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Abstract
Graph Neural Networks (GNNs) have become a prominent approach to machine
learning with graphs and have been increasingly applied in a multitude of domains.
Nevertheless, since most existing GNN models are based on flat message-passing
mechanisms, two limitations need to be tackled: (i) they are costly in encoding long-
range information spanning the graph structure; (ii) they are failing to encode features
in the high-order neighbourhood in the graphs as they only perform information aggre-
gation across the observed edges in the original graph. To deal with these two issues,
we propose a novel Hierarchical Message-passing Graph Neural Networks frame-
work. The key idea is generating a hierarchical structure that re-organises all nodes in
a flat graph into multi-level super graphs, along with innovative intra- and inter-level
propagation manners. The derived hierarchy creates shortcuts connecting far-away
nodes so that informative long-range interactions can be efficiently accessed via mes-
sage passing and incorporates meso- and macro-level semantics into the learned node
representations.We present the first model to implement this framework, termedHier-
archical Community-aware Graph Neural Network (HC-GNN), with the assistance
of a hierarchical community detection algorithm. The theoretical analysis illustrates
HC-GNN’s remarkable capacity in capturing long-range information without intro-
ducing heavy additional computation complexity. Empirical experiments conducted
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on 9 datasets under transductive, inductive, and few-shot settings exhibit thatHC-GNN
can outperform state-of-the-art GNNmodels in network analysis tasks, including node
classification, link prediction, and community detection.Moreover, themodel analysis
further demonstrates HC-GNN’s robustness facing graph sparsity and the flexibility
in incorporating different GNN encoders.

Keywords Graph neural networks · Hierarchical message-passing · Long range
communication · Hierarchical structure · Representation learning

1 Introduction

Graphs are a ubiquitous data structure thatmodels objects and their relationshipswithin
complex systems, such as social networks, biological networks, recommendation sys-
tems, etc Wu et al. (2021). Learning node representation from a large graph has been
proved as a useful approach for a wide variety of network analysis tasks, including
link prediction Zhang and Chen (2018), node classification Zitnik et al. (2018) and
community detection Chen et al. (2019).

GraphNeural Networks (GNNs) are currently one of themost promising paradigms
to learn and exploit node representations due to their effective ability to encode node
features and graph topology in transductive, inductive, and few-shot settings Zhang
et al. (2020). Many existing GNN models follow a similar flat message-passing prin-
ciple where information is iteratively passed between adjacent nodes along observed
edges. Such a paradigm is able to incorporate local information surrounded by each
node Gilmer et al. (2017). However, it has been proven to suffer from several draw-
backs (Xu et al. 2019; Min et al. 2020; Li et al. 2020).

Among these deficiencies of flat message-passing GNNs, the limited ability for
information aggregation over long-range has attracted significant attention Li et al.
(2018), since most graph-related tasks require the interactions between nodes that are
not directly connected Alon and Yahav (2021). That said, flat message-passing GNNs
struggle in capturing dependencies between distant node pairs. Inspired by the out-
standing effectiveness of very deep neural network models has been demonstrated in
computer vision and natural language processing domains LeCun et al. (2015), a nat-
ural solution is stacking lots of GNN layers together to directly increase the receptive
field of each node. Consequently, deeper models have been proposed by simplifying
the aggregation design of GNNs and accompanied by well-designed normalisation
units or specific gradient descent method (Chen et al. 2020; Gu et al. 2020). Never-
theless, Alon and Yahav have theoretically shown that flat GNNs are susceptible to
being a bottleneck when aggregating messages across a long path and lead to severe
over-squashing issues Alon and Yahav (2021).

On the other hand, in this paper, we further argue another crucial deficiency of
flat message-passing GNNs is that they rely on only aggregating messages across the
observed topological structure. The hierarchical semantics behind the graph structure
provides useful information and should be incorporated into the learning of node
representations. Taking the collaboration network in Fig. 1a as an example; author
nodes highlighted in light yellow come from the same institutes, and nodes filled with
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(a) (b) (c)

Fig. 1 Elaboration of the proposed hierarchical message passing: a a collaboration network, b an illustration
of hierarchical message-passing mechanism based on (a) and (c), and c an example of the identified
hierarchical structure

different colours indicate authors in various research areas. In order to generate the
node representation of a given author, existing GNNs mainly capture the co-author
level information depending on the explicit graph structure. However, information
hidden at meso and macro levels is neglected. In the example of Fig. 1, meso-level
information means authors belong to the same institutes and their connections to
adjacent institutes. Macro-level information refers to authors of the same research
areas and their relationship with related research areas. Both meso- and macro-level
knowledge cannot be directly modelled through flat message passing via observed
edges.

In this paper, we investigate the idea of a hierarchical message-passing mechanism
to enhance the information aggregation pipeline of GNNs. The ultimate goal is to
make the node representation learning process aware of both long-range interactive
information and implicit multi-resolution semantics within the graph.

We note that a few graph pooling approaches have recently delivered various
attempts to use the hierarchical structure idea (Gao and Ji 2019; Ying et al. 2018;
Huang et al. 2019; Ranjan et al. 2020; Li et al. 2020). g- U- Net Gao and Ji (2019)
and GXN Li et al. (2020) employ a bottom-up and top-down pooling operation; how-
ever, they do not allow long-range message-passing. DiffPool Ying et al. (2018),
AttPoolHuang et al. (2019) andASAPRanjan et al. (2020) target at graph classifica-
tion tasks instead of enabling node representations to capture long-range dependencies
and multi-grained semantics of one graph. Moreover, P-GNNs You et al. (2019) create
a different information aggregation mechanism that utilises sampled anchor nodes to
impose topological position information into learning node representations. While P-
GNNs can capture global information, the hierarchical semantics mentioned above is
still overlooked, and the globalmessage-passing is not realised. Besides, the anchor-set
sampling process is time-consuming for large graphs, and it cannot work well under
the inductive setting.

Specifically, we present a novel framework, Hierarchical Message-passing Graph
Neural Networks (HMGNNs), elaborated in Fig. 1. In detail, HMGNNs can be organ-
ised into the following four phases.

(i) Hierarchical structure generation. To overcome long-distance obstacles in the pro-
cess of GNNmessage-passing, we propose to use a hierarchical structure to reduce
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the size of graph G gradually, where nodes at each level t are integrated into dif-
ferent super nodes (st+1

1 , . . . , st+1
n ) at each level t+1.

(ii) t-level super graph construction. In order to allow the message passing among
generated same-level super nodes, we construct a super graph Gt based on the
connections between nodes at its lower level t−1.

(iii) Hierarchical message propagation. With the generated hierarchical structure for a
given graph, we develop three propagation manners, including bottom-up, within-
level and top-down.

(iv) Model learning. Last, we leverage task-specific loss functions and a gradient
descent procedure to train the model.

Designing a feasible hierarchical structure is crucial for HMGNNs, as the hierarchi-
cal structure determines howmessages can be passed through different levels andwhat
kind of meso- and macro-level information to be encoded in node representations. In
this paper, we consider (but are not restricted to) network communities. As a natural
graph property, the community has been proved very useful for many graph mining
tasks (Wang et al. 2014, 2017). Lots of community detection methods can generate
hierarchical community structures. Here, we propose an implementationmodel for the
proposed framework, Hierarchical Community-aware Graph Neural Network (HC-
GNN). HC-GNN exploits a well-known hierarchical community detection method,
i.e., the Louvain method Blondel et al. (2008) to build up the hierarchical structure,
which is then used for the hierarchical message-passing mechanism.

The theoretical analysis illustrates HC-GNN’s remarkable capacity in capturing
long-range informationwithout introducing heavy additional computation complexity.
Extensive empirical experiments are conducted on 9 graph datasets to reveal the perfor-
mance of HC-GNN on a variety of tasks, i.e., link prediction, node classification, and
community detection, under transductive, inductive and few-shot settings. The results
show that HC-GNN consistently outperforms a set of state-of-the-art approaches for
link prediction and node classification. In the few-shot learning setting, where only
5 samples of each label are used to train the model, HC-GNN achieves a significant
performance improvement, up to 16.4%. We also deliver a few empirical insights:
(a) the lowest level contributes most to node representations; (b) how to generate the
hierarchical structure has a significant impact on the quality of node representations;
(c) HC-GNN maintains an outstanding performance for graphs with different levels
of sparsity perturbation; (d) HC-GNN possess significant flexibility in incorporating
different GNN encoders, which means HC-GNN can achieve superior performance
with advanced flat GNN encoders.

