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Abstract 

This thesis presents the design, simulation and experimental validation of an Energy 

Management System (EMS) for a Hybrid Energy Storage System (HESS) composed of 

lithium ion batteries and Supercapacitors (SCs) in electric vehicles. The aim of the EMS is 

to split the power demand considering the weaknesses and strengths or the power sources. 

The HESS requires an EMS to determine power missions for the battery and SC in real time, 

where the SC is commanded to assist the battery during high power demand and recover the 

energy generated during braking. Frequency sharing techniques have been proposed by 

researchers to achieve this objective, including the Discrete Wavelet Transform (DWT) and 

conventional filtration methods (low and high pass filters). However, filtration approaches 

can introduce delay (milliseconds to tens of seconds) in the frequency components which 

undermines the hybridisation advantages. Hence, the selection of the filtration technique and 

filter design are crucial to the system's performance. Researchers have proposed power 

demand prediction methodologies to deal with time delay, however, the advantages and 

drawbacks of using such methods have not been investigated thoroughly, particularly 

whether time delay compensation and its inherent prediction error improves the system 

performance, efficiency, and timely SC contribution during the motoring and braking stages. 

This work presents a fresh perspective to this research field by introducing a novel approach 

that deals with delay without complicated prediction algorithms and improves the SC 

contribution during the motoring and braking stages while reducing energy losses in the 

system.  

The proposed EMS allows the SC to provide timely assistance during motoring and to 

recover the braking energy generated. A charging strategy controls energy circulation 

between the battery and SC to keep the SC charge availability during the whole battery 



 

 

 

 

discharge cycle. The performance and efficiency of the HESS is improved when compared 

to the traditional use of conventional filtration techniques and the DWT. Results show that 

the proposed EMS method improves the energy efficiency of the HESS. For the US06 driving 

cycle, the energy efficiency is 91.6%. This is superior to the efficiency obtained with an EMS 

based on a high pass filter (41.3%), an EMS based on DWT high frequency component 

(30.3%) and an EMS based on the predicted DWT high frequency component (41%). 
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 CHAPTER 

1 INTRODUCTION 
1 

1.1  Batteries used in electric vehicles  

The development of electric vehicles (EVs) is driven by technological advances in batteries. 

Lithium-ion batteries (LIBs) dominate in several applications including portable electronics 

and EVs due to their advantages over other battery systems, specifically their high energy 

density (250-693 Wh/L;100-265 Wh/kg),  power capability (250-340 W/kg), no memory 

effect, excellent cycling (400-1200 cycles), little self-discharge (0.35%-2.5% per month 

depending on state of charge), and wide temperature operation range (5˚C-45 ˚C) [1] [2]. As 

LIBs have become more prevalent since their commercialisation, remarkable progress has 

been made towards improving their energy density, reducing their costs, and improving their 

performance. The global sales of EVs including Hybrid Electric Vehicles (HEVs), broke a 

new record of 6.6 million in 2021, according to the most recent edition of the annual Global 

Electric Vehicle Outlook report [3]. Two million EVs were sold globally in the first quarter 

of 2022; an increase of 75 percent over the same period last year despite supply chain strains. 

Around 16.5 million EVs were on the road by the end of 2021, triple what they were in 2018. 

EVs - including HEVs - accounted for roughly 1.5% of the global fleet as of mid-2022. EV 

sales are projected to rise from 6.6 million in 2021 to 20.6 million by 2025, according to 

Bloomberg NEF [4]. In 2025, EVs are forecast to raise their share of new passenger vehicle 

sales to 23%, up from just under 10% in 2021, being 75% of those fully electric vehicles [4]. 
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Bloomberg’s NEF long-term electric vehicle outlook estimates that electric vehicles models 

will account for 35% of the whole global car fleet by 2040. The U.S. Energy Information 

Administration (EIA) estimates that today’s light duty vehicle (LDV) fleet is about 1.31 

billion vehicles and this would grow up to 2.21 billion by 2050. By this time, global share of 

the light –duty electric vehicle fleet will grow from 0.7% to 31%, reaching 672 million EVs 

on the road [5].  

In order for EV adoption to become sustainable, battery technology must overcome a few 

barriers before vehicles equipped with this type of energy storage system (ESS) can compete 

with internal combustion engine vehicles (ICE). Usable energy density at C/3 should be 

>750Wh/L at cell level and >500 Wh/L at pack level, usable specific energy at C/3 should 

be >350 Wh/kg at cell level and 235 Wh/kg at pack level [6] [7]. Peak specific discharge 

power (80% depth of discharge, 30s) should be in the order of 700 W/kg and the peak power 

density (80% depth of discharge, 30s) at around 1500 W/L. Cost should be less than 

$100/kWh [6]. Other important features include fast charge capability (0-80% in 15 minutes) 

[7], long life of 15 years, safety of operation, and being able to perform in a wide range of 

temperatures (-20˚to 60˚C) [8]. Reported energy densities of battery cells range from 83 

Wh/kg for high power cells to 267 Wh/kg for high energy cells [9].  As of today, no battery 

meets all the requirements of an advanced high-performance battery for EV applications [6], 

[10]. 

Driving range, vehicle performance, charging time, and cost are the major concerns of 

customers regarding EVs. The driving range is determined by the battery energy density, 

which is the amount of electrical energy per unit volume (Wh/L) or per unit weight (Wh/kg) 

that the battery can store. With the limited space available for batteries in an EV, and the fact 
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that weight plays a vital role in the vehicle's performance, high energy density is a must since 

it results in smaller, lighter batteries that allow the vehicle to travel further. 

The EV battery pack is sized to provide acceptable driving range and power output. Battery 

cells are arranged in a connection of series and parallel strings. Connecting the cells in series 

defines the total voltage of the battery pack as the voltage of each cell in the string is added. 

The total capacity is obtained by connecting parallel strings a shown in Fig. 1.1. 

 

Fig 1.1 Series-parallel connection of battery cells (2 series, 4 parallel)  

The cell basic structure consists of a metal oxide cathode, a graphite or graphite silicon 

blended anode, a separator to prevent direct contact between them and an electrolyte to help 

with movement of ions [11]. The cell performance is bounded by its electrochemical 

performance, nominal voltage, energy density, high current capability, thermal stability, 

cyclability, and safety.  

The search for high performing cathode materials to produce batteries with high energy and 

high power densities resulted in two preferred cathode chemistries among vehicle 

manufacturers: Nickel Cobalt Aluminium Oxide (NCA) and Nickel Manganese Cobalt Oxide 
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(NMC). Batteries with Li[Ni0.8Co0.15Al0.05]O2 (NCA) cathodes exhibit high experimental 

capacity of up to 200 mAh/g compared to other cathode materials including Lithium 

Manganese Oxide LiMn2O4 (LMO) with 130 mAh/g [12], Lithium Iron Phosphate Oxide 

LiFePO4 (LFP) with 120-160mAh/g [13], and Nickel Manganese Cobalt Oxide 

Li[Ni0.33Mn0.33Co0.33]O2 (NMC333) with 163-220 mAh/g [14]. Both NCA and NMC 

batteries have high specific energy and can provide satisfactory performance at high current 

rates [12]. NMC is the chemistry of choice by the majority of Original Equipment 

Manufacturers (OEMs) including BMW, General Motors, Toyota, Mitsubishi, Daimler, 

Renault and Nissan while NCA is mainly used by Tesla [15]. 

Different levels of nickel are used in batteries depending on the application. The ratio 

between the three metals is indicated by three numbers. For example, LiNi 0.333Mn0.333Co 

0.333O2 is abbreviated to NMC111 or NMC333, LiNi0.5Mn0.3Co0.2O2 to NMC532 (or 

NCM523), LiNi0.6Mn0.2Co0.2O2 to NMC622 and LiNi0.8Mn0.1Co0.1O2 to NMC811. Due to 

potential issues with cobalt sourcing, there is interest in increasing the level of nickel, even 

though this lowers thermal stability [16]. 

In terms of chemistry, deployment of LFP cells amounted to 52.7 GWh (27% of total) in the 

first half of 2022, followed by NMC 5-series with 41.6 GWh (21%), NMC 8-series with 36.2 

GWh (19%) and NCM 6-series with 12%. NCA Gen 3 made it to the top five with a share of 

10% of total deployment. Seven cell suppliers, including (Contemporary Amperex 

Technology Co. Limited) CATL, LG Energy Solution, Panasonic, Build your dreams (BYD), 

SK On, Samsung SDI and China aviation lithium battery technology (CALB), are responsible 

for more than 82% of all battery capacity and battery metals deployed into roads globally in 

passenger EVs in the first half of 2022 [17]. In terms of the total battery capacity deployed 

in electric vehicles including battery electric vehicles (BEV), plug-in hybrid vehicles 
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(PHEV), and HEV, Asia Pacific dominates the global market with 113 GWh deployed 

compared to Europe with 48.1 GWh, Americas with 33.4 GWh, and Middle East and Africa 

with 1.1 GWh [17].  

Vehicle performance and charging time are a direct function of the battery power capability. 

During power intensive events, such as acceleration, the battery should be able to discharge 

at high rates to meet the demand. On the other hand, the ability to accept high current rates 

is critical for energy recovery during regenerative braking and charging speed. The peak C-

rate for charging a Tesla Model 3 with 75 kWh battery pack (2019 LR all-wheel-drive 

(AWD) V3 SV) is about 3.3C and the average C-rate when charging from 20% to 80% state 

of charge (SOC) is about 1.5 C.  A comparison between 3 different models is shown in Table 

1.1 [18]. The C-rate capability of the batteries installed in these vehicles allows for a charging 

time (20%-80% SOC) that fluctuates between 23-26 minutes. Batteries with higher C-rate 

capabilities are required to achieve charging time below 5 minutes. 

Table 1.1. DC fast charging comparison of Tesla Model 3 vehicles with 75 kWh and 80 

kWh batteries [18] 
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The DC fast charging rate for 3 different Tesla Model 3 vehicles is shown in Fig. 1.2.  

 

Fig.1.2 DC fast charge comparison curves for Tesla Model 3 vehicles [18] 

Battery prices have declined during the last decade reaching a sales-weighted average price 

of USD 132/kWh [4]. However, this price must decline even further to make EVs more 

affordable and speed up the uptake. With the unprecedented rise in battery metal prices 

caused by production challenges as a result of both the coronavirus pandemic and the war in 

Ukraine, as well as an increase in battery demand, tighter supply chains, and increased 

production costs, it is estimated that battery prices will increase at least by 15% from their 

average in 2022 [3]. As a result, automakers will face major challenges, resulting in higher 

battery costs, reduced manufacturer margins, and higher prices for consumers. 

1.2 Battery ageing 

The capability of the battery to charge and discharge at high rates is critical for rapid charging 

and high power delivery. However, this is limited by the electrochemical processes occurring 
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in the battery including the electron transport in electrodes, ion transport both in bulk 

electrolyte and electrolyte-filled pores, solid-state diffusion of ions in the active materials 

and electrochemical reactions at the electrode/electrolyte interface [19]. 

One of the most challenging aspects of battery design is to increase energy density while 

maximising power output and battery life. Battery manufacturers use different approaches to 

optimise cells to achieve high energy and high power densities. Research efforts to improve 

energy density at cell level include the development of high capacity anode and cathode 

materials, improvements of electrode design and composition, and optimisation of cell 

architecture. In terms of rate performance, research has shown that improvements can be 

obtained by increasing solid-state diffusivity, electrode porosity and the optimisation of 

electrolyte properties including concentration and viscosity [20]. Currently, there is an 

inevitable trade-off between energy and power, as the requirements for maximum energy 

density are conflicting with those for high power density [21]. 

To reach peak vehicle performance while avoiding premature battery degradation, the battery 

pack must be able to provide/accept peak currents that lay within the manufacturer’s 

recommended rate of charge/discharge, usually specified in terms of C-rate. Battery 

manufacturers often indicate the maximum continuous and pulse (<10s) charge and discharge 

C-rates in the battery specifications. Batteries designed for energy applications exhibit 

relatively low charge/discharge rates (<3C), whereas batteries designed for power 

applications show high rates (>3C). The C-rate is defined as the current through the battery 

divided by the theoretical current draw under which the battery would deliver its nominal 

rated capacity in one hour [22]. Certainly, the battery can discharge beyond this value for 

short periods of time, usually with detrimental effects on its cycle life.  

Electrolytes, anodes, cathodes, and the structural components used in batteries, all undergo 
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irreversible changes as the battery ages. Battery performance and degradation are determined 

by how it is operated. In automotive applications, the following factors contribute most to 

degradation (not arranged in any specific order or grouping) [23]: 

 Environment temperature 

 Discharging current rate 

 Charging current rate 

 Depth of discharge 

 Time intervals between full charge cycles 

The internal resistance of the battery increases at low ambient temperatures because the 

viscosity of the electrolyte increases, aggravating the diffusion and movement of the lithium 

ions between the positive and negative electrodes. In simple words, chemical reactions 

occurring in the battery are slowed down. This leads to poor performance and accelerated 

battery degradation. In contrast, operating batteries in hot environments worsens the cell 

temperature build-up due to internal heat generation, resulting in loss of capacity from 

lithium loss and reduction of active materials, as well as increased internal resistance which 

leads to reduced power. Operating above or below the acceptable temperature range (15-35 

°C) accelerates the ageing process [24]. 

Battery degradation is affected by the rate of charging and discharging. In EVs the discharge 

rate is influenced by power demand variations caused by changes on the slope of the route, 

the weight of the car, and the speed and acceleration of the vehicle. During braking, it is 

possible for the lithium-ion traction battery to be damaged by peak current recharge periods 

during regenerative braking [25]. To protect the battery from degradation, potential braking 

power is wasted by activating the friction brakes. Likewise, fast charging has shown to 

accelerate degradation, reducing both capacity and power capabilities [26]. 
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Battery cells will degrade if they are operated at a rate exceeding the manufacturer's 

recommendation. Bryden et al. [27] confirmed this conception by carrying out an experiment 

where two identical Lithium-ion NMC energy cells were cycled to determine cell 

degradation. One of them was discharged at the manufacturer recommended discharge rate 

of 1C and the other at maximum discharge rate of 3C. The cell cycled at higher rate degraded 

faster than the cell cycled at the standard rate. After 400 cycles, the cell discharged at 3C had 

81.4% of the maximum capacity while the cell discharged at 1C had 83.9%. This study also 

confirmed that high discharge rates increases the cell’s temperature, which contributes to 

degradation. Degradation due to charging was not analysed in the mentioned work, however, 

it is worth noting that the manufacturer recommended C-rate for charging was 0.5C and the 

maximum 1C, so anything beyond this figures would result in accelerated degradation. It is 

typical of energy batteries to have specifications similar to those of the energy cells used in 

this study. A key observation is the relatively high current rating for discharge, but low 

ratings for charge. Table 1.2 shows typical charge and discharge C-rates for different battery 

chemistries [28]. 

Table 1.2. Comparison of C-rates for different battery chemistries 

Battery Chemistry Charge C-rate Discharge C-rate 

LiFePO4. Lithium Iron Phosphate (LFP) 1C  1C 

LiCoO2. Lithium Cobalt Oxide (LCO) 0.7C-1C 1C 

LiNiMnCoO2. Lithium Nickel Manganese Cobalt Oxide (NMC) 0.7C-1C 1C-2C 

LiMn2O4. Lithium Manganese Oxide (LMO) 0.7C-1C 1C-10C, 30C pulse 

LiNiCoAlO2  Lithium Nickel Cobalt Aluminium Oxide (NCA) 0.7C  1C 

Li2TiO3 Lithium Titanate (LTO) 1C-5C 10C-30C 

 

EV manufacturers often oversize the battery pack to achieve high energy and acceptable 

power density to match the desired vehicle performance, thus realising both longer range and 

improved power handling, but at the expense of system’s weight and cost [29]- [30]. The 
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main objective of battery oversizing is to guarantee that the battery operates within the 

manufacturer’s specifications when it is exposed to high current charge and discharge rates 

derived from demanding driving conditions. In this way the battery cycle life is not 

compromised by premature degradation. Batteries used in EVs have a cycle life defined as 

the number of full discharge-charge cycles that it takes to reduce a cell's capacity to 80% of 

its original value [31]. A typical battery layout and location in an EV is shown in Fig. 1.3. 

 

Fig. 1.3 Typical battery layout and location in an EV 

1.3 Hybridisation as an alternative to boost the energy storage system power 

capability 

Hybridising the EV ESS by complementing a battery designed for maximum specific energy 

with a power-dense source dedicated to delivering peak power can realise battery life 

improvements and enhance the ESS performance [32], [33]. The high power source provides 

for the rapid response to power demand, which reduces the battery charge/discharge C-rate, 

and recovers energy from braking, relieving the battery from the stress imposed by short time 

peak charging currents. The Hybrid Energy Storage System (HESS) can be designed to have 
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both high energy and high power capabilities. Literature suggests Supercapacitors (SCs) [34] 

- [35] and high power batteries [36]- [37] as feasible devices to complement the high-energy 

battery and achieve substantial improvements in vehicle performance, durability, and 

economy. SCs are attractive for this application because they have much higher power 

density (3000-14000 W/kg), longer cycle life (100.000-1.000.000 cycles), wider operational 

temperature range (-40˚C to 70˚C) [38], and smaller internal resistance than batteries 

(typically an order of magnitude lower than batteries) [39]. However, they lack energy 

density (1-10 Wh/L compared to 250-650 Wh/L of energy batteries) [39]. Therefore, with 

hybridisation, batteries and SCs complement each other and their combination exploits their 

benefits [10], [40]. Hybridisation can lead to the following scenarios: 

 Battery size reduction: The capacity of the battery can be reduced (connecting less 

parallel strings) as the SC compensates for the reduction in the battery power output. 

However, this also reduces the vehicle’s driving range, which is undesirable.  

 Bigger powertrain: The vehicle’s performance can be improved with a bigger 

powertrain. The higher peak power demand can be provided by the battery and SC. 

In this case the EV performance is improved.   

 Battery peak power relief: The battery is complemented with SCs resulting in a 

reduction of the charge/discharge C-rate. In this case, battery cycle life is improved.  

This work focuses on relieving the battery from peak power during acceleration and braking 

by adding SCs to the system. 

1.4 Supercapacitor 

SCs are high capacity capacitors, with capacitances much higher than electrolytic capacitors. 

It stores 10 to 100 times more energy per unit of volume or mass (higher energy density) than 

the latter. Its main advantage is that is able to accept and deliver charge at high rates and 
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tolerates many more charge and discharge cycles than other power sources such as batteries. 

Due to these characteristics, they are often used in applications where many rapid 

charge/discharge cycles are required. Unlike ordinary capacitors, SCs do not use the 

conventional solid dielectric, but rather, they use electrostatic double-layer capacitance and 

electrochemical pseudo capacitance [41]. More details regarding this technology will be 

introduced in later chapters. 

1.5 Power split: The role of the energy management system 

The design and implementation of the Energy Management System (EMS) is the most 

significant challenge in HESS design and control. It depends upon a number of variables 

including the control topology, power split strategy, driver commands, state of charge, and 

limitations of each power source [32]. The aim of the EMS is to determine the current 

references to control the battery and SC power contribution, considering the strengths and 

weaknesses of each power source. It also ensures that the system operates within 

specifications and strives to improve the overall efficiency of the system.  

The main EMS task is to control the SC to assist the battery during sudden power demands 

caused by changes in acceleration or road grade, and recover the energy generated when 

braking. Different approaches have been proposed to achieve this task, which can be broadly 

classified into rule, frequency and optimisation based control strategies as shown in Fig. 1.4 

[42].  

Rule-based EMSs are suitable for implementation in real time controllers due to their 

simplicity and convenience. These methods are based on empiric human expertise where a 

set of rules are generally implemented as lookup tables or if-then expressions. However, its 

control performance is heavily dependent on rule-switching thresholds, which cannot always 

provide good results in the face of different driving conditions [43]. Rule-based strategies are 
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classified into deterministic approaches, fuzzy logic and feedback based approaches. 

Frequency based strategies are used to decompose a given signal into its high and low 

frequency components using techniques such as the discrete wavelet transform and 

conventional filtering control. Optimisation based strategies employ advanced optimisation 

algorithms such as dynamic programming, particle swarm optimisation, genetic algorithm, 

Pontryagin’s minimum principle, model predictive control and optimisation of rule based 

control approaches to explore the potential economic performance of the HESS, minimise 

losses, size the HESS optimally, and reduce the current magnitude and fluctuation seen by 

the battery. However, their complexity results in heavy computations based on known driving 

cycles and power demand profiles, which result in long processing times that prevent their 

implementation in real-time systems. Therefore, they are usually used for benchmarking 

purposes. Real time implementation is possible through optimisation of a rule based 

strategies, model predictive control, stochastic dynamic programming, and adaptive 

approaches. 

This thesis focuses on filtration strategies through which power demand can be decomposed 

into frequency components that match the dynamics of the power sources. EMS strategies 

based on conventional filters, i.e. low and high pass filters [44] [45] [46] [47], and the 

Discrete Wavelet Transform (DWT) [48] [49] [50] have been proposed to extract frequency 

components from the power demand. This technique is chosen as it has been widely used by 

researchers as the main component to build EMSs. However, some details are still missing 

in the literature, especially when the DWT is used to split the power in the HESS. Studying 

these details constitute the focus of this research, including the effects of delay, the efficacy 

of the SC assistance during motoring and braking, and the system’s energy efficiency in light 

of delay.  
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Fig. 1.4 Energy management strategy classification [42] 

Based on the hybrid system topology, an energy management system coordinates the 

distribution of energy. There are three types of interconnection topologies: passive, semi 

active and active [51], [52], [53]. In passive topologies, power is distributed based on the 

ESS output characteristics and internal resistance, so power is naturally distributed without 

any control action. Active topologies use two bidirectional DC/DC converters to interface 

the ESS elements to the DC-bus, actively managing power flow of each ESS element. This 

design option compromises cost, volume and control complexity. Semi-active topologies 

connect one energy storage source straight to the DC-bus, while the other is connected 
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through a DC/DC converter.   A SC semi-active topology is considered in this work, where 

a bidirectional DC-DC converter is used to control the power contribution of the SC with a 

high frequency current reference determined by the EMS. The high-energy battery is 

connected directly to the motor drive, defining the voltage of the DC-bus. This topology is 

typically chosen in automotive applications as it balances cost and control complexity [54]. 

1.6 Power split issues with an energy management system based on frequency 

sharing techniques 

The selection of the filtration strategy, as well as the particular characteristics of the filter, 

can compromise the performance of the system and undermine the benefits of using the SC 

in the HESS [55]. High pass and low pass filters can introduce a phase shift in the filtered 

signal and thus the output of the filter can lag (low pass filter) or lead (high pass filter) the 

input signal. DWT based approaches can introduce long time delays in the frequency 

components. Using the delayed frequency components to control the SC, results in some 

issues such as failing to assist the battery during peak positive and negative power demand, 

exposing the battery to undesirable peak power, energy inefficiency, and an increase in the 

system energy loss due to energy circulation between the battery and SC via the DC/DC 

converter. The author defines energy circulation as the energy transfer (in a HESS connected 

in a SC semi-active topology) between the battery and SC with other purposes other than 

assisting the battery during positive power demand and recovering energy during braking. 

This uncontrolled ‘excess’ energy circulates through the DC/DC converter (which is not 

100% efficient), increasing the system energy losses, compromising the system’s efficiency. 

Energy circulation is, of course, an inefficient process that is exacerbated by delay. 

To deal with the long-time delays in the frequency components, especially with the DWT 

approach (from few seconds to tens of seconds), power demand prediction approaches using 

recurrent neural networks such as nonlinear autoregressive neural network (NARNN) [49], 
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nonlinear autoregressive neural network with exogenous input (NARX) [56], and Long Short 

Term Memory (LSTM) neural networks [57], have been proposed in the literature to 

compensate for the delay and enable the use of the frequency components in real time. In this 

work, the LSTM neural network approach is chosen, as this type of recurrent neural network 

has been experimentally proven to have higher prediction accuracy than the standard 

recurrent neural networks (RNN) [58]. However, an analysis of whether time compensation 

improves the system performance is missing in the literature. A thorough investigation of the 

effectiveness of the SC contribution with and without time delay compensation, as well as 

the influence of energy circulation in the system’s efficiency, constitutes the purpose of the 

present work. Effectiveness is assessed by comparing the SC contribution during positive 

and negative power demand against a benchmark signal that is proportional to the rate of 

change of current (during positive power demand) and includes the energy generated during 

braking. The determination of this signal is detailed in section 3.4.4. 

1.7 Research questions 

This thesis examines the design, simulation and implementation of a Real Time EMS to 

control power flow in a HESS composed of a battery and a SC.  Simulations consider Lithium 

–ion batteries, while the experiment includes a lead-acid battery. The latter was chosen as 

these batteries were readily available in the lab. However, this would not influence the result 

of the experimental part as the intention of this work is to demonstrate the performance on 

an energy efficient EMS with the capability to split the power demand in a HESS in real time. 

For this specific purpose, the use of a lead-acid or a lithium battery in the experimental part 

makes no difference. The HESS performs in an EV where highly dynamic power demands 

are expected.  

The specific research questions motivating this work are: 
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1. What are the effects of time delay in power distribution and efficiency of the hybrid 

system? 

2. Does compensating for time delay in the frequency components with a power demand 

prediction approach improve the performance of the system? 

3. How to fairly assess the performance of the SC with different frequency sharing 

techniques? 

4. How the performance of an EMS based on DWT does compare to one based on 

conventional filters? 

5. How to improve the system efficiency by controlling energy circulation in the 

system? 

1.8 Aims and objectives 

The aim of this thesis is to investigate the effects of the time delay in power distribution and 

the system’s energy efficiency when the HESS real time EMS is based on frequency sharing 

techniques including the DWT and conventional filters. This understanding allows for the 

development of a novel method to tackle the delay problem and its side effects, so the HESS 

can perform efficiently. 

This aim will be achieved through the following objectives: 

1. Build a DWT decomposition/reconstruction multiresolution tree in Simulink to assess the 

difference between the original signal, the sampled signal and the filtered signal for 

different levels of decomposition and sampling rates. 

2. Build a detailed electric vehicle model in Simulink using appropriate reported 

methodologies to produce realistic results. 

3. Compare the performance of conventional filters with different cut-off frequencies versus 

the DWT for different driving cycles. 
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4. Build a LSTM to perform power demand predictions to compensate for the DWT delay. 

5. Assess the advantages and drawbacks of power demand prediction as a way to 

compensate delay. 

6. Validate the proposed EMS experimentally by exposing the experimental rig to a varying 

power demand signal that includes positive (motoring) and negative (braking) power 

demands. The experimental results will be compared to that of a system without the 

proposed EMS. 

1.9 Scope 

The design and implementation of a real-time EMS controller based on a frequency sharing 

approach is the focus of this project. The development of a novel high fidelity battery, SC, 

DC/DC converter, motor, and motor drive models as well as the optimal sizing of the sources 

are beyond the scope of this investigation. The investigated ESS comprises a battery and a 

SC interfaced in a semi-active control topology. The architecture of the system is shown in 

Fig. 1.5. A driver model is used to obtain the torque demand. With this signal, the motor 

drive controls the torque requirements of a permanent magnet synchronous motor (PMSM) 

and supplies the power demand from the hybrid energy storage system connected in a SC 

semi-active topology. This topology uses a DC/DC converter to interface the SC to the DC-

bus, while the battery is directly connected to the motor drive. The power delivered by each 

power source is determined in real time by an EMS that accounts for the SOC of the power 

sources and the real time current demand measured at the DC-bus. The scope of the EMS 

comprises the determination of a current reference to control the SC so it provides a portion 

of the total energy required during accelerations and recovers the energy generated during 

braking (when its SOC allows it). As the voltage of the system will be set by the battery, the 

DC/DC converter will be controlled in current mode. This is the reason a current reference 

needs to be calculated to split the power. An energy flow analysis is conducted to determine 
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energy losses in the system, including the losses that occur due to energy circulation 

influenced by delay. 

 

Fig. 1.5 Electric vehicle model architecture 

Power demand prediction with LSTM is implemented to compensate for the delay. An 

analysis of advantages and disadvantages of this approach are analysed in detail to ultimately 

determine if compensation of delay improves the performance of the system and reduces 

energy losses. The vehicle’s power demand considered in this study is limited to propulsion 

loads and additional power requirements of auxiliary loads and their associated losses are not 

considered. The core of the work focuses on addressing power arbitration with frequency 

sharing techniques whilst minimising energy losses in the system and mitigating the effects 

of delay including the late response of the SC, failing to relieve the battery from peak power, 

and uncontrolled energy circulation. 

A consequence of relieving the battery from peak power during motoring and braking is the 

reduction of the battery temperature. As temperature is one of the main factors affecting 

battery lifetime, the proposed EMS is expected to improve the battery cycle life. However, 
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the detailed analysis of battery lifetime improvements and its relation to temperature is not 

within the scope of this work.  

1.10 Methodology 

The research begins from the general proposition of providing additional high power 

capability to a battery only system by installing a SC with the objective to boost the battery 

cycle life. Firstly, a detailed EV model comprising the vehicle dynamics, powertrain, driver 

model, and a battery ESS is implemented in Matlab-Simulink. The strengths and weaknesses 

of the battery only system in a vehicular environment are analysed and used as the 

benchmark. Subsequently, subsystem models and baseline design parameters of the HESS 

are obtained through iterative simulations and reference to relevant literature. 

The research proceeds in reviewing past and current techniques to coordinate the operation 

of multiple power sources in EVs, with a special focus on the application of frequency 

sharing techniques to control power flow in a SC semi-active control topology.  

An EMS based on the DWT approach to obtain the frequency components is implemented 

and analysed in Matlab-Simulink. The effects of long time delays (specifically a delay of 4 

seconds) in power distribution and in the system’s efficiency are studied in detail. A power 

demand prediction approach using LSTM neural networks is implemented with the purpose 

of compensating for the delay produced by the DWT signal decomposition process. For this 

purpose, a deep learning Application Programming Interface (API) written in Python known 

as Keras [59] is used for developing, training and testing the neural network. 

As results show that prediction alone is not sufficient to bring the desired performance and 

fully mitigate the issues produced by delay, a novel approach to determine the SC current 

reference is implemented. This approach controls energy circulation in the system and allows 

the SC to provide assistance during motoring and recover the energy generated during 
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braking.  

To assess the performance of the SC, an algorithm to determine a benchmark signal is 

developed. This benchmark allows for a fair comparison of the results obtained with different 

filtration approaches. A comprehensive comparison of the results obtained with EMSs based 

on the DWT and conventional filters is carried out to determine which technique delivers 

superior performance in terms of SC assistance, battery relief and reduced energy losses. 

Energy efficiency is calculated for each method.  

A low power test rig is assembled to test the best performing EMS under dynamic power 

demand profiles. The ratio between the battery simulated (40.6 kWh) and the battery used in 

the experiment (4.22 kWh) is 96.3:1. The energy ratio between the SC simulated (430.5 Wh) 

to the one used in the experiment (5.07 Wh) is 85:1. The battery is connected directly to the 

input of the motor drive, defining the voltage of the DC-bus. The SC is interfaced to the dc-

bus through a half bridge bidirectional DC-DC converter.  

