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SIMULASI PETA KEJADIAN BANJIR BERHUBUNG KAIT DENGAN 

PENGANGKUTAN ENDAPAN UNTUK SUNGAI PAHANG 

 

ABSTRAK 

 

Bencana banjir merupakan faktor utama yang mengakibatkan kematian dan kerugian 

ekonomi. Beberapa kajian menunjukkan risiko banjir secara global kini semakin 

meningkat. Kesan  pembangunan yang mendadak telah meningkatkan impak  

hidrologi dan geomorfologi sesuatu kawasan tadahan. Peningkatan dramatik dalam 

permukaan air larian dan hasil enapan yang tinggi adalah dijangkakan apabila guna 

tanah dan perubahan permukaan tanah akibat pembangunan atau aktiviti manusia 

seperti pembalakan yang berlaku di kawasan lembangan sungai. Kajian ini boleh 

dibahagikan kepada empat (4) bahagian utama. Bahagian pertama adalah untuk 

menjalankan analisis trend data siri masa hujan tahunan dengan menggunakan ujian 

Mann-Kendall. Hasil kajian tersebut menunjukkan trend telah dikesan dari sebelas 

stesen hujan manakala empat (4) stesen hujan menunjukkan penurunan trend di 

lembangan Sungai Pahang. Bahagian kedua adalah untuk memberi gambaran 

keseluruhan perubahan saluran dan fenomena pengangkutan endapan di Sungai 

Pahang termasuk pengangkutan bahan dasar dari hulu ke muara sungai di Pekan. 

Perubahan profil dasar sungai adalah disebabkan oleh hakisan atau pemendapan di 

sepanjang Sungai Pahang telah disahkan melalui pengukuran geometri sungai yang 

berkait dengan perubahan spatial dalam pengangkutan endapan. Selepas banjir pada 

Disember 2014, taburan saiz endapan bahan dasar di Sungai Pahang adalah terdiri 

daripada  kelikir dan pasir yang sangat kasar. Penilaian prestasi model InfoWorks 

PDM yang hampir berjaya menghasilkan semula hidrograf 2003 dan 2012 hingga 
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2014 meliputi aliran rendah dan tinggi akan ditekankan dalam bahagian ketiga 

penyelidikan ini. Bahagian keempat bertujuan untuk mengendalikan simulasi banjir 

menggunakan InfoWorks RS dengan mengambilkira pengangkutan endapan. 

Kawasan kejadian banjir telah dianggarkan berdasarkan reka bentuk input hydrograf 

bagi tempoh kala ulangan 100 tahun dan hujan ribut selama 8 hari. Perubahan 

permukaan air tertinggi dan dasar saluran untuk Sungai Pahang menunjukkan 

bahawa paras maksimum banjir dengan pemodelan pengangkutan endapan dan tanpa 

pemodelan pengangkutan endapan mempunyai perbezaan sekurang-kurangnya 

0.30m. Perubahan yang berlaku pada paras dasar boleh menjejaskan paras banjir, 

seterusnya melimpahi tebing dan memberi impak kepada kawasan yang ditenggelami 

banjir. Kawasan banjir telah dikenalpasti meningkat sebanyak 306.84km² (30.21%) 

daripada hasil simulasi tanpa pengangkutan endapan berbanding dengan simulasi 

yang termasuk pengangkutan endapan. Oleh itu, hasil kajian ini menunjukkan 

bahawa adalah penting untuk mengambil kira pengangkutan endapan di sepanjang 

saluran sungai dalam ramalan kawasan kejadian banjir supaya peta banjir digital 

dapat dihasilkan.  
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SIMULATION OF FLOOD INUNDATION MAP ASSOCIATED WITH 

SEDIMENT TRANSPORT FOR SUNGAI PAHANG 

 

ABSTRACT 

 

Flood disasters are a major cause of fatalities and economic losses. Several studies 

indicate that global flood risk is currently increasing. Rapid urbanisation has 

accelerated impact on the catchment hydrology and geomorphology. When landuse 

and land cover change as a result of development or human activities, such as 

logging which takes place in river catchment areas, a dramatic increase in the surface 

runoff and higher sediment yield are expected. The present study can be divided into 

four (4) main parts. The first part is to carry out trend analysis using Mann-Kendall 

test for the annual rainfall time series data. The results demonstrate that increasing 

trends were detected for eleven (11) rainfall stations while four (4) stations showing 

decreasing trends in Sungai Pahang river basin. The second part attempts to give an 

overview of the channel changes and sediment transport phenomena in Sungai 

Pahang including bed material movement from the upstream of Sungai Pahang to the 

river mouth at Pekan. River geometry survey associated with the spatial variation in 

sediment transport has confirmed that changes in river bed profile occurred due to 

erosion or deposition along Sungai Pahang. The sediment distribution size for Sungai 

