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Abstract

This paper studies how the structure of the International Trade Network (ITN) changes

in geographical space and along time. We employ geographical distance between countries

in the world to filter the links in the ITN, building a sequence of sub-networks, each one

featuring trade links occurring at similar distance. We then test if the topological properties

of ITN subnetworks change as distance increases. We find that distance strongly impacts,

in non-linear ways, the topology of the ITN. We show that the ITN is disassortative at long

distances while it is assortative at short ones. Similarly, the main determinant of the overall

high ITN clustering level are triangular trade triples between geographically close countries.

This means that trade partnership choices are differentiated over different distance ranges.

Such evidence robustly arises over time and after one controls for the economic size and

income of trading partners.
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1 Introduction

After a relatively long period of neglect, geography and distance have re-gained momen-

tum in international trade analysis. Both in models based on monopolistic competitive

homogeneous firms a là Krugman (1980), and in models displaying heterogeneous produc-

tivities, as in Eaton and Kortum (2002) and Melitz (2003), distance plays a fundamental

role in generating a wedge between domestic and international prices. This wedge is gen-

erally attributed to international trade costs (Anderson and van Wincoop, 2004). Also

in the empirical analysis of trade flows, the overwhelming use of the gravity equation

in the prediction of the volume of bilateral trade flows is emphasizing once again the

persistent role of distance in international exchanges.1 The economic relevance of space,

i.e. the cost associated to physical distance, has also influenced macroeconomists in sin-

gling it out as a fundamental explanation of discrepancies between canonical models and

empirical evidence (Obstfeld and Rogoff, 2001).

The inclusion of distance in international trade models and empirics has certainly

shortened the gap between international trade and economic geography. The inclusion of

concepts such as market potential (Head and Mayer, 2010), remoteness (Wei, 1996; Coe

et al., 2007) or multilateral resistance (Anderson and van Wincoop, 2003) in international

trade analysis encouraged researchers to move from the two-country-world of international

trade theory and the bilateral focus of trade empirics, to a more global analysis, where

the possible role of third countries —or more generally of the structure of the links among

all countries— in influencing country dyadic relations is taken into account.2

Nevertheless, especially in applied analyses, the concept of distance is still essentially

considered as an absolute, bilateral concept (e.g., as an individual characteristic of each

single country i with respect to any other country j). Indeed, even the widespread use of

more relative concepts such as multilateral resistance in gravity estimation boils down,

in practice, to employing country fixed-effects in panel data (Hummels, 1999; Feenstra,

2002; Redding and Venables, 2004), i.e. labeling the cost of distance with a bilateral

attribution instead of a multilateral one. The consequence is that the deep, structural

dimension of multilateral resistance is still largely under-explored.

In recent years, however, a network approach to international trade has started to

1In the gravity model of international trade, popularized by Tinbergen (1962), the aggregate value of
trade between a pair of countries is proportional to the product of their incomes and inversely related to
the distance between them. In the the traditional log-log version of the gravity equation, the estimated
coefficients correspond to elasticities, and distance enters (log) linearly in the estimate of bilateral trade
flows. See Disdier and Head (2008) for a meta-analysis of the empirical literature on the gravity model,
Santos Silva and Tenreyro (2006) for the possible implication of the inclusion of distance in a log form,
and De Benedictis and Taglioni (2011) and Anderson (2011) for recent overviews of the gravity model.

2The literature on “third country effects” is still very sparse. See Baltagi et al. (2007) for an application
to foreign direct investments, and Egger and Larch (2008) and Chen and Joshi (2010) for an application
to regional trade agreements. In a different perspective, some authors have looked at the role of “third
countries” in the transmission of shocks, see Abeysinghe and Forbes (2005) and Dees and Saint-Guilhem
(2011).
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uncover the properties of the web of trade flows by focusing precisely on the structural,

multilateral side of international trade relations (Fagiolo et al., 2009; De Benedictis and

Tajoli, 2011). This approach begins by describing international-trade flows using graph-

theoretic structures where countries (nodes) are linked by arcs or edges representing

(possibly weighted) import-export relationships between countries. This techniques allow

one to get rid of purely dyadic relations among countries and enhance the importance of

network topology and the roles played by country relative positions in the network. This

literature hints to the existence of interesting statistical regularities in the topology of

trade networks, e.g. the disassortative nature of the network (i.e. the fact that highly-

connected countries tend to be linked to countries which are not well-connected) or the

relatively high level of clustering (i.e. a high likelihood that any two trade partners

of a country are themselves trade partners). Furthermore, it has been shown that the

structural properties of the trade network may have important consequences as far as

shock transmission and country growth are concerned (Kali and Reyes, 2007; Kali et al.,

2007).

Traditionally, network analyses of international-trade flows did not explicitly take on

board geography. In other words, the network of trade flows has never been embedded

in a geographical space. Therefore, no attempts have been made in linking topological

(geodesic) distances among countries to their geographical counterparts.3 In this paper,

we begin to bridge this gap by including geographical space in a network analysis of

international-trade flows. To do so, we employ geographical distances between countries

to filter the ITN and build sub-networks of countries located at similar geographical

distances. We then test if the topological properties of these subnetworks are robust to

geographical distance. The short answer we get is: no. We find that the effect of distance

on trade networks is strongly non-linear. Many of the properties that one typically

observes at the aggregate level (i.e. without considering distance) are not robust to a

geographical breakdown. For example, the network is disassortative at long distances,

while it is assortative at short ones, the switch happening at a distance of approximately

4000km. A similar finding applies to clustering: short-distance country triplets are the

major contributors to the strong level of overall clustering. By repeating this exercise

over time, we show that this evidence is persistent from year 1970 to year 2000, and

that it remains consistent even after one explicitly takes into account the size of countries

involved in trade. This brings an important insights for the analysis of trade networks and

international trade in general: the structure of international trade flows is not isomorphic

along distance.

The rest of the paper is organized as follows. In section 2 we review the literature

3This is also the case for network analysis in general. There are however notable exceptions in the
area of geography, urban systems and transport analysis. See Barthelemy (2011) for a review of the
issue, and Wilson (2000) and Haggett and Chorley (1969).
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dealing with geographical distance and trade models. Section 3 discusses the main find-

ings of network-related literature on trade. In section 4 we describe the data used in our

analysis and the methodology used. Section 5 presents our main results. Finally, section

6 concludes.