Two three-phase PMSM are coupled in a dyno setup. Motor 1 runs in the closed-loop speed 

control mode. Motor 2 runs in torque control mode and loads Motor 1 as they are 

mechanically coupled (back to back connection). The setting allows to use a different speed 

reference for Motor 1 and a different torque reference for Motor 2. Motor 1 runs at the 

reference speed for the load conditions provided by Motor 2. 

Both motors are individually controlled with a Field Oriented Control (FOC) approach 

implemented using a Texas Instruments LAUNCHPADXL F28069M microcontroller and 2 

BOOSTXL DRV8305EVM 3-phase motor drives. Real time data acquisition, control and 

monitoring is performed via Matlab and Simulink. The proposed real time EMS is 

implemented in a Texas Instruments LAUNCHPADXL F28027F microcontroller, which 



22  CHAPTER 1 

 

 

 

monitors the currents measured at the DC-link, SC, and battery, as well as the voltage of the 

SC. The SC current reference is determined in real time based on the acquired data and used 

to control the bidirectional DC-DC converter. 

1.11 Thesis contribution 

In the literature, many authors have theoretically demonstrated how power is distributed 

between power sources in a HESS. Systematic procedures and complete implementation of 

such systems are rarely detailed in literature. It is expected that practical implementation of 

the systems involved will uncover significant findings that cannot be found with purely 

theoretical approaches. There is a wealth of research studying the implementation of SCs as 

part of a hybrid system, and the EMSs to determine the proportional power split. 

Nevertheless, a thorough investigation of the effective SC contribution with filtration 

approaches, with and without time delay compensation, and the effects of delay on the 

system’s efficiency remain to be conducted. Moreover, energy circulation between the 

battery and SC as a consequence of delay and the effects on the system’s efficiency has not 

been addressed before. Finally, a back-to-back comparison between results obtained with 

conventional filters versus those obtained with the DWT are not available in the literature. 

This work presents a fresh perspective to this research field by introducing a novel approach 

to reduce energy losses in a semi-active control topology managed with frequency sharing 

techniques. 

The contributions of this work are summarised as follows: 

1. Investigation of different real time EMS implementations based on the DWT and their 

performance in terms of energy circulation due to time delay, SC assistance, and energy 

efficiency during motoring, acceleration, and braking. 

2. Design of a LSTM neural network to predict future power demand before it is fed to the 
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DWT to compensate for the time delay. Unlike neural networks presented in the 

literature, this network has been trained offline using power demand corresponding to 8 

different standard driving cycles and tested using 3 driving cycles not included in the 

training dataset to ensure network generalisation capability. 

3. Evaluation of the effectiveness of time delay compensation in improving the performance 

of the SC in a HESS controlled with an EMS based on the DWT. 

4. Development of a novel EMS strategy that allows the SC to assist the battery during the 

motoring stage, recover the energy generated during braking, and improve the efficiency 

of the system by controlling energy circulation between the battery and SC to maintain 

its availability. 

5. Detailed real-time implementation of the proposed EMS in a microcontroller and 

experimental validation with a PMSM low power test rig. 

1.12 Thesis outline 

This thesis is organized into 6 chapters. Each chapter starts with a brief introduction to 

provide an overview and highlight the main contribution and findings of the chapter.  

Chapter 1 establishes the context in which the research will take place and explains why it 

is important. It provides a brief background about HESS comprising batteries and SCs in 

electric vehicles and the real time EMS necessary to control power flow. This is followed by 

a description of the research questions, scope of the work, methodology and contributions. 

Chapter 2 presents literature review to understand state of the art EMS approaches that are 

based on frequency sharing techniques including the DWT and conventional filters. This 

chapter identifies and describes the knowledge gaps and highlights the contributions of this 

work. 
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Chapter 3 details the DWT Matlab/Simulink implementation to obtain power demand 

frequency components and how this process introduces delay in the filtered signals. The 

effects of delay in the HESS power distribution is assessed. Power demand prediction is 

implemented to compensate for the delay and enable the DWT to be applied in real time. The 

benefits of power demand prediction are investigated by comparing the performance of the 

HESS with and without prediction. 4 different real-time implementation for the DWT based 

EMS are evaluated using different metrics to assess the HESS performance. 

Chapter 4 details the development of a real time EMS approach that uses first order filters 

to determine the SC current reference in a way that enables the SC to assist the battery during 

motoring, recover all the braking energy generated, and improve the system efficiency by 

controlling energy circulation. Simulation results obtained in this chapter are compared with 

those obtained in chapter 3 in order to assess the performance of the proposed method. 

Moreover, the results obtained with the proposed EMS are compared to those obtained with 

traditional filtration mechanisms as detailed in the literature, highlighting the superiority of 

the proposed method. 

Chapter 5 reports the experimental implementation of the hardware and software required 

to validate the proposed real time EMS.  

Chapter 6 concludes the thesis and explores suggestions for future research 
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2 LITERATURE REVIEW 
2 

2.1 Improving battery lifetime and power capabilities of the energy storage system 

through hybridisation with SCs or high power batteries 

Academic researchers studying hybridisation of the ESS for EV applications agree that 

the main goals of the high power source as part of the HESS is to extend battery life [60]- 

[61] and improve the system power capability. Hybridisation involves complementing 

the high energy battery with a power dense source dedicated to deliver peak power, 

provide rapid response to power demand (defined by the SC time constant), and recover 

energy from braking. In this way, the high energy battery is relieved from the stress 

imposed by peak power demand with a resulting improvement in lifetime. The time 

constant of most commercial SCs normally ranges from 0.5 to 3.6 seconds, where the 

time constant is defined as the product between the internal resistance and the 

capacitance. Smaller time constants reflect better responsiveness of the SC [62]. 

Several studies suggested that SCs [34]- [35] or high power batteries (HPB) [36]- [37] 

can complement high-energy batteries and improve vehicle performance, durability, and 

economy. The advantages of SCs over HPBs in this application include higher power 

density (SC: 3000-14000 W/Kg vs HPB=4200 W/kg), longer cycle life, wider 

temperature range, and lower internal resistance [63]. However, they have some 

disadvantages, the most important being their lack of energy density, lower nominal 

voltage compared to batteries, and their high deployment cost. The latter is a barrier 

preventing the application of SCs in EVs as their implementation is potentially more 

costly compared to the battery oversizing option. Battery costs have declined significantly 
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reaching an average of USD 132/kWh in 2022 [3] compared to more than USD 1100/kWh 

in 2010 [64]. This has been possible due to the continuous developments in technology 

and the establishment of battery mega factories that boosted economies of scale and 

manufacturing processes. On the other hand, SC cost per kWh remain quite high. 

Literature reports SC prices that vary between USD 3000/kWh [65] and 10000/kWh [66]. 

Clearly, SCs are not competitive on a USD/kWh basis with battery technologies. 

Nevertheless, they are more competitive in a USD/kW basis, with prices between USD 

160/kW and 401/kW [67]. The number of SCs that must be connected in a series and 

parallel arrangement to match the required operational voltage range (~200V-400V) and 

the capacity to provide the power necessary to relief the high energy battery from power 

stress during a given driving cycle, yields an expensive system. In this context, batteries 

optimised for high power density offer an alternative. Due to the significant development 

of materials and components for battery manufacturing in recent years, high power 

density is achievable by optimising battery cell design and chemistry. The main 

advantages of high power batteries over SCs are their higher energy density and less 

voltage variation. Table 2.1 shows a side-by-side comparison between a high energy 

battery, a high power battery and a SC.  

Table 2.1. Comparison of high energy battery, high power battery and SC 

 High Energy Battery High Power battery SC 

 Samsung INR21700-50E 5Ah [68] Kokam SLPB11543140H5 [69] 

Maxwell BCAP3400 

[70] 

Chemistry NCA NCM - 

Weight 70 gr 132 gr 496 gr 

Capacity 4.9 Ah 5 Ah 3400F Capacitance 

Nominal Voltage 3.6 V 3.6 V 3.0V 

Continuous discharge 9.8 A (2C) 150 A (30C) 140-225 A 

Maximum discharge (pulse) 14.7 A (3C) 250 A (50C) 2800 A 

Charge current standard 2.45 A (0.5C) 20 A (4C) 140-225 A 

Max charging current 4.9 A (1C) 20 A (4C) 140-225 A 

Gravimetric Energy Wh/Kg 257 140 8.57 

Gravimetric Power kW/Kg 0.77 4.2 14.5 

Cycle life 500 cycles 800 cycles 1000000 cycles 
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The comparison between the HESS power sources reveals their strengths and weaknesses. 

The SC is clearly superior in terms of discharging and accepting high currents. The high 

power battery cell has higher nominal voltage and much higher gravimetric energy than 

the SC. Although the discharge current of the power battery is acceptable for 

hybridisation purposes, the charge current is still low (20A per string). Therefore, several 

parallel strings would be required to improve the charging current. In terms of size and 

volume, Fig. 2.1 shows a scale drawing of the three types of ESS. 

 

Fig. 2.1  Size and volume comparison of a 21700 cylindrical battery cell (high energy 

battery), prismatic high power cell, and cylindrical SC 

Volume and weight are important parameters to consider when designing and sizing the 

HESS. The sizing and economic optimisation considering either SCs or high power 

batteries is an exercise that goes beyond the scope of this work. The EMS design, models 

and simulations performed in this thesis assume SCs as the high power source, 

considering the high charging and discharging currents as the main factors for choosing 

this technology. Nevertheless, the solution developed in this thesis still apply to high 

power batteries, however, in this case the EMS must impose additional charge/discharge 

rate limits to safeguard the lifetime of the power battery. The control principle of the 

HESS is to make batteries and the SC work together to meet the total power demand by 

allocating the battery with the average power and SC with peak and fluctuating power 

demand. Ideally, the SC should assist the battery to cope with sudden power demands 

caused by changes in acceleration and recover the energy generated when braking. 
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2.2 Hybrid energy system topologies 

In general, HESS topologies can be classified as passive, semi-active, and fully active.  

2.2.1 Passive topology 

The passive topology is the simplest way to combine a battery with a SC. In this 

topology, the battery is connected in parallel with the SC as shown in Fig. 2.2. Power 

flow is naturally allocated between the battery and SC depending on their internal 

resistances. As the SC has lower internal resistance than the battery, it reacts faster to 

sudden changes in power demand, effectively acting as a low pass filter [71]. The 

major advantages are the simple implementation and low cost as power converters are 

not included.  However, as the SC is directly connected to the battery, its operation 

voltage is limited by the battery, therefore, the energy stored in the SC cannot be fully 

utilised. 

 

Fig. 2.2. Battery and SC interfaced directly via the DC-bus in a passive topology  

2.2.2 Semi-active topology 

With the semi-active topology, the power contribution of the battery or the SC can be 

controlled through a bidirectional DC/DC converter. With the battery semi-active 

topology as shown in Fig. 2.3a, the DC/DC converter is used to control the battery 

while the SC is connected directly to the DC-bus. In this case, the voltage of the DC-

bus fluctuates according to the variation of SOC of the SC, which is the disadvantage 

of this approach as the SC voltage varies in a wide range. Conversely, the SC semi-

active topology offers a more stable DC-bus voltage as it is set by the battery. This 

topology is one of the most widely used configurations [71]. In this case the SC power 
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contribution is controlled through the DC/DC converter. The HESS topology adopted 

in this thesis is the SC semi-active topology as shown in Fig. 2.3b. 

Fig. 2.3. a) Battery semi-active control topology b) SC semi-active control topology.  

2.2.3 Fully active topology 

The fully active topology enables full control of the power contribution of each source 

in the HESS. For this purpose, each source is connected to the DC-bus through a 

DC/DC converter. Although this increases the degrees of freedom in terms of control, 

it also adds complexity to the system and increases the cost. The schematic of this 

topology is shown in Fig. 2.4. 

 

Fig.2.4. Fully active control topology 

 

2.3 Energy management system based on frequency sharing techniques 

Filtration based techniques have been widely proposed to decompose the power signal 

into its frequency components. The basic principle is that low frequency components are 

provided by the battery and high frequency components by the SC. In this way, the battery 

can be relieved from sudden changes in power demand during the motoring and braking 

stages. The high-frequency component represents sudden variations in the power demand 

as a result of changes in the vehicle speed due to acceleration and braking commands and 

is allocated to the high power density source. The low-frequency component corresponds 



30  CHAPTER 2 

 

 

 

to the average power requirement and is allocated to the high energy density source. Some 

of the frequency-based methodologies proposed in the literature include first-order filters 

[72]- [73] (represented in continuous time), digital filters [45], [74] and filtration 

strategies based on the DWT multiresolution analysis [75]- [76]. 

Filtered signals obtained with these filtration methods are often used directly as the 

references to control power flow in the HESS. This can, however, negatively affect the 

performance of the system, mainly due to the delay introduced by signal processing, as it 

will be demonstrated in more detail later in the thesis. 

2.4 The discrete wavelet transform (DWT) 

The DWT is a technique that allows the translation of a time-domain signal into a signal 

localised in both the time and frequency domains with pre-specified detail resolutions. 

The multi-resolution decomposition obtained with the DWT offers a method for the 

analysis of signals that feature high-frequency components for short durations and low-

frequency components for long durations [77]. Practically, the DWT is implemented by 

a filter bank, which is an array of low pass and high pass Finite Impulse Response (FIR) 

filters with filter coefficients that correspond to a particular mother wavelet.  As the name 

indicates, the DWT requires a discrete set of samples representing the original signal. 

Sampling is performed according to Nyquist theorem. These samples are passed through 

a low pass filter resulting in the convolution of the two. At the same time, the samples are 

passed through a high pass filter. The filters used are related to each other and are known 

as quadrature mirror filters [78]. Since at each level of decomposition half of the 

frequencies of the signal are removed, half of the samples can be discarded by down-

sampling the signal before passing it through the next level of decomposition (low pass 

and high pass filter). This structure decomposes the input signal into several frequency 

components defined by the calculated DWT coefficients, each one carrying a single 

frequency sub-band of the original signal. High frequency components are obtained from 
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the calculated DWT detail coefficients whilst the low frequency component is obtained 

from the DWT approximation coefficient. The decomposition process results in one 

approximation coefficient (lowest frequency sub-band) and a number of detail 

coefficients that depend on the chosen level of decomposition. The original signal 

(sampled version) can be perfectly reconstructed from the DWT coefficients by means of 

the inverse DWT. Specific frequency sub-bands can be isolated and reconstructed with 

this procedure. However, the DWT frequency components contain a delay that is 

influenced by the sampling frequency, the target low-frequency sub-band, and the chosen 

wavelet function.  

A power spectrum analysis of power demand signals associated with driving cycles show 

that most of the energy of the signal is contained at low frequencies (below 500 mHz). 

For the Federal Test Procedure driving cycle (FTP72), which represents an urban driving 

cycle, the periodogram power spectral density presented in Fig. 2.5a shows that a great 

portion of the energy contained in the signal is concentrated at low frequencies, mostly 

below 500 mHz. The same occurs with the EPA Driving Schedule for Light-Duty 

Vehicles and Trucks (US06) and the Worldwide Harmonized Light Vehicle Test 

Procedure (WLTP3) driving cycle as shown in Fig. 2.5 b and Fig 2.5 c, respectively. 

Considering a sampling frequency of 1Hz, the DWT is able to decompose the signal in 

sub-bands of 0-250 mHz for the first level of decomposition, 0-125 mHz for the second 

level and 0-62.5 mHz for the third level, etc., as presented in Table 2.2. With each level 

of decomposition the frequency is divided by two (dyadic decomposition). Intermediate 

frequency bands are not possible unless the sampling frequency is changed. For example, 

to obtain a low frequency range of 0-100 mHz, the sampling frequency should be 0.8 Hz 

as it produces the desired frequency range after 2 levels of decomposition. This is one of 

the disadvantages of the DWT in this particular application, as it doesn’t offer the same 

flexibility as conventional filters. The sampling frequency must be modified in order to 
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obtain specific frequency ranges. It is important to note that the DWT decomposes a 

signal into frequency sub-bands and does not filter out a specific frequency as is the case 

with conventional filters. Sampling at 1 Hz seems to be the preferred sampling rate among 

researchers using the DWT [50], [75]- [76], [79]- [80] as it is easier to implement. 

The frequency sub-band chosen in this work is 0-125 mHz as this is obtained after 2 levels 

of decomposition with a total delay of 4 seconds. If the frequency sub-band of 0-250 mHz 

obtained with 1 level of decomposition and a total delay of 2 seconds would be chosen, 

the total energy supplied by the SC would be smaller than the supplied when the level of 

decomposition is 2. Therefore, the SC would be sub-utilized. This is evidenced for three 

driving cycles as shown in Fig. 2.5. The energy contributed by the battery and SC have 

been shaded with different colours, separated by a line at the 125 mHz frequency 

(obtained with 2 levels of decomposition and 1 HZ sampling rate). The battery provides 

the energy below 125 mHz (0-125mHz sub-band) and the SC all the frequency above 125 

mHz. With 3 levels of decomposition two main problem arise: the total delay is 8 seconds, 

which is more difficult to handle, and the SC should have a bigger size to supply more 

energy. This corresponds to a frequency sub-band of 62.5 mHz (the red line in Fig. 2.5 

would move to the left to 62.5 mHz).  

Choosing low levels of decomposition e.g. level 1 (frequency range towards the right 

hand side of Fig.2.5), results in the battery providing for most of the power demand, while 

high levels of decomposition e.g. level 3 (frequency range towards the left hand side of 

Fig 2.5), relieves the battery from high frequency power demand as the SC takes over a 

greater portion of the signal energy.  
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a)  

 

b) 

 

c) 

Fig. 2.5.Power spectral density estimate for: a) the FTP72 driving cycle, b) the US06 

driving cycle, and c) the WLTP3 driving cycle 
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Table 2.2. DWT decomposition sub-bands obtained with different sampling frequencies 

and levels of decomposition 

Sampling Freq. fs 1 Hz 2 Hz 4 Hz 8 Hz 16 Hz 

 Nyquist Freq (fs/2) 0.5 Hz 1 Hz 2 Hz 4 Hz 8 Hz 

Level 1 0-250 mHz 0-500 mHz 0-1 Hz 0-2 Hz 0-4 Hz 

Level 2 0-125 mHz 0-250 mHz 0-500 mHz 0-1 Hz 0-2 Hz 

Level 3 0-62.5 mHz 0-125 mHz 0-250 mHz 0-500 mHz 0-1 Hz 

Level 4 0-31.25 mHz 0-62.5 mHz 0-125 mHz 0-250 mHz 0-500 mHz 

Level 5 0-15.625 mHz 0-31.25 mHz 0-62.5 mHz 0-125 mHz 0-250 mHz 

Level 6 0-7.8125 mHz 0-15.625 mHz 0-31.25 mHz 0-62.5 mHz 0-125 mHz 

 

Obviously, sampling at higher rates e.g. 16 Hz, yields a smoother and better 

representation of the real time power demand than sampling at 1Hz. However, to obtain 

the low frequency sub-band e.g. 0-125 mHz, more levels of decomposition are necessary, 

specifically 6 levels. In this case, the signal is decomposed into more detailed frequency 

sub-bands which yields better resolution in terms of high frequency components (details), 

while the low frequency component (0-125 mHz) would be mostly similar to the one 

obtained at with a sampling rate of 1 Hz. It is important to note that increasing the 

sampling rate does not reduce the total delay. The higher the sampling rate, the higher the 

level of decomposition and the number of samples required to reach the approximation 

coefficient. Proof of this will be presented in Chapter III. 

Other important parameter defining the performance of the DWT strategy is the chosen 

wavelet function. It defines the number of coefficients of the low pass and high-pass FIR 

filters used in the DWT decomposition and reconstruction process. Wavelet function 

families are designed for different purposes including feature detection (Haar, 

Daubechies 2 or symlet 2), signal denoising (Symlet or Daubechies), signal or image 

compression (Biorthogonal), etc. [81]. 
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The Haar wavelet is the simplest possible wavelet. Its disadvantage is that is not 

continuous, and therefore not differentiable. This, however, is an advantage for the 

analysis of signals with sudden transitions [82]. The Haar wavelet has the smallest filter 

order (N=2) among wavelet functions. This has a direct influence on the delay produced 

by the DWT decomposition and reconstruction process. Higher filter orders associated 

with wavelet functions other than the Haar wavelet, result in longer time delays, which 

makes DWT implementation in real time more difficult.  

Reported literature suggests that the frequency components obtained with the DWT can 

be used directly in real time to control the battery and SC power contribution despite the 

delay. Some researchers developed EMS strategies based on the Haar wavelet and 3 levels 

of decomposition [48], [83] [84] [85] [86] [87] [88] [89] [90], while others proposed 5 

levels [61], [79]. As the level of decomposition remains unchanged during runtime, the 

delay caused by the DWT is fixed. Other researchers proposed adaptive methods to 

control the battery and SC charge/discharge rate by varying the decomposition level of 

the DWT depending on the driving conditions [76], and the SOC of the SC [50], [80]. In 

this case, however, the delay is variable. 

Wang et al. [79] performed an evaluation of the performance of an EMS based on the 

DWT to determine the level of decomposition under the New European Driving Cycle 

(NEDC). The evaluation consisted of a comparison between the maximum battery and 

SC currents, and final SOC of the battery and SC when the power demand signal was 

decomposed using 2 to 5 levels. This work concluded that for a signal sampled at a rate 

of 1 Hz, 3 levels of decomposition (0 to 62.5 mHz) showed better performance than other 

decomposition levels as the SC relieves the battery more than levels 1 and 2 and avoids 

excessive energy losses that occur with 4 and 5 levels. In [75], the level of decomposition 

was selected by considering the frequency response range of the power sources. The 

suggested range of frequencies for the battery was 10-2 to 102 Hz. For a battery-
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ultracapacitor system, it was concluded that 2 levels (0 to 125 mHz) were appropriate 

while for a fuel cell-ultracapacitor system, 8 levels (0 to 1.95 mHz) were recommended. 

According to the analysis that will be presented in Chapter III, a delay of 8 seconds would 

be introduced in the frequency components with 3 levels of decomposition, the Haar 

wavelet, and a sampling frequency of 1Hz. Similarly, a delay of 4 seconds is associated 

with 2 levels of decomposition and 256 seconds with 8 levels, considering a sampling 

rate of 1Hz and the Haar wavelet as presented in [75]. Obviously, using the frequency 

components with such long delay will generate significant performance deterioration if 

applied in real time. 

With the variation of the DWT level of decomposition in adaptive methodologies, the 

problem with varying delay becomes more challenging. Zhang and Deng [76], presented 

an adaptive multi-level Haar wavelet transform for allocating power to batteries and SCs. 

The level of decomposition was variable and determined according to the driving cycle 

which was identified using a learning vector quantisation neural network. It was 

concluded that a 4th level of decomposition is needed for highway driving cycle, a 3rd 

level for moderate urban cycle and a 2nd level for congested urban cycle. However, the 

authors ignored the DWT delay and did not consider its implications in real time, 

especially when switching between levels of decomposition. In this particular case, the 

EMS would be required to jump between frequency components with different delays 

depending on the changes in the driving cycle, specifically 4 seconds delay (2 levels of 

decomposition), 8 seconds delay (3 levels of decomposition) and 16 seconds delay (4 

levels of decomposition). Peng et al. [50] proposed a methodology for adaptively varying 

the DWT level of decomposition between 1 and 5 based on the SOC of the SC. A similar 

approach was proposed in [80], however this time the level of decomposition varied 

between 2 and 5. In [91] an adaptive wavelet transform-fuzzy logic control energy 

management strategy based on driving pattern recognition was proposed. The algorithm 
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used cluster analysis to classify driving cycles into different patterns according to the 

features extracted from historical driving data in real-time. After recognition results were 

obtained, an adaptive wavelet transform was employed to allocate the high frequency 

components of power demand to the SC, while the low frequency component was 

distributed to battery. Fuzzy logic was used to maintain the SOC of the SC within desired 

range. The level of decomposition was varied between 2 and 5 according to a driving 

pattern recognition algorithm. All the proposed methodologies presented above have been 

suggested for real time operation, however, the presence of significant delay in the 

frequency components was neglected. Moreover, the system’s energy efficiency has not 

been analysed.  

Wavelets with high filter order have also been proposed instead of the Haar wavelet to 

obtain frequency components to control power flow in a HESS. Shen et al. [92], proposed 

an EMS based on a Symlet wavelet with 3 levels of decomposition and performed an 

experimental test to validate the strategy. However, important information regarding the 

order of the Symlet wavelet, which can be between 2 and 20, and the sampling rate were 

not provided, which made this work difficult to replicate.  

To depict the delay problem when a high order wavelet is used, let suppose that the chosen 

wavelet was symlet2, which has 4 filter coefficients, and the sampling rate was 1 Hz. The 

total delay that would be present in the frequency components after 3 levels of 

decomposition would be 22 seconds with respect to the real time power demand (see eq. 

3.30, and 3.31 in Chapter III). Conversely, the Haar wavelet under the same conditions 

yields a delay of 8 seconds. Obviously, higher order wavelets results in longer time 

delays. Although the shortest time delay can be achieved with the Haar wavelet, dealing 

with the delay in real time applications remains a challenge. 

Song et al. [93] proposed a Wavelet-transform-based energy management strategy using 

Daubechies 4 (db4) wavelet and 5 levels of decomposition. In this case, the delay 
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introduced by the DWT, considering that the db4 wavelet has 8 filter coefficients, is 218 

samples. The sampling rate was not provided, therefore the delay in seconds and the 

frequency sub-bands cannot be calculated. 

Several research papers include hardware in the loop (HIL) validation of the proposed 

‘real-time’ approach based on the DWT. However, the mathematical principles behind 

the DWT signal decomposition considering the very low sampling frequency commonly 

used (1Hz), results in a considerable delay that provokes energy circulation in the system, 

reducing the system’s efficiency. As the effects of delay have been neglected, the HESS 

performance and efficiency are compromised.  Many of the researchers insist that the 

technique is able to perform in real time in this particular application, however, the 

detailed research work carried in this thesis shows otherwise. 

2.5 Conventional filtering approach 

Among the most significant benefits of the conventional filtration approach are its 

simplicity and low computational burden. Filters can be designed in hardware and 

software with specific parameters, which is the advantage of this method against the 

DWT. While hardware analogue filters require physical components that are not noise 

tolerant, software digital filters are implemented in digital controllers such as Digital 

Signal Processors (DSPs) or Field Programmable Gate Arrays (FPGAs), which makes 

them highly immune to noise. 

Digital filters are categorised into Infinite Impulse Response (IIR) and FIR filters. An IIR 

filter can be designed in continuous time domain using established methodologies 

including Butterworth, Chebyshev, and Elliptic. With the bilinear transformation, which 

is often called the ‘Tustin’ method, the resulting filter transfer function can be 

transformed into discrete time. The main advantages of an IIR filter over an equivalent 

FIR filter are their efficient implementation, smaller computational burden, ability to 

implement prototype analogue filters, and smaller delay as a consequence of less filter 
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coefficients [94]. However, there are some disadvantages such as non-linear phase 

(frequency dependent delay), potential instability, and harder to implement using fixed-

point arithmetic. 

Compared to IIR filters, FIR filters offer linear phase design, meaning that all frequency 

components are delayed by the same amount, they are always stable, they can be 

implemented efficiently in hardware, and allow multi-rate computational advantages. A 

major disadvantage of FIR filters is that they often require much higher filter orders to 

achieve the same performance levels as IIR filters. As a result, the delay of these filters 

is often much greater than that of an IIR filter of equal performance [95]. 

A variety of high pass and low pass filtering strategies with fixed and variable cut-off 

frequency have been proposed by researchers. In [45], the battery current reference was 

obtained by filtering the power demand associated with urban dynamometer driving 

schedule (UDDS) driving cycle with 4 types of IIR low pass filters. With the help of 

MATLAB's filter design tool, Chebyshev type 1 and type 2 as well as Elliptic and 

Butterworth filters were implemented to split the power demand in a SC semi-active 

topology. The SC current reference (high frequency component) was determined by 

subtracting the real time power demand from the output of the low pass filter. This is a 

common approach to obtain the high frequency component when low and high frequency 

components are required as it avoids the use of a dedicated high pass filter. This study 

found that an Elliptic filter implementation delivers the best results concluding that the 

filtration strategy improved the battery State of Health (SOH) by 47% for the UDDS 

driving cycle. 

Luo et al. [44] described a methodology to hybridise an energy storage system with lead-

acid batteries and SCs. The results showed that a simple first-order low pass filter is an 

effective and reliable solution for the power filtering, performing more favourably than 

higher order FIR filters. Researchers in [46] proposed a HESS for railway power 
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applications based on Superconducting Magnetic Energy Storage (SMES) in conjunction 

with a battery in order to reduce pulse power fluctuation and improve power quality. 

Power sharing was achieved with an EMS based on a low pass filter, which was used to 

allocate the low frequency power component to the battery and the high frequency 

component to the SMES. Simulation results indicated that the proposed strategy can 

effectively improve power quality and achieve peak load shifting. Hussain et al. [47] 

proposed an energy management system for a semi-active hybrid electric vehicle using 

an adaptive low pass filter (varying the filter’s cut-off frequency). The stress on the 

battery was reduced by deviating the peak power of the load to the SC. The simulation 

results confirmed that the proposed technique provided less variation in voltage, small 

increase in battery temperature, higher battery SOC, lower battery power losses, higher 

efficiency, reduction in the battery Root Mean Square (RMS) current, and a controlled 

SOC of the SC. 

2.6 Effects of delay on power distribution in a SC semi-active topology 

When the SC current reference to control the DC/DC converter is derived from a filtering 

approach that yields delayed frequency components (i.e. DWT, FIR filter, IIR filter), 

energy circulation between the battery and SC is observed. This results in the battery 

taking extra stress and a reduction on the systems’ efficiency. Due to delay, the effective 

contribution of the SC occurs late, therefore, the SC fails to assist the battery at the right 

time and discharges when not required forcing the battery to absorb the excess power. 

Equally, when the SC is commanded to recharge, the battery provides the required power 

when no braking energy is being generated. In addition to the unnecessary energy 

circulation, the energy transfer from the battery to the SC and vice versa, uses the DC/DC 

converter, increasing the system losses. This thesis investigates the energy circulation to 

understand how battery-SC energy transfer is affected by delay as well as how the 

effective SC contribution and system efficiency may be impacted. With first order filters, 

the delay problem is less prominent, however, energy circulation still exists. Chapter III 
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has a section describing the matter. The energy circulation issue has not been addressed 

before in the literature. This thesis analyses and proposes a solution to this problem, which 

undermines the SC’s primary purpose and the rationale for hybridisation.  

