
1

Using Intelligent Agents to Discover Energy Saving
Opportunities within Data Centers

Alexandre Mello Ferreira and Barbara Pernici
Dipartimento di Elettronica, Informazione e Bioingegneria

Politecnico di Milano, Milan, Italy
Email: {ferreira,pernici}@elet.polimi.it

Abstract—Thinking about the complexity of the data center en-
vironment, this paper explores the characteristics of knowledge-
based agents to discover energy savings opportunities within
these dynamic systems. The goal is to concentrate on the
most significant problems while, at the same time, create some
flexibility in which undesired metrics are acceptable in face
of their positive and negative impact analysis from an energy
perspective.

I. INTRODUCTION

Over the last years, managing the energy efficiency of
ICT (Information and Communication Technology) has dra-
matically emerged as one of the most critical environmental
challenges to be dealt with. Energy consumption and en-
ergy efficiency of ICT centers became priority due to high
computing demand and new environmental regulations. Cloud
computing paradigm has been an important contributor for
increasing the data centers importance, where users are always
connected through different devices. The Greenpeace 2012
year report [6] states that “data centers are the factories of the
21st century Information age” which can consume as much
electricity as 180,000 homes.

In the present work, we consider the requirements for
enabling energy-efficient mechanisms in service-based sys-
tems, based on a goal-event-action adaptive approach. One
of the problems that emerges when trying to apply adaptive
mechanisms based on monitoring in this area is that we need
to select adaptation actions in an uncertain environment, in
which event occurrences and actions to achieve goals depend
on the context of execution.

Looking to provide an integrated solution for reasoning
about such complex environment, this paper focuses on the
data center energy aspect. Mechanisms are described to: (I)
identify potential energy saving without compromising per-
formance metrics and (II) reason about the best action to
be taken in order to achieve desired levels of satisfaction.
The solution is mainly composed by two knowledge-based
agents [18], which are able to discover new opportunities of
savings considering a partially observable and highly dynamic
environment like data centers.

This paper is organized as following: Section two introduces
metrics, called indicators, for controlling performance and

Copyright c© 2013 for the individual papers by the papers’ authors.
Copying permitted only for private and academic purposes. This volume is
published and copyrighted by its editors.

energy related issues of an data center; section three discusses
about the problem of identifying system threats when we are
dealing with many and heterogeneous variables; the proposed
solution, an Integrated Energy-aware Framework (IEF), is
described in section four; and finally section five briefly
discusses some remarking points.

II. INDICATORS

IT equipment is the data center’s core and it is composed
basically by servers, network equipment, and storage devices
that are available for service-based applications (SBAs) in a
loosely coupled manner. They are monitored by several sensors
installed throughout the facility, which provide information
both from physical (e.g., server energy consumption) and
logical layers (e.g., web-service response time). Such data
represent levels of satisfaction when we use them to calculate
performance and energy indicators. They are defined in terms
of thresholds, which can trigger alarming or warning alerts
when their limits are not respected. When it happens, repairing
actions are selected and enacted in order to restore desired
levels of satisfaction.

Such elasticity is only possible when there is a compre-
hensive view of the system, in which the different elements
relationships are stipulated and alerts are properly signed as
system threats. In this section we describe these indicators and
how they can be used to identify system threats. An indicator
is defined as a metric that provides information about the
status of the underlying system and is created according to the
meta-model described in Figure 1. The abstract class Indicator
defines both quality and energy related indicators which are
identified by the attribute type. The attribute importance is
based on the user’s preferences and it dictates the indicator
priority in case of multiple violations.

The indicator violation is defined by the Threshold
class, which is composed by two lower-bounds, minAlarm
(amin) and minWarning (wmin), and two higher-bounds,
maxAlarm (amax) and maxWarning (wmax). Indicators
alarming thresholds represent critical boundaries that should
not be violated in order to keep the system soundness. On the
other hand, warning thresholds are less critical as their vio-
lation can be accepted (although not desired). Thus, warning
thresholds can be seem as the system elasticity, which are used
to keep the majority of the indicators outside the alarming
zones. An indicator is not violated, i.e. green, when its

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Archivio istituzionale della ricerca - Politecnico di Milano

https://core.ac.uk/display/55241182?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


2

current value is within both warning and alarming boundaries.
Otherwise, we can have warning or alarming violation. In the
first case, yellow, indicator values are between the warning
and alarming thresholds. In the second case, red, the indicator
value violates both warning and alarming thresholds. It shows
an unacceptable situation of one or more system components.
Alarming indicators have priority to be solved with respect
to warning ones as they can cause higher damage to the
system. The current indicator situation (green, yellow or red)
is represented by the attribute status.