2 International trade and distance

Distance matters in international trade. This is so whenever the movements of goods and

services across space implies some costs. Econometric estimates of the constant elasticity

of trade to geographical distance provide a measure of the relevance of those costs and

their persistence over time (Brun et al., 2005), ranging within an interval of -0.7 and

-1.2 (Disdier and Head, 2008). This means that on average, all else equal, countries twice

apart show a bilateral volume of trade which is approximately half the one of neighboring

countries.

In line with this evidence, the most recent trade models embody the idea that the

geographical distance between the country where goods and services are produced and the

country where they are sold and consumed has a negative effect on trade flows between

the two countries. There may be several reasons why this is the case. Taking an extreme

view, on the one hand, trade costs can operate proportionately to distance, increasing

variable costs or reducing the quantity of the exported goos that reaches the foreign

market, as in Samuelson’s iceberg trade-cost formulations. On the other hand, trade

costs can follow a Bernoulli process associated to the acquisition of an export status by

firms extending their activities from a purely domestic context to an international one.

In this case, distance acts as a fixed sunk cost, that can be specific to the each foreign

market or payed once-and-for-all when the firm, having payed the fixed sunk trade cost,

has acquired the knowledge necessary to be active in any foreign market.4

The implications of such alternative views in terms of trade partnership and trade

flows among countries are clearly not the same. If trade costs are directly proportional to

distance, trade partnerships would expand radially around countries and trade volumes

would smoothly decrease with distance, conditional on the size of the foreign market.

Conversely, if trade costs are fixed entry costs, trade partnership would be a more dis-

continuous process, and the selection of partners and trade volumes would be somehow

independent on the distance between the home and foreign market.

Trade economists have dealt with this issue in terms of extensive margin and intensive

margin of trade (i.e. new trade links vs. increasing strength of pre-existing trade links).5

4See Redding (2011) for a review of the recent theoretical literature on heterogeneous firms and trade
and on the role of trade costs in this stream of research. The fundamental paper by Anderson and van
Wincoop (2004) gives a comprehensive overview of the issue.

5The dimensions through which aggregate trade is typically split in margins are many. Just to fix
ideas, the extensive margin can be considered at the country level (new export markets or countries
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The consensual piece of evidence is that distance operates mainly through the extensive

margin, as shown by Lawless (2010) and Bernard et al. (2007). Within a gravity-like

set-up, using firm data on US exports, both papers decompose exports into the average

export sales (the intensive margin) and the number of exporting firms (the extensive

margin), while Bernard et al. (2007) also includes a second component to the extensive

margin: the average number of products sold on foreign markets by exporting firms. In

Lawless (2010) distance has a negative effect on both margins, but the magnitude is

considerably larger for the extensive margin. In Bernard et al. (2007) both the number

of exporting firms and the number of exported products are linearly decreasing in the

distance to the destination country; in contrast, the average export value is increasing in

distance.6 The negative effect of distance strongly emerges only at the extensive margin.

The theoretical paper by Chaney (2008), along the lines of the literature on het-

erogeneous firms that focuses on the micro-foundation of the gravity equation (see also

Anderson and van Wincoop (2003), Melitz (2003), Eaton and Kortum (2002), and Help-

man et al. (2008)), reinforces the empirical evidence, showing that fixed costs affect only

the extensive margin of trade. In facts, in Lawless (2010), the time-invariant variables

that may influence bilateral trade, capturing the role played by fixed cost (i.e. language,

internal orography, infrastructure and import barriers) work through the extensive mar-

gin.

This evidence, distinguishing the role of distance between its effect on the extensive

and intensive margin, has an implicit echo in the different analyses of the international-

trade network (ITN). The notions of extensive and intensive margins, at the country

level, can be easily applied to network analysis. Generally speaking, at the country level

the extensive margin of trade is the change in the number of trade partners of a country

over time, either importers or exporters or both, which coincides with the change in the

number of the links of a country in the trade network. Conversely, the intensive margin

is associated with the change of of a country’s pre-existing trade flows, e.g. the sum of

the pre-existing weights of the links of a country.

The second issue that is worth discussing in the context of the gravity equation is the

way distance is included as a covariate of bilateral trade flows. As we mentioned already,

the cost of distance is in general interpreted as a fixed (sunk) cost or as a variable cost,

from which imports are coming from); at the sectoral level (new product lines get activated in export
or import data, at the sectoral level); at the firm level (new firms enlarge their reference market beyond
national boundaries); or at the product level (multi-product firms start selling new product varieties
abroad).

6Bernard et al. (2007) speculate on the potential explanation for this surprising result. If the cost of
exporting depends on quantity or weight rather than on values, an increase in distance may lead to a

change in the composition of exports towards higher-value commodities, “. . . for which it is profitable to
incur the fixed and variable trade costs of servicing the remote and small foreign market. The differences
in value-to-weight ratio across commodities may in turn be explained by differences in their quality . . . If
the change in composition towards higher-value commodities is sufficiently large, the average value of
exports per product per firm may be increasing in distance.”
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with different implications. Even in its seminal work, Tinbergen (1962) distinguishes

between variable costs (distance) and fixed costs, approximated by the cost-reducing effect

of an adjacency/contiguity dummy, that takes the value 1 when two trading countries

share a common border and 0 otherwise. Since McCallum (1995) it is evident that crossing

the national border is costly, and doing it only once is advantageous. Doing it more than

once, as for countries which are not adjacent, is more costly. If we add to that many

other variables that since Tinbergen (1962) have been augmenting the gravity equation

to account for fixed costs due to a different or similar historical trade pattern (being

part of the same empire, being colonies or colonizers, being enemies or allies), signing

trade agreements or sharing a common currency, using the same or similar languages,

sharing the same formal or informal institutions (legal system, religions, property rights,

reciprocal trust), or even the same genetic map, we end-up with the same logical structure,

where the cost of distance is (log)linearly related to geography and discontinuously related

to the degree of (broadly conceived) similarity of the countries involved in trade.

Focusing on the first component, in principle, given the different nature of trade costs,

there is no reason to believe that distance should be related to trade in a (log)linear

manner. As pointed out by Bernard et al. (2007) and Hummels (2007) among others,

transportation costs can induce a selection among the goods that are sold in distant mar-

kets, and the average value of exports could increase in distance precisely to compensate

the increase in trade costs. Even for a given distance, trade costs are much dependent

on the characteristics of specific goods, such as fragility, perishability, size or weight. In

aggregate terms, trade costs would depend on trade composition and would be country

specific, affected by country’s remoteness and sectoral specialization. Such non-linearities

are usually addressed empirically using a log-log specification.7 This procedure can be

however costly, de-facto removing all zero flows and generating a selection in the data.

