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Abstract—For a precise GNSS (Global Navigation Satellite
System) positioning, carrier phase measurements are required.
However, cycle slipping in classical phase locked loop (PLL) can
lead to a local or permanent loss of lock. To address this problem,
we propose a robust nonlinear filter for carrier phase tracking
based on Variational Bayes (VB) inference. So far, the algorithm
is designed only for slow phase dynamics (i.e., first order loop).
Interestingly, the estimator update equation can be expressed
in closed form. Performance of our algorithm is assessed on
synthetic and experimental GNSS data and compared to that
of conventional PLL-based techniques. Results show that the
proposed method brings significant improvement in terms of
cycle slipping.

Index Terms—Phase tracking, Cycle slips, Nonlinear Bayesian
filtering, Variational Bayes approximation

I. INTRODUCTION

Precise GNSS positioning is crucial in a wide range of
applications (e.g., surveying [1]). Carrier-based techniques
such as Real-Time Kinematic (RTK) and Precise Point Posi-
tioning (PPP) have been accordingly developed [2]. They can
provide positions that are orders of magnitude more accurate
than code-based GNSS [3]. However, phase measurements
obtained by conventional phase tracking algorithms can be
severely impaired by the presence of ambiguous phase jumps
known as cycle slips. They particularly arise in degraded
environments. These local losses of lock can even lead the
tracking loop to a complete drop-lock from which it never re-
covers. Reacquisition is then necessary which severely afflicts
the positioning efficiency. Cycle slip phenomenon has been
extensively studied in literature, e.g., [3]–[8]. To guarantee
a robust carrier tracking in the presence of singular inputs or
harsh environmental conditions, different techniques have been
developed [9].

In this paper, we propose a nonlinear filtering technique
for robust GNSS phase tracking based on the VB approxima-
tion [10]. This study is the continuation of the work presented
in [11] where a VB-based phase tracking technique was de-
veloped for correlated bi-frequency measurements. Herein, we
consider instead a conventional mono-frequency GNSS chan-
nel and show that the signal model allows the same tracking
methodology to be applied. Particularly, unlike conventional
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PLL-based techniques, no linear approximation is made about
the phase measurement which is a distinct advantage especially
at low signal-to-noise-ratio (SNR). We thus obtain a closed-
form nonlinear update equation that is simple to implement.
Our work is so far limited to slow phase dynamics.

The paper is organized as follows. Section II describes
the scenario into the GNSS framework and the signal model
considered. The variational Bayes approximation is recalled
and applied accordingly in Section III. Numerical results are
then presented in Section IV. Conclusions are summarized in
the last section.

II. SIGNAL MODEL

A. Scenario

We consider a GNSS receiver with a scalar tracking archi-
tecture, i.e., the signal received is processed independently on
a satellite basis and that for each available frequency channel.
The proposed phase tracking algorithm is developed assuming
that either delay or both delay and frequency are perfectly
synchronized after the satellite acquisition stage. Actually,
this assumption could be related to two possible receiver’s
architecture:

1) the tracking block entails only a Delay Lock Loop
(DLL) and the frequency is compensated with that
estimated at the acquisition stage; this architecture is
realistic only during a certain amount of time since
an integration loss will appear due to a non-tracked
frequency;

2) the tracking block entails both a DLL-FLL (Frequency
Lock Loop).

In both cases, the proposed phase tracking technique estimates
the (residual) phase of the prompt. In addition, no feedback
of the estimated phase is provided to the DLL. In this study,
results provided on real data are obtained with the former
architecture.

