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Zusammenfassung

In den meisten Gesellschaften ist die Verwendung chemischer Produkte zu einem

Teil des täglichen Lebens geworden. Weltweit sind mehr als 350.000 Chemikalien für

den täglichen Gebrauch im Haushalt, in industriellen Prozessen, in der

Landwirtschaft usw. registriert. Trotz des Nutzens, den Chemikalien für die

Gesellschaft haben können, haben ihre Verwendung, Herstellung und Entsorgung,

die schließlich zu ihrer Freisetzung in die Umwelt führt, vielfältige Auswirkungen.

Anthropogene Chemikalien wurden in unzähligen Ökosystemen auf der ganzen Welt

sowie in den Geweben wild lebender Tiere und des Menschen nachgewiesen. Die

potenziellen Folgen einer solchen chemischen Verschmutzung sind noch nicht

vollständig geklärt, aber das Auftreten menschlicher Krankheiten und die Bedrohung

der Artenvielfalt werden mit dem Vorhandensein von Chemikalien in unserer Umwelt

in Verbindung gebracht.

Die Abschwächung der potenziellen negativen Auswirkungen chemischer Stoffe

erfordert in der Regel regulatorische Maßnahmen und eine Vielzahl von Akteuren.

Ein wichtiger Aspekt dabei ist die Umweltüberwachung, die aus Umweltproben,

Messungen, Datenanalyse und Berichterstattung besteht. In den letzten Jahren

haben Fortschritte in der gekoppelten Anwendung von Flüssigchromatographie und

hochaufgelöster Massenspektrometrie (Liquid Chromatography-High Resolution

Mass Spectrometry, LC-HRMS), offenen chemischen Datenbanken und Software es

der Forschung ermöglicht, sowohl bekannte (z. B. Pestizide) als auch unbekannte

Umweltchemikalien zu identifizieren, die gemeinhin als Suspect (Verdachtsfall) oder

Non-target (Nicht-Zielsubstanz) bezeichnet werden. Die Identifizierung unbekannter

Chemikalien stellt jedoch eine große Herausforderung dar, da die Analyten nicht von

vornherein bekannt sind - alles, was zur Verfügung steht, sind ihre

Massenspektrometriesignale. Tatsächlich geht die Zahl der unbekannten Merkmale in

einem typischen Massenspektrum einer Umweltprobe in die Tausende bis

Zehntausende und erfordert daher eine Priorisierung der Merkmale vor der

Identifizierung im Rahmen eines geeigneten Analyseprogramms.

Im Rahmen dieser Doktorarbeit wurde in Zusammenarbeit mit zwei für die

Umweltüberwachung zuständigen Behörden versucht, unbekannte Verbindungen in

der Umwelt zu identifizieren, insbesondere durch die Entwicklung von
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computergestützten Workflows zur Identifizierung unbekannter Verbindungen in

LC-HRMS-Daten. Die erste Zusammenarbeit hat Publikation A hervorgebracht, die

ein gemeinsames Projekt mit dem Zürcher Amt für Wasser, Energie und Luft

beinhaltete. Umweltproben, die von Kläranlagen in der Schweiz entnommen wurden,

wurden retrospektiv mit Hilfe eines Pre-Screening-Workflows analysiert, der die für

die Identifizierung von Nicht-Zielsubstanzen geeigneten Merkmale priorisiert. Zu

diesem Zweck wurde ein mehrstufiger Qualitätskontrollalgorithmus entwickelt, der die

Qualität der Massenspektraldaten hinsichtlich der Signalintensitäten, der

Signalpositionen und des Signal-Rausch-Verhältnisses überprüft und im Rahmen des

Pre-Screenings eingesetzt wird. Dieser Algorithmus wurde in das R-Paket

Shinyscreen integriert. Merkmale, die durch das Pre-Screening als vorrangig

eingestuft wurden, wurden anschließend mit der In-Silico-Fragmentierungssoftware

MetFrag identifiziert. Um diese Identifizierungen zu erhalten, wurde MetFrag mit

verschiedenen offenen chemischen Informationsquellen wie Spektraldatenbanken

wie MassBank Europe und MassBank of North America sowie mit Verdachtslisten

aus dem NORMAN Suspect List Exchange und die Datenbank EPA CompTox

Chemicals Dashboard gekoppelt. Es wurden eine bestätigte und einundzwanzig

vorläufige Identifizierungen von Verbindungen erzielt, die nach einem festgelegten

Vertrauenslevel gemeldet wurden. Umfassende Dateninterpretation und detaillierte

Kommunikation der MetFrag-Ergebnisse wurden durchgeführt, um evidenzbasierte

Empfehlungen zu formulieren, die in zukünftige Umweltüberwachungskampagnen

einfließen können.

Aufbauend auf dem in Publikation A entwickelten Vorab-Screening- und

Identifizierungs-Workflow ist Publikation B das Ergebnis einer Zusammenarbeit mit

der luxemburgischen Administration de la gestion de l'eau, die sich zum Ziel gesetzt

hat, unbekannte Chemikalien in der luxemburgischen Umwelt zu identifizieren und,

wenn möglich, zu quantifizieren. Konkret wurden Oberflächenwasserproben, die im

Rahmen einer zweijährigen nationalen Überwachungskampagne entnommen

wurden, mit LC-HRMS gemessen und auf pharmazeutische Ausgangsverbindungen

und deren Umwandlungsprodukte untersucht. Im Vergleich zu den Informationen

über pharmazeutische Verbindungen, die von den lokalen Behörden öffentlich

zugänglich sind und für die Verdachtsliste verwendet wurden, sind die Informationen

über Umwandlungsprodukte relativ spärlich. Daher wurden in dieser Arbeit neue

Ansätze entwickelt, um Daten aus der PubChem-Datenbank sowie aus der Literatur
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auszuwerten, um eine Verdachtsliste zu erstellen, die neben den

Ausgangsverbindungen auch pharmazeutische Umwandlungsprodukte enthält.

Insgesamt wurden 94 Arzneimittel und 14 Umwandlungsprodukte identifiziert, von

denen 88 bzw. 2 bestätigt wurden. Das räumlich-zeitliche Auftreten und die

Verteilung dieser Verbindungen in der luxemburgischen Umwelt wurden mit Hilfe

fortschrittlicher Datenvisualisierungen analysiert, die Muster in bestimmten Regionen

und Zeiträumen mit hohem Aufkommen aufzeigten. Diese Ergebnisse können

künftige Maßnahmen zum Chemikalienmanagement unterstützen, insbesondere bei

der Umweltüberwachung.

Eine weitere Herausforderung beim Umgang mit Chemikalien besteht darin, dass sie

meist als komplexe Gemische in der Umwelt und in chemischen Produkten

vorkommen. Stoffe mit unbekannter oder variabler Zusammensetzung, komplexe

Reaktionsprodukte oder biologische Materialien (Substances of Unknown or Variable

composition, Complex reaction products or Biological materials, UVCBs) machen

20-40 % der internationalen Chemikalienregister aus und umfassen chlorierte

Paraffine, Polymermischungen, Erdölfraktionen und ätherische Öle. Allerdings ist nur

wenig über ihre chemische Identität und/oder Zusammensetzung bekannt, was die

Bewertung ihres Verbleibs und ihrer Toxizität in der Umwelt erschwert, ganz zu

schweigen von ihrer Identifizierung in der Umwelt. Publikation C befasst sich mit

den Herausforderungen von UVCBs, indem sie einen multidisziplinären Ansatz bei

der Literaturarbeit verfolgt, welcher Überlegungen zu ihren chemischen

Darstellungen, ihrer Toxizität, ihrem Verbleib in der Umwelt, ihrer Exposition und

ihren regulatorischen Ansätzen einbezieht. Verbesserte Anforderungen an die

Registrierung von Stoffen, Gruppierungstechniken zur Vereinfachung der Bewertung

und die Verwendung von Mixture InChI zur Darstellung von UVCBs in einer

auffindbaren, zugänglichen, interoperablen und wiederverwendbaren (findable,

accessible, interoperable, and reusable, FAIR) Weise in Datenbanken gehören zu

den wichtigsten Empfehlungen dieser Arbeit.

Eine bestimmte Art von UVCB, Mischungen homologer Verbindungen, werden bisher

häufig in Umweltproben nachgewiesen, darunter viele High Production Volume

substances wie zum Beispiel Tenside. Verbindungen, die homologe Reihen bilden,

sind durch ein gemeinsames Kernfragment und eine sich wiederholende chemische

Untereinheit verwandt und können durch allgemeine Formeln (z. B. CnF2n+1COOH)
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und/oder Markush-Strukturen dargestellt werden. Ein erhebliches Problem bei der

Identifizierung ist jedoch, ihre charakteristischen analytischen Signale in

LC-HRMS-Daten mit Chemikalien in Datenbanken abzugleichen; während

kammartige Elutionsmuster und konstante Unterschiede im

Masse-Ladungs-Verhältnis auf das Vorhandensein homologer Serien in Proben

hinweisen, enthalten die meisten chemischen Datenbanken keine annotierten

homologen Serien. Um diese Lücke zu schließen, wird in Publikation D ein

chemieinformatischer Algorithmus, OngLai, vorgestellt, mit dem homologe Serien in

strukturellen Datensätzen erkannt werden können. OngLai, das offen in Python unter

Verwendung des RDKit implementiert wurde, erkennt homologe Serien auf der

Grundlage von zwei Parametern: einer Liste von Verbindungen und der chemischen

Struktur einer sich wiederholenden Untereinheit. OngLai wurde auf drei offene

Datensätze aus den Bereichen Umweltchemie, Exposomik und Naturstoffe

angewandt, in denen tausende homologe Serien (mit sich wiederholender

CH2-Untereinheit) entdeckt wurden. Es wird erwartet, dass die Klassifizierung

homologer Serien in Umweltdatensätzen deren analytische Erkennung in

Umweltproben verbessern wird.

Insgesamt hat die Arbeit in dieser Dissertation dazu beigetragen, die Identifizierung

und das Management unbekannter Chemikalien in der Umwelt mit Hilfe der

Chemieinformatik und computergestützter Ansätze voranzutreiben. Alle Arbeiten

wurden nach den Grundsätzen von Open Science und FAIR data durchgeführt: Alle

Software, Datensätze, Analysen und Ergebnisse, einschließlich der endgültigen, im

peer review Verfahren begutachteten Veröffentlichungen, sind für die Öffentlichkeit

zugänglich. Diese Bemühungen sollen weitere Entwicklungen im Bereich der

Identifizierung und des Managements unbekannter Chemikalien zum Schutz der

Umwelt und der menschlichen Gesundheit ermöglichen.
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Summary

In most societies, using chemical products has become a part of daily life. Worldwide,

over 350,000 chemicals have been registered for use in e.g., daily household

consumption, industrial processes, agriculture, etc. However, despite the benefits

chemicals may bring to society, their usage, production, and disposal, which leads to

their eventual release into the environment has multiple implications. Anthropogenic

chemicals have been detected in myriad ecosystems all over the planet, as well as in

the tissues of wildlife and humans. The potential consequences of such chemical

pollution are not fully understood, but links to the onset of human disease and threats

to biodiversity have been attributed to the presence of chemicals in our environment.

Mitigating the potential negative effects of chemicals typically involves regulatory

steps and multiple stakeholders. One key aspect thereof is environmental monitoring,

which consists of environmental sampling, measurement, data analysis, and

reporting. In recent years, advancements in Liquid Chromatography-High Resolution

Mass Spectrometry (LC-HRMS), open chemical databases, and software have

enabled researchers to identify known (e.g., pesticides) as well as unknown

environmental chemicals, commonly referred to as suspect or non-target compounds.

However, identifying unknown chemicals, particularly non-targets, remains extremely

challenging because of the lack of a priori knowledge on the analytes - all that is

available are their mass spectrometry signals. In fact, the number of unknown

features in a typical mass spectrum of an environmental sample is in the range of

thousands to tens of thousands, and therefore requires feature prioritisation before

identification within a suitable workflow.

In this dissertation work, collaborations with two regulatory authorities responsible for

environmental monitoring sought to identify relevant unknown compounds in the

environment, specifically by developing computational workflows for unknown

identification in LC-HRMS data. The first collaboration culminated in Publication A,

which involved a joint project with the Zürcher Amt für Wasser, Energie und Luft.

Environmental samples taken from wastewater treatment plant sites in Switzerland

were retrospectively analysed using a pre-screening workflow that prioritised features
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suitable for non-target identification. For this purpose, a multi-step Quality Control

algorithm that checks the quality of mass spectral data in terms of peak intensities,

alignment, and signal-to-noise ratio was developed and used within pre-screening.

This algorithm was incorporated into the R package Shinyscreen. Features that were

prioritised by pre-screening then underwent identification using the in silico

fragmentation tool MetFrag. To obtain these identifications, MetFrag was coupled to

various open chemical information resources such as spectral databases like

MassBank Europe and MassBank of North America, as well as suspect lists from the

NORMAN Suspect List Exchange and the CompTox Chemicals Dashboard database.

One confirmed and twenty-one tentative compound identifications were achieved and

reported according to an established confidence level scheme. Comprehensive data

interpretation and detailed communication of MetFrag’s results was performed as a

means of formulating evidence-based recommendations that may inform future

environmental monitoring campaigns.

Building on the pre-screening and identification workflow developed in Publication A,

Publication B resulted from a collaboration with the Luxembourgish Administration

de la gestion de l’eau that sought to identify, and where possible quantify unknown

chemicals in Luxembourgish surface waters. More specifically, surface water

samples collected as part of a two-year national monitoring campaign were

measured using LC-HRMS and screened for pharmaceutical parent compounds and

their transformation products. Compared to pharmaceutical compound information,

which is publicly available from local authorities (and was used in the suspect list),

information on transformation products is relatively scarce. Therefore, new

approaches were developed in this work to mine data from the PubChem database

as well as from the literature in order to formulate a suspect list containing

pharmaceutical transformation products, in addition to their parent compounds.

Overall, 94 pharmaceuticals and 14 transformation products were identified, of which

88 and 2 were confirmed identifications respectively. The spatio-temporal occurrence

and distribution of these compounds throughout the Luxembourgish environment

were analysed using advanced data visualisations that highlighted patterns in certain

regions and time periods of high incidence. These findings may support future

chemicals management measures, particularly in environmental monitoring.
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Another challenging aspect of managing chemicals is that they mostly exist as

complex mixtures within the environment as well as chemical products. Substances

of Unknown or Variable composition, Complex reaction products or Biological

materials (UVCBs) make up 20-40% of international chemical registries and include

chlorinated paraffins, polymer mixtures, petroleum fractions, and essential oils.

However, little is known about their chemical identities and/or compositions, which

poses formidable obstacles to assessing their environmental fate and toxicity, let

alone identification in the environment. Publication C addresses the challenges of

UVCBs by taking an interdisciplinary approach in reviewing the literature that

incorporates considerations of their chemical representations, toxicity, environmental

fate, exposure, and regulatory approaches. Improved substance registration

requirements, grouping techniques to simplify assessment, and the use of Mixture

InChI to represent UVCBs in a findable, accessible, interoperable, and reusable

(FAIR) way in databases are amongst the key recommendations of this work.

A specific type of UVCB, mixtures of homologous compounds, are commonly

detected in environmental samples, including many High Production Volume (HPV)

compounds such as surfactants. Compounds forming homologous series are related

by a common core fragment and repeating chemical subunit, and can be represented

using general formulae (e.g., CnF2n+1COOH) and/or Markush structures. However, a

significant identification bottleneck is the inability to match their characteristic

analytical signals in LC-HRMS data with chemicals in databases; while comb-like

elution patterns and constant differences in mass-to-charge ratio indicate the

presence of homologous series in samples, most chemical databases do not contain

annotated homologous series. To address this gap, Publication D introduces a

cheminformatics algorithm, OngLai, to detect homologous series within compound

datasets. OngLai, openly implemented in Python using the RDKit, detects

homologous series based on two inputs: a list of compounds and the chemical

structure of a repeating unit. OngLai was applied to three open datasets from

environmental chemistry, exposomics, and natural products, in which thousands of

homologous series with a CH2 repeating unit were detected. Classification of

homologous series in compound datasets is expected to advance their analytical

detection in samples.
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Overall, the work in this dissertation contributed to the advancement of identifying

and managing unknown chemicals in the environment using cheminformatics and

computational approaches. All work conducted followed Open Science and FAIR

data principles: all code, datasets, analyses, and results generated, including the final

peer-reviewed publications, are openly available to the public. These efforts are

intended to spur further developments in unknown chemical identification and

management towards protecting the environment and human health.
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Chapter 1

Introduction

1.1 Background

In most societies, using chemicals, particularly synthetic compounds, is a part of daily

life. From household consumption to industrial production processes, military

applications to agriculture, our lives have become dependent on chemicals to the

extent that enumerating everything we use has become virtually impossible. For

example, direct consumption of drugs and use of cleaning products, pesticides,

cosmetics, and fragrances, are just some ways we use chemical products on a daily

basis, in addition to indirect passive consumption through contact with everyday

objects such as food packaging, high-performance clothing, non-stick cookware,

flame-retardant furniture, plastic children’s toys, paints and adhesives etc. Over

350,000 chemical products are known to be produced and used worldwide1, with over

400 million tonnes of industrial chemicals estimated to be produced annually.2 That

chemical products - and thus synthetic i.e., anthropogenic chemicals - pervade daily

human life in most industrial societies in the year 2022 is incontrovertible.3

1.1.1 Chemicals in the Environment

While anthropogenic chemicals (hereafter, ‘chemicals’ unless specified otherwise)

have brought various benefits to society, their production, use and disposal have

resulted in emissions into the environment and subsequent human and

environmental exposure. This phenomenon is known as chemical pollution, and is

defined as the release and accumulation of chemicals in the environment. Chemical

pollution has been identified as one of the nine planetary boundaries delineating a

safe operating space for humanity in the form of ‘novel entities’,4,5 and a recent study

shows that this boundary has already been surpassed.6 Chemical pollution has also

been recognised as a threat to planetary health3 and a global change factor,7 to the

detriment of ecosystems worldwide. Myriad environmental media in different

ecosystems across the planet, including rainforests,8 deserts,9 coastal areas,10 and

1

https://www.zotero.org/google-docs/?LCnah8
https://www.zotero.org/google-docs/?NZApnw
https://www.zotero.org/google-docs/?sNXvfZ
https://www.zotero.org/google-docs/?Vtc6hT
https://www.zotero.org/google-docs/?2EMAgA
https://www.zotero.org/google-docs/?Ax4fVQ
https://www.zotero.org/google-docs/?TQVByt
https://www.zotero.org/google-docs/?MKxNty
https://www.zotero.org/google-docs/?iWiiXJ
https://www.zotero.org/google-docs/?7lIXDV


even the remote Arctic contain chemicals.11,12 Chemicals have been found in soils,13

sediments,14,15 rivers,16,17 lakes,18,19, seas,20–23 oceans,24 and even rainwater.25,26

Wildlife27–32 and humans33–44 contain chemicals, sometimes at levels higher than

health safety thresholds. Chemicals have also been found in household

environments within various matrices, including dust.45–47 The full impacts of chemical

pollution may not be fully known, but multiple studies have shown their connection to

the onset of human disease48–55 and potential role in altering ecology and

biodiversity.56–59 Further complicating the issue is the fact that chemicals in the

environment exist as complex mixtures,60 making it more complicated to track, model,

and understand their effects. Multiple chemical compounds are routinely detected

within individual environmental samples, which can confound the attribution of

specific chemical(s) to their effects on humans and the environment. Evidently, the

environmental problem posed by chemical pollution is of multiple dimensions; the

problem of chemical pollution is not just of scale and omnipresence, but also of

environmental fate - that is, that they end up as complex environmental mixtures.

1.1.2 Chemicals Management

Balancing society’s dependence on chemicals while protecting human health and

environment from the potential negative impacts of chemical pollution is imperative

but challenging. There are several aspects to chemicals management, including but

not limited to chemicals registration, inventorisation, assessment, authorisation,

monitoring, restriction, and remediation, where appropriate. Traditionally, regulators

and industry have played a big role in this area (though other stakeholders are

beginning to follow suit). These efforts are typically organised at both the national and

international levels.

On the national level for example, the Environmental Protection Agency (EPA) was

established in the United States (US) in 1970, partly resulting from strong grassroots

initiatives spurred on by the impact of Rachel Carson’s Silent Spring. Landmark

legislation in the form of the Toxic Substances Control Act (TSCA) passed after that,

enabling the EPA to enforce critical industrial requirements related to chemical safety

that continue to this day. In the European Union (EU), the European Chemicals

Agency (ECHA) administers the prevailing regulatory mechanism known as REACH

(Registration, Evaluation, Authorisation, and Restriction of Chemicals), which entered

2

https://www.zotero.org/google-docs/?pojXhR
https://www.zotero.org/google-docs/?epiFeB
https://www.zotero.org/google-docs/?8zp9Fg
https://www.zotero.org/google-docs/?920ReG
https://www.zotero.org/google-docs/?MmeNpI
https://www.zotero.org/google-docs/?3px5Lp
https://www.zotero.org/google-docs/?A27iFX
https://www.zotero.org/google-docs/?GeYN9S
https://www.zotero.org/google-docs/?ztvWpZ
https://www.zotero.org/google-docs/?Skaftl
https://www.zotero.org/google-docs/?zbIr2G
https://www.zotero.org/google-docs/?dsVHK4
https://www.zotero.org/google-docs/?HJow9T
https://www.zotero.org/google-docs/?LlHXV4


into force in 2007. REACH promulgates the “No Data, No Market” paradigm that

imposes multiple obligations on chemical manufacturers, importers, and certain

downstream users.

Besides operating on a national or regional level, these aforementioned stakeholders

often additionally implement and operationalise a number of international policy

instruments, including conventions and frameworks that govern issues related to

chemicals safety. Multiple conventions, such as the Basel, Rotterdam, Stockholm and

Minamata conventions address hazardous waste, global trade of hazardous

chemicals, persistent organic pollutants, and mercury, respectively. Additionally, the

Globally Harmonized System of Classification and Labelling of Chemicals (GHS) was

devised as a system to classify and communicate chemical hazards via labelling and

safety data sheets. The Strategic Approach to International Chemicals Management

(SAICM) offered what was potentially the most comprehensive global policy framework

towards the sound management of chemicals and waste, with an ambitious aim to

achieve this goal by 2020. However, implementation has been limited because of its

voluntary nature, and SAICM’s mandate expired in 2020. Currently, member states are in

negotiations to determine the future of international chemicals and waste management

beyond 2020, but the outcomes of this political process are still in progress, with

completion anticipated for 2023.

Nevertheless, scientific research contributing to the advancement of different aspects of

chemicals management continues to be active, including in the areas of 1) chemicals

assessment, and 2) routine environmental monitoring. These two aspects are both

fundamental pillars of chemicals management, however in both cases, the lack of

knowledge concerning chemical identities, and the inability to identify chemicals in

environmental samples respectively, underpin two main obstacles confronting scientists

and regulators alike. These challenges are explained in more detail below.

1.1.2.1 Chemicals Assessment

The objective of chemicals assessment, also known as chemical risk assessment in

some contexts, is to consider the potential hazards of chemicals on humans and the

environment. In its most basic form, a chemical’s risk can be calculated as a function of

two factors, hazards and exposure. Hazards encompass a chemical’s inherent potency,

that is, its ability to cause harm to humans or the environment through lethal or sublethal
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effects like causing disease or hindering growth and development. Within hazard

assessment in the context of EU REACH,61 a screening for Persistence,

Bioaccumulation, and Toxicity (PBT) is typically carried out, and dose-response

relationships are characterised. In the EU, the results of a hazard assessment may

already trigger risk management measures, however in other jurisdictions like the US and

Canada, exposure assessments are also required as part of risk assessment.

Environmental exposure refers to how much of a chemical is present within a defined

environmental system, and can be calculated considering the following parameters:

possible emissions in terms of chemical volumes and routes, environmental fate including

transformation pathways and long-range transport potential, as well as possible

degradation or distribution in the environment. These factors can be summarised for risk

assessment purposes by a single value, within a given uncertainty and variability range

and for a specific environmental compartment, called the Predicted Environmental

Concentration (PEC) or where available, a Measured Environmental Concentration

(MEC). The result of an effect assessment is represented by the Predicted No Effect

Concentration (PNEC) value. Taking the ratio of PEC or MEC and PNEC gives the Risk

Quotient, which is used in the process of risk characterisation, followed by risk

classification according to a set of guidelines. Depending on these results, risk mitigation

may be warranted through various measures, including those imposed by the competent

authorities.

Throughout chemicals assessment, the availability and transparency of information on

chemical identities, specifically knowledge of chemical structure, is crucial. On a

fundamental level, knowledge of chemical structure enables the unambiguous

identification of a given chemical between and amongst relevant stakeholders. Moreover,

full information on chemical structure enables proper registration, inventorisation, and

evaluation during risk assessment because a chemical’s properties are influenced by its

structure. For example, preliminary screening for Persistence (ready biodegradability)

and Bioaccumulation (bioconcentration factors) can typically be performed using

Quantitative Structure-Activity/Property Relationships (QSARs/QSPRs), which requires

input of chemical structure into a model. The most well-known and commonly used

models include BIOWIN, KOWWIN, BCFBAF, which are contained within the US EPA’s

EPI Suite62 and are used for predicting the aerobic/anaerobic biodegradability,

octanol-water partitioning coefficient Kow,63 and fish bioconcentration factor of a chemical,

respectively. Other, more recent QSAR/QSPR models include OPERA, for predicting

environmental fate and physicochemical properties.64 Large-scale screenings of entire
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databases typically rely on these models and the availability of chemical structure for

every compound.65 Applying QSARs to model toxicity endpoints is also common, for

example, via ECOSAR contained within EPI Suite. Besides predicting structure-activity or

structure-property relationships, regulatory prioritisation and restriction exercises may be

performed based on filtering of chemical lists for specific chemical substructures, for

example the presence of certain functional groups, as in the case of the recent restriction

of bisphenols by ECHA,66 which would be impossible to achieve without knowledge of

chemical structure.

However, the availability of chemical structure information within the risk assessment

process is not a given. From a compound registration perspective, there is often limited

transparency in chemical structure information because manufacturers may be exempt

from such disclosures due to Confidential Business Information (CBI) clauses that were

claimed to protect the intellectual property of chemical companies as a form of

competitive advantage. A recent study of about 20 national/regional chemical inventories

found that over 50,000 chemicals or mixtures have their identities protected by CBI

clauses.1 Alternatively, chemical products that are challenging to characterise may also

be exempted from non-ambiguous structure disclosure requirements in a de facto

manner; mixtures of polymers typically fall into this category, as do substances of

Unknown or Variable composition, Complex reaction products, or Biological materials

(UVCBs),67 which include a wide range of chemical products of both natural and synthetic

origin, including essential oils, petroleum fractions and chemical reaction intermediates.

This lack of non-ambiguous structural information has negative implications for their risk

assessment: without available structure information, traditional QSARs cannot be

performed to predict the PBT properties of these substances. Thus, these substances are

typically excluded from these in silico assessments, or would otherwise have to undergo

empirical testing, which is a time-consuming, resource-intensive process.

In the absence of chemical structure availability, alternative identification methods must

be used to represent chemical identities. These are described in detail below.

1.1.2.1.1 Chemical Identity and Data Representations

Generally, there exist several ways of representing chemicals, irrespective of whether

structural information is available. In environmental chemistry, particularly with

regards to chemicals assessment, nomenclature in the form of chemical identifiers

are commonly used to represent compounds and typically consist of alphanumeric
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strings of characters (Table 1). These chemical identifiers are one-dimensional, and

inherently do not convey any meaning, let alone structural information. Therefore,

these identifiers can be generated in the absence of structural information and may

instead represent administrative, non-chemistry-related information such as the

sequence or status of chemical registration. For example, European Community

Numbers (EC No.) beginning with ‘2’ or ‘3’ represent substances that were recorded

as commercially available between 1971 and 1981 in the European Inventory of

Existing Chemical Structures (EINECS), while those beginning with ‘4’ represent

substances that were ‘new’ and registered under the European List of Notified

Chemical Substances (ELINCS) from 1981 onwards.68 Importantly, such identifiers

tend to require look-up in a specific reference database that may be associated with

a regulatory framework or industrial sector, for example Chemical Abstract Service

Registry Numbers (CASRN) in relation to the US EPA Toxic Substances Control Act

(TSCA) Inventory,69 or the COSIng database for the cosmetics industry respectively.70

As there is no one universal identifier for all chemicals, it is common for chemical

dossiers to contain a list of multiple identifiers for the same chemical to ensure its

identifiability across e.g., different databases and toxicological studies.

Notably, chemical identifiers are not the only ways to represent chemical identity. Line

notations like IUPAC name, trivial name, Simplified Molecular Input Line Entry

(SMILES) strings, International Chemical Identifiers (InChI), and bit vectors

representing chemical fingerprints are typical two-dimensional representations used

to encode structures. These representations are independent of database origin.

Depending on the type of representation, different levels of detail regarding chemical

structure can be encoded, for example stereochemistry, charge, conformer state etc.

Table 1 summarises these representations. In the context of risk assessment,

SMILES and InChIs are commonly found in chemical dossiers submitted for

evaluation.

Fundamentally, chemical representations facilitate the ability to exchange chemical

information. However, it is important to note that converting a physical entity -

chemicals - to such representations inevitably results in information loss; in practical

terms, this means no chemical representation is perfect. Nevertheless, as a chemical

representation is essentially the currency used to exchange, convert, and

communicate chemical information, the type of representation chosen is integral to
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the performance and efficiency of such exchanges, and in turn, the tasks at hand. For

example, an identifier that is short and unique may be preferred for indexing or

querying chemical databases, such as a numeric identification number or code like

EC No.. In contrast, performing tasks that require computing, for instance

substructure searches or building toxicity models based on QSARs, requires

structures, thus making representations that contain structural information such as

SMILES or InChIs more suitable.
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Table 1. Common types of representations of chemicals used in environmental cheminformatics. All formats are open unless

specified as proprietary. This is a non-exhaustive list.

Common Name Origin Characteristics/Properties Suitable for Querying
Databases

Contains
Information on

Chemical
Structure Without
Requiring Lookup

Example for Caffeine

Skeletal Structure (Bond-line) convention Image no yes

Simplified Molecular Input

Line Entry System (SMILES)

Weininger71 Alphanumeric; line notation; widely

parseable; some flavours proprietary

yes (if canonicalised) yes CN1C=NC2=C1C(=O)

N(C(=O)N2C)C

International Chemical

Identifier

(InChI)

InChI Trust72 Alphanumeric; line notation no yes InChI=1S/C8H10N4O

2/c1-10-4-9-6-5(10)7(

13)12(3)8(14)11(6)2/h

4H,1-3H3

International Chemical

Identifier Key (InChIKey)

InChI Trust72 Alphanumeric; line notation; hashed

version of InChI; identifier

yes no RYYVLZVUVIJVGH-U

HFFFAOYSA-N

Chemical Abstracts Service

Registry No. (CASRN)

Chemical

Abstracts Service

Alphanumeric; identifier; proprietary yes no 58-08-2

(deprecated:
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Common Name Origin Characteristics/Properties Suitable for Querying
Databases

Contains
Information on

Chemical
Structure Without
Requiring Lookup

Example for Caffeine

71701-02-5,

95789-13-2)

European Community No. (EC

No.)

European Union Numeric; identifer yes no 200-362-1

CompTox DTXSID EPA CompTox

Chemicals

Dashboard

Alphanumeric; identifier yes no DTXSID0020232

PubChem Compound

Identification Number (CID)

PubChem Numeric; identifier yes no 2519

Bit vectors (cheminformatics

fingerprints)

NA Multiple implementations in various

cheminformatics toolkits

yes yes -
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1.1.2.2 Environmental Monitoring

Another area of chemicals management that continues to be the subject of active

research is environmental monitoring, specifically, measuring and detecting chemical

compounds in environmental samples. The environment consists of multiple

compartments, also known as environmental media or matrices, for example soil,

sediments, sludge, air, and aquatic systems, aqueous and marine. Each

environmental matrix has its own distinctive physico-chemical properties and thus

requirements with respect to performing chemical analysis. Nevertheless irrespective

of the matrix, environmental analytical chemists typically undertake the following

sequence of steps, (Fig. 1): sample collection, preparation, measurement, followed

by data analysis to obtain results.

Figure 1. Typical workflow for environmental monitoring of chemicals. Created

with BioRender.com.

In recent years, advances in laboratory instrumentation, particularly in liquid

chromatography high-resolution mass spectrometry (LC-HRMS), have enabled

environmental analytical chemists to detect and measure organic compounds at

concentrations as low as picograms per litre of aqueous solution. LC-HRMS systems

typically comprise two parts: the first is liquid chromatography, which involves the

separation of chemical compounds according to differences in their physicochemical

properties, like polarity, within a chromatographic column. This column is usually filled

with porous packing material such as silica or resin that forms the stationary phase,

which comes into contact with the analyte dissolved in a liquid mobile phase that is

forced through the column at high pressure. In normal phase chromatography, the

stationary phase is polar and the mobile phase is non-polar, meaning that non-polar

analytes are the first to elute from the column. Conversely, polar analytes are the first

to elute in reverse phase chromatography that consists of a non-polar stationary
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phase, and a polar mobile phase. The order of elution determines the retention times,

tR, of the analytes, which is a property specific to a given chromatographic system and

method.

Once eluted, the analytes enter the mass spectrometer where they become ionised,

accelerated, and separated according to their mass-to-charge ratios (m/z). There are

multiple types of mass analysers that perform this task, including but not limited to

low resolution quadrupoles and ion traps, to high resolution Orbitraps. A mass

detector then records their masses, forming a mass spectrum (MS1) of signals of

varying intensity; depending on the instrument, the mass of the charged molecule

can be accurately measured up to four decimal places. In tandem mass

spectrometry, which is commonly used for structure elucidation, the parent ion whose

mass was recorded in the MS1, also referred to as a precursor ion in LC-HRMS, is

then fragmented once more by a collision source, and the masses of these ionised

molecular fragments, also known as fragment ions, are recorded in a fragment mass

spectrum (MS2). These four pieces of information recorded using LC-HRMS (tR, m/z,

MS1 spectrum, and MS2 spectrum) are then used as inputs for compound

identification.

1.1.2.2.1 Compound Identification Workflows for Identifying Environmental Chemicals

using LC-HRMS

Thousands of analytical signals are routinely detected in environmental samples,

which reflects the fact that virtually all these samples comprise complex chemical

mixtures. Compound identification workflows typically follow one of three approaches:

target, suspect, and non-target. Krauss and colleagues were amongst the first to

describe these workflows in their seminal paper,73 which are discussed in further

detail below.

Target compounds are those that the analyst is certain are present in the sample and

have previously been well characterised using reference standards. As such, library

spectra and retention time values are available, making these compounds relatively

easy to identify through matching the properties of the detected analytes with these

references. Well-documented target compounds in environmental samples include

common ubiquitous pesticides and certain pharmaceuticals. These compounds
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typically make up a small fraction of all the signals detected, unlike the majority of

signals measured in a given sample. In fact, the majority of signals represent

Unknowns, which manifest in three forms: Unknown Knowns, Known Unknowns, and

Unknown Unknowns. This paradigm is summarised by the so-called Rumsfeld’s

Matrix (Table 2), and has been used in multiple studies to conceptualise the

respective compound identification approaches used.74–77

Table 2. Different types of environmental unknowns, classified according to the

Rumsfeld’s Matrix paradigm.

Knowns Unknowns

Known Known Knowns

Target compounds

Known Unknowns

Non-target compounds

Unknown Unknown Knowns

Suspect compounds

Unknown Unknowns

Non-target compounds

Suspect compounds, also referred to as Unknown Knowns, are the next most

challenging chemicals to identify in environmental samples after targets. These

compounds are ‘known’ because they are expected or likely to be present in samples

based on domain knowledge, and are screened within environmental samples using

m/z, usually in the absence of reference standards. For example, environmental

samples obtained near industrial areas likely contain certain compounds specifically

used in those industries that are then emitted into the surrounding environment.

Alternatively, the presence of a compound in a chemical registry indicating local

production and/or use is another example of probable suspect. To conduct suspect

screening,78 researchers typically use suspect lists - lists of chemicals that have

been curated by researchers with specific interests in particular groups of chemicals.

These lists tend to be thematically related to the researchers’ project, their domain

knowledge of a particular environment and the compounds expected to be present

there, or are regional in scope and may be derived from local chemical registries or

other regulatory sources of information. If a match for a particular m/z is found, the

experimental MS2 spectrum can then be compared with an existing MS2 spectrum in

a spectral database like MassBank Europe,79 MassBank of North America (MoNA),80

NIST Mass Spectral libraries,81 or an in-house library. If not, compound databases
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such as PubChem, ChemSpider, or the US EPA CompTox Chemicals Dashboard are

consulted. However these databases are relatively large - containing millions of

compounds - and general in scope, and thus may introduce greater risk of false

positives during screening, because the chances of obtaining a matching mass are

relatively high the bigger the database used for screening becomes. The use of

so-called suspect lists instead of entire compound databases therefore offers a

“screen smart, not screen big” approach.82

Notably, over time and through intensive chemical data curation efforts, many

suspect lists have become shared, open resources and de facto environmental

chemistry databases as part of the the Suspect List Exchange (SLE), an initiative of

the NORMAN Network that comprises over 80 reference laboratories and research

centres around the world.82,83 The NORMAN-SLE has since become a widely-used

resource for open environmental chemical information, and currently hosts these

suspect lists based on the FAIR data principles - findability, accessibility,

interoperability, and reusability. At time of writing, there exist 99 suspect lists covering

a range of themes, for example, transformation products, national pesticide lists,

algal toxins, chemicals associated with plastic packaging etc.

The most challenging of environmental unknowns are still the non-target compounds,

which tend to form the majority of signals in a given environmental sample. These

unknown compounds remain unidentified but may be so well recognised through

repeated detection of their analytical signals that they are “Known Unknowns”. For

example, HPV surfactants forming homologous series of compounds are frequently

detected in the environment, particularly in wastewater samples, but remain difficult

to identify because of current technological limitations in the ability to match their

analytical signals to compounds in databases. Alternatively, researchers may not

even be aware of their lack of knowledge of these compounds, and are hence also

referred to as “Unknown Unknowns”. No a priori information is available concerning

the chemical identities of these unknown compounds, which makes their identification

extremely difficult considering the vastness of chemical space.

Numerous open software packages and tools for environmental non-target analysis

have been developed in recent years, reflecting diverse approaches to non-target

identification. For example, MetFrag is an in silico fragmenter that predicts the
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fragmentation spectrum of chemicals in a provided database based on bond

dissociation energies, and scores how well the predicted fragment spectrum matches

an experimental MS2 spectrum of interest.84 The presence or absence of a candidate

on a suspect list or database can determine MetFrag’s final score and thus the

candidates suggested for a given unknown.85 SIRIUS takes a different approach by

predicting the molecular formula of a compound based on its isotope patterns.86

Fragmentation trees are then generated for each molecular formula, followed by

conversion to molecular fingerprints that are used to search compound databases as

part of structure elucidation. Another approach is that of CFM-ID’s, where all

theoretically-possible fragments are generated for a given molecular structure and

assigned probabilities based on model outputs that were trained on known molecules

and their MS spectra.87

Irrespective of the approach used, identification of chemical compounds is typically

reported using an established level scheme.88 According to the scheme, identification

confidence levels range from Level 1 (confirmed structure by reference standard), to

Level 5 (exact mass of interest). For chemical identification to be conclusive i.e., for

an identification to be considered ‘confirmed’ at Level 1, a minimum of three

orthogonal pieces of information and/or confirmation using a measured internal

standard are required. Level 2 identifications are considered probable structures,

either because there is an unequivocal match with library or literature spectra (Level

2a), or by diagnosis i.e., the experimental information available does not reasonably

fit any other structure, but the identification cannot be confirmed for lack of literature

or standard references (Level 2b). Tentative candidates are described by Level 3

confidence, where multiple plausible structures could be represented by the available

evidence, whereas Levels 4 and 5 correspond to having just the unequivocal

molecular formula or exact mass respectively.

1.1.3 Research Gaps in Identifying and Managing Chemical

Unknowns

Overall, chemical unknowns are rife within the fields of analytical environmental

chemistry as well as regulatory chemicals management. More specifically,

information on the structures of these chemical unknowns is lacking, which generally
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manifests in two ways. Firstly, their structures are ambiguous or simply unavailable in

the public domain. These phenomena present multiple obstacles from a chemicals

assessment point of view in terms of screening and hazard assessment, which in turn

potentially weakens our capacity to safely manage chemicals, including through

restriction or possible mitigation measures. Secondly, bottlenecks in identifying

chemical unknowns in environmental samples persist; the number of chemical

unknowns detected in measurements of a typical environmental sample far

outnumber those that are known or can be identified with reasonable confidence. As

a result, our ability to identify chemicals in environmental samples remains far from

comprehensive, which compromises the effectiveness of environmental monitoring.

This pernicious knowledge gap of chemical unknowns bears consequences for both

humans and the environment. In terms of the onset of human diseases, many of

which are posited to stem from both genetic and environmental factors, our

understanding is severely hampered, in part because of our incomplete knowledge of

the chemical exposome,89,90 defined as the totality of human exposures to chemicals

over time and space. Furthermore, without knowledge of the structures of chemicals

in our environment, mechanistic understanding of their impacts on the environment,

ecological systems, and stressors remain limited. For example, exposure to toxic

chemicals released by a dumping event in the River Oder is suspected to be the

reason behind the recent death of thousands of fish, but the identities of these

chemicals, and the nature of their toxic effects is still unknown.91

These aforementioned knowledge gaps represent urgent areas for research. With

the scale, diversity, and number of open chemical information resources rapidly

growing, the possibility to leverage them in workflows and approaches to tackle the

problems of identifying environmental unknowns is highly warranted. On both

conceptual (chemical representation) and practical (different data formats,

accessibilities, application programming interfaces etc.) levels, the challenges of

integrating myriad chemical information resources is not trivial, but are certainly

tractable. Furthermore, the increased sharing of environmental chemistry data has

opened up new avenues for the development of cheminformatics approaches, such

as data analysis algorithms that may eventually support and inform further workflow

development.
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1.2 Aims

In light of the above, this dissertation addresses three main aims in identifying and

managing unknown chemical pollutants in the environment:

1. Use Open chemical resources (software, databases, and tools) within

computational workflows to enhance the identification of unknown compounds

in the environment.

2. Enumerate and review the specific regulatory assessment challenges,

including those posed by limited structural information, concerning

substances of Unknown or Variable composition, Complex reaction products,

or Biological materials (UVCBs).

3. Develop cheminformatics methods to support the identification of UVCBs in

environmental samples.

1.3 Scope of the Dissertation

This work addresses the three aims mentioned above as a cumulative dissertation

comprising seven chapters, four of which are articles that have been published or

submitted for publication in peer-reviewed journals:

Chapter 2 - Developing an open computational workflow using emerging digital

chemistry resources for non-target analysis

Related publication: Lai, A., Singh, R. R., Kovalova, L., Jaeggi, O., Kondić, T. &

Schymanski, E. L. Retrospective non-target analysis to support regulatory water

monitoring: from masses of interest to recommendations via in silico workflows.