Pahang was found to be made up of very coarse sand and gravel after December 

2014 flood. A rainfall-runoff model is developed and implemented for Sungai Pahang 

river basin. Performance evaluation of the InfoWorks PDM model was moderately 

successful in reproducing 2003 and 2012 to 2014 hydrographs covering both low and 

high flow, which have been the emphasis of the third part of this research. The fourth 
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part is intended to deal with flood simulation using InfoWorks RS with the 

consideration of sediment transport modeling. The flood inundated area has been 

estimated based on the input design hydrograph of the 100-year annual recurrent 

interval and storm duration of 8 days. Peak water surface and channel bed changes 

for Sungai Pahang indicated that the maximum flood level with and without sediment 

transport modeling has a difference of at least 0.30m. The flooded area was identified 

to increase by 306.84km² (30.21%) from the simulations results without sediment 

transport compared to flood simulations with sediment transport. As a result, the 

current study shows that it is essential to take into account the sediment movement 

along the river channel for the prediction of flood inundation areas in order to 

produce digital flood maps. 
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CHAPTER ONE 

INTRODUCTION 

 

1.1 Background 

 

Malaysia is fortunate in that historically it has not experienced natural disasters 

in the form of volcanoes and typhoons. The most common natural disaster frequently 

experienced in Malaysia is flooding. There are two catagories of flood occur in 

Malaysia, including monsoon floods and flash floods. Statistically, streams will equal 

or exceed the mean annual flood once every 2.33 years (Leopold et al., 1964). 

Flooding is a result of heavy or continuous rainfall exceeding the absorptive capacity 

of soil and the flow capacity of rivers, streams, and coastal areas. This causes a 

watercourse to overflow its banks onto adjacent lands. The Department of Irrigation 

and Drainage (DID) in Malaysia has estimated area vulnerable to flood disaster is 

approximately 33,298 km2, or 10.1%, of the total land area and is affecting more than 

5.677 million people which is around 21% total population of the country annually.  

 

Several major floods have been experienced in Malaysia for the last few 

decades. The flood of 1926, supposedly the worst in living memory in Malaysia, 

affected most of Peninsular Malaysia, resulting in extensive damages to property, 

road systems and agricultural land and crops. In 1967 disastrous floods surged across 

the Kelantan, Terengganu and Perak river basins and few years later, in 1971, a 

catastrophic flood swept across many parts of the country, which Pahang was 

severely affected. 
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The objective of river basin studies is to draw up appropriate flood maps and 

also feasible projects for the respective basin areas so that their development is 

properly managed and that water resources management, including flood control 

measures, is effective and well-controlled. These studies recommend the optional 

flood control planning and design criteria for the respective basins. Generally, socio-

economic considerations for the basin will dominate the design criteria (Chia, 2004). 

 

Realising the need for a long-term water resources development strategy and 

master plan, the Malaysia Government has carried out a National Water Resources 

Study to develop a comprehensive and coordinated water resources development 

programme for the country in 1982. The study has formulated a long-term plan for 

flood mitigation works in various flood-prone areas of the country. In recent years, 

DID is more conscious of the need to carry out flood mitigation projects on a river 

basin basis rather than on a piecemeal basis. This kind of approach will involve a 

shift from the traditional thinking in terms of controlling flooding through expensive 

engineering structures to the more comprehensive approach of viewing the solution 

in terms of managing flooding by incorporating structural as well as non-structural 

measures.  

 

Several major floods occurred in the last few decades in Sungai Pahang river 

basin, causing extensive damage and inconvenience to the community. According to 

records of past floods, 1926 flood was the worst flood affecting most of Peninsular 

Malaysia. However, official records are too insufficient to describe the condition of 

that flood in detail. The scale of January 1971 flood is over the 100-year annual 

recurrence interval (ARI) based on the hydrological probability analysis using the 
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mean 8-day rainfall records followed by November 1988, December 1993, December 

2007 and the most recent one December 2014. The sediment transport of Sungai 

Pahang should be well understood especially during northeast monsoon season which 

floods are governed by heavy and long durations of rainfall will result in the increase 

of discharge, bed erosion and deposition and it will cause river channel instability. 

Last December 2014 flood was expected to carry further sediment load from the 

upstream of the Sungai Pahang river basin. 

  

1.2 Problem Statement 

 

Two common approaches adopted in reducing the impact of flood problems 

have been increasingly adopted in Malaysia and these include structural and non-

structural measures. The traditional approach to flood mitigation has primarily 

involved a structural approach to modifying flood characteristics. Whilst structural 

mitigation measures include river widening, deepening and straightening, with the 

aim being to reduce flood levels and extents, however, without adequate floodplain 

planning the benefit from the structural works is lost due to increased flooding from 

unplanned development.  This approach often transfers the flooding problem further 

downstream. For non-structural measures, tools such as computer models can be used 

to quantify the effects of human interference to the river system. Such tools are 

widely available and are used in many countries worldwide, as well as in Malaysia 

(Chang et al., 2008; Leow, et al., 2009; Ab. Ghani, et al., 2010). However, the 

application of such tools were still limited in Malaysia because of the tools often fail 

to properly model the more extreme flood events, where the river flows are often 

supercritical. In Malaysia it is regarded as increasingly important to carry out a 
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thorough analysis of flood events with the help of available river models to 

understand the flooding behavior before any structural measures are undertaken. 