B. Measurement model

We consider the prompt signal as described in Section II-A
while assuming that both delay and frequency are perfectly
synchronized. The resulting baseband signal at the instant k
can be expressed as

zk = αejφk + nk (1)



where α is the real amplitude on receive, φk is the remaining
phase to be tracked and nk is the internal receiver noise. In (1),
it is also assumed that there is no navigation message (i.e.,
either a pilot channel is considered or data wipe-off is applied)

1) Likehood function: The noise component nk is supposed
to be complex white and Gaussian with known power σ2

n,
hence

nk ∼ CN (0, σ2
n). (2)

Using (1) and (2), the likelihood function can be expressed as
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with ψk = atan2(={zk},<{zk}) the angle that lies between
[−π, π]. In this work, we assume to know the value of the
amplitude α and noise power σ2

n from a lock estimator, we
will thus omit them from the conditional terms. Accordingly,
the likelihood function (3) can be simply written f(zk|φk).
The sensor factor associated to the likelihood (3) is

S(φk)
def
= f(zk|φk) ∝ exp

{
βk cos(φk − ψk)

}
(4)

where

βk =
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σ2
n

. (5)

In (4), we recognize a Von Mises distribution with concentra-
tion parameter βk and mean direction ψk. Considering (1), βk
is distributed according to a Rice distribution with probability
density function (pdf) [12]
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where m = α and I0 is the modified Bessel function of first
kind at zeroth order.

C. Phase process

The phase evolution is modeled by a Markov Random Field
(MRF). The latter has been widely used as Bayesian prior in
many phase processing problems; [13]–[15] are just few of
them. In this study, a first order Gaussian MRF is chosen
in order to ensure some smoothness in the estimated phase
sequence [14], i.e.,

φk = φk−1 + wk (7)

where wk ∼ N (0, σ2
φ) is a white Gaussian noise. The initial

state φ1 is supposed to be uniformly distributed over the set
I = [−π, π]. The a priori phase dynamics model can thus be
summarized by

f(φ1) ∝ I[−π,π](φ1) (8a)

f(φk|φk−1, σ2
φ) =

1√
2πσ2
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exp
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2σ2
φ

}
. (8b)

III. VARIATIONAL BAYES TRACKING ALGORITHM

Herein, as discussed in the Introduction, the Restricted
Variational Bayesian (RVB) approximation is used in the phase
tracking problem. The methodology is actually the same as
that presented in [11].

A. Distributional approximations in Bayes filtering problem

The problem of inferring the state variable is described by

f(zk|φk) and f(φk|φk−1).

Let denote by Zk = [z1, . . . , zk] the set of observations till the
instant k. The optimal Bayes filtering that evaluates iteratively
the filtering distribution f(φk|Zk) is obtained by alternating
between the two following equations

f(φk|Zk−1) = f(φ1) k = 1

f(φk|Zk−1) =

∫
f(φk|φk−1)f(φk−1|Zk−1)dφk−1 k > 1

(9)
and

f(φk|Zk) ∝ f(zk|φk)f(φk|Zk−1) k > 1. (10)

Though, to make the Bayesian filtering tractable and thus
guarantee the iteration of its procedure, we will enforce
the functional form of the marginal distribution f(φk|Zk)
to remain unchanged along the iteration. A typical way to
proceed is to use distribution approximation [16]

f(φk|Zk) ∼ f̃(φk|Zk). (11)

In this study, we focus our attention on the RVB approxima-
tion [10].

B. Local Variational Bayesian filtering

The RVB method is based on two approximations applied
during the optimal filtering procedure. The first one consists
in locally imposing conditional independence between φk and
φk−1 [10]

f̃(φk, φk−1|Zk) = f̃(φk|Zk)f̃(φk−1|Zk) (12)

where f̃(·) refers to the approximated posterior distribution.
The latter are then chosen to minimize the Kullback Leibler
(KL) divergence [10]; the prediction distribution can therefore
be expressed as

f̃(φk|Zk−1) ∝ exp
(

Ef̃(φk−1|Zk)

[
ln(f(φk|φk−1))

])
(13)

with

f̃(φk−1|Zk) ∝ exp
(

Ef̃(φk|Zk)
[
ln(f(φk|φk−1))

])
× f̃(φk−1|Zk−1)

(14)

where Ef̃(x/i|Z)

[
g(x)

]
1 denotes the expected value of the

function g(x) with respect to the function f(x). Accordingly,
the filtering distribution is now expressed as

f̃(φk|Zk) ∝ f(zk|φk)f̃(φk|Zk−1). (15)

1x/i denotes the complement of xi in x (e.g., x/1 = x2).