Environ Sci Eur 2021, 33, 43, 1-21. DOI: 10.1186/s12302-021-00475-1

16



Chapter 3 - Data mining transformation product information for enhanced suspect

screening

Related publication: Singh, R. R., Lai, A., Krier, J., Kondić, T., Diderich, P. &

Schymanski, E. L. Occurrence and Distribution of Pharmaceuticals and Their

Transformation Products in Luxembourgish Surface Waters. ACS Environ Au 2021,

1, 1, 58–70. DOI: 10.1021/acsenvironau.1c00008

Chapter 4 - Tackling the next frontier of environmental unknowns - UVCBs

Related publication: Lai, A., Clark, A.M., Escher, B. I., Fernandez, M., McEwen, L. R.,

Tian, Z., Wang, Z., & Schymanski, E. L. The Next Frontier of Environmental

Unknowns: Substances of Unknown or Variable Composition, Complex Reaction

Products, or Biological Materials (UVCBs). Environ Sci Technol 2022, 56, 12,

7448–7466. DOI: 10.1021/acs.est.2c00321

Chapter 5 - A cheminformatics algorithm for improved identification of homologous

series in environmental mixtures

Related publication: Lai, A., Schaub, J., Steinbeck, C., & Schymanski, E. L. An

Algorithm to Classify Homologous Series within Compound Datasets. J Cheminform

2022, 14, 85. DOI: 10.1186/s13321-022-00663-y

Chapter 6 - Discussion of the strengths and limitations of the results achieved in this

dissertation in relation to the aims

Chapter 7 - Conclusions and perspectives, including outlining future avenues for

research
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Chapter 2

Developing an Open Computational Workflow
using Emerging Digital Chemistry Resources

for Non-target Analysis

Analysis of non-target compounds in environmental samples is extremely challenging

because of the lack of information on possible chemical identities - all that is available

are the analytical signals measured in the environmental sample. Despite this

challenge, regulators may be interested in identifying these unknowns beyond their

routine environmental monitoring of targets, so as to enhance their environmental

screening activities and proactively monitor substances of potential concern to

human health and environment. However, besides the already daunting challenge of

non-target analysis, regulators working on a regional scale must typically deal with

large amounts of data that were collected from the multiple sites within their

geographical mandate, which adds to the urgent requirement for feature prioritisation

in identification workflows.

In this work, data measured from Swiss environmental samples collected near

wastewater sites by collaborators from the Zurich Office of Waste, Water, Energy, and

Air (Zürcher Amt für Abfall, Wasser, Energie und Luft) were retrospectively analysed

with the ultimate goal of non-target identification. To address this challenge, an open

computational workflow was developed comprising two main novel aspects: (1) a

pre-screening and quality control step for prioritising suitable non-target masses for

identification, and (2) an identification pipeline that exploited emerging environmental

chemistry resources using the tool MetFrag. The former features an algorithm that

performs 6 automatic Quality Control steps of tandem mass spectrometry data (now

integrated into the R package Shinyscreen), including checks for peak intensity and

alignment, to ensure their suitability for non-target identification; these steps

represent the typical logic that environmental analytical chemists apply when

manually inspecting data prior to non-target analysis. As mass spectral features that

did not meet the quality criteria were discarded from further consideration, this
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pre-screening is effectively a form of prioritisation that may represent first steps

towards non-target analysis in routine environmental monitoring. The latter leverages

MetFrag, an in silico fragmentation tool as a platform for integrating ‘environmental

metadata’ into non-target identification workflows based on chemical information

newly provided by Swiss, Swedish, EU-wide, and American regulators.

Overall, 21 compounds were tentatively identified with Level 3 confidence, and one

with Level 1. The tentative identifications were communicated using transparent

breakdowns, analysis, and interpretation as justification of MetFrag’s results, with the

intention of guiding regulators in their next steps, for example in devising future

sampling campaigns.
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Retrospective non-target analysis to support 
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Adelene Lai1,2* , Randolph R. Singh1,3 , Lubomira Kovalova4, Oliver Jaeggi4, Todor Kondić1  and 
Emma L. Schymanski1*  

Abstract 
Background: Applying non-target analysis (NTA) in regulatory environmental monitoring remains challenging—
instead of having exploratory questions, regulators usually already have specific questions related to environmental 
protection aims. Additionally, data analysis can seem overwhelming because of the large data volumes and many 
steps required. This work aimed to establish an open in silico workflow to identify environmental chemical unknowns 
via retrospective NTA within the scope of a pre-existing Swiss environmental monitoring campaign focusing on 
industrial chemicals. The research question addressed immediate regulatory priorities: identify pollutants with 
industrial point sources occurring at the highest intensities over two time points. Samples from 22 wastewater treat-
ment plants obtained in 2018 and measured using liquid chromatography–high resolution mass spectrometry were 
retrospectively analysed by (i) performing peak-picking to identify masses of interest; (ii) prescreening and quality-
controlling spectra, and (iii) tentatively identifying priority “known unknown” pollutants by leveraging environmentally 
relevant chemical information provided by Swiss, Swedish, EU-wide, and American regulators. This regulator-supplied 
information was incorporated into MetFrag, an in silico identification tool replete with “post-relaunch” features used 
here. This study’s unique regulatory context posed challenges in data quality and volume that were directly addressed 
with the prescreening, quality control, and identification workflow developed.

Results: One confirmed and 21 tentative identifications were achieved, suggesting the presence of compounds 
as diverse as manufacturing reagents, adhesives, pesticides, and pharmaceuticals in the samples. More importantly, 
an in-depth interpretation of the results in the context of environmental regulation and actionable next steps are 
discussed. The prescreening and quality control workflow is openly accessible within the R package Shinyscreen, and 
adaptable to any (retrospective) analysis requiring automated quality control of mass spectra and non-target identifi-
cation, with potential applications in environmental and metabolomics analyses.

Conclusions: NTA in regulatory monitoring is critical for environmental protection, but bottlenecks in data analysis 
and results interpretation remain. The prescreening and quality control workflow, and interpretation work performed 
here are crucial steps towards scaling up NTA for environmental monitoring.
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Background
Organic pollutants are well-documented in aquatic 
environments [59]. Traditionally, target strategies that 
look for chemicals known in advance have been used 
to identify these compounds [27]. In contrast, non-
target analysis (NTA) helps discover previously unde-
tected, unexpected and/or unknown substances. NTA 
has been under intense development in recent years, 
aided by advances in instrumentation and computa-
tional approaches [17, 27]. Considering the vast chemi-
cal space of possible environmental pollutants [65], 
the need for NTA is becoming more pressing in order 
to tackle the growing challenge of identifying chemi-
cal unknowns in samples. Yet, data analysis in NTA 
remains a formidable challenge. To ease the “identi-
fication burden” in NTA, simplifying approaches like 
Suspect Screening, where chemicals on discrete lists 
suspected to be present in the sample are screened, are 
being taken in the interim [17].

Various successful examples of NTA [1, 4, 5, 19, 28, 
50, 53, 60] have inevitably encouraged interest in its 
potential role to monitor and manage chemical pollut-
ants in the environment [17]. As the field matures, there 
is some consensus that NTA is “Ready to Go”, with calls 
for it to be applied more widely within the regulatory 
frameworks of local, regional, and national authori-
ties [17, 18]. Data-mining routines like enviMass have 
contributed to such initiatives [34]; enviMass facilitates 
NTA by peak-picking and prioritising unknown fea-
tures of interest worthy of further identification efforts. 
It does so by connecting mass spectral features based 
on criteria such as having signals of sufficient inten-
sity, grouping together isotopologues and adducts of 
the same component, and detecting temporal trends, 
ultimately giving as output a list of m/z-retention time 
pairs, plus accompanying information for further iden-
tification efforts.

However, challenges for regulators to perform NTA 
persist, particularly with respect to high-throughput 
data analysis and identification following the mass pri-
oritisation and peak-picking steps described above. 
For example, regulators may lack specific NTA exper-
tise and/or resources to apply the potentially many and 
complicated computational workflows [15, 33] avail-
able for analysing the copious amounts of data. In addi-
tion to the time-consuming and complex nature of data 
interpretation, issues related to standardisation and 
reproducibility exist, as there is currently no ‘one size 

fits all’ approach to identifying compounds using NTA 
[16]. As a result, NTA is currently often considered 
by regulators as “too much effort for too little sound 
evidence”.

Another more systemic obstacle to applying NTA in 
a regulatory context relates to the divergent interests 
of scientists in academia, who are (currently) respon-
sible for driving most NTA developments, and scien-
tists in regulatory practice, who would implement these 
developments towards regulatory compliance and envi-
ronmental protection. While the former aim often to 
develop and publish novel work, the primary mandate of 
the latter is regulatory compliance towards environmen-
tal protection. One possible consequence of this reality 
is that academic research outcomes resulting from NTA 
may not be directly relevant or in a form that is readily 
usable for regulators. In other words, researchers’ ques-
tions may not be regulators’ questions—what is possibly 
scientifically interesting may not be of priority or directly 
useful to regulators.

Despite these aforementioned challenges, it is possible 
(and important) to navigate both research and regulatory 
needs in NTA. #e present work is an example of aca-
demic research driven primarily by regulatory priorities. 
In this “top-down” approach, pre-existing data were used 
to generate results of direct environmental relevance 
and with immediate implications for environmental 
management.

#ree practical challenges characteristic of applying 
NTA in a regulatory environmental monitoring context 
arose in this study: (i) the study was framed by superla-
tive questions that required a large volume of data to be 
analysed, i.e. identify unknown compounds occurring 
at the highest intensities and highest temporal frequency 
with point sources across all the samples of the sampling 
campaign; (ii) there was a strict and limited timeframe 
allowed for the study following project management pro-
cedures of the regulatory body, and (iii) the data origi-
nally collected had been repurposed for this NTA study 
as there was no capacity nor further resources available 
within the scope of the project to do additional meas-
urements. #e latter point was all the more critical as 
preliminary manual inspection of the available data 
revealed that not all measurements were fully suitable 
for the intended non-target identification. #ese chal-
lenges called for a high-throughput approach capable of 
processing large volumes of data of variable quality in a 
fast and reproducible way that would be compatible with 

Keywords: Non-target analysis, Suspect screening, Retrospective, Wastewater, Micropollutants, Cheminformatics, 
Identification, Monitoring, Regulation
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identification approaches downstream. Additionally, 
unlike the seemingly increasing complexity of existing 
workflows [33], an uncomplicated and ‘minimal, bare-
bones’ but fully functional approach that is transpar-
ent and easily explainable is critical given the regulatory 
context.

MetFrag, used in this work to support identification 
efforts, is an example of an open in silico identification 
approach which satisfies the aforementioned criteria. 
Released in 2010 [68], it first retrieves potential candi-
dates with matching mass from compound databases 
such as PubChem [23] (111 million chemical structures, 
August 2020), ChemSpider [7, 48] (103 million chemical 
structures, February 2021), or smaller biological data-
bases like the Human Metabolome Database [67], 20) 
(114,304 metabolites, February 2021). #ese candidates 
are then scored according to how well the experimen-
tal spectrum matches the in silico fragments generated 
per candidate using a bond dissociation approach [68], 
and subsequently ranked according to this Fragment-
erScore (sometimes referred to as the Fragmentation 
Score or FragScore, or simply the MetFrag Score when 
it is the only component thereof ). For the identification 
of environmental “known unknowns”, using fragmenta-
tion information alone in this way can give mediocre 
results (e.g., ~ 22 and 6% of 473 environmentally relevant 
standards ranked first with ChemSpider and PubChem, 
respectively [51]). #is outcome may have various causes: 
(i) the search databases used are too large and/or do 
not contain only environmentally relevant compounds, 
therefore resulting in too many candidates that are not 
meaningful, and/or (ii) there is simply not enough infor-
mation to distinguish candidates when considering their 
fragmentation alone.

To address these limitations, MetFrag was ‘relaunched’ 
in 2016 to incorporate further identification strategies 
beyond fragmentation, such as retention time informa-
tion, substructure in/exclusion, availability of literature 
and patent information, presence/absence in suspect lists, 
and user-defined scoring terms [51]. Over time, spectral 
similarity comparison with spectra from the MassBank 
of North America (MoNA) (Fiehn [12] with and with-
out a MetFusion approach [14] was also integrated into 
MetFrag. Since then, two further open-science/environ-
mental chemistry developments have contributed signifi-
cantly to MetFrag’s extended capabilities for identifying 
environmental unknowns. Firstly, the release and inte-
gration of the United States Environmental Protection 
Agency’s CompTox Chemicals Dashboard [66] (hereaf-
ter, “CompTox”) into MetFrag provides a search database 
of > 850,000 compounds of environmental and toxicologi-
cal relevance [54], while allowing users to leverage the 
“MS-Ready” concept [37] and various forms of chemical 

metadata availability in CompTox as user-defined scor-
ing terms. Secondly, critical information from interna-
tional regulatory bodies can now be exploited through 
MetFrag towards identifying environmental chemicals. 
Beyond (i) the US EPA’s Chemicals and Products data-
base (CPDat) ([62, [10] and other CompTox-related 
metadata terms that are already integrated via CompTox, 
MetFrag’s user-defined scoring terms can also be config-
ured to incorporate information such as (ii) hazard and 
exposure from the Swedish Chemicals Agency KEMI 
[13], (iii) European chemicals registration, i.e. REACH 
[2], and (iv) the NORMAN Network’s merged suspect 
list of chemicals of emerging concern known as SusDat 
(NORMAN [43] representing knowledge gathered from 
NORMAN members, which include > 70 regulatory and 
academic reference laboratories throughout the world, as 
well as external contributions. Used in this way, MetFrag 
connects disparate resources from various regulatory 
agencies and academic researchers towards identifying 
environmental unknowns, practically ‘helping research-
ers and regulators help each other’ by providing an 
interconnected information platform with identification 
functionality.

Since MetFrag’s relaunch in 2016, work on the identi-
fication of environmental unknowns has used MetFrag’s 
post-relaunch functionality to varying extents. Some 
research simply uses MetFrag purely for its in silico frag-
mentation capabilities, i.e. not paired with any compound 
database [9, 40, 49]. Many examples use only the Frag-
menterScore to rank candidates retrieved from Chem-
Spider alone [3, 31, 35], PubChem alone [29, 61, 64], or a 
combination of either or both with other databases [8, 25, 
45, 47] like KEGG [22], FOR-IDENT [30] and MassBank 
[36]. Several studies have begun to use one or more of 
MetFrag’s post-relaunch capabilities such as data source, 
patent, and/or reference counts for the respective com-
pound database used [4, 5, 11, 39, 41, 42, 63], spectral 
library similarity [4, 5, 11, 21, 63], and presence in sus-
pect lists [5, 28, 41]. Albergamo and colleagues [1] were 
amongst the first to use MetFrag’s post-relaunch capa-
bilities heavily, in particular those provided via CompTox 
and by international regulators and scientists.

#e present work aimed to exploit “post-relaunch” 
MetFrag and Open Science developments towards ret-
rospectively identifying non-target environmental pol-
lutants in a regulatory context, as summarised in Fig. 1. 
Here, pollutants determined to be of regulatory concern 
by regulators originating from industrial activities found 
in Swiss wastewater treatment plant (WWTP) effluents 
were the main subjects of this study, which focused on 
developing the open in silico workflow to identify them. 
A prescreening and quality control workflow for high-
throughput automated data processing was developed 
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to analyse a provided list of unknown m/z prioritised 
by enviMass. #e use of MetFrag in this work leverages 
the state-of-the-art open resources mentioned above, 
chief among them, regulatory information from multiple 
international sources, in addition to exploiting many of 
MetFrag’s post-relaunch capabilities. #e identifications 
provided by MetFrag were analysed with respect to the 
specific environmental regulatory context of this study 
and communicated using an established system of confi-
dence levels, discussed in detail in the next section.

Methods
Daily water samples were collected from 25 sites based at 
22 WWTPs distributed across Switzerland within sam-
pling campaigns focusing on point sources of industrial 
chemicals. Of these 25 sampling sites, 19 correspond to 
WWTP effluents (i.e., 1 site per WWTP), while 6 con-
stitute paired influent and effluent sampling sites of 3 
WWTPs (i.e., 2 sites per WWTP) which employ ozona-
tion. #e effluent from these 3 WWTPs employing ozo-
nation came from secondary clarifiers. Five sites were 
sampled twice each (in June and October 2018, respec-
tively), while 20 were sampled only once (June 2018), giv-
ing a total of 30 samples.

During each sampling campaign, 2 L of the 24-h flow-
proportional composite samples were collected daily at 
each sampling site over seven consecutive days. #e sam-
ple was filled into two 1-L glass bottles and kept closed 
at 4 °C until the last day of the respective sampling cam-
paign. #at day, all samples were transported cooled to 
an analytical laboratory and were filtered, flow-propor-
tionally mixed, and sent cooled for MS-analysis. #e final 
samples used for measurement were flow-proportional 
7-day composites.

Sample measurement
Prior to analysis, samples were filtered through a glass 
fibre filter and isotopically labelled internal standards 
were added (26 for positive and 7 for negative ionisa-
tion mode, respectively). Samples were analysed without 
enrichment by direct injection of 100  μl into the chro-
matographic system. Chromatographic separation of 
the analytes was performed using a Waters Atlantis T3 
column (150 × 3  mm, 3  μm particle size) connected to
a #ermo Scientific Accela liquid chromatography sys-
tem equipped with a 1250 pump, open autosampler, and 
#ermo Scientific Column Oven 300. #e mobile phase 
eluent A consisted of ultrapure water (ELGA LabWater 
Purelab Ultra from Labtec Services AG, 5  mM ammo-
nium formate), while eluent B consisted of LC–MS grade 
methanol (Scharlau Chemie S.A, 5 mM ammonium for-
mate). #e gradient programme started with 10% B, 
which was kept for 1  min before a linear ramp to 95% 
B for 12  min. #is condition was kept for 5  min before 
returning to starting mobile phase conditions at 18.5 min. 
#e column was re-equilibrated for 4.5 min giving a total 
run time of 23 min with a flow rate of 300 μl/min.

A full-scan single MS measurement was performed 
using a #ermo Scientific QExactive Orbitrap LC/MS 
system with resolving power of 70,000 (at m/z = 200)
within 7  days of sample collection and preparation. A 
scan range of 100 to 1000 was used in both positive 
and negative electrospray ionisation modes. A heated 

Fig. 1 Visual project overview showing analytical and computational 
steps. Analytical “wet lab” steps are indicated in yellow, while “in silico” 
computational steps are indicated in green. The current study focuses 
on Retrospective Non-target Analysis, shown in dark green. Dotted 
arrows and boxes indicate possible future work based on the results 
of the current study, highlighted in blue to represent decisions to be 
made based on regulatory priorities
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electrospray ionisation (HESI) source with a vapouriser 
temperature of 350  °C, sheath gas flow of 35 arbitrary 
units (au), auxiliary gas flow of 10 au, spray voltage of 
3400  V (positive) and 3000  V (negative), S-lens level of 
50, and capillary temperature of 270  °C was used. #e 
samples were then stored at 4 °C.

Following the prioritisation of non-target masses 
(described in Part 1 of the prescreening workflow of 
the next section), the resulting list of non-target masses 
formed the inclusion list for MS2 measurements of the 
same samples in data-dependent acquisition mode in 
February 2019. Normalised collision energy of 35 was 
used. #e same measurement protocol as described 
above was applied with resolving power of 17,500 (at 
m/z = 200).

Computational methods
Part 1—enviMass prioritisation of masses of interest
enviMass (v.3.5, [34]) was used to prioritise non-target 
masses of interest based on the following criteria: high-
intensity MS1 peaks (used as a proxy for high concentra-
tion), presumed point source (occurring at one or only 
a few sampling sites), multiple temporal occurrences 
across the sampling campaign, i.e. high-frequency occur-
rences, and existing isotopologue and adduct linkages. 
Initially, a list of 300 non-target masses of interest was 
identified and used as an inclusion list for MS2 acquisi-
tion in the second round of measurements in February 
2019 using the same samples that had been stored at 4 °C 
as described above. Of these 300 masses, 125 masses 
with associated [M +  H]+ and [M-H]− information from
enviMass (117 and 8, respectively) were considered for 
further processing in the next step and constituted “List 
A”. A further 60 masses with associated [M +  H]+ and
[M-H]− information (28 and 32, respectively) were also 
considered for the next step (“List B”), but had not been 
measured as part of the inclusion list. #e enviMass 
parameters used to derive Lists A and B are detailed in 

the SI. #ese lists were the starting point for the work-
flows described here.

Part 2—prescreening and quality control work"ow
Data files in .RAW  format were first converted to 
.mzML format using MSConvert from Proteowizard 
(v.3.0.19182-51f676fbe, [6]), with full settings available in 
the SI (Additional file 1: Figure S1). #e data were prelim-
inarily inspected manually using XCalibur Qual Browser 
(v.4.2.28.14, #ermo Fisher Scientific, Waltham MA, 
USA). #en, a workflow to extract, prescreen, and quality 
control the spectra of the precursor masses in Lists A and 
B was developed and performed prior to further identifi-
cation efforts.

#e prescreening workflow first extracts all MS1 and 
MS2 ion chromatograms of each m/z from each mzML 
file supplied to it as input. No post-processing of mass 
spectral features such as peak removal, filtering, or scal-
ing is performed whatsoever during the extraction of 
spectra. Extracted MS1 precursors whose retention 
times are within 2 min of the mean retention time given 
by enviMass were deemed as matching the original list 
entries, considering possible drifts caused by wastewater 
matrix effects and normal variations in the LC analytical 
set-up, unless specified otherwise.

A ‘case’ was defined as a measurement whose chro-
matograms and corresponding spectra have the same 
m/z, retention time, and file source (essentially, a single 
unique measurement). As part of the prescreening, each 
case was subject to quality control: the MS1 and MS2 ion 
chromatograms were checked automatically by an algo-
rithm within the workflow in a stepwise fashion as per 
checks and thresholds 1–5 listed in Table  1. Failure to 
meet any of the criteria in the checks caused the case to 
be rejected from further identification efforts.

Cases that passed quality control checks 1–6 were 
manually inspected for peak shape and width (check 7, 
Table 1). Only cases that passed all quality control checks 

Table 1 Quality control checks within the prescreening workflow applied to the MS1 and MS2 spectral data for each case

Thresholds apply to data measured using an Orbitrap instrument. Checks 1–5 are part of the automated prescreening work"ow, while checks 6–7 were performed 
manually

Quality control 
check

Description Positive mode threshold Negative mode threshold

1 Availability of MS1 precursor Presence/absence

2 Minimum MS1 intensity 1 ×  105 1 ×  104

3 Maximum MS1 noise level 3x (average baseline intensity)

4 Availability of MS2 corresponding to MS1 precursor Presence/absence

5 MS1–MS2 alignment window 0.3 min (i.e. ± 0.15 min)

6 Deduplication of cases Highest MS1 intensity

7 Minimum peak width and overall shape (manual QC) 0.1 min
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1–7 were used as input for MetFrag identification in the 
next part of the workflow.

!is prescreening workflow developed and used as part 
of this work has been embedded into the openly available 
R package Shinyscreen (v.0.1.1-paper, [24]).

Part 3—identi!cation using MetFrag
Tentative identification was performed using MetFrag 
(command line v.2.4.5, [51, 68]). CompTox was used as 
the candidate database in the form of a local.csv file [54]. 
R scripts, building on the code bases of ReSOLUTION 
(v.0.1.8, [55]) and RChemMass (v.0.1.27, [56]), were writ-
ten to accomplish the following steps.

First, the neutral monoisotopic mass corresponding 
to the [M +  H]+ or [M −  H]− adducts indicated by envi-
Mass in positive and negative mode, respectively, was 
calculated. !en, candidates of matching mass with a rel-
ative deviation of 5 ppm (selected to reflect the analytical 
mass error, also known as “Search ppm”) were retrieved 
from CompTox. Subsequently, candidates were frag-
mented in silico using the following fragmentation set-
tings: Absolute Fragment Peak Match Deviation 0.001 Da 
(“Mzabs”), Relative Fragment Peak Match Deviation 
5  ppm (“Mzppm”), and Maximum Tree Depth 2. !en, 
candidates were ranked according to the MetFrag Score, 
calculated as the sum of ten weighted scoring terms sum-
marised in Table 2 and explained in detail below. !ese 
terms are either already built-in, or can easily be config-
ured within MetFrag since its relaunch [51]. Candidates 
with identical first block InChIKeys (i.e., stereoisomers, 
with the same structural skeleton) were grouped together.

!ree scoring terms within the MetFrag Score reflect 
the contribution of the fragmentation spectra to the 
proposed identification: the FragmenterScore (in silico 
fragments explaining measured peaks, a function of 
peak count and bond dissociation energy), OfflineM-
etFusion (spectral similarity to entries in MassBank of 
North America (MoNA) using a MetFusion approach 
[14], and OfflineIndivMoNA (maximum spectral similar-
ity with MoNA entries having exact InChIKey match). 
Four scoring terms relate to the availability of the chemi-
cal’s metadata: CPDAT_COUNT [66] (number of entries 
within US EPA’s Chemicals and Products database), 
DATA_SOURCES [66] (number of data sources underly-
ing CompTox, which performs similarly to the reference 
count), KEMIMARKET_HAZ (v.S17.0.1.3, [13]) (scaled 
and normalised hazard score calculated by the Swed-
ish Chemicals Agency), and KEMIMARKET_EXPO 
(v.S17.0.1.3, [13]) (scaled and normalised exposure score 
calculated by the Swedish Chemicals Agency KEMI). !e 
remaining three terms account for the candidate’s pres-
ence or absence in suspect lists, another form of meta-
data availability: INDACT (Industrial Activity chemicals 

known to be used near the sampling sites, supplied by 
the regulator), REACH2017 (v.S32.0.1.3, [2]) (chemicals 
registered under the European legislation framework 
REACH), and NORMANSUSDAT (vS0.0.2.0, NORMAN 
[43] (chemicals in the merged NORMAN Suspect List
Exchange). All metadata scoring terms were weighted 1
except for REACH2017 and NORMANSUSDAT, which
were both weighted 0.5 due to the high redundancy
across the two databases.

To calculate the maximum possible MetFrag Score, 
all the scoring terms except NORMANSUSDAT, 
REACH2017, INDACT, and OfflineIndivMoNA are first 
normalised to their respective largest values among the 
candidate set and scaled between 0–1. !ese normal-
ised and scaled values are then summed together with 
the presence/absence scores of NORMANSUSDAT, 
REACH2017, and INDACT (0.5, 0.5, 1.0 if present, 0, 0, 
0, if absent, respectively), and the similarity score from 
OfflineIndivMoNA (which is not scaled as it is already 
defined between 0 and 1).

Tentative identifications by MetFrag were communi-
cated using an established system of levels [57], reiterated 
here with study-specific context for clarity: as MetFrag 
is an in silico method, it generally gives identifications of 
Level 3 confidence based on evidence for possible chemi-
cal structure using MS1, MS2 and experimental data/
context. !ese identifications are tentative and require 
further validation before achieving higher confidence 
levels, as do Level 2a identifications of probable structure 

Table 2 MetFrag scoring terms and weights used in tentative 
identification

An asterisk (*) indicates these terms were given lower weights to avoid 
overweighting due to possible redundancy across the databases

MetFrag scoring terms Weights

Spectral terms

 FragmenterScore 1.0

 OfflineMetFusion 1.0

 OfflineIndivMoNA 1.0

 Total contribution to MetFrag Score: 3.0

Metadata terms

 CPDAT_COUNT 1.0

 DATA_SOURCES 1.0

 KEMIMARKET_EXPO 1.0

 KEMIMARKET_HAZ 1.0

 NORMANSUSDAT 0.5*

 REACH2017 0.5*

 INDACT 1.0

Total contribution to MetFrag Score: 6.0

Maximum MetFrag Score

Total 9.0
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based on a library spectrum match, corresponding to a 
high MoNA individual similarity score (> 0.9) in the pre-
sent work. Level 1 identifications require confirmation of 
the structure using a reference standard and includes tar-
get compounds.

Results
Prescreening and quality control
Preliminary manual inspection of the data using XCali-
bur Qual Browser (v.4.2.28.14, !ermo Fisher Scientific, 
Waltham MA, USA) indicated that not all measurements 
of each individual m/z were suitable for non-target iden-
tification because, e.g., MS1 precursors were often at low 
intensity, some MS2 spectra were absent, and spikes and/
or noise were observed in the MS1 extracted ion chro-
matogram instead of actual peaks. !erefore, the pre-
screening workflow consisting of 7 quality control checks 
(Table 1) was implemented to isolate measurements that 
were suitable for non-target identification. Figure 2 pro-
vides examples of measurements visualised using Shiny-
screen which passed all quality control checks (Panel A) 
and failed either one or more checks (Panels B-E), respec-
tively. !e latter were automatically eliminated from fur-
ther consideration by the workflow because they were 
deemed unsuitable for use in non-target identification.

For identification, a total of 185 non-target m/z from 
both List A and List B were prescreened in each of the 
30 mzML files, resulting in 5,550 cases possible for iden-
tification. For List A containing 117  m/z measured in 
positive mode, the prescreening workflow runtime was 
approximately 8 h on a laptop machine with 8 GB RAM 
and 2 physical cores over all 30 mzML files. Runtime 
was estimated based on timestamps from results file 
generation.

Of the 5,550 cases, 899 cases satisfied checks 1–5 
listed in Table  1. Duplicate cases by m/z (e.g., if it was 
detected at more than one site) were eliminated by pri-
oritising those with the highest MS1 intensity (check 6), 
leaving 157 cases (approximately 0.03% of total cases) 
to be manually inspected for peak width and shape 
(check 7, Fig.  2e). Of these 157 cases, only 22 passed 
manual inspection and qualified for further identifica-
tion efforts using MetFrag (listed in full in Additional 
file 1: Table S2). Figure 3 summarises this data reduction 

outcome as a result of quality control within the pre-
screening workflow.

Tentative identi"cation using MetFrag
Tentative identifications for the 22  m/z that passed 
quality control checks were obtained using MetFrag. 
Candidates for each m/z were proposed as ranked lists 
according to their respective MetFrag Scores comprising 
the ten scoring terms described in Table 2 (full MetFrag 
results with lists of ranked candidates available in Mas-
sIVE). Figure 4 shows the distribution of MetFrag Scores 
classified into tertiles for the top-ranked candidate for 
each of the 22 m/z.

Interpretation of MetFrag results
Given the background and context of this work (i.e. 
NTA in environmental monitoring to identify high-pri-
ority unknowns), the MetFrag results described above 
do not represent a satisfactory end-point/end-product 
of this study. In other words, it does not suffice to pre-
sent MetFrag’s outputs (lists of ranked candidates, one 
list per m/z) alone, as these results alone do not provide 
sufficient direction for the next regulatory steps. Rather, 
it is crucial that these scientific outcomes are translated 
into transparent and actionable information for regula-
tory scientists to aid their future decision-making with 
respect to the following questions:

1. What does the distribution of MetFrag Scores mean
and what are the implications?

2. How can this information guide evidence-based deci-
sion-making regarding further identification efforts?
(e.g., by adding candidates to suspect lists for future
Suspect Screenings, purchasing reference standards
for confirmation, etc.)

!e following section addresses these two questions 
through in-depth interpretation of MetFrag’s results 
at two levels: at a global level across all 22 m/z studied, 
and at a candidate level per m/z, respectively. !e aim of 
these interpretations is to deliver information based on 
scientific premises that is actionable from a regulatory 
point of view and in doing so, present ‘complex’ MetFrag 
results in an interpretable way using Scenario Analysis.

Fig. 2 Examples of cases which pass and fail quality control within the prescreening workflow. Quality control helped isolate measurements which 
were suitable for non-target identification and discarded those which are not. Panel A shows Shinyscreen’s graphical user interface and an example 
of a case whose MS1–MS2 measurement is suitable for non-target identification—its extracted ion chromatogram shows a MS1 peak of sufficiently 
high intensity, a corresponding MS2 event that is temporally well-aligned, and its MS2 spectrum. The remaining panels show examples of cases that 
were eliminated from further identification efforts by the workflow as they were deemed unsuitable due to an excessively noisy MS1 spectrum (B; 
check 3 in Table 1), the absence of an MS2 event, (C; check 4) misaligned MS1 and MS2 events (D; check 5), and poor MS1 peak shape and width (E; 
check 7)

(See figure on next page.)
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Regarding the MetFrag Scores of the top candidates 
for each m/z (Fig.  4), this distribution arises as a result 
of four possible combinations of Spectral and Metadata 
Score components contributing toward the final Met-
Frag Score (Table 3). #e distribution is split into tertiles 
based on the range of MetFrag Scores possible (0–9), 
and each tertile is assigned an associated scenario, as 
explained below.

Scenario 1 features both strong spectral and meta-
data evidence supporting a given candidate, resulting in 
a High MetFrag Score. Moderate MetFrag Scores result 
when one of these two scoring components, Spectral or 
Metadata, is low and the other is high, leading to Scenar-
ios 2 and 3. Finally, Scenario 4 describes situations where 
both Spectral and Metadata scores are low, resulting in 
Low MetFrag Scores. Table 4 shows the breakdown of the 
MetFrag Score into its component Spectral and Metadata 
terms for four illustrative examples, one for each sce-
nario. #ese representative examples were selected from 

the distribution (Fig. 4) and are the respective top-ranked 
candidates for 4 m/z. 

#e implications of this distribution (Fig. 4) can guide 
future actions depending on whether depth or breadth 
of the NTA study is more important. For example, if the 
ultimate goal is to fully identify one or two high-priority 
non-target unknowns to Level 1 confidence, pursuing 
candidates with High MetFrag Scores  (3rd tertile, dark red 
region in Fig. 4, Scenario 1 in Table 3) is recommended. 
Alternatively, if gaining a wide survey of the possibly 
relevant but as yet unknown environmental pollutants 
throughout the sampling campaign is preferred (akin to 
a ‘first-approximation’ of the situation), then even candi-
dates with moderate and/or low scores can also be con-
sidered further depending on the relevance of the scoring 
terms to the context. Additionally, further decisions on 
future actions can be made based on possible limitations 
of the study which may be known from the outset (see 
Discussion).

Table 3 Four different scenarios corresponding to the four possible combinations of Spectral and Metadata scores

Spectral and Metadata scores are components of the #nal MetFrag Score (Table 2). Scores falling into the di$erent tertiles of the MetFrag Score distribution are 
classi#ed as low, moderate, and high, respectively, as indicated in Fig. 4

High Metadata score Low Metadata score

High Spectral score Scenario 1: high MetFrag Score (> 6) Scenario 3: moderate MetFrag Score (3–6)

Low Spectral score Scenario 2: moderate MetFrag Score (3–6) Scenario 4: low MetFrag Score (< 3)

Table 4 MetFrag Score breakdown for the top candidates of four m/z 

Each MetFrag Score here represents one of the four scenarios in Table 3

MetFrag Score (weighted)

7.00 4.63 2.95 2.50

MetFrag Score distribution 
classification

High
(> 6)

Moderate
(3–6)

Moderate
(~ 3–6; borderline)

Low (< 3)

Scenario Scenario 1—high Spectral and 
Metadata scores

2—low Spectral and High 
Metadata scores

3—high Spectral and Low 
Metadata scores

4—low Spectral 
and Metadata 
scores

m/z 278.1062 187.0938 152.0198 199.1050

MetFrag Score breakdown (top candidate only)

 Spectral terms (raw scores)

 FragmenterScore 95.30 7.88 217.84 19.48

 OfflineMetFusion 4.64 0.88 2.06 2.81

 OfflineIndivMoNA 1.00 0 0 0

Metadata terms (raw scores)

 CPDAT_COUNT 0 0 0 0

 DATA_SOURCES 47 42 1 1

 KEMIMARKET_EXPO 16 11 0 0

 KEMIMARKET_HAZ 9 2 0 0

 NORMANSUSDAT 1 1 0 0

 REACH2017 1 1 0 0

 INDACT 0 0 0 0
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Close inspection of the MetFrag Score, namely its com-
ponent spectral and metadata scoring terms, enables 
results interpretation on the individual candidate level 
for each m/z. Irrespective of whether a breadth or depth 
strategy is chosen, the lists of ranked candidates should 
always be scrutinised for plausibility because although 
each identification has a top candidate ranked first by 
MetFrag, the top candidate may not be the only candi-
date worth considering (if at all) given the context of the 
study. Below, an in-depth analysis and results interpreta-
tion of the top 4 candidates for selected m/z is presented 
in the following tables as examples of each of the scenar-
ios (Table  3). Distributed Structure-Searchable Toxicity 
Substance Identifiers from CompTox, known as DTX-
SIDs are given as identifiers. #e choice to use DTXSID 
as candidate identifiers and not their compound names is 
addressed in the Discussion.

m/z 278.1062
Scenario 1: high Spectral and Metadata scores (high 
MetFrag Score; > 6)
#irty-three compounds with matching mass were 
retrieved from CompTox and scored by MetFrag using 
the ten scoring terms (Table  2). #e top-ranked candi-
date, DTXSID4058156, has the highest total MetFrag 
Score out of all the candidates proposed (Table  5). In 
terms of spectral information, it has the highest Frag-
menterScore and OfflineMetFusion score of all the candi-
dates, as well as a MoNA library match of 0.998, while all 
other candidates had a MoNA library match of 0.

In terms of metadata and presence in suspect lists, 
DTXSID4058156 has abundant metadata, is present on 
many suspect lists compiled by the NORMAN Network 
(REACH2017, SusDat and KEMIMARKET), and has 
47 underlying data sources in CompTox. Based on this 
aforementioned evidence, this identification has confi-
dence level 2a.

Overall, both the spectral and metadata evidence 
strongly support Candidate 1 over the others, as seen 
in the large difference between the candidates’ MetFrag 
Scores.

Candidate recommendation: Candidate 1 should be 
strongly considered for further identification efforts.

A reference standard of DTXSID4058156 (metazach-
lor) provided a retention time match within 0.03  min, 
thereby confirming the identification of this unknown as 
metazachlor with Level 1 confidence.

m/z 187.0938
Scenario 2: low Spectral but high Metadata scores 
(moderate MetFrag Score; 3–6)
For m/z 187.0938, identified as a [M +  H]+ adduct by
enviMass, the top candidate scored poorly in the Spectral 
terms compared to subsequent candidates. However, its 
strong scoring in the metadata terms ultimately drove its 
high MetFrag Score (Table 6).

#e distribution of MetFrag Scores in Table  6 indi-
cates that the top 3 (or even 4) candidates have relatively 
similar scores. Although the spectral data rather support 
Candidates 2 or 3 as better matching the experimental 

Table 5 MetFrag Score breakdown by scoring term for the top 4 candidates for m/z 278.1062 (ultimately identified as metazachlor 
with Level 1 confidence)

Raw scores are given for interpretability; the maximum raw score over all candidates (used to normalise for the ranking) is indicated in bold. The #nal MetFrag Score 
is a sum of the normalised and weighted scoring terms as described in the Methods. Here, Candidate 1 has the highest overall MetFrag Score, supported by both 
spectral and metadata scoring terms. Full details on the candidates are available in MassIVE

MetFrag Scoring terms Candidate 1
DTXSID4058156

Candidate 2
DTXSID90916646

Candidate 3
DTXSID40736053

Candidate 4
DTXSID30150421

Spectral terms (raw scores)

 FragmenterScore 95.30 18.00 61.52 47.52

 OfflineMetFusion 4.64 3.65 3.25 2.99

 OfflineIndivMoNA 1.00 0 0 0

Metadata terms (raw scores)

 CPDAT_COUNT 0 0 0 0
 DATA_SOURCES 47 2 1 7

 KEMIMARKET_EXPO 16 0 0 0

 KEMIMARKET_HAZ 9 0 0 0

 NORMANSUSDAT 1 0 0 0

 REACH2017 1 1 0 0

 INDACT 0 0 0 0
MetFrag Score (weighted)

 Total 7.00 1.52 1.37 1.29
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data, the high KEMIMARKET_EXPO score for Can-
didate 1 indicates that it may be of greater concern in a 
regulatory context due to the potentially large exposure 
volumes, and could be considered for further confirma-
tion efforts to eliminate this from consideration in future 
campaigns.

Candidate recommendation: All top four candidates 
should be considered for further identification efforts due 
to high exposure and hazard scores.

m/z 249.0728
Additional example for Scenario 2: low Spectral but high 
Metadata scores (moderate MetFrag Score; 3–6)
#e information provided by high Metadata scores can 
serve as the discriminating factor between candidates 
when their Spectral scores yield little/poor information 
which in turn gives little indication of how to rank the 
candidates if only spectral evidence had been considered. 
In this sense, Metadata scoring terms contribute an extra 
layer of information beyond spectral evidence towards 
identifying potentially relevant unknowns.

For example, the top four candidates of m/z 249.0728 
(Table 7) have comparably poor Spectral scores meaning 
there is overall little spectral evidence supporting these 
identifications. However, Candidate 1 distinguishes itself 
significantly from the other candidates because of its 
relatively high Metadata scores, in particular its KEMI-
MARKET_EXPO, KEMIMARKET_HAZ, and presence 
in REACH2017. #erefore, it has higher environmental 
relevance than subsequent candidates, which explains its 
top ranking.

Candidate recommendation: Candidate 1 should be 
considered for further identification efforts given the 
moderate KEMI exposure and hazard scores, indicating 
potential environmental relevance in Europe.

m/z 142.0975
Additional example for Scenario 2: low Spectral but high 
Metadata scores (moderate MetFrag Score; 3–6)
Similar to the previous example, candidates for have m/z 
142.0975 have comparable performance in the Spectral 
scores and would be practically indistinguishable from 
each other if not for the large difference in their Metadata 
scores (Table 8). Candidate 1 differs strongly from subse-
quent candidates because of its relatively high KEMIMA-
RKET_EXPO, KEMIMARKET_HAZ and REACH2017 
scores that support its top ranking.

Candidate Recommendation: Candidate 1 should be 
considered for further identification efforts given high 
Europe-relevant Metadata scores.

m/z 152.0198
Scenario 3: high Spectral scores but low Metadata scores 
(moderate MetFrag Score; 3–6)
For the top candidates of m/z 152.0198, practically no 
metadata exists except for DATA_SOURCES—each can-
didate has 1, indicating that these are not particularly 
well-known chemicals (or, potentially newly discovered 
and not well documented in public databases yet). How-
ever, the FragmenterScores of the candidates differed suf-
ficiently to discriminate between them and indicate that 
Candidate 1 may be the best match in this case (Table 9).

Table 6 MetFrag Score breakdown by scoring term for the top 4 candidates for m/z 187.0938

Raw scores are given for interpretability; the maximum raw score over all candidates (used to normalise for the ranking) is indicated in bold. The #nal MetFrag Score is 
a sum of the normalised and weighted scoring terms as described in the Methods. Here, Candidate 1 has the highest overall MetFrag Score despite low Spectral term 
scores due to its high scoring Metadata. Full details on the candidates are available in MassIVE

MetFrag Scoring terms Candidate 1
DTXSID5020526

Candidate 2
DTXSID70198185

Candidate 3
DTXSID10185791

Candidate 4
DTXSID70382365

Spectral terms (raw scores)

 FragmenterScore 7.88 65.03 50.21 40.46

 OfflineMetFusion 0.88 1.04 1.01 0.86

 OfflineIndivMoNA 0 0 0 0

Metadata terms (raw scores)

 CPDAT_COUNT 0 0 0 0

 DATA_SOURCES 42 7 5 7

 KEMIMARKET_EXPO 11 2 2 6

 KEMIMARKET_HAZ 2 3 3 3
 NORMANSUSDAT 1 1 1 1
 REACH2017 1 1 1 0

 INDACT 0 0 0 0

MetFrag Score (weighted)

 Total 4.63 4.34 4.03 3.65
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Candidate recommendation: Candidate 1 may be con-
sidered for further identification efforts, but candidates for 
other masses are more promising in the regulatory context 
(Table 10).

m/z 199.1050
Scenario 4: low Spectral scores, low Metadata scores (low 
MetFrag Score; < 3)
Candidates proposed for m/z 199.1050 had neither 
particularly strong spectral nor metadata information, 
resulting in low overall MetFrag Scores. In this case, 
there is no strong evidence that any of the candidates 
available in CompTox are of particular interest in the 
context of the investigation.