The indicator last attribute, acceptance, defines the accepted
interval in which an indicator can stay in a violated state
(warning or alarming violation) without requiring adaptation.
This attribute is important in order to avoid unnecessary
adaptation enactment, where the violation is temporary and
might not require adaptation. For instance, let us suppose
that the action VM migration may violate the indicator
availability of an application. In this example, the
acceptance attribute shall dictate the maximum time interval
allowed for which the indicator availability can stay violated
without triggering a new adaptation action, i.e., the maximum
amount of time the VM migration action can take without
causing a new side-effect.

The indicator value is obtained through the indicator for-
mula calculation, which uses the information provided by the
monitoring system, which is composed by several sensors.
Indicators are divided in basic and composed. An indicator
is called as basic (BasicIndicator class) when its calculation
formula is either a direct measure from the monitoring sys-
tem variable or a combination of several monitoring vari-
ables within a formula. Instead, composed indicators (Com-
posedIndicator class) formulae use other basic indicators as
input. They do not use other composed indicators in order to
avoid infinity recursive compositions.

Fig. 1. Indicators meta-model.

Indicator

+Name

+Type

+Importance

+Status

+Acceptance

Basic Indicator

+Formula

Composed Indicator

+CompositionMetric

MonitoringMetric

Architectural layer

StoredValues

Thresholds

+minAlarm

+minWarning

+maxWarning

+maxAlarm

1

0..*

* 1

*

1..*

1

1

1
*

1..*

Green Performance Indicators : Focusing on the design
of SBAs, energy consumption can be constantly monitored
by specific indicators called Green Performance Indicators
(GPIs) [12], [10]. The aim is to guarantee the satisfaction
of energy requirements, specified on these GPIs, together
with the more traditional functional and non-functional (i.e.,
QoS) requirements. In order to properly design energy-aware

applications, it is fundamental to consider the relationship
holding between the structure of an application and the energy
consumed by the underlying infrastructure which is executing
this application.

III. THE PROBLEM OF THREATS IDENTIFICATION

Once indicators are defined and their value calculated,
the system shall be able to recognize which ones represent
system threats, i.e., which ones can harm the system. In
this way, an isolated indicator violation does not represent
necessarily a system threat. The identification of system threats
introduces new complexity boundaries to the approach, which
need to be selective in mining the monitored data in order to
identify relevant information to support the decision making
mechanisms.

These threats are identified through timed event occur-
rences, which can appear within four different scenarios. In
these scenarios, an event occurrence is associated with the
execution of adaptation actions or indicators violations, which
occur within defined time windows. The scenarios are:

I - The adaptation action is not effective and event occur-
rences are created following the same pattern.

II - The adaptation action is temporary effective, solving the
problem during a short time interval which defines the
action approval period. In this scenario, the same event
occurrence comes back within the action approval period
which means that the enacted action was not suitable to
eliminate the threat and a different solution should be
taken.

III - The adaptation action is fully effective to solve the
identified threat. However, its execution generates non
expected side-effects, creating a completely new threat.
This scenario is quite dangerous as it may create an
infinity cycle of action enactment and threat creation.

IV - The adaptation action seems to be fully effective, but the
same threat appears again after some time. Differently
from scenario II, in this scenario the time gap is quite
long and the threat appears in this first event occurrence.

In order to make clear the difference between the last
three scenarios, let us consider a flat tire example. After the
identification of the problem, one possible action to solve
the problem is filling the tire with air. If the reason of the
problem is a tire hole, this action is not effective since the tire
will be flat again in few minutes or hours. This situation is
represented in Scenario II. Instead, if another action is chosen,
such as replace the tire, different events can be raised due
to the enactment of the action. In the example, the events
car unstable (due to inadequate spare tire) or drive not safe
(due to the lack of available spare tire within the car) can
be raised. This situation is represented in Scenario III. Even
if the tire replacement effectively solves the problem, it does
not prevent that a new hole appears in the future (Scenario IV).
A more detailed analysis with respect to an adaptation action
feedback and the implications of failed actions is described in
the following section.



3

IV. INTEGRATED ENERGY-AWARE FRAMEWORK

As described in the previous section, indicators violation
may represent system threats that have to be eliminated for the
system soundness. The threat elimination is represented by the
enactment of combined adaptation actions that bring positive
and negative impact to the overall system. In order to identify
these system threats and to select the best set of adaptation
actions to be executed, we use a knowledge-based agent
approach. In this section we detail all the elements present
in an Integrated Energy-aware Framework (IEF), which are
responsible for identifying and eliminating threats that may
compromise the system.

