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Abstract
Classifying the remote sensing images requires a deeper understanding of remote sensing imagery, machine learning classification
algorithms, and a profound insight into satellite images’ know-how properties. In this paper, a convolutional neural network (CNN) is
designed to classify the multispectral SAT-4 images into four classes: trees, grassland, barren land, and others. SAT-4 is an airborne
dataset that captures the images in 4 bands (R, G, B, infrared). The proposed CNN classifier learns the image’s spectral and spatial
properties from the ground truth samples provided. The contributionof this paper is three-fold. (1)Aclassification framework for feature
extraction andnormalization is built. (2)Nine different architectures ofCNNmodels are built, andmultiple experiments are conducted to
classify the images. (3)Adeeper understandingof the image structure and resolution is capturedbyvaryingdifferent optimizers inCNN.
The correlation between images of varying classes is identified. The experimental study shows that vegetation health is predicted most
accurately by the proposedCNNmodels. It significantly differentiates the grassland vegetation from tree vegetation,which is better than
otherclassicalmethods.The tabulatedresults showthata state-of-the-art analysis isdone to learnvarying landcoverclassificationmodels.
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Introduction

Meteorologists research satellite images to forecast the behav-
ior of the earth’s atmosphere or earth’s crust. Remote sensing
(RS) images are the images captured by satellites, and these
images are captured with the property of the earth’s surface,
reflecting certain radio bands in the electromagnetic spectrum.
Advanced baseline imager (ABI) is an instrument in the sat-
ellite that measures the reflected or emitted energy. ABI cap-
tures visible, infrared, and microwave electromagnetic por-
tions of the spectrum. The visible and infrared spectrums are
considered to have more energy and are the brightest part of
the spectrum. The visible spectrum (0.4 micrometers to 0.7
micrometers) captures colors ranging from violet to red
(VIBGYOR), and the wavelength of color increases from vi-
olet to red. The infrared spectrum (1 millimeter to 750 nano-
meters) includes near-infrared, mid-infrared, and infrared. The
reflected signals reach ABI as photons are converted to elec-
trical signals and then to digital signals. The ABI’s informa-
tion is transmitted as radio waves to the ground and then
processed by antennas to reform the original image. Neglect
of minutiae of color bands in visible spectrum may lead the
ABI to lose the “RGB” of the “composite color imagery.”
Hence, every image captured by satellite will be measured
with the set of spectrum bands it covers.

To process the composite color imageries and detect the
patterns, machine learning algorithms like k-NN (k-nearest
neighbor), SVM (support vector machines), SVM with kernels
like RBF (radial basis function), HMM (hidden Markov
models), DE (differential equations), and MRF (Markov ran-
dom field) can be applied. However, deep learning algorithms
like CNN (convolutional neural network) and deep CNN cap-
ture the image’s high dimensional features. The deep learning
algorithms understand the pattern of raw pixels in the image,
the image’s spectral and spatial features, and several deep learn-
ing algorithms applied to classify land cover images and vege-
tation images in contemporary research works. Machine learn-
ing algorithm like random forest, one of the best ensemble
learners, is applied for remote sensing image classification in
many articles (Pal 2005; Puissant et al. 2014; Rodriguez-
Galiano et al. 2012). It is applied (Juel et al. 2015) to classify
the aerial orthophoto mosaic imagery that includes red, green,
blue, and near-infrared bands. The algorithm achieves high per-
formance on applying digital elevation model (DEM) with veg-
etation images in Denmark’s coastal regions. RF is applied to
study the vegetation community in Great Britain (Bradter et al.
2011) and is applied in conjunction with feature elimination to
analyze Germany and Canada’s landscapes (Guan et al. 2013).
Savanna ecosystem in Southern Kalahari, Africa, is classified

using RF and is proven to effectively handle overfitting and
reduce classification error (Mishra and Crews 2014). Though
RF is powerful with large datasets and skillfully handles the
unbalanced dataset, it is a black box, and the developer has little
control over the model, and most of the time, it falls into an
overfitting trap.

Another prime model, conditional random fields
(Parikh and Batra 2008) (CRF), a discriminative classi-
fier, uses a pattern of undirected graphical models for
remote image classification (Sun et al. 2020). The con-
text information and spatial neighborhood are applied
for land cover image classification (Albert et al. 2017).
A fusion model of CRF with hidden Markov models
(HMM) identifies the spatial neighborhood dependencies
by estimating the distribution between the images and
pixels (Andrejchenko et al. 2019); CRF goes good with
Markov random fields (MRF) for context analysis in
images (Basu et al. 2015). CRF is quite complex and
consumes more time during the phase.

Research questions and answers

Q1. What is the effect of classifying satellite images? Satellite
images are highly effective as they are captured from a very
long distance. It is challenging to analyze them in minimal
time so that immediate measures can be taken post-analysis.

Q2. What impact is created by the proposed work over
existing literature work? The current work relies on building
a single model and is detailed in the tables in the literature
work. However, the proposed method builds a manifold of
models for different class labels.

Q3. What are the concerns of existing models? The existing
models try to predict the results by fine-tuning the
hyperparameters; however, it is obligatory to analyze the pattern
in images and build different models with varying optimizers.

Q4. What is the most critical procedure applied in this pro-
posed work? The essential procedure is building the layers of
the CNN with varying optimizers and training procedure

Q5. In what strength the model prediction is measured? It is
measured as stacked analysis using confusion matrix, treemap
showing the prediction value of proposed system vs. ground
truth, prediction values of proposed model vs. ground truth
(trees, grassland, barren land, and others), training loss, vali-
dation loss, training accuracy, and validation accuracy of
CNN models for 10 epochs.
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Related works

CNN shows significant results in computer vision and has
motivated researchers to apply it for image classification.
Considerable research work is done in remote sensing image
classification using CNN, and a few of them include Basu
et al. (2016, 2017), Sherrah (2016), and Yao et al. (Yao
et al. 2016). CNN is applied for scene understanding, detect-
ing land cover, and semantic segmentation and classification.