2.7 Power demand prediction as a way to compensate for delay 

To enable real time operation in the presence of delay, power demand prediction has been 

proposed in the literature as a mechanism to compensate for it. This can be achieved by 

implementing a prediction algorithm with the capability to predict future power demand 

with a time window equivalent to the total delay. A delay compensation approach was 

presented in [49], where a NARNN was trained to perform power demand predictions to 

compensate for the DWT delay (3.2s) when the power demand, sampled at 10 Hz, was 

decomposed into 5 levels. The predicted high frequency component was used to control 

the SC. The neural network consisted of one hidden layer with 10 neurons, which was 

trained to predict 32 future samples based on the previous 60 samples. The training dataset 

consisted of a power demand time series that resulted from a low speed (24 km/h peak) 

driving cycle with a smooth pattern that was repeated 2 times over a long-time span 

(13000s). The trained network was, unfortunately, exposed to the same driving pattern 

during testing. In addition, driving cycles representing real-world driving schedules, 

where power demand is highly variable, were not used to test the generalisation ability of 

the trained network. Furthermore, this study did not compare SC performance before and 

after time delay compensation, making it impossible to determine whether or not the 

prediction strategy had improved the system’s performance.  

In [56], a combination of DWT and NARX was proposed. In the first instance, the DWT 

was used to decompose the power demand into 3 levels using the Haar wavelet. The 

obtained wavelet coefficients were fed to three NARX networks (one for each coefficient) 

to predict 20 steps in the future. The predicted coefficients were used to reconstruct the 

predicted power demand with the inverse DWT transform. The researchers stated that the 
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purpose of the prediction in this work was to anticipate transient power and not time delay 

compensation. Therefore, the rationale to determine the prediction window (20 future 

samples) was not time delay compensation.  

The work presented in [57] trained a LSTM to predict 10 seconds in the future to enable 

a DWT based EMS to work in real time. The chosen level of decomposition was 3 and 

the mother wavelet used was Daubechies 4 (db4), which filter’s order is 8. As the 

sampling rate and the structure of the LSTM network was not provided, it was difficult 

to determine the actual number of samples predicted by the network. To depict the delay 

problem with the parameters presented in this work, let’s assume the sampling rate. With 

a sampling rate of 1Hz, the low frequency sub-band (3 levels) would contain the 

frequencies from 0 to 62.5 mHz and the high frequency sub-band the frequencies between 

62.5 mHz and 500 mHz. According to the calculations using equations 3.30 and 3.31 (see 

Chapter III), the delay that would be introduced in the frequency components with db4 

wavelet is 50 samples (50 seconds at 1Hz). This means that the LSTM network should 

predict 50 samples in the future to compensate for the delay. The prediction window of 

10 seconds proposed in this work would not be justified with the assumed parameters. 

With prediction methodologies, prediction errors are inevitable and increase when the 

prediction window in longer. 

Zhang et al. [63], proposed a real time EMS for battery-SC HESS based on a combination 

of DWT, neural network, and fuzzy logic. A 2-level DWT was used to decompose the 

power demand signal associated with 9 standard driving cycles. The obtained DWT low 

frequency component along with the load power demand were used as inputs to train the 

neural network with the aim to predict the low frequency power demand. However, the 

chosen prediction window was not in agreement with the delay generated by the DWT.  

There is a scarcity of research detailing the implementation of filtration methods and the 

DWT as part of a real time EV EMS in light of delay issues. Most of previous studies 
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suggested the direct use of the DWT high frequency component to control the SC, but 

there is little work done to compare this with other possible implementations such as 

obtaining the SC current as the difference between total current and DWT low frequency 

component with and without prediction. Furthermore, the analysis of whether delay 

compensation improves the SC performance in terms of timely assistance during 

acceleration and braking and its influence on energy efficiency has not been addressed. 

The energy efficiency problem arises from the fact that in addition to the total amount of 

energy supplied/recuperated by the HESS to match the load requirements during a given 

driving cycle, additional energy is circulated between the battery and the SC as a 

consequence of delay through the non-ideal DC/DC converter which results in additional 

power loss.  



 

 CHAPTER 

3 SYSTEM MODELLING AND ENERGY 
MANAGEMENT SYSTEM BASED ON THE 
DISCRETE WAVELET TRANSFORM 

3 

3.1 Introduction 

When battery and SC ESSs coexist in EVs, energy management is imperative to ensure 

efficient power distribution based on the strengths and weaknesses of each ESS. The 

decoupling of highly dynamic power demands into components that match the dynamic 

nature of each ESS is essential. The DWT has been widely recommended as a way to get 

frequency components and use them to allocate power in the HESS in real time. However, 

little focus has been put on how signal processing delays affecting the DWT frequency 

components undermine the benefits of hybridisation. Power demand prediction has been 

suggested to deal with delay and enable the DWT to work in real time. However, a 

thorough analysis of the benefits and drawbacks of this approach is missing in the 

literature. This chapter analyses the contribution of the SC to alleviate the battery when 

the DWT is used with and without time delay compensation using future demand 

prediction. 4 different real-time implementation strategies for a DWT based EMS have 

been evaluated using different metrics to quantify energy circulation and SC assistance 

during motoring, acceleration, and braking. Simulation results included in this chapter, 

using urban and highway driving cycles, show evidence that obtaining the SC current 

reference as the difference between the real time current demand and the DWT low 

frequency component enhances SC assistance during motoring and braking at the expense 

of higher energy circulation. The complexity added by future demand prediction does not 

reap SC performance benefits as suggested in the literature. However, in terms of energy 

efficiency, the prediction approach improves it (less energy circulating in the system).  
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An efficiency index is calculated to aid in the selection of the method that yields most 

benefits. For this purpose the energy efficiency and the effectiveness of the SC 

contribution are considered.  

3.2 System modelling 

To model the vehicle tractive torque, either a kinematic or quasi-static approach can be 

used [96]. The kinematic method calculates the vehicle speed by using simple kinematic 

relationships based on the wheel revolution speed and the total transmission ratio. Using 

the main vehicle characteristics, it is possible to calculate the tractive torque needed to 

drive the vehicle according to the chosen speed profile. This approach assumes that the 

vehicle meets the target performance and that the driving speed profile will be exactly 

followed. With this theoretical approach, power request is directly calculated from the 

speed and not checked against the actual powertrain capabilities, thus, there is no 

guarantee that the vehicle can meet the desired speed profile. 

The quasi-static approach is based on a driver model, where the target vehicle speed is 

compared to the actual vehicle speed in order to generate a torque demand profile. With 

this approach, the vehicle performance is limited by the powertrain capabilities, which 

makes the model more realistic. In this work, the vehicle model is based on the quasi-

static approach. 

3.2.1 Vehicle and powertrain characteristics 

The EV model developed in this investigation includes five important parts: the driver 

model, vehicle dynamics, the powertrain, the hybrid energy storage system, and the EMS. 

The high-level system schematic modelled in Matlab-Simulink is shown in Fig. 3.1. 
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Fig. 3.1. Electric vehicle system with a HESS schematic 

3.2.2 Driver model 

The driver model is based on a proportional-integral (PI) longitudinal speed tracking 

controller that compares the reference speed from a given driving cycle with the measured 

speed of the vehicle [97]. The calculated error generates the accelerator pedal position 

(APP) and the brake pedal position (BPP) commands that are used to calculate the tractive 

and braking torque requirements while ensuring that these values lay within the maximum 

power and torque ratings of the electric motor. The Matlab-Simulink model is shown in 

Fig. 3.2. 
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Fig. 3.2. Vehicle model driver subsystem 

The torque is limited by the capability of the powertrain, which defines the operation 

torque envelope for the motoring and braking stages. The maximum torque limit 

subsystem (Max torque limit block) shown in Fig. 3.2 calculates the maximum motoring 

torque and the maximum braking torque based on the powertrain maximum torque and 

power as shown in Fig 3.3. 

Fig. 3.3. Maximum motoring and braking torque calculation (max torque limit block) 

The brake system block calculates the available regenerative braking torque as a function 

of the vehicle speed and the accelerator and brake pedal positions. The details of this 

block are discussed in section 3.2.6. 
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The regen torque limit block ensures that the calculated regenerative braking torque (input 

2) is limited by the maximum regenerative braking torque (input 1) as shown in Fig.3.4. 

 

Fig. 3.4. Regenerative braking torque limiter Simulink model 

The calculated torque demand (output 5 in Fig. 3.2) is supplied to a 3-phase motor drive, 

operating in torque control mode that drives a PMSM.  

The vehicle features a front wheel drive transaxle and tires with a rolling radius of 326 

mm equivalent to a standard size designation of 205/55R16.  The product of the calculated 

torque demand T and the measured angular speed of the motor , yields the power 

demand dmdP  which is calculated by: 

dmdP T  (3.1) 

Power demand is then used by the prediction algorithm and EMS to calculate the current 

reference to control the dc-dc converter commanding SC power flow.  

3.2.3 Vehicle model 

Dynamics is the study of the movement of objects as a result of the physical factors that 

affect them, such as force, mass, momentum, and energy. Two popular methodologies for 

formulating dynamic model of systems are the Newton-Euler and the Lagrange method. 

Newtonian mechanics considers the forces and torques acting on the system, while 

Lagrangian mechanics considers energies and generalised coordinates. Although both 

methods result in equivalent dynamic models, the Newton-Euler approach is adopted in 

this work as it is often the most common approach to analyse mechanical system and 

because the author is familiar with Newtonian mechanics.  
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Fig. 3.5. Longitudinal vehicle dynamics schematic 

The vehicle motion is a result of the net effect of all the forces and torques acting on it as 

shown in Fig. 3.5. The drag is assumed to act through the centre of gravity (CG). The 

electric motor must overcome inertial facc, gravitational fg, rolling resistance froll, and 

aerodynamic fwind forces acting against the movement of the vehicle. Thus, the tractive 

force fTr required to move the vehicle can be expressed as [98]: 

Tr acc g roll windf f f f f     (3.2) 

21
sin( ) (

2
) cos( ) ( ) ( )

gacc roll

wind

Tr vh vh vh d vh vhvh vh rr vh wind wind

ff f
f

f M V M g sign V C A VM g C sign V V V       (3.3) 

Where: 

Mvh  [kg]  Mass of the vehicle 

g=9.81  [m/s2]  Free fall acceleration 

β  [rad]  Road gradient angle 

ρ   [kg/m3] Air density assumed to be that of dry air at 20°C 

Cd   [-]  Aerodynamic drag coefficient 

Avh   [m2]  Vehicle’s frontal area 

Vvh   [m/s]  Velocity of the vehicle 

Vwind    [m/s]  Headwind speed 
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V̇vh   [m/s2]  Vehicle acceleration 

Crr   [-]  Rolling resistance coefficient 

The longitudinal dynamics of the vehicle are modelled with the vehicle body block 

available in Matlab-Simulink which is part of the Simscape Driveline library. This block 

represents a two-axle vehicle body in longitudinal motion. The block accounts for body 

mass, aerodynamic drag, and road incline. The latter is assumed to be zero (flat terrain). 

The vehicle and power train characteristics are presented in Table 3.1. The total weight 

of the vehicle has been calculated assuming: 

 The vehicle body and power train without the ESS and power electronics: 1250 

kg 

 Battery pack: 2304 battery cells, 96 series, 24 parallel (69 gram each); 159 Kg 

(see table 3.2) 

 SC pack: 135 cells (496 grams each): 67 kg (see table 3.3) 

 ESS structure, wiring, power electronics: 106 kg 

 Driver: 80 kg 

Table 3.1. Vehicle and powertrain characteristics 

Vehicle Characteristics 

Mass (kerb weight) 1662 kg 

Aerodynamic drag 0.28  
Rolling resistance coefficient 0.012  
Front area 2.27 m2 

Air density 1.204 kg/m3 

Powertrain characteristics 

Maximum Torque 340 Nm 

Maximum Power 160 kW 

Max speed 11330 RPM [99] 

 

3.2.4 Transmission 

The transmission or gearbox adapts the electric motor output to a suitable speed and 

torque to be transferred to the wheels. The differential allows splitting the power 

generated by the motor between a pair of driving wheels, allowing them to rotate at 
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different speeds. In front-wheel drive (FWD) vehicles, the transmission, axle, and 

differential functions are combined in one integrated assembly known as a transaxle 

[100]. An important parameter affecting the vehicle’s performance is the final drive ratio, 

which is the last set of gears that connects the vehicle’s motor to the driving axle. In 

general, a lower final drive ratio will lead to less torque at the wheels but a higher top 

speed, while high final drive ratio results in more torque at the wheels at the expense of 

lower top speed. The schematic of the transmission system is shown in Fig. 3.6. 

 

Fig 3.6. Electric vehicle transaxle system 

The torque, power and angular velocities of the transmission system are given by [98] 

(assuming straight ahead tractive performance): 

t Tr wf r   (3.4) 
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t
w


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t Tr vhP f V  (3.7) 

 



52  CHAPTER 3 

 

 

where: 

 τt  [Nm]  Traction torque 

τw  [Nm]  Torque of each driving wheel 

rw  [m]  Wheel radius 

ωw  [rad/s]  Angular velocity of the wheels 

Pt  [W]  Traction power 

It assumed that the system has no losses due to friction and that the final drive ratio is 

8.1938 (Nissan Leaf) [101]. The shaft torque, angular velocity and power of the electric 

machine are [98]: 

t
s

G


   (3.8) 

s wG   (3.9) 

s s sP    (3.10) 

where: 

 τs  [Nm]  Shaft torque of electric machine 

ωs  [rad/s]  Shaft angular velocity of electric machine 

Ps  [W]  Shaft power of electric machine 

G  [-]  Final drive ratio (transaxle) 

3.2.5 Electric motor 

PMSMs are widely used in EVs due to their high efficiency, high power factor, small 

volume, and wide speed range [102]. The motor is controlled by a motor drive, which 

receives the torque demand as commanded by the driver when the accelerator pedal is 

pressed/released. The PMSM motor and its drive are modelled in Matlab-Simulink using 

the servomotor block available in the Simscape Electrical library. This block represents 

a generic motor and drive operating in torque control mode, where motoring (positive 
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power demand) and generation (negative power demand) are supported. By using this 

block, system-level simulation can be performed based on the torque-speed behaviour of 

the combined motor and drive, thereby speeding up the simulation process. This is 

important considering the variable time span associated with the driving cycles used in 

this work. The schematic of the model is presented in Fig. 3.7. 

 

Fig.3.7. Servomotor Simulink model 

This block allows only the range of torques and speeds defined by the torque-speed 

envelope, which can be specified as a set of speed data points with its corresponding 

maximum torque values. Alternatively, the speed-torque envelope profile can be 

determined by specifying the maximum toque and power. Fig. 3.8 depicts the typical 

torque-speed characteristics of an electric traction motor, showing the area of permissible 

steady state operation. All 4 operation quadrants (motoring, braking, and reversed 

operation) are constrained by this same profile.  
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Fig. 3.8. Electric traction motor torque-speed envelope  

The motor model allows simplified and tabulated definition of electrical losses. In this 

work the simplified model is adopted, where the losses result from the sum of the 

following terms [103]:  

 A series resistance between the DC power supply and the motor drive 

 Fixed losses independent of torque and speed, P0, which accounts for fixed 

converter losses 

 A torque-dependent electrical loss kτ2, where τ is the torque and k is a constant. 

This term represents ohmic losses in the cooper windings. 

 A speed-dependent electrical loss kwω
2, where ω is the speed and kw is a constant. 

This represents iron losses due to eddy currents. 

3.2.6 Braking model 

The Simulink schematic of the brake system is shown in Fig. 3.9. 

Pmax=160 kW 

Tmax= 340Nm 
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Fig. 3.9. Brake system schematic 

The braking strategy is based on a fixed ratio between electric and mechanical braking 

forces as presented in [104]. The braking model consists of a parallel braking strategy, 

where the regenerative torque of the motor is exerted on the front driving axle directly in 

addition to the friction brake. In passenger cars with a single motor, regenerative braking 

is better utilised when the electric motor is installed on the front axle [104]. The 

mechanical brake has a fixed ratio distribution of 80% on the front and 20% on the rear 

brakes. The electric motor brake is controlled by the vehicle controller based on vehicle 

speed, brake pedal position, and the SOC of the SC. When the wheel speed is lower than 

15 km/hr, due to either very low vehicle speed or wheel speed close to lock up, the electric 

brake produces no braking force and braking is produced only by the mechanical system. 

When the speed is higher than a set threshold and the SC is able to accept charge, the 

following braking actions are performed considering the deceleration rate: 

a) When the vehicle deceleration is less than 0.15g (g = 9.81m/s2), all the braking 

force is produced by electric regenerative braking and no mechanical force is 
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applied to the front and rear wheels, emulating the internal combustion engine 

retarding function. 

b) When the vehicle deceleration is between 0.15g and 0.7g, 80% of the total braking 

force is allocated to the front axle and 20% to the rear axle. The electric and 

friction brakes work together to meet the required braking force on the front axle. 

The rear axle brake is purely mechanical. The maximum electric force is generated 

when the deceleration is close to 0.15g and minimum when it is close to 0.7g. The 

reduction in the electric braking force is linear.  

c) Any deceleration above 0.7g is considered emergency braking and therefore 

braking is performed by the mechanical system only. 

These actions are implemented with a lookup table that calculate the brake split ratio 

depending on the deceleration rate as shown in Fig. 3.10.  

 

Fig. 3.10. Electric brake percentage depending on the deceleration rate 

3.3 Hybrid energy storage system 

3.3.1 Battery model 

The battery model is based the Shepherd model, which is one of the best known 

mathematical models for constant current discharge [105]. A modification of this model 

is presented in [106], which constitutes the basis for the generic battery model readily 

available in Matlab-Simulink. This model represents accurately the battery voltage 
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dynamics in the presence of variable charging and discharging currents by considering 

the open circuit voltage as function of SOC. The parameters for this model can be easily 

extracted from the battery manufacturer’s discharge curve in steady state. The model 

equations for a lithium-ion battery are: 

Discharge: 

0

. .Re tan

. * .exp( . )batt

Pol Voltage Pol sis ce

Q Q
V E R i K it K i A B it

Q it Q it
     
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   (3.11) 

Charge: 
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   (3.12) 

where: 

battV  is the battery voltage (V) 

0E is the open circuit voltage of a battery at full capacity(V) 

K is the polarisation constant (V/Ah) or polarisation resistance coefficient (Ω) 

Q is the battery capacity (Ah) 

it idt  is the removed charge (Ah) 

A is the exponential zone amplitude (V) (empirical constant) 

B is the exponential zone time constant inverse (Ah)-1 (empirical constant) 

R is the internal resistance (Ω) 

i is the battery current (A)  

*i is the filtered current (A). 
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In Li-ion batteries, the voltage increases rapidly when the battery reaches the full charge. 

This is modelled by the polarisation resistance term in eq. 3.12. In the charge mode, the 

polarisation resistance increases until the battery is almost fully charged. After that, the 

resistance increases sharply. In theory, when the battery is fully charged (it=0), the 

polarisation resistance is infinite. However, in practice the contribution of the polarisation 

resistance is shifted by about 10% of the capacity of the battery, hence the term 0.1 in eq. 

3.12. 

This model offers the possibility to find all the model parameters from a typical discharge 

curve given by the battery manufacturer, avoiding experimental tests to obtain them.   

The model is based on the following assumptions: 

 The internal resistance remains constant during the charge and discharge cycle 

and does not vary with the amplitude of the current. This is a limitation of this 

model as the internal resistance varies during charge and discharge and is affected 

by the amplitude of the current and the temperature that builds up in the battery 

during operation. 

 The model parameters are extracted from the discharge characteristics and used 

to define the charging characteristics. In the real life, charging and discharging 

characteristics are different. 

 The model behaviour is not affected by changes in temperature. Temperature is a 

very important factor that affects the performance of the battery. However, this 

adds considerable complexity to the model. 

The model has the following limitations: 

 The minimum no-load battery voltage is 0V and the maximum battery voltage is 

2 times the battery constant voltage (E0). In reality, the battery voltage should not 
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be lower than a set voltage given by the manufacturer of the cell, usually around 

3.0 V and the maximum voltage is usually 4.2 V. 

 The minimum capacity of the battery is 0 Ah and the maximum capacity Q. 

Consequently, the maximum SOC cannot be greater than 100% if the battery is 

overcharged 

The parameters for this model can be easily extracted from the battery manufacturer’s 

discharge curve in steady state, as shown in Fig. 3.11. The fully charged voltage fullV , the 

end of the exponential zone expQ and expV , the end of the nominal zone nomQ  and nomV , 

the maximum capacity Q , and the internal resistance R are the only parameters required. 

 

Fig. 3.11. Battery discharge curve in steady state 

It is important to note that the discharge curves are obtained with a constant current 

discharge. When all the parameters mentioned before are extracted, eq. 3.11 can be 

rewritten for each of the identified characteristics resulting in a set of three equations with 

three unknowns: E0, K and A [105]. 

When the battery is fully charged V=Vfull, the extracted charge is 0, therefore the term 

it=0 and the term i* =0 because the current step is about to start, yielding eq.3.13. 
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0 .fullV E R i A    (3.13) 

The parameter B in eq. 3.11 represents the time constant of the exponential term and 

depends on the shape of the discharge curve. When the exponential term energy is small 

or approaches zero, the term can be approximated to 4/Qexp as shown in Fig.3.12a. When 

the exponential term is predominant, the time constant B can be approximated to 2/Qexp, 

as shown in Fig. 3.12b.  

 

Fig. 3.12. Typical discharge curve of: a) LFP cell (small exponential zone energy), b) 

NMC cell (predominant exponential zone energy) [105] 

Considering the discharge curve used in this work, B is approximated to 3/Qexp as the 

energy of the exponential zone doesn’t approach to zero and is not predominant. To 

calculate the exponential voltage (Vexp), the supplied charge is it=Qexp, and the filtered 

current is i*=0 because it is assumed that steady state has been reached. With these 

considerations eq. 3.11 yields: 

exp 0 exp exp

exp exp

3
( ) . .exp .

Q
V E K Q i R i A Q

Q Q Q

 
         

   (3.14) 

For the end of the nominal zone (Vnom) as shown in Fig. 312, the supplied charge is 

it=Qnom so eq. 3.11 gives: 

0

exp

3
( ) . .exp .nom nom nom

nom

Q
V E K Q i R i A Q

Q Q Q

 
         

   (3.15) 
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By solving eq. (3.13)-(3.15) gives the unknown model parameters, expressed as: 
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Where: 
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0fullA V E Ri       (3.22) 

Experimental validation of the model shows a maximum error of 5% (when SOC is 

between 10% and 100%) for the charge (when the current is 0 through 2C) and discharge 

(when the current is 0 through 5C) dynamics [107]. 

The battery cell parameters used to model the battery pack in this work correspond to the 

Samsung INR21700-50E 5000mAh cell. A 0.2C rate (1A) is used as the curve to estimate 

the parameters of this battery, which are shown in Fig. 3.13 and Table 3.2. 

 

 



62  CHAPTER 3 

 

 

 

Fig. 3.13. Samsung INR21700-50E battery cell discharge curve [68]. 

Table 3.2. Battery parameters extracted from Fig.3.13  

Vfull (V) Q (Ah) Vexp (V) Qexp (Ah) Vnom (V) Qnom (Ah) R (ohms) 

4.15 4.9 3.65 2.75 3.6 3.1 0.028 
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The battery parameters used in this paper are summarised in Table 3.3. 

Table 3.3 Battery characteristics  

Samsung INR21700-50E 5000mAh  

Cell specific energy 255.6 Wh/kg 

Cell weight 69 g 

Standard discharge capacity(0.2C) 4.9  Ah 

Rated discharge capacity (1C) 4.753 Ah 

Charge voltage 4.15 V 

Nominal voltage 3.6 V 

Maximum charge current 4.9 A 

Maximum continuous discharge 9.8 A 

Maximum pulse discharge 14.7 A 

Discharge cut-off voltage 2.5 V 

Internal resistance <28  mohms 

Battery pack characteristics   

Pack nominal voltage (Vnom) 345.6 V 

Pack maximum Capacity (Q) 117.6 Ah 

Fully Charged voltage (Vfull) 398.4 V 

Cut-off voltage 240 V 

Pack configuration 96 series, 24 parallel 

Pack energy 40.6 kWh 

Pack internal resistance 112 mΩ 

Cont./pulse discharge C-rate (2C/3C) 235/351 A 

Charge C-rate standard (0.5C)/max (1C) 58.5/117.6 A 

 

The size of the battery modelled in this work has a capacity similar to that of a Nissan 

Leaf. However, some other brands produce vehicles that exhibit similar battery capacities 

such as Kia, Hyundai, and Fiat. Top of the range models exhibit batteries from 80 kWh, 

being the Mercedes EQS SUV 450 4MATIC the vehicle with the highest capacity 

installed (108.4 kWh). A list of EVs and their installed battery capacity is presented in 

Table 3.4 (the Nisan Leaf is highlighted) [107]. 
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Table 3.4. Electric vehicle and usable battery capacity installed 

Vehicle model kWh Vehicle model kWh Vehicle model kWh 

Mercedes EQS SUV 450 4MATIC 108.4 Tesla Model X Plaid 95 Porsche Taycan Turbo 83.7 

Mercedes EQS SUV 580 4MATIC 108.4 Ford Mustang Mach-E ER RWD 91 Porsche Taycan 4S Plus 83.7 

Mercedes EQS 450+ 107.8 Ford Mustang Mach-E ER AWD 91 Porsche Taycan Plus 83.7 

Mercedes EQS AMG 53 4MATIC+ 107.8 Ford Mustang Mach-E GT 91 Porsche Taycan 4S Cross Turismo 83.7 

Polestar 3 Long Range Dual motor 107 Mercedes EQE AMG 53 4MATIC+ 90.6 Porsche Taycan Turbo Cross Turismo 83.7 

Polestar 3 Long Range Performance 107 Mercedes EQE SUV 350+ 90.6 Porsche Taycan Turbo S Cross Turismo 83.7 

Lotus Eletre 107 Mercedes EQE SUV 350 4MATIC 90.6 Porsche Taycan GTS 83.7 

Lotus Eletre R 107 Mercedes EQE SUV 500 4MATIC 90.6 Porsche Taycan GTS Sport Turismo 83.7 

Volvo EX90 Twin Motor 107 Mercedes EQE SUV AMG 53 4MATIC+ 90.6 Porsche Taycan Plus Sport Turismo 83.7 

Volvo EX90 Twin Motor Performance 107 Mercedes EQV 300 90 Porsche Taycan 4S Plus Sport Turismo 83.7 

Audi Q8 e-tron 55 quattro 106 Mercedes eVito Tourer L2 90 kWh 90 Porsche Taycan Turbo Sport Turismo 83.7 

Audi Q8 e-tron Sportback 55 quattro 106 Mercedes eVito Tourer L3 90 kWh 90 Porsche Taycan Turbo S Sport Turismo 83.7 

Audi SQ8 e-tron 106 Mercedes EQE 300 89 Genesis G80 Electrified Luxury 82.5 

Audi SQ8 e-tron Sportback 106 Mercedes EQE 350 89 BMW i4 eDrive40 80.7 

BMW iX xDrive 50 105.2 Audi Q8 e-tron 50 quattro 89 BMW i4 M50 80.7 

BMW iX M60 105.2 Audi Q8 e-tron Sportback 50 quattro 89 Mercedes EQC 400 4MATIC 80 

BMW i7 xDrive60 101.7 Nissan Ariya 87kWh 87 Skoda Enyaq iV 80 77 

Fisker Ocean Ultra 100 Nissan Ariya e-4ORCE 87kWh 87 Skoda Enyaq iV 80x 77 

Fisker Ocean Extreme 100 Nissan Ariya e-4ORCE 87kWh 

Performance 

87 Volkswagen ID.4 Pro Performance 77 

Fisker Ocean One 100 Audi e-tron GT RS 85 Volkswagen ID.4 GTX 77 

Rolls-Royce Spectre 100 Audi e-tron GT quattro 85 CUPRA Born 77 kWh e-Boost 77 

Tesla Model S Dual Motor 95 Jaguar I-Pace EV400 84.7 Volkswagen ID.5 Pro 77 

Tesla Model S Plaid 95 Porsche Taycan Turbo S 83.7 Volkswagen ID.5 Pro Performance 77 

Tesla Model X Dual Motor 95 Porsche Taycan 4 Cross Turismo 83.7 Volkswagen ID.5 GTX 77 
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Vehicle model kWh Vehicle model kWh Vehicle model kWh 

Volkswagen ID.4 Pro 77 Genesis GV60 Sport 74 Mercedes EQA 350 4MATIC 66.5 

Skoda Enyaq Coupe iV 80 77 Genesis GV60 Sport Plus 74 Mercedes EQB 300 4MATIC 66.5 

Skoda Enyaq Coupe iV 80x 77 Hyundai IONIQ 5 Long Range 2WD 74 Kia Niro EV 64.8 

Skoda Enyaq Coupe iV VRS 77 Hyundai IONIQ 5 Long Range AWD 74 BMW iX1 xDrive30 64.7 

Volkswagen ID. Buzz Pro 77 Hyundai IONIQ 6 Long Range 2WD 74 Hyundai Kona Electric 64 kWh 64 

Audi Q4 e-tron 40 76.6 Hyundai IONIQ 6 Long Range AWD 74 Smart #1 64 

Audi Q4 e-tron 50 quattro 76.6 Genesis GV70 Electrified Sport 74 Smart #1 Brabus 64 

Audi Q4 Sportback e-tron 50 quattro 76.6 Toyota bZ4X FWD 71.4 Kia Soul EV 64 kWh 64 

Audi Q4 Sportback e-tron 40 76.6 Toyota bZ4X AWD 71.4 Nissan Ariya 63kWh 63 

Tesla Model Y Long Range Performance 75 Subaru Solterra AWD 71.4 MG MG4 EV Long Range 61.7 

Volvo C40 Recharge Twin Pure Electric 75 Lexus RZ 450e 71.4 Lightyear 0 60 

Polestar 2 Long Range Single Motor 75 Porsche Taycan 4S 71 Nissan Leaf e+ 59 

Polestar 2 Long Range Dual Motor 75 Porsche Taycan 71 Skoda Enyaq iV 60 58 

Tesla Model 3 Long Range Dual Motor 75 BMW iX xDrive 40 71 CUPRA Born 58 kWh 58 

Volvo XC40 Recharge Twin Pure Electric 75 Porsche Taycan Sport Turismo 71 CUPRA Born 58 kWh e-Boost 58 

Tesla Model Y Long Range Dual Motor 75 Porsche Taycan 4S Sport Turismo 71 Volkswagen ID.3 Pro Performance 58 

Tesla Model 3 Performance 75 Mercedes EQA 250+ 70.5 Skoda Enyaq Coupe iV 60 58 

Fisker Ocean Sport 75 Ford Mustang Mach-E SR RWD 70 Tesla Model 3 57.5 

Polestar 2 Long Range Performance 75 Ford Mustang Mach-E GT 70 Tesla Model Y 57.5 

Kia EV6 GT 74 MG ZS EV Long Range 68.3 MG MG5 EV Long Range 57 

Kia EV6 Long Range 2WD 74 Volvo XC40 Recharge Pure Electric 67 Renault Megane E-Tech EV60 220hp 55 

Kia EV6 Long Range AWD 74 Volvo C40 Recharge Pure Electric 67 Hyundai IONIQ 5 Standard Range 2WD 54 

BMW iX3 74 Mercedes EQB 350 4MATIC 66.5 Hyundai IONIQ 6 Standard Range 2WD 54 

Genesis GV60 Premium 74 Mercedes EQA 300 4MATIC 66.5 Audi Q4 e-tron 35 52 
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Vehicle model kWh Vehicle model kWh 

Renault Zoe ZE50 R135 52 Peugeot e-2008 SUV 45 

Audi Q4 Sportback e-tron 35 52 Vauxhall Corsa-e 45 

Volkswagen ID.4 Pure Performance 52 Vauxhall Mokka-e 45 

Volkswagen ID.4 Pure 52 Citroen e-C4 45 

Peugeot e-308 51 Citroen e-SpaceTourer Business M 50 kWh 45 

Peugeot e-308 SW 51 Citroen e-SpaceTourer Business XL 50 kWh 45 

MG MG4 EV Standard Range 50.8 Vauxhall Vivaro-e Life Combi M 50 kWh 45 

MG ZS EV Standard Range 49 Vauxhall Vivaro-e Life Combi L 50 kWh 45 

ORA Funky Cat First Edition 47.8 Hyundai Kona Electric 39 kWh 39.2 

CUPRA Born 45 kWh 45 Kia Soul EV 39.2 kWh 39.2 

Citroen e-SpaceTourer M 50 kWh 45 Nissan Leaf 39 

Citroen e-SpaceTourer XL 50 kWh 45 Fiat 500e Cabrio 37.3 

Vauxhall Vivaro-e Life Elite M 50 kWh 45 Fiat 500e Hatchback 42 kWh 37.3 

Vauxhall Vivaro-e Life Elite L 50 kWh 45 Abarth 500e Scorpionissima 37.3 

Peugeot e-Traveller Standard 50 kWh 45 Mazda MX-30 30 

Peugeot e-Traveller Long 50 kWh 45 Mini Electric 28.9 

Peugeot e-Rifter Standard 50 kWh 45 Honda e Advance 28.5 

Peugeot e-Rifter Long 50 kWh 45 Smart EQ fortwo coupe 16.7 

Vauxhall Combo-e Life 50 kWh 45 Smart EQ fortwo cabrio 16.7 

Vauxhall Combo-e Life XL 50 kWh 45   

Citroen e-Berlingo M 50 kWh 45   

Citroen e-Berlingo XL 50 kWh 45   

DS 3 Crossback E-Tense 45   

Peugeot e-208 45   
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3.3.2 Supercapacitor model 

Electrochemical SCs are divided into three types depending on the interfacial physics and 

chemistry [108]:  

 Electric double layer capacitors (EDLCs), built with various carbon based 

substances like graphene and carbon nanotubes. 