Figure 2 shows the main elements that compose the pro-
posed framework. First, the runtime and monitoring
system provides raw data about the underlying environment.
This information is used to calculate the defined indicators
by the indicator calculation module. The first agent,
Agent 1, is responsible to verify both monitored variables
and indicators values in order to recognize possible situations
that represent a threat to the overall system. If a threat is
identified, the agent creates several event occurrences that are
analyzed by the second agent, Agent 2, looking to separate
the different types of events and, in particular, the ones that re-
quire the enactment of adaptation actions (meaningful events).
To do so, both agents inference rules are based on the system
knowledge base, which contains current monitored data
and all past experiences. As new information is arriving,
the knowledge base is constantly updated by both inference
engines. These changes impact on both the conceptualization
of system threats and the selection of adaptation actions.

Finally, the adaptation parameterization module
is responsible to approve or to disapprove the selected adapta-
tion actions by the system manager and, if approved, he should
provide the necessary actions parameters values.

Run�me	  and	  
monitoring	  

Enable	  

Monitoring	  
data	  

Supervise	  

Adapta�on	  set	  

System	  Manager	  

Indicator	  
calcula�on	  

Monitoring	  data	  

Indicators	  	  
values	  

Raised	  events	  

Adapta�on	  
parameteriza�on	  Inference	  

engine	  2	  

Agent	  2	  

Prior	  knowledge	  

Inference	  
engine	  1	  

Agent	  1	  

Knowledge	  
base	  

Fig. 2. Framework overview

A. Agent 1

Based on the monitored data and the indicator calculated
values, Agent 1 recognizes three different levels of threats,
which might or might not result in the creation of an event
occurrence. An event occurrence represents an event that is

currently harming one or more indicators fulfillment and,
therefore, adaptation actions shall be enacted in order to
restore desired levels of satisfaction. The creation of an event
occurrence is based on the underlying environment, which is
represented by the instantiation of some context rules.

Due to the spread usage of the word ‘context’ and to avoid
misunderstandings, we adopt the context definition provided
by [2]: “context is a partial state of the world that is relevant
to an actor’s goals”, where world is the agent underling
environment captured by the monitoring system, actor is the
agent itself and goals represent the indicators satisfaction.
Defined by assert predicates in first-order logic, the context is
important to limit the agent observation scope and to clarify
the impact relations polarity (positive/negative).

This agent PEAS description is:
• Performance: Number of warning and alarming indicators

violation;
• Environment: Indicators levels identified as yellow, or-

ange and red;
• Actuators: Identification of three levels of system threats

and creation of event occurrences;
• Sensors: Indicators value and thresholds.
1) Threats identification: Considering that data is con-

tinuously produced by the monitoring system, the agent is
responsible to recognize situations that might threaten the
indicators fulfillment. In order to deal with such a huge
bunch of data rapidly, we adopt Stream Reasoning techniques
proposed by [4] where streams generated by the monitoring
system are represented as materialized views of RDF 1 triples.
These views are based on deductive rules and each triple is
associated with an expiration time. Data streams are defined as
unbounded sequences of time-varying data elements [1] and
the proposed solution manages to inspect “continuous” data
streams.

Differently from other types of data, streams are consumed
by queries registered into a stream processor, that continuously
produce answers. A common and important simplification
applied by stream engines is that they process information
within windows, defined as periods of time slots in which the
flowing information should be considered. Such windows are
continuously evolving due to the arrival of new data in the
stream, whereas data falling outside of the windows is lost, in
other words, it expires. The window size defines the stream
expiration time which represents the triple arrival timestamp
plus the window size, assuming the window size to be constant
(time-invariant). We also assume time as a discrete and linear
ordered variable parameter. Therefore, if the window is defined
as 3 time slots long and a time slot is 5 seconds long, a triple
entering at time τ will expire at time τ +15s. The expiration
time of derived triples depends on the minimum expiration
time of the triples it was derived from.

Considering the current materialized predicates window, the
event identification module derives different levels
of threat in order to raise an event based on the a set of rules. A
threat is identified if one or more indicators are violated with

1Resource Description Framework (RDF) is a W3C recommendation for
resource description [11]



4

respect to their warning and alarming thresholds. An indicator
violation represents the first level of a threat, which might
or might not raise an event based on the indicator alarming
violation duration. This means that, a single indicator violation
might not represent an ongoing system problem that requires
an adaptation action. For example, during the VM migration
action, the application availability indicator may be violated.
However, if the migration action is executed normally, i.e.,
the VM is successfully migrated without errors, the application
availability violation does not require an adaptation action and,
therefore, an event occurrence should not be created.

