shallow water
equations comprise a continuity equation, and two momentum equations in the x and y directions:

∂η

∂t
+∇ ·

��

h+ η
�

ū
�

= 0, (2.52)

∂ū

∂t
+ ū

∂ū

∂x
+ v̄

∂ū

∂y
+ g

∂η

∂x

= −Cd
ū �ū�
h+ η

+ 2
νT

h

∂

∂x

�

h
∂ū

∂x

�

+
νT

h

∂

∂y

�

h

�

∂ū

∂y
+

∂v̄

∂x

��

+ fv̄ ,

(2.53)

and
∂v̄

∂t
+ ū

∂v̄

∂x
+ v̄

∂v̄

∂y
+ g

∂η

∂y

= −Cd
v̄ �ū�
h+ η

+
νT

h

∂

∂x

�

h

�

∂ū

∂y
+

∂v̄

∂x

��

+ 2
νT

h

∂

∂y

�

h
∂v̄

∂y

�

− fū ,

(2.54)

where h is the water depth at rest, η is the free surface elevation above the rest level, ū = (ū, v̄) is
the depth-averaged horizontal velocity, with components ū and v̄ in the x and y directions, and Cd

is the dimensionless bottom friction coefficient. The shallow water equations are non-dispersive
as the pressure distribution is hydrostatic. The bottom friction coefficient can be related to the
Manning coefficient, n, through the formula:

Cd =
g n2

(h+ η)1/3
. (2.55)

Linear wave velocity for this model is given by expression (2.5). The shallow water theory, either
linear or nonlinear, is widely used and considered very suitable to model tsunami waves.

In spherical coordinates, the shallow water equations, excluding viscous terms, are written as:
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∂ū

∂t
+

1

r cos θ

�

ū
∂ū
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where θ and φ denote latitude and longitude respectively, r is the Earth radius, ū and v̄ represent
the depth-averaged velocities in the θ and φ directions, and τ

φ
b and τ θb represent the bottom friction

terms.

2.1.5.2 The Boussinesq equations

The nonlinear shallow water equations can describe the tsunami waves from the ocean propagation
up to the coastal swash. However, although the assumption of hydrostatic pressure distribution is
adequate for tsunami waves, the dispersive effects, which are very important in deep water, must be
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taken into account as they cause the main wave to fission, leading to the emergence of a wave train.
Dispersion must be considered throughout the lifecycle of the tsunami, both in the propagation
phase and in its transformation near the coast. This is supported by the observations from the
2004 Indian Ocean Tsunami (IOT), that showed dispersion in the tsunami waves propagation
(Grilli et al., 2007; Horrillo and Kowalik, 2006; Watts et al., 2005).

The first wave model which included dispersive effects was obtained by Boussinesq (1872).
The Boussinesq equations for solitary waves in constant depth are an extension of the Saint-Venant
equations including the vertical water acceleration and thus a non-hydrostatic pressure distribution.
For variable depth, Peregrine (1967) derived the Boussinesq equations using the depth-averaged
velocity as variable and assuming linear variation of the vertical component of the velocity over
the water depth. The linear dispersion characteristics of the Boussinesq models limit their scope
of application to relatively shallow water depths, where the dispersion parameter σ = kh is small,
and to waves with weak nonlinearity. Several improved Boussinesq-like formulations are available
that extend the application limits of this model (Madsen and Sørensen, 1992; Nadaoka et al., 1997;
Nwogu, 1993; Schäffer and Madsen, 1995; Teng, 1997). The classical Boussinesq equations can
be written as (Avilez-Valente, 2000):
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The linear wave velocity of the Boussinesq model is
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In spherical coordinates, the Boussinesq equations, excluding viscous terms, are written as:
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∂φ ∂θ
+

∂2(h cos θv̄)

∂θ2

���

− 1

r
τ θb + fū = 0 .
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The shallow water equations are competent in the description of the characteristics of the

tsunami waves throughout several flow regimes. George (2006) noted that attention should be paid
to the additional computational costs by solving more computationally expensive systems, even if
a more accurate numerical solution is achieved and the outcome justifies the time consumption.

2.1.5.3 Numerical codes

As a rule, numerical models are used to simulate the several physical processes that compose the
lifespan of a tsunami. To achieve the proper functioning of a numerical hydrodynamic model,
it is necessary to ensure that the model follows the law of conservation of mass. This means
that the volume of water at the beginning and at the end of the simulation must be the same.
It is also necessary to guarantee the convergence of the numerical model which, according to
Thompson (1992), occurs when “a sequence of models solutions with increasingly refined solution
domains approaches a fixed value”. Therefore, the conservation of mass and convergence testing
are fundamental hydrodynamic conditions when intending to use any numerical model.

Several operational codes are implementing the shallow water theory, such as TUNAMI-N2
(Imamura 1996; Shuto et al. 2014), MOST code by NOAA (Titov and Synolakis 1998; Shuto et al.
1997), COMCOT (Philip Liu Group 2014), TsunAWI (Behrens 2008) and GeoClaw (Clawpack
Development Team 2014b), among others. The solution of the mathematical models based on the
partial differential equations demands the application of certain approximations, simplifications
and numerical schemes. Numerical methods are applied to solve the hyperbolic equations of the
model. The discretisation of the equations is performed to transform the continuous differential
equations into discrete differential equations.

For TUNAMI-N2, MOST and COMCOT codes, uniform and nested finite difference (FD)
mesh discretisation of the SWE is performed (Behrens and Dias 2015). In the finite differences
method, the resolution of the differential equations is based on the approximation of the derivatives
by finite differences, with the approximation formula obtained from the Taylor’s series of the
derivative function. Finite differences numerical schemes have been by far the most commonly
used numerical methods in tsunami simulation, due to its easy implementation.

TsunAWI (Behrens 2008) applies a discretisation based on finite elements (FE). Finite element
methods find approximate solutions to boundary value problems for differential equations. With
this numerical technique, it is possible to simplify a large system, dividing it into small finite
elements, dealing more easily with complex geometries and boundaries.

A widely used numerical method is the finite volume (FV) method, where the computational
domain is divided into volumes or cells. GeoClaw code applies a finite volume numerical scheme,
that has been demonstrated to be robust and flexible, with adaptive mesh refinement (AMR).
AMR is used to speed up the simulation and resolves the tsunami wave in specific areas of in-
terest, flagged for refinement. Finite volumes have also shown to be very efficient and accurate
in solving conservative equations with its shock-capturing ability. Recently, as explained by Shi
et al. (2012b), hybrid models combining both finite difference and finite volume methods, des-
ignated as Total Variation Diminishing (TVD)-type schemes (Toro 2009), have been applied in
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Boussinesq-type wave models. These methods have shown great performance and robustness of
the shock-capturing mechanisms, especially in coastal inundation and wave breaking simulations
(Erduran et al. 2005; Tonelli and Petti 2009; Roeber et al. 2010).

When the tsunami enters the coastal waters and the wave interacts with the structures, it is fun-
damental to understand the wave-structure interaction. For this stage, both Eulerian (grid based)
formulations, such as in OpenCFD Limited (2019), and Lagrangian (particle based) formulations,
such as in the three-dimensional smoothed particle hydrodynamics (SPH) models (St-Germain
et al. 2013), have been widely used. Although most computational codes ignore tsunami disper-
sion, the dispersive effects are still investigated and are a topic of discussion in tsunami science
(Glimsdal et al. 2013). Codes like FUNWAVE-TVD (Shi et al. 2012b; Kirby et al. 2013)—initially
developed by Kirby et al. (1998)—and GlouBous (Løvholt et al. 2008; Løvholt et al. 2010) include
the dispersion contribution, as they solve Boussinesq-like models.

2.1.6 Tsunami flow regimes and coastal interactions

2.1.6.1 From the deep ocean to the shoreline

The propagation of tsunamis evolves through diverse flow regimes, from the deep ocean to the in-
termediate and shallow waters, being subject to several transformations. Considering the tsunami
wave propagation in deep waters, it is observed that the wavelength of a tsunami wave is very
long—hundreds of kilometres—when compared with the water depth it is propagating in—few
kilometres. In the shallow water approximation, a parameter υ is defined to be the ratio between
the water depth h and the wavelength λ, which is small and therefore the flow’s vertical variation
is ignored. This implies that tsunami waves propagate a long way from the source, carrying its
enormous energy until it is finally dissipated in the coast.

In deep water, the tsunami wave amplitude is relatively small—from tens of centimetres to a
few metres—, making them difficult to be detected from the air or to be felt on board of a ship in the
deep ocean. As tsunami waves enter shallower waters, the waves start to shoal. It is important to
note that the bathymetric features of the ocean bottom are quite relevant in the tsunami propagation
and its amplification effects (see for instance Geraghty 2006). As the tsunami approaches the coast,
the speed decreases and the amplitude increases. The tsunami waves slow down and the waves’
energy is compressed, piling up and striking with devastating force. The flow regime changes
with the shoaling effect and afterwards with the turbulent and complex energy dissipation of the
propagating waves, giving origin to breaking waves. Undular bores can also be observed as a
result of the frequency dispersion.

Tsunami waves originate strong enhanced currents in the coastal harbours and ports, also
transporting the debris resultant from the destruction due to the impact of the tsunamis waves on
the coastal structures. Observations from the 2004 IOT and 2011 Tohoku tsunami showed that
the strong currents are highly turbulent and sheared (Lynett et al. 2012; Dias et al. 2014). The
physical processes involved are complex and difficult to emulate, which can easily lead to erro-
neous modelling. Therefore, models should be able to simulate the rotational flows and turbulent
characteristics associated with the currents. Ultimately, the goal is to understand the damage that
can occur in the harbours and ports struck by the tsunami waves. Behrens and Dias (2015) con-
sidered the importance of formulating guidelines to keep ships offshore and safe from tsunami
induced currents. The authors also note the lack of knowledge about the interaction of tsunami
with marine renewable energy farms.

The last flow regime is composed by the complex fluid flow interaction with the shoreline
features, the coastal vegetation, the existing coastal structures, river courses and other existing
streams, the complex inland propagation and inundation, and also by the transport of debris. In
the long run, what is aimed from all the tsunami modelling process is to determine, as accurately
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as possible, what happens in and along the coast, as the tsunami wave reaches land and its energy
is dissipated.

2.1.6.2 Inundation and coastal interactions

Wave run-up and run-in

Wave run-up is a parameter widely used to evaluate the coastal impact of tsunami waves. It is
defined as the vertical maximum rise reached by the tsunami incident wave (Figure 2.11, where
the run-in Ri is the maximum inundation distance measured horizontally and β is the slope angle
of the beach). The estimation of the run-up R parameter is a long-established challenge in hydro-
dynamic modelling, tackled to assess tsunami coastal impact. Wave run-up has been investigated
and documented in several empirical, analytical and numerical research studies (Lima et al. 2010).

Numerical models compute tsunami inundation in terms of flow depth, run-in and run-up. The
tsunami propagation over dry land is possible using a numerical algorithm, able to update the
water depth along the shoreline grid cells. The trustworthy forecast of these parameters is highly
dependent on the bathymetric and topographic information and detail, which are also influenced
by the roughness data (Gayer et al. 2010).

Basic empirical approximations have been adopted to predict run-up heights. Using the non-
linear shallow water theory, Carrier and Greenspan (1958) presented a method to solve the run-up
problem. Mehauté et al. (1968) resumed the theories and works on the run-up of waves, point-
ing out the important contribution of the work by Carrier and Greenspan (1958). Pedersen and
Gjevik (1983) investigated the run-up of long water waves using a Lagrangian Boussinesq model,
with good agreement between the experimental run-up and numerical results. Synolakis (1987)
presented the theory and asymptotic results on the run-up of non-breaking solitary waves on plane
beaches. Using a Lagrangian finite element Boussinesq wave model, Zelt (1991) studied the
non-breaking and breaking solitary waves run-up on plane impermeable beaches. Pelinovsky and
Mazova (1992) reviewed research works on wave run-up on a slope and solving methods, start-
ing from Carrier and Greenspan (1958); they presented their study of leading depression N-waves
run-up and a linear formulation for the solution of wave run-up non-one-dimensional problems.

Figure 2.11: Scheme illustrating the fundamental concepts regarding the tsunami inundation stage:
run-up R; run-in Ri; slope angle β.

Tadepalli and Synolakis (1994) applied the shallow water equations, with first order accuracy,
to determine the wave run-up of different N-waves: the generalised N-wave, the isosceles N-wave
and the double N-wave. They provided asymptotic results for both leading depression N-waves
(LDN) and leading elevation N-waves (LEN) maximum wave run-up, as well as the validity limits
for the proposed approximated theory. Tadepalli and Synolakis (1994) found LDN-waves to have
higher run-up comparing with equivalent LEN and focus on the importance of determining the sign
of the leading wave to find the direction of slip motion and better model the run-up of nearshore
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tsunamis. Dias and Dutykh (2007) supported that the solitary wave model might not be suitable
to predict the run-up upper limit of nearshore generated tsunamis, as the run-up of LDN-waves is
higher than the run-up for LEN-waves (Tadepalli and Synolakis 1994).

Baldock and Holmes (1999) compared numerical results with analytical solutions of swash
oscillations on a steep beach, with agreement on the shoreline displacement determination based
on bore run-up theory. Li and Raichlen (2001) studied run-up of solitary waves, improving the
accuracy of maximum run-up prediction with the presented nonlinear theory and a good agreement
with experimental data for steep and smaller slopes. Li and Raichlen (2002) developed a model,
based on the nonlinear shallow water equations and using a weighted essentially non-oscillatory
(WENO) shock-capturing scheme from gas dynamics, to simulate wave breaking and run-up. The
numerical scheme was found to predict reasonably well several aspects of the run-up process. Li
and Raichlen (2003) investigated the impact on the run-up of a plunging breaking solitary waves’
jet and the post-breaking bore formed. The authors also developed a simple empirical method,
based on energy conservation principles, to estimate run-up of breaking solitary waves on a plane
slope.

Didenkulova et al. (2006) demonstrated that a wave with increased steepness of the lead-
ing front travels longer distances inland comparing with a symmetric profile incident wave. Di-
denkulova et al. (2007) presented an analytical formula for the maximum height of run-up of
a solitary wave on a beach, for variable geometry of the incident wave, especially for tsunami
events. Okal and Synolakis (2004) established the Plafker’s rule of thumb, which says that the
ratio between the maximum run-up and the average slip on the fault plane cannot be much greater
than 1 on a nearby beach with a smooth topography.

Chang et al. (2009) generated solitary waves in the super tank at the Tainan Hydraulics Lab-
oratory (THL), with 300 m × 5 m × 5.2 m, and investigated the run-up flow and pressure of
breaking solitary waves climbing up a slope. Baldock et al. (2009) collected data on run-up for
different wave conditions and found a better correlation with a run-up semi-empirical formula than
with Hunt’s formula (Hunt 1959). Madsen and Schäffer (2010) presented analytical solutions of
the nonlinear shallow water equations, for the run-up and run-down of single and LDN-waves.

Zhao et al. (2011) used a high-order Boussinesq model to study the generation, propagation
and run-up of tsunamis, as well as the maximum run-ups of solitary and N-waves and validated
run-up field data from the IOT. Using a Boussinesq-type model, Kim and Son (2019) investigated
the run-up and wave evolution characteristics of idealised leading depression and leading eleva-
tion N-waves, with a special focus on the shelf geometry effects and wave breaking under the
geophysical scale.

Klettner et al. (2012) generated depressed waves in the laboratory with a novel technique
and performed beach run-up measurements. Using a pneumatic generator, Charvet et al. (2013)
took the new retrieved data to find novel run-up expressions. The authors found consistency with
previous studies, but suggest potential energy as a useful parameter to predict run-up. Drähne
et al. (2015) compared both physical and numerical approaches with known analytical solutions
for long wave run-up. McGovern et al. (2016) documented tests performed using a long wave
generator and run-up results for very long period LDN-waves. In a 300 m wave flume, Sriram
et al. (2016) generated long waves and compared run-up values of long-period pulses and standard
soliton solutions. They support Madsen et al. (2008), stating that long waves such as tsunami
should not be modelled by solitary waves.

2.1.6.3 Wave run-up formulations

The wave run-up, R, can be estimated directly from the trigonometric relation (Chang et al., 2009;
Charvet et al., 2013):

R = Rin · tanβ , (2.66)
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where Rin is the horizontal distance travelled by the wave on land (wave run-in) and β is the slope
angle of the beach.

Baldock et al. (2009) compared the experimental results obtained with Hunt’s formula (Hunt,
1959) for breaking waves

R = K · tanβ ·
�

H0 · L0 , (2.67)

where K is an empirical coefficient, H0 is the offshore wave height and L0 is the offshore deep
water wavelength. The previous expression can be written in terms of the Iribarren number, Ir:
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�
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with the Iribarren number Ir defined as:

Ir =
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�
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. (2.69)

The Iribarren number Ir is a dimensionless parameter that expresses several effects of sur-
face gravity waves propagating over slopes and obstacles. Besides run-up, it is also used as a
description parameter of the type of breaking waves on the beach.

Sriram et al. (2016) used the formula presented by Synolakis (1987) for the run-up of solitary
waves, which is

RSW = 2.831 · h ·
�

cotβ ·

�

H

h

�5/4

, (2.70)

where RSW is the maximum run-up of solitary non-breaking waves, predicted by the linear and
nonlinear theories, h is the water depth and H is the wave height.

For the N-waves, Synolakis et al. (2007) proposed the expression:

RNW = 3.86 · h ·
�

cotβ ·

�

H

h

�5/4

(2.71)

and compared the run-up of the Boussinesq solitary wave, expression(2.70), with the run-up of an
isosceles N-wave, establishing that RNW = 1.364 ·RSW.

In this thesis, additional expressions for the run-up are proposed, which simultaneously ac-
count for the water depth h and the wave height H . Both parameters are included in expressions
of the type:

R

d
= K · tanβ · Stm, (2.72)

where K and m are coefficients to be determined by the minimum square method and St is the
Stokes parameter, which indicates the balance between the nonlinearity � and the dispersion σ of
long surface gravity waves:

St =
�

σ2
. (2.73)

Amplitude dispersion of a long wave is quantified by the nonlinearity parameter �, as the ratio
between its height and the local depth, i.e.

� =
H

h
, (2.74)

while the frequency dispersion is quantified by the shallowness or dispersion parameter σ, as a
relation between the local depth and the wavelength, defined as

σ = κ · h . (2.75)
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The following run-up expressions are also proposed:

R
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, (2.76)

and

R

d
= K · (tanβ · St)m . (2.77)

However, we do not have run-up measurements obtained with different β angles and therefore
it is difficult to determine the influence of the term tanβ .

2.1.6.4 Tsunami pressure forces

The coastal areas affected by tsunamis are subject to hydrodynamic forces due to the tsunami bore-
like waves that reach the coast and/or debris carried in the water. To estimate all the forces involved
remains still a great challenge in tsunami science. Palermo et al. (2009) review and decompose
the tsunami-induced hydraulic bores into their component forces. In general, the existing studies
on the tsunami hydrodynamic forces consider solitary waves, hydraulic bores and the dam break
problem (Al-Faesly et al. 2012; Nouri et al. 2010). Coastal structures are barely prepared to outlive
the tsunami forces involved. Please refer to Al-Faesly et al. (2012) for the damage description of
the events of Chile 2010 and Tohoku 2011.

It is important to estimate the forces to which the structures can be subject during a worst case
scenario, therefore giving us an insight about the improvements required in coastal planning and
tsunami impact reduction on the human environment.

When the tsunami waves reach land, coastal structures are subject to hydrodynamic forces.
These forces can be estimated for a steady flow as (see for instance Chang et al., 2009):

Fd =
1

2
· ρ · Cd ·B ·

�

h∗ · u∗2
�

, (2.78)

where Fd is the resultant hydrodynamic force, ρ is the density of the fluid (including the sediment
load), Cd is the drag coefficient, B is the width of the body where the forces are exerted (e.g. the
dimension in the plane normal to the fluid direction). The term h∗ · u∗2 is the moment flux per
unit mass per unit width occurring on the body. Dividing by B · h∗, the frontal area normal to the
run-up flow, the mean hydrodynamic pressure over the area is obtained as:

Pd =
1

2
· ρ · Cd · u

∗2 . (2.79)

Based on the proposal by FEMA P646 (2008) to estimate h∗ · u∗2 and further simplification,
Al-Faesly et al. (2012) obtained the following expression for this term:

h∗ · u∗2 =
1

8
· g ·R2 , (2.80)

where R is the design run-up at the site.
For rectangular shaped structures, Al-Faesly et al. (2012) used Cd = 2.0 as suggested in

FEMA 55 (2000).
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Chapter 3

Computational modelling

3.1 Introduction

The most straightforward way to predict the outcome of a tsunami event is to reproduce the phe-
nomenon through numerical modelling. In numerical modelling, sets of mathematical equations
and models describe and emulate the physical conditions of the event to be simulated. In the case
of tsunamis, the first stage of its lifespan concerns the generation of the tsunami, which can be
a consequence of different triggering mechanisms. For earthquake triggered tsunamis, numerical
models use the elastic dislocation model in an homogeneous half-space approach (Mansinha and
Smylie 1971; Okada 1985), to determine the initial deformation of the ocean sea bottom, which
translates towards the free surface as an initial condition. It is assumed water incompressibility and
the initial deformation of the ocean surface is used, for the initial time instant, as the initial con-
dition of the propagation model. The assumption that the bottom displacement corresponds to an
instantaneous vertical displacement is performed for earthquake triggered tsunamis. The Okada’s
equations do not describe the physics of landslide motion, therefore for events such as landslide
movements other assumptions are introduced to determine the initial motion. Please refer to the
literature (Gisler 2008; Løvholt et al. 2015), as this is beyond the scope of this thesis.

To model the propagation phase of tsunamis the simplest and most used models are the shallow
water equations (SWE)—also known as the Saint-Venant equations (section 2.1.5)—in its linear or
nonlinear forms. The two-dimensional (2DH) SWE are widely used to model tsunamis (Synolakis
et al. 2007), as these equations can model several physical aspects of the phenomenon and can
reproduce many important features of the propagation, including the inundation and the run-up.
It is considered in general that the linear shallow water equations (LSW) set of equations are
satisfactory in modelling tsunami propagation in deep waters (Synolakis and Bernard 2006). The
nonlinear shallow water equations (NLSW) are commonly used to describe the tsunami run-up
(section 2.1.6) and there are several available models generally used, as TUNAMI-N2 (Imamura
1996; Shuto et al. 2014), MOST code by NOAA (Titov and Synolakis 1998; Shuto et al. 1997),
GeoClaw (Clawpack Development Team 2014b), COMCOT (Philip Liu Group 2014), TsunAWI
(Behrens 2008), NSWING (Miranda et al. 2014), among others. Different numerical techniques,
such as the finite differences (FD), finite volumes (FV), finite elements (FE) and smoothed-particle
hydrodynamics (SPH), are applied to solve the set of equations used to describe the tsunami and
its phases, which also distinguishes the different codes.

Besides the shallow water models, Boussinesq long wave models, like FUNWAVE (Kennedy
et al. 2000; Kirby et al. 1998; Wei et al. 1995), which evolved to FUNWAVE-TVD (Shi et al.
2012b; Kirby et al. 2013), GloBouss (Pedersen and Løvholt 2008; Løvholt et al. 2008; Løvholt
et al. 2010) and COULWAVE (Lynett et al. 2002; Kim and Lynett 2011), are an alternative to
model tsunami propagation and transformation. Boussinesq-type models account for frequency
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dispersion, which is present even in shallow waters, and will behave better in case of wave fission
(Løvholt et al. 2010). Pujiraharjo and Hosoyamada (2006) and Kazolea and Delis (2013) stated
that Boussinesq models provide more accurate results for highly dispersive waves over increasing
water depth. As Grilli et al. (2007) discussed, the importance of the dispersive effects on tsunami
wave evolution has been shown by Kulikov (2005a), as well as its relevance in the tsunami hazard
mitigation (Horrillo and Kowalik, 2006), which therefore supports the necessity of its inclusion in
numerical long wave models, as in FUNWAVE-TVD. This comes into agreement with what has
been earlier discussed by Ward (1980) and Okal (1982).

To model the interaction of tsunami waves with the nearshore environment, coastal vegetation
and structures, turbulence models are necessary. Therefore, computational fluid dynamics (CFD)
models are used for the two-dimensional and three-dimensional numerical modelling, such as the
direct numerical simulation (DNS), large eddy simulation (LES) and Reynolds-Averaged Navier-
Stokes (RANS) models. CFD models, such as OpenFOAM (OpenCFD Limited 2019), ANSYS®

Fluent and ANSYS® CFX, are capable of modelling complex fluid flow problems. All of them
include several approaches to model turbulence.

In this chapter, we will go through each numerical code used throughout this research work,
from global to local tsunami modelling. The focus will be on the numerical modelling of tsunamis
triggered by submarine earthquakes only. One by one, each code will be described, generally and
in detail, in its governing equations and numerical methods. The benchmark testing of numerical
tsunami modelling codes is mandatory. The presently accepted benchmarking standard adopted
by the National Tsunami Hazard Mitigation Program (NTHMP) were taken from Synolakis et al.
(2007, 2008). Results from the benchmark test cases are presented here to determine the perfor-
mance characteristics of each code.

The numerical models used in this dissertation were (1) GeoClaw, a NLSW model for the gen-
eration and early propagation phases of a tsunami, (2) FUNWAVE-TVD, a fully nonlinear Boussi-
nesq model for the nearshore water wave propagation and transformation, and (3) OpenFOAM, a
CFD code used to model the nearshore processes in two- and three-dimensional domains and to
determine the properties and characteristics of the tsunami interaction with the coastal structures
and the surrounding areas. OpenFOAM is used with the olaFlow toolbox.

All the numerical codes used in this work are open-access and free and were installed and
used in Linux operating system (from Ubuntu version 14.04 Trusty to 18.04 Bionic). Serial runs
were performed with a portable computer with Intel® CoreTM i5 CPU M 430 @ 2.27GHz x 4
Processor with 7.6GB RAM and a desktop computer with Intel® CoreTM i7-4790 CPU @ 3.60GHz
x 8 Processor with 15.6GB RAM. Parallel simulations were performed in clusters with Linux
operating system: 1) bhuta, with CPU 2x Intel® Xeon E5649 @ 2.53GHz (2x6Cores) and 48GB
RAM; 2) tornado, with CPU 2x Intel® Xeon X5560 @ 2.80GHz (2x4Cores) and 48GB RAM; 3)
Grid FEUP (Avalanche cluster hardware details in https://grid.fe.up.pt).

3.2 GeoClaw

3.2.1 Introduction

In this thesis, GeoClaw was chosen to model the tsunami generation and part of the propagation
of the triggering tsunami event. The capability of the code to generate and visualize the initial
deformation/perturbation and to quickly monitor the propagation of the tsunami, with its easy im-
plementation and high speed of performance, showed GeoClaw code to be the best option available
for this stage. The code has also been used to model and validate data for tsunami events, with
extensive studies of the 2011 Tohoku earthquake and tsunami (Melgar and Bock 2013; MacInnes
et al. 2013b; Sraj et al. 2014; Sraj et al. 2017), achieving good numerical results in comparison
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with the expected results (Arcos and LeVeque, 2015). GeoClaw, from Clawpack version 5.2.2,
was then used to perform the numerical modelling.

The computational open source Clawpack is the "Conservation Laws Package", a set of related
hyperbolic partial differential equations (PDEs) solvers, such as Classic, AMRClaw, GeoClaw and
PyClaw solvers. The GeoClaw solver is designed to deal with geophysical problems and includes
the block-structured adaptive mesh refinement (AMR) capability from AMRClaw (Berger et al.
2011). Originally, GeoClaw spawned from TsunamiClaw code developed by George (2006), as
part of Clawpack. The GeoClaw numerical tsunami model (Clawpack Development Team, 2014b)
then became an extension of Clawpack for geophysical flows, which solves the nonlinear shallow
water equations (NSWE), a depth-averaged system of PDEs, by implementing high-resolution
finite volume methods. The FV methods are based on dividing the computational domain into
rectangular grid cells and storing cell averages of mass and momentum in each of the grid cells.
The values are then updated in each time step by means of a high-resolution Godunov-type scheme
(LeVeque, 2002), based on solving the Riemann problems at the interfaces of neighboring cells
and applying nonlinear limiters to avoid non-physical oscillations (Arcos and LeVeque, 2015).
These numerical methods are second order accurate in smooth regions of the flow but still can
robustly handle strong shock waves and other discontinuous solutions.

The GeoClaw code presents the advantage of being capable of applying block-structured adap-
tive mesh refinement in time and space (George and LeVeque, 2006; LeVeque and George, 2007),
by employing finer grid resolutions in regions of interest. Cells are flagged for refinement accord-
ing to pre-established refinement criteria and multiple levels of patches can be used until a certain
level of refinement is reached. Accordingly, the time step on the refined patches is reduced, such
that the stability of the finite volume scheme is preserved.

3.2.2 Governing physics, numerical methods and adaptive mesh refinement

The governing model for the propagation of tsunami waves is based on the shallow water equations
(SWE). The most general form of the SWE, which is a nonlinear system of hyperbolic conserva-
tion laws for depth and momentum, is solved in LeVeque et al. (2011), as they use shock-capturing
methods that can converge to discontinuous weak solutions. The equations are presented in Chap-
ter 2, expressions (2.52), (2.53), (2.54) in Cartesian coordinates and expressions (2.56), (2.57) and
(2.58) in spherical coordinates.

For local scale problems, the GeoClaw equations can be set in Cartesian coordinates. For
tsunami global scale modelling, as in the case of transoceanic propagation, latitude and longitude,
i.e. geographical coordinates, are used. According to Shuto et al. (1990) (in Kirby et al. 2013), the
sphericity and Coriolis effects are relevant for tsunami modelling in global scale distances and in
fact the standard NSWE tsunami models typically contemplate these effects. In contrary, LeVeque
et al. (2011) stated that, although the Coriolis terms are quite simple to include, the tests that
LeVeque and co-authors have performed indicated that the terms are neglectable. This statement
is also in agreement with Kowalik et al. (2005). For the reasons stated previously, the Coriolis
terms f were not included in the GeoClaw simulations presented in this thesis. For simulations in
the coastal vicinities, the drag term can be included in the momentum equation.

The description of the algorithms used in GeoClaw can be found in LeVeque (2002) and LeV-
eque et al. (2011). In Clawpack, a class of high-resolution finite volume methods is implemented,
and each grid cell is viewed as a volume over which cell averages of the solution variables q are
computed (Berger et al. 2011). Following Berger et al. (2011)’s explanation, "logically rectangu-
lar grids are used, where Qn

ij denotes the cell average in cell (i, j) at time tn. Cell averages are
updated at each time step, by waves propagating into the grid cell from each cell edge. In Figure
3.1 (a) it is represented the propagation of a piecewise constant wave into the ith cell (designated
as the increment wave, by LeVeque 1996); in (b) we can see the propagation of a piecewise linear
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wave and in (c) the correction wave. The wave shown in (b) can be decomposed into the increment
wave and the correction wave. In Figure 3.2 (a) the wave propagation interpretation of the upwind
method with fluxes (equation 3.2 in LeVeque 1996) is represented and in (b) the wave propagation
for the modified upwind method with fluxes corrected by equations (3.3) and (3.4) in LeVeque
(1996). In (c) there is a representation of the new cell value, which can be equivalently computed
as the weighted average of four cell values, overlapped by the shaded region. In Figure 3.3 it is
represented part of the extended grid for imposing the boundary conditions, in which the heavy
line is the physical boundary and two additional rows of cells are added in each direction. These
are Godunov-type methods, in which the waves are computed by solving a “Riemann problem” at
each cell edge. The Riemann problem is an initial value problem (IVP), that uses the SWE with
piecewise constant data determined by the cell averages of the dependent variables and topography
on each side of the interface. Godunov-type methods (Figure 3.4) provide a robust approach to
solving problems with discontinuous solutions, particularly from shock waves that generally arise
in the solution to nonlinear hyperbolic equations. In the SWE, shocks are “hydraulic jumps” or
“bores”, as often arise in practical flow problems. In Figure 3.4 there is a representation of waves,
interface values, and flux differences for Godunov’s method in a 1D grid with cell average qni in
the grid cell [xi, xi+1] at time tn. LeVeque (1997) explains that "the Godunov’s method is obtained
by constructing a solution over the time step as in the Figure. With piecewise constant (the upwind
method) initial data Riemann problems can be solved at each interface and piece these together to
get the global solution for a sufficiently small time step. Averaging this solution over the ith grid
cell at time tn+1 gives the new cell average qn+1

i ."

Figure 3.1: Propagation of a piecewise constant wave and the correction wave.

Figure 3.2: Wave propagation interpretation of the upwind method with fluxes and corrected ver-
sion.

The Riemann problem defined at each cell interface allows for shock waves in each Riemann
solution (Figure 3.5) and “approximate Riemann solvers” are used, that rapidly produce robust
solutions as a building block for the numerical method. Correction terms are also incorporated to
guarantee second-order accuracy in smooth regions of the fluid flow. In Figure 3.5 (adapted from
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Figure 3.3: Portion of the extended grid used for imposing boundary conditions.

Figure 1 from LeVeque 2002), the structure of the all-shock Riemann solution for the 1D elastic
wave equation for compressional waves is represented. The goal of LeVeque (2002) was to apply
the high-resolution wave-propagation algorithms in LeVeque (1997) to the elasticity equations and
to Clawpack (Clawpack Development Team 2014a), presented in the paper.

Figure 3.4: Waves, interface values, and flux differences for Godunov’s method in a 1D grid with
cell average qni in the grid cell [xi, xi+1] at time tn.

GeoClaw employs a variant of the f-wave formulation—as described in George (2008)—,
allowing the incorporation of the topography source terms directly into the Riemann problem.
The f-wave formulation of the wave-propagation algorithms was originally presented for the SWE
in Bale et al. (2003). Extended discussion and literature references on this topic can be found in
Chapter 3 of Berger et al. (2011).

The capability of performing mesh refinement during the numerical simulations is contem-
plated in GeoClaw. The mesh refinement technique (Figure 3.6) is done in patches, to cover
several orders of magnitude between the spatial scales of geophysical problems. From the ocean
propagation to the coastal scales, multiple levels of patches have to be used to reach a satisfactory
fine resolution (to the order of the tens of metres). The time step is chosen so that the stability of
the explicit finite volume method is maintained, which in general requires refining in time by the
same factor as in space, to keep the Courant number with the same value. The Courant number is a
dimensionless number that expresses the Courant-Friedrichs-Levy (CFL) convergence condition.
The CFL condition is necessary to assure the numerical convergence of the partial differential
equations (PDE) systems (in general, hyperbolic PDE). In Figure 3.6 (a) there is a representation
of a coarse grid for the one-dimensional example, shown in space-time, where values of q and
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Figure 3.5: Structure of the all-shock Riemann solution for the 1D elastic wave equation for
compressional waves.

fluxes F are indicated. In Figure 3.6 (b) it is shown a fine grid that is overlaid for and the grid
interface, in which values of q on the fine grid are indicated. In (c) the flux values F needed on
the fine grid are shown, where the ghost cells m + 1 and qm + 2 are also indicated. As LeVeque
(2002) explained, the computations are always performed on some finite set of grid cells cover-
ing a bounded domain and in the first and last cells the required neighboring information is not
accessible. Instead, there will be some set of physically boundary conditions that must be used in
updating these cell values. In general, the easiest solution is to extend the computational domain
to include a few additional cells on either end, called ghost cells, whose values are set at the be-
ginning of each time step in some manner that depends on the boundary conditions and perhaps
the interior solution. The values of the ghost cells provide the neighboring-cell values needed in
updating the cells near the physical domain. It is important to notice that these values are needed
to compute the fine grid fluxes at the grid interface. The development of the adaptive mesh re-
finement technique is described in a series of papers by Marsha Berger, Joseph Oliger and Philip
Colella (Berger and Colella 1989; Berger and Oliger 1984), that developed an algorithm for the
dynamic griding. It is a dynamic programming technique, which allows the adaption of computa-
tional numerical precision to the specific requirements of a computation problem: specific areas of
interest that need added precision and resolution are tagged to be refined, leaving other regions at
lower levels of precision and resolution. This technique is of broad use in several scientific areas,
with increased computational and storage savings of a dynamic griding scheme when compared to
a static grid. Detailed description of the adaptive mesh refinement (AMR) technique in GeoClaw
can be found in Berger and LeVeque (1998) (and subsequent papers) and in LeVeque et al. (2011).

For the tsunami modelling, the GeoClaw code also allows for the anisotropic refinement in
time. This means that the factor of the refinement in time does not have to be equal to the factor
of the refinement in space (e.g., the time step from one level to the next one can be done using
different refinement factors). To perform the grid refinement, cells where the resolution is insuf-
ficient are flagged; these flagged cells are then clustered into refinement patches. Flagging can be
done by two methods: firstly, with an error estimate that examines the gradients of the solution—
Richardson extrapolation—, which will detect the location of the largest waves; secondly, by
flagging cells where the surface elevation is perturbed from the sea level above a specified level,
in the case of tsunami applications. It is also possible to specify rectangular shaped regions, where
a certain level of resolution is required. Features in the solution which need refinement will move
after few time steps, therefore the grid patches will also "move". This means that new grid patches
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Figure 3.6: Coarse grid and fine grid for the one-dimensional example, shown in space-time and
indication of the values of q and fluxes F .

are created, at discrete time, and its solution is interpolated from the finest previously existing
grids, which are then removed (Berger et al. 2011). More details and further explanations can be
found in Berger et al. (2011), from where the previous descriptions have been taken.

Additional descriptions considering GeoClaw can be found in Appendix A.1.

3.3 FUNWAVE-TVD

3.3.1 Introduction

In this thesis, FUNWAVE-TVD was chosen to model the propagation and transformation of
tsunami events. The numerical schemes of the model are demanding when compared with the
commonly used SWE models for tsunami modelling. FUNWAVE-TVD contemplates wave prop-
agation and transformation, with a robust performance in the modelling of surf zones and retrieval
of inundation extent mapping, with run-up, run-in and flow depth of nearshore coastal zones.
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The fully nonlinear Boussinesq wave model FUNWAVE was initially developed by Kirby et al.
(1998) for nearshore water wave propagation (Kirby 2003; Wei et al. 1995). Originally, it used an
unstaggered finite difference formulation for space and a fourth-order Adams-Bashforth-Moulton
(ABM) scheme for time (Wei and Kirby 1995), applied to the fully nonlinear model equations
of Wei et al. (1995). A novel formulation for FUNWAVE was developed to solve weak insta-
bilities to high wavenumbers near the grid Nyquist limit and overall grid based noise generation
from several sources (Kirby et al. 2013). The novel model FUNWAVE-TVD is a fully nonlinear,
phase-resolving, time stepping Boussinesq model, following the work of Chen (2006), extended
to include the moving reference elevation, as in Kennedy et al. (2000). For the spatial discretisa-
tion, an hybrid finite volume–finite difference method is applied. Adaptive time stepping based
on a third-order Strong Stability-Preserving (SPP) Runge-Kutta method was used. This upgraded
version of FUNWAVE is capable of modelling tsunami waves and is formulated in both Cartesian
and spherical coordinates. The Cartesian version for the description of the nearshore processes is
documented in Shi et al. (2012b). The spherical version, suitable for the global scale modelling,
is described in Kirby et al. (2013). Several improvements have been introduced from version to
version: a more complete set of fully nonlinear Boussinesq equations; MUSCLE-TVD solver with
finite volume scheme, together with adaptive Runge-Kutta time stepping; shock-capturing wave
breaking scheme; code parallelization; wetting-drying scheme for shoreline movement modelling.

FUNWAVE-TVD has been used to model several tsunami events (as the 2011 Tohoku earth-
quake and tsunami, Grilli et al. 2013) and hypothetical scenarios of tsunami propagation along the
Atlantic ocean and inundation along the coasts (Grilli et al. 2015), as well as tsunamis of volcanic
origin (Grilli and Grilli 2013). It has also been widely used to model tsunamis triggered by sub-
marine mass failure scenarios (Schnyder et al. 2016). It is important to notice that the generation
of the tsunami triggered phenomena has to be done outside FUNWAVE-TVD, as the code has no
internal feature to deal with the tsunami generation stage. This information can be introduced in
the code through the files of surface elevation η and velocity, u and v, that describe the tsunami
propagation after the tsunami generation stage.

3.3.2 Governing physics and numerical methods

The description of the model equations, in both Cartesian and spherical (latitude–longitude) co-
ordinates, and numerical schemes implemented is performed (Shi et al. 2012c). The description
of the Cartesian version can be found in Tehranirad et al. (2011), Shi et al. (2012c) and Shi et al.
(2012b), while the description of the spherical-polar version of the code can be found in Shi et al.
(2012a) and Kirby et al. (2013).

The Boussinesq equations were presented in Chapter 3, in Cartesian coordinates in expressions
(2.59), (2.60) and (2.61) and in spherical coordinates in expressions (2.63), (2.64) and (2.65).

3.3.3 Numerical schemes

3.3.3.1 Spatial discretisation and time stepping

Spatial discretisation is performed using a combined finite volume and finite difference technique.
For the flux terms and the first-order derivative terms, a high-order MUSCL–TVD scheme is im-
plemented. The high-order MUSCL–TVD scheme can be written in compact form, including dif-
ferent orders of accuracy from the second- to the fourth-order, according to Erduran et al. (2005),
who modified Yamamoto et al. (1998) fourth-order approach. For the detailed explanations and
expressions please refer to Shi et al. (2012a). Higher derivative terms were discretised using a
central difference scheme at the cell centroids, as in Wei et al. (1995). No discretisation of the
dispersion terms at the cell interfaces is needed. The Surface Gradient Method (SGM), as in Zhou
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et al. (2001), was used to eliminate unphysical oscillations.
For the time stepping, Shi et al. (2012a) adopted the third-order Strong Stability-Preserving

(SPP) Runge-Kutta scheme. Due to the use of this scheme, the time stepping has to be calculated
like this:
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where Ψ
n denotes Ψ at time level n and Ψ

(1) and Ψ
(2) are values at intermediate stages in the

Runge-Kutta integration. As Ψ is obtained at each intermediate step, the velocity (u, v) can be
solved by a system of tridiagonal matrix equations, formed by expression (22) of Shi et al. (2012a).
S needs to be updated using (u, v, η) at the corresponding time step and an iteration is needed to
achieve convergence. An adaptive time step in chosen in accordance with the Courant-Friedrichs-
Levy (CFL) criterion:
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where Cr is the Courant number.

3.3.3.2 Wave breaking and wetting-drying schemes for shallow water

The model implementation also includes the wave breaking and the wetting-drying schemes for
shallow water, as described in Shi et al. (2012a). The wave breaking follows the approach by
Tonelli and Petti (2009), who interestingly presented a numerical code for solving the extended
Boussinesq equations with an hybrid scheme, which combined finite volume and finite differences
methods. In their work, they switched from Boussinesq equations to NSWE, according to a pre-
established threshold for the Froude number for a bore or a spilling breaker (Tonelli and Petti
2009). This is performed in FUNWAVE-TVD.

For the wetting-drying scheme a moving boundary is modelled. The normal flux n ·M at the
cell interface of a dry cell is set to zero. A mirror boundary condition is applied to the fourth-order
MUSCL–TVD scheme and discretisation of dispersive terms in (ψx,ψy) at dry cells. It may be
noted that the wave speeds of the Riemann solver, following expressions (37) and (38) in Shi et al.
2012a are
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and n is the normalized side vector for a cell face, for a dry cell are modified as:

cL = VL · n−
�

g(h+ η)L,

cR = VL · n+ 2
�

g(h+ η)L,
(3.7)

for the right dry cell and

cL = VR · n−
�

g(h+ η)R,

cR = VR · n+ 2
�

g(h+ η)R,
(3.8)

for the left dry cell.

3.3.3.3 Boundary conditions and wind effect

Various types of boundary conditions are implemented, as the wall boundary condition, the absorb-
ing boundary condition (Kirby et al. 1998) and the periodic boundary condition (Chen et al. 2003).
Wave-makers are also implemented, as internal wave-makers for regular and irregular waves (Wei
and Kirby 1995). Wind effects are also modeled using the wind stress forcing proposed by Chen
et al. (2004) as:

Rw =
ρa

ρ
Cdw|U10 −C|(U10 −C), (3.9)

where ρa and ρ represent air density and water density respectively, Cdw is the wind drag coeffi-
cient, U10 is the wind velocity vector, at a reference height of 10 m above the sea surface, and C

is the wave celerity vector.

3.3.3.4 Numerical instabilities

In FUNWAVE-TVD Version 3.0, Shi et al. (2016) aimed with success at improving the numerical
stability for large-scale and long time simulations. Nevertheless, they point out some aspects to be
aware of when performing simulations with the code (Shi et al., 2016): avoiding large bathymetric
slopes, as rapid changes in the bathymetry may cause numerical instabilities caused by ∇h > 1.0
in the source term; limiting huge unrealistic velocities from occurring in extremely shallow waters,
specifically at a wetting-drying boundary; adjust carefully the minimum depth for the wetting-
drying threshold, as a small value may lead to numerical noises; use the default Courant number
suggested of 0.5, as small values may cause instabilities; select preferably a lower-order spatial
scheme (considering that second order is the lowest-order spatial scheme possible), as numerical
instabilities increase with increasing higher-order numerical schemes.