Table 7 MetFrag Score breakdown by scoring term for the top 4 candidates for m/z 249.0728

Raw scores are given for interpretability; the maximum raw score over all candidates (used to normalise for the ranking) is indicated in bold. The #nal MetFrag Score is 
a sum of the normalised and weighted scoring terms as described in the Methods. Here, di$erences in candidates’ Metadata scores allowed them to be di$erentiated 
from each other despite equally poor Spectral scores. Full details on the candidates are available in MassIVE

MetFrag scoring terms Candidate 1
DTXSID50885566

Candidate 2
DTXSID60154230

Candidate 3
DTXSID70233803

Candidate 4
DTXSID80278866

Spectral terms (raw scores)

 FragmenterScore 0 0 0 0

 OfflineMetFusion 0.67 0.64 0.63 0.70

 OfflineIndivMoNA 0 0 0 0

Metadata terms (raw scores)

 CPDAT_COUNT 0 0 0 0

 DATA_SOURCES 6 3 3 2

 KEMIMARKET_EXPO 2 0 0 0

 KEMIMARKET_HAZ 3 0 0 0

 NORMANSUSDAT 0 0 0 0

 REACH2017 1 0 0 0

 INDACT 0 0 0 0

MetFrag Score (weighted)

 Total 4.43 1.39 1.38 1.30

Table 8 MetFrag Score breakdown by scoring term for the top 4 candidates for m/z 142.0975

Raw scores are given for interpretability; the maximum raw score over all candidates (used to normalise for the ranking) is indicated in bold. The #nal MetFrag Score is 
a sum of the normalised and weighted scoring terms as described in the Methods. Here, di$erences in candidates’ Metadata scores allowed them to be di$erentiated 
from each other despite equally good Spectral scores. Full details on the candidates are available in MassIVE

MetFrag Scoring terms Candidate 1
DTXSID40200921

Candidate 2
DTXSID50863460

Candidate 3
DTXSID40233077

Candidate 4
DTXSID90380247

Spectral terms (raw scores)

 FragmenterScore 200.29 156.23 143.16 229.32

 OfflineMetFusion 3.44 3.64 3.96 3.52

 OfflineIndivMoNA 0 0.01 0 0

Metadata terms (raw scores)

 CPDAT_COUNT 0 0 0 0

 DATA_SOURCES 6 11 7 2

 KEMIMARKET_EXPO 2 0 0 0

 KEMIMARKET_HAZ 3 0 0 0

 NORMANSUSDAT 1 1 0 0

 REACH2017 1 0 0 0

 INDACT 0 0 0 0

MetFrag Score (weighted)

 Total 5.29 3.11 2.26 2.07
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Candidate recommendation: Candidate 1 may be 
considered for further identification efforts, but candi-
dates for other masses are more promising.

Information for regulatory decision-making on further 
identi"cation e#orts/next steps
Table  11 summarises the candidate recommenda-
tions presented above, where 7–9 candidates are 

recommended for further identification efforts for the 
6 m/z presented here. 

#e top four candidates for each of the remaining 
16 m/z were analysed in the same way as discussed above, 
and candidates were evaluated based on the same criteria 
as described: prioritisation according to tertile, scenario, 
and Spectral and Metadata scores, including potential 
exposure and hazards (Additional file 1: Tables S3–S18). 
For these 16  m/z, a total of 25–49 candidates (out of 

Table 9 MetFrag Score breakdown by scoring term for the top 4 candidates for m/z 152.0198

Raw scores are given for interpretability; the maximum raw score over all candidates (used to normalise for the ranking) is indicated in bold. The #nal MetFrag Score 
is a sum of the normalised and weighted scoring terms as described in the Methods. Here, the Spectral scores provided the means for MetFrag to di$erentiate the 
candidates despite their equally poor Metadata scores. Full details on the candidates are available in MassIVE

MetFrag Scoring terms Candidate 1
DTXSID30534106

Candidate 2
DTXSID30540904

Candidate 3
DTXSID90610112

Candidate 4
DTXSID40849677

Spectral terms (raw scores)

 FragmenterScore 217.84 158.82 144.54 142.75

 OfflineMetFusion 2.06 2.08 2.17 2.02

 OfflineIndivMoNA 0 0 0 0

Metadata terms (raw scores)

 CPDAT_COUNT 0 0 0 0

 DATA_SOURCES 1 1 1 1

 KEMIMARKET_EXPO 0 0 0 0

 KEMIMARKET_HAZ 0 0 0 0

 NORMANSUSDAT 0 0 0 0

 REACH2017 0 0 0 0

 INDACT 0 0 0 0

MetFrag Score (weighted)

 Total 2.95 2.69 2.66 2.60

Table 10 MetFrag Score breakdown by scoring term for the top 4 candidates for m/z 199.1050

Raw scores are given for interpretability; the maximum raw score over all candidates (used to normalise for the ranking) is indicated in bold. The #nal MetFrag Score is 
a sum of the normalised and weighted scoring terms as described in the Methods. Full details on the candidates are available in MassIVE

MetFrag Scoring terms Candidate 1
DTXSID40514171

Candidate 2
DTXSID00556299

Candidate 3
DTXSID20776997

Candidate 4
DTXSID50511555

Spectral terms (raw scores)

 FragmenterScore 19.48 2.43 8.12 6.00

 OfflineMetFusion 2.808 2.809 2.800 2.810
 OfflineIndivMoNA 0 0 0 0

Metadata terms (raw scores)

 CPDAT_COUNT 0 0 0 0

 DATA_SOURCES 1 2 1 1

 KEMIMARKET_EXPO 0 0 0 0

 KEMIMARKET_HAZ 0 0 0 0

 NORMANSUSDAT 0 0 0 0

 REACH2017 0 0 0 0

 INDACT 0 0 0 0

MetFrag Score (weighted)

 Total 2.50 2.12 1.91 1.81
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possible 16 times 4 = 64) are recommended for further 
identification efforts (Additional file 1: Table S19). #us, 
for all the 22  m/z which underwent MetFrag identifica-
tion in this study, an overall total of 32–58 candidates 
(out of possible 22 times 4 = 88) are recommended for 
further identification efforts. #ese candidate numbers 
are provided as ranges to allow for flexibility in project 
management and future steps, which may depend on 
available resources (see Discussion).

Discussion
In this study, non-target analysis was performed ret-
rospectively on samples from Swiss WWTP effluents 
that had been collected as part of an existing regula-
tory environmental monitoring campaign. Instead of an 
exploratory approach that is still common amongst NTA 
studies, the research questions that directed this study 
were derived from regulatory priorities, thereby ensuring 
outcomes of direct and immediate relevance for environ-
mental monitoring and protection.

Unknowns of regulatory interest were defined as those 
with the highest intensities and highest temporal fre-
quency with point sources across all the samples of the 
sampling campaign. #ese criteria had been predefined 
by the regulatory coauthors of this study, and resulted 
in a list of m/z of interest that were manually selected 
after filtering and sorting the masses using enviMass. In 
the current work, the mass spectra of the m/z of interest 
from the given list were subjected to pre-screening and 
quality control (Fig. 2) to ensure their suitability for use in 
non-target identification. Quality control isolated meas-
urements worthy of further identification efforts and 
eliminated those of poor standard, effectively resulting in 

data reduction (Fig.  3). #e prescreening workflow was 
written in R and is now openly available within the pack-
age Shinyscreen [24].

#en, MetFrag [51, 68] was employed to provide ten-
tative identifications for these unknowns, leveraging its 
extensive metadata capabilities “post-relaunch”, as well 
as several open resources/information sources, including 
chemical information from regulators around the world. 
MetFrag analysis was performed via the command line 
using scripts based on ReSOLUTION [55] and RChem-
Mass [56].

Tentative identifications for 22 m/z were obtained using 
MetFrag (21 at Level 3, 1 at Level 2a, whose identity was 
eventually confirmed to Level 1). #ese identifications 
were evaluated in terms of (i) a score distribution for the 
top candidates (Fig. 4) and (ii) Scenario Analysis (Table 3) 
according to the regulatory context and research ques-
tions underlying this work. Final candidate recommen-
dations were given based on MetFrag Score breakdowns, 
thereby providing in-depth and transparent analyses of 
the spectral and metadata evidence for proposed candi-
dates. For the 22  m/z analysed, 32–58 candidates were 
recommended for further identification efforts.

Regarding the analytical method, direct injection with-
out enrichment was used here, as non-target compounds 
of high intensity were of primary interest and enrichment 
was not considered necessary. Additionally, Mechelke 
et al. recently found that direct injection is comparatively 
better suited to capturing a broader range of compounds, 
including highly polar compounds that would otherwise 
experience poor recovery during enrichment [38]. #e 
spectral data were recorded using data-dependent acqui-
sition mode with an inclusion list in this study. While 

Table 11 Candidates for six m/z meriting further identification efforts based on individual evaluations

Candidates were evaluated on an individual level for 6 m/z (selected out of 22 m/z as representative examples). Full details on further candidates are available in 
MassIVE

m/z MetFrag results scenario Candidates 
for further 
consideration

Justification for candidate recommendation

278.1062 Scenario 1 1 High MetFrag Score overall (high Spectral and Metadata scores); subsequent candidates very 
poor in comparison

187.0938 Scenario 2 4 Moderate MetFrag Score overall (low Spectral but high Metadata scores); MetFrag Scores very 
similar across candidates, therefore all worth consideration

249.0728 Scenario 2
(additional example)

1 Moderate MetFrag Score overall (low Spectral but high Metadata Scores); non-zero KEMI-
MARKET_EXPO and KEMIMARKET_HAZ, and presence in REACH2017 suspect list unlike 
subsequent candidates

142.0975 Scenario 2
(additional example)

1 Moderate MetFrag Score overall (low Spectral but high Metadata Scores); non-zero KEMI-
MARKET_EXPO and KEMIMARKET_HAZ, and presence in REACH2017 suspect list unlike 
subsequent candidates

152.0198 Scenario 3 0–1 Moderate MetFrag Score overall (high Spectral but low Metadata scores); borderline low 
MetFrag Score, only worth (weakly) considering Candidate 1

199.1050 Scenario 4 0–1 Low MetFrag Score overall (low Spectral and Metadata scores); only worth (weakly) consider-
ing Candidate 1
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future NTA work could explore the use of data-independ-
ent acquisition (DIA), omitting the necessity for an inclu-
sion list, this adds other complexities, as lower intensity 
precursors may not yield fragments of sufficient intensity 
and data interpretation inevitably becomes more compli-
cated, especially if complex matrices like wastewater with 
many co-eluting compounds are being studied.

Quality control was a critical element in the prescreen-
ing workflow, as preliminary manual inspection of the 
data using XCalibur revealed variable data quality. In 
fact, most data (> 80% cases) were not fully suitable for 
the intended non-target identification. R scripts (now 
embedded within Shinyscreen package) were written to 
automate most of the quality control checks (Table  1, 
checks 1–5). Automated quality control allowed for 
quick and reproducible processing of the large quantity 
of data needed to answer the superlative research ques-
tions guiding this work. #e variable quality of the data 
had several likely causes: (i) List B masses were not in 
the inclusion list; (ii) MS2 were not measured immedi-
ately after MS1, therefore sample degradation over long 
storage time between MS1 and MS2 measurements 
could have occurred, and (iii) possibly over-restrictive 
enviMass prioritisation criteria. #us, the small num-
ber of cases (~ 0.03% of total) passing all quality control 
checks and qualifying for MetFrag identification was not 
unexpected.

MetFrag was configured to comprise both Spectral and 
Metadata scoring terms, including chemical suspect lists 
and scoring terms from international regulators within 
the latter such as KEMIMARKET_EXPO, KEMIMA-
RKET_HAZ, REACH2017, NORMANSUSDAT, and 
CPDAT_COUNT. Paired with CompTox as its candi-
date database, MetFrag was thus specifically customised 
to perform non-target identification of environmental 
unknowns in WWTP samples within a regulatory context 
in this work. Beyond using fragmentation information 
alone, using metadata to inform MetFrag’s identifications 
proved to be especially important in certain situations, 
e.g., when Spectral scores based on fragmentation were 
not informative enough to distinguish candidates from 
each other (Tables  7 and 8). Crucially, the information 
provided by metadata can serve as guidance for future 
regulatory actions in the context of the environmental 
protection aims of this study. For example, although cer-
tain candidate(s) may not be top-ranked or have strong 
spectral evidence (Table  6), potentially concerning haz-
ard and exposure scores may qualify a certain candidate 
for serious consideration in future work in the spirit of 
applying the Precautionary Principle.

Regarding the components of the MetFrag Score, a 
total of ten scoring terms, three Spectral and seven Meta-
data, were used to score candidates. Compared to most 

previous studies which used MetFrag as mentioned in 
the Introduction, this number may seem large. However, 
adding extra scoring terms does not appear to compro-
mise MetFrag’s identification capabilities. In fact, the 
additional scoring terms were beneficial because further 
bases for differentiating between candidates became 
available. In other words, using more scoring terms can 
provide more granularity when distinguishing candi-
dates, which is important for candidate evaluation and 
recommendation. Further scoring terms based on physi-
cal–chemical properties could be integrated in the future 
such as correlation of the partitioning coefficient  logKow 
(or log P) with retention time as already available in Met-
Frag [51]. While such scoring criteria would help filter 
out any unrealistic candidates based on objective criteria 
like ionisability and polarity, insufficient information was 
available to perform retention time correlation via Met-
Frag in this study.

With respect to the individual terms, CPDAT_COUNT, 
INDACT, and OfflineIndividualMoNA proved to be rela-
tively uninformative in this particular study, evidenced by 
their frequent zero-value scores. As a database contain-
ing consumer chemical products ranging from those used 
in home maintenance (paints, sealants, lubricants, clean-
ers, etc.) to personal care products (hair gel, nail polish, 
face cream, makeup, etc.), CPDAT’s limited applicability 
in wastewater studies such as the present one is unsur-
prising, and it instead may be more suitable for exposom-
ics studies involving, e.g., household dust. INDACT, the 
list of industrial activity chemicals known to be used in 
the vicinity of the WWTPs as disclosed to the regulator, 
had the strongest potential to improve the identification 
results. However, not a single candidate across all the 
MetFrag results was present on this suspect list, which 
could suggest that the chemical disclosures made by the 
industries were either incomplete, unsuitable for identi-
fication purposes (e.g., parent compounds were disclosed 
but possibly only transformation products are present in 
the environment/are detectable, UVCBs with unspecific 
chemical identities, etc.), and/or inherently do not end 
up in wastewater if the compounds themselves are used 
in closed circuits, are recycled, or partition into sludge 
if they are very non-polar. Lastly, while mass spectral 
libraries are inherently incomplete [44], a low OfflineIn-
dividualMoNA score does not necessarily indicate poor 
spectral library matches. Rather, low OfflineIndividual-
MoNA scores could also signify that the candidate is not 
present within MoNA to begin with, or result from noisy 
experimental spectra even if the match would otherwise 
be good. #erefore, evaluating candidates on this scoring 
term alone must be done with these factors in mind, and 
improvements to its design to avoid possible faulty inter-
pretations could constitute future work. Other future 
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work on MetFrag itself could involve the addition of new 
Spectral scoring terms which do not require scaling via 
normalisation of the maximum value, as this maximum 
value is highly dependent on the candidate database cho-
sen. For instance, a simple spectral similarity metric such 
as cosine similarity would evaluate how well the in silico 
and experimental fragmentation spectra align, independ-
ent of those of other candidates.

CompTox, the candidate database chosen here, remains 
one of the most environmentally-focused open data-
bases of chemical compounds as it exclusively contains 
chemicals of environmental and toxicological relevance. 
Compared to other open databases like PubChem (111 
million chemical structures, August 2020), CompTox is 
also smaller in size (883,000 chemicals, February 2021). 
#erefore, MetFrag paired with CompTox is likely to sug-
gest smaller lists of candidates which are de facto envi-
ronmentally-meaningful, making workflow runtimes 
shorter and candidate evaluation relatively easier. How-
ever, using CompTox has drawbacks, principally stem-
ming from its lack of comprehensiveness when compared 
to PubChem. In some cases, there may be a lack of can-
didates matching the identification criteria when using 
CompTox with MetFrag simply because they may not 
exist within CompTox itself to begin with due to its lim-
ited size and scope. PubChemLite [55, 56, 58] represents 
one complementary alternative to these issues, as it is by 
design essentially a subset of environmentally relevant 
compounds based on compound classifications. Overall, 
the ability to subset databases based on usage and clas-
sification information of chemicals can be beneficial, as 
different regulatory bodies may have different mandates, 
and studies can be designed to align with those mandates 
accordingly, e.g., focus only on chemicals with (i) known 
usage in industrial manufacturing, or (ii) agricultural 
chemicals, or (iii) pharmaceuticals, etc.

Using scenarios as a framework to interpret MetFrag’s 
results was critical considering the specific regulatory 
aims of this work: tentatively identify pollutants of high 
priority (with minimum Level 3 confidence) to guide fur-
ther monitoring and identification efforts.

Scenario Analysis revealed in detail whether Spec-
tral, Metadata, or both contributed to a given MetFrag 
Score and in turn provided the rationale behind pro-
posed candidates. As our evaluation has shown, multiple 
candidates are worth considering especially if they have 
very similar scores (e.g., Table 6), or have more compel-
ling evidence represented by individual scoring terms as 
described above. In this way, Scenario Analysis as used 
here is highly suitable for transparently communicating 
scientific results in a regulatory context. On a larger scale, 
such analyses address a key weakness common to NTA 
studies: the current lack of ability to perform detailed 

data interpretation – especially in a high-throughput, 
automatable and reproducible manner.

Furthermore, Scenario Analysis as used here can 
inform decision-making regarding the next steps. Besides 
addressing study priorities based on “depth vs. breadth” 
as discussed in the Results, the scenarios can be used 
to devise a prioritisation scheme for future work. For 
example, if authentic standards can only be purchased/
analysed for 10 compounds due to resource limitations, 
those compounds should be the recommended candi-
dates with MetFrag Scores from Scenario 1 > Scenarios 
2/3 >  >  > Scenario 4. Alternatively, if it is known from the 
outset that spectral data may be poor quality, Scenario 
2 candidates may take precedence over Scenario 3 can-
didates, as the former rely on high Metadata scores and 
not high Spectral scores for their high MetFrag Scores. 
Additionally, applying the precautionary principle may 
motivate prioritising identity confirmations of candidates 
with concerning metadata like high toxicity and/or expo-
sure (corresponding to KEMIMARKET_HAZ and KEM-
IMARKET_EXPO scores), even if those candidates are 
not necessarily ranked highly by MetFrag.

Practically speaking, next steps in environmental 
monitoring based on the results here (besides identity 
confirmation using authentic standards) could include 
expanding suspect lists using the recommended can-
didates to improve future suspect screening activities. 
#ese new suspects could in turn be added to the inclu-
sion lists of future measurements, thereby already gain-
ing an analytical ‘upper-hand’ for future NTA studies. 
Expanding suspect and inclusion lists in this way, pos-
sibly in combination with using a rarity score [26] that 
prioritises high intensity, infrequently occurring peaks, 
represents an evidence-based approach towards more 
meaningful environmental monitoring in the long-run, 
as these candidate compounds were tentatively ‘observed’ 
and are therefore site-specific. Otherwise, suspect lists are 
typically expanded based on information from national 
or international chemical registration lists, whose appli-
cability may be limited depending on the actual usage/
exposure in the region of concern. #erefore, an addi-
tional outcome of this study is a means to bridge target 
and non-target analysis by supplying meaningful candi-
dates for suspect screening.

#is work is one contribution to a much larger discus-
sion surrounding (i) how NTA can support regulatory 
environmental monitoring, and (ii) the practical feasibil-
ity of applying NTA in routine environmental monitor-
ing. (For an example of current discourse, see Germany’s 
guidelines for non-target screening in water analysis 
[52].) Regarding the former, this work demonstrates that 
NTA can be used to address the concerns of regulators 
by translating research questions arising from regulatory 
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priorities into peak-picking/mass prioritisation criteria: 
in this case, high concentration unknown pollutants with 
point sources that occurred persistently were taken to be 
high-intensity precursors found at one or few sampling 
sites at both sampling time points. Without the ability 
to perform quantification, the assumption that high ion 
intensity represents high concentration could be vali-
dated by using different chromatographic solvent systems 
as a test of ionisation efficiency in future work, or imple-
menting ionisation efficiency models [32, 46].

On the feasibility of performing NTA as part of rou-
tine regulatory environmental monitoring, the over-
all method described here offers a highly automated 
approach via (i) feature prioritisation via enviMass, (ii) 
prescreening and quality control (plus a manual step), 
and (iii) in silico identification, of which (ii) and (iii) 
were developed in this work. #e results interpretation 
and candidate recommendation processes performed 
manually in this work form the basis of future efforts 
towards automated reporting based on Scenario Analy-
sis, MetFrag Score distributions, and evaluation of criti-
cal parameters like thresholds for potential toxicities 
and exposure levels. Such automated reporting would 
not only allow scalability of future regulatory NTA stud-
ies, but could also eliminate potential biases in unknown 
identification—analysts would not be able to ‘cherry-
pick’ candidates based on their familiarity with certain 
compounds because undescriptive identifiers, e.g., DTX-
SIDs would be used up until the final results are delivered 
at the end of the entire method. Furthermore, while the 
prescreening, quality control, and identification workflow 
was applied retrospectively, the improvements to work-
flow automation detailed here could allow for quicker 
data analysis turnaround in the future, which would 
help guide future sampling and measurements planned 
in the short–medium term and prevent the long delays 
between remeasurements still commonly observed in 
NTA investigations—effectively, moving towards ‘real-
time’ instead of retrospective NTA approaches. Two 
concrete follow-up initiatives are foreseen: (i) build an 
interface connecting Shinyscreen and MetFrag, includ-
ing automated reporting features as previously described, 
and (ii) develop a set of ‘default’ scoring terms and set-
tings tailored for NTA of wastewater samples. Further 
collaborations involving non-target wastewater studies 
and database hosts will help augment expert knowledge 
on more use cases, which would be leveraged to develop 
this approach further.

On a community level, standardisation would play a 
role in increasing the feasibility of NTA as part of rou-
tine regulatory environmental monitoring. As previ-
ously mentioned, there exist considerable, albeit nascent, 
efforts towards standardising analytical protocols for 

non-target screening on a national level in, e.g., Germany 
in the form of guidelines [52]. Such activities suggest that 
standardisation is certainly of priority to the community 
and may be achievable over time. However, NTA may not 
be widely adopted by regulators in the short- to medium-
term until analytical protocols are successfully standard-
ised. In turn, it continues to be challenging from a data 
analysis perspective to implement standardised work-
flows if the analytical parameters used for measuring data 
are not themselves standardised. #us, the status quo 
demands that current data processing methods remain 
flexible to accommodate the variety of analytical param-
eters used, as is the case with the method presented here.

Conclusions
A prescreening and identification workflow for ana-
lysing non-target compounds was developed in this 
study to retrospectively identify unknowns detected in 
WWTP sites in the context of directly supporting regu-
latory decision-making for environmental monitoring. 
Using Open data and Open tools including the US EPA 
CompTox Chemicals Dashboard, NORMAN Network 
resources such as SusDat and the Suspect List Exchange, 
and MetFrag, tentative identifications for 21 unknown 
compounds were provided at Level 3 confidence, and 1 
compound’s identity was confirmed using a reference 
standard giving a Level 1 identification. #ese results 
were achieved despite limited data quality.

#is study heavily emphasised results interpreta-
tion on two levels: on a global level across the chemical 
unknowns investigated, and on an individual candidate 
level. #rough these analyses, specific candidates were 
recommended for further identification efforts, and 
transparent justifications were provided based on the 
MetFrag score breakdown (i.e., spectral vs. metadata evi-
dence). #ese recommendations, and not just MetFrag’s 
outputs, represent the final results in the regulatory and 
environmental monitoring context of this study, and may 
serve as a template to drive future developments in NTA.

#e prescreening and quality control workflow devel-
oped here is embedded in the open R package Shiny-
screen [24], which is freely available online, as is code 
from ReSOLUTION [55] and RChemMass [56] used for 
performing command-line MetFrag identification. #e 
CompTox database version with the metadata terms used 
here is likewise also publicly available [54].

Abbreviations
NTA: Non-target analysis; WWTP: Wastewater treatment plant; US EPA: United 
States Environmental Protection Agency; CompTox: US EPA CompTox Chemi-
cals Dashboard; DTXSID: DSSTox Substance Identifier (from CompTox); CPDat: 
Chemicals and Products Database; REACH: Registration, Evaluation, Authorisa-
tion and Restriction of Chemicals; MoNA: MassBank of North America; UVCB: 



Page 19 of 21Lai et al. Environ Sci Eur           (2021) 33:43  

Chemical substances of Unknown or Variable composition, Complex reaction 
products, and Biological materials.

Supplementary Information
The online version contains supplementary material available at https:// doi. 
org/ 10. 1186/ s12302- 021- 00475-1.

 Additional "le 1: Table S1. enviMass Parameters used for Orbitrap 
measurements in this study. Figure S1. Screenshot of the MSConvert 
(v.3.0.19182-51f676fbe) Graphical User Interface showing settings used 
to convert the .RAW mass spectrometry data to .mzML format. Table S2. 
List of 22 m/z which had been prioritised by enviMass and passed Quality 
Control to qualify for MetFrag identification. Table S3. m/z 216.0930. 
Table S4. m/z 177.1126. Table S5. m/z 212.0889. Table S6. m/z 173.1649. 
Table S7. m/z 301.1396. Table S8. m/z 218.1040. Table S9. m/z 176.0707. 
Table S10. m/z 193.0721Table S10: m/z 193.0721. Table S11. m/z 
249.1848. Table S12. m/z 184.0427. Table S13. m/z 171.1492. Table S14. 
m/z 199.1190. Table S15. m/z 185.1033. Table S16. m/z 251.1491. 
Table S17. m/z 211.0285. Table S18. m/z 546.2622. Table S19: Candidate 
Recommendations for all 22 m/z.

Acknowledgements
The authors acknowledge Dr. Martin Loos (enviBee GmbH) for his techni-
cal support with enviMass analyses. Contributors to CompTox, MetFrag, the 
suspect lists on the NORMAN Suspect List Exchange, the Open software used 
here, and Open Science in general are gratefully appreciated.

Authors’ contributions
LK conceived the study and set up the sampling campaigns; OJ measured 
the data; AL, ELS, RRS designed the workflow presented; AL, ELS, TK wrote the 
software; AL interpreted the data, AL drafted the manuscript with inputs from 
ELS, RRS, LK, and OJ; AL, LK, OJ, RRS, TK, and ELS revised the submitted version. 
All authors read and approved the final manuscript.

Funding
Open Access funding enabled and organized by Projekt DEAL. ELS, AL, and TK 
are supported by the Luxembourg National Research Fund (FNR) for project 
A18/BM/12341006.

 Availability of data and materials
The mass spectrometry dataset generated and analysed during the current 
study, including the complete MetFrag results for the 22 m/z that were ten-
tatively identified, are available as an open MassIVE dataset (MSV000086631) 
via https:// massi ve. ucsd. edu/ Prote oSAFe/ datas et. jsp? task= 14f51 e6ec9 9a423 
29e7a 0eeaa d0e58 24. Software Project name: Shinyscreen. Project home page: 
https:// git- r3lab. uni. lu/ eci/ shiny screen. Archived version used in this study: 
Shinyscreen v.0.1.1-paper (https:// git- r3lab. uni. lu/ eci/ shiny scree n/-/ tree/v. 
0.1. 1- paper). Operating system(s): Windows, Mac OSX, Linux. Programming 
language: R Other requirements: OpenJDK and other R package dependen-
cies listed in Shinyscreen’s README. License: Apache Version 2.0 (https:// www. 
apache. org/ licen ses/ LICEN SE-2.0).

 Code availability
All codes used to run the prescreening and quality control workflow and Met-
Frag command-line analysis is open/publicly available via https:// github. com/ 
schym ane/ ReSOL UTION, https:// github. com/ schym ane/ RChem Mass, and 
Shinyscreen (see below). All other datasets and databases used as part of Met-
Frag identification are open/publicly available (links available in References).

Declarations

Ethics approval and consent to participate
Not applicable.

Consent for publication
Not applicable.

Competing interests
The authors declare no competing interests.

Author details
1 Luxembourg Centre for Systems Biomedicine (LCSB), University of Lux-
embourg, 6 Avenue du Swing, 4367 Belvaux, Luxembourg. 2 Institute 
for Inorganic and Analytical Chemistry, Friedrich-Schiller University, Lessing 
Strasse 8, 07743 Jena, Germany. 3 Present Address: IFREMER (Institut Français 
de Recherche pour l’Exploitation de la Mer), Laboratoire Biogéochimie des 
Contaminants Organiques, Rue de l’Ile d’Yeu, BP 21105, 44311 Nantes Cedex 
3, France. 4 Amt Für Abfall, Wasser, Energie Und Luft (AWEL), Walcheplatz 2, 
8090 Zurich, Switzerland. 

Received: 23 December 2020   Accepted: 9 March 2021

References
 1. Albergamo V, Schollée JE, Schymanski EL et al (2019) Nontarget screen-

ing reveals time trends of polar micropollutants in a riverbank filtration 
system. Environ Sci Technol. https:// doi. org/ 10. 1021/ acs. est. 9b017 50

 2. Alygizakis N, Slobodnik J (2018) S32 | REACH2017|>68,600 REACH Chemi-
cals (Version NORMAN-SLE-S32013). Zenodo. https:// doi. org/ 10. 5281/ 
zenodo. 36531 60. Accessed 16 Aug 2020

 3. Anliker S, Loos M, Comte R et al (2020) Assessing emissions from 
pharmaceutical manufacturing based on temporal high-resolution mass 
spectrometry data. Environ Sci Technol 54:4110–4120. https:// doi. org/ 10. 
1021/ acs. est. 9b070 85

 4. Beckers L-M, Brack W, Dann JP et al (2020) Unraveling longitudinal pollu-
tion patterns of organic micropollutants in a river by non-target screen-
ing and cluster analysis. Sci Total Environ 727:138388. https:// doi. org/ 10. 
1016/j. scito tenv. 2020. 138388

 5. Carpenter CMG, Wong LYJ, Johnson CA, Helbling DE (2019) Fall creek 
monitoring station: highly resolved temporal sampling to prioritize the 
identification of nontarget micropollutants in a small stream. Environ Sci 
Technol 53:77–87. https:// doi. org/ 10. 1021/ acs. est. 8b053 20

 6. Chambers MC, Maclean B, Burke R et al (2012) A cross-platform toolkit for 
mass spectrometry and proteomics. Nat Biotechnol 30:918–920. https:// 
doi. org/ 10. 1038/ nbt. 2377

 7. ChemSpider | Search and share chemistry (2020). http:// www. chems 
pider. com/. Accessed 13 Aug 2020

 8. Chiaia-Hernández AC, Günthardt BF, Frey MP, Hollender J (2017) Unravel-
ling contaminants in the Anthropocene using statistical analysis of liquid 
chromatography–high-resolution mass spectrometry nontarget screen-
ing data recorded in lake sediments. Environ Sci Technol 51:12547–12556. 
https:// doi. org/ 10. 1021/ acs. est. 7b033 57

 9. Choi Y, Kim K, Kim D et al (2020) Ny-Ålesund-oriented organic pollutants 
in sewage effluent and receiving seawater in the Arctic region of Kongsf-
jorden. Environ Pollut 258:113792. https:// doi. org/ 10. 1016/j. envpol. 2019. 
113792

 10. Dionisio KL, Phillips K, Price PS et al (2018) The Chemical and Products 
Database, a resource for exposure-relevant data on chemicals in con-
sumer products. Sci Data 5:180125. https:// doi. org/ 10. 1038/ sdata. 2018. 
125

 11. Faber A-H, Annevelink MPJA, Schot PP et al (2019) Chemical and bioas-
say assessment of waters related to hydraulic fracturing at a tight gas 
production site. Sci Total Environ 690:636–646. https:// doi. org/ 10. 1016/j. 
scito tenv. 2019. 06. 354

 12. Fiehn Lab (2020) MassBank of North America. https:// mona. fiehn lab. 
ucdav is. edu/. Accessed 3 Jun 2020

 13. Fischer S (2017) S17 | KEMIMARKET | KEMI Market List (Version NORMAN-
SLE-S17013). Zenodo. https:// doi. org/ 10. 5281/ zenodo. 36531 75. Accessed 
8 May 2020

 14. Gerlich M, Neumann S (2013) MetFusion: integration of compound 
identification strategies. J Mass Spectrom 48:291–298. https:// doi. org/ 10. 
1002/ jms. 3123

 15. Helmus R, ter Laak TL, van Wezel AP et al (2021) patRoon: open 
source software platform for environmental mass spectrometry 
based non-target screening. J Cheminf 13:1. https:// doi. org/ 10. 1186/ 
s13321- 020- 00477-w

https://doi.org/10.1186/s12302-021-00475-1
https://doi.org/10.1186/s12302-021-00475-1
https://massive.ucsd.edu/ProteoSAFe/dataset.jsp?task=14f51e6ec99a42329e7a0eeaad0e5824
https://massive.ucsd.edu/ProteoSAFe/dataset.jsp?task=14f51e6ec99a42329e7a0eeaad0e5824
https://git-r3lab.uni.lu/eci/shinyscreen
https://git-r3lab.uni.lu/eci/shinyscreen/-/tree/v.0.1.1-paper
https://git-r3lab.uni.lu/eci/shinyscreen/-/tree/v.0.1.1-paper
https://www.apache.org/licenses/LICENSE-2.0
https://www.apache.org/licenses/LICENSE-2.0
https://github.com/schymane/ReSOLUTION
https://github.com/schymane/ReSOLUTION
https://github.com/schymane/RChemMass
https://doi.org/10.1021/acs.est.9b01750
https://doi.org/10.5281/zenodo.3653160
https://doi.org/10.5281/zenodo.3653160
https://doi.org/10.1021/acs.est.9b07085
https://doi.org/10.1021/acs.est.9b07085
https://doi.org/10.1016/j.scitotenv.2020.138388
https://doi.org/10.1016/j.scitotenv.2020.138388
https://doi.org/10.1021/acs.est.8b05320
https://doi.org/10.1038/nbt.2377
https://doi.org/10.1038/nbt.2377
http://www.chemspider.com/
http://www.chemspider.com/
https://doi.org/10.1021/acs.est.7b03357
https://doi.org/10.1016/j.envpol.2019.113792
https://doi.org/10.1016/j.envpol.2019.113792
https://doi.org/10.1038/sdata.2018.125
https://doi.org/10.1038/sdata.2018.125
https://doi.org/10.1016/j.scitotenv.2019.06.354
https://doi.org/10.1016/j.scitotenv.2019.06.354
https://mona.fiehnlab.ucdavis.edu/
https://mona.fiehnlab.ucdavis.edu/
https://doi.org/10.5281/zenodo.3653175
https://doi.org/10.1002/jms.3123
https://doi.org/10.1002/jms.3123
https://doi.org/10.1186/s13321-020-00477-w
https://doi.org/10.1186/s13321-020-00477-w


Page 20 of 21Lai et al. Environ Sci Eur           (2021) 33:43 

 16. Hites RA, Jobst KJ (2018) Is nontargeted screening reproducible? Environ 
Sci Technol 52:11975–11976. https:// doi. org/ 10. 1021/ acs. est. 8b056 71

 17. Hollender J, Schymanski EL, Singer HP, Ferguson PL (2017) Nontarget 
screening with high resolution mass spectrometry in the environment: 
ready to go? Environ Sci Technol 51:11505–11512. https:// doi. org/ 10. 
1021/ acs. est. 7b021 84

 18. Hollender J, van Bavel B, Dulio V et al (2019) High resolution mass 
spectrometry-based non-target screening can support regulatory 
environmental monitoring and chemicals management. Environ Sci Eur 
31:42. https:// doi. org/ 10. 1186/ s12302- 019- 0225-x

 19. Hug C, Ulrich N, Schulze T et al (2014) Identification of novel micropollut-
ants in wastewater by a combination of suspect and nontarget screen-
ing. Environ Pollut 184:25–32. https:// doi. org/ 10. 1016/j. envpol. 2013. 07. 
048

 20. Human Metabolome Database (2020). https:// hmdb. ca/. Accessed 13 
Aug 2020

 21. Kandie FJ, Krauss M, Beckers L-M et al (2020) Occurrence and risk assess-
ment of organic micropollutants in freshwater systems within the Lake 
Victoria South Basin, Kenya. Sci Total Environ 714:136748. https:// doi. org/
10. 1016/j. scito tenv. 2020. 136748

 22. Kanehisa M, Goto S (2000) KEGG: kyoto encyclopedia of genes and 
genomes. Nucleic Acids Res 28:27–30. https:// doi. org/ 10. 1093/ nar/ 28.1. 
27

 23. Kim S, Chen J, Cheng T et al (2021) PubChem in 2021: new data content 
and improved web interfaces. Nucleic Acids Res 49:D1388–D1395. 
https:// doi. org/ 10. 1093/ nar/ gkaa9 71

 24. Kondić T, Lai A, Schymanski E, et al (2020) Environmental cheminformat-
ics/shinyscreen. https:// git- r3lab. uni. lu/ eci/ shiny screen. Accessed 16 Aug 
2020

 25. Köppe T, Jewell KS, Dietrich C et al (2020) Application of a non-target 
workflow for the identification of specific contaminants using the exam-
ple of the Nidda river basin. Water Res 178:115703. https:// doi. org/ 10. 
1016/j. watres. 2020. 115703

 26. Krauss M, Hug C, Bloch R et al (2019) Prioritising site-specific micropol-
lutants in surface water from LC–HRMS non-target screening data 
using a rarity score. Environ Sci Eur 31:45. https:// doi. org/ 10. 1186/ 
s12302- 019- 0231-z

 27. Krauss M, Singer H, Hollender J (2010) LC–high resolution MS in 
environmental analysis: from target screening to the identification of 
unknowns. Anal Bioanal Chem 397:943–951. https:// doi. org/ 10. 1007/ 
s00216- 010- 3608-9

 28. Lara-Martín PA, Chiaia-Hernández AC, Biel-Maeso M et al (2020) Tracing 
urban wastewater contaminants into the Atlantic ocean by nontarget 
screening. Environ Sci Technol 54:3996–4005. https:// doi. org/ 10. 1021/ acs.
est. 9b061 14

 29. Lege S, Eisenhofer A, Heras JEY, Zwiener C (2019) Identification of trans-
formation products of denatonium—occurrence in wastewater treat-
ment plants and surface waters. Sci Total Environ 686:140–150. https:// 
doi. org/ 10. 1016/j. scito tenv. 2019. 05. 423

 30. Letzel T (2021) FOR-IDENT—Fortschritte in der Identifizierung organischer 
Spurenstoffe: Zusammenführen der Hilfsmittel und Standardisierung der 
Suspected- und Non-Target Analytik. (Advances in the Identification of 
Organic Trace Pollutants: Merging Tools and Standardisation of Suspect 
and Non-target Analytics.) https:// www. for- ident. org/. Accessed 28 Feb 
2021

 31. Li Z, Kaserzon SL, Plassmann MM et al (2017) A strategic screening 
approach to identify transformation products of organic micropollutants 
formed in natural waters. Environ Sci Processes Impacts 19:488–498. 
https:// doi. org/ 10. 1039/ C6EM0 0635C

 32. Liigand J, Wang T, Kellogg J et al (2020) Quantification for non-targeted 
LC/MS screening without standard substances. Sci Rep 10:5808. https:// 
doi. org/ 10. 1038/ s41598- 020- 62573-z

 33. Ljoncheva M, Stepišnik T, Džeroski S, Kosjek T (2020) Cheminformatics in 
MS-based environmental exposomics: current achievements and future 
directions. Trends Environ Anal Chem 28:e00099. https:// doi. org/ 10. 
1016/j. teac. 2020. e00099

 34. Loos M, Schmitt U, Schollée JE (2018) blosloos/enviMass: enviMass ver-
sion 3.5. https:// doi. org/ 10. 5281/ zenodo. 12130 98. Accessed 13 Oct 2020

 35. Luft A, Bröder K, Kunkel U et al (2017) Nontarget analysis via LC–QTOF-MS 
to assess the release of organic substances from polyurethane coating. 