 Pseudocapacitors, which are built with materials that undergo redox reactions 

such as conducting polymers and transition metal oxides, and 

 Hybrid capacitors which have one electrode of EDLC type material and the other 

made up of either of materials used for pseudocapacitor electrode or materials 

used for the electrodes in batteries. 

Energy storage in EDLCs rely on the formation of the electric double layer formed at the 

electrolyte-electrode interface. Energy is saved between an electrolyte/ionic liquid and a 

conducting electrode (semiconductor or metallic) interface by the reversible absorption 

of ions on the surface of the electrode holding large surface area with varied porous 

structure. Several models have been proposed to explain the behaviour of charges in the 

electrode-electrolyte interface including the Helmholtz theory, the Gouy Chapman model 

and the Stern theory. 

The SC is based on the Stern-Tafel model which reproduces the double layer capacitance 

related to the nonlinear diffusion dynamics by a combination of the Helmholtz’s 

capacitance and the Gouy-Chapman’s capacitance [109]. This model is the basis of the 

generic SC block available in Matlab-Simulink.  

3.3.2.1 The Helmholtz model 

The model explains charge separation on the interface between an electrolyte solution 

and a metallic electrode. The electrode holds a charge density resulting from either an 

excess or deficiency of electrons at the electrode surface. The electrode’s charge is 
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balanced by redistribution of ions in the electrolyte solution by an equal but opposite 

charged amount of ions. This results in two layers of opposite charge separated by a 

distance limited by the radius of the attracted ions and a single layer of solvation around 

each ion. The double layer capacitance per unit is given as [110].  

0
HC

d

 
  (3.23) 

Where 0  is the permittivity of vacuum (8.854x10-12 F/m),  is the relative permittivity 

of the electrolyte material and d  is the thickness of the double layer. The two layers of 

polarized ions formed at the electrode-electrolyte interface is shown in Fig 3.14 [108]. 

 

Fig.3.14. Helmholtz model of electric double layer 

One layer is present at the surface of the electrode which is in contact with the electrolyte. 

The second layer (with opposite polarity) is formed from solvated electrolytic ions 

(cations) that have been attracted towards the polarized electrode. A layer of solvent 

molecules works as a molecular dielectric that separates the two layers of opposite 

polarity and is called the inner Helmholtz plane (IHP). The quantity of charge on the 

electrode is balanced by the opposite ions present in the outer Helmholtz plane (OHP). 

Depending on the strength of the voltage applied, the charge on the electric double layer 
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forms an electric field in the inner Helmholtz plane. The accumulated charge in the layer 

depends on the electrode surface area and the number of ions absorbed [108]. 

A SC comprises two electrodes: one for the positive terminal and one for the negative. At 

one electrode, the charge is opposite in polarity to that of the other electrode. Therefore, 

the total capacitance of an EDLC is modelled as a two capacitors in series. A drawback 

of the Helmholtz theory is that it is not able to explain the interactions that occur further 

away from the electrode (electrolyte area). 

3.3.2.2 The Gouy-Chapman model 

Gouy and Chapman noticed that in an electric double layer the capacitance is not constant 

and varies with the ionic concentration of the electrolyte as well as with the voltage 

applied. 

This model considers the thermal motion of ions near a charged surface. The model is 

explained by a combination of Poisson- Boltzmann differential equation, which describes 

the distribution of ions considering the concentration of ions (mol.m-3), their charge and 

the absolute temperature. With these parameters, the model defines the total charge 

density per unit volume for all ionic species. The model assumes point-like ions in 

thermodynamic equilibrium and neglects statistical correlations. For low concentration 

electrolytes, the model has been successful in predicting ionic profiles. However, it is 

known to overestimate ionic concentrations close to charged surfaces [110]. The 

differential capacitance is given by: 
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where: 

GCC is the Gouy-Chapman capacitance 
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z is the charge on the ion 

e is the unit charge 

0

in is the concentration of ion I in the bulk 

k is the Boltzmann constant=1.380649x10-23 J/K 

T is the absolute temperature 

0 is the potential at the electrode 

3.3.2.3 Stern model 

Otto Stern proposed to combine the Helmholtz and Gouy-Chapman models to explain the 

electric double layer. In this model, the inner layer is called the Stern layer and agrees 

with the Helmholtz model in that ions stick to the electrode. The other layer of ions 

received the name of Gouy Chapman diffuse layer. The differential capacitance of the 

double layer Cs is equivalent to two capacitors in series as [110]: 

1 1 1

s H GCC C C
        (3.25) 

Where 

sC is the Stern capacitance 

HC is the Helmholtz capacitance 

GCC is the Gouy-Chapman capacitance 

The Stern layer considers the impact of the finite size of the ions and thus suggested that 

the value of the closest ionic approach to the electrode should be approximately equal to 

the radius of the ion [108]. The model assumes that the fluid viscosity lies in a constant 

plane and the permittivity remains constant through the electric double layer. In addition, 

the model assumes that the inner activities taking place in the Guoy Chapman layer are 
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coulombic in nature. These assumptions are considered the limitations of this model. The 

location of the Stern layers in shown in Fig.3.15. 

 

Fig.3.15. Representation of the Stern model of electric double layer [111]. 

3.3.2.4 The Stern-Tafel model 

The model schematic is shown in Fig. 3.16. 

 

Fig. 3.16 Stern Tafel SC model schematic [109] 
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nC  is the nominal capacitance (F) and maxV is the maximum SC voltage (V). The SC 

voltage scV  is given by the difference between the total voltage TV  and the product 

between the internal resistance scR  and the SC current sci , such as [109]: 
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    (3.26) 

Where pN is the number of parallel SC cells, sN is the number of series connected SC 

cells, eN is the number of layers of electrodes, iA  is the interfacial area between electrode 

and electrolyte (m2), R is the ideal gas constant ((J/(K.mol)), T is the operating 

temperature (°K), cF is the Faraday constant (C/mol), d is the ion molecular radius (m), 

c is the molar concentration (mol.m-3) and TQ is the electric charge given by: 

                         T scQ i dt                                                 (3.27) 

The model accounts for self-discharge phenomena by modifying the electric charge when 

the SC current 0sci  by: 

                                        T sdQ i dt                                                    (3.28) 

where, sdi is the self-discharge current and is determined by the Tafel equation as follows: 
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Where If is the leakage current (A), Vinit is the initial voltage (V), α is the charge transfer 

coefficient and ΔV is the over-potential (V).  

Simulink default parameters for the Stern equation including the number of layers 

(default=1), molecular radius (default=1e-9), and permittivity of electrolyte material 

(default=6.0208e-10) are selected along with the characteristics shown in Table 3.5. 
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Simulink default parameters have been determined from experimental tests and validated 

showing a maximum error of 2% for charge and discharge [112]. 

Table 3.5 Supercapacitor characteristics 

Maxwell BCAP 3400 [70] 

Cell capacity 3400 F 

Cell Equivalent DC series resistance 0.15 mΩ 

Cell Rated voltage 3 V 

Cell specific power 14.5 kW/kg 

Cell weight 496 g 

Pack configuration  135 series, 1 parallel   

Pack Voltage (max) 405 V 

Pack capacity 25.2 F 

Pack resistance 20 mΩ 

Pack Specific Energy 5.36 Wh/kg 

Maximum continuous current (15°C) 140 A 

Maximum continuous current (40°C) 225 A 

Maximum energy stored 574 Wh 

Usable energy (min V=202.5V) 430.5 Wh 

The usable energy shown in Table 3.5 is calculated according to: 

 2 21
( )

2
initial finalE C V V   (3.30) 

Where Vinitial is the voltage of the SC at the start of the discharge and Vfinal is the voltage 

at the end of the discharge. To calculate the usable energy, it is assumed that SC 

discharges from the fully charged state (405 V) to half its voltage (202.5V). In this way, 

75% of the total energy stored in the SC is used [113]. 

The model assumes the following: 

 The internal resistance remains constant during the charge and the discharge 

cycles 

 Temperature effect on the electrolyte material is not considered 

 Ageing effect is not considered 

 Charge redistribution is the same for all values of voltage 

 Cell balancing  is not considered 

 The current through the SC is assumed to be continuous.  



74  CHAPTER 3 

 

 

In reality, the SC internal resistance varies during charge and discharge cycles 

affected by the temperature of operation. The increase in the internal resistance is an 

indication of SC degradation. 

In the simulations, charge and discharge currents are continuous either in the positive 

(discharge) and negative (charge) cycles. However, there are some periods of time 

where the SC is at rest or is not providing nor receiving power. This can be interpreted 

as a discontinuous operation mode as the current flowing through the capacitor 

changes from a continuous positive or negative value to zero. During these periods of 

time, the model can implement self-discharge, however this option is not 

implemented in the present work and therefore the SC is assumed to remain idle when 

the current is zero. 

The battery to SC energy ratio 95:1 considering the battery capacity of 40.6 kWh and 

430.5 Wh of the SC. The power ratio is 1:11.9 considering the battery capability at 

2C at nominal voltage (81285 W) and the SC 970 kW.  

3.3.3 DC/DC converter 

DC/DC converters are high frequency conversion circuits that use high frequency 

switches, inductors and capacitors to smooth out switching noise into regulated DC 

voltages. 

The DC/DC converter has been modelled considering the following assumptions: 

 The time to simulate the whole system for each full driving cycle and each EMS 

variant analysed should be within a reasonable time frame (minutes), which is not 

possible when accurate DC/DC converter models simulating high frequency 

switching are used (several hours).  

 The model does not include losses, therefore the conversion process is lossless.  
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The model consists of two controlled current sources receiving the same current 

command. The first controlled current source is connected to the SC model and the second 

to the DC-bus. The schematic is shown in Fig. 3.17.  

 

Fig. 3.17. Simplified bidirectional DC/DC converter for system level simulation 

 

In this work, the focus is on the energy inefficiency caused by energy circulation. The 

lossless DC/DC converter makes this analysis easier to understand. 

3.4 Energy management system 

3.4.1 The discrete wavelet transform 

The DWT is given by the series: 

, ,

,

( ) j k j k

j k

f t a   (3.31) 

where the set of coefficients aj,k, are called the discrete wavelet transform of f(t), and Ψ(t) 

is the orthonormal wavelet basis or mother wavelet, j and k are the level of the dyadic 

decomposition and the displacement factor, respectively [114]. Ψj,k is given by: 

/2

, ( ) 2 (2 )j j
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The original signal can be reconstructed from the wavelet coefficients aj,k and the 

orthonormal wavelet basis Ψ(t) by means of the inverse DWT. The DWT process involves 

a signal decomposition stage known as analysis, and a signal reconstruction phase known 
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as synthesis. This is performed with a filter bank, as shown in Fig. 3.18, which is a 

collection of conjugate mirror filters [115]. The analysis stage decomposes the signal into 

low and high frequency components by passing the discrete input signal through high 

pass H(z) and low pass L(z) filters simultaneously. At the first level of decomposition, the 

H(z) and L(z) filter output signals each contain half the frequency content and the same 

number of samples as the input. Decimation by a factor of two is applied to discard half 

of the samples on each signal without loss of information, according to the Shannon-

Nyquist sampling theorem. This process is called down-sampling. At the next level of 

decomposition, only the low frequency component is decomposed into low and high 

frequencies and decimated again. In Fig. 3.18, the DWT decomposition and 

reconstruction (inverse DWT) schematic is shown. The approximation coefficient (A2) 

represents the low frequency sub-band component, while details (D1, D2) characterise 

high frequency sub-band components. 

In this example, a signal with 4 samples is passed through a high and low pass filter 

simultaneously, so at the output of each filter the number of samples is 4. This duplicates 

the number the total number of samples. A down-sampling operator reduces the number 

of samples by a factor of 2 according to the Nyquist sampling theorem. The output of the 

low frequency component is passed through a set of high and low pass filters again and 

down-sampled. This process results in a set of coefficients with a total number of samples 

that equals the input. These coefficients are enough to perfectly reconstruct the original 

signal by means of the inverse DWT.  The inverse DWT process involves up-sampling 

the coefficients by a factor of 2 and then passing the resulting samples through a set of 

conjugate mirror low and high pass filters. When the inverse DWT is calculated to 

reconstruct the original signal from the DWT coefficients, the up-sampling operator fills 

with zeroes the gaps created by the down sampling during the DWT decomposition, so 

the number of total samples correspond to those of the original signal.   
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The low frequency coefficient (A2) is up-sampled and passed through a low pass filter. 

The high frequency component (D2) is up-sampled and then passed through a high pass 

filter. The output of both filters is added and the result up-sampled again. The same 

process is carried out until all the coefficients are added.  This process reconstructs the 

original signal perfectly. It is worth noting that the frequency corresponding to the 

approximation coefficient (lowest frequency sub-band) can be found by:  

2

nyquist

Approx j

f
f   (3.33) 

where fApprox is the low frequency sub-band, j is the level of decomposition and fnyquist is 

the Nyquist frequency which is defined as half the sampling frequency [116]:  

2

s
nyquist

f
f   (3.34) 

The sampling frequency, fs, at which the signal can be perfectly reconstructed from its 

samples without loss of information is defined as the Nyquist sampling rate, which must 

satisfy: 

max2sf f  (3.35) 

where fmax is the highest frequency present in a band limited signal.  

Although the original signal is perfectly reconstructed, this signal is delayed due to signal 

processing. The reconstructed DWT frequency components carry a delay that is 

influenced by the sampling frequency, the target level of decomposition, and the chosen 

wavelet function. This delay makes the direct use of the DWT frequency components 

troublesome in real time controllers. 
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Fig. 3.18. 2 level discrete wavelet transform dyadic signal decomposition tree 
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The delay results from adding the current sample time period (Ts) to the product between 

Ts and number of previous samples Ns required to perform a given level of decomposition. 

The delay (Td) is given by: 

(1 )d s sT T N    (3.36) 

where Ns can be calculated according to [117] such as: 

1

1

( 1)2
j

i

S f

i

N N 



      (3.37) 

Nf  is the order of the filter, characterised by the number of coefficients associated with 

the chosen orthogonal wavelet base, i is the current level of decomposition and j is the 

final level of decomposition. The number of samples grow exponentially with the 

increase of the levels of decomposition. The delay is exacerbated as the order of the filter 

increases when using different wavelet bases other than the Haar wavelet. Haar is the 

simplest wavelet with the smallest filter order (Nf = 2). 

The Haar wavelet has good time localisation, but low frequency resolution. It is better 

suited for edge detection and sharp signal transitions [115] due to its square shaped 

waveform as shown in Fig 3.19. It is expressed as [114]: 

1, 1/ 2;

( ) 1, 1/ 2 1;

0,  otherwise

i t

t t

 


   



                       (3.38) 
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Fig.3.19 Haar wavelet waveform 

In Table 3.6, the low frequency sub-bands achieved with several levels of decomposition 

using the Haar wavelet and different sampling rates are presented. It is important to note 

that increasing the sampling rate does not reduce the total delay. The higher the sampling 

rate, the higher the level of decomposition needed to achieve the same low frequency sub-

band. This will also increase the number of samples. The delay in seconds of the 

reconstructed signal with respect to the original signal for different sampling rates and 

levels of decomposition with the Haar wavelet is presented in Table 3.7. 

Table 3.6. Low frequency sub-bands and number of samples required for several levels 

of decomposition and sampling frequencies using the Haar wavelet 

Number of 
previous 
samples Ns 

Sampling 
Freq. fs 

1 Hz 2 Hz 4 Hz 8 Hz 16 Hz 32 Hz 

        

Haar 
Wavelet 

 Nyquist 
Freq (fs/2) 

0.5 Hz 1 Hz 2 Hz 4 Hz 8 Hz 16 Hz 

1 Level 1 0-250 mHz 0-500 mHz 0-1 Hz 0-2 Hz 0-4 Hz 0-8 Hz 

3 Level 2 0-125 mHz 0-250 mHz 0-500 mHz 0-1 Hz 0-2 Hz 0-4 Hz 

7 Level 3 0-62.5 mHz 0-125 mHz 0-250 mHz 0-500 mHz 0-1 Hz 0-2 Hz 

15 Level 4 0-31.25 mHz 0-62.5 mHz 0-125 mHz 0-250 mHz 0-500 mHz 0-1 Hz 

31 Level 5 0-15.62 mHz 0-31.25 mHz 0-62.5 mHz 0-125 mHz 0-250 mHz 0-500 mHz 

63 Level 6 0-7.81 mHz 0-15.62 mHz 0-31.25 mHz 0-62.5 mHz 0-125 mHz 0-250 mHz 

127 Level 7 0-3.90 mHz 0-7.81 mHz 0-15.62 mHz 0-31.25 mHz 0-62.5 mHz 0-125 mHz 

255 Level 8 0-1.95 mHz 0-3.90 mHz 0-7.81 mHz 0-15.62 mHz 0-31.25 mHz 0-62.5 mHz 

511 Level 9 0-0.97 mHz 0-1.95 mHz 0-3.90 mHz 0-7.81 mHz 0-15.62 mHz 0-31.25 mHz 
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Table 3.7. Levels of decomposition and time delay relationship when using the Haar 

wavelet 

  
Delay in samples Eq.3.30 and delay in seconds Eq.3.29 
according to sampling rate 

 

Level of 
decomposition 

Delay in 

samples (Haar) 
(Eq. 3.30) 

1 Hz 2 Hz 4 Hz 8 Hz 16 Hz 32 Hz 

Level 1 1 2 sec 1 sec 0.5 sec 0.25 sec 0.125 sec 0.0625 sec 

Level 2 3 4 sec 2 sec 1 sec 0.5 sec 0.25 sec 0.125 sec 

Level 3 7 8 sec 4 sec 2 sec 1 sec 0.5 sec 0.25 sec 

Level 4 15 16 sec 8 sec 4 sec 2 sec 1 sec 0.5 sec 

Level 5 31 32 sec 16 sec 8 sec 4 sec 2 sec 1 sec 

Level 6 63 64 sec 32 sec 16 sec 8 sec 4 sec 2 sec 

Level 7 127 128 sec 64 sec 32 sec 16 sec 8 sec 4 sec 

Level 8 255 256 sec 128 sec 64 sec 32 sec 16 ec 8 sec 

 

The decomposition of a chirp signal with 5 levels of decomposition using the sym5 

wavelet is shown in Fig 3.19. Notice that the detail coefficients for each level of 

decomposition hold the high frequency sub-bands of the chirp signal, where the highest 

frequency sub-band is obtained at level 1, while the approximation coefficients hold the 

low frequency components, where the lowest frequency sub-band is obtained at the last 

level of decomposition (level 5). 
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Fig. 3.20  The approximation and detail coefficients of the sym5 wavelet (level 1 to 5) 

applied on a chirp signal. On the left, a schematic representation of the high pass and 

low pass filters applied on the signal at each level is shown [118]. 

 

Fig.3.21 depicts the DWT decomposition and reconstruction process for the power 

demand signal corresponding to 120 seconds of the FTP72 driving cycle. The signal is 

first sampled at a given sampling rate (1 Hz in this example), then passed through the 

DWT process with 2 levels of decomposition. The DWT outputs 3 frequency 

components. Adding the frequency components results in a perfectly reconstructed signal 

that is delayed (4 seconds) with respected to the original signal.
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Fig.3.21. Decomposition of power demand signal (FTP72 driving cycle) into 3 levels 
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3.4.2 Discrete wavelet transform multiresolution simulink model 

The Simulink model for the DWT decomposition (analysis) and reconstruction 

(synthesis) processes is shown in Fig. 3.22. The DWT decomposes the sampled input 

signal into high and low frequency sub-bands, each with half the bandwidth and half the 

sample rate of the input. In the analysis filter bank, the signal is simultaneously filtered 

with a high pass and a low pass FIR filters. The result of these filters is down sampled by 

2. The Simulink block implements the FIR filtering and down sampling steps together 

using a polyphase filter structure [119]. To configure this block, a vector with the filter 

coefficients defined by a given wavelet are calculated for the high pass and low pass FIR 

filters. The filter coefficients for the Haar wavelet can be obtained with the following 

Matlab code: 

 [LoD,HiD,LoR,HiR] = wfilters('db1')    

where ‘db1’ refers to the Haar wavelet, which represents the same wavelet as Daubechies 

db1, LoD and HiD are the decomposition low pass and high pass filter coefficients, 

respectively, and LoR and HiR are the reconstruction low pass and high pass filter 

coefficients, respectively. The resulting coefficients for the filters are shown in Table 3.8. 

Table 3.8. Haar wavelet FIR low pass and high filter coefficients for decomposition and 

reconstruction 

 Low pass filter High pass filter 

Decomposition coefficients 1/ 2 , 1/ 2  -1/ 2 ,1/ 2  

Reconstruction coefficients 1/ 2 ,1/ 2  1/ 2 ,-1/ 2  

 

The synthesis filter bank is divided in two branches as shown in Fig. 3.22. One is used to 

calculate the high frequency components (details) by zeroing the low pass filter input, 

and the other is used to calculate the low frequency component (approximation) by 

zeroing the high pass filter input. 
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Fig. 3.22. 5 level Discrete wavelet transform Simulink model  
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3.4.3 Discrete wavelet transform in energy management systems, energy circulation 

and supercapacitor assistance 

To illustrate energy circulation between the battery and SC in a semi-active topology, the 

SC current reference is first obtained with a conventional first order high pass filter. This 

will enable the observation of the exacerbated energy circulation when the SC current 

reference is obtained later with the DWT. At a certain frequency range, the output of the 

high pass filter has a response that is proportional to the time derivative of the input. Thus, 

when the slope of the current demand signal (measured at the DC-bus) changes from 

positive to negative, the output of the high pass filter will also change from positive to 

negative. For example, when the driving cycle demands a reduction in acceleration i.e. 

from acceleration to cruising, the current demand declines but remains positive. However, 

this drop in current demand can appear as a negative signal at the output of the filter even 

though there is no braking command requested. Fig. 3.23 illustrates this event with a 

conventional first order high pass filter with a cut-off frequency of 125 mHz. The current 

demand and the vehicle speed from t=20 seconds to t=37 seconds of FTP72 driving cycle 

are displayed. At time t = 26 seconds the slope of the current demand changes from 

positive to negative because of the drop in the power demand caused by an adjustment in 

speed. Although speed keeps rising from 26 km/h at t = 26 seconds to 28 km/h at t = 27.6 

seconds (i.e. no braking command), the high pass filter output becomes negative. As the 

SC is controlled with the output of the high pass filter, energy circulation occurs as the 

SC is commanded to recharge (negative current command represented as green shades) 

even when no braking power is generated. The SC is recharged from the battery (orange 

shades), which transfers power to the SC through the DC/DC converter. The areas shaded 

in light blue represent the effective contribution of the SC during motoring and braking. 
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Fig. 3.23. Energy circulation with 1st order High Pass Filter 125 mHz 

Energy circulation is exacerbated when the DWT is used, as the high frequency 

component is delayed with respect to the real time demand. In Fig. 3.24, the SC follows 

the high frequency component current reference obtained with the DWT. The current 

demand is sampled at 1 Hz and then decomposed into 2 levels to obtain a frequency sub-

band of 125-500 mHz. The drop in the current demand that starts at t = 26 seconds results 

in a delayed drop in the DWT high frequency component that starts at t = 30 seconds 

(delay = 4 seconds). Thus, the use of the DWT high frequency component results in the 

SC recharging when there is no braking power (green shaded areas), forcing the battery 

to provide power to keep the system’s balance (orange shaded areas). Consequently, more 

stress is imposed on the battery rather than alleviating it, and poor SC contribution is 

observed during motoring and braking (light blue shaded areas). Moreover, efficiency 

decreases as energy is circulated without controlling its occurrence. 
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Fig. 3.24. SC current reference following the DWT high frequency component, 

sampling=1Hz 

DWT high frequency components with more details (smoother signal) can be generated 

with higher sampling rates and adequate levels of decomposition. In Fig. 3.25, sampling 

rate of 32 Hz and 7 levels of decomposition result in frequency sub-band of 0.125 Hz-16 

Hz. The delay remains unchanged (4 seconds). 

 

Fig. 3.25. SC current reference following the DWT high frequency component, sampling 

=32 Hz. 
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Both Fig. 3.24 and 3.25 show that the SC is not assisting the battery during acceleration 

and is partially recovering power generated during braking. This is evident between t=20 

and t=26, and between t=33 and t=36, respectively. 

The sharp transitions in the signal i.e. t=24 in Fig 3.24 and Fig 3.25 is a consequence of 

using the Haar wavelet as it has a squared shape signal. The sharp changes are more 

notorious when the sampling rate is 1 Hz as in Fig 3.24.  

3.4.4 Defining a benchmark to assess SC performance in a HESS 

To quantify the effectiveness of the SC assistance during motoring and braking a 

comparison with a benchmark reference is necessary. To determine this reference, the 

following factors have been considered: 

1. The first derivative of the positive current demand is calculated to define time 

windows that correspond to positive current demand changes. Only positive 

values are considered. Time windows are shown in Fig. 3.26 for t=19 seconds to 

t=42 seconds of the FTP72 driving cycle.  

2. During positive current rate, the benchmark current reference is set to match the 

first derivative of the current as long as the derivative is less than the total current 

demand, otherwise it is set to match the total current demand. This makes the 

benchmark reference proportional to the rate of change of current but without 

exceeding the total current demand. This defines the areas where SC assistance 

would be most beneficial.  

3. During braking, all the generated energy should be absorbed by the SC if its SOC 

allows it. Otherwise, it will be allocated to the battery observing the maximum 

charging C-rate. This area is given by the negative current demand. 
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Fig. 3.26. Reference signal to assess SC performance (FTP72 case) 

The effectiveness of SC assistance with different EMS approaches can be assessed by 

comparing the energy provided by the SC against the energy of the benchmark reference 

area. The energy E in Wh is calculated as follows: 

0

1

3600

t

X DC busE I V dt       (3.39) 

where
XI is the current of the variable being analysed i.e. total current, battery current, and 

SC current. 
DC busV 

 is the voltage of the DC-bus. The result of the integral is divided by 

3600 to convert seconds to hours. Positive current demand is used to calculate motoring 

energy and negative current demand to calculate braking energy. For each EMS strategy 

presented in this chapter, the areas shown in Fig. 3.27 are calculated. The orange shading 

represents the circulation energy (unit is Ah) supplied by the battery and received by the 

SC (green shading), or vice versa. The blue shaded areas represent the SC effective 

contribution during the motoring and braking stage. The purple area represents the current 

reference based on the current rate of change. These areas are used to quantify the SC 

assistance during motoring, acceleration, braking and total energy circulation for different 

EMS strategies. 
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Fig. 3.27. Calculated areas to compare the performance of the SC with different EMS 

strategies  

3.4.5 Long-short term memory neural network 

Power demand prediction has been proposed in the literature as a way to mitigate delay 

and enable the DWT to work in real time. LSTM neural networks are a type of RNNs that 

perform well when learning long term temporal dependencies. RNNs carry out prediction 

of future steps by considering previous data. The internal structure of the network learns 

from earlier stages and uses this previous data along with new data to forecast future 

steps. However, typical generic RNNs can remember only a few previous steps in the 

sequence and therefore fail to remember long sequences of data [120]. On the other hand, 

long term memory is possible by using LSTM networks, which are designed to capture 

and store data. The LSTM cell behaves like a memory with the ability to write, read and 

delete data according to the decisions stipulated by its input, output, and forget gates. The 

structure of a LSTM cell with its inner operations is shown in Fig. 3.28. 

 

Fig. 3.28. LSTM cell structure 
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The forget gate output tf  is calculated from the previous output 1th  , the input vector xt, 

the weight matrix associated with this gate [ , ]xf hfW W and a bias bf. The input gate output 

ti  is calculated in similar way but using a different weight matrix [ , ]xi hiW W and bias bi. 

The cell state tc  is calculated from addition of the forget gate tf  and the previous cell 

state 1tc  . The result is added to the product between the input gate ti and the cell state 

update tc  , the weight matrix and the bias. The output gate to  results from the previous 

output 1th  , the input vector tx , the weight matrix associated with this gate [ , ]xo hoW W and 

a bias ob . The current output th results from the product between the output gate to and 

the hyperbolic tangent of the current cell state tc . The cell equations are [121]: 
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  (3.40) 

Where  is the logistic sigmoid function and is the element wise product. A sigmoid 

function is a mathematical function having a characteristic “S” shaped curve or sigmoid 

curve.  The logistic sigmoid function is shown in Fig.3.29 [122]. 