3.3.3.5 The weakly nonlinear Boussinesq equations in spherical polar coordinates

Kirby et al. (2013) derived weakly nonlinear and dispersive model equations for the propagation
of surface gravity waves in a shallow, homogeneous ocean of variable depth, on the surface of a
rotating sphere. In the model equations (which follow exactly Shi et al. 2012a), dimensional forms
are preserved, as well as references to the apparent O

�

µ2, δ
�

ordering of terms with the implicit
assumption that δ/µ2 = O(1) (Shi et al. 2012a). Parameter µ characterizes the ratio between the
water depth and wavelength (assumed to be small in classical Boussinesq theory) and parameter
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δ, given by the ratio between the wave amplitude and the water depth, is termed the shallow water
nonlinearity parameter.

Kirby et al. (2013) extensively described the model equations in spherical polar coordinates.
The numerical implementation is based on the dimensional forms of the weakly nonlinear govern-
ing equations, augmented by bottom friction related terms. Direct generation of waves caused by
bottom motion was neglected.

3.3.4 Tsunami modelling and grid nesting

FUNWAVE-TVD code does not have any internal feature to generate the initial sea level displace-
ment, resultant from events such as earthquakes and landslides. Nevertheless, it is possible to
perform the numerical modeling of a tsunami event with FUNWAVE-TVD by feeding that infor-
mation into the program. To simulate an event such as a tsunami generated from an earthquake,
the bottom deformation can be retrieved from another program—such as GeoClaw, NHWAVE,
etc—or directly from the Okada model (Okada 1985), to generate this surface elevation data for
FUNWAVE-TVD as an initial condition *. The initial bottom deformation originated by the earth-
quake triggers an equal rise of the water surface, with null initial velocity. Here we used GeoClaw
to retrieve the free surface elevation η and velocities (u, v) of a tsunami generated from an earth-
quake, in its early propagation stage.

Afterwards, to start a FUNWAVE-TVD tsunami simulation, the user should use the initial uvz
deformation facility within the code. This initial bottom deformation is provided, in the form of
ASCII files, by means of three individual files, for an equal specific time instant: the free surface
elevation η file and the velocities u and v files.

Since version 2.0, it is possible to perform grid nesting within the numerical simulations.
Version 3.0 does not allow multilevel nesting. If the user desires to nest multiple grids, this has to
be done one at a time, according to the intended nesting. The nesting capability allows the passage
of the free surface elevation η and the velocities u and v, calculated in a large computational
domain, to a nested small domain (grid) contained in the larger grid, through ghost cells at the
nesting boundaries. Through several pre-established virtual gauges which are coincident in both
grids (yet located at the inner grid boundaries), the data is passed between both grids.The structure
of a one-way nesting case is represented in Figure A.5. Additional descriptions can be found in
Appendix A.2.

3.4 Computational Fluid Dynamics (CFD) Code

3.4.1 Introduction

To model nearshore processes in two- and three-dimensional domains and to determine the prop-
erties and characteristics of tsunami interaction with coastal structures and surrounding areas, we
used the open access numerical code OpenFOAM (OpenCFD Limited, 2019) and the olaFlow
toolbox solver (Higuera, 2019).

OpenFOAM (Open source Field Operation And Manipulation) is a free and open source com-
putational fluid dynamics (CFD) package code, released and maintained by OpenCFD since 2004,
under the GNU General Public License. It is composed by several libraries, designated as applica-
tions, written in C++, an object-oriented programming language. These applications are divided
into the so-called solvers—which are conceived to solve a specific kind of problem—and the
utilities—which pre- and post-process the data. The package can deal with several types of fluid

*In the case of a dynamic bottom deformation, for a sequence of time steps (e.g. landslide), GeoClaw can be used
as the code is prepared to model dynamic fault motions.

37



dynamics problems, allowing also the creation of new solvers for the resolution of specific prob-
lems and extension of the existing functionalities. It has a wide applicability in several distinct
engineering research areas, such as automotive, biomedical, chemical, polymeric, coastal, among
many others.

OpenFOAM uses the finite volume method to solve computational fluid dynamics problems
and includes several approaches to tackle turbulence, such as Reynolds-Averaged Navier-Stokes
(RANS): large scale turbulence models for compressible and incompressible fluids; Large Eddy
Simulation (LES) method: isochoric and anisochoric LES turbulence models, LES deltas and LES
filters; Detached Eddy Simulation (DES) method: hybrid method that combines RANS and LES
approaches; Direct Numerical Simulation (DNS) method: Navier-Stokes (NS) equations solved
without any turbulence model. The OpenFOAM package includes Lagrangian particle tracking,
pre- and post-processing modules, dynamic meshes and parallel computing. It is very efficient
as it can use all the available nodes to perform the parallel computing. In Mesquita (2013), a
turbulence model, tailored for wave breaking modelling, was developed and integrated within
OpenFOAM. Some recent publications with OpenFOAM include studies about wave-structure
interaction (Higuera et al. 2018a), numerical wave tank (Windt et al. 2019), a sediment transport
solver (Bonamy et al. 2017) and wave energy conversion (Deng et al. 2019).

The olaFlow solver package (Higuera, 2019) consists on a set of solvers for the simulation
of wave dynamics, enabling the generation and absorption of waves at the boundaries and wave
interaction with coastal structures. It descends from IHFOAM (Higuera et al., 2017), presented
and validated in Higuera et al. (2013a,b, 2014a,b). It is very versatile, with high performance and
improved two-phase flow through porous media (relevant for the modeling with structures) and
includes a moving boundary-type wave generating mechanism, simulating a piston-like laboratory
wave-maker.

The module features the dynamic mesh refinement and mesh motion for floating body sim-
ulation, as in OpenFOAM. olaFlow has been recently used to validate a novel methodology for
breaking focused waves in CFD simulations (Stagonas et al., 2017). A recent study on swash flows
with olaFlow was published in Higuera et al. (2018b).

In this research work, OpenFOAM and specially the olaFlow solver were used to model the
interaction of the tsunami triggered waves with the coastal surroundings.

3.4.2 The olaFlow solver

The olaFlow solver (Higuera, 2019), included in OpenFOAM, was used in the framework of this
project. It is based in interFoam, a solver adequate for the simulation of incompressible two-
phase fluid flow with an interface. This means that it is suitable for the case of the incompressible
flow of air and water, separated by a well defined interface: the free surface.

olaFlow solves the Volume Averaged Reynolds-Averaged Navier-Stokes (VARANS) equa-
tions for the two incompressible phases, applying the finite volume (FV) discretisation method for
numerical integration, and the volume of fluid (VOF) method for phase definition.

As mentioned before, turbulence modelling in OpenFOAM can be performed by means of
RANS, LES and DES approaches and several turbulence models are incorporated, such as the κ−ε

(Launder and Spalding 1974), the κ−ω SST (Menter 1994; Menter et al. 2003)—where SST stands
for Menter’s Shear Stress Transport—, RANS and Large Eddy Simulation (LES) †. The olaFlow
solver is adequate to work with static meshes and it incorporates also the olaDyMFlow, suitable
for dynamic meshes (with DyM standing for Dynamic Mesh). The existing boundary condition
modules work equally for both solvers, together with the wave generation (with multiple wave
theories available) and active wave absorption capabilities (Higuera, 2019).

†
https://www.cfd-online.com/Wiki/Large_eddy_simulation_(LES)
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The current solving algorithm applied in olaFlow is PIMPLE, which is a combination between
the PISO (Jasak 1996; Kissling et al. 2010) and SIMPLE (Jasak 1996) algorithms. PISO stands
for Pressure Implicit with Splitting of Operators and was the original solving algorithm within
olaFlow; SIMPLE stands for Semi-Implicit Method for Pressure-Linked Equations. Higuera
(2016) explains that the main structure of the PIMPLE algorithm is equal to that of the origi-
nal PISO, allowing equation under-relaxation to ensure the convergence of all equations at each
time step.

The continuous improvements to the olaFlow solver are documented periodically online in the
website‡.

The fundamental equations that describe mathematically the motion of a fluid flow are the
Navier-Stokes equations. These and the RANS equations are presented in section 2.1.4.

3.4.3 Turbulence modelling

Turbulence is a characteristic of fluid flows, which often occurs in natural and mechanical sys-
tems. An accurate resolution of the turbulence problems requires very detailed meshes. For that
reason, if not so relevant to the problem, the turbulence occurrence is neglected. When considered
relevant, turbulence can be modelled at all scales or a parametrised model can be used.

There are many turbulence models and three common approaches are listed here. The first
one is the Direct Numerical Simulation (DNS), which directly solves the Navier-Stokes equations,
solving all the turbulence scales. This method is limited to low Reynolds number flows and small
domains with simple geometries.

The second approach is the Large Eddy Simulation (LES). As the method separates the large-
scale vortices and small-scale vortices—which are modelled via Sub-Grid Scale (SGS) turbulence
models in the large-scale vortices—, the computational cost of the method increases for large
domains with complex geometries.

The third approach to model turbulence is the Reynolds-Averaged Navier-Stokes (RANS), the
most commonly used. The models based on Reynolds-Averaged Navier-Stokes equations result
from a Reynolds decomposition of the governing equations in average and fluctuations fields. As
all the turbulence scales are parametrised, the computational efforts are less than those required in
the LES models.

The turbulence model used will be defined through the stress tensor T in equation (2.22). The
olaFlow solver incorporates several turbulence models, such as the κ− ε, the κ− ω SST—where
SST stands for Menter’s Shear Stress Transport (Menter 1994; Menter et al. 2003)—, Large Eddy
Simulation (LES). It includes libraries with modified versions of the κ − ε and κ − ω turbulence
models ‡. The turbulence models (Devolder et al. 2017, 2018; Larsen and Fuhrman 2018) include
the Multiphase κ− ε model, the Multiphase κ− ω SST, the Buoyancy k − ω SST model and the
Stable κ − ω SST model. Example of the turbulence model κ − ω SST coefficients, in log form
from a simulation, can be found in Appendix A.3.3.1.

3.4.4 Free surface definition: the VOF method

The interface that separates two immiscible fluids, just like air and water, is designated as the
free surface. The position of the free surface can be determined through the free surface bound-
ary conditions, the kinematic and the dynamic conditions. Nowadays, there are several methods
to determine the temporal evolution of the free surface, which can be divided in two distinct
groups (Ferziger and Peric 2012): the surface methods or interface tracking methods—where
the free surface is defined as a line composed by markers, and where the positions of the points
are retrieved through piecewise polynomial interpolations—and the volume methods or interface

‡
https://olaflow.github.io
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capturing methods—, where the domain is marked with points without mass or by an indicatory
function.

In OpenFOAM, the free surface is defined through a Volume Of Fluid (VOF) method, a vol-
ume or interface capturing method, originally proposed by Hirt and Nichols (1981). An equation
describing the movement of the phases is necessary, therefore a transport equation of a scalar
quantity α (also called phase function) is defined, where α is the fraction of volume (or quantity
of water per unit of volume) occupied by a fluid (here defined as fluid 1) in the control volume (in
each cell). When α is 1, the cell is occupied with water (fluid 1) and when α is 0 the cell has air,
or another fluid if defined that way (fluid 2). Values of α between 0 and 1 indicate that the cell
contains the interface. A symbolic representation of α can be:

α =
volume of fluid 1

volume of fluid 1 + volume of fluid 2
.

As explained by Mesquita (2013), the main advantage of this method is that one can obtain
the position of the free surface only by solving a single transport equation for a volume fraction
α, given by:

∂α

∂t
+∇ · (ūα) = 0. (3.10)

3.4.5 Wave generation, wave theories and wave absorption

In numerical modelling, the accuracy involved in the wave generation stage determines the quality
of the output results and our evaluation of the outcome of the problem. In the literature there
are several boundary conditions for the wave generation §. olaFlow wave generation boundary
conditions include the active wave absorption and the emulation of both piston and flap laboratory
wave-makers. It is possible to generate waves at the boundaries according to several wave theories
(Figure 3.7, where H is the wave height and h is the water depth): Stokes I (Airy wave theory),
Stokes II and Stokes V; cnoidal theory; streamfunction theory; Boussinesq solitary wave; irregular
first and second order waves. It is also possible to perform a piston or flap wave-maker emulation,
via time and displacement of the wave-maker (ts), via time and velocity of the wave-maker (tv),
via time, displacement of the wave-maker and free surface elevation (txeta) and via time, velocity
of the wave-maker and free surface elevation (tveta).

To emulate nature the most accurate way possible, wave absorption is used in laboratory ex-
periences, to reduce the effect of the spurious reflected waves (generated by the physical domain
boundaries) in the wave profile at the generation boundary. The same can be done in numerical
modelling due to the computational domain influence. In olaFlow, the two-dimensions active ab-
sorption method is based in Schäffer and Klopman (2000). Following from the previously cited
work, a quasi-three-dimensions absorption method, to absorb oblique waves, is presented (Higuera
2016). For three-dimensional cases, olaFlow has an original method applicable only to numerical
models for three-dimensional absorption. Extended explanations about all the olaFlow absorption
methods are presented in Higuera (2016).

§
https://openfoamwiki.net/index.php/Contrib/groovyBC and Jacobsen et al. 2012.
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Figure 3.7: Range of applicability of the wave theories, according to Le Méhauté (1976) (adapted
from Higuera 2016).

3.5 Applications

In the simulations performed for this thesis, the Coriolis forcing was not used. In principle, the
Coriolis effect has reduced influence on the propagation of the tsunami, given that the source of
the events studied are located close to the coast.

The quality of the numerical modelling results obtained in this section, applying each of the
previously described numerical codes, is evaluated by means of the 3 metrics described next.

3.5.1 Metrics

The accuracy of the analytical, experimental and/or numerical wave profiles is measured using the
most common metrics, over the first complete wave period: (1) the Pearson correlation coefficient,
r, defined as

r =
cov(ηTS, ηwg1)

σηTS · σηwg1

, (3.11)

where cov(· , ·) stands for the covariance function, σ(·) is the standard deviation, and ηTS and
ηwg1 are respectively the expected and the measured free surface elevations at wave gauge wg1
(the reference wave gauge); (2) the bias, given by

Bias =
1

N

N
�

i=1

�

η
wg1
i − ηTS

i

�

, (3.12)
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where N is the number of observations within the range t/T = 0.5–1.5; (3) the root-mean-square
error as:

RMSE =

�

�

�

�

1

N

N
�

i=1

�

η
wg1
i − ηTS

i

�2
. (3.13)

3.5.2 Monai Valley Benchmark: Tsunami run-up onto a complex 3D beach (Liu

et al. 2008)

The validation of GeoClaw and FUNWAVE-TVD is performed with a classical laboratory bench-
mark from The third international workshop on long wave runup models ¶ , focused on tsunami
run-up onto a complex three-dimensional beach (Appendix A.1.2.1). As González et al. (2011)
noted, this benchmark problem appears to be a good test for tsunami models, has been widely
used and many models have been shown to give results that agree quite well with the laboratory
measurements. Also, as pointed out by González et al. (2011), is it well documented, the data
is fairly well specified and the wave tank geometry scales up to a reasonable physical tsunami
problem, thus it appears to agree very well with the actual tsunami it was designed to model.
As documented in González et al. (2011), some benchmark tests show that the quality of the
bathymetry/topography computational grids and the accurate specification of the computational
domain is essential.

The Monai Valley Benchmark is based on the 1993 tsunami that struck the Okushiri Island, in
Japan. The computational solutions from the code are compared with data for the water surface
elevations collected during the laboratory experiment. The 1/400 scale model that was built for
the purpose is approximated to the region of Monai, in Japan, which suffered severe inundation
from the 1993 Okushiri tsunami (Matsuyama and Tanaka, 2001). The laboratory experiments
were performed in a tank with 200 m length, 3.4 m width and 6 m depth. The benchmark files
of this case study used for the validation of GeoClaw version 5.2.2. are available at https:
//github.com/vanialima/BP07.
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Figure 3.8: Profile of the incident N-wave of the Monai Valley study case.

¶
http://isec.nacse.org/workshop/2004_cornell/background.html
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Figure 3.9: Topography setting of the Monai Valley study case and wave gauges 5, 7 and 9.

The given input wave profile of the incident wave used in the experimental case is plotted in
Figure 3.8. The incident leading depression N-wave from offshore is at water depth h = 0.135
m. This N-wave profile was specified as boundary condition at the left boundary of the domain.
Reflective walls were used at y = 0 m, y = 3.5 m and x = 5.448 m. The incoming wave
data for the benchmark problem was provided for a total time of 22.5 s. The topography of the
experimental setting can be seen in Figure 3.9. The computational domain is 5.488 m × 3.402 m,
with 0.014 m grid sizes. The time step recommended and used is 0.05 s. The bathymetric setting
of the Monai Valley experiment is pictured in Figure A.2.

Table 3.1: Location of the wave gauges for the Monai Valley experiment.

wave gauge x (m) y (m)
5 4.521 1.196
7 4.521 1.696
9 4.521 2.196

Computations of this benchmark were performed with GeoClaw, in Cartesian coordinates,
and with FUNWAVE-TVD, in spherical coordinates. For FUNWAVE-TVD, the simulation was
performed on a λL = 1/4 geometrical scale and λT = 1/2 temporal scale. The results from
FUNWAVE-TVD were rescaled to λL = 1/400 and λT = 1/20, for visualization and compar-
ison with other authors. The code FUNWAVE-TVD does not accept direct input wave profile in
the form of a time series of water surface elevations, as provided for this benchmark. For this
reason, the given time series of η is converted to an ASCII file with three columns with the wave
components period, amplitude and phase. This is achieved through a MATLAB script provided
with the FUNWAVE-TVD package. The resultant file is then prepared to be read by the code.
In the conversion of the time series of η to the wave components, a sample frequency of 0.5 Hz
was used, with 0.001 low cut-off frequency and 0.03333 high cut-off frequency. A comparison
between the experimental N-wave profile and the computed waves retrieved from 5 virtual wave
gauges located at the left boundary of the domain, at y = 1.701 m, starting at x = 0, evenly spaced
and covering the generation zone, is presented in Figure 3.10.

Figure 3.11 shows the comparison between the experimental data for wave gauges 5, 7 and 9
(Table 3.1) respectively with results from GeoClaw. It was found that the second wave registered
in all gauges is resultant from reflections at the beach and mountain, on the wall located on the
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Figure 3.10: Comparison between the experimental N-wave time series (- -) and the wave profiles
retrieved from 5 virtual gauges, covering the wave generation zone.

further end and also on the right side lateral wall (y = 0 m and x = 5.488 m), which can be observed
in Figure 4 of LeVeque and George (2007). The results depend on the grid resolution applied.

The results of the simulation with FUNWAVE-TVD for the benchmark test of the Monai
Valley case are also plotted in Figure 3.11. After the completion of the simulation, comparing the
output wave profile results with the experimental data, for wave gauges 5, 7 and 9, we find that the
results obtained for the first 25 sec of FUNWAVE-TVD’s simulation are quite satisfactory.

The results from González et al. (2011) also, obtained with GeoClaw for a 423 × 243 grid,
are presented in Figure 3.11. We see that the results are overall coincident with the results of
our GeoClaw simulation. The slight differences observed could be related to the GeoClaw code
versions used in each of the simulations.

Overall, the results obtained with both codes for this benchmark problem can be considered
satisfactory. The computed metrics are presented in Table 3.2. Its analysis shows that a high linear
correlation exists, with r close to or above 0.9, for both codes. The highest linear correlation values
are obtained at wave gauges 7 and 9 for FUNWAVE-TVD code. At wave gauge 5, GeoClaw
obtains a r of 0.886 and FUNWAVE-TVD obtains 0.874. Also bias is negative for both codes,
though for FUNWAVE-TVD it is close to 0 and lower than what was obtained for GeoClaw. The
root-mean-square error varies between 0.60 and 0.70 cm for GeoClaw and between 0.46 and 0.60
cm for FUNWAVE-TVD. The error metrics indicate that FUNWAVE-TVD produces better results
than GeoClaw. Nevertheless, the dispersive model wave seems to lead to a smoother wave front
when compared with the observations. The wave arrival time is similar for both codes.

In Figure 3.12, we can observe the first wave arriving to Okushiri island, simulation results
for several time instants and the wave run-up over the area, which show good comparison with the
video recorded for the laboratory experiment||. The maximum run-up is observed around t = 16.67
s (Figure 3.12d), at x = 5.15 m and y = 1.85 m, corresponding to values between 0.06 and 0.09
m. This would correspond to run-up values between 24 and 36 m, which is in agreement with the
experimental observations that the run-up would have reached 32 m.

||
http://isec.nacse.org/workshop/2004_cornell/data/benchmark2/overhead.avi
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Figure 3.11: Monai Valley: numerical simulation with GeoClaw (—) and with FUNWAVE-TVD
(—), from González et al. (2011)(—) and experimental data (- -) recorded at wave gauges 5, 7 and
9.
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Table 3.2: Error metrics for the Monai Valley study case.

r Bias RMSE
Code Wave gauge (—) (cm) (cm)

GeoClaw 5 0.886 -0.1352 0.5906
7 0.848 -0.1828 0.6377
9 0.873 -0.1367 0.6852

FUNWAVE-TVD 5 0.874 0.0641 0.6043
7 0.869 -0.0752 0.5663
9 0.956 0.0099 0.4616
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(a) t = 15.15 s (b) t = 15.65 s

(c) t = 16.15 s (d) t = 16.67 s

(e) t = 17.17 s

Figure 3.12: Monai Valley area: numerical results for GeoClaw for several time instants.
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3.5.3 With GeoClaw

Benchmark tests and validation of GeoClaw has been performed by the authors of the code for
versions of the code previous to version 5 (George 2006, LeVeque and George 2007, González
et al. 2011). In this research work, GeoClaw version 5.2.2. was used and validated with the
same established benchmarks. For that purpose, scripts available for code benchmarking (possibly
written for version 4.6) were adapted and tested with GeoClaw version 5.2.2. Good results were
obtained from the benchmark tests.

When relevant in the computations, the Manning coefficient n is taken as 0.025 s/m1/3 (Te Chow
1959). The bathymetric grids used are referred to the mean sea level.

The objective of both tests is to show the performance of GeoClaw in the modeling of the
generation and initial propagation of the generated tsunami, as well as the use of the adaptive
mesh refinement of the model.

3.5.3.1 The Chile 2010 Earthquake

The magnitude Mw = 8.8 earthquake and tsunami offshore Maule, Chile, on the 27th February
2010 occurred at 6h34min11.5s UTC, with epicentre (35.826°S, 72.668°W). A very simple source
model with a single fault plane and constant slip is used (available from an early inversion by the
USGS – Clawpack Development Team 2014b) for the generation. The fault parameters used to
simulate this event are shown in Table 3.3. A 361 × 361, 10 min ETOPO2 grid with dimensions
120°– 60°W and 60°– 0°S was used (Figure 3.13). The initial time step used was 0.2 s and the
simulation had a total run time of 10 hours. Non-reflecting outflow boundary conditions are used
at the domain boundaries.
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Figure 3.13: Bathymetric setting of Chile, with the location of studied DART 32412.

The initial deformation of the ocean sea bottom was determined from the elastic dislocation
model in a homogeneous isotropic elastic half-space (Mansinha and Smylie 1971; Okada 1985). It
is assumed that the static seabed displacement is instantaneous and translated towards the free sur-
face as an initial condition, reproducing the elastic bottom deformation caused by the earthquake.
It is assumed water incompressibility and the initial deformation of the ocean surface is used as the
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Figure 3.14: Initial deformation (in metres) of the Chile 2010 event.

initial condition of the propagation model, for the initial instant, and null velocity field. Through
the maketopo.py script existent within the GeoClaw code, the seafloor deformation is generated
using the Okada model (Okada 1985). The seafloor deformation of this event is represented in
Figure 3.14. The focal mechanism, representing a shallow thrust fault, is plotted in Figure 3.15.
Simulations were conducted for a total of 10 h with a time step of 0.2 s. The base resolution of
the computational grid was 2°× 2°. Two simulations were carried out: a 3-level simulation with
refinement factors of 4 (30 min × 30 min) and 3 (10 min × 10 min), so that the finest grid resolu-
tion matches the bathymetric resolution; a 4-level simulation with refinement factors of 4 (30 min
× 30 min), 3 (10 min × 10 min), and 8 (1.25 min × 1.25 min), so that the finest grid resolution
is 8 times finer than the bathymetric resolution. The uniform grid simulation was performed on a
361 × 361 grid, with 10 min grid resolution, which corresponded to the finest level of the 3-level
simulation.

Table 3.3: Chile 2010 fault mechanism parameters, according to USGS.

Length Width Strike Dip Rake Slip Depth†

(km) (km) (°) (°) (°) (m) (km)
450 100 16 14 104 15 35

†Top of the fault

At the time of the Maule 2010 event, there was only one operational Deep-ocean Assessment
and Reporting of Tsunamis (DART) active in the area, namely DART 32412, located Southwest of
Lima, Peru, which recorded this event. Thus, GeoClaw code was validated for Chile 2010 event
using DART 32412 observation and comparing it with the results from the simulation. Using
vast DART data, GeoClaw has been mainly used to validate other input fields rather than the
surface elevation (Arcos and LeVeque 2015, MacInnes et al. 2013b, Sraj et al. 2014, Sraj et al.

49



����� ����� ����� ���� ���� ���� ����
����

����

����

����

����

����

Figure 3.15: Focal mechanism of the Maule, Chile, 2010 event. The Centroid-Moment-Tensor
(CMT) is provided by USGS and located at the epicentre.
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Figure 3.16: Chile 2010 comparison between observational data (- -), GeoClaw computed tsunami
waveforms for DART 32412 from an uniform grid simulation (—), from a 3 level simulation (—)
and 4 level simulation (—), Berger et al. (2011) with 3 level simulation (—) and 4 level simulation
(—). Time of earthquake event corresponds to the beginning of the plot.

2017). The original DART data can be retrieved from the National Data Buoy Center. Data is
provided at different sampling intervals, which causes repetition of data points, as well as some
gaps and spikes. After their removal from the time series, data is detided: applying variable degree
n polynomial fitting, we estimate the tidal signals and then remove these from the original records.
Afterwards, the detided waveforms are used for comparison with our simulations results.

Comparing the observational data at DART 32412 with GeoClaw’s results, we find that the first
wave is well reproduced by the numerical model in terms of period but its amplitude is moderately
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Figure 3.17: Maximum amplitude (in metres) and tsunami arrival times (in hours) for the Chile
2010 event. The blue square indicates the location of DART 32412.

underestimated (Figure 3.16). We found that there is a good match in the tsunami arrival times
(Figure 3.17) between the observations retrieved from DART 32412 and the numerical results, for
a virtual gauge located at the same position as DART 32412. The results are similar for both the
3-level and the 4-level simulations.

Berger et al. (2011) also performed two simulations (results shown in Figure 3.16) with the
same bathymetric information and the same base resolution of the computational grid (2°× 2°).
The sequence of refinement levels was somehow different from ours: a 3-level simulation with
refinement factors of 2 (1°× 1°) and 6 (10 min × 10 min), so that the finest grid resolution matches
the bathymetric resolution; a 4-level simulation with refinement factors of 2 (1°× 1°), 6 (10 min
× 10 min), and 8 (1.25 min × 1.25 min), so that the finest grid resolution is 8 times finer than the
bathymetric resolution.

From the analysis of Figure 3.16, we notice that Berger’s 3-level simulation presents worse
results than ours. Namely, their 3-level simulation underestimates both the first wave crest ampli-
tude and the first trough amplitude. Their time of arrival is also slightly ahead of the observed one.
Nevertheless, their 4-level simulation shows much better results in terms of first crest amplitude
than our 4-level one, although still underestimating the first trough amplitude.

Due to the refinement sequence we used, our results should outperform those of Berger et al.
(2011) both for the 3-level and the 4-level simulation. As that did not happen to the 4-level case,
we tried to reproduce Berger’s results using the same refinement sequence. We obtained results
close to our 4-level simulation, which led us to speculate that Berger’s 4-level simulation is based
on better bathymetric information or on a more sophisticated source model.

Analyzing the computed metrics for the Chile 2010 event with GeoClaw (Table 3.4), a rela-
tively high linear correlation exists, with r around 0.8, with a very small positive bias of 5 mm.
The magnitude of the root-mean-square error is about 5 cm, which is at about 15% of the first
wave height, which is 29.8 cm.
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Table 3.4: Error metrics for Chile 2010 GeoClaw simulation.

r Bias RMSE
Case (—) (m) (m)

Chile 2010* 0.806 0.0047 0.0526

*For DART 32412 record from the Maule 2010 event.

3.5.3.2 Case study of a Mw 8 Earthquake at the Southwest Iberian Margin—The 1969 Por-

tugal Earthquake and Tsunami (1969 PET)

The GeoClaw has been used to model several historic tsunami events (George 2006; Berger et al.
2011; MacInnes et al. 2013a; Arcos and LeVeque 2015). To test the global tsunami modelling
capacity of GeoClaw, an earthquake with Mw = 8 located at the Southwest Iberian Margin (with
location similar to the 1969 Portugal earthquake, event that caused a small tsunami) was selected
to perform a tsunami test in GeoClaw version 5.2.2 . The 1969 event occurred at 2h40min30s UTC
of 28th February 1969, with epicentre (36.010°N, 10.570°W)(Gjevik et al. 1997), the location we
used in our study. The parameters of the selected fault are detailed in Table 3.5 and were taken
from Grandin et al. (2007).

Table 3.5: Fault mechanism parameters (Grandin et al., 2007)

Scenario Length Width Strike Dip Rake Slip Depth† µ M0 Mw

(km) (km) (°) (°) (°) (m) (km) (Pa) (N·m)
A 85 20 231 47 54 5.29 20 4 × 1010 3.6 × 1020 7.8

†Top of the fault

In the numerical simulations, a 1245 × 1601 GEBCO grid with 0.0064°cell size (≈ 700 m)
was used. The seafloor deformation is generated using the Okada’s equations (Okada 1985),
through the maketopo.py script computed within the GeoClaw code. Figure 5.8 illustrates the
initial sea surface displacement caused by the Okada deformation, computed with the parameters
documented in Table 3.5. The correspondent source mechanism is plotted in Figure 3.19. Two
levels of refinement were set with factors 2 and 6. The Sommerfeld or radiation condition was
imposed at the boundaries of the domain.

We show the results of the simulation for this earthquake and tsunami. In Figure 3.20, four
frames of the 3 level simulation are presented. In Figures 3.21 and 3.22, we show the free sur-
face elevation comparison between observations and numerical results for two locations in the
Portuguese coast: Cascais, near Lisbon, and Lagos, in the southern part of Portugal (locations
in Table 3.6). The positions of the virtual gauges were chosen at grid points located the closest
possible to the original position of the wave gauge at the time of the original event.

From the analysis of the results, it is possible to observe that there is a delay in the arrival
time of the first wave, at both gauges. This could be due to the difference between the tide gauges
location at the time of the event and the location in the computational grid, which are slightly
different. When comparing the observation and the computation at Cascais, it is seen that the
amplitude of the computed first wave at Cascais is smaller; also the subsequent observed waves
are not simulated by the numerical code. At Lagos, the amplitude of the first wave is less than
the observed one and its shape is more flattened. Analyzing the computed metrics for 1969 PET,
shown in Table 3.7, the value of r is close to 0.50, the bias is negative and the magnitude of the
root-mean-square error is about 11.5 cm.

The poor results obtained from this simulation are probably related to the fact that the refine-
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Figure 3.18: Initial deformation (in metres) of the 1969 PET event.

��������� ��������� ��������� ��������� ���������
���������

���������

���������

���������

���������

Figure 3.19: Focal mechanism of the 1969 PET event. The CMT is provided by Grandin et al.
(2007) and located at the epicentre.

ment was applied only in the areas of location of the virtual tide gauges. The AMR capability of
GeoClaw should have been applied also in the generation and propagation areas. Results of both
refinements could be compared to evaluate the differences obtained in the simulations.
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Figure 3.20: Four frames of the simulated surface elevations (in metres) from a level 3 simulation
of the 28th February 1969 Portugal event. Time zero of the simulation corresponds to 2h40min30s
UTC, the origin time of the event. The approximate location of the gauges used is marked with 1,
which corresponds to Cascais, and 2, which corresponds to Lagos.

Table 3.6: Positions of the virtual gauges: Cascais and Lagos (locations 1 and 2, respectively, in
Figure 3.20).

Station Location Depth1 Dist.2

Lon Lat
(°) (°) (m) (km)

Cascais -9.4112 38.6816 17.37 313.77
Lagos -8.6688 37.0688 22.81 206.84

1Retrieved from the simulation mother grid
2Distance from tide station to source location, determined according to Vincenty (1975).
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Figure 3.21: Cascais: comparison between the free surface elevation observations and simulations
for the 1969 PET event.
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Figure 3.22: Lagos: comparison between the free surface elevation observations and simulations
for the 1969 PET event.

Table 3.7: Error metrics for GeoClaw simulations.

r Bias RMSE
Case (—) (m) (m)

1969 PET1 0.487 -0.0347 0.1151

1For Cascais tide gauge record from the 1969 event.

55



3.5.4 With FUNWAVE-TVD

FUNWAVE-TVD has been benchmarked by the authors of the code, with the examples pre-
sented in the manual. The authors published the Cartesian version benchmarking in Tehrani-
rad et al. (2011) and the spherical version benchmarking in Shi et al. (2012a). In this research
work, FUNWAVE-TVD version 2.0 was used for the first simulations, being later substituted by
FUNWAVE-TVD version 3.0. Yet, both versions were previously validated with state-of-the-art
benchmarks. Recently, Kirby et al. (2017) presented the code benchmark testing performed with
the 2015 National Tsunami Hazard Mitigation Programs Workshop on Modeling of Tsunami Cur-
rents. In the following application, the threshold value of the ratio of the wave height to the total
water depth was defined as 0.8 (according to Tonelli and Petti 2009).

3.5.4.1 Solitary wave on a conical island

This case study is based on the laboratory experiments by Briggs et al. (1995a), in which the ob-
jective was to study the three-dimensional tsunami run-up on a conical island (Appendix A.1.2.2).
The waves tested were solitary waves with H/h (where H is the wave height and h is the water
depth) varying between 0.05 and 0.20 in two levels of water depths. A total of 27 wave gauges
were used to measure surface elevation and transects. These large-scale laboratory experiments
were motivated by the 1992 Flores tsunami, that struck the Babi Islands, Indonesia. The initial
wave is defined as half wavelength (λ/2, i.e. gauges 1 to 4) away from the toe of the island
(Synolakis et al. 2007).

Table 3.8: Location of the 4 monitored wave gauges.

wave gauge Lon (°) Lat (°)
6 0.01246 0.01745
9 0.01246 0.01848

16 0.01470 0.02068
22 0.01246 0.02298

The computational domain is composed by a 702 × 602 grid, with ∆x = ∆y = 0.05 m. The
simulation has a total run time of 25 s, with a ∆t = 0.05 s. We present results from the numerical
modelling with FUNWAVE-TVD at the 4 wave gauges, for a water depth h = 32 cm. We compare
them with the equivalent laboratory measurements taken at the four locations, which correspond
to the front of the conical island at the toe (gauge 6) and to the three wave gauges 9, 16 and 22
located near the shoreline (Figure A.3c and Table 3.8). The results from the simulations for three
different H/h relations are compared with the experimental results by Briggs et al. (1995a) in
Figure 3.23. Gauges 6, 9, 16 and 22 are represented for three ratios of H/h (Table 3.9) and the
plots are oriented downwards, with the first plot corresponding to wave gauge 6 and the fourth plot
corresponding to wave gauge 22.

Table 3.9: Wave conditions tested for the 32 cm water depth experiments.

Case H/h h (cm) H (m)
A 0.045 32 0.014
B 0.091 32 0.029
C 0.181 32 0.058

The computed metrics for the conical island case study are presented in Table 3.10. The
analysis shows a very high linear correlation, with r above 0.9 and close to 1.0, for all the three
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Figure 3.23: Conical island: FUNWAVE-TVD numerical simulation (—) results and experimental
data (- -) recorded at wave gauges 6, 9, 16 and 22 (downward) for 3 different H/h solitary waves.
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Table 3.10: Error metrics for FUNWAVE-TVD’s simulations for wave gauge 6.

r Bias RMSE
Case (—) (m) (m)

A 0.974 -0.0005 0.0015
B 0.962 -0.0015 0.0030
C 0.955 -0.0021 0.0058

ratios of H/h, with negative bias. The magnitude of the root-mean-square error varies from 0.15 to
0.58 cm for the three cases. Comparing with the experimental measurements, the results obtained
from FUNWAVE-TVD simulation are, as expected , very satisfactory for the 3 distinct solitary
waves computed, as FUNWAVE-TVD is a dispersive Boussinesq model.

3.5.5 With the CFD code

OpenFOAM comes with several tutorial cases to test the various solvers existent within the CFD
code. olaFlow also presents several tutorial cases that show the performance of the solver, to
model wave simulation in channels and wave tanks.

In this research work, blockMesh was used for the meshing of simple geometric domains, as
in the case of canals and tanks, with and without slopes and with and without simple geometric
barriers or obstacles (such as breakwaters, walls, etc). For more complex geometric domains, such
as ports and harbours, snappyHexMesh was used. The snappyHexMesh tool generates three-
dimensional meshes, composed by hexaedra (hex) and split-hexahedra (split-hex) automatically
from triangulated surface geometries in Stereolithography (STL) format. The mesh approximately
conforms to the surface by iteratively refining a starting mesh and morphing the resulting split-
hex mesh to the surface. Since the geometry has to be only surface data, the files need to be in
Stereolithography (STL) or Wavefront Object (OBJ) formats **. In this research work, the STL
format, a Computer-aided design (CAD) file format which defines only the surface geometry of
3D objects, was used. Originally, an ASCII file with the topography/bathymetry was available
and a GNU Octave® script was used to perform its conversion to the STL format. After the
conversion, it is advisable to check the integrity of the STL file, which can be done with the
open source softwares Blender version 2.7.9 †† and/or Gmsh version 4.02 ‡‡ and freeCad version
0.14 §§. These softwares allow for some pre-processing of the STL file just before using it for the
CFD simulations. Within OpenFOAM, the user can also use checkMesh to track the quality of
the mesh created after blockMesh and/or snappyHexMesh tools have been used. This allows
the user to improve the quality of the produced mesh, which is crucial for the quality of the
simulations results. In this thesis, OpenFOAM version 1606+ was used in the serial simulations
and OpenFOAM version 1712 was used for parallel simulations.

Next, the results for some benchmark test cases performed with olaFlow are documented,
which include solitary and N-wave profiles input and propagation over channels and tanks and its
validation with experimental available data. Both the wave theories capability and wave-maker
emulation within olaFlow are tested.

**https://www.openfoam.com/documentation/user-guide/snappyHexMesh.php
††
https://www.blender.org

‡‡
http://gmsh.info

§§
https://www.freecadweb.org
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3.5.5.1 Beji and Battjes (1993) Case A — Wave propagation over a flat channel

We benchmark the code with the experiment by Beji and Battjes (1993), which considers the
wave propagation over a trapezoidal submerged bar. Here we only consider the flat zone of the
bathymetric setting, just before the bar. The wave case simulated is Case A, in which the wave
height is H = 0.02 m and the period is T = 2.02 s, for a water depth h = 0.4 m. Waves are generated
at the inlet boundary, x = 0 m, applying the Airy linear wave theory (Dean and Dalrymple 1991),
and absorbed at x = 10 m. In this case study the wave parameters and theory are specified inside
olaFlow’s waveDict file. The objective of this case study was to show the generation ability of the
olaFlow code, with the wave theories embedded in the code, and the possibility to use any wave
theory, from the ones available, to simulate and propagate a wave over a 2DV channel.

Table 3.11: Location of the wave gauges along a flat channel.

wave gauge x (m) y (m)
1 2.0 0.01
2 4.0 0.01
3 5.2 0.01

This case study was based on the olaFlow baseWaveFlume example. A 2D model is used and
the computational domain is set into 1 block specified inside blockMeshDict. The 2DV numerical
channel has a width of one element, length of 10 m and height of 0.7 m. The cell resolutions are
∆x = 0.02 m, ∆y = 0.02 m and ∆z = 0.01 m. The total run time is 40 s and the ∆t = 0.001 s.
Results are presented for the first 3 virtual wave gauges located along the flat part of the channel
(Table 3.11). A very good agreement was found between the numerical results, by applying the
Airy linear wave theory, and the experimental measurements for the 3 wave gauges used (Figure
3.24).
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Figure 3.24: Wave propagation over a flat channel: numerical simulation results (—) and experi-
mental data (- -) recorded at wave gauges 1, 2 and 3.
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3.5.5.2 With piston wave-maker generation

In this section, the waves are generated within a wave flume by means of a piston wave-maker.
Flap wave-maker generation option also exists but it will not be described here. A file with the
wave-maker trajectory can be created by means of a Python (van Rossum 1995) script included
in the package, which generates the displacement of the paddle according to the linear theory.
Another method is to provide the wave-maker time series displacement, determined according
to the theories described in Goring (1978), Goring and Raichlen (1980) and Lima et al. (2019),
considering the generation of solitary and N-waves and taking the expressions deducted for the
piston trajectory for each type of wave. The time series file structure has to be written according
to the file format expected by the code.

Case 1: Waves generated in a wave flume In this case study a Boussinesq like solitary wave
(Lee et al. 1982) is generated at x = 0 m, with wave height H = 0.10 m and the wave period T = 3.0
s, for water depth h = 0.4 m, and absorbed at x = 10 m. A 2D model is used and the computational
domain is set into 3 blocks specified inside blockMeshDict. The 2DV channel has a width of one
element, length of 10 m and height of 0.7 m. The cell resolutions are ∆x = 0.02 m, ∆y = 0.02
m and ∆z = 0.01 m. The total run time is 60 s and the ∆t = 0.001 s. In this case study the
wave parameters and theory are specified inside olaFlow’s waveDict file. The objective of this
case study was to show the generation ability of the olaFlow code, which include the Boussinesq
theory, among others, as used in this case.

The wave propagation is shown in Figure 3.25 for several time instants. The variable shown in
the figure, fraction of water α, indicates that the cell is occupied with water when its value is α =
1; when α = 0, the cell is filled with air. We observe the wave propagating from the inlet boundary
to the right side of the domain, to the outlet. The feature of introducing an external time series into
the code has shown a good performance.
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Figure 3.25: Wave propagation along a flat flume, using the wave-maker option. Scales in metres.
H = 0.01 m, T = 3.0 s, h = 0.4 m. Simulation time steps (from top to bottom): 0.75 s, 1.25 s, 1.75
s, 2.00 s, 2.25 s, 2.50 s, 3.00 s, 3.40 s, 3.70 s.

Case 2: Solitary and N-waves generated at the wave basin in FEUP We now compare the re-
sults from the olaFlow code, for each virtual wave gauge, with the preliminary laboratory test mea-
surements performed at the wave basin in FEUP. The objetive of this case study was to compare
the laboratory measurements with the results from the olaFlow simulations, where the boundary
condition at x = 0 m corresponds to the free surface elevation and velocity of the theoretical profile
used to generate the solitary waves and the N-waves in the laboratory. In this case study the wave
parameters are specified by means of the wavemakerMovementDict in olaFlow. No turbulence is
used in this simulation. A 2D model is used and the computational domain is set into 1 block,
specified inside blockMeshDict. The 2DV channel has a width of one element, length of 16.25
m, width of 1.5 m and height of 0.7 m. The cell resolutions are ∆x = 0.0325 m, ∆y = 1.5 m and
∆z = 0.01 m. The total run time is 10 s and the ∆t = 0.05 s. The wave gauge setting is shown in
Figure 3.26 and the location of the wave gauges is detailed in Table 3.12.

In Figures 3.27 and 3.28, we show the comparison between the numerical results and the
experimental measurements for the solitary wave C6, with wave height H = 0.155 m and T =
1.31 s, for water depth h = 0.26 m. In Figures 3.29 and 3.30 experimental and olaFlow numerical
results are shown for C13, a leading depression N-wave (LDN-wave), with wave height H = 0.085
m and T = 6.05 s, for water depth h = 0.26 m.

A good match is generally found when comparing the observed experimental wave profile
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Figure 3.26: Wave basin and wave gauges positioning.

Table 3.12: Location of the wave gauges.

wave gauge x (m) y (m)
wg1 1.32 0.75
wg6 1.32 11.25
wg4 4.16 1.10
wg5 6.16 0.75
wg7 10.16 1.10
wg8 12.16 0.75
wg3 14.16 0.75

with the olaFlow wave profile for the same wave gauge, for both solitary wave C6 and leading
depression N-wave C13.