The identification of an indicator violation is represented by
the creation of the following entailment:

Status(ih, ‘yellow’)←→ ih.value ∈ Yh/

Yh =
T⋃

t=1

([a
min
h , a

max
h ](t) \ [wmin

h , w
max
h ](t))

Status(ih, ‘red’)←→ ih.value ∈ Rh/

Rh = Uh \
T⋃

t=1

[a
min
h , a

max
h ](t)

(1)

where ih.value is the calculated value of indicator ih and Uh
is the set of all possible values the indicator can assume and,
therefore, vh ∈ Uh. The set of values that does violate the in-
dicator’s warning thresholds (max or min) is defined as Yh. In
the same manner, Rh represents the set of values that violates
alarming (max or min) thresholds, in which (Yh ∪Rh) ⊆ Uh.
Finally, T represents thresholds sets of ih where t defines the
thresholds dimensions {aminh , wminh , vh, w

max
h , amaxh } such

that aminh ≤ wminh ≤ wmaxh ≤ amaxh .
The second level of a threat tries to identify warned violated

indicators (yellow) that are likely to become alarmed violated
indicators (red). We represent these indicators as orange ones.
The identification of an orange indicator is similar to the iden-
tification of yellow ones, but narrowing alarming thresholds.
Let us consider that Wh represents the set of triples of ih such
that warning threshold (min or max) is violated. The alarming
thresholds are narrowed based on Wh standard deviation σ

(R′h). The calculation of σ(Wh) is

√
1
N

N∑
n=1

(xn − µ)2 where

N is the number of triples in Wh. As we aim only the
triples that violate the narrowed alarming thresholds but do
not violate the normal alarming thresholds, we have R′h ∩Yh.
Thus, an indicator status is defined as orange according to the
following:

Status(ih, ‘orange’)←→ ih.value ∈ R′
h ∩ Yh/

R
′
h = Uh \

T⋃
t=1

[a
min
h + σ(Wh), a

max
h − σ(Wh)](t)

(2)

Finally, the third level of threat actually raises an event
after we have identified indicators as red or orange. However,
differently from the first level of threat, the violation lasts
more than it is accepted by the system. The indicator alarming
violation is linked with an acceptance value acph, measured
in number of monitored time slots the indicator can stay
violated without the enactment of adaptation action. As each
triple is associated with a timestamp, the calculation of the

violation duration is obtained by subtracting the timestamp of
the last triple by the first one. Considering that Vh is the set of
indicators with either red or orange violation, it is calculated
the violation duration by MaxTime(Vh) −MinTime(Vh),
where MaxTime() returns the last violated triple window
and MinTime() returns the first violated triple window. Thus,
an event occurrence is created when the following expression
holds:

MaxTime(Vh)−MinTime(Vh) > acph/

∀v ∈ Vh : Status(v, ‘red’) ∨ Status(v, ‘orange’)
(3)

2) Creation of event occurrences: The creation of a new
event occurrence eci,j ∈ ECi means that event ei ∈ E is
raised, where ECi is the set of occurrences of event ei. Event
occurrences are created by the event occurrence mod-
ule. They are defined by the following attributes: 〈 timetsamp,
value, window, direction, significance, severity 〉, where:
• Timestamp: it is the timestamp of the RDF triple that

triggers eci,j creation.
• Value: it is the monitored variable value of the RDF triple

that triggers eci,j creation.
• Window: it represents the window in which the RDF triple

that triggers eci,j is placed.
• Direction: it dictates if the obtained value is increasing

or decreasing based on threshold violation, i.e., max or
min. This information is important in order to support the
adaptation action selection phase.

• Significance: it is a value between [0..1] resulted from two
variables: variable significance and normalized variable
value based on the indicator thresholds. The significance
is important (together with impact) to define which event
occurrences have priority to be eliminated by the adap-
tation actions.

• Severity: this attribute defines quantitatively the severity
level of event occurrence eci,j over one or more goals.

Algorithm 1 details the process of creating a new event
occurrence eci,j . The algorithm input parameter is the RDF
triple tk that satisfies Eq.3, i.e., an indicator alarming violation
with longer duration than it is accepted.

Algorithm 1 Creating new event occurrences
Require: tk

1: ih ← getInd(tk)
2: W ′ ← getVtriples(tk, ih)
3: gp ← getGoal(ih)
4: E′ ← ∀ei ∈ E : ei

impact−−−−→ gp
5: for all ei ∈ E′ do
6: emci ← σemci.event=ei(ECM)
7: for all neg effectj ∈ emci.negEffect do
8: ctx ← getContextValues(neg effectj)
9: if checkCondRule(ctx,neg effectj) then

10: eci,j ← new EC(ei, ih, neg effectj)
11: end if
12: end for
13: end for

The first step is to find out the set of triples that represent
red or orange violations, according to Eq. 3. This is done by
function getVtriples() (line 2), which retrieves the set



5

of triples W ′ = 〈ih ind:value vh〉. Goals (G) are defined as
indicators thresholds and events (E) in terms of monitored
variables. If the calculation of an indicator value depends on
more than one variable, it means that one goal is impacted
by more than one event. Thus, we need to identify the event
ei ∈ E′, where E′ ⊆ E represents the set of candidates events
to be raised due to ih violation. In order to create E′ we need
to identify the goal gp that represents the violated indicator
threshold ih through the function getGoal() (line 3). Based
on gp we select all events that hold impact relationship like
ei → gp (line 4). The identification the right event that
is triggering the indicator violation is based on the event
context-model and, therefore, we need to select the event
context-models with respect the event candidates E′ (lines 5-
6). An event context-model emci may have several positive
and negative effects context (line 7). Therefore, an event is
raised when negative conditional context rules hold (line 9-10),
which are based on current context variable values (line 8).
Note that an indicator violation can raise more than one event
and, each event can create one or more event occurrences,
depending on the defined event context conditional rules.

