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Abstract— The paper deals with the design of subop-
timal receivers for data transmission over frequency
selective channels. The complexity of the optimum
detector, that is the maximum likelihood sequence de-
tector (MLSD), turns out be exponential in the chan-
nel memory. Hence, when dealing with channels with
long memory, suboptimal receiver structures must be
considered. Among suboptimal methods, a technique
that allows reduction of the complexity is the delayed
decision feedback sequence detector (DDFSD). This
receiver is based on a Viterbi processor where the
channel memory is truncated. The memory trunca-
tion is compensated by a per-survivor decision feed-
back equalizer. In order to achieve good performance,
it is crucial to operate an appropriate prefiltering of
the received sequence before the DDFSD. Our con-
tribution is to extend the principles of MLSD and
DDFSD to the case where the prefilter is the feedfor-
ward filter of a minimum mean-square error decision
feedback equalizer (MMSE-DFE). Moreover perfor-
mance evaluation of the MMSE prefiltered DDFSD is
addressed. The union upper bound is used to evaluate
the probability of first-event error. Simulation results
show that our proposed design of the MMSE-DDFSD
gives substantial benefits when a severe frequency se-
lective channel is considered.

I. INTRODUCTION

In digital mobile radio channels time-varying multipath
propagation can cause severe performance degradation.
For high-speed data transmissions the effect of multi-
path is that of introducing intersymbol interference (ISI).
Equalization of the received signal is necessary to mitigate
the effects of ISI and noise. For channels with large delay
spread the optimum equalization algorithm, that is, the
maximum likelihood sequence detector (MLSD) [1], has
a very high complexity. In the MLSD receiver the num-
ber of states of the Viterbi algorithm is exponential in
the channel memory. Hence, when dealing with channels
with long memory, one is forced to consider suboptimal
sequence detectors.

Several architectures of reduced complexity sequence
detectors have been proposed and studied in the huge lit-
erature of channel equalization [2]. Most of earlier works
[3, 4, 5] concentrate on preprocessing techniques to shape

the overall impulse response of the channel to a desired
one of shorter length. In these solutions, a linear equalizer
is employed before the Viterbi algorithm with a prefixed
number of states. The idea behind the prefiltered Viterbi
detector is to introduce an equalizer, which takes the form
of a FIR filter, before the conventional Viterbi detector.
The equalizer should be designed in such a way that the
overall impulse response has shorter memory than the
impulse response of the channel. The signal is then pro-
cessed by a Viterbi algorithm with fixed complexity. The
receiver is suboptimal because the noise present in the
equalized signal can be colored, and noise coloration is
not taken into account in the metric used in the conven-
tional Viterbi algorithm. The criterion that has found
widespread use in the design of the equalizer is the min-
imization of the mean square error (MSE) between the
output of the equalizer and the transmitted sequence fil-
tered by the desired impulse response (DIR). In the ex-
treme case where the length of the DIR is 1, this solution
coincides with the classical MMSE linear equalizer.

Another possible solution for reducing the complexity
of MLSD lies in simplifying the Viterbi algorithm itself.
This leads to the delayed decision feedback sequence de-
tector (DDFSD) of [6]. In this scheme, a per-survivor
decision feedback is introduced in the branch metric com-
putation for each state. This introduces error propaga-
tion whose effects are drastically reduced with respect to
decision feedback equalizer (DFE). As we will see, when
an appropriate prefiltering is adopted, DDFSD provides
the best performance/complexity trade-off.

The paper is organized as follows. In section II
the system model is described. In section III a class
of MLSDs is introduced. In section IV the MMSE-
DDFSD is described. We also considered the application
of the MMSE-DDFSD to the generalized Viterbi algo-
rithm. Performance evaluation of the MMSE-DDFSD is
addressed in section V: the union upper bound on the
probability of first-event error of the DDFSD is presented.
In the section of experimental results the accuracy of the
approximation is demonstrated by comparing it to simu-
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lation results. Finally, conclusions are drawn.
II. SysTEM MODEL

We consider the model of a binary uncoded data se-
quence transmitted over a baseband linear channel cor-
rupted by zero-mean additive white Gaussian noise. The
receiver consists of the sampled matched filter, a prefilter,
and a sequence detector. The block diagram of the sys-
tem is reported in Fig. 1. With reference to the figure,
we assume in the following that ax € {—1,41}, and that
the two-sided power spectral density of the AWGN is o2.
The impulse response of the system from the source to
the output of the sampled matched filter is represented
by the z-transform r(z) = >_/_  rz~F, where 2! rep-
resents the unit delay.