The role played by fixed cost is identified only on those flows that are able to cover those

fixed cost and not on those that are not able to afford it.

In some cases, the assumption of a (log)linear cost of space is substituted with some

ad hoc functions. In Eaton and Kortum (2002) the distance effect is associated to six non-

overlapping distance intervals: [0, 375); [375, 750); [750, 1500); [1500,3000); [3000, 6000);

and [6000, maximum], measured in miles. Anderson and Yotov (2012) uses the same

specification decomposing the distance effect into four different elasticities corresponding

to the four non-overlapping distance intervals: [0, 3000); [3000, 7000); [7000, 10000);

[10000, maximum], measured in kilometers. It is amazing that neither one of the two

papers explains why this stepwise functional forms has been adopted. Hillberry and

Hummels (2005) bring some illuminating evidence on why the Eaton and Kortum (2002)

7For an analysis of the implications of estimating the gravity model in a log-linear form with het-
eroskedastic errors see Santos Silva and Tenreyro (2006) and De Benedictis and Taglioni (2011) for a
survey of non-linear estimators in the context of the gravity model.
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specification might be ad hoc but meaningful: there is an extraordinary difference between

short and long-distance trade. Using highly disaggregated data at the spatial and sectoral

level on manufacturers’ shipments within the United States, they find that the pattern of

shipments is strongly localized. Shipments within 5-digit zip codes, with a median radius

of only 4 miles, are 3 times larger than shipments outside the zip code. The analysis

shows that distance reduces aggregate trade values primarily by reducing the number of

commodities shipped and the number of establishments shipping. “ ... Extensive margins

are particularly important over very short distances”.

The analysis that will follow adds a complementary motive to the micro evidence put

forward by Hillberry and Hummels (2005), and brings support to the distinction between

short and long-distance trade, thus giving a further support to the Eaton and Kortum

(2002) specification of the effect of distance on trade. More specifically, we embed a

multilateral perspective to international trade, based on network theory, in an explicit

geographic dimension, in order to ask whether the structure of international trade is

isomorphic across distance.

3 Complex Networks and International Trade

In the last years, there was an increasing surge of interest in applying a complex-network

approach to the study of international trade.8

The International Trade Network (ITN), aka World-Trade Web (WTW) or World

Trade Network (WTN), is defined as the graph of import/export relationships between

countries in a given year t. The resulting graph, Gt = (Vt,Lt), where nt =| Vt | is the

number of countries constituting the vertices (or nodes) of the graph, and mt =| Lt | is the

number of existing directed trade links (or arcs), gives rise to networkNt = (Vt,Lt,Pt,Wt)

- where Pt is the vertex value function including the exogenous or endogenous properties

of vertices, and Wt is the line value function including the exogenous or endogenous

weights of links – which could be a binary (unweighted) network, ∃Wt = At where At is,

for every year t, a n×n 0-1 matrix, if only the presence/absence of a positive trade flow is

considered, or could be a weighted network, ∃Wt 6= At, if links have different intensities,

according to e.g. the value of the bilateral trade flows.

A lot of effort has been recently put forward in uncovering the topological proper-

ties of the ITN architecture, both at the aggregate and at the product-specific level (see

Fagiolo et al., 2010; Barigozzi et al., 2010, for a review of the main results). Understand-

ing the topological properties of the ITN from a complex-network perspective (Albert

8See for example Li et al. (2003); Serrano and Boguñá (2003); Garlaschelli and Loffredo (2004, 2005);
Reichardt and White (2007); Serrano et al. (2007); Bhattacharya et al. (2008, 2007); Garlaschelli et al.
(2007); Tzekina et al. (2008); Fagiolo et al. (2008); Reyes et al. (2008); Fagiolo et al. (2009); De Benedictis
and Tajoli (2011).
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and Barabási, 2002; Dorogovtsev and Mendes, 2003), and their evolution over time, is

fundamentally important to study issues such as economic globalization, the spreading

of international crises, and the transmission of economic shocks (Helliwell and Padmore,

1985; Artis et al., 2003; Forbes, 2002).

A network approach, by focusing on direct as well as indirect relationships between

countries, is able to single out the role of each countries in the complex web of world

trade interactions. This is a remarkable change with respect to traditional analyses.

Indeed, the standard approach to international-trade empirics employs statistics that

fully characterize the profile of a country in the system by referring mainly to its bilateral-

trade direct linkages. Whereas direct bilateral trade linkages are known to be one of the

most important channels of interaction between world countries (Krugman, 1995), recent

studies show that they can only explain a small fraction of the impact that an economic

shock originating in a given country can have on another one, which is not among its

direct-trade partners (Abeysinghe and Forbes, 2005). Along similar lines, Squartini et al.

(2011a,b) show that knowledge of country-specific indicators such a the number of trade

partners, total imports or total exports (which only take into account direct bilateral links

in the ITN) is not enough in the weighted ITN to characterize higher-order moments of

the distribution of trade relationships, involving for example the trade behavior of the

partners of a given country, the likelihood that any two trade partners of a vertex are

themselves partners, etc..

In order to fully account for system-wide phenomena such as globalization and crises

diffusion, a more detailed knowledge of the local and global topological properties of the

network is therefore required. This means, in other words, acquiring a better under-

standing of the presence and importance of trade paths connecting any pair of non-direct

trade partners and, more generally, of topological indicators proxying the likelihood that

economic shocks might be transmitted between any two countries (Kali and Reyes, 2007).

This, in turn, has been shown to help explaining patterns of macroeconomic dynamics

related to, e.g., growth and development (Kali et al., 2007; Reyes et al., 2008).

The issue of assortativity is central in empirical studies of real-world networks. More

generally, one asks whether there exists any assortative mixing between nodes, i.e. similar

nodes are linked or not. If one takes similarity as connectivity, assortative networks fea-

ture well-connected nodes joining to other well-connected nodes, whereas in disassortative

networks strongly connected nodes are linked to weakly-connected ones. Newman (2002,

2003) have shown that nodes’ connectivity in many social networks tends to be positively

correlated. McPherson et al. (2001) cite over one hundred studies that have observed

homophily in some form or another. Examples range from company director networks,

co-authorship and collaboration networks, or the network of email address books. On

the contrary, most biological networks (protein-protein interaction network in the yeast

cell, metabolic networks in bacteria, food webs) or technological networks (the Internet
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at the Autonomous System level, the network of hyperlinks between pages in the World

Wide Web, etc.) appear to be disassortative. Networks in economic contexts may have

features of both technological and social relationships (Jackson, 2010).