At this stage, the data update equation (15) describes an
implicit equation in f̃(φk|Zk) since the prediction distribution
depends itself via (14) of the latter. To have a closed-form
solution, a second approximation is applied [10]. This is done
through the RVB approximation which finally replaces the dis-
tribution f̃(φk−1|Zk) in (13) by the fixed posterior distribution
f̃(φk−1|Zk−1). The prediction distribution becomes then

f̃(φk|Zk−1) ∝ exp
(

Ef̃(φk−1|Zk−1)

[
ln(f(φk|φk−1))

])
.

(16)
Using the sensor factor (4) and the phase dynamics distri-
butions (8), it can be shown that, following the same path
as in [11], the RVB filtering has the following closed form
expression
• Prediction and data update for k = 1

f̃(φ1|Z0)
def
= f(φ1) (17a)

f̃(φ1|Z1) ∝ f(φ1)exp

{
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}
. (17b)

• Prediction and data update for k > 1
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C. Phase tracking estimator

Hence, the RVB approach gives an iterative and tractable
solution as long as the approximated posterior mean of φk−1
can be evaluated. As in [11], the RVB estimator can be
expressed as
• φ̂rvbk for k = 1

φ̂rvb1 = −2
∑∞
q=1(−1)qIq(β1)

sin(qψ1)
q

I0(β1)
(19)

• φ̂rvbk for k > 1
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φ
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2

I0(βk)+2
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−
q2σ2

φ
2

(20)
where the Iq(·)’s are the modified Bessel functions of the
first kind at qth order. As remarked in [11], since Iq(βk)
decreases rapidly with respect to q, an implementable form
of (19) and (20) is obtained by truncating the sum involved
for q = 1, ...qmax where qmax is the highest chosen order.
Interestingly, the estimate update equation (20) depends non
linearly on the innovation term ψk − φrvbk−1.

IV. NUMERICAL SIMULATION

In this section, performance of the proposed RVB estima-
tor (19)-(20) is assessed via synthetic and real GNSS data.

A. Scenario

The received signal is generated as in (1). Considering
then an update interval T , the carrier-to-noise-density ratio
is defined by

C/N0 =
|α|2

σ2
nT

.

In our simulations, the integration time T is chosen equal to
20 ms. The phase dynamics considered are of polynomial form
up to the second order, namely

φk+1 = φ0 + φ̇0k +
φ̈0k

2

2
(21)

where φ0, φ̇0, φ̈0 are respectively the initial phase (step), the
initial phase rate (ramp) and the initial phase acceleration
(parabola). In what follows, the proposed RVB algorithm is
compared to a conventional DPLL. Concerning the former,
we fix the highest order to qmax = 50 as proposed in [11].
The value of σφ is chosen in the interval [0,π] considering
that taking a standard deviation greater than half a cycle may
favor cycle slip. Concerning the latter and in search of fairness,
an ATAN2 discriminator is used and a first order DPLL is
considered. Additionally, its phase at initialization φ̂PLL0 is
considered equal to zero and its loop filter coefficient is fixed
according to [17]. Therefore the time-bandwidth product BLT
may vary between [0,0.5]. Performance of phase tracking
loops is then monitored by statistically studying the phase error
process defined as ek = φk − φ̂k.

B. Phase tracking from a noise-free observation

First, to better understand the role played by the process
noise power σφ, RVB responses to noise-free signal (i.e., zk

def
=

αejφk ) are presented in Fig. 1. As could be expected, the
proposed first order RVB estimator tracks with no bias a step
input, with a finite bias a ramp input (with slow slope) and with
an infinite bias an acceleration. Additionally, the parameter
σφ strongly influences the response of the estimator in terms
of acquisition time and bias. It thus plays a similar role as
that of the loop bandwidth in a conventional DPLL though
performance depends nonlinearly on σφ.

C. Performance metrics

We describe hereafter the performance metrics used to
evaluate the RVB estimator (19)-(20). In an attempt to study
the tracking algorithm in its linear and nonlinear regimes, we
study on the one hand the statistical behavior of the phase
error modulo-2π, ẽk = (φk− φ̂k)[−π,π] [18], and on the other
hand the statistics of the cycle slip event, respectively. More
specifically, the following performance metrics are considered.

