
A Strategy for Parallel Simulation of Declarative Object-Oriented
Models of Generalized Physical Networks

Francesco Casella1
1Dipartimento di Elettronica, Informazione e Bioingegneria, Politecnico di Milano, Italy,

francesco.casella@polimi.it

Abstract
For several years now, most of the growth of comput-
ing power has been made possible by exploiting paral-
lel CPUs on the same chip; unfortunately, state-of-the-art
software tools for the simulation of declarative, object-
oriented models still generate single-threaded simulation
code, showing an increasingly disappointing performance.
This paper presents a simple strategy for the efficient com-
putation of the right-hand-side of the ordinary differen-
tial equations resulting from the causalization of object-
oriented models, which is often the computational bottle-
neck of the executable simulation code. It is shown how
this strategy can be particularly effective in the case of gen-
eralized physical networks, i.e., system models built by the
connection of components storing certain quantities and of
components describing the flow of such quantities between
them.

Keywords Parallel simulation, Declarative modelling,
Structural analysis

1. Introduction
For several years now, most of the growth of computing
power predicted by Moore’s law has been made possible
by exploiting parallel CPUs on the same chip; this trend is
likely to continue for many years in the future. Significant
speed-up in the simulation of declarative, object-oriented
models will require to exploit the availability of parallel
processing units.

With reference to the Modelica community, there are
several attempts in this direction reported in the literature,
mostly from Linköping University PELAB. One possible
approach (see, e.g., [2, 8, 9]) is to analyse the mutual
dependencies among the equations and variables of the
system by means of graph analysis, eventually providing
some kind of optimal scheduling of tasks to solve them in

5th International Workshop on Equation-Based Object-Oriented Modeling
Languages and Tools. 19 April, 2013, University of Nottingham, UK.
Copyright is held by the author/owner(s). The proceedings are published by
Linköping University Electronic Press. Proceedings available at:
http://www.ep.liu.se/ecp_home/index.en.aspx?issue=084

EOOLT 2013 website:
http://www.eoolt.org/2013/

parallel, while avoiding idle times and bottlenecks in the
computation.

A completely different approach, also pioneered at
PELAB, is based on Transmission Line Modelling (TLM)
[11, 13]. The basic idea is that physical interactions can
often be modelled by means of components that repre-
sent wave propagation in finite time (e.g. pressure waves
in hydraulic systems, elastic waves in mechanical systems,
electromagnetic waves in electrical systems). It is then pos-
sible to split large system models into several smaller sub-
systems, that only interact through TLM components. This
allows to simulate each sub-system in parallel for the du-
ration of the TLM delay, as its behaviour will only depend
on the past history of connected sub-systems.

This approach is interesting because it is based on phys-
ical first principles, introducing no approximations; how-
ever, the values of transmission line delays in most systems
are quite small, thus limiting the maximum length of the
integration time step allowed for the simulation. Moreover,
this approach critically depends on the good judgement of
the modeller, that must introduce appropriate TLM compo-
nents all over the system model in order to obtain a perfor-
mance benefit.

In spite of the above-mentioned studies, the state-of-the-
art software tools for the simulation of declarative, object-
oriented models still generate single-threaded simulation
code, as of today. This results in an increasingly disappoint-
ing performance, as the number of cores available on stan-
dard desktop workstations or even laptops roughly doubles
every two years, while the simulation speed basically re-
mains the same.

The goal of this paper is to show that, for a fairly
large class of object-oriented models of physical systems,
a simple strategy for parallel simulation can be envisioned,
which is expected to provide large speed-up ratios when us-
ing many-cores CPUs, and which does not depend on the
accurate estimation of the computation and communication
delay to obtain good performance. Since this strategy is
very easy to implement and test, it is hoped that it quickly
finds its way into mainstream object-oriented simulation
tools, thus improving the state of the art in this field.

The paper is organised as follows. Section 2 contains
the statement of the problem and a discussion of related
work. The algorithm to partition the solution of the model

45

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Archivio istituzionale della ricerca - Politecnico di Milano

https://core.ac.uk/display/55241649?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


into independent tasks that can be executed in parallel is
described in detail in Section 3. In Section 4, models of
generalized physical networks are introduced, and the re-
sults of the partitioning algorithm are discussed. Section 5
briefly discusses the task scheduling problem, while Sec-
tion 6 concludes the paper with final remarks and indica-
tions for future work.