In spite of the evidence produced in the above mentioned studies on the topological

properties of the ITN, complex-network approaches to trade have generally neglected the

issue of geographical distance and space (for a review on spatial networks, see Barthelemy,

2011). To begin bridging this gap, this paper explicitly takes on board geographical space

in the way ITN graphs are defined. More precisely, we build trade graphs by filtering

international trade flows so as to build trade-network structures where the presence of

any bilateral link is conditioned on the geographical distance between its two end nodes

(countries). We will therefore analyze the topological properties discussed above condi-

tional on countries’ distance.

4 Data and Methodology

In our analysis of the ITN, we employ the dataset made available by Subramanian and

Wei (2007).9 This dataset includes values of aggregate bilateral imports in U.S. dollars,

at current prices, as reported by the importing country in the IMF Direction of Trade

Statistics, and then deflated by US CPI (at 1982-83 prices). We use data from 1970 to

2000, focusing on export flows only.10

More formally, let nt be the number of countries present in the database in year t,

where a country i is said to enter the database if there is at least a positive import or

export flow associated to it. Define, as in section 3, Wt as the nt × nt weight matrix

of the corresponding weighted directed ITN, where the generic element of Wt, labeled

as wt(i, j) represents the logarithmic transformation of positive-valued export flows from

country i to j in year t (and zero if the corresponding trade flow is zero).11 We also

define the time-t binary matrix At as the binary nt × nt matrix whose generic element

at(i, j) = 1 if and only if wt(i, j) > 0, and zero otherwise. Therefore, we constructed both

a weighted directed and a binary directed representation of the ITN. The binary directed

representation gives us information about the presence or absence of trade partnerships,

whereas the weighted directed representation adds to the binary structure information

about the heterogeneity of export flows carried by each link.

9The dataset used by Subramanian and Wei (2007) is downloadable from the website http://www.

nber.org/~wei/data.html.
10The numerical results for imports are different in magnitude but they display very similar patterns.

We don’t report them here for ease of exposition, but the full set of analyses including both exports and
imports is available upon request.

11We use a logarithmic scale instead of a linear one in order to make easier any comparison of our results
with those from standard log-log gravity-equation formulation. To allow for meaningful comparisons
across years we also re-scale link weights by logs of yearly total world exports so as to account for the
overall increase in total trade over time.

9
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The properties of the binary directed representation of the ITN built with this dataset

were examined by De Benedictis and Tajoli (2011) and Duenas and Fagiolo (2011). Table

1 presents some descriptive statistics.

Table 1: Summary statistics.

1970 1980 1990 2000

Countries (No.) 130 143 145 157
Trade Flows (No.) 6593 8180 10289 11938
Density 0.393 0.403 0.493 0.487

Countries making up to 50% of trade 7 9 7 11
Flows making up to 50% of trade 71 88 67 77
Countries making up to 90% of trade 65 75 77 78
Flows making up to 90% of trade 793 893 747 854

Average trade flow 50.72 57.20 70.96 76.04
Median trade flow 54.50 60.00 64.00 70.00

Source: IMF, Directions of Trade Statistics.

Over time, the ITN displays an increasing number of participating countries. Entry

of new countries in the database is due to the presence of at least a new positive trade

flow involving the entrant, and may be possibly caused either by the availability of new

data or by the actual entry of the country in the international trade market. New trade

links, however, seem to increase more than quadratically with the number of participating

countries, as shown by the rising density of the network over time.12 Note also that the

number of countries making up a high percentage (50% or 90% respectively) of total

trade tends to increase over the years, hinting to an increasing engagement in trade by a

larger number of countries. However, given that also the total number of reported trading

countries in our sample is also becoming larger, this figure does not necessarily imply a

significant decline in the concentration of world trade.

The ITN as defined above does not consider the effect of geographical distance on

trade. To properly account for such an effect, we begin considering the original binary

(At) and weight (Wt) matrix (from now on we remove the time label to simplify the

notation). To any given link ij between countries i and j (i.e., to each ordered pair (i, j)

such that a(i, j) = 1), we associate the geographical distance d(i, j), computed using the

great-circle distance measure between the capital cities of the two countries. This allows

us to build a geographical-distance matrix D = {d(j, i)}, whose generic element is equal

to the geographical distance between countries i and j whenever the correspondent trade

link exists, and zero otherwise. Note that this matrix is by construction symmetric and

possibly changes through time.

12The density in a directed network is computed as the ratio between existing links and the maximum
number of possible links, i.e. γt =

mt

mmax

= mt

nt(nt−1) . For example, in 1970 one gets: γ1970 = 6593
130×129 =

0.393

10



Figure 1 plots a kernel-density estimation for the distribution of the logs of geograph-

ical distances between world countries in year 2000 (i.e. of the positive upper-diagonal

entries of the matrix D). It is easy to see that the distribution of the logs of distance is

skewed to the left and presents a peak at large distances.
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Figure 1: The distribution of geographical distance between country pairs. Kernel density estimate of
the distribution of distance (logarithmic scale). The red vertical line indicates the median value of the
distribution, the gray lines indicate the deciles of the distribution, while the violet vertical line, bounding
the distribution to the right, indicates half of the Equator distance.

Table 2 breaks down the values of total trade (in percent) according to the different

deciles of the distribution of distance among countries. The table suggests that most in-

ternational trade occurs at relatively short (less than 2000km) and intermediate distances,

but the distribution is very uneven.

Table 2: Share of total trade (in percentage) of each distance decile, by decade

Decile 1st 2nd 3rd 4th 5th 6th 7th 8th 9th 10th
Interval 0-1128 1129-1978 1979-2811 2812-3556 3557-4453 4454-5183 5184-5914 5915-6879 6880-8500 8501-12351
(km)

1970 31.35 16.32 3.72 5.60 4.52 12.14 6.35 9.75 4.71 5.53
1980 30.99 13.12 5.84 6.97 3.96 11.31 7.85 10.45 5.63 3.88
1990 37.14 14.64 4.01 3.50 4.66 9.01 7.55 12.46 3.17 3.85
2000 33.24 19.27 4.44 3.61 4.50 8.46 6.35 10.42 5.43 4.28

Source: IMF, Directions of Trade Statistics

We employ the deciles of the distance distribution to filter the (weighted and un-

weighted) ITN matrices. More specifically, we build two sets of 10 subnetworks to obtain

two families of distance-conditioned ITNs. The first family, which we call the cumulated

distance-conditioned ITN, is obtained by keeping in the networks, for each decile of the

distribution of distance, only the arcs associated to geographical distances smaller than

11



the upper-limit of that decile. For example, the 4th cumulated distance-conditioned ITN

is obtained by keeping in the binary and weighted matrix only the arcs associated to pairs

(i, j) of countries that are located at a distance below that of the upper-limit of the 4th

decile of the distribution of distance (i.e. 3556km).