Contributions The contribution of this paper is five-fold:

1. We propose a novel Hierarchical Message-passing Graph Neural Networks
framework, which allows nodes to conveniently capture informative long-range
interactions and encode multi-grained semantics hidden behind the given graph.

2. We present the first implementation of our framework, namely HC-GNN1, by
detecting and utilising hierarchical community structures for message passing.

1 Code and data are available at https://github.com/zhiqiangzhongddu/HC-GNN.
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3. Theoretical analysis demonstrate the efficiency and the capacity of HC-GNN in
capturing long-range interactions in graphs.

4. Experimental results show that HC-GNN significantly outperforms competing
GNN methods on several prediction tasks under transductive, inductive, and few-
shot settings.

5. Further empirical analysis is conducted to derive insights into the impact of the
hierarchical structure and graph sparsity on HC-GNN and confirm its flexibility
in incorporating different GNN encoders.

The rest of this paper is organised as follows. We begin by briefly reviewing addi-
tional related work in Sect. 2. Then in Sect. 3, we introduce the preliminaries of this
study and state the research problem. In Sect. 4, we introduce our proposed framework
Hierarchical Message-passing Graph Neural Networks and its first implementation,
HC-GNN. Experimental results and empirical analysis are shown in Sect. 5. Finally,
we conclude the paper and discuss the future work in Sect. 6.

2 Related work

Flat message-passing GNNs They perform graph convolution, directly aggregate
node features from neighbours in the given graph, and stack multiple GNN layers to
capture long-range node dependencies (Kipf and Welling 2017; Hamilton et al. 2017;
Velickovic et al. 2018;Xu et al. 2019).However, theywere observed not to benefit from
more than a few layers, and recent studies have theoretically expressed this problem
as over-smoothing (Li et al. 2018; Alon and Yahav 2021), i.e., node representations
become indistinguishable when the number of GNN layers increases. On the other
hand, GraphRNA (Huang et al. 2019) presents graph recurrent networks to capture
interactions between far-away nodes. Still, we cannot apply it to inductive learning
settings because they rely on attributed random walks and the recurrent aggregations
introduce high computation costs. P-GNNs (You et al. 2019) incorporate a novel
global information aggregation mechanism based on the distance of a given target
node to each anchor set. However, P-GNNs sacrifice the ability of existing GNNs on
inductive node-wise tasks. As shown in their paper, they only support pairwise node
classification tasks, i.e., comparing if two nodes have the same class label instead
of predicting the class label of each individual node. Additionally, the anchor-set
sampling operation brings a high computational cost for large-size graphs. Recently,
deeper flat GNNs have been proposed by simplifying the aggregation design of GNNs
and accompanied by well-designed normalisation units (Chen et al. 2020) or specific
gradient descent methods (Gu et al. 2020). Nevertheless, Alon and Yahav (2021)
has theoretically shown that flat GNNs are susceptible to being a bottleneck when
aggregating messages across a long path and lead to severe over-squashing issues.
Moreover, we will theoretically discuss the advantages of our method compared with
flat GNNs in Sect. 4.3, in terms of long-range interactive capability and complexity.

Hierarchical representationGNNs In recent years, some studies generalise the pool-
ing mechanism of computer vision Ronneberger et al. (2015) to GNNs for graph
representation learning (Ying et al. 2018; Huang et al. 2019; Gao and Ji 2019; Ranjan
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et al. 2020; Li et al. 2020, ?; Rampásek and Wolf 2021). However, most of them, such
asDiffPoolYing et al. (2018),AttPoolHuang et al. (2019) and ASAP Ranjan et al.
(2020), are designed for graph classification tasks rather than learning node represen-
tations to capture long-range dependencies and multi-resolution semantics. Thus they
cannot be directly applied to node-level tasks. g- U- Net Gao and Ji (2019) defines a
similarity-based pooling operator to construct the hierarchical structure, and GXN Li
et al. (2020) designs another infomax pooling operator, they implement bottom-up
and top-down operations. Despite the success of g- U- Net and GXN in producing
graph-level representations, they cannotmodel themulti-grained semantics and realise
long-range message-passing. HARP Chen et al. (2018) and LouvainNE Bhowmick
et al. (2020) are two unsupervised network representation approaches that adopt a
hierarchical structure, but they do not support the supervised training paradigm to
optimise for specific tasks, and they cannot be applied with inductive settings.

More recently, HGNet Rampásek and Wolf (2021) leverages multi-resolution rep-
resentations of a graph to facilitate capturing long-range interactions. Below, we
discuss the main differences between HGNet and HC-GNN. HC-GNN designs differ-
ent efficient and effective bottom-up and top-down propagation mechanisms to realise
elegant hierarchical message-passing rather than directly applying pooling and rela-
tional GCN, respectively. We further provide the theoretical analysis to demonstrate
the efficiency and capacity of HC-GNN, such analysis has not been performed on
HGNet. We also provide a much more careful and comprehensive set of experimental
studies to validate the effectiveness of HC-GNN, including comparing learning set-
tings on node classification (transductive, inductive, and few-sot), comparing to more
recent competing flat GNN methods, comparing to state-of-the-art hierarchical GNN
models, evaluating on the link prediction task, and in-depth analysis on graph spar-
sity and primary GNN encoders (Sect. 5). Last but not least, in addition to capturing
long-range interactions, we further deeply discuss the benefits and the usefulness of
the hidden hierarchical structure in a graph.

Table 8 summarises the critical advantages of the proposed HC-GNN and com-
pares it with a number of state-of-the-art methods published recently. We are the first
to present the hierarchical message passing to efficiently model long-range informa-
tive interaction and multi-grained semantics. In addition, our HC-GNN can utilise the
community structures and be applied for transductive, inductive and few-shot infer-
ences.

3 Problem statement

An attributed graph with n nodes can be represented as G = (V, E,X), where V =
{v1, v2, . . . , vn} is the node set, E ⊆ V × V denotes the set of edges, and X =
{x1, x2, . . . , xn} ∈ R

n×π is the feature matrix, in which each vector xi ∈ X is the
feature vector associated with node vi , and π is the dimension of input feature vector
of each node. For subsequent discussion, we summarise V and E into an adjacency
matrix A ∈ {0, 1}n×n .
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Table 1 Summary of main notations

Notation Description

G An attributed graph

V,E The set of nodes and edges on G, respectively
A The adjacent matrix of G
X ∈ R

n×π The matrix of node features

d The pre-defined representation dimension

H ∈ R
n×d The hidden node representation matrix

hv ∈ R
d The hidden node representation of node v

Z ∈ R
n×d The final node representation matrix

zv ∈ R
d The final node representation of node v

L The number of layers of within-level propagation GNN encoder

T The number of hierarchy levels

Gt The super graph at level t

stn The n-th super node of Gt at level t
H The set of constructed super graphs

N (v) The set of neighbour nodes of node v

γ A hyper-parameter that used to construct super graph Gt
λ The pooling ratio

Problem definition Given a graph G and a pre-defined representation dimension d,
the goal is to learn a mapping function f : G → Z, where Z ∈ R

n×d and each row
zi ∈ Z corresponds to the node vi ’s representation. The effectiveness of f is evaluated
by applying Z to different tasks, including node classification, link prediction, and
community detection. Table 1 lists the mathematical notation used in the paper.

Flat node representation learning Prior to introducing the hierarchical message-
passing mechanism, we first give a general review of existing Graph Neural Networks
(GNNs) with flat message-passing. Let Â = (Âuv)u,v∈V , where Âuv is a normalised
value of Auv . Thus, we can formally define �-th layer of a flat GNN as:

m(�)
a = AggregateN ({Âuv, h(�−1)

u | u ∈ N (v)}),
m(�)

v = AggregateI ({Âuv | u ∈ N (v)})h(�−1)
v ,

h(�)
v = Combine(m(�)

a ,m(�)
v )

(1)

where AggregateN (·) and AggregateI (·) are two possibly differential parame-
terised functions. m(�)

a is aggregated message from node v’s neighbourhood nodes
(N (v)) with their structural coefficients, and m(�)

v is the residual message from node
v after performing an adjustment operation to account for structural effects from its
neighbourhood nodes. After, h(�)

v is the learned as representation vector of node v

by with combining m(�)
a and m(�)

v , termed as Combine(·), at the �-th iteration/layer.
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Note that, we initialise h(0)
v = xv and the final learned representation vector after L

iterations/layers zv = h(L)
v .