B. Agent 2

Whenever event occurrences are identified and raised by
Agent 1, the system shall be able to recognize events
relationships and properly enact corrective actions. This is
done by Agent 2, which analyzes situations when one event
is caused by another through the enactment of its related
adaptation action. By knowing these relationships, the agent
drives the system adaptive behavior.
Agent 2 PEAS description is:
• Performance: Number of raised event occurrences;
• Environment: Current and previous materialized win-

dows;
• Actuators: Analysis of triggered adaptation actions

(AdaptationRequired, OngoingAdaptation, Adaptation-
Completed, AdaptationStillRequired and AdaptationEf-
fective) and selection of new ones;

• Sensors: Event occurrences, event status and enacted
actions within materialized windows.

1) Event analysis: The existence of raised events through
event occurrences indicates that adaptation actions have to
be enacted. However, we argue the approach should be able
to identify the different raised events in order to support the
adaptation action selection.

There are five different status transitions which the relation
status can represent: (i) Ready, eci,j has no relation with
past ones; (ii) new, an adaptation was not yet selected; (iii)
wip (work in progress), there are actions under execution; (iv)
done, all actions are set as ‘finished’; and (v) renew, new
eci,j regarding to the same event during the approval period.

The detailed description of the rules used in the states
transitions are expressed as follows:

“AdaptationRequired
′′

r1a :W+
(Status(ei, ‘new’)) :- Wbefore

(Status(ei, ‘ready’)),

Wins
(Occur(ei, eci,j)

“AdaptationStillRequired
′′

r2a :W+
(Status(ei, ‘renew’)) :- Wbefore

(Status(ei, ‘done’)),

Wins
(Occur(ei, eci,j)),

W(Enact(av, ‘finished’))

“OngoingAdaptation
′′

r3a :W+
(Status(ei, ‘wip’)) :- Wbefore

(Status(ei, ‘new’)),

Wins
(Occur(ei, eci,j)),

¬W(Enact(av, ‘finished’))

r3b :W+
(Status(ei, ‘wip’)) :- Wbefore

(Status(ei, ‘wip’)),

Wins
(Occur(ei, eci,j)),

¬W(Enact(av, ‘finished’))

r3c :W+
(Status(ei, ‘wip’)) :- Wbefore

(Status(ei, ‘renew’)),

Wins
(Occur(ei, eci,j)),

¬W(Enact(av, ‘finished’))

“AdaptationCompleted
′′

r4a :W+
(Status(ei, ‘done’)) :- Wbefore

(Status(ei, ‘wip’)),

¬Wins
(Occur(ei, eci,j)),

W(Enact(av, ‘finished’))

r4b :W+
(DoneAt(ei, τ) :- W+(

(Status(ei, ‘done’)), ?τ
)

“AdaptationEffective
′′

r5a :W+
(Status(ei, ‘ready’)) :- Wbefore

(Status(ei, ‘done’)),

W(DoneAt(ei, ?doneTime),

(Approval(ei, ?approvalPeriod)),

now()−?doneTime >?approvalPeriod

where ?time represents the current timestamp. In addition, the
rules are based on the following materialized windows: W is
current materialized window, W+ contains the derived triples
to be added in W , Wbefore represents the previous materi-
alized window, and Win represents the new triples that are
coming from the event identification module, i.e.,
event occurrences or monitored variables values. Adaptation
actions are required only for raised events that hold either
‘new’ or ‘renew’ status.

2) Adaptation selection: When there are event occurrences
eci,j identified as “new” or “renew” by the relation Status,
the adaptation selection is triggered. Actions are combined in
order to create an adaptation strategy, which is a composed
by a set of coordinated adaptation actions, i.e., actions that
are executed in sequence and/or parallel (coordination). It can
happen that this set is composed by only one action, so it does
not require any coordination.

An adaptation action is described by the following at-
tributes: Type identifies if the action consequence is regard-
ing functionality/quality reduction or resource reallocation;
Duration is a time interval attribute that specifies the
expected time interval, in terms of maximum and minimum,
that the action takes to complete its execution; Cost is
an interval attribute that represents the expected cost of the
action execution and might depend on the action parame-
ters defined by the system manager in the adaptation
parameterization module; ApprovalPeriod is the
expected time interval defined to validate the action effective-
ness; AvailabilityCond represents the set of conditional
rules that should be satisfied in order to enable the action



6

execution; TriggerCond also represents a set of conditional
rules, but it describes triggering conditions that can be either
reactive or proactive; Group identifies the action group from
an energy perspective; and finally Action is the adaptation
action implementation, i.e., what the action should do.