Nevertheless, for the solitary wave case, C6, at wave gauge 1 the numerical wave, with an
amplitude close to 17 cm (larger than the intended one), is larger than the experimental wave,
which has an amplitude close to 13 cm (lower than the intended one). As the wave propagates
along the canal, the amplitude of the numerical wave decreases and its shape becomes close to the
shape of the experimental wave (cf. 3.27c at station 5). After this point, the experimental wave
is slightly larger than the numerical one, while this last one seems to be producing a dispersive
tail. This might result from the non-existence of an equilibrium between the convective and the
dispersive effects for the initial numerical profile. Another reason might be related to the fact
that there is not enough resolution in the z-direction, which might have provoked some excessive
energy dissipation. Until the end of the experiment, the experimental wave keeps a profile close
to the SW profile, specifically of a 0.12 m-high SW with period close to the intended period, T =
1.31 s.

On the other hand, the behaviour for the N-wave case, C13, is very different. At gauge 1,
the experimental wave has a N-wave profile, but its wave height is close to 0.06 m, thus smaller
than the expected wave height of 0.085 m. Its period is close to the desired period of 6.05 s. At
the same gauge, the numerical wave has the profile of a N-wave with a wave height close to the
intended one, but with a period around 2 – 4 s, thus much shorter than the target period of 6.05
s. As the wave propagates down the canal, the experimental wave tends to the target wave profile,
although with a dispersive tail, while the numerical wave tends to a solitary wave profile with the
expected wave height, shorter period, and a dispersive tail.

For the olaFlow case studies of Beji and Battjes (1993), Case A, and the case studies of solitary
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Table 3.13: Error metrics for olaFlow simulations.

r Bias RMSE
Case (—) (m) (m)

Beji and Battjes Case A 0.996 0.0025 0.0026
Case 2 SW (lab FEUP) 0.985 -0.0044 0.0097
Case 2 NW (lab FEUP) 0.465 -0.0011 0.0179

and N-waves generated at the wave basin in FEUP, the computed metrics are shown in Table 3.13.
The analysis of the error metrics shows a very high linear correlation, with r greater than 0.95
and close to 1.0 respectively for the Beji and Battjes case study and for the solitary wave case
simulated at the Laboratory of Hydraulics at FEUP. For the N-wave, r is close to 0.50, showing
low linear correlation. For the waves generated at the Laboratory of Hydraulics at FEUP, the bias
is negative. For the Beji and Battjes case, the bias is positive and the root-mean-square error is
about 0.26 cm. For the experimental solitary wave, the RMSE is about 1 cm and for the N-wave is
around 2 cm. The difference in the results obtained for the solitary waves and N-waves are most
probably related to the fact that the waves generated in the laboratory were very high. As pointed
out by Goring (1978), and later by Grilli (1997), a first-order long wave generation method for
waves of permanent form is accurate for a wave height-to-depth ratio below 20%.
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Figure 3.27: Numerical wave profile (—) and experimental wave profiles (- -) for SW case 6.
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Figure 3.28: Numerical wave profile (—) and experimental wave profiles (- -) for SW case 6.
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Figure 3.29: Numerical wave profile (—) and experimental wave profiles (- -) for LDN-wave case
13.
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Figure 3.30: Numerical wave profile (—) and experimental wave profiles (- -) for LDN-wave case
13.
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Wave propagation in a wave tank This case study is generally similar to the previous one,
except that now 10 wave paddles are used to generate the waves in the numerical wave tank. A
multi-piston wave-maker system is available, which makes it possible to generate oblique waves.
The objective of this case study was to perform a 3D simulation in a tank with olaFlow, using its
wavemaker facility, and to show the capabilities of the code and how it is necessary to run such a
simple example as this one in a cluster, in parallel. In fact, this benchmark runs in parallel using
the olaDyMFlow solver. The wave is generated at x = 0 m, with wave height H = 0.01 m and
wave period T = 3.0 s, for a water depth h = 0.4 m. A wavemakerMovement.txt file is generated
through the wavemakerMovementDict. No turbulence is included. Waves are absorbed on the
outlet patch.

This case study was based on the olaFlow wavemakerTank example. A 3D model is used and
the computational domain is set into 2 blocks specified inside blockMeshDict. The 3D numerical
channel has length and width of 10 m and height of 0.7 m. The cell resolutions are ∆x = 0.05 m,
∆y = 0.05 m and ∆z = 0.02 m. The total run time is 30 s and the ∆t = 0.05 s.

Table 3.14: Location of the virtual wave gauges along a wave tank.

wave gauge x (m) y (m)
1 0.50 2.50
2 1.00 2.50
3 1.75 2.50
4 2.75 2.50
5 3.50 2.50

Several snapshots of the wave propagation over the tank are shown in Figure 3.31. The wave
profiles at several virtual wave gauges, placed along the wave tank (locations in Table 3.14), are
represented in Figures 3.32 and 3.33. A 3D perspective of the wave propagation over the wave
tank is represented in Figure 3.34.
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Figure 3.31: Wave propagation over the tank, using the wave-maker option. Scales in metres. H
= 0.01 m, T = 3.0 s, h = 0.4 m . Simulation time steps (from top to bottom): 0.15 s, 0.70 s, 1.25 s,
1.50 s, 1.65 s, 1.85 s, 2.40 s, 2.70 s, 2.90 s, 3.10 s, 3.60 s, 4.00 s and 4.50 s.
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Figure 3.32: Wave profiles at virtual wave gauges 1 to 3.
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Figure 3.33: Wave profiles at virtual wave gauges 4 and 5.
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(a)

(b)

Figure 3.34: (a) Wave tank dimensions. Scales in metres. (b) 3D view of the wave propagation
over the tank, using the wave-maker option. H = 0.01 m, T = 3.0 s, h = 0.4 m.
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Chapter 4

Experiments of Solitary and N-waves

4.1 Introduction

When no field data is available or when a more conceptual analysis is envisaged, it is a com-
mon approach to model tsunamis as solitary waves, both in experimental and numerical studies
(Synolakis 1987, Liu et al. 1995). However, Madsen et al. (2008) stated that in general tsunamis
do not generate solitary-like waves (SW) in the ocean or on the continental shelf. Pelinovsky
and Mazova (1992) presented a study on the run-up of leading depression N-waves, that at the
time they called pulse perturbations. The concept of N-wave (NW) was formalized afterwards by
Tadepalli and Synolakis (1994). The authors suggested that N-type waves, previously discussed
in gas dynamics (Whitham, 1974), are more adequate to describe the main tsunami wave, which
is often observed with a leading depression (where the wave crest is preceded by a trough). In
Tadepalli and Synolakis (1994), the authors proposed three classes of N-waves to study the run-up
of nearshore tsunamis.

The study of the laboratory generation of long waves traces back to the 19th century (Scott
Russell, 1845) and several methods have been proposed. From the general approach of apply-
ing moving partitions to a certain amount of water (Havelock, 1929; Kennard, 1949), Biésel and
Suquet (1951) developed the linear wave-maker theory, later validated through laboratory experi-
ments by Ursell et al. (1960). The horizontal movement of a water volume by means of a vertical
plate, powered up by a piston-type wave-maker, is by far the most common method applied (see
for instance Hughes 1993).

The most used method for the generation of solitary waves in a laboratory is based on the
first-order wave-maker theory of Goring (1978) and Goring and Raichlen (1980) for a piston-type
wave-maker. This method is limited to waves with a low height-to-depth ratio. Synolakis (1990)
pointed out a flaw in Goring’s theoretical considerations: the change of variable from (x, t) to θ

performed during the generation phase, since at that stage the wave is still evolving and cannot
be considered of permanent form. Thus, Synolakis (1990) presented a wave-maker theory of
finite amplitude long wave generation by means of a piston wave-maker, achieving a very detailed
description of single waves at arbitrary lengths from the wave-maker. His method was used to
generate solitary waves with a piston wave-maker and to study the two- and three-dimensional
long wave run-up in a wave canal and in a wave tank (Briggs et al., 1995b).

Goring’s procedure is based on the Boussinesq first-order solitary wave solution. Following a
similar reasoning, Katell and Eric (2002) presented a novel piston wave-maker theory, based on
Rayleigh’s solitary wave solution. They analysed the evolution of the wave during the genera-
tion stage and attested an increased accuracy and a more stable wave form. Jensen et al. (2003)
extended Goring’s method for higher amplitude solitary waves, using a fully nonlinear and fully
dispersive wave solution (Tanaka, 1986). These authors studied the kinematics of strongly nonlin-
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ear waves and related run-up on a steep beach, with special focus on bore run-up. Later, the same
procedure was used for an experimental and numerical study on on-shore breaking solitary waves
(Jensen et al., 2005).

Due to all this research work, solitary waves generated by piston wave-makers are now quite
accurate in terms of wave characteristics and can be generated at short distances from the wave-
maker. Such waves have been extensively used both in experimental and in numerical research
work (Baldock et al., 2009; Chang et al., 2009; Hsu et al., 2012; Oliveira et al., 2017). In fact, it
became the preferred generation method, due to its wide diffusion among the scientific community.

In this work, the generation of solitary waves and N-waves in laboratory by means a piston
wave-maker mechanism is performed. The novel theoretical first-order formulation for the gener-
ation of N-waves in laboratory, by means of a piston-type wave-maker, is presented and detailed in
Lima et al. (2019) presented and included here as appendix B.1. The formulations for the genera-
tion of N-waves, presented next, are adapted from the theory developed by Goring (1978), for the
wave generation of long waves propagating with constant form. No report or scientific publication
of laboratory experiments of N-waves with characteristics similar to those described in Lima et al.
(2019) were found in the literature. It is expected that this research work might contribute to a
better understanding and definition of the theoretical principles behind the generation of N-waves
in laboratory. Nevertheless, this formulation suffers of the same shortcoming of the original work
of Goring, namely the limitation to waves to low height-to-depth ratio.

In this chapter, several preliminary laboratory tests, adopted definitions and advanced labora-
tory experiments are described. The laboratory experiments were performed at the Laboratory of
Hydraulics of the Faculty of Engineering of the University of Porto (LH-FEUP). 76 wave cases
of propagation of SW and NW along a canal with constant section, with and without a beach
assembled, are presented. The results and observations are presented, as well as the discussion
of the results of the overall laboratory work. Results from numerical simulations are presented
and compared with the laboratory measurements of both solitary waves and LDN-waves (leading
depression N-waves), in terms of free surface elevation, run-in and pressure. Additionaly, expres-
sions for the run-in, run-up and pressure of solitary waves and LDN-waves are proposed. Flaws
and improvements are pointed out and future work and applications are suggested.

4.2 Physical tests (first stage)

The physical experiments were carried out at the LH-FEUP wave basin, which is 28 m long and 12
m wide, with a maximum water depth of 1.20 m. The basin floor and walls are made of concrete
and the side walls have glass windows for flow observation.

The wave basin is equipped with a multi-element piston-type wave-maker by HR Wallingford
(HRW), which allows the generation of regular and irregular multi-directional waves. It is com-
posed by 16 piston paddles, which are moved horizontally by electrical motors. The maximum
piston stroke is 1.08 m. The trajectory of the paddle must be provided as a time series to the wave
generation system.

The instrumentation used throughout all the physical experiments is detailed in Table 4.1. Sev-
eral resistance wave gauges (wgi), long and short, were used to acquire surface elevation time se-
ries. Every day, before data acquisition, the instrumentation used is calibrated. The wave gauges
were connected to two wave probe monitors, which in turn were linked to a computer with a
HRW software program for data acquisition, conversion and analysis (HRW DAQ Suite version
1.24.0.0). The pressure transducers (pti) were connected to the MCC DAQ software and InstaCal
version 6.26 was used for the installation, calibration and testing of the pressure transducers. The
calibration line for the pressure transducers can be found by measuring the voltage at three differ-
ent water depth points. TracerDAQ version 2.2.0.0 was used for the monitoring, acquisition and
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recording of the pressure transducers measurements.

Table 4.1: Available instrumentation and data type acquired.

Device Type Measured variablea Calibration interval (cm)
wg1 long wave gauge surface elevation 6
wg3 long wave gauge surface elevation 4
wg4 long wave gauge surface elevation 6
wg5 long wave gauge surface elevation 6
wg6 long wave gauge surface elevation 6
wg7 long wave gauge surface elevation 6
wg8 long wave gauge surface elevation 6
wg11 long wave gauge surface elevation 4
wg12 short wave gauge surface elevation 4
wg13 short wave gauge surface elevation 4
wg14 short wave gauge surface elevation 4
pt0 pressure transducer pressure 4
pt1 pressure transducer pressure 4
pt2 pressure transducer pressure 4
pt3 pressure transducer pressure 4
cam1b camera video, run-in, run-up -

adirect and/or indirect measurement
bvariable position depending on recorded variable

4.2.1 The wave velocity formulation

At the very beginning of the laboratory studies, several wave velocity formulations for the gen-
eration of the solitary waves and N-waves profiles were considered, according to the water wave
theory (Dean and Dalrymple, 1991). For solitary waves, the wave velocity was assumed to be
given by Rayleigh’s solitary wave solution:

c =
�

g · (d+H) , (4.1)

where g is the gravity acceleration. The N-wave velocity, being unknown, was initially assumed
to be given by the linearised long wave solution:

c =
�

g · d . (4.2)

For the N-waves, we observed a mismatch between the analytical time series and the observed
time series at wave gauge 1 (Lima et al. 2019). We reasoned that the assumption that the N-waves
velocity is given by expression (4.2) might not be the most correct. We proposed a further thorough
investigation on the formulation of the wave velocity of the N-waves, aiming at a time-dependent
wave velocity formulation, as suggested by Malek-Mohammadi and Testik (2010). This type of
formulation might lead to an increased accuracy in the obtained N-wave profile.

In the meantime, we performed various solitary wave and N-wave propagation numerical stud-
ies for the second stage of the laboratory studies, adopting several different wave velocity formu-
lations for each type of generated wave (SW and NW). This numerical study is briefly described
in section 4.2.4.

For the solitary waves, the following wave formulations were considered:
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• the wave speed in shallow waters is given by the linear shallow water formulation. In these
conditions the wave celerity is

c =
�

g · d ; (4.3)

• the wave celerity for the Rayleigh’s solitary wave solution

c =
�

g · (d+H) ; (4.4)

• the wave celerity for the Korteweg-de Vries (KdV), Regularized Long Wave (RLW), Im-
proved Long Wave (ILW) solitary wave solutions (see for instance Dingemans 1997)

c =
�

1 +
1

2
· �
�

·
�

g · d , (4.5)

where � = H/d;

• Boussinesq approximate solution by Yates (1995)

c =
√
1 + � ·

�

g · d ; (4.6)

• Boussinesq exact solution by Teng and Wu (1992)

c =

�

6 · (1 + �)2

�2 · (3 + 2 · �)
·
�

(1 + �) · ln (1 + �)− �
�

·
�

g · d ; (4.7)

• Euler approximations

– Laitone (1960), 2nd order

c =

�

1 +
�

2
− 3

20
· �2

�

·
�

g · d ; (4.8)

– Grimshaw (1970), 3rd order

c =

�

1 +
�

2
− 3

20
· �2 +

3

56
· �3

�

·
�

g · d ; (4.9)

– Fenton (1972), 9th order

c =

�

1 + �− 0.05 · �2 − 0.0428571 · �3 − 0.0342857 · �4

−0.0315195 · �5 − 0.0292784 · �6 − 0.0268451 · �7

−0.0302634 · �8 − 0.0219347 · �9

�

·
�

g · d .

(4.10)

For the wave celerity of the N-waves, we considered the wave celerity expressions for cnoidal
waves:

• KdV, RLW, ILW equations (see for instance Dingemans 1997)

c =

�

1− 1

2
· �+

1

m
· � ·

�

1− 3

2

E(m)

K(m)

��

·
�

g · d, (4.11)

where � = H/d, m is the elliptic parameter, K(m) is the complete elliptic integral of the
first kind and E(m) is the complete elliptic integral of the second kind.
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• Boussinesq approximate solution

The KdV-RLW-ILW solitary wave velocity expression is a second-order approximation of
the Boussinesq’s Yate solitary wave expression:

√
1 + � = 1 +

1

2
· �+O(�2). (4.12)

There might exist a solution for a cnoidal Boussinesq wave with the same kind of result.

Let us assume that

ccnB =

�

�

�

�1− �+
2

m
· � ·

�

1− 3

2

E(m)

K(m)

�

·
�

g.d . (4.13)

It can be shown that

�

�

�

�1− �+
2

m
· � ·

�

1− 3

2

E(m)

K(m)

�

= 1− 1

2
·�+

1

m
·� ·

�

1− 3

2
·
E(m)

K(m)

�

+O(�2). (4.14)

This equation was considered as a possible expression for the cnoidal wave velocity.

For the wave celerity of the N-waves, we also considered expression (4.3) and the following
expression:

c =
�

g · (d+ a+), (4.15)

where a+ is the amplitude of the wave crest of the N-wave.
All these wave formulations expressions were considered as possible alternatives to be adopted

for the following physical tests. The wave formulations were tested numerically (section 4.2.4)
using the SWASH code (Zijlema et al. 2011) (Appendix B.2). The objective of this analysis was to
determine if—for our wave generating model—any of these formulations would lead to a constant
shaped wave, i.e. a wave that would propagate keeping its shape. Several authors do not mention
the wave celerity formulations adopted in their physical studies (Baldock et al. 2009; Rossetto
et al. 2011).

4.2.2 Physical tests 1

The tests described in Lima et al. (2019) (Appendix B.1) were part of the first physical tests, per-
formed to study the generation of solitary waves and N-type waves. A set of five positive solitary
waves and six leading depression N-waves (LDN)—with ratio a−/a+ = 0.5—were generated for
a water depth of 26 cm. A 1.50 m wide canal was set-up close to the right-hand side wall of the
tank. Six wave gauges were placed along the canal and an additional wave gauge was installed
for control purposes (Table 2 and Figure 6 in Lima et al. 2019). The experimental free surface
elevations of the generated wave profiles were recorded at the installed wave gauges. The charac-
teristics of the five generated solitary waves are detailed in Table 4.2. The piston trajectories for
the generation of the solitary waves are plotted in Figure 4.1. For the tested N-wave cases, please
refer to Table 3 from Lima et al. (2019). Wave parameters of the generated N-waves are presented
in Table 4.3, where δ is the eccentricity parameter, λ is the apparent wavelength and ε is the scale
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Table 4.2: Wave conditions and wave-maker parameters for the 5 generated solitary waves.

d H λ T S τ � σ St
Wave (m) (m) (m) (s) (m) (s) (—) (—) (—)

C6 0.26 0.155 2.640 1.31 0.50 2.87 0.60 0.62 1.56
C7 0.26 0.070 5.845 3.25 0.50 6.78 0.27 0.28 3.45
C8 0.26 0.050 4.302 2.47 0.26 5.09 0.19 0.38 1.33
C9 0.26 0.125 2.721 1.40 0.42 3.02 0.48 0.60 1.33

C10 0.26 0.175 2.299 1.11 0.49 2.47 0.67 0.71 1.33

factor. Piston trajectories for the generation of the N-waves are plotted in Figure 7 in Lima et al.
(2019).

The generation and results for the 5 leading depression N-waves are described in Lima et al.
(2019). Please refer to Goring (1978) and Goring and Raichlen (1980) for the principles of the
generation of the solitary waves. Wave velocity formulations (4.4) and (4.3) were adopted for the
solitary waves and N-waves respectively.

Table 4.3: Parameters used to generate N-waves time series.

δ/λ ε

0.04254 -1.079

The analytical time series (TS) for solitary wave profiles and experimental wave profiles
recorded at wave gauge wg1 are represented in Figure 4.2, for C6, C7 and C8, and in Figure
4.3 for C9 and C10.

For the solitary waves tests, it was observed at wave gauge 1 (wg1, placed right after the
wave-maker) that the wave height was 17% less than the wave height of the expected wave height
provided to the wave-maker. This difference increased with increasing distance from the wave-
maker.

For the N-waves tests (Lima et al. 2019), we observed a mismatch between the generated
N-wave profile and the provided N-wave time series at wg1. In the following wave gauges, the
wave started assuming the shape of a solitary wave, with an increasing wave crest amplitude and
a decreasing wave trough amplitude. In the beginning, we hypothesized that the mismatch could
be due to the fact that: (1) the equation used to described the N-wave profile was not a good
solution for this wave; (2) the bottom friction effects were relevant for this water depth. At a later
stage, we proposed that the possible explanations for the obtained results might be due to the fact
that the used wave celerity was not correct. We also considered that the wave amplitude in our
experiments was too high, meeting Goring’s observations for the solitary waves, that stated that
the relation between the amplitude and the water depth should not exceed 0.1.
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Figure 4.1: Piston trajectories for the generation of the solitary waves.
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(a) C6

(b) C7

(c) C8

Figure 4.2: Analytical TS for solitary wave profiles and experimental wave profiles recorded at
wave gauge wg1.
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(a) C9

(b) C10

Figure 4.3: Analytical TS for solitary wave profiles and experimental wave profiles recorded at
wave gauge wg1.

83



4.2.3 Physical tests 2

A second set of tests was performed in a canal 75 cm wide and 10 m long, for 25 cm water depth.
Four gauges were placed within the first 4 m of canal length (Table 4.4) and the free surface
elevation was retrieved for each wave gauge. Five solitary waves with wave heights between 6
and 15.5 cm and four N-waves with wave heights between 6 and 12 cm were generated. The
characteristics of the generated waves are detailed in Table 4.5.

Table 4.4: Wave gauge positions for physical tests 2.

wave gauges (wg) x (m) y (m)
4 1.030 0.375
5 1.680 0.375
7 2.835 0.375
8 3.980 0.375

Table 4.5: Wave conditions and wave-maker parameters for the generated solitary and N-waves.

d H λ T S τ � σ St
Wave (m) (m) (m) (s) (m) (s) (—) (—) (—)

C6 0.25 0.155 2.534 1.27 0.50 2.794 0.62 0.62 1.613
C201 0.25 0.060 6.545 3.75 0.50 7.796 0.24 0.24 4.167
C202 0.25 0.090 4.363 2.39 0.50 5.054 0.36 0.36 2.778
C203 0.25 0.120 3.272 1.63 0.50 3.700 0.48 0.48 2.083
C204 0.25 0.150 2.618 1.25 0.50 2.897 0.60 0.60 1.667
C13 0.25 0.085 9.628 6.03 0.50 6.340 0.34 0.16 12.772

C301 0.25 0.060 11.223 6.62 0.50 9.128 0.24 0.14 12.253
C302 0.25 0.090 7.482 4.26 0.50 5.969 0.36 0.21 8.168
C303 0.25 0.120 5.612 3.09 0.50 4.401 0.48 0.28 6.126

Table 4.6: Parameters used to generate the N-waves time series.

δ/λ ε

0.05629 -1.05245

The parameters used to generate the N-waves are listed in Table 4.6, where δ is the eccentricity
parameter, λ is the apparent wavelength and ε is the scale factor.

Analyzing the results obtained for both solitary and N-wave tests (which are not plotted in the
thesis), we observed that the wave height at wg1 was lower and differed more than 25% from the
original wave height intended. The difference increased with the increase of the wg distance from
the wave-maker. This was frequent for most of the wave tests. We concluded that this could be a
consequence of the theoretical formulation found for the generation of the N-waves using a piston-
type wavemaker (Lima et al. 2019), which is limited by the fact that, as pointed out by Synolakis
(1990), during the generation phase the wave is not of permanent form, as it is still evolving. Also,
Goring’s method is limited to waves with a low height-to-depth ratio. Additionally, the canal width
used in the tests was too small for the aimed wave conditions, with contributions of the frictional
effects of the walls, that became dominant in the fluid flow, therefore contaminating the retrieved
measurements.
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4.2.4 Computational tests using SWASH

To overcome the problems and mismatches detected in the physical tests of the generation of soli-
tary waves and leading depression N-waves, mainly in terms of wave heights and wave shape
generated, several computational tests using different wave velocity formulations were performed,
separately for both solitary and N-waves respectively. The SWASH code (Appendix B.2) by Zi-
jlema et al. (2011) was used for this purpose. Physical tests 1 were simulated with SWASH for two
wave cases: solitary wave C6 and N-wave C13 (Lima et al. 2019). The generated solitary waves
were positive shaped. The N-waves generated were leading depression (LDN) type and several
a−/a+ ratios were tried with SWASH. The best results were obtained with the ratio a−/a+ = 0.4,
which means that H = 1.4× a+, which was adopted for the N-waves. A numerical domain with
60 m length, grid size of 0.1 m and time step of 0.01 s were used. The velocity time series de-
termined from equation (13) from Lima et al. (2019) was used as input condition to the code. It
was determined in accordance with the wave type tested and velocity formulations selected. The
Sommerfeld or radiation condition was imposed at the eastern boundary of the domain.

Several computational tests were performed with SWASH, using different wave velocity for-
mulations, separately for both solitary and N-waves respectively. For the generation of the solitary
waves, numerical simulations applying respectively the wave velocity formulations (4.6), (4.7)
and (4.10) were performed. For the propagation of N-waves, computation of wave profiles using
wave velocity formulations (4.3), (4.11) and (4.15), proposed in the literature for solitary, cnoidal
and N-waves, were analysed.

As a result from this wave velocity formulation study, we found that the computational results
which best fitted the analytical profiles were achieved applying wave velocity expression (4.6) for
the solitary waves velocity (Figure 4.4) and expression (4.15) for the N-waves (Figure 4.5). We
found these formulations to better preserve the simulated wave shape during the simulation, when
comparing with tests performed using the other mentioned wave velocity formulations.
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Figure 4.4: Analytical TS (- -) and computational time series (—) at the wave-maker for solitary
wave C6, applying wave velocity formulation (a) expression (4.6), (b) expression (4.7) and (c)
expression (4.10).
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Figure 4.5: Analytical TS (- -) and computational time series (—) at the wave-maker for N-wave
C13, applying wave velocity formulation (a) expression (4.11), (b) expression (4.13) and (c) ex-
pression (4.15).
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4.3 Physical tests (second stage)

Propagation and transformation of solitary and N-waves

4.3.1 Physical experiments without canal (Set A)

For the experiments with constant water depths of 25 and 50 cm, the 16 paddles of the wave gener-
ation system were activated. Let us define this set of experiments without canal and without beach
as set A. The experiments with 25 cm water depth are refered as subset A25 and the experiments
with 50 cm water depth are refered as subset A50.

A set of four wave gauges (Table 4.7) were installed on tripods and fixed on the basin floor
(Figures 4.6, 4.7 and 4.8). We placed three wave gauges 1.30 m away from the wave-maker, 5.25
m apart from each other. A fourth wave gauge wg6 was placed behind wg1/wg5, distanced 1.20
m from it, for control purposes.

The wave cases listed in Table 4.10 were generated for 25 and 50 cm water depths. The
measurements time series were acquired and recorded by the HRW software program. Data sets
retrieved for wave gauge 5 presented variable quality. The connection of this wave gauge to the
board was found to acquire data with a rather large amount of noise, which affected the overall
quality of some data sets measurements. Nevertheless, the data sets for wave gauge 5 are presented
in this study.

Table 4.7: Location of the instrumentation within the wave basin, for the set A experiments.

Device1 x (m) y (m)
wg1/wg52 1.30 0.75

wg3 1.30 11.25
wg4 1.30 6.00
wg6 2.50 0.75

1wg: wave gauge
2Problems were detected in wg5, which was later replaced by wg1, at the exact same location.

Figure 4.6: Wave basin at the LH-FEUP. Setting of the wave gauges used in the set A experiments.
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Figure 4.7: Scheme of the wave basin and wave gauges positioning (+: wave gauges) for the set A
experiments.

Figure 4.8: Scheme of the LH-FEUP wave basin, 28 m long (working length), 12 m wide and with
a maximum water depth of 1.20 m.

4.3.2 Plane slope physical experiments (with beach) (Set B)

A canal with 1.5 m width was built inside the wave basin, limited on one side by a perspex wall
along the tank and by its side wall (Figures 4.9 and 4.10). A beach composed by two slopes with
1:15 and 1:30 respectively was assembled along the canal (Figure 4.10). This beach is composed
by one flat 5 m long section, starting right after the wave-maker, followed by a 1:15 plane slope
(angle β1 = 3.81°) with 3.75 m of length and a second plane slope (angle β2 = 1.91°) with 7.5 m
of length and 1:30 plane slope. For the experiments inside the canal, only 2 wave-maker paddles
were activated. The limiting plexiglass wall was extended up to the paddles. Let us define this set
of experiments with canal and with beach as set B. The experiments with 25 cm water depth are
refered as subset B25 and the experiments with 50 cm water depth are refered as subset B50.

Several sets of experiments (76) were performed for the two water depth levels of 25 cm
(Figures 4.11 and 4.12, Table 4.8) and 50 cm (Figures 4.13 and 4.14, Table 4.9). The wave
cases, detailed in Table 4.10, were generated and the time series measurements were acquired and
recorded.

For the 50 cm water depth experiments, an obstacle was installed at the end of the second
slope, with dimensions 1.5 m wide, 0.5 m high and 8 mm thick.
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Figure 4.9: 25 cm and 50 cm water depth levels used in set B experiments, corresponding to the
end of each slope.

Figure 4.10: Scheme of the beach profile assembled inside the wave basin, in a canal 1.5 m wide,
composed by a flat 5 m section and 2 slopes with slopes 1:15 and 1:30 respectively.

Figure 4.11: Scheme of the wave gauges positioning inside the 1.5 m wide canal, for the subset
B25 experiments (+: wave gauges).

Table 4.8: Location of the instrumentation used, positioned along the assembled beach (subset
B25 experiments).

Device x (m) y (m)
wg1 1.30 0.75
wg5 2.60 0.75
wg4 4.30 0.75
wg13 5.37 0.75
wg12 6.00 0.75
wg14 6.24 0.75
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Figure 4.12: Wave gauges setting for the subset B25 experiments.

Figure 4.13: Scheme of the instrumentation positioning inside the 1.5 m width canal, for the subset
B50 experiments (+: wave gauges; ∆: pressure transducers).
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Table 4.9: Location of the instrumentation used, positioned along the assembled beach (subset
B50 experiments).

Device 1 x (m) y (m) z2 (cm) ∆z3 (cm)
wg1 1.30 0.75 14.00 —
wg5 2.50 0.75 14.00 —
wg4 4.30 0.75 11.00 —
wg6 5.10 0.75 — 17.01
wg7 5.95 0.75 — 14.06
wg8 7.20 0.75 — 13.15
wg3 9.90 0.75 — 38.83
wg11 10.95 0.75 — 35.83
wg12 11.30 0.75 — 32.33
wg13 11.60 0.75 — 33.33
wg14 11.95 0.75 — 33.33
pt0 16.25 0.75 — 52.00
pt1 16.25 0.75 — 55.00
pt2 16.25 0.75 — 58.00
pt3 16.25 0.75 — 61.00

1wg: wave gauge; pt: pressure transducer.
2Measured from the wave basin floor to the zero calibration position of the wg.
3Measured from the beginning of the first slope and along the slope to the zero calibration position, in the case of

the wg, and to the pressure transducer position, in the case of the pt.

(a) (b)

Figure 4.14: Subset B50 experiments: (a) Wave gauges setting along the canal. (b) Pressure
transducers in the rectangular obstacle. From bottom to top: pt0, pt1, pt2, pt3.

For set B experiments, a maximum of eight long wave gauges were installed on fixed arms
and mounted on the side wall of the wave basin. Three short wave gauges were installed on small
tripods, to measure data in reduced water depth (Figures 4.13 and 4.14). During the experiments,
it was visually observed that the short wave gauges were slightly moved away from their original
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position, specifically for waves with wave heights equal or larger than 15 cm. We were aware that
this aspect could affect the acquired measurements; to account for spurious effects in the wave
gauges measurements, wave gauges 11 and 13 were installed. Experiments for which run-in, Rin,
and run-up, Rup, measurements were considered to be relevant were video recorded, with a Canon
EOS 600D camera. Nevertheless, due to the lack of disk space, only a maximum of two trials were
recorded for each wave case experiment.

Taking advantage of a measuring system appended to the bottom surfaces of the slopes (Figure
4.14), we used the camera to record the run-in distances reached by each generated wave. These
measurements were taken for the experiments performed for a water depth of 25 cm (subset B25).

For subset B50 experiments, we used four HRW water gauge pressure transducers, with 0
to 2 m (0 to 20kPa) operating range, attached to an obstacle located at the end of the beach (cf.
Figures 4.13 and 4.14, with locations in Table 4.9). The goal was to measure the pressure impact
of the generated waves on the obstacle. The pressure transducers were connected to a unit linked
to a computer with the software program for data acquisition. The pressure measurements were
visualized live, by means of a continuous plot. As the experiments occurred, the measurements
were treated and registered by the Tracer DAQ software. Additionally, a camera was installed and
mounted on the side walls, with variable positioning, to record the run-up of the generated waves
on the obstacle.

4.3.3 Definition of wave conditions

We defined a set of solitary waves and N-waves—specifically leading depression N-waves—, to
be generated in the laboratory. The wave heights varied between 6 and 24 cm, for water depths
of 25 cm and 50 cm and for piston strokes between 0.25 m and 1.00 m. Wave characteristics and
wave-maker parameters are presented in Table 4.10. For each wave case and several bathymet-
ric settings defined (Tables 4.7, 4.8 and 4.9) three or more trials were performed and data was
acquired and recorded. To guarantee initial still water conditions—which was checked through
visual observation—, the trials were separated by 10 to 15 min, depending on the water depths
and/or generated wave heights.

The generated solitary waves were positive shaped. The generated N-waves were leading
depression (LDN) type, with ratio a−/a+ = 0.4, which means that H = 1.4× a+ (section 4.2.4).
This ratio was found to present the best fitting results both in the preliminary experimental tests
and the numerical tests.

For the solitary wave velocity formulation, we used the definition by Yates (1995), expression
(4.6). We assumed the N-wave velocity to be given by expression (4.15). In the previous expres-
sions g, which is the local acceleration due to gravity, was considered to be equal to 9.803 m/s2

(calculated locally).
We represent the time series of the piston wave-maker trajectories for waves C6 and C13 in

Figure 4.15, for waves C203 in Figure 4.16 and for waves C303 in Figure 4.17.

Table 4.10: Wave conditions used in the experiments and wave-maker control parameters.

H d c λ T S � σ St
Wave Type (m) (m) (m/s) (m) (s) (m) (–) (–) (–)
C6a SW* 0.155 0.25 1.99 2.534 1.27 0.50 0.62 0.62 1.61
C6b SW 0.155 0.50 2.53 5.067 2.00 0.50 0.31 0.62 0.81
C201a SW 0.060 0.25 1.74 6.545 3.75 0.50 0.24 0.24 4.17
C201b SW 0.060 0.25 1.74 9.817 5.63 0.75 0.24 0.16 9.38

*solitary wave
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C201c SW 0.060 0.25 1.74 13.09 7.51 1.00 0.24 0.12 16.67
C201d SW 0.060 0.50 2.34 13.09 5.59 0.50 0.12 0.24 2.08
C201e SW 0.060 0.50 2.34 19.64 8.38 0.75 0.12 0.16 4.69
C201f SW 0.060 0.50 2.34 26.18 11.17 1.00 0.12 0.12 8.33
C202a SW 0.090 0.25 1.83 4.363 2.39 0.50 0.36 0.36 2.78
C202b SW 0.090 0.25 1.83 6.545 3.59 0.75 0.36 0.24 6.25
C202c SW 0.090 0.25 1.83 8.727 4.78 1.00 0.36 0.18 11.11
C202d SW 0.090 0.50 2.40 8.727 3.63 0.50 0.18 0.36 1.39
C202e SW 0.090 0.50 2.40 13.090 5.44 0.75 0.18 0.24 3.13
C202f SW 0.090 0.50 2.40 17.453 7.26 1.00 0.18 0.18 5.56
C203a SW 0.120 0.25 1.90 3.272 1.72 0.50 0.48 0.48 2.08
C203b SW 0.120 0.25 1.90 4.909 2.58 0.75 0.48 0.32 4.69
C203c SW 0.120 0.25 1.90 6.545 3.44 1.00 0.48 0.24 8.33
C203d SW 0.120 0.50 2.47 6.545 2.65 0.50 0.24 0.48 1.04
C203e SW 0.120 0.50 2.47 9.817 3.98 0.75 0.24 0.32 2.34
C203f SW 0.120 0.50 2.47 13.090 5.31 1.00 0.24 0.24 4.17
C204a SW 0.150 0.25 1.98 3.927 1.98 0.75 0.60 0.40 3.75
C204b SW 0.150 0.25 1.98 5.236 2.64 1.00 0.60 0.30 6.67
C204c SW 0.150 0.50 2.52 7.854 3.11 0.75 0.30 0.40 1.88
C204d SW 0.150 0.50 2.52 10.472 4.15 1.00 0.30 0.40 3.33
C205a SW 0.180 0.25 2.05 3.272 1.59 0.75 0.72 0.48 3.13
C205b SW 0.180 0.25 2.05 4.363 2.13 1.00 0.72 0.36 5.56
C205c SW 0.180 0.50 2.58 6.545 2.54 0.75 0.36 0.48 1.56
C205d SW 0.180 0.50 2.58 8.727 3.38 1.00 0.36 0.36 2.78
C206a SW 0.210 0.25 2.12 2.805 1.32 0.75 0.84 0.56 2.68
C206b SW 0.210 0.25 2.12 3.740 1.76 1.00 0.84 0.42 4.76
C206c SW 0.210 0.50 2.64 5.610 2.13 0.75 0.42 0.56 1.34
C206d SW 0.210 0.50 2.64 7.480 2.84 1.00 0.42 0.56 2.38
C207a SW 0.240 0.25 2.19 2.454 1.12 0.75 0.96 0.64 2.34
C207b SW 0.240 0.25 2.19 3.272 1.49 1.00 0.96 0.48 4.17
C207c SW 0.240 0.50 2.69 4.909 1.82 0.75 0.48 0.64 1.17
C207d SW 0.240 0.50 2.69 6.545 2.43 1.00 0.48 0.48 2.08
C13a NW† 0.085 0.25 1.81 7.923 4.37 0.50 0.34 0.20 8.65
C13b NW 0.085 0.50 2.34 15.846 6.76 0.50 0.17 0.20 4.33
C301a NW 0.060 0.25 1.74 5.612 3.22 0.25 0.24 0.28 3.06
C301b NW 0.060 0.25 1.74 11.224 6.44 0.50 0.24 0.14 12.25
C301c NW 0.060 0.50 2.31 11.224 4.87 0.25 0.12 0.28 1.53
C301d NW 0.060 0.50 2.31 22.449 9.73 0.25 0.12 0.14 6.13
C302a NW 0.090 0.25 1.83 3.741 2.05 0.25 0.36 0.42 2.04
C302b NW 0.090 0.25 1.83 7.483 4.10 0.50 0.36 0.21 8.17
C302c NW 0.090 0.25 1.83 11.224 6.15 0.75 0.36 0.14 18.38
C302d NW 0.090 0.25 1.83 14.966 8.20 1.00 0.36 0.10 32.68
C302e NW 0.090 0.50 2.35 7.483 3.18 0.25 0.18 0.42 1.02
C302f NW 0.090 0.50 2.35 14.966 6.36 0.50 0.18 0.21 4.08
C302g NW 0.090 0.50 2.35 22.449 9.54 0.75 0.18 0.14 9.19
C302h NW 0.090 0.50 2.35 29.932 12.73 1.00 0.18 0.10 16.339
C303a NW 0.120 0.25 1.90 5.612 2.95 0.50 0.48 0.28 6.13
C303b NW 0.120 0.25 1.90 8.418 4.42 0.75 0.48 0.19 13.79

†N-wave
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C303c NW 0.120 0.25 1.90 11.224 5.89 1.00 0.48 0.14 24.51
C303d NW 0.120 0.50 2.40 11.224 4.68 0.50 0.24 0.28 3.06
C303e NW 0.120 0.50 2.40 16.836 7.03 0.75 0.24 0.19 6.893
C303f NW 0.120 0.50 2.40 22.449 9.37 1.00 0.24 0.14 12.25
C304a NW 0.150 0.25 1.98 4.490 2.27 0.50 0.60 0.35 4.90
C304b NW 0.150 0.25 1.98 6.735 3.40 0.75 0.60 0.23 11.03
C304c NW 0.150 0.25 1.98 8.979 4.53 1.00 0.60 0.17 19.61
C304d NW 0.150 0.50 2.44 8.979 3.68 0.50 0.30 0.35 2.45
C304e NW 0.150 0.50 2.44 13.469 5.52 0.75 0.30 0.23 5.51
C304f NW 0.150 0.50 2.44 17.959 7.36 1.00 0.30 0.17 9.80
C305a NW 0.180 0.25 2.05 3.741 1.82 0.50 0.72 0.42 4.08
C305b NW 0.180 0.25 2.05 5.612 2.73 0.75 0.72 0.28 9.19
C305c NW 0.180 0.25 2.05 7.483 3.64 1.00 0.72 0.21 16.34
C305d NW 0.180 0.50 2.48 7.483 3.01 0.50 0.36 0.42 2.04
C305e NW 0.180 0.50 2.48 11.224 4.52 0.75 0.36 0.28 4.60
C305f NW 0.180 0.50 2.48 14.966 6.03 1.00 0.36 0.21 8.17
C306a NW 0.210 0.25 2.12 4.810 2.27 0.75 0.84 0.33 7.88
C306b NW 0.210 0.25 2.12 6.414 3.02 1.00 0.84 0.24 14.01
C306c NW 0.210 0.50 2.52 9.621 3.81 0.75 0.42 0.33 3.94
C306d NW 0.210 0.50 2.52 12.828 5.08 1.00 0.42 0.24 7.00
C307a NW 0.240 0.25 2.19 4.209 1.92 0.75 0.96 0.37 6.89
C307b NW 0.240 0.25 2.19 5.612 2.56 1.00 0.96 0.28 12.25
C307c NW 0.240 0.50 2.57 8.418 3.28 0.75 0.48 0.37 3.45
C307d NW 0.240 0.50 2.57 11.224 4.38 1.00 0.48 0.28 6.13
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Figure 4.15: Piston trajectories for the generation of solitary wave C6 (a) and LDN-wave C13 (b),
with a 0.50 m stroke, for water depths of 25 and 50 cm.
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Figure 4.16: Piston trajectories for the generation of solitary wave C203, for strokes of 0.50 m
(s3), 0.75 m (s4) and 1.00 m (s5).
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Figure 4.17: Piston trajectories for the generation of LDN-wave C303, for strokes of 0.50 m (s3),
0.75 m (s4) and 1.00 m (s5).
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4.3.4 Computational experiments using olaFlow

The computational domain for the olaFlow numerical tests is a replication of the laboratory wave
canal (Figures 4.9 and 4.10). A 2DV model is used and the computational domain is set into
3 blocks specified inside a blockMeshDict file. The first block corresponds to the first 5 m of
the canal (which is flat); the second block corresponds to the first slope, which, for the simula-
tions of the 25 cm water depth experiments, is covered with water; the third block corresponds
to the second slope, that has no water (totally dry). For the simulations of the 50 cm water depth
experiments, both slopes, and therefore the simulation blocks, are covered with water.

An additional geometric feature was set, in STL format, at the end of the second slope, rep-
resenting the vertical obstacle assembled at the end of the beach (Figures 4.9 and 4.10). The
dimensions of the STL are equal to those of the vertical obstacle (section 4.3.2).

The number of cells in the x direction is 200 and 50 in the z direction. The applied bound-
ary condition uses the wave type wavemaker with the wavemakerMovementDict dictionary;
for that purpose, a wavemakerMovement.txt file (Appendix A.3.2.2) is created beforehand and
used in the simulations. The file is composed by a time series with the data for the several paddle
positions and the free surface elevation at each paddle position (see wave theory txeta in Chapter
3, section 3.4.5). The blockMeshDict definition is detailed in Table 4.11 and the boundary con-
ditions are listed in Table 4.12. The RANS modelling computations are performed for a total run
time of 15 s and a time step of 0.001 s, which takes about a total run time of 20 min for a serial
computation.

To numerically simulate phenomena such as the wave breaking and the wave structure im-
pact of the generated waves, turbulence was turned on in the numerical simulations performed
with olaFlow. OpenFOAM does not provide by default incompressible turbulence models for
multiphase systems—i.e. models that take into account the density variation between the air and
water phases (Higuera 2019)—which, as the simulation progresses, often causes excessive wave
height damping (due to the increasing nut, which is the turbulent viscosity, νt, field), caused by
the turbulence build-up (Higuera 2019).

The olaFlow library with the modified κ− ε and κ− ω turbulence models enables the code to
more accurately simulate multiphase systems. Additionally, there is a modified κ − ω turbulence
model, based on the work by Devolder et al. (2017), to more correctly model surface waves,
featuring an additional buoyancy term to eliminate spurious turbulence generation at the waves
free surface. Devolder et al. (2017) explained that the κ− ε and κ− ω turbulence models caused
more wave damping over the wave flume length and therefore implemented a modified turbulence
model, the κ−ω SST model, in OpenFOAM. Thus, this was the turbulence model selected to use
in the simulations.