Numerous combinations of deep learning networks are ap-
plied to classify the RS images using supervised learning and
unsupervised learning methods. Stacked autoencoder (SAE)
is applied to extract the high-level features (Chen et al. 2014)
from hyperspectral images. Deep autoencoder extracts the
spectral-spatial information (Chen et al. 2015) and spectral
signatures of the image using CNN. In applying deep
autoencoder in Ma et al. (Ma et al. 2016), image classification
performance becomes better than SVM. In general, images
classified using deep unsupervised learning as the manual
identification of features from RS images is arduous. The
authors (Hu et al. 2015; Romero et al. 2015) have applied
unsupervised deep CNN and local discriminant function to
identify pixels and subspace. Table 1 and Table 2 described
the recent work done on RS image classification from differ-
ent perspectives.

Researchers have applied efficient methods to classify
an RS image by combining CNN with other algorithms
(Basu et al. 2015; Chen et al. 2019; Sameen et al.
2018; Shakya et al. 2020). The dimensionality approach
(Basu et al. 2015) combines CNN with autoencoders,
extracts features from the image, and applies normaliza-
tion over it but forsaken to handle sparse areas. As the
earth’s crust is not flat, the captured RS images should
not be considered flat. The author (Shakya et al. 2020)
applies polynomial regression and CNN for predicting
the storm location from the RS images. The results
proved its efficiency, yet flat images that captured the
earth’s curvature were not handled successfully.
Methods like object-based image analysis (or OBIA)

plays well with high-resolution images and are applied
over a research paper (Sameen et al. 2018) to classify
the land cover classes of images (Cheng et al. 2016;
Hoberg et al. 2012; Scott et al. 2017).

A couple of image classification methods in literature uses
the Siamese network, and this network differs from a conven-
tional network in the following ways: A conventional neural
network is trained with some fixed number of class labels, and
the addition of any new class label is compelled to train the
entire network again. However, in the Siamese network, many
identical, similar networks with similar patterns are stacked
and require no retraining to add new class labels.

The challenges of the existing systems include the
following:

& Images are analyzed on a partition basis to handle sparse
representation.

& SiamCRNN or its variants for CD in hyperspectral images
fail to handle if newer class labels are added.

& Scaling the architecture for sizeable remote sensing
datasets and other data sources such as satellite images
and laser scanning point clouds is challenging.

The analysis of the state-of-the-art classification of
RS images uses various optimization approaches, and
validation measures reveal that neither all of these
models can be applied over all the datasets nor a stan-
dard model be designated. Hence, it is imperative to
choose a distinctive architectural model for a particular
dataset to achieve a specific objective. This motivates to
proposal manifold of models suitable for classifying
specific class labels of images.

This research investigates applying CNN to classify the
airborne image patches covering four broad land covers (bar-
ren land, grassland, trees or dense vegetation, others) and ex-
plores the behavior of distinct CNN architecture in classifying
the RS images with high accuracy.

The significant contributions of the paper include the
following:

Table 1 The architecture and dataset used

Reference Method Architecture Dataset Performance measure

(Hu et al. 2015) CNN AlexNet, VGGNet, and GoogleNet 21 class land use publicly
available dataset

Accuracy

(Juel et al. 2015) Dynamic CNN CaffeNet, GoogleNet, ResNet UC Merced Data Accuracy

(Khan et al. 2020) Fully convolutional
network

FC5, FC6 ISPRS Vaihingen and Potsdam
Benchmark datasets

Accuracy

(Kim et al. 2020) Deep CNN 37 pixels with all the data sources included.
The network consists of five layers
(four convolutional layers and one fully
connected layer)

ISPRS Benchmark Precision, recall, accuracy
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& The principal objective is to find the optimal CNN archi-
tecture and ideal hyperparameters for classifying airborne
images in 4 different perspectives.

& Amulti-architecture model of CNN that uses varying clas-
sifiers and network structures to accurately predict hetero-
geneous and homogeneous images irrespective of spatial-
spectral features is presented.

& A stacked analysis is made on individual images in a test
set using a confusion matrix for each model.

& An extensive performance analysis is done over
each model to identify the number of correctly
and incorrectly mapped images, thus providing in-
sights to choose an ideal model for certain groups
of images.

The chosen dataset contains four classes of images,
and so the classification can be done among the four
broad land covers. The number of classifications can be

Table 2 The architecture, findings, concerns, and metrics used

Reference Objective Classifier Technique/approach Findings Concerns Metrics

(Ouyang
et al.
2017)

A classification
framework DeepSat
extracts features
from an input image,
normalizes them,
and feeds the
normalized feature
vectors to a deep
belief network for
classification

DBN
CNN
Stacked

denoising
autoencod-
er

DeepSat DeepSat with DBN
outperforms the
traditional CNN,
DBN, and SDAE

DeepSat with random
forest also
outperforms the
traditional random
forest

Images can be
analyzed on a
partition basis to
handle sparse
representation

Accuracy

(Pal
2005)

A deep learning model
is trained and tested
with artificially
densified and
classified storm data
for cyclone
classification and
locating the cyclone
vortex and
polynomial
regression for
predicting the path

CNN and
polynomi-
al
regression

YOLO
RetinaNet

YOLO model is
suggested for
detecting and
locating the cyclone

R-CNN model is
suggested for
predicting the
location of storm

The flat images fail to
impart effect due to
curvature of the
earth and need to
be incorporated
separately in the
future

Mean square error
(MSE), mean
difference error
(MDE), number of
sites of
disagreements
(NSDs), percentage
error (PE), peak
signal-to-noise ratio
(PSNR)

(Parikh
and
Batra
2008)