2. Problem Statement and Related Work
The starting point of this analysis is an equation-based,
object-oriented model of a dynamical system, e.g. writ-
ten in Modelica. For the sake of conciseness, the analysis
is limited to continuous-time systems, though it could be
easily extended to hybrid systems with event handling and
clocked variables.

After flattening, the model is transformed into a set of
Differential-Algebraic Equations (DAEs)

F (x, ẋ, v, t) = 0, (1)

where F (·) is a vector-valued function, x is the vector of
variables appearing under derivative sign in the model, v is
the vector of all other algebraic variables, and t is the time.

A commonly adopted strategy for the numerical simu-
lation of such systems is to first transform the DAEs (1)
into Ordinary Differential equations (ODEs), i.e., solving
equations (1) for the state derivatives ẋ and for the other
variables v as a function of the states and of time:

ẋ = f(x, t) (2)

v = g(x, t). (3)

By defining the vector z of unknowns as

z =

[
ẋ
v

]
, (4)

the ODEs (2)-(3) can be formulated as

z = h(x, t) (5)

Sophisticated numerical and symbolic manipulation
techniques (see [5] for a comprehensive review) are em-
ployed to generate efficient code to compute h(x, t), which
will then be called by the ODE integration algorithm at
each simulation step. Implicit integration algorithms will
also require every now and then the computation of the
Jacobian ∂h(x,t)

∂x , which might be performed either sym-
bolically or numerically [4, 3]. This code is then linked to
standard routines for numerical integration of differential
equations, such as DASSL or the routines from the Sundi-
als suite, thus generating an executable simulation code.

In this context, it is in principle possible to exploit par-
allelism in the computation of h(x, t), in the computation
of ∂h(x,t)

∂x , and in the algorithm for numerical integration,
which might, e.g., employ parallel algorithms to solve the
implicit equations required to compute the next state value
at each time step. This paper focuses on those problems
in which the computation of h(x, t) takes the lion’s share

of the simulation time, e.g., because it involves the com-
putation of cumbersome functions to evaluate the proper-
ties of a fluid in an energy conversion system model. Of
course, it is also possible to combine the approach pre-
sented here with the parallel computation of the Jacobian
(which is fairly trivial if done numerically) and of the nu-
merical integration algorithms, but this is outside the scope
of the present work.

The algorithm presented in the next section follows the
same principle that was first put forward in [1], and later on
further developed in the Modelica context in [2]: exploiting
the dependencies between the different equations (and parts
thereof) to determine the order in which the systems has to
be solved and which systems that can be solved in parallel.
However, it tries to do so in a simpler way, by exploiting
the mathematical structure of generalized network models.

More specifically, [2] first represents the algorithm to
compute h(x, t) with the finest possible granularity: each
node in the dependency graph is a single term in the
right-hand-side expressions of those equations that can be
solved explicitly for (x, t), or a system of implicit equa-
tions for those who can’t. Subsequently, these atomic tasks
are merged into larger tasks, taking into account execution
and communication costs, in order to minimize the overall
execution time and maximize the parallel speed-up ratio.
The merging algorithms are fairly involved, and their re-
sult critically depends on those costs, which are often hard
to estimate reliably. Moreover, this kind of analysis seems
to fit well the computational model of networked systems
(e.g., clusters of workstations, which were popular at the
time of that work), where communication delays are signif-
icant when compared to execution times, making a clever
merging of tasks mandatory for good performance. Results
obtained by the application of these techniques to a few
representative test models were reported in [2] and subse-
quent related work, but no analysis was ever attempted to
understand what is the typical structure of the dependen-
cies in different classes of physical system models, in order
to understand how much they can benefit in general from
the application of this parallelization technique. Unfortu-
nately, even though these algorithm were implemented in
earlier versions of the OpenModelica compilers, they are
currently no longer supported, which prevents trying them
on real-life problems that can only be handled by more
recent versions of the compiler.

The aim and scope of this paper are somewhat different.
First of all, the underlying computational model is that of
multiple-core CPUs with shared memory, in which com-
munication delays tend to be small or negligible compared
to execution times, at least as long as all the variables of
the model can be kept within the on-chip cache memory at
all times. This seems a feasible proposition for models of
moderately large size: a system with 10000 variables (after
optimizations such as alias elimination) in double precision
requires only 80 kilobytes of shared cache memory. Sec-
ond, it is shown that a fairly large class of object-oriented
models, namely generalized physical networks, has a de-
pendency structure that can be very well exploited by a sim-

46



ple parallelization algorithm which does not critically de-
pend on the accurate estimation of execution times, but can
guarantee nearly optimal allocation of parallel resources, as
long as the number of nodes in the network is much larger
than the number of parallel processing units.