Take the classic Graph Convolutional Network (GCN) Kipf and Welling (2017)
as an example, which applies two normalised mean aggregations to aggregate feature
vectors node v’s neighbourhood nodes N (v) and combine with itself:

h(�)
v = ReLU

⎛
⎝ ∑

u∈N (v)

W(�)h(�−1)
u√|N (u)||N (v)| + W(�)h(�−1)

v√|N (v)||N (v)|

⎞
⎠ (2)

where
√|N (u)||N (v)| is a constant normalisation coefficient for the edge Euv , which

is calculated from the normalised adjacent matrix D−1/2AD−1/2. D is the diagonal
node degree matrix of A. W(�) ∈ R

n×d is a trainable weight matrix of layer �. From
Eqs. 1 and 2, we can find that existing GNNs iteratively pass messages between
adjacent nodes along observed edges, which will lead to two significant limitations:
(a) the limited ability for information aggregation over long-range. They need to stack
k layers to capture interactions within k steps for each node; (b) they are infeasible in
encoding meso- and macro-level graph semantics.

4 Proposed approach

We propose a framework, Hierarchical Message-passing Graph Neural Networks
(HMGNNs), whose core idea is to use a hierarchical message-passing structure to
enable node representations to receive long-range messages and multi-grained seman-
tics from different levels. Fig. 2 provides an overview of the proposed framework,
consisting of four components. First, we create a hierarchical structure to coarsen the
input graph G gradually. Nodes at each level t of the hierarchy are grouped into differ-
ent super nodes (st1, . . . , s

t
n). Second, we further organise level t generated super nodes

into a super graph Gt+1 at level t+1 based on the connections between nodes at level
t , in order to enable message-passing that encodes the interactions between gener-
ated super nodes. Third, we develop three different propagation schemes to propagate
messages among nodes within the same level and across different levels. At last, after
obtaining node representations, we use the task-specific loss function and a gradient
descent procedure to train the model.

4.1 Hierarchical message-passing GNNs

I. Hierarchical structure generationNodesV of a graphG can be naturally organised
by super node structures of T different levels, i.e., {V1,V2, . . . ,VT }, in which densely
inter-connected nodes of Vt−1 (2 ≤ t ≤ T ) are grouped into a super node of Vt . For
example in Fig. 1a, author set V1 = {v1, v2, . . . , v17} can be grouped into different
super nodes V2 = {s1, s2, . . . , s9} based on their institutes. Institutes can be further
grouped into higher-level super nodes V3 = {r1, r2, . . . , r4} according to research
areas.Meanwhile, there is a relationship between nodes at different levels, as indicated
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(a)

(b) (c) (d)

Fig. 2 a The architecture of Hierarchical Message-passing Graph Neural Networks: we first generate a
hierarchical structure, in which each level is formed as a super graph, use the level t graph to update nodes
of level t +1 graph (bottom-up propagation), apply the typical neighbour aggregation on each level’s graph
(within-level propagation), use the generated node representations from level 2 ≤ t ≤ T to update node
representations at the level 1 (top-down propagation), and optimises the model via a task-specific loss. b
NN-1: bottom-up propagation. c NN-2: within-level propagation. d NN-3: top-down propagation

by dashed lines in Fig. 1c. Hence, we can generate a hierarchical structure to depict
the inter- and intra-relationships among authors, institutes, and research areas.Wewill
discuss how to implement the hierarchical structure generation in Sect. 4.2.

II. t-Level super graph constructionThe level t’s super graphGt is constructed based
on level t−1 graph Gt−1 (t ≥ 2), where G1 represents the original graph G. Given nodes
at level t−1, i.e., Vt−1 = {st−11 , . . . , st−1m }, densely inter-connected nodes of Vt−1 are
grouped into a super node of Vt according to Sect. 4.1-I. We further create an edge
between two super nodes sti and s

t
j if there exist more than γ edges in Gt−1 connecting

elements in sti and elements in stj , where γ is a hyper-parameter and γ = 1 by default.
In this way, we can have an alternative representation of the hierarchical structure as a
list of (super) graphs H = {G1, . . . ,GT }, where G1 = G. Moreover, inter-level edges
are created to depict the relationships between (super) nodes at different levels t and
t−1, if a level t−1 node has a corresponding super node at level t , see for example
Fig. 1c. We initialise the feature vectors of generated super nodes to be zero vectors
with the same length as the original node feature vector xi . Taking the collaboration
network in Fig. 1 as an example, at the micro-level (level 1), we have authors and their
co-authorship relations; at the meso-level (level 2), we organise authors according to
their affiliations and establish relations between institutes; at the macro-level (level
3), institutes are further grouped according to their research areas, and we have the
relations among the research areas. In addition, inter-level links are also created to
depict the relationships between authors and institutes and between institutes and
research areas.

III. Hierarchical message propagation The hierarchical message-passing mecha-
nism works as a supplementary process to enhance the node representations with
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long-range interactions and multi-grained semantics. Thus it does not change the flat
node representation learning process as described in Sect. 3, to ensure the local infor-
mation is well maintained. And we adopt the classic GCN, as described in Eq. 2,
as our default flat GNN encoder throughout the paper. Particularly, the hierarchical
message-passing mechanism consists of �-th layer consisting of 3 steps.

1. Bottom-up propagation. After obtaining node representations (h(�)

st−1 ) of Gt−1 with
�-th flat information aggregation, we perform bottom-up propagation, i.e., NN-1
in Fig. 2b, using node representations in Gt−1 to update node representations in Gt
(t ≥ 2) in the hierarchyH, as follows:

a(�)

sti
= 1

|sti | + 1

⎛
⎝ ∑

st−1∈sti
h(�)

st−1 + h(�−1)
sti

⎞
⎠ (3)

where sti is a super node in Gt , and st−1 is a node in Gt−1 that belongs to sti in Gt .
h(�−1)
sti

is the node representation of sti that generated by layer �−1 in graph Gt , |sti |
is the number of nodes of level t−1 that belonging to super node sti , and a(�)

sti
is

the updated representation of sti .
2. Within-level propagation. We explore the typical flat GNN encoders (Kipf and

Welling 2017; Hamilton et al. 2017; Velickovic et al. 2018; Xu et al. 2019; Chen
et al. 2020) to propagate information within each level’s graph {G1,G2, . . . ,GT },
i.e., NN-2 in Fig. 2c. The aim is to aggregate neighbours’ information and update
within-level node representations. Specifically, the information aggregation at level
t is depicted as follows:

m(�)
a = AggregateN ({Ât

uv, a
(�)
u | u ∈ N t (v)}),

m(�)
v = AggregateI ({Ât

uv | u ∈ N t (v)}) a(�)
v ,

b(�)
v = Combine(m(�)

a ,m(�)
v )

(4)

where a(�)
u is the node representation of u after bottom-up propagation at the �-th

layer,N t (v) is a set of nodes adjacent to v at level t , and b(�)
v is the aggregated node

representation of v based on local neighbourhood information. Note that we adopt
the classic GCN, as described in Eq. 2, as our default GNN encoder throughout the
paper. We will discuss the possibility of incorporating with other advanced GNN
encoders in Sect. 5.3.

3. Top-downpropagation.The top-downpropagation is illustratedbyNN-3 inFig. 2d.
We use node representations in {G2, . . . ,GT } to update the representations of
original nodes in G. The importance of messages at different levels can be different
for other tasks. Hence, we adopt the attention mechanism Velickovic et al. (2018)
to adaptively learn the contribution weights of different levels during top-down
integration, given by:

h(�)
v = ReLU(W · MEAN{αuvb(�)

u }),∀u ∈ C(v) ∪ {v} (5)
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where αuv is a trainable normalised attention coefficient between node v to super
node u or itself, MEAN is an element-wise mean operation, C(v) denotes the
set of different-level super nodes from level {2, . . . , K } that node v belongs to
(|C(v)| = K − 1), and ReLU is the activation function. H(�) is the generated
node representation of layer � with h(�)

v ∈ H(�). We generate the output node
representations of the last layer (L) via:

zv = σ(W · MEAN{αuvb(L)
u }),∀u ∈ C(v) ∪ {v} (6)

where σ is the Euclidean normalisation function to reshape values into [0, 1].
Z ∈ R

n×d is the final generated node representation with each row vector zv ∈ Z.