 

Fig. 3.29 Logistic sigmoid function 
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The logistic sigmoid curve is defined by the formula: 

 
1

( )
1 x

f x
e




 (3.41) 

In this work, the hyper-parameters of the LSTM network were determined by testing 

several architectures and comparing their prediction Mean Squared Error (MSE) as 

shown in Table 3.9. A good fit learning curve is identified when the training and 

validation loss decrease to a point of stability with a minimal gap between the two final 

loss values [123] as shown in Fig. 3.30. 

 

Fig. 3.30. LSTM network training vs validation loss  

 

The mean squared error loss is calculated as the average of the squared differences 

between the predicted and actual values. The results is always positive regardless of the 

sign of the predicted and actual values. The lower the loss, the better a model. The loss is 

calculated on training and validation datasets and is interpreted as how well the model is 

doing for these two sets. Unlike accuracy, loss is not a percentage. It is a summation of 

the errors made for each example in training or validation sets. Naturally, the main 

objective in a learning model is to reduce (minimize) the loss function's value with respect 
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to the model's parameters by changing the weight vector values through different 

optimization methods. Loss value implies how well or poorly a certain model behaves 

after each iteration of optimization. Ideally, one would expect the reduction of loss after 

each, or several, iterations and reach zero. 

 

Table 3.9 LSTM network architectures training loss and validation loss 

LSTM 

Structure 

Layers 

and 

Neurons 

Epochs 
Training 

Loss MSE 

Validation 

Loss MSE  

1 1x10 10 59.16 29.65 

2 1x10 50 51.71 32.64 

3 2x10 50 55.44 28.18 

4 1x50 100 37.57 30.03 

5 2x50 100 22.01 41.62 

6 2x50 150 13.89 14.78 

7 2x50 170 12.78 12.50 

8 3x50 150 20.23 15.16 

9 1x60 100 34.61 32.71 

10 1x100 100 25.59 34.31 

11 1x600 50 19.24 12.46 

12 1x800 50 17.29 9.56 

13 1x1000 50 21.49 14.50 

14 1x1100 50 17.91 11.66 

15 1x1500 50 24.34 11.30 

LSTM structure 7 from Table 3.9 is chosen as the training and validation losses reached 

the minimum among the tested neural network structures and hyperparameters. The 

selected hyper-parameters correspond to those where the training and validation losses 

converged and reached a minimum, 12.78 and 12.50, respectively. This was achieved 

using the stochastic gradient descend optimisation algorithm ADAM (this term is not an 

acronym and is derived from ‘Adaptive Moment Estimation’), a learning rate of 0.001, 

and hyperbolic tangent (TANH) activation. The neural network structure consists of a 

sequence input layer receiving 8 samples, 2 fully connected hidden layers with 50 LSTM 

units each, and a regression layer with 5 outputs, corresponding to the number of 

predicted samples. The network was trained with 90% of the dataset and tested with 10%.  

Machine learning algorithms can be evaluated using the train-test split technique, which 
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is used for classification and regression problems. Essentially, the procedure involves 

subdividing a dataset into two parts. The first subset is used to fit the model and is referred 

to as the training dataset. The second subset is not used to train the model; instead, the 

input element of the dataset is provided to the model, then predictions are made and 

compared to the expected values. This second dataset is referred to as the test dataset 

[124]. The main purpose of splitting the dataset is to estimate the performance of the 

machine learning model on new data: data not used to train the model. The train-test 

procedure is appropriate when there is a sufficiently large dataset available. As the dataset 

used in this work is not big (8465 samples), the split proportion was chosen to be 90% 

for training and 10% for testing. The Python program to train and test the neural network 

is presented in appendix A at the end of this thesis. 

The model’s hyper-parameters were tuned to achieve good performance considering the 

following conditions: 

a) The network must predict from the measured real time raw data, as there is no 

time to perform data pre-processing such as de-noising, normalisation, and 

standardisation, which would introduce more delay. 

b) The network must be able to perform the prediction with minimum delay. The 

ideal would be zero delay, however, the delay depends on the computing 

capability of the machine used to perform the predictions. 

c) Prediction error must be minimal for any driving condition. A prediction error 

approaching zero would be ideal. However, the error depends on several factors 

and can be high especially with highly stochastic datasets. 

Forecasting based on raw data has some limitations and drawbacks, such as 

computationally demanding training phases, the need for a big dataset, a large number of 

hyper-parameters, and sensitivity to measurement noise. The LSTM neural network was 

created and trained in Keras, a deep learning API written in Python, using a dataset 
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(duration=8465s) containing the power demand obtained by simulating the vehicle with 

a battery only ESS with the following 8 driving cycles (in order):  

1. Artemis Urban 

2. Urban Dynamometer Driving Schedule (HUDDS) 

3. Highway Fuel Economy Test (HWFET) 

4. JC08 Japanese Chassis Dynamometer Test 

5. Unified Dynamometer Driving Schedule LA92 

6. Chassis Dynamometer Test SC03 

7. EPA Driving Schedule for Light-Duty Vehicles and Trucks (US06) 

8. Worldwide Harmonized Light Vehicle Test Procedure (WLTP3). (The 10% of the 

dataset used for testing corresponds to a portion of this driving test) 

The speed vs time schedule for each driving cycle is shown in Fig. 3.31. 
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Fig 3.31. Driving cycles (Speed vs time) used to train and the LSTM neural network 

The power demand associated with any driving cycle depends on several factors including 

driving style, road condition, road gradient, weather, traffic conditions, etc. This makes 

accurate prediction difficult. Due to the complex non-linearity of the power demand 

associated with driving, prediction errors are inevitable, especially with multi-step time 
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series forecasting. The generalisation capability of the trained network is tested with 4 

driving cycles not seen by the network during training, obtaining a prediction Root Mean 

Squared Error (RMSE) of 8.91 kW for the FTP72, 5.75 kW for the Inspection and 

Maintenance Driving Schedule (IM240), 3.31 kW for the Extra Urban Driving Cycle 

(EUDC), and 16.19 kW for the Artemis Motorway 130 km/hr, when predicting 5 future 

samples. Additionally, the prediction RMSE for the US06 driving cycle is 11.79 kW and 

3.59 kW for the WLTP3 driving cycle, which were used during the training stage. 

Predictions were executed in a machine with an 8th generation Intel Core i5, 32 GB RAM, 

1.9 GHz 8th generation processor. On average, the network took 0.9s to execute the 

predictions. This extra delay is variable and is highly dependent on the performance of 

the computer used. This delay was around 2s with a computer with an Intel core i5, 8 GB 

RAM and 2.3 GHz Sandy Bridge processor. This extra delay is added to the DWT delay 

yielding a total of ~4.9s. Power demand is sampled at 1 Hz, hence the prediction window 

of 5 samples. Fig.3.32 presents the driving cycles used for testing the trained neural 

network. 

 

 

 

 

Fig. 3.32. Driving cycles used to test the trained neural network 
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3.5 Energy management system performance evaluation 

In this section, 4 different real-time implementation strategies for the DWT are evaluated 

in terms of SC assistance during motoring, peak assistance, braking energy recuperation, 

energy circulation, and energy efficiency. The 4 strategies depend on how the SC 

reference current 
( )ref SCI  is determined: 

A. DWT high frequency component 

B. Predicted DWT high frequency component 

C. Difference between the real-time current demand and the DWT low frequency 

component 

D. Difference between the real-time current demand and the predicted DWT low 

frequency component 

A schematic of these 4 strategies is shown in Fig. 3.33. The detailed EV model is 

implemented in Matlab-Simulink along with the DWT strategies and tested using a 

variety of driving cycles representing real-world loading conditions including urban and 

highway scenarios. The battery and SC initial SOC is set to 80% for simulations. The 

sampling frequency is 1Hz and the DWT level of decomposition is 2, which produces a 

delay of 4 seconds. The sampling rate of 1Hz is chosen considering that the frequencies 

of interest associated with the power demand obtained for different driving cycles lays 

below 0.5 Hz. Another reason is to limit the number of samples to be predicted by the 

neural network. Higher sampling rates require to predict more samples and that would 

increase the complexity of the neural network as well as the computational burden during 

training and testing. 
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Fig. 3.33. SC current reference calculation. a) Direct DWT high frequency component, 

b) Predicted DWT high frequency component, c) Difference between current demand 

and DWT low frequency component, d) Difference between current demand and 

predicted DWT low frequency component 

3.5.1 Direct discrete wavelet transform high frequency component (strategy A) 

The current demand associated with the FTP72 driving cycle (duration of 1372 seconds) 

is sampled at 1Hz and decomposed into 2 levels. The DWT high frequency component 

(125mhz -500mhz) is used directly to control the SC power flow. As the control signal is 

delayed, energy is circulated between the battery and the SC, putting greater stress on the 

battery as it supplies more power to recharge the SC while receiving minimal assistance 

during the periods of positive changes in current demand. This is evident in Fig. 3.34, 

where at t = 57 seconds, the current demand is 41A, but the battery supplies 68A as the 

SC is commanded to recharge. In addition, the SC does not provide assistance during the 

initial acceleration (t=20 seconds to t=26 seconds) and fails to recuperate braking power, 

which is mostly absorbed by the battery. SC assistance during motoring and braking is 

represented by the shaded areas to highlight the effective contribution of the SC. 
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Fig. 3.34. DWT high frequency component allocated to the SC for the FTP72 driving 

cycle (shown from 20 seconds to 65 seconds) 

Fig. 3.35 and Fig. 3.37 shows the energy balance for the motoring and braking stages, 

respectively. The total energy required by the EV during motoring is 1668Wh and the 

energy produced during braking is 470.8Wh. This is calculated according to (eq. 3.39) 

using the current demand. The same procedure is used to calculate the battery and SC 

energies using the battery and SC current, respectively. The battery provides a total of 

1765Wh during motoring and recovers a total of 569.4Wh during braking. The SC 

provides 413.7 Wh during motoring and recovers 412.1 Wh during braking. 

The battery and the SC provided a total of 2178.7 Wh (1765Wh+413.7Wh) of motoring 

energy (Fig. 3.35) which is equivalent to 30.6% (510.7Wh) more energy than the required 

(1668Wh) during the driving cycle. From the 413.7Wh provided by the SC during the 

motoring stage, 227.4Wh are effectively contributed to motoring. The remaining 186.3 

Wh are transferred to the battery. On the other hand, from the 1765Wh provided by the 

battery, 1440.6Wh are effectively contributing towards motoring while 324.4 Wh are 

transferred to the SC through the DC/DC converter. The total energy circulating between 

the battery and SC is 510.7 Wh (186.3 Wh+324.4 Wh).  
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Fig. 3.35. Motoring stage energy balance 

The SC provides a total of 227.4Wh of effective assistance during the motoring stage, 

which correspond to the positive blue shaded areas in Fig. 3.34. However, only 75.38Wh 

corresponds to assistance during positive changes in the current rate. This is shown as the 

positive blue shaded areas in Fig. 3.36, which depicts the overlap between the SC current 

and the benchmark reference (see Fig. 3.26). 

 
Fig. 3.36. Assessment of SC effective contribution during changes in the acceleration 

rate. Comparison between the SC current and current rate reference  

The energy balance for the braking stage is shown in Fig. 3.37.  

The SC recovers only 87.5Wh of the 470.8Wh generated during braking (negative blue 

shaded areas in Fig. 3.36). The battery absorbs the remaining 383.3Wh. In total the HESS 
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recovered 981.5 Wh that results from adding the energy recovered by the battery (569.4 

Wh) and energy recoverd by the SC (412.1 Wh). The energy circulating in the system is 

510.7 Wh (186.1 Wh+ 324.6 Wh). 

 

Fig. 3.37. Braking stage energy balance 

In an ideal scenario, the excess energy circulating between the battery and SC should be 

controlled and minimized to the magnitudes necessary to maintain the SOC of the SC, 

therefore improving the system efficiency. The system efficiency would be improved 

when the battery discharges additional power (on top of the power demand) only with the 

purpose to maintain the SOC of the SC at operational levels. This does not occur with the 

strategy discussed herein. The previous analysis considers a lossless DC/DC converter. 

In a practical scenario, the DC/DC efficiency can fluctuate between 75% and 98% [125], 

so higher energy circulation translates to higher energy losses in the system and therefore 

a reduction in the overall efficiency. It is important to note that energy circulation by itself 

is an inefficient process, so by reducing its magnitude, the system efficiency can be 

improved.  

The system’s energy efficiency is calculated by considering the energy efficiency during 

the motoring and braking stages. The motoring stage efficiency results from the division 

between the total energy demand during motoring and the total energy supplied by the 
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HESS (battery+SC). The braking stage efficiency is calculated as the division between 

the total energy generated during braking and the total energy recovered by the HESS. 

These efficiencies are calculated as follow: 

 
m m mT Batt SCE E E   (3.42) 

 
br br brT Batt SCE E E   (3.43) 

 100demand
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E
  (3.45) 

where: 

mTE  Total energy supplied by the HESS during motoring (Wh) 

mBattE                     Energy supplied by the battery during motoring (Wh) 

mSCE                       Energy supplied by the SC during motoring (Wh) 

brTE  Total energy recovered by the HESS during braking (Wh) 

brBattE                     Energy recovered by the battery during braking (Wh) 

brSCE                       Energy recovered by the SC during braking (Wh) 

meff                        Motoring energy efficiency (%) 

demandTE                    Total energy demand during motoring (Wh) 

breff                        Braking energy efficiency (%) 

brakingTE                    Total energy generated during braking (Wh) 

 

The product between the motoring energy efficiency and the braking energy efficiency 

yields the efficiency of the system effsys: 

 
sys m breff eff eff   (3.46) 
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Calculations of efficiency for the strategy presented herein considering the FTP72 driving 

cycle are presented in Table 3.10. 

Table 3.10. Energy efficiency calculation for the FTP72 driving cycle and EMS strategy 

A. 

 Motoring FTP72 A 

a Total energy demand Wh 1668 

b Total battery Energy supplied Wh 1765 

c Total SC energy supplied Wh 413.7 

d Energy circulation Wh (b+c-a) 510.7 

 Braking FTP72  

e Total energy generated braking Wh 470.8 

f Total energy absorbed by SC Wh 412.1 

g Total energy absorbed Battery Wh 569.4 

h Energy circulation Wh (f+g-e) 510.7 

 Energy balance  

i Total energy motoring HESS Wh (b+c) 2178.7 

j Total energy recovered HESS (f+g) 981.5 

 Net energy Wh (i-j) 1197.2 

 Net energy demand Wh (a-e) 1197.2 

 Efficiency  

k Energy efficiency motoring (%) (a/i*100) 76.6% 

l Energy efficiency braking (%) (e/j*100) 48.0% 

 System efficiency (%) (K*L) 36.7% 

 

The total energy demand during the motoring stage is 1668 Wh, however, the HESS 

supplied a total of 2178.7 Wh (battery=1765 Wh; SC=413.7 Wh). The motoring 

efficiency is therefore 76.6% according to eq. 3.44. During braking, the total energy 

generated is 470.8 Wh, however, the HESS recovered a total of 981.5 Wh. The excess 

energy circulating in the system is 510.7 Wh. The efficiency during braking is therefore 

48% according to eq. 3.45. The system’s efficiency is 36.7% according to eq.3.46. 

It is worth noting that the net energy demand (motoring energy – braking energy) is equal 

to the net energy provided by the HESS, indicating that the energy system is balanced. 

3.5.2 Predicted discrete wavelet transform high frequency component (strategy B) 

In Fig. 3.38, the predicted DWT high frequency component is allocated to the SC 

according to the strategy presented in Fig. 3.33b, relieving the battery from excessive 
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energy circulation when compared to approach A (see Fig. 3.34) as a consequence of 

delay compensation. However, the battery still lacks SC assistance during acceleration 

and braking. With the predicted DWT approach, the battery recoups most of the generated 

braking power. Delay compensation with the prediction approach reduces energy 

circulation but it is still not sufficient to fulfil the objective of the SC in the HESS as it 

doesn’t assist the battery during acceleration and fails to recover braking energy. The 

effective contribution of the SC is represented by the shaded areas. 

 
Fig. 3.38. Predicted DWT high frequency component allocated to the SC for the FTP72 

driving cycle 

 

The energy balance of the motoring stage is presented in Fig. 3.39. Assuming a lossless 

DC/DC converter, the SC provides a total of 301.1 Wh from which 87.8 Wh are circulated 

though the DC/DC converter and transferred to the battery. The SC provides a total of 

213.3 Wh (12.8%) of effective assistance during the motoring stage. From this effective 

assistance, 62.83 Wh are provided by the SC during positive changes in the current rate, 

which results by calculating the area of the overlap between the SC current and the 

benchmark reference. On the other hand, the total energy provided by the battery is 1684 

Wh, from which 1454.7 Wh are contributed to motoring and 229.3 Wh are transferred to 

the SC. A total of 317.1 Wh (229.3 Wh+87.8 Wh) are circulated between the battery and 

SC. 



107  CHAPTER 3 

 

 

 

Fig.3.39. Energy balance of the motoring stage with EMS strategy B 

Compared to strategy A, energy circulation is reduced from 510.7 Wh to 317.1 Wh as a 

consequence of time delay compensation. Although energy circulation is lower than 

strategy A, the effective contribution of the SC during motoring is lower (strategy A: 

75.38Wh vs strategy B: 62.83Wh). As a consequence, the power demand prediction did 

not improve the SC performance in terms of effective assistance but reduced the energy 

circulation in the system.  

During the braking stage (Fig 3.40), the battery recovered 487.3 Wh and the SC 300.6 

Wh for a total of 787.9 Wh. However, only 470.8 Wh were generated during braking.  
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Fig. 3.40. Energy balance during the braking stage with EMS strategy B 

The motoring efficiency is 84%. The total energy supplied by the HESS during motoring 

is 1985.1 Wh (battery :1684 Wh+ SC:301.1 Wh) while the total demand during motoring 

is 1668 Wh. 

The system’s efficiency is 50.2%. Calculations are shown in Table 3.11. 

Table 3.11.  Energy efficiency calculation for the FTP72 driving cycle and EMS 

strategy B 

 Motoring FTP72 B 

a Total energy demand Wh 1668 

b Total battery Energy supplied Wh 1684 

c Total SC energy supplied Wh 301.1 

d Energy circulation Wh (b+c-a) 317.1 

 Braking FTP72  

e Total energy generated braking Wh 470.8 

f Total energy absorbed by SC Wh 300.6 

g Total energy absorbed Battery Wh 487.3 

h Energy circulation Wh (f+g-e) 317.1 

 Energy balance  

i Total energy motoring HESS Wh (b+c) 1985.1 

j Total energy recovered HESS (f+g) 787.9 

 Net energy Wh (i-j) 1197.2 

 Net energy demand Wh (a-e) 1197.2 

 Efficiency  

k Energy efficiency motoring (%) (a/i*100) 84.0% 

l Energy efficiency braking (%) (e/j*100) 59.8% 

 System efficiency (%) (K*L) 50.2% 
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3.5.3 High frequency derived as the difference between the real-time current 

demand and the discrete wavelet transform low frequency component (strategy C) 

Current demand (ITotal) is decomposed (2 levels) with the DWT into low and high 

frequencies. The low frequency component is subtracted from the current demand (ITotal) 

to obtain the SC current reference according to Fig. 3.33c. The SC assists the battery 

during acceleration and peak demand during motoring (positive current demand) and 

recuperates most of the braking current generated as shown in Fig. 3.41. However, energy 

circulation increases between the battery and SC, for example between t=30 seconds to 

t=36 seconds. With this approach, the SC provides higher energy to assist the battery 

during motoring and further relieves the battery from braking compared to strategies A 

and B.  

 
Fig. 3.41. Current distribution when the SC reference current is derived as the 

difference between the real time current demand and the DWT low frequency 

component 

The energy balance of the motoring stage is shown in Fig.3.42. The battery and SC 

provided a total of 2401.2 Wh (1609Wh+792.2 Wh), from which 733.2 Wh are 

circulating between the battery and SC. The excess energy produced by the battery is 

519.9 Wh, which is allocated to the SC. On the other hand, the SC produces an excess 

energy of 213.3 Wh, which are absorbed by the battery.  
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Fig.3.42. Energy balance of the motoring stage with EMS strategy C 

 

The braking stage energy balance is shown in Fig.3.43. From the 470.8 Wh generated 

during braking, 299 Wh are absorbed by the SC and 171.8 Wh by the battery. However, 

due to energy circulating in the system (733.2 Wh), the battery receives a total of 385 

Wh and the SC a total of 819 Wh.  

 

Fig.3.43. Energy balance of the braking stage with EMS strategy C 

 



111  CHAPTER 3 

 

 

The energy efficiency of this strategy is 27.2%, which is lower than strategy A (36.7%) 

and strategy B (50.2%). The lower energy efficiency is influenced by the higher energy 

circulation achieved with this strategy. Efficiency calculations are shown in Table 3.12. 

Table 3.12.  Energy efficiency calculation for the FTP72 driving cycle and EMS 

strategy C 

 Motoring FTP72 C 

a Total energy demand Wh 1668 

b Total battery Energy supplied Wh 1609 

c Total SC energy supplied Wh 792.2 

d Energy circulation Wh (b+c-a) 733.2 

 Braking FTP72  

e Total energy generated braking Wh 470.8 

f Total energy absorbed by SC Wh 819 

g Total energy absorbed Battery Wh 385 

h Energy circulation Wh (f+g-e) 733.2 

 Energy balance  

i Total energy motoring HESS Wh (b+c) 2401.2 

j Total energy recovered HESS (f+g) 1204 

 Net energy Wh (i-j) 1197.2 

 Net energy demand Wh (a-e) 1197.2 

 Efficiency  

k Energy efficiency motoring (%) (a/i*100) 69.5% 

l Energy efficiency braking (%) (e/j*100) 39.1% 

 System efficiency (%) (K*L) 27.2% 

 

For this specific strategy, lower energy efficiency does not mean that the system’s 

performance of the system is worse. With this strategy, the effective SC motoring 

assistance (34.7%) was higher than strategy A (13.6%) and B (12.8%), as shown in Table 

3.14. In terms of assistance during positive current rate changes, strategy C (59.8%) 

showed to be superior to strategy A (22%) and strategy B (18.5%). This trend was 

maintained for SC performance during braking, being strategy C the higher performing 

strategy as it achieved 63.4% of braking recovery against 18% achieved with strategy A 

and 10.9% with strategy B. 
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3.5.4 High frequency derived as the difference between the real-time current 

demand and the predicted discrete wavelet transform low frequency component 

(strategy D) 

Using the difference between the current demand and the predicted DWT low frequency 

component (Fig. 3.33d) results in the SC providing assistance during peak demand which 

is evident between t=20 seconds to t=25 seconds, t=40 seconds to t=45 seconds and from 

t=54 seconds to t=56 seconds in Fig. 3.44.  

 

Fig. 3.44. Current distribution when the SC current reference is derived as the 

difference between the real time current demand and the predicted DWT low frequency 

component 

Additionally, the SC recovers most of the power generated during braking. Shaded areas 

depict the SC effective contribution. 

The energy balance for the motoring stage (Fig 3.45) shows that a total of 2250.5 Wh 

(1845 Wh+ 405.5 Wh) are provided by the battery and SC, from which 565.5 Wh are 

circulating (73.1 wh + 492.4 Wh) between the battery and SC. The SC provides and 

effective contribution of 332.4 Wh during motoring. 

Prediction error when the input to the 

neural network is zero 
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Fig.3.45. Energy balance of the motoring stage with EMS strategy D  

 

The energy balance for the braking stage (Fig. 3.46) shows that from the 117.2 Wh 

generated, 105.8 Wh are recovered by the SC and 11.4 Wh by the battery. The total energy 

recovered by the SC is 598.1 Wh as the battery supplies an excess of 492.3 Wh to the SC. 

The total energy absorbed by the SC is 84.45 Wh as the SC supplies an extra 73.05 Wh. 

The total recuperated braking energy is lower than with strategy A, B, and C because the 

SOC of the SC is high and therefore it cannot take more charge. The EMS limits the 

regenerative braking depending on the SOC of the SC. 
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Fig.3.46. Energy balance of the braking stage with EMS strategy D 

 

The efficiency during motoring is 74.9% which is higher than strategy C (69.5%) and 

lower than strategy A (76.6%) and strategy B (84%). The overall efficiency achieved by 

this strategy drops to 12.9% because the energy efficiency during braking is low at 17.2% 

as shown in Table 3.14. 

Energy efficiency calculations for this strategy are presented in Table 3.13. 
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Table 3.13.  Energy efficiency calculation for the FTP72 driving cycle and EMS 

strategy D 

 Motoring FTP72 D 

a Total energy demand Wh 1685 

b Total battery Energy supplied Wh 1845 

c Total SC energy supplied Wh 405.5 

d Energy circulation Wh (b+c-a) 565.5 

 Braking FTP72  

e Total energy generated braking Wh 117.2 

f Total energy absorbed by SC Wh 598.1 

g Total energy absorbed Battery Wh 84.6 

h Energy circulation Wh (f+g-e) 565.5 

 Energy balance  

i Total energy motoring HESS Wh (b+c) 2250.5 

j Total energy recovered HESS (f+g) 682.7 

 Net energy Wh (i-j) 1567.8 

 Net energy demand Wh (a-e) 1567.8 

 Efficiency  

k Energy efficiency motoring (%) (a/i*100) 74.9% 

l Energy efficiency braking (%) (e/j*100) 17.2% 

 System efficiency (%) (K*L) 12.9% 

 

3.6 Performance comparison and discussion  

It is obvious that strategies C and D offer the best results in terms of SC assistance during 

motoring and braking. However, a meaningful comparison requires an analysis of the 

effective contribution of the SC, especially the assistance given during positive current 

rate, and braking. These are referred as SC performance. Table 3.14 shows the results for 

the EMS strategies presented in this paper with four different driving cycles.  
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Table 3.14. SC performance and efficiency comparison 

Driving 

cycle 

Strategy  

(ranking) 

Energy 

Circulation (Wh): 

Lower is best 

(Additional Energy 

on top of: 

FTP72=1668Wh, 

US06=2601Wh, 

WLTP3=3616Wh 

Artemis=5525Wh) 

SC Effective motoring 

assistance (Wh): 

 Higher is best 

(FTP72 Max=1668Wh) 

(US06 Max=2601Wh) 

(WLTP3 Max=3616Wh) 

(Artemis=5525Wh) 

SC Assistance during 

positive current rate 

(Wh): 

Higher is best 
(FTP72 Max=306.6Wh) 

(US06 Max=587.4Wh) 

(WLTP3 Max=366.2Wh) 

(Artemis=979.6Wh) 

SC braking recovery 

(Wh): 

Higher is best 
(FTP72 Max=470.8Wh) 

(US06 Max=452.9Wh) 

(WLTP3 Max=755.7Wh) 

(Artemis=565Wh) 

Energy Efficiency (%) 

Higher is best 

Overall System 

Efficiency index(%) 

Higher is best 

Product of performance 

indexes excluding Energy 

circulation 

FTP72 

(Urban) 

A(3) 31.4% 13.6% 22.0% 18.0% 36.7% 0.2% 

B(4) 19.0% 12.8% 18.5% 10.9% 50.2% 0.13% 

C(1) 44.0% 34.7% 59.8% 63.4% 27.20% 3.58% 

D(2) 33.9% 19.9% 41.1% 22.5% 12.9% 0.24% 

WLTP3 

(Mixed) 

A(4) 17.4% 8.1% 21.9% 15.0% 46.5% 0.12% 

B(3) 16.5% 9.9% 23.3% 13.1% 47.9% 0.14% 

C(1) 33.0% 26.0% 76.7% 57.0% 29.1% 3.31% 

D(2) 20.6% 17.4% 55.3% 24.5% 17.6% 0.41% 

US06 

(Motorwa

y) 

A(3) 27.6% 15.7% 17.0% 22.1% 30.3% 0.18% 

B(4) 18.5% 9.6% 8.8% 11.4% 41% 0.04% 

C(2) 34.6% 32.5% 44.0% 57.0% 24.9% 2.03% 

D(1) 33.3% 44.3% 73.5% 95.4% 25.4% 7.89% 

Artemis 

Motorway 

A(3) 20.5% 12.2% 20.5% 16.6% 27.6% 0.11% 

B(4) 14.2% 9.4% 19.1% 16.7% 36.7% 0.11% 

C(2) 24.7% 23.9% 42.0% 70.1% 23.5% 1.65% 

D(1) 14.7% 51.2% 70.2% 97.7% 35.8% 12.57% 
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3.6.1 Direct discrete wavelet transform high frequency component (strategy A) vs 

predicted discrete wavelet transformhigh frequency component (strategy B) 

The direct use of the DWT high frequency component to obtain the SC current reference 

(strategy A) results in low SC effective assistance caused by a delayed response of the 

SC with respect to the real time demand. The percentage of SC effective motoring 

assistance is calculated as the ratio between the SC positive energy contribution to the 

total positive energy demand (FTP72=13.6%, WLTP3=8.1%, US06=15.7%, 

Artemis=12.2%). Prediticting the DWT high frequency component (strategy B) results in 

a reduction of the SC performance influenced by the prediction error. The SC 

performance during motoring and braking is reduced for the FTP72, US06 and Artemis 

driving cycles which have RMSE of 8.91 kW, 11.79 kW and 16.19 kW, respectively. For 

the FTP72 the SC effective contribution is reduced from 13.6% to 12.8%, for the US06 

it is reduced from 15.7% to 9.6%, and for the Artemis motorway it is reduced from 12.2% 

to 9.4%, as shown in Table 3.14. The smaller prediction error obtained for the WLTP3 

driving cycle (RMSE=3.59 kW) results in a marginal improvement in the SC effective 

contribution, as it rises from 8.1% to 9.9%. However, SC performance during braking is 

reduced from 15% to 13.1%. 

With regards to energy circulation, predicting the power demand to compensate for the 

DWT high frequency component delay (Strategy B) leads to an expected reduction when 

compared to direct use of the DWT high frequency component (Strategy A). This is 

observed for each driving cycle. As less energy is circulating between the battery and SC, 

energy efficiency is improved. Results show that the complexity added by predicting the 

DWT high frequency component does not reap benefits in terms of SC performance. 

However, in terms of energy efficiency, strategy B shows a significant improvement as 

the energy circulating in the system is lower at 317.1 Wh against 510.7 Wh. Additionally, 
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the energy efficiency during braking is higher at 59.8% as shown in Table 3.14. Strategy 

B outperforms other strategies in terms of energy efficiency, but does not perform as good 

in terms of SC performance compared to other strategies. 

Accounting for the SC performance indexes and the energy efficiency, the efficiency 

index of the strategy is calculated. The energy circulation index is not considered in the 

calculation as it has been already accounted for in the energy efficiency calculation. 