Environ Sci Technol 51:9979–9988. https:// doi. org/ 10. 1021/ acs. est. 7b015 
73

 36. MassBank Consortium, NORMAN Association (2021) MassBank | Mass-
Bank Europe Mass Spectral DataBase. https:// massb ank. eu/ MassB ank/. 
Accessed 28 Feb 2021

 37. McEachran AD, Mansouri K, Grulke C et al (2018) “MS-Ready” structures 
for non-targeted high-resolution mass spectrometry screening studies. J 
Cheminf. https:// doi. org/ 10. 1186/ s13321- 018- 0299-2

 38. Mechelke J, Longrée P, Singer H, Hollender J (2019) Vacuum-assisted 
evaporative concentration combined with LC-HRMS/MS for ultra-trace-
level screening of organic micropollutants in environmental water 
samples. Anal Bioanal Chem 411:2555–2567. https:// doi. org/ 10. 1007/ 
s00216- 019- 01696-3

 39. Menger F, Ahrens L, Wiberg K, Gago-Ferrero P (2021) Suspect screening 
based on market data of polar halogenated micropollutants in river water 
affected by wastewater. J Hazard Mater 401:123377. https:// doi. org/ 10. 
1016/j. jhazm at. 2020. 123377

 40. Miaz LT, Plassmann MM, Gyllenhammar I et al (2020) Temporal trends 
of suspect- and target-per/polyfluoroalkyl substances (PFAS), extract-
able organic fluorine (EOF) and total fluorine (TF) in pooled serum from 
first-time mothers in Uppsala, Sweden, 1996–2017. Environ Sci Processes 
Impacts 22:1071–1083. https:// doi. org/ 10. 1039/ C9EM0 0502A

 41. Moschet C, Anumol T, Lew BM et al (2018) Household dust as a repository 
of chemical accumulation: new insights from a comprehensive high-
resolution mass spectrometric study. Environ Sci Technol 52:2878–2887. 
https:// doi. org/ 10. 1021/ acs. est. 7b057 67

 42. Muz M, Dann JP, Jäger F et al (2017) Identification of mutagenic aromatic 
amines in river samples with industrial wastewater impact. Environ Sci 
Technol 51:4681–4688. https:// doi. org/ 10. 1021/ acs. est. 7b004 26

 43. NORMAN Network, Aalizadeh R, Alygizakis N, et al (2019) S0 | SUSDAT | 
Merged NORMAN Suspect List: SusDat (Version NORMAN-SLE-S0.0.2.0) 
[Data set]. Zenodo. https:// doi. org/ 10. 5281/ zenodo. 35201 32. Accessed 8 
May 2020

 44. Oberacher H, Sasse M, Antignac J-P et al (2020) A European proposal for 
quality control and quality assurance of tandem mass spectral libraries. 
Environ Sci Eur 32:43. https:// doi. org/ 10. 1186/ s12302- 020- 00314-9

 45. Oetjen K, Blotevogel J, Borch T et al (2018) Simulation of a hydraulic 
fracturing wastewater surface spill on agricultural soil. Sci Total Environ 
645:229–234. https:// doi. org/ 10. 1016/j. scito tenv. 2018. 07. 043

 46. Panagopoulos Abrahamsson D, Park J-S, Singh RR et al (2020) Applica-
tions of machine learning to in silico quantification of chemicals without 
analytical standards. J Chem Inf Model. https:// doi. org/ 10. 1021/ acs. jcim. 
9b010 96

 47. Park N, Choi Y, Kim D et al (2018) Prioritization of highly exposable phar-
maceuticals via a suspect/non-target screening approach: a case study 
for Yeongsan River, Korea. Sci Total Environ 639:570–579. https:// doi. org/
10. 1016/j. scito tenv. 2018. 05. 081

 48. Pence HE, Williams A (2010) ChemSpider: an online chemical information 
resource. J Chem Educ 87:1123–1124. https:// doi. org/ 10. 1021/ ed100 
697w

 49. Purschke K, Zoell C, Leonhardt J et al (2020) Identification of unknowns in 
industrial wastewater using offline 2D chromatography and non-target 
screening. Sci Total Environ 706:135835. https:// doi. org/ 10. 1016/j. scito 
tenv. 2019. 135835

 50. Ruff M, Mueller MS, Loos M, Singer HP (2015) Quantitative target and 
systematic non-target analysis of polar organic micro-pollutants along 
the river Rhine using high-resolution mass-spectrometry—Identification 
of unknown sources and compounds. Water Res 87:145–154. https:// doi. 
org/ 10. 1016/j. watres. 2015. 09. 017

 51. Ruttkies C, Schymanski EL, Wolf S et al (2016) MetFrag relaunched: incor-
porating strategies beyond in silico fragmentation. J Cheminform 8:3. 
https:// doi. org/ 10. 1186/ s13321- 016- 0115-9

 52. Schulz W, Lucke T, et al. (2019) Non-target screening in water analysis—
Guideline for the application of LC-ESI-HRMS for screening. https:// www.
wasse rchem ische- gesel lscha ft. de/ images/ HAIII/ NTS- Guidl ine_ EN_s. pdf. 
Accessed 27 Feb 2021

 53. Schwarzbauer J, Ricking M (2010) Non-target screening analysis of river 
water as compound-related base for monitoring measures. Environ Sci 
Pollut Res 17:934–947. https:// doi. org/ 10. 1007/ s11356- 009- 0269-3

https://doi.org/10.1021/acs.est.8b05671
https://doi.org/10.1021/acs.est.7b02184
https://doi.org/10.1021/acs.est.7b02184
https://doi.org/10.1186/s12302-019-0225-x
https://doi.org/10.1016/j.envpol.2013.07.048
https://doi.org/10.1016/j.envpol.2013.07.048
https://hmdb.ca/
https://doi.org/10.1016/j.scitotenv.2020.136748
https://doi.org/10.1016/j.scitotenv.2020.136748
https://doi.org/10.1093/nar/28.1.27
https://doi.org/10.1093/nar/28.1.27
https://doi.org/10.1093/nar/gkaa971
https://git-r3lab.uni.lu/eci/shinyscreen
https://doi.org/10.1016/j.watres.2020.115703
https://doi.org/10.1016/j.watres.2020.115703
https://doi.org/10.1186/s12302-019-0231-z
https://doi.org/10.1186/s12302-019-0231-z
https://doi.org/10.1007/s00216-010-3608-9
https://doi.org/10.1007/s00216-010-3608-9
https://doi.org/10.1021/acs.est.9b06114
https://doi.org/10.1021/acs.est.9b06114
https://doi.org/10.1016/j.scitotenv.2019.05.423
https://doi.org/10.1016/j.scitotenv.2019.05.423
https://www.for-ident.org/
https://doi.org/10.1039/C6EM00635C
https://doi.org/10.1038/s41598-020-62573-z
https://doi.org/10.1038/s41598-020-62573-z
https://doi.org/10.1016/j.teac.2020.e00099
https://doi.org/10.1016/j.teac.2020.e00099
https://doi.org/10.5281/zenodo.1213098
https://doi.org/10.1021/acs.est.7b01573
https://doi.org/10.1021/acs.est.7b01573
https://massbank.eu/MassBank/
https://doi.org/10.1186/s13321-018-0299-2
https://doi.org/10.1007/s00216-019-01696-3
https://doi.org/10.1007/s00216-019-01696-3
https://doi.org/10.1016/j.jhazmat.2020.123377
https://doi.org/10.1016/j.jhazmat.2020.123377
https://doi.org/10.1039/C9EM00502A
https://doi.org/10.1021/acs.est.7b05767
https://doi.org/10.1021/acs.est.7b00426
https://doi.org/10.5281/zenodo.3520132
https://doi.org/10.1186/s12302-020-00314-9
https://doi.org/10.1016/j.scitotenv.2018.07.043
https://doi.org/10.1021/acs.jcim.9b01096
https://doi.org/10.1021/acs.jcim.9b01096
https://doi.org/10.1016/j.scitotenv.2018.05.081
https://doi.org/10.1016/j.scitotenv.2018.05.081
https://doi.org/10.1021/ed100697w
https://doi.org/10.1021/ed100697w
https://doi.org/10.1016/j.scitotenv.2019.135835
https://doi.org/10.1016/j.scitotenv.2019.135835
https://doi.org/10.1016/j.watres.2015.09.017
https://doi.org/10.1016/j.watres.2015.09.017
https://doi.org/10.1186/s13321-016-0115-9
https://www.wasserchemische-gesellschaft.de/images/HAIII/NTS-Guidline_EN_s.pdf
https://www.wasserchemische-gesellschaft.de/images/HAIII/NTS-Guidline_EN_s.pdf
https://doi.org/10.1007/s11356-009-0269-3


Page 21 of 21Lai et al. Environ Sci Eur           (2021) 33:43  

 54. Schymanski E (2019) MetFrag Local CSV: CompTox (7 March 2019 release) 
Wastewater MetaData File (Version WWMetaData_4Oct2019). Zenodo. 
https:// doi. org/ 10. 5281/ zenodo. 34727 81. Accessed 8 May 2020

 55. Schymanski E (2020a) schymane/ReSOLUTION. Version 0.1.8 https:// 
github. com/ schym ane/ ReSOL UTION. Accessed 16 Aug 2020

 56. Schymanski E (2020b) schymane/RChemMass. Version 0.1.27 https:// 
github. com/ schym ane/ RChem Mass. Accessed 16 Aug 2020

 57. Schymanski EL, Jeon J, Gulde R et al (2014) Identifying small molecules 
via high resolution mass spectrometry: communicating confidence. 
Environ Sci Technol 48:2097–2098. https:// doi. org/ 10. 1021/ es500 2105

 58. Schymanski EL, Kondic T, Neumann S et al (2021) Empowering large 
chemical knowledge bases for exposomics: PubChemLite Meets MetFrag. 
J Cheminform 13:19. https:// doi. org/ 10. 1186/ s13321- 021- 00489-0

 59. Sousa JCG, Ribeiro AR, Barbosa MO et al (2018) A review on environmen-
tal monitoring of water organic pollutants identified by EU guidelines. J 
Hazard Mater 344:146–162. https:// doi. org/ 10. 1016/j. jhazm at. 2017. 09. 058

 60. Sun C, Zhang Y, Alessi DS, Martin JW (2019) Nontarget profiling of organic 
compounds in a temporal series of hydraulic fracturing flowback and 
produced waters. Environ Int 131:104944. https:// doi. org/ 10. 1016/j. 
envint. 2019. 104944

 61. Tian Z, Peter KT, Gipe AD et al (2020) Suspect and nontarget screening 
for contaminants of emerging concern in an urban estuary. Environ Sci 
Technol 54:889–901. https:// doi. org/ 10. 1021/ acs. est. 9b061 26

 62. US EPA (2016) Chemical and Products Database (CPDat). US EPA. https:// 
www. epa. gov/ chemi cal- resea rch/ chemi cal- and- produ cts- datab ase- 
cpdat. Accessed 8 May 2020

 63. Veenaas C, Bignert A, Liljelind P, Haglund P (2018) Nontarget Screen-
ing and time-trend analysis of sewage sludge contaminants via 

two-dimensional gas chromatography-high resolution mass spectrom-
etry. Environ Sci Technol 52:7813–7822. https:// doi. org/ 10. 1021/ acs. est. 
8b011 26

 64. Wagner TV, Helmus R, Quiton Tapia S et al (2020) Non-target screening 
reveals the mechanisms responsible for the antagonistic inhibiting effect 
of the biocides DBNPA and glutaraldehyde on benzoic acid biodegrada-
tion. J Hazard Mater 386:121661. https:// doi. org/ 10. 1016/j. jhazm at. 2019. 
121661

 65. Wang Z, Walker GW, Muir DCG, Nagatani-Yoshida K (2020) Toward a 
Global understanding of chemical pollution: a first comprehensive analy-
sis of national and regional chemical inventories. Environ Sci Technol. 
https:// doi. org/ 10. 1021/ acs. est. 9b063 79

 66. Williams AJ, Grulke CM, Edwards J et al (2017) The CompTox Chemistry 
Dashboard: a community data resource for environmental chemistry. J 
Cheminf 9:61. https:// doi. org/ 10. 1186/ s13321- 017- 0247-6

 67. Wishart DS, Feunang YD, Marcu A et al (2018) HMDB 4.0: the human 
metabolome database for 2018. Nucleic Acids Res 46:D608–D617. 
https:// doi. org/ 10. 1093/ nar/ gkx10 89

 68. Wolf S, Schmidt S, Müller-Hannemann M, Neumann S (2010) In silico 
fragmentation for computer assisted identification of metabolite mass 
spectra. BMC Bioinf 11:148. https:// doi. org/ 10. 1186/ 1471- 2105- 11- 148

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in pub-
lished maps and institutional affiliations.

https://doi.org/10.5281/zenodo.3472781
https://github.com/schymane/ReSOLUTION
https://github.com/schymane/ReSOLUTION
https://github.com/schymane/RChemMass
https://github.com/schymane/RChemMass
https://doi.org/10.1021/es5002105
https://doi.org/10.1186/s13321-021-00489-0
https://doi.org/10.1016/j.jhazmat.2017.09.058
https://doi.org/10.1016/j.envint.2019.104944
https://doi.org/10.1016/j.envint.2019.104944
https://doi.org/10.1021/acs.est.9b06126
https://www.epa.gov/chemical-research/chemical-and-products-database-cpdat
https://www.epa.gov/chemical-research/chemical-and-products-database-cpdat
https://www.epa.gov/chemical-research/chemical-and-products-database-cpdat
https://doi.org/10.1021/acs.est.8b01126
https://doi.org/10.1021/acs.est.8b01126
https://doi.org/10.1016/j.jhazmat.2019.121661
https://doi.org/10.1016/j.jhazmat.2019.121661
https://doi.org/10.1021/acs.est.9b06379
https://doi.org/10.1186/s13321-017-0247-6
https://doi.org/10.1093/nar/gkx1089
https://doi.org/10.1186/1471-2105-11-148


Overall, 21 compounds were tentatively identified with Level 3 confidence, and are

suspected to be adhesives, pesticides, manufacturing reagents, and

pharmaceuticals. One pesticide compound was identified with Level 1 confidence,

i.e., confirmed identification that was validated using a reference standard. The

pre-screening step introduced in this work as a Quality Control algorithm effectively

prioritised cases (sets of MS1 and corresponding MS2 signals) for non-target

identification - out of 5,550 under consideration, only 22 were pursued for non-target

identification that was performed using the in silico fragmenter MetFrag coupled to

various regulatory chemical lists. These lists represent so-called ‘environmental

metadata’ and their emerging status at the time was capitalised upon to aid

non-target identification here.

Copious analysis of MetFrag’s identification results were presented to help guide

further non-target identification efforts such as obtaining reference standards for

validation, as well as future sampling campaigns. The emphasis on results

interpretation here was in effort to maintain transparency and curb the ‘black box’

phenomenon that often characterises non-target analysis identification workflows,

particularly if the findings are intended to inform decisions in a regulatory context. All

mass spectral data, R code, and supporting analysis and results are openly available

online as an open MassIVE dataset (MSV000086631) via

https://doi.org/10.25345/C5CZ0K and in a GitLab repository

(https://git-r3lab.uni.lu/eci/shinyscreen/-/tree/v.0.1.1-paper).

Notably, one limitation of the work is its limited scope regarding compounds that

occur in the environment as a result of transformations of their parent compounds.

Myriad transformation products (TPs) are known to exist at detectable levels in the

environment, and are in some cases potentially more bioactive and toxic than their

parents. The systematic, large-scale identification of TPs remains elusive, partly

because of the lack of reference standards available for purchase, and also the

inaccessibility of TP information that can be used for screening environmental

samples in e.g., a consolidated open database. The work in the next chapter

addresses these gaps by exploiting an up-and-coming database resource developed

in-house for screening for the potential presence of TPs in environmental samples.
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Chapter 3

Data Mining Transformation Product
Information for Enhanced Suspect Screening

Pharmaceutical compounds are frequently detected in the environment as a result of

human consumption and emission via e.g., wastewater treatment effluent. In

Luxembourg as of 2019, 816 unique pharmaceutical compounds were approved for

the domestic market and thus are potentially consumed by the local population.

However, only five of the 92 chemicals regularly monitored by the Luxembourg Water

Management Agency (Administration de la Gestion de l’Eau) as part of Target

screening under the European Union Water Framework Directive (WFD) are

pharmaceuticals, the rest being pesticides and related compounds. Because

pharmaceuticals and their transformation products likely remain bioactive upon

emission despite wastewater treatment, their presence in the environment may pose

a threat to organisms living in Luxembourgish waters and potentially also human

health. Therefore, this study focused on the identification and, where possible,

quantification of pharmaceuticals and their transformation products in Luxembourgish

surface water collected across various sites in the country over 2 years as part of the

national monitoring campaign.

To identify and quantify pharmaceuticals in Luxembourgish waters, an augmented

suspect screening of parent pharmaceutical compounds and their TPs was

performed using two chemical lists: 1) the list of approved pharmaceuticals described

above,92 and 2) a newly-generated list of 82 pharmaceutical TPs resulting from

data-mining two sources, PubChem and the scientific literature. PubChem is the

largest open chemical database that not only contains basic information on

chemicals, but also features cross-linked information such as provenance, patents,

production, usage, links to disease etc. At the time of the study, integrating TP

information into PubChem’s backend was still in the early stages, so methods for

mining PubChem’s TP information were still in development, with new TP information
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constantly being curated and added at the same time.93,94 Besides mining PubChem,

TP information was also obtained from Anliker et al., who published a list of

pharmaceuticals and their TPs that were studied in Switzerland.95 The TPs from

these two sources were combined and curated to achieve a list of 82 unique TPs that

was used in suspect screening.

A total of 94 pharmaceutical parent compounds, 86 of which were quantified, plus 16

transformation products were identified in this study. Considering the national scale of

the monitoring campaign, the breadth of the pharmaceutical screening, and the

copious pharmaceutical concentration data collected, data visualisations were

developed to convey a spatio-temporal overview of pharmaceutical pollution in

Luxembourg. Visualising data with four available dimensions (compound,

concentration, location, time) is not trivial, and can potentially generate useful insights

that may, amongst other things, inform future sampling campaigns for continued

environmental monitoring. Advanced heatmaps and boxplots were used to display

these data to facilitate comparison across the different pharmaceutical compounds,

their locations, times of occurrence, and concentrations.

44

https://www.zotero.org/google-docs/?Uz5RWF
https://www.zotero.org/google-docs/?P5Dttq


Publication B

Occurrence and Distribution of Pharmaceuticals and Their Transformation
Products in Luxembourgish Surface Waters

Singh, R. R.1, Lai, A.2, Krier, J.3, Kondić, T4., Diderich, P.5 & Schymanski, E. L.6

DOI: 10.1021/acsenvironau.1c00008

Reprinted with permission from ACS Environ. Au 2021, 1, 1, 58–70.
Copyright 2022 American Chemical Society.

Selected for inclusion in the ACS Environ. Au “Rising Stars of 2022” collection.

Author Contributions
(Underlined numbers refer to PhD students)

Author No. 1 2 3 4 5 6

Conceptual
Research

Design

x x x

Planning of
Research
Activities

x x x

Reviewing the
Tools

x x x x

Data Collection x x x

Data Analysis
& Interpretation

x x x x

Manuscript
Writing

x x x

Suggested
Publication
Equivalence

Value

0.5

45

https://doi.org/10.1021/acsenvironau.1c00008


Occurrence and Distribution of Pharmaceuticals and Their
Transformation Products in Luxembourgish Surface Waters
Randolph R. Singh,* Adelene Lai, Jessy Krier, Todor Kondic,́ Philippe Diderich,
and Emma L. Schymanski*

Cite This: ACS Environ. Au 2021, 1, 58−70 Read Online

ACCESS Metrics & More Article Recommendations *sı Supporting Information

ABSTRACT: Pharmaceuticals and their transformation products
(TPs) are continuously released into the aquatic environment via
anthropogenic activity. To expand knowledge on the presence of
pharmaceuticals and their known TPs in Luxembourgish rivers, 92
samples collected during routine monitoring events between 2019
and 2020 were investigated using nontarget analysis. Water
samples were concentrated using solid-phase extraction and then
analyzed using liquid chromatography coupled to a high-resolution
mass spectrometer. Suspect screening was performed using several open source computational tools and resources including
Shinyscreen (https://git-r3lab.uni.lu/eci/shinyscreen/), MetFrag (https://msbi.ipb-halle.de/MetFrag/), PubChemLite (https://
zenodo.org/record/4432124), and MassBank (https://massbank.eu/MassBank/). A total of 94 pharmaceuticals, 88 confirmed at a
level 1 confidence (86 of which could be quantified, two compounds too low to be quantified) and six identified at level 2a, were
found to be present in Luxembourg rivers. Pharmaceutical TPs (12) were also found at a level 2a confidence. The pharmaceuticals
were present at median concentrations up to 214 ng/L, with caffeine having a median concentration of 1424 ng/L. Antihypertensive
drugs (15), psychoactive drugs (15), and antimicrobials (eight) were the most detected groups of pharmaceuticals. A spatiotemporal
analysis of the data revealed areas with higher concentrations of the pharmaceuticals, as well as differences in pharmaceutical
concentrations between 2019 and 2020. The results of this work will help guide activities for improving water management in the
country and set baseline data for continuous monitoring and screening efforts, as well as for further open data and software
developments.
KEYWORDS: pharmaceuticals, surface water, suspect screening, HRMS, transformation products, cheminformatics, open source,
nontarget screening

■ INTRODUCTION
The geography and history of Luxembourg have distinct
implications on its environment and water quality: it borders
Belgium, France, and Germany, and its rivers feed into the
Rhine basin. Luxembourg has vineyards lining the Moselle
River, agricultural activity in the north of the country, and a
population largely centered in the capital, which together
brings in a significant and varied chemical load into the
environment. Previous studies have reported the presence of
analgesics, antimicrobials, and estrogens in Luxembourgish
surface water.1−3 Aside from providing data on the level of
xenobiotics in Luxembourgish waters, these studies have also
demonstrated that the presence of these chemicals is due to
inputs from land use, accidental spillage, wastewater effluent,
and long-range transport.1,3−6 Other studies have reported the
measurement of 14 pesticides and their transformation
products (TPs) in both surface water and drinking water.3,7

The Luxembourg Water Management Agency (Administration
de la Gestion de l’Eau, hereafter AGE), in compliance with the
European Union Water Framework Directive (WFD),
monitors different organic contaminants in Luxembourgish

surface water.8 Among the 92 compounds included in the
targeted analysis performed by AGE, five are pharmaceuticals:
carbamazepine, diclofenac, ibuprofen, ketoprofen, and lido-
caine, while the rest the targeted organic contaminants are
pesticides and related compounds.
As there are conceivably more pharmaceuticals than the five

included in targeted monitoring that enter into the environ-
ment, it is important to determine which other pharmaceuticals
may be present, to gain a more holistic idea of the
pharmaceutical loading in Luxembourgish surface waters.
The presence of pharmaceuticals in the aquatic environment
poses a threat to human and environmental health due to
exposure to either the pharmaceuticals themselves or their
metabolites and TPs, which may still possess bioactivity.9−11
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These chemicals have potential negative impacts on human
health and the environment through different routes of
exposures.12,13

There are many approaches to account for the presence of
xenobiotics in the environment, but recently, increasing effort
has been in the use of nontargeted analysis (NTA) and/or
suspect screening using high-resolution mass spectrometry
(HRMS) specifically to support risk assessment efforts and
regulatory institutions.14−16 HRMS enables measurement of
known pollutants, discovery of contaminants of emerging
concern, as well as retrospective screening.17 However, setting
up analyses, both experimentally and computationally, is no
trivial matter. Despite these challenges, the information that
can be obtained from such analyses has a wide breadth of
utility, especially for environmental studies. NTA and suspect
screening are effective techniques for the monitoring and
discovery of xenobiotics in the aquatic environment.17−20

Nevertheless, the interpretation of HRMS data presents
challenges that highlight the need for computational tools to
enable the proper identification and annotation of the chemical
components in environmental matrices.21

MetFrag (https://ipb-halle.github.io/MetFrag/)22 is an
open source tool for compound identification, including in
silico fragmentation, mass spectral matching, and metadata
functions.23,24 MetFrag enables spectral matching with
experimental data via the spectral library MassBank of North
America (MoNA, https://mona.fiehnlab.ucdavis.edu)25 and

prioritization using metadata from various sources. MetFrag
first retrieves candidates by exact mass or molecular formula
from one of many available compound databases. PubChem
(https://pubchem.ncbi.nlm.nih.gov/)26 is an open chemistry
database at the National Institutes of Health (NIH) containing
more than 110 million compounds.27 While such a large
database provides access to many chemicals, it can lead to
(tens of) thousands of candidates per unknown when
performing nontarget screening of hundreds of masses.28 For
this work, an early version of PubChemLite was used, which
contains ∼300,000 compounds selected to be highly relevant
for environmental investigations based on annotation content,
including information relevant for pharmaceuticals.28,29

PubChemLite has been shown to outperform other databases
such as the whole of PubChem and CompTox for well-known
chemicals28 and delivers important metadata that can be used
during identification with MetFrag. PubChem and PubChem-
Lite also contain information on environmental TPs
contributed via the NORMAN Suspect List Exchange
(https://www.norman-network.com/nds/SLE/).28,30 This in-
formation can be exploited programmatically during the
environmental screening of hundreds of compounds, together
with their transformation products.
Considering the previously reported presence of chemicals

in Luxembourg’s environment2,4−7 and the widespread use of
chemicals in daily life, a large number of compounds could be
considered as potential environmental pollutants in Luxem-

Figure 1. Sampling locations and their respective coordinates. Sampling locations 1−4 were sampled from 2019 to 2020; sampling locations 5−9
were sampled only in 2019, and sampling locations 10−13 were sampled only in 2020. Map generated using https://www.geoportail.lu/en/.
Copyright MapTiler OpenStreetMap contributors.
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bourg. This work focuses on the presence of pharmaceuticals
and known pharmaceutical TPs present in Luxembourg surface
water systems using a mixture of instrumental measurements
and cheminformatics approaches.

■ MATERIALS AND METHODS

Sample Collection and Processing

Surface water samples (1 L) were collected every 4 weeks, whenever
physically possible, from nine different locations in Luxembourg from
April to November 2019 (Figure 1) and eight different locations from
April to August in 2020 in accordance with the triannual sampling
strategy employed at AGE. In this strategy, four locations monitored
in compliance with the WFD are consistently sampled every 4 weeks
(locations 1−4, Figure 1), while the other locations throughout
Luxembourg are divided into three regions and are alternately
sampled during a 3 year cycle. The samples were filled in 1000 mL
amber glass bottles and stored for up to 1 week at 5 ± 3 °C in the
dark until extraction. A method blank was prepared every month to
account for potential contamination from sample handling using
ultrapure water. Solid-phase extraction (SPE) was performed using
Atlantic HLB SPE disks from Horizon (Salem, NH, USA) with a 47
mm diameter. The disks were conditioned twice for 1 min using
acetonitrile and then twice for 1 min using Milli-Q water. The samples
were pumped through each disk at a flow rate of roughly 30 mL/min,
using the SPE-DEX 47900 system from Horizon (Salem, NH, USA).
Sample loading was followed by washing the disks twice for 1 min
with milli-Q water and drying by airflow for 15 min. The analytes
were eluted for 1 min with cyclohexane, followed by an acetone
elution for 1 min, then four times for 1 min with acetonitrile. After
each elution step, the disks were air-dried for 1 min. The combined
extracts were reduced to dryness under nitrogen flow in a water bath
heated to 40 °C. The samples were resuspended in 2 mL of
acetonitrile/water (10:90) by sonication for 5 min. Remaining
particles were removed by passing the extracts through a 0.7 μm
glass-fiber filter (Sartorius, Brussels, BE) into 2 mL amber glass LC-
MS vials. The filtered extracts were stored at −20 °C until analysis.

LC-HRMS Analysis

LC-HRMS analysis was performed on a Thermo QExactive HF mass
spectrometer equipped with a Waters Acquity UPLC BEH C18
column (1.7 μm, 2.1 × 150 mm) using both positive and negative
electrospray ionization with the following spray settings (positive/
negative): sheath gas flow rate (45/60 arbitrary units, AU), auxiliary
gas flow rate (10/25 AU), sweep gas flow rate (2/2 AU), spray
voltage (3.5/3.6 kV), capillary temperature (320/300 °C), S lens RF
(50/50 AU), and auxiliary gas temperature (300/370 °C). Mobile
phases A (water with 0.1% formic acid) and B (methanol) were mixed
using the following LC gradient starting at 90A/10B at 0 min, 90/10
at 2 min, 0/100 at 15 min, 0/100 at 20 min, 90/10 at 21 min, and
ending with 90/10 at 30 min at a flow rate of 0.200 mL/min. The
following data-dependent (dd-)MS2 settings (in display order of
instrumental acquisition method) were used: resolution (120,000 at
m/z 200), automatic gain control (AGC) target (1.0 × 106),
maximum injection time (IT): (70 ms), and scan range (m/z = 60−
900). For the selected ion monitoring of dd-MS2/ddSIM, the
following were used: resolution (30,000 at m/z 200), AGC target (5.0
× 105), maximum IT (70 ms), loop count (5), Top N (5), isolation
window (1.0 Da), (N)CE (30). Lastly, the following dd settings were
used: minimum AGC target (8.0 × 103), intensity threshold (1.1 ×
105), apex trigger (4−6 s), exclude isotopes (On), and dynamic
exclusion (10.0 s). The instrument was calibrated and optimized every
time an analysis was performed using manufacturer settings to ensure
consistent performance throughout the 2 year study. A 100 μg/L
standard mixture containing cyclizine, desipramine, nylidirin,
amiloride, dibucaine, dothiepin, ethambutol, etofyline, mefruside,
phenazone, phentermine, sulfamoxole, sulfamethoxazole, and meto-
clopramide obtained from Dr. Herbert Oberacher was used to
monitor instrument performance between analyses.31

Suspect Screening

Suspect screening was performed using two suspect lists. The first list
contains 816 unique pharmaceutical compounds (Supporting
Information, Table S1 CNS “Caisse Nationale de Sante”́ Suspects,
also available on the NORMAN Suspect List Exchange, NORMAN-
SLE)30,32 that were curated from the Luxembourgish National Health
Fund’s “List of marketed medications in Luxembourg”.33 These drugs
have marketing authorization in Luxembourg from the Ministry of
Health and are therefore potentially in use domestically. For suspect
screening, MS-ready SMILES of these compounds were obtained via
the EPA CompTox Chemistry Dashboard’s batch search function.34,35

Using MS-ready SMILES as a structural identifier ensures that the
structure being used for data analysis is consistent with what is
measured by the mass spectrometer and at the same time remains
traceable within online chemical databases.35

The second suspect list consists of 82 pharmaceutical TPs. These
TPs were derived from two sources: PubChem28 and a recent study
by Anliker et al.18 From PubChem, TPs were obtained from the
transformations table of a given compound (where available) using R
scripts36 written to programmatically download transformation
product information.37 The TP information in PubChem originates
from the NORMAN Suspect List Exchange.28,30 Sixty-seven TPs were
extracted from PubChem in this way (coming from a total of 53
parents44 parents were on the original CNS list of 816 parent
compounds, while the remaining nine parents are actually themselves
TPs with reciprocal transformations). The remaining 15 TPs were
obtained from Anliker et al.18 Curation of the final suspect list
involved deduplication and multiple steps of interconversion between
chemical identifiers (e.g., CAS to PubChem CID, InChIKey to CID)
using PubChem’s Identifier Exchange Service38 to facilitate
compound comparisons and ensure that the final list of 82 TPs was
unique. Then, the final SMILES (“parent SMILES” in PubChem
terms, “MS-ready” SMILES in CompTox terms) were retrieved. More
information and the full R code are available in the Supporting
Information and on GitLab as a Jupyter Notebook.39

Prescreening was performed using Shinyscreen (https://git-r3lab.
uni.lu/eci/shinyscreen),40 an open source and freely available mass
spectral processing software developed in house to extract MS1 data
and the associated MS2 events and spectra. Detailed information on
its functions, installation, and usage can be found by following the link
provided above. The following settings for extraction and automatic
quality control were used: coarse precursor m/z error (±0.5 Da), fine
precursor m/z error (±2.5 ppm), extracted ion chromatogram (EIC)
m/z error (±0.001 Da), retention time (tr) tolerance (±0.5 min),
MS1 intensity threshold (1.0 × 105), MS2 intensity threshold relative
to MS1 peak intensity (0.05), signal-to-noise ratio (3), and retention
time shift tolerance (±0.5 min). Note that for suspect screening
where tr information is not available, the tr tolerance on the MS1 level
is still provided as a setting to Shinyscreen, but the whole
chromatogram is screened. For suspect or target chemicals where
the tr is known from previous analysis (and provided in the input
files), this threshold is then applied (e.g., in the suspect confirmation
efforts). The “retention time shift” setting at the MS2 level controls
the tolerance with regards to alignment of the MS1 and MS2 signals.
Features that passed QC through manual curation including peak
shape, peak width, peak intensity, and alignment of the MS1 and MS2
peaks were then analyzed using MetFrag to achieve tentative
identifications. Scripts used for this work are available on GitLab.39

PubChemLite was used as database, available as a local .csv file,29 to
find chemicals that match the exact mass (within 5 ppm) of the
suspect pharmaceutical. Both in silico fragmentation (mzabs = 0.001,
frag_ppm = 5) and experimental MS/MS matching through MoNA
records (built within MetFrag) were performed to obtain the
fragmenter (scoring term 1) and MoNA (scoring term 2) scores.
Metadata were also collected for the candidates by querying the
database for patent count (scoring term 3), number of PubMed
references (scoring term 4), PubChem annotation count (scoring
term 5), pharmacology and biochemistry information (scoring term
6), and drug and medication information (scoring term 7). The latter
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two scoring terms assist in the interpretation of the results where
multiple relevant candidates occur per mass, as described recently
elsewhere,28 as well as in the retrieval of classification information
(mentioned below). Candidates were ranked and given a score per
category normalized to 1 and then added together to obtain the
max_score, with the highest possible score = 7. A more detailed
explanation of the parameters used is available elsewhere.28,41

Annotation confidence levels were determined using the scheme
described by Schymanski et al.42 Level 2a compounds were assigned
when the MoNA score was greater than or equal to 0.9. Level 1
identifications were achieved using authentic standards and the
ENTACT mixtures,43 available in-house and analyzed using the same
chromatographic method used for sample analysis. The ENTACT
mixtures were obtained from participation in the EPA’s non-targeted
analysis collaborative trial.43 Retention times were considered a match
if the difference was less than 0.2 min. The compound classification
for the compounds identified was obtained by consulting PubChem’s
“Drug and Medication Information” section, based on a specific drug’s
therapeutic use or function. Level 3 confidence was given for
compounds with max_score > 6.0 but with MoNA scores less than 0.9
(103 compounds); however, the scope of the paper has been limited
to level 2a and level 1 chemicals at this stage due to their higher
confidence.
Where reference standards were available, the concentration of the

pharmaceuticals was quantified using an external calibration curve
ranging from 1 to 1000 μg/L spanning the linear dynamic range for
the compounds quantified. Tracefinder (Thermo Scientific, version
5.1) was used for automatic peak integration and generation of the
calibration curve. Concentrations below 1 μg/L were reported to be
below the quantifiable range. With the exception of nonanedioic acid,
where the blank comprised <1% of the signal and was subtracted, no
interference from the blank was observed for the other analytes
identified in this work. After compound identification and
quantification, a spatiotemporal analysis was performed to determine
whether there were specific areas with higher pharmaceutical loading
and/or monthly variability. The concentration of pharmaceuticals in
surface waters is influenced by many factors such as matrix,
precipitation, volume, wastewater effluent discharge, as well as
significant changes in cross-border mobility in 2020 due to the
pandemic (a dominating factor in Luxembourg where half of the
workforce live outside the country). As a result, the spatial and
temporal comparisons are limited to uncorrected concentration values
here and should be interpreted accordingly. For spatial analysis, the
median concentration of the identified compound across the different
months was calculated and presented by sampling year. For temporal
analysis, the median concentration of the identified compound across
locations 1−4 was used, as these locations were sampled consistently
irrespective of sampling year. A boxplot was also constructed to see
which pollutants are consistently high and to show the difference in
detected concentrations between 2019 and 2020. Heat maps and
boxplots were generated using custom-made, openly accessible scripts
in R.44 Results were compared to pharmaceuticals found in the Meuse
(Belgian and Dutch section) and Rhine (German section) rivers,
which all have Luxembourgish rivers as tributaries. A simplified
version of the workflow employed in this work is presented in Figure
2.

■ RESULTS AND DISCUSSION

Identification of Pharmaceuticals and Their TPs

After LC-HRMS analysis coupled with cheminformatics tools
was performed, 88 compounds were confirmed at level 1
confidence; 86 of these could be quantified. Amantadine and
8-hydroxyquinoline concentrations were too low to be
quantified. A further six compounds were identified at level
2a. These results are summarized in Tables 1 and 2. Among
the detected compounds, only seven were detected in both
positive and negative ionization: diclofenac, fluconazole,
irbesartan, losartan, niflumic acid, oxazepam, and valsartan

(further identifiers are provided in the Supporting Information,
Tables S1 and S2). In terms of pharmaceutical class, many of
the compounds identified in this work belong to drugs for the
management of heart-related diseases (15), psychoactive drugs
(15), antimicrobials (eight), and drugs for the management of
pain (eight). All five chemicals monitored by AGE were also
detected in this study. The number of analytes, including both
levels 1 and 2a, found per location in this study ranged from 23
compounds (July 2020) to 52 compounds (May 2019).
Thirty-eight pharmaceuticals were detected at least 90% of the
time, accounting for 40% of the total compounds identified in
this study.
Two TPs (3-hydroxycarbamazepine and O-desmethylvenla-

faxine) were identified with level 1 confidence, whereas 12 TPs
were identified at level 2a confidence and are listed including
their parent compounds in parentheses: 4-acetamidoantipyrine
(metamizole), 4-aminoantipyrine (metamizole), clopidogrel
carboxylic acid (clopidrogel), cotinine (nicotine), D617
(verapamil), ritalinic acid (methylphenydate), fenofibric acid
(fenofibrate), flucytosine (emtricitabine), guanylurea (metfor-
min), morphine (codeine), N4-acetylsulfamethoxazole (sulfa-
methoxazole), 4-hydroxydiclofenac (diclofenac). Flucytosine
on its own is used as an antifungal agent, whereas morphine
can be used as the parent compound for pain management. In
addition, two TPs (2-hydroxycarbamazepine and 10,11-
dihydroxycarbamazepine) were tentatively identified (level 3)
during the parent pharmaceutical screening because they were
isobaric with some parent pharmaceuticals.
Spatiotemporal Distribution of Pharmaceuticals in
Luxembourg
The median concentrations of the different compounds
identified in this work, irrespective of ionization polarity,
were plotted to generate the spatial (N = 6 time points for
2019, N = 5 time points for 2020) and temporal (N = 4
sampling points) heat maps presented in Figures 3, 4, and 5,
respectively. Note that only locations 1−4 were sampled
consistently between 2019 and 2020, in compliance with the
WFD requirements; thus only data from these locations were
used for the temporal analysis. Locations 5−9 were only
sampled during 2019, whereas locations 10−13 were sampled
in 2020. Tables S3 (negative mode) and S4 (positive mode) in
the Supporting Information summarize the individual concen-
tration of each pharmaceutical quantified from 2019 to 2020
from each location. The spatial heat maps (Figures 3 and 4) for
both 2019 and 2020 consistently show that Chiers-Rodange-
pont a ̀ Athus (location 1, Figure 1), followed by Alzette-

Figure 2. Flow diagram of the experimental and data processing
workflow employed in this work.
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Ettelbruck (location 2, Figure 1) and Alzette-Mersch-
Berschbach (location 9, Figure 1) that have higher levels of
pharmaceutical contamination.
Among the pharmaceuticals found were antihypertensive

drugs. In 2019, sotalol and telmisartan were the antihyperten-
sive drugs detected at the highest concentration. In contrast,

irbesartan was detected to have the highest concentration
during 2020, followed by telmisartan. All three drugs were
found to be highest in location 1 (Chiers-Rodange-pont a ̀
Athus) followed by location 2 (Alzette-Ettelbruck), irrespec-
tive of sampling year. Clarithromycin and clindamycin, on the
other hand, were the antimicrobials detected with the highest
concentration in 2019, respectively. However, in 2020,
sulfamethoxazole and trimethoprim were the highest detected
antimicrobials. These drugs are known to be used together for
the treatment of bacterial infections. Locations 1 and 2
consistently showed the highest concentrations of the above-
mentioned antimicrobials irrespective of year.
The Chiers river receives effluent from the Petange

wastewater treatment plant (capacity: 70,000 population
equivalents), which is close to the Chiers-Rodange-pont a ̀
Athus sampling point. This proximity is likely one of the
reasons why Chiers-Rodange-pont a ̀ Athus was found to have
the highest concentration of pharmaceuticals within this study.
In comparison, both Alzette-Ettelbruck and Alzette-Mersch-
Berschbach are downstream of the Beggen wastewater
treatment plant45 (capacity: 210,000 population equivalents),
which receives sewage from Luxembourg City, the biggest and
most populated city in Luxembourg. Despite the bigger
capacity, both sampling points are not as close to the source
as the Chiers location and thus may experience dilution. The
lowest median concentrations for the pharmaceuticals
quantified in this study were found at Eisch-Mersch (2019,
location 7 in Figure 1), Sûre-amont Erpeldange (2020, location
3, Figure 1), and Our amont Wallendorf Pont (2020, location
10, Figure 1). Pharmaceutical compounds found in this study
such as acetaminophen, caffeine, carbamazepine, clarithromy-
cin, salicylic acid, and valsartan have been described before as
markers of sewage or wastewater discharge into surface
water,46,47 further supporting the impact of wastewater
effluents in Luxembourgish rivers.

Table 1. Summary of Pharmaceuticals and Pharmaceutical
Transformation Products in Positive Mode Found in
Luxembourgish River Watera

aAn extended version with structural information is available in the
Supporting Information Table S2, Pharma IDs. tr = retention time.
*Found in both positive and negative modes.