This article presents a
robust and general
end-to-end network
architecture,
SiamCRNN, for
change detection
(CD) inhomoge-
neous and heteroge-
neous very high res-
olution (VHR)
image, which com-
bine CNN and RNN
to process images

CNN and
RNN

SiamCRNN consists
of three
subnetworks:
DSCNN (deep
Siamese CNN),
MRNN (multiple
recurrent neural
networks), and FC
(fully connected)

Analyzed the change
maps using 12
different approaches:
(a) MAD, (b)
IRMAD, (c) SFA,
(d) ISFA, (e) CVA,
(f) PCA-K-means,
(g) SVM, (h) DSCN,
(i) RNN-CD, (j)
SiamCRNN (TR),

(k) SiamCRNN (GRU),
(l) SiamCRNN
(LSTM)

SiamCRNN or its
variants for CD in
hyperspectral
images

Recall, precision,
OA—overall
accuracy, KC—
kappa coefficient

(Puissant
et al.
2014)

Classify the aerial
photographs into
seven land cover
classes: building,
grassland, dense
vegetation,
waterbody, barren
land, road, and
shadow

CNN with
normaliza-
tion

OBIA (object-based
image analysis

The proposed model
could balance
generalization ability
and training
efficiency using
advanced
regularization
techniques such as
dropout and batch
normalization

Scaling the
architecture for
sizeable remote
sensing datasets
and other data
sources such as
satellite images and
laser scanning
point clouds

OA—overall accuracy,
KC—kappa
coefficient, sensitiv-
ity and specificity
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increased when the dataset is added with other training
images.

The proposed methodology can be applied for classifying
high-end remote sensing images, land cover images, spectral
and unique images, water vapor imageries, medical images,
product images, etc.

Methodology

This section details the dataset, the proposed CNN models,
and the network training and testing procedure.

Dataset

The data is from the National Agriculture Imagery Program
(NAIP) dataset. It contains 330,000 images covering the
Continental United States (CONUS). It contains uncom-
pressed Digital Ortho Quarter Quad tiles (DOQQs). DOQQ
is digital aerial images that are orthorectified at a resolution of
1 m. They correspond to the United States Geological Survey
(USGS). On average, the image tile width is ~6000 pixels, and
height is ~height, and its size would be 200 megabytes. The
size of the complete dataset for CONUS is ~65 terabytes.

The images are captured in 4 bands(RGB and near infra-
red), thus covering different land covers (agricultural areas,
densely forested, urban areas, mountainous terrain, rural areas,
small to large water bodies, etc.) of the complete state of
California. Each land cover class’s images are labeled by
extracting 28 × 28 sliding window blocks in a nonoverlapping
mode and are saved to the dataset. The dataset includes the R,
G, B, and I values of the image. The image pattern in the other
section has no specific pixel color pattern, and processing
them would not help us know the type of image hidden in it.
The structure of the dataset is shown in Table 3. Window size
28 × 28 is significant to capture the statistical properties. The
conditional class distributions of the training images fit within
their class labels with no interclass overlaps. Both the training
and test classes are entirely disjoint.

The article (Basu et al. 2015) applies SAT-4 and SAT-6
datasets. The proposed systems have analyzed SAT-4 data in
multiple dimensions. A sample tiled image of the SAT-4
dataset is given in Figure 1.

Preprocessing

The training dataset includes digital values that represent RGB
format. These values are normalized to avoid abnormal gradi-
ents. The normalization (LeCun et al. 1998) in Eq. (1) im-
proves the gradient descent reaching the global minima.

P0 ¼ P=max−μð Þ=σ ð1Þ

μ represents the mean, and σ refers to the standard devia-
tion. P' is the normalized pixel value.

A global minimum is where the function takes a
minimum value and vice versa for global maxima.
When applied to different values of variables, a function
might lead to many minima values and few maxima
values. It is continuously the aim of the model to pick
the correct values of the coefficients/variables, so the
maximum value is attained. The maximum value is the
one that brings the predicted data significantly closer to
the ground truth. The dataset includes the class labels
and those that represent the ground truth values of the
images.

In many instances, the normalized data will not lead to an
overfitting model. Normalization lets on the gradient sloping
down faster to global minima. Gradient descent (GD) is an
optimization algorithm and a mathematical model that plays
around loss function. The mathematical model for loss func-
tion is mentioned in Eq. (2), describing the error between the
predicted value and target value.

cost Wð Þ ¼ 1

2M
∑
M

i¼1
pred xið Þ−target yið Þð Þ2 ð2Þ

In order to reduce the loss value or bring it down to
a minimal value, the possible option would be to work
with their partial derivatives. For specific initial weight
values, the partial derivatives would interpret a tangen-
tial equation to identify its gradient. The gradient value
is the differential value of the loss function given in Eq.
(3), (4), and (5).

∂
∂wi cost Wð Þ ¼ ∂

∂wi

1

2M
∑
M

i¼1
predw xið Þ−targetw yið Þð Þ2 ð3Þ

∂
∂wi cost Wð Þ ¼ 2

2M
∑
M

i¼1
predw xið Þ−targetw yið Þð Þ ∂

∂wi wixi−yi
� � ð4Þ

Table 3 Dataset structure
Dataset No. of samples The unsigned integer of 8 bits (unit 8) Per image pixel

X_Train 400,000 28 × 28 × 4 × 400,000 28 × 28 in 4 channels

Y_Train 400,000 400000 × 4 4 × 1 vector (class label)

X_Test 100,000 28 × 28 × 4 × 100,000 28 × 28 in 4 channels

Y_Test 100,000 100,000 × 4 4 × 1 vector (class label)
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∂
∂wi cost Wð Þ ¼ 1