Considering the efficiency index, strategy B does not improve the system performance, 

therefore, power demand prediction in this case is not beneficial.  

3.6.2 Difference between the real-time current demand and the discrete wavelet 

transform low frequency component (strategy C) vs difference between the real-time 

current demand and the predicted discrete wavelet transform low frequency 

component (strategy D) 

With strategy C, the SC supplies the current demand during the delay, consequently 

improving the SC assistance performance. A significant improvement of SC effective 

assistance during motoring, positive current rate, and braking is observed when 

comparing strategies C and D with strategies A and B for each driving cycle, as shown in 

Fig. 3.47. However, this improvement comes at the cost of higher energy circulation 

between the battery and SC, which increases energy losses due to DC/DC conversion.  
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Fig 3.47. SC performance results comparison 

With strategy D, energy circulation and its associated energy losses are reduced as a 

consequence of delay compensation, when compared with strategy C. Meanwhile, SC 

performance does not improve for urban or mixed driving cycles (FTP72, WLTP3), but 

it does for highway driving cycles (US06 and Artemis Motorway). Strategy D provides 

good results over strategies A and B, however, its implementation in real time is complex. 

Furthermore, the variable prediction error obtained for different driving cycles as well the 

variable time required for the prediction algorithm excecution influence SC performance. 

Considering that the role of the SC is to assist the battery to cope with sudden power 

change and recover regenerative braking, strategy C provides the best option as it 

improves the SC performance in all driving conditions and it is easier to implement in 

real time. This, however, comes at a relatively higher energy circulation which increases 

the system energy loss and a reduction in the system’s energy efficiency.  

Results show that obtaining the SC current reference as the difference between the real 

time current demand and the DWT low frequency component (strategy C) improves the 

SC assistance during motoring and braking when compared to the prediction based 

method in all driving conditions. Prediction proves to compensate for the delay and 
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reduce energy circulation but it does not improve the SC performance. With aggressive 

driving cycles such as the US06 and Artemis motorway, the best results are obtained with 

a current reference calculated as the difference between the real time current demand and 

the predicted DWT low frequency component (strategy D). Real time implementation is, 

however, more difficult. The overall efficiency index shown in Table 3.14, shows that 

strategy C outperforms the others, therefore, strategy C is recommended as the best 

control strategy in terms of SC performance and overall efficiency as it enables a DWT 

based EMS with 4 second delay frequency components to perform in real time.   

3.7 System efficiency with additional driving cycles 

Energy efficiency simply means using less energy to perform the same task, thus 

eliminating energy waste. The energy efficiency analysis was carried out for 4 different 

driving cycles: FTP72, US06, Artemis, and WLTP3. In all cases, strategy B (prediction 

of the DWT HF component) yields the best energy efficiency. The results are shown in 

Table 3.15. 

Table 3.15 EMS strategies efficiency comparison for the FTP72, US06, Artemis, and 

WLTP3 driving cycles 

 Motoring FTP72 A B C D 

a Total energy demand Wh 1668 1668 1668 1685 

b Total battery Energy supplied Wh 1765 1684 1609 1845 

c Total SC energy supplied Wh 413.7 301.1 792.2 405.5 

d Energy circulation Wh (b+c-a) 510.7 317.1 733.2 565.5 

 Braking FTP72     

e Total energy generated braking Wh 470.8 470.8 470.8 117.2 

f Total energy absorbed by SC Wh 412.1 300.6 819 598.1 

g Total energy absorbed Battery Wh 569.4 487.3 385 84.6 

h Energy circulation Wh (f+g-e) 510.7 317.1 733.2 565.5 

 Energy balance     

i Total energy motoring HESS Wh (b+c) 2178.7 1985.1 2401.2 2250.5 

j Total energy recovered HESS (f+g) 981.5 787.9 1204 682.7 

 Net energy Wh (i-j) 1197.2 1197.2 1197.2 1567.8 

 Net energy demand Wh (a-e) 1197.2 1197.2 1197.2 1567.8 

 Efficiency     

k Energy efficiency motoring (%) (a/i*100) 76.6% 84.0% 69.5% 74.9% 

l Energy efficiency braking (%) (e/j*100) 48.0% 59.8% 39.1% 17.2% 

 System efficiency (%) (K*L) 36.7% 50.2% 27.2% 12.9% 
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 Motoring US06 A B C D 

a Total energy demand Wh 2601 2601 2601 2611 

b Total battery Energy supplied Wh 2703 2682 2502 2316 

c Total SC energy supplied Wh 616.3 399.3 997.7 1161 

d Energy circulation Wh (b+c-a) 718.3 480.3 898.7 866 

 Braking US06     

e Total energy generated braking Wh 452.9 452.9 452.9 442.4 

f Total energy absorbed by SC Wh 609.7 396.6 1005.5 1289 

g Total energy absorbed Battery Wh 561.5 536.6 346.1 19.4 

h Energy circulation Wh (f+g-e) 718.3 480.3 898.7 866 

 Energy balance     

i Total energy motoring HESS Wh (b+c) 3319.3 3081.3 3499.7 3477 

j Total energy recovered HESS (f+g) 1171.2 933.2 1351.6 1308.4 

 Net energy Wh (i-j) 2148.1 2148.1 2148.1 2168.6 

 Net energy demand Wh (a-e) 2148.1 2148.1 2148.1 2168.6 

 Efficiency     

k Energy efficiency motoring (%) (a/i*100) 78.4% 84.4% 74.3% 75.1% 

l Energy efficiency braking (%) (e/j*100) 38.7% 48.5% 33.5% 33.8% 

 System efficiency (%) (K*L) 30.3% 41.0% 24.9% 25.4% 

 

  Motoring Artemis A B C D 

a Total energy demand Wh 5525 5525 5525 5525 

b Total battery Energy supplied Wh 5704 5607 5341 3490 

c Total SC energy supplied Wh 954 701 1550 2846 

d Energy circulation Wh (b+c-a) 1133 783 1366 811 

 Braking Artemis     

e Total energy generated braking Wh 565 565 565 565 

f Total energy absorbed by SC Wh 945.7 696.9 1534 1345 

g Total energy absorbed Battery Wh 752.3 651.1 397 31 

h Energy circulation Wh (f+g-e) 1133 783 1366 811 

 Energy balance     

i Total energy motoring HESS Wh (b+c) 6658 6308 6891 6336 

j Total energy recovered HESS (f+g) 1698 1348 1931 1376 

 Net energy Wh (i-j) 4960 4960 4960 4960 

 Net energy demand Wh (a-e) 4960 4960 4960 4960 

 Efficiency     

k Energy efficiency motoring (%) (a/i*100) 83.0% 87.6% 80.2% 87.2% 

l Energy efficiency braking (%) (e/j*100) 33.3% 41.9% 29.3% 41.1% 

 System efficiency (%) (K*L) 27.6% 36.7% 23.5% 35.8% 
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 Motoring WLTP3 A B C D 

a Total energy demand Wh 3616 3616 3616 3649 

b Total battery Energy supplied Wh 3726 3674 3538 3708 

c Total SC energy supplied Wh 518.3 540.3 1272 684.3 

d Energy circulation Wh (b+c-a) 628.3 598.3 1194 743.3 

 Braking WLTP3     

e Total energy generated braking Wh 755.7 755.7 755.7 199.3 

f Total energy absorbed by SC Wh 516.9 539 1292.7 872.2 

g Total energy absorbed Battery Wh 867.1 815 657 70.4 

h Energy circulation Wh (f+g-e) 628.3 598.3 1194 743.3 

 Energy balance     

i Total energy motoring HESS Wh (b+c) 4244.3 4214.3 4810 4392.3 

j Total energy recovered HESS (f+g) 1384 1354 1949.7 942.6 

 Net energy Wh (i-j) 2860.3 2860.3 2860.3 3449.7 

 Net energy demand Wh (a-e) 2860.3 2860.3 2860.3 3449.7 

 Efficiency     

k Energy efficiency motoring (%) (a/i*100) 85.2% 85.8% 75.2% 83.1% 

l Energy efficiency braking (%) (e/j*100) 54.6% 55.8% 38.8% 21.1% 

 System efficiency (%) (K*L) 46.5% 47.9% 29.1% 17.6% 

 

In chapter 4, a novel real time EMS that outperforms the 4 strategies discussed above will 

be proposed. 

 



 

 CHAPTER 

4 PROPOSED REAL TIME ENERGY 
MANAGEMENT SYSTEM WITH THE DWT AND 
CONVENTIONAL FILTERS 

4 

4.1. Introduction 

This chapter details the development of a simple yet efficient EMS that deals with time 

delays so that the SC provides timely assistance during motoring and recovers the braking 

energy generated. The energy circulation between the battery and SC can be controlled 

to keep the SC charge availability during the driving cycle. When the SC charge is high, 

the generated braking energy is allocated to the battery observing the recommended 

charging C-rate. This approach is tested with the DWT, where a delay of up to 4 seconds 

can be managed without the need for any complicated prediction strategy. With the 

sampling rate of 1Hz, higher levels of DWT decomposition, i.e. 3, would yield longer 

time delays, i.e. 8 seconds, which are more difficult to manage. In those cases prediction 

can be considered a viable solution.  Testing is also performed with first order filters. 

Detailed simulation results show that the proposed method eliminates undesirable power 

circulation allowing the SC to assist the battery throughout the full battery discharge 

cycle. The performance of the HESS is improved when compared to the traditional use 

of conventional filtration techniques and the DWT. The superiority of the proposed 

strategy is demonstrated with a detailed comparison using US06 and FTP72 driving 

cycles. 

4.2. Background 

In chapter III, the DWT frequency decoupling approach was presented. The effects of the 

delay introduced by the decomposition process in the frequency components were 

analysed, finding that the SC was not assisting the battery at the right time nor recovering 
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braking energy. The delayed response of the SC produced energy circulation between the 

battery and SC, allowing for an inefficient use of energy. Several researchers suggested 

power demand prediction to solve the time delay problem and enable the DWT to work 

in real time. DWT delay compensation with prediction reduces energy circulation in the 

system but it doesn’t achieve significant improvements in terms of SC assistance, so its 

complexity does not bring enough benefits to justify its implementation. 

In this chapter a novel EMS is proposed, where the SC provides a portion of the required 

power during motoring (positive power demand) and recovers the generated braking 

power (negative power demand). The method derives the high frequency reference signal 

as the difference between the real-time current demand measured in the DC-bus and the 

low-frequency component of the current demand obtained with a low pass filter. The 

positive part of this signal is used as the SC motoring current reference, which is then 

combined with the signal representing the generated braking power (negative power 

demand). To ensure the SC is always available to assist the battery, the SC is recharged 

from the battery (in addition to braking power) with predetermined current values that 

depend on the voltage of the SC and the current demand. In consequence, the battery is 

effectively relieved from the peak and braking power as the SC can assist the battery 

during the whole battery discharge cycle.  

To assess the performance of the proposed EMS in the presence of delay, the low-

frequency component of the current demand is obtained with different methods including 

a first-order low pass filter, DWT, and DWT with prediction. Results show that the 

proposed EMS can be adapted to any filtering technique where delay or phase shift issues 

are present, eliminating unnecessary energy circulation between the battery and SC and 

maintaining the SC voltage within operational limits throughout the full battery discharge 

cycle.  
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4.3 Energy management system 

A high-level schematic of the proposed EMS is presented in Fig. 4.1. The SC reference 

current Iref(SC) is obtained from the summation of the motoring current Im, braking current 

Ibr, and charging current Ich. The motoring current Im determines the positive contribution 

of the SC to the system. To calculate this current, the low-frequency component of the 

current demand is used. This can be obtained with a conventional low pass filter or the 

DWT. The positive part of the filtered signal (output of saturation 2 block) is subtracted 

from the positive part of the current demand (output of saturation 1 block) yielding the 

high-frequency component. The positive part of the resulting signal is used as the 

motoring reference current Im while the negative part is discarded by saturation 3 block. 

 

Fig 4.1. Proposed EMS high-level schematic 

A comparison of Im with and without saturation blocks 1, 2 and 3 is shown in Fig. 4.2. 

Saturation blocks ensure that the SC positive contribution lays within the current demand 

envelope at all times. The pink shaded areas in Fig. 4.2a are discarded by the saturation 

blocks so that only yellow shaded areas are kept as shown in Fig. 4.2b. Notice that any 

positive signal outside the current demand envelope is discarded (compare Fig. 4.2a at 
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t=40 seconds vs Fig 4.2b at t=40 seconds) as well as all negative signals shaded in pink. 

Therefore, only the positive output of the low pass filter that rests within the current 

demand envelope is considered. This eliminates energy circulation during motoring.  

Fig. 4.2. SC motoring Current Im. a) SC current demand without clipping (includes 

negative currents) b) SC current demand with clipping (negative currents are 

eliminated) 

The braking current reference Ibr corresponds to the negative current demand i.e. the 

generated braking power. Using the sum of Im and Ibr as the SC current reference results 

in a signal that eliminates power circulation. The SC is commanded to assist the battery 

during positive power demand and to recover all the power generated during braking as 

shown in Fig. 4.3. 

 

Fig. 4.3. Current distribution in the HESS for the US06 driving cycle with the proposed 

method with a first order low pass filter with cut-off frequency of 125 mHz 
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Obtaining Im by using a high pass filter or with a low pass filter without clipping 

(saturation blocks 1, 2 and 3), would result in a SC current reference signal that 

occasionally leads the real-time demand due to the filter’s phase shift at high frequencies, 

producing power circulation between the battery and SC.  

To depict the difference between the motoring signals Im obtained with these approaches, 

the output of a first-order high pass filter with a time constant τ=1.27 s (cut-off 

frequency=125 mHz) is compared to the output obtained with the proposed method using 

a low pass filter with the same time constant. The comparison of the currents obtained 

with these methods is shown in Fig. 4.4. The difference between the resulting signals (red 

shade in Fig. 4.4) is caused by the high pass filter phase shift. The red shade shows the 

areas when the SC provides more current than what is drawn by the motor drive meaning 

that the SC charges the battery unnecessarily. This causes energy circulation during the 

motoring stage.  

 

Fig. 4.4. Difference between high pass filter output and the high frequency obtained 

with the proposed method 

As the SC recharges only from the generated braking power Ibr, its voltage will reach the 

minimum limit (VSCmin) long before the battery reaches its minimum charge at the end of 

its discharge cycle. Thus, there is a risk of leaving the battery as the sole provider of 

power for a relatively long period due to SC downtime [4]. To address this problem, the 
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proposed EMS adds a pre-set current value Ich, allowing SC to be charged from the battery 

(controlled energy circulation). The magnitude of the pre-set current value depends on 

the magnitude of the current demand and the SC voltage as presented in Table 4.1.  

Table 4.1. Charging current pre-set values 

SC Voltage (V)/current demand (A) Charging current pre-set values (A) 

VSC>0.7VSCmax  0 

0.6VSCmax < VSC <0.7VSCmax AND Itotal <=20A -20 

VSCmin < VSC <0.6VSCmax  AND Itotal <=40A -40 

 

When the SC voltage is above 0.7VSCmax, the charging current is set to zero. When the SC 

voltage drops below 0.7VSCmax and the current demand is below 20 A (17% of rated 

discharge current of the battery as presented in Table 3.3), a constant value of -20A is 

added to the SC current reference. When the voltage of the SC drops between VSCmin and 

0.6VSCmax and the current demand is below 40A (34% of rated discharge current of the 

battery), -40A is added to the SC current reference. The current demand threshold values 

of 17% and 34% and the corresponding values added to the SC current reference (-20 and 

-40) have been chosen to test the strategy. These values have been chosen arbitrarily, 

however, they can be subject to optimization, which is not carried out in the present work. 

Higher current demand thresholds and constant values can be used to speed up the 

charging process. However, it is recommended to observe the rated discharge 

characteristics of the battery, so they are not overpassed and also to observe the maximum 

currents generated during braking so when the constant is added to the SC reference, the 

resulting current does not go beyond the limits of the DC/DC converter and the 

recommended continuous current accepted by the SC as shown in Table 3.5. In Fig.4.5, 

the charging strategy is depicted with a fraction of the US06 driving cycle.  

The red shades in Fig. 4.5 represents the current discharged by the battery to recharge the 

SC (controlled energy circulation). This occurs when the SC voltage drops below 283.5 
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V and when the total current demand is below 20A. The green areas correspond to the 

energy received by the SC from the battery. When the total current demand is above 20 

A, the charging strategy is disabled. This protects the battery from stress during peak 

current demand (motoring stage). The grey areas show that although the SC voltage drops 

below 283.5V (70% VSCmax), the SC is not recharged from the battery as the total current 

demand is above 20A.  

|With this charging strategy, the SC charge is maintained within operational limits without 

imposing stress on the battery, ensuring the availability of the SC throughout the battery 

discharge cycle. Only 40 seconds are shown in Fig. 4.5 to show detailed signals and 

improve visualization. In the results section, final SC SOC and energy circulation values 

are presented as indicators of the charging strategy performance. 
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Fig. 4.5. Controlled energy circulation to charge the SC from battery 
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4.4. Supercapacitor sizing. 

The SC in this work has been sized by considering the SC pack voltage, volume, weight 

and cost. The SC voltage fluctuates between 405V and 202.5V. There are SC cells with 

2.7V and 3.0 V. Using the latter requires less SCs to reach the voltage range. In terms of 

capacitance, three different capacitors are considered: Skeleton 5000F, Maxwell 3400F 

and Maxwell 3000F. These SCs are discharged from 80% SOC (352 V) with 3 driving 

cycles: FTP72, US06 and WLTP3 using the proposed method shown in Fig.4.1 but with 

the charging strategy disabled. The purpose of disabling the charging strategy is to see 

how these 3 SCs discharge when only the braking energy is recovered (no energy 

circulation to keep the SC recharged). When the SCs voltage drops below 50% Vmax, the 

SC does not supply energy until it is recharged to a voltage above this threshold. The time 

span that the SC stops supplying energy is referred as ‘downtime’. 

Three different SC sizes has been simulated to assess its discharge behaviour during a 

whole drive cycle when only braking energy is used to recharge them. The highest 

capacitance SC pack has 37.03 F, obtained with 135 SCs with capacitance of 5000F [126] 

(SkelCap 5000F, 3V, 28.4 kW/kg) connected in series. The second SC simulated has a 

capacitance of 25.2 F, which corresponds to the SC presented in Table 3.5. This SC (3400 

F, 3V) has been used for all the simulations in this work. The third SC has a capacitance 

of 22.2F obtained with 135 SCs with capacitance of 3000F [127] (Maxwell 3000F, 3V, 

18.1 kW/Kg). 

For the FTP72 urban driving cycle shown in Fig. 4.6, SC downtime is not reached (SC 

voltage dropping below 202.5V). The SC with the lowest capacitance would require 

recharging from the battery to maintain it above 70% Vmax. 
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Fig 4.6. Comparison of three SC sizes for the FTP72 driving cycle. 

In Fig. 4.7, only the SC with the lowest capacitance (22.2F) reaches the lowest voltage 

threshold, meaning that it would cease to operate until it is recharged from the available 

braking energy. The downtime of this SC is 69 seconds. The other two SCs do not reach 

the lowest voltage, however, they would require energy from the battery to maintain the 

SC voltage above 70% Vmax.  

 

Fig 4.7. Comparison of three SC sizes for the WLTP3 driving cycle. 
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For the highway US06 driving cycle, the 22.2F SC discharges faster and reaches the low 

voltage threshold, producing a total downtime of 89 seconds. The discharge cycle is 

shown in Fig. 4.8. An SC with higher capacitance is desirable as it can supply energy for 

longer periods, however, this can come with a penalty in cost, weight, and/or volume. In 

Table 4.2, a comparison of these parameters is shown. 

 

Fig 4.8. Comparison of three SC sizes for the US06 driving cycle. 

Table 4.2. Comparison of 3 SCs in terms of cost, volume, and weight 

 Rated 
Voltage 

(V) 

Rated 
Capacitance 

(Farad) 

Mass 
(gram) 

Specific 
power 

(kW/kg) 

Gravimetric 
energy 

(Wh/kg) 

Volume 
(Litre) 

Approx cost 
(USD/unit) 

Maxwell BCAP 
3400 

3 3400 490 17 9.1 0.48 51.48 [128] 

Maxwell BCAP 
3000 

3 3000 460 18.1  8.5 0.48 49.8  [129] 

SkelCap 5000 F 3 5000 565 28.4 11.1 0.39 ~75 [130] 

4.5. Simulation results 

In this section, the battery and SC energy distribution, energy circulation, and their final 

SOCs during the US06 and FTP72 driving cycles are compared when the following 

strategies are used to obtain the reference current for the SC: 

a) First order high pass filter with fc=125 mHz  

b) Proposed method with a first-order low pass filter with fc=125 mHz 
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c) Direct DWT high frequency component (125 mHz-500 mHz)  

d) Proposed method with the DWT low-frequency component (0-125 mHz) 

e) Predicted (LSTM) DWT high-frequency component (125 mHz-500 mHz)  

f) Proposed method with the predicted DWT low-frequency component (0-125 

mHz) 

The schematics of these strategies are shown in Fig. 4.9. The initial SOC for the battery 

and SC are both set to 80% for the simulations. 

 

Fig. 4.9. Filtration strategies. (a) High pass filter. (b) Proposed method with low pass 

filter. (c) Direct DWT high-frequency method. (d) Proposed method with the DWT low-

frequency component. (e) Predicted DWT high-frequency component method. (f) 

Proposed method with the predicted DWT low-frequency component 
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To determine the performance of the EMS strategies, the following areas (signal energy) 

are calculated with: 

0

1

3600

t

X DC linkE I V dt      (4.1) 

 Motoring energy demand (Wh): The area defined by the positive current demand. 

Red areas in Fig 4.10. 

 Braking energy demand (Wh): The area defined by the negative part of the current 

demand. Orange areas in Fig. 4.10. 

 

Fig 4.10. Positive and negative energy demand 

 

 Battery motoring energy (Wh): The area defined by the positive battery current. 

Blue area in Fig.4.11. 

 Battery braking energy (Wh): The area of the negative part of the battery current. 

Yellow area in Fig.4.11. 
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Fig. 4.11. Positive and negative battery energy contribution 

 

 SC motoring energy (Wh): The area defined by the positive SC current. Green 

area in Fig. 4.12. 

 SC braking energy (Wh): The area of the negative part of the SC current. Pink 

area in Fig. 4.12. 

 

Fig. 4.12. Positive and negative SC energy contribution 

4.5.1 A) First order high pass filter with fc=125 mHz  

The literature suggests the use of high pass filters to determine the SC power contribution 

in the HESS [45], [131]. The current distribution when the SC current reference is 

obtained with a first-order high pass filter during the US06 driving cycle is shown in Fig. 

4.13. 
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Fig. 4.13. HESS current distribution when the SC current reference is obtained with a 

first-order high pass filter fc=125 mHz. 

 

The SC provides the peak power, relieving the battery from stress, especially during 

accelerations. However, the recuperation of the generated braking power is shared 

between the battery and SC. The SC recharges the battery between t=35 seconds to t=45 

seconds. This occurs when braking energy is available, which is distributed between the 

battery and the SC. In this conditions, it would be beneficial for the battery lifetime to 

command the SC to absorb all the braking power. When the SC is commanded to recharge 

(green shades), the battery provides the necessary current to maintain the system in 

balance (red shades). 

According to the results presented in Table 4.3, for the US06 driving cycle, the battery 

supplies 2467 Wh and the SC 608.9 Wh during the motoring stage when a first-order high 

pass filter with fc=125 mHz is used. During braking, the battery recovers 319.6 Wh and 

the SC 607.7 Wh. Considering that the energy demand during motoring is 2601 Wh, an 

excess of 479.9 Wh is circulated between the battery and SC. At the end of the US06 

cycle, the final SOC of the SC is 80.01% and the battery SOC is 75.16% (the initial SOC 

conditions for the battery and SC were set to 80%). 
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4.5.2. B) Proposed method with a first-order low pass filter with fc=125 mHz. 

Fig. 4.14 shows the results with the proposed method. The SC contribution during 

motoring is determined by the positive output of the filtration strategy that consists of the 

difference between the current demand and the output of a low pass filter with 

fc=125mHz.  

 
Fig. 4.14. Battery-SC current distribution with the proposed method. SC contribution 

(green shade). Charging strategy (red shade) 

The SC absorbs all the generated braking energy and also receives charge from the battery 

when the SC voltage falls below 0.7Vmax (red shades). The battery is effectively relieved 

from stress during motoring and braking, and the uncontrolled power circulation is 

eliminated. With this strategy, the battery provides 2098 Wh and the SC 537.9 Wh for a 

total of 2635.9 Wh. 

Total energy circulated between the battery and SC to maintain the SC charge within 

operational levels (>0.5Vmax) is 34.9Wh. A reduction of 92.6% in power circulation (from 

474.9 Wh to 34.9 Wh) is achieved when compared to the high pass filter method. The 

final SOC of the SC is 74.91% and the battery SOC is 75.29%. 

For the FTP72 driving cycle, power circulation is reduced by 100% with the proposed 

method (from 371 Wh to 0 Wh) with respect to the high pass filter method. The final SOC 

of the SC increased from 80% to 90.82%. 
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Table 4.3. Comparison of results obtained with the proposed method vs methods that use 

the high-frequency component directly for the US06 and FTP72 driving cycles 

    

HPF 

fc=125 

mHz 

Proposed 
method 

LPF 

fc=125 
mHz 

DWT high 

freq 
fc=(125-

500)mHz 

Proposed 
method 

DWT low 

freq fc=0-
125 mHz 

Predicted 
DWT high 

freq 

fc=(125-
500) mHz 

Proposed 

method 
with 

predicted 

DWT low 
freq fc=(0-

125) mHz 

US06 

Driving 
cycle 

(12.81 km) 

Motoring energy 

demand Wh 
2601 2601 2601 2601 2601 2601 

Braking energy 

demand Wh 
452.9 452.9 452.9 452.9 452.9 452.9 

Battery motoring 
energy Wh 

2467 2098 2703 2049 2682 2043 

Battery braking 

energy 
(recovery) Wh 

319.6 0 561.5 0 536.6 0 

SC Motoring 

energy Wh 
608.9 537.9 616.3 832.7 399.3 969.6 

SC braking 
energy 

(recovery) Wh 

607.7 487.6 609.7 733.2 396.6 864.2 

Final SOC 

Battery % 
75.16% 75.29% 75.03% 75.40% 75.08% 75.42% 

Final SOC SC % 80.01% 74.91% 79.00% 69.64% 79.70% 69.18% 

Energy 

circulation Wh 
474.9 34.9 718.3 280.7 480.3 411.6 

FTP72 
Driving 

cycle 

(11.93 km) 

Motoring energy 
demand Wh 

1668 1668 1668 1668 1668 1668 

Braking energy 

demand Wh 
470.8 470.8 470.8 470.8 470.8 470.8 

Battery motoring 

energy Wh 
1585 1313 1765 1119 1684 1128 

Battery braking 

energy 

(recovery) Wh 

388.6 0 569.4 0 487.3 0 

SC Motoring 
energy Wh 

454 355 413.7 577.3 301.1 576.4 

SC braking 

energy 

(recovery) Wh 

453.6 470.8 412.1 499.4 300.6 506.9 

Final SOC 
Battery % 

77.32% 77.07% 77.31% 77.50% 77.31% 77.48% 

Final SOC SC % 79.90% 90.82% 79.90% 72.60% 79.90% 73.36% 

Energy 

circulation Wh 
371 0 510.7 28.3 317.1 36.4 
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During the FTP72 urban driving cycle, braking power alone maintains the charge of the 

SC, therefore there is no need to transfer energy from the battery. However, the SC 

appears underutilised as the SC receives more charge (470.8 Wh) than it is commanded 

to deliver (355 Wh). This is one of the disadvantages of using a fixed cut-off frequency 

as the SC would be able to discharge more to support the battery. Nevertheless, the HESS 

achieves the objective of relieving the battery from stress. A battery only system would 

consume 1668 Wh, while with the HESS the battery consumes 1338 Wh and the SC 335 

Wh.  

A comparison of the energy circulation obtained with the approaches presented in Table 

4.3 for the US06 and FTP72 driving cycles is shown in Fig. 4.15 and 4.16, respectively. 

 

Fig.4.15. Energy circulation comparison for the US06 driving cycle for different EMS 

approaches 
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Fig.4.16. Energy circulation comparison for the FTP72 driving cycle for different EMS 

approaches 

4.5.3. C) Direct discrete wavelet transform high-frequency component (125-500) 

mHz  

The DWT high-frequency component has been normally used to control the SC power 

flow in HESS [50], [80], [132] . The total current demand signal is sampled at 1 Hz and 

then decomposed into 2 levels with the DWT using the Haar wavelet. The frequency sub-

bands obtained with the decomposition are 0-125 mHz and 125-500 mHz for the low and 

high-frequency components, respectively. These frequency components are delayed 4 

seconds with respect to the real-time demand. The result of this strategy during the first 

100 seconds of the US06 driving cycle is shown in Fig. 4.17. The DWT introduces a delay 

in the filtered signal that exacerbates the power circulation between the battery and SC, 

as the SC is commanded to perform charge and discharge actions that are not aligned with 

the real-time demand. As shown in Table 4.3, using the DWT high-frequency component 

directly as the SC current reference results in the battery providing 2703Wh and the SC 

delivering 616.3 Wh. During braking, the battery recovers 561.5 Wh and the SC 609.7 

Wh. A total of 718.3 Wh is circulated between the battery and SC during the US06 driving 

cycle. The final SOC of the SC is 79% and the battery SOC is 75.03%. 
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Fig. 4.17. HESS current distribution when the DWT high-frequency component is used 

as the SC current reference 

4.5.4. D) Proposed method with the discrete wavelet transform low-frequency 

component (0-125 mHz) 

Fig. 4.18 shows the result when the proposed method is used along with the DWT low-

frequency component. Energy circulation is reduced from 718.3 Wh (direct DWT high 

frequency component) to 280.7 Wh (see Table 4.2). The SC recovers all the energy 

generated during braking, relieving the battery from it completely. The SC voltage is 

maintained above VSCmin as the EMS allows the battery to transfer 280.7 Wh to the SC 

(red shades). The SOC of the SC at the end of the driving cycle is 69.64% and the battery 

75.4%. 

 

Fig. 4.18. Proposed method using the DWT low-frequency component 
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As shown in Table 4.3, with the urban FTP72 driving cycle, a total of 1668 Wh are 

required during the motoring stage and 470.8 Wh are generated during braking. Using the 

DWT high-frequency component directly results in the battery providing 1765 Wh and 

the SC 413.7 Wh for a total of 2178.7 Wh during the motoring stage. In this case, 510.7 

Wh is circulated between the battery and SC. The battery recovers a total of 569.4 Wh 

and the SC 412.1Wh. The final SOC of the SC is 79.9%. With the proposed method, the 

battery provides 1119 Wh, and the SC assists with 577.3Wh reducing circulation to only 

28.3Wh. The final value of the SOC of the SC is 72.6%. 