III. MAXIMUM LIKELIHOOD SEQUENCE DETECTION
WITH MINIMUM NUMBER OF STATES

The class of sequence detectors that we consider is
based on the spectral factorization

d(z)d(=7") = 7(2) + s(2), (1)

where s(z) is up to the designer. It must be such that
7(2) + 5(2) is the z-transform of an autocorrelation func-
tion, hence r(e?*) 4 s(e?*) > 0 everywhere. The prefilter

" _ d(2) — gL
P = e =, 2)

The existence of the prefilter is guaranteed if r(e/“) +
s(e7¥) > 0 everywhere. In this case, d(z) has no roots on
the unit circle, hence d(z7!) is invertible. Note that the
existence of the cascade of sampled matched filter and
prefilter is subject to broader conditions. For example, if
5(z) = 0 and r(e’“) = 0 in a null-measure interval, the
prefilter, that is the noise whitening filter, does not exist,
while the whitened matched filter exists ([1]).

Detection is based on a Viterbi algorithm with
gmaz{v.v'} gtates and 2mas{v+lr/+1} transitions, where
20" + 1 is the time spanning of s(z). Since we are in-
terested in MLSD with minimum number of states, we
impose the condition v < v. The metric of the tran-
sition that diverges from state (ax—,,...,ar—1) at time
k — 1 and merges in state (ax—,+1,...,ax) at time k& is

br(ak—v,- - ar) = (yp — Zdjak—j)z -
=0

ax(soak +225jak_j), (3)

Jj=1

where gy is the kth sample at the output of the pre-
filter and, without loosing generality, d = 0, k =
ey, —2,—-1L,v+1,v+2,.... is assumed. Members of
this class are:

e Forney’ s detector [1], where s(z) =0,
e Ungerboeck’s detector [7], where s(z) =1 —r(2),
e the MMSE-MLSD proposed in [8], where s(z) = o2.

Note that Barbosa’ s detector [9], which is based on
p(z) = r71(2) and has minimum number of states, does
not belong to the class. The main result of this section is
the following :

Theorem. A Viterbi detector based on (1), (2), and (3),
performs MLSD with minimum number of states.

The proof of the theorem is given in appendix of [8].

Hereafter, and throughout the paper, among the pos-
sible choices of s(z) in (1), we consider only s(z) = 0 and
s(z) = o2 that respectively correspond to the whitened
matched filter (WMF) and to the mean-square whitened
matched filter (MSWMF) [11] models for the receiver. In
the WMF model n(z) is a zero mean white Gaussian noise
of variance 02, while in the MSWMF mean and variance
are the same, but now the distortion is given by the sum
of colored Gaussian noise and residual ISI.

As we can see in (3), in order to perform branch met-
ric computation it is fundamental to know the DIR d(z).
Therefore, an important issue is the estimation of the
channel. This latter estimate is used by the receiver in
order to realize the matched filter and to calculate the
spectral factorization (1). In this work we focus on re-
ceivers structure, hence in what follows we assume that
channel is estimated through some types of adaptive al-
gorithm.

IV. DELAYED DECISION FEEDBACK SEQUENCE
DETECTION

In signal equalization, a technique that allows reduc-
tion of the number of states of the Viterbi detector is the
delayed decision feedback sequence detector (DDFSD).
The DDFSD is a Viterbi algorithm with 2* states, 0 <
1 < v where the performance loss due to memory trunca-
tion is mitigated by a per-survivor processing [10]. The
metric of each survivor is calculated using a DFE with
v—pu taps. Unfortunately, deriving the best DDFSD from
the broad class of MLSD described previously is a hard
task, because no general guidelines are given about the
choice of s(z). The DDFSD was originally proposed in
[6] for the WMF, that is s(z) = 0. In consideration of the
success that the MMSE-DFE has had since the classical
papers of Monsen [12] and Salz [13], we feel that it calls
for the MMSE-DDFSD.