Therefore, before any amendments are implemented within a river basin, river 

engineers or researchers must evaluate the potential extent and impact of flood events 

and advise the implementing agencies as to what steps shall to be undertaken to 

provide further preventative measures to avoid the anticipated flood problems that 

might occur (Ab. Ghani et al., 2009). 

 

Currently, there is still no particular attempt yet in Malaysia to provide digital 

flood inundation maps taking into account sediment movement along the river 

channel. Alluvial rivers are self-regulating in the sense that they adjust their 

characteristics in response to any change in the environment. These environmental 

changes may occur naturally, such as climatic variation, human activities including 

damming, diversion, sand and gravel mining, channelization, bank protection and 

bridge construction. These changes to the river hydrology and sedimentation will in 

turn alter the channel morphology, which can include changes to channel cross-

section, stability and capacity. Such changes will distort the natural quasi-equilibrium 

of a river. Ab. Ghani et. al (1998) attempts to quantify the effects of sediment 

movement and corresponding cross-sectional changes in producing the flood levels. 

Successful applications of several sediment transport models such as HEC-6 

(Sinnakaudan et al., 2003), ISIS (MRC, 2005), HEC-RAS (USACE, 2015), 

InfoWorks (Walingford, 2012) indicate the possibility of extending the obtained 

results in mapping the flood prone areas by incorporating sediment transport bearing 

in mind the physical aspects of river ability to change its boundary (Ab. Ghani et al., 

2000).    
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1.3 Significance of Study 

 

Floods resulted from extreme weather events like heavy rain can have great 

social and economic impacts to the affected areas. Although Malaysia is 

experiencing tropical climate with high rainfall variability considered to be less prone 

to natural disasters, however Malaysia remains vulnerable to climate change and 

natural disasters, such as flood and land slide due to the increase in climate-related 

extremes events (Suhaila et al., 2010a). According to Syafrina et al. (2015), rainfall 

distribution within Peninsular Malaysia is highly variable temporally and spatially. 

Hence, it is essential to determine and investigate the rainfall trend variation for 

Sungai Pahang river basin as it becomes concomitant increase in our understanding 

in order to provide reliable climatic series for the future climate analyses and also 

identify the area that is hit by heavy rainfall that leads to flood and further reduce the 

flood impacts.  

 

Flood propagations can be better understood by simulating the flow and water 

level using hydrodynamic modeling. The hydrodynamic flood routing can be  

recognised by the spatial complexity of the schematisation such as 1D model and 2D 

model. It was found that most of the available hydrological models for flood 

modeling are more focus on short duration (Azad, et al., 2017). As the hydrological 

model is event-based, calibration datasets often consist of fewer than a dozen events, 

each lasting a couple of days. However, the entire record of data for those stations is 

necessary for continuous simulation. Commonly, it is difficult to acquire lengthy and 

serially complete records datasets. Despite the availability of detailed topographic 

data, there is a lack of long-term observational data, eg. river streamflow data and 
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complete rainfall data in many parts of the river basin especially in rural area. 

Therefore, it is essential to develop a rainfall-runoff model in order to produce time 

series of rainfall-runoff discharges, which can be used as upstream boundary 

conditions for the continuous long-term river modeling especially for large scale of 

river basin. 

 

Due to effect of rapid urbanisation has accelerated the impact on the catchment 

hydrology and geomorphology, such rapid development which takes place in river 

basin areas will result in higher sediment yield and it will not only affects river 

morphology but also river channel stability, causing serious damages to hydraulic 

structures along the river and also becoming the main cause for serious flooding in 

urban areas. Due to it is very few studies dealing with the interaction of river 

overbank flow, sediment transport, and bed morphology exist, therefore, it is 

necessary to predict and evaluate the river channel stability due to the existing and 

future developments (Chang et al. 2008; Ab. Ghani et al. 2012).  

 

1.4 Objectives of the Study 

 

Sungai Pahang is the longest river in Peninsular Malaysia and flood is almost 

an annual event in Sungai Pahang river basin. The main objective of this study is to 

digitally map the flood inundation areas along Sungai Pahang using hydrodynamic 

model, InfoWorks RS, by taking into account of sediment movement along the river 

channel and flood extend in a floodplain. The specific objectives are listed as 

follows: 
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a) To determine and investigate trend variation in climatic elements of 

precipitation over the last 44 years since 1971 in Sungai Pahang river basin.  

b) To assess characteristics and movement of sediments in the Sungai Pahang  

c) To establish hydrologic and hydrodynamic modeling for continuous 

streamflow modeling covering low and high flow for large-scale river basin 

using rainfall-runoff model.  

