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Meshfree injection molding

In this paper, we introduce a meshfree numerical framework using the Finite Pointset

Method (FPM) for the modeling and simulating of injection molding processes. When

compared to well established mesh based methods which have been widely applied for

these applications, our approach avoids the need to extensive pre-processing, and enables

accurate treatment of free surfaces and other associated phenomena. To accurately model

the polymer injections, we consider a detailed material model, with temperature dependent

viscosity and density, while also considering shear thinning behavior with a strain rate de-

pendent viscosity. Our numerical investigations show that injection molding-specific prob-

lems such as the modeling of viscous flows and the fountain flow effect can be successfully

implemented using our presented framework. For a thorough validation of our proposed

model, we compare the simulated flow behavior with injection molding experiments which

are also performed in this work. The experimental setup considers the injection of a poly-

mer melt into a spiral mold. The flow behavior is investigated experimentally at varying

melt injection and wall temperature, with different threshold pressures. Our numerical sim-

ulations show a good comparison with these experimental results, both qualitatively and

quantitatively. We also introduce a correction mechanism to ensure energy conservation,

which has often been challenging in meshfree approaches. This work is the first time that

the flow behavior in a mesh free injection molding method has been experimentally vali-

dated and successfully applied to the simulation of an actual industrial vehicle component.

a)Corresponding Author: lennart.veltmaat@volkswagen.de
b)Also at Fraunhofer Institute of Industrial Mathematics, Kaiserslautern, Germany
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I. INTRODUCTION

The simulation of injection molding processes is an important part of modern product devel-

opment. Simulation allows predictions of filling patterns, air traps, warpage, weld lines and fiber

orientations, among other physical phenomena involved. This calls for the need of robust and real-

istic simulation methods to model injection molding. As a result, a lot of recent work has been done

to investigate appropriate modeling and simulation methods for injection molding simulations1–4.

Most established approaches for this are focused on mesh based methods, including both finite-

element 2,5–7 and finite-volume-methods8–10. These methods are state of the art in modern com-

mercial solutions for injection molding, and they can solve most applications robustly. The quality

of the results as well as the computational efficiency however depend on the user-defined mesh.

This meshing process can prove to be very time-consuming due to the complex geometries repre-

senting the mold being filled. Furthermore, the modeling of free surfaces and associated phenom-

ena, such as the fountain flow effect, is only possible to a limited extent with mesh-based methods.

The prediction of fiber distributions and orientations with mesh-based methods also poses sev-

eral challenges, as the treatment of heterogeneous distributions is only possible indirectly. Since

mesh-based methods are typically limited to fixed Eulerian frameworks, the extra effort needed for

the convective terms of the fiber orientation models can make the already complex models quite

cumbersome.

To avoid these issues with simulating injection molding processes with mesh-based methods,

recent literature has explored the use of novel approaches that are free of a user-defined mesh.

Bertevas et al.11 used the meshfree smoothed particle hydrodynamics for the simulation of 3D-

printing of a polymer liquid. Among other widespread applications of SPH12,13, Fan et al.14

applied SPH to the modeling of simple injection molding scenarios. Another study by He et al.15

uses SPH to model injection molding flows with a novel formulation for fiber orientations in short

fiber reinforced polymers. Wu et al. have a closely related scope in16, using SPH for injection

molding and discrete element method for fiber orientation. These studies have shown the gen-

eral applicability of meshless methods to injection molding by enabling a realistic modeling of

flow patterns. This preliminary work has also been extended by several authors to consider more

sophisticated models for injection molding. Xu and Yu17,18 also include the consideration of pres-

sure and temperature distributions. Recently, Ren et al.3 have used an improved SPH method to

simulate simple injection molding cavities, showing good agreement to the commercial injection
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molding software Moldflow. Put together, these studies have illustrated that the conventional ad-

vantages of SPH also carry over to the present case. Most important is the ease of handling of free

surface flow, and the accuracy due to the Lagrangian interpretation of convective terms.

Several challenges in SPH also carry over to the present application. Most important among

these is the difficulty in handling complex boundary conditions. The instability of SPH meth-

ods at high injection pressures also requires special treatment. These persistent challenges may

be a reason that only simplified flow simulations have been published to date. To the authors’

knowledge no meshfree simulations of injection molding processes have been done that consider

a fully coupled material, having shear rate and temperature depended viscosity, density, and heat

capacity with latent heat and thermal conductivity also considered. The aim of the present work

is to develop a meshfree simulation framework that can accurately model these complex material

properties.

To avoid the aforementioned challenges inherent in the SPH formulation, we shall use an al-

ternative mesh free method, called the finite pointset method (FPM). First proposed by Kuhnert19,

FPM has the same advantages as SPH regarding free surface flows but enables a direct handling of

boundary conditions due its collocation nature based on the generalized finite difference method

(GFDM). This method has been successfully used in numerous applications like water crossing

of vehicles20, soil mechanics21 and solution mining22. Reséndiz-Flores et al.23 applied FPM to

the modeling of mould filling processes for metal casting. This study is closely related to injec-

tion molding and has proven the general applicability of FPM to this field. However, the shear

thinning behavior and thermal effects relevant in injection molding has not yet been considered by

Reséndiz-Flores et al.23.