3. An Algorithm for Parallel Solution of
Equations from Declarative Models

The proposed algorithm is now outlined in detail.

1. Build an Equations-Variables (E-V) digraph, where ev-
ery E-node corresponds to an equation in (1), every V-
node correspond to a scalar unknown variable in z, and
an edge exists between an E-node and a V-node if the
unknown variable shows up in the equation.

2. Find a complete matching between E and V nodes (see
[7] for a review of suitable algorithms); if this is not
possible because the DAE system has index greater than
one, apply Pantelides’ algorithm [12] and the Dummy
Derivative algorithm [10] until the system is reduced to
index 1 and a complete matching can be found.

3. Transform the E-V digraph into a directed graph by first
replacing each non-matching edge with an arc going
from the E-node to the V-node, then by collapsing each
V-node with its matching E-node.

4. Run Tarjan’s algorithm [6] on the directed graph to lo-
cate its strongly connected components, corresponding
to systems of algebraic equations that need to be solved
simultaneously for their matching unknown variables.

5. Collapse each set of nodes making up a strong compo-
nents into one macro-node.

6. Let i = 1

7. Search for all the sinks in the graph and collect them in
the set Si; these correspond to equations (or to systems
of implicit equations) that can be solved independently
of each other.

8. Delete all nodes in Si from the directed graph, as well
as all arcs connected to them.

9. If there are still nodes in the graph, increase i by one
and goto Step 7.

When the algorithm shown above terminates, all the
equations and systems of implicit equations of the system
will be collected in the sets Si.

Proof: after executing Step 5, the directed graph has no
closed cycles left in it, because each and every strong com-
ponents has been collapsed into a single macro-node; there-
fore, there exists at least one sink in the graph. Remov-
ing nodes without outgoing arcs does not create cycles, so
that at each iteration at least one node is removed from the
graph, until there will be none left, QED.

Note that state-of-the-art Modelica tools already per-
form Steps 1 to 4, so that the addition to the tool code in
order to implement the proposed strategy is minimal.

The result of this analysis can also be visualized in terms
of the Block Lower Triangular (BLT) representation of the

Figure 1. The incidence matrix in BLT form with Si sets.

incidence matrix, see Figure 1. Each set Si corresponds to
a block diagonal square matrix in the BLT matrix, marked
in red in Figure 1, where every block on the diagonal cor-
responds to a strong component of the system of equations.
As the ordering induced by the directed graph is partial,
there exist many different BLT transformations of the orig-
inal system corresponding to the same graph.

All the equations or systems of equations showing up in
each set Si can now be solved independently on parallel
cores. Before moving to the solution of set Si+1, it is
necessary to wait that all equations belonging to the set Si
have been solved.

The latter requirement can in general create bottlenecks,
e.g., N − 1 cores might stand idle for a long time, waiting
for the N th one to complete its task. However, if the num-
ber of nodes is much larger than the number of cores and
there is no single node whose execution time is dispropor-
tionately longer than that of all the others, on average the
impact of such situations on the overall execution time will
be small. It will be shown in the next Section that this is
precisely the case of large generalized physical networks.

4. Application to Generalized Network
Models

Many physical models can be built by connecting storage
components and flow components, see Figures 2-3. The
former ones describe the storage of certain quantities, by
means of dynamic balance equations; the latter instead de-
scribe the flow of those quantities between different com-
ponents, which is governed by the difference of some po-
tential variable at the two boundaries. Two examples will
be detailed in this section: thermal networks and thermo-
hydraulic networks.

4.1 Thermal Networks
Thermal networks describe the flow of heat between bod-
ies having different temperature. In this case the stored
quantity is thermal energy, which is conveniently described
by temperature state variables, while the flow components

47



S S

SS

S

Figure 2. A physical network model with flow compo-
nents connected to storage components only.

compute the thermal power flow based on the temperature
at the two boundaries.

Thermal storage components are described by energy
balance equations:

C(Ti)
dTi
dt

=
∑
j

Qi,j , (6)

where Ti is the temperature of the i-th storage component,
C(T ) is the thermal capacitance, andQi,j are the heat flows
entering the i-th component. For simplicity, assume all
thermal power flows can be modelled by constant thermal
conductances:

Qi = Gi(Ti,a − Ti,b) (7)

where Gi is the thermal conductance of the i-th flow com-
ponent and Ti,a, Ti,b are the two boundary temperatures.