 

1.5 Scope of the Study 

 

The scopes and limitations of the present study are as follows: 

 

a) The extraction of hydraulic, sediment data and the modeling reach was limited 

from Kuala Tembeling to the river mouth of Sungai Pahang. 

b) A semi-distributed model (Infoworks PDM) was used to determine the total 

catchment rainfall runoff for Sungai Pahang river basin.  

c) 1D and 1D-2D coupled hydrodynamic model (Infoworks RS) was used to 

simulate the sediment transport and flow condition in Sungai Pahang. 

d) River hydraulic data used for sediment transport modeling was limited to the 

availability of information and data obtained. 

e)  Flood events used in the study are up to 2014 based on the existing landuse of 

2012 in the Sungai Pahang river basin shown in DID (2013) study report. 

 

 

 



8 
 

1.6 Organisation of the Thesis 

 

This thesis is divided into six chapters. Chapter One provides a brief 

introduction and discussion on the flood in Malaysia, the objectives and scope of the 

study. This chapter also discusses the necessity and validity of this research. Chapter 

Two succinctly reviews on the various approaches of hydrological analysis, rainfall-

runoff modeling in gauged and ungauged river basin and also hydrodynamic 

modeling incorporated with sediment transport. The chapter in this thesis addresses 

and provide a description of the methods used in hydrological modeling. Chapter 

Two also outlines a literature review of the previous works and recent developments 

pertaining to river flood modeling by adopting a mixed 1D-2D approach. Various 

research that have been conducted over a large number of sub-disciplines associated 

with the rainfall-runoff model and hydrodynamic model. There are several criteria in 

selecting a proper hydrological model, as well as hydrodynamic model.  

 

Chapter Three gives an overview of the study area - Sungai Pahang, follow by 

the general research methodology adopted to achieve the ultimate objectives of this 

study. Details on methods, techniques and procedure of data collection, data 

management and data processing in the study are elaborated. Developing of the semi-

distributed hydrologic model and hydrodynamic modeling incorporating sediment 

transport are discussed in this chapter. 

 

Chapter Four presents the research finding throughout the study. These include 

results of the hydrological data analysis, followed by rainfall-runoff modeling. The 

impact of sediment transport modeling result is quantified and compared with the 
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results of flood extend without any sediment transport consideration. The outcome is 

directed to support the decision making process regarding current and future flood 

management practices. 

 

Chapter Five provides a conclusion of the research finding throughout the 

study and provides practical recommendations for future work. Six appendices are 

also provided to show the details of any relevant discussions. 
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CHAPTER TWO 

LITERATURE REVIEW 

 

2.1 Introduction 

 

The frequency of natural disasters has tripled over the last four decades 

(Munich Re, 2000). According to Glickman et al. (1992), floods accounted for over 

30% of all disasters between 1945 and 1986. It is more than 18% of all natural 

disasters occur in developing countries and flooding is ranked as one of the most 

frequent, damaging, destructive and devastating natural disasters (IFRCRS, 1998; 

UNISDR, 2002).  

 

A flood is defined as any high flow, overflow, or inundation by water that 

causes or threatens damage. Flooding is a natural phenomenon occurring from time 

to time for a river or stream, result of heavy or continuous rainfall exceeding the 

absorptive capacity of soil and the normal carrying capacity of rivers or streams 

affecting many regions around the world. This causes a watercourse to overflow its 

banks onto adjacent lands. According to Chia (2004), there are two types of rainfall 

causing flooding, i.e. moderate intensity, long duration rainfall covering a wide area 

and high intensity, short duration localised rainfall. 

 

Rivers modelling study for flood analysis is considered very important 

technique to understand nature of river with environmental changes (Merwade et al., 

2008; Gichamo et al., 2012; Md Ali et al., 2015). Sediments erode from upstream and 

are then transported and finally deposited at downstream thereby lowering the depth 
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of river channel. Rivers, as a result, overflows during flooding which affects the 

surrounding areas. Anthropogenic interruption near river such as increasing 

settlements and deforestation also affects the river channel. High rainfall is one of the 

important factors in creating a flood which, combined with anthropogenic activities, 

contributes to the main channel and tributaries of the river basin causing strong 

downstream flood.  

 

Flood studies and flood mapping forms the basis for better understanding of 

flood behavior and risk, also provides the foundation for flood risk management 

decisions. Development and implementation of flood studies and flood mapping 

impact a wide-range of key users in areas as diverse as land use planning, emergency 

management, and community awareness. This chapter describes the common 

structure in flood studies, which leads to the need of hydrology analysis, rainfall-

runoff modeling and sediment transport modeling to improve our understanding of 

flood behavior (Figure 2.1).  