A. The MMSE-DDFSD

The MMSE-DDFSD is based on complexity reduction
of the specific MLSD with s(z) = o2, which yields the
spectral factorization

d(z)d(z"") = r(2) + 0%, (4)



where that d(z) that is minimum phase is taken. Note
that we now require that d(z) be minimum phase, while in
MLSD this is not required. Actually, the minimum phase
property guarantees that the energy is concentrated in
the first taps of the impulse response, which is a desirable
property in a DFE scheme. The prefilter is

z:&: —1(,—1
pe) = e =4, )

Of course, ¢ > 0 guarantees the existence of both d(z)
and p(z). The metric of the transition that diverges at
time k—1 from state (ag—p, ..., ak—1) and merges at time
k in state (ap—py1,--.,ax) is

m
bk(ak—ua RS a’k‘) = (yk - Zdjak—j
j=0

v
- Z djdk—j(ak—,ur"aak—l))Z_0'2(1%7
Jj=p+1

where ap—j(ag—p,...,ax—1) is the estimate of the (k —
j)-th bit which is present in the survivor that at time
k — 1 merges in the state (ax—p,...,ax—1). Note that,
for binary transmission, the term —o2a? is common to

all the metrics and can be omitted. Let

u(z) = v(z)p(z) — d(z)a(z),

be the z-transform of the distortion sequence. It is shown
in [4] that the prefilter given in (5) minimizes the expected
value of u?, for any given d(z). After straightforward
manipulation, for the z-transform of the autocorrelation
of the distortion sequence one finds

E{u(z)u(z"")} = o> (6)

How we can observe, the distortion sequence is white.
For this reason, the cascade of matched filter and mean-
square prefilter is called in [11] mean-square whitened
matched filter. We emphasize that the two extreme cases
of the MMSE-DDFSD are MLSD with minimum number
of states for p = v, and the MMSE-DFE for u = 0.

B. Mean Square Generalized Delayed Decision Feedback
Sequence Detector

A possible way to improve the performance of the
MMSE-DDFSD is that of adopting the scheme of the
generalized Viterbi algorithm (GVA) [14], leading to
what we call mean square generalized DDFSD (MMSE-
GDDFSD). The GDDFSD is obtained by allowing M sur-
vivors for each state. Hence in the GDDFSD there are
2# states and 2M transitions diverging from and merg-
ing in each state. At each step in the trellis, the metrics
of the 2M survivors that merge in each state are sorted
in ascending order, and the sequences associated to the
M lower metrics are selected as survivors. In the section

of experimental results we will show that through a suit-
able choice of M and p the MMSE-GDDFSD allows to
get a further degree of freedom in the trade-off between
complexity and performance.

V. PERFORMANCE EVALUATION OF THE DDFSD

In what follows, it is shown that the first-event error
rate (FEER) of the DDFSD can be upperbounded by the
union bound. The approximation to the bit error rate
(BER) is then obtained as a by-product from the upper
bound on the FEER. Roughly speaking, the FEER is a
measure of the probability of error burst. More precisely,
the FEER is a conditional probability. Without loosing
generality, we assume that the event is

Gp — ag # 0,
and that the condition is
la(z) —a(z)]=, =0, (7)

where aj is the k-th decision of the sequence detector.
The union upper bound on the FEER is [15]:

FEER < ) 27" P(e). (8)
e(z)e€

In (8), £ is the set of error polynomials having the form

e(2) = la(z) — (=),

where eg # 0, ej—1 # 0, and there are no more than
1 — 1 consecutive zeros between 0 and [ — 1, and w, is the
Hamming weight of e(z),

e(2)e(="Dlo
4

1=1,2,..., (9)

We —

The probability P(e) appearing in (8), which is called
pairwise error probability, is the error probability in the
binary test between [a(2)]h ! and [a(2)]5 ' + e(z). Note
that the binary test may take place only if the two events
(7) and

la(=) — ()™ =0 (10)

occur. Actually, in the DDFSD, the binary test between
[@(z)]57" and [a(2)]5" + e(2) takes place when the two
competitors merge for the first time in the reduced trellis,
that is when (10) is fulfilled. It is worth noting that in
MLSD the merging condition is [a(z) — a(z)]it" ™ = 0,
which is exactly the condition (7) for the first-event error
at the next step. Conversely, for p < v, when the binary
test between [a(z)]5" and [a(2)]57" + e(z) takes place,
there is at least one nonzero coefficient, namely e;_1 # 0,
and at most v — p nonzero coefficients in the polynomial

[d(z)—d(z)]ﬁiﬁ:i. Hence, when the decision is [a(2)]5" =
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Fig. 2. Spectrum of the channel: [r(z)] =
0.997840.91852"140.730427240.488127340.26742 "4 +
0.111227° + 0.031276.