Considering these attributes, Agent 2 selects the most
suitable set of adaptation actions looking to eliminate event
occurrences that are causing indicators violation. Five steps are
used to do so. The first step (Step 1) identifies the incoming
event occurrences that did not trigger adaptation yet. This
identification is based on the event status attribute.

The next step (Step 2) aims to cut off the list of existing
adaptation actions in order to keep only the available and
suitable ones. In the first case, available actions, we use
the action’s availability conditional rules. These rules are
connected to single BPs that were previously designed to
execute the action. For instance, the adaptation action skip
task can be enacted if and only if the task is defined as
optional task, i.e., the task is not critical. In the second
case, suitable actions, we use the actions triggering conditions
attribute in order to rule out actions from the list that were
not designed to stop the incoming event occurrence. Each
adaptation action is associated with events (event-trigger) or
indicators violation (indicator-trigger) and, depending on the
event occurrence, we keep only the actions that are directly or
indirectly related to each other through an indicator violation,
which is represented by contribution relations within the goal-
based model.

Having the subset of actions provided by Step 2, the next
step (Step 3) determines the optimal set of actions that are
supposed to stop the arrival of new event occurrence with
minimal side-effects. This step can be divided into four sub-
steps, which are:

i An indicator violation may represent a violation of
other indicators that compose the first one. Thus,
the aim of this sub-step is to find the indicators-
base that have been violated. This is done through
and/or decomposition relationships among indi-
cators within the goal-based model;

ii Search for previous situations in which the current threat
was identified and, most important, what adaptation
strategies were selected with their obtained results;

iii A verification process estimates each action effects, both
positive and negative. The actions that propagate more
negative effects than positive or do not satisfy minimal
duration time or cost are ruled out of the candidate set.
After we ensure that all quality and energy constraints
are satisfied, Constraint Satisfaction Optimization Prob-
lem is used;

iv Finally, the selection of the adaptation actions and
their coordination are performed by the algorithm
proposed in [5] performed by the Energy-aware
controller. The controller gathers the necessary
context information to establish the actions parameters
range according to the underlying hardware and software
specification.

Once the set of adaptation actions is created, these actions
need to be properly coordinated (when there is more than one

action involved) in order to compose an adaptation strategy.
This is done in Step 4, in which input and output parameters
of each action are checked in order to identify immediate
sequence and parallel patterns. Based on that, the attributes
TotalDuration and TotalCost can be calculated. The
total duration time is particularly sensible to the adopted flow
pattern, sequence or parallel, for the actions execution. If the
total duration time or cost exceed their constraints, the process
returns to the previous step. Otherwise, the next step (Step
5) sends the created adaptation action to the adaptation
parameterization module, in which the system manager
shall validate the initially suggested actions parameters.

V. RELATED WORK

A. Green business process metrics

Starting from general software engineering metrics, Kaner
and Bond [7] delineate a framework for evaluating software
metrics regarding to their purpose, scope, calculation formula,
value meaning, and their relationships. In the approach, a
metric is generally defined as “the empirical, objective assign-
ment of numbers, according to a rule derived from a model
or theory, to attributes of objects or events with the intent
of describing them”. Distinctively from software engineering
metrics, the introduced metrics evaluate BP design attributes
and mashup applications performance and energy parameters
during its execution. In order to automatically identify the
KPI relations and extract their potential influential factors,
Popova and Sharpanskykh [15] formalize the concept of
performance indicator and their internal (between indicators)
and external (indicators and processes) relationships. However,
the relation with external concepts (such as process) does not
specify the process instance. Runtime variables may cause
ambiguous values interpretation of the same process having
two or more instances. This problem is partially solved by
Rodriguez et al. [17] approach that quantifies relationships in
the performance measurement system context (QRPMS). This
is done by defining the relationships among KPIs and mapping
them with Performance Measurement System (PMS) in order
to create cause-effect relations at business goals level.

The relationships between performance indicators are iden-
tified by applying two mathematical techniques over the
data matrix. The first, principal component analysis (PCA),
recognizes cause-effect relations based on each indicator de-
scription. The KPIs that contain cause-effect relations are
named Business Drivers Key Performance Indicators (BDKPI)
because of their high factor of impact with respect the others.
The second technique, partial least squares models, quantifies
the importance degree of each identified cause-effect relation.
These models are represented by typical regression equations
that predict effect(s) from cause(s) variable(s), called PLS
models, which is highly based on the designer expertise.