Table 2. Summary of Pharmaceuticals and Pharmaceutical
Transformation Products in Negative Mode Found in
Luxembourgish River Watera

aAn extended version with structural information is available in the
Supporting Information Table S2, Pharma IDs. tr = retention time.
*Found in both positive and negative modes.
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Figures 3−6 show the dynamic nature of pharmaceutical
contamination in surface water, demonstrating that aquatic
organisms in these rivers are exposed to varying mixtures over
time. Since recent studies have highlighted the ecological risks
associated with exposure to mixtures in surface water
systems,48,49 this work helps show how suspect screening
may support the identification of more chemicals in surface
waters and thus help improve the ecological risk assessment of
mixtures in future works.
The stimulant caffeine, antidepressant metabolite O-

desmethylvenlafaxine, antihypertensive drugs irbesartan and
telmisartan, the antidiabetic drug sitagliptin, and the opioid
analgesic tramadol were among the most concentrated
pharmaceuticals found in Luxembourgish surface waters
(Figures 3 and 4) in both 2019 and 2020. From a temporal
point of view (Figure 5), the highest median concentrations of
the pharmaceuticals were detected in September and October
of 2019 and are consistently lower during the spring. The most
visually obvious differences between the two sampling years
include (1) amytriptyline, iohexol, phenylalanine, and
ranitidine only detected at quantifiable levels in 2019 and
(2) decreases in the median concentrations of dexpanthenol,
metformin, nicotine, sotalol, and vildagliptin. As an example,
metformin had median concentrations of 3.0 ng/L (May) to

39 ng/L (October) in 2019, much higher than the highest
detected median concentration of metformin in 2020 (0.62
ng/L in August 2020). Dexpanthenol is a drug used for
prophylactic purposes; both metformin and vildagliptin are
drugs used for managing diabetes, sotalol is for the
management of arrhythmia, while nicotine relates to smoking.
A juxtaposition of data from 2019 and 2020 is presented as
boxplots in Figure 6, showing the general decrease in many
pharmaceutical concentrations in 2020 (green boxes). For
simplicity, only the top 50 pharmaceuticals ranked by median
concentration are presented. Some of the most notable drops
in detected concentration were observed for dexpanthenol,
nicotine, metformin, and sotalol. The individual concentrations
of the analytes per sampling location and time are summarized
in Tables S3 and S4 in the Supporting Information.
Factors That Affected Pharmaceutical Concentrations in
Luxembourg

Interestingly, lower median concentrations of the pharmaceut-
icals were measured in 2020 compared to those measured in
2019 (as shown in Figure 6), which may be partially due to the
reduced presence of cross-border workers during the
pandemic. COVID-19 has brought on a major shift in working
practices, as more people were advised and allowed to work

Figure 3. Spatial heat map showing median concentration values (original units: ng/L) per compound measured per sampling location over 6
months in 2019, plotted using a base-10 logarithmic scale. Median values were calculated across the concentrations measured over the relevant
months of sampling for the respective compound and location. Zero-value median concentrations are indicated by gray-shaded boxes. White boxes
indicate that there were no concentration values within the quantification range. All compounds were measured in positive mode except for those
marked with an asterisk, which were measured in negative mode.
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remotely. In Luxembourg, a major part of the workforce
comprises cross-border workers (approximately 206,000
people in 2019).50 This translates to an approximately 25%
decrease in the daytime population, which may translate to
reduced pharmaceutical loading in the sewage system. Two
interesting features in Figure 6, also apparent in Figure 5, are
the detections of iohexol and ranitidine in 2019 but not in
2020. Iohexol is a radiocontrast agent used for medical
imaging. Due to the COVID-19 pandemic, there was a
significant decrease in medical procedures for noncommuni-
cable diseases, including radio imaging.51 This decrease may
explain why iohexol was not detected at a quantifiable level in
2020 despite having the sixth highest median concentration in
2019. Ranitidine use in the EU, on the other hand, was
discontinued in 2020 because of the suspected carcinogen N-
nitrosodimethylamine, an impurity present in ranitidine
drugs.52 It is interesting to see how changes in drug usage
are abruptly reflected in their detection in the environment.
Changes in precipitation had been reported to affect

contaminant levels in water, generally increasing with increased
precipitation due to factors such as runoff and combined sewer
overflow.53 Compared to the long-term average (1981 to
2010), both 2019 and 2020 experienced a decrease in the
annual precipitation (Table 3). For the samplings months that

were studied in both 2019 and 2020 (April, May, July, and
August), 2020 showed the lowest amount of precipitation,
which may have contributed to the lower concentration of
pharmaceuticals detected. While there was not sufficient data
available in this study to fully account for all factors influencing
the concentration such as population, precipitation, matrix
effects, and extraction recoveries, these results reveal
interesting trends that will be the subject of further work.
While the Chiers flows into the Meuse River and the Alzette

flows into the Sauer River (eventually leading into the Rhine),
both rivers contribute to the chemical load that eventually ends
up in the North Sea. Several studies have determined the
presence of pharmaceuticals in the Meuse and Rhine rivers. A
2010 study by ter Laak et al. reported compounds such as
caffeine, carbamazepine, lidocaine, and iohexol as some of the
more concentrated pharmaceuticals in their study of the Rhine,
with sulfamethoxazole as the most abundant antimicrobial.54

The same study also found antihypertensive drugs such as
atenolol, metoprolol, and sotalol. Despite being apart by
almost a decade, similar trends can be observed in
Luxembourgish waters. Later studies of different parts of the
Rhine and Meuse rivers reported similar pharmaceuticals;55,56

however, in some studies, the antidiabetic drug metformin and
its TP guanylurea were found to be the most abundant

Figure 4. Spatial heat map showing median concentration values (original units: ng/L) per compound measured per sampling location over 5
months in 2020, plotted using a base-10 logarithmic scale. Median values were calculated across the concentrations measured over the relevant
months of sampling for the respective compound and location. Zero-value median concentrations are indicated by gray-shaded boxes. White boxes
indicate that there were no concentration values within the quantification range. All compounds were measured in positive mode except for those
marked with an asterisk, which were measured in negative mode.
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pharmaceutical in surface water samples.55,57,58 While
metformin was also quantified in this study, the median
concentration only ranks 44th over both years among the
pharmaceuticals found. Higher levels of the antidiabetic drug
sitagliptin, fifth most abundant, were detected in Luxembourg.
The two drugs differ in their mode of regulating sugar in the
body.
Challenges in Compound Identification

The presence of isobars, isomers, and in-source fragments
complicates the identification of chemicals in HRMS data,
sometimes even leading to these analytes to be excluded from
HRMS analysis.59,60 Several cases of isobars were encountered
in this work including (a) acetaminophen and 1,2,3,6-
tetrahydrophthalimide, (b) salicylic acid, 3-hydroxybenzoic
acid, and 4-hydroxybenzoic acid, (c) piperine, morphine, and
etodolac, (d) cocaine and scopolamine, (e) tramadol and O-
desmethylvenlafaxine, and (f) phenytoin, 2-hydroxycarbama-
zepine, and 3-hydroxycarbamazepine. While cases a−d were
easily resolved using authentic standards, cases e and f
introduced specific challenges. Tramadol (parent compound)
and O-desmethylvenlafaxine (TP of venlafaxine) are constitu-
tional isomers whose extracted ion chromatogram shows two
unresolved peaks that are both annotated by MetFrag as

tramadol (due to tramadol’s higher metadata scores). Using
standards, the first peak (12.2 min) was ultimately assigned to
be O-desmethylvenlafaxine, while the second peak (12.4 min)
was tramadol. In order to quantify both compounds, the peaks
had to be manually integrated to avoid integrating the two
peaks as one compound.
For the suspect screening of phenytoin, three prominent

peaks (tr: 13.95, 14.31, and 14.85 min) were observed in the
positive mode extracted ion chromatogram of m/z 253.0972
within 5 ppm error (Figure 7A). Looking at the structure of
phenytoin, the absence of chiral carbons renders the possibility
of diastereomers, which could explain the presence of multiple
peaks, invalid. Analysis of the phenytoin standard showed that
this compound elutes at 15.53 min, thus not matching any of
the three peaks being investigated. Further inspection using
MetFrag and database matching suggested that the second and
third peaks belong to the positional isomers 2-hydroxycarba-
mazepine and 3-hydroxycarbamazepine, metabolites of the
anticonvulsant carbamazepine. The tr matching using a
standard confirmed that the peak at 14.85 min is indeed 3-
hydroxycarbamazepine, while the peak at 14.31 min can be
assigned as 2-hydroxycarbamzepine (level 3), despite the lack
of standards, due to the similarity of its mass spectrum with 3-
hydroxycarbamazepine. However, the first and biggest peak

Figure 5. Temporal heat map showing median concentration values (original units: ng/L) per compound measured per sampling month−year
plotted using a base-10 logarithmic scale. Median values were calculated across the concentrations measured at the four permanent sampling
locations for the respective compound and month−year. Zero-value median concentrations are indicated by gray-shaded boxes. White boxes
indicate concentration values that were below the respective quantification range, which were therefore discarded from median calculation. All
compounds were measured in positive mode except for those marked with an asterisk, which were measured in negative mode.
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proved to be challenging. Inspection of the MS1 spectrum at
13.95 min shows another peak with m/z 271.1075 (mass
difference equivalent to the loss of water, Figure 7B) can be
found whose MS2 spectrum is very similar to the 253.0972
peaks at 14.31 and 14.85 min (Figure 7C,D). Using these
pieces of information, it can be suggested that the 253.0972
peak is potentially an in-source fragment of 271.1075. Using
271.1075 as the precursor ion, MetFrag suggests that the peak
is potentially 10,11-dihydroxycarbamazepine (MoNA score:
0.8340) or phenytoin acid (MoNA score: 0.8076), which are
TPs of carbamazepine and phenytoin, respectively. The
presence of the 210.0915 and 180.0811 fragments, which
match fragments of other carbamazepine metabolites, and the
earlier elution suggesting that the molecule is more polar than
the monohydroxylated analogs, supports the tentative identi-
fication of the 13.95 min peak as 10,11-dihydroxycarbamaze-
pine (level 3).

One case that needs further inspection is the stereoisomers
vidarabine and adenosine, which are impossible to separate
using the chromatographic method employed in this study.
While there are reports on the utility of ion mobility to
discriminate between stereoisomers, it is still to be tested
whether such resolution is practically achievable.61−63 Pub-
lished collisional cross sections of vidarabine (156.4 Å2 for [M
+ H]+) and adenosine (156.9 Å2 for [M + H]+) measured on
the same instrument are available, revealing a difference of only
0.5 Å2 or 0.3%, which is too close to distinguish currently
within the typical resolving power of ion mobility spectrom-
eters.64,65

This study documents suspect screening efforts thus far for
pharmaceuticals and their known TPs as a starting point for
further understanding pharmaceutical levels in Luxembourgish
surface waters. Other activities looking into different chemical
classes such as pesticides,66 industrial chemicals, and other
emerging pollutants are ongoing. The continuous analysis of
surface water using HRMS as part of the routine monitoring
efforts will enable retrospective screening67,68 for newly
identified contaminants that may impact local surface water
quality and biota, such as the effect observed by city runoff on
coho salmon.69 Very recently, a portable HRMS setup for
surface water monitoring was demonstrated to enable real-time
pollutant analysis,70 which would be interesting to consider in
future efforts pending availability. This study reports primarily

Figure 6. Boxplots showing the range of concentrations (original units: ng/L) measured for the top 50 highest concentration pharmaceutical
chemicals across all months and sampling locations in 2019 and 2020, plotted using a base-10 logarithmic scale. Concentration values that were
below the respective quantification ranges were excluded. All chemicals were measured in positive mode.

Table 3. Precipitation Data for Luxembourga

aSource: https://www.meteolux.lu.
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level 1 and 2a identifications due to the hard filter of MoNA
score of >0.9 applied during the MetFrag analysis. Other
tentative identifications have been communicated with AGE,
and these, along with more detailed trend analysis as more
temporal data points are collected, can be investigated in future
works as resources allow. Quantification efforts could be
further improved using the list of pharmaceuticals identified in
this work as a target list, as well as investing in isotopically
labeled standards (which was beyond the scope of the current
works, as target analysis is performed by AGE). Finally, as
experimental databases increase in size and coverage, the
ability to screen for more compounds with higher confidence
with these open source methods such as the one presented
here will also increase, highlighting the need for the
community at large to continue to contribute to publicly
available databases.
One main factor limiting TP suspect screening is the lack of

available information in open databases that is standardized
and thus suitable to be extracted consistently and reproducibly
to form meaningful suspect lists. Of the 816 parent compounds
on the CNS list, only 44 had associated TP information (i.e.,
one or more TPs) that could be extracted from PubChem as
performed in this study. Certainly, there are far more
pharmaceutical metabolites/TPs than those that are identified
here, but this information is not yet available in a readily
extractable form suitable for an automated workflow within
PubChem (the efforts within the NORMAN Suspect List
Exchange have just commenced recently).28,66 As more

information is added and as more environmental trans-
formation studies are performed and deposited in a FAIR
(findable, accessible, interoperable and reusable) manner,71 the
ability to screen for TPs in an automated fashion would also
increase and support further research efforts.

■ ASSOCIATED CONTENT
*sı Supporting Information

The Supporting Information is available free of charge at
https://pubs.acs.org/doi/10.1021/acsenvironau.1c00008. The
suspect list used in this work is available online as
LUXPHARMA (S76) on Zenodo (DOI: 10.5281/zenodo.
4587356), CompTox (https://comptox.epa.gov/dashboard/
chemical_lists/LUXPHARMA, PubChem (https://pubchem.
ncbi.nlm.nih.gov/classification/#hid=101), and NORMAN-
SLE (https://www.norman-network.com/nds/SLE/). The
data (as .mzML fi les) are available as data set
MSV000087190 from the GNPS MassIVE repository
(https://massive.ucsd.edu/ProteoSAFe/static/massive.jsp),
citable under DOI: 10.25345/C5D81C and accessible via
ftp://massive.ucsd.edu/MSV000087190/ and https://massive.
ucsd.edu/ProteoSAFe/dataset.jsp?accession=MSV000087190.
Both Shinyscreen (https://git-r3lab.uni.lu/eci/shinyscreen/)
and MetFrag (http://ipb-halle.github.io/MetFrag/) are open
source; additional support scripts mentioned are available from
the ECI GitLab repository (https://git-r3lab.uni.lu/eci/
pubchem). All code used to run MetFrag in the command
line using R, generate the Transformation Products suspect list,

Figure 7. (A) Extracted ion chromatogram of m/z = 253.0969 in a surface water sample showing three distinct peaks. (B) MS1 spectrum of the
13.97 peak showing a higher peak that may have lost water to produce the 253.0969 peak. (C) MS2 spectrum of m/z = 271.1073 (potentially
10,11-dihydroxycarbamazepine, structure on the same pane) showing similar fragments to the MS2 fragments of 3-hydroxycarbamazepine standard
(structure on the same pane); see (D). (E) MS2 spectrum of the phenytoin standard (structure on the same pane).
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and plot Figures 3−6 is available via https://git-r3lab.uni.lu/
adelene.lai/additional_si_luxpharma_singh_et_al. All other
code and databases used as part of MetFrag identification
are likewise openly available (links inline throughout this
article).

Tables of CNS suspects, pharma IDs, negative mode,
positive mode, positive concentration, and the original
file names and their corresponding names in this paper
(the original file names were kept to allow traceability to
the original sample files stored locally at the University
of Luxembourg) (XLSX)
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D.; Ibáñez, M.; Goshawk, J.; Barknowitz, G.; Hernández, F.; Bijlsma,
L. Improving Target and Suspect Screening High-Resolution Mass
Spectrometry Workflows in Environmental Analysis by Ion Mobility
Separation. Environ. Sci. Technol. 2020, 54 (23), 15120−15131.
(66) Krier, J.; Singh, R.; Kondic, T.; Lai, A.; Diderich, P.; Zhang, J.;
Thiessen, P.; Bolton, E.; Schymanski, E. Discovering Pesticides and
their Transformation Products in Luxembourg Waters using Open
Cheminformatics Approaches. Research Square 2021, DOI: 10.21203/
rs.3.rs-478324/v1.
(67) Creusot, N.; Casado-Martinez, C.; Chiaia-Hernandez, A.;
Kiefer, K.; Ferrari, B. J. D.; Fu, Q.; Munz, N.; Stamm, C.; Tlili, A.;
Hollender, J. Retrospective screening of high-resolution mass
spectrometry archived digital samples can improve environmental
risk assessment of emerging contaminants: A case study on antifungal
azoles. Environ. Int. 2020, 139, 105708.
(68) Alygizakis, N. A.; Samanipour, S.; Hollender, J.; Ibanez, M.;
Kaserzon, S.; Kokkali, V.; van Leerdam, J. A.; Mueller, J. F.;
Pijnappels, M.; Reid, M. J.; Schymanski, E. L.; Slobodnik, J.;
Thomaidis, N. S.; Thomas, K. V. Exploring the potential of a global
emerging contaminant early warning network through the use of
retrospective suspect screening with high-resolution mass spectrom-
etry. Environ. Sci. Technol. 2018, 52 (9), 5135−5144.
(69) Tian, Z.; Zhao, H.; Peter, K. T.; Gonzalez, M.; Wetzel, J.; Wu,
C.; Hu, X.; Prat, J.; Mudrock, E.; Hettinger, R.; Cortina, A. E.; Biswas,
R. G.; Kock, F. V. C.; Soong, R.; Jenne, A.; Du, B.; Hou, F.; He, H.;
Lundeen, R.; Gilbreath, A.; Sutton, R.; Scholz, N. L.; Davis, J. W.;
Dodd, M. C.; Simpson, A.; McIntyre, J. K.; Kolodziej, E. P. A
ubiquitous tire rubber−derived chemical induces acute mortality in
coho salmon. Science 2021, 371 (6525), 185−189.
(70) Stravs, M. A.; Stamm, C.; Ort, C.; Singer, H. Transportable
Automated HRMS Platform “MS2field” Enables Insights into Water-
Quality Dynamics in Real Time. Environ. Sci. Technol. Lett. 2021, 8
(5), 373−380.
(71) GO FAIR. Fair Principles, 2021; https://www.go-fair.org/fair-
principles/ (accessed 2021-07-15).

ACS Environmental Au pubs.acs.org/environau Article

https://doi.org/10.1021/acsenvironau.1c00008
ACS Environ. Au 2021, 1, 58−70

70

https://doi.org/10.1016/j.scitotenv.2019.04.160
https://doi.org/10.1021/acs.est.0c02328?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acs.est.0c02328?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acs.est.0c02328?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acs.est.0c02328?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acs.est.0c02434?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acs.est.0c02434?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://statistiques.public.lu/stat/TableViewer/tableView.aspx?ReportId=12951&IF_Language=fra&MainTheme=2&FldrName=3
https://statistiques.public.lu/stat/TableViewer/tableView.aspx?ReportId=12951&IF_Language=fra&MainTheme=2&FldrName=3
https://statistiques.public.lu/stat/TableViewer/tableView.aspx?ReportId=12951&IF_Language=fra&MainTheme=2&FldrName=3
https://doi.org/10.1148/radiol.2020201495
https://doi.org/10.1148/radiol.2020201495
https://www.ema.europa.eu/en/news/suspension-ranitidine-medicines-eu
https://www.ema.europa.eu/en/news/suspension-ranitidine-medicines-eu
https://doi.org/10.1016/j.scitotenv.2020.142552
https://doi.org/10.1016/j.scitotenv.2020.142552
https://doi.org/10.1016/j.scitotenv.2020.142552
https://doi.org/10.1016/j.envint.2010.02.009
https://doi.org/10.1016/j.envint.2010.02.009
https://doi.org/10.1016/j.envint.2010.02.009
https://doi.org/10.1016/j.watres.2015.09.017
https://doi.org/10.1016/j.watres.2015.09.017
https://doi.org/10.1016/j.watres.2015.09.017
https://doi.org/10.1016/j.watres.2015.09.017
https://doi.org/10.1016/j.scitotenv.2012.04.010
https://doi.org/10.1016/j.scitotenv.2012.04.010
https://doi.org/10.1016/j.scitotenv.2012.04.010
https://doi.org/10.1007/s11356-014-3233-9
https://doi.org/10.1007/s11356-014-3233-9
https://doi.org/10.1002/etc.2351
https://doi.org/10.1002/etc.2351
https://doi.org/10.1007/s00216-018-1526-4
https://doi.org/10.1007/s00216-018-1526-4
https://doi.org/10.1007/s00216-020-02716-3
https://doi.org/10.1007/s00216-020-02716-3
https://doi.org/10.1007/s00216-020-02716-3
https://doi.org/10.1007/s13361-019-02310-7
https://doi.org/10.1007/s13361-019-02310-7
https://doi.org/10.1007/s13361-019-02310-7
https://doi.org/10.1021/ac0342020?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/ac0342020?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/ac0342020?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/ac0342020?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1038/nature15388
https://doi.org/10.1038/nature15388
https://doi.org/10.1021/acs.analchem.7b01709?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acs.analchem.7b01709?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acs.est.0c05713?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acs.est.0c05713?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acs.est.0c05713?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.21203/rs.3.rs-478324/v1
https://doi.org/10.21203/rs.3.rs-478324/v1
https://doi.org/10.21203/rs.3.rs-478324/v1
https://doi.org/10.21203/rs.3.rs-478324/v1?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.21203/rs.3.rs-478324/v1?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1016/j.envint.2020.105708
https://doi.org/10.1016/j.envint.2020.105708
https://doi.org/10.1016/j.envint.2020.105708
https://doi.org/10.1016/j.envint.2020.105708
https://doi.org/10.1021/acs.est.8b00365?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acs.est.8b00365?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acs.est.8b00365?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acs.est.8b00365?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1126/science.abd6951
https://doi.org/10.1126/science.abd6951
https://doi.org/10.1126/science.abd6951
https://doi.org/10.1021/acs.estlett.1c00066?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acs.estlett.1c00066?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acs.estlett.1c00066?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://www.go-fair.org/fair-principles/
https://www.go-fair.org/fair-principles/
pubs.acs.org/environau?ref=pdf
https://doi.org/10.1021/acsenvironau.1c00008?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as


The Level 1 identification of 2 TPs, Level 2a identification of the 12 TPs, and Level 3

identification of 2 TPs in this study is particularly significant because it proves the

notion that these species do exist in the environment and that only considering parent

compounds would neglect the ‘big picture’ of environmental chemical pollution and

subsequent exposures. Thus, including TPs as suspects in future screenings is

imperative, particularly as our collective knowledge of TP processes and compounds

grows and becomes more readily accessible in a systematic manner, as was the

case in this study via querying PubChem. All spectral data, suspect lists, and R code

developed to mine TP information from PubChem, plus further analysis (including

visualisations, described below), are openly available via the respective URL links

listed in the publication.

Spatio-temporal analyses via data visualisation compared the occurrence and

concentrations of the different pharmaceuticals, which allowed for numerous

observations that could be explained by epidemiological and social phenomena. For

example, the highest levels of pharmaceutical pollution overall were recorded in

Chiers-Rodange, Alzette-Ettelbruck, and Alzette-Mersch, which likely reflects high

loads of wastewater due to the high population density in those regions. Further

observations from these analyses include: pharmaceutical concentrations in 2020

were lower overall than in 2019, possibly due to the drop in office workers commuting

during COVID-19 pandemic-induced quarantine; iohexol was lower in concentration

in 2020 than 2019 likely because of reductions in radioimaging due to the pandemic;

and lower concentrations of ranitidine in 2020 compared to 2019, as ranitidine was

suspended by the European Medicines Agency in 2020.

Critically, the consideration of TPs and data visualisations developed for the

spatio-temporal analyses generated multiple insights that not only serve as additional

validation of the identifications and quantifications achieved, but that could also guide

future water monitoring campaigns and regulatory activities in Luxembourg. For

example, regulatory screenings could be expanded to include pharmaceuticals and

their TPs instead of just the chemicals officially listed in the WFD. Additionally,

candidate locations for potential upgrades to wastewater treatment systems may be

proposed based on the spatio-temporal analysis.
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Nevertheless, this study only dealt with single compounds. In terms of

pharmaceuticals, the compounds studied here were the active ingredients that

convey most of the potent effects, but in reality, pharmaceutical products are

delivered as formulations, which are essentially mixtures. In fact, nearly all chemical

products, virtually all environmental samples, and thus sources of chemical exposure

to humans are mixtures. Environmental chemical mixtures represent an active but

extremely challenging area of research because of the sheer variability of mixtures

that can possibly exist. However, one tractable form of mixture exists within

regulatory frameworks, namely a specific class of chemicals called substances of

Unknown or Variable composition, Complex reaction products, or Biological materials

(UVCBs). Regulators find assessing the risks of UVCBs particularly challenging

compared to single compounds because multiple confounding factors, not least their

ambiguous or unknown identities, come into play that make these substances difficult

to deal with. Thus, a holistic review of UVCBs, their properties, and their challenges

is warranted.
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Chapter 4

Tackling the Next Frontier of Environmental
Unknowns - UVCBs

As demonstrated in the previous two chapters, the ability to identify all the unknown

chemicals in a given environmental sample is still elusive, despite using

state-of-the-art open software, tools, and in particular environmental chemical lists

and databases. Often, chemical registries are an important source of information

when trying to identify environmental chemical unknowns. However, at least 20-40%

of substances within these registries have ambiguous or non-existent chemical

structures associated with them. These substances are classified within regulatory

frameworks as having Unknown or Variable composition, Complex reaction products,

or Biological materials (UVCB).

In many regulatory frameworks around the world, UVCB substances are subject to

chemicals assessment. However, the fact that their chemical identities are mostly

unknown or ambiguous makes it very challenging for regulators to assess these

substances. Multiple interconnected and interdisciplinary issues contribute to the

challenge of dealing with UVCBs, which calls for a holistic overview of these

substances, their characteristics, and a critical review of strategies for assessing and

managing these substances. The work in this chapter is the first of its kind in terms of

its breadth and interdisciplinarity, as it goes beyond discussing risk assessment and

additionally addresses topics in analytical chemistry, toxicity, and mixture

cheminformatics, towards developing enhanced methodologies for dealing with

UVCBs.
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ABSTRACT: Substances of unknown or variable composition,
complex reaction products, or biological materials (UVCBs) are over
70 000 “complex” chemical mixtures produced and used at
significant levels worldwide. Due to their unknown or variable
composition, applying chemical assessments originally developed for
individual compounds to UVCBs is challenging, which impedes
sound management of these substances. Across the analytical
sciences, toxicology, cheminformatics, and regulatory practice, new
approaches addressing specific aspects of UVCB assessment are
being developed, albeit in a fragmented manner. This review
attempts to convey the “big picture” of the state of the art in dealing
with UVCBs by holistically examining UVCB characterization and
chemical identity representation, as well as hazard, exposure, and risk
assessment. Overall, information gaps on chemical identities underpin the fundamental challenges concerning UVCBs, and better
reporting and substance characterization efforts are needed to support subsequent chemical assessments. To this end, an information
level scheme for improved UVCB data collection and management within databases is proposed. The development of UVCB testing
shows early progress, in line with three main methods: whole substance, known constituents, and fraction profiling. For toxicity
assessment, one option is a whole-mixture testing approach. If the identities of (many) constituents are known, grouping, read
across, and mixture toxicity modeling represent complementary approaches to overcome data gaps in toxicity assessment. This
review highlights continued needs for concerted efforts from all stakeholders to ensure proper assessment and sound management of
UVCBs.
KEYWORDS: mixtures, UVCB, complex substances, testing and assessment, cheminformatics, environmental pollutants

1. INTRODUCTION
Anthropogenic chemical pollution is pervasive and has been
found in multiple environments,1−5 animals,6−9 and hu-
mans10−14 worldwide, with at least 16% of global premature
deaths attributed to diseases caused by pollution.15 Chemical
pollutants originate from the production, use, and disposal of
diverse chemical products. The most familiar and well-studied
are single chemical compounds, but these form only a part of the
bigger picture of chemical pollution. In practice, many pollutants
come from chemical products consisting of mixtures. While
some of these mixtures are well-defined, many are poorly
characterized or contain constituents with unknown or variable
chemical identities, and they are classified as substances of
unknown or variable composition, complex reaction products,
or biological materials (UVCBs).
UVCBs are considered chemical substances within multiple

legal frameworks,16−18 and thus they are subject to various
registration, hazard evaluation, and risk assessment require-

ments. UVCBs can be found everywhere: within detergents,
fragrances, and personal care products, and even within fuel and
starting materials for chemical manufacturing. A broad range of
substances are considered UVCBs, e.g., those of natural origin
such as petroleum fractions and essential oils, synthetic products
such as technical mixtures of specialty copolymers, and reaction
products such as medium-chain chlorinated paraffins (MCCPs;
CASRN 85535-85-9) and substances such as “Rape oil, reaction
products with diethylenetriamine” (CASRN 91081-13-9; all
UVCBs mentioned in this review are detailed in Table S1). As
such, UVCBs may contain structurally similar (e.g., isomers,
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homologues, congeners), or entirely dissimilar chemical
constituents. Variations in their composition may arise from
fluctuations in production processes, starting materials, or the
presence of transformation products formed from spontaneous
reactions.
UVCBs are highly prevalent on the global market: 20−40% of

chemicals registered in the European Union and in the United
States comprise UVCBs.19−21 A recent global inventory found
over 70 000 UVCBs and polymers within over 235 000
registered chemicals with Chemical Abstracts Service Registry
Numbers (CASRNs).22 Additionally, many UVCBs are
produced and used at high volumes globally. Annual production
of MCCPs in China alone was estimated to be 600 000 t in
2013,23 and 1027 million metric tons of petroleum substances
were manufactured or imported into the European Union in
2018.24

Given their significant proportion within chemical registries,
high production volumes, and wide usage patterns, UVCBs are
highly environmentally relevant. While certain UVCBs such as
linear alkylbenzenesulfonate surfactants were found at high
intensity in wastewater,25 the chemical identities of most
UVCBs remain unknown or poorly characterized. These critical
information gaps limit their detection and identification in the
environment and biota, and hinder assessment of their hazards
and risks, particularly as most existing testing methods were
originally designed for discrete compounds. Meanwhile, current
information systems and cheminformatic representations are ill-
equipped to store, index, and retrieve information on UVCBs
from databases. Consequently, UVCBs are commonly omitted
from scientific studies for the sake of simplicity,26−28 and
regulators around the world face challenges in assessing and
managing their environmental and health risks.29

Rather than tackle UVCBs as a substance class, previous
reviews focused on specific substances using a single disciplinary
lens: e.g., analytical characterization of chondroitin sulfate30 and
surfactants,31 health assessment of endocrine-disrupting chem-
icals in oil and natural gas,32 environmental risks of MCCPs,23

and toxicology and epidemiology of bentonite.33 The sole
review that tackles UVCBs as a substance class only addresses
aspects of its risk assessment.29 Meanwhile, reviews on chemical
mixtures typically mention UVCBs only superficially34,35 or do
not explicitly address them at all.36,37

In this review, UVCBs are treated as a substance class as a
means of addressing common challenges across UVCBs from
the perspectives of cheminformatics, analytical chemistry,
toxicology, and regulatory science. This review aims to (1)
provide an overview of methodological developments for
addressing UVCBs across the different domains, (2) summarize
general approaches taken, (3) highlight challenges and gaps, and
(4) identify further areas of research toward developing shared
good practices. UVCBs warrant urgent attention from both
scientific and regulatory communities, and this review aims to
provide tractability in tackling this next frontier of environ-
mental unknowns.

2. CHARACTERIZATION, IDENTIFICATION, AND
REPRESENTATION OF UVCBS

Meaningful structural representation of a chemical is important
for connecting its detection in the environment or biota to
chemicals registered on the global market and subsequent
assessment of hazard, fate, exposure, and risks to human health
and the environment. While chemical characterization (the
process of obtaining information about a substance’s constitu-

ents and composition), identification (unambiguous and precise
recognition of the same substance by all stakeholders), and
representation (how a chemical’s identity is communicated) are
typically clear for single compounds, they are not clear for
UVCBs due to the lack of structural information available on
these multiconstituent substances. Consequently, there exist
challenges in chemically representing UVCBs using currently
established formats: as text via its name, synonym, or
description; structurally as structural diagrams, Simplified
Molecular Input Line Entry System (SMILES),38 molecular
data files such as Molfile (MOL) and Structure Data File
(SDF);39 or by identifiers such as the International Chemical
Identifier (InChI),40 its hashed version InChIKey, and other
database or registry specific identifiers, e.g., CASRN, Distributed
Structure-Searchable Toxicity Substance Identifier (DTXSID),
PubChem Compound Identifier (CID), and European
Community List Number (EC/List No.).

2.1. Current State of Available Structural Information
on UVCBs in the Public Domain. The current availability of
UVCB structural information has largely been determined by
registration requirements. A substance is categorized as UVCB
during chemical registration if it adheres to UVCB specifica-
tions, as was historically the case in the United States, where
nearly 10 000 UVCBs were listed in the original Toxic
Substances Control Act Inventory dating back to 1979.41,42

Similarly in Canada and Europe, substances are determined to
be UVCBs if they meet the formal definition specified in the
1999 Canadian Environmental Protection (CEPA) Act18 and
2017 Registration, Evaluation, Authorization and Restriction of
Chemicals (REACH) Guidance, respectively.43

In most cases, the initial information that can be used to
identify UVCBs depends upon what registrants provide via the
registration systems. For example, under EU REACH
legislation, registrants can report multiple constituents,
concentrations, and manufacturing process details of their
UVCB within the International Uniform Chemical Information
Database (IUCLID).44 However, not all information submitted
during registration is necessarily made publicly available at a
level that allows for unambiguous identification of a given
UVCB.45 Furthermore, registration frameworks in most parts of
the world tend to focus on new substances, despite the existence
of many older substances with little to no available information
that were already on the market before registration frameworks
entered into force.
Presently, UVCBs are included in both national chemical

registries and certain public databases. The major relevant
databases, types of information available, and chemical
representations are summarized in Table S2. Substance name
is the most widely available identifier of UVCBs across all
databases, and some substances have registry numbers (CASRN
and/or EC No.) and/or an additional database identifier.
Notably, however, substance name and identifiers for UVCBs
can be ambiguous in nature.18,43,46,47 Complete structural
diagrams are frequently optional to provide upon registration;
instead, descriptive information on chemical composition,
source, processing, and/or partial structural diagrams are usually
accepted.18,43,46,48 Consequently, the vast majority of UVCBs
have little to no detailed structural information (at least in the
public domain), whether in the form of SMILES, InChI,
structural diagram, or molecular formula. This lack of structural
information is a fundamental knowledge gap concerning UVCB
identities. For the few UVCBs that do have some associated
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structural information, their chemical representation can be
single and/or multiple structure(s) as illustrated in Figure 1.
Generic structures (Figure 1A) typically encompass a range of

homologues with varying chain length at a certain site or sites on
the molecule. Representative constituents for UVCBs (Figure
1B) can be chosen in multiple ways, e.g., as the predominant
constituent by percent composition reported in the literature, to
reflect a specific end point such as toxicity, of median chain
length to represent homologous constituents of varying chain
lengths, or two compounds with the shortest and longest chain
lengths defining the range of constituents. Representatives
resulting from grouping (sections 2.2.2 and 3) or statistical
selection21,50 are also possible. Lastly, partial structures (Figure
1C) represent one or more chemically interpretable aspects
described in the substance name. Regardless of representation
type, varying levels of specificity in structures (i.e., specific
compound versus chemical class the compound belongs to)
have been reported, resulting from being registered under the
same registry number51 or cheminformatic import issues across
various databases causing inadvertent removal of undefined
substituents (“Rgroup”) or imprecise polymer (“Sgroup”)
definitions.39

2.2. UVCB Characterization. UVCB characterization has
been driven by increased regulatory assessments of UVCBs,29

developments in chemical database infrastructure,52 and
increasing awareness of the need to identify problematic
chemicals in the environment.53 Characterization initiatives
have emerged in two main areas: cheminformatics (section
2.2.1) and analytical chemistry (section 2.2.2).
2.2.1. Cheminformatics Approaches to Characterize

UVCBs. Linking Preexisting Chemicals to UVCBs. This
cheminformatics approach involves linking preexisting struc-
tures of discrete compounds to UVCBs within chemical
databases. A prominent example is the CompTox Chemicals
Dashboard of the United States Environmental Protection
Agency (U.S. EPA),54 where constituents are linked to UVCBs
via manually curated relationship mappings in its database. The

Dashboard also includes generic (Markush) representations and
so-called “Markush Children” for UVCBs with generic
structures.52 Besides enumeration using Markush technology,55

molecular structure generation methods such as MOLGEN56,57

and simple SMILES expansion58 have also been explored.59

Another example is SciFinder’s60 approach: SciFinder parses a
UVCB name into its individual constituents and then provides
the constituent structures as output to the UVCB queried. The
drawbacks of this method are that the constituents must be
present in the database to begin with (or new entries need to be
registered), linking is time-consuming if performed manually or
more prone to errors through automatic name parsing, and final
structures are not necessarily achieved. Finally, the European
Chemicals Agency Database (ECHA) has a section on “Group
Members” within certain Substance Infocards, which may
consist of UVCB constituents (e.g., MCCP61), and is curated
either by official sources, expert judgment, or algorithm
proposed judgment. However, this grouping is intended for
specific regulatory activities instead of purely linking constitu-
ents to UVCBs. Therefore, groups may also contain substances
that are not constituents if these substances fall within the same
regulatory group.

Elucidation of Chemical Structures. For certain UVCB
names containing chemically interpretable parts, e.g., “Quater-
nary ammonium compounds, coco alkyl(2,3-dihydroxypropyl)-
dimethyl, 3-phosphates (esters), chlorides, sodium salts”
(CASRN 173010-79-2), a trained analyst can manually
elucidate (sub)structures using basic knowledge of chemical
nomenclature, database searches, and depiction tools such as
CDK Depict.49 Representative structures are chosen where
necessary, and proposed structures should be chemically feasible
(e.g., obey basic chemistry principles such as valence rules). In
this way, the analyst effectively manually generates new
structural information. However, such structure elucidation
can only be validated with analytical studies62 and would not be
applicable to UVCBs with names containing chemically
uninterpretable elements such as unknown or variable starting

Figure 1. Examples of chemical structure representations for UVCBs available in REACH registration dossiers, depicted using CDK Depict.49
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materials, biological species, or reaction processes, e.g., “Juniper,
Juniperus mexicana, ext., isomerized, acetylated” (CASRN
91053-33-7) or “Distillates, petroleum, steam-cracked”
(CASRN 64742-91-2).
An alternative approach involves extensively searching the

literature for constituent structures and their “structural
variability characteristics” (e.g., physicochemical properties
inferred from spectral or chromatographic data), encoding
these pieces of information into formats such as generic SMILES
(section 2.3), and then generating all possible constituent
structures accordingly.21,50,51 This approach relies heavily on the
availability of constituent information in the literature or from
industry collaborators as well as curators’ knowledge and expert
judgment to use this information, which may explain why its
applicability has been limited to mostly petroleum substances so
far, as expertise and information on their constituents are highly
available compared to other substances.
2.2.2. Analytical Chemistry Approaches to Characterize

UVCBs. Elucidating Chemical Structures and Composition.
General discussions of analytical techniques applicable to
characterizing UVCBs are available elsewhere,63,64 but since
these techniques are typically chemical class and property
dependent, they must be tailored to specific UVCBs. Addition-
ally, certain UVCBs such as petroleum substances that contain
mostly hydrocarbons may be less challenging to characterize
compared to UVCBs containing multiple chemical classes such
as essential oils. Overall, petroleum substances appear to be the
most extensively characterized UVCBs: constituent identifica-
tion commonly by gas chromatography−mass spectrometry
(GC−MS) and ion mobility spectrometry−mass spectrometry,
and relative quantification by GC(xGC) flame ionization
detection.65−70 Essential-oil UVCBs were characterized using
low resolution GC−MS aided by available library spectra and
reference standards of constituents.71−73 Among high resolution
mass spectrometry methods, one example used five different
techniques to characterize a polyhalogenated flame retardant
UVCB, concluding that it is “dominated by C18 carbon chain
lengths, substituted with 3−7 chlorine atoms and 1−3 bromine
atoms on an alkane chain”.62 Unambiguous structural
identification is often not feasible for many UVCBs such as
these, as “no individual or mixed standards for [polyhalogenated
(bromo-chloro) n-alkanes] exist”.62 A similarly broad character-
ization of chlorinated paraffins revealed the composition of the
constituents’ different chain lengths.74 Constituent percentage
compositions were also derived for organic metal salt UVCBs
that required pretreatment steps for amenability to GC−MS and
nuclear magnetic resonance analyses.75

In general, analytical characterization of UVCBs is technically
challenging: first, the commercial availability of standards is
limited. PetroleumUVCBs are the exception, as direct provision
of standards by industry stakeholders supporting research likely
contributed to intense characterization efforts over the years.
Second, choosing appropriate test material may be difficult
because of possible variability in substance composition. In a
dossier screening study of 155 UVCB registration dossiers under
REACH, 49% on average were found to have materials used for
ecotoxicological end point testing that did not match the UVCB
actually being registered.76 Biological materials in particular can
have high variability. For example, chondroitin sulfate (CASRN
9007-28-7) is a polymeric UVCB isolated from animals, whose
diet and lifestyle, in addition to material extraction and
processing, may affect polymer composition.30 Likewise, a
given petroleum substance produced using the same refinery

process could have different compositions within or across
refineries depending on the operating conditions of the
processing plant and chemical composition of the crude oil
feedstocks.77 Harmonized criteria with composition ranges76 for
selecting UVCB reference materials could be developed, and
reference material manufacturers should provide detailed
characterizations of their substances that have ideally been
standardized, pooled, or homogenized across multiple batches.
Selecting appropriate sample preparation, separation, and

analytical methods can be especially challenging for UVCBs, as
there is little, if any, prior knowledge of substance identity to
guide decisions in analytical strategy. Similar to typical nontarget
studies, multiple analytical techniques and an iterative approach
are often needed to provide as much complementary
information as possible when dealing with UVCBs.30,62 Ideally,
both qualitative (constituent identity or bulk identities) and
quantitative (constituent percent composition/concentration)
characterization would be performed, highlighting the impor-
tance of both high mass resolution and chromatography
(multidimensional if necessary for highly complex substances)
in UVCB characterization. Where complete characterization is
not possible, sum parameters (e.g., total carbon content,
extractable organic chlorine, or total molar concentrations)
can be used as intermediate descriptions.78

Overall, more studies and experience are needed for the
analytical characterization of UVCBs, as they are so chemically
diverse that there is no onemethod suitable for all. To date, most
efforts have focused on some UVCBs of economic interest, i.e.,
petroleum products, and therefore other UVCBs may warrant
more attention from the analytical chemistry community. A
scheme prioritizing UVCBs by, e.g., known toxicity, high
exposure, high production volume, or least complexity in
terms of number/type of constituents may guide researchers in
this area, as could the tiered approach for substance
identification and characterization necessary to support
ecological risk assessment that is currently under develop-
ment.29

Grouping. Besides revealing compositions and information
on chemical identities of individual UVCBs, analytical character-
ization of UVCBs enables grouping of substances and/or
constituents based on common analytical features measured.
Grouping helps mitigate substance complexity and multi-
plicity79 through simplifying a UVCB down to representative
constituents or fractions, or a group of UVCBs to a
representative UVCB, thus allowing for more efficient testing,
hazard assessment, and risk assessment (section 3), and read
across (i.e., using available data to predict properties of
analogous substances and fill data gaps),20,69,80 while facilitating
structural representation in databases (Figure 1B). In general,
grouping should be fit for purpose as there are many strategies
for and applications of grouping,81 such that rationale, decisions,
and uncertainties should be communicated transparently.
Establishing similarity is a prerequisite for grouping. Guidance

specific to oleochemicals,82 hydrocarbon solvents,83 and
petroleum substances84 and for general chemicals80,85 recom-
mends grouping based on similar structural/physicochemical
properties such as the presence of common functional groups,
length and branching of carbon chains, aromaticity, etc. Ion
mobility and GC−MSwere used to group petroleum substances
on this basis, as indicated by measured features in common such
as carbon chain length, double bond equivalents, and H:C
ratio.68,70
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Addressing Substance Variability. Analytical character-
ization may reveal the extent of substance variability across
different samples of the same UVCB, which may affect the
applicability of available data on end points, properties, and/or
substance identity. For example, despite observing some
variation in hydrocarbon content and composition of the
solvent “White Spirit” over multiple years and geographical
samples, researchers concluded that the fluctuation was so
minimal that its “technical properties and toxicological effects
have not substantially changed”.86 Conversely, insufficient
similarity found among various Gingko biloba extracts may
limit the applicability of toxicological data collected for the
tested reference to untested samples.87

2.3. UVCB Identification and Representation. An
appropriate representation for UVCBs is needed to facilitate
unambiguous and precise identification, which in turn enables
searchability. Currently, substance name is the most universally
available representation across all UVCBs. However, name is
problematic for searching as multiple synonyms may exist,
names are sensitive to typographical errors, and they are often
inconsistent across different registries/databases because there
are multiple, inherently ambiguous UVCB nomenclature
specifications across different jurisdictions.18,43,46,47 Strategies
to exploit this ambiguity have been developed, e.g., using generic
descriptors to mask specific chemical identities.88,89 Certain
UVCBs such as essential oils face specific challenges: a
combination of commercial, botanical, and chemical names
can be used,90 such that the same substance can have multiple
different names. Additionally, curation inaccuracies and/or
quality control issues can make identification even more
difficult; e.g., within the ECHA database some substances
have names such as “As UVCB, this information cannot be
provided” (EC No. 942-495-4), or “the substance is UVCB”
(EC No. 939-895-6). After name, CASRN is the second most
used representation of UVCBs, but like substance name it is

imprecise and ambiguous29,47 and is not an open identifier.
Further compounding ambiguity issues, the same combination
of CASRN and substance name can be used to represent
different substances.47

For improved UVCB identification and searchability, there
are currently two (complementary) alternative cheminformatics
representations capable of capturing the multiconstituent,
multifaceted nature of UVCB chemical systems in a machine-
readable way (Figure 2). The first is generic SMILES (G
SMILES), a method for structurally describing UVCBs and their
variable compositions to facilitate hazard assessment via
selection of representative constituents.21,51 G SMILES relies
on a dictionary of predefined descriptors to convey generic
fragment information, derived from a scaffold-fragment
approach. Nonstructural descriptors such as physicochemical
properties and substance formation processes are encoded in a
so-called G graph. However, since this format deliberately
focuses on hazard assessment, it focuses on capturing relevant
structures and disregards those considered irrelevant or
computationally too expensive to manage. Additionally, it may
not be easily applicable to substances whose names inherently
contain little chemical information and thus no structural
representation as it relies on the premise of an existent molecular
scaffold. The format, proposed in 2015, has yet to be formally
adopted in major databases.
The second approach applies the open InChI identifier to the

latest developments in mixture cheminformatics, first proposed
in 2019.92 (Note: “mixture” is used here in the cheminformatics
context of having multiple components, unrelated to the
regulatory definition of mixture.) Mixture InChI (MInChI)
provides a standardized definition of a given mixture that
incorporates three essential properties within its notation:
compound, quantity, and hierarchy. Incorporation of the InChI
standard facilitates searching and linking of constituent
information to public databases (e.g., PubChem). As for G

Figure 2. Examples of cheminformatics representations of UVCBs: (A) G SMILES. (Modified with permission from ref 51. Copyright 2015 John
Wiley and Sons.) (B) Mixture InChI (MInChI).91 The highlighted character strings are machine-readable formats, color coded according to the
different components of G SMILES and MInChI, respectively, as indicated by their labels.
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SMILES, knowledge of structure is necessary to generate
InChIs, which may have limited application for many UVCBs.
MInChI is in active development and has an open source editor
and tools to generate an upstream “Mixfile” format for additional
metadata.93 A preliminary study has been initiated;91

discussions within the International Union of Pure and Applied
Chemistry (IUPAC)’s MInChI project are ongoing.
UVCB Information Management. Improved systematic

representation of UVCBs as multicomponent substances is
much needed to properly manage their multifaceted information
properties toward supporting chemicals assessment and
monitoring. In particular, the ability to link single components
and their reported characteristics back to “source” substances
would support the identification and tracking of UVCBs in
environmental samplesan issue that has received little
concerted attention so far. Ultimately, the goal for representa-
tion of UVCBs in databases is to make them as accurate,
nonambiguous, and machine readable as possible, so that entries
can be easily searched, classified, and analyzedincluding by
constituents and between databases. Proper quality control
during registration, substance representation, and database
curation will be crucial to avoid “inaccurate and unrepresenta-
tive structures in databases” (as discovered for CASRN 68527-
01-5).62

Many UVCBs are intentional mixtures of poorly defined
substances (e.g., plant extracts) with well-defined and
characterized adjuncts (e.g., solvents). Breaking these up into
separate components hierarchically allows known properties
such as toxicity to be ascribed to either individual constituents, a
group thereof, or an entire substance, which would eliminate
ambiguity between individual and aggregate properties and
facilitate analysis at the appropriate hierarchy level.