IV. Model learning The proposed HMGNNs could be trained in unsupervised, semi-
supervised, or supervised settings. Here, we only discuss the supervised setting used
for node classification in our experiments. We define the loss function based on cross
entropy, as follows:

L = −
∑
v∈V

y

v log(Softmax(zv)) (7)

where yv is a one-hot vector denoting the label of node v. We allow L to be cus-
tomised for other task-specific objective functions, e.g., the negative log-likelihood
loss Velickovic et al. (2018).

Algorithm 1 Hierarchical Message-passing Graph Neural Networks
Input: Graph G = (V,E,X)

Output: Node representations Z ∈ R
n×d

1: h(0)
v ← xv

2: Generate hierarchical structure: H = {Gt | t = 1, 2, . . . , T }
3: for � ← {1, 2, . . . , L} do
4: h(�)

v = ReLU(
∑

u∈N (v)

W(�)h(�−1)
u√|N (u)||N (v)| + W(�)h(�−1)

v√|N (v)||N (v)| ), ∀v ∈ G
5: for t ← {2, . . . , T } do
6: a(�)

sti
= 1

|sti |+1

(∑
st−1∈sti h

(�)

st−1 + h(�−1)
sti

)
, ∀sti ∈ Gt

7: b(�)
v = ReLU(

∑
u∈N (v)

W(�)a(�)
u√|N (u)||N (v)| + W(�)a(�)

v√|N (v)||N (v)| ), ∀v ∈ Gt
8: end for
9: for v ∈ G do
10: if � < L then
11: h(�)

v = ReLU(W · MEAN{αuvb
(�)
u }), ∀u ∈ C(v) ∪ {v}

12: else
13: zv = σ(W · MEAN{αuvb

(L)
u }), ∀u ∈ C(v) ∪ {v}

14: end if
15: end for
16: end for

We summarise the process of Hierarchical Message-passing Graph Neural Net-
works in Algorithm 1. Given a graph G, we first generate the hierarchical structure
and combine it with the original graph G, to obtainH = {Gt | t = 1, 2, . . . , T }, where
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G1 = G (line 2). For each node, including original and generated super nodes, in
each NN layer, we perform three primary operations in order: (1) bottom-up propa-
gation (line 6), (2) within-level propagation (line 7), and (3) top-down propagation
(line 9−15). After getting the representation vector of each node that is enhanced
with informative long-range interactions and multi-grained semantics, and we train
the model with the loss function L in Eq. 7.

4.2 Hierarchical community-aware GNN

Identifying hierarchical super nodes for the proposed HMGNNs is the most crucial
step as it determines how the information will be propagated within and between
levels. We consider hierarchical network communities to construct the hierarchy. The
network community has been proved helpful for assisting typical network analysis
tasks, including node classification (Wang et al. 2014, 2017) and link prediction (Sun
and Han 2012; Rossetti et al. 2015). Taking the algorithm efficiency into account
and avoiding introducing additional hyper-parameters, i.e., the number of hierarchy
levels, we adopt the well-known Louvain algorithm Blondel et al. (2008) to build the
first implementation of HMGNNs, termed as Hierarchical Community-aware Graph
Neural Network (HC-GNN). The Louvain algorithm returns us a hierarchical structure
as described in Sect. 4.1 without the need for a pre-defined number of hierarchies,
based on which we can learn node representations involving long-range interactive
information and multi-grained semantics. Due to page limit, we include more details
about community detection algorithms in App. A.

4.3 Theoretical analysis andmodel comparison

Long-range interactive capabilityWenow theoretically analyse the asymptotic com-
plexity of different GNN models to capture long-range interaction. We first analyse
flat GNN models, that they need to stack O(diam(G)) layers to ensure the communi-
cation between any pair of nodes in G. For HMGNNs, let us assume the pooling
ratio λ = |Vt+1|/|Vt |. Thus, the potentially total number of nodes in HMGNNs
over G with n nodes is

∑∞
t=1 nλt = O(n), while the number of possible levels is

logλ−1 n = O(log n). That said, the shortest path between any two nodes of G is
upper-bounded by O(log n). Compared to O(diam(G)) with flat GNNs, HMGNNs
leads to significant improvement over the capability in capturing long-range interac-
tions.

Model complexity For the vanilla flat GNN model, i.e., GCN, its computational
complexity of one layer is O(n3) Kipf and Welling (2017), and the computational
complexity of a GCNmodel contains � isO(�n3). For another attention-enhanced flat
GNN model, i.e., Graph Attention Network (GAT) Velickovic et al. (2018), except
for the same convolutional operation as GCN, the additional masked attention over
all nodes requires O(�n2) computational complexity Velickovic et al. (2018). Thus,
overall it takes O(�(n3 + n2)) complexity. For the hierarchical representation model,
graph U-Net (g- U- Net) Gao and Ji (2019), its computational complexity of one
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Table 2 Summary of dataset statistics. LP: Link Prediction, NC: Node Classification, CD: Community
Detection, N.A. means a dataset does not contain node features or node labels

Dataset Task #Nodes #Edges #Features #Classes

Grid LP 400 760 N.A. N.A.

Cora LP&NC 2708 5278 1433 7

Power LP 4941 6594 N.A. N.A.

Citeseer NC 3312 4660 3703 6

Pubmed NC 19,717 44,327 500 3

Emails CD 799 10,182 N.A. 18

PPI NC 56,658 818,435 50 121

Protein NC 42,576 79,482 29 3

Ogbn-arxiv NC 169,343 1,166,243 128 40

hierarchy is O(2�n3), because its unpooling operation introduces another O(�n3)
complexity, in addition to the convolutional operations as GCN. Thus the complexity
of g- U- NetwithT levels is

∑T
t=1 2�(nλt−1)3 = O(2�n3), since the pooledgraphs are

supposed have much smaller number of nodes than G. For HC-GNN, take GCN as an
example GNN encoder and the Louvain algorithm as an example hierarchical structure
construction method, which has optimal O(n log c) computational complexity Traag
(2015), where c is the average degree. The top-down propagation allows each node of
G to receive T different messages from T levels with different weights, this introduces
O(Tn) computational complexity, where T is the number of levels, and we assume
T 
 n. Altogether, the complexity of HC-GNN is

∑T
t=1 �(nλt−1)3 + O(n log c +

Tn) = O(�n3 + n log c + Tn), which is more efficient than GAT and g- U- Net.

5 Experiments

We conduct extensive experiments to answer 6 research questions (RQ):

• RQ1: How does HC-GNN performs vs. state-of-the-art methods for node classi-
fication (RQ1-1), community detection (RQ1-2), and link prediction (RQ1-3)?

• RQ2:CanHC-GNN leads to satisfying performance under settings of transductive,
inductive, and few-shot learning?

• RQ3: How do different levels in the hierarchical structure contribute to the effec-
tiveness of node representations?

• RQ4:How do various hierarchical structure generation methods affect the perfor-
mance of HC-GNN?

• RQ5: Does HC-GNN survive from low sparsity of graphs?
• RQ6: Does HC-GNN available with different encoders?
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5.1 Evaluation setup

Datasets We perform experiments on both synthetic and real-world datasets. For the
link prediction task, we adopt 3 datasets:

• Grid You et al. (2019). A synthetic 2D grid graph representing a 20×20 grid with
|V| = 400 and no node features.

• Cora Sen et al. (2008). A citation network consists of 2, 708 scientific publications
and 5, 429 links. A 1, 433 dimensional word vector describes each publication as
a node feature.

• Power Watts and Strogatz (1998). An electrical grid of western US with 4, 941
nodes and 6, 594 edges and no node features.

For node classification, we use 6 datasets: including Cora, Citeseer Kipf and Welling
(2017) and Pubmed Kipf and Welling (2017) and a large-scale benchmark dataset
Ogbn-arxiv Hu et al. (2020) for transductive settings, and 2 protein interaction net-
works Protein and PPI Ying et al. (2018) for inductive settings.

• Cora. The same above-mentioned Cora dataset contains 7 classes of nodes. Each
node is labelled with the class it belongs to.

• Citeseer Sen et al. (2008). Each node comeswith 3, 703-dimensional node features.
• Pubmed Namata et al. (2012). A dataset consists of 19, 717 scientific publications
from PubMed database about diabetes classified into one of 3 classes. Each node
is described by a TF/IDF weighted word vector from a dictionary which consists
of 500 unique words.