M
∑
M

i¼1
predw xið Þ−targetw yið Þð Þxi ð5Þ

Further, the weights are adjusted as per the calculated gra-
dient values. A configurable hyperparameter (α) is introduced
to adjust the weight update. This hyperparameter decides the
rate of gradient sloping down toward the global/local minima.
The higher the value ofα, the gradient slopes faster to minima
or might jump to the minima, and the lower the value ofα, the
gradient takes baby steps to reach the minima following Eq.
(6).

wi ¼ wi−α
∂
∂wi cost Wð Þ ð6Þ

The hyperparameter (α) is tuned, and the corresponding
weights (let say w0, w1, s2) get adjusted accordingly. The loss
function mentioned in Eq. (2) is calculated again with the
adjusted weights, and the process continues. The loss function
saturates when it reaches the global minima, where the gradi-
ent neither increases nor decreases and becomes ~0.

w0 ¼ w0−α
1

M
∑
M

i¼1
predw xið Þ−targetw yið Þð Þx0 ð7Þ

w1 ¼ w1−α
1

M
∑
M

i¼1
predw xið Þ−targetw yið Þð Þx1 ð8Þ

w2 ¼ w2−α
1

M
∑
M

i¼1
predw xið Þ−targetw yið Þð Þx2 ð9Þ

The steps from Eq. (7),(8), and (9) are applied in every
iteration until a minimal loss value is reached in the training
phase. The model is finalized and is applied for the validation
dataset.

Convolutional neural network

CNN (Fukushima et al. 1983) in recent years has become
more popular as it shows its excellence in image classification
(He et al. 2015; Liu et al. 2017), facial recognition (Sun et al.
2014), target object detection (Ouyang et al. 2015), lane de-
tection, or obstacle detection or pedestrian detection (Ouyang
et al. 2017). Neural network is applied in diversified fields for
image categorizations and analysis (Khan et al. 2020; Kim
et al. 2020; Sanchez Lasheras et al. 2020). The best part of
CNN is that it performs effectively when applied to remote
sensing images. It classifies hyperspectral images by shifting
them in different angles, scaling them in various dimensions,
and handling distortions/outliers/noise in them. CNN is made
of neurons, and each of the neurons symbolizes a spatial re-
gion in the image.

Neurons in an ith layer are connected to a subset of neurons
in the (i-1)th layer, and their links share the same weight and
generate a feature map. As weight parameters are standard
across a set of neurons, the number of parameters to train the
CNN will drastically reduce. Using convolution operators, the
feature map is further reduced, and this process is called sub-
sampling. Subsampling in CNN can be otherwise called
pooling. Some pooling techniques are available in the litera-
ture: average pooling, max pooling, min pooling, global
pooling, etc. During the pooling operation, the size of the
feature map is reduced by applying different filters of varying
sizes. Max pooling is the operation that chooses the pixel with
maximum value in the region of applying the filter over the
feature map. Min pooling is the opposite of max pooling. Min
and max pooling choose the dominating pixel and the light
variant pixel from the feature map covered by the filter.

Figure 1 Images of SAT-4
dataset
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Average pooling is the operation that takes the average value
of the pixels in the region of the feature map covered by the
filter. The global pooling reduces the chosen region on the
feature map to one value. Every feature map is reduced to
one value in the last convolutional layer.

A typical architecture of CNN is shown in Figure 2.

Convolutional layer

Convolutional and pooling layers are applied in pairs to the
hyperspectral image. Several of such pairs can be included to
deepen the feature extraction. The initial convolutional layer
extracts the lower level features, and the forthcoming layers
extract the higher features, and so on. To extract such features,
filters are applied over the original image. A filter includes
kernels, and a notable point is the number of kernels and the
size of the kernels used. Each filter holds a unique bias value
and introduces translational invariance (Table 4).

Kernel, k, a matrix of numbers, pass over the image, i, from
strides and transforms the image based on the values in the
kernel matrix and calculates the weighted sum. The sum of
local weight obtained is passed through an activation function
like ReLU (rectified linear unit) and generates a feature map of
size i × k. For instance, on applying a kernel of size (3 × 3) on
the image of size (28 × 28), a feature map of size (26 × 26) is
obtained. For different values in the kernel matrix, different
feature maps are obtained. Whensoever a feature map is cre-
ated, the image size is reduced, critical to a loss in some of the
images. On applying multiple filters (say 32) over the same
image, 32 feature maps are obtained. The 32 feature maps (26
× 26) are stacked one above the other and combined. The final
tensor is a 3D matrix.

Pooling layer

This layer is applied to speed up the operation and reduce the
tensor’s size in the convolutional layer. It reduces the dimen-
sion of the feature map. It introduces slight invariance in the

image, like rotation or translation, that guarantees appropriate
image classification. The feature maps are divided into smaller
regions, and particular operations are performed on them. A
commonly used pooling operation is “max pooling” that cal-
culates the smaller regions’ maximum value in the feature
map. When applying to pool over 3D tensor, the
convolutional layer’s output, 3D pooled feature matrix, is ob-
tained. A 3 × 3 max pool, when applied over 32 (26 × 26)
feature maps, generates 32 (13 × 13) sized images.

Fully connected layers

This layer summarizes the information of the lower layers and
aggregates them. For aggregating the results, ReLU or
softmax is applied in the majority of the CNN models. They
flatten the results before classification. The last layer of CNN
might contain many neurons, and the value produced by each
neuron can take values in any range. If the objective of the
developed model is a two-class classificationmodel, then for a
given input image, the model must predict it to the suitable
class. The softmax activation function will process the results
of the entire neurons in the output layer into binary values
[0,1], thus classifying them into a specific class. However,
for a given input, ReLU gives a linear output for values greater
than 0 and zero output for values lesser than 0, thus classifying
them into one of the two classes. The increase in filters in the
CNN layer learns the intricacies of the image in a better way.
Edges and corners are detected in initial layers, and the parts
of the image are identified in the middle layers, and the last
layer has high-end representations that recognize the entire
objects, their shape, and texture.