 

 

 

 

 

 

 

 

 

Figure 2.1: Flood study process 

Data Collection and 
Review 

Hydrologic Model 
Development 

Hydraulic Model 
Development 

Design Event 
Modelling 

Flood Mapping 

 
Model Calibration/Verification 

(An iterative process that may be 
done separately or jointly for 

hydrologic or hydraulic models) 
 

Design Flood Level Verification 
(process to ensure good 

agreement between design flood 
levels and available historic flood 
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2.2 Extreme Events 

2.2.1 World Scenario   

 

The concern about extreme events continues to increase in the world. The main 

extreme events are temperature and precipitation, and these patterns are the change of 

frequency and intensity as a result of climate change due to human influences. Figure 

2.2 summarizes the assessment of natural disasters over the world based on the 

reinsurance company, Munich Re’s NatCatSERVICE (Munich Re, 2017). 

NatCatSERVICE is an interactive online tool offers information, analyses and 

statistics on the development of natural disaster losses over recent decades. The trend 

of an increasing number of registered hydrological events worldwide has continued 

and this increase has been more significant since the early 1990s (Figure 2.3). In 

2016, NatCatSERVICE recorded there are 750 loss events, where 130 (17%) events 

were very severe and severe disasters. The remaining 83% were moderate and minor 

loss events. By contrast, the number of hydrological events has been increased from 

39% (2015) to 50% (2016), where river flooding, flash floods, and mass movement 

accounted for half of all disaster events worldwide in 2016. 

 

 
Figure 2.2: Number of loss event worldwide  
(Source: Munich Re NatCatSERVICE, 2017)  
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Figure 2.3: Number of flood / flash flood events worldwide  

(Source: Munich Re NatCatSERVICE, 2017) 
 

 

Rainfall is an important climatological variable that ensures the availability of 

water on earth through the hydrologic cycle and it is therefore knowledge in its 

changing patterns is deemed essential in the midst of ensuring water security in a 

changing climate. Rainfall also is the most important factor in creating a flood. In 

order to understand the dynamics of climate change and trends of rainfall pattern 

more holistically, many research and studies have been the focus the rainfall variable, 

such as Karmeshu (2012), Santosh & Ramesh (2013), Kiros et al. (2017), Li et al. 

(2017).  

 

Global climate change is arguably changing rainfall patterns in different 

regions of the world. Many studies all over the world have been conducted to detect 

changing pattern and amounts of rainfall. In addition, global climate predictions 

indicated that these trends are likely to continue for several decades with obvious 

implications for the frequency with which river and urban flooding could occur. 

Novel research efforts have pushed forward the understanding and the mapping of 

global flood hazard (Sampson et al., 2015; Dottori et al., 2016) and finally enabling 
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process-based modeling of river flood risk at global scale under present and future 

climate conditions. 

 

2.2.2 Malaysia Scenario 

 

Flood is one of the natural disasters most aware of in Malaysia. National   

Security Council (NSC) Malaysia defines a disaster under NSC Directive No. 20 as 

“an incident that occurs in a sudden manner, complex in nature, resulting in the loss 

of lives, damages to property or the environment as well as affecting the daily 

activities of local community”. Major floods frequently isolate towns, create major 

disruptions to road and rail links, and result in economic loss and human suffering. 

Wide spread damage to houses and business premises as well as losses in agriculture 

are common. The main causes of flooding in Malaysia are as follows: 

 

i. increased runoff rates due to the urbanisation; 

ii. loss of flood storage as a result of development extending into and 

taking over flood plains and drainage corridors; 

iii. inadequate drainage systems or failure of localised drainage 

improvement works extended insufficiently downstream; 

iv. constriction at bridges and culverts that are either undersized or 

partially blocked by debris buildup or from other causes; 

v. siltation in river and natural drainage system from indiscriminate land 

clearing operations; 

vi. localised continuous heavy rainfall; 

vii. inadequate river capacity; 
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viii. tidal backwater effect;  

ix. phenomenon wave setup; 

 

Disaster management in Malaysia is traditionally based almost entirely on a 

government-centric top-down approach (Chan, 2015). After several dramatic 

flooding events struck the country since the 1960s, causing substantial lives and 

property losses, the government had taken several positive steps and seriously 

planning to envisage flood mitigation projects in its national plans. The Permanent 

Flood Control Commission was established by a Cabinet decision on 21 December 

1971 to study short-term measures to prevent the occurrence of floods and long-term 

measures for flood mitigation. National Security Council (NSC) Directive No. 20, 

which is about the policy and mechanism related to the national disaster management 

and relief activities promulgated in 1997 translated substantially by the establishment 

of the Disaster Management and Relief Committee (DMRC). DMRC to carrying out 

its responsibilities of NSC at the national, state and district level depending on the 

magnitude of disaster occurred with the combined objectives to preventing loss of 

human life and to reducing flood damage. In year 2015, the National Disaster 

Management Agency (NADMA) has been set up to coordinate government agencies 

in tackling disasters. NADMA is the key agency and Fixed Operating Regulation 

(PTO) for flood disaster management. All agencies under NADMA has their own 

responsibility to convey flood relief delivery system for victims when flooding 

occurs based on Standard Operating Procedures (SOPs). 