1) RMSE-mod: To assess the precision of estimation aside
cycle slip events, we consider the Root Mean Square Error
(RMSE) modulo-2π (denoted as RMSE-mod), i.e.,

RMSE-mod =
√
E
{
ẽ2k}

def
=

√√√√ 1

Mc

Mc∑
n=1

ẽ2k(n). (22)
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Fig. 1: Phase responses of the RVB estimator to a step- (up), ramp- (middle), and acceleration- (bottom) input: φ0 = π/4 rad;
φ̇0 = π/30 rad/sample; φ̈0 = π/(202) rad/sample2.

2) Acquisition time: We define it here as the time required
for the RMSE-mod to remain constant with respect to the time.

3) Mean time to first cycle slip (or mean time of loss of
lock): It is evaluated as the average time required to observe
the first cycle slip when the tracking is initialized at steady-
state [17]. According to Viterbi’s criterion [6], a cycle slip is
detected as soon as the phase error crosses a new equilibrium
line [6], i.e., when |ervbk | > 2π since steady-state is initially
enforced. Furthermore, the incoming phase is tracked until the
first cycle slip occurs. Note that due to the nonlinear nature
of the RVB algorithm (20), defining theoretically steady-state
is not straightforward. In the simulations, we say that steady-
state is reached when the phase error remains constant while
assuming a noise-free signal (i.e., zk

def
= αejφk ) and a fixed

input phase dynamics. Steady-state is checked and assessed
numerically in what follows.

4) Cycle slip rate (or frequency of skipping cycles): It is
estimated while fixing a number of cycle slips Ncs to be
observed. The rate is then estimated as

Cycle slip rate def
=

1

Mc

Mc∑
n=1

Ncs
Tlast slip(n)

where Mc is the number of Monte-Carlo runs and Tlast slip is
the time necessary to observe these Ncs slips. Also this metrics

is evaluated starting the track at steady-state [17].

D. Phase-step response

RMSE-mod of the RVB and DPLL are depicted in Fig. 2
for different standard deviations σφ and loop bandwidths
BL, respectively. As can be noted, the RMSE-mod reaches
a constant value after a given time for each value of σφ and
BL considered, so that the acquisition time as defined earlier
is finite. In Fig. 2, a parametric representation of the RMSE-
mod as a function of this acquisition time is given. As is well-
known, increasing the DPLL loop bandwidth leads to a faster
acquisition (in ≈ 1/(BLT ) samples) at the expense of a lower
estimation precision. For the RVB, the standard deviation σφ
has a similar influence as that of the loop bandwidth but
beyond a given value σφ ≈ 0.5π rad the influence is reversed
so that the acquisition time increases while reaching a higher
precision. This is due to the nonlinear dependence of the
innovation term on σ2

φ in (20). As a consequence, the same
RMSE-mod can be obtained for two different values of σφ.
Additionally, for any fixed acquisition time, the RMSE-mod of
the RVB estimator is always lower than that of DPLL. Note
also that very low acquisition time can be reached only by
the DPLL for very high time-bandwidth product BLT at the
expense of an increased RMSE-mod. Finally, cycle slip rate
is depicted in Fig. 4 as a function of σφ and BL, respectively.
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Fig. 2: RMSE-mod as a function of the time index for a step phase input: C/N0 = 17 dB-Hz; φ0 = π/4 rad; σ2
n = 1.
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Fig. 3: Precision of estimation metrics comparison for a step
phase input: φ0 = π/4 rad; σ2

n = 1; C/N0 = 17 dB-Hz.

We observe that the RVB algorithm can reach extremely low
cycle slip occurrence (around zero slip per second for each
σφ), contrarily to the DPLL. As expected, for the latter the
cycle slip rate increases with the loop bandwidth BL. Note
that, in practice, if after a very long time of simulation no
cycle slip occurs, we set the rate to zero. Accordingly, we
choose here not to display the mean to first slip.