Framework

A mathematical description of the proposed framework is ex-
plained in this section. In the given samples and the class

Figure 2 Architecture of CNN
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labels, how the model processes the training image and clas-
sifies them is elucidated.

The dataset contains N samples that are labeled as X ¼
xf gNi¼1 in a space and the class labels Y={1,2…. Cncl}, where

the ncl represents the number of class labels. In the SAT-4
dataset, the number of classes is ncl=4, hence Y={1,2,3,4}.

Let say there are nj samples in each jth class and∑ncl
j¼1nj ¼ N .

The training set (X) includes the images, and the test set (Y)

includes one hot encoded value. The TrX, TrX ¼ trxf g40000i¼1 is
the training collection of images. The training images’ corre-
sponding class labels are represented in TrY,TrY = {(yb, yb,
yb, yb)

1‖ (yb, yb, yb, yb)
2‖(yb, yb, yb, yb)

3‖(yb, yb, yb, yb)
4}.

TrY takes either one of the values given as {(yb, yb, yb, y-
b)
1 = (1, 0, 0, 0), (yb, yb, yb, yb)

2 = (0, 1, 0, 0), (yb, yb, yb, yb)
3-

= (0, 0, 1, 0), (y
b
, yb, yb, yb)

4 = (0, 0, 0, 1)}. The above set rep-
resents that a specific image in the training set will belong to
either one of the four class/class labels. This is called to be one
hot encoding of class labels. In like manner, TeX includes test

images, TeX ¼ texf g10000i¼1 and its corresponding target class
labels are given as TeY = {(yb, yb, yb, yb)

1| |(yb, yb, yb, yb)
2|| (yb,

yb, yb, yb)
3‖(yb, yb, yb, yb)

4}. The proposed system develops
and analyzes various CNN models to predict the target class
label, PrY. The predicted class label is given in Figure 3.

Feature extraction

The CNN architecture identifies the significant features of
applying a distinct blend of convolutional layers (the kernel,
activation function), max pooling layers, and fully connected
layers (activation functions) to identify the spatial correlation
pixels by exploiting the relationship between neurons in the
layers as mentioned above. The classifiers that are applied in
the proposed approach for classifying images are mentioned
below:

SGD (stochastic gradient descent)

Keras provides the SGD optimizer that makes use of both
learning rate and momentum. SGD updates the gradient by
working over one training example pair (xi, yi) and is much
faster than batch gradient update. A brief idea of gradient
descent is explained in the “Preprocessing” section.
Momentum adds weightage to the SGD by accelerating the
gradient to move in the right direction and penalizing

redundant oscillations. SGD might overshoot the local mini-
ma, yet varying the learning rate might allow SGD to reach
global minima for convex and non-convex cost functions. The
weight update formula in SGD, whenmomentum is 0, is given
in Eq. (10).

W ¼ W−α
∂
∂W

cost W ; xi; yi
� � ð10Þ

When momentum exceeds 0.

Vt ¼ βVt þ α
∂
∂W

cost W ;X ; Yð Þ ð11Þ

W ¼ W−Vt ð12Þ

In Eq. (11) and (12),β, beta, represents the hyperparameter
that takes values from 0 to 1. In the majority of the cases, theβ
value is set above 0.9 to smoothen the curve. SGD speeds up
the iterations, calculates the expected loss, and converges
faster to more essential data.

Adagrad

Adagrad adjusts the learning rate based on the frequency of
the features. The learning rate is updated with smaller steps for
frequently occurring features and vice versa and so handles
sparse data. That is the reason why Adagrad optimizer shows
promising results in predicting barren lands accurately. At
each iteration of execution, Adagrad uses different learning
rates for various parameters. For reference, the SGD parame-
ter update Eq. (13) is taken

wtþ1; i ¼ wt;i−α
∂
∂wi cost W

t;i� � ð13Þ

The Adagrad modifies the cost value at each step t and for
every parameter of wi based on the gradient’s past value, Eq.
(14).

wtþ1; i ¼ wt;i−
αffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Gt;ii þ ϵ
p ∂

∂wi cost W
t;i� � ð14Þ

Gt is a d × d diagonal matrix. Each value in the diagonal
element i holds a value = (sum of all gradient squares, wi till t).
Epsilon is the smoothing term. Another advantage of Adagrad
is that it tunes the learning rate automatically as it sums the
gradients and adds in the denominator.

Table 4 CNN filter size
Input image Filter The output of the convolutional layer

Kernel size Number of kernels

28 × 28 (3 × 3) 32 32 × 26 × 26
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RMSprop

The most significant concern of Adagrad is that the learning
rate diminishes and shows no enormous variation. RMSprop
is another version of Adagrad that resolves the diminishing
gradient problem. It replaces the denominator by exponential-
ly decaying the average of gradient square, Eq. (15).

wtþ1; i ¼ wt;i−
αffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

0:9 e g2½ �t−1 þ 0:1 g2½ �t
� �þ ϵ

q ∂
∂wi cost W

t;i� �

ð15Þ

A reasonable learning rate will hold a value of 0.001.

Adam

Adaptive Moment Estimation (Adam) keeps a record of expo-
nentially decaying average of past gradients for momentum. It
is a rolling ball with friction. Adam measures both the first and
second momentum. The update rule is measured as Eq. (16).

wtþ1; i ¼ wt;i−
αffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

vart

1−βt
2

þ ϵ

s meant

1−βt
1

ð16Þ

meant ¼ β1meant−1 þ 1−β1ð Þ ∂
∂wi cost W

t;i� � ð17Þ

vart ¼ β2vart−1 þ 1−β2ð Þ ∂
∂wi cost W

t;i� �� �2
ð18Þ

The first momentum (mean) and second momentum
(variance) are calculated, decaying averages of past gra-
dients and past squared gradients. Since the mean and
variance are considered, the optimizer works well in
handling the learning curve. Among the number of op-
timizers applied for training the deep CNN networks,
the proposed model applies the four optimizers men-
tioned earlier in light of their excellence with satellite
imagery. The experimental models of CNN architecture
run over these optimizers.