 

Dates as far back as 1886, Malaysia had experienced several major flood 

events at the east-coast of Peninsular Malaysia and the flood in 1926 and 1967 where 
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disastrous floods surged at the east-coast (Chia, 2004; Alias et al., 2016). A few years 

later in 1971, another flooding event was swept across many parts of the country. In 

the year 2006, 2007 and 2008, heavy monsoons rainfall again have triggered major 

floods along the east-coast, and most recent one is December 2014 extreme flood. 

Floods in Malaysia have been reported more frequently in recent years. It is therefore 

important to relate flood events to rainfall records to provide information on the 

rarity and the extreme level of the rainfall causing the floods. Based on studied done 

by Endo et al. (2009), Suhaila et al. (2010a), Syafrina et al. (2015) and Alang 

Othman et al. (2016) records on heavy rainfall amount and events were reported to 

have an increasing trend. Most of the major historical flood events occurred were 

related to the north-east monsoon season which carries abundant of rainfall to the 

east-coast (D/iya et al., 2014; Khan et al., 2014; Alias et al., 2016). The total amount 

of rainfall, frequency and average precipitation of wet days have shown increasing 

trend for several stations during the north-east monsoon.  

 

2.3 Studies of Trend in Historical Rainfall Data 

 

Statistical tools are commonly used to detect the significant of trends in climate 

and hydrological field. Many studies have investigated the existence of trends in 

observed rainfall records in different regions in the world. Findings from these 

studies appear to give contradictory conclusions by showing increases at some 

locations but also decrease at others, while some studies find no evidence for any 

change at all. However, it is important to gain an improved understanding if these 

changes have been translated into a corresponding change in river flows, by 

examining the presence of trend in historical rainfall records. 
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2.3.1 Record Length 

 

In general, there is no clear indication on the record length that is required to 

perform an appropriate hydrological analysis associated with meaningful results. 

Table 2.1 summarised some findings/suggestions from past studies based on the 

quality control of hydrological dataset. 

 

Table 2.1: Findings/suggestions from past studies based on  
the quality control of hydrological dataset 

No Research/Study Findings/Suggestions 
1 WMO (1989) A climate normal is the mean of the climatological variable over a 30-

year period. 
2 Kundzewicz and 

Robson (2000) 
Data series should be as long as possible. Short data series can be 
strongly affected by climate variability which can give misleading 
results. For investigation of climate change, a minimum of 50 years of 
record is suggested - even this may not be sufficient. 

3 Manton et al. 
(2001) 

Trends in extreme daily rainfall over the period from 1961 until 1998 
were investigated using rain gauge data from 91 stations in 15 
countries in Southeast Asia. 

4 Robson (2002)  Proposed that typical gauged records length of 40 years or so are 
insufficiently long to differentiate between the impacts of climate 
change and climate variability. 

5 Burn and Hag 
Elnur (2002) 

Minimum record length of 25 years based on the 1960 to 1997 study 
period to ensure the validity of the trend results statically. 

6 Kundzewicz et al. 
(2005) 

Recommends the use of minimum record length of 50 years when 
examining the trend in observed data. In studying very large 
catchments in the US. 

7 Ziegler et al. 
(2005) 

Concluded that the record length required to detect trend due to 
climate change is anywhere between 60-120 years. 

8 Costa and Soares 
(2009a) 

All stations with at least at least 30 years with less than 5% of 
observations missing used for the homogenisation analysis. 

9 Endo et al. (2009)  
 

More than 200 stations data across Southeast Asia countries used to 
examine the trend in extreme precipitation indices over the period 
from 1950 until 2000. The analysis shows that the number of wet 
days tends to decrease, while average wet-day precipitation intensity 
shows an increasing trend in these countries. 

10 Caloiero  et al. 
(2011)  
 

Statistical analysis has been performed over 109 cumulated rainfall 
series with more than 50 years of data observed in a region of 
Southern Italy (Calabria). The higher percentages of rainfall series  
show possible year changes during decade 1960 – 1970 for almost all 
of the temporal aggregation rainfall. 

11 Jagadeesh  and 
Anupama (2014)  
 

Daily rainfall data of four rain gauge stations of Bharathapuzha basin, 
India for the period of 33 years (1976–2008) has been collected to 
determine trends based on the non-parametric Mann–Kendall test for 
the trend and the non-parametric Sen’s method for the magnitude of 
the trend. 