Table 4.11: Definition of blockMeshDict (bMD).

boundaryField bMD
inlet patch
outlet wall

frontAndBack empty
bottom wall

atmosphere patch
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Table 4.12: Boundary conditions for the olaFlow simulations (0.org folder).

boundaryField alpha.water prgh U
inlet zeroGradient fixedFluxPressure movingWallVelocity
outlet zeroGradient fixedFluxPressure waveAbsorption2DVelocity

obstaculo zeroGradient fixedFluxPressure fixedValue
bottom zeroGradient fixedFluxPressure fixedValue

atmosphere inletOutlet totalPressure pressureInletOutletVelocity

4.4 Results and Discussion

We consider the solitary waves and leading depression N-waves experiments performed in the
LH-FEUP wave tank (Figure 4.7), with the physical model of a beach composed by two slopes,
respectively with 1:15 and 1:30 (Figures 4.8 and 4.9) (Set B), for 2 water levels of 25 and 50 cm
(subset B25 and B50 respectively).
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Figure 4.18: Comparing results at wg1/wg5 for experimental (a) SW C203 (b) NW C303 (stroke
50 cm), for set A (—), set B (◦) and analytical TS (- -) (25 cm water depth).

For set A experiments (Figure 4.7 and Table 4.7), comparison for the same wave gauge is

100



180 181 182 183 184 185 186

t (s)

−0.02

0.00

0.02

0.04

0.06

0.08

0.10

0.12

η
 (

m
)

(a)

31 32 33 34 35 36 37 38

time (s)

−0.04

−0.02

0.00

0.02

0.04

0.06

0.08

0.10

η
 (

m
)

(b)

Figure 4.19: Comparing results at wg1/wg5 for experimental (a) SW C203 (b) NW C303 (stroke
50 cm), for set A (—), set B (◦) and analytical TS (- -) (50 cm water depth).

presented, for wave cases C203 and C303 (solitary and N-wave with H = 12 cm respectively)
in Figure 4.18 and Figure 4.19 respectively, plotting also the theoretical time series (TS). It was
found that there is a more pronounced difference for the SW at 50 cm water depth. Noise at wg5
was predominant in these measurements, with a distinct shift between wave profiles (Figure 4.19).
When comparing the results from set A experiments with the results from set B experiments, we
found that the measured wave height from set B is greater.

We determined the Stokes number St for each wave case experimented (Table 4.10). The
expression for the Stokes number is:

St =
�

σ2
. (4.16)

The Stokes number St relates the waves nonlinearity and dispersion (Lima et al., 2019) and
classifies the wave cases according to their characteristics and behaviour. The limits on this clas-
sification scale are flexible and we defined three increasing intervals for St : St < 3 correspond to
short Boussinesq waves; 3 < St < 10 correspond to a mixed behaviour, and St > 10 correspond to
long non-Boussinesq waves (Lima et al. 2019). In Figure 4.20, we observe that, for a water depth
of 50 cm, most SW show a behaviour closer to short Boussinesq waves or a mixed behaviour and
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most N-waves show a mixed behaviour. For a water depth of 25 cm, both SW and N-waves tend
to show a mixed behaviour or a long non-Boussinesq waves behaviour.
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Figure 4.20: St versus H/d for SW (blue) and NW (green), for 25 cm ( ) and 50 cm (∗) water
depths. Grey scale intensity increases from short Boussinesq waves to long non-Boussinesq waves.

For set B experiments, it is important to recall that in the subset B25 experiments there is a
slope transition between wave gauges wg4 and wg13 (Figures 4.21 and 4.22). For subset B50
experiments, there are two slope transitions, the first one between wg4 and wg6, and the second
one between wg8 and wg3 (Figures 4.23 and 4.24). From the wave celerity evolution plots, we can
clearly distinguish the slope transitions and its effects on the wave propagation and wave celerity.
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Figure 4.21: Case 6a: (a) Maximum wave height H and average celerity c evolution at each wave
gauge. Red dot corresponds to SW wave celerity determined from expression (4.6). (b) Recorded
SW traces at each wave gauge.
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Figure 4.22: Case 6b: (a) Maximum wave height H and average celerity c evolution at each wave
gauge. Red dot corresponds to SW wave celerity determined from expression (4.6). (b) Recorded
SW traces at each wave gauge.
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Figure 4.23: Case 13a: (a) and (b) Maximum wave height H and average celerity c+ and c− evo-
lution at each wave gauge. Red dot corresponds to SW wave celerity determined from expression
(4.15). (c) Recorded LDN-waves traces at each wave gauge.
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Figure 4.24: Case 13b: (a) and (b) Maximum wave height H and average celerity c+ and c− evo-
lution at each wave gauge. Red dot corresponds to SW wave celerity determined from expression
(4.15). (c) Recorded LDN-waves traces at each wave gauge.
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4.4.0.1 Wave heights and wave velocities

In Figures 4.21 and 4.22, for the solitary wave Case 6, C6 (H = 15 cm), the maximum wave height
at each wave gauge, the average celerity c evolution at each wave gauge and the recorded traces at
each wave gauge are plotted, respectively for waves C6a and C6b (where C6a corresponds to the
25 cm water depth experiments, subset B25 experiments, and C6b corresponds to the 50 cm water
depth experiments, subset B50 experiments). From the traces of the solitary waves, it is possible
to see that there is a preservation of their shape with a continuous decrease of wave height and
an increase of the back wave trough, as observed in Figure 4.21b. From wave gauge 8 onwards,
a series of increasing trailing waves are detected. There is a jump in the value of the average
wave celerity, c, between wave gauges 13 and 14 (Figure 4.22). The wave celerity jump and its
quantitative difference is caused by the water depth difference at the wave gauges location. The
slope modification influences the speed at which the wave celerity changes. The higher the slope,
the faster the speed variation. Another aspect that most probably affected the measurements is
related to the difficulty encountered in having the smaller wave gauges remaining static, due to
the light weight of these small wave gauges and the high wave height H = 15 cm generated. In
Figure 4.22, it was observed that the wave height decreased progressively, although an increase
was registered around wave gauges 11 and 12, which could probably be related to the shoaling
effect. Around this location, the wave celerity spiked to a value more than two times the previous
registered wave celerity value registered. Looking to the traces, it is observed that the wave celerity
is not constant between wave gauge 11 and 12, with a large difference between the wave crests.
Between wg3 and wg14, it is observed what seems to be trailing waves, but are most certainly
reflected waves from the obstacle (Figures 4.9 and 4.10).

For the LDN-wave Case 13, C13 (H = 8.5 cm), Figures 4.23 and 4.24 show the maximum
wave height at each wave gauge, the average wave celerities c− (leading wave trough wave ve-
locity) and c+ (leading wave crest wave velocity) evolution at each wave gauge and the recorded
traces at each wave gauge, for subset B25 experiments (Case 13a, C13a) and subset B50 exper-
iments (Case 13b, C13b). In Figure 4.23, it was observed an increase of the wave height, as the
N-wave lost its original shape and turned into a solitary-type wave. The wave celerity c+ de-
creased along the gauges, with a sudden increase between wave gauges 13 and 12. On the other
hand, the wave celerity c− decreased smoothly with no other changes to register. For subset B50
experiments (Figure 4.24), the wave height decreased until the first slope transition, starting to
increase afterwards. Wave celerities decreased except between the slope transitions, with small
jumps in its value.

4.4.0.2 Run-in

The run-in was measured in subset B25 experiments. In Figure 4.25, it is observed that there is a
break in the values of run-in with the increase of H , for H/d > 0.6 (H > 0.15 m), for the N-waves.
This can be a consequence of the occurrence of early wave breaking during the experiments which,
for some of the waves generated, was visually observed right after the wave-maker and/or at the
flat zone of the beach.

Run-in calibration models are proposed for both solitary and N-waves respectively. For the
solitary waves, the linear calibration model was adjusted:

Rin

d
= 8.35

H

d
+ 0.86, (4.17)

with R2 = 0.86, and is represented in Figure 4.25. The linear function reaches the maximum run-in
Rin around 8 m, this value then becomes constant and the linear function tends to be horizontal.
For this reason, the last two measurements of the solitary waves run-in were disregarded (red dots
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Figure 4.25: Subset B25 experiments: Experimental run-in Rin/d versus H/d : (x) SW (x) NW.
Calibration model fit to the SW (blue linear line) and NW (yellow and green linear lines) run-
in measurements. Red diamonds were measurements excluded from the SW run-in calibration
model.

in Figure 4.25). Wave breaking seems to be occurring and consequent energy dissipation, which
limits the maximum run-in value reached.

Two separated linear functions are proposed for the N-waves run-in Rin:

Rin

d
= 6.53

H

d
+ 0.60, (4.18)

with R2 = 0.90, and

Rin

d
= 1.31

H

d
+ 2.81, (4.19)

with R2 = 0.39. In the first function, a maximum run-in Rin of 4.5 m is measured and in the
second function the maximum run-in measured diminishes. It looks like a great amount of energy
is consumed in the N-wave propagation and wave breaking, which translates into two distinct
run-in evolutions.

4.4.0.3 Run-up

We measured the run-up for subset B50 experiments (Figure 4.26). Calibration models are pro-
posed for both solitary and N-waves respectively. For the solitary waves, the linear calibration
model was adjusted to:

Rup

d
= 2.15

H

d
+ 0.07, (4.20)

with R2 = 0.84. A linear function is proposed for the N-waves run-up Rup :
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Rup

d
= 1.82

H

d
− 0.10, (4.21)

with R2 = 0.91. Both SW and NW linear functions are represented in Figure 4.26, which is the
plot of experimental R/d vs H/d, for all the waves generated in the laboratory. For the solitary
waves, the maximum ratio R/d is approximately 1.00 for H/d = 0.425, which means that the
maximum SW run-up Rup value measured was 0.50 m. In the N-waves experiments, for H/d <
0.15, the ratio R/d = 0.19 and Rup = 0.10 m. For H/d > 0.15, the maximum ratio R/d is around
0.84, which means that the maximum NW run-up Rup value measured was 0.42 m.

Following the run-up expressions (2.76) and (2.77) proposed in Chapter 2 (section 2.1.6.3),
and the results obtained from our physical experiments, we propose two run-up laws, one for
the solitary waves and another one for the N-waves. Considering a slope angle β2, the proposed
run-up formula for the solitary waves is:

RupSW

d
= 0.22 · (tanβ2 · St)

−0.39, (4.22)

represented in Figure 4.27 (blue line). For the N-waves, the following run-up law is proposed:

RupNW

d
= 0.37 · (tanβ2 · St)

0.02, (4.23)

which is represented in Figure 4.28 (green line).

Figure 4.26: Subset B50 experiments: Experimental run-up Rup/d versus H/d: (blue) SW
(green) NW. Calibration model fit to the SW (blue linear line) and NW (green linear line) run-up
measurements.

4.4.0.4 Numerical simulations

Numerical simulations were performed and compared with the physical experiments. Simulations
for waves cases C6 and C13 (for 25 cm and 50 cm water depth) hereby presented apply the κ −
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Figure 4.27: SW subset B50 experiments: Rup/d versus St for experimental run-up (blue circles)
and run-up calculated from power-law (blue line).
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Figure 4.28: NW subset B50 experiments: Rup/d versus St for experimental run-up (green cir-

cles) and run-up calculated from power-law (green line).

ω SST turbulence model. Figures 4.29 to 4.30 show the comparison between the experimental
and numerical SW propagation between wg1 and wg14 for subset B25 experiments. Although
the numerical wave height is 25% less than the laboratory measurement, the shape is similar to
what was obtained experimentally. The wave displays a step-like shape and becomes unstable at
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Table 4.13: Experimental and numerical run-in Rin values observed for C6 and C13, for the κ−ω

SST turbulence model, in 25 cm water depth.

Rin (m) exp num dif (%)

C6a 13.54 13.10 3.2
C13a 11.66 10.10 13.4

wg12, after 4 s of propagation. Experimentally, a series of smaller waves are observed before the
generated solitary wave, which are most probably a consequence of lateral wall reflections.

Figures 4.31 to 4.32 plot the comparison between the experimental and the numerical leading
N-wave propagation between wg1 and wg14 for subset B25 experiment. In wg1, it is observed that
the N-wave crest is already in fission and its trough is larger than expected. The fission originates
the division of the wave crest in two. Several trailing waves are observed in the next wave gauges,
as well as an increase of the wave height of the crest.

To study the run-in with olaFlow, several virtual wave gauges where displaced along the nu-
merical computational domain (canal), to find out where the wave stopped: the maximum hori-
zontal coordinate point reached by the generated wave was determined. This limit was established
to be less than 0.009 m. The turbulence model κ − ω SST was applied and the run-in results for
solitary wave C6a and N-wave C13a are shown in Table 4.13. The numerical results from olaFlow
are good, although the computational run-in measured is systematically smaller than the experi-
mental run-in. The computational run-in Rin results are 3% less for the SW and 13% less for the
LDN, when compared with the experimental measurement values. Eventually, this can mean that
more energy dissipation occurs numerically, before reaching the maximum value verified experi-
mentally. It was also attempted to study the run-in of solitary waves with the SWASH code, with
the turbulence turned on, but without success. The code is not able to "follow" the wave until it
dissipates, outputting on average a constant maximum run-in Rin of about 8.62 m.
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Figure 4.29: Wave propagation over the canal for solitary wave C6 for a water depth of 25 cm
(C6a): Numerical simulation wave profiles (—) for the κ − ω SST turbulence model and subset
B25 experimental wave profiles (- -) recorded at wave gauges 1, 5 and 4.
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Figure 4.30: Wave propagation over the canal for solitary wave C6 for a water depth of 25 cm
(C6a): Numerical simulation wave profiles (—) for the κ − ω SST turbulence model and subset
B25 experimental wave profiles (- -) recorded at wave gauges 13, 12 and 14.
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Figure 4.31: Wave propagation over the canal for LDN-wave C13 for a water depth of 25 cm
(C13a): Numerical simulation wave profiles (—) for the κ− ω SST turbulence model and subset
B25 experimental wave profiles (- -) recorded at wave gauges 1, 5 and 4.
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(a) gauge 13 (x = 5.37 m)
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Figure 4.32: Wave propagation over the canal for LDN-wave C13 for a water depth of 25 cm
(C13a): Numerical simulation wave profiles (—) for the κ− ω SST turbulence model and subset
B25 experimental wave profiles (- -) recorded at wave gauges 13, 12 and 14.
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For the subset B50 experiments (Figures 4.33 to 4.36), the SW numerical wave height is 15%
less than the laboratory measurement but the wave shapes are similar. A larger trough is observed
following the solitary wave. At wg12, although following what is observed from the experiments,
the wave starts to rumble losing its shape. The wave crest assumes a step-like shape from wg13
onwards.

We notice that for the solitary wave C6, both for subset B25 experiments (wave gauges 12 and
14 in Figure 4.30) and for subset B50 experiments (wave gauges 13 and 14 in Figure 4.36) the
experimental wave profiles recorded show a step-like shape. This can be due to the effect of white
capping at the wave crest or a problem related to the calibration interval of 4 cm we used, limited
by the dimension of the wave gauges and the water depth. Also, as mentioned previously, for larger
waves the short wave gauges (wg12, wg13, wg14) were subject to small movements, consequently
moving from their original position. This measurement problem could be an additional reason to
justify this feature observed in the wave profiles recorded.

Comparing the 50 cm N-wave physical experiments with the numerical simulations results
(Figures 4.37 to 4.40), it is observed that the N-wave generated with the numerical wave-maker
is closer to the experimental LDN-wave. From wg5 onwards, the wave trough starts displaying
several smaller waves, with increase of the wave crest tending to a solitary wave shape. As the
experimental wave progressively decreases in height, the wave height is continuously increasing
in the numerical simulation, being larger between wg8 and wg3 due to shoaling and showing
a decrease only after wg13. The continuous wave height increase could be related to the fact
that bottom friction was not contemplated in the numerical simulations, which should have been
accounted for.

4.4.0.5 Pressure

For the subset B50 experiments, the four pressure transducers located at the obstacle (pt0, pt1,
pt2, pt3) measured the pressure variations caused by the generated waves (Figure 4.41). It was
observed that the pressure decreased from the bottom to the top pressure transducer. The maxi-
mum experimental pressure was measured by the pressure transducer located at the bottom of the
obstacle (pt0). The maximum experimental pressure is calculated as the average of the maximum
pressure values, at the pressure transducer, measured over two consecutive trials (Pexp.aver).

Calibration models for the maximum experimental pressure are proposed for both solitary and
N-waves. For the solitary waves, the linear calibration model was adjusted to:

Patm + Pexp.aver

Patm
= 36.82

H

d
+ 0.90, (4.24)

with R2 = 0.79. A linear function is proposed for the N-waves experimental pressure:

Patm + Pexp.aver

Patm
= 29.54

H

d
− 2.07, (4.25)

with R2 = 0.97. Both SW and NW linear functions are represented in Figure 4.42. For solitary
waves, the maximum experimental pressure is 1800 Pa for H = 0.21 m. For the N-waves, the
maximum experimental pressure is around 1260 Pa for H = 0.24 m.

There are notorious differences observed when comparing the experimental pressure measure-
ments at the obstacle with the olaFlow simulations results (Figures 4.41, 4.43 and 4.44). One
possibility is related to the fact that in the physical experiments there were some small irregu-
larities between the slopes, as these were two individual structures (constructed specifically for
these experiments) that were attached together. These irregularities caused energy dissipation and
are not reproduced in the numerical model, as the transition between the slopes is regular in the
computational domain.
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Figure 4.33: Wave propagation over the canal for solitary wave C6 for a water depth of 50 cm
(C6b): Numerical simulation wave profiles (—) for the κ − ω SST turbulence model and subset
B50 experimental wave profiles (- -) recorded at wave gauges 1, 5 and 4.
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Figure 4.34: Wave propagation over the canal for solitary wave C6 for a water depth of 50 cm
(C6b): Numerical simulation wave profiles (—) for the κ − ω SST turbulence model and subset
B50 experimental wave profiles (- -) recorded at wave gauges 6, 7 and 8.
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Figure 4.35: Wave propagation over the canal for solitary wave C6 for a water depth of 50 cm
(C6b): Numerical simulation wave profiles (—) for the κ − ω SST turbulence model and subset
B50 experimental wave profiles (- -) recorded at wave gauges 3, 11 and 12.
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Figure 4.36: Wave propagation over the canal for solitary wave C6 for a water depth of 50 cm
(C6b): Numerical simulation wave profiles (—) for the κ − ω SST turbulence model and subset
B50 experimental wave profiles (- -) recorded at wave gauges 13 and 14.

The large negative peaks recorded in the numerical simulation may be due to a phenomenon
of numerical implosion. One possibility is that the cell size does not adjust to what goes on in the
physical experiment, resulting in these unexpected negative spikes.
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Figure 4.37: Wave propagation over the canal for LDN-wave C13 for a water depth of 50 cm
(C13b): Numerical simulation wave profiles (—) for the κ− ω SST turbulence model and subset
B50 experimental wave profiles (- -) recorded at wave gauges 1, 5 and 4.
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Figure 4.38: Wave propagation over the canal for LDN-wave C13 for a water depth of 50 cm
(C13b): Numerical simulation wave profiles (—) for the κ− ω SST turbulence model and subset
B50 experimental wave profiles (- -) recorded at wave gauges 6, 7 and 8.
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Figure 4.39: Wave propagation over the canal for LDN-wave C13 for a water depth of 50 cm
(C13b): Numerical simulation wave profiles (—) for the κ− ω SST turbulence model and subset
B50 experimental wave profiles (- -) recorded at wave gauges 3, 11 and 12.
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(a) gauge 13 (x = 11.60 m )
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Figure 4.40: Wave propagation over the canal for LDN-wave C13 for a water depth of 50 cm
(C13b): Numerical simulation wave profiles (—) for the κ− ω SST turbulence model and subset
B50 experimental wave profiles (- -) recorded at wave gauges 13 and 14.
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(b) C13b

Figure 4.41: Subset B50 physical experiments: Pressure exerted on a rectangular obstacle, located
at the end of the second slope for (a) Case 6b (b) Case 13b. (—) pt0 (—) pt1 (—) pt2 (—) pt3 (ch
≡ channel of the pressure transducer).

125



Figure 4.42: Subset B50 physical experiments: (Patm + Pexp.aver)/Patm (Patm is the atmo-
spheric pressure and Pexp.aver is the average maximum experimental pressure, measured at the
pressure transducer pt0, located at the bottom of the obstacle) versus H/d. (blue) Solitary wave
(green) N-wave. Calibration model fit to the SW (blue linear line) and NW (green linear line)
pressure measurements. Red triangles were excluded from the N-wave pressure calibration model.
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Figure 4.43: Subset B50 numerical simulations: κ−ω SST model: numerical pressure exerted on
a rectangular obstacle, located at the end of the second slope for (a) Case 6b (b) Case 13b. (—)
pt0 (—) pt1 (—) pt2 (—) pt3.
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4.5 Concluding remarks

Several wave celerity formulations for solitary, cnoidal and N-waves are presented. For sev-
eral laboratory experiments performed, different wave celerity formulations were adopted. In the
framework of the preliminary laboratory tests performed at LH-FEUP, the wave celerity formu-
lations adopted for the solitary waves and for the N-waves were respectively equations (4.4) and
(4.3). Afterwards, a large number of computational tests were performed with the SWASH code, to
evaluate the most adequate wave celerity formulations to adopt in the solitary and N-waves exper-
imental tests. It was found that the computational results presented the best fit with the analytical
profiles when applying expression (4.6) for the solitary waves velocity, and expression (4.15) for
the N-waves velocity. We found these formulations to better preserve the simulated wave shape
during the simulation, when comparing with tests performed using the other tested wave formu-
lations. Therefore, the later wave celerity formulations, expression (4.6) for solitary waves and
expression (4.15) for the N-waves, were adopted in the final full laboratory experiments.

Afterwards, the laboratory experiments of solitary and LDN-waves, on the wave basin and on
a beach with two different slopes, were described. Measurements of the water surface elevation,
run-up, run-in and pressure exerted on an obstacle were retrieved from the physical experiments.

We found that, for both solitary and LDN-waves, the measured wave height H is systemati-
cally less than what was initially expected, when comparing with the theory and with the numerical
simulations, using the theoretical wave profile as input. The wave celerity formulations adopted
for the solitary and N-waves seem to be adequate, when comparing measurements and simulations
with olaFlow results.

We defined the Stokes number St and used it to classify the characteristics and behaviour of
the experimented wave cases. From this classification, we found that, for a water depth of 50 cm,
most SW show a behaviour closer to short Boussinesq waves or a mixed behaviour and most N-
waves show a mixed behaviour. For a water depth of 25 cm, both SW and N-waves tend to show
a mixed behaviour or a long non-Boussinesq waves behaviour

Experimental run-in measurements were retrieved for both solitary waves and N-waves (subset
B25 experiments). For the solitary waves, the maximum run-in Rin value was approximately 8
m for (H/d)max = 0.85. For the N-waves, the maximum run-in Rin is 4.5 m for H/d < 0.6. For
H/d > 0.6, the wave breaking causes a great loss of energy and the run-in is limited to 4 m.

The run-up measurements were also retrieved from the physical experiments with solitary and
N-waves (subset B50 experiments). The maximum run-up Rup measured for the solitary waves
was 0.50 m; for the LDN-waves, for H/d < 0.15, the maximum run-up Rup measured was 0.10
m; for H/d > 0.15, the maximum run-up Rup was 0.42 m. Based on our physical experiments, we
propose run-up laws for solitary waves and N-waves respectively.

Calibration models with linear fit were proposed both for the run-in and for the run-up mea-
surements. It should be kept in mind that the experimental measurements were retrieved for a
beach with two different slopes, which is a special case distinct from what is usually presented in
the literature (single slope).

The comparison of the experimental and the olaFlow simulations results show overall good
agreement for both solitary and N-wave, although there is an underestimation of the numerical
wave height. The run-in obtained from the simulation was also shorter than what was measured
experimentally. Considering the pressure measurements, a clear disparity is verified between the
laboratory measurements and the simulations results, which should be further investigated.

As future work, the following tasks are proposed:

• considering Synolakis 1990’s arguments on Goring’s theoretical considerations on the gen-
eration of solitary waves in the laboratory, the first-order formulation for the generation of
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N-wave in laboratory, presented in Lima et al. (2019), should be reformulated following
Synolakis’s method (Synolakis 1990);

• perform numerical tests with time-dependent wave celerity formulations, as it might lead to
an increased accuracy in the obtained N-wave profile;

• perform the analysis of the results obtained with turbulence models κ−ε and compare them
with the results obtained with κ− ω SST turbulence model;

• perform additional simulations with olaFlow for 25 cm and 50 cm water depths respectively,
using another turbulence model, such as the RNG κ − ω turbulence model developed by
Mesquita (2013), to check and understand the possible differences in the results (run-in,
run-up and pressure exerted) from applying different turbulence models;

• determine a metric, such as that presented in Lima et al. (2019), to evaluate the results
obtained from case 6 and case 13 simulations, for water depths of 25 and 50 cm;

• vertically locate several virtual gauges along the obstacle, to find out which is the highest
vertical point reached by the generated wave, and therefore infer the value of the experi-
mental run-up.
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Chapter 5

Coupling of Numerical Models

5.1 Introduction

Combined models bring together the advantages of the individual models into a single model, en-
abling increased accuracy, efficiency and regime of validity. Existing combined tsunami models
are usually not fully available, as they are still under development and/or can only be applied to
some specific phases of the tsunami lifecycle. Watts et al. (2003) presented and validated GE-
OWAVE, a combined simulation model, which couples the tsunami generation model TOPICS
with the fully nonlinear and dispersive model FUNWAVE. Those authors showed that nonlinear
and dispersive wave models are best suited to model landslide generated tsunamis. Sitanggang
and Lynett (2009) developed a hybrid wave model for wave propagation from deep to shallow wa-
ters and shoreline, which combines an irrotational 1DH Boussinesq model and a 2DV Reynolds-
Averaged Navier-Stokes (RANS) model. Their model was tested with good comparisons with
idealized cases and experimental data. Choi et al. (2011) proposed a combined shallow water nu-
merical model for tsunami generation and propagation and an analytical 1DV long wave run-up
theory. Løvholt et al. (2010) presented a combined model approach contemplating the Boussinesq
model GloBouss, to simulate the long distance tsunami propagation, and the ComMIT/MOST
model for the shallow water propagation and the study of coastal impact and run-up. This combi-
nation revealed satisfactory results. Also Narayanaswamy et al. (2010) presented the hybrid model
SPHunwave, which coupled the known fully nonlinear Boussinesq model FUNWAVE, for wave
propagation, with the Smoothed-Particle Hydrodynamics (SPH) model SPHysics, for breaking and
post-breaking processes. Satisfactory results were obtained for a solitary wave in a constant depth
tank and the code has been further tested with several case studies (Gomez-Gesteira et al. 2012a,b).
Simulating the Hokkaido-Nansei-Oki event, they found good agreement between the estimates of
the run-up heights and the observations, demonstrating their approach to be a more reasonable
and rapid method of forecasting than the coastal inundation models. There are other proposals of
coupled models such as Løvholt et al. (2008), which coupled a multi-material model, for the wave
generation, with a Boussinesq propagation model, and Løvholt et al. (2010), which combined a
model focused on dispersive tsunami propagation. Similarly, Abadie et al. (2012) coupled the
Navier-Stokes/VOF model Thetis with FUNWAVE-TVD, for landslide generated tsunamis. Also
the coupling of TSUNAMI3D and NEOWAVE is described in Horrillo et al. (2010), where aver-
aged field variables along the water column from TSUNAMI3D are set as initial condition for the
2DH depth-integrated model NEOWAVE, which simulates tsunami propagation and inundation of
the study area. The last model was improved by López-Venegas et al. (2015), with a 3D-2DH
coupled model for submarine landslide studies. Zhang et al. (2016) introduced a 3D unstructured-
grid hydrodynamic model for tsunami currents. Recently Kim et al. (2017) published a model
extension of the GeoClaw code with Boussinesq characteristics.
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In this chapter, we will describe the methodologies selected to achieve the coupling between
the numerical codes used in this research work. In section 5.2, we detail the coupling between Geo-
Claw and FUNWAVE-TVD codes, which is named as Combined Model 1 (CM1). The coupling
approach is validated with a Gaussian hump test case and with the event of the 16th September
2015 Illapel tsunami, in Chile. The nesting facility within CM1 is explored and results for the
Portugal Earthquake and Tsunami of the 28th February 1969 (hereby, referred to as 1969 PET) are
presented. In section 5.3, we describe the methodology used to combine CM1, via FUNWAVE-
TVD, with the CFD code OpenFOAM, via olaFlow, obtaining the combined model CM2. In sec-
tion 5.3, the coupling between models, which resulted in the combined model CM2, is validated
against the laboratory data from the Monai Valley benchmark.

5.2 Combined Model 1 (CM1)

The Combined Model 1 (CM1) is a combination of a shallow water generation and propagation
model with a Boussinesq model for propagation, transformation, dispersion and breaking. The
used models, GeoClaw and FUNWAVE-TVD, are both open source codes.

The CM1 is validated with the 2015 Illapel earthquake, in Chile. This is a well documented
earthquake and tsunami event, which has been widely studied (Melgar et al. 2016, Tang et al.
2016, Calisto et al. 2017). We use the water level observations recorded at 3 DARTs (Deep-ocean
Assessment and Reporting of Tsunamis) to evaluate the performance of the proposed combined
model. Spectral and wavelet analysis of the surface elevation records and of the model results
are performed. Using the 1969 PET event, we show the usefulness and efficiency of the nesting
capability within the proposed combined model CM1.

5.2.1 Coupling methodology

To improve the description of the tsunami waves propagation and transformation, we propose to
combine GeoClaw (Clawpack Development Team 2014b), a 2DH nonlinear shallow water equa-
tions (NSWE) model, for the tsunami generation and adaptive mesh refinement, with FUNWAVE-
TVD (Shi et al. 2012b), a fully nonlinear and dispersive Boussinesq model, for the wave propa-
gation, transformation and inundation. Both GeoClaw and FUNWAVE-TVD have presented good
agreement when subject to the National Tsunami Hazard Mitigation Program (NTHMP) estab-
lished benchmark tests (Synolakis et al. 2007).

The tsunami generation capability inside the 2DH NSWE model GeoClaw—the Okada model—
is used to provide the initial seafloor deformation to FUNWAVE-TVD, also taking advantage of
the adaptive mesh refinement capability within the GeoClaw model. The free surface deformation
and velocities are then input as initial conditions to the Boussinesq model, which will afterwards
compute the wave propagation and transformation.

To achieve the combined model between GeoClaw and FUNWAVE-TVD, several approaches
have been tested. The first approach was to use the output data from GeoClaw computation and,
after several data manipulations, to input it directly into FUNWAVE-TVD. To have a fine output
data of the free surface elevation η and velocities u and v extracted from GeoClaw, the simulation
costs would be high: computational simulation times would increase and the amount of output
data to be converted would be very large. For these reasons, this approach was abandoned.

A second approach was tested: use the output information extracted from a very fine grid
of numerical gauges within the 2DH NSWE model simulation. After careful manipulation of
the data, water kinematic (u,v) and free surface (η) fields were transferred to the fully nonlinear
Boussinesq model. This data corresponded to some minutes of simulation with the NSWE model.
In general, we used the data corresponding to the first 5 to 10 min of simulation with GeoClaw. As
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the tsunami waves propagate quite rapidly, we consider that at this stage, within this 5 min time
interval, the tsunami generated waves are fully developed and that the propagation is no longer
subject to source area influence. The time instant was selected visually from the simulation plots.
The best instant can depend on the magnitude and depth of the event, although further studies have
not been done to calibrate this time interval. Yet, this calibration should be done according to the
mentioned earthquake parameters, as the considered time interval is dependent on the simulated
case study.

Figure 5.1: Scheme of the selected coupling approach between GeoClaw and FUNWAVE-TVD,
the refined covered gauge domain approach, in order to achieve CM1.

For the CM1 simulation, the computational domain should be large enough, so that the gener-
ated waves do not leave the domain boundaries right after the simulation starts. It is crucial that
the source is fully included in the domain and it cannot be too close to the boundaries. This is
also due to the fact that the Boussinesq model applies sponge layers, which are used at the open
boundaries, so these layers should not overlap the source. These sponge layers are used to reduce
reflection effects in the boundaries of the domain. Therefore, the distance between source and
boundaries has to be large enough to contain the sponge layers.

The second approach, described before, was the one selected for the coupling of the two
models. Henceforth, Combined Model I (CM1) refers to the ensemble GeoClaw + FUNWAVE-
TVD (Figure 5.1).

In both codes, the file format of the input (propagation) files is ASCII. For the combined model
approach, the GeoClaw code was modified and additional manipulation scripts have been written
to enable the coupling of the models. The programming language used herein is Python (van
Rossum 1995).

It should be noted that there is no continuous exchange of information/data between both
models at any time during the simulations. The computations performed by each model are inde-
pendent, which means that the first numerical simulation of the event to be studied is performed
with GeoClaw; then GeoClaw’s data output is manipulated and saved into individual ASCII files;
these files, which concern surface elevation η, velocities u, v and depth h data, will be directly
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input into FUNWAVE-TVD. Thus, there is no direct and/or continuous exchange of data between
the two models during the computations and therefore there is no need for overlapping information
between both models.

To evaluate the performance of the CM1 selected coupling approach, several test cases and
simulations have been performed, which will be presented further ahead in this Chapter. Some of
the test cases were also presented and described previously in Lima et al. (2016).

In this PhD thesis, Clawpack version 5.2.2 was used and FUNWAVE-TVD versions 2.0 and 3.0
were both tested. The final version of CM1 is a combination of Clawpack 5.2.2 and FUNWAVE-
TVD 2.0.

5.2.2 Verification and testing: Gaussian hump simulation test

As a preliminary test case to investigate and evaluate the performance of the coupling methodology
adopted, we simulate tsunami waves in a parabolic shaped ocean. Waves in a parabolic bowl
(Figure 5.2a) are generated at the the centre of the domain by a Gaussian hump of water (Figure
5.2b).

The water surface disturbance propagates equally in all directions and should remain circularly
symmetric. The Gaussian hump is defined as:

η = 40 · e−
x2+y2

10 . (5.1)

Consider a domain of 200 by 200 m, where both x and y vary between -100 and 100 m, with
∆x = ∆y = 1 m. The depth of the bowl is 80 m and a time step of 0.016 s is used. To achieve the
CM1, the adaptive mesh refinement in GeoClaw is applied to the virtual gauge covered area and in
this case study it is done for the entire domain, in space and time. Here, three levels of refinement
were set with factors (2,4,4). This means that at level 4 the grid resolution will be 0.03 m. The
Sommerfeld or radiation condition was imposed at the boundaries of the domain.

The complete simulation in GeoClaw takes 8 s (see Figures 5.3 and 5.4). After 0.333 s of Geo-
Claw simulation, data is extracted and provided to the FUNWAVE-TVD simulation (Figures 5.5
and 5.6). The wave evolves as expected (Figure 5.7) and similarly as in the GeoClaw simulation
(Figure 5.4). We can state that data from GeoClaw is being provided correctly as input data to
FUNWAVE-TVD.
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Figure 5.2: (a) Parabolic bowl. (b) Gaussian hump.
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(a) t = 0.000 s

(b) t = 0.333 s

(c) t = 1.000 s

Figure 5.3: GeoClaw computation of the initial deformation at t = 0.000 s and propagation at t =
0.333 s and t = 1.000 s.
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(a) t = 2.333 s

(b) t = 3.333 s

(c) t = 4.000 s

Figure 5.4: GeoClaw computation of propagation at t = 2.333 s, t = 3.333 s and t = 4.000 s.
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(a) t = 0.666 s

(b) t = 1.000 s

(c) t = 1.333 s

Figure 5.5: CM1 computation of the initial deformation at t = 0.666 s and propagation at t = 1.000
s and t = 1.333 s.
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(a) t = 3.333 s

(b) t = 3.666 s

(c) t = 4.000 s

Figure 5.6: CM1 computation of propagation at t = 3.333 s, t = 3.666 s and t = 4.000 s.
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Figure 5.7: 3D visualization of CM1 computation of propagation at t = 0.666 s, t = 1.000 s, t =
1.333 s, t = 1.666 s, t = 2.000 s and t = 2.333 s.
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5.2.3 Nesting capability: Case study of a Mw 8 Earthquake at the Southwest Iberian

Margin—The 1969 Portugal Earthquake and Tsunami (1969 PET)

5.2.3.1 CM1 1st level grid simulations

We verify the performance of the nesting capability within CM1, using an earthquake event with
Mw = 8, located at the Southwest Iberian Margin. It is an event similar to the 1969 Portugal
Earthquake and Tsunami (1969 PET) event, with magnitude Mw = 7.7 – 7.8, that occurred at
2h40min30s UTC of the 28th February 1969, with epicentre (36.010°N, 10.570°W).

Table 5.1: 1969 PET fault mechanism parameters (Grandin et al., 2007).

Scenario Length Width Strike Dip Rake Slip Depth† µ M0 Mw

(km) (km) (°) (°) (°) (m) (km) (Pa) (N · m)
A 85 20 231 47 54 5.29 20 4 × 1010 3.6 × 1020 7.8

†Top of the fault

This event has been studied by Gjevik et al. (1997) and used by Clain et al. (2016) to check
the performance of a finite volume shallow water code.

Figure 5.8: Initial deformation (in metres) of the 1969 PET event.

Two sets of grids were used in this study: grid set A (GA) with bathymetry from GEBCO —
General Bathymetric Chart of the Oceans (Sandwell et al. 2002) and grid set B (GB) (Baptista
2017). Layer 01, the mother grid from grid set A, is a 1245×1601 grid with 700 m grid resolution.
Layer 01, the coarsest grid from grid set B, is a 2951×2951 grid with 163 m grid resolution.
Tsunami simulations were performed separately with both grid sets. The bathymetry is referred to
the mean sea level. In GeoClaw, two levels of refinement were set with factors (2,6). The initial
time step used is 0.2 s. The Sommerfeld or radiation condition was imposed at the boundaries of
the domain.

The fault parameters used to simulate this event were taken from Grandin et al. (2007) and
are listed in Table 5.1. The initial seafloor deformation is represented in Figure 5.8 and the focal
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Figure 5.9: Focal mechanism of the 1969 PET event. The CMT is provided by Grandin et al.
(2007) and located at the epicentre.

mechanism is plotted in Figure 5.9. The seafloor deformation was determined from the elastic dis-
location model in a homogeneous isotropic elastic half-space (Mansinha and Smylie 1971; Okada
1985). It assumes an instantaneous static seabed displacement, translated towards the free surface
as an initial condition, reproducing the elastic bottom deformation caused by the earthquake. In
the GeoClaw code, the Okada equations are implemented in the maketopo.py routine.

The initial data, necessary to run the Boussinesq model, was retrieved from GeoClaw output
results, as explained before in section 5.2. The data was written in four separated ASCII files,
concerning the water depth h, the water surface elevation η, the velocity u and the velocity v. This
initial information corresponds to 300 s after the generation of the earthquake and tsunami. From
the visual analysis of simulation plots, we selected this time instant and we considered that at this
stage the tsunami generated waves are fully developed and that the propagation is no longer subject
to the source area influence. Starting 300 s after the generation of the earthquake, the snapshots of
the tsunami propagation with CM1 are shown in Figure 5.10.

Computations were performed with both sets of grids A and B. Results are shown in Table
5.2. Free surface elevation plots for Cascais, Lagos and Faro are respectively presented in Figures
5.11, 5.12 and 5.13 and compared with some of the available wave records from the 1969 event.

For Faro, in Figure 5.13, we only show results for grid set A (GA). From the plot analysis, there
seems to be a significative lag between the simulations time series of water surface displacement
and the observations at the Faro tide gauge.
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Table 5.2: Virtual gauges used to study the 1969 PET event. Characteristics and respective com-
putational results with layer 01 from GA and layer 01 from GB.

Station Location 1 Depth1 Dist.2 Hobs
3 HGeo

4 HCM1
5 TTT diff 6

Lon Lat GA7 GB8 GA GB GA GB
(°) (°) (m) (km) (cm) (cm) (cm) (cm) (cm) (min) (min)

Cascais -9.4112 38.6816 17.37 313.77 51.2 28.3 35.5 41.4 47.5 2.0 0.5
Lagos -8.6688 37.0688 22.81 206.84 58.4 24.9 16.1 33.5 24.6 3.9 2.6
Faro -7.8688 36.9728 8.74 264.33 23.5 24.9 – 9 18.4 –9 6.5 –9

1Retrieved from layer 01 of grid set A (GA).
2Distance from station to source location, determined according to Vincenty (1975).
3Observed maximum trough-to-crest wave height (first wave arrival).
4GeoClaw maximum trough-to-crest wave height (first wave arrival).
5CM1 maximum trough-to-crest wave height (first wave arrival).
6Tsunami Travel Time difference between observations and CM1.
7Grid set A.
8Grid set B.
9Not available.

5.2.3.2 Nested grid simulations

The simulation of the tsunami propagation of the 1969 PET was performed in a series of nested
grids of increasing resolution, using a one-way coupling method.

Two sets of three series of nested grids of increasing resolution were applied in the computation
of the 1969 PET event (Figure 5.10): grid set A (Table 5.3 and Figure 5.14) and grid set B with
finer resolutions (Table 5.4 and Figure 5.16).

Grids 01, 21 and 31 from grid set A use bathymetry from GEBCO, with the water depth
referred to the mean sea level. Grid 41 was obtained by combining two data sets: the digital
elevation model with topographic data from the Cascais City Council and a set of bathymetric data
from the Hydrographic Institute, Portugal. Grids 01, 21 and 31 from grid set B use bathymetry
provided by Baptista 2017.

The time series of surface elevation and depth-averaged velocity were computed for a vast
number of synthetic wave gauges (please refer to Table 5.5 for the exact number of synthetic
wave gauges, which correspond to the boundary points, used along each boundary), defined in the
coarser grid along the mutual boundary with the finer grid used in the next level of nesting. To
agilize this nesting step between the several couples of grids, a script was written to generate the
virtual gauges locations.

Table 5.3: Characteristics of grid set A (GA) for the 1969 PET.

grid nx1 ny2 cell size X0Lon Y0Lat
(°) (m) (°) (°)

01 1001 1001 0.0064 700 -12.2890 34.4519
21 404 336 0.0016 175 -9.7976 38.4808
31 752 528 0.0004 44 -9.5678 38.6050

1Number of grid columns.
2Number of grid rows.

The computations are fully performed (complete simulation run time) in the coarser layer;
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(a) t = 0.08 h

(b) t = 0.11 h

(c) t = 0.42 h

Figure 5.10: Snapshots from CM1 results at t = 0.08 h, t = 0.11 h and t = 0.42 h, with initial
deformation data retrieved from GeoClaw (corresponding to t = 0.08 h), using the source described
in Grandin et al. (2007) and layer 01 (with 700 m resolution) from grid set A.
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Figure 5.11: Cascais: Comparison of the synthetic tsunami time series of water surface displace-
ment and the observations from the 1969 event for (a) 700 m grid A (GA) and (b) 163 m grid B
(GB). Earthquake origin time is indicated by the vertical dashed line.
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Figure 5.12: Lagos: Comparison of the synthetic tsunami time series of water surface displace-
ment and the observations from the 1969 event for (a) 700 m grid A and (b) 163 m grid B. Earth-
quake origin time is indicated by the vertical dashed line.

Table 5.4: Characteristics of grid set B (GB) for the 1969 PET.

grid nx ny cell size X0Lon Y0Lat
(°) (m) (°) (°)

01 2951 2951 0.001493 163 -12.2890 34.4519
21 840 640 0.000373 41 -9.4573 38.4884
31 1228 1068 0.000093 10 -9.4358 38.6245

after completion, and using the code coupling capability, the computations are restarted in the
finer layer, using virtual wave gauges time series as boundary conditions. A constant nesting ratio
of 4 was used between layers at all the nesting levels. Boundary sponge layers are applied in the
computations to reduce reflection effects in the boundaries. The sponge layers are 50 km wide and
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Figure 5.13: Faro: Comparison of the synthetic tsunami time series of water surface displacement
and the observations from the 1969 event (700 m grid set A; Faro not available for 163 m grid set
B). Earthquake origin time is indicated by the vertical dashed line.

Table 5.5: 1969 PET: Number of boundary points (synthetic gauges) between layers, used in the
nested simulations, for grid set A (GA) and for grid set B (GB).

boundary L01–L21 L21–L31
GA GB GA GB

North (N) 102 211 189 307
South (S) 102 211 189 307
West (W) 85 161 133 159
East (E) 0 0 0 0

total no points 289 583 511 881

were applied in all the boundaries of the layer 01 simulation. In GeoClaw, the Manning coefficient
n is taken as 0.025 s/m1/3 (Te Chow 1959). In FUNWAVE-TVD, the bottom friction coefficient
Cd = 0.0025 is used in the simulations, equivalent to n = 0.025 s/m1/3.