• PPI Zitnik andLeskovec (2017). 24 protein-protein interaction networks and nodes
of each graph comes with 50 dimensional feature vector.

• Protein Borgwardt et al. (2005). 1113 protein graphs and nodes of each graph
comes with 29 dimensional feature vector. Each node is labelled with a functional
role of the protein.

• Ogbn-arxiv Hu et al. (2020). A large-scale citation graph between 169, 343 com-
puter science arXiv papers. Each node is an arXiv paper, and each directed
edge indicates that one paper cites another one. Each paper comes with a 128-
dimensional feature vector obtained by averaging the embeddings of words in its
title and abstract. The task is to predict the 40 subject areas of these papers.

For node community detection, we use an email communication dataset:

• Emails Leskovec and Krevl (2014). 7 real-world email communication graphs
from SNAP with no node features. Each graph has 6 communities, and each node
is labelled with the community it belongs to.

The data statistics of datasets is summarised in Table 2 and they are available for
download with our published code.

Experimental settings We evaluate HC-GNN under the settings of transductive and
inductive learning. For node classification, we additionally conduct experiments with
the few-shot setting.

• Transductive learning For link prediction, we follow the experimental settings
of You et al. (2019) to use 10% existing links and an equal number of non-existent
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links as validation and test sets. The remaining 80% existing links and a dual
number of non-existent links are used as the training set. For node classification,
we follow the semi-supervised settings of Kipf and Welling (2017): if there are
enough nodes, for each class, we randomly sample 20 nodes for training, 500
nodes for validation, and 1000 nodes for testing. For the Emails dataset, we follow
the supervised learning settings of Huang et al. (2019) to randomly select 80%
nodes as the training set, and use the two halves of remaining as the validation
and test set, respectively. We report the test performance when the best validation
performance is achieved.

• Inductive learning This aims at examining a model’s ability to transfer the learned
knowledge from existing nodes to future ones that are newly connected to existing
nodes in a graph. Hence, we hide the validation and testing graphs during training.
We conduct the experiments for inductive learning using PPI and Protein datasets.
We train models on 80% graphs to learn an embedding function f and apply it on
the remaining 20% graphs to generate the representation of new-coming nodes.

• Few-shot learning Since the cost of collecting massive labelled datasets is high,
having a few-shot learning model would be pretty valuable for practical appli-
cations. Few-shot learning can also be considered as an indicator to evaluate the
robustness of a deep learning model. We perform few-shot node classification, in
which only 5 samples of each class are used for training. The sampling strategies
for testing and validation sets follow those in transductive learning.

Evaluation metrics We adopt AUC to measure the performance of link prediction.
For node classification, we use micro- and macro-average F1 scores and accuracy.
NMI score is utilised for community detection evaluation.

CompetingmethodsTo validate the effectiveness of HC-GNN,we compare it with 10
competing methods which include 6 flat message-passing GNN models, (GCN Kipf
andWelling (2017), GraphSAGEHamilton et al. (2017), GATVelickovic et al. (2018),
GIN Xu et al. (2019), P-GNNs You et al. (2019), GCNII Chen et al. (2020)), 3 hierar-
chical GNNmodels (HARP Chen et al. (2018), g- U- NetGao and Ji (2019), GXN Li
et al. (2020)) and another state-of-the-art model. (GraphRNA Huang et al. (2019)).
For more details about competing methods, refer to App. B.

Reproducibility For fair comparison, all methods adopt the same representation
dimension (d = 32), learning rate (= 1e−3), Adam optimiser and the number of
iterations (= 200) with early stop (50). In terms of the neural network layers, we
report the one with better performance of GCNII with better performance among
{8, 16, 32, 64, 128}; for other models, we report the one with better performance
between 2−4; For all models with hierarchical structure (including g- U- Net and
HC-GNN), we use GCN as the default GNN encoder for fair comparision. Note that
for the strong competitor, P-GNNs, since its representation dimension is related to the
number of nodes in a graph, we add a linear regression layer at the end of P-GNNs for
node classification tasks to ensure its end-to-end structure is the same as other mod-
els Huang et al. (2019). For HC-GNN, the number of HC-GNN layers is varied and
denoted as 1L, 2L or 3L. In Sect. 5.3, HC-GNN adopts the number of layers leading
to the best performance for model analysis i.e., 2L for the Cora dataset, 1L for the
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Citeseer and Pubmed datasets. For Louvain community detection, we use the imple-
mentation of a given package,2 which does not require any hyper-parameters. We use
PyTorch Geometric to implement all models mentioned in this paper. More details are
referred to our code file.3 The experiments are repeated 10 times, and average results
are reported. Note that we use only node features with unique one-hot identifiers to
differentiate different nodes if there are no given node features from the datasets and
use the original node features if they are available. We employ Pytorch to implement
all models. Experiments were conducted with GPU (NVIDIA Tesla V100) machines.

5.2 Experimental results

Transductive node classification (RQ1-1&RQ2)We present the results of transduc-
tive node classification in Table 3. We can see that HC-GNN consistently outperforms
all of the competing methods in the 5 datasets, and even the shallow HC-GNN model
with only one layer may lead to better results. We think the outstanding performance
of HC-GNN results from two aspects: (a) the hierarchical structure allows the model
to capture informative long-range interactions of graphs, i.e., propagating messages
from and to distant nodes in the graph; and (b) the meso- and macro-level semantics
reflected by the hierarchy is encoded through bottom-up, within-level, and top-down
propagations. On the other hand, P-GNNs, HARP, and GraphRNA perform worse in
semi-supervised node classification. The possible reason is they need more training
samples, such as using 80% of existing nodes as the training set, as described in their
papers (You et al. 2019; Huang et al. 2019), but we have only 20 nodes for training in
the semi-supervised setting.

Inductive node classification (RQ1-1&RQ2) The results are reported in Table 4.4

We can find that HC-GNN is still able to show some performance improvement over
existing GNN models. But the improvement gain is not so significant and inconsis-
tent in different layers of HC-GNN compared to the results in transductive learning.
The possible reason is that different graphs may have other hierarchical community
structures. Nevertheless, the results lead to one observation: the effect of transferring
hierarchical semantics between graphs for inductive node classification is somewhat
limited. Therefore, exploring an ameliorated model that can adaptively exploit hierar-
chical structure for different graphs for different tasks would be interesting.We further
discuss it in Sect. 6 as one concluding remark.

Few-shot node classification (RQ1-1&RQ2) Table 5 demonstrates better perfor-
mance in few-shot learning than all competing methods across 3 datasets. Such results
indicate that the hierarchicalmessage passing is able to transfer supervised information
through inter- and intra-level propagations. In addition, the hierarchical message-
passing pipeline further enlarges the influence range of supervision information from

2 https://python-louvain.readthedocs.io/en/latest/api.html.
3 Code and data are available at https://github.com/zhiqiangzhongddu/HC-GNN.
4 Since HARP, P-GNNs and GraphRNA cannot be applied in the inductive setting, we do not present their
results in Table 4.
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Table 4 Micro-F1 results for
inductive node classification.
Standard deviation errors are
given

PPI Protein

GCN 0.444 ± 0.004 0.542 ± 0.018

GraphSAGE 0.409 ± 0.014 0.637 ± 0.018

GAT 0.469 ± 0.062 0.608 ± 0.077

GIN 0.571 ± 0.008 0.631 ± 0.016

GCNII 0.507 ± 0.008 0.614 ± 0.011

g- U- Net 0.433 ± 0.012 0.547 ± 0.011

GXN 0.510 ± 0.094 0.578 ± 0.014

HC-GNN-1L 0.48 ± 0.091 0.638 ± 0.027

HC-GNN-2L 0.584 ± 0.087 0.622 ± 0.031

HC-GNN-3L 0.584 ± 0.002 0.582 ± 0.025

Top-2 performances of each dataset are marked in bold and underline,
respectively
1L: model with 1-layer GNN encoder for within-level propagation

Table 5 Micro-F1 results for few-shot node classification

Cora Citeseer Pubmed

GCN 0.695 ± 0.049 0.561 ± 0.054 0.699 ± 0.059

GraphSAGE 0.719 ± 0.024 0.559 ± 0.049 0.707 ± 0.051

GAT 0.630 ± 0.030 0.520 ± 0.054 0.664 ± 0.046

GIN 0.691 ± 0.038 0.509 ± 0.060 0.714 ± 0.036

P-GNNs 0.316 ± 0.040 0.332 ± 0.011 0.547 ± 0.037

GCNII 0.701 ± 0.022 0.564 ± 0.015 0.717 ± 0.047

HARP 0.224 ± 0.033 0.260 ± 0.035 0.415 ± 0.039

GraphRNA 0.274 ± 0.063 0.206 ± 0.019 0.429 ± 0.042

g- U- Net 0.706 ± 0.054 0.567 ± 0.044 0.693 ± 0.036

GXN 0.721 ± 0.035 0.564 ± 0.21 0.706 ± 0.043

HC-GNN-1L 0.681 ± 0.023 0.639 ± 0.019 0.704 ± 0.043

HC-GNN-2L 0.759 ± 0.015 0.660 ± 0.024 0.724 ± 0.052

HC-GNN-3L 0.752 ± 0.017 0.642 ± 0.016 0.742 ± 0.045

Top-2 performances of each dataset are marked in bold and underline, respectively
Standard deviation errors are given. 1L: model with 1-layer GNN encoder for within-level propagation

a small number of training samples. With effective and efficient pathways to broadcast
information, HC-GNN is proven to be quite promising in few-shot learning.