Assuming that each thermal flow component is directly
connected to two storage components, as in Figure 2, once
all alias variables have been eliminated, the equations (6)
will be matched to their corresponding temperature deriva-
tives, while the equations (7) will be matched to their cor-
responding heat flows. There will be no strong components
in the E-V graph, corresponding to a strictly lower trian-
gular BLT form of the incidence matrix. If the algorithm
presented in Section 3 is now applied, the set S1 will con-
tain all the flow equations (7), each of which can be solved
independently, and the set S2 will contain all the storage
equations (6), each of which can be solved independently
once the heat flows have been computed by the equations
in S1.

With reference to the thermal network in Fig. 2, the di-
rected graphs at each algorithm iteration are shown in Fig.

S S

SS

S

Figure 3. A physical network model with flow compo-
nents directly connected to each other.

S1

S2

S3

S4

S5

F1

F2

F3

F4

F5

F6

S1

S2

S3

S4

S5

First iteration Second iteration

Figure 4. Iterations of the parallelization algorithm: ther-
mal network

4. Nodes marked with the letter S represent storage equa-
tions (6), nodes marked with the letter F represent thermal
flow equations (7); thick-bordered red nodes correspond to
the set Si at the i-th iteration.

In case of more complex connection topologies, where
the heat flow components are directly connected to other
heat flow components as in Figure 3, there will be strong
components in the E-V graph, corresponding to sets of al-
gebraic equations that must be solved simultaneously to de-
termine the heat flows and the intermediate temperatures,
which in this case are not known state variables. Con-
sequently, the set S1 will also contain the corresponding
macro-nodes.

4.2 Thermo-Hydraulic Systems
Thermo-hydraulic networks describe the flow of mass and
thermal energy between different components representing
the storage of mass and thermal energy in finite volumes
of the system, by means of flow components describing the
mass flow and the heat flow (e.g., due to convective heat
transfer) between different volumes. In this case, the stored
quantities are mass and energy, which can be described,
e.g., by pressure and temperature state variables. Mass flow
rates are determined by the pressure difference between the
boundaries of flow components, and also by the upstream

48



properties of the fluid (e.g., the density). Heat flows are
determined by thermal conductances, as in the previous
sub-section.

Storage components are described by mass and energy
balance equations:[

ei hi ρi
∂ρi
∂p

∂ρi
∂T

∂ei
∂p

∂ei
∂T

]
= f(pi, Ti) (8)

Mi = ρiVi (9)
dMi

dt
=
∑
j

wi,j (10)

dEi
dt

=
∑
j

wi,jhi,j +
∑
j

Qi,j (11)

dMi

dt
=
∂ρi
∂p

dpi
dt

+
∂ρi
∂T

dTi
dt

(12)

dEi
dt

=

(
∂ei
∂p

dpi
dt

+
∂ei
∂T

dTi
dt

)
Mi + ei

dMi

dt
(13)

where ei, hi, ρi, pi, Ti are the specific internal energy, spe-
cific enthalpy, density, pressure, and temperature of the
fluid contained in the i-th component, Vi is the volume
of the component, Mi is the mass of the fluid contained
in the component, wi,j are the mass flow rates entering
the component, hi,j the associated upstream specific en-
thalpies, and Qi,j the heat flows entering the component.

Mass flow components determine the mass flow rate as
a function of the boundary pressures and of the upstream
density:

wi = w(pi,a, pi,b, ρi), (14)

while heat flows components are the same as in the previ-
ous sub-section.

Assuming that mass flow and heat flow components are
always connected between two storage components, once
all alias variables have been eliminated, equations (8) will
be matched to all the properties on their left-hand-side,
equation (9) will be matched to Mi, equation (10) will be
matched to dMi

dt , equation (11) will be matched to dEi

dt , the
pairs of equations (12)-(13) will be matched to dpi/dt and
dTi/dt, forming a strong component of two variables and
equations for each i, equations (14) will be matched to the
mass flow rates wi, and equations (7) will be matched to
the heat flows Qi.

After the algorithm illustrated in Section 3 has been ap-
plied, the set S1 will contain all the fluid property equa-
tions (8) and the thermal flow equations (7), each of which
can be computed independently. The set S2 will contain
the equations (9), (14), which can be solved independently.
The set S3 will contain the equations (10) and (11), each
of which can be solved independently. Finally, the set S4

will contain the macro-nodes corresponding to the systems
(12)-(13), each of which can be solved independently to
compute the state derivatives.