The data structure similar to the Mixfile format described by
Clark et al.92 could be used to achieve such systematic
cheminformatic representation. Based on the principles of
MInChI, the framework provided by Mixfile can be adapted to
represent UVCBs at the substance level in terms of constituent,
composition/concentration, and hierarchy. Additional metadata
can be managed around these properties that facilitates
cheminformatics operations and is able to handle missing or
incomplete information about a given constituent. Importantly,
whatever relevant chemical information available contributing
to substance characterization (e.g., physicochemical properties,
substance source, physical state/form, and toxicity) should be
represented in a way that supports derivation of further
properties via, e.g., modeling. Furthermore, especially for
reaction product UVCBs, parameters such as reaction
precursors, intermediates, reaction processes, and conditions
of formation can be incorporated into substance character-
ization profiles.
For any given constituent in a mixture hierarchy, the

specificity of constituent structural information available can
be roughly characterized into five levels that indicate what types
of cheminformatics functions can be applied (Figure 3).
Ideally, sufficiently characterized UVCBs have enough

associated structural information to achieve level 1 and/or
level 2 for individual constituents. With a single, well-defined
structure (level 1), almost all structure-related derived proper-
ties can be calculated: names and identifiers via algorithms;
database identity via lookup; and numerous search types, e.g.,
structure equivalence, similarity, substructure. Most importantly
for chemical assessment, prediction of physicochemical,
degradation, and (eco)toxicological properties via quantitative
structure−activity relationships becomes possible. The same is
generally true for level 2, but it is only viable up to the point

Figure 3. (left) Graphical illustration of the proposed UVCB data structure expressing constituents, concentrations/composition, and hierarchy,
shown representing a “mixture of ‘coconut oil, polymer with glycerol and isophthalic acid’ (CASRN 68132-70-7) and ‘(R)-12-hydoxyoleic acid,
compound with 2,2′-iminodiethanol (1:1)’ (CASRN 94232-00-5) dissolved in xylenes (CASRN 1330-20-7)” for demonstrative purposes.93 (bottom
right) Different specificity levels of available information on UVCB constituent structural representation, in decreasing order of preference from 1 to 5.
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when enumerating all isomers/congeners/homologues is
practical.
Level 3 captures the essence of the UVCB problem: there is

something known about the chemical entities present but this
information often cannot be readily converted into a
manageable set of discrete constituents. For poorly defined
constituents, chemical information is often reported in a form
accessible to the experimentalist to a certain extent,47 such as
classes of chemical functionality (e.g., a form of starch is known
to contain carbohydrate substructures), an industrial mixture
described as the reaction products of certain input structures,
polymers that may be indicated by providing the repeating units,
and a constituent that may be described as all of the molecules
from a source which distilled within a certain temperature range.
The information known to the creator of the UVCB entry is
sometimes only sufficient to enumerate a representative
selection of molecules, but even when it is not, there might
still be possibilities to narrow down what the molecules could be
(e.g., by considering typical outputs from a given reaction type)
and, subsequently, the appropriate queries and comparisons.
UVCBs may contain constituents that are defined in some

sense other than chemical characteristics, which is commonly
the case when using biologically sourced materials, correspond-
ing to level 4. Many materials have an officially defined
provenance and can be linked to a formal description using an
identifier maintained or used by an authoritative organization,
e.g., CASRN94 or International Nomenclature Cosmetic
Ingredient names.95 These identifiers may be traced to the
primary literature or preparation description (e.g., how to
extract a fraction from a plant grown under certain conditions),
but often they do not always provide meaningful, unambiguous
chemical information, as discussed elsewhere.47

The final fallback, level 5, is to provide a text description of the
substance, which facilitates keyword searching but is likely only
understandable by domain experts. Very few higher-order text
analyses are possible with current methods. However, such text-
based fields could be supported by the development of
ontologies or standardized terms (e.g., “acetylated”, “sulfurized”,
or examples from European Union guidance43) that have formal
definitions and should be used consistently by all stakeholders.
The above scheme is intended to be applicable to all UVCBs

as a means of systematizing whatever information is currently
available albeit possibly incomplete, for quality control of future
reporting and to guide future characterization initiatives.
Overall, but especially for chemicals assessment, levels 1 and 2
represent the most desirable levels of detail and should ideally be
reflected in corresponding substance registration and character-
ization efforts.

3. HAZARD ASSESSMENT OF UVCBS
Different regulatory approaches exist around the world
concerning the hazard assessment of UVCBs, some of which
were reviewed elsewhere.63 In the United States, the EPA has
not issued any guidelines specifically addressing UVCB testing
and instead relies on a case-by-case approach.29,63 In Canada,
UVCBs were prioritized96 within the ecological risk classi-
fication approach under the Chemicals Management Plan97 and
assessed case by case using a weight of evidence approach
(section 3.3.1), typically within chemical class specific groups,
e.g., quaternary ammonium compounds, resins and rosins, etc.
The groupings were identified on the basis of structural or
functional similarities and were chosen according to several
factors related to assessment efficiencies and avoiding regret-

table substitution, among others. Alternative grouping strategies
by common fate properties and ecotoxicological effects have also
been recommended63,84 and performed based on common
biological activity signatures,69 toxicological and biodegrad-
ability end points,50 and industrial use/emission patterns
(section 4.1). Under the European Union’s REACH framework,
certain hazard information must be provided with all registered
UVCBs depending on the registration tonnage band and uses.98

Multiple UVCBs have been assessed under the Australian
Inventory Multitiered Assessment and Prioritisation Tier 1
framework,99 but there is no specific UVCB guidance. Overall,
UVCBs present challenges to regulatory frameworks concerning
hazard assessment and communication, with specific issues
related to testing strategies.

3.1. Overarching Hazard Classification and Commu-
nication: GHS. A primary outcome of hazard assessment is
hazard classification, e.g., following the conventions of the
Globally Harmonized System of Classification and Labeling
(GHS). There is still no specific official guidance on UVCBs in
the latest (ninth) revision of the GHS,100 despite early initiatives
to develop GHS guidance for petroleum UVCBs,101 though a
whole-mixture toxicity assessment is recommended for hazard
classification of environmental and human health hazards and
skin corrosion/irritation as well as for whole-mixture environ-
mental biodegradation.100 If only part of the mixture is known, a
suite of bridging principles can be applied to predict the mixture
classification. However, explicit guidance for mixtures exists.
Applying GHS guidance for mixtures requires knowledge of all
constituents present so that all the respective hazards can be
evaluated, which may be possible for certain UVCBs. For
example, the MeClas tool, used for hazard identification and
classification, assumes all metal constituents are known in
complex inorganic UVCBs.102 Similarly, an adapted implemen-
tation of GHS was proposed for petroleum UVCBs,103 where
petroleum streams are considered unique substances each
having individual CASRNs, which can be sorted into categories
based on similar physicochemical/toxicological profiles and
then evaluated for hazard accordingly. Implementing this same
method for hydrocarbon solvents has been deemed feasible by
Mckee et al.104 However, for most other types of UVCBs,
detailed knowledge of constituents may not be available, thus
limiting the applicability of current GHS mixtures guidance to
UVCBs because GHS requires all constituents to be known.
Despite the lack of UVCB-specific GHS guidance, testing

strategies for hazard classification of UVCBs are under
development.105 Moreover, there is some evidence of partial
GHS classification of certain UVCBs such as “Juniper, Juniperus
virginiana” (CASRN 85085-41-2);106 however, it is not clear
how such classification was achieved, further supporting the
need for specific transparent guidance for classifying UVCBs
under GHS. In future guidance, some element to encode
uncertainty could be introduced, e.g., as pictograms/classifica-
tion/hazard statements to reflect uncertainty or incomplete
understanding of the given UVCB composition and thus
hazards.

3.2. General Approaches to Assess Persistence,
Bioaccumulation, and Toxicity (PBT). Three main ap-
proaches have been prescribed for empirical testing of P, B, and/
or T properties of UVCBs:63,107 whole substance, known
constituents, and fraction profiling (Figure 4). The European
Union’s REACH encourages a combination thereof where
necessary, for example, when knowledge of the substance
evolves during assessment or if tested constituents are
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sufficiently different from the remaining composition of the
substance.107 In the whole-substance approach, the entire
UVCB undergoes testing and assessment (Figure 4A). However,
because of substance complexity and potentially variable
constituent solubilities that can cause challenging test conditions
for the whole-substance approach, the known-constituent
approach may be favored (Figure 4B). Known constituents
can represent the entire UVCB in testing and assessment if they
can be isolated, are present at relevant concentrations within the
substance, and represent worst-case characteristics. Alterna-
tively, the fraction-profiling approach involves splitting the
whole substance into so-called “fractions”, and either the
fractions themselves or representative constituent(s) of each
fraction are tested (Figure 4C). The latter is also known as the
“block method”. Physical separation of the whole substance into
fractions is performed such that constituents within each
fraction show a predictable trend in properties, e.g.,
physicochemical, structural, mode of action (MoA), and
degradation.63,107 Read across is expected to be applicable
within the constituents of a given fraction.107 The hydrocarbon
blockmethod (HBM)84 is a specific form of fraction profiling for
petroleum UVCBs and, together with its associated assessment
tools (e.g., PetroTox,108 a spreadsheet model designed to
calculate the toxicity of petroleum products to aquatic
organisms), has been the result of 30 years of work in the
petroleum sector. In the first EU Technical Guidance Docu-
ment, HBM was prescribed for assessing environmental risks of
petroleum substances.109

Detailed discussions of the advantages and disadvantages of
each approach are available elsewhere.63,107 Briefly, testing
whole substances does not require generation of new test
material, but results may not be representative of all
constituents; known constituents are relatively easy to test as
they are discrete and well-characterized but may require more
effort to characterize up front and may not ultimately be
representative of the whole substance; and fraction profiling
allows more targeted assessment than whole substance but
requires generation of test material, i.e., the fractions.

A fourth, less common approach consists of in silico PBT
screening, as recently performed for 884 constituents in the
same hydrocarbon block of alkylated three-ring PAHs via
relative trend analysis of experimental and modeled data.110 The
half-lives of petroleum products modeled by BioHCWin were
validated by newly generated empirical data, suggesting that
preliminary persistence screening of petroleum UVCBs is
feasible using models.111 Although in silico PBT screening may
circumvent experimental difficulties associated with dealing with
complex UVCBs, it ultimately requires experimental validation,
is extremely data-intensive, and thus is only viable for well-
studied UVCBs whose constituents are well-characterized and
chemically similar.
The availability of PBT-related studies for a given UVCB is

highly dependent on the nature of the substance itself and
factors such as the substance’s practical applications, economic/
industrial importance, availability of reference material, and
overall environmental relevance. For example, there has been
relatively more research on the degradation, bioaccumulation,
and toxicity behaviors of petroleum substances and chlorinated
paraffins,23 as reflected in extant prioritization schemes for PBT
assessment, likely because these are well-known UVCBs.112 In
comparison, there is little knowledge of the PBT characteristics
of lesser-known UVCBs such as “Morpholine, 4-C12−14-alkyl
derivs.” (CASRN 1402434-48-3), “Alcohols, lanolin” (CASRN
8027-33-6), or “Fatty acids C18 unsat, reaction products with
pentaethylenehexamine” (CASRN 1224966-13-5).
The following sections focus on recent studies highlighting

universal issues affecting PBT testing strategies for UVCBs.
3.2.1. Persistence. Generally, ISO- and OECD-standardized

tests for degradability were originally developed for fully
characterized substances and by default adopt a whole-substance
approach. The biodegradation screening tests, e.g., ready
biodegradability (OECD 301A−301F) and inherent degrad-
ability (OECD 302A−302F), typically measure CO2 formation,
theoretical oxygen demand, or substrate decay. These methods
can be applied to UVCBs, although these screening tests may
not accurately reflect whole-substance persistence. The
simulation biodegradation tests in soil, sediment, and surface

Figure 4. Schematic representation of the three main experimental approaches prescribed for PBT assessment of UVCB substances.63,107
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water (OECD 304, 307, 308, 309) require 14C labeled
compounds to quantify loss of the parent and identify
transformation products. While these are more challenging to
perform for UVCBs, efforts involving, e.g., fully labeled
chlorinated paraffin mixtures already exist.113

Screening tests based on CO2 formation or oxygen demand
quantification can be applied to UVCBs, but it is possible that
the persistence of a whole UVCB could be incorrectly
determined by assessing its more degradable constituents,
despite the UVCB containing persistent constituents. As these
tests do not provide detailed persistence information at the
constituent level, the true degradability of a UVCB can be
subject to interpretation andmay have to be evaluated on a case-
to-case basis.63 An alternative measure for testing a UVCB’s
ready biodegradability has been proposed, where a carbon
balance approach is used to derive the level of ultimately
transformed organic carbon (sum of mineralized carbon and
carbon converted to biomass) in aerobic biodegradation tests as
ameasure of ready biodegradability, but it may be limited to only
substances whose carbon content can be measured.114

In certain cases where the UVCB has a relatively simple
chemical composition, it may be justifiable to apply bulk
degradation test results to the entire UVCB substance. For
example gas-to-liquid synthetic hydrocarbons were deemed
“sufficiently homologous”, such that nonspecific results from
ready biodegradability tests “can be used to conclude on their
biodegradability as a whole”.115 Alternatively, if tested known
constituents cover an appropriately broad and relevant chemical
space that would account for substance variability, degradation
results could be extrapolated to other substances within that
applicability domain, as performed with kinetic studies of test
chemicals commonly found in petroleum substances.116,117

Overall, evaluating UVCB persistence is still in the method
development stage, as there are many technical and analytical
challenges, e.g., possible impact of mixture effects (where certain
constituents may enhance or diminish the biodegradation
kinetics of other constituents present), for which whole-
substance testing is necessary to evaluate.72,118,119 An important
outcome of these works for informing future studies is that test
concentrations should be kept at low, environmentally relevant
concentrations to avoid mixture toxicity affecting biodegrada-
tion kinetics. To date, most studies focused on developing
persistence tests for hydrophobic UVCBs. Testing strategies for
UVCBs with other types of challenging physicochemical
properties (e.g., hydrophilic, volatile) should be developed to
enable the persistence testing of UVCBs with different
properties.
3.2.2. Bioaccumulation. Initial bioaccumulation screening

relies on the octanol−water partition coefficient (Kow), but as
with persistence testing, different constituents may have
different Kow values and thus different bioaccumulative proper-
ties that could complicate results interpretation for whole
UVCBs. Initial estimates of whole-substance bioaccumulation
potential could be inductively concluded if analytical methods
such as high performance liquid chromatography capable of
capturing multiple constituents indicate whether all constituents
either exceed or are below the common regulatory log Kow 4.5
threshold for screening bioaccumulation assessment.107 How-
ever, as equilibrium partitioning may not be the only process
determining bioaccumulation, log Kow > 4.5 does not imply that
a chemical is bioaccumulative, but further evaluations are
required. In the case of UVCBs, different constituents may
undergo active uptake, metabolism, and/or excretion to varying

extents.29 The recommended approach63 has been to consider
the bioaccumulative properties of a UVCB’s representative/
main constituents instead of those of the whole substance itself.
Bioconcentration factors (BCFs) were successfully determined
for the main constituents of “cedarwood Virginia oil” (CASRN
8000-27-9) in rainbow trout this way,120 and continued work by
the same authors developed an analytical technique within a
suspect-screening approach that circumvents the need to have a
priori knowledge of constituent identities and available analytical
standards.121 Several technical substance mixtures of chlori-
nated paraffins, typically already subdivided according to chain
length, were found to be bioaccumulative in Daphnia magna.122

An extended discussion of measuring UVCB bioaccumulation
is available elsewhere.29 Overall, there are very few bioaccumu-
lation studies of UVCBs and their constituents, andmore work is
needed to develop methods for future bioaccumulation studies
of other UVCBs, such as testing the suitability of in vitro
methods.29

3.2.3. Toxicity. Toxicity assessment requires aquatic toxicity
testing and/or the evaluation if the substance poses a human
health hazard, namely if it is carcinogenic, mutagenic, or
reproduction toxic (CMR), an endocrine disrupting compound
(EDC), or mediates specific target organ toxicity (STOT).
Aquatic toxicity testing of UVCBs is challenging from two
perspectives. First, it involves the ability to correctly define the
dose of the substance and make sure a constant test
concentration is maintained over the testing period. Second,
the constituents of many UVCBs can be very hydrophobic,
making dosing challenging even for single compounds. Toxicity
is mediated by bioavailability, which is limited by solubility and
the sample preparation methods used. Interestingly, very
hydrophobic chemicals are of such low solubility that toxic
concentrations cannot be achieved for single compounds but
can be achieved for mixtures.123 As UVCBs have multiple
constituents of likely varying solubilities and percentage
compositions, aquatic toxicity testing of UVCBs poses technical
challenges for hydrophobic and/or volatile constituents. Thus,
considerable studies in recent years have focused on developing
improved toxicity testing methodologies for UVCBs, especially
with respect to dosing of volatile, hydrophobic, and volatile and
hydrophobic UVCBs,124−126 as well as analyzing the effect of
sample preparation on bioavailability.127

Overall, modeling toxicity and testing of UVCBs have mostly
focused on petroleum substances,124−126,128 solvents,86,129 and
chlorinated paraffins.23,130−132 Future method development and
toxicity evaluations of other UVCBs are warranted.

3.3. Additional Considerations for Comprehensive
Effect Assessment. Exposure to a UVCB substance results in
combined exposure to more than one chemical at the same time.
Therefore, from a chemical and toxicological perspective,
UVCBs aremixtures despite the legal distinction drawn between
UVCBs and mixtures within regulatory frameworks.17,133,134

Thus, for the purposes of comprehensive effect assessment, the
same established principles for assessing mixture toxicity are
applicable to assessing UVCBs.135

3.3.1. Whole-Mixture Testing. Comprehensive effect assess-
ment requires a whole-substance approach where the effect of
the mixture is tested. In principle, dosing mixtures into bioassays
follows the sample principles as for single chemicals, and since
solubility of each compound is additive in a mixture, overall,
more chemicals can be brought into solution in the case of
UVCBs as compared to single chemicals. However, there are
challenges because the mixture composition must not be
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changed since the exposure concentrations of mixtures cannot
be confirmed analytically.
Dosing remains a particular challenge for UVCBs that contain

many low solubility components because the solubility of whole
mixtures depends on the solubility of the least soluble
constituent during aquatic toxicity testing. Therefore, there is
a danger that the more hydrophobic chemicals are not dissolved
and hence not bioavailable, and the effect is dominated by the
more soluble constituent. As more hydrophobic chemicals are
typically more potent than more hydrophilic chemicals, this may
lead to dramatic underestimation of toxicity.
Another complication is UVCBs with volatile components or

volatile and hydrophobic components. For such UVCBs, the
water accommodated fraction (WAF) approach is intended as a
“last resort” if all other means of ensuring stable substance
concentrations during testing have been exhausted,107 or as an
“additional supporting line of evidence” to empirical and
modeled data.136 It involves expressing aquatic toxicity in
terms of loading rate (ratio of test substance to aqueous medium
used to make the aquatic toxicity test medium), thereby
providing a measure of relative toxicity at concentrations
equating to the apparent solubility of each component and not
their actual abundance in the mixture. However, WAF has
fundamental drawbacks: it represents only a fraction and not the
whole substance (whose chemical identity is subject to
uncertainty), mixture composition may be altered compared
to the UVCB it is prepared from, and the WAF composition
depends on preparation techniques. Issues related to WAF
results interpretation for coal tar pitch and kerosene/jet fuel
UVCBs within regulatory processes of the U.S. EPA and
REACH have been reported.137 Alternatives to WAF include
solvent extraction followed by solvent spiking, generator
systems, saturator columns, and passive dosing methods, the
last of which has been in active development in recent years with
respect to UVCBs.124−126

On balance, results from whole-mixture testing could be
integrated into a weight of evidence (WoE) approach for UVCB
assessment. In Canada’s WoE approach, multiple lines of
evidence are considered in the assessment of a UVCB: for
example, besides considering WAF test results, other aspects
such as representative structures, individual constituent toxicity,
and additive toxicity may also be evaluated together when
deciding on a substance’s toxicity and capacity to cause adverse
effects in the environment.
3.3.2. Mixture Toxicity Models: Toxic Equivalence Ap-

proach for UVCBs. Ideally, choosing an appropriate mixture
toxicity model for a given UVCB would be determined by
knowledge of its constituents and composition. For example,
UVCBs containing chemically diverse constituents with differ-
ent MoAs would follow an independent action (IA) model of
toxicity, while those with the same MoA would follow
concentration addition (CA), whereas mixtures with known
interactions between their constituents might cause synergistic
or antagonistic effects. However, these effects are rare and
typically happen inmixtures with few components and for highly
specifically acting compounds such as in pesticide formula-
tions;138,139 therefore synergism and antagonism are unlikely for
UVCBs.
The simple CA model can be applied to UVCBs with

relatively simple compositions and chemically similar constitu-
ents (e.g., UVCBs such as “Alcohols, C9−C11”). Even
independently acting compounds often have mixture predic-
tions very similar to CA or converge to the same mathematical

model at low effect levels (<10%).140,141 Very complex UVCBs
with many diverse constituents, albeit each individually present
at very low concentrations below effect levels (e.g., petroleum, or
biological materials like essential oils), would also follow CA.
Provided that relative effect potencies (REPs) are independent
of effect level or concentration in these cases, a toxic equivalency
approach can be applied.142

The toxic equivalent concentration (TEQ) of a UVCB or any
chemical mixture is the sum of the products of the concentration
of each constituent i and its respective toxic equivalency factor
(TEFi), where TEFi is defined as the ratio of the effect of a
reference compound to the effect of the constituent i. Such a
reference compound could be a known representative
constituent. TEFs are consensus values for dioxin-like
chemicals,143 but a conceptually and mathematically identical
approach could be taken using REPi’s from the same toxicity
test142 (eq 1), where Ci is the concentration of constituent i in
the mixture, ECi is its effect concentration in the given bioassay,
and ECref is the effect concentration of the reference compound.

∑ ∑= · = ·
= =

C CTEQ REP
EC
ECi

n

i i
i

n

i
i1 1

ref

(1)

The TEQ approach was mentioned in the official European
Union opinion on mixtures144 but no practical examples for
UVCBs exist in the public domain as of yet. Currently, the
whole-mixture approach is recommended in regulatory risk
assessment of mixtures.35 In practice, if not all the ECi values of
the mixture components are known, they can be approximated
by similar constituents, as was successfully demonstrated for the
human health risk assessment of brominated flame retardant
mixtures.145

In multiconstituent mixtures, not only does CA likely apply,
but toxicity of complex mixtures is often reduced to baseline
toxicity,146 which is the minimum toxicity triggered by
nonspecific interactions of chemicals with biological membranes
leading to disturbance of structure and functioning of cell and
organelle membranes.147 Since all chemicals are equipotent with
respect to baseline toxicity if effects are expressed as internal
concentrations, there is a critical molar membrane burden above
which effects can be observed. This level is around 200−500
mmol/kg lipid for LC50 of aquatic animals.147−149 The chemical
properties of the chemicals decide only howmuch is taken up by
the organism and ultimately distributed into themembranes, but
once they are in the membrane all chemicals act close to
equipotent. This means that critical membrane burdens or, for
all practical matters, critical or lethal body burdens can easily be
applied to mixtures.150 This principle has also been extended to
mixtures in the so-called target lipid model (TLM).151,152

4. EXPOSURE AND RISK ASSESSMENT OF UVCBS
4.1. Exposure Assessment.Within regulatory frameworks,

exposure assessment of UVCBs is not always considered
necessary and is highly dependent on the framework in
question. For example, in the European Union, the outcomes
of initial hazard assessments may already be enough to initiate
risk management measures without having to assess UVCB
exposure. However, in many other jurisdictions such as the
United States, Canada, and Australia, a full risk assessment of
chemical substances that includes exposure assessment is
generally required to determine whether risk management
measures should be triggered.
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In cases where exposure assessment of UVCBs is necessary,
regulators must deal with multiple challenging aspects of UVCB
exposure, particularly with regard to environmental monitoring
and biomonitoring. First, it is difficult to measure UVCBs in the
environment because of their multiconstituent nature. Environ-
mental monitoring typically only tracks single compounds, but
because UVCBs comprise multiple constituents, validation
issues may arise as it is difficult to attribute the detection of a
particular constituent to the emission of a UVCB containing that
constituent. Furthermore, environmental transformations of
these constituents and potentially different fate and transport
properties resulting in different exposure pathways could
complicate this attribution further.19,29 Therefore, ideally full
knowledge of constituent identities and compositions is needed
for exposure assessment of UVCBs. However, as this has been
difficult to achieve in practice, refining exposure scenarios by,
e.g., considering the magnitude of emissions and current
mitigation measures in place may help prioritize substance
characterization efforts (section 2) needed for exposure
assessment. Overall, some uncertainty will remain regarding
unknown constituents and their unknown environmental fate
and exposure properties, which is challenging to capture in the
overall exposure assessment. It is important to convey this gap in
knowledge/uncertainty as part of assessment outcomes.
Concepts for exposure assessment and fate and transport

modeling of UVCBs are currently under active development.29

A review of publicly available electronic registration dossiers and
risk assessment reports revealed three main approaches for
estimating exposures of UVCBs: whole substance (section
4.1.1), constituent (section 4.1.2), and expert judgment (section
4.1.3).
4.1.1. Whole-Substance Approach. UVCBs whose constit-

uents are not clearly defined or are too complex in composition
can be assessed as a whole. Relevant information such as import
and manufacturing volumes, consumer uses, product use
scenarios, and percent concentration within products are
considered. An example is the assessment of the organic
anthraquinone UVCB “9,10-Anthracenedione, 1,4-diamino-,
N,N′-mixed 2-ethylhexyl and Me and pentyl derivs.” (CASRN
74499-36-8) by the Government of Canada (GoC) using the
ConsExpo model to estimate oral and dermal exposures.153

Whole-substance exposure assessment can also be performed
for groups of substances within, e.g., a common sector of
industrial activity, as their exposures are considered very similar
or identical. GoC assessed 57 sector-specific inorganic UVCBs
used inmetals, paper, and cement processing andmanufacturing
in this way.154 Exposure potential was evaluated on the basis of
the status of the substance (e.g., “waste”, “byproduct”), and
whether there were any preexisting measures to limit environ-
mental exposure. In this example, exposure was emphasized over
hazard in the overall characterization of risk, and as exposure was
deemed negligible, regardless of hazard, risks to human health
were considered low and harm to the environment not expected.
However, such grouping and disproportionate emphasis on
exposure over hazard could be detrimental for substances with
specific MoAs and/or high toxicity, uncertainties in assessing
exposure potential persist, and there may be caveats in assuming
the preexisting measures to limit exposure were adequate.
4.1.2. Constituent Approach. Each constituent and/or

representative constituents must be known and should undergo
individual exposure assessment (or the relevant information
gathered from the literature) before the assessments are
combined to give an overall exposure assessment of the

UVCB. This approach has been recommended for inorganic
UVCBs, where assessing constituents would be similar to
“standard metal exposure assessment” and should take into
account speciation behavior, assuming the worst-case scenario
where information is incomplete.155 In the final combination
step of the parallel constituent assessments, multidimensional
risk characterization ratio tables (constituent × exposure route
× local/systemic effects, short term/long term) are gener-
ated.155 Examples exist under the EU REACH, e.g., the
inorganic UVCB “Lead alloy, base, Pb, Sn, dross” (CASRN
69011-60-5), whose dossier states “assessing transport and
distribution of the UVCB substance has no meaning”, as the
“metals contained in the UVCB have been assessed in the
respective risk assessments”.156

4.1.3. Expert Judgment. Expert judgment can be used where
there is insufficient knowledge of hazard and exposure and no
representative structure(s) to describe the substance. Qual-
itative exposure classification was performed for 192 organic
UVCBs157 and an anthraquinone UVCB (CASRN 74499-36-8)
by GoC.153 Supporting information, e.g., industry surveys and
consideration of similar substances, was also taken into account.
However, more information is needed to transparently illustrate
how these expert judgments are carried out and validated, and to
assess whether such judgments can be automated in the future.

4.2. Risk Assessment of UVCBs. Risk characterization
traditionally involves the calculation of a risk quotient: the
outcome of exposure assessment (e.g., predicted environmental
concentration, PEC) is divided by that of effect assessment (e.g.,
predicted no effect concentration, PNEC). Risk quotients of
individual components of a mixture are additive to yield the risk
index (RI) if CA applies for the mixture effect (eq 2).

∑ ∑= =
= =

RI RQ
PEC

PNECi

n

i
i

n
i

i1 1 (2)

Hence for mixtures and therefore also for UVCBs, one could
calculate the TEQ as described above and use that in relation to
the PNEC of the reference compounds used to derive the TEQ
(eq 3).

=RI
TEQ

PNEC
i

reference chemical (3)

Comprehensive environmental risk assessments including
both effect and exposure of whole substances have been
developed for two particular types of UVCBs: petroleum
products (PETRORISK)158 and hydrocarbon solvents.159

While substance complexity and variability are reflected in
hazard and risk predictions by PETRORISK,160 careful ongoing
evaluation of these models is necessary, as PETRORISK was
found to underestimate the environmental risks of petroleum
use and production.161 Methods for other UVCBs have yet to be
established.

4.3. Current Regulatory Activities, Perspectives, and
Priorities. Overall, many regulatory authorities have endea-
vored over the past decade to develop scientifically sound and
consistent approaches for the assessment of UVCBs. However,
the availability of specific (standardized) guidance to achieve
this is still limited to date. In practice, both whole-
substance136,153,154,162 and constituent-based156 approaches
are being used in current regulatory assessments, informed by
established principles such as those of HBM (but tailored to suit
chemistries other than petroleum), as well as guidance on
mixtures.163−166 Given the large range in complexity, chemical
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classes, and data availability for UVCBs, it is not always possible
to be prescriptive for all aspects of hazard, exposure, and/or risk
assessment. Therefore, a case-by-case approach is still the
preferred and potentially only viable approach for certain
UVCBs, but it may pose a burden for risk assessors and result in
less predictability for stakeholders.

5. DISCUSSION: CHALLENGES AND OPPORTUNITIES
Several systemic factors contribute to the challenges posed by
UVCBs: information gaps in chemical identities and composi-
tions stemming from the registration process, inadequate
chemical representation and nomenclature hindering identi-
fication and database searchability, lack of analytical standards
and methods tailored specifically to UVCBs, challenging
conditions for PBT testing, and the sheer number of UVCBs
to be assessed. Below, key opportunities and steps forward in
addressing these challenges are summarized.
5.1. Registration. Fundamental knowledge gaps in UVCB

identities could be avoided from the start if information
requirements to register UVCBs were increased, in tandem
with implementing better methods for chemical representation.
Requiring machine-readable structural information, including
representative or generic structures for constituents, and
compliance and quality checks during registration may assist
with this. Standardized description terminology should be
developed toward improving UVCB nomenclature for registra-
tion, possibly with the support of IUPAC and CAS. Potential
avenues to implement these information types include GHS,
OECD, and IUCLID.
5.2. Chemical Representation and Information Man-

agement. Chemical representation issues linked to nomencla-
ture, structure, and use of closed identifiers such as CASRN still
hinder precise identification of UVCBs. Machine-readable
representations to enable unambiguous substance identification
and searchability such as G SMILES and the open MInChI
represent possible solutions. Future initiatives to improve
chemical representation of UVCBs could be spearheaded by
organizations such as IUPAC’s InChI Subcommittee focusing
on capturing mixture composition using MInChI.167

UVCB information must be better organized to enable (1)
capture of their multiconstituent and multifaceted properties,
(2) quality checks, and (3) detection of information gaps. A
hierarchical data format and associated constituent representa-
tion scheme were proposed to achieve this (Figure 3). It is
important for stakeholders to consider this format in further
discussions toward achieving a standardized system so that
future reporting, storing, and exchanging of UVCB information
become more accurate and precise. Future research in this area
such as proofs of concept and analyses on how our proposed
format could function for several types of UVCBs is highly
anticipated.
5.3. UVCB Characterization: Toward Environmental

Detection and Monitoring. UVCB characterization is
currently achieved by two means: cheminformatics and
analytical chemistry. Cheminformatics methods rely on text
parsing and cross-linking information that already exists in
databases and, because these are often done in silico, are
potentially the fastest and most scalable characterization
approach. However, these methods are fundamentally limited
by the availability and quality62 of preexisting UVCB
information in the public domain.
Ultimately, analytical characterization will be necessary to

generate (new) knowledge on UVCB identities and composi-

tions. UVCBs other than petroleum substances warrant
characterization, particularly if they are high production, toxic,
or heavily emitted into the environment. Given their complex
and unknown characteristics, nontarget strategies168,169 involv-
ing multiple analytical techniques to give complementary
information will be required to elucidate UVCBs, especially as
they may have generic elemental compositions (e.g., only C, H,
O, N) and molecular formulas similar to hundreds of natural
products, making them hard to distinguish from environmental
matrices. Chemometrics or cheminformatics tools could be used
for prioritization based on substructure or toxicity.170,171

Overall, UVCB characterization is a prospective area of
dynamic research, especially as knowledge of their identities
becomes indispensable for answering “bigger questions” such as
investigating known toxicity end points associated with
constituents requiring identification. Successful characterization
efforts and analytical method development contributing to
better knowledge of UVCB identities will likely open more
avenues for their environmental detection and monitoring.
Chlorinated paraffins23,74,172 are a good example, as their
constituents are known and have distinctive analytical signatures
(e.g., homology, multiple halogens present) which facilitate
identification.173−175 However, for UVCBs with very different
constituents, new concepts and analytical methods for their
environmental detection will be necessary. Several open
questions remain, such as how many constituents must be co-
detected to conclude on the detection of a specific UVCB, how
potential transformations176 and partitioning of different
constituents across multiple environmental compartments can
be accounted for, etc.

5.4. Hazard, Exposure, and Risk Assessment. Existing
testing strategies for single-compound end-point assessments
should be adapted to the multiconstituent characteristics of
UVCBs following one of three approaches: whole substance,
known constituent, and fraction profiling. Standardized testing
methods are needed, requiring cooperation among the relevant
stakeholders to develop them. Strategies such as grouping and
read acrossmay help streamline chemicals assessment, especially
for UVCBs with similar constituents or properties, as would
applying appropriate mixture toxicity models (i.e., CA and/or
TEQ) for comprehensive effect assessment in a complementary
approach to further substance characterization.
To support chemicals assessment of UVCBs, current

priorities for future research and action include the following:
(1) improving the quality and availability of information on
UVCB components, (2) deepening the understanding of
manufacturing and use practices and the release potential of
UVCBs to the environment, (3) developing tools to estimate
exposure of multiconstituent substances in environmental
matrices and biota, (4) developing standard hazard and fate
test and assessment methods for UVCBs, and (5) improving
approaches to communicating complex risk assessment findings
to stakeholders.
Concerted efforts from all stakeholders are needed to

systematically address UVCBs, particularly in identifying and
managing those that present unacceptable risks. There are tens
of thousands of UVCBs on the market, and risk assessment
prioritization schemes such as those available for petroleum
substances112 should be devised for other UVCBs based on, e.g.,
detection in the environment, highest production volumes, and
known toxicity and/or exposures (preliminary initiatives within
NORMAN Network activities are underway177). Meanwhile,
stakeholders may also consider simplification79 and sustainable
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circular use178 principles of UVCBs toward their sound
management in the medium to long term.
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UVCBs remain a formidable challenge from multiple perspectives, mostly stemming

from their varied compositions and unknown or ambiguous identities. A central

problem when dealing with UVCBs is that their chemical representation is not uniform

within databases and registries, which in turn makes it difficult to catalogue,

communicate, search, and assess them in an efficient way. In this work, the open

format Mixture InChI was proposed as a solution to the issue of UVCB chemical

representation, including demonstrative examples that served as proofs of concept.

Furthermore, three main approaches to UVCB assessment were reviewed, namely

by whole substance, known constituents, or fractions. Aspects of the challenges they

pose in their analytical detection and characterisation were discussed, including

acknowledgement that multiple analytical techniques and strategies are imperative.

Furthermore, certain mixture toxicity approaches were recommended, and regulatory

priorities concerning UVCBs were highlighted. Overall, the notion that there is “no

one solution that fits all” UVCB substances emerged, and grouping strategies of

similar UVCBs that would allow group-by-group testing and management seem a

viable way forward.

Nevertheless, analytical efforts to identify the individual components of UVCBs in

environmental mixtures persist, and the potential of cheminformatics and

computational approaches to support these pursuits is explored in the next chapter.

More specifically, homologous series of chemicals have frequently been detected in

the environment using HRMS, but bottlenecks in their data analysis hinder their

structure elucidation. The next chapter explores the use of a cheminformatics

algorithm to enhance database resources, with the ultimate goal of supporting the

structure identification of HRMS signals forming homologous series.
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Chapter 5

A Cheminformatics Algorithm for Improved
Identification of Homologous Series in

Environmental Mixtures

Homologous series describe groups of related chemicals that share a common core

structure and a monomer that repeats to different degrees. They occur throughout

multiple chemistry domains, for example as natural products produced by various

organisms, as well as in synthetic chemistry contributing towards chemical product

development. Numerous UVCBs are homologous series, for example “Medium chain

chlorinated paraffins” (CASRN 85535-85-9) and “Alcohols, C9-C11” (CASRN

64641-46-9).

Multiple homologous series have been frequently and simultaneously detected in

environmental samples.96–98 These compounds are likely emitted through the

consumption or use of various domestic chemical products that contain surfactants,

such as soaps and detergents. In HRMS data, their signals manifest as characteristic

patterns: the elution profile usually has peaks that evoke a normal distribution, and

plotting their m/z against tR typically gives a line with a constant linear slope that

typically represents the mass of the repeating unit. However, assigning plausible

chemical structures to these analytical signals is an ongoing challenge because of

their quantity in any given sample, and though database matching by masses can be

relatively trivial, reasonable chemical assignment based on the elution profiles may

be elusive because chemicals within databases that form homologous series exist

without explicit relation to one another. Additionally, potentially hundreds to

thousands of plausible matching candidates by mass may exist, which confounds the

ability to elucidate the possible interrelationships between them.

In this chapter, a cheminformatics algorithm was developed to classify homologous

series within compound databases. The algorithm was openly implemented in Python

using the RDKit and applied to chemical datasets from the fields of natural products,
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exposomics, and environmental chemistry. Furthermore, it was validated against

existing similar approaches of chemical classification such as the categorisation of

poly- and perfluorinated alkyl substances (PFAS) that had been performed

automatically by cheminformatic means, as well as manually by domain experts.

Classified homologous series in environmental chemistry data are foreseen to

support identification of these compounds in environmental samples.
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Abstract 
Homologous series are groups of related compounds that share the same core structure attached to a motif that 
repeats to different degrees. Compounds forming homologous series are of interest in multiple domains, including 
natural products, environmental chemistry, and drug design. However, many homologous compounds remain unan-
notated as such in compound datasets, which poses obstacles to understanding chemical diversity and their analyti-
cal identification via database matching. To overcome these challenges, an algorithm to detect homologous series 
within compound datasets was developed and implemented using the RDKit. The algorithm takes a list of molecules 
as SMILES strings and a monomer (i.e., repeating unit) encoded as SMARTS as its main inputs. In an iterative process, 
substructure matching of repeating units, molecule fragmentation, and core detection lead to homologous series 
classification through grouping of identical cores. Three open compound datasets from environmental chemistry 
(NORMAN Suspect List Exchange, NORMAN-SLE), exposomics (PubChemLite for Exposomics), and natural products 
(the COlleCtion of Open NatUral producTs, COCONUT) were subject to homologous series classification using the 
algorithm. Over 2000, 12,000, and 5000 series with  CH2 repeating units were classified in the NORMAN-SLE, PubChem-
Lite, and COCONUT respectively. Validation of classified series was performed using published homologous series 
and structure categories, including a comparison with a similar existing method for categorising PFAS compounds. 
The OngLai algorithm and its implementation for classifying homologues are openly available at: https:// github. com/ 
adele nelai/ onglai- class ify- homol ogues.

Keywords: RDKit, Fragmentation, Algorithm, Scaffolds, Homologous series, Polymers, Environmental chemistry, 
Natural products, Exposomics, Pattern recognition
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Introduction
Homologous series are groups of compounds that share 
the same core structure with varying attached repeating 
chemical subunits. !ese structurally-related compounds 
occur in many areas of chemistry and can be represented 
by Markush structures [1], as in the patent literature, or 
as general molecular formulae, for example  CnF2n+1SO3H 
(Fig. 1). In drug design, homologation is used as a molec-
ular modification strategy to construct series for lead 

optimisation [2], while homologous series are prominent 
in pesticide synthesis [3], food [4], and material science 
[5], as well as formulation chemistry [6] for applications 
in myriad products such as cosmetics, surfactants, and 
pharmaceuticals. In nature, homologous series occur as 
natural products of multiple organisms including bacteria 
[7], fungi [8], marine sponges [9, 10], birds [11], bees [12], 
and avocados [13]. In the environment, synthetic com-
pounds consisting of homologous series are considered 
anthropogenic pollutants, for example, surfactants that 
have been identified extensively in wastewater [14–17], 
and are classified as High Production Volume chemicals 
because of their widespread production and use. Other 
classes of environmental chemical pollutants containing 
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homologous series include the ‘forever chemicals’ i.e., 
per- and polyfluoroalkyl substances (PFAS) [18–21], as 
well as technical mixes of polymers such as chlorinated 
paraffins [22, 23], both of which have been identified 
extensively in the environment [24, 25], and can be con-
sidered as substances of Unknown or Variable composi-
tion, Complex reaction products, or Biological materials 
(UVCBs) [26].