E. Phase-ramp response

For the phase-ramp input, we provide directly in Fig. 5 the
parametric curves established before giving the RMSE-mod
as a function of the acquisition time. As before and for a
given acquisition time, higher precision can be reached with
the RVB estimator compared to the DPLL. Finally, cycle slip
metrics are shown in Fig. 6. It clearly appears that using the
RVB algorithm instead of a conventional DPLL can lead to
a drastic decrease of cycle slip occurrence particularly when
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Fig. 4: Cycle slip rate comparison for a step phase input: φ0 =
π/4 rad; σ2

n = 1; C/N0 = 15 dB-Hz.

σφ is chosen adequately, i.e., σφ ≈ 0.15π rad and 0.8π rad.
In any event, the RVB technique is much less sensitive to the
tuning of σφ than the DPLL is to that of BL. Finally, note that
we have depicted a vertical line that indicates the lowest σφ
where steady-state is reached. Actually, for very small σφ the
innovation term in (20) is not significant enough to compensate
for the phase rotation taking place during the estimator update,
i.e., for σφ ≈ φ̇0 as already observed in [11].

F. Real GNSS data

To finish, we present results using real GNSS data. The
latter are collected from a static receiver (USRP X310). Sam-
ples are recorded at baseband with a sampling frequency of
4 MHz (2×4 bits per complex sample). To process the signal,
we use a GNSS software-based receiver developed by ISAE-
SUPAERO. In what follows a single satellite is tracked on its
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L1 C/A channel. The tracking architecture chosen is the first
solution described in Section II-A, namely we track the prompt
phase of a DLL compensated by the frequency estimated at
the acquisition stage. Data wipe off is performed too. The
correlation time chosen is 1 ms. Phase tracks obtained from
the DPLL and the RVB algorithm are depicted for the raw
signal in Fig. 7a and with an added synthetic white Gaussian
noise in Fig. 7b [7 runs are shown]. The respective C/N0 are
ca. 45 dBHz and 20 dBHz. We may thus consider that tracks
from Fig. 7a constitute almost ground truth for that of Fig. 7b.
We then clearly see that the DPLL endures systematically a
drop-lock beyond ca. 8 seconds whereas the RVB tracks do not
show any cycle slip. Another typical behavior of the RVB, can
be seen from the zoom in Fig. 7b. If the initial phase is near
half a cycle, then the initial RVB estimate (19) may choose
one ambiguity range rather than the other in which case a
cycle slip does not really occur. Note also from the zoom in
Fig. 7a that the RVB converges more rapidly than the DPLL
with the values chosen for the processing parameters, namely
σφ = 0.8π rad and BL = 10 Hz. Both have been selected
experimentally to provide a low cycle slip occurrence. Finally,
it is worth noticing that the RVB performs quite well knowing
that its parameters α and σ2

n in (5) are estimated via an ad-hoc
procedure in practice.

V. CONCLUSION

Carrier phase measurements are essential for an accurate
GNSS-based user positioning. Though, the cycle slip phe-
nomenon has an adverse effect on phase tracking. To obtain a
robusitifed phase tracking technique compared to conventional
PLL-based approaches, the RVB estimator is proposed. It uses
a variational Bayes approximation in the optimal Bayesian
filtering problem. The latter preserves the nonlinear nature of
the measurement equation which is beneficial at low signal-to-
noise ratio towards cycle slipping. Closed-form and easy-to-
implement expressions are obtained for the RVB phase estima-

tor. Simulations using synthetic data show that the proposed
method offers improvement for both slow phase dynamics
considered (viz step and ramp phase inputs) with respect to
the cycle slip phenomenon. Finally, the two techniques are
compared using real GNSS data at low C/N0; RVB still
outperforms the DPLL in terms of cycle slip occurrence.
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Fig. 6: Cycle slip metrics for a ramp phase input: φ̇0 = π/30 rad/sample; σ2
n = 1; C/N0 = 15 dB-Hz.
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(a) Phase tracking at C/N0 around 45 dB-Hz
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Fig. 7: Phase estimation using real GNSS data; T = 1 ms; fs = 4 MHz; Satellite PRN 9; 1) RVB: σφ = 0.8π rad; qmax = 50;
2) DPLL: BL = 10 Hz.