Community detection (RQ1-2) The community detection results conducted on the
Emails dataset are also shown in Table 3. It can be seen that HC-GNN again outper-
forms all competingmethods.We believe this is because the communities identified by
Louvain are further exploited by learning their hierarchical interactions in HC-GNN.
In other words, HC-GNN is able to reinforce the intra- and inter-community effect
and encode it into node representations.
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(a) (b)

Fig. 3 Results inMicro-F1 for semi-supervised node classification usingHC-GNNby varying: a the number
of hierarchy levels adopted for message passing, and b the approaches to generate the hierarchical structure.
2T means model with first 2 hierarchy levels

Link prediction (RQ1-3)Here, wemotivate our idea by considering pairwise relation
prediction between nodes. Suppose a pair of nodes u, v are labelled with label y, and
our goal is to predict y for unseen pairs. From the perspective of representation learn-
ing, we can solve the problem via learning an embedding function f that computes the
node representation zv , where the objective is to maximise the likelihood of distribu-
tion p(y|zu, zv). The results in Table 6 indicate that the HC-GNN leads to competitive
performance compared to all competing methods, with up to 11.7% AUC improve-
ment, demonstrating its effectiveness on link prediction tasks. When node features
are accessible (i.e., Cora-Feat and Power-Feat), all models perform relatively well,
and g- U- Net has slightly better performance on Cora-Feat dataset. Because node
features provide meaningful information to predict pairwise relations. Another inter-
esting perspective is investigating the models’ performance without contextual node
features (e.g., Grid, Cora-NoFeat and Power-NoFeat). It is surprising that HC-GNN
variants show great superiority in these three datasets. We argue that when only topo-
logical information is available, the hierarchical semantics introduced by HC-GNN
helps find missing links.

5.3 Empirical model analysis

Contribution of different levels (RQ3) Since HC-GNN highly relies on the gener-
ated hierarchical structure, we aim to examine how different levels in the hierarchy
contribute to the prediction. We report the transductive semi-supervised node clas-
sification performance by varying the number of levels (from 1T to 4T ). GCN is
also selected for comparison because it considers no hierarchy, i.e., only within-level
propagation in the original graph. The results are shown in Fig. 3a, in which 1T and
2T indicate only the first hierarchy level and the first 2 hierarchy levels are adopted,
respectively. We can find that HC-GNN using more levels for hierarchy construc-
tion lead to better results. The flat message passing of GCN cannot work well. Such
results provide strong evidence that GNNs can significantly benefit from the hierar-
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Fig. 4 Results on semi-supervised node classification in graphs by varying the percentage of removed edges

chical message-passing mechanism. In addition, more hierarchical semantics can be
encoded if more levels are adopted.

Influence of hierarchy generation approaches (RQ4)HC-GNN implements the pro-
posed Hierarchical Message-passing Graph Neural Networks based on the Louvain
community detection algorithm, that is termed HC-GNN-Louvain in this paragraph.
We aim to validate (A) whether the community information truly benefits the classi-
fication tasks, and (B) how different approaches to generate the hierarchical structure
affect the performance. To answer (A), we construct a random hierarchical structure to
generate randomised HC-GNN, termed HC-GNN-Random, in which Louvain detects
hierarchical communities, and nodes are randomly swapped among the same-level
communities. In other words, the hierarchy structure is maintained, but community
memberships are perturbed. The results on semi-supervised node classification are
exhibited in Fig. 3b. We can see that HC-GNN-Random works worse than GCN in
Cora and Pudmed, and much worse than HC-GNN-Louvain. It implies that hierar-
chical communities generated from the graph topology genuinely lead to a positive
effect on information propagation. Meanwhile, it is surprisingly found that HC-GNN-
Random achieves better performance than GCN on Citeseer. We argue this is because
HC-GNN-Random has the ability to spread supervision information in the hierarchy
structure, leading to the occasional improvement. To answer (B), we utilise Girvan
Newman Girvan and Newman (2002) to produce the hierarchical structure by follow-
ing the same way described in Sect. 4.1, and have a model named HC-GNN-Girvan
Newman. The results are shown in Fig. 3b. Although HC-GNN-Girvan Newman is not
as effective as HC-GNN-Louvain, they still outperform GCN. Such a result indicates
that the approaches to generate the hierarchical structure will influence the capabil-
ity of HC-GNN. While HC-GNN-Louvain leads to promising performance, one can
search for a proper hierarchical community detection method to perform better on
different tasks.

Influence of graph sparsity (RQ5) Since community detection algorithms are sensi-
tive to the sparsity of the graph Nadakuditi and Newman (2012), we aim at studying
how HC-GNN perform under graphs with low sparsity values in the task of semi-
supervised node classification. We consider two kinds of sparsity: one is graph
sparsity by randomly removing a percentage of edges from all edges in the graph,
i.e., 10% − 50%; the other is node sparsity by randomly drawing a portion of edges
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Table 7 Comparison of
HC-GNN with different primary
GNN encoders (within-level
propagation), follow the
transductive node classification
settings

Models Cora Citeseer Pubmed

GCN 0.802 0.648 0.779

HC-GNN w/ GCN 0.834 0.728 0.812

GAT 0.772 0.629 0.775

HC-GNN w/ GAT 0.801 0.712 0.819

GCNII 0.823 0.722 0.791

HC-GNN w/ GCNII 0.841 0.734 0.816

The performances of HC-GNN are marked in bold
Reported results in Micro-F1

incident to every node in the graph. The random removal of edges can be considered
that users hide partial connections due to privacy concerns. The results for Cora and
Citeseer are presented in Fig. 4. HC-GNN significantly outperforms the competing
methods on graph sparsity and node sparsity under different edge-removal percent-
ages. Such results prove that even though communities are subject to sparse graphs,
but it will not damage HC-GNN’s performance making it worse than other competing
models.

Ablation study of different primary GNN encoders (RQ6)We adopted GCN as the
default primary GNN encoder in model presentation (Sect. 4) and previous exper-
iments. Here, we present more experimental results by endowing HC-GNN with
advanced GNN encoders in Table 7. The table demonstrates that advanced GNN
encoders can still benefit from the multi-grained semantics of HC-GNN. For instance,
GCNII can stack lots of layers to capture long-range information; however, it still
follows a flat message-passing mechanism hence naturally ignoring the multi-grained
semantics. HC-GNN further ameliorates this problem for better performance.

6 Conclusion and future work

This paper has presented a novel Hierarchical Message-passing Graph Neural Net-
works (HMGNNs) framework, which deals with two critical deficiencies of the flat
message passing mechanism in existing GNN models, i.e., the limited ability for
information aggregation over long-range and infeasible in encoding meso- andmacro-
level graph semantics. Following this innovative idea, we further presented the first
implementation,Hierarchical Community-aware Graph Neural Network (HC-GNN),
with the assistance of a hierarchical communities detection algorithm. The theoretical
analysis confirms HC-GNN’s significant ability in capturing long-range interactions
without introducing heavy computation complexity. Extensive experiments conducted
on 9 datasets show that HC-GNN can consistently outperform state-of-the-art GNN
models in 3 tasks, including node classification, link prediction, and community detec-
tion, under settings of transductive, inductive, and few-shot learning. Furthermore, the
proposed hierarchical message-passing GNN provides model flexibility. For instance,
it friendly allows different choices and customised designs of the hierarchical structure,
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and it incorporates well with advanced flat GNN encoders to obtain more impressive
results. That said, the HMGNNs could be easily applied to work as a general prac-
tical framework to boost downstream tasks with arbitrary hierarchical structure and
encoder.