Within compound datasets, having molecules grouped 
into homologous series can potentially advance several 
areas of chemistry, for example their analytical identifi-
cation using liquid chromatography-high resolution mass 
spectrometry (LC-HRMS). As the structural similarity 
of homologous compounds can result in a trend in phys-
icochemical properties, homologous series often exhibit 
characteristic comb-like elution patterns and constant 
m/z-retention time shifts in LC-HRMS data. Such signals 
are frequently detected in environmental samples, where 
the constant m/z difference between signals is indicative 
of the repeating unit’s mass and, in some cases, identity. 
Consequently, their identification is of high interest, 
especially since they form a relatively significant propor-
tion of environmental unknowns [27] (also known as 
‘non-target compounds’). Various data-mining routines 
[28–30] and screening tools [31] have been developed 

to address this challenge, which usually involves try-
ing to match spectral features with database entries by 
mass. However, interpreting the matches to find chemi-
cally related identifications i.e., homologous chemical 
series, remains extremely laborious for two reasons: (1) 
the sheer number of possible (interconnected) homo-
logues in complex environmental samples, and (2) indi-
vidual homologous compounds are not linked to each 
other within databases. !erefore, to address the latter, 
having homologous compounds classified into series 
within chemical databases would support environmental 
chemists in assigning related chemical structure identifi-
cations to unknown but likely homologous mass spectral 
features, series-by-series, where possible. Notably, this 
advantage extends to chemists seeking to discover novel 
natural products; if structures of the same homologous 
series within a combined structural and spectral database 
are annotated as such, their characteristic spectral simi-
larities and trends can be identified, which could expedite 
the elucidation of previously unreported members of a 
given series and hence aid the dereplication of spectral 
data.

Another area of chemistry that would benefit from 
classified homologous series in datasets is property pre-
diction. As homologous compounds are structurally 

Fig. 1 Example of a PFAS homologous series with general formula  CnF2n+1SO3H. The series can be expressed using a generic structure that 
comprises a repeating unit  (CF2) and core(s), which may be one intact fragment or multiple disconnected fragments, as is the case here
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similar, structure–property relationships are typically 
predictable within a given series such that compounds 
usually share similar properties or show a trend [32], e.g., 
the Wiener index to predict the boiling points of alkanes 
[33], Kováts retention indices in gas chromatography to 
predict analyte retention relative to alkanes [34], or the 
effect of varying repeating unit chain length on insecti-
cidal activity [13]. In this way, data gaps in physicochemi-
cal properties for homologous compounds can be filled 
using models based on series members that have prop-
erty data.

Studies of chemical diversity/activity within a given 
chemical space may also benefit from homologous series 
classification; instead of focusing on homologous com-
pounds that share repetitive structures and thus similar 
properties, focus can instead be refined on areas with 
interesting and varied properties. In other words, group-
ing together homologous compounds helps eliminate 
redundancy in the investigated chemical space, as related 
compounds can be considered group-wise instead of 
individually. !is capability is likely pertinent to medici-
nal chemists interested in interrogating chemical spaces 
for diverse properties, or when developing screening 
decks [35]. In turn, concise representations of a particu-
lar chemical space or screening deck may be desired, 
which could be achieved by general formulae or Markush 
structures for homologous compounds.

Despite these potential advantages, most compound 
datasets do not contain homologous compounds classi-
fied into series. Instead, homologous compounds typi-
cally exist in databases as individual entities without 
explicit association to one another. To the human eye, 
homologous series are easily recognisable because of 
their structural similarity; especially when dealing with 
simple series and small numbers of chemical struc-
tures (10 s to 100 s), a trained chemist can easily classify 
homologous series by hand as it is a relatively simple, 
albeit time-consuming pattern recognition task. How-
ever, the sizes of today’s compound databases regu-
larly exceed hundreds of structures: as of August 2022, 
PubChem [36, 37] and ChemSpider [38, 39] contain 
over 110 million compounds each, while virtual screen-
ing libraries used for drug discovery are in the order of 
billions [40]. Such scale renders manual classification of 
homologous series impractical. !us, automated meth-
ods using cheminformatic algorithms are needed.

!e starting point for automated homologous series
classification is the detection of appropriate cores i.e., the 
common fragment(s) shared by each member of a homol-
ogous series. As a series is defined by its core(s), correct 
core detection by cheminformatic means is as critical as 
it is challenging. Existing approaches for molecular sub-
structure analysis, in this case to automatically detect 

cores suitable for homologous series classification, fall 
into three main categories. !e first and most instinc-
tive approach is to consider potential cores as Maximum 
Common Substructures (MCS) [41, 42]. However, try-
ing to find multiple possible MCS de novo amongst large 
sets of molecules (> 10,000) is computationally expensive 
and would likely require additional clustering post-pro-
cessing steps to obtain the final homologous series. For 
this purpose, previous work such as Kruger et al.’s clus-
tering approach for chemical series classification [43] 
has limited applicability because it would not generate 
core structures specific enough to determine homolo-
gous series correctly. An alternative related approach is 
to exploit pattern-mining algorithms, as homologous 
series classification can be considered as a task of fre-
quent subgraph mining or graph-based substructure 
pattern mining [44]. However, these methods require a 
priori knowledge of a so-called minimum support value, 
defined as the percentage of all graphs in which a given 
subgraph must occur. In other words, users must know 
and specify as input how many series there should be 
within a given molecule collection, which is impossible to 
know upfront for most compound datasets. Alternatively, 
cores could be derived via graph representations of mol-
ecules leading to the generation of molecular frameworks 
as introduced by Bemis and Murcko [45]. However, a sig-
nificant caveat therein is the required presence of ring 
systems, which cannot always be assumed.

To address this gap in automated homologous series 
classification, a free and open algorithm to detect homol-
ogous series within compound datasets was developed, 
which to the best of our knowledge, is the first of its 
kind. !e algorithm was implemented in the RDKit as a 
Python package called OngLai (pronounced ‘ong-lye’), 
and is openly and freely available on GitHub [46] (https:// 
github. com/ adele nelai/ onglai- class ify- homol ogues). 
(OngLai has a double meaning in Hokkien: literally, pine-
apple and figuratively, ‘fortune is coming’.) !e algorithm 
input includes a user-specified repeating unit, which 
forms the basis for the detection of cores that define 
series. !e core fragments are detected without a priori 
knowledge of their structure, nor how many are present 
within a given dataset. !is result is achieved through 
successive repeating unit substructure matching and mol-
ecule fragmentation steps. Identified homologous series 
are generated as output, with each compound assigned a 
number indicating series membership. For a given run of 
the algorithm, series membership is unique for each mol-
ecule as there is only one core fragment result possible 
once all repeating units have been removed. However, a 
molecule could in theory belong to multiple homologous 
series if multiple runs of the algorithm are performed 

https://github.com/adelenelai/onglai-classify-homologues
https://github.com/adelenelai/onglai-classify-homologues
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with different settings specified each time, e.g., different 
repeating unit.

OngLai was used to classify homologous series within 
three major chemical collections containing compounds 
from environmental chemistry, exposomics, and natu-
ral products. !ese collections were chosen to highlight 
the prevalence of homologous compounds in such var-
ied research domains as well as to demonstrate the broad 
applicability of OngLai. !e first of these three collec-
tions, the NORMAN Suspect List Exchange (NORMAN-
SLE) [47], comprises synthetic chemicals suspected to 
be present in the environment such as pesticides, phar-
maceuticals, surfactants, food-contact chemicals, and 
those used in industrial applications, like PFAS [48]. 
!e NORMAN-SLE contains 99 so-called ‘suspect’ lists 
of chemicals hosted by the NORMAN Network, which 
are used for suspect screening mass spectrometry data 
generated from measuring environmental samples [47]. 
!e second collection, PubChemLite for Exposomics 
(PubChemLite), is a subset of PubChem that aims to cap-
ture the chemical space relevant for exposomics [49], the 
study of exposures to chemicals over time. PubChem-
Lite therefore contains chemicals associated with both 
metabolism and disease (e.g., ‘Biomolecular Interactions 
and Pathways’, ‘Associated Disorders and Diseases’ etc.), 
and environmental chemicals (e.g., ‘Agrochemicals’, ‘Drug 
and Medication Information’ etc.). Finally, the COlleC-
tion of Open Natural prodUcTs (COCONUT) is a com-
pilation of natural product compounds from over 50 
open data resources and manually curated datasets from 
the literature [50, 51]. It is currently the largest open col-
lection of natural products that is freely available online. 
Natural products consist of compounds produced by 
organisms such as bacteria, fungi, animals, and plants 
over the course of various life processes, and because of 
their potentially high bioactivity, natural products are of 
great interest for drug discovery. Selected homologous 
series classified by OngLai in these three collections are 
reported here.

Additionally, OngLai’s results were validated against 
published homologous series and PFAS structure cat-
egories from the 2018 OECD PFAS definition [52]. !e 
latter is of particular interest to regulatory stakehold-
ers, as PFAS categorisation remains a high-priority task 
in effort to catalogue and assess the environmental risks 
of these compounds. A comparison of OngLai to split-
PFAS [53], an automated method based on SMARTS 
[54] matching developed to support PFAS categorisa-
tion efforts, was also performed. Previously, PFAS had 
been manually classified by experts for the 2018 OECD 
definition to provide common terminology for stakehold-
ers to communicate, research, and regulate these com-
pounds given their widespread uses and potential adverse 

environmental and health effects. With an ever-growing 
number of PFAS compound registrations and detections 
in environmental samples, these so-called ‘forever chemi-
cals’ and their categorisation remain of high priority to 
various stakeholders interested in their future registra-
tion, use, and regulation.

Methods
Algorithm and implementation
OngLai was developed and implemented using the 
RDKit (RDKit version 2021.09.4 [55, 56] and Python 
version 3.7 [57]) and is openly and freely available on 
GitHub (https:// github. com/ adele nelai/ onglai- class ify- 
homol ogues). OngLai is designed to be run in the com-
mand line; more information is available in the GitHub 
README file.

Within a set of input molecules given as SMILES 
strings, OngLai detects homologous series by first detect-
ing cores. It does this by substructure matching chains 
of user-specified repeating units, then fragmenting the 
molecules a specified number of times to remove these 
chains. Molecules with the same remaining core frag-
ments are then grouped together into what is considered 
a homologous series. !e sequence of the algorithm’s 
steps is provided in Fig.  2 and described in more detail 
below.

OngLai requires two main inputs: the first is a CSV 
file with a minimum of two columns containing SMILES 
representations and molecule names (column names can 
be specified in the command line according to the data-
set used; additional columns will be ignored). In a pre-
processing step (Fig.  2), the SMILES codes are parsed 
and checked for validity i.e., whether they can be con-
verted into sanitised molecule objects within the RDKit. 
Unparseable SMILES strings are discarded. Molecular 
sanitisation is a RDKit concept that ensures molecules 
are ‘reasonable’ i.e., can be represented by Lewis struc-
tures with complete octets, and that properties such as 
ring membership and hybridisation can be calculated for 
each atom [58].

!e second input is a repeating unit of choice, 
expressed as a SMARTS string. For example, the repeat-
ing unit of a series of homologous molecules defined 
by a growing alkyl chain would be –CH2–, represented 
as ‘[#6&H2]’ in SMARTS. !e definition of a suitable 
repeating unit is crucial because it determines which 
cores, and therefore which homologous series, will be 
detected. Importantly, the starting and terminal atoms 
of this repeating unit SMARTS string should have open 
valences such that it is chemically feasible to create a 
linear chain by concatenating the SMARTS (Fig. 2, ‘Pre-
processing’). !us, the repeating unit SMARTS strings 
must be defined from connection point to connection 

https://github.com/adelenelai/onglai-classify-homologues
https://github.com/adelenelai/onglai-classify-homologues
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point. Example repeating unit SMARTS inputs are pro-
vided in Table 1.

Once pre-processing is complete, repeating unit chains 
are enumerated according to the first of two user-cus-
tomisable settings: the minimum and maximum lengths 

of the repeating unit chains (Table  2). !is setting ulti-
mately determines whether repeating units are consid-
ered present or absent in the input molecules (Fig.  2, 
first dark blue rhombus); the default minimum length of 
3 is recommended to avoid detections of trivially short 
repeating unit chains that likely occur frequently in many 
molecules. Each of the enumerated repeating unit chains 
is searched within each molecule as potential substruc-
ture matches. !e result (HasSubstructMatch = 1 or 0) 
is recorded as an element within a NumPy array, one 
array per input molecule. If the sum of the array elements 
is equal to zero, the molecule does not contain at least 
1 repeating unit chain of the specified minimum length 
and is then eliminated from further analyses (Fig. 2, first 
green box). Having established that the remaining mole-
cules contain repeating units, OngLai proceeds with core 
detection via molecule fragmentation to separate repeat-
ing unit chains from core structures. !e default setting 
for the number of molecule fragmentation steps is 2 
(Table 2) but can be customised if more than two repeat-
ing unit chains are expected to be present in the input 
molecules. !e accuracy of core detection and homolo-
gous series classification would technically be unaffected 
by setting a higher number of fragmentation steps than 
is actually needed, albeit at the expense of longer com-
putation times. Each time during fragmentation, only 
one—the longest—repeating unit chain is detected, then 
removed to ensure ‘clean’ core detection without leftover 
repeating unit fragments. Importantly, only one repeat-
ing unit chain is removed per fragmentation step, even 
in the case of symmetrical molecules or molecules that 
otherwise have multiple identical longest repeating unit 
matches (see Fig. 8 in “Discussion” for further details).

Molecule fragmentation is achieved using RDKit’s 
ReplaceCore function, which introduces a dummy 
atom at each fragmentation site that is then replaced 
with a hydrogen atom. However, if the remaining mol-
ecule object for a given molecule is empty, it means the 
input molecule is made purely of repeating units and 
is reported as such (Fig.  2, second green box). Other-
wise, the remaining fragment(s) is considered the core, 
which can consist of a single or multiple disconnected 
fragments.

In a final step, molecules are classified into homolo-
gous series; those with identical cores (same number and 
identity of fragments) are deemed members of the same 
series. Molecules with unique cores, i.e., cores that occur 
only once in the entire dataset, are considered ‘mol-
ecules that do not form series’ (Fig. 2, third green box). 
In this way, the results of the OngLai are entirely dataset-
dependent, as input molecules and consequently their 
resulting cores are necessarily compared to each other 
in the homologous series detection process, meaning 

Fig. 2 Overview of OngLai algorithm steps to classify homologous 
series in a set of input molecules. RU represents ‘repeating unit(s)’. 
Green boxes indicate outputs in SMILES format
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the co-presence or absence of possible series members 
determines series classification. A comparison of cores 
for equality is performed using sanitised canonical RDKit 
SMILES representations.

A CSV file is generated as output containing the fol-
lowing columns: ‘SMILES’ (only those sanitisable by 
RDKit), ‘Name’, and ‘series_no’. Series membership is 
encoded in the ‘series_no’ field, as are the other afore-
mentioned results (Fig.  2, green boxes) as shown in 
Table  3. Additionally, an overview of the classification 
results is provided as output, written to a TXT file called 
‘classification-results’.

Datasets
OngLai was applied to three different datasets, NOR-
MAN-SLE [47, 48] used in environmental chem-
istry, PubChemLite [49, 59] used in exposomics/
metabolomics, and COCONUT [50, 51] in natural prod-
ucts research, respectively. All the datasets are openly 
available (see Additional file 1 Sect. 1.2, Declarations and 
References).

!e NORMAN-SLE dataset used here is an aggre-
gation of the suspect lists that were compiled by the 
NORMAN Network from various environmental chem-
istry researchers around the world. !e exact dataset 
originated from the ‘NORMAN Suspect List Exchange 
Classification’ on PubChem’s Classification Browser 
(downloaded 2022-03-21) [60, 61]. Using the PubChem 
Identifier Exchange Service [62], the molecules in NOR-
MAN-SLE were mapped to their Parent CIDs (Operator 
Type: ‘Parent CID’) to remove salts, charged ions, and 
mixtures. Stereochemical information is preserved in this 
process if originally present. Conversion of 115,115 input 
compounds to Parent CIDs resulted in a final dataset of 
98,116 ‘parent’ compounds that were downloaded in CSV 
format via PubChem. !e second dataset, PubChem-
Lite for Exposomics (v.1.8.0), contains 392,465 mol-
ecules and was downloaded from Zenodo [49, 59] and 
used as-is. PubChemLite compounds have both neutral 
(InChIKey second and third blocks: UHFFFAOYSA-N) 
and non-neutral stereochemistry. During PubChemLite 
development, the stereochemical-neutral version was 
preferentially selected if available, otherwise a struc-
ture with stereochemistry was included; further details 
can be found in the original paper [49]. COCONUT, 
containing 407,270 molecules (v.11/2021 [50, 51]), was 
downloaded as SMILES (CDK Unique SMILES [63], i.e., 
representations without stereochemical information) and 
used as-is. !e specific versions of these datasets used 
are archived on Zenodo [64]. Specific instructions for 

Table 1 Example repeating units and their SMARTS representations that are suitable for input to OngLai. The default repeating unit is 
alkyl  (CH2)

Repeating unit pseudo-SMILES Repeating unit chemical name SMARTS (OngLai input)

CH2 Alkyl [#6&H2]

CH2CH2O Ethoxy [#8]-[#6&H2]-[#6&H2]

CH2CH2CH2O Propoxy [#8]-[#6&H2]-[#6&H2]-[#6&H2]

CF2 Perfluoroalkyl [#6](-[#9])(-[#9])

CF2O Perfluorinated methyl ether [#8]-[#6](-[#9])(-[#9])

CF2CF2O Perfluorinated ethyl ether [#8]-[#6](-[#9])(-[#9])-[#6](-[#9])(-[#9])

CH2C(CH3) =  CCH2 Isoprene [#6&H2]-[#6](-[#6&H3]) = [#6]-[#6&H2]

Table 2 User-customisable settings of OngLai to specify 
‘repeating unit options’ in the command line

Setting Format Default

Minimum and maximum lengths of 
repeating unit chains

Integer Min. = 3
Max. = 30

No. fragmentation steps Integer 2

Table 3 Interpretation of ‘series_no’ encoding as part of the output from homologous series detection. N+1 is the number of 
homologous series that were detected by OngLai in a given dataset

Series_no Interpretation

0–N Molecules that form homologous series

–1 Molecules with no repeating units matches of minimum chain length specified

–2 Molecules made purely of repeating units

–3 Molecules that have repeating units matches of minimum chain length speci-
fied but that do not form series (unique cores)
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running the algorithm on these datasets are available in 
the GitHub README file https:// github. com/ adele nelai/ 
onglai- class ify- homol ogues.

Validation and comparison with existing methods
Validation of OngLai was performed in two ways, by 
comparing the homologous series it classified in NOR-
MAN-SLE with (1) published homologous series, and (2) 
published structure categories.

Published homologous series are available in two sus-
pect lists from the NORMAN Suspect List Exchange: 
S7 EAWAGSURF [65], and S23 EIUBASURF [66], which 
both contain surfactant compounds with  CH2 and CCO 
repeating units. Homologous series in these two com-
pound lists are explicitly indicated by ‘SurfactantCode’ or 
‘Name’ column entries, where members of a given series 
follow a sequential naming convention e.g., ‘C10-LAS’, 
‘C11-LAS’, and ‘C12-LAS’ forming the ‘Cx-LAS’ series, or 
‘Amines, coco 10 EO’, ‘Amines, coco 11 EO’, and ‘Amines, 
coco 12 EO’ forming the ‘Amines, coco x EO’ series 
(x = 10–12 in both examples). Validation was performed 
by comparing homologous series classified by OngLai in 
the NORMAN-SLE dataset with those published in these 
lists that were downloaded and used as-is.

Published ‘Structure Categories’ determined by experts 
for the 2018 OECD definition pertain to PFAS com-
pounds containing  CF2 repeating units obtained from the 
NORMAN-SLE Classification Tree in PubChem under 
S25 OECDPFAS [52]. !ese lists of compounds were 
downloaded from PubChem per structure category via 
the Identifier Exchange Service and mapped to Parent 
CID as described above. Validation using these ‘Structure 
Categories’ proceeded as follows: molecules in a given 
homologous series classified by OngLai were inspected 
to see how many structure categories they belonged to, 
assuming that correctly classified series should have mol-
ecules belonging to the same single structure category.

To facilitate validation, a Python script was used to 
merge OngLai’s CSV output (by InChIKey) with (1) the 
published homologous series and (2) published structure 
category CSV files respectively. !en, the merged data 
were manually inspected. !e script and all CSV files 
resulting from this validation analysis are available in the 
Additional file 1: Sect. 3.

To compare OngLai to an existing method for catego-
rising PFAS compounds called splitPFAS, OngLai was 
additionally applied to the 770 PFAS listed in the Supple-
mentary Information file of Sha et  al. [53] Homologous 
series with  CF2 repeating units detected by OngLai in 
NORMAN-SLE were compared with the categorisation 
results of splitPFAS. In the original paper, 770 PFAS were 
systematically divided into 4 categories with general for-
mulae  CnF2n+1-X-R: perfluoroalkanoyl (X = CO), sulfonyl 

(X =  SO2), n:1 fluorotelomer (X =  CH2), and n:2 fluoro-
telomer (X =  CH2CH2). For comparison purposes, com-
pounds with the same X and same R groups but differing 
n are considered to form homologous series (henceforth 
referred to ‘splitPFAS series’). Python code used to pre-
pare and analyse the splitPFAS dataset and all results 
from the comparative analysis are available in Sect. 4 of 
Additional file 1.

Results and discussion
OngLai was applied to 3 different datasets by running 
the Python script in the command line within a conda 
environment containing the RDKit. !e script and all 
necessary modules are provided in the OngLai package 
on GitHub (see https:// github. com/ adele nelai/ onglai- 
class ify- homol ogues for the full list). A compute server 
with two Intel(R) Xeon(R) Silver 4114 CPUs and 64 GB 
of RAM was used in single-thread mode. OngLai’s 
default settings (Table  2) were applied, including using 
‘[#6&H2]’ corresponding to  CH2 (alkyl) as the repeat-
ing unit SMARTS input (Table 1). Detection of homolo-
gous series by OngLai in NORMAN-SLE, PubChemLite, 
and COCONUT datasets using these parameters took 
approximately 2, 16, and 35 min respectively. Two further 
runs of the algorithm were performed on each dataset 
using ‘[#8]-[#6&H2]-[#6&H2]’ and ‘[#6](-[#9])(-[#9])’ as 
repeating unit SMARTS input, corresponding to CCO 
(ethoxy) and  CF2 (perfluoroalkyl) respectively; for valida-
tion, the homologous series detected in the NORMAN-
SLE dataset were compared to the published lists as 
described above. Additionally, OngLai was also run on 
the 770 PFAS compounds used in the splitPFAS study for 
comparison.

!is section is divided into two parts. First, an over-
view of the homologous series with  CH2 repeating 
units classified in the three datasets is provided, includ-
ing an interpretation of OngLai’s outputs, validation of 
the  CH2, CCO and  CF2 series classified in NORMAN-
SLE, and comparison with splitPFAS. !en, the second 
part focuses on the implementation and behaviour of 
OngLai’s underlying algorithm, demonstrated in detail 
using selected examples of classified homologous series.

Homologous series classi"ed in NORMAN-SLE, 
PubChemLite, and COCONUT
!ousands of homologous series with  CH2 repeating 
units were detected by OngLai: in total, 2098 in NOR-
MAN-SLE, 12,105 in PubChemLite, and 5329 in COCO-
NUT respectively. !ese series were detected using the 
default settings of the algorithm (Table 2). !e size dis-
tributions of the homologous series classified are shown 
in Fig. 3, while Table 4 provides a summary of the overall 
results. Complete series classification results are available 

https://github.com/adelenelai/onglai-classify-homologues
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in Sect.  2 of the Additional file  1. Notably, most series 
detected comprise only 2 molecules, similar to chemi-
cal series classified within drug discovery projects [68]. 
Overall, there are more small series than there are large 
series, as evident in the series size distributions (Fig. 3), 
which may imply a high chemical diversity in the respec-
tive databases.

!e proportion of molecules that were deemed mem-
bers of  CH2 homologous series given the default settings 
used were 9% for NORMAN-SLE, 21% for PubChem-
Lite, and 5% for COCONUT (Table  4). Approximately 
10% of each dataset consists of molecules that contain 
 CH2 repeating units, but do not form homologous series, 
meaning the detected cores are unique within the respec-
tive dataset. !e majority (70–86%) of all molecules in 
each dataset do not contain  CH2 repeating unit chains of 
minimum length 3 repeating units (Table 2, default algo-
rithm setting), i.e., there were no substructure matches 
found in those molecules using the following SMARTS 
query: ‘[#6&H2]-[#6&H2]-[#6&H2]’, representing the 

structure ‘CH2CH2CH2’ in pseudo-SMILES. Overall, less 
than 5% of molecules were discarded from the analysis 
because they were either not parseable by the RDKit due 
to valence model violations e.g., pentavalent carbons, or 
the SMILES strings were invalid (reported to the respec-
tive data maintainers).

Notably, zero molecules consisting purely of  CH2 
repeating units were detected across the three datasets. 
Instinctively, one would think alkanes such as propane, 
butane, and pentane fall into this category, but they do 
not because the terminal carbon atoms in these alkanes 
are bonded to three H atoms and not exactly two, as 
specified in the SMARTS representing  CH2 repeating 
units (Table  1, ‘[#6&H2]’). !erefore, alkanes are con-
sidered to form their own homologous series by OngLai, 
with the terminal carbon atoms ultimately forming the 
core (‘H3C.  CH3’ in pseudo SMILES). !is result high-
lights how the specificity of the SMARTS repeating unit 
definition directly determines the homologous series 

Fig. 3 Numbers of homologous series with  CH2 repeating unit detected within the three datasets, sorted by series size (only series sizes up to 10 
molecules shown here). The algorithm’s default settings were used, as listed in Table 2

Table 4 Summary statistics of detected homologous series with  CH2 repeating units in the three datasets. The algorithm’s default 
settings were used, as listed in Table 2. Full details and results are available in Additional file 1: Sect. 2

NORMAN-SLE 
(n = 98,116)

PubChemLite 
(n = 392,465)

COCONUT 
(n = 407,270)

No. of homologous series detected 2098 12,105 5329

No. of molecules classified as members of homologous series 8775 82,476 18,528

No. of molecules consisting purely of  CH2 repeating units 0 0 0

No. of molecules containing  CH2 repeating units but not forming homolo-
gous series (unique cores)

10,778 35,111 36,864

No of molecules not containing  CH2 repeating units 78,559 274,861 351,527

No of molecules discarded from analysis (failed sanitation) 4 17 351
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classified, which is further discussed in “Effect of repeat-
ing unit SMARTS specification on homologous series 
classified”.

Details of the CCO and  CF2 homologous series 
detected in the three datasets are available in Additional 
file 1: Sect. 2. Notably, 64 molecules in COCONUT were 
classified into 23 homologous series with  CF2 repeating 
units. !ese molecules do not appear to be natural prod-
ucts and should be removed in future curation exercises 
of natural product space. As these molecules have been 
classified into series, entire series of these non-natural-
product-like molecules can be removed together instead 
of having to search and remove these molecules on an 
individual basis. !ese findings have been reported to the 
COCONUT database maintainers [69].

Validation of classi"ed series
!e validation of homologous series classified in NOR-
MAN-SLE was performed in two ways: (1) by comparing
classified series with published homologous series, and
(2) by inspecting their homologous compound member-
ship within published structure categories. All validation
results described below are available in Sect. 3.3 of Addi-
tional file 1.

Validation with published homologous series
As shown in Table  5, the majority of  CH2 and CCO 
homologous series detected in NORMAN-SLE were in 
overall agreement with published homologous series 
in S7 and S23 (62%, 60%, 80%, 64% ‘Full Match’ respec-
tively). Partial or mixed classifications arose due to vari-
ous factors such as suboptimal algorithm settings for 
that particular series of molecules (e.g., the minimum 
repeating unit chain length of 3 was too long), or differ-
ences in stereochemistry specificity across molecules 
that would otherwise belong to the same series within 

NORMAN-SLE. Less than 5% of homologous series were 
not identified by OngLai across all repeating units and 
published homologous series because of either of the two 
aforementioned factors. An example of published homol-
ogous molecules that were not classified by OngLai is the 
‘Cx, sorbitan monoester, 20 EO’ series. !is series is listed 
in S23 EIUBASURF as having two molecules (x = 12 and
18). In the NORMAN-SLE dataset however, the  C12 spe-
cies has no stereochemistry specified, but the  C18 species 
does, thus causing them to have different cores detected, 
resulting in the series not being classified by OngLai 
(Fig. 4; further discussion on stereochemistry below). In 
this sense, OngLai provides a more specific classification 
of homologous series than what is listed and indicated 
by the Name field in S23 EIUBASURF, as it distinguishes 
between levels of stereochemical information specificity 
that were not captured by the naming convention used in 
S23 EIUBASURF.

Importantly, validation using published homologous 
series in the S7 and S23 datasets was possible because of 
the naming convention used by the datasets’ curators. For 
example, in these datasets, compounds with the names 
C9-LAS, C10-LAS, C11-LAS, and C12-LAS clearly 
belong to the Cx-LAS series. !e fact that homologous 
compounds in these datasets can be recognised just from 
their names without any inspection of their chemical 
structures supports the use of these lists as independ-
ent sources of information ideal for homologous series 
validation.

Validation with published structure categories
Similar results were obtained in the validation of classi-
fied homologous series with  CF2 repeating units using 
the OECD’s PFAS Structure Categories: 50% of the 600 
homologous series detected contain molecules that 
belong to the same single Structure Category within the 

Table 5 Validation by comparing homologous series in NORMAN-SLE classified OngLai with published homologous series containing 
 CH2 and CCO repeating units. Series in S7 and S23 were manually compared to OngLai results. Full Match indicates a 1:1 relationship 
between published series and series classified by OngLai. Homologous series from NORMAN-SLE containing molecules that are not in 
the published homologous series list or vice versa, but that otherwise match, are also considered Full Matches (‘or as available’). Partial 
or Mixed Classification indicates either a 1:n relationship between published homologous series and homologous series classified 
by the algorithm, or that certain molecules were not classified together with the others in a given published series. Full details in 
Additional file 1: Sect. 3.3

List containing published 
homologous series

Repeating unit No. of published homologous series

Full match (or as 
available)

Partial or mixed 
classi"cation

Not classi"ed by 
OngLai

Present in list, absent 
in NORMAN-SLE

Total

S7 EAWAGSURF CH2 8 5 0 0 13

CCO 6 4 0 0 10

S23
EIUBASURF

CH2 105 17 6 4 132

CCO 62 35 0 0 97
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respective series (Table  6). !e remainder corresponds 
to homologous series containing molecules belonging 
to more than one Structure Category (10% of all series 
classified), no Structure Category (22.5%), or a mixture 
thereof (17.5%) within the same series.

Two examples of molecules grouped into the same 
series having different OECD Structure Categories are 
shown in Fig.  5. !e molecules in the first series (Fig.  5, 
top panel) belong to two different Structure Categories: 

Category 406.01 corresponding to fluorotelomer epoxides 
(CnF2n + 1I + CH2 = CHCH2OH – > CnF2n + 1-CH2CH(I)
CH2OH – > CnF2n + 1-CH2(CHCH2O)); and Category 
607 corresponding to perfluoroalkyl epoxides & deriva-
tives (CnF2n + 1-epoxides). Another example (Fig.  5, bot-
tom panel) has molecules in the same classified series that 
do not belong to any Structure Category and a combina-
tion of Structure Categories 404 − n:1 fluorotelomer-based 
non-polymers (CnF2n + 1-CH2-R); 404.02 − n:1 FT (meth)
acrylate (CH2–OC(=O)CH=CH2); and 410 − n:1 FT 
(meth)acrylate (CH2-OC(=O)CH=CH2). !e last molecule 
in the series does not belong to any OECD Structure Cate-
gory because it is absent from the original S25 OECDPFAS 
list, but was present in the NORMAN-SLE because it origi-
nated from other lists (e.g., S46 and S71) that make up the 
PFAS within NORMAN-SLE.

!ese mixed results are attributable to the broader defi-
nitions of Structure Categories compared to homologous 
series; the former often contain a mixture of homologous 
and non-homologous molecules. Per the 2018 OECD 
definition, a Structure Category can represent various 
properties, such as sharing a common general formula, 
varying functional groups, and/or being derivatives of 
the same compound e.g., ‘category 101: perfluoroalkyl 
carbonyl halides (CnF2n + 1-C(= )R, R =F/Cl/Br/I)’ and 
‘category 202: perfluoroalkane sulfonic acids (PFSAs), 

Fig. 4 Example of 2 homologous molecules that were not classified as a series  (CH2 repeating units) by OngLai. The ‘Cx sorbitan monoester, 20 EO’ 
series is published in S23 EIUBASURF, but was not classified by the algorithm because of differing stereochemistry within the NORMAN-SLE dataset, 
and therefore different cores detected. Full details are in Additional file 1: Sect. 2

Table 6 Comparison of published Structure Categories for PFAS 
compounds containing  CF2 repeating units with homologous 
series classified by OngLai in the NORMAN-SLE dataset. Structure 
categories are published in the 2018 OECD PFAS report [52, 67]

Series 
with 1 
structure 
category

Series 
with > 1 
structure 
category

Series 
with no 
structure 
category

Series with 
combination 
of no 
structure 
category 
and ≥ 1 
structure 
category

Total 
series 
classi"ed 
by 
OngLai

No. of 
 CF2 
homol-
ogous 
series

301 59 135 105 600
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their salts and esters (R =OH, ONa, OCH3, etc.)’. !ese 
relatively broader categories likely reflect some of the 
challenges of assigning Structure Categories to numer-
ous PFAS in a manual fashion, as was done for the 2018 
OECD PFAS definition. As manual assignment is prone 
to typographical errors, wrong assignments, or inconsist-
ent assignments, cheminformatic-based tools for auto-
mated assignment of Structure Categories are highly 
desirable and warranted [53, 70, 71].

Overall, as approximately 50% of  CF2 series classified by 
OngLai in the NORMAN-SLE dataset contain molecules 
belonging to the same OECD Structure Category, there 
appears to be reasonable consistency in the 2018 OECD 
manual categorisation of PFAS. Given that the homologous 
series classified by OngLai have stricter definitions in terms 
of chemical structure similarity, OngLai’s results could sup-
port or inform future OECD efforts to subcategorise PFAS.

Comparison with existing method for categorising PFAS: 
splitPFAS
OngLai was applied using the same compute server 
described above to the 770 PFAS compounds that were 

Fig. 5 Examples of classified homologous series with  CF2 repeating units composed of molecules belonging to different OECD Structure 
Categories. Molecules from the NORMAN-SLE dataset (series_no = 11 and 13, Additional file 1: Sect. 2)

Table 7 Summary statistics of detected homologous series with 
 CF2 repeating units in the splitPFAS dataset

splitPFAS 
dataset 
(n = 770)

No. of series detected 132

No. of molecules classified as members of homologous 
series

540

No. of molecules consisting purely of  CF2 repeating units 0

No. of molecules containing  CF2 repeating units but not 
forming homologous series

196

No. of molecules not containing  CF2 repeating units 34

No. of molecules discarded from analysis (failed sanitation) 0
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originally categorised by splitPFAS. In approximately 
2  min, 132 homologous series with  CF2 repeating units 
were classified (Table  7). !ese results were compared 
with those of the splitPFAS tool (XLSX file in Supple-
mentary Information of Sha et  al. [53]). For compari-
son here, molecules in a given PFAS category out of the 
four outlined by Sha et al. that share identical R groups 
are assumed to be homologous series because they 
have the same general formula (same X and R groups in 
 CnF2n+1-X-R). !ese series will henceforth be referred to 
as ‘splitPFAS series’. !ere were 124 of such splitPFAS 
series found in Sha et  al.’s work; OngLai detected 132 
homologous series (full details in Sect.  4 of Additional 
file 1).

Comparison of the series classified by OngLai and split-
PFAS series generally shows good agreement between the 
two methods in terms of their matching results. However, 
there are some differences in the number of series and 
composition of certain series which can partly be attrib-
uted to the fact that some PFAS were not categorised by 
splitPFAS, but were classified as homologous series by 
OngLai. !e reason for this result is because within split-
PFAS outputs, no X groups were detected for these mol-
ecules by splitPFAS. Consequently, in the results XLSX 
file, these molecules have ‘NA’ in their ‘SplitSMARTS 
(X)’ column, attributed to ‘No splittable bond found for 
the input molecule’. Associated error codes provided as 
splitPFAS output explain the various underlying reasons, 
for example ‘1—the perfluoroalkyl chain was branched or 
cyclic’, or ‘4—the R group was a single F atom’. !ere were 
11 homologous series classified by the algorithm contain-
ing such molecules (examples in Fig. 6).

Another reason for the difference in the results pro-
duced by splitPFAS and OngLai is that some PFAS do not 
actually conform to the general formula  CnF2n+1-X-R pre-
scribed by Sha et al. For example, all the molecules shown 
in Fig.  7 have the same X groups and R groups in the 
general formula prescribed by Sha et  al.  (CnF2n+1-X-R), 
as indicated in the splitPFAS results (XLSX file, Fluoro-
telomer tab), where X=[CH2] and R=CC(=C)C(=O)O 
(methylacrylic acid). !erefore, they technically belong 
to the same splitPFAS series according to the assumption 
made for this comparison exercise. Evidently however, 
the molecules in the top panel of Fig. 7 actually have the 
general formula  CnF2n-X-R because the terminal carbon 
is bonded to two fluorine atoms and one hydrogen atom 
instead of three fluorine atoms, as in the bottom panel. 
In this case, OngLai distinguished this fact; the core 
detected for the series in the top panel of Fig. 7 is meth-
acrylate, while that for the series in the bottom panel 
consists of two disconnected fragments: methacrylate 
and a fluorine atom. As shown in this example, OngLai 
was able to distinguish and thus group different PFAS 

into homologous series with higher granularity than 
splitPFAS.

Overall, the categorisation results of splitPFAS are 
very similar to the results of the presented homologous 
series classification algorithm (full results available in 
Additional file  1: Sect.  4). !is outcome indicates that 
the assumption made for the purpose of this compari-
son—that compounds having the same X and R groups 
in the general formula  CnF2n+1-X-R are indeed homolo-
gous—was reasonable. However, in some cases, OngLai 
demonstrated more flexibility in handling different PFAS 
structures than splitPFAS because the latter has more 
hard-coded elements in its cheminformatics process-
ing of input structures than OngLai does. For example, 
splitPFAS has specific SMARTS corresponding to the 4 
PFAS categories specified, which likely explains why no 
splittable bonds could be detected in some cases. !at 
said, it is important to bear in mind that splitPFAS was 
designed with a different intention than OngLai; splitP-
FAS is not dedicated to homologous series classification, 
therefore it cannot be directly compared. Nevertheless, 
this comparison shows that OngLai could be used to sup-
port PFAS categorisation efforts by e.g., providing further 
subcategorisation.

Implementation of OngLai
In this section, important features of the OngLai algo-
rithm and its implementation, independent of the data-
sets it is applied to, are discussed using demonstrative 
examples of  CH2 series classified across NORMAN-SLE, 
PubChemLite, and COCONUT.

Molecular fragmentation—removing one substructure 
match at a time
In cheminformatics, removing one substructure match 
at a time instead of multiple simultaneously in a given 
molecule is not a trivial task, yet here, it is crucial for 
preserving the accuracy of the core detected and thus 
correct classification of homologous series. In the RDKit, 
the most intuitive choice to achieve substructure removal 
is DeleteSubstructs, but this function removes all repeat-
ing units matched at a time in one go, which is undesir-
able. !erefore, ReplaceCore is used instead and shown 
in comparison to DeleteSubstructs in Fig. 8. To date, the 
RDKit community has explored two further alterna-
tives to remove one substructure at a time [72], but these 
methods are not suitable here because (1) there is no way 
to remove entire substructures from RWMol objects, 
only atoms and bonds, and (2) encoding the substruc-
ture to be removed as a chemical reaction is impracti-
cal, as a new Reaction SMARTS query would have to be 
encoded for each input molecule depending on its spe-
cific structure. In this sense, ReplaceCore, typically used 
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for common cheminformatic tasks like R-group decom-
position or constructing Structure–Activity Relationship 
tables, was applied here in a novel and perhaps unortho-
dox, but effective manner to remove substructures.

E#ect of repeating unit SMARTS speci"cation 
on homologous series classi"ed
As described in a previous example in this section, the 
repeating unit SMARTS definition directly influences the 
homologous series classified, for example, by explicitly 
defining the exact number of connected hydrogen atoms. 
Other properties of atoms defined in the SMARTS string 

also play an important role: in the default repeating unit 
SMARTS used, ‘[#6&H2]’, the carbon atom is bonded to 
exactly two hydrogen atoms, regardless of that carbon’s 
ring membership. !erefore, repeating units forming 
rings would also be positive matches just like repeating 
units in linear chains, as shown in Fig. 9, where the  CH2 
moieties in the pyrrolidine ring of 1-(4-bromobutyl)pyr-
rolidine hydrobromide, in addition to those in the linear 
chain, matched the repeating units SMARTS ‘[#6&H2]’. 
!us, these matches were subsequently removed during 
molecule fragmentation in the core detection process. 
!e resultant core common to all these three molecules 

Fig. 6 Examples of homologous series classified by OngLai that were not categorised by splitFAS because ‘No splittable bond [was] found’. Labels 
correspond to the ‘ID_in_OECD_list’ and ‘CAS’ fields given in the splitPFAS XLSX results file respectively; molecules from the splitPFAS dataset (series_
no = 10, 109, and 116, Additional file 1: Sect. 2)
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thus consists of two disconnected atoms, one bromine 
and one nitrogen (‘Br.N’ in SMILES).

However, if a more specific repeating unit SMARTS 
query specifying ring membership is used, the first two 
molecules could be distinguished from 1-(4-bromobutyl)
pyrrolidine. Using the repeating unit ‘[#6;!R&H2]’ (car-
bon atom that is not a member of a ring bonded to exactly 
two hydrogen atoms) yields two different cores for the 
three molecules in Fig. 9: while the core detected for the 
first two molecules remains the same as before, that for 
1-(4-bromobutyl)pyrrolidine consists of the intact pyrro-
lidine ring and a single Br atom, represented in SMILES 
as ‘Br.C1CCN(C1)’. !us, 1-(4-bromobutyl)pyrrolidine 
would not be included in the same homologous series as 

the first two molecules in Fig.  9 which underscores the 
importance of repeating units SMARTS specification 
in the resulting homologous series classified. In other 
words, users should be careful when specifying their 
repeating units SMARTS to achieve the desired results.

E#ect of maximum length of repeating unit chains 
speci"ed
!e maximum length of repeating unit chains to be enu-
merated for substructure matching and removal is user-
customisable, with the default value set to 30 repeating
units (Table 2). !is default value was used in the present
analysis to avoid prolonged computation times that result
from having a larger maximum value. It was also assumed

Fig. 7 Examples of two series classified by OngLai that belong to the same splitPFAS series because they have the same X and R groups in 
 CnF2n+1-X-R according to splitPFAS results. Labels correspond to the ID_in_OECD_list and CAS Registration Number given in the splitPFAS results 
XLSX file respectively; molecules from the splitPFAS dataset (series_no = 0 and 1, Additional file 1: Sect. 2)
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that this would be sufficient to cover all possible cases of 
repeating units in the molecules analysed. !is assump-
tion held true for the NORMAN-SLE and PubChemLite 
datasets, but not COCONUT, where some molecules 
were misclassified due to this default value (see Fig. 10).

In the classified homologous series shown, the linear 
alkane CNP0027489 (molecular formula  C46H94) should 
have been classified together with other linear alkanes 
having core (‘CH3.  H3C’ in pseudo SMILES). However, 
because the longest repeating unit chain in CNP0027489 
is  C44H88 (corresponding to a maximum repeating unit 
length of 44) and not  C30H60 (a maximum repeating unit 
length of 30), the resulting core after two fragmenta-
tion steps contains three  CH3 fragments instead of two, 
causing it to be classified together with branched alkanes 
having the same core. In this case, correct classification 
would be achieved if the maximum value was set to 44 or 
higher, albeit at the expense of significantly longer com-
putational times.