12 Li et al. (2017)  
 

Long-term daily rainfall time series spanning 34 years (1980–2013) at 
22 rainfall stations in Singapore are used in the study to investigate 
the variability and trends in precipitation extremes in a tropical urban 
city-state. 
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2.3.2 Parametric Versus Non-Parametric Methods 

 

Analysis and modeling of time series of hydrologic data under climate 

variability and change can be used for evaluation of impacts and risk and commonly 

required in hydrologic and hydraulic engineering design. In the parametric modeling 

framework, this analysis involves selecting an appropriate statistical distribution 

before estimating the parameters of the specified distribution and quantiles. Although 

parametric methods (i.e. normality, linearity, and independence) achieve efficient 

estimation in terms of errors and biases, however the disadvantage of the methods is 

that the distribution of the observations must be known. Unfortunately, past studies 

have to rely on approximate distributions when a truly exact mathematical 

representation of the distribution either does not exist or is impossible to obtain using 

a limited set of observations. It can be hypothesised that the substitution of an 

approximate distribution for the exact distribution could lead to large errors in 

quantile estimates (He and Valeo, 2009). Furthermore, the assumption of the 

parametric is mostly not satisfied by hydro-climatologic data (Huth and Pokorna, 

2004).  

 

In statistical analysis, non-parametric test is considered better and it displays 

much insensitivity to outlier unlike parametric test (Mann, 1945). Non-parametric 

methods commonly were found to be suitable for skewed data and the sample size is 

large (Hirsch et al., 1982). This methods not only tend to be more resistant to a 

misbehavior of the data (e.g. outliers) but also give results close to their parametric 

counterparts and lay well within the confidence limits even the distributions are 

normal (Huth and Pokorna, 2004).  
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The Mann-Kendal (MK) test, also called Kendall’s tau test is a statistical test 

widely used to assess the trend in hydrological time series. This test is a non-

parametric test first proposed by Mann (1945) and was further studied by Kendall 

(1975) and improved by Hirsch et al. (1982, 1984). MK test used to detect monotonic 

trends in series of climate data or hydrological data (Bose et al., 2015) even if there is 

a seasonal component in the series. Therefore, the important strength of the test is 

that it is less prone to the effect of outliers and also can apply for a dataset that 

suffers from missing values, uneven sampling and non-linear trends (Birsan et al., 

2005). Due to its applicability irrespective of the data distribution function present in 

the time series data, the assumption of normality for the random variables is not 

needed in using the MK test (Smith, 2000). As this method can test trends in a time 

series without requiring normality or linearity, MK test is highly recommended by 

the World Meteorological Organisation (WMO) for trend detection analysis 

(Mourato et al., 2010). 

 

Many research and studies used non-parametric method around the world and 

the results were satisfactory (Zhang et al., 2000; Xu, 2003; Huth and Pokorna, 2004; 

Bani-Domi, 2005; Partal and Kalya, 2006). For instance, Karmeshu (2012) studied 

trends in annual precipitation for nine states in the Northeastern United States using 

MK test. The MK test demonstrated that there is an increasing trend in precipitation 

in only six states. The trend lines in general identify a trend towards decreased 

number of rainy days throughout the basin, which is associated with decrease in the 

duration of the wet season. Al-Houri (2014) carried out trend detection using time 

series plots and also MK test, while Kiros (2017) used linear trend and MK test for 

Amman-Zarqa Basin in Jordan based on daily rainfall data available for 15 rainfall 
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gauge stations. Both analyses showed trend towards decreased duration of the wet 

season associated with decreased number of rainy days for most of the stations. 

Furthermore, there is an increasing trend in the maximum and average daily rainfall 

for most of the stations. MK test, on the other hand, demonstrated that none of the 

parameters under the study showed statistically significant trends.  

 

Besides that, many researchers in Malaysia used statistical approach to their 

study related to investigating changes in intensity and frequency and analysed for 

trends in extreme rainfall events (Wong, et al., 2009; Suhaila et al., 2010a;  Syafrina 

et al., 2015; Lin et al., 2015; Mayowa, et al., 2015; Che Ros et al., 2016). For 

instance, Syafrina et al. (2015) used non-parametric test to analyse rainfall trends and 

found that hourly extreme rainfall events in Peninsular Malaysia showed an 

increasing trend with notable increasing trends in short temporal rainfall. Mayowa, et 

al. (2015) used MK test and the Sen’s slope method to examine trends in rainfall 

based on the 40 years (1971–2010) rainfall data from 54 rainfall stations distributed 

over the east coast of Peninsular Malaysia. The results generated from the analysis 

showed that it was a substantial increase in the annual and North East monsoon 

rainfall.  