The proposed hierarchical message-passing GNNs provide a good starting point
for exploiting graph hierarchy with GNNmodels. In the future, we aim to incorporate
the learning of the hierarchical structure into the model optimisation of GNNs such
that a better hierarchy can be searched on the fly. Moreover, it is also interesting to
extend our framework for heterogeneous networks.
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Appendix A: Introduction of community detection algorithms

A.1 Louvain community detection algorithm

This section gives necessary background knowledge about the Louvain Blondel et al.
(2008) community detection algorithm we used in this paper. Generally, this is a
method to extract communities from large scale graphs by optimising modularity.

Modularity The problem of community detection requires the partition of a network
into communities of densely connected nodes, with the nodes belonging to different
communities being only sparsely connected. The so-called modularity of the partition
often measures the modularity of the partitions resulting from these methods. The
modularity of a partition is a scalar value between −1 and 1 that measures the density
of links inside communities as compared to links between communities and can be
defined as Blondel et al. (2008):

Q = 1

2m

∑
i, j

[
Ai j − ki k j

2m

]
δ(ci , c j ), (8)

where ci is the community to which node vi is assigned, ki and k j are the sum of
weights of the edges attached to nodes vi and v j , respectively. The δ-function δ(u, v)

is 1 if u = v and 0 otherwise and m = 1
2

∑
i j Ai j .

In order to maximise this value (Q) efficiently, the Louvain community detection
algorithm has two main phases that are repeated iteratively: (i) each node in the graph
is assigned to its own community; (ii) for each node, the change in modularity is
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calculated by removing v from its own community and moving it into the community
of each neighbour u of v. This value is easily calculated by two steps: (1) removing
v from its original community and (2) inserting v into the community of u. This is a
typical greedy optimisation, some following work proposed solutions to optimise its
efficiency significantly Blondel et al. (2008).

A.2 Girvan Newman community detection algorithm

The Girvan-Newman algorithm Girvan and Newman (2002) for the detection and
analysis of community structure relies on the iterative elimination of edges that have the
highest number of shortest paths between nodes passing through them. By removing
edges from the graph one by one, the network breaks down into smaller pieces, so-
called communities.

The betweenness centrality Freeman (1977) of a node v is defined as the number
of shortest paths between pairs of other nodes that run through v. It is a measure of the
influence of a node over the flow of information between other nodes, especially in
cases where information flow over a network primarily follows the shortest available
path. Based on the definition of betweenness centrality, theGirvan-Newman algorithm
can be generally divided into four main steps:

1. For every edge in a graph, calculate the edge betweenness centrality.
2. Remove the edge with the highest betweenness centrality.
3. Calculate the betweenness centrality for every remaining edge.
4. Repeat steps 2 − 3 until there are no more edges left.

Appendix B: Competingmethods

Competing methods To validate the effectiveness of HC-GNN, we compare it with 9
competingmethods which include 6 flat message-passing GNNmodels, 2 hierarchical
GNN models and another state-of-the-art model.

• GCN5 Kipf and Welling (2017) is the first deep learning model which generalises
the convolutional operation on graph data and introduces the semi-supervised train
paradigm.

• GraphSAGE6 Hamilton et al. (2017) extends the convolutional operation of GCN
to mean/ max/ LSTM convolutions and introduces a sampling strategy before
employing convolutional operations on neighbour nodes.

• GAT7 Velickovic et al. (2018) employs trainable attention weight during message
aggregation from neighbours, which makes the information received by each node
different and provides interpretable results.

5 https://github.com/tkipf/pygcn.
6 https://github.com/williamleif/GraphSAGE.
7 https://github.com/PetarV-/GAT.
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• GIN8 Xu et al. (2019) summarises previous existing GNN layers as two compo-
nents, Aggregate and Combine, and models injective multiset functions for the
neighbour aggregation.

• HARP9 Chen et al. (2018) is a hierarchical structure by various collapsingmethods
for unsupervised node representation learning.

• P-GNNs10 You et al. (2019) introduces anchor-set sampling to generate node
representation with global position-aware.

• g- U- Net11 Gao and Ji (2019) generalises theU-nets architecture of convolutional
neural networks for graph data to get better node representation. It constructs a
hierarchical structure with the help of pooling and unpooling operators.

• GraphRNA12 Huang et al. (2019) proposes using recurrent neural networks to
capture the long-range node dependencies to assist GNN to obtain better node
representation.

• GXN Li et al. (2020)13 proposes an infomax pooling operator for graph data to
get the hierarchy structure.

• GCNII14 Chen et al. (2020) simplifies the aggregation design of flat GNNs, joined
with well-designed normalisation units to get much deeper GNN models.

Appendix C: Model comparison

In Sect. 2, we have systematically discussed related work and highlighted the dif-
ferences between HC-GNN and them. Here, we further present Table 8 to summarise
the critical advantages of the proposed HC-GNN and compare it with a number of
state-of-the-art methods published recently. We are the first to present the hierarchical
message passing to efficiently model long-range informative interaction and multi-
grained semantics. In addition, our HC-GNN can utilise the community structures
and be applied for transductive, inductive and few-shot inferences.

References

Alon U, Yahav E (2021) On the bottleneck of graph neural networks and its practical implications. In:
Proceedings of the 2021 international conference on learning representations (ICLR)

BhowmickAK,MeneniK,DanischM,Guillaume J,MitraB (2020)Louvainne:Hierarchical louvainmethod
for high quality and scalable network embedding. In: Proceedings of the 2020 ACM international
conference on web search and data mining (WSDM), pp 43–51

Blondel VD, Guillaume J-L, Lambiotte R, Lefebvre E (2008) Fast unfolding of communities in large
networks. J Stat Mech Theory Exp 2008(10):10008

8 https://github.com/weihua916/powerful-gnns.
9 https://github.com/GTmac/HARP.
10 https://github.com/JiaxuanYou/P-GNN.
11 https://github.com/HongyangGao/Graph-U-Nets.
12 https://github.com/xhuang31/GraphRNA_KDD19.
13 https://github.com/limaosen0/GXN.
14 https://github.com/chennnM/GCNII.

123

https://github.com/weihua916/powerful-gnns
https://github.com/GTmac/HARP
https://github.com/JiaxuanYou/P-GNN
https://github.com/HongyangGao/Graph-U-Nets
https://github.com/xhuang31/GraphRNA_KDD19
https://github.com/limaosen0/GXN
https://github.com/chennnM/GCNII


406 Z. Zhong et al.

Table 8 Model comparison in aspects ofNode-wiseTask (NT), SUPervised trainingparadigm (SUP),Trans-
ductive Inference (TI), Inductive Inference (II), Long-range Information (LI), and Hierarchical Semantics
for Node Representations (HSNR)

NT SUP TI II LI HSNR

GCN Kipf and Welling (2017)
√ √ √ √

GraphSAGE Hamilton et al. (2017)
√ √ √ √

GAT Velickovic et al. (2018)
√ √ √ √

GIN Xu et al. (2019)
√ √ √ √

P-GNNs You et al. (2019)
√ √ √ √

GCNII Chen et al. (2020)
√ √ √ √ √

DiffPool Ying et al. (2018)
√ √ √

g- U- Net Gao and Ji (2019)
√ √ √ √ √

AttPool Huang et al. (2019)
√ √ √

ASAP Ranjan et al. (2020)
√ √ √

GXN Li et al. (2020)
√ √ √ √ √

GraphRNA Huang et al. (2019)
√ √ √

HARP Chen et al. (2018)
√ √

LouvainNE Bhowmick et al. (2020)
√ √

HC-GNN
√ √ √ √ √ √

Borgwardt KM, Ong CS, Schönauer S, Vishwanathan SVN, Smola AJ, Kriegel H (2005) Protein function
prediction via graph kernels. Bioinformatics 21(suppl–1):47–56

Chen Z, Li L, Bruna J (2019) Supervised community detection with line graph neural networks. In: Pro-
ceedings of the 2019 international conference on learning representations (ICLR)