Figure 3 Process of organizing
the pixel pair model and
classifying them into multiple
classes
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Experimental models

Around 9 CNN models were implemented with varying
architecture, and each of them is analyzed with different
batch sizes and optimizers. Around 228 images of bar-
ren land, 215 images of trees, 170 images of grassland,
and 387 other images were taken for prediction models.
We group all the 9 models into two categories based on
the number of layers they use: category 1 includes
models 1, 2, 4, 6, and 8 and category 2 includes models

3, 5, 7, and 9. The models in category 1 are designed
with one-layered architecture, and models in category 2
are designed with 5-layered architecture. The model that
accelerates the training of the samples and speeds up
the convergence is identified. The application of the
loss function is categorical cross-entropy. A sample of
four images from each of the training classes is put in
Figure 4.

The analysis over the pattern of pixels in the sample images
is mentioned below:

Figure 4 Training images
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i. The pixels in barren land have higher values of RGB. The
pixels will have the same RGB value because barren land
in any region follows the same hue. The possibility of
finding pixels with lower values of RGB is significantly
less in the barren land. We may not find clouds of pixels
with varying RGB.

ii. The pixel pattern in grassland might have lower values of
RGB than barren land. We might find clouds of dusky
pixels that represent the density of the grassland. The
depth of vegetation covering the grassland matters the
most. If it is too less, then grassland might resemble bar-
ren land representing high values of RGB.

iii. Dense and deep vegetation is called tree land. The color
of the pixels in these images is intense and carries lower
values of RGB. The hue pattern might be dark enough to
represent the thickness of the forest. A blend of the dark
region and dusky region can be seen.

iv. Images that do not bear a typical pattern fall into the last
category.

Training the models

The training samples are run with nine models classified into
two categories that accelerate the weight update cycle with
more minor backpropagation errors to speed up the whole
model’s convergence. The optimization was run to reduce
the loss function (J) (i.e., categorical cross-entropy) of CNN
expressed in Eq. (19).

L IF;W ; b;PCLð Þ ¼ −
1

N
∑
N

i¼1
∑
K

j¼1
yi ¼ targetf g yi

" #
ð19Þ

L is the loss function.
IF represents the normalized features.
W represents the weight vector, and b

represents the bias.
yi

Table 5 Training loss, validation loss, training accuracy, validation accuracy of nine CNN models

Model Layer/no. of neurons Batch
size

Optimizer Training
loss

Validation
loss

Training
accuracy

Validation
accuracy

Correctly
mapped

Incorrectly
mapped

L1/
8N

L2/
12N

L3/
16N

L4/
12N

L5/
4N

1 ☓ ☓ ☓ ☓ Y 32 Adam 0.65742 0.65766 0.72395 0.7297 667 333

2 ☓ ☓ ☓ ☓ Y 64 Adam 0.65024 0.62649 0.72822 0.7382 769 231

3 Y Y Y Y Y 64 Adam 1.3506 1.3404 0.35594 0.387 690 310

4 ☓ ☓ ☓ ☓ Y 64 Adagrad 0.82971 0.81032 0.70851 0.7175 756 244

5 Y Y Y Y Y 64 Adagrad 0.88348 0.85618 0.63261 0.6481 651 349

6 ☓ ☓ ☓ ☓ Y 64 RMSprop 0.78857 0.77826 0.6749 0.679 694 306

7 Y Y Y Y Y 64 RMSprop 0.77706 0.79946 0.66143 0.6412 387 613

8 ☓ ☓ ☓ ☓ Y 64 SGD 0.68099 0.65312 0.7206 0.7333 725 275

9 Y Y Y Y Y 64 SGD 0.60644 0.57469 0.75671 0.7661 683 317

Figure 5 Training loss of CNN models for 10 epochs
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represents the probability of sample
I falling into a target class t, and
that is derived by softmax.

{yi = target} is the prediction vector mentioned as:

yi ¼
	
barren land; grass land; trees; others

n o

K represents a value of 4, indicating each class.
N is the number of training examples.

Category 1

Model 1 This model is designed with one layer having four
nodes using the softmax activation function. The softmax
function takes a vector of numbers as input and normalizes
them to a probability function. The probability values gener-
ated are proportional to the exponential of the input vector.
Specific input vectors can take a negative sign or positive sign,
and their sum of probabilities might not equal 1. However, on
applying softmax Eq. (20), the input vectors will be reduced to
a probability factor between {0,1}.

Figure 6 Validation loss of CNN models for 10 epochs

Figure 7 Training accuracy of CNN models for 10 epochs
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yi; softmax PCLið Þ ¼ ePCLi

∑
K

j¼1
ePCL j

ð20Þ

PCL represents the input vector. PCLi is the input vector’s
value for a class label, i., i.e., the input image’s value being
classified into any of the four class labels. It may take a pos-
itive or negative sign. Raising this value to the power of the
exponent always generates a positive value. There would be
four such values generated and each of them corresponds to
one class label: {PCL1}, {PCL2}, {PCL3}, and {PCL4}.
These values are further normalized by dividing all the PCLi,

as mentioned in the denominator. It defines the sum of
softmax of all the PCLi to be 1, and each of its values is a
probability factor.