The second family of matrices, called simply distance-conditioned ITN, is obtained

by keeping in each one of the ten networks, only the arcs associated to geographical

distances belonging to that decile. For instance, the 4th distance-conditioned ITN is

obtained by keeping in the binary and weighted matrices only the arcs associated to

pairs (i, j) of countries that are located at a distance lower than that of the upper-limit

of the 4th decile and above the upper-limit of the 3rd decile of the distance distribution

(i.e., between 2811km and 3556km).13

More formally, let us label with δ(1), . . . , δ(10) the deciles (in km) of the distribution

distance, with δ(0) = 0. In each year, we build 10 cumulated distance-conditioned weight

matrices, WC

k
= {wC

k
(i, j)}, k = 1, . . . , 10, according to the following rule:

{

wC

k
(i, j) = w(i, j) if d(i, j) ≤ δ(k)

wC

k
(i, j) = 0 otherwise

and 10 distance-conditioned matrices WNC

k
= {wNC

k
(i, j)}, for k = 1, . . . , 10:

{

wNC

k
(i, j) = w(i, j) if δ(k−1) ≤ d(i, j) ≤ δ(k)

wNC

k
(i, j) = 0 otherwise

Obviously, the two network families are complementary. From the definitions above,

one can indeed start from WC

k
and remove links in WC

k−1 to get WNC

k
. Similarly, one

can build WC

k
starting from WNC

h
, h = 1, . . . , k. Whereas cumulated networks give

us a picture of the ITN for all trade relationships between countries that are distant

less than a given threshold, distance-conditioned networks (non-cumulated) tell us what

trade relationships can be imputed to trade relationships between pair of countries whose

distance is within a certain range.

Cumulative and simple distance-conditioned networks are then analyzed both as bi-

nary (unweighted) networks and as weighted networks. In the binary case, one simply

builds the corresponding binary matrices AC

k
= {aC

k
(i, j)} and ANC

k
= {aNC

k
(i, j)} by

adding an arc whenever the correspondent entry in the weighted matrix is positive. It

must be noticed that weighted and binary matrices provide complementary information

13More generally, one can use any quantile-based breakdown of the original distribution range, e.g.
quintiles or percentiles. The choice of deciles has been made in order to efficiently trade off the need for
a sufficiently larger number of distance classes and a sufficiently large number of observations in each
quantile class. Note also that in principle one could have employed distance classes delimited by absolute
km values, independently on the distribution. We preferred to use the quantile-based breakdown because
in so doing we are sure that in each class there will be the same, fixed number of links. This implies
that each sub-network displays the same density. This avoids comparing sub-networks characterized by
different densities.
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on the role of different types of costs in international trade. In fact, the presence of fixed

costs to access foreign markets should affect the characteristics of the binary matrix, de-

termining the number of links that each country has, whereas trade variable costs (e.g.

of the “iceberg” type) should affect links’ weights, conditional on a link to be already in

place.

In what follows, we start by presenting some baseline results for year 2000. The same

exercise is repeated for each decade, from 1970 up to 2000, in order to test whether the

impact of distance has changed over the years.

5 Results

As customary in this literature (see for example Fagiolo et al., 2009, 2010; De Benedictis

and Tajoli, 2011), we begin by analyzing the main topological characteristics of the

network. The crucial difference with previous work is that we do so across the different

subnetworks obtained above by conditioning to distance deciles. In particular, we focus

on network connectivity (i.e. whether any two nodes can be connected in the network by a

chain of links), the distributions of total node degree (i.e. a country’s number of partners)

and total node strength (i.e., a country’s total imports plus exports), average nearest-

neighbors degree and strength (i.e., average total degree or strength of the partners of

a country), and clustering (i.e. the probability, possibly weighted by link weights, that

any pair of partners of a node are themselves partners). Furthermore, for each decile, we

examine the distribution of link weights, the correlation structure among node statistics,

and the correlation structure between node statistics and some country macroeconomic

characteristics (e.g., GDP and GDP per capita).

The analysis of subnetworks created for different distance deciles shows that consider-

ing the geographical distance between the nodes of the network indeed matters. Distance-

conditioned trade subnetworks display topological properties that greatly change with

distance deciles, as discussed in more details below.

5.1 Connectivity in the ITN

To begin with, we explore connectivity of the ITN as distance changes. The overall ITN

is evidently connected, i.e. any country in the world can be reached from anywhere else

in the network through undirected trade links.14 When splitting the network based on

distance, two interesting connectivity statistics are the number of connected components

and the size of the giant component (i.e. the number of nodes making up the largest

subset of connected nodes in the network). Of course if only one connected component is

14We employ thorughout the concept of weak connectivity, which considers any two nodes connected
if there is any link between them, irrespective of its directionality. Strong connectivity instead requires
that pairs of nodes can be reacheable via a directed path.

13



observed then the giant component has the same size of the overall network (as happens

for the ITN as a whole).

10
3

10
4

10
0

10
1

10
2

Distance

N
o
. 

o
f 

C
o
n
n
e
c
te

d
 C

o
m

p
o
n
e
n
ts

5.5 6 6.5 7 7.5 8 8.5 9 9.5
0

0.2

0.4

0.6

0.8

1

Distance (Logs)

S
iz

e
 o

f 
G

ia
n
t 

C
o
m

p
o
n
e
n
t 

(%
)

Figure 2: Connectivity in distance-conditioned cumulated ITNs in year 2000. Left: Number
of connected components vs. distance (log-log scale). Right: Size of the giant component (as a
share of number of nodes) vs. distance.

Figure 2 shows how connectivity statistics change with distance in cumulated ITNs

for year 2000. As we keep adding longer distance trade relationships in the network,

the number of connected components sharply decreases, following a power-law shape.