4.5.5. E) Predicted discrete wavelet transform high frequency component (125 mHz-

500 mHz)  

The delay caused by the DWT can be compensated for by using a LSTM to predict the 

power demand, so the predicted demand can be fed to the DWT rather than the actual 

demand. Compensating for the delay can reduce energy circulation in the HESS. As 

shown in Table 4.3, energy circulation is reduced from 718.3 Wh (direct DWT high 

frequency component) to 480.3 Wh (predicted DWT high frequency component) during 

the US06 driving cycle and from 510.7 Wh to 317.1 Wh during the FTP72 driving cycle. 

This reduction in energy circulation has little effect on the final SOC of the SC. The direct 

use of the DWT high-frequency component results in a final SOC of the SC of 79% and 

79.9% for the US06 and FTP72, respectively. When the predicted DWT high frequency 

is used, the SOC of the SC remains high at 79.7% and 79.9 % for the US06 and FTP72, 

respectively. The HESS current distribution when the predicted DWT high-frequency 

component is used is presented in Fig.4.19. With this approach, the battery still receives 

a substantial portion of the energy generated during braking (shaded areas).  
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Fig. 4.19. HESS current distribution with the predicted DWT high-frequency component 

as the SC current reference. 

4.5.6. F) Proposed method with the predicted discrete wavelet transform low-

frequency component (0-125 mHz) 

When the proposed method is used along with the predicted DWT low-frequency 

component, the battery is completely relieved from braking power as shown in Fig. 4.20. 

Energy circulation is further reduced to 411.6 Wh for the US06 driving cycle and to 

36.4Wh for the FTP72 driving cycle (with respect to the use of the predicted DWT high 

frequency component). The SC voltage is maintained above VSCmin and the final SOC of 

the SC is 69.18% and 73.36% for the US06 and FTP72, respectively. 

 
Fig. 4.20. HESS current circulation with the proposed method and the predicted low-

frequency component. 
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Comparing the results compiled in Table 4.3 shows that when using the DWT, better 

results are obtained when the proposed method is used along with the DWT low-

frequency component instead of the predicted DWT low-frequency component, 

suggesting that a prediction-based strategy is not necessary. Energy circulation is 280.7 

Wh with the direct DWT low-frequency component and 411.6 Wh with the predicted 

DWT low-frequency component during the US06 driving cycle. The same occurs during 

the FTP72 driving cycle with an energy circulation of 28.3 Wh and 36.4 Wh, respectively. 

Overall, the best results are obtained when a simple first-order low pass filter is used 

along with the proposed method. Energy circulation for the US06 and FTP72 driving 

cycles are the lowest among the tested strategies with 34.9 Wh and 0 Wh, respectively.  

4.5.7. Charging strategy simulation  

To test the charging strategy along with the proposed first-order low pass filter method, 

the SC and battery SOCs are both set to 100%, then the US06 driving cycle is repeated 

until the battery is discharged. In Fig. 4.21, the SOC of the SC is recorded at the end of 

each US06 driving cycle (cycle duration 600 seconds) with and without the charging 

strategy for a total of 21 cycles (12600 seconds). 

 

Fig. 4.21. Supercapacitor state of charge during a full discharge cycle (US06) with and 

without charging strategy 
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Without the charging strategy, the SC gives full assistance to the battery during the first 

5 cycles (64.4 km). From the 5th cycle, the SC assists the battery as long as the SC voltage 

is higher than VSCmin. However, when the SC charge is depleted the SC stops assisting the 

battery and only accepts charge from braking power and resumes assistance once its 

voltage rises above up to a set threshold, which has been set to VSCmin +15 V in this test. 

A higher voltage threshold allows the SC to build up more charge, however, this will 

increase the SC downtime. When the battery SOC reaches 5% (between cycle 20 and 21), 

the SC charging strategy is disabled to relieve the battery from recharging the SC. The 

SOC of the SC at the end of the battery discharge cycle (cycle 21) is 58.77%. The total 

energy transferred from the battery to the SC throughout the full battery discharge cycle 

is 1466.7 Wh.  

In terms of driving range, the EV modelled in this work with the HESS and the proposed 

low pass filter EMS would run for 275 Km on a single charge for the US06 driving cycle. 

In contrast, the same EV would run for 269 km with a battery only system. Hybridising 

the battery with a SC doesn’t add significant driving range to the vehicle, but relieves the 

battery from stress and therefore improves its lifetime. This method can be implemented 

easily by monitoring the SC voltage and setting the rules to check the voltage thresholds. 

When the same test is performed with a high pass filter without the proposed EMS 

strategy, the total energy circulation between the battery and SC at the end of 21 US06 

driving cycles is 7860 Wh. A reduction of 81.3% in energy circulation (from 7860 Wh to 

1466.7 Wh) is achieved with the proposed method while effectively assisting the battery 

during the motoring stage, recovering all the braking energy and managing the charge of 

the SC. 
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4.6 Energy efficiency  

The energy efficiency obtained with the proposed method is calculated in Table 4.4 for 

the US06 driving cycle and Table 4.5 for the FTP72 driving cycle, assuming a lossless 

DC/DC converter. In these tables, a comparison with the other strategies analysed in this 

chapter show the superiority of the proposed method. The highest efficiencies obtained 

with the proposed method respond to an effective energy distribution where energy 

circulation is controlled, the braking energy generated is allocated to the SC and the 

battery is relived from peak power. For the US06 driving cycle, the energy efficiency 

during motoring is 98.7 %, meaning that only a small percentage of energy is circulating 

in the system with the purpose to maintain the SC charge. During braking, the efficiency 

is 92.8%. The overall efficiency is 91.6% which is greater than any of the other strategies. 

In the case of the FTP72 driving cycle, the efficiency is 100% (considering lossless 

DC/DC converter) as there is no energy circulation. During motoring, the SC and the 

battery contribute just the necessary energy to match the demand. During braking, the SC 

recovers the braking energy, relieving the battery from negative power demand. 
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Table 4.4. Energy efficiency calculation for the US06 driving cycle and 6 different EMS strategies 

 

Motoring US06 
HPF 
fc=125 
mHz 

Proposed 
method LPF 
fc=125 mHz 

DWT high freq. 
fc=(125-500) 
mHz 

Proposed method 
DWT low freq. 
fc=0-125 mHz 

Predicted DWT 
high freq. 
fc=(125-500) 
mHz 

Proposed method with 
predicted DWT low 
freq. fc=(0-125) mHz 

a Total energy demand Wh 2601 2601 2601 2601 2601 2601 

b Total battery Energy supplied Wh 2467 2098 2703 2049 2682 2043 

c Total SC energy supplied Wh 608.9 537.9 616.3 832.7 399.3 969.6 

d Energy circulation Wh (b+c-a) 474.9 34.9 718.3 280.7 480.3 411.6 

 Braking US06       

e Total energy generated braking Wh 452.9 452.9 452.9 452.9 452.9 452.9 

f Total energy absorbed by SC Wh 607.9 487.8 609.7 733.6 396.6 864.5 

g Total energy absorbed Battery Wh 319.9 0 561.5 0 536.6 0 

h Energy circulation Wh (f+g-e) 474.9 34.9 718.3 280.7 480.3 411.6 

 Energy balance       

i Total energy motoring HESS Wh (b+c) 3075.9 2635.9 3319.3 2881.7 3081.3 3012.6 

j Total energy recovered HESS (f+g) 927.8 487.8 1171.2 733.6 933.2 864.5 

 Net energy Wh (i-j) 2148.1 2148.1 2148.1 2148.1 2148.1 2148.1 

 Net energy demand Wh (a-e) 2148.1 2148.1 2148.1 2148.1 2148.1 2148.1 

 Efficiency       

k Energy efficiency motoring (%) (a/i*100) 84.6% 98.7% 78.4% 90.3% 84.4% 86.3% 

l Energy efficiency braking (%) (e/j*100) 48.8% 92.8% 38.7% 61.7% 48.5% 52.4% 

 System efficiency (%) (K*L) 41.3% 91.6% 30.3% 55.7% 41.0% 45.2% 
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Table 4.5. Energy efficiency calculation for the FTP72 driving cycle and 6 different EMS strategies 

 

Motoring FTP72 
HPF 
fc=125 
mHz 

Proposed 
method LPF 
fc=125 mHz 

DWT high freq. 
fc=(125-500) 
mHz 

Proposed method 
DWT low freq. 
fc=0-125 mHz 

Predicted DWT 
high freq. 
fc=(125-500) 
mHz 

Proposed method with 
predicted DWT low 
freq. fc=(0-125) mHz 

a Total energy demand Wh 1668 1668 1668 1668 1668 1668 

b Total battery Energy supplied Wh 1585 1313 1765 1119 1684 1128 

c Total SC energy supplied Wh 454 355 413.7 577.3 301.1 576.4 

d Energy circulation Wh (b+c-a) 371 0 510.7 28.3 317.1 36.4 

 Braking FTP72       

e Total energy generated braking Wh 470.8 470.8 470.8 470.8 470.8 470.8 

f Total energy absorbed by SC Wh 453.3 470.8 412.1 499.1 300.6 507.2 

g Total energy absorbed Battery Wh 388.5 0 569.4 0 487.3 0 

h Energy circulation Wh (f+g-e) 371 0 510.7 28.3 317.1 36.4 

 Energy balance       

i Total energy motoring HESS Wh (b+c) 2039 1668 2178.7 1696.3 1985.1 1704.4 

j Total energy recovered HESS (f+g) 841.8 470.8 981.5 499.1 787.9 507.2 

 Net energy Wh (i-j) 1197.2 1197.2 1197.2 1197.2 1197.2 1197.2 

 Net energy demand Wh (a-e) 1197.2 1197.2 1197.2 1197.2 1197.2 1197.2 

 Efficiency       

k Energy efficiency motoring (%) (a/i*100) 81.8% 100.0% 76.6% 98.3% 84.0% 97.9% 

l Energy efficiency braking (%) (e/j*100) 55.9% 100.0% 48.0% 94.3% 59.8% 92.8% 

 System efficiency (%) (K*L) 45.8% 100.0% 36.7% 92.8% 50.2% 90.8% 
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 CHAPTER 

5 EXPERIMENTAL IMPLEMENTATION OF THE 
PROPOSED ENERGY MANAGEMENT SYSTEM 

5 

5.1. Introduction 

This chapter details the implementation of the proposed EMS strategy along with a real 

time test platform that includes a dual motor kit powered by a battery-SC HESS. The 

algorithm to control the dual motor setup is based on a FOC approach where the first 

motor is controlled in speed mode and the second motor (acting as a generator) in torque 

mode. As both machines are mechanically coupled, the second motor can be controlled 

to test the first motor in different load conditions. The FOC control algorithm for the dual 

motor setup is implemented on a Texas Instruments C2000 Piccolo LAUNCHPAD 

F28069M, which allows simultaneous control of two motors through two BOOSTXL 

8305EVM 3 phase motor drives. The EMS is implemented in a LAUNCHPADXL 

F28027F. Both, the EMS and the test platforms are developed in a rapid prototyping 

approach using Matlab/Simulink code generation and real time processor in the loop 

(PIL). The advantage of using Matlab/Simulink support for C2000 microcontrollers is 

that coding is efficiently generated, so manual coding in Code Composer Studio (CCS) 

is avoided. With Matlab’s embedded code generation, the complete Simulink model is 

translated to C code and specifically adapted for its deployment in the selected embedded 

target hardware. Simulink blocks interface with the different microcontroller’s modules, 

such as analogue to digital converter (ADC) and pulse width modulation (PWM), 

allowing easy and rapid configuration. The measured DC-bus current is used by the EMS 

algorithm to determine the current split. DC-bus current is acquired with a LEM LA-55P 

hall-effect current transducer with 1:1000 conversion factor (turns ratio) and a primary 
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current measurement range of ±70 A. As the output of this sensor is a current value, a 

series resistor is used to transform this signal into a voltage value, as this is the type of 

input accepted by the ADC. Signal conditioning with an operational amplifier is 

implemented to shift the output voltages of the transducer to the voltages accepted by the 

ADC (0-3.3V). This chapter presents the results obtained with the proposed EMS and 

compares them to a current distribution obtained with simple filtration. The superiority 

of the proposed real-time method is experimentally validated and the feasibility of 

implementation confirmed. 

5.2. Test platform hardware 

5.2.1. Texas Instruments LAUNCHPADXL F28069M 

The C2000 Piccolo LAUNCHPADXL-F28069M is a low cost development board that 

offers an on board Joint Test Action Group (JTAG) emulation tool that allows direct 

interface to a PC for easy programing, debugging, and evaluation. Additional to JTAG 

emulation, the USB interface provides universal asynchronous receiver/transmitter 

(UART) serial connection to the host PC. This development board can be complemented 

with add-on boards called BoosterPacks. These additional boards can access all the 

LAUNCHPAD General Purpose Input/Outputs (GPIO) and analogue signals. One of the 

main applications of this LAUNCHPAD is motor control. This particular board can host 

2 inverter BoosterPacks allowing for the control of two 3-phase permanent magnet servo 

motors. This is beneficial when prototyping a variety of applications including robotics, 

CNC, assembly/manufacturing, traction drives, personal transport, small-task oriented 

vehicles, drones, etc. 

The purpose of this board in the test platform is to perform FOC control of the motor 

under test and the motor acting as an active load (generator). 

The main specifications of Launchpadxl F28069M are listed in Table 5.1 [133] and 

depicted in Fig. 5.1. 
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Table 5.1. LAUNCHPADXL F28069M specifications 

Microcontroller  unit (MCU) clock frequency 90 MHz 

Pulse Width Modulation (PWM) channels 16 

High-resolution PWM channels 8 

Quadrature Encoder Pulse modules (QEP) 2 

Analog to Digital converter 12 bit, 16 channels 

CAN (Controller area network) 1 

SPI  (Serial peripheral interface) 2 

SCI/UART (serial communications interface/ Universal 

asynchronous receiver-transmitter) 

2 

USB (Universal serial bus) 1 

I/O pins (digital/analogue) 54/6 

Supply Voltage 3.3V 

 

 

Fig. 5.1 Texas Instruments LAUNCHPADXL F28069M development board [134] 

5.2.2. Texas Instruments LAUNCHPADXL F28027F 

The C2000 Piccolo LAUNCHPADXL-F28027F has an on board JTAG emulation tool 

allowing direct interface to a PC and a USB interface provides UART serial connection 

to the host PC. In the test platform, this microcontroller measures DC-bus current, DC/DC 

inductor current, and SC voltage to supply the real-time EMS algorithm, so the SC current 

reference can be obtained and used to drive the DC/DC converter. For this purpose, ADC 

inputs are used to acquire sensor data, and PWM outputs are used to control DC/DC 
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converter switches. A picture of LAUNCHPADXL-F28027F is shown in Fig 5.2 and its 

specifications are summarised in Table 5.2. 

Table 5.2 LAUNCHADXL F28027F specifications 

MCU clock frequency 60 MHz 

PWM channels 8 

High-resolution PWM channels 4 

Analog to Digital converter 12 bit, 7 channels 

SPI 1 

SCI/UART 1 

I/O pins (digital/analogue) 20/6 

Supply Voltage 3.3V 

 

 

Fig. 5.2 Texas Instruments LAUNCHPADXL F28027F development board 

This additional board is used because the LAUNCHPAD XL F28069M PWM ports were 

used up by the inverters, so there were not enough PWM ports to control the DC/DC 

converter. 
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5.2.3. BOOSTXL DRV8305EVM motor drive 

The BOOSTXL-DRV8305EVM is a 15A, 3-phase brushless DC drive. It is based on the 

DRV8305 motor gate driver and CSD18540Q5B NexFET power MOSFET. The main 

characteristics are summarised in Table 5.3 [135]. 

Table 5.3 BOOSTXL DRV8305EVM 3-phase motor drive 

Voltage Supply 4.4V to 45 V 

Drive current Up to 15A RMS (20A peak) 

Operating supply current 150 mA 

Operating temperature 125°C 

MOSFET  6 x CSD18540Q5B N-channel NexFET 

Power MOSFET (1.8 mOhm) 

 

The inverter configuration, operating parameters, and diagnostic information are 

communicated to the LAUNCHPADXL F28069M through SPI. A picture of the 

assembly including the LaunchpadXL F28069M and two Boostxl DRV8305EVM 

inverters is shown in Fig. 5.3. 

 

Fig. 5.3. LAUNCHPDXL F28069M + 2 BOOSTXL DRV8305EVM inverters 
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5.2.4. SEMIKRON Semiteach Insulated-gate bipolar transistor (IGBT) inverter 

stack 

The Semikron Semiteach IGBT stack is a multifunction IGBT converter that allows for 

experimenting with typical converter configurations including 3-phase inverter + brake 

chopper, buck-boost converter, single phase inverters, and single or 3-phase rectifiers. 

This unit is used for the development of the bidirectional DC/DC converter interfacing 

the SC pack to the DC-bus. The schematic of the bidirectional DC/DC converter is shown 

in Fig 5.4. 

 

Fig. 5.4. Bidirectional DC/DC converter schematic 

The specifications are summarised in Table 5.4 [136]. 

Table 5.4. Semicron Semiteach specifications 

Maximum permanent output current 30 ARMS 

Maximum permanent input current 30 ARMS 

Maximum output voltage 400 VAC 

Maximum DC-bus voltage 750 VDC 

Maximum switching frequency 50 kHz 

Driver supply voltage 14.4<15<15.6 VDC 

 

1mH 

150 uF 

150uF 
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A 1mH inductor and two 150uF capacitors (C1, C2) are used in the bidirectional DC/DC 

converter. A picture of the inverter stack is shown in Fig.5.5. 

 

 

Fig. 5.5. Bidirectional DC/DC converter with the Semicron Semiteach inverter stack 

5.2.5. Battery  

Due to availability of Lead acid batteries in the laboratory, the battery used in the 

experiment is a Valve Regulated Lead Acid (VRLA) battery with Absorbent Glass Mat 

(AGM) technology, which are suitable for short time delivery of high currents. Although 

the battery used has a different chemistry and different performance than a Lithium 

battery, the EMS performance remains the same. The battery characteristics are listed in 

Table 5.5 and its picture is shown in Fig. 5.6. 
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Table 5.5. Battery characteristics 

Victron Energy sealed VRLA AGM 

Rated capacity  110 Ah 

Nominal voltage 12.8 V 

Maximum charge current (0.2C) 22 A 

Maximum pulse discharge (8C, 5 seconds) 800 A 

Discharge cut-off voltage 10.8 V 

Battery pack characteristics   

Pack nominal voltage (Vnom) 38.4 V 

Pack maximum Capacity (Q) 110 Ah 

Fully Charged voltage (Vfull) 39.6 V 

Cut-off voltage 32.4 V 

Pack configuration 3 series, 1 parallel 

Pack energy 4.22 kWh 

 

The ratio between the battery simulated (40.6 kWh) and the battery used in the experiment 

(4.22 kWh) is 96.3:1. 

 

Fig. 5.6. Battery Pack used in the experiment 

5.2.6. Supercapacitor 

The SC used in the HESS test platform is produced by Maxwell Technologies. The 

specific model is the BCAP1200 P270, which is commonly used in applications such as 

automotive subsystems, back-up power, grid stabilisation, hybrid drive trains, rail system 

power, transportation and utility vehicles. Its main specifications are listed in Table 5.6 

[137], and its picture in Fig. 5.7. 
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Table 5.6. BCAP1200 P270 specifications 

Nominal Capacitance 1200F 

Rated voltage 2.7 VDC 

Surge Voltage 2.85 VDC 

Equivalent series resistance 0.58 mohm 

Operating temperature -40°C to +65°C 

Power density 5800 W/kg 

Pmax 15900 W/kg 

Energy density 4.67 Wh/kg 

Maximum Continuous Current 81 A 

Maximum peak current, 1 sec 955 A 

Leakage current 2.7 mA 

Weight 0.26 kg 

Short circuit current 4650 A 

Volume 0,295 L 

Dimensions 74x60.4x60.7 mm 

Supercapacitor Pack Specifications 

SC Pack fully charged Voltage (5 SC in series) 14.25V 

Rated Capacitance  240 F 

Equivalent DC series resistance 0.0029 ohms 

Usable energy (100%-50%SOC) 5.07 Wh 

 

The energy ratio between the SC simulated (430.5 Wh) to the one used in the experiment 

(5.07 Wh) is 85:1. 

 

Fig.5.7. BCAP1200 P270 supercapacitor 



159  CHAPTER 5 

 

 

5.2.7. Low voltage permanent magnet synchronous machine dyno kit 

The kit includes two 60Vdc synchronous 3-phase sinusoidal back EMF PMSM, shaft 

coupling, and aluminium frame mount for the intention to run one motor under test with 

the other acting as an active load. The Teknic motor part number is M-2310P-LN-04K 

and the kit part number is 2mtr-dyno. The kit parts are shown in Fig.5.8  

 

 Fig. 5.8. Motor-dyno kit parts  

Each motor has the characteristics shown in Table 5.7 [138]: 

Table 5.7. Teknic M-2310P-LN-04K motor specifications 

Resistance, phase to phase [ohms] 0.72 

Inductance, phase to phase [mH] 0.40 

Electrical Time Constant [mS] 0.56 

Back EMS (Ke) [Vpeak/kRPM] 4.64 

Continuous Torque [oz-in]  38.8 

Continuous Torque [Nm] 0.274 

Continuous current [A] 7.1 

Maximum RPM 6000 

Back EMF constant 4 

Encoder density [counts/revolution] 4000 

Encoder type Line driven single-ended TTL 

Floating optical disk 

Commutation type: 120° spaced, optical 

commutation sensors. Sinusoidal 
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5.2.8. Permanent magnet synchronous motor 

The PMSM is an AC synchronous motor whose field excitation is provided by permanent 

magnets embedded in the rotor. The stator is made of windings which are connected to 

an AC supply to produce a rotating magnetic field. This type of motor produces sinusoidal 

back EMF, similar to its induction motor counterpart. Control is achieved through a 

digitally controlled inverter. This control is based on vector control techniques such as 

FOC and direct torque control. The basic idea of the vector control algorithm is to 

decompose a stator current into a magnetic field generating part and a torque generating 

part. Both components can be controlled separately after decomposition. Maximum 

torque is reached when the current and the magnetic field are orthogonal between them. 

Hence the goal of the control algorithm is to keep the current flowing in the windings 

orthogonal to the magnetic field of the rotor. 

5.3. Field oriented control  

Field oriented control is a method whose purpose is decoupling the torque and flux 

producing components of the stator current. This decomposition allows the control of 3 

phase motors in the same fashion as simple DC motors with separate excitation. In this 

way, the flux generation is controlled by the excitation current and the torque generation 

is controlled by the armature current. 

In Surface Mounted Permanent Magnet type motors, the d-axis (direct axis) current 

reference of the stator (id
*) is usually set to zero in order to maximise the torque production 

[139]. The magnets in the rotor produce the rotor flux linkages needed to generate the 

magnetising current. The rotor flux linkages are generated by the permanent magnets and 

the stator flux linkages are generated by the stator current. The d-axis current may be set 

to a non-zero reference when using a flux optimisation technique. For example, field 

weakening techniques reduce the stator flux on the d-axis in order to operate above the 

nominal speed. 
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The FOC method can be implemented using speed sensors and without them. However, 

where precision is important, sensored control provides better performance than 

sensorless. The sensor provides precise information of the rotor position and the 

mechanical speed of the rotor. The F28069M microcontroller performing the FOC control 

has two QEP rotary encoder inputs to determine the precise rotor position of the two 

motors, so the sensored control approach is adopted. 

The control method can be summarised as follows [140]: 

1. The three-phase stator currents are measured. Only two currents will suffice if the 

motor has balanced three phase windings. The third current is calculated as 

0a b ci i i  
 

2. The three phase currents are converted to a stationary two axis system with the 

Clarke transform. This transformation calculates the variables 
i and 

i , which 

are the time-varying quadrature current values viewed from the perspective of the 

stator. These variables are obtained from the measured 
,ai ,bi ci values. 

3. The stationary two-axis coordinate system is rotated to align with the rotor flux 

using the Park transform. This transform provides the di , qi , which are the 

quadrature currents transformed to the rotating coordinate system. These variables 

are calculated from 
i and 

i . For steady state conditions, di , qi  are constant. 

4. The di reference current controls rotor magnetizing flux. The qi  reference current 

controls the torque output of the motor. 

5. The 
*

di reference set point is compared to di , and the 
*

qi reference set point is 

compared to qi . The error signals are fed to PI controllers and the output of the 
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controllers provide
*

dv
, 

*

qv
 which are voltage vectors that will be applied to the 

motor. 

6. The encoder pulses provides a new transformation angle that guides the FOC 

algorithm as to where to place the next voltage vector. 

7. The 
*

dv
, 

*

qv
output values from the PI controllers are rotated back to the stationary 

reference frame using the new angle. For this purpose the inverse Park transform 

is used. This calculation provides the next quadrature voltage values 
*v ,

*v . 

8. The 
*v ,

*v  values are used to calculate the new PWM duty cycle values which 

will generate the desired voltage vector. 

9. The mechanical speed ( ) is calculated after every discrete PWM cycle 

In Fig. 5.9, the diagram of the FOC control of the dual motor setup is shown. The motor 

simulating the vehicle motor has an additional speed control loop where the angular speed 

measured by the sensor is compared to the desired speed. On the other hand, the load 

motor is controlled in torque mode, therefore, 
*

qi is used to set the reference current to 

control the torque. 

The vehicle motor drive is powered by a HESS composed by a 38.4V battery and a 

14.25V SC HESS, which is interfaced to the DC-bus through a bidirectional DC/DC 

converter. The load motor drive is powered independently by a 38.4 V battery. A picture 

of the motor and controller kit is shown in Fig. 5.10. 
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Fig. 5.9. Dual motor FOC control schematic 
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Fig.5.10. Dual motor coupling and LAUNCHPADXL controller  

5.4. Model to control a dual permanent magnet synchronous motor (dyno) using 

C2000 processors 

The dual motor FOC control model is available as a fully functional example in Matlab 

[141]. The model is compatible with Matlab R2014a to R2022a. For the implementation, 

Matlab R2021b has been used. The additional MathWorks products to simulate, generate 

code and deploy the model on the target hardware are: 

 Motor Control Blockset 

 Embedded Coder 

 Embedded Coder Support Package for Texas Instruments™ C2000™ Processors 

 Fixed-Point Designer 

 Simulink 

The Embedded Coder Support Package allows users to create real-time executable code 

of a Simulink model and deploy it on Texas Instruments C2000 microcontrollers. All the 
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algorithms and device driver blocks contained in the Simulink model are converted to C 

code, which is generated automatically and run directly on the target hardware. The 

support package allows access to the device driver blocks for ADC, PWM, SPI, I2C, 

serial, CAN, interruptions, DAC, etc., giving the flexibility to for rapid prototyping and 

production workflows for different control applications. One of the main advantages of 

using Simulink along with TI C2000 processors is the verification capability through 

Processor in the Loop (PIL), Monitor and Tune (External mode), and SD card Logging 

and Real-time profiling. By installing this software, it is possible to set up the Simulink 

model to communicate with the target hardware. Installation of the support package 

software and third-party software, such as Texas Instruments Code Composer Studio is 

part of the setup and configuration process. 

Once the model is configured, the code generated is uploaded to the microcontroller. To 

send the speed and torque (Iq current) set points to the microcontroller a host model is 

used. This host model establishes a serial communication link with the microcontroller. 

Current loops in Motor 1 and Motor 2 control algorithms are offset by Ts/2, where Ts is 

the control loop execution rate. To access the model to control this kit, the following 

command must be inserted in Matlab command prompt: 

Open_system(‘mcb_pmsm_foc_qep_dyno_f28069m’) 

5.5. Energy management system implementation 

5.5.1. IIR filter implementation 

IIR Digital filters are implemented based on the difference equation, which determines 

how the output signal relate to the input signal. The difference equation is given by [142]: 

 
0 1

( ) ( ) ( )
q p

k k

k k

y n b x n k a y n k
 

      (5.1) 
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The transfer function of the IIR filter is given by: 
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  (5.2) 

Where ak are the feedback filter coefficients and bk are the feedforward filter coefficients. 

Designing an IIR filter usually involves finding a transfer function H(z) in the form of eq. 

5.1 such that its magnitude response, phase response, and the group delay approximate 

the specified magnitude response in terms of a certain criterion. 

Practical implementation of an IIR filter is usually based upon analogue equivalents, 

where methods such as Butterworth, Chebyshev, Elliptic, and least squares are used to 

find the continuous time filter transfer functions that approximate the specifications given 

in the frequency domain. It is also possible to design bespoke filters without any reference 

to analogue designs. The analogue filter prototype is transformed to its digital equivalent 

with the bilinear transform. This digitalisation technique is the most popular for designing 

IIR filters, since there is a vast amount of theory on standard analogue filter design. The 

design process is depicted in the schematic presented in Fig 5.11. 

 

Fig 5.11. IIR filter design steps 

As the bilinear transform maps the left half-plane of the s-plane into the unit circle of the 

z-plane, the infinitely long analogue frequency axis j  becomes the finite-length circle. 

The bilinear transform mapping is illustrated in Fig 5.12. 



167  CHAPTER 5 

 

 

 

Fig. 5.12. Illustration of s-plane to z-plane mapping using the bilinear z-transform. 

This is known as frequency warping, where equal increments along the unit circle in the 

z-plane correspond to larger bandwidths along the s-plane. This means that all the values 

of the frequency response of the analogue filter are compressed into the range

0 d sT  
, resulting in a nonlinear compression of the frequency scale. To overcome 

the warping effect introduced by the transform, it is common practice to pre-warp the 

specification of the analogue filter, so that after warping the cut-off frequency is located 

at the desired place. 

Once the filter has been designed, the transfer function is converted with the bilinear 

transform using the substitution [143]: 

1
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T z


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where Ts is the sampling time. 

In this thesis, the proposed filtration strategy is based on a first order low pass filter, for 

which its continuous time transfer function is given by: 

 ( )
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   (5.4) 
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where k is the pass-band filter gain and  is the desired angular frequency which is given 

by: 

2 cf 
  (5.5) 

where fc is the cut off frequency of the filter. The desired cut-off frequency is fc=125 mHz, 

the filter gain is 0.8, and the sampling frequency is fs=1 kHz. With these parameters the 

angular frequency of the digital filter is ω=2π x 125e-3 = 0.785 rad/s By substituting (5.2) 

in (5.3), the discrete transfer function ( )H z  is obtained as: 
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Substituting the filter cut-off frequency and sampling time in (5.6) yields the filter’s 

discrete transfer function: 

0.8(0.000392 0.000392)
( )

0.9992

z
H z

z





    (5.8) 

5.5.2. Effect of filter pass-band gain on the supercapacitor current reference 

Different pass-band filter gains were used to modify the SC current reference, so it 

approaches to the benchmark signal as calculated in Chapter III section 3.4.4. To obtain 

the results shown in Fig. 5.13, a low pass filter with a gain of k=1 was used. Comparing 

this result to those obtained when the pass-band gain of the low pass filter was changed 

to 0.8 shows that with a gain lower than 1, the high frequency component signal is 

amplified as the low frequency component is attenuated. The results are shown in Fig. 