With reference to a simple system composed of three
storage components, connected in series by two mass flow
components, with the flow direction from the first to the
last storage component, the directed graphs shown in Fig.
5 are obtained at each iteration. Equations (8) are marked
with P, (9) with M, (14) with F, (10) with MB, (11) with

EB, (12)-(13) with D. As before, thick-bordered red nodes
correspond to the set Si at the i-th iteration.

In case there are series-connected heat flow or mass flow
components in the system, as in Figure 3, their variables
and equations will form strong components in the E-V
graph, which will end up in sets S1 (heat flows) and S2

(mass flows), respectively.

4.3 Outlook
First of all, it is worth noting how the number of sets
of equations Si, that need to be solved in sequence, re-
mains very low (2 for thermal networks and 4 for thermo-
hydraulic networks), regardless of the size of the system.
Therefore, as the number of components increases, the pos-
sibility of exploiting a large number of parallel CPU also
increases, since there will be an increasing number of tasks
in each Si that can be performed in parallel before syn-
chronizing for the transition to the next set Si+1. For in-
stance, if there are 1000 storage components in a thermo-
hydraulic network, it is possible to distribute the computa-
tion of the corresponding fluid properties over up to 1000
parallel cores.

It is also worth noting that in the case of thermo-
hydraulic systems such as steam power plant models, the
computation of the fluid properties in each storage compo-
nent, equation (8), often takes up the lion’s share (90% or
more) of the CPU time required to solve the DAEs for the
state derivatives, and also a large share of the total CPU
time required for the entire system simulation, as the time
required to compute h(x, t) dominates the time spent by the
integration algorithm to find the value of the next state vec-
tor. A simple strategy as the one proposed here will be thus
very effective in this case, since those computations will all
end up in set S1, and thus will be performed in parallel on
all the available CPU cores. In these cases, a speed-up ratio
close to the number of cores can be expected.

5. Scheduling Policies
The parallel tasks determined by the algorithm discussed
in the previous section need to be run several times at each
simulation time step, depending on the chosen integration
algorithm, so they will be run hundreds or thousands of
times in a typical simulation run. A trivial scheduling pol-
icy for the parallel solution of the system equations is to
first set up a thread for each (macro) nodes in the graph;
subsequently, for every required computation of h(x, t),
the threads corresponding to the set S1 are activated, so
they run on the first available core until there are no more
threads running, then those corresponding to set S2, and so
on and so forth until SN is completed. All threads read and
write from and to a shared memory; since every node only
computes the variables it is matched to, and only reads vari-
ables that were computed in previous parallel sequences, it
is guaranteed that read/write conflicts cannot take place,
thus avoiding the need of mechanisms such as semaphores.

In many cases (e.g., when cumbersome fluid properties
computations are involved, as noted in the previous sec-
tion), such a simple policy could already be highly advan-

49



P1

P2

P3

M1

M2

M3

F1

F2

MB1

MB2

MB3

EB1

EB2

EB3

D1

D2

D3

M1

M2

M3

F1

F2

MB1

MB2

MB3

EB1

EB2

EB3

D1

D2

D3

MB1

MB2

MB3

EB1

EB2

EB3

D1

D2

D3

D1

D2

D3

First iteration Second iteration Third iteration Fourth iteration

Figure 5. Iterations of the parallelization algorithm: thermo-hydraulic network

50



tageous, compared to a purely sequential solution of the
DAEs. However, there are two major potential problems
that could arise.

The first problem is the impact of the overhead required
to activate a thread for each (macro) node in the equations
directed graph. Consider for example the case described
in Section 4.1: every instance of equation (7), which only
requires a subtraction and a multiplication to be solved,
will end up in a separate thread. If the thread activation
time is comparable or higher than the time required for the
two floating point operations, then the end result of this
parallelization strategy could be a code that actually runs
slower than its sequential counterpart. This problem can
be solved by roughly estimating the order of magnitude of
the execution time associated to each (macro) node, and
then aggregate many of them until the thread set-up time is
negligible compared to the total execution time.