In the context of the proposed system, the input vector
contains RGBI values of each image. A tuple of RGBI values
is passed as input to Model 1. The model gives outputs of four
values: {{PCL1}, {PCL2}, {PCL3}, and {PCL4}}. On apply-
ing the softmax function, the probability values, each for each
class label (barren land, trees, grassland, others) are derived.
The sum of all the probability values adds up to one. The tuple
will be assigned to the class with the highest probability value.
Model 1 uses Adam optimizer and applies a batch size of 32.
Its outputs are 72.395 for training accuracy and 72.97 for
validation accuracy.

Model 2Model 2 is designed similar to Model 1 but with
a slight variation in the batch size. Model 1’s batch size
is 32, and for model 2, it is 64. Change in batch size
does not cause a high difference in the training and
validation accuracy between the models, but model 2
shows a slight increase in training and validation accu-
racy by 0.00427 and 0.00998. It is seen that batch size
64 performs better than 32.

Model 4 Model 4 is designed with one layer encompassing
four nodes, and the Adagrad optimizer is applied with an input
batch size of 64. The training accuracy of 0.70851 and the
validation accuracy of 0.7175 are obtained.

Model 6 All the models in category 1 use one layer. In the
same way, model 6 applies one layer with four nodes but uses
an RMSprop classifier. Input batch size is 64. This model
shows minor training and validation accuracy among all the
5 models in category 1; this model shows lesser training and
validation accuracy (0.6749 and 0.679) since it is the
RMSprop classifier’s characteristic. RMSprop will try con-
verging to local minima or take a shorter path when a new
data point or a new image says an outlier is encountered. It is
shaky to outliers.

Model 8Model 8 applies an SGD classifier and uses one layer
of four nodes. The training accuracy and validation accuracy
are 0.7206 and 0.7333, respectively. However, this model
shows promising results similar to model 2, and it is because
of the stochastic gradient descent optimizer’s sustenance
capacity.

On varying the number of layers and number of nodes in
CNN architecture, it was found that the SAT-4 dataset shows
no significant difference with two layers or three layers. For a
four-layered architecture, the accuracy was slightly increased,
and a couple of models were built with four layers and are
grouped in category 2.

Category 2

Model 3 Model 3 is formed in four layers with 8, 12, 16, and
12 nodes in each layer, respectively. Adam optimizer applies a
batch size of 12 and shows trivial performance with training
error as 0.35594 and validation split as 0.387. Adam is essen-
tial in its way because it shows superior performance by taking

Figure 8 Validation accuracy of CNN models for 10 epochs
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Table 6 Confusion matrix enclosing the true positive (TP), false positive (FP), true negative (TN), and false negative (FN) of all the models for 1000
samples
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Grassland 27 82 129 71 Grassland 1 18 89 26
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 1681 Page 14 of 18 Arab J Geosci         (2021) 14:1681 



minimal training time. Yet, for some datasets and architecture,
it does not converge to an optimal solution.

Model 5 and Model 7 This model 5 is designed with the same
model 3 but applies Adagrad optimizer and gives a training
error of 0.63261 and validation error of 0.6481. As the itera-
tions of gradient calculation keep growing, the learning rate
takes a negligible value, thereby reducing the model’s perfor-
mance. This is one of the significant drawbacks of the
Adagrad optimizer. Model 7 applies an RMSprop optimizer
and gives a training error of 0.66143 and a validation error of
0.6412. Both model 5 and model 7 provide almost similar
training accuracy.

Model 9 It applies an SGD optimizer and gives a training error
of 0.75671 and a validation error of 0.7661. This model pro-
vides an accuracy that is the highest of all the models. The
reason behind the high accuracy of SGD is that the SGD
optimizer works with a small subset that randomly picks a
sample and narrows down the gradient.

The architecture of the models, as mentioned above,
provides good performance for predicting specific class
labels. However, with a particular architectural style, the
CNN performance might be high and would saturate.
Two such models are model 2 and model 9, with a
validation accuracy of 0.7382 and 0.7661. The mea-
sured batch size, training loss, validation loss, training
accuracy, and validation accuracy of the nine CNN
models are tabulated in Table 5.

Figure 5, 6, 7, and 8 show the training loss, validation loss,
training accuracy, and validation accuracy of all the CNN
models with normalization for 10 epochs on both training
and validation datasets. In terms of training loss, all the

models indicate a slight decrease in error with increasing
epochs. This shows that the model has learned to extract use-
ful features from the pixels in the image and has self-
understood the class labels that support the classification of
the images. Though the validation dataset shows meager fluc-
tuations while calculating the loss, the last epoch’s loss value
is minimal in most models. Model 9 shows a minimal valida-
tion error of 0.574. The proposed models do not seem to
overfit, and hence dropout is not required. Dropout is applied
to release or drop some neurons in the CNN layers, and drop-
out prevents the model from getting overfitted.

The performance of the models in classifying the im-
ages depends on the hyperparameters and architecture. A
sensitivity analysis serves as an essential measure to find
the specific set of parameters to learn the model predic-
tion. Table 5 shows the impact of hyperparameters on the
loss and accuracy of CNN. The hyperparameters applied
in the proposed work include varying the number of CNN
hidden layers, varying the neurons in the layer, applying
varying optimizers, varying the number of epochs, and
varying the batch size.

The sensitivity analysis in CNN presumes that the
larger the number of layers and filters, the higher the
performance. Variation is seen in 32 and 64 batch size,
and 64 batch size shows the higher optimal solution.
With 64 batch size configurations, the CNN model
achieves higher accuracy. CNN’s performance with dif-
ferent optimizers is investigated, and the results show
that SGD and Adam show good performance. The poor
performance is shown by RMSprop and Adagrad opti-
mizers. The spatial quality of the features from images
is chosen only by the specific combination of filters,
batch size, and epoch.