5.14. 
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Fig.5.13. SC current reference (green) vs SC effective contribution during demand set 

by changes in the acceleration rate (light blue) with a filter with fc=125mHz and pass-

band gain of 1. 

 

Fig.5.14. SC current reference (green) vs SC effective contribution during demand set 

by changes in the acceleration rate (light blue) with a filter with fc=125mHz and pass-

band gain of 0.8. 

These results show that varying the pass-band gain of the filter modifies the amount of 

energy contained in the signal, which can be used to adaptively change the contribution 

of the SC considering factors such as the SOC of the SC, SOC of the battery, vehicle 

loading, type of driving cycle, changes in acceleration, etc. In the literature, adaptive 
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methodologies using filters commonly change the cut-off frequency with methods such 

as fuzzy logic [47], leaving the gain constant. Adaptive methodologies by changing the 

filter pass-gain have not been reported. 

5.5.3. Implementation of the proposed energy management system on the Texas 

Instruments C2000 Piccolo MCU F28027F Launchpad 

Texas Instruments 32-bit C2000 microcontrollers can be programmed and debugged 

using Mathworks Embedded Coder Support Package. This enables real time closed loop 

control of applications such as motor control in a model-based design workflow. To 

implement the proposed EMS, the current measured at the DC-bus is measured with a 

hall-effect current transducer. As the current in the DC-bus can take positive values 

during the motoring stage and negative values during regenerative braking, a signal 

conditioning circuit is required to ensure that the range measured by the transducer is 

converted to a range accepted by the microcontroller. In this particular case, the LEM La-

55-P transducer is able to measure DC currents within -50A and 50A in the primary. The 

output of the transducer is a current signal that has a proportion of 1:1000 with respect to 

the measured current in the primary, so for a current of 50A, the output is 50 mA. The 

current at the output of the sensor must be converted to voltage before it can be fed to the 

microcontroller ADC. A resistor of 100 ohm is connected in series with the output of the 

sensor to convert the current output into a voltage between -5V to 5V. The sensor 

connection schematic is shown in Fig. 5.15 
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Fig. 5.15. Current sensor schematic 

The F28027F microcontroller is able to accept positive voltages within 0V to 3.3V. As 

the output of the current sensor can vary between -5V and 5V, an operational amplifier is 

required to perform signal conditioning. The conditioning schematic is shown in Fig. 5.16 

and is known as a level shifter. 

 

Fig. 5.16. Current sensor to ADC signal conditioning  

With Simulink C2000 support package, an ADC block can be configured to read the 

voltage provided by the signal conditioning operational amplifier. This block interfaces 
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the physical microcontroller with Matlab environment, allowing for real time data 

acquisition and monitoring. 

The proposed EMS requires the calculation of 3 currents: Motoring, braking and charging 

currents. To determine these currents, the measured DC-bus current is filtered from high 

frequency noise with a low pass filter with a cut-off frequency of 100 mHz as shown in 

Fig. 5.17.  

 

(a) 

 

(b) 

Fig. 5.17. DC-bus current measured. (a) Simulink DC-bus data acquisition model. b) 

(Left) Raw signal obtained at the output of the current sensor. (Right) DC-bus current 

after filtering 

The motoring current reference Im (see Fig.4.1) is obtained with the Simulink model 

presented shown in Fig. 5.18, where the current measured at the DC-link is filtered with 

the IIR low pass filter designed previously. The positive part of the filtered signal is 

subtracted from the positive part of the measured current demand. Finally, the motoring 

current reference corresponds to the positive part of the resulting signal.  
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Fig. 5.18. SC motoring current calculation 

By letting the negative part of the measured current pass through, the braking current Ibr 

is calculated. The Simulink model is shown in Fig. 5.19. 

 

Fig. 5.19. Calculation of SC negative current 

The rate transition blocks in fig 5.18 (RT12) and 5.19 (RT10) are used to transfer data 

from the output of a block operating at one rate to the input of a block operating at a 

different rate. This block ensures data integrity and deterministic data transfer. The 

behaviour of the rate transition block depends on the sample times of the ports to which 

the block connects [144]. 

The final component of the SC current reference is the charging current Ich. For this 

purpose, the voltage of the SC is measured with a voltage transducer, where a current 

proportional to the measured voltage is passed through an external resistor as shown in 

Fig 5.20. 

 

Fig. 5.20. Voltage transducer schematic 

The measured voltage is checked against the voltage threshold of 10 V, so when the SC 

voltage is below this value and the current demand is zero, a constant current of 1.5A is 
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subtracted from the SC current demand. The Simulink model to obtain the charging 

current is presented in Fig 5.21. 

 

Fig. 5.21. Charging current model 

The SC current reference is calculated by adding the motoring, braking and charging 

currents. The SC current reference is then compared to the DC/DC converter inductor 

current, which is measured with a LEM LA-55-P current transducer and its output signal 

conditioned with a similar circuit as presented in Fig. 5.16. 

Once the Simulink model is completed the code generation function provided by 

MATLAB Coder™, Simulink Coder™, and Embedded Coder® generate ANSI/ISO 

C/C++ code that can be compiled and executed on Texas Instruments® processors. The 

generated code is uploaded to the microcontroller and monitored in real time by using 

Simulink external mode. 

5.6. Experiment setting 

The motor simulating the vehicle is controlled in speed control and set to run at a constant 

speed of 4000 rpm. The second motor Iq current, proportional to torque, is varied 

according to the reference shown in Fig. 5.22.  
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Fig. 5.22. Current reference schedule (Iq) to control the loading motor torque 

The loading motor (dynamometer) follows the current reference shown in Fig.5.22. This 

loads the motor under test (running at constant 4000 RPM), producing the current demand 

shown in Fig.5.25 after noise filtration. This is the current used by the EMS to perform 

the power split between the battery and SC. Once the code is generated in Matlab, it is 

transferred to the target hardware (Launchpad Microcontroller). For the FOC control of 

the dyno, a host model is used to pass the control signals from a Simulink model to the 

microcontroller. This is done by using UART serial communications. In Fig 5.23, the 

FOC Simulink model to control both PMSMs is shown. This model is converted to C-

code and uploaded to the microcontroller. The experiment complete layout and 

microcontroller pin assignments is presented in appendix B at the end of this thesis. 
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Fig.5.23. FOC control Simulink model 
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To interact with the model shown in Fig. 5.23, a host model is necessary. This model allos 

the user to send the current commands to the microcontroller, so the motors can react to 

these control signals. For the motor under test, the speed command is set to 4000 RPM. 

The second motor (loading motor) receives the current reference to control de torque of 

the motor. This torque can be either positive (to load the motor) or negative to simulate 

regenerative braking. The Host model is shown in Fig. 5.24. 

 

Fig.5.24. Simulink Host model to control the dyno rig 

Once the current reference to control the loading motor is passed to the microcontroller, 

the torque of this motor will vary according to the current schedule shown in Fig, 5.22. 

As a response, the current of the motor running at 4000 RPM will change according to 

the loading torque. The current demand resulting from this is shown in Fig.5.25. 
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.  

Fig. 5.25. Total current demand required by the motor under test 

5.7. Results 

The results of the experiments with and without the proposed EMS are presented in Table 

5.8, and the energy efficiency calculations are presented in Table 5.9. 

Table 5.8. Comparison of results obtained with and without the proposed EMS 

 

Without EMS 
With EMS and no 
charging strategy 

With proposed EMS 
and charging 

strategy 

 motoring braking motoring braking motoring braking 

Total demand (Wh) 11.4 1.73 11.4 1.73 11.4 1.73 

Battery (Wh) 8.47 1.20 8.08 0 9.42 0 

SC (Wh) 3.46 1.06 3.32 1.73 3.32 3.07 

Total energy HESS (Wh) 11.93 2.26 11.4 1.73 12.74 3.07 

Energy circulation (Wh) 0.53 0.53 0 0 1.34 1.34 

SC effective contribution (Wh) 3.32 0.53 3.32 1.73 3.32 1.73 

SC initial voltage (V) 10.2 10.2 10.2 

SC final voltage (V) 9.18 9.53 10.1 
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Table 5.9.  Energy efficiency calculations for the case without the proposed EMS, with 

the proposed EMS and no charging strategy enabled, and for the proposed EMS with 

charging enabled. 

 

Motoring  Without EMS 

With EMS 
(no charging 

strategy) 

With EMS 
(with 

charging 
strategy) 

a Total energy demand Wh 11.4 11.4 11.4 

b Total battery Energy supplied Wh 8.47 8.08 9.42 

c Total SC energy supplied Wh 3.46 3.32 3.32 

d Energy circulation Wh (b+c-a) 0.53 0 1.34 

 Braking   
 

 

e Total energy generated braking Wh 1.73 1.73 1.73 

f Total energy absorbed by SC Wh 1.06 1.73 3.07 

g Total energy absorbed Battery Wh 1.20 0 0 

h Energy circulation Wh (f+g-e) 0.53 0 1.34 

 Energy balance  
 

 

i Total energy motoring HESS Wh (b+c) 11.93 11.4 12.74 

j Total energy recovered HESS (f+g) 2.26 1.73 3.07 

 Net energy Wh (i-j) 9.67 9.67 9.67 

 Net energy demand Wh (a-e) 9.67 9.67 9.67 

 Efficiency  
 

 

k Energy efficiency motoring (%) (a/i*100) 95.5% 100% 89.48% 

l Energy efficiency braking (%) (e/j*100) 76.5% 100% 56.35% 

 System efficiency (%) (K*L) 73.05% 100% 50.42% 

 

5.7.1 Energy distribution without energy management system 

The SC is commanded to follow the current reference obtained as the difference 

between the current demand and a low pass filter. The total energy available for 

recovery is absorbed mostly by the battery (1.20 Wh, 70%), while the SC effectively 

absorbs 30% (0.53 Wh). The total energy provided by the SC during motoring is 3.46 

Wh and the total energy recovered is 1.06 Wh, which includes 0.53 Wh from braking 

and 0.53 Wh from energy circulation. As the energy recovered is lower than the 

energy provided, the SC voltage drops from 10.2V to 9.18 V. During the motoring 

stage, the SC relieves the battery by providing 29% (3.32 Wh) of the total energy 

demand (effective contribution). The main issue with this approach is the sub-

utilisation of the SC during the braking stage and the energy circulation that naturally 

occurs as a consequence of the filter dynamics. The efficiency of the motoring stage 
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is 95.5% and the efficiency of the braking stage is 76.5%. The overall energy 

efficiency with this strategy is 73.5%. Calculation are presented in Table 5.9. The 

experimental data depicting the current contribution of the HESS and the SC voltage 

is shown in Fig.5.26. The shaded areas show energy circulation and the amount of 

energy recovered by the SC. It is important to note that the battery and SC recover 

energy. 

 

Fig. 5.26. HESS current distribution and SC voltage without EMS 

5.7.2 Energy distribution with the proposed energy management system and 

no charging strategy 

With the proposed method and no charging strategy, the SC recovers the braking energy 

generated (1.73 Wh). The battery is relieved from braking energy. For the motoring stage, 
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the battery and SC provides the required 11.4 Wh (battery 8.08 Wh and SC 3.32 Wh), so 

no excess energy is circulating in the system. The initial SC voltage is 10.2 V and the 

final voltage is 9.53. As energy is not circulating in the system, the efficiency is 100% 

(considering a lossless DC/DC converter and neglecting parasitic losses). Compared to 

the previous strategy, the final SC voltage is higher at 9.53V (vs 9.18V). This result shows 

that the proposed EMS is superior as it improves the energy efficiency in terms of energy 

distribution and ends the cycle with higher SC voltage. As the charge strategy is disabled, 

there is no energy circulation in the system, improving the overall energy efficiency. In 

other words, the same cycle is performed using less energy. The current distribution is 

shown in Fig. 5.27. 

 

Fig. 5.27. Current distribution and SC voltage with the proposed EMS and no charge 

strategy 
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5.7.3 Energy distribution with the proposed energy management system and 

charging strategy 

With the proposed EMS, energy circulation during the motoring stage is eliminated 

and is allowed only during the braking stage. The results of the experiment are 

presented in Table 5.8 and the current distribution in Fig. 5.28. The SC assists the 

battery by contributing 29% (3.32 Wh) of the total energy demand and recovers the 

braking energy (1.73 Wh). In addition to the braking energy, a total of 1.34 Wh are 

transferred from the battery to the SC to raise the voltage above 10 V. The charging 

strategy adds an additional 1.5 A to the braking current when two conditions are met: 

the current demand must be less or equal to zero, and the SC voltage should be less 

than 10 V. The SC voltage is not maintained above 10 V at all times as the charging 

strategy allows energy circulation only when braking and not during motoring. In this 

way, the battery is relieved from peak power that may occur when the SC voltage is 

low and the power demand is high during the motoring stage (charging may occur at 

peak time). The lowest SC voltage during the experiment is 9.34V at time t=92 

seconds and the final SC voltage is 10.1 V. In terms of efficiency, the system is 56.8% 

as shown in Table 5.9. The lower energy efficiency is caused by the higher energy 

circulating in the system to maintain the SC voltage above 10V. Although the 

efficiency is lower due to energy circulation, the battery is completely relived from 

peak power during motoring and braking, energy circulation is controlled, and the 

objective to keep the SC charged is met. 
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Fig. 5.28. HESS current distribution and SC voltage with EMS and charging strategy 

The proposed EMS performance is assessed by repeating the cycle 6 times for a total of 

800 seconds.   This is performed twice with different SC voltage starting points.  The first 

experiment starts with the SC voltage at 10.2 V as shown in Fig. 5.29. The SC voltage is 

boosted by the charging strategy without imposing extra stress on the battery, especially 

during peak power demand as the SC is not recharged when the current demand is 

positive. For this reason, it is observed that the voltage drops below 10V in several 

occasions, however, it is boosted by braking energy and energy circulating from the 

battery. As result, the SC voltage is maintained within operational levels (>7.12V) at all 

times.  
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Fig. 5.29 Assessment of the proposed EMS with a repetitive current demand cycle. SC 

voltage starting point of 10.2V 

The second experiment starts with the SC voltage at 9 V as shown in Fig 5.30. As the SC 

voltage is lower than the 10V threshold, the charging strategy recharges the SC from the 

beginning of the cycle. The battery transfers a constant 1.5 A to the SC until 10V are 

reached. The current demand cycle is repeated for a total duration of 800 seconds, 

showing that the SC voltage is maintained within operational levels (above 50% SOC or 

7.12V) at all times.  
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Fig. 5.30 Assessment of the proposed EMS with a repetitive current demand cycle. SC 

voltage starting point of 9V 

The energy efficiency calculation for these two cases is presented in Table. 5.10. The 

energy efficiency obtained with the two scenarios described before, show that efficiency 

is affected by energy circulation. However, as energy circulation is necessary to maintain 

the SC voltage within operational level, it must be controlled to improve the system 

efficiency. When the starting voltage of the SC is 9V, more energy is necessary to 

recharge it, therefore the energy efficiency is lower at 39.9%. When the SC starts at 

10.2V, the efficiency is 47.2%, as less energy is circulating. 
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Table 5.10. Energy efficiency calculations for repetitive driving cycle (800 sec) for 

different SC voltage starting points 

 

 Motoring  With SC 
starting at 
10.2V 

With SC 
starting at 9 

V 

a Total energy demand Wh 69.08 69.08 

b Total battery Energy supplied Wh 58.22 61.01 

c Total SC energy supplied Wh 20.06 20.05 

d Energy circulation Wh (b+c-a) 9.2 11.98 

 Braking    

e Total energy generated braking Wh 10.56 10.56 

f Total energy absorbed by SC Wh 19.76 22.54 

g Total energy absorbed Battery Wh 0 0 

h Energy circulation Wh (f+g-e) 9.2 11.98 

 Energy balance   

i Total energy motoring HESS Wh (b+c) 78.28 81.06 

j Total energy recovered HESS (f+g) 19.76 22.54 

 Net energy Wh (i-j) 58.52 58.52 

 Net energy demand Wh (a-e) 58.52 58.52 

 Efficiency   

k Energy efficiency motoring (%) (a/i*100) 88.2% 85.2% 

l Energy efficiency braking (%) (e/j*100) 53.4% 46.9% 

 System efficiency (%) (K*L) 47.2% 39.9% 



 

 CHAPTER 

6 CONCLUSIONS AND FURTHER WORK 
6 

In this chapter a summary of the research conducted, its outcome and further work is 

presented. 

6.1. Addressed thesis objectives 

Considering the purpose of hybridisation and the specific role of the EMS to control the 

function of the SC as part of the HESS, the following research questions motivating this 

thesis have been addressed: 

1. Developed understanding of the effects of the time delay in power distribution 

and the system’s energy efficiency when the real time EMS is based on frequency 

sharing techniques including the DWT and conventional filters. Commanding the 

SC with a delayed current reference produces unnecessary energy circulation in 

the system which increases the system losses. The SC fails to meet the objective 

of hybridisation: To relieve the battery from peak power during the motoring and 

braking stages. 

2. Time delay compensation with prediction has been proposed in the literature to 

solve the delay problem. Replication of such work showed that some 

improvements are achieved, but the SC still fails to relieve the battery from peak 

power during motoring and braking. The system’s performance is marginally 

improved so the author feels the complexity of the approach outweighs the 

benefits.  

3. The assessment of the SC performance with EMS based on different frequency 

sharing techniques was achieved by developing an algorithm to generate a 
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benchmark reference signal. The algorithm involved calculating the first 

derivative of the positive current demand to define time windows that correspond 

to positive current demand changes. This signal defined the areas where SC 

assistance would be most beneficial. These areas are used to quantify the SC 

assistance during motoring, acceleration, braking and total energy circulation for 

different EMS strategies. 

4. The DWT is a powerful method for decomposing signals into frequency 

components. However, it has limitations when applied in real time. The results 

obtained in this research show that an EMS based on conventional filters is 

superior to an EMS based on DWT. Conventional filters are easy to design and 

implement in real time. With the DWT it is difficult to get specific frequency sub-

bands unless sampling frequency is changed. This is a consequence of the dyadic 

decomposition of the signal with the filter bank. 

5. Energy circulation is necessary to maintain the SC charge availability during the 

whole battery discharge cycle. Previous methodologies based on filtration 

techniques used the output of the filters as the references to control power flow. 

However, this signal generated uncontrolled energy circulation between the 

battery and SC, increasing the system’s energy losses. Rapid changes in the signal 

are processed by the filter, producing changes in the slope of the filtered signal. 

In many cases, this results in the SC being commanded to recharge when no 

braking is being generated, forcing the battery to meet the demand. With the 

proposed methodology, the occurrence of the energy circulation is effectively 

controlled, keeping the SC within its operational limits with a fraction of the 

energy circulation achieved with traditional methodologies. 

6. By controlling the occurrence of energy circulation, the efficiency of the system 

has been improved. At the same time, the SC performance has been significantly 



189  CHAPTER 6 

 

 

enhanced with the proposed EMS strategy, considering that it discharges when 

the battery needs it the most and recovers all the braking energy available. The 

proposed EMS truly relieves the battery from stress. 

7. The ability of the SC to charge and discharge at high rates complements the 

battery high energy, equipping the HESS with both energy and power capabilities. 

Comparing a HESS against an oversized battery shows that significant 

performance improvements can be achieved with both options. However, with the 

current market prices and the small size of high energy batteries compared to high 

capacitance SC, an oversized battery might still be easier to implement and 

relatively cheaper to build. 

8. Complementing the battery with a SC managed with an effective EMS, relieves 

the former from peak power during motoring and braking. As a consequence, the 

battery charge and discharge C-rate is reduced. This reduction in the current rate 

reduces the temperature, which is one of the main factors affecting the battery 

cycle life. However, it is important to emphasise the role of the EMS in achieving 

this objective, as a poor design approach would prevent the HESS to achieve its 

full potential. 

9. By relieving the battery from peak power during motoring and braking, it is 

expected that the temperature of the battery will lower. As temperature is one of 

the main factors affecting battery lifetime, the proposed EMS would improve the 

battery cycle life. However, the detailed analysis of battery lifetime improvements 

is not within the scope of this work.  

Results show that obtaining the SC current reference as the difference between the real 

time current demand and the DWT low frequency component (strategy C) improves the 

SC assistance during motoring and braking when compared to the prediction based 

method in all driving conditions. Prediction proves to compensate for the delay and 
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reduce energy circulation but it does not improve the SC performance. With aggressive 

driving cycles such as the US06 and Artemis motorway, the best results are obtained with 

a current reference calculated as the difference between the real time current demand and 

the predicted DWT low frequency component (strategy D). Real time implementation is, 

however, more difficult. The overall efficiency results, which include energy efficiency 

and SC perfromance shows that strategy C outperforms the other strategies, therefore, 

strategy C is recommended as the best control strategy in terms of SC performance and 

overall efficiency as it enables a DWT based EMS with 4 second delay frequency 

components to perform in real time.   

6.2. Research contributions 

The literature review showed the wealth of research studying the implementation of SCs 

as part of a HESS, and multiple approaches to design and implement the EMSs to 

determine the current references to control the power sources. After carrying out a 

comprehensive review of the literature related to the design of EMSs based on frequency 

sharing techniques, a clear gap in knowledge was identified: The effective SC 

contribution in the HESS has never been used as a metric to validate the performance of 

the EMS.  This led to a thorough investigation of the effective SC contribution with 

filtration approaches, with and without time delay compensation, and the effects of delay 

on the system’s efficiency, which constitutes the main contribution of this thesis.  

This work presents a fresh perspective to this research field by introducing an effective 

approach to improve the SC contribution in the HESS while reducing energy losses in a 

semi-active control topology managed with frequency sharing techniques. The real time 

implementation of the EMS to operate a HESS powering the test platform developed for 

this purpose, has shown the applicability of the approach and provided reassurance that 

the EMS excels at splitting power in real time. 
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6.3. Final remarks 

An efficient EMS for HESS has been proposed. The main merits of the proposed EMS 

are its simplicity and effectiveness in dealing with filter phase shift and time delays so 

that unnecessary energy circulation between the battery and SC is eliminated. The 

proposed method has been tested with different filtration techniques including a first-

order filter and a DWT-based filtration strategy with and without time delay 

compensation. Results show that different filtration techniques can be implemented with 

the proposed EMS method as it allows the SC to assist the battery during positive power 

demand (acceleration) and completely relieve the battery from negative power demand 

(braking) independently of the filtration technique and its associated delay or/phase shift. 

As the generated braking power is often not enough to maintain the SC charge, the 

proposed charging strategy has been shown to be effective in maintaining the SC 

availability throughout the battery discharge cycle, avoiding SC downtime. As the SC 

effectively reduces the battery burden during motoring and recovers all the generated 

braking power, the battery life can be prolonged.  

A comparison of the proposed EMS method against EMS strategies where the high-

frequency component of the current demand is allocated to the SC directly, show that the 

best results are obtained when the proposed method is used along with a first-order low 

pass filter. Although the fixed cutoff frequency of 125 mHz works well for the US06 

driving cycle, it doesn’t do the same for the FTP72 driving cycle resulting in the SC being 

underutilised. Literature suggests changing the cut-off dynamically as a function of the 

driving cycle. However, a simpler and more efficient way would be to vary the filter gain 

while keeping the cut-off frequency fixed. 

Suggestions for further work include researching the difference between varying the cut-

off frequency of the filter against varying the gain of the filter. An effective method to 

vary the cut-off frequency or the filter gain adaptively remains a challenge. The SC can 
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be replaced by other high power sources such as batteries designed for high power 

applications. In this specific case, high power batteries should exhibit high charge (>4C-

rate) and discharge (>4C-rate) capability. Although these batteries are able to discharge 

at high rates, their charging rate is still inferior compared with SCs. Using these batteries 

as the high power source would require some modifications of the charging strategy 

including the limitation of the maximum currents the battery can receive and the 

allocation of excess recovered energy between the energy and power batteries. A 

thorough comparison between a HESS including a SC pack and a HESS with a high 

power battery is missing in the literature, especially in terms of weight and volume.  

Temperature analysis of the battery with and without the proposed EMS would help in 

the determination of battery cycle life improvements. 

Management of the SC self-discharge has not been included in the present work. Further 

investigation is required to assess the effects of the SC self-discharge, especially when 

the HESS is in idle state for prolonged periods of time. In this scenario, would a high 

power battery provide better performance?  

A cost and performance comparison between an oversized battery and a HESS requires 

further considerations as it is not available in recent literature. 
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Appendix A. Python programs 
LSTM training python program 

# -*- coding: utf-8 -*- 

""" 

Created on Mon Sep 23 13:25:29 2019 

 

@author: Miguel Robayo 

""" 

import pandas as pd 

#import numpy as np 

from numpy import array 

from keras.models import Sequential 

from keras.layers import LSTM, Bidirectional 

from keras.layers import Dense, Dropout 

from keras.optimizers import Adam 

from sklearn.model_selection import train_test_split 

import matplotlib.pyplot as plt 

ADAM=Adam(lr=0.001,beta_1=0.9,beta_2=0.999,amsgrad=False,) 

data=pd.read_csv(r'C:\Users\mr597\Downloads\8dr10.csv') 

seq=data.to_numpy() 

x_train,x_test=train_test_split(seq,test_size=0.1,shuffle=False) 

# split a univariate sequence into samples 

def split_sequence(sequence, n_steps_in, n_steps_out): 

 X, y = list(), list() 

 for i in range(len(sequence)): 

  # find the end of this pattern 

  end_ix = i + n_steps_in 

  out_end_ix = end_ix + n_steps_out 

  # check if we are beyond the sequence 

  if out_end_ix > len(sequence): 

   break 

  # gather input and output parts of the pattern 

  seq_x, seq_y = sequence[i:end_ix], sequence[end_ix:out_end_ix] 

  X.append(seq_x) 

  y.append(seq_y) 

 return array(X), array(y) 

def split_sequence1(sequence, n_steps_in): 

 X= list() 

 for i in range(len(sequence)): 

  # find the end of this pattern 

  end_ix = i + n_steps_in 
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  # check if we are beyond the sequence 

  if end_ix > len(sequence)-1: 

   break 

  # gather input and output parts of the pattern 

  seq_x= sequence[i:end_ix] 

  X.append(seq_x) 

  

 return array(X) 

# define input sequence 

n_steps_in, n_steps_out =8,8 

# split into samples 

X, y = split_sequence(x_train, n_steps_in, n_steps_out) 

# reshape from [samples, timesteps] into [samples, timesteps, features] 

n_features = 1 

X = X.reshape((X.shape[0], X.shape[1], n_features)) 

y=y.reshape(y.shape[0],y.shape[1]) 

#define model 

model = Sequential() 

model.add(LSTM(50,return_sequences=True,activation='tanh', 

input_shape=(n_steps_in, n_features))) 

model.add(LSTM(50,return_sequences=False)) 

model.add(Dense(n_steps_out)) 

model.summary() 

model.compile(optimizer=ADAM, loss='mse',metrics=['accuracy']) 

#fit model 

history=model.fit(X, y, epochs=170,verbose=1,validation_split=0.1) 

plt.plot(history.history['loss']) 

plt.plot(history.history['val_loss']) 

plt.title('model train vs validation loss') 

plt.ylabel('loss') 

plt.xlabel('epoch') 

plt.legend(['Train','validation'],loc='upper right') 

plt.show() 

fig1=plt.figure(figsize=(8,3),facecolor='white') 

left,bottom,width,height=0.1,0.1,0.8,0.8 

ax1=fig1.add_axes((left,bottom,width,height)) 

ax1.plot(history.history['acc'],color='blue',label='acc',linestyle='solid',alpha=0.8,linewidt

h=1) 

ax1.plot(history.history['val_acc'],color='Red',label='val_acc',linestyle='dashed',alpha=0.

8,linewidth=1) 

ax1.grid(color='darkgrey',which='both',linestyle=':',linewidth=0.5) 

model.save(r'C:\Users\mr597\Downloads\2x50_170.h5') 
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#check prediction 

x_input=split_sequence1(x_test,n_steps_in) 

yhat = model.predict(x_input, verbose=2) 

#print(yhat) 

yhat0=yhat[:,0] 

yhat1=yhat[:,1] 

yhat2=yhat[:,2] 

yhat3=yhat[:,3] 

yhat4=yhat[:,4] 

#plot ranges from l to r (seconds) 

l=0 

r=100 

plt.figure(figsize=(12,5)) 

plt.plot(yhat0[l:r],'b',label='Predicted 1 step') 

plt.plot(yhat1[l:r],'g',label='Predicted 2 step') 

plt.plot(yhat2[l:r],'black',label='Predicted 3 step') 

plt.plot(yhat3[l:r],'grey',label='Predicted 4 step') 

plt.plot(yhat4[l:r],'yellow',label='Predicted 5 step') 

plt.plot(x_test[l:r],'r',label='Real time data') 

plt.title("Current Prediction 1 step in future") 

plt.xlabel("time (seconds)") 

plt.ylabel("Amperes (A)") 

plt.legend() 

plt.show() 
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LSTM Testing program 

# -*- coding: utf-8 -*- 

""" 

Created on Mon Oct  7 10:45:03 2019 

 

@author: Miguel Robayo 

""" 

import time 

import pandas as pd 

import matplotlib.pyplot as plt 

import numpy as np 
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from numpy import array 

from keras.models import load_model 

import h5py 

print('h5py: %s' % h5py.__version__) 

model=load_model(r'C:\Users\mr597\Downloads\2x50_170.h5') 

t0=time.time() 

t1=time.time() 

total=t1-t0 

print (total) 

t2=time.time() 

def split_sequence1(sequence, n_steps_in): 

  X= list() 

  for i in range(len(sequence)): 

          

  # find the end of this pattern 

   end_ix=i+n_steps_in 

 

  # check if we are beyond the sequence 

   if end_ix > len(sequence)-1: 

    break 

  # gather input and output parts of the pattern 

   seq_x= sequence[i:end_ix] 

   X.append(seq_x) 

   

  return array(X) 

n_steps_in, n_steps_out = 8, 8 
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t3=time.time() 

total1=t3-t2 

t4=time.time() 

print (t4) 

testpd=pd.read_csv(r'C:\Users\mr665\Downloads\pdemand.csv') 

test=testpd.to_numpy() 

x_input=split_sequence1(test,n_steps_in) 

yhat = model.predict(x_input, verbose=2) 

yhat0=yhat[:,0] 

yhat1=yhat[:,1]# 

yhat2=yhat[:,2]# 

yhat3=yhat[:,3]# 

yhat4=yhat[:,4]# 

plt.figure(figsize=(12,5)) 

plt.plot(yhat4[0:100],'grey',label='Predicted 4 step') 

plt.plot(yhat4[0:100],'yellow',label='Predicted 5 step') 

plt.plot(test[0:100],'r',label='Real time data') 
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Appendix B Experiment layout 

 



217  APPENDIX B 

 

 

Signal conditioning and PWM 
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Microcontroller pin assignations. 
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