[a(2)]57" + e(z), the condition (7) for the first-event error
is not satisfied at the next step after the binary test.

When MLSD is considered, the BER is upperbounded
by attaching the Hamming weight of the error polynomial
to each term in the sum (8) [1]:

BER <} w2 P(e).
e(z)e€

(11)

Recall that, in MLSD, the condition for the first-event
error is satisfied at the first step after a binary test.
Roughly speaking, this means that when the sequence de-
tector takes the decision [a(z)]5 = [a(2)]5! + e(z), the
error burst terminates, enabling the condition for the next
burst. In consideration of this fact, the upper bound on
the BER is derived from the upper bound on the FEER
by counting the number of errors in the burst, that is
we. Conversely, for p < v, the condition (7) is not satis-
fied at the next step after the wrong decision, therefore
the upper bound (11) on the BER does not hold true.
In other words, the error burst may not terminate when
the sequence detector takes the wrong decision, hence the
number of errors contained in the burst may be not we.
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Fig. 3. The solid line is the union bound truncated to the
first 2M error polynomials versus M, ordered by SDR.
The computer simulation gives FEER = 1.07 10~*. The
star is the contribution of the M-th pair of polynomials
e(z), —e(z), to the sum.

To overcome this difficulty, in [16] it is considered an ideal
DDFSD where error propagation is neglected.

Computation of the pairwise error probability and
truncation of the sum (8) are treated in [17].

VI. EXPERIMENTAL RESULTS

To substantiate the results obtained in the previous
section, we adopt as a benchmark the time discrete white
Gaussian channel with v = 6 studied in [18]. The coef-
ficients of r(z) and the spectrum r(e’¥) are depicted in
figure 2 versus angular frequency w. The feature of this
channel is that it has the lowest minimum distance for
the fixed v. Figure 3 reports the convergence of the union
bound on the FEER for the MMSE-DDFSD with p = 4
at SNR = 20dB, where SNR = ro/02. In a brute force
approach to performance evaluation, one should compute
all the error polynomials up to a length such that con-
vergence of the sum (8) is attained. A more sensible ap-
proach is to select those error polynomials that dominate
the sum, and to compute

FEER~ Y 27" P(e),
e(z)EEM

(12)

where £y is the subset of £ that contains the M poly-
nomials that dominate the sum. In principle, one should
produce a list by ordering in descending order the terms
that appear in the sum (8), and then should truncate
the list to the first terms. However, at moderate-to-high
SNR the coefficient 27 is dominated by P(e), and ISI is
dominated by the Gaussian noise [11], yielding the close
approximation

P(e) = Q(VSDR,),

(13)

where

Qz) = \/%/ e*%du7

and SDR. is the unbiased Signal-to-Distortion Ratio rel-
evant to the specific e(z) [17]. The 144 error polynomials
at lower SDR have been found by the algorithm described
in [17], and the contribution 27*<P(e) of each pair e(z),
—e(z) of error polynomials is reported in the figure. The
18 error polynomials at lower SDR are listed in table I. In
this specific example, it happens that the first 18 polyno-
mials are the same for the W-DDFSD and for the MMSE-
DDFSD. In table I the pairwise error probability obtained
by the method proposed in [17] and the pairwise error
probability obtained by the Gaussian approximation are
also reported. The agreement between the true proba-
bility and its approximation is apparent from the table.
Figure 4 reports the FEER versus SNR for MLSD and
for the MMSE-DDFSD and the W-DDFSD with p = 0
and g = 4. In the simulations, the FEER is measured
by collecting at least 100 events. In the computation of
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Fig. 4. FEER versus SNR. The solid line is the union bound
truncated to the first 18 terms.