Initially, when only small-distance trades are taken into account, a very large number

of small components emerge. This means that at small distances the ITN is extremely

disconnected. Indeed, the hubs of the network are typically joined with countries that

lie far apart. Accordingly, the relative size of the giant component is very small (about

7%) and quickly increases towards 1 as we consider longer-distance relationships. Com-

plete connectivity only emerges when we start taking into the picture trade relationships

occurring at 4000km or more. This allows one to have in the network also links between

the hubs and peripheral countries that are only connected to the hubs.15

5.2 Link weights and strength

Connectivity of the ITN over different distance intervals may be also studied in terms of

link weights, and node degree and strength. Fig. 3 shows that as we consider longer-

distanced trade relationships in the ITN, average link weight initially decreases very

rapidly and linearly, as predicted by the gravity equation. At higher distances, the effect

of distance becomes strongly non-linear with respect to the logs of link weights, and in fact

the average weight value increases for intermediate distances and then decreases again.

All that maps into a smoother pattern for cumulated distance-conditioned networks: the

15This result is very much consistent over the years. Indeed, when looking at simple distance-
conditioned ITNs, one typically observes a stable number of connected components across deciles (be-
tween 15 and 23) and a few of isolate nodes (between 4 and 13).
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steepness of the relationship between average link-weight decreases and distance decreases

as we reach the median of the distribution.

Note also that the variance of link weights (not shown) follows a U-shaped pattern

with respect to geographical distance , with the highest variance displayed at very low

and very high distances. Taken together, this evidence confirms the very well-known

negative relationship between trade flows and distance stressed in the empirical gravity

literature, but highlights very marked non-linearities in the way in which distance affects

both the average of (logs of) trade-flows and their conditional variance, especially for

long-distance trade relationships.
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Figure 3: Average link weights (solid lines) for simple (right) and cumulated (left) distance-
conditioned networks. Dotted lines: 95% confidence bands. Year: 2000.

We now turn to study how the correlation between node-specific network properties

changes with geographical distance. Figure 4 shows the linear correlation coefficient com-

puted between node out-degree (the number of countries to which a country exports) and

out-strength (i.e total exports), with 95% confidence intervals, in year 2000 for distance-

conditioned networks.

As expected, correlation coefficients are very high at all geographical distances: in

general terms, countries that trade more also hold more trade partners, irrespective of how

far they are located in the world and of which export market we consider. This evidence

confirms that the geographical extensive margin and the intensive margins of trade are

highly correlated. What is less expected is that distance does not affect significantly this

high correlation: if any, a weak positive impact of distance on degree-strength correlation

is detected, implying that the relation between number of trade partners and trade flows is

marginally stronger for long-distance trade pairs. Following the line of thought discussed

in Section 2, this evidence suggests that the relative relevance of fixed and variable costs

in affecting overall trade costs —assuming that these are the variables affecting export

volumes and the number of partners— is fairly constant across distance.
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Figure 4: Correlation coefficients (solid lines) between node degrees and node strengths for
simple distance-conditioned networks. Dotted lines: 95% confidence bands. Year: 2000.

5.3 Assortativity and Clustering

A number of previous analyses found a marked disassortativity pattern characterizing the

ITN, both at the binary and weighted level (Garlaschelli and Loffredo, 2004, 2005; Serrano

and Boguñá, 2003; Fagiolo et al., 2008, 2009). A disassortative (assortative) network is

a graph where there is a negative (positive) correlation between node degrees/strengths

and average nearest-neighbor degrees/strengths. More generally, a disassortative network

is one where more (and more strongly) connected nodes are typically connected with less

(and less strongly) connected nodes, i.e. countries tend to be connected with partners

that are different in terms of connectivity. But do disassortativity patterns in the ITN

depend on geographical distance? For example, do countries who trade more at a given

distance tend to trade with partners that trade less at the same distance scale?

To answer these questions, we analyze the existing correlation structure between a

country’s out-degree (or out-strength) and its average nearest-neighbor out-degree (out-

strength) in the distance-conditioned sub-networks obtained from our ITN. More pre-

cisely, in the binary network, we correlate the number of countries which a country

exports to (its out-degree), with the average number of countries which those partners

exports to (its degree out-out). The same intuition applies for the weighted network, once

node degree is replaced by node strength. Figure 5 summarizes our results in year 2000,

for cumulated vs. simple distance-conditioned networks, and for binary vs. weighted

descriptions.

First of all, our analysis confirms that the aggregate ITN is found to be disassorta-

tive at the aggregate level: the correlation between node degree (strength) and ANND

(ANNS) is negative in the cumulated network including all distances (left panels of Fig-

ure 5). However, if one conditions the correlation structure to geographical distance,

it is easy to see that short-distanced networks exhibit a very assortative pattern. The
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correlation coefficient is positive and quite high for all the short-distance networks dis-

played in the figure, and the pattern is very similar in the binary and weighted cases. As

we add to the ITN links associated to higher distances, correlation coefficients decrease

smoothly and non-linearly towards a disassortative pattern. More specifically, as Figure

5 shows, the ITN displays an assortative pattern for small distances, it becomes weakly

disassortative for long-distance partnerships, while at intermediate distance no clear cor-

relation patterns emerge. This means that, when only short-distance trade partnerships

are considered, countries with many partners tend to trade with countries holding many

connections. Conversely, at high distances, very connected countries typically trade with

poorly connected partners.16
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Figure 5: Left: Assortativity in cumulated distance-conditioned directed networks. Top: The
binary ITN case; bottom: The weighted ITN case. Right: Assortativity in simple distance-
conditioned directed networks. Top: The binary ITN case; bottom: The weighted ITN case.
For the binary case the correlation coefficient is between node out-degree and directed average
nearest-neighbor degree (annd) measures. For the weighted case the correlation coefficient is
between node out-strength and directed average nearest-neighbor strength (anns) measures.
Dotted lines: 95% confidence bands. Year: 2000.

Taken together, this evidence implies that patterns of assortativity or disassortativity

16Note that we find a very similar pattern also when disaggregating assortativity with respect to import
market distance (as mentioned, the results for the analysis on imports are not reported in this paper),
suggesting that the directionality of trade flows is not a crucial factor in determining this result.

17



in the ITN are strongly dependent on distance, and the marked overall disassortativity

of the ITN is mainly driven by high-distance trade relationships. A number of factors

could produce this result. On the one hand, the existence of many preferential regional

trade agreements (RTAs) (WTO, 2011) fostering trade between similar and often neigh-

boring countries can explain the assortativity found at short distances. Regional trade

agreements will typically generate a high number of strong trade links for all the member

countries within the region, producing the positive correlation result. On the other hand,

countries that are geographically isolated from the rest of the world, when choosing an

export market for their goods might tend to prefer a well-connected country that works

as a hub to connect them to rest of the system.