Taking into consideration the green aspects of the BPs,
Nowak et al. [14] introduce the green Business Process
Reengineering (gBPR) methodology in order to tackle ex-
isting SBAs and energy consumption issues from a holistic
approach within modern data centers. The authors introduce
the Key Ecologial Indicators (KEIs), which are special types



7

of performance indicators to measure up business process
greenness. The approach relies on impact of the process
execution decisions into the company’s business goals. For
instance, to reduce the KEI “CO2 emission” of a shipping
process, the solution adopted is to reduce the number of times
per day the shipper picks up the charge from three to one.
Instead, the “CO2 emission” with respect to the IT resources
used to execute the BP is not taken into consideration.

B. Service-based application self-adaptation frameworks

Service-based Applications are characterized by indepen-
dent services that, when composed, perform desired func-
tionalities [19]. In general, these services are provided by
third parties and are utilized by different applications. Thus,
SBAs operate in a heterogeneous and constantly changing
environment. Thus, they have to be able to constantly modify
themselves in order to meet agreed functional and quality
constraints in face of a raised problem or an identified op-
timization or an execution context change [8]. In the ambit
of service oriented computing (SOC), application adaptive
features play an even more important role.

Considering more comprehensive approaches, SBA adap-
tation frameworks deal with large different types of service
adaptations and, in particular, propose an integrated view from
the infrastructure to the application layer [3], [9], [16]. These
frameworks dynamic adapt SBAs from both structural and be-
havioral aspects by taking into account software and hardware
changes. The PAWS (Process with Adaptive Web Services)
framework proposed by [3] divides service adaptation issues in
process design (design-time) and execution (runtime) phases.
The importance of process design phase is emphasized as
it actually enables autonomous service adaptation at run-
time. Focusing on the interrelationships among the different
adaptation actions, [9] present a cross-layer SBA adaptation
framework. The aim of the approach is to align the adaptation
actions and monitored events from the different layers in order
to obtain more effective adaptation results. Three layers are
taken into consideration: BPM (business process management
composed by the business process workflow and KPIs), SCC
(service composition and coordination composed by service
compositions and process performance metrics - PPM) and SI
(service infrastructure composed by service registry, discovery
and selection mechanisms).

The key point made by the authors regarding to their frame-
work is that it takes into consideration the dependencies and
effects of such actions within the three different layers. First,
they tackle the lack of alignment of monitored events such that
events and their mechanisms have to be related in a cross-layer
manner. It enables their correlation and aggregation. Second,
the lack of adaptation effectiveness is filled by providing a
centralized mechanism able to aggregate and to coordinate
different adaptation actions that are triggered by the same
event. Third, the lack of adaptation compatibility, which means
to identify adaptation necessities across layers by identifying
the source of the problem that generated the event. Finally,
the lack of adaptation integrity is dealt in terms of foreseeing
results. It means to assess whether the selected adaptation

actions are enough to achieve the desired results and how many
times they need to be enacted.

Mirandola and Potena [13] framework also considers dy-
namic service adaptation based on optimization models in
order to minimize adaptation costs and enforce QoS aspects.
The necessity for adaptation is assessed through a context-
aware self-adaptation mechanism that captures required data
about the environment and triggers appropriate adaptation
actions. The novelty of the framework relies on the fact that it
handles both software and hardware adaptation from functional
and non-functional requirements perspectives. In addition, the
framework optimization model is flexible as it is independent
from the adopted methodology or architectural model. In a
similar way, Psaiser et al. [16] present VieCure framework.
The framework focuses on unpredictable and faulty behavior
of service into a mixed system of Service-based Systems
(SBSs) and Human-provided Services (HPSs). Feedback loop
functions are used to provide the framework self-adaptation
and behavior monitoring features through a MAPE-k cycle
(Monitor, Analyze, Plan, Execute, and Knowledge). The mon-
itoring components are responsible to gather and to store
information about different systems, mixed systems, regarding
to the infrastructure, application activities, and QoS. The
aggregation of such information is therefore presented as
events that trigger the diagnosis and analysis component.
These components define the required recovery actions by
analyzing historical failure data sources.

VI. CONCLUDING REMARK

The solution described in this paper presents an integrated
mechanism to identify and to reason about energy savings
opportunities within complex environments such as data cen-
ters. It takes into consideration several aspects of a partially
observable environment using knowledge-based agents. Sim-
ulated results have being performed in order to evaluate the
agent behavior under stressed situations and are expected to
be published in the future. A similar solution is also under
evaluation which is based on a goal-based model instead of
agents.

Acknowledgment.