 

A study by Che Ros et al. (2016) for Sungai Kelantan river basin firstly 

investigated the homogeneity (using four absolute homogeneity tests: the Pettitt test, 

standard normal homogeneity test (SNHT), Buishand range (BR) test, and von 

Neumann ratio (VNR) test). Time series data were verified by homogeneity test for 

the purpose of constructing a reliable database for various hydrologic analyses. Then 

a trend analysis of annual rainfall variability was conducted by using MK test based 
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on the 30-year sampling of homogenous time-series rainfall data. In general, the 

homogeneity or inhomogeneity nature of the data should be verified in using 

measured climatological data, (i.e. rainfall data). A climatic series is said to be 

homogenous when variations recorded in the time series are truly due to climatic 

variations (Lazaro et al., 2001) but not due to measurement errors or conditions 

around observation sites (Kang and Yusof, 2012). The trend analysis results showed 

a decreasing trend in 1957–1987 and increasing trends in 1981–2011 for Sungai 

Kelantan river basin. 

 

2.4 Hydrological Modeling 

 

Rainfall is the main sources of water input to the river basin where it is 

influenced by the water storage and discharge of a river, especially during the rainfall 

event. On the other hand, study of rainfall distribution during the flood event is 

crucial because it can provide numerous influence to a better understanding of 

rainfall in the river basin and leads to better decision making in order to mitigate the 

factors of flooding events. In general, hydrological models are often referred to as 

‘Rainfall-Runoff’ models, since they use rainfall data to estimate runoff or river 

discharge. In other words, the hydrological model uses input parameters (basin 

parameters and rainfall characteristics) and as the output gives runoff characteristics 

for this particular basin. One of the outputs of hydrological calculation is a discharge 

hydrograph. The discharge hydrograph presents stormwater flow as a function of 

flow rate over the time at a given location. A hydrograph is a graphical representation 

of the river discharge or streamflow reaction to precipitations (Figure 2.4). 
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Figure 2.4: Discharge hydrograph form rain event  

(Modified from Chow et al., 1988) 
 
 

There are two categories of hydrological model: the simple “empirical” or 

“black box” models, those that seek to verify observations using historical data, for 

instant the rational method, are based on mathematical equations that relate input 

variables with output variables on an empirical basis without much concern to the 

processes within the model; and the more complex “conceptual” or “physically-

based” models which represent individual hydrological processes based on the 

fundamental physics and governing equations to compatible physical processes in the 

hydrological cycle. Hydrologic modeling has been classified in various ways and one 

such classification distinguishes the hydrologic simulation modeling systems as 

lumped parameter, semi-distributed parameter, or distributed parameter models. 

Majority of the lumped parameter models are based on empirical methods whereas 

more recent distributed models are physically based. The three model categories are 

presented graphically in Figure 2.5. 
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Figure 2.5: Graphic representation of (a) Lumped, (b) Semi-distributed and 

(c) Distributed models 
 
 

2.4.1  Lumped Hydrologic Models 

 

A numerical formulation that represents a river basin as a single 

homogeneous unit and develops a single outflow hydrograph is referred to as a 

lumped model (Jones, 1997). Lumped models were developed since the 1960s (e.g. 

the Stanford catchment model (Crawford and Lindsey, 1966)). According to Abbot 

and Refsgaard (1996), a lumped model is a model where the river basin is regarded 

as one unit and variables and parameters in the model represent a model average or 

effective values for the entire drainage area. Many researchers have proven to be 

successful in simulating an observed flow hydrograph using are simple lumped 

parameter models, due to these models require fewer parameters or data to be defined 

and calibrated for their operation.  

 

The applicability lumped model is limited to gauged river basin as the 

expected conditions are within the historical data used for calibration and no 

significant change in river basin conditions has occurred (Reed et al., 2004). Lumped 

models make the assumptions that rainfall is uniformly distributed over a river basin 

including uniform soil types, vegetation types and land use practices. Blackie and 

Eeles (1985) defined a list of the cases where the lumped models are more suitable: 

(a)                                         (b)                                        (c) 
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• Quality control and filling in of missing data; 

• Extensions of historic flow records; 

• Generation of synthetic data runs for civil engineering design work and 

other applications; 

• Water resources assessment; 

• Water resources management including real-time forecasting. 

 

2.4.2  Semi-Distributed Hydrologic Models 

 

The semi-distributed models discretise the river basin into homogeneous sub-

basins based on the topography or drainage area. The infiltration or rainfall 

parameters are treated as homogeneous within each sub-basin and the runoff is 

determined (Biftu and Gan, 2001). Whether a model is defined as lumped or 

distributed depends upon whether the modeling domain is sub-divided. They were 

initially developed to combine the advantages of both lumped and distributed 

models. If the river basin being modeled is divided into smaller computational 

elements (sub-basins), then the lumped sub-basin models that represent spatially 

variable parameters and conditions as a series of sub-basins with average 

characteristics are formed. This model configuration is called a semi-distributed 

model (Hunter et al., 2002). Semi-distributed models are commonly used in the 

operative hydrologic forecast services because of their well-balanced ratio between 

the model spatial accuracy and duration of simulation and calibration effort. 
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