Table 7 Prediction values of proposed model’s vs. ground truth: tree image

Model 1 Model 2 Model 3 Model 4 Model 5 Model 6 Model 7 Model 8 Model 9

Barren land 0.004 0.012 0.259 0.066 0.017 0.003 0.012 0.009 0.001

Trees 0.132 0.126 0.207 0.332 0.241 0.109 0.096 0.093 0.724

Grassland 0.764 0.77 0.178 0.364 0.339 0.776 0.361 0.838 0.186

Other 0.1 0.093 0.356 0.238 0.403 0.113 0.531 0.06 0.089

Table 8 Prediction values of proposed model’s vs. ground truth: grassland image

Model 1 Model 2 Model 3 Model 4 Model 5 Model 6 Model 7 Model 8 Model 9

Barren land 0.037 0.024 0.098 0.169 0.171 0.022 0.2 0.068 0.05

Trees 0.033 0.014 0.029 0.129 0.095 0.066 0.001 0.111 0.002

Grassland 0.732 0.526 0.58 0.423 0.241 0.766 0.228 0.364 0.781

Other 0.198 0.436 0.293 0.278 0.493 0.146 0.572 0.457 0.167
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In parallel, the model accuracy for the training and valida-
tion dataset for 10 epochs is determined. The results imply that
the accuracy of all the models shows a linear increase with
epochs. The maximum accuracy obtained while validating
model 9 is 0.7661. The validation accuracy of the model
shows a slight off and on change, and the consolidated accu-
racy of all the CNN models shows that the model has learned
well to classify images. The CNN models are trained with no
dropout of nodes, and the accuracy of the classification map is
seen from the results obtained.

Analysis of confusion matrix of the proposed CNN models

The entire set of images is passed through each of the models,
and the classification characteristics of the model are recorded in
the form of a matrix. The matrix tabulates the predicted class
labels to the ground truth of images. Each of the models’ classi-
fication is tabulated as a contingency table (4 × 4 matrix). The
confusion matrix (Table 6) displays the true positive (TP), false
positive (FP), true negative (TN), and false negative (FN) values
of all the models with 1000 input samples. On analyzing the
matrix, the results indicate the models that rightly classify the
vegetation. Model 1 sounds good in predicting the grassland.
Model 9 shows a high true positive count for trees and barren
land. Several samples were misclassified by model 7, and most
of the misclassifications were amid trees and grasslands. Either
way, trees were assumed as grasslands or vice versa.

The confusion matrix represents the stacked analysis of
images in the dataset by nine models. Every model runs
through the dataset and constructs the matrix as given in
Table 6. We get to know the suitable model for a specific class
of image and the prediction characteristics of each of the de-
veloped models. In general, such a stacked analysis is built for
image classification algorithms to know the strength of the
classification.

Prediction of proposed system vs. ground truth

We chose four random images whose ground truth entitles it
as a tree, grassland, barren land, and others to evaluate the
model’s prediction behavior. The percentage of prediction
by the proposed models for sample images is reviewed in
Table 7, 8, 9 and 10.

All the 9 models evaluate this image, and the result of the
prediction is put together in Figure 9.

The treemap image of the predicted results is plotted here.
A puzzling case is to rightly predict a tree as a tree and grass-
land as grassland. Model 9 identifies a tree image as a tree. All
the proposed models rightly predict the ground truth image
with few showing slight deviations. The computing perfor-
mance of the proposed nine models is efficient for SAT-4
dataset.

The proposed nine models are trained in a way specific to
the satellite images in the training set. Following any other
dataset, the models can be slightly modified in their layers
and can be applied. As such, the proposed model can be ap-
plied to other satellite-based datasets for classifying the im-
ages into four broad classes. However, other platforms can
also be proposed using different packages, and the perfor-
mance can be compared. But the proposed model focus on
building the suitable CNN architecture for the specific class
label classification.

Conclusion

This paper builds CNN classification models to determine the
spectral-spatial features from SAT-4 images and group them
under 4 different classes. In the paper’s initial sections, the
proposed CNN framework, the various optimizers, and the
corresponding gradient optimization methods applied are

Table 9 Prediction values of proposed model’s vs. ground truth: barren land image

Model 1 Model 2 Model 3 Model 4 Model 5 Model 6 Model 7 Model 8 Model 9

Barren land 1 1 1 0.974 0.945 1 0.454 0.999 1

Trees 0 0 0 0 0 0 0 0 0

Grassland 0 0 0 0.003 0.001 0 0 0.001 0

Other 0 0 0 0.023 0.054 0 0.546 0 0

Table 10 Prediction values of proposed model’s vs. ground truth: others

Model 1 Model 2 Model 3 Model 4 Model 5 Model 6 Model 7 Model 8 Model 9

Barren land 0.000 0.002 0.264 0.043 0.001 0.000 0.000 0.003 0.000

Trees 0.090 0.211 0.202 0.161 0.252 0.018 0.430 0.430 0.157

Grassland 0.026 0.070 0.176 0.143 0.116 0.007 0.126 0.115 0.021

Other 0.884 0.717 0.358 0.653 0.631 0.974 0.444 0.444 0.822
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briefly described. Around 9 CNNmodels are constructed with
varying degrees of regularization, varying number of layers,
tuned hyperparameters, altered batch size, etc. The proposed
model signifies the different ways of classifying the images
into four classes: trees, grassland, barrel land, and others using
all the CNN models. The sensitivity analysis of the proposed
CNN models was studied, and the results show that they are
robust and demonstrate sound reasoning in classifying the
images. For these 9 models, the categorical loss entropy and
accuracy are determined. The CNN classifier is trained end-to-
end in various dimensions by passing around 40,000 images.
The training and validation accuracy of the models in each of
10 epochs are measured. A true positive, true negative, false

positive, and false negative are analyzed for each model.
Similarly, a test image is passed to all the models, and then
the prediction percentage of all of them is calculated. An ex-
tended version of model 9 can be built to classify the images
with minimal error and high accuracy and can be considered
to scale for large remote sensing datasets.
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Figure 9 Treemap showing the
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