This work has been partially supported by the GAMES
project (http://www.green-datacenters.eu) and Eco2Clouds EU
Project (http://eco2clouds.eu), which are partially funded by
the European Commission under the 7th Framework Program
grant agreement numbers 248514 and 318048, respectively.
This work expresses the opinions of the authors and not
necessarily those of the European Commission. The European
Commission is not liable for any use that may be made of the
information contained in this work.

REFERENCES

[1] C. C. Aggarwal. Data Streams: Models and Algorithms (Advances in
Database Systems). Springer-Verlag New York, Inc., Secaucus, NJ,
USA, 2006.

[2] R. Ali, F. Dalpiaz, and P. Giorgini. A goal-based framework for con-
textual requirements modeling and analysis. Requirements Engineering,
15(4):439–458, November 2010.



8

[3] D. Ardagna, M. Comuzzi, E. Mussi, B. Pernici, and P. Plebani. PAWS: A
framework for executing adaptive web-service processes. IEEE Software
Magazine, 24(6):39–46, November 2007.

[4] D. F. Barbieri, D. Braga, S. Ceri, E. Della Valle, and M. Grossniklaus.
Incremental reasoning on streams and rich background knowledge.
In Proc. of the 7th International Conference on The Semantic Web:
research and Applications - Volume Part I, ESWC’10, pages 1–15,
Berlin, Heidelberg, 2010. Springer-Verlag.

[5] C. Cappiello, M. Fugini, A. Ferreira, P. Plebani, and M. Vitali. Business
process co-design for energy-aware adaptation. In Proceedings of 4th
International Conference on Intelligent Computer Communication and
Processing, ICCP’11, pages 463–470. IEEE, Aug. 2011.

[6] G. Cook. How clean is your cloud? Report, Greenpeace International,
April 2012. http://www.greenpeace.org/international/en/publications/
Campaign-reports/Climate-Reports/How-Clean-is-Your-Cloud/.

[7] C. Kaner and W. P. Bond. Software engineering metrics: What do they
measure and how do we know? In Proc. of the 10th International
Software Metrics Symposium, METRICS’04, 2004.

[8] R. Kazhamiakin, S. Benbernou, L. Baresi, P. Plebani, M. Uhlig, and
O. Barais. Adaptation of service-based systems. In M. Papazoglou,
K. Pohl, M. Parkin, and A. Metzger, editors, Service Research Chal-
lenges and Solutions for the Future Internet, volume 6500 of Lecture
Notes in Computer Science, pages 117–156. Springer Berlin / Heidel-
berg, 2010.

[9] R. Kazhamiakin, M. Pistore, and A. Zengin. Cross-layer adap-
tation and monitoring of service-based applications. In Proc. of
the 2009 international conference on Service-oriented computing,
ICSOC/ServiceWave’09, pages 325–334, Berlin, Heidelberg, 2009.
Springer-Verlag.

[10] A. Kipp, T. Jiang, M. Fugini, and I. Salomie. Layered green performance
indicators. Future Gener. Comput. Syst., 28(2):478–489, Feb. 2012.

[11] F. Manola and E. Miller. Rdf primer. http://www.w3.org/TR/rdf-primer/,
February 2004.

[12] A. Mello Ferreira, B. Pernici, and P. Plebani. Green performance
indicators aggregation through composed weighting system. In Proc.
ICT as Key Technology against Global Warming, volume 7453 of Lecture
Notes in Computer Science, pages 79–93. Springer Berlin / Heidelberg,
September 2012.

[13] R. Mirandola and P. Potena. A QoS-based framework for the adaptation
of service-based systems. Scalable Computing: Practice and Experience,
12(1):63–78, 2011.

[14] A. Nowak, F. Leymann, and R. Mietzner. Towards green business
process reengineering. In Proceedings of the 2010 International Confer-
ence on Service-oriented Computing, ICSOC’10, pages 187–192, Berlin,
Heidelberg, 2011. Springer-Verlag.

[15] V. Popova and A. Sharpanskykh. Modeling organizational performance
indicators. Information Systems, 35(4):505–527, June 2010.

[16] H. Psaier, F. Skopik, D. Schall, and S. Dustdar. Behavior monitoring in
self-healing service-oriented systems. In Proc. of the 34th IEEE Annual
Computer Software and Applications Conference, COMPSACW’10,
pages 357 –366, July 2010.

[17] R. R. Rodriguez, J. J. A. Saiz, and A. O. Bas. Quantitative relationships
between key performance indicators for supporting decision-making pro-
cesses. Computers & Industrial Engineering, 60(2):104–113, February
2009.

[18] S. J. Russell and P. Norvig. Artificial intelligence - a modern approach:
the intelligent agent book. Prentice Hall series in artificial intelligence.
Prentice Hall, 1995.

[19] S-Cube Partners. State of the art report on software engineering design
knowledge and survey of HCI and contextual knowledge. Deliverable
JO-JRA-1.1.1, S-Cube Network of Excellence, July 2008.