Chen H, Perozzi B, Hu Y, Skiena S (2018) HARP: Hierarchical representation learning for networks. In:
Proceedings of the 2018 AAAI conference on artificial intelligence (AAAI), pp 2127–2134

Chen M, Wei Z, Huang Z, Ding B, Li Y (2020) Simple and deep graph convolutional networks. In: Pro-
ceedings of the 2020 international conference on machine learning (ICML)

Freeman LC (1977) A set of measures of centrality based on betweenness. Sociometry, 35–41
Gao H, Ji S (2019) Graph u-nets. In: Proceedings of the 2019 international conference on machine learning

(ICML)
Gilmer J, Schoenholz SS, Riley PF, Vinyals O, Dahl GE (2017) Neural message passing for quantum

chemistry. In: Proceedings of the 2017 international conference on machine learning (ICML)
Girvan M, Newman MEJ (2002) Community structure in social and biological networks. Proc Natl Acad

Sci 99:7821–7826
Gu F, Chang H, Zhu W, Sojoudi S, El Ghaoui L (2020) Implicit graph neural networks. In: Proceedings of

the 2020 annual conference on neural information processing systems (NeurIPS)
HamiltonWL, Ying Z, Leskovec J (2017) Inductive representation learning on large graphs. In: Proceedings

of the 2017 annual conference on neural information processing systems (NIPS), pp 1025–1035
Huang J, Li Z, Li N, Liu S, Li G (2019) Attpool: Towards hierarchical feature representation in graph

convolutional networks via attention mechanism. In: Proceedings of the 2019 IEEE international
conference on computer vision (ICCV), pp 6480–6489

Huang X, Song Q, Li Y, Hu X (2019) Graph recurrent networks with attributed random walks. In: Proceed-
ings of the 2019 ACM conference on knowledge discovery and data mining (KDD), pp 732–740

Hu W, Fey M, Zitnik M, Dong Y, Ren H, Liu B, Catasta M, Leskovec J (2020) Open graph benchmark:
Datasets for machine learning on graphs. In: Proceedings of the 2020 annual conference on neural
information processing systems (NeurIPS)

Kipf TN,WellingM (2017) Semi-supervised classification with graph convolutional networks. In: Proceed-
ings of the 2017 international conference on learning representations (ICLR)

123



Hierarchical message-passing graph neural networks 407

LeCun Y, Bengio Y, Hinton GE (2015) Deep learning. Nature 521(7553):436–444
Leskovec J, Krevl A (2014) SNAP Datasets: Stanford large network dataset collection. http://snap.stanford.

edu/data
LiM,ChenS,ZhangY,Tsang IW(2020)Graph cross networkswith vertex infomaxpooling. In: Proceedings

of the 2020 annual conference on neural information processing systems (NeurIPS)
Li Q, Han Z, Wu X (2018) Deeper insights into graph convolutional networks for semi-supervised learning.

In: Proceedings of the 2018 AAAI conference on artificial intelligence (AAAI), pp. 3538–3545
LiZ,KovachkiNB,AzizzadenesheliK, LiuB, StuartAM,BhattacharyaK,AnandkumarA (2020)Multipole

graph neural operator for parametric partial differential equations. In: Proceedings of the 2020 annual
conference on neural information processing systems (NeurIPS)

Li P, Wang Y,Wang H, Leskovec J (2020) Distance encoding - design provably more powerful graph neural
networks for structural representation learning. In: Proceedings of the 2020 annual conference on
neural information processing systems (NeurIPS)

Min Y, Wenkel F, Wolf G (2020) Scattering GCN: overcoming oversmoothness in graph convolutional
networks. In: Proceedings of the 2020 annual conference on neural information processing systems
(NeurIPS)

Nadakuditi RR, Newman MEJ (2012) Graph spectra and the detectability of community structure in net-
works. Phys Rev Lett 108(18):188701

Namata G, London B, Getoor L, Huang B (2012) Query-driven active surveying for collective classification.
In: Proceedings of the 2012 international workshop on mining and learning with graphs, p 8

Rampásek L, Wolf G (2021) Hierarchical graph neural nets can capture long-range interactions. In: IEEE
international workshop on machine learning for signal processing (MLSP), pp 1–6

Ranjan E, Sanyal S, Talukdar PP (2020) ASAP: adaptive structure aware pooling for learning hierarchical
graph representations. In: Proceedings of the 2020 AAAI conference on artificial intelligence (AAAI),
pp. 5470–5477

RonnebergerO, Fischer P, BroxT (2015)U-net: convolutional networks for biomedical image segmentation.
In: Proceedings of the 2015 medical image computing and computer-assisted intervention (MICCAI).
Lecture notes in computer science, vol 9351, pp 234–241

Rossetti G, Guidotti R, Pennacchioli D, Pedreschi D, Giannotti F (2015) Interaction prediction in dynamic
networks exploiting community discovery. In: Proceedings of the 2015 IEEE/ACM international con-
ference on advances in social networks analysis and mining (ASONAM), pp 553–558

Sen P, Namata G, BilgicM, Getoor L, Galligher B, Eliassi-Rad T (2008) Collective classification in network
data. AI Mag 29(3):93–93

Sun Y, Han J (2012) Mining heterogeneous information networks: a structural analysis approach. ACM
SIGKDD explorations newsletter

Traag VA (2015) Faster unfolding of communities: Speeding up the louvain algorithm. Phys Rev E
92(3):032801

Velickovic P, Cucurull G, Casanova A, Romero A, Lio P, Bengio Y (2018) Graph attention networks. In:
Proceedings of the 2018 international conference on learning representations (ICLR)

Wang X, Cui P, Wang J, Pei J, Zhu W, Yang S (2017) Community preserving network embedding. In:
Proceedings of the 2017 AAAI conference on artificial intelligence (AAAI), pp 203–209

Wang J, Peng J, Liu O (2014) An approach for hesitant node classification in overlapping community
detection. In: Processings of the 2014 Pacific Asia conference on information systems (PACIS), p 47

Watts DJ, Strogatz SH (1998) Collective dynamics of small-world networks. Nature 393:440
Wu Z, Pan S, Chen F, Long G, Zhang C, Yu PS (2021) A comprehensive survey on graph neural networks.

IEEE Trans Neural Netw Learn Syst 32(1):4–24
Xu K, Hu W, Leskovec J, Jegelka S (2019) How powerful are graph neural networks? In: Proceedings of

the 2019 international conference on machine learning (ICML)
YingR,You J,MorrisC,RenX,HamiltonWL,Leskovec J (2018)Hierarchical graph representation learning

with differentiable pooling. In: Proceedings of the 2018 annual conference on neural information
processing systems (NeurIPS), pp 4805–4815

You J, Ying R, Leskovec J (2019) Position-aware graph neural networks. In: Proceedings of the 2019
international conference on machine learning (ICML)

Zhang Z, Cui P, Zhu W (2020) Deep learning on graphs: a survey. IEEE Trans Knowl Data Eng. https://
doi.org/10.1109/TKDE.2020.2981333

Zhang M, Chen Y (2018) Link prediction based on graph neural networks. In: Proceedings of the 2018
annual conference on neural information processing systems (NeurIPS), pp 5171–5181

123

http://snap.stanford.edu/data
http://snap.stanford.edu/data
https://doi.org/10.1109/TKDE.2020.2981333
https://doi.org/10.1109/TKDE.2020.2981333


408 Z. Zhong et al.

Zitnik M, Leskovec J (2017) Predicting multicellular function through multi-layer tissue networks. Bioin-
formatics 33:190–198

Zitnik M, Agrawal M, Leskovec J (2018) Modeling polypharmacy side effects with graph convolutional
networks. Bioinformatics 34(13):457–466

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

123


	Hierarchical message-passing graph neural networks
	Abstract
	1 Introduction
	2 Related work
	3 Problem statement
	4 Proposed approach
	4.1 Hierarchical message-passing GNNs
	4.2 Hierarchical community-aware GNN
	4.3 Theoretical analysis and model comparison

	5 Experiments
	5.1 Evaluation setup
	5.2 Experimental results
	5.3 Empirical model analysis

	6 Conclusion and future work
	Acknowledgements
	Appendix A: Introduction of community detection algorithms
	A.1 Louvain community detection algorithm
	A.2 Girvan Newman community detection algorithm

	Appendix B: Competing methods
	Appendix C: Model comparison
	References