We analysed the results obtained at the virtual gauges, placed at the approximate locations
of the Cascais tide gauge in 1969 (Figures 5.15 and 5.17). These results are compared with the
observations recorded at the time of the event, for the mentioned tide gauge locations (Table 5.2).

The very first stage of the nesting grid simulations is to verify that the data between the nested
grids would get across correctly. We then started by comparing the computed water surface ele-
vations, at each boundary grid point, between nested grids. It is very important to verify that this
step is thoroughly done.

Table 5.6 contains a summary of the nesting results obtained using grid set A and grid set B.
The term of comparison is the 1969 PET tide record at Cascais (Table 5.2).

The nesting tests presented served to evaluate the nesting capability within the code and to
show its usefulness and efficiency. These tests also showed the performance of the proposed
combined model CM1, supporting its validation process.
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Figure 5.14: Grid set A: Layers 01, 21 and 31 comprising respectively 1) Portugal and part of the
Atlantic Ocean, 2) the Cascais area, and 3) a detailed area of Cascais.
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Figure 5.15: Grid set A: Comparing the computational results for a virtual tide gauge at Cascais
and the time series recorded during the 1969 PET at the Cascais tide gauge. Two levels of nesting
were used in the computation with CM1 (layers 01, 21 and 31). Earthquake origin time is indicated
by the vertical dashed line.

Figure 5.16: Grid set B: Layers 01, 21 and 31 comprising respectively 1) Portugal and part of the
Atlantic Ocean, 2) the Cascais area and Costa da Caparica, and 3) Cascais.
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Figure 5.17: Grid set B: Comparing the computational results for a virtual tide gauge at Cascais
and the time series recorded during the 1969 PET at the Cascais tide gauge. Two levels of nesting
were used in the computation with CM1 (layers 01, 21 and 31). Earthquake origin time is indicated
by the vertical dashed line.

Table 5.6: Cascais: Computed maximum trough-to-crest wave height for CM1
�

HCM1

�

and the

tsunami travel time (TTT) difference of the first wave arrival from the original tide records, for
grid set A and for grid set B.

grid set A B
grid HCM1 TTT diff HCM1 TTT diff

(cm) (min) (cm) (min)
01 41.4 2.0 47.5 0.5
21 40.6 3.0 43.6 0.0
31 35.5 3.1 30.8 0.5

5.2.3.3 Data set deviations

We quantify the deviations of the computational data sets, comparing the wave records from the
event, retrieved at the Cascais tide gauge, with the results from the numerical codes, retrieved
at a virtual tide gauge located close to the real Cascais tide gauge. Deviations are found when
comparing observations with the numerical results. Two metrics were used:

• the relative amplitude deviation, defined by:

Lamp =

N
�

i=1

|ηiobs − ηinum |

N
; (5.2)
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• the L2-norm, calculated as:

L2obs−num
=

�

�

�

�

N
�

i=1

(ηiobs − ηinum)
2

N
. (5.3)

Table 5.7: Quantification of the data set deviations for Cascais (Grid set B).

Lamp (cm) L2-norm (cm)
Observed – GeoClaw 4.25 8.70
Observed – CM1 L01 0.97 1.92
Observed – CM1 L21 1.47 3.31
Observed – CM1 L31 1.33 2.93
Observed – Gjevik et al. (1997) 1.67 4.06

Results are discussed in the next section.

5.2.3.4 Discussion of Results

At the beginning of the time series of the observations for the three tide gauges, Cascais, Lagos
and Faro, some oscillations in the water levels are observed before the earthquake occurs and
the tsunami arrives. These are short period oscillations (when compared with the tidal periods)
of small amplitude, less than 10 cm. This happens because the tide gauges, unlike the DARTs,
are located in sheltered waters, and some oscillations due to resonance are present in the records.
Looking at the 1969 PET simulation results from GeoClaw and CM1, at Cascais and Lagos, and
comparing with the event observations at these locations, we can state that the CM1 computational
results using grid set B (GB) are quite satisfactory. The results show a better fit with the obser-
vational data, when comparing with the results obtained with grid set A (GA), as the layers from
grid set B (GB) have finer resolutions than grid set A layers. Considering the first wave arrival,
the trough-to-crest wave height obtained with GB is closer to the observed one; also, the tsunami
travel time difference (TTT diff) is smaller than for GA: around 30 s for Cascais, quite close to the
observations, and around 150 s for Lagos. For GA, the difference is 2 min for Cascais and 4 min
for Lagos. However, from the metrics we see that the errors increase as the cell size decreases,
that is to say that the errors increase with the nesting between finer layers. The nesting seems to
originate wave dissipation and wave arrival delayal. In the nesting the values from the free surface
elevation and the velocities are input at the boundary. Model equations [1]–[8] in Shi et al. (2012c)
include the velocity term u2, which is dependent of the velocity gradient. The information on the
velocity gradient, which is necessary to the correct definition of the model, is lost in the boundary
conditions of the nested layers, causing an error increase as the cell size decreases.

The computational results from the CM1, using grid set B, are also better than those obtained
by Gjevik et al. (1997) (Figure 5.17 and Table 5.7), which used a Boussinesq model. Gjevik et al.
(1997) overestimated the wave amplitude of the first wave arrival, whereas CM1 computational
results, with the several GB nested layers used, show wave amplitudes similar to the first and
second wave arrival of the Cascais tide gauge event record. The wave profile results, from the
simulations using grid set B, are closer to the observations. The tsunami travel time differences
are 0 to 30 s, whereas with GA these vary between 2 and 3 min. Maximum trough-to-crest wave
height is also closer to the tide record observations at Cascais.

As expected from the two separated nesting simulations, with GA and GB, it is clear that the
grid resolution of the coarse/mother layer is of crucial importance and influence on the quality of
the nesting simulations results, as well as the child layers resolution. For both grid sets A and B,
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the grid extensions and the bathymetries are different and the cell size of the mother layer is 4
times the cell size of the child layer.

5.2.4 Benchmark case study: 2015 Illapel Earthquake and Tsunami

5.2.4.1 CM1 results

The 2015 Illapel earthquake occurred on the 16th of September at 22h54min33s UTC, offshore
from Illapel, Chile, with a moment magnitude Mw = 8.3. According to the USGS *, the earth-
quake epicentre was (31.577°S, 71.652°W), with a focal depth of 25 km. A GEBCO (General
Bathymetric Chart of the Oceans) grid, 7200 × 7200, with resolution of 30 arc seconds (≈ 1 km)
and dimensions 120°– 60°W and 60°– 0°S was used (Figure 5.18). The bathymetry is referred to
the mean sea level.
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Figure 5.18: Bathymetric setting of Chile with the location of the nearest DARTs (triangles) and
tide gauge stations (◦). � : observations available. � : no observations available.

The initial seafloor deformation used to simulate this event was provided by Diego Melgar
and his team. It is based on the work described in Melgar et al. (2016), where the authors
described the detailed study of the source kinematics. First they resolved a kinematic source
model by jointly inverting several regional geophysical observables, as high-rate GPS records,
strong motion records, satellite interferograms and tide gauges. For slip inversion, the authors
used the MudPy open source inversion code (Melgar and Bock 2015), the Centro Sismologico
Nacional (CSN) hypocentre and the Slab 1.0 model (Hayes et al. 2012) to define the fault and
discretised it to 225 subfaults. They also computed the elastodynamic Green’s functions (GFs)
for every subfault/station pair using the frequency wavenumber integration technique. The po-
tential sources were gridded at 5 km spacing at the hypocentral depth (19 km) within the lat-
itude range (-34.23°) to (-28.87°) and longitude range (-74.49°) to (-70.29°) (600 km by 400
km). For other informations, please consult the supplementary documents and figures in https:
//agupubs.onlinelibrary.wiley.com/doi/full/10.1002/2015GL067369.

*https://earthquake.usgs.gov/earthquakes/eventpage/us20003k7a/origin/detail
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Melgar et al. (2016) further validated the kinematic source inversion, by using it to forward
calculate a local tsunami propagation model and by comparing the model predictions to the run-
ups measured at 28 locations. They produced slip inversions that use the local tide gauges, as well
as the seismic and geodetic data and validated their model.

Using the authors’ research findings on the source of this event, we performed the tsunami
simulation with GeoClaw using the referred 7200 × 7200 GEBCO bathymetric grid with resolu-
tion of 30 arc seconds (≈ 1 km) (Figure 5.18). The initial sea surface propagation is plotted in
Figure 5.19. The CMT provided by the USGS is plotted in Figure 5.20.

(a) (b)

Figure 5.19: (a) Initial sea surface propagation (in metres) of the Chile 2015 event (Melgar et al.
2016). (b) Zoom of Figure (a).
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Figure 5.20: Focal mechanism of the 2015 Chile event. The CMT is provided by USGS and
located at the epicentre.

The propagation of the tsunami was performed with the GeoClaw code (Figure 5.19); af-
terwards, the data from GeoClaw, after 420 s of computation, was provided as an input to the
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Figure 5.21: Tsunami propagation with CM1 after 420 s.

Table 5.8: Details about the tide gauges used to study the Illapel 2015 event.

Tide Station Location Depth1 Dist.2 HGeo
3 HCM1

4

station name Lon Lat
(°) (°) (m) (km) (cm) (cm)

COQ Coquimbo, CHL5 -71.38 -29.95 104 182.2 88.9 311.4
VAL Valparaiso, CHL -71.70 -33.02 127 160.1 37.9 35.1

1Retrieved from the simulation mother grid.
2Distance from tide station to source location, determined according to Vincenty (1975).
3GeoClaw maximum trough-to-crest wave height (first wave arrival).
4CM1 maximum trough-to-crest wave height (first wave arrival).
5Chile

FUNWAVE-TVD code. We selected this time instant from the visual analysis of the simulation
plots, as we considered that at this stage the tsunami generated waves are fully developed and that
the propagation is no longer subject to the source area influence. Tsunami propagation computed
with CM1 at a later stage is plotted in Figure 5.21.

For all the simulations with GeoClaw and CM1, computed tsunami waveforms at two distinct
coastal locations in Chile (Figure 5.18) are presented and analysed (Figure 5.22 and Table 5.8).

Computed tsunami waveforms at the location of each DART station (Figure 5.18) were re-
trieved and compared with the DART observations available. The original DART data was re-
trieved from the National Data Buoy Center †. Overall, we aimed to use 6 DART locations to
study the event, although the wave height records from the event were only available for 3 of
the listed DARTs (Table 5.9): DART 32401, DART 32402 and DART 32412. The data from the
DARTs is provided at different sampling intervals, which causes repetition of the data points, as
well as some gaps and spikes. After its removal from the time series, data is de-tided: applying
variable degree n polynomial fitting (with polyfit function from GNU Octave—Eaton et al. 2014),

†
https://www.ndbc.noaa.gov/dart.shtml (last consulted in October 2016).
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Table 5.9: DART stations used to study the Illapel 2015 event. Characteristics and respective
computational results.

DART Station name Location Depth1 Dist.2 Hobs
3 HGeo

4 HCM1
5 TTT 6

station Lon Lat diff
(°) (°) (m) (km) (cm) (cm) (cm) (min)

32401 SW Arica, CHL7 -73.429 -20.473 4797 1242.9 7.9 7.0 8.0 0.2
32402 W Caldera, CHL -73.983 -26.743 4070 581.8 19.4 11.5 18.7 4.3
32403 W Antofagasta, CHL -72.037 -23.163 –8 933.1 –8 10.0 10.8 –8

32412 SW Lima, PER9 -86.330 -17.980 4387 2110.2 9.1 11.4 13.8 5.1
32413 NW Lima, PER -93.517 -7.406 4018 3509.2 –8 4.1 5.8 –8

34420 NW Concepcion, CHL -75.243 -35.758 –8 570.8 –8 13.5 18.1 –8

1Retrieved from the simulation mother grid.
2Distance from DART to source location, determined according to Vincenty (1975).
3Observed maximum trough-to-crest wave height (first wave arrival).
4GeoClaw maximum trough-to-crest wave height (first wave arrival).
5CM1 maximum trough-to-crest wave height (first wave arrival).
6Tsunami Travel Time difference between observations and CM1.
7Chile.
8Not available.
9Peru.

we estimated the tidal signals and then removed these from the original records (Figure 5.23).
Afterwards, the de-tided waveforms were used to compare with our simulations results (Figures
5.24). We also compare our results with the results by Heidarzadeh et al. (2016).
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Figure 5.23: 2015 Illapel event: DART 32401, 32402 and 32412 (a) original records and (b)
detided waveforms using polynomial fit. Earthquake origin time is indicated by the vertical dashed
line.
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5.2.4.2 Data set deviations

We quantified the computational data sets deviations comparing them with the wave records re-
trieved from DART 32401, DART 32402 and DART 32412. The metrics used herein are described
in section 5.2.3.3.

Table 5.10: Quantification of data set deviations.

DART Lamp (cm) L2-norm (cm)
32401 Observed – GeoClaw 1.54 1.24

Observed – CM1 3.44 1.85
32402 Observed – GeoClaw 1.91 2.37

Observed – CM1 2.41 2.98
32412 Observed – GeoClaw 1.08 1.72

Observed – CM1 0.92 1.66

The discussion of the results is presented further ahead in this section.

5.2.4.3 Fourier and wavelet analysis

We performed the spectral analysis of the wave records for DARTs 32401, 32402 and 32412.
Using Python (van Rossum 1995), we applied the fast Fourier transform (FFT) method. For the
Fourier analysis, we used 2 h 45 min of the tsunami waveforms.

As stated by Heidarzadeh et al. (2015), in general DARTs are free from local and/or regional
bathymetric effects; nevertheless, these effects cannot be excluded due to the existence of subma-
rine topography, as ridges, sea-mount chains, and islands.
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Figure 5.25: 2015 Illapel event: (a) Amplitude of the harmonic components for the observed wave
record at DART 32401 and for the computed virtual DART in GeoClaw. (b) Variance spectrum
for the observed time series at DART 32401 and the computed results for the virtual gauge in
GeoClaw.

Wavelet analysis was also performed, as this type of analysis details the tsunami waveforms
both in the domain of time and frequency. We followed the practical guide for wavelet analysis by
Torrence and Compo (1998). The Morlet wavelet basis function was used. The wavelet scale used
was 0.1 and frequency used was 6. Python language was used for this purpose.
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Figure 5.26: 2015 Illapel event: (a) Amplitude of the harmonic components for the observed wave
record at DART 32401 and for the computed virtual DART in CM1. (b) Variance spectrum for the
observed time series at DART 32401 and the computed results for the virtual gauge in CM1.
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Figure 5.27: 2015 Illapel event: (a) Amplitude of the harmonic components for the observed wave
record at DART 32402 and for the computed virtual DART in GeoClaw. (b) Variance spectrum
for the observed time series at DART 32402 and the computed results for the virtual gauge in
GeoClaw.

Table 5.11: Total energy spectrum for each time series.

DART 32401 32402 32412
Time Series Energy (m2/Hz)
Observed 38.0×104 64.4×104 28.7×104

GeoClaw 33.1×104 13.6×104 28.8×104

CM1 53.4×104 58.2×104 32.2×104
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Figure 5.28: 2015 Illapel event: (a) Amplitude of the harmonic components for the observed wave
record at DART 32402 and for the computed virtual DART in CM1. (b) Variance spectrum for the
observed time series at DART 32402 and the computed results for the virtual gauge in CM1.
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Figure 5.29: 2015 Illapel event: (a) Amplitude of the harmonic components for the observed wave
record at DART 32412 and for the computed virtual DART in GeoClaw. (b) Variance spectrum
for the observed time series at DART 32412 and the computed results for the virtual gauge in
GeoClaw.
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Figure 5.30: 2015 Illapel event: (a) Amplitude of the harmonic components for the observed wave
record at DART 32412 and for the computed virtual DART in CM1. (b) Variance spectrum for the
observed time series at DART 32412 and the computed results for the virtual gauge in CM1.
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(c) DART 32412

Figure 5.31: 2015 Illapel event: Wavelet analysis of the DART records during the 2015 Illapel
event.
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Figure 5.32: 2015 Illapel event: Wavelet analysis of the GeoClaw results at each studied DART
location.
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Figure 5.33: 2015 Illapel event: Wavelet analysis of the combined model CM1 results at each
studied DART location.
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5.2.5 Discussion of Results

We compare the observations of the Illapel 2015 event with the simulation results, for both Geo-
Claw and CM1 models, using the source model by Melgar et al. (2016).

The computational results from GeoClaw and CM1 retrieved from the virtual tide gauges,
located close to the Coquimbo and Valparaiso tide gauges, are plotted in Figure 5.22 and presented
in Table 5.8. Figure 5.22 also shows the observations retrieved from the tide gauges at the time of
the event. From the plots, we see that there is a very large difference between the observational
data and the computational results both at Coquimbo and Valparaiso. This contrast between the
time series plots is most probably a consequence of the tide gauges locations, which are very
close to the earthquake source limits (Calisto et al. 2017). The tide gauges are affected by minor
modifications of the seafloor caused by subsidence and/or uplift, causing large changes in the tide
gauges plots. These problems detected in the tide gauges are also documented by authors such as
Omira et al. (2016) and Calisto et al. (2017) and are a consequence of the coseismic stress and
onshore effect and consequent surface displacement. The differences between the computational
models results are minimal, with a difference of 2.8 cm at Valparaiso. A large difference between
the maximum trough-to-crest wave heights, from the computations with GeoClaw and with CM1
at Coquimbo, is obtained. This difference can be related to the models capability to model the
nearshore processes, with better results being obtained with the CM1.

Both models computed quite well the first arrivals of the DARTs (Figure 5.24): GeoClaw
smooths the solution and CM1 mimics satisfactorily the dispersive components of the tsunami
waves, which lack from GeoClaw, as it is a non-dispersive model. The results from CM1 at DART
32402 are better for the main wave, first trough and second wave, mimicking correctly the wave
amplitudes. Geoclaw, on the other hand, is very dissipative and the waves are smoothed during
propagation. At DART 32401, the wave amplitude computed with the CM1 is similar to the
observated one and afterwards the wave profile behaviour resembles the observed one. However,
the real observed wave at the DART seems to be more dissipative. On the other hand, CM1,
which is not so dissipative, is possibly introducing more harmonic components, maybe generated
at shallow water depths, which reflect on the coast. At DART 32412, the computational results
from CM1 are similar to the event records, although there is a time shift in the first wave arrival.

Tsunami waves arrive first at DART 32402, then DART 32401 and finally DART 32412. For
DART 32401 the first wave arrival time difference between the observations and the computational
results was of 1 min, 4 min for DART 32402 and 5 min for DART 32412 (Table 5.9).

From Figure 5.18, we see that DART 32402 and DART 32401 are quite near the coast—
approximately 290 km and 357 km, respectively. The source of the event (Figure 5.19), located
south of the mentioned DARTs, is very close to the coast. For this reason, coastal interactions
are a very important factor for this event and therefore in the computations, which can contribute
with reflections and intensification of other nearshore effects, such as diffraction and refraction.
From the CM1 simulation results, comparing the events records at the DARTs with the CM1
simulations results, we see that CM1 performs well at DART 32402 and DART 32401. At DART
32412 the CM1 and the observed wave profiles are similar, although in the model the waves arrive
earlier; again, the nearshore effects are quite important and present in these DARTs. The arrival
time differences between the observed wave records and simulations, both from GeoClaw and
CM1, could be associated with an error in the source location: however, if that was the case, the
arrival time differences would be the same for the DARTs, which is not what is observed from
Figure 5.24 and Table 5.9. In fact, with the CM1 the obtained tsunami travel times at the studied
DARTs 32401, 32402 and 32412 are closer to the observed tsunami travel times, with minimum
and maximum travel time differences of 1 and 5 min respectively. The largest tsunami travel time
difference of 5 min, registered for the most distant DART 32412, is probably caused by its larger
distance from the source.
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Comparing with Heidarzadeh et al. (2016), our results for the DARTs are more ajusted to the
observations and we show better tsunami travel times estimations. Heidarzadeh et al. (2016) also
overestimate the wave amplitude at the DARTS, with a smoother wave solution. All the models,
including Heidarzadeh et al. (2016)’s, anticipate the arrival of the crest of the first wave. The wave
arrival advance observed in the computational time series relatively to the observations can be a
consequence of the bathymetric grid resolution.

We analysed the computational data sets deviations. Comparing the observed data sets and the
simulated data sets (Table 5.10), from GeoClaw computation and from the simulation with CM1,
we found that the best results for CM1 are found at DART 32412, with Lamp < 1. In relative terms,
the results are better for GeoClaw in DART 32401, better for CM1 for DART 32412 and similar
between GeoClaw and CM1 at DART 32402, with L2-norm values ranging between 2 and 3. We
found both approaches to be suitable measures for the data sets deviations.

The maximum trough-to-crest tsunami height, corresponding to the first wave arrival, was
recorded at DART station 32402 with 19.4 cm. The results from CM1 are close to these obser-
vations (18.7 cm), with 8 cm difference obtained using GeoClaw code. For DART 32401, the
CM1 differs in 0.1 cm from the observations (7.9 cm observed and 8.0 cm from CM1). For DART
32412, the maximum trough-to-crest tsunami height for CM1 results and the observations from
the event differ in 2 cm. Comparing the maximum trough-to-crest tsunami height for CM1 results
and the resuts from GeoClaw, the difference is 5 cm.

The spectra for each observed and computed waveforms—GeoClaw and CM1—at each DART
are shown in Figures 5.25 to 5.30 and the energy spectrum is detailed in Table 5.11. In general,
the spectra show two main peaks between 160 to 180 min. One should note that these stations
are considerably close to the tsunami source (582 to 2110 km), specially DART 32402 (582 km
distant). It is interesting to see that the observed peak at 160 min is not reproduced in the compu-
tations, which is not the case for DART 32401 and DART 32412. This could be due to the strong
coastal interaction effects at DART 32402.

Considering the wavelet analysis for the DART records, it is observed that the longer wave
components with periods greater than 32 min arrive earlier at the 3 DARTs. This is probably due
to the frequency dispersion phenomena. We can see that the tsunami energy is mainly concentrated
in the period band between 16 to 64 min (Figure 5.31). At DART 32402, the wave components
with periods from 6 to 64 min arrive earlier also. The greatest concentration of energy is at 32 min.
In fact, this DART has a great concentration of energy during the whole period of time of the 3.5 h
considered for the wavelet analysis. In DART 32412, the energy is more scattered in time, which
might be due to dispersion, as it is the DART which is most far from the source. At this DART,
there is also low tsunami source influence. Between DART 32401 and DART 32412 (which are
considerably close), there seems to be some energy transfer from the longer to the shorter wave
periods. The wavelet analysis for the DART results of the simulations with GeoClaw (Figure
5.32) and CM1 (Figure 5.33) show that the tsunami energy is mainly concentrated in the period
bands between 0 to 8 min and 16 to 64 min. For GeoClaw, there is great concentration of tsunami
energy at DART 32401, 32402 and 32412, and for CM1 the concentration of tsunami energy is
greater at DART 32401 and 32412. The wavelet analysis for DART 32402, for the simulation
with CM1, shows a tsunami energy distribution similar to that obtained from the observed DART
32402 record. The wavelet analysis of the simulations show greater tsunami energy comparing
with the wavelet anaysis of the DART records of the event.

Overall, the CM1 results are very satisfactory, with good tsunami waves arrival times, wave-
form observations (wave amplitudes) and frequency content. The model shows better results than
the models presented by Gjevik et al. (1997) and Heidarzadeh et al. (2016), for the modelling of
the tsunami events of the 1969 PET and the 2015 Illapel, respectively.

In conclusion, the Combined Model 1, CM1, achieved good results in the simulation of both
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the 1969 PET and the Illapel 2015 events and it is a competent model, which satisfies the purpose
of the present (and future) case studies.

5.3 Combined Model 2 (CM2)

The proposed Combined Model 2 (CM2) is a combination of the CM1, via the FUNWAVE-TVD,
and OpenFOAM (OF), via the olaFlow module. FUNWAVE-TVD is a Boussinesq model for
wave propagation, transformation, dispersion and breaking. olaFlow is a module of the CFD code
OpenFOAM, which is best suited for the modelling of the complex interaction of the tsunami
waves with the nearshore environment, coastal vegetation and structures.

The main event used for the validation of CM2 is the Monai Valley benchmark (Liu et al.
2008). Numerical results retrieved at the three wave gauges, located behind the Okushiri island,
are compared with the laboratory free surface elevation data measurements available.

5.3.1 olaFlow format structures

Due to the structure of olaFlow, the input of the boundary conditions of the problem has to follow
one of the specific format structures that the code accepts. For the wave generation in olaFlow,
the boundary conditions are imposed through the dictionary files waveDict or wavemakerMove-

mentDict (located in the constant folder). These dictionary files have different structures: wave-

Dict is composed by several parameters, including the waveType and the waveTheory. The
second one refers to a text file wavemakerMovement.txt (Appendix A.3.2.1), composed by a
header with a couple of parameters, including the specification of the wavemakerType (piston or
flap) and time series structured data, according to the type of time series used as input (Appendix
A.3.2.2).

The first setting in olaFlow dictionary files concerns the type of the waves. For the coupling
methodology, the waveType wavemaker (W) will be used, which is the replication of a custom-
made wave-maker with constant velocity profile. The second setting is the waveTheory, in which
the type of waves to be generated is controlled. Diverse formats of data are possible to input with
the wavemaker waveTheory: tx, tv, txeta, tveta. The t stands for time series (in s), as all of
these formats are time series. The x stands for the wave-maker displacement or paddle position
(in m), v for the paddle velocity (in m/s) and eta for the free surface elevation at the wave paddle
(in m). The time series t does not have to be provided with a constant fixed interval, because the
variables values will be linearly interpolated between the given times. It is also possible to emulate
the movement of several independent paddles, up to a maximum of 10 (like in a directional wave
basin). This is only possible to simulate in the wavemakerTank case (Higuera 2016), with several
moving paddles.

In short, the piston or flap wave-maker emulation is possible with (a) time (t) and displacement
(x) of the wave-maker (tx), (b) time and velocity of the wave-maker (tv), (c) time, displacement
of the wave-maker and free surface elevation (txeta) and (d) time, velocity of the wave-maker and
free surface elevation (tveta). For example, for a water wave problem in which a time series of
the initial input boundary wave condition is given, one should simulate the problem in olaFlow
via the tveta format. When the problem to be simulated involves a laboratory experiment, one can
use the txeta or the tveta formats. In any case, the user should convert the original data into the
format expected by olaFlow. Yet, it is rather important to note that it is also possible in olaFlow
to provide a specific time series of the surface elevation (time t, in seconds, and η, in metres),
without the displacement of the wave-maker, using directly the waveType wavemaker. In this
option, the user needs to provide a time series of the horizontal velocity and η (the free surface
elevation around the still water depth). From now on, this will be referred to as the timeSeries
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condition. The format is as shown in Figure 5.34.

/*---------------------------------------------------------------------------*
| ========= |

| \\ / F ield | OpenFOAM: The Open Source CFD Toolbox

| \\ / O peration | Version: 1.3

| \\ / A nd | Web: http://www.openfoam.org

| \\/ M anipulation |

\*---------------------------------------------------------------------------*
FoamFile

{

version 2.0;

format ascii;

class dictionary;

location "constant";

object waveDict;

}

// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * //

waveType wavemaker;

waveTheory tveta;

genAbs 1;

absDir 0.0;

nPaddles 1;

Figure 5.34: Header and initial parameters of a waveDict file in olaFlow, applying the wavemaker

waveType and tveta waveTheory.

5.3.2 Coupling methodology

The fully nonlinear Boussinesq model FUNWAVE-TVD, for wave transformation, propagation
and inundation, is coupled with the computational fluid dynamics (CFD) code OpenFoam, via the
olaFlow module (previously known as olaFoam). Both codes have been benchmarked with the
NTHMP benchmark tests and are being subject to continuous improvements, with new versions
being released. FUNWAVE-TVD version 3.0, OpenFOAM version 1712 and olaFlow version
2018 are used in this work.

The Boussinesq model FUNWAVE-TVD is used to provide the input conditions on the tsunami
waves—as these are approaching the coast and being subject to the several nearshore processes
(which are contemplated by the fully nonlinear Boussinesq model)—into the CFD code. The free
surface elevation η and velocities u and v are then used as boundary conditions to start the CFD
code, more specifically the olaFlow package (Higuera, 2019). olaFlow consists on a set of solvers
for the simulation of wave dynamics, enabling the generation and absorption of waves at the
boundaries and wave interaction with coastal structures. It is very versatile, with high performance
in two-phase flow through porous media and with moving-boundary wave generation, just like in
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the laboratory wave-makers. olaFlow also features other capabilities from OpenFOAM, such as
the dynamic mesh refinement and the mesh motion for floating body emulation.

In any simulation in FUNWAVE-TVD, the user can retrieve time series at several pre-specified
locations/points of the computational grid. For these locations, in a specific study area, it is possi-
ble to obtain the time series (for a specific total run time) of the free surface elevation η (in m) and
velocities u and v (in m/s). Several station files are generated, one for each location of the compu-
tational grid, specified inside a station.txt file in the format (Longitude, Latitude), for geographical
coordinates, or (x, y), for Cartesian coordinates.

To achieve the combined model between FUNWAVE-TVD and olaFlow (CM2), several ap-
proaches were studied. Due to several characteristics of the olaFlow toolbox, which were de-
scribed before, it was found that the most simple way to combine both codes was to take the time
series output from FUNWAVE-TVD and, after careful conversion between codes, input it into the
olaFlow. The most important step would be the construction of the waveDict file in a data format
accepted by olaFlow. The waveDict file is composed by a standard OpenFOAM header, followed
by the specification of the waveType wavemaker and the waveTheory tveta or other. The struc-
ture of the file is similar to that which is presented in Figure 5.34. The parameter genAbs is a
boolean variable that acts as a switch that controls wave absorption (0 means that it is turned off
and 1 means that it is turned on). The parameter absDir turns on the quasi-3D absorption, setting
the direction in which the correction velocity will be applied in the quasi-3D absorption. The pa-
rameter nPaddles indicates the number of paddles used, which is generally 1, except when using
the wavemakerTank case example (OpenCFD Limited 2019), with a maximum possible of 10 pad-
dles. Afterwards, the file is composed by the information of the timeSeries, the paddleVelocity

and the paddleEta data. Another variable called tuningFactor can be introduced for this wave
type. It is a factor by which the velocities and free surface elevation are multiplied, and can be
used as a tuning factor to match the expected laboratory results. The reason for including it is that,
as the numerical boundary does not move, a calibration factor may be needed; by default it takes
the value 1.

As previously mentioned, the olaFlow feature that allows a maximum of 10 wave paddles with
the waveType wavemaker is limited to the wavemakerTank case, which at the moment is not
applicable to the combination of waveType – waveTheory necessary to achieve the combination
of the two models, CM2. This would be the best suited coupling approach, as it would include a
more complete set of data. Yet, the coupling of the codes is only possible to perform at one single
location. For that reason, the information from the simulation in FUNWAVE-TVD at one single
location is passed to one single wave paddle in olaFlow, using the combination of waveType –
waveTheory. The waveDict file is constructed after formatting the data from FUNWAVE-TVD.

The computational grid has to be converted separately from the FUNWAVE-TVD format
(ASCII format) to a format accepted by olaFlow. There are different options depending on the
shape of the computational domain of the problem. When the domain is simple, one can define
it by blocks with the elementary tool blockMesh, that generates a simple structure mesh with
hexahedral cells. When the domain of the problem presents more complex geometric features, it
is possible to use the snappyHexMesh tool within OpenFOAM. This tool adapts the geometry
of the domain to a structured mesh and removes unnecessary pieces of the mesh. There are some
specific file formats that can be read by OpenFOAM, such as the stereolithography (STL) format.
It was found that a good option for the case of a digital elevation model (DEM) or a digital terrain
model (DTM) was to convert the ASCII file into the STL format, which snappyHexMesh can
deal with. This file format is then convert into a mesh, within the code, by snappyHexMesh.
In this case, due to the complexity of the computational domain, the ASCII file of the domain,
which is a cloud of points with x, y and z data, is converted to the STL format. The stlwrite
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script (written in GNU Octave®)‡ is used to load the ASCII file, characteristic parameters of the
grid are input and the cell spacing is specified. The grid is then converted from its original ASCII
format to the STL format. A generic scheme of the coupling of the CM1 and the module olaFlow
is represented in Figure 5.35.

Figure 5.35: Scheme of the coupling approach between CM1 and the CFD code, necessary to
achieve CM2.

5.3.3 The Monai Valley benchmark. Discussion of results.

The benchmark used to validate the combined model is the Monai Valley benchmark. In this
benchmark test case, a leading depression N-wave (LDN-wave) is initially input into the domain
through the western boundary (Figure 5.36). The computational domain is 12.474 m × 3.402 m
× 0.25 m. The grid spacing in x and y is 0.014 m and data is converted from the original ASCII
file into a STL file (Figures 5.37 and 5.38).

Beforehand, the case study is simulated with olaFlow only: an initial N-wave profile (Figure
5.36) is fed into the code through waveDict, with waveType wavemaker and waveTheory tveta.
The time series of the N-wave is passed to the waveDict, with the wave propagating for a total
time of 22.5 s with a ∆t = 0.05 s and the corresponding free surface elevation η. Velocity is
previously calculated assuming:

ū =
c · η

h+ η
, (5.4)

where h is the water depth, which is equal to 0.135 m, and c is given by:

c2 =
�

g · (h+ a+), (5.5)

where a+ is the amplitude of the wave crest. The corresponding waveDict, to be used in the
simulation, is presented in Appendix A.3.2.3. A similar simulation was performed, with the wave

‡available at https://github.com/vanialima/
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Figure 5.36: Profile of the incident N-wave of the Monai Valley study case.

Figure 5.37: 3D view of the Okushiri Island and Monai Valley.

celerity c given by:

c1 =
�

g · h. (5.6)

Parameters for the physical properties used in the simulations and mesh characteristics are
detailed in Tables 5.12 and 5.13. The initial cell size varied between 0.02 m and 0.2 m and
up to 3 levels of refinement were selected. During the first OpenFOAM simulations, several
computational problems were found. There was a pressing need to optimize all the usage of
OpenFOAM computational needs with the available resources, which was not straightforward
in the beginning. All the simulations ran in parallel, using the simple decompositionMethod,
for 16 processors, dealing with 75000 mesh cells each (Table 5.14). Bottom friction is set with
the nutWallFunction and it includes the lateral walls and bottom of the computational domain.
Turbulence model κ − ε was used. A 3D model is used and the computational domain is set into
1 block specified inside blockMeshDict. The 3D numerical domain has cell resolutions of ∆x =
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0.04 m, ∆y = 0.2 m ∆z = 0.02 m The comparison between wave celerities expression (5.6) and
expression (5.5) is plotted in Figure 5.39, where c1 corresponds to the wave celerity (5.6) and c2
corresponds to the wave celerity (5.5).

(a)

(b)

Figure 5.38: (a) 3D representation of the Monai Valley area and Okushiri Island, in Japan. (b)
Simulation area mesh, obtained with the snappyHexMesh tool.

Boundary conditions for the simulations are presented in Table 5.15.
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Figure 5.39: Wave celerity formulations c1 (-.-) and c2 (- -).

Table 5.12: Physical properties used in the simulations.

Physical property Value used
g ρwater ρair µwater µair γ

(m/s2) (kg/m3) (kg/m3) (Pa·s) (Pa·s) (N/m)
9.81 1000 1.2 1 × 10−3 1.8 × 10−5 0.07†

†Nayar et al. (2014)

Table 5.13: Mesh characteristics. Wave and simulation parameters.

Cell size Mesh size Time step Computational time / resources
∆x ∆y ∆z number ∆t 16 CPU† cores*

(m) (m) (m) of cells (s) (h)
0.04 0.2 0.02 1.2 × 106 0.05 20

†Central processing unit
*The olaFlow’s simple decompositionMethod was used.

Table 5.14: Options and parameters defined in olaFlow’s dictionaries.

dictionary

fvSchemes
ddtSchemes Euler
gradSchemes Gauss linear

decomposeParDict1
method simple

no of processors/cores 16

1In OpenFOAM, the parallel computing method used is designated as the domain decomposition method.

The free surface elevation is retrieved at three locations in the domain, corresponding to the
three wave gauges published data locations (Figure 3.9 and Table 3.1). The comparison between
the numerical results and the laboratory published data are shown in Figure 5.40. A first low
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Table 5.15: Boundary conditions (BC) for the Monai Valley benchmark simulations with olaFlow
and CM2 (0.org folder).

boundaryField block boundary type alpha.water.org prgh U

inlet patch waveAlpha fixedFluxPressure waveVelocity
outlet patch zeroGradient fixedFluxPressure waveAbsorption2DVelocity

bottom wall zeroGradient fixedFluxPressure fixedValue
monai — zeroGradient fixedFluxPressure fixedValue

atmosphere patch inletOutlet totalPressure pressureInletOutletVelocity
wall1 wall zeroGradient fixedFluxPressure fixedValue
wall2 wall zeroGradient fixedFluxPressure fixedValue

amplitude wave, with less than 1 cm, is observed, corresponding to a wave also observed in the
experimental results. These oscillations do not occur in the 2DH simulations performed with
FUNWAVE-TVD (see Figure 3.11). The main numerical wave arrives slightly before the physical
wave. This can be originated by small errors in the wave gauges positioning, the domain that is
slightly larger or a timing error. Another possibility might be related to an incorrect boundary
condition. In this case, the velocity had to be calculated assuming a specific formulation for the
wave celerity, which affects the boundary condition.

The exact same input time series, as given within the benchmark case package, was used. The
time discretisation of the input time series in waveDict is equal to 0.05 s, for a total run time of
22.5 s. An aspect to be taken into account is that the input N-wave signal is smooth and the results
obtained follow the initial smooth signal. Using the shallow water wave celerity formulation—
expression (5.6)—, the results did not change significantly. The high-period oscillations observed
could be caused by wave breaking. Another possibility considered was that the waves could be
breaking at the input boundary. Looking at the sequence of the waves propagating in the domain,
no breaking was observed at the input boundary. If wave breaking is happening, the current mesh
probably is too coarse in the vertical direction to solve it properly, as it has 10 cells/wave height
and the oscillations that we are trying to capture are much smaller.

Afterwards, boundary conditions from FUNWAVE-TVD for the Monai Valley case study are
fed into olaFlow. The output results retrieved from a virtual wave gauge, at half width of the com-
putational domain and located approximately 10 cm away from the western Monai Valley com-
putational boundary, are used as the boundary condition to olaFlow. This boundary wave profile,
retrieved from an intermediate location of the western Monai Valley computational boundary, is
input to the problem domain at the same location where it was retrieved from in FUNWAVE-TVD.
The waveDict, with waveType wavemaker and waveTheory tveta (timeSeries condition), is
used, where time t, free surface elevation η and velocity u compose the waveDict time series (Ap-
pendix A.3.2.4). In this specific benchmark, only the velocity (retrieved from FUNWAVE-TVD),
in the direction of propagation, is used and the tangential component is disregarded.

Results for the published three virtual wave gauges were analysed and are presented in Figure
5.41. The simulations from the combined model show that CM2 captures the general wave shape,
which is in agreement with the results obtained solely with olaFlow. It is firm to state that the
models combination was efficiently and correctly achieved.

To evaluate the results obtained with CM2, a series of metrics are applied to the simulations
results. Please refer to section 3.5.1 for the metrics description. The simulations error metrics are
presented in Table 5.16. The analysis of the error metrics show a high linear correlation between
the laboratory data and the computational results, which is highest for olaFlow, with an r between
0.811 and 0.928, and an r between 0.793 and 0.920 for CM2. Bias is negative and root-mean-
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Figure 5.40: Monai Valley: numerical simulation with olaFlow (–) and experimental data (- -)
recorded at wave gauges 5, 7 and 9.
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Figure 5.41: Monai Valley: numerical simulation with CM2 (–), olaFlow (· · · ) and experimental
data (- -) recorded at wave gauges 5, 7 and 9.
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square error varies between 0.80 and 1.61 cm for olaFlow and between 0.94 and 1.10 cm for
CM2.

Table 5.16: Error metrics to evaluate the performances of the OF/olaFlow and the CM2, for the
Monai Valley benchmark.

r Bias RMSE
Code wave gauge (—) (cm) (cm)

OF/olaFlow 5 0.811 -0.4176 0.8032
7 0.910 -0.5525 0.7167
9 0.928 -0.3896 1.6141

CM2 5 0.793 -0.5419 1.1028
7 0.901 -0.6562 0.9790
9 0.920 -0.5174 0.9372

5.4 Concluding remarks

In the first task, we combined two individual models, the 2DH nonlinear shallow water equations
(NSWE) model GeoClaw, with FUNWAVE-TVD, a fully nonlinear Boussinesq model for the
wave propagation, transformation and inundation, into one combined model (CM1).

We explained the methodology adopted to combine both models, as well as the verification
and testing performed to the chosen methodology. We presented the case study results of the 2015
Illapel Earthquake and Tsunami, to show the quality of the performance of the CM1, evaluating
data set deviations, complemented by Fourier and wavelet analysis. Additionally, we presented the
CM1 results for the 1969 Portugal Earthquake and Tsunami (1969 PET) event, taking advantage
of the nesting capability existent within the combined model. We concluded that the combined
model 1, CM1, results are very satisfactory, with good tsunami waves arrival times, waveform
observations (wave amplitudes) and frequency content. The CM1 achieved good results in the
simulation of both the 1969 PET and the Illapel 2015 events and it is a competent model, which
satisfies the purpose of the case studies presented.

In the second task, we established a methodology to combine the CM1, via FUNWAVE-TVD,
with OpenFOAM, via the olaFlow module. The combined model methodology applied the time-

Series condition, which was used to simulate the Monai Valley benchmark. This methodology
resulted in the Combined Model 2 (CM2). The CM2 showed good computational performance,
capturing the general wave shape, with a good match achieved when comparing the results from
the simulation with olaFlow and the results from the simulation with the CM2. Thus, the models
combination was efficiently and correctly achieved.

In this Chapter, we have successfully achieved the coupling of the CM1 and the CM2, which
resulted in the final combined model, CM. The simulation results obtained using the final com-
bined model CM are presented in the next chapter.
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Chapter 6

Final Combined Model

6.1 Introduction

In this chapter, the necessary preparation and settings for using the fully combined tsunami model
CM is shown and described. The final combined model is tested in terms of its performance with
the case study of a mega earthquake and tsunami hitting the coast of Portugal. A brief summary
on the tectonics of the region is presented. Afterwards, the work methodology applied in this case
study and all the numerical modelling description are presented. A discussion on the modelling
uncertainties, the limitations of the applied numerical models and the (computational) challenges
of the fully combined tsunami model proposed are described and some solutions are proposed.

6.2 Case study: Mw 8.5 Earthquake and Tsunami hitting the Por-

tuguese coast

6.2.1 Brief tectonic context of the region

The western segment of the Eurasia-Nubia plate boundary extends between the Azores and the
western Mediterranean. Along the Azores, the interplate domain is rather complex as consequence
of the small spreading velocity, though it generates spreading along the Terceira axis. In the area
defined between 24°W and 19°W it is supposed to follow a prominent morphological feature,
the Gloria Fault, in an almost pure transcorrent way. To the east of 19°W, the interplate domain
is morphologically complex and characterized by a series of huge ridges and seamounts—as the
Gorringe Bank, the Coral Patch and Ampere seamounts (Argus et al. 1989; Zitellini et al. 2009).
These features morphologically delimitate depressions such as the Horseshoe and Tagus abyssal
plains and integrate the complex Southwestern Iberian Transpressive zone.

The SW Iberian margin is characterized by a very complex tectonic setting, with registers
of moderate magnitude earthquakes and tsunamigenic earthquakes, such as the 1755 and 1969
earthquakes and tsunamis (Baptista and Miranda 2009; Baptista et al. 1996; Gjevik et al. 1997).
All known catastrophic tsunamis in SW Iberia were triggered by earthquakes even if landslides
are also a common phenomenon, mainly concerning smaller or local events (Baptista and Miranda
2009). In this sense, we must consider as probable sources the main active faults in the SW Iberian
domain, whose dimensions are compatible with the generation of at least an Mw 8 earthquake.