This preference will give rise to a disassortativity pattern at long distances. In the

thirty-year period considered by our analysis, the assortativity patterns discussed so far

seem to be relatively robust. If any, one notices an increasing disassortativity over time

at higher distances. In other words, countries with a high out-degree/out-strength, i.e.

important exporters, have been experiencing a significantly higher probability of being

connected with countries that in turn export relatively little to a limited number of

markets. By year 2000, the largest exporters had reached nearly every market in the

world, even the countries that appear geographically isolated. Therefore, the marginal

cost of accessing additional markets seem to have become very small, especially for big

exporters.

We turn now to explore the observed patterns of distance-conditioned clustering co-

efficients. The clustering coefficient of a node in the ITN measures the likelihood that a

country forms intensive-trade triangles with its trade partners (Fagiolo, 2007). Previous

studies show that the binary version of the ITN (at all distances) is highly clustered,

whereas the weighted ITN displays a relatively weaker clustering, due to the presence

of many low-trade interactions that weaken the ex-post intensity of the many triangular

trade relations existing in the ITN (Fagiolo et al., 2009).

Figure 6 shows that distance plays a crucial role also in explaining evidence on cluster-

ing. Indeed, both binary (BCC) and weighted (WCC) clustering coefficient in cumulated

distance-conditioned ITNs (left panels of the figure) non-linearly increase as we add to

the network longer distance trade partnerships. More specifically, BCC and WCC reach

a maximum when we consider trade relations close to 3800km, and then decrease as we

approach 6000km, and then increase again towards the absolute maximum of average

clustering. This suggests that most of the contribution to maximum clustering by binary

and weighted triangular trade interactions comes from smaller-distance trade flows. This

is confirmed by looking at the plot of the BCC and WCC for simple distance-conditioned

ITNs (right panels). Average clustering non-linearly decreases towards zero as distance

increases, meaning that triples of countries that are very distant to each other almost

never engage in triangular trade relationships (with the exceptions of trade flows occur-
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Figure 6: Left: Clustering in distance-conditioned directed networks. Right: Clustering in
simple distance-conditioned directed networks. Top: the binary ITN case; bottom: the weighted
ITN case. For the binary case the binary clustering coefficient (BCC) computes for each node the
percentage of closed triangles in the node’s neighborhood. In the weighted case, the weighted
clustering coefficient (WCC) computes the intensity of such closed triangles, where triangle
edges are weighted by link weights. Dotted lines: 95% confidence bands. Year: 2000.
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ring between countries whose distance is about 9900km). Hence, only short-distanced

triples of countries contribute to the large value of the overall BCC and WCC found

in the ITN. Notice again that strong non-linear effects affect the link between logs of

distance and network statistics.

Overall, also the emergence of a sharp decreasing relationship between distance and

clustering can be due to the impact of RTA effects: a RTA indeed favors clustering as

it creates and enforces the establishments of cliques (and thus triangular trade relation-

ships) among countries located relatively close to each other. Instead, the low clustering

coefficient found for networks including only countries that are geographically far apart

reinforces the idea that some countries may play the role of hubs of the system.

5.4 The role of country size and income

Gravity models emphasize the role played by economic size and income, in addition to

geographical distance, in shaping bilateral trade flows. To address this issue in the present

context, we begin by examining correlation patterns between network-based statistics

and country size and income (as measured by GDP and GDP per capita) over different

distance deciles. It is in fact well-known that —everything else being equal— large

countries tend to be also large traders.

The four panels of Figure 7 show for year 2000 the plots of linear correlation coefficients

between node degree/strength and node GDP/per capita GDP, conditioned on distance

deciles.

We note that the correlation between GDP and total degree and strength is gener-

ally positive, even if it varies a lot across distance deciles. The correlation is especially

high for a subset of trade flows involving pairs of countries that lie very far apart (be-

tween 6000km and 7000km), but do not belong to the last two deciles. This is true also

for per-capita GDP, and it means that at large distances economic size and income of

countries heavily and positively influence their trade shares. Note also that correlation

coefficients first increase and then decrease when country GDP is considered. While

distance certainly affects trade flows, the observed pattern indicates the extent of this

influence depends also on countries’ economic size. These results suggest that there could

be a sort of optimal distance value that maximizes the correlation between country size

and country connectivity in terms of trade partners and total trade. On the contrary, at

some distances, the correlation between node connectivity and per-capita GDP could be

very weak, or not-significantly different from zero, as shown in the figure for a distance

around 4000km.

The foregoing size/income correlation analysis, however, does not take into account

the fact that export flows bilaterally depend on both origin and destination market sizes,

as gravity model estimates of trade always confirm. In order to allow for such a depen-
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Figure 7: Correlation between node degree/strength and GDP/per capita GDP vs. distance
in year 2000. Dotted lines: 95% confidence bands.
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dence in our data, we have investigated what happens when one re-scales link weights

by the expected bilateral flow in a frictionless world. In this setup, the ij link weight is

simply defined as exports from i to j (in levels) divided by the product between the GDPs

of country i and country j. In this way, the impact of origin and destination market sizes

are washed away and we can understand how distance affect the properties of the ITN

regardless of any size effect.

As we did above, we used the logs of rescaled link weights, namely the log of exports

minus the sum of the logs of i and j GDPs. In order to avoid negative weights, we have

translated the entire distribution by a minimum threshold, in such a way to preserve

existing density. We have re-computed all (weighted) topological properties of this GDP-

rescaled ITN to see how they change across the deciles of the logs of distance distribution.

Of course the binary version of the ITN is almost unaffected by this change, as the

rescaling only influences positive original weights.

Results strongly confirm the main insights coming from the foregoing analysis. For

example, GDP re-scaling preserves the negative relationship between link weights and

distance in the distance-conditioned networks. What is more, non-linearities still emerge

in the log-log relation between weights and distance. The correlation between node degree

and node strength remains positive and very high, and relatively less sensitive to distance.

Weighted disassortativity patterns are instead unaffected by the rescaling. This means

that this result is not driven by country economic sizes. Finally, the increasing relation

between average weighted clustering and distance in cumulated distance-conditioned net-

works is still present, even if slightly less important: when we account for country GDPs,

distance seems to impact a little less on clustering. This difference wades away in simple

distance-conditioned networks, where we still observe a significant and negative impact

of distance on average weighted clustering.