The second problem is how to guarantee that all cores
are used as much as possible, and none stays idle for a long
time. If a few tasks in Si take a much longer time than all
the other ones, and there is a large number of parallel cores
available, activating them as the last ones might result in
a waste of time, because most of the cores will eventually
stay idle, waiting for those longer tasks to end. A possible
solution to this problem is to estimate the execution time of
each task, then start the longer-running ones first. Again,
a very rough estimate of the order of magnitude of the
execution time is enough for this purpose. If the number
of tasks in Si, which corresponds to the number of nodes
in the physical networks, is much larger than the number
of processing units, the impact of the idle time spent at the
end of each parallel section of the algorithm will on average
be small, compared to the total execution time. This is the
case, for example, if a 16-cores CPU is used to simulate
a network of a few hundred nodes (e.g., a thermal power
plant model).

6. Conclusions and Future Work
In this paper, a simple algorithm has been presented that
allows to distribute over parallel CPU cores the solution of
DAEs stemming from object-oriented models. It has been
shown how this algorithm can be very effective in parti-
tioning the solution of the system DAEs over many parallel
CPU cores, when applied to large models of thermal and
thermo-hydraulic networks, which can easily involve hun-
dreds or thousands of storage and flow models.

In the near future, it is planned to implement the al-
gorithm in the OpenModelica compiler, which already of-
fers support for parallel simulation of systems having a de-
coupled structure (e.g., thanks to the TLM methodology),
using the OpenMP framework. This will allow to exper-
iment the proposed strategy on generalized physical net-
work models, but also on different kinds of models, such as
mechanical systems. Another interesting perspective could
be to couple the strategy presented here for parallel solving
of DAEs with parallel ODE solvers for sparse systems, in
order to fully exploit parallelism in all the tasks required to
simulate an object-oriented declarative model.

References
[1] Niclas Andersson and Peter Fritzson. Generating parallel

code from object oriented mathematical models. In
Proceedings 5th ACM SIGPLAN Symposium on Principles
and Practice of Parallel Programming, Santa Barbara, CA,
USA, Jul 19–21 1995.

[2] P. Aronsson. Automatic Parallelization of Equation-Based
Simulation Programs. PhD thesis, Linköping University,
Department of Computer and Information Science, 2006.

[3] Willi Braun, Stephanie Gallardo Yances, Kilian Link, and
Bernhard Bachmann. Fast simulation of fluid models with
colored jacobians. In Proceedings of the 9th International
Modelica Conference, pages 247–252, Munich, Germany,
Sep. 3–5 2012. Modelica Association.

[4] Willi Braun, Lennart Ochel, and Bernhard Bachmann. Sym-
bolically derived jacobians using automatic differentiation
- Enhancement of the OpenModelica compiler. In Pro-
ceedings 8th International Modelica Conference, pages
495–501, Dresden, Germany, Mar 20-22 2010. Modelica
Association.

[5] F. E. Cellier and E. Kofman. Continuous System Simulation.
Springer-Verlag, 2006.

[6] I. S. Duff and J. K. Reid. An implementation of Tarjan’s
algorithm for the block triangularization of a matrix. ACM
Transactions on Mathematical Software, 4(2):137–147,
1978.

[7] Jens Frenkel, Gunter Künze, and Peter Fritzson. Survey
of appropriate matching algorithms for large scale systems
of differential algebraic equations. In Proceedings 9th In-
ternational Modelica Conference, pages 433–442, Munich,
Germany, Sep. 2012. Modelica Association.

[8] H. Lundvall. Automatic parallelization using pipelining for
equation-based simulation languages, 2008. Lic. Thesis.

[9] H. Lundvall, K. Stavåker, P. Fritzson, and C. Kessler.
Automatic parallelization of simulation code for equation-
based models with software pipelining and measurements
on three platforms. Computer architecture news, Special
issue MCC08 - Multicore computing 2008, 36(5), 2008.

[10] S. E. Mattsson and G. Söderlind. Index reduction in
differential-algebraic equations using dummy derivatives.
SIAM Journal on Scientific Computing, 14(3):677–692,
1993.

[11] Kaj Nyström and Peter Fritzson. Parallel simulation
with transmission lines in Modelica. In Proceedings 5th
Modelica Conference, pages 325–331, Vienna, Austria, Sep
6–8 2006. The Modelica Association.

[12] Constantinos C. Pantelides. The consistent initialization of
differential-algebraic systems. SIAM Journal on Scientific
and Statistical Computing, 9(2):213–231, 1988.

[13] Martin Sjölund, Robert Braun, Peter Fritzson, and Petter
Krus. Towards efficient distributed simulation in modelica
using transmission line modeling. In Proceedings 3rd In-
ternational Workshop on Equation-Based Object-Oriented
Languages and Tools, pages 71–77, Oslo, Norway, Oct 3
2010.

51