The search for active faults in the Gulf of Cádiz able to generate large earthquakes and
tsunamis has been actively conducted by a number of teams, mainly based on the intensive use
of multi-channel seismic and high-resolution swath bathymetry surveys (see Zitellini et al. 2009
and references herein). It cannot be considered a closed question, in particular because none of
the well established faults is able to generate alone the large 1755 event, correctly reproducing all
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known historical data. To simulate the effects of a large tsunami in the Gulf of Cádiz one must,
nevertheless, rely on the best available geological knowledge and consider the potential effect of
all relevant candidate sources. In Lima et al. (2010), five candidate sources were selected and used
to model the tsunami impact of a 1755-like tsunami event in Huelva, Spain. The candidate sources
were fixed using simplified geometries, as depicted in Table 1 and sketched in Figure 3 in the paper.
All the candidate sources corresponded to thrusts, positively identified on multi-channel seismic
profiles (cf. Figure 3 from Lima et al. 2010), with Quaternary activity, and longer than 50 km.
The strike and length of each source was obtained from multichannel seismic research (Zitellini
et al. 2009). The width and average slip were fixed using scaling relationships (see Manighetti
et al. 2007 and references herein) and geological constrains for the thickness of the seismogenic
zone. Most of the sources considered in the study are pure thrusts. The five candidate sources
considered in Lima et al. (2010) (cf. Table 1 from Lima et al. 2010) are now described: the first
one corresponds to the northern flank of the Gorringe Bank, a large stratigraphic discontinuity and
an area of widespread seismicity; the second one, identified by Zitellini et al. 2009, is the Horse-
shoe Fault, a reverse fault oriented perpendicular to the present day kinematic displacement of
Nubia with respect to Iberia; the third one is the Marquês de Pombal fault, an active compressive
tectonic structure located 100 km offshore SW Cape San Vicente, with a pronounced drag fold
on the fault hanging-wall and the height of the escarpment is taller in the north, where it reaches
1.2 km and where we considered in its maximum possible length; the fourth one is the Portimão
Bank Fault, which follows the southern flank of the Guadalquivir and Portimão Banks; the fifth
one, the Cádiz Wedge Fault, corresponds to the interpretation made by Gutscher et al. (2006) that
the Alboran lithospheric slab could act as a potential seismogenic and tsunamigenic generator. For
modeling purposes, all these sources are geometrically simplified as described in Table 1 in Lima
et al. (2010).

Custódio et al. (2016) developed a joint focal mechanism and hypocentre clustering approach,
which allowed the identification of dominant faulting patterns and of faulting localization. The
joint clustering analysis was applied to earthquakes located on the Azores–western Mediterranean
region. The authors identified major known regions of active faulting identified, that included
the mid-Atlantic ridge, the Terceira rift, the Trans-Alboran shear zone and the northern coast of
Algeria. Custódio et al. (2016) also found found normal faulting in the northern Iberia, normal
faulting in the Granada basin and oblique reverse faulting in the SW Betics, and showed that
strike–slip faulting prevails in the region—with reverse faulting limited to its south and normal
faulting limited to its north—and confirmed slip partitioning offshore SW Iberia.

The 1969 main shock had its epicentre located SW of the Saint Vincent Cape, at the plate
boundary between the Eurasia and Africa, with the transition between an oceanic well defined
plate boundary to the west and a continental more diffuse limit to the east (Buforn et al. 2019).
With its epicentre located at the Horseshoe Abyssal Plain (Fukao 1973), south of the Gorringe
Bank, the 28th February 1969 earthquake (frequently referred as the 1969 Horseshoe Abyssal Plain
earthquake) is characterized as a tsunamigenic event, which generated a small tsunami, which was
recorded at tide gauges located in Portugal, Spain, Morocco, Azores and Canary Islands (Gjevik
et al. 1997).

Recently, it has been suggested by Duarte et al. (2019) that the Horseshoe Abyssal Plain may
be the start of a subduction zone. From their research work, they have shown evidence of possible
peeling occurring at the bottom of the tectonic plate, lying off the coast of Portugal. Thus, Duarte
et al. (2019) propose that the earthquakes registered in this area were the consequence of the birth
process of a new subduction zone.
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6.2.2 Work methodology for the application of the fully combined tsunami model

(CM)

The objective of the case study of an earthquake event triggering a tsunami near the coast of
Portugal aims to show the overall performance of the final combined model and finally the complex
three-dimensional interaction of the tsunami waves with the Cascais Marina (Cascais, Portugal)
and surrounding coastal area.

A step-by-step description of the necessary procedures to run the simulation of this event with
the final combined model is done.

The methodology involves GeoClaw and FUNWAVE-TVD codes and OpenFOAM (OF) code
and the olaFlow module. The description follows:

• Characterization of the earthquake source, with earthquake parameters of the case study
event provided by/retrieved from the USGS, peer reviewed articles, etc.

• Initial seafloor deformation (in metres) is determined from the elastic dislocation model in
a homogeneous isotropic elastic half-space (Mansinha and Smylie 1971; Okada 1985). It
is assumed instantaneous static seabed displacement, translated towards the free surface as
an initial condition, reproducing the elastic bottom deformation caused by the earthquake.
The Okada equations are implemented in the maketopo.py routine in GeoClaw. Depth
is assumed top of the fault.

• GeoClaw computation with application of adaptive mesh refinement (AMR). Parameters η,
u, v and h are written in the fort.gauge file. Results are retrieved after t min, in general 5 –
10 min after the beggining of the event. We consider that at this stage the tsunami generated
waves are fully developed, the propagation is no longer subject to the source area influence
and that no more waves are originating from the source area. This time interval depends on
the characteristics of the earthquake event.

• Manipulation of the fort.gauge data from GeoClaw, for t min, and conversion to individual
ASCII η, u, v and h files, with nx× ny dimensions, for the FUNWAVE-TVD computation.

• FUNWAVE-TVD computation with specification of the input conditions as initial deforma-
tion uvz. Application of nesting capability to n layers, with preparation of the nesting data,
specification of the nesting boundary(ies) and of the coupling data.

• Manipulation of the output results from FUNWAVE-TVD computation, specifically the η,
u and v files, to the adequate dictionary file waveDict, which will contain the boundary
conditions to start olaFlow simulation.

• Manipulation and conversion of the h file of the computational domain to the Stereolithog-
raphy (STL) format, via the stlwrite.m GNU Octave® script.

• OF/olaFlow computation. At this stage the STL file is converted to a mesh by the snap-

pyHexMesh tool. The emulation of a piston wave-maker is performed, via time, velocity
of the wave-maker and free surface elevation (timeSeries condition via waveType wave-

maker and waveTheory tveta), for one single paddle.

For the GeoClaw model, the earthquake parameters are prescribed from the USGS, the litera-
ture or other source. The initial conditions for the FUNWAVE-TVD code are then prescribed from
GeoClaw simulations and olaFlow uses as boundary conditions the results from the FUNWAVE-
TVD/CM1 simulation.
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6.2.3 Numerical simulation with the fully combined tsunami model, CM.

Discussion of results.

To simulate a complete combined model case, adequate steps within each code have to be taken.
The first simulation is performed with GeoClaw. An earthquake event with Mw = 8.5, located at the
Southwest Iberian Margin, with epicentre (36.010°N, 10.570°W)—same epicentre as the Portugal
Earthquake and Tsunami of 1969 (Gjevik et al., 1997)—, was selected. The fault parameters
used to generate this event are listed in Table 6.1. The mother grid used is a 1001×1001 grid
(Figure 6.2) with 700 m cell size (0.0064°). The seafloor deformation was determined from the
elastic dislocation model in a homogeneous isotropic elastic half-space (Mansinha and Smylie
1971; Okada 1985), assuming an instantaneous static seabed displacement, translated towards the
free surface as an initial condition, which reproduces the elastic bottom deformation caused by the
earthquake (fault mechanism parameters in Table 6.1). The Okada model is available within the
GeoClaw code and the initial deformation is generated with a simple straighforward code. The
initial deformation caused by the earthquake is plotted in Figure 6.3. The bathymetries used are
referred to the mean sea level.

Grid set A is a set of grids with successive mesh refinements with a ratio of 4. This was the
grid set selected (section 5.2.3) because it is the only grid set that includes a layer with a cell
size of 11 m (layer 41), whose cells correspond to the division by 4 of the cells of the previous
layer. Grids 01, 21 and 31 were obtained from GEBCO. The construction of the digital elevation
model of grid 41 was obtained by combining two data sets: the topographic data from the Cascais
Municipal Chamber and a set of bathymetric data from the Hydrographic Institute (Baptista and
Omira, 2014). More details are described in the previously cited report.
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Figure 6.2: First level grid 01 used in the first global scale tsunami simulation of the Mw 8.5
Earthquake near the coast of Portugal.

The initial data necessary to run the Boussinesq model FUNWAVE-TVD was retrieved from
GeoClaw output results, as explained before in section 5.2 (the combined model 1, CM1). This
initial information corresponds closely to 2 min of GeoClaw’s simulation, right after the generation
of the earthquake and tsunami. This time interval is shorter than that previously established, due
to the fact that this is a very large event, located close to the coast and above all with a wide
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Figure 6.3: Initial sea floor deformation (in metres) of the Mw 8.5 earthquake near the Portuguese
Coast.
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Figure 6.4: Representation of the source mechanism of the Mw 8.5 Earthquake event, near the
coast of Portugal, located at the epicentre of the event.

Table 6.1: Mw 8.5 Earthquake fault mechanism parameters.

Length Width Strike Dip Rake Slip Depth† µ M0 Mw

(km) (km) (°) (°) (°) (m) (km) (Pa) (N·m)
140 90 200 15 90 13 20 4 × 1010 6.56 × 1021 8.5

†Top of the fault
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influence area. The data was written into four separated ASCII files, concerning depth h, water
surface elevation η, velocity u and velocity v, with 1001 × 1001 cells and cell size 0.0064°, such
as the mother grid.

Computations with FUNWAVE-TVD were performed for a total run time of 2 h and grid
spacing (δφ, δθ) equal to 0.0064°. Boundary sponge layers with 50 km were applied in all the
boundaries, of the layer 01 simulation, to avoid reflections in the simulation and contamination of
the results. Three additional grids were used in the simulations, applying the nesting capability of
FUNWAVE-TVD. The characteristics of each grid are indicated in Table 6.2.

Table 6.2: Characteristics of the layers used in the simulations, with indication of the codes and
features applied.

grid nx1 ny2 cell size XoLon YoLat Code
(°) (m)

L01 1001 1001 0.0064 700 -12.2890 34.4519 GeoClaw + FUN-TVD (CM1)
L21 404 336 0.0016 175 -9.7976 38.4808 FUN-TVD (nesting)
L31 752 528 0.0004 44 -9.5678 38.6050 FUN-TVD (nesting)
L41 1704 632 0.0001 11 -9.5185 38.6533 FUN-TVD + OF/olaFlow (CM2)

1Number of grid columns.
2Number of grid rows.

Sponge layers were used in all the simulations and its dimensions are detailed in Table 6.3.

Table 6.3: Width of the sponge layers used in the nested simulations. Absence of sponge layer is
represented by a width equal to zero.

grid North (N) South (S) West (W) East (E)
(km) (km) (km) (km)

L01 50 50 50 0
L21 25 25 25 0
L31 5 5 5 0
L41 1 1 1 0

In between the CM1 simulations using layers 01, 21, 31 and 41 (Figures 6.5, 6.6 and 6.7) the
output of the results at the boundary points (located at the common boundaries) were used. Table
6.4 lists the number of boundary points used in the nesting process, in between the layers, and the
respective boundary locations.

Table 6.4: Number of mutual boundary points between the layers used in the nested simulations.

boundary L01–L21 L21–L31 L31–L41
North (N) 102 189 0
South (S) 102 189 426
West (W) 85 133 159
East (E) 0 0 0

total no points 289 511 585

In Figure 6.8, the red box refers to the area of interest for the CFD simulation. This area of
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Figure 6.5: Grid 21 (nested in grid 01) for the simulation of the Mw 8.5 Earthquake near the coast
of Portugal.
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Figure 6.6: Grid 31 (nested in grid 21) for the simulation of the Mw 8.5 Earthquake near the coast
of Portugal.
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Figure 6.7: Grid 41 (nested in grid 31) for the simulation of the Mw 8.5 Earthquake near the coast
of Portugal.
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Figure 6.8: Computation of the free surface elevation in grid 41, 35 minutes after the beggining
of the Mw 8.5 Earthquake near the coast of Portugal. The red contour defines the CFD simulation
area, which includes the Cascais marina.
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interest, represented in Figure 6.9, has approximate dimensions of 1000 m in x direction by 1000
m in y direction and 40 m in z direction.

(a)

(b)

Figure 6.9: (a) 3D representation of the coastal zone to be studied. (b) Real view, including the
Cascais marina.
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(a)

(b)

Figure 6.10: (a) Mesh of the simulation area, concerning Cascais and its marina, obtained with the
snappyHexMesh tool. (b) Top view of the coastal zone (STL file).
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Figure 6.11: Time series of the surface wave elevation retrieved at the most southwestern boundary
point [(38.685°, -9.423°), h = 16.0 m] of the Cascais marina area.
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Figure 6.12: Time series of the velocity retrieved at the most southwestern boundary point
[(38.685°, -9.423°), h = 16.0 m] of the Cascais marina area.

The CFD code is applied in the study of the tsunami event fluid-flow interaction with the
Cascais marina coastal surroundings. As a first approach, the 3D simulation was attempted. The
finest layer available containing the digital terrain model (DTM)—also called DEM (digital el-
evation model)—of the coastal area of interest, located near the marina of Cascais, was used in
the computations. For this purpose, we used the CM1 nested simulation results applying layer 41
(Figure 6.8). The output results were used in the CFD simulation, concerning a zoomed area of
layer 41. In these 3D simulations there was the necessity of applying a reduced area of layer 41,
due to the limited cluster resources availability, the large amount of time required for simulations
total runtime, the large size occupied by the output simulation results and thus the pos-processing.

In the first stage, when the 3D simulations were considered and simulations were trialed, some

188



� � � � � � � �

�������

���

���

���

���

���

���

���

η
��
�
�

Figure 6.13: Surface wave elevation time series of the second wave, extracted from η profile, at
the most southwestern boundary point [(38.685°, -9.423°), h = 16.0 m] of the Cascais marina area.
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Figure 6.14: Velocity time series of the second wave, extracted from u profile, at the most south-
western boundary point [(38.685°, -9.423°), h = 16.0 m] of the Cascais marina area.

problems were detected. The first problem was that some format manipulation had to be per-
formed, to have a file format that could be read by the CFD code and that could be converted to a
mesh for the numerical simulation. It was found that layer 41 data, in ASCII format, needs to be
processed to the STL format that, through the snappyHexMesh (sHM) tool within OpenFOAM,
will enable for the creation of the mesh necessary to run the simulations (Figure 6.10). The ter-
rainBlockMesher tool * cannot be used in this case, as it does not work for sharp edges, which
means that it is not adequate for urban flows, such as the case we aim to model at this stage.

The second problem was related to the input time series used in the CFD code. The time
series of the free surface elevation η (Figure 6.11) and of the total velocity u (Figure 6.12) were

*Available at http://openfoamwiki.net/index.php/Sig_WindE/Getting_Processing_Terrain_Data.
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Figure 6.15: Calculated velocity time series of the second wave.

retrieved from the CM1, via a virtual wave gauge located at the southwestern point (38.685°, -
9.423°) (blue dot in Figure 6.8). This point location was chosen because it was found to be the
most representative of the incoming tsunami wave directivity. The water depth h at this location is
approximately 16 m. This information on the free surface elevation η and total velocity u is then
converted to the wave-maker tveta condition, as part of the waveDict file, containing the initial
conditions to start olaFlow code. For olaFlow, the wave generation takes place at the southern
boundary area, limited by coordinates (38.68475°, -9.42345°) and (38.68475°, -9.41225°).

As a consequence of the existing computational limitations and for which exactly the reasons
are unknown (possibilities will be discussed later in this chapter), a part of the original time series,
contemplating the second wave, has been extracted for use in the simulation (Figure 6.13). This
part of the time series was chosen because it was the second highest wave registered in the time
series, thus we used it as representative of a worst case tsunami wave profile. From the simula-
tions results it was verified that the input free surface time series was modified when entering the
domain. As a consequence of the lag between the free surface elevation and velocity profiles (Fig-
ures 6.11 and 6.12), the velocity profile of the extracted free surface elevation time series started
at a negative velocity value (Figure 6.14). As it is not possible to correct this shift, it is necessary
to calculate the respective wave speed profile separately from the free surface elevation profile,
with the wave direction being given by the respective wave (Figure 6.15). The particle velocity is
calculated from expression (5.4), with d = 16 m and assuming shallow water wave celerity (ex-
pression (5.6)). This velocity wave profile has to be adopted to obtain the correct input free surface
elevation. The trial tests performed in a 2DV waveflume showed that the free surface elevation is
now correctly input into the domain problem.

Table 6.5: Time schemes options.

dictionary

fvSchemes
ddtSchemes Euler
gradSchemes Gauss linear

Due to the limited cluster resources availability, the large amount of time required for sim-
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Table 6.6: Boundary conditions for the CM2 simulations (0.org folder).

boundaryField block boundary type alpha.water.org prgh U
laminar / turbulent

inlet patch waveAlpha fixedFluxPressure waveVelocity
outlet patch zeroGradient fixedFluxPressure waveAbsorption2DVelocity

bottom wall zeroGradient fixedFluxPressure fixedValue
quebramar — zeroGradient fixedFluxPressure fixedValue

talude — zeroGradient fixedFluxPressure fixedValue
paredão — zeroGradient fixedFluxPressure fixedValue

atmosphere patch inletOutlet totalPressure pressureInletOutletVelocity

ulations total runtime, the large size occupied by the output simulation results and thus the pos-
processing, it was chosen to perform the simulations in 2DV, as not being sure about the advantages
of the 3D simulation at this point.

6.2.4 Simulations in two dimensions

The 2DV simulations that are presented in this section reflect the best possible the bathymetric
configuration of a transect with the direction southwest–northeast, extracted from the boundary
point where the original free surface elevation and velocity time series where retrieved from in
the FUNWAVE-TVD/CM1 simulation (blue dot in Figure 6.8) and the first meters of the technical
pier wall. The 2DV domain contemplates an initial long slope, after which there is a small slope.
Afterwards, there is the marina of Cascais breakwater, the interior part of the marina and finally
the technical pier wall (Figure 6.16). A cross profile of the Cascais breakwater is shown in Figure
6.17 (Teixeira (2012)).

For the simulations we consider a 2DV channel with the width of one element, length of 830
m and height of 30 m. The time step of the numerical simulations is 1 s and the water depth is 16
m. The cell resolutions varies for each zone of the 2DV computational domain. In the breakwater
zone it is used a ∆x = 1 m, otherwise ∆x = 5 m is used (Table 6.7). Refinement is performed
around the flat area, the breakwater and the area between the breakwater and the technical pier
wall. Details of the mesh can be seen in Figure 6.18.

Figure 6.16: Configuration of the domain of the Cascais marina used in the 2DV simulations (not
to scale).

The buoyancy-modified κ − ω SST turbulence model is used in the simulations. No porosity
is considered in the simulation. Virtual water level gauges are deployed along the domain and free
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Figure 6.17: Cross profile of the marina of Cascais breakwater (Teixeira, 2012).

Figure 6.18: Details of the mesh used in the 2DV simulation of the Cascais marina.

Table 6.7: Computational domain and mesh characteristics.

Zone long slope flat area breakwater flat zone technical pier wall
Lx (m) 650 50 10 100 20
Ly (m) 10 10 10 10 10
Lz (m) 10 13.5 21.5 11 20
∆x (m) 5 1 1 1 5
∆y (m) 10 10 10 10 10
∆z (m) 0.5 0.5 0.5 0.5 0.5

surface elevation at each location is retrieved (Table 6.8). Pressure is measured on the breakwater
and at each one of its sides (Table 6.9). Pressure gauges 1 to 10 are located on the seaward side of
the breakwater, pressure gauges 12 to 20 are located at the breakwater crest and pressure gauges
21 to 30 are located on the leeward side of the breakwater.

The physical conditions used in the simulations are documented in Table 5.12. The time
scheme options used olaFlow are listed in Table 6.5. The boundary conditions for each boundary
field in olaFlow are documented in Table 6.6. In the simulations herein presented, the contribution
of turbulence is presented. The files relevant for the application of the κ−ε SST turbulence model
are detailed in Appendix A.3.4.

The simulations for 3 wave cases are presented next. First, a constant bore-like wave with
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Table 6.8: Location of the virtual wave gauges along the domain.

wave gauge x (m) y (m)
1 5.0 5.0
2 325.0 5.0
3 655.0 5.0
4 678.0 5.0
5 700.0 5.0
6 705.0 5.0
7 720.0 5.0
8 750.0 5.0
9 780.0 5.0

10 810.0 5.0
11 820.0 5.0

Table 6.9: Location of the pressure gauges along the domain.

pressure gauge x (m) y (m) z (m)
1 700.0 5.00 12.00
2 700.0 5.00 13.00
3 700.0 5.00 14.00
4 700.0 5.00 15.00
5 700.0 5.00 16.00
6 700.0 5.00 17.00
7 700.0 5.00 18.00
8 700.0 5.00 19.00
9 700.0 5.00 20.00
10 700.0 5.00 21.00
12 702.0 5.00 21.50
13 703.0 5.00 21.50
14 704.0 5.00 21.50
15 705.0 5.00 21.50
16 706.0 5.00 21.50
17 707.0 5.00 21.50
18 708.0 5.00 21.50
19 709.0 5.00 21.50
20 710.0 5.00 21.50
21 710.0 5.00 21.00
22 710.0 5.00 20.00
23 710.0 5.00 19.00
24 710.0 5.00 18.00
25 710.0 5.00 17.00
26 710.0 5.00 16.00
27 710.0 5.00 15.00
28 710.0 5.00 14.00
29 710.0 5.00 13.00
30 710.0 5.00 12.00
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H = 1.1 m, the same wave height as the wave retrieved from the wave series in Figure 6.13, is
simulated. The second wave is a constant bore-like wave 4 times higher than the previous one,
with H = 4.4 m. The constant bore-like wave cases are used to simulated the peak of the flooding,
in which the wave is shorter and arrives faster, and its effect and impact on the studied structures
can be perceived more quickly. The third case simulated is the main N-wave of the time series
from Figure 6.11.

With these 2DV simulations we aim to investigate what happens to the tsunami waves, when
reaching the marina of Cascais, considering that the direction of the tsunami waves propagation
did not change.
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6.2.4.1 Propagation of a H = 1.1 m constant tsunami like wave

A constant tsunami-like wave with H = 1.1 m (Figures 6.19 and 6.20) was generated into the
domain of the marina of Cascais in a 2DV simulation (Figure 6.21). The total run time was 311 s
and ∆t = 1 s. Its shape starts transforming right after the generation, with the propagation over the
slope, with the increase of the wave height. In the propagation the wave reaches 2.5 m. Around
30 s after the beggining of the simulation, it is possible to observe the wave generated propagating
against the breakwater and waves reflecting back (Figures 6.22 and 6.23). The wave rises between
30 s and 1 min 30 s after its generation into the domain, dissipating after a while. With this H =
1.1 m constant tsunami like wave there is no overtopping of the breakwater, with the impact of the
wave been absorbed by the breakwater. The pressures registered against the breakwater wall vary
between 4 and 20 kPa (Figures 6.24 and 6.25).
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Figure 6.19: Surface wave elevation time series of a H = 1.1 m constant tsunami like wave.
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Figure 6.20: Velocity time series of a H = 1.1 m constant tsunami like wave.
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Figure 6.21: Spatial evolution of the wave propagation of a H = 1.1 m constant tsunami like wave
over the marina of Cascais, at time instants a) 47 s, b) 1 min and 10 s and c) 1 min and 30 s.
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(a) wave gauge 1 (x = 5 m)
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(b) wave gauge 2 (x = 325 m)
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(c) wave gauge 3 (x = 655 m)

Figure 6.22: Temporal evolution of the wave propagation of a H = 1.1 m constant tsunami like
wave over the marina of Cascais
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(a) wave gauge 4 (x = 678 m)
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(b) wave gauge 5 (x = 700 m)

Figure 6.23: Temporal evolution of the wave propagation of a H = 1.1 m constant tsunami like
wave over the marina of Cascais
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(a) pressure gauge 1
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(b) pressure gauge 2
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(c) pressure gauge 3
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(d) pressure gauge 4

Figure 6.24: Temporal evolution of the pressure of a H = 1.1 m constant tsunami like wave over
the marina of Cascais.
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(a) pressure gauge 5
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(b) pressure gauge 6
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(c) pressure gauge 7

Figure 6.25: Temporal evolution of the pressure of a H = 1.1 m constant tsunami like wave over
the marina of Cascais.
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6.2.4.2 Propagation of a H = 4.4 m constant tsunami like wave

We took the same wave from the previous case study and increased its wave height by 4 times.
We now have a constant tsunami like wave with H = 4.4 m (Figures 6.26 and 6.27), which was
generated into the domain of the marina of Cascais. The total run time was 311 s and ∆t = 1 s.

From Figures 6.28 to 6.30 we observe the wave height increasing in the first meters of the
domain, with reflected waves appearing in the free surface time series, stabilizing in the small
slope at gauge 3, with about 8 m. Looking to wave gauge 6 and wave gauge 7 we see that on the
breakwater crest the wave reaches around 2 m and 6 m just right after the breakwater. The tsunami
waves reach the technical pier wall, flooding the area with about 2 to 3 m height (wave gauge
11). It is possible to observe from Figure 6.31 the tsunami wave arriving around 1 min after the
beggining of the simulation, and starting to overtop the breakwater less than 10 s later. In Figure
6.32 we see that the continuous tsunami like wave is filling the area between the breakwater and
the technical pier wall. Velocity magnitude is higher in the leeward side of the breakwater wall,
starting to increase to increase around 72 s after the beginning of the simulation (Figures 6.34 to
6.35).

Numerical pressure gauges were placed along the breakwater walls and crest (Figure 6.16).
The analysis of the instantaneous pressure distribution along the breakwater showed that the pres-
sures vary between a minimum of around 20 KPa on the breakwater crest, 40 kPa on the leeward
side of the breakwater, with the maximum pressure reaching 50 kPa at the seaward side of the
breakwater (Figure 6.40). This pressure implies the possible occurrence of a big impulsion on the
breakwater, which could be sufficient to move or even to take down parts of the structure. The
time frame of biggest overturning for the structure can be considered occurring after 1 minute of
computation of the tsunami wave. In the time interval when we observed that the velocity magni-
tude was higher in the leeward side of the breakwater, we also observed negative pressure values
on the leeward side of the breakwater. These pressure values are most critical to the structure, as
the breakwater is subject to strain forces, which should be further analysed. The streamlines are
shown in Figures 6.37 to 6.39. We can observe the vortex shape on the slope and high velocity
magnitudes on the leeward side of the breakwater.

The pressure field distribution along the sides of the breakwater, for t = 1.6 min, is shown in
Figure 6.41. We see that the pressure in the walls of the breakwater (seaward side, leeward side,
breakwater crest) has a hydrostatic distribution.
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Figure 6.26: Surface wave elevation time series of a H = 4.4 m constant tsunami like wave.
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Figure 6.27: Velocity time series of a H = 4.4 m constant tsunami like wave.
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(a) wave gauge 1 (x = 5 m)
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(b) wave gauge 2 (x = 325 m)
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(c) wave gauge 3 (x = 655 m)
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(d) wave gauge 4 (x = 678 m)

Figure 6.28: Temporal evolution of the wave propagation of a H = 4.4 m constant tsunami like
wave over the marina of Cascais.
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(a) wave gauge 5 (x = 700 m)
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(b) wave gauge 6 (x = 705 m) — located on the breakwater crest
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(c) wave gauge 7 (x = 720 m)
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(d) wave gauge 8 (x = 750 m)

Figure 6.29: Temporal evolution of the wave propagation of a H = 4.4 m constant tsunami like
wave over the marina of Cascais. Breakwater crest level (—).
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(a) wave gauge 9 (x = 780 m)
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(b) wave gauge 10 (x = 810 m)
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(c) wave gauge 11 (x = 820 m) — located on the top of the technical pier

Figure 6.30: Temporal evolution of the wave propagation of a H = 4.4 m constant tsunami like
wave over the marina of Cascais. Technical pier top level (—).
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Figure 6.31: Spatial evolution of the wave propagation of a H = 4.4 m constant tsunami like wave
over the marina of Cascais, at time instants (top to bottom): 55 s, 61 s, 66 s and 68 s.
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Figure 6.32: Spatial evolution of the wave propagation of a H = 4.4 m constant tsunami like wave
over the marina of Cascais, at time instants (top to bottom): 70 s, 72 s, 75 s and 83 s.
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Figure 6.33: Spatial evolution of the wave propagation of a H = 4.4 m constant tsunami like wave
over the marina of Cascais, at time instants (top to bottom): 126 s, 142 s, 155 s and 183 s.
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Figure 6.34: Velocity vectors (m/s) of the wave propagation of a H = 4.4 m constant tsunami like
wave over the marina of Cascais, at time instants (top to bottom): 54 s, 61 s, 66 s and 68 s.
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Figure 6.35: Velocity vectors (m/s) of the wave propagation of a H = 4.4 m constant tsunami like
wave over the marina of Cascais, at time instants (top to bottom): 70 s, 72 s, 75 s, 83 s and 98 s.
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Figure 6.36: Velocity vectors (m/s) of the wave propagation of a H = 4.4 m constant tsunami like
wave over the marina of Cascais, at time instants (top to bottom): 126 s, 142 s, 155 s and 183 s.
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Figure 6.37: Streamlines (m/s) of a H = 4.4 m constant tsunami like wave over the marina of
Cascais. Time instants (top to bottom): 54 s, 61 s, 66 s, 68 s.
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Figure 6.38: Streamlines (m/s) of a H = 4.4 m constant tsunami like wave over the marina of
Cascais. Time instants (top to bottom): 70 s, 72 s, 75 s, 83 s, 98 s.
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Figure 6.39: Streamlines (m/s) of a H = 4.4 m constant tsunami like wave over the marina of
Cascais. Time instants (top to bottom): 126 s, 142 s, 155 s, 183 s.
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(a) Seaward side (pressure gauge 8)
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(b) Breakwater crest (pressure gauge 15)
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(c) Leeward side (pressure gauge 23)

Figure 6.40: Temporal evolution of the pressure at three locations of the breakwater (seaward side,
breakwater crest, leeward side) of a H = 4.4 m constant tsunami like wave.
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(a) Seaward side

(b) Breakwater crest
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Figure 6.41: Pressure distribution on the breakwater (seaward side, breakwater crest, leeward side)
of a H = 4.4 m constant tsunami like wave, for t = 1.6 min.
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6.2.4.3 Propagation of a leading depression N-wave

To further understand the effects of tsunami waves in the marina of Cascais area, we took a part of
the time series in Figure 6.11, from the simulation described in the beggining of this Chapter, and
extracted the time series corresponding to the time interval between 48 and 63 minutes. This wave
profile corresponds to a leading depression wave (LDN) with a wave height of about 1.5 m. As
in the previous case study, we increased the wave height by 4 times (H = 6 m). The free surface
elevation and velocity time series are plotted in Figures 6.42 and 6.43. The total run time was 715
s and ∆t = 1 s.

The wave height increases in the first meters of its propagation, and the wave crest amplitude
becomes larger than 8 m. Trough to crest, the wave height becomes close to 10 m. For the next
700 m of propagation, the wave crest elevation becomes almost constant, while the wave trough
amplitude increases by about 0.5 m (see Figure 6.44). The wave crest becomes flatter as well. The
quick change of the free surface elevation profile in the first 5 meters (with a wave height increase
greater than 20%) is probably a readjustment of the solution, so that the free surface elevation
and the velocity are compatible, since the velocity introduced is not a physical velocity. In fact,
the formulation used assumes constant velocity from the bottom to the water surface. When this
compatibility between the free surface elevation and the velocity is reached, the wave has already
adapted and the wave height remains constant, as observed until the 700 m. Looking at wave
gauges 6 and 7, we notice that the wave overtops the breakwater with a water blade about 1 m
deep. When this blade reaches the marina basin, it becomes a 5 m high wave (see Figure 6.45).
The marina technical pier is inundated, and the water reaches a depth of 1 m on top of it (see
Figure 6.46). The tsunami reaches the breakwater crest around 7 min 15 s after the beggining
of the simulation (Figure 6.47). The tsunami overtops the breakwater and fills the area between
the breakwater and the technical pier wall. Velocity magnitude is higher in the leeward side of
the breakwater wall, starting to increase around 7 min 15 s after the beginning of the simulation
(Figures 6.50 and 6.51). After 10 min the wave reaches the technical pier wall, overtopping and
flooding the pier. The streamlines are shown in Figures 6.53 to 6.55. A vortex is clearly identifiable
over the seaward side berm of the breakwater. A second vortex is observed on the leeward side of
the breakwater.

Numerical pressure gauges were placed along the breakwater walls and crest (as shown in
Figure 6.16). Analysis of the instantaneous pressure distribution along these surfaces showed that
the pressures on the crest decrease from the seaward to the leeward side, becoming negative, i.e.
below atmospheric pressure, at the inner end of the crest and at the upper end of the leeward
wall of the breakwater (cf. Figure 6.57). The vortices and recirculation effects observed on both
sides of the breakwater point to the possible occurrence of scouring, sand suspension and erosion,
and consequent deballasting of the structure. This, together with the large positive pressure on
the seaward side of the breakwater and the negative pressure recorded on the leeward side of the
breakwater, may induce the collapse of the structure.
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Figure 6.42: Surface wave elevation time series of a H = 6 m leading depression N-wave.
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Figure 6.43: Velocity time series of a H = 6 m leading depression N-wave.
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(a) wave gauge 1 (x = 5 m)
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(b) wave gauge 2 (x = 325 m)
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(c) wave gauge 3 (x = 655 m)
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(d) wave gauge 4 (x = 678 m)

Figure 6.44: Temporal evolution of the wave propagation of a leading depression N-wave over the
marina of Cascais.
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(a) wave gauge 5 (x = 700 m)
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(b) wave gauge 6 (x = 705 m) — located on the breakwater crest
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(c) wave gauge 7 (x = 720 m)
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(d) wave gauge 8 (x = 750 m)

Figure 6.45: Temporal evolution of the wave propagation of a leading depression N-wave over the
marina of Cascais. Breakwater crest level (—).
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(a) wave gauge 9 (x = 780 m)
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(b) wave gauge 10 (x = 810 m)
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(c) wave gauge 11 (x = 820 m) — located on the top of the technical pier

Figure 6.46: Temporal evolution of the wave propagation of a leading depression N-wave over the
marina of Cascais. Technical pier top level (—).
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Figure 6.47: Spatial evolution of the wave propagation of a H = 6 m over the marina of Cascais,
at time instants (top to bottom): 5 s, 220 s, 400 s and 434 s.
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Figure 6.48: Spatial evolution of the wave propagation of a H = 6 m over the marina of Cascais,
at time instants (top to bottom): 457 s, 482 s, 524 s and 562 s.
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Figure 6.49: Spatial evolution of the wave propagation of a H = 6 m over the marina of Cascais,
at time instants (top to bottom): 608 s, 625 s, 696 s and 714 s.

224



Figure 6.50: Velocity vectors (m/s) of the wave propagation of a H = 6 m over the marina of
Cascais, at time instants (top to bottom): 431 s, 435 s, 440 s and 450 s.
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Figure 6.51: Velocity vectors (m/s) of the wave propagation of a H = 6 m over the marina of
Cascais, at time instants (top to bottom): 466 s, 485 s, 500 s and 545 s.
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Figure 6.52: Velocity vectors (m/s) of the wave propagation of a H = 6 m over the marina of
Cascais, at time instants (top to bottom): 615 s, 690 s and 715 s.
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Figure 6.53: Streamlines (m/s) of a leading depression N-wave over the marina of Cascais. Time
instants (top to bottom): 431 s, 435 s, 440 s, 450 s.
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Figure 6.54: Streamlines (m/s) of a leading depression N-wave over the marina of Cascais. Time
instants (top to bottom): 466 s, 485 s, 500 s, 545 s.

Figure 6.55: Streamlines (m/s) of a leading depression N-wave over the marina of Cascais. Time
instants (top to bottom): 615 s, 690 s, 715 s.
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Figure 6.56: Temporal evolution of the pressure at three locations of the breakwater (seaward side,
breakwater crest, leeward side) of a leading depression N-wave.
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Figure 6.57: Pressure distribution on the breakwater (seaward side, breakwater crest, leeward side)
of a leading depression N-wave, for t = 8.2 min.
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6.3 Discussion

6.3.1 Simulations in 2DV

In these 2DV simulations we aim to investigate what happens for three tsunami-like wave sce-
narios, using the combined model CM and specifically the CFD code OpenFOAM and olaFlow
module, considering that the direction of the tsunami waves propagation does not change.

The simulation include the propagation of the tsunami waves over a 650 m-long slope and
the 50-m wide breakwater berm, and the impact on the breakwater of the marina of Cascais, its
overtopping and the subsequent flooding of the marina basin and of the technical pier.

Two of the scenarios feature a tsunami-like wave with a constant wave height, which is based
on the peak of a tsunami wave with a large wavelength. The objective of these scenarios was to
investigate and learn what happens at the peak of the flooding of the tsunami wave, disregarding
the higher frequency oscillations and focusing on the first order interactions of the tsunami wave
with the surrounding areas and structures.

In scenario 1 (section 6.2.4.1), the tsunami wave has H = 1.1 m and in scenario 2 we have
a larger wave with H = 4.4 m (section 6.2.4.2). In both scenarios, a very steep tsunami wave
with a very long wavelength was considered. The third case study, scenario 3, features a leading
depression N-wave with H = 6 m (section 6.2.4.3), 4 times higher than the original wave (Figure
6.11).

The large continuous tsunami wave with H = 4.4 m proved to be the most destructive tsunami
wave of the three cases tested. In both scenarios 2 and 3, the tsunami waves overtop the breakwater,
and the technical pier area is flooded. In both scenarios two large vortices are present, one in the
seaward side of the breakwater and the other vortex on its leeward side. On both cases, negative
pressures were recorded on the leeward side of the breakwater. These negative pressures are higher
in scenario 2.

These negative pressures associated with the presence of the vortices, which might cause the
occurrence of scouring, sand suspension and erosion of the breakwater foundation, may undermine
the stability of the breakwater and lead to its possible failure. The maximum recorded pressure
is about 50 kPa, registered on the seaward side of the breakwater. These high-pressure values
are largest during the very first wave impact on the breakwater, lasting for about 4 min for both
scenarios 2 and 3.

On this 2DV simulation there is no way for the water to leave the marina basin after entering
it. Under these conditions, in the scenarios where there is an overtopping of the breakwater by the
tsunami wave, the water level in the marina basin does not return to the pre-tsunami level. For an
investigation of the duration of flooding time, a full 3D simulation is needed.

This kind of analysis is possible to perform with the CFD code used, but not possible with the
Boussinesq model used in this work. The Boussinesq model accurately simulates wave breaking
and flooding but cannot detail the full overtopping features of the tsunami waves, namely the
pressure distribution on the breakwater, nor the turbulence features of the fluid flow.

The 2DV simulations will ignore some 3D effects, such as currents generated along the break-
waters and the 3D patterns of the vortices that may lead to asymmetric erosion along the break-
water walls. In addition, flooding of the marina basin will also occur due to the overtopping of the
southeast breakwater. Finally, the effect of the northeast marina entrance is also overlooked. How-
ever, we believe that this 2DV analysis, although limited, can prove quite useful on a breakwater
stability analysis of the breakwaters in the event of a tsunami impact.

The results here presented can be used to study the potential causes and impacts of tsunami
waves on breakwater structures, such as the Cascais breakwater and other breakwaters in Portugal.
We show that this can be done in 2DV, more quickly than in 3D, where it takes too long to run.
The scale of the problem is observable both in 2DV and 3D. The study of the breakwater failures
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can be extended after this work.

6.3.2 Tsunami modelling uncertainties and the applied numerical models

Here are presented a series of factors that affect the modeling of tsunamis, factors that are generally
and specifically related to the work developed in this thesis and to the research work that has been
presented here.

• Every numerical model applied in the tsunami modelling has its strengths and flaws. The
numerical model GeoClaw, used in the first part of the combined model in this PhD thesis
for the generation and propagation of tsunamis, models tsunamis using the shallow water
equations. The SWE are only an approximation of the three-dimensional water dynamics,
found to be accurate enough to model the tsunami lifecycle stages. The choice of applying
FUNWAVE-TVD, a Boussinesq model, afterwards had its strength in its ability to model
the dispersive nature of the tsunami wave propagation. The modelling of the 3D tsunami
waves interaction with the coast was chosen to be performed by OpenFOAM, as it is a well
established CFD model, widely used in the scientific community. The great challenge was
to model real tsunami waves, for a real coastal domain. However, the application of the
CFD code to a real tsunami event, and the preparation of the essential elements necessary to
perform the CFD simulation, were not as straighforward as in the other models applied to
achieve the final combined model. Yet, the aspect offered by the CFD code in terms of the
three-dimensional modelling, including turbulence and wave-structure interaction, was the
strength of this option.

• The first step in the tsunami modelling of an earthquake event is of course related to the
generation phase, which is dependent on the seismic source definition and its characteristics
(Dias et al. 2014). It is defined by some as the major source of uncertainty in the tsunami
modelling results (Adams et al. 2020). Although it is out of the scope of this thesis, this has
to be referred to here, as it is an important factor that affects the numerical modeling results
and its analysis.

• Although it is a standard practice in tsunami modelling to assume the mean sea level tide
level stage, it would have been interesting to perform and show results for this same study
with other tide levels and for larger tide levels that can occassionally occur. The influence
of the several tide stages in the tsunami modelling output results is important for the coastal
impact analysis.

• The final objective of the combined model was to model the complex interaction of the
tsunami waves with the coastal vegetation and existing structures. With the CFD code and a
bathymetric and topographic grid of the Cascais area, we managed to understand the range
of heights, tsunami velocities and pressure impact in the Cascais marina area. Even so, it
would be a major improvement to this research work to perform the CFD modelling with a
grid which would consider the existent in situ buildings and structures. This was attempted
for at an early stage of the CFD modelling task, but did not advance.

• A factor that is not taken into account in tsunami modelling, as it is extremely complex and
random, is the consequent modification of both the bathymetry and the topography (Adams
et al. 2020). The amount of natural and/or artificial material can reduce the tsunami energy
and the fluid flow patterns, changing the final coastal impact.
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6.3.3 The challenges of the fully tsunami combined model

Several types of challenges were found in the development of the combined model concept. First
of all, there are the existing limitations of each individual model used. When possible, the recog-
nised limitations were easily and directly overcome (e.g., FUNWAVE-TVD’s absence of an inner
code tsunami generation mechanism). Other problems were not readily or easily identified (e.g.,
CFD simulations that advanced and ended without recording any errors), so their determination
and understanding ended up limiting the time scope of the study in question.

Next, we will summarize the obstacles, difficulties and flaws encountered in each phase and,
when possible, what approach was followed to overcome the aspects described.

6.3.3.1 Combined Model 1 (CM1)

Combined model 1 is obtained through the coupling of GeoClaw with FUNWAVE-TVD. The
direct passage of data between models is performed for a certain output time instant from the
GeoClaw’s simulation. The time instant was chosen from an interval ranging from 5 to 10 minutes
after the beginning of the tsunami wave propagation. It was assumed that as the tsunami waves
propagate quite rapidly, within this 5 min time interval, the tsunami generated waves are fully
developed and that the propagation is no longer subject to source area influence after this time
interval.

The time instant is selected visually from the simulation plots, for each individual simulation.
Nevertheless, this time instant should be chosen through a more weighted approach. A calibration
of the time interval should be done, according to the magnitude, fault parameters and depth of the
earthquake event.

Yet, another aspect should be attended to: the earthquake proximity to the coastal zones. As
seen in the Mw 8.5 earthquake and tsunami event hitting the Portuguese coast (section 6.2.3), for
very large earthquakes with such proximity, another method has to be adopted for the time instant
selection for the data passage between GeoClaw and FUNWAVE-TVD. In the event studied, a
time instant of 2 min was chosen to account for the short earthquake source–coast distance. This
very short distance event was chosen to spare computational time and resources in the CM1 part.
On the other hand, it has shown that the CM1 has room for improvement.

In resume, from the simulations and results obtained we consider the 5 to 10 minutes time
interval as an acceptable interval to pass data from GeoClaw to FUNWAVE-TVD. The choice
of 2 minutes to pass data between models, for the case of a very large earthquake with short
earthquake source–coast distance, was an arguable option. Thus, this aspect of the CM1 has
margin for improvement.

6.3.3.2 Combined Model 2 (CM2)

In the coupling and data passage between CM1, via FUNWAVE-TVD, and the CFD code, the cou-
pling methodology of CM2 applies the olaFlow’s wave generating system, with the emulation of a
piston wave-maker. Thus, the boundary conditions are input using this wave generation capability
of the OF module. However, this code capability presents a flaw: it is only possible to pass the
boundary conditions retrieved from one single boundary point location in the domain. This means
that the initial wave profile retrieve from CM1, via FUNWAVE-TVD, has to be retrieved from one
single boundary point and then input and assumed constant at the inlet boundary, as a consequence
of the functioning of the waveType wavemaker (W). It is a limitation of the module capability.
Ideally, the best would be to input the time series through the waveType wavemaker, from the
olaFlow module, using the tveta (timeSeries condition), retrieved from several or all the boundary
points at the input boundary, as it would be more representative of the tsunami wave profile.
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The grid reorientation should be considered, when necessary. In the case of the simulation of
the Mw 8.5 earthquake and tsunami event hitting the Portuguese coast (section 6.2.3), the grid ex-
tracted from layer 41, to perform the numerical simulation with the CFD code, is plotted in Figure
6.10. As verified from the computation of the free surface, in Figure 6.8, the incoming tsunami
comes from the southwest. In this case, it would be more representative of the incoming tsunami
wave pattern if the computational domain (grid extracted) had an orientation coincident with the
incoming tsunami. Thus, the boundary points could coincide with the tsunami waves trajectory,
which would require the rotation of the computational grid in accordance to the trajectory.