This analysis can be of course extended by more strongly pursuing the idea of filtering

away gravity-based influences on export flows. Following Fagiolo (2010), one could think

to fit a gravity model to bilateral trade flows and to employ the residuals to build a trade

network where now flows are net of any effect coming from size, borders, trade unions, etc.

(excluding distance), and to explore the properties of such network as distance changes.

5.5 Network structure and distance over time

So far, we have explored the connection between geographical distance and network

structure by focusing on year 2000. But what happens to this connection over the years?

The distribution of average link weights over distance shown in Figures 8 and 9 dis-

plays some similarities over time, but also some changes: the average link weight presents

a downward trend over distance in all years, but the slope and the kinks are different. In

particular, in 1970 and in 1980 the weight of trade links moves irregularly over a wide
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range of intermediate distances. In the more recent decades, some of these swings smooth

out, but the increase in the link weight at middle-high distances becomes more evident.

Overall, both from a simple and cumulated perspective, the relation between trade flows

and distance was very non-linearly shaped also in the past, with only small-distanced and

large-distanced trade flows markedly decreasing with geographical distance.
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Figure 8: Average link weights (solid lines) for simple distance-conditioned networks. Dotted
lines: 95% confidence bands. Years: 1970, 1980, 1990, 2000.

Correlations between node degree/strength and country size/income across distance

follows a very similar pattern from 1970 to 2000, basically reproducing what we observe

in Figure 7. The persistence in the role of distance that we pick up in time is in line with

the results found elsewhere in the literature using the gravity model of trade (Disdier

and Head, 2008). In our framework, we can interpret this result by arguing that, as the

size of the network increases over time because the number of relevant trading countries

increases, geographical distance continues to matter, as variable costs per kilometer might

decline, but overall trade costs to stay connected with the entire network remain high.

Our analysis shows that while the role of distance did not decline in time, its impact

on the relation between country’s economic size or income and country connectivity has

somewhat changed. In fact, we observe that the correlation levels between nodes’ strength

and countries’ average income were higher in 1970 than in 2000. This hints to an increased

participation to global trade, especially by low and middle-income countries, probably
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Figure 9: Average link weights (solid lines) for cumulative distance-conditioned networks.
Dotted lines: 95% confidence bands. Years: 1970, 1980, 1990, 2000.
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Figure 10: Assortativity and disassortativity. Years: 1970, 1980, 1990, 2000.

due to the secular decline in trade costs and in other trade barriers.

The reduction in the correlation seems to be the result of a change of the ITN affecting

especially countries in middle-distanced subnetworks: for these countries the correlation

between their trade flows and average incomes has become lower and less significant,

possibly because of the historical reduction in trade costs. Instead, as distance increases

beyond this middle range, trade costs are still relevant and therefore higher incomes

—capable of overcoming such trade costs— are still correlated with higher trade flows.

Much more evident are the changes over time in other features of the network struc-

ture along different distances. As shown in Figure 10, the property of being assortative at

short distances but disassortative (or at least much less assortative) at large distances has

characterized the ITN since the 1970s. But over time, the extent of the disassortativity

at longer distances has increased substantially. In the past, when the potential number

of trading countries was smaller and trade costs were higher, the tendency to link to

similar countries was stronger, and overall assortativity prevailed. Nowadays, as the het-

erogeneity of countries involved in international trade has increased, the disassortativity

for large-distanced countries is much higher.

Also clustering has increased remarkably over the years, even if the pattern over

distance is somewhat similar in time (see Figure 11). This can again be related to increase
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Figure 11: Clustering. Years: 1970, 1980, 1990, 2000.

in the number of preferential trade agreements signed between countries. Interestingly,

the figure shows a clear increase in the clustering coefficient also for far away countries.

This evidence is in line with the more recent tendency of countries to sign preferential

trade agreements not so much with neighboring partners, but also with countries in

other continents (see WTO, 2011). These results confirm that even if globalization and

technological improvements have not eliminated the role of distance as a hindering factor

to trade, its impact on the overall structure of the ITN has changed over the years.

6 Conclusions

In this paper we explored whether the topological architecture of the International Trade

Network (ITN) changes in geographical space and along time. We employed geograph-

ical distance between countries in the world to filter trade relationships in the ITN to

build sub-networks of countries who trade with partners located at similar geographical

distances.

Our main result is that geographical distance matters also from a complex network

perspectives. Furthermore, we show that the effect of distance on the ITN topological

properties is highly nonlinear.
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Our results highlight that the role of distance and trade costs in affecting trade pat-

terns is not only based on linear bilateral distance in miles, and that the relevance of both

a fixed and variable component of trade costs can jointly generate the type of non-linearity

observed here.

The analysis also shows that the geographical pattern of trade and the geographical

extensive margin are very different for groups of countries at different distance ranges:

while the aggregated ITN over all distance ranges is disassortative, shorter distance sub-

networks are assortative. Furthermore, the trade intensity and number of triangular trade

relationships decreases as distance increases. Both results confirm that the structure of

the ITN changes dramatically in geographical space.

The structure of the network shows also the role of specific countries working as hubs

of the system. These results indicate that the role of distance is different for countries

with different economic size, which should have a different capacity to overcome the

trade costs that distance imply. Large countries with very high trade volumes can exploit

the economies of scale associated with their size created by the presence of fixed costs.

Therefore, they can trade profitably also with far-away countries, and therefore they can

play the role of hubs of the system.

Comparing the results of the analysis over time we note that the average trade partner

in the middle-distanced group has increased its relative strength or share of total trade

between 1970 and 2000, hinting to an increase participation in international trade of such

a group of countries. This is confirmed by the correlation structure between network

statistics and per-capita GDP.

The effect of distance over time is not trivial. Over the time period examined, the

size of the network increases, as the number of connected countries increase, and the

diameter of the network grows. Therefore distance remains relevant (as shown also in

gravity models), in spite of a (relative) decline in trade costs, because the length and

number of trade links has increased.

This study can be extended in many ways. First, one may want to explore the topolog-

ical properties of the ITN by explicitly embedding the network in a spatial structure and

use methodologies developed in the literature on spatial networks (Barthelemy, 2011).

Second, a more theoretical explanation building on the interplay between fixed (sunk)

and variable trade costs may be conceived, so as to develop a proper network formation

model able to replicate, for example, the structural breaks detected in e.g. assortativity

patterns when we move from smaller to higher distances.
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Serrano, A. and M. Boguñá (2003), “Topology of the World Trade Web”, Physical Review

E, 68: 015101(R).
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