the truncated upper bound, the list ordered by SDR is
re-ordered by 2% P(e), and the first 18 terms are used.
From figure 4, one realizes that truncation to the first
18 terms virtually gives the upper bound. Figure 5 re-
ports the BER versus SNR with the same parameters as
in figure 4. The solid line is the approximation truncated
to the first 18 terms after re-ordering by w.2~"<P(e).
The figure shows that the approximation is more accu-
rate for the DDFSD than for the DFE, while for MLSD
the first 18 terms virtually give the upper bound. This
is an expected result, since the impact of error propaga-
tion on the BER diminishes passing from the pure DFE
to MLSD. Figure 6 reports the BER of MLSD, MMSE-
GDDFSD, and W-GDDFSD, versus SNR. Examining the
results reported in Figure 6, one observes that the MMSE-
GDDFSD with ¢ = 2, M = 2 outperforms the MMSE-
GDDFSD with u = 3, M =1 (that is the MMSE-DDFSD
with 8 states), and that its performance is close to the
performance achieved with p = 4, M = 2. This observa-
tion suggests that, when severe complexity reduction is
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Fig. 5. BER versus SNR. The straight line is the approxima-
tion truncated to the first 18 terms.
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Fig. 6. Bit error rate of MLSD and of the GDDFSD with the
noise whitening prefilter and the mean-square prefilter.
M is the number of survivors per state, and 2* is the
number of states.

necessary, a well-balanced design of 4 and M may offer a
good trade-off between performance and complexity.
VII. SUMMARY

The MSWMF is widely known and studied in the the-
ory of DFE [11], but it seems to be less considered in
sequence detection. Moving from this observation, we
have proved that MLSD with minimum number of states
is obtained when the MSWMF is adopted as a front-end.
Recently it has been adopted as a prefilter for the DDFSD
in [8].

The comparison between the MMSE-DDFSD and
the conventional W-DDFSD shows that the MSWMEF-
DDFSD outperforms its rival when a severe frequency
selective channel is considered. This result is intuitive,
because the receiver based on the WMF treats spectral
nulls as a limiting case. In contrast, the case where the
spectrum is null in some interval is not a limiting case for
the MSWMF, provided that SNR # co.

The FEER is evaluated by truncating the union bound,
where truncation is such that only the terms that domi-
nate the sum (8) are taken into account. Evaluation of the
BER is complicated by the error propagation induced by
the per-survivor DFE. However, an approximation to the
BER can be obtained if error propagation is neglected.
As expected, the approximation fairly fits the simulation
results only for moderate reduction of complexity.

In order to improve the performance of the MMSE-
DDFSD the scheme of the GVA has been proposed, lead-
ing to what we call MMSE-GDDFSD. The GDDFSD is
a detector that consist in a reduced number of states and
multiple survivors per state, where a decision feedback
equalizer is attached to each survivor. Our results sug-
gest that, in the design of the GDDFSD, a studied bal-
ancement between the number of states and the number



TABLE I
FIRST 18 ERROR POLYNOMIALS ORDERED BY SDR FOR THE MMSE-DDFSD AND FOR THE W-DDFSD WITH p =4 AT
SNR = 20dB. ONLY THE 9 POLYNOMIALS BEGINNING WITH €9 = —2 ARE LISTED.

Pumse (e) ‘ Q(\/SDRe,MMSE) ‘ SDRe,mmsE [dB] H SDRe,w [dB] H

Coefficients of e(z)

6.77-107% 6.81-1072 10.11 9.04 -222-2-22
2.30-107* 2.31-107% 10.89 10.00 -222-2-222-2
1.49-1074 1.50-10~* 11.16 10.35 -22
1.04-107* 1.04-107 11.38 10.61 -22000-22
0.79-107% 0.79-107% 11.54 10.80 -222-2-222-2-29
0.72-107* 0.73-10~* 11.59 10.86 -22000-22000-22
0.50-107* 0.51-107* 11.79 11.10 -22000-22000-22000-22
0.35-107% 0.35-1074 11.98 11.32 -22000-22000-22000-22000-22
0.34-107* 0.34-107* 12.00 11.34 -222-2-2202-2-222-2
of survivors may offer a good trade-off between perfor- [11] J. M. Cioffi, G. P. Dudevoir, M. V. Eyuboglu, and G.

mance and complexity.

[

2]

8]

[4]

[5]

(10]
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