Multi input boundaries would be another possibility but the waveType wavemaker feature
described disabled the possibility of choosing several inlets, which would improve the definition
of the input data. For the reasons presented, the free surface elevation and velocity were retrieved
from the most southwestern point, as this point is considered to be representative of the incoming
tsunami wave due to wave directivity.

6.3.3.3 OpenFOAM and the olaFlow module related

There are several different aspects from the OpenFOAM (OF) code that present some time-
consuming challenges, which can unfortunately pose continuous difficulties, not so simple to
solve.

When compared to the other models used in this combined model, OF was the code that
presented a great number of adversities and most time was spent in solving the problems associated
with its proper functioning. For that reason, we extend the discussion on the tackling of some of
the problems faced with the code and also on how these problems were dealt with and overcome
during this research work.

6.3.3.3.1 Mesh generation and conversion

In general, for simple geometry problems, the use of the blockMesh to generate simple meshes
of blocks of hexahedral cells is almost straightforward. The only aspect that needs to be paid more
attention to are the specifications in the blockMeshDict file, concerning all the parameters of
the blocks, specially the definition of the boundaries. For applications with bigger geometries, a
simple block assembling script should be used, in order to avoid errors in the specifications of the
parameters.

In some computational problems, it is necessary to use the snappyHexMesh tool, so diffi-
culties can arise, especially for non-symmetric geometries. The snappyHexMesh tool generates
complex meshes of hexahedral and split-hexahedral cells, automatically from triangulated surface
geometries.

When the computational domain is complex, it is necessary to make its correct conversion,
in order to obtain an adequate computational mesh to perform the numerical simulation. There
are some mesh conversion utilities that generate meshes using other packages and convert them
into the format that OpenFOAM uses. Please refer to the manual to check the more popular mesh
converters available.

In the case of the work developed in this PhD, the computational domains to be used in the
CFD simulations were in ASCII file format. It concerned the bathymetric and topographic data and
also the data from the digital terrain or elevation model (DTM or DEM). For the information to be
recognized by the OpenFOAM code, the terrain data has to be processed into the STL format, as
this format is required to work with the snappyHexMesh for the mesh creation. This conversion
process is not supported by any OF mesh converters available.

A relevant aspect that should be noted is that it is possible to have the checkMesh tool
reporting great quality mesh results and the surface of the computational mesh looking visibly
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wrong, e.g. with "bridges" between distinct edges. It is possible that the mesh refinement per-
formed is not enough. To obtain a high quality and most exact surface in the computational mesh,
when compared to the original STL file, it is necessary to have high cell and/or high surface res-
olution, and also to provide enough refinement levels when using snappyHexMesh. Besides
snappyHexMesh, it is also important to check surfaceFeatureExtract. After this pro-
cess, the STL file is always verified in Blender software (version 2.7.9†) in terms of dimensions
and orientation, to guarantee correct vertices specifications in theblockMeshDict dictionary.

6.3.3.3.2 Wave generation

Comparing with the time series duration of several benchmark case studies, e.g. the Monai Val-
ley benchmark, the challenge arised with the input time series to simulate the real case event, as
the Mw 8.5 Earthquake and Tsunami hitting the Portuguese coast (this chapter). The time series
is input through the waveType wavemaker from the olaFlow module and the tveta (time-
Series condition) is used. As we are modelling real incoming tsunami waves in a real bathymet-
ric/topographic layer, with ∆t = 0.05 s, the input time series, provided by CM1, is quite long.
Looking to the time series in Figure 6.11, we see that the first wave lasts around 30 minutes, the
second wave around 16 minutes and the third wave around 12 minutes. Using the complete time
series as an input condition to the CFD code revealed to be a problem, as the program became idle
after some hours and/or days, without writing any output results. We suppose that the extent of the
time series, longer than the expected or usual time series size, combined with the large complex
computational domain, clashed with the available cache memory, inactivating the program after
some time of numerical simulation.

6.3.3.3.3 Computational limitations of the CFD numerical simulations

As a sort of a wrap-up, a short-list of the computational limitations found in OpenFOAM are
presented next, complemented by some ideas worth exploring:

• The definition of the computational domain size for the computational fluid dynamics study,
its initial file format and the mesh conversion are important steps, that require a preliminary
study. It can take some time and several tests, so the starting point should be to perform
short simulations with smaller domains, to tackle the problems step by step; only afterwards,
after every problem has been overcome, should the user increase the level of difficulty of
the problem to solve.

• If the grid where our numerical problem has to be solved is very big, that means that we will
have to deal with a very big computational domain. The size of the grid has to be well eval-
uated, due to the time-consuming and resources necessity that such a condition demands.
In this research work, this aspect caused long delays during the CFD modelling stage. The
computational domain used for the simulation had to be continuously changed/reduced and
redefined several times, as its size was overwhelming for the CFD code.

• A large total number of cells results in a good grid resolution. Nevertheless, the greater
the number of cells, the longer the simulation takes and a greater volume of output results
is obtained. This can be very hard to deal with also in terms of the pos-processing stage
(reconstruct the results, sampling of variables, visualization of results with Paraview, etc).

• The size of the initial time series was found to influence the computational response of the
CFD code. At first, a very large time series of the free surface elevation was used in the

†
https://www.blender.org
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simulations (Figure 6.11) and this would cause out of memory problems after some days of
simulation, without writing any output results from the simulation. Therefore, after several
simulation attempts it was chosen to reduce the input time series to 1/5 of its original size,
which was found to make the numerical simulation advance. For future reference, it would
be interesting to determine the simulation feasibility of an input time series composed by
the first N-wave and second wave observed (extracted from the original input time series).

• An important aspect that must be taken into account is the correct definition of the back-
ground mesh. It is possible for the simulation to appear to run normally, even if the back-
ground mesh is not well defined. The simulation ends without any error and the only sign
that something is wrong is that no output results have been written.

• When the computational domain is large and a small output time interval is required, the
volume of output results can be quite big. For instance, for a total simulation time of 20 s
and a domain with more than one million cells, with a time interval of 0.5 s for the output
results and a parallel simulation, the volume of output results, in compressed format, can
reach around 300 Gb. In terms of post-processing, this aspect can be quite demanding in
terms of time, disk capacity and of course graphics card, which may crash often, specially
in the OpenFOAM post-processing with ParaView.

• The determination of the inundation extent, the flow depths, the run-in and the run-up caused
by the tsunami, in the reduced layer 41 simulation, was not retrieved due to the several
computational problems encountered. This kind of procedure was computationally very
demanding, due to the large area mapped and correspondent retrieval of results. This pro-
cedure was attempted but did not succeed, as we could not recover complete results for the
whole simulation area. This methodology has to be further looked into, developed and/or
improved.

• Both turbulence and porosity modelling could not be considered in the simulation presented
in this chapter, due to high computational resources requirement related to the (still) large
computational domain. It caused a highly variable simulation speed. Although the Cascais
marina would justify the inclusion of porosity, it was chosen to disregard it from the beggin-
ing of the study onwards and apply it at a later stage and/or as future work, as long as more
computational resources are available for this purpose.
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Chapter 7

Final considerations, conclusions and

future work

It was proposed in this thesis to develop a fully combined tsunami model, that would be able to
simulate the several tsunami stages, from the generation phase to the tsunami coastal interaction.

With the combined model developed, which is composed by GeoClaw, FUNWAVE-TVD and
OpenFOAM/olaFlow, it was possible to simulate both laboratorial and real case type tsunami
events.

The new combined model developed in this work allows for: the generation, propagation and
simulation of earthquake triggered tsunamis using in a first stage the nonlinear shallow water
model GeoClaw; the tsunami propagation, transformation, dispersion and breaking using the dis-
persive Boussinesq type model FUNWAVE-TVD; and finally the OpenFOAM CFD code, via the
olaFlow module, for the modelling of the complex interaction of tsunami waves with the nearshore
coastal area.

The development of the combined model was divided in two main phases: the development
of the combined model 1 (CM1), composed by GeoClaw and FUNWAVE-TVD, and the devel-
opment of the combined model 2 (CM2), composed by CM1 and the OpenFOAM CFD code,
via the olaFlow module, which resulted in the final combined tsunami model (CM). Firstly, all
the numerical codes were individually benchmarked. The benchmarking of the applied numerical
codes was performed with both numerical and physical test cases (Chapter 3). In this work, several
physical experiments were carried out at the LH-FEUP (Laboratory of Hydraulics of the Faculty
of Engineering of the University of Porto), in order to generate both solitary and N-waves.

The most used method for the generation of solitary waves in a laboratory is based on the
first-order wave-maker theory of Goring (1978) and Goring and Raichlen (1980) for a piston-type
wave-maker. For the generation of N-waves in a wave flume, by means of a piston wave-maker,
a novel first-order theoretical formulation had to be developped in this thesis and was presented.
The expressions for the piston trajectory, velocity and acceleration were derived, as well as the
expressions for the paddle stroke, the stroke period, and the maximum paddle velocities. Limits
for the initial paddle velocity and acceleration were established. LDN-waves with relative wave
heights between 0.19 and 0.60 were generated in the laboratory and classified into three groups,
according to their Stokes parameter. The generated longer waves presented the best results when
compared with the expected Tadepalli–Synolakis N-wave profiles.

From the large-scale physical experiments, we found that for both solitary and LDN-waves
the measured wave height H was systematically less than what was initially expected, when com-
paring with the theory and with the numerical simulations using the theoretical wave profile as
input. The wave celerity formulations adopted for the solitary and N-waves proved to be adequate,
when comparing measurements and simulations with olaFlow. Applying the Stokes number, it
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was found that most waves seemed to have a mixed behaviour, between short Boussinesq waves
and long-non Boussinesq waves. Part of the solitary waves showed a behaviour closer to short
Boussinesq waves and part of the N-waves showed a long non-Boussinesq waves behaviour.

Experimental run-in and run-up measurements were retrieved for both solitary waves and N-
waves. Maximum run-in values were established for different intervals of H/d. For H/d > 0.6,
the wave breaking causes a great loss of energy in the N-waves generated and we found that, for
these experimental conditions, the run-in was limited to 4 m. Based on our physical experiments,
we proposed run-in and run-up laws for solitary waves and N-waves respectively. It should be kept
in mind that the experimental measurements were retrieved for a beach with two different slopes,
which is a special case and distinct from what is usually presented in the literature (single slope).
The comparison between the experimental measurements and the results of the simulations showed
overall good agreement for both solitary and N-wave studied, although there is an underestimation
of the numerical wave height and run-in. Disparity was verified between the pressure laboratory
measurements and the simulations results, which should be further investigated.

In the first part of the combined model 1 development (Chapter 5), a coupling methodology
between the individual models was developed, based on the output information extracted from
a refined covered gauge domain from the 2DH NSWE model simulation. After manipulation of
the data, water kinematic (u,v) and free surface (η) fields were transferred to the fully nonlinear
Boussinesq model. Verification and testing of the adopted coupling methodology were performed,
with good fitting results.

In the second part, the 2015 Illapel Earthquake and Tsunami event was used to benchmark the
CM1. The model computed quite well the first arrivals at the DART gauges, simulating satisfac-
torily the dispersive components of the tsunami waves, the waveform observations and tsunami
travel times. From the methods used to evaluate the quality of the results obtained and from the
Fourier and wavelet analysis performed, this benchmark case study showed the good performance
quality of the CM1. The nesting capability existent within the combined model was presented for
the 1969 Portugal Earthquake and Tsunami (1969 PET).

In the first part of the combined model 2 development, a coupling methodology to combine
the CM1 (via the FUNWAVE-TVD model) with OpenFOAM (via the olaFlow module) was pre-
sented. It was found that the most simple way to couple both codes was to take and convert the
time series output from FUNWAVE-TVD/CM1 and apply it in olaFlow, using the timeSeries con-
dition available within olaFlow. The construction of the waveDict file has to follow a data format
accepted by olaFlow, where it is mandatory the specification of the waveType wavemaker and
the waveTheory tveta or other. The combined model methodology applied the timeSeries con-
dition, used to simulate the Monai valley benchmark. This methodology resulted in the Combined
Model 2 (CM2).

The coupling of the CM1 and CM2 models resulted in the final combined tsunami model,
CM. The simulation results obtained using the CM were presented in Chapter 6 for a Mw 8.5
Earthquake and Tsunami hitting the Portuguese coast. We show that with a 2DV CFD simulation
focused on the Marina of Cascais bathymetric and topographic profile it was possible to understand
the consequence of three diferent tsunami waves scenarios and to observe the vortices behind the
breakwater. The capacity of the combined model to cover the tsunami stages was shown. It was
possible to retrieve the free surface elevation of the tsunami waves registered, velocities and to
perform a pressure analysis.

The final combined tsunami model gathered some interesting features from each numerical
code used, tackling some of the existing problems and challenges of tsunami science. Using the
GeoClaw code, it was possible to use the tsunami generation module within the code and more
importantly to take advantage of GeoClaw’s capability of applying block-structured adaptive mesh
refinement in time and space (George and LeVeque, 2006; LeVeque and George, 2007), by em-
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ploying finer grid resolutions in regions of interest. This was used for the coupling methodology
between GeoClaw and FUNWAVE-TVD to obtain the CM1. The frequency dispersion in long dis-
tance tsunami propagation was dealt with the fully nonlinear Boussinesq model FUNWAVE-TVD.
To tackle the modelling of the nearshore processes in two-dimensional domains and determine the
tsunami interaction with coastal structures and surrounding areas, we used the OpenFOAM code
and the olaFlow solver.

The fully combined tsunami model achieved in this work is a novelty, since it is composed
by a sequence of distinct numerical models, and can be extended to include the three-dimensional
component granted by the CFD code. With this combined model, it is possible to perform the sim-
ulation of real case tsunami events and hypothetical scenarios, applying real or synthetic tsunami-
type wave profiles, studying and researching the impact and tsunami interaction with coastal areas,
such as in a coastal city as Cascais.

As future work, the following tasks are suggested:

• perform the final case study in three dimensions, as one of the gains from the 3D simulation
is that the flow around the breakwater can be analysed;

• perform simulations for more scenarios with larger tsunami waves and extent the vortices
analysis around the breakwater, also testing with different turbulence models;

• apply the final combined tsunami model using several separated patches of the original
time series from the CM1 in the CFD code part, to understand the possible different results
obtained with distinct tsunami wave profiles. This analysis can be used to extend the obser-
vations and conclusions presented in Chapter 6 for the Cascais coastal area, complementing
the information collected in this case study;

• apply the final combined tsunami model with turbulent regime, for a reduced part of the
Cascais domain, using the κ− ω SST turbulence model and the κ− ε turbulence model for
comparison of results;

• implement the computational study taking into account the existing buildings and its char-
acteristcs, determining forces applied and possibly the expected resulting damage;

• extend the final combined model to be able to retrieve wave inundation, run-in and run-up
estimates. It would be also useful to determine how the tsunami water inlet/surges affects
the coastal and urban areas and river courses, and the complex patterns of the on land prop-
agation and fluid flow interactions with the structures and vegetation;

• development of an user interface for the final combined tsunami model, based on the in-
dividual settings of the combined numerical codes applied and computational simulations,
to streamline all the processes necessary to perform the simulations and obtain the final
combined tsunami model results;

• considering the physical experiments performed and the development of the first-order the-
oretical formulation for the generation of N-waves in a wave flume, by means of a piston
wave-maker, further research should be performed for the N-waves with smaller relative
heights and larger Stokes parameters, as these are a better model for real tsunami waves.
Whenever possible, longer trajectories should be also tested. The formulation of time-
dependent wave velocity should be investigated, as it might lead to an increased accuracy in
the obtained N-wave profile.

Regarding the latter laboratorial component of the work presented, more suggestions for
future work, which should also be considered, are presented by the end of Chapter 4.
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Appendix A

Appendix to Chapter 3

A.1 GeoClaw

A.1.1 Description and input data files

Clawpack is composed by a set of Fortran based packages and simulation conditions are specified
mainly through Python scripts. Fortran is a structured, imperative, generic programming language,
classically used in numerical and scientific computing, which has evolved through successive
versions. Python (van Rossum 1995) is a high-level, object-oriented, interpreted and iterative
scripting programming language. It is a very dynamic language, with simple syntax, easy to read
and of straightforward use, with vast internal libraries and user-developed modules.

There are specific prerequisites for the installation of Clawpack*. For this thesis, the Clawpack
5.2.2 version was installed and tested with some initial basic tests. After debugging the code,
several examples included within the package and tutorials were tested, to better understand the
code functioning and the set up of the case studies. Tutorial cases for the GeoClaw module, such
as the 27th February 2010 Chile tsunami, sloshing water in a parabolic bowl and a tsunami in a
parabolic bowl shaped ocean, were tested. In general, the proper functioning of a numerical code
is guaranteed by the correct input of the initial data. As input information, the GeoClaw code
needs a topography file—which refers to both bathymetry and topography data—containing data
concerning the domain of study, and the deformation file refering to the initial disturbance which
occurs inside that specific domain. This data should be ordered from the northernmost point to the
east, and north to south. The topographic data (the so-called topo files) can be defined in ASCII and
netCDF formats. Three possible configurations of ASCII files can be used, which are distinguished
by its topotype number 1 to 3. Rectangular grids with uniform grid spacing are mandatory. These
files can be generated by the user or downloaded from specific sources: for instance, one can obtain
topography data from the National Oceanic and Atmospheric Administration (NOAA) from the
U.S. Department of Commerce website † and deformation files from the United States Geological
Survey (USGS) website ‡. As mentioned, in GeoClaw H < 0 corresponds to the bathymetry and
H > 0 corresponds to the topography, above the sea level, so the topo files should be converted
accordingly. The elevation of the topography H at each point with coordinates (x, y) is stored
in the topo file of the rectangular grid. If several overlapping grids with different resolutions are
used, a piecewise-bilinear function is applied in GeoClaw to retrieve the best available data to
construct the resultant rectangular topo grid. This function is then integrated over computational
grid cells, to obtain the single topo value in each grid cell needed when solving depth-averaged

*www.clawpack.org/
†
https://www.noaa.gov//

‡
https://www.usgs.gov/
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equations such as the SWE with these finite volume methods §. For tsunami modelling, it is
generally assumed that the sea level is 0. Nevertheless, sea level can be specified and also tide
gauges locations.

The deformation or displacement file (dtopo files), with two supported formats, dtopotype 1
and 3, can be given or created by the maketopo.py script. The dtopo file is created, correspond-
ing to the deformation of the seafloor due to an earthquake event. The location and parameters of
the fault are indicated inside the script and the deformation is generated using the Okada model.
In the Okada model, an isotropic half-space with uniform elastic moduli is assumed. The Poisson
ratio ν is taken as equal to 0.25 and the rigidity or shear modulus G is constant and often equal
to 4 × 1011 dyne/cm2 = 40 GPa. In the case studies presented in this thesis, the depth indicated
concerns the top of the fault and is specified as top center in the maketopo.py script. Although
not common, there are numerical models which are able to use a dynamic fault input, with the
information of a deformation variable in time. It can also be applied for the case of a landslide
generated tsunami. This is the case of GeoClaw, where in the generation stage one can feed a vari-
able initial deformation of the ocean sea bottom, with a dtopo file corresponding to the dynamic
fault motion, where time-dependent displacements dz are considered. Also a perturbation to the
depth, momentum, or surface elevation of the initial data, via qinit data files, is possible. A
scheme explaining the structure of GeoClaw functioning, case study files and scripts is presented
in Figure A.1.

Figure A.1: Structure of a case study simulation in GeoClaw.

The simulation parameters are set in the setrun.py script, afterwards the program is com-
piled and the results can then be plotted. GeoClaw models tsunamis with the SWE applying well
balanced conservative methods and in the nearshore inundation is modelled with shock-capturing
methods. George and Mandli (2012) pointed out the need for 10 meter resolution coastal grids
within 160 km resolution global-scale simulation domain in some tsunami inundation studies.

§
http://www.clawpack.org/tsunamidata.html
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A.1.2 Benchmark test cases

A.1.2.1 Monai Valley Benchmark: Tsunami run-up onto a complex 3D beach

Figure A.2: Bathymetric setting for the Monai Valley experiment (Adapted from Figure A24 from
Synolakis et al. 2007). It corresponds to the detailed area of Monai Valley, right after gauges 5, 7
and 9 in Figure 3.9 of this document.

245



A.1.2.2 Solitary wave on a conical island

(a)

(b)

(c)

Figure A.3: (a) Top and bottom views of the conical island (Adapted from Figure A16 from
Synolakis et al. 2007). (b) Conical island sketch. Not to scale. (Adapted from Figure A17 from
Synolakis et al. 2007). (c) Scheme with the locations of the wave gauges. Not to scale. (Adapted
from Figure A18 from Synolakis et al. 2007).
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A.2 FUNWAVE-TVD

A.2.1 Description and input data files. Parallelization of the code.

FUNWAVE-TVD Version 2.0 comes in a simple package, composed by Fortran script files, which
can be extracted anywhere in the computer. The files are compiled accordingly depending on
the tasks set to be executed, choosing for instance if the simulation is in serial or parallel. The
code has no dependencies on other programs in order to fully function, which makes it almost
ready to start using. It can be used in both Cartesian coordinates (x, y), in metres, for nearshore
wave simulations, and/or spherical coordinates (latitude and longitude), in decimal degrees, for
ocean basin scale problems. Both Cartesian and spherical versions of the code have been bench-
marked (the tests are described in Tehranirad et al. 2011 and Shi et al. 2012a, respectively), using
PMEL-135 benchmarks, provided by Synolakis et al. (2007) (see also Synolakis et al. 2008). The
input data files are in ASCII format and the parameters for the simulation are specified in the file
input.txt: the user has to specify the water depth data (and make it available by means of
a text file, if that is the case), the grid characteristics, the simulation specifications (such as the
total run time and plot time), and the initial wave profile (time series, wave-maker or other). The
depth file depth.txt has dimensions Mglob × Nglob, where the first point corresponds to the
south-west corner of the domain. Data from virtual stations located within the computation do-
main can be specified inside a station.txt file. For specific locations in the grid, the user can
retrieve the time series of the free surface elevation and the velocities, which are saved in individ-
ual stanumber files. For more details, please refer to the user manual (Shi et al., 2016, 2012c).
A scheme explaining the structure of a FUNWAVE-TVD case study is represented in Figure A.4.

Figure A.4: Structure of the simulation of a case study in FUNWAVE-TVD.

In this research work, we started by using FUNWAVE-TVD Version 2.0, which later on was
updated to FUNWAVE-TVD Version 3.0 (Shi et al., 2016). Both versions of the code were tested
by running some of the examples suggested in the manual (several examples are available with
the software package). FUNWAVE-TVD Version 3.0 was then used throughout all the work pre-
sented in this dissertation. Parallelization of the computational model is possible. The parallel
option can be set in the Makefile of the code, defined by the flag -Dparallel. Shi et al. (2012c)
used the domain decomposition technique to subdivide the domain of the problem into multiple
regions, assigning each subdomain to a separate processor core. The subdomain regions contain

247



Figure A.5: One-way nesting functioning structure in FUNWAVE-TVD.

an overlapping ghost cell area, three rows deep, according to the MUSCL-TVD scheme (Kirby
et al. 2013). The Message Passing Interface (MPI) with non-blocking communication allows the
exchange of data in the overlapping region between neighboring processors.

A.3 olaFlow

A.3.1 Meshing

The generation of the model mesh is a very delicate and critical stage. The quality of the generated
mesh will determine the quality of the results obtained from the simulation. Within OpenFOAM
there are two available tools (utilities), allowing for the generation of the problem mesh: the
blockMesh and the snappyHexMesh tools.

blockMesh is a tool for the generation of high-quality structured meshes, composed by simple
blocks of hexahedral cells, where the block edges can be defined as straight lines, arcs or splines.
The mesh is defined by the number of cells and its expansion rate in each block direction. For
simple geometry problems, it is a very simple and competent tool. However, for the case of a
problem with complex geometry features, an unstructured mesh is required and snappyHexMesh

should be used.
snappyHexMesh generates three-dimensional meshes, composed by hexahedrons. It requires

the existence of a background mesh, which can be previously generated with blockMesh. snap-

pyHexMesh is a complex and powerful tool, that can be run in parallel, and involves three steps:
the castellation, which deletes the cells located beyond a predefined region; the snapping, which
allows the reconstruction of the cells to the boundary region; the layering, which creates additional
layers in the boundary region.

There are other additional external meshing tools, such as ANSYS GAMBIT® ¶, Salome || and
cfMesh **, that require environments other than OpenFOAM.

¶
https://www.ansys.com/

||
https://www.salome-platform.org/

**https://cfmesh.com/
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A.3.2 Examples of dictionaries

A.3.2.1 wavemakerMovementDict file example - Case 6, h = 25 cm (C6a)

/*---------------------------------------------------------------------------*
| ========= |

| \\ / F ield | OpenFOAM: The Open Source CFD Toolbox

| \\ / O peration | Version: 1.3

| \\ / A nd | Web: http://www.openfoam.org

| \\/ M anipulation |

\*---------------------------------------------------------------------------*
FoamFile

{

version 2.0;

format ascii;

class dictionary;

location "constant";

object wavemakerMovementDict;

}

// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * //

// Change to true to re-read this dictionary upon restart.

reread false;

#include "wavemakerMovement.txt"

A.3.2.2 wavemakerMovement.txt file file example - Case 6, h = 25 cm (C6a)

wavemakerType Piston;

tSmooth 1.5;

genAbs 0;

timeSeries 371(

0.0

0.01

0.02

0.03

.

.

.

3.67

3.68

3.69

3.7

);

paddlePosition 1(

371(

0.00000000e+00 1.18292147e-07 2.60620972e-07 4.13747677e-07

.

.
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.

4.99996111e-01 4.99996263e-01 4.99996377e-01 4.99996508e-01

)

);

paddleEta 1(

371(

5.20879534e-14 6.31134374e-14 7.64726913e-14 9.26597054e-14

.

.

.

1.10565290e-18 9.12502930e-19 7.53094936e-19 6.21534423e-19

)

);

A.3.2.3 waveDict file example (timeSeries condition) - Monai Valley benchmark w/ olaFlow

/*---------------------------------------------------------------------------*
| ========= |

| \\ / F ield | OpenFOAM: The Open Source CFD Toolbox

| \\ / O peration | Version: 1.3

| \\ / A nd | Web: http://www.openfoam.org

| \\/ M anipulation |

\*---------------------------------------------------------------------------*
FoamFile

{

version 2.0;

format ascii;

class dictionary;

location "constant";

object waveDict;

}

// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * //

waveType wavemaker;

waveTheory tveta;

genAbs 1;

absDir 0.0;

nPaddles 1;

timeSeries 451(

0.0

0.05

0.1

0.15
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.

.

.

22.35

22.4

22.45

22.5

);

paddleVelocity

451(

-1.07320e-04 -1.70547e-05 6.66646e-05 1.41562e-04 2.05569e-04

.

.

.

6.39228e-03 7.35879e-03 8.15295e-03 8.80744e-03 9.35201e-03

);

paddleEta

451(

-1.19000e-05 -1.89122e-06 7.39300e-06 1.57000e-05 2.28000e-05

.

.

.

7.12600e-04 8.21000e-04 9.10200e-04 9.83800e-04 1.04510e-03

);

A.3.2.4 waveDict file example (timeSeries condition) - Monai Valley benchmark w/ CM2

/*---------------------------------------------------------------------------*
| ========= |

| \\ / F ield | OpenFOAM: The Open Source CFD Toolbox

| \\ / O peration | Version: 1.3

| \\ / A nd | Web: http://www.openfoam.org

| \\/ M anipulation |

\*---------------------------------------------------------------------------*
FoamFile

{

version 2.0;

format ascii;

class dictionary;

location "constant";

object waveDict;

}

// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * //

waveType wavemaker;

waveTheory tveta;
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genAbs 1;

absDir 0.0;

nPaddles 1;

timeSeries 2268(

0.0

0.0061

0.0182

0.0243

0.0365

.

.

.

22.6239

22.6339

22.6439

22.6539

22.6639

);

paddleVelocity

2268(

6.74000e-10 3.38000e-09 2.03000e-08 3.73000e-08 9.54000e-08

.

.

.

3.77000e-02 4.16000e-02 4.57000e-02 5.02000e-02 5.47000e-02

);

paddleEta

2268(

-3.10000e-08 -9.34000e-08 -3.13000e-07 -4.72000e-07 -8.84000e-07

.

.

.

2.13000e-01 2.09000e-01 2.04000e-01 1.98000e-01 1.92000e-01

);

A.3.2.5 fvSchemes file example - Case 6, h = 25 cm (C6a)

/*--------------------------------*- C++ -*----------------------------------*
| ========= |

| \\ / F ield | OpenFOAM: The Open Source CFD Toolbox

| \\ / O peration | Version: 2.3.0

| \\ / A nd | Web: www.OpenFOAM.org

| \\/ M anipulation |
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\*---------------------------------------------------------------------------*
FoamFile

{

version 2.0;

format ascii;

class dictionary;

location "system";

object fvSchemes;

}

// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * //

ddtSchemes

{

default Euler;

}

gradSchemes

{

default Gauss linear;

}

divSchemes

{

div(rhoPhi,U) Gauss limitedLinearV 1;

div(U) Gauss linear;

div((rhoPhi|interpolate(porosity)),U) Gauss limitedLinearV 1;

div(rhoPhiPor,UPor) Gauss limitedLinearV 1;

div(rhoPhi,UPor) Gauss limitedLinearV 1;

div(rhoPhiPor,U) Gauss limitedLinearV 1;

div(phi,alpha) Gauss vanLeer;

div(phirb,alpha) Gauss interfaceCompression;

div((muEff*dev(T(grad(U))))) Gauss linear;

div(phi,k) Gauss upwind;

div(phi,epsilon) Gauss upwind;

div((phi|interpolate(porosity)),k) Gauss upwind;

div((phi*interpolate(rho)),k) Gauss upwind;

div((phi|interpolate(porosity)),epsilon) Gauss upwind;

div(phi,omega) Gauss upwind;

div((phi|interpolate(porosity)),omega) Gauss upwind;

div((phi*interpolate(rho)),omega) Gauss upwind;

div((phi*interpolate(rho)),epsilon) Gauss upwind;

}

laplacianSchemes

{

default Gauss linear corrected;

}

interpolationSchemes
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{

default linear;

}

snGradSchemes

{

default corrected;

}

fluxRequired

{

default no;

p_rgh;

pcorr;

alpha.water;

}

wallDist

{

method meshWave;

}

// ************************************************************************* //

A.3.2.6 fvSolution file example - Case 6, h = 25 cm (C6a)

/*--------------------------------*- C++ -*----------------------------------*
| ========= |

| \\ / F ield | OpenFOAM: The Open Source CFD Toolbox

| \\ / O peration | Version: 2.3.0

| \\ / A nd | Web: www.OpenFOAM.org

| \\/ M anipulation |

\*---------------------------------------------------------------------------*
FoamFile

{

version 2.0;

format ascii;

class dictionary;

location "system";

object fvSolution;

}

// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * //

solvers

{

"alpha.water.*"

{

nAlphaCorr 1;

nAlphaSubCycles 2;
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alphaOuterCorrectors yes;

cAlpha 1;

MULESCorr no;

nLimiterIter 3;

solver smoothSolver;

smoother symGaussSeidel;

tolerance 1e-8;

relTol 0;

}

"pcorr.*"

{

solver PCG;

preconditioner DIC;

tolerance 1e-5;

relTol 0;

}

p_rgh

{

solver PCG;

preconditioner DIC;

tolerance 1e-07;

relTol 0.05;

}

p_rghFinal

{

$p_rgh;

relTol 0;

}

U

{

solver smoothSolver;

smoother symGaussSeidel;

tolerance 1e-06;

relTol 0;

}

cellDisplacement

{

solver GAMG;

tolerance 1e-5;

relTol 0;

smoother GaussSeidel;

cacheAgglomeration false;
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nCellsInCoarsestLevel 10;

agglomerator faceAreaPair;

mergeLevels 1;

}

cellDisplacementFinal

{

$cellDisplacement;

relTol 0;

}

"(k|epsilon|omega|B|nuTilda).*"

{

solver smoothSolver;

smoother symGaussSeidel;

tolerance 1e-08;

relTol 0;

}

}

PIMPLE

{

momentumPredictor no;

nOuterCorrectors 1;

nCorrectors 3;

nNonOrthogonalCorrectors 0;

}

relaxationFactors

{

fields

{

}

equations

{

".*" 1;

}

}

// ************************************************************************* //

A.3.3 Examples of olaflow.log

A.3.3.1 Turbulence model κ− ω SST coefficients - Case 6, h = 50 cm (C6b)

/*---------------------------------------------------------------------------*
| ========= |

| \\ / F ield | OpenFOAM: The Open Source CFD Toolbox

| \\ / O peration | Version: v1606+
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| \\ / A nd | Web: www.OpenFOAM.com

| \\/ M anipulation |

\*---------------------------------------------------------------------------*
Build : v1606+

Exec : olaDyMFlow

Date : Oct 05 2019

Time : 18:17:44

Host : "859973156ad5"

PID : 24594

Case : /home/user/OpenFOAM/user-v1606+/run/tutorials/olaFlow_supplementary/turbulenceMultipha

nProcs : 1

sigFpe : Enabling floating point exception trapping (FOAM_SIGFPE).

fileModificationChecking : Monitoring run-time modified files using timeStampMaster

allowSystemOperations : Allowing user-supplied system call operations

// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * //

Create time

Create mesh for time = 0

Selecting dynamicFvMesh dynamicMotionSolverFvMesh

Selecting motion solver: displacementLaplacian

Selecting motion diffusion: inversePointDistance

PIMPLE: Operating solver in PISO mode

Reading field porosityIndex

Porosity NOT activated

Reading field p_rgh

Reading field U

Reading/calculating face flux field phi

Reading transportProperties

Selecting incompressible transport model Newtonian

Selecting incompressible transport model Newtonian

Selecting turbulence model type RAS

Selecting RAS turbulence model kOmegaSST

Selecting patchDistMethod meshWave

kOmegaSSTCoeffs

{

alphaK1 0.85;

alphaK2 1;

alphaOmega1 0.5;

alphaOmega2 0.856;
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gamma1 0.555556;

gamma2 0.44;

beta1 0.075;

beta2 0.0828;

betaStar 0.09;

a1 0.31;

b1 1;

c1 10;

F3 false;

}

...

A.3.4 Files for turbulence modelling application

A.3.4.1 volScalarField k

/*--------------------------------*- C++ -*----------------------------------*
| ========= |

| \\ / F ield | OpenFOAM: The Open Source CFD Toolbox

| \\ / O peration | Version: 1.7.1

| \\ / A nd | Web: www.OpenFOAM.com

| \\/ M anipulation |

\*---------------------------------------------------------------------------*
FoamFile

{

version 2.0;

format ascii;

class volScalarField;

location "0";

object k;

}

// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * //

dimensions [0 2 -2 0 0 0 0];

internalField uniform 0.00000001;

boundaryField

{

inlet

{

type inletOutlet;

inletValue uniform 0.00000001;

value uniform 0.00000001;

}

outlet

{

type inletOutlet;
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inletValue uniform 0.00000001;

value uniform 0.00000001;

}

bottom

{

type kqRWallFunction;

value uniform 0.00000001;

}

atmosphere

{

type inletOutlet;

inletValue uniform 0.00000001;

value uniform 0.00000001;

}

marina

{

type kqRWallFunction;

value uniform 0.00000001;

}

patch1

{

type inletOutlet;

inletValue uniform 0.00000001;

value uniform 0.00000001;

}

patch2

{

type inletOutlet;

inletValue uniform 0.00000001;

value uniform 0.00000001;

}

}

// ************************************************************************* //

A.3.4.2 volScalarField omega

/*--------------------------------*- C++ -*----------------------------------*
| ========= |

| \\ / F ield | OpenFOAM: The Open Source CFD Toolbox

| \\ / O peration | Version: 1.7.1

| \\ / A nd | Web: www.OpenFOAM.com

| \\/ M anipulation |

\*---------------------------------------------------------------------------*
FoamFile

{

version 2.0;

format ascii;

class volScalarField;
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object omega;

}

// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * //

dimensions [0 0 -1 0 0 0 0];

internalField uniform 0.001;

boundaryField

{

inlet

{

type inletOutlet;

inletValue uniform 0.001;

value uniform 0.001;

}

outlet

{

type inletOutlet;

inletValue uniform 0.001;

value uniform 0.001;

}

bottom

{

type omegaWallFunction;

value uniform 0.001;

}

atmosphere

{

type inletOutlet;

inletValue uniform 0.001;

value uniform 0.001;

}

marina

{

type omegaWallFunction;

value uniform 0.001;

}

patch1

{

type omegaWallFunction;

value uniform 0.001;

}

patch2

{

type omegaWallFunction;

value uniform 0.001;

}

}
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// ************************************************************************* //

A.3.4.3 volScalarField nut

/*--------------------------------*- C++ -*----------------------------------*
| ========= |

| \\ / F ield | OpenFOAM: The Open Source CFD Toolbox

| \\ / O peration | Version: 3.0.0

| \\ / A nd | Web: www.OpenFOAM.org

| \\/ M anipulation |

\*---------------------------------------------------------------------------*
FoamFile

{

version 2.0;

format ascii;

class volScalarField;

location "0";

object nut;

}

// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * //

dimensions [0 2 -1 0 0 0 0];

internalField uniform 0;

boundaryField

{

inlet

{

type calculated;

value uniform 0;

}

outlet

{

type calculated;

value uniform 0;

}

bottom

{

type nutkWallFunction;

Cmu 0.09;

kappa 0.41;

E 9.8;

value uniform 0;

}

atmosphere

{

type calculated;
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value uniform 0;

}

marina

{

type nutkWallFunction;

Cmu 0.09;

kappa 0.41;

E 9.8;

value uniform 0;

}

patch1

{

type nutkWallFunction;

Cmu 0.09;

kappa 0.41;

E 9.8;

value uniform 0;

}

patch2

{

type nutkWallFunction;

Cmu 0.09;

kappa 0.41;

E 9.8;

value uniform 0;

}

}

// ************************************************************************* //
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Appendix B

Appendix to Chapter 4

B.1 Wave basin experiments (article Generation of N-waves in labo-

ratory, Coastal Engineering, 2019)
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A R T I C L E I N F O
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A B S T R A C T

In this research work, a novel theoretical first-order formulation for the generation of N-waves in laboratory, by
means of a piston-type wave-maker, is presented. The plate's trajectory, velocity and acceleration equations for
the generation of tsunami N-waves in a wave flume are deduced. A set of laboratory experiments performed for
the generation of leading depression N-waves in a wave basin is described.
A Tadepalli–Synolakis N-wave profile is assumed and the equations for the paddle's trajectory, velocity, and

acceleration and for the piston stroke and stroke period are derived and discussed in detail. Limits for the initial
paddle velocity and acceleration are established.
A set of experiments, devised and performed in the 28m long wave basin of the Laboratory of Hydraulics, at

the Faculty of Engineering of the University of Porto, is described. Six leading depression N-waves were selected
and classified into three categories, according to their Stokes parameter. The results show that the shorter waves
undergo a strong transformation, tending to a solitary wave-like pulse, followed by a trough. The longer waves
show a distinct behaviour, tending to a bore-like wave exhibiting a leading trough. The generated longer waves
presented the best results when compared with the expected Tadepalli–Synolakis N-wave profiles. Further in-
vestigation on the formulation of the wave velocity of the N-waves and on the behaviour of waves with higher
order Stokes parameter is necessary.

1. Introduction

Tsunami are gravity waves resulting from sudden changes in the
water equilibrium position, which cause the displacement of a large
volume of water. The triggering mechanism of these large waves can be
of seismic origin, volcanic activity, landslides or any vertical dis-
turbance of a water body. Tsunami waves are very long waves, that
propagate over the continental shelf at a relatively low depth, and thus
are also highly non-linear. When no field data is available or when a
conceptual analysis is envisaged, it is a common approach to model
tsunamis as solitary waves, both in experimental and numerical studies
(Camfield and Street, 1969b; Hammack and Segur, 1974; Synolakis,
1987; Liu et al., 1995; Briggs et al., 1995a, 1995b). On the other hand,
Madsen et al. (2008) stated that in general tsunamis do not generate
solitary-like waves in the ocean or on the continental shelf.

The N-wave concept was introduced by Tadepalli and Synolakis

(1994), who suggested that N-type waves, previously discussed in gas
dynamics (Whitham, 1974), are more suitable to describe the main
tsunami wave, often observed with a leading depression (where the
wave crest is preceded by the wave trough). Those authors proposed
three classes of N-waves to study the run-up of near-shore tsunamis.
Before them, Pelinovsky and Mazova (1992) presented an analytical
study of the run-up of leading depression N-waves, modelling the wave
as the initial perturbation of a Lorenz form. Later, Madsen and Schäffer
(2010) described N-waves as two single waves, one positive solitary
wave and one negative solitary wave, with wavelengths set to fit the
tsunami wave data. Building on that idea, Chan and Liu (2012) pro-
posed to model the tsunami wave as a combination of three solitary
waves.

Taking into account the available field data, it is now generally
accepted that the first tsunami waves approach the coast as leading
depression (LDN) or leading elevation (LEN) N-waves. However,
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solitary waves were used in most early tsunami experimental studies,
and McGovern et al. (2016) pointed out the lack of relevant experi-
mental data for tsunami-like N-waves. One of the reasons is that, until
recently, no fully described technique existed for the generation of N-
waves in a wave flume.

The study of the laboratory generation of long waves traces back to
the 19th century (Scott Russell, 1845) and several methods have been
proposed. From the general approach of applying moving partitions to a
certain amount of water (Havelock, 1929; Kennard, 1949), Biésel and
Suquet (1951) developed the linear wave-maker theory, later validated
through laboratory experiments by Ursell et al. (1960). The horizontal
movement of a water volume by means of a vertical plate, powered up
by a piston-type wave-maker, is by far the most common method ap-
plied (see for instance Hughes, 1993). For the generation of relatively
long waves by a piston-type wave-maker, Madsen (1971) extended the
linear wave-maker theory to second order accuracy, achieving the re-
duction of generated spurious harmonics. That author showed that
secondary waves were related to the existence of a free second har-
monic wave. Later, Madsen (1970) found substantial differences be-
tween observed and expected wave heights, which he attributed to
leakage around the paddle.

Scott Russell (1845) was able to generate solitary waves by
throwing a solid mass into a water tank. Daily and Stephan (1952),
cited by Katell and Eric (2002), obtained solitary waves through the
displacement of a mass of water by means of a piston travelling verti-
cally from the bottom of a tank. According to Malek-Mohammadi and
Testik (2010), Hall and Watts (1953) were the first to generate solitary
waves in a laboratory, by means of a piston wave-maker composed by a
vertical paddle, moved mechanically in the horizontal direction. Later,
Camfield and Street (1969a) linked a computer to the mechanical
system, which allowed for the control of the paddle movement.

The most used method for the generation of solitary in a laboratory
is based on the first order wave-maker theory of Goring (1978) and
Goring and Raichlen (1980) for a piston-type wave-maker. This method
is limited to waves with a low height-to-depth ratio. Synolakis (1990)
pointed out a flaw in Goring's theoretical considerations: the change of
variable from x t( , ) to θ performed during the generation phase, since at
that stage the wave is still evolving and cannot be considered of per-
manent form. Thus, Synolakis (1990) presented a wave-maker theory offinite-amplitude long wave generation by means of a piston wave-
maker, achieving a very detailed description of single waves at arbi-
trary lengths from the wave-maker. His method was used to generate
solitary waves with a piston wave-maker and study the two- and three-
dimensional long wave run-up in a wave channel and in a wave tank
(Briggs et al., 1995b).

Goring's procedure is based on the Boussinesq first order solitary
wave solution. Following a similar reasoning, Katell and Eric (2002)
presented a novel piston wave-maker theory, based on Rayleigh's soli-
tary wave solution. They analysed the evolution of the wave during the
generation stage and attested an increased accuracy and a more stable
wave form. Jensen et al. (2003) extended Goring's method for higher
amplitude solitary waves, using a fully non-linear and fully dispersive
wave solution (Tanaka, 1986). These authors studied the kinematics of
strongly non linear waves and related run-up on a steep beach, with
special focus on bore run-up. Later, the same procedure was used for an
experimental and numerical study on on-shore breaking solitary waves
(Jensen et al., 2005).