E#ect of number of fragmentation steps
!e ‘No. Fragmentation Steps’ setting (Table  2) affects 
the extent of fragmentation of the input molecule and as 
a result, the cores detected. !erefore, the cores detected 
can vary in structure depending on the number of frag-
mentation steps specified, especially in cases where (1) 
there are multiple repeating unit chains within a given 
molecule, (2) the repeating unit chains are of different 
lengths, and/or (3) the repeating unit chains are bonded 
to the same atom.

Figure  11 shows the impact of varying the number of 
fragmentation steps on three input molecules belonging 
to the same homologous series ‘Cx-SPADCs’, published 
in S7 EAWAGSURF. Starting with the input molecules 
in the left-most column, had ‘No. Fragmentation Steps’ 
been set to 1, the final cores detected would have been 
those shown in the red boxes. However, as none of these 
cores are identical to each other, these three molecules 
would not be classified into the same homologous series. 

Fig. 8 The impact of different fragmentation approaches in the RDKit on homologous series core detection, top: using DeleteSubstructs, bottom: 
using ReplaceCore. The two input molecules are homologous and should be classified into the same series; fragmentation using ReplaceCore 
achieves this as identical cores are detected (C.C.O in SMILES representation). However, DeleteSubstructs yields different cores (C.C.O and C.C.CO 
in SMILES respectively) for the two input molecules because both –CH2–CH2–CH2–CH2– chains of the symmetrical molecule are removed 
simultaneously in Fragmentation Step 1, resulting in inequivalent cores and no homologous series detected

Fig. 9 Example of a  CH2 series containing members where the alkyl repeating units were found within a ring and a linear chain. Molecules from 
PubChemLite (series_no = 30, Additional file 1: Sect. 2)
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In contrast, a second fragmentation step yields identical 
cores for the three input molecules (Fig.  11 blue boxes) 
that would result in the three input molecules being 
grouped together into the same series. !us, the number 
of fragmentation steps selected is crucial for appropriate 
core detection and homologous series classification.

E#ect of sanitisation on core detection
!e position of core fragment(s) within input molecules 
is irrelevant for OngLai. In other words, molecules con-
taining the same core fragments, albeit in different posi-
tions within the molecule relative to the repeating units, 

are classified into the same homologous series. Concrete 
examples are shown in Fig. 12, where molecules contain-
ing either alcohol or ether functional groups are consid-
ered homologous (Fig. 12, top panel). A second example 
shows molecules containing either a carboxylic acid 
or ester moiety belonging to the same classified series 
(Fig.  12, bottom panel). Here, whether the core is in a 
terminal or central position within the molecule is not 
considered in core detection because its atomic neigh-
bourhood is not taken into account. Consequently, the 
number of repeating unit chains attached to the core is 
also not considered, meaning the core could be attached 

Fig. 11 The number of fragmentation steps given as input affects core detection, shown here with three dicarboxylated alkyl benzenesulfonate 
molecules originally from NORMAN-SLE. These compounds are detected frequently in environmental samples as transformation products of 
commonly used surfactants [27]. Note that the core fragments in the red and blue boxes are depicted in their sanitised forms without dummy 
atoms to reflect the SMILES they would be grouped together by

Fig. 10 Example of three molecules classified into the same homologous series with  CH2 repeating units. The longest repeating unit chain in the 
bottom molecule CNP0027489 is longer than the maximum repeating unit chain length specified as algorithm input (30 units), resulting in only 
partial removal after Fragmentation Step 1. Subsequently, three core fragments were detected instead of two. Molecules from COCONUT dataset 
(series_no = 126, Additional file 1: Sect. 2)
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to carbons of varying connectivity degrees across the dif-
ferent members of a homologous series. For example, the 
‘O’ fragment in the ether core of molecule CNP0077266 
is attached to two primary carbon atoms (Fig.  12, top 
panel), while the ‘O’ fragments in the other molecules of 
the same series shown are attached to one secondary car-
bon atom each. Depending on user preference, grouping 
together molecules with varying core fragment position 
in the same homologous series may be desirable, but it 
is possible that future augmentations of OngLai could 
address the consideration of the number of repeating unit 
chains attached to the core, or atomic neighbourhood of 
the core in general.

E#ect of stereochemical information
Stereochemical information can play a discrimina-
tory role in homologous series detection, depending 
on where it is specified relative to the core fragment(s) 
and molecular fragmentation site(s). If bonds with no 

stereochemistry specified connecting repeating units 
and core fragments are fragmented, but stereochemi-
cal information is present elsewhere in the molecule, the 
latter is preserved and taken into consideration during 
the process of homologous series detection via grouping 
molecules with identical cores. For example, as shown 
in Fig.  4, the ‘C18 sorbitan monoester’ input molecule 
contains a bond pointing outwards, as does its core. 
However, the ‘C12 sorbitan monoester’ and its core have 
planar bonds throughout, so the C12 and C18 species are 
not considered homologous by OngLai. In contrast, the 
molecules in Fig. 13 are classified as homologous despite 
their different stereochemistries, because the amino acid 
core fragment common to all 6 molecules (Fig.  13, bot-
tom panel) was originally adjacent to the fragmented 
bond and therefore experienced stereochemistry neu-
tralisation in the process of core detection (addition 
of dummy atom, then conversion to hydrogen atom). 
!us, molecules with different stereochemistries may be 

Fig. 12 Examples of  CH2 series containing members with cores in different positions within the molecule. Top: alcohols and ethers have the same 
core (C.C.O in SMILES), bottom: carboxylic acids and esters (C.C.O = CO in SMILES). Molecules are from COCONUT, and selected members from each 
series are shown (series_no = 597 and 662, Additional file 1: Sect. 2)
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grouped into the same series if fragmentation happens on 
bonds or adjacent bonds that originally have stereochem-
istry specified, as this information is removed during 
core detection. !is behaviour is desirable in the specific 
case of annotating databases to support the identification 
of chemicals in environmental samples using mass spec-
trometry (which was the original motivation of OngLai), 
where stereochemistry differences are less relevant 
for compound identification. By grouping together all 
homologous compounds regardless of their stereochem-
istry differences, the remaining ‘unannotated’ chemical 
space that should be considered for unknown identifica-
tion would be smaller, which could make unknown iden-
tification easier and more efficient. Overall, however, the 
desirability of this behaviour would depend on the indi-
vidual user’s ultimate goal and intended application of 
classifying homologous series.

Regarding stereochemistry in the datasets used rela-
tive to their preparation as described in “Methods”, only 

the molecules in COCONUT have no stereochemis-
try encoded, whereas molecules in NORMAN-SLE and 
PubChemLite have mixed stereochemical information 
availability. To investigate the influence of stereochemis-
try on homologous series detected further, future efforts 
could include applying OngLai to the version of COCO-
NUT containing all stereoisomers.

Molecules with branched repeating units classi"ed 
as series
Molecules with branched repeating units, irrespective of 
the length of the branch and branching site, are classified 
into the same series since OngLai does not consider the 
atomic neighbourhood of the matched repeating units it 
removes during core detection (Fig. 14). Rather, it simply 
detects the longest repeating unit chain and removes it 
in the process of series classification. In certain applica-
tions, this insensitivity could be advantageous, for exam-
ple when characterising chemical space or preparing 

Fig. 13 Example of  CH2 series containing molecules with stereochemical information. The core of this series (bottom panel) has stereochemistry 
removed in the process of core detection, hence all the molecules in the top panel are considered homologous despite their various 
stereochemistries. Molecules from NORMAN-SLE (series_no = 2021, Additional file 1: Sect. 2)
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diversity decks in high-throughput chemical screening 
[35, 73], as grouping together such highly similar ana-
logues could result in reduced redundancy and better 
representation of the molecules within a given chemical 
series. However, it is also possible that this insensitivity 
to the site and extent of branching could be addressed in 
future augmentations of the algorithm by e.g., introduc-
ing filters for molecules that have repeating unit chains of 
the same lengths.

Structural isomers classi"ed as series
As explained above, the atomic neighbourhood of repeat-
ing units is not considered when repeating units are 
being matched for substructure removal in core detec-
tion. !us, being insensitive to atomic neighbourhoods 
results in ring substitution isomers (meta-, para-, and 
ortho-) being classified as members of the same series, 
irrespective of the attachment position of the repeating 
unit chain (Fig. 15). If desired, such occurrences could be 

identified and filtered or grouped together on the basis of 
formula or mass in a post-processing step.

Future work
!e present work introduces OngLai, an algorithm to
classify homologous series within compound datasets.
Since this topic has been relatively unexplored, three
areas of further research could be interesting to pursue
based on the work presented here. Additionally, integra-
tion of this homologous series classification functional-
ity into existing tools such as the ‘Contrib’ directory of
the RDKit and the R package ‘patRoon’ [74] to further
enhance the utility of this algorithm have already been
discussed with the relevant software maintainers.

Algorithm
Consideration of the atomic neighbourhood of the core 
fragment(s) during core detection is a potential feature to 
implement in the next version of OngLai. As highlighted 

Fig. 14 Example of two  CH2 series containing molecules with varied branched repeating units. Molecules from COCONUT (Bottom: series_
no = 696; top: selected 9 of total 78 molecules in series_no = 126, Additional file 1: Sect. 2)
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in the “Discussion” section, doing so could improve the 
accuracy of core detection and thereby generate homol-
ogous series containing molecules that have less vari-
ability with respect to branching, structural isomerism, 
and position of the core in the molecules. Atomic neigh-
bourhood consideration could be achieved by attaching 
R-groups onto repeating unit chains at the fragmentation 
site, then integrating this information when grouping 
identical cores together in the final step of homologous 
series classification.

Further results analysis
Additional automated analyses can be performed with 
homologous series structures after their classification in 
a given dataset. A first functionality could be to order the 
series by the number of chains and the number of repeat-
ing units in their chains within one identified homolo-
gous series. Alternatively, homologous series could be 
grouped together based on multiple characteristics or 
properties such as having the same type of repeating 
units or similar core fragments, e.g., homologous series 
with core fragments that represent different ortho/meta/
para variants of the same structure could be grouped. At 
higher levels, classified series could be grouped accord-
ing to similarities between their core or repeating units, 
based on a defined similarity measure. Basically, any 
known chemical clustering algorithm can be applied 
to representative structures of each homologous series 
group here. !is grouping and ordering for different 
characteristics at different levels can result in a homolo-
gous series hierarchy for the given dataset, similar to 
a scaffold tree [75], which could allow for an intuitive, 
multi-layer visualisation of homologous series diversity 
in a given dataset. In terms of mass spectral data process-
ing, specific groups of homologues of interest could also 
be used either as potential suspect lists or database files 
during non-target LC-HRMS data processing.

Alternative cheminformatics approaches to classify 
homologous series
Currently, repeating unit structures have to be pro-
vided as algorithm input in the form of SMARTS, which 
requires a priori knowledge of the identity of repeating 
units and familiarity with SMARTS syntax. On one hand, 
this requirement makes OngLai highly suited to its origi-
nal intended application, which is to aid in the identifi-
cation of unknown but related features in mass spectra. 
In this case, repeating units are typically known from 
the outset, as their structures can be deduced from the 
constant m/z differences between HRMS features (e.g., 
m/z = 14.0157 difference between features likely indi-
cates that the repeating unit is  CH2). However, from a 
pure cheminformatics perspective, homologous series 
classification should ideally be achievable without prior 
knowledge of repeating unit identity. Developing and 
implementing such an approach poses a complex but 
relevant problem, which could be addressed using maxi-
mum common substructure (MCS) detection function-
ality [41, 42] in an all-versus-all approach. !at said, the 
necessity to determine the MCS of every molecule with 
every other molecule in the given dataset is potentially 
problematic due to the exponential scaling of required 
computation that is exacerbated when dealing with 
large chemical structures like polymers or certain natu-
ral products. Common cheminformatics methods like 
pre-screening and filtering repeating unit-less molecules 
to overcome these time-consuming MCS functionalities 
could be explored. Alternatively, parallelisation would be 
applicable here because the MCS of one molecule pair 
can be determined separately from the other pairs.

Another idea to approach the problem of homologous 
series detection is to employ spherical substructures of 
molecules, also called atomic environments, as used in 
molecular signatures [76], Morgan fingerprints [77, 78], 
or HOSE codes [79]. !e first step would be to generate 

Fig. 15 Example of a  CH2 series containing structural isomers. The homologous molecules in this series have cores with ring substituent positions 
in the meta-, para- and ortho-positions respectively going from left to right. Molecules from NORMAN-SLE. (series_no = 2097, Additional file 1: 
Sect. 2)



Page 21 of 25Lai et al. Journal of Cheminformatics           (2022) 14:85  

spherical substructures of different heights for every 
atom in a molecule, where a substructure of height 0 
contains only the centre atom itself, the substructure of 
height 1 contains the centre atom and its direct neigh-
bours, etc. For each height, the number of unique spheri-
cal substructures can be tracked. If there is a repeating 
unit in the molecular structure, there should be a detect-
able minimum in the diversity of a molecule’s spheri-
cal substructures for the height equal to the size of the 
repeating unit. !is approach would have the advan-
tage that it is dataset-independent, unlike the current or 
MCS approach, but would require many specific rules or 
heuristics for corner cases and a very fine tuning of the 
parameters for the detection of the assumed height that 
matches the repeating unit size, if a generally applicable 
parameter set can be identified at all.

A less complex application of spherical substructure 
approaches might also be used to detect repeating unit 
chains with an a priori definition of the repeating sub-
structure that is searched for, as in this work. Instead of 
SMARTS-based matching as used here, spherical sub-
structures of a matching height for one molecule would 
be generated and matched with the pre-defined repeating 
units to identify homologous compounds by their chains. 
!e set height of the included atom neighbours could 
then be gradually increased to include the neighbour-
ing repeating units until the structure no longer fits the 
predefined repeating unit structure. !is way, a repeating 
unit chain could be detected directly as a coherent sub-
structure. A disadvantage of the approach would be that 
spherical substructure notations like HOSE codes are 
more complex to define by hand and provide less options 
than SMARTS definitions, since they were not originally 
developed for substructure matching.

Beyond the classical methods of structural chemin-
formatics, further alternative approaches could employ 
machine learning. For example, one could define the 
problem as a classification task by training a model 
to recognise homologous vs. non-homologous mol-
ecules based on their SMILES strings or even structure 
depictions. In both data structures, repetitive repeat-
ing unit patterns should be detectable in a straightfor-
ward manner. A more complex alternative would be to 
extract the core and (in a generalised model) repeating 
unit structures, e.g., as SMILES strings. Current suc-
cesses in similar applications are encouraging [80] but 
available training data would be a limiting factor, as the 
numbers of homologous structures detected in relevant 
datasets reported above and of published homologous 
series e.g., in specialised databases, appear too low for 
most machine learning tasks. However, defining core 
structures with chain attachment points and multiple 
repeating units structures may allow training data to be 

synthetically generated through recombination and enu-
meration to form diverse homologous series structures.

Conclusions
OngLai is an open source algorithm implemented in 
RDKit that classifies homologous series within com-
pound datasets based on two inputs: a CSV file con-
taining compound SMILES representations and a 
repeating unit represented by a SMARTS string. Using 
the SMARTS definition of the repeating unit, OngLai first 
detects suitable cores by molecule fragmentation prior to 
series classification. Homologous series classification was 
demonstrated by applying OngLai to three open data-
sets: NORMAN-SLE, PubChemLite for Exposomics, and 
COCONUT. !ousands of homologous series with  CH2 
repeating units were detected within these datasets using 
the default algorithm settings. !e results were validated 
using published homologous series and structure cat-
egories for surfactant and PFAS examples, and compared 
with the splitPFAS method for categorising PFAS. Both 
validation and comparison generally showed good agree-
ment, with OngLai proving to be more granular in its 
detection of homologous series in some scenarios.

Overall, homologous series classification bears several 
advantages. Firstly, the detection of homologous series in 
datasets such as NORMAN-SLE and PubChemLite may 
support their identification using (LC-)HRMS. Homolo-
gous mass spectral features are frequently detected at 
high intensities in environmental samples and may form 
a large proportion of measured features that typically 
remain unknown (but are suspected to be compounds in 
chemical consumer products that are heavily produced 
and used, like surfactants). OngLai’s results could sup-
port the characterisation of these unknowns by provid-
ing researchers with classified homologous series within 
datasets, so they can perform more effective database 
matching of homologous features detected in their sam-
ples in a group-wise fashion. Such steps would contribute 
to tackling the problem of identifying and characterising 
UVCBs in the environment and further our understand-
ing of the effects of chemical exposure and its impacts on 
the environment and/or disease, with the ultimate goal of 
protecting human health and the environment [26].

Secondly, the characterisation of chemical spaces is 
enhanced by identifying similar or related compounds 
that could be considered as a group. As OngLai essen-
tially performs a type of clustering by grouping together 
homologous compounds, applying it to large screening 
datasets is a viable method for analysing large chemical 
spaces of interest and supporting the design of diverse 
molecule screening decks, which are of interest in drug 
discovery [70, 71]. An additional benefit accrued from 
chemical space characterisation via homologous series 
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detection is that classified series can contribute to more 
efficient dataset curation, as mentioned with respect to 
polyfluorinated compounds found in the COCONUT 
dataset.

OngLai is freely and openly available on https:// github. 
com/ adele nelai/ onglai- class ify- homol ogues. Users are 
invited to apply OngLai on chemical datasets of inter-
est, possibly as a first data exploration step, to uncover 
homologous compounds in their datasets, which may 
lead to insights on potential chemical groups, open new 
avenues for property prediction, and/or facilitate ana-
lytical detection. OngLai can also be used as a means for 
chemical grouping or to validate existing approaches, 
which may be of particular interest to e.g., regulatory 
stakeholders in environmental chemistry [81].
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OngLai, an algorithm to classify homologous series within compound datasets, was

successfully developed and implemented as a Python package built using the RDKit.

OngLai is freely available on GitHub

(https://github.com/adelenelai/onglai-classify-homologues), as are the datasets used

in this study, results, and analysis via Zenodo

(https://doi.org/10.5281/zenodo.7035020). Running the OngLai algorithm entails

executing one line of code in the command line interface that specifies inputs and

various customisable user settings. Besides the input dataset of interest, the main

input OngLai requires is a repeating unit of choice expressed in SMARTS notation,

which reflects the original intended application of the algorithm to identify

environmental unknowns, where series with a constant m/z difference are frequently

detected in HRMS data.

OngLai was applied to three datasets, COCONUT, NORMAN-SLE, and PubChemLite

for Exposomics, containing chemicals representing natural products, environmental

chemicals, and those relevant to the human exposome respectively. Thousands of

homologous series with CH2 repeating units representing alkyl chains were classified

in each dataset, revealing the prevalence of homologous compounds in these

domains. More importantly, these classified homologous series may support their

identification in HRMS data, as analytical chemists would now be more able to match

their observations of environmental unknowns in mass spectrometry data with

entities in chemical databases. Additionally, OngLai proved to have good potential as

an automated PFAS categorisation tool by comparing its CF2 series classification

results with the cheminformatics tool splitPFAS, and the manual categorisation

performed by PFAS experts for the OECD. Compared to computational identification

workflows designed to analyse HRMS data, algorithms such as OngLai represent a

new ‘wave’ of cheminformatics applications to environmental chemistry and the

identification of unknowns that has been made possible thanks to the constant

development of environmental chemical databases and lists such as those on the

NORMAN-SLE and cheminformatics toolkits like the RDKit.
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Chapter 6

Discussion

Despite the benefits chemicals have brought to society in the form of, for example,

medicines, high-performance materials, and the ability to enhance properties such as

safety (e.g., flame-retardancy) or aesthetics (e.g., paints or other coatings) etc., the

emission of chemicals into the environment has given rise to environmental chemical

pollution. Environmental chemical pollution is a highly complex, multi-faceted problem

as the design, production, regulation, use, and consumption of chemicals is driven by

complex socioeconomic factors. In turn, many areas of research across myriad

disciplines have focused on dealing with the issue of environmental chemicals from

different perspectives, including but not limited to the natural sciences, history, and

policy. Especially in the chemical sciences, and specifically environmental chemistry,

scientific questions regarding these chemical pollutants abound, particularly

concerning their unknown identities, environmental fate, exposure mechanisms, and

potential toxicity to living organisms including humans.

Routine environmental monitoring is a fundamental aspect underpinning these critical

questions about chemical pollutants. For example in European countries under the

EU Water Framework Directive, national regulatory agencies are tasked with routine

monitoring of surface water for the occurrence of roughly 45 target chemicals that

mostly consist of pesticides and related compounds.99 However, it is well documented

that within the EU (and elsewhere), environmental surface water samples typically

contain more chemical pollutants than are being monitored - in fact, HRMS data

frequently contain hundreds, if not thousands of signals that remain unidentified. The

prevalence of these chemical mixtures in the environment with the majority of

components remaining unknown is problematic, and warrants sustained efforts to

advance the knowledge of their identities.

Fundamental knowledge gaps in the identities of these non-target chemical pollutants

continue to plague environmental chemists. Developments in HRMS instrumentation

have allowed the high-resolution detection of these compounds in environmental

samples, but analysing the measured data is a persistent bottleneck towards
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identification of environmental unknowns, especially suspect and non-target

compounds. Non-target compounds in particular are characterised by the lack of a

priori information available regarding their identities beyond the signals measured by

HRMS. As manual structure elucidation based on fragment spectra would be

time-consuming, if not virtually impossible, applying cheminformatics and

computational methods to support data analysis are widely considered de rigeur.

With the advent of chemical data resources including databases, spectral libraries,

software packages, and tools, efforts to combine and continuously develop these

resources towards supporting the identification of environmental unknowns represent

active areas of research.

The work in this dissertation specifically exploited the potential of up-and-coming

open digital chemical resources to tackle the challenge of unknown identification

within environmental chemical mixtures. Each of the four publications presented in

the preceding chapters represents efforts to capitalise on different current

developments in open chemistry data, cheminformatics toolkits, and the constant

evolution of environmental chemistry research in tandem with the increasing

availability of computational tools. Chapters 2 and 3 focused on developing workflows

that exploited cutting-edge online chemical resources for analysing environmental

chemistry data using water samples collected in Switzerland and Luxembourg that

were part of regulatory sampling campaigns carried out by local authorities.

Concerted efforts to communicate the findings of these studies in a transparent and

constructive way that could inform future regulatory actions were prioritised in these

works.

Chapter 4 then focused on the impending challenge and ‘next frontier of

environmental unknowns’ known as UVCBs - registered chemical substances that

are de facto mixtures. UVCBs are especially challenging to assess for regulators

because of their unknown, variable, and complex compositions, and one of the

principal obstacles to their sound management is the difficulty in representing them

chemically. Accurate chemical representation of UVCBs underpins many aspects of

its assessment, including but not limited to its analytical characterisation, evaluation

of hazards, exposure and mixture toxicity modelling, and the ability to prioritise and

possibly restrict these substances from a regulatory perspective. All these

aforementioned aspects were critically reviewed in this chapter, and proposals for
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improved and FAIR UVCB data management using the open Mixture InChI format

were highlighted and discussed.

Lastly, a specific type of UVCB substance, namely mixtures of homologous

compounds (also known as homologous series), was the focus of Chapter 5.

Homologous series’ signals are frequently detected in environmental samples

because they are found in many High Production Volume substances, but are often

intentionally ignored or deliberately excluded from identification exercises because of

the inability to match them to corresponding database entries of homologous series.

Thus, a cheminformatics algorithm was developed to classify homologous chemicals

within compound datasets, which represents a step towards being able to match

measured homologous signals to database compounds that would allow for their

identification in environmental samples.

Overall, the work in this dissertation contributed to the advancement of data

processing, classification, and analysis methods for the identification of suspect and

non-target compounds i.e., unknown chemical pollutants, in the environment. The

Aims outlined in Section 1.2 were achieved in two ways: 1) by combining and

incorporating state-of-the-art, open chemical resources into computational workflows

to analyse HRMS data, and 2) developing a cheminformatics algorithm to classify

homologous compounds in existing databases to enhance future identification efforts.

Additionally, the critical review of UVCB substances, notably containing

unprecedented proposals for its chemical data representation, highlighted a roadmap

for dealing with these challenging substances. Therefore, the strength of this

dissertation work is its demonstrative nature, as it focused on developing a breadth of

computational and cheminformatics solutions along the entire environmental

analytics pipeline while showcasing how various chemical data science resources

could be leveraged as they were being released or developed.

On one hand, part of this dissertation features ‘upstream’ solutions involving the

enhancement of database resources through possible annotation of related

(homologous) compounds, but also on the other hand, ‘downstream’ solutions

entailing development of identification workflows for specific environmental datasets.

The alternative would have been to specialise or narrowly focus on fully identifying

the chemical pollutants present in a specific environmental system or sample(s) to

Level 1 certainty. However in practice, this would entail acquisition and measurement
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of reference standards and further collaboration and feedback loops with analytical

chemists. In other words, there would have been a tradeoff, at the expense of

developing methods that are potentially more generalisable, applicable, and

adaptable to other scientists’ needs.

However, there exist methodological limitations in the current portfolio of scientific

work that could be addressed in future efforts. These are thematically discussed in

detail below.

6.1 Using Environmental Metadata in MetFrag for

Unknown Identification

The in silico fragmentation tool MetFrag in its ‘relaunched’ version was used for

identifying unknown masses in Chapters 2 and 3,85 whereby the use of so-called

‘environmental metadata’ contributes to the identification procedure by increasing or

decreasing the scores of candidate structures for a given unknown. Environmental

metadata encompasses a broad range of information that is completely unrelated to

the measured spectral information, and includes aspects like citation count,

occurrence in patents, and presence or absence of the mass in user-defined suspect

lists. In MetFrag, if a compound happens to be highly omnipresent in these areas, it

will be up-prioritised in the list of candidates suggested in MetFrag’s results.

Essentially, this identification paradigm relies on the premise that the more

documented a chemical compound is, either because it is widely produced, used,

studied, or patented, the higher the likelihood it is a good candidate structure for a

given unknown mass.

On one hand, this approach technically introduces bias in the identification workflow,

as the information provided by environmental metadata is unrelated to the analytical

measurement performed and the resulting mass spectra obtained. The fact that

information unrelated to the analyte itself could be a contributing factor for unknown

identification based on HRMS measurements does not necessarily invalidate any

tentative identification made, but may introduce errors in the identification process by

obscuring the relevance of candidates with matching analytical data, but that do not
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have copious corresponding patent information, citations, presence in suspect lists

etc.

However, on the other hand, considering the vastness of the possible chemical space

of environmental pollutants that exacerbates the difficulty of non-target identification,

environmental metadata may serve as a reasonable indication of the likelihood of a

tentative identification being valid. Therefore, to mitigate the potential negative effects

related to bias of introducing environmental metadata as a factor in unknown

identification, appropriate weightings should be employed by MetFrag users to

balance out the contribution of environmental metadata information with spectral data

so as to obtain reasonable candidate structures. These weightings could be devised

taking the quality of the spectral data into account, as discussed in Chapter 2.

6.2 Suspect Screening using Suspect Lists

The work in Chapter 3 involves suspect screening, which relied on a list of

(pharmaceutical) products that had been registered for the Luxembourgish market

published by the Luxembourgish Caisse Nationale de Santé, i.e., a source

completely distinct from sample measurement and spectral data generation. The use

of such suspect lists in suspect screening, as performed in Chapter 3, is an approach

that has become more widespread in the last 5-10 years, attributable to the intense

development of chemical resources like the NORMAN Suspect List Exchange.82 The

NORMAN-SLE currently hosts 99 thematic lists of chemicals that were generated by

NORMAN partners, including intense curation efforts that contributed to the

findability, accessibility, interoperability, and reusability of this information, and

continues to grow in its number of lists.

However, in light of these developments, the question of “screen big vs. screen

smart” becomes ever more pertinent. “Screen big” refers to the use of a large suspect

list for suspect screening, because presumably the larger the list, the larger the

coverage of possible compound space, and the higher the possibility that unknown

masses will match an element in the list. However, screening big in this way

introduces more possibilities for false positives, as the likelihood of a matching mass

becomes higher with an increasing list size, regardless of whether the compound it
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represents is in fact a reasonable candidate. Conversely, “screen smart” implies a

more focused approach, using a smaller but more meaningful list that may be tailored

to the study based on domain knowledge. It remains challenging to strike a

reasonable balance between screening big and screening smart, and analyses to

identify potential false positives in suspect screening could be performed when using

large lists.

6.3 Different Workflows for Different Studies?

Harmonisation of NTA Towards Use in Regulatory

Environmental Monitoring

Chapters 2 and 3 presented workflows for analysing non-target and suspect

compounds that were deliberately developed for the respective studies. More

specifically, different tools, datasets, and spectral libraries had to be integrated

together into one workflow, as these discrete building blocks often tend to have

general scopes of application that need to be refined for a given use, or are in fact

originally from metabolomics or proteomics and must be repurposed for

environmental analysis.

Such is the challenge in non-target analysis - that individual workflows are usually

created for different datasets or are used by different research groups, depending on

the types of analytical instruments and data formats, researchers’ programming

abilities, accessibility of software tools (licences are needed for proprietary software

in some cases), and aims of the study. This heterogeneity is the basis of various

collaborative trials and identification contests that have taken place over the last

decade, where different researchers are invited to analyse the same dataset using a

workflow of their choice, often producing different results.100–102

On one hand, the fact that researchers have flexibility in developing their own

workflows is potentially beneficial, as each study could have different requirements

that may not be suitably covered by a generic workflow. However, two distinct

disadvantages pertain to this flexibility: 1) significant time and resources are

dedicated to developing these highly-specialised workflows and 2) as a result of such
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different workflows, their comparability and ability to assess their performance

becomes limited.

Multiple calls for harmonisation and eventual standardisation of non-target analysis

protocols, computational workflow methods, and reporting have been issued in the

past decade, particularly if NTA is to be used in regulatory environmental monitoring

as a means for improved chemicals management.103 Software platforms such as

patRoon represent possible solutions to this fragmented landscape of non-target

analysis.104 patRoon is an open software platform that combines multiple data

analysis routines and algorithms for environmental non-target analysis. However,

voluntary universal adoption of patRoon is unlikely, especially in the short- to

medium-term, as researchers tend to prefer maintaining their respective status quo

and to continue using workflows they have developed or used in the past, likely

because of the significant effort required to learn to deploy new tools.

Meanwhile, multiple guidance documents and study reporting tools have been

proposed towards the harmonisation of NTA approaches.105 The prospect of full

automation of these workflows, possibly by applications of machine learning as well

as increased functionality and ability to interface chemical databases is anticipated.

Furthermore, such automation and harmonisation would likely facilitate data

processing and analysis, as custom solutions would not have to be developed for

each different approach. Overall, the scientific community, together with regulatory

stakeholders, likely need to reach some consensus if NTA is ever to be adopted as a

routine water monitoring approach.

6.4 Open Science and FAIR Data Approaches of this

Dissertation

All the work produced over the course of this dissertation adheres to Open Science

and FAIR Data principles. In practice, this means that all tools, software and

databases that were used and/or produced in this dissertation work are open source,

as are all resulting research products i.e., the peer-reviewed publications themselves,
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in addition to the preprints of these manuscripts, an oral presentation slide deck,106 as

well as a scientific poster.107

Besides the open access nature of all publications produced in this work, all code

that was produced is freely available online on repositories such as GitHub or GitLab,

and archived using stable URLs or DOIs where appropriate. In particular, the work in

Chapter 5 involving the development and implementation of the OngLai algorithm

was published as a Python package. Packaging in this way not only ensures that

OngLai can be easily downloaded, installed, and used, but that future development of

OngLai by the open source community is facilitated because of the structured

organisation of code and corresponding documentation.

Additionally, all data analysed were uploaded onto open repositories, namely

MassIVE for mass spectral data, as well as archived versions of open data on

Zenodo, all with corresponding Digital Object Identifiers (DOIs). Jupyter Notebooks

are included to demonstrate how the code and analyses of these data were carried

out, and can be executed to reproduce the same results as obtained in the respective

publications.

Considerable time and effort was required to prepare data, code, analyses, and

results that adhere to the FAIR Data and Open Science principles. Documentation in

the form of metadata, code comments, or otherwise is an essential aspect of this

approach. Furthermore, uploads to open repositories require ‘clean’ and organised

outputs (e.g., via software packaging) that are ideally easily understood by potential

future users.

In spite of these added requirements, the importance and benefits of FAIR Data and

Open Science are undeniable. On one hand, research such as the present

dissertation that was funded by public funding sources is produced under the

obligation of maintaining accessibility to all its outputs. On the other hand, ensuring

all results are FAIR and Open not only increases the transparency of research, but

may also enable other researchers working on similar problems to benefit from tools

that have been developed, or the accessibility of data that can be shared and

(re)used by others. For example, upon the (open) publication of the manuscript in

Chapter 2, including the list of non-target masses of interest that were investigated in

the study, regulators from a different organisation in Switzerland contacted our author
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team, as they too had been working on trying to elucidate the structure of a

non-target mass identical to one of the masses in our study. This connection then

sparked further joint work, which represents critical steps forward towards elucidating

this chemical unknown.

Such collaborative aspects are critical to carrying out environmental research and

ultimately solving environmental problems, as joint efforts between researchers is

essential considering that environmental pollution problems do not occur in silos and

likely affect multiple stakeholders simultaneously. Thus on balance, the resources

dedicated to ensuring FAIR Data and Open Science principles in research, especially

in the environmental domain, are paramount, justified, and have been exemplified in

this dissertation.

6.5 Bottleneck in Availability of Data on Environmental

Pollutants

Despite the increasing availability of chemical data and open resources that has been

discussed at length throughout this dissertation, fundamental data gaps persist

concerning chemicals in the form of incomplete lists of marketed products; their

toxicity, environmental fate, and safety properties; their production and usage in

terms of tonnages and emission routes; reference standards and analytical data; and

in the specific case of UVCBs, chemical structure information. Together, these gaps

likely hinder the identification of these substances in the environment, which has

consequences for trying to understand their potential toxic (mixture) effects.

In the particular case of UVCBs, which was the focus of Chapters 4 and 5 and likely

represent the subject of much future work, the lacuna of information on their identities

is attributable to the fact that regulatory agencies do not always require them, and

even if this information is disclosed to regulators, is not made available in the public

domain, including researchers. The latter could be a result of protective Confidential

Business Information clauses, or the fact that testing is not required when a

substance is declared a UVCB. Alternatively, this gap could also be a factor of the

current technology used for disclosing and storing this information. In Europe, the

International Uniform ChemicaL Information Database (IUCLID) system is the
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predominant tool used in this context, but its relatively nonspecific data collection

scheme, particularly for the variable composition of UVCB substances, has been

found to complicate or in some cases hinder comparisons between, for example, lead

and member country dossiers of the same substance.108

Moving forward, the availability of UVCB data will remain a challenge.67,109 While

there have been some efforts to elucidate the structures of UVCBs in silico based on

substance name, the fragmented availability of information across the various online

databases posed severe obstacles to these efforts.106 Ultimately, analytical

verification may be the only definitive method to determine the composition and/or

structure of a UVCB. Thus, only if analytical verification is made a requirement of

product registration, would this information become more readily available.

Overall, the work in this dissertation deliberately addressed the most challenging of

environmental unknowns, while at the same time, offered holistic perspectives on the

upcoming challenges within environmental chemistry concerning the specific case of

UVCBs. As UVCBs are so varied in nature, focusing on a specific subtype through

the OngLai algorithm to classify homologous series provided some measure of

tractability that can hopefully benefit future researchers and alleviate the identification

gap of chemical unknowns in non-target HRMS data.
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Chapter 7

Conclusion & Perspectives

Pollution of the environment caused by chemicals is a persistent, multi-faceted

problem. Until now, their production, use, and disposal has largely been dictated by

historical, socio-economic, and political forces that tended to prioritise their benefits:

the prospect of stronger, safer, better-performing materials and products. However,

despite these advantages to society, concerns regarding their (environmental) fate,

and consequently, the potential impacts these compounds might have on ecosystems

and human health have been largely overshadowed. Six decades have elapsed since

the publication of Rachel Carson’s Silent Spring, the book that brought incidents of

chemical pollution caused by pesticides and their consequences on wildlife and

ecosystems to the mainstream public’s attention. However, despite some regulatory

initiatives to register, assess, monitor, and manage chemicals that were initially

inspired by Silent Spring, in addition to significant grassroots efforts, numerous cases

of scientific research have shown that chemicals are more ubiquitous than ever,

occurring not just in the environment and within wildlife, but also increasingly within

ourselves.

That chemicals are virtually everywhere is a fact - megatonnes are registered for

production, sale, and use each year, as well as being routinely detected in the

environment. What remains elusive, particularly in the public domain, is a complete

understanding of their identities; more specifically, their chemical structures. This

ignorance plagues two key stakeholders. Firstly, regulators often do not have full

knowledge of the structures of the chemicals registered under their purview because

of Confidential Business Information clauses, or simply because they were not

characterised upon registration and do not need to be, as is widely the case for

UVCB substances. Without knowledge of chemical structure, opportunities to screen

or validate studies on their properties, let alone prescribe effective restriction or

mitigation measures based on the results of environmental monitoring are hampered,

which may compromise their sound management.

122



The second key stakeholder concerned is the scientific research community; the

challenge of assigning structures to the unknown chemicals detected in

environmental samples is ever persistent, difficult, and overwhelming in scale given

there are so many of them. Not knowing the structures of these chemicals impedes

our mechanistic understanding of their potential effects on human health and

possible links to the onset of disease, not to mention their impacts on wildlife and the

environment as a whole.

Importantly, it is not that this knowledge of chemical structure is completely unknown.

In most cases, the producers of these chemicals likely know the structures of the

compounds they manufacture, or at least have some partial information, because

such knowledge is vital to their product development pipeline. For example, the

producers likely had to screen compounds based on potency in the initial stages of

product design, and then devise a synthesis route to achieve them. This situation

likely describes the cases of agrochemicals and pharmaceuticals in particular. In the

case of industrial chemicals, it is likely that at least the starting materials are known,

since they must be acquired for production, and knowledge of how they will react

together probably dictate how they can be manufactured at scale. It may be that

during product development, certain functional groups or substructures are

deliberately included or removed to optimise for desirable end-product properties.

Finally, knowledge of chemical structure when developing the scope of the patent

that would be eventually filed for the compound is likely important. Thus, it is not that

knowledge of chemical structures is non-existent; rather the issue is that systemic

legal and socioeconomic barriers to freely accessing this knowledge exist. Following

the current paradigm, generating knowledge of these structures has become to a

great extent the de facto occupation of contemporary environmental science

research.

Therefore, this dissertation attempts to address this lack of knowledge concerning the

chemical structures of substances in our environment. Its main contributions are

threefold. First, cutting-edge digital chemical resources were exploited within

computational workflows to enhance the identification of unknown compounds in the

environment. These workflows consisted of open software tools, chemical databases,

and environmental chemical lists that were integrated together within an analysis

pipeline to be deployed on environmental samples. In two separate collaborations
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with local regulators, surface water samples from Switzerland and Luxembourg that

were measured using LC-HRMS were analysed using these workflows as a means of

performing non-target and suspect screenings that eventually identified

pharmaceutical and industrial compounds. Notably, transformation products of

pharmaceuticals were incorporated into the suspect screening of the Luxembourgish

surface water samples, several of which were identified. This ability to screen for

transformation products based on information available in open chemical databases

and the literature was a result of advances in data mining that were developed in this

work.

Second, a significantly large class of substances that make up 20-40% of chemical

registries but whose chemical structures are ambiguous or unknown was critically

reviewed from the perspectives of risk assessment, cheminformatics, toxicology,

analytical chemistry and current regulatory practice. A first of its kind in terms of

breadth of scope, this review captured the interdisciplinary challenges that mark this

‘next frontier of environmental unknowns’, and proposed several main areas of

further research as well as some constructive solutions for their improved

management. With this, UVCBs are anticipated to attain a higher position on the

collective research agenda of the environmental chemistry community.

Finally, a cheminformatics algorithm, OngLai, was developed towards bridging

analytical detection with database identification of homologous series. OngLai was

successfully designed and openly implemented as a Python package built using the

open cheminformatics toolkit RDKIt. This algorithm, which classifies homologous

series within compound datasets, represents a step closer towards assigning

chemical structures to the numerous homologous compound signals detected in

environmental samples using LC-HRMS. Thus by uncovering their identities, OngLai

may play a role in reducing the number of environmental unknowns so that future

research can better prioritise relevant features for non-target analysis.

Continued efforts in compound identification, such as those presented in this

dissertation, are imperative for multiple reasons. For example, if they are to be

deliberately removed from the environment or converted into more benign

transformation products, understanding of chemical structure is foundational for

elucidating their reaction mechanisms, which is needed to inform wastewater
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treatment processes,110 or application of other remediation measures such as the use

of microbial degradation agents.111 Furthermore, as has been mentioned, the links of

chemical exposure to the onset of disease can be better understood on a

mechanistic level with available knowledge of chemical structure, which in turn could

pave the way for the development of successful therapies.

Additionally, if chemicals in the environment are to be managed effectively, the ability

to identify and quantify them during routine environmental monitoring is crucial, as

such information would determine the necessary mitigation measures, and the

effectiveness of their implementation over time. Especially considering that the

chemical industry’s pace of production far exceeds that at which they can be

assessed, the concept of chemical grouping is a plausible next approach, but one

that would require knowledge of chemical structure as a basis.112 All in all, knowledge

of chemical identities would boost various scientific and regulatory pursuits regarding

the safe management of chemicals.

The advent of Big Data, continuous development of cheminformatics toolkits, and use

of Machine Learning in further applications of AI-driven molecular informatics is

cause for further optimism in pursuing knowledge of chemical structures in the

context of environmental chemistry. The culture of data sharing is fundamentally

shifting towards being more progressive, structured, and open thanks to both

technical and non-technical factors: infrastructure improvements in chemical data

deposition and management,113 as well as enhanced open publishing policies

mandated by initiatives like Plan S.114 Multiple applications of machine learning to

chemical screening,65,115–117 as well as structure elucidation have been pursued;118 in

fact, as more data become available, it may even appear possible to circumvent

structure elucidation altogether in favour of directly predicting ecotoxicological

properties based on mass spectra.119

That said, it remains critical to ‘close the loop’ by connecting research outcomes to

policy and regulatory needs with respect to environmental chemical pollution. Thus, a

functional mechanism that can transfer empirical evidence and regulatory needs back

and forth between scientists and policymakers will be essential. At present, it has

been observed that the lack of a science-policy interface between these stakeholders

has contributed to ineffective policy initiatives and scientific endeavours that do not
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directly address immediate regulatory needs.120,121 Initiatives to found a science-policy

body in the form of an ‘Intergovernmental Panel on Climate Change for chemicals’ in

the hope of more concrete and concerted collaborative action are in progress.

Nevertheless, even if there were a panacea for solving the chemical identification

problem, the problem of chemical pollution would still persist, as society will likely

continue its patterns of consumption and emission. Thus, a fundamental paradigm

shift is likely needed to address the crisis of chemicals as a whole in the first place.3

Calls have been made to simply reduce the amount of chemicals used in products to

begin with within the context of defined essential use,122–124 which would make their

disposal and recycling more feasible within an ideal circular economy. Even more

ambitious is the push to make chemicals Safe and Sustainable by Design (SSbD), a

paradigm that considers the possible effects of a chemical as early as its conception.

There have been preliminary steps in this area,125 and the making of SSbD a

research priority, for example within the current European Partnership for the

Assessment of Risks from Chemicals126 in coming years promises further

developments towards this proactive approach.
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