Malek-Mohammadi and Testik (2010) presented a new wave-maker
theory for the generation of solitary waves. Addressing the concerns
expressed in Synolakis (1990) towards Goring's method, they con-
sidered the time evolution of the wave, proposing the use of a time-
dependent wave velocity during the generation process. Their

Notation

a
+ amplitude of the wave crest
aobs

+ observed amplitude of the wave crest
aTS

+ expected amplitude of the wave crest
a amplitude of the wave trough
aobs observed amplitude of the wave trough
aTS expected amplitude of the wave trough
c wave velocity
c0 leading ascending zero wave velocity
c
+ leading wave crest wave velocity
c leading wave trough wave velocity
c̄ weighted averaged wave velocity
c̄
* weighted averaged wave velocity without wg8–wg7 run
c̄1 4 average wave velocity between gauges 1 and 4
c̄4 5 average wave velocity between gauges 4 and 5
c̄5 7 average wave velocity between gauges 5 and 7
c̄7 8 average wave velocity between gauges 7 and 8
c̄8 3 average wave velocity between gauges 8 and 3
d undisturbed water depth
g gravity acceleration
t time
tArrival time of arrival of the reflected wave at wave gauge wg3
u particle velocity in front of the wave-maker
ū depth-averaged particle velocity
x horizontal coordinate
x1 horizontal coordinate for the location of the wave crest of

a solitary wave at t 0=

x2 horizontal coordinate for the location of the inflexion
point of an N-wave at t 0=

D total displacement of the paddle
F integration function

H wave height
Hobs observed wave height
HTS expected wave height

non-linear mass flux
S paddle stroke
St Stokes parameter
T apparent wave period
Uc current speed
Ur Ursell numberδ eccentricity parameter
ε scale factor
ϵ non-linearity parameter
η free surface elevationθ argument
κ generalized wavenumberλ apparent wavelength
ξ paddle trajectory of the wave-maker

f final paddle position of the wave-maker
max

maximum space travelled by the paddle

min
minimum space travelled by the paddle

paddle velocity of the wave-maker

max
maximum paddle velocity of the wave-maker

min
minimum paddle velocity of the wave-maker

¨ paddle acceleration of the wave-makerσ dispersion parameter
τ stroke periodφ integration variable
ϕ integration variable
t total excursion time, back and forth, from wg3 to the

beach

V. Veloso Lima, et al. Coastal Engineering 148 (2019) 1–18

2

265



procedure seemed to lead to an increased accuracy for both Boussinesq
and Rayleigh wave forms.

Due to all this research work, solitary waves generated by piston
wave-makers are now quite accurate in terms of wave characteristics
and can be generated at short distances from the wave-maker. Such
waves have been extensively used both in experimental and in
numerical research work (Baldock et al., 2009; Chang et al., 2009;
Hsu et al., 2012; Oliveira et al., 2017). In fact, it became the preferred
generation method, due to its wide diffusion among the scientific
community.

For the generation of tsunami-like waves in large scale laboratoryflumes, there are several other types of wave generation mechanisms (a
review can be found in Goseberg et al., 2013). Pneumatic generators
were used by Rossetto et al. (2011), Charvet et al. (2013) and
McGovern et al. (2016), while Drähne et al. (2016) applied a pump-
driven wave-maker. In Klettner et al. (2012) an adapted wave-maker
was used to generate depression waves. Work with a bottom-tilting
wave-maker is documented in Lu et al. (2017).

The pump wave-maker method is considered easy to implement
(Goseberg et al., 2013), with increased accuracy of the wave char-
acteristics being achieved. Pneumatic generators are capable of pro-
ducing very long waves of large amplitude and waves of very large
periods (Rossetto et al., 2011; McGovern et al., 2016).

One main drawback of both pump-driven and pneumatic wave
generators is the fact that, as part of the generation process (air/ga-
s–liquid compression), there are additional turbulence and pressure
disturbances at the surface in the generated water waves. In the case of
pneumatic generators, discontinuities were found in the surface eleva-
tion time series (Goseberg et al., 2013). McGovern et al. (2016) pointed
out the limitations on the generation of wave heights at larger water
depths, for the pump-driven wave-maker. Contrary to those generation
techniques, there are reduced turbulence and minimal spurious effects
resulting from piston wave-makers, because of the reduced distance
travelled by the plate.

In the framework of this research work, one established task was to
generate tsunami like waves in the laboratory. The main objective was
to retrieve several datasets of free surface elevation, velocities, run-up,
run in and pressure, to further validate the tsunami numerical models in
development. A detailed literature review showed vast research work
concerning the generation of solitary waves. However, it revealed a
considerable lack of work on the process of N-wave generation in a
wave flume, by means of a piston wave-maker. Applying solitary wave
theory, Schmidt-Koppenhagen et al. (2006) used a piston-type wave-
maker to generate tsunami waves, with both positive and negative
wave segments, resembling leading depression N-waves. Recently,
Schimmels and co-workers (Schimmels et al., 2014, 2016; Sriram et al.,
2016) used a piston wave-maker in a large scale wave flume to
successfully generate N-waves, using two methods: (1) a combination of
solitary waves, as proposed by Chan and Liu (2012), and (2) a self-
correcting method, first proposed by Daemrich and co-workers
(Daemrich et al., 1980; Daemrich and Götschenberg, 1988), for regular
and random wave generation.

In the present work, the authors propose a novel formulation for the
generation of N-waves with piston wave-makers, by extending Goring's
method (Goring, 1978; Goring and Raichlen, 1980) for the Boussinesq
solitary wave to the general N-wave expression introduced by Tadepalli
and Synolakis (1994, 1996a). Firstly, the wave formulation of N-type
waves and the theory of the generation of N-waves by a piston wave-
maker are detailed. The paddle's trajectory, velocity and acceleration
are derived and presented, as well as the expressions for the piston
stroke and for the stroke period. Secondly, the results of a set of six
leading depression N-waves generated at the wave basin of the La-
boratory of Hydraulics of the Faculty of Engineering of the University of
Porto (LH-FEUP), Portugal, are presented. The experimental wave
profiles are analysed and compared to the expected Tadepalli–Synolakis
N-wave profiles.

2. Tsunami N-waves

2.1. Description

Whitham (1974) introduced the N-wave concept within a gas-dy-
namics framework, naming it after the shape of its profile, derived from
a shock wave as a construction of its characteristic curves. Reports of
tsunamis as leading depression waves followed by a steep wave front
were traditionally devalued, as the solitary wave had become an in-
grained model for earthquake-triggered tsunami waves and associated
run-up estimation. Based on the observations retrieved from several
events like the 1992 Flores, the 1993 Nicaragua, and the 1993 south-
west-off Hokkaido earthquakes and tsunamis (Synolakis et al., 2007),
Tadepalli and Synolakis (1994) borrowed Whitman's N-wave concept
and introduced it into tsunami science. The dipolar characteristic of
these waves is related to the seabed deformation pattern caused by the
earthquake at the tsunami's source, as a combination of vertical uplift
and ground subsidence. The authors used the N-waves (sometimes re-
ferred to as multilobe waves) to describe simple solutions to the ca-
nonical problem, classifying them into three types: the generalized N-
wave, the isosceles N-wave, and the double N-wave. Isosceles N-waves
have equal amplitude trough and crest; double N-waves are a series of
N-waves. In their research, they also found that leading depression N-
waves (LDN) run-up higher than leading elevation N-waves (LEN). In
Tadepalli and Synolakis (1996a), the authors proposed a model for the
leading wave of tsunamis and stated that most of the N-wave character
is preserved even after transoceanic propagation and that locally gen-
erated tsunamis are generally N-wave like. They proposed the gen-
eralized N-wave as a general function for local and far-field tsunamis.

Geist and Yoshioka (1996) estimated the run-up of tsunamis along
the Cascadia margin, applying the generalized leading depression N-
wave run-up law presented in Tadepalli and Synolakis (1994). They
concluded that it provided good estimations when parametrised ac-
cordingly to fit local recorded tsunami wave forms.

Borerro et al. (1997) documented the field survey to Tenacatita Bay,
a location severely flooded after the 1995 Manzanillo earthquake and
tsunami, in central Mexico. Statements from witnesses described the
recession of the sea after the earthquake, in accordance with the con-
cept of a leading depression N-wave proposed by Tadepalli and
Synolakis (1994). The report was supported by a photograph of the sea
surface recession at Tenacatita Bay, believed to be the first photo-
graphic record ever, before the 2004 Sumatra earthquake and tsunami.

As a follow-up to their previous work, Tadepalli and Synolakis
(1996b) modelled N-waves in the far-field with the KdV equation and
used the shallow water theory in the near-shore to evaluate the run-up
of non breaking waves. They elaborated on the geometric parameters of
the fault, modelling the 1992 Nicaragua tsunami.

Titov and Synolakis (1997) modelled the 1993 Hokkaido-Nansei-
Oki earthquake and tsunami, comparing results with the recorded field
data. Experiments based on this event, using an input leading depres-
sion N-wave, were performed at the Central Research Institute for
Electric Power Industry in Abiko, Japan (Matsuyama and Tanaka,
2001).

Geist et al. (1998) established a relationship between the earth-
quake source parameters and the tsunami generation. Applying the run-
up laws by Tadepalli and Synolakis (1994), the effect of the source
parameters on the local run-up was studied.

Carrier et al. (2003) improved the tsunami run-up and draw-back
motions onto an uniformly sloping beach, for initial wave conditions
such as LDN-waves and submarine landslide waveforms.

Madsen et al. (2008) presented a very interesting discussion about
the solitary wave paradigm and how it failed to represent tsunamis, in
geophysical time and length scales. Madsen and Schäffer (2010) de-
rived analytical solutions to the non-linear shallow water equations for
the run-up and draw-back of single waves, extending it to the leading
depression N-waves.
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Fritz et al. (2011) documented the field survey for the 2010 Chile
tsunami, reporting eyewitnesses’ observations on the initial sea surface
recession after the earthquake. Before, Fritz et al. (2007) also reported
the LDN-wave pattern for the 17 July 2006 Java tsunami, along the
affected area. Wei et al. (2008) observed LEN-waves for far-field tsu-
nami measurements of the 2007 Peru earthquake and tsunami, in
contrast with reports of LDN-waves in the near field, as noted before by
Tadepalli and Synolakis (1996a) and Fritz et al. (2007).

Numerical modelling using N-waves has been done in Liang et al.
(2013), Siva and Behera (2016) and Gao et al. (2017). Kânoğlu et al.
(2013) and Aydin and Kânoğlu (2017) solved both linear and non-linear
shallow water equations as an initial boundary value problem using N-
waves; in the former, the authors showed the focusing effect in the
direction of depression and discussed its relevance on extreme run-upfield observations.

Zhao et al. (2009) verified the generation of N-waves due to an
earthquake event with numerical modelling and in Zhao et al. (2010)
the authors found N-wave signature in different tsunami wave patterns
near the source, for different earthquake magnitudes, meeting other
observations by Tadepalli and Synolakis (1996a).

Proposed analytical and laboratory benchmarks included N-waves
as initial wave profile (Synolakis et al., 2007), but have been mainly
focused on solitary waves. More recently research work concerning
generation of N-waves in laboratory has been performed. Schmidt-
Koppenhagen et al. (2006) applied solitary wave theory and a piston-
type wave-maker to generate what they designated by composed tsu-
nami waves, with both positive and negative wave segments. These
waves resembled leading depression N-waves; however, its generation
corresponded to the plate trajectory of one negative solitary wave plus
the plate trajectory of a positive solitary wave (as also suggested by
Madsen and Schäffer, 2010). After this work, N-waves have been gen-
erated by several authors (Rossetto et al., 2011; Klettner et al., 2012;
Charvet et al., 2013; Goseberg et al., 2013; Schimmels et al., 2014;
Bağcı and Kabdaşlı, 2015; Drähne et al., 2016; McGovern et al., 2016;
Sriram et al., 2016). Yet, a theoretical formulation for the generation of
Tadepalli–Synolakis generalized N-waves with a piston-like wave-
maker is still missing, although the combination of elongated solitary
waves, as proposed by Schimmels and co-workers (Schimmels et al.,
2014, 2016; Sriram et al., 2016), can be used to fit the generalized N-
wave profile.
2.2. Solitary wave

A solitary wave can be described by:

x t H( , ) sech2= (1)

where η is the surface elevation, x is the horizontal coordinate, t is the
time, the argument θ is

x c t x( )1= (2)

c is the wave velocity, H is the wave height, κ is a generalized wave-
number, and x x1= is the wave crest position at t 0= . An apparent
wavelength can be defined as

2
,=

(3)

and an apparent wave period as

T
c
.=

(4)

For expression (1) to be a first order permanent solution of the
Boussinesq equations (Peregrine, 1967), the generalized wavenumber
should be such that

H

d

3

4
,

3
=

(5)

where d is the undisturbed water depth, and its wave velocity is

c g d H( ) ,= + (6)

where g is the gravity acceleration.

2.3. Amplitude and frequency dispersion of tsunami waves

Amplitude dispersion of a long wave is quantified by the non-line-
arity parameter ϵ, as the ratio between its height and the local depth,
i.e.

H

d
,=

(7)

while the frequency dispersion is quantified by the shallowness or
dispersion parameter σ, as a relation between the local depth and the
wavelength, defined as

d .= (8)

The relation between these two phenomena is measured by the
Stokes parameter, St, which gives an indication about the balance be-
tween non-linearity and dispersion of long surface gravity waves:

St .
2

=

(9)

In equation (9), the normalisation due to Stokes (1847), who first
introduced this parameter, is used.1 It can be shown that permanent
long wave solutions in shallow water are only possible when amplitude
dispersion (non-linearity) and frequency dispersion are in balance, i.e.
when St 1 (see for instance Dingemans, 1997, page 183).

The Boussinesq solitary wave solution, with the wavenumber de-fined by equation (5), is a permanent form wave, with St 4/3= . On the
other hand, for real tsunami waves the Stokes parameter is several
orders of magnitude larger. The near-shore tsunami trace of the Indian
Ocean event in 2004, recorded by the Belgian yacht Mercator, located
1.6 km off the coast of South Phuket, over the continental shelf, at a
depth of 14m, showed a leading wave height of 6.6m and a period of
approximately 20min (Grilli et al., 2007; Madsen and Fuhrman, 2008).
Such a wave would have a length about 14 km and a Stokes parameter
St 10

4. It is therefore evident that tsunami waves have independent
wave heights and lengths and their forms will be unstable but, as stated
by Madsen et al. (2008), this is a natural process that can be observed in
nature.

2.4. Tadepalli–Synolakis N-wave

Real tsunami leading waves are usually described as an N-shaped
wave with a leading trough, a leading depression N-wave (LDN-wave),
or with a leading crest, a leading elevation N-wave (LEN-wave). Such N-
waves were described by Tadepalli and Synolakis (1994, 1996a) as

x t H( , ) ( ) sech ,2
= (10)

where ε is a scale factor necessary to define the wave height as H,
x x2 1= is an eccentricity parameter, defined as the distance between

x x2= , the location of the inflexion point of the wave profile at t 0= ,
thus x( , 0) 02 = , and x x1= , the location at t 0= of the crest of a so-
litary wave of the same height H and length λ (cf. Fig. 1).

The wave height H of an N-wave is obtained as H a a= +
+ , where

a
+ is the amplitude of the wave crest, and a is the amplitude of the
wave trough. The magnitude of the scale factor ε and the ratio a a/ +

1Ursell (1953), who further elaborated on the meaning of this parameter,
used a different normalisation commonly known in the engineering community
as the Ursell number, H d dUr ( / ) ( / )2= . This parameter is more sensitive to the
definition of the wavelength. For the Boussinesq solitary wave, and depending
on the wavelength definition, the Ursell number varies from (10)O to (10 )2O ,
while the Stokes parameter remains (1)O .
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Fig. 1. N-wave profile and corresponding solitary wave of the same height H and length λ.

Fig. 2. ε and a a/ + as functions of / for an N-wave.
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depend on the shifting ratio / (cf. Fig. 2). For 0< , an LDN-wave is
obtained, while for 0> , an LEN-wave is defined. On the other hand,
for 0= we have that a a/ 1=

+ and an isosceles N-wave is obtained,
while for an LDN-wave, 0> leads to a a<

+, and 0< to a a>
+.

For an LEN-wave, 0> leads to a a>
+, and 0< to a a<

+ (cf.
Table 1).

3. N-wave generation by a piston wave-maker

In this section the theory of the generation of N-waves by a piston
wave-maker is detailed: the paddle's trajectory, velocity and accelera-
tion are derived and presented, as well as the expressions for the piston
stroke and for the stroke period and initial velocity and initial accel-
eration.

3.1. Paddle trajectory

Let us assume that an N-wave is a wave of permanent form with
wave velocity c, and closely following the reasoning of Goring and
Raichlen (1980). For a wave of a permanent form (Svendsen and
Justesen, 1984):

u dz c Q U d ,
d

s c= + + (11)

where u is the particle velocity immediately in front of the wave-maker,
is the non-linear mass flux averaged over a wave period, and Uc is the
speed of the current defined as the averaged particle velocity below
wave trough level. For an infinitely long wave, the right-hand side of
(11) reduces to c (Grilli and Svendsen, 1990). Since the piston motion
creates a depth uniform horizontal velocity u u t¯ ( )= , equation (11)
reduces to:

u d c¯ ( ) ,+ = (12)

and thus the particle velocity is given by

u
c

d
¯ ,=

+ (13)

or in terms of the wave-maker's paddle velocity:

c

d
,=

+ (14)

where d dt/= , and t( ) is the paddle trajectory, which can be ob-
tained through integration of equation (14).

Let us also assume that the wave has the form:

t H F( , ) ( ) ,= (15)

where

c t x( ) .1= (16)

For a flat bottom, the total derivative of equation (16) is:
d

dt
c( ) ,=

(17)

and thus

d

dt

d

d

d

dt

d

d
c( ) .= = =

(18)

Substituting equation (14) into equation (18), one obtains

d

d c d( )
,= =

(19)

which, after substituting equation (15) into it, becomes

d

d

H

d
F ( ) ,=

(20)

and considering that + when t , integrates as

t t
H

d
F d( ) lim ( ) ( ) .

t t( )
= +

+

(21)

Now, for an N-wave

F ( ) ( ) sech ,2
= (22)

and therefore

F d d d( ) sech sech .
t t t( ) ( )

2

( )

2
=

+ + +

(23)

Integrating by parts the first integral in the right-hand side of
equation (23), we get

d d dsech ( tanh ) tanh

[ tanh ln(cosh )] ,

t t

d

d t

t

( )
2

( ) ( )

( )

=

=

+ + +

+

(24)

while the second integral is

dsech [tanh ] .
t

t
( )

2
( )=

+
+

(25)

Thus

F d( ) ln(cosh ) ( ) tanh ln 2 .
t( )

= +

+

(26)

Finally, assuming that lim 0t = , the piston trajectory for the
generation of an N-wave becomes

t
H

d
( ) [( ) tanh ln(2 cosh ) ] .= +

(27)

As θ is a function of ξ, equation (27) is implicit in ξ, and an iterative
solution shall be sought.

3.2. Piston's velocity and acceleration

From equation (14), an expression for the piston velocity can be
obtained as:

H c

H d

( )

( ) cosh
.

2
=

+ (28)

The maximum positive and the maximum negative velocities cor-
respond to d dt/ 0= , which is equivalent to

d

d

d

dt
0 0 .= =

(29)

As

d

d

c d

d( )
,

2
=

+ (30)

and thus definite positive, the maximum velocities of the piston coin-
cide with d dt/ 0= , i.e. with the crest and the trough of the N-wave. So
for a=

+,

c a

d a
,

max
=

+

+

+ (31)

and for a= ,

c a

d a
,min = (32)

An expression for the acceleration of the piston, ¨, can be obtained
from:

Table 1
N-wave profiles as a function of δ.

Wave type 0< 0= 0>

0< LDN-wave a a/ 1>
+

a a/ 1=
+

a a/ 1<
+

0> LEN-wave a a/ 1<
+

a a/ 1=
+

a a/ 1>
+
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d

d

d

d

d

dt

¨ ,=

(33)

where d d/ is given by expression (30), d dt/ is given by equation (17)
and d d/ is:

d

d
H sech [1 2 ( ) tanh ] .2

=

(34)

Finally,

t c d H¨ ( ) sech

1 .

d H

H

d H

2 2 1 2 ( ) tanh

[ ( ) sech ]

( ) sech

( ) sech

2 2

2

2

=
+

+ (35)

3.3. Piston stroke

The paddle trajectory for an N-wave generation consists of two
consecutive movements, a backward one and a forward one, for an
LDN-wave, and vice-versa for an LEN-wave. Hence, it is necessary to
distinguish between the total displacement of the paddle, D, defined as
D t tlim ( ) lim ( ) ,

t t

=
+ (36)

and given by

D
H

d

H

d
2 4 ,= =

(37)

and the paddle stroke, S, defined as the total amplitude of the paddle
trajectory, which for an LDN-wave, with a a/ 1<

+ , is

S D ,min= (38)

and for an LEN-wave is

S D .
max

= (39)

As a local minimum (or a maximum) of t( ) exists for t such that
d d/ 0= , which happens when = , it is easy to conclude that

H

d
[ ln(2 cosh( ))] ,min max= =

(40)

from where, for an LDN-wave,

S
H

d
[ ln(2 cosh( ))] ,= +

(41)

and for an LEN-wave,

S
H

d
[ ln(2 cosh( ))] .= +

(42)

3.4. Stroke period

As for a solitary wave, the leading and trailing edges of an N-wave
occur at t = and t = + . However, and for practical purposes, one
shall assume that they are two wave periods apart and that the wave is
centred at the crest of the associated solitary wave of the same height
and length. The stroke period, τ, i.e. the duration of the paddle motion,
is defined as the time period between the instants at which the leading
and trailing edge characteristics intersect the paddle trajectory, thus:

T
D

c
2 ,= +

(43)

which can be expanded as

c

H

d

4
1 .=

(44)

The phase planes for the paddle trajectories, for both LDN- and LEN-
waves, are shown in Fig. 3. It is evident that when the crest amplitude is
larger than the trough amplitude, a a/ 1<

+ , the paddle motion is

longer than twice the apparent wave period, while for waves with crest
amplitude smaller than the trough amplitude, a a/ 1>

+ , the paddle
motion is shorter than twice the apparent wave period.

A family of normalized paddle trajectories is shown in Fig. 4, for an
LDN-wave with fixed / 0.06= and wave height-to-depth ratios
H d/ 0.1 0.5= .

A family of normalized paddle trajectories is shown in Fig. 5, for an
LDN-wave with fixed wave height-to-depth ratio H d/ 0.1= and for
shifting ratios / 0 0.10= .

3.5. Initial velocity and acceleration

Assuming that the leading and trailing edges of the N-wave are two
periods or two wavelengths apart, and that the wave is centred at the
crest of the associated solitary wave (see Fig. 1), this corresponds to
considering that x1 = . As the scale factor is such that | | 1 (see
Fig. 2), and for a shifting ratio / 0.05, this corresponds to a wave
with a free surface elevation reduction at both edges of H| | 10 4

< .
Furthermore, under these conditions, the initial velocity and accelera-
tion of the piston can be shown to be, respectively:

Fig. 3. Phase planes for paddle trajectories.
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H

d
g d| (0)| 10 4

<
(45)

and

H g| ¨ (0)| 2 10 .4
< × (46)

These values are small enough to guarantee a smooth start and end
of the paddle motion.

4. Wave basin experiments

4.1. Experimental setup

The LH-FEUP (Laboratory of Hydraulics of the Faculty of

Fig. 4. Normalized paddle trajectories for LDN-waves with fixed / 0.06= shifting ratio, and wave height-to-depth ratios H d/ 0.1 0.5= .

Fig. 5. Normalized paddle trajectories for LDN-waves with wave height-to-
depth ratio H d/ 0.1= , and variable / 0 0.10= ratio.

Table 2
Location of wave gauges.

Wave gauge x (m) y (m)

wg1 1.32 0.75
wg6 1.32 11.25
wg4 4.16 1.10
wg5 6.16 0.75
wg7 10.16 1.10
wg8 12.16 0.75
wg3 14.16 0.75

Fig. 6. Wave basin and wave gauges' positioning.
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Engineering of the University of Porto) wave basin is 28m long and
12m wide, with a maximum water depth of 1.20m. The floor and walls
of the basin are made of concrete. The side walls of the basin have glass
windows for flow observation. The wave-maker system occupies thefirst 3 m of the wave tank and the last 8m are occupied by an absorbing
beach with a 1:3.33 slope.

The wave generator system is a multi-element piston wave-maker
manufactured by HR Wallingford, which allows the generation of reg-
ular and irregular multi directional waves. It consists of 16 piston
paddles, which are moved horizontally by electric motors. The max-
imum piston stroke is 1.08m, the maximum velocity is 0.87m/s and
the maximum force is 1.5 kN. The paddle trajectory must be provided as
a time series to the wave generator system.

Seven resistance wave gauges were used to acquire the surface
elevation time series. The wave gauges were connected to two wave
probe monitors, which in turn were connected to a computer with an
HR Wallingford software program for data acquisition, conversion and
analysis. A 1.5 m wide canal was set-up close to the southern wall of the
tank. Six wave gauges were positioned along the length of the canal,
while the seventh gauge was placed close to the northern wall of the
tank, for control purposes (see Table 2 and Fig. 6).

4.2. Wave conditions

Six tsunami LDN-waves with wave heights ranging from 5 cm to
15.5 cm were generated, for a constant water depth of 26 cm and ratio
a a/ 0.5=

+ . The waves’ characteristics and wave-maker parameters are
shown in Table 3. The H d/ ratios for the generated waves varied be-
tween 0.19 (small relative wave heights, H d/ 0.3< ) for C18 and 0.60
(large relative wave heights, H d/ 0.3> ) for C16.

The generated waves are classified into three groups, according to
its Stokes parameter: C16 and C18 are shorter quasi-Boussinesq com-
plying waves (St 4/3), for which non-linearity and dispersion are
close to equilibrium; C13 and C14 are longer non-linear waves, for
which St 10> ; and an intermediate wavelength group for C12 and C17
(3 St 10< < ).

Trials were performed 5–10min apart from each other to guarantee
initial still water conditions, which was checked through visual ob-
servation. The real N-wave velocity, being unknown, was assumed to be
given by the shallow water linear solution:

c g d ,= (47)

where g 9.803= m/s2 is the local acceleration due to gravity, and thus
c 1.60= m/s.

Table 3
Wave conditions and wave-maker parameters.

Case d H λ T / ε S τ ϵ σ St

(m) (m) (m) (s) (−) (−) (m) (s) (−) (−) (−)
C12 0.26 0.150 5.47 3.43 0.04254 −1.079 0.54 7.04 0.58 0.30 6.47
C13 0.26 0.085 9.66 6.05 0.04254 −1.079 0.54 12.28 0.33 0.17 11.43
C14 0.26 0.065 12.63 7.91 0.04254 −1.079 0.54 16.01 0.25 0.13 14.94
C16 0.26 0.155 2.65 1.66 0.04254 −1.079 0.27 3.41 0.60 0.62 1.57
C17 0.26 0.070 5.86 3.67 0.04254 −1.079 0.27 7.44 0.27 0.28 3.46
C18 0.26 0.050 4.26 2.67 0.04254 −1.079 0.14 5.38 0.19 0.38 1.31

Fig. 7. Piston trajectories for the generation of the LDN-waves.

Table 4
Wave parameters recorded at wave gauge wg1.

Case H a a
+

a a/ +

(m) (m) (m) (−)
C12 0.145 0.033 0.112 0.29
C13 0.062 0.022 0.040 0.55
C14 0.048 0.017 0.031 0.55
C16 0.106 0.018 0.088 0.20
C17 0.060 0.016 0.044 0.36
C18 0.043 0.010 0.033 0.30
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4.3. Results and discussion

The piston trajectories were computed using equation (27) and the
MATLAB® R2016b function fsolve for the iterative procedure. The

corresponding time series are shown in Fig. 7. Experimental free surface
elevation time series were registered at the seven wave gauges. The
wave parameters recorded at wave gauge wg1 are listed in Table 4.
Wave gauge wg6 was used for control purposes, therefore no results are

Fig. 8. Analytical TS LDN-wave profiles and experimental wave profiles recorded at wave gauge wg1.
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presented for it. The expected TS (Tadepalli–Synolakis formulation)
tsunami wave profile, as given by expression (10), and the actual wave
profile recorded at wave gauge wg1 are compared in Figs. 8 and 9,
where profiles are aligned by the leading ascending zero. In Figs. 10 and

11, the leading trough aligned profiles are shown for all wave gauges.
The accuracy of the experimental wave profiles is measured using

the most common metrics, over the first complete wave period: (1) the
Pearson correlation coefficient, r, defined as

Fig. 9. Analytical TS LDN-wave profiles and experimental wave profiles recorded at wave gauge wg1.
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r

cov( , )
,

TS wg1

TS wg1
=

(48)

where cov( , ) stands for the covariance function, ( ) is the standard
deviation, and

TS
and wg1 are respectively the expected and the

measured free surface elevations at wave gauge wg1; (2) the bias, given
by

N
Bias

1
( ) ,

i

N

i i

1

wg1 TS
=

=
(49)

Fig. 10. Experimental wave profiles.
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Fig. 11. Experimental wave profiles.
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where N is the number of observations within the range t T/ =0.5–1.5;
(3) the root-mean-square error as:

N
RMSE

1
( ) .

i

N

i i

1

wg1 TS 2
=

= (50)

The computed metrics are presented in Table 5. Its analysis shows
that a high linear correlation exists, with r close to or above 0.9, for all
waves. For the two longer waves, C13 and C14, r is close to unity.
Nevertheless, in all cases the bias is negative and for all cases, but the
longer waves, its magnitude is larger than 2 cm, which corresponds to
lower crest amplitudes and/or shorter crests. The magnitude of the
root-mean-square error is about 10 cm for all waves, though slightly
better for the longer waves and worse for the C16 case.

The mismatch between the analytical time series and the observed
time series measured at wave gauge wg1 (see Figs. 8 and 9) is larger for
the C12 and the C16 waves. For both waves the non-linearity para-
meter, ϵ, is above 0.50. As pointed out by Goring (1978), and later by
Grilli (1997), a first-order long wave generation method for waves of
permanent form is accurate for a wave height-to-depth ratio below
20%. One might expect that waves with a lower relative height perform
better. On the other hand, the assumption that the N-waves have a
propagation velocity given by expression (47) might not be the most
correct and, as for the solitary wave case, the wave velocity might
depend on the wave non-linearity.

The average wave velocities, measured between gauges, are shown
in Table 6. Results are presented for velocities measured for the leading
wave trough, c , for the leading ascending zero, c0, and for the leading
wave crest, c+. Weighted average velocities, c̄, were computed for the
whole wave excursions from wg1 to wg3. Analysis of these velocities
show a decrease of the wave velocities between gauges wg7 and wg8,

c̄7 8, for all wave cases. The most probable reason is an error in the
measured distance between wg8 and wg7. The average velocities were
recomputed ignoring the wg8–wg7 run, and the results are presented as
c̄
*. Nevertheless, differences between c̄ and c̄

* are very small (cf.
Table 6).

Analysis of Fig. 8b, 8c, 10b and 10c show that waves C13 and C14,
for which St 10> , clearly display a bore like behaviour, exhibiting a
steeper shorter wave front and a fission process that gives rise to two
more waves trailing behind the main wave. Analysis of the measured
wave velocities (see Table 6) show that these longer waves display
c c c0 <

+, which leads to a decreasing distance between trough and
crest.

On the other hand, the shorter quasi-Boussinesq waves C16 and
C18, for which St 4/3, seem to tend to a one-crested wave profile,
keeping a wavelength close to the designed one at the first wave gauge
(see Fig. 9a and 9c), with a small amplitude dispersive tail (cf. Fig. 11a
and 11c). Besides that, these waves and also the intermediate wave-
length waves, C17 and C12, display c c c0 >

+ (cf. Table 6), leading
in this case to an increased distance between trough and crest.

The different behaviours are also evident in the evolution of the
amplitude of the waves along the channel (cf. Fig. 12). The two shorter
waves, C16 and C18, show a continuous decrease in all amplitudes, H,
a
+ and a . The ratio H H/obs TS, where obs stands for observed and TS

stands for the Tadepalli–Synolakis formulation, is always below unity
with a monotonous decrease along the channel. In fact, all the observed
to TS amplitude ratios display that pattern, for both waves. This leads to
a a( / )obs

+ lower than the expected value of 0.5 at the first gauge, and
close to 0.1 for x/ 2 (cf. Fig. 12d and 12f).

The longer waves, C13 and C14, display all observed to expected
amplitude ratios close to 0.7 0.8 at gauge wg1, but while H H/obs TS

increases towards 1.0 as x/ approaches 1.0, a a/obs TS
+ + has a faster rate of

increase and reaches 1.4 at the same point, and thus a a/obs TS seems to
monotonously decrease along the channel, being close to 0.5 for
x/ 1= (cf. Fig. 12b and 12c).

The waves in the third set, C12 and C17, display a mixed behaviour.
Wave C12 behaves as the shorter waves (cf. Fig. 12a), while wave C17
shows a behaviour closer to that of the longer waves (cf. Fig. 12e), as
expected from the differences in their Stokes parameters (see Table 3).

The traces of the generated LDN-waves at each wave gauge are
represented in Fig. 13 for the shorter waves C13 and C14, in Fig. 14 for
the longer waves C16 and C18, and in Fig. 15 for the intermediate
length waves C12 and C17. It is clear that the shorter quasi-Boussinesq
complying waves C16 and C18 suffer a strong transformation, tending
towards a solitary wave type shape followed by a trough. Such a
transformation does not seem to occur for the longer waves, i.e. larger
Stokes parameter wave pair, C16 and C18. Nevertheless, the ratio be-
tween propagation time and wave period, or between propagation
distance and wavelength, is much shorter for these longer waves, and
further research must be done for longer trajectories.

The distance between wave gauge wg3 and the absorbing beach at
the back end of the basin is very short, thus some interaction between
the generated and the reflected waves might show up in the records.
Wave reflection is expected to occur when the leading wave trough
reaches the still water shoreline. For 26 cm water depth the still water
shoreline is located 3.71m away from wave gauge wg3. For the longest
waves generated, C13 and C14, the highest measured wave velocities
for the wg8–wg3 run were the trough defined ones, c 1.71= m/s and
c 1.69= m/s respectively (cf. Table 6). Under these conditions, the
total excursion time, back and forth from wg3 to the beach, would be
t 4.33= s for C13 and t 4.39= s for C14, corresponding respectively
to t T/ 0.72= and t T/ 0.55= . In Figs. 10 and 11, the wave profiles are
leading trough aligned at t T/ 0.85= , thus the reflected wave is expected
to show up in the wave record at t T/ 1.57= for wave C13 and at
t T/ 1.40= for wave C14. Analysis of wg3 wave record for wave C14 (cf.
Fig. 10c) clearly shows the arrival of the reflected wave and its inter-
action with the generated wave for t T/ 1.40> . For wave C13 the

Table 5
Error metrics for wave gauge wg1.

Case St ϵ r Bias RMSE

(−) (−) (−) (m) (m)

C12 6.47 0.58 0.892 −0.0229 0.1194
C13 11.43 0.33 0.981 −0.0163 0.0912
C14 14.94 0.25 0.993 −0.0116 0.0796
C16 1.57 0.60 0.927 −0.0308 0.1407
C17 3.46 0.27 0.964 −0.0267 0.1026
C18 1.31 0.19 0.964 −0.0251 0.0959

Table 6
Measured wave velocities.

Case c̄1 4 c̄4 5 c̄5 7 c̄7 8 c̄8 3 c̄ c̄
*

(m/s) (m/s) (m/s) (m/s) (m/s) (m/s) (m/s)

C12 c 1.69 1.79 1.85 1.77 1.87 1.80 1.80
c0 1.71 1.80 1.85 1.78 1.87 1.80 1.81

c
+ 1.69 1.69 1.71 1.69 1.75 1.71 1.71

C13 c 1.50 1.57 1.67 1.67 1.71 1.62 1.61
c0 1.55 1.60 1.69 1.64 1.73 1.64 1.64

c
+ 1.60 1.61 1.66 1.61 1.68 1.63 1.64

C14 c 1.49 1.50 1.59 1.55 1.69 1.56 1.57
c0 1.54 1.56 1.62 1.58 1.67 1.59 1.60

c
+ 2.39 1.61 1.63 1.57 1.65 1.79 1.83

C16 c 1.80 1.83 1.90 1.79 1.96 1.86 1.87
c0 1.79 1.81 1.88 1.83 1.92 1.85 1.85

c
+ 1.56 1.65 1.69 1.63 1.71 1.65 1.65

C17 c 1.57 1.63 1.71 1.63 1.71 1.65 1.66
c0 1.59 1.63 1.68 1.63 1.71 1.65 1.65

c
+ 1.54 1.59 1.63 1.57 1.64 1.60 1.60

C18 c 1.64 1.64 1.64 1.64 1.69 1.65 1.65
c0 1.59 1.61 1.66 1.59 1.68 1.63 1.64

c
+ 1.49 1.54 1.59 1.53 1.60 1.55 1.56

V. Veloso Lima, et al. Coastal Engineering 148 (2019) 1–18

14

277



interaction at wave gauge wg3 occurs for t T/ 1.57> , although not
evident in the reproduced wave record, as the plot ends at t T/ 1.60=

(cf. Fig. 10b). For all other wave gauges and wave cases the interaction
between the generated and the reflected wave occurs for t T/ 1.60> , not
shown in the wave records in Figs. 10 and 11, therefore not affecting
the previous discussion of results. The reflected waves’ relative time of
arrival at wave gauge wg3 is presented in Table 7, for all wave cases.

5. Summary and concluding remarks

In this study, the generation of N-waves in a wave flume is de-
scribed. A novel first-order theoretical formulation, necessary to gen-
erate this type of waves experimentally, by means of a piston wave
generating system, is detailed. The expressions for the piston's trajec-
tory, velocity and acceleration were derived, as well as the expressions
for the paddle stroke, the stroke period, and the maximum paddle ve-
locities. Limits for the initial paddle velocity and acceleration were

Fig. 12. Variation of wave amplitudes along the channel. H H/obs TS (−); a a/obs TS
+ + (– –); a a/obs TS (- - -); a a( / )obs

+ (– ⋅ –).
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established.
Six LDN-waves with relative wave heights between 0.19 and 0.60

were generated in the laboratory. The generated waves were classified
into three groups, according to their Stokes parameters: shorter quasi-
Boussinesq complying waves, with St 4/3; longer waves, with St 10> ;
mixed behaviour waves, with 3 St 10< < . The obtained results were
presented and compared with the intended theoretical
Tadepalli–Synolakis N-wave profiles. From that analysis, it was con-
cluded that the shorter quasi-Boussinesq complying waves endure a
strong transformation, tending to a solitary wave-type shape, followed
by a trough. On the other hand, this behaviour was not observed for the
longer waves, St 10> , which seemed to tend to a leading trough bore-
shaped wave. The generated longer waves presented the best results
when compared with the expected Tadepalli–Synolakis N-wave pro-files.

The discrepancies found between the analytical and the experi-
mental wave time histories might be a consequence of the large height-
to-depth ratio of the generated waves. Other authors reported that for

solitary waves the height-to-depth ratio shall not exceed 20%, when afirst-order generation method is used.
Further research shall be done for N-waves with smaller relative

heights and larger Stokes parameters, as these are a better model for
real tsunami waves. Whenever possible, longer trajectories shall be
tested. The formulation of time-dependent wave velocity, as proposed
by other researchers, shall be investigated, as it might lead to an in-
creased accuracy in the obtained N-wave profile.

This research work presents a novel first-order theoretical for-
mulation for the generation of N-waves in a wave flume, by means of a
piston wave-maker. Moreover, the authors did not find any report of
laboratory experiments of N-waves with characteristics similar to those
described herein, and for a wave tank with similar dimensions. The
authors expect that the present research work might contribute to a
better understanding and definition of the theoretical principles behind
the generation of N-waves in laboratory.

Fig. 13. Recorded LDN-wave traces for the shorter waves (St 4/3).
Fig. 14. Recorded LDN-wave traces for the longer waves (St 10> ).
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B.2 SWASH code

B.2.1 Introduction

The open access numerical code SWASH (Simulating WAves till SHore) by Zijlema et al. (2011)
is suitable to model the nearshore processes in two-dimensional domains. It is a numerical model
for simulating the wave propagation, transformation and nearshore phenomena from the offshore
to the coastal zones.

B.2.2 Description, language and structure. Governing physics and numerical scheme

SWASH numerical model has been developed at TU Delft, with the main objective of modelling
the nearshore processes of the coastal zones. It is based on the nonlinear shallow water equations,
which describe the depth-averaged, non-hydrostatic, free surface flow. The SWE are presented
in Chapter 2, expressions (2.52), (2.53), (2.54) in Cartesian coordinates and expressions (2.56),
(2.57) and (2.58) in spherical coordinates. The bottom friction terms,τb, are different than zero.

The finite difference method is applied for the spatial discretisation of the equations and an
explicit leapfrog scheme is used for time integration. A dynamically adjusted time step is imple-
mented, which is controlled by the Courant number. The code has been validated with some of the
classical benchmarks cases (Zijlema et al. 2011). For more details about the code, refer to Zijlema
and Stelling (2005), Zijlema and Stelling (2008), Zijlema et al. (2011).

B.2.3 Benchmark test cases

B.2.3.1 Standing waves (seiches) in a basin

A standing or stationary wave is a wave oscillating in time, which remains in the same position;
therefore, no motion is transmitted from one particle to the next one. Different particles have
different amplitudes, with the minimum value at the nodes and the maximum value at the anti-
nodes. Different particles throughout the wave oscillate in phase.
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Figure B.1: Standing waves: (—) Exact solution. (* *) Numerical result, for kh = 0.55π and
depth-averaged mode.

Standing waves can be the result of the medium moving in the opposite direction of the wave
or due to the interference of two waves traveling in opposite directions in a stationary medium. It
is commonly a consequence of resonance within the medium.
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Consider a standing wave resultant from the combination of an incident wave with a reflected
wave. An harmonic wave traveling to the right along the x-axis can be described by the equation:

yr(x, t) = A · sin

�

2πx

λ
− ωt

�

, (B.1)

where A is the amplitude of the wave, x is the coordinate along x-axis, t is the time, λ is the
wavelength, ω is the angular frequency and equal to 2πf , where f is the frequency.

An identical harmonic wave traveling in the opposite direction to the latter can be described
as follows:

yl(x, t) = A · sin

�

2πx

λ
+ ωt

�

. (B.2)

Considering interference between both waves (Figure B.1), the resultant wave can be described
by the equation:

y(x, t) = 2A · sin

�

2πx

λ

�

cos(−ωt). (B.3)

B.2.3.2 Progressive waves in a basin

A progressive wave is a wave whose front is moving through the medium and traveling in time
away from the source, on the sea surface or at an intermediate depth, referring to the specific
coordinate system of the medium. It is a type of wave in which the energy transported is distributed
from the source point to the surrounding areas. Energy is moved by means of the particles or fields
vibrations. There are two types of progressive waves: transverse and longitudinal. In transverse
waves, the particles vibrations are perpendicular to the wave motion. For horizontal motion, the
particles will travel up and down (as in water and light). In longitudinal waves, the particles
vibrations are parallel to the wave motion. For horizontal motion, the particles will be compressed
or expanded as they travel (as sound waves and S-waves, the secondary or shear earthquake waves).

A progressive wave can be described by the equation:

y(x, t) = A · sin

�

2πx

λ
− ωt

�

, (B.4)

where A is the amplitude of the wave, x is the coordinate along x-axis, t is the time, λ is the
wavelength, ω is the angular frequency and equal to 2πf , where f is the frequency. T is the wave
period.

In this case study, a linear progressive wave in a wave flume is simulated for increasing values
of κh and number of layers (Figure B.2).
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(b) kh = 2π; 3 layers: 10%, 20%, 70%
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(c) kh = 3π; 3 layers: 10%, 20%, 70%
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(d) kh = 4π; 3 layers: 10%, 20%, 70%
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Figure B.2: Progressive waves: (—) Exact solution. (◦ ◦ ◦) Numerical result, for multi-layered
mode.

B.2.3.3 Wave propagation over a submerged bar

We study the experiment by Beji and Battjes (1993), considering the wave propagation over a
trapezoidal submerged bar. The wave case simulated is Case A, in which the wave height is
H = 0.02 m and the period is T = 2.02 s, for a water depth of 0.4 m. Results are presented in
Figure B.3, for 8 virtual wave gauges located along the channel.
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(b) station 5 ( x = 12.5 m )
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(c) station 6 ( x = 13.5 m )
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(f) station 9 ( x = 17.3 m )
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(g) station 10 ( x = 19.0 m )
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Figure B.3: Wave propagation over a submerged bar: Experimental results (- -) comparing with
SWASH results (—) for free surface elevation at every wave gauge.
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