Other mesh free approaches, e.g. the particle finite element method (PFEM) have also been

developed, showing promising results in applications like mould filling in metal casting, glass

forming and melting of polymers24–26. However, to the authors knowledge, no PFEM application

to injection molding has been published. Unlike methods like PFEM, the meshfree FPM used here

is a purely meshfree method, without the need of a background grid.

In this work, we present a meshfree approach based on the FPM, to accurately model injection

molding processes. Due to their high relevance, all characteristic material properties will be con-

sidered in a thermal coupled model. The novelty of the present work lies in both the numerical

framework used and the complexity of the material models in a mesh free approach for injec-

tion molding. The developed numerical framework will be evaluated against reference models.
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In addition, extensive experimental studies are carried out, on the basis of which the simulated

flow behavior is evaluated as a function of temperature and the material used. In most previous

studies on mesh-free injection molding simulations, no experimental data were used to validate

the method.3,14,15 Only Xu and Yu17,18 used experimentally observed flow patterns to validate

their method. However, simplified material models for the polymer were used in their studies.

Therefore, to the authors’ knowledge, this is the first time that the flow behavior of a mesh free

injection molding method using a complex material model is experimentally validated beyond the

flow pattern. Furthermore, aforementioned meshfree methods have only been applied to simpli-

fied geometries. No filling processes of industrially relevant components could be simulated with

mesh-free methods so far. In the present study, the FPM method is applied to the filling process of

a current vehicle component.

II. INJECTION MOLDING

Injection molding is the most important primary molding process in the production of plastic

components, and the most commonly used continuous process for the fully automated production

of mass-produced plastic components at low costs. It offers an enormous freedom of design and

allows the production of one or more complex shapes and contours in a single step with very short

cycle times.

With an estimated global market of $265.1 billion (2020) and an estimated average annual

growth rate of 4.6% through 2028, demand for plastic components produced by injection molding

is expected to grow steadily27. At the same time, the use of glass fiber reinforced plastics for

injection molding will play an even greater role in the future27.

The injection molding process is divided into four phases28: dosing and plasticizing, injection,

packing and cooling, and demolding. In the first step, the plastic, which is usually in granular form,

is fed through a hopper into the rotating screw of the injection molding machine and conveyed

toward the tip of the screw. There, the granulate is plasticized into a homogeneous melt by heating

with the aid of heating elements and the heat generated by the shearing occurring in the screw.

In the injection phase, the compressed polymer melt is injected into the mold by opening the

nozzle while the screw is moving forward translationally.The melt then cools down in the mold

and solidifies. In the final molding step, the mold is opened and the finished component can be

removed. In the present work, we focus on the simulation of the injection phase of the injection
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molding process, as this is the processing step with the greatest need for simulation. This process

step takes only a few seconds in the vast majority of industrial applications. Thus, it is assumed,

that the heating of the steel tool only occurs to a small extend. As a result, cooling channels are

not considered in the models used in the present work, since they are not expected to significantly

affect the flow behavior.

In order to make a prediction about the melt behavior in the cavity during an injection molding

process, injection molding simulations are applied in practice. They allow predictions of filling

patterns, air traps, warpage, weld lines and fiber orientations, among other attributes of the process.

In this way, the gate positions, cooling channel dimensions, wall thicknesses or temperature control

parameters can be determined before the first mold prototypes are produced29.

The injection molding process involves several complex physical processes combined with

complex material properties of the polymer melt. These two things pose a challenge in the mod-

eling and simulation of injection molding processes. In order to realistically simulate the melt

behavior, knowledge of the material parameters that determine the flow behavior of the melt, like

the viscosity, the specific heat capacity and the thermal conductivity are necessary. Among other

physical phenomena, the effect of shear thinning, which describes the dependency of viscosity

on shear rate is highly important. In this context, an important challenge in simulations is the

representation of the nonlinear dependence of the material parameters on pressure and tempera-

ture in the material models used. On the other hand, the shear thinning behavior is the basis for

using high injection pressures which in turn lead to high shear rates in order to fill even complex

cavities with fine structures within seconds. In addition to the complex material behavior, there

are process-related challenges such as phase change, crystallization, rapid cooling rates and time-

varying boundary conditions which represent a further challenge in the simulation process29,30. In

the present work, we present a model that takes all these complexities into account.

III. MATHEMATICAL MODEL

In this section, we describe the basic fluid flow equations and boundary conditions used to

model the injection molding processes, and the required extensions to accurately capture the flow-

ing polymer melts. We also explain the closure relation for the specific volume, and the viscosity

model to capture the shear thinning behavior.
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A. Conservation Equations

The basic governing equations are the standard conservation equations of mass, momentum

and energy, written in a Lagrangian formulation.

dρ

dt
=−ρ ·∇Tv, (1)

dv
dt

=
1
ρ
· (∇TS)T− 1

ρ
·∇p+g,

(ρ · cv) ·
dT
dt

= ∇
T(S ·v)− (ρ · cv) ·∇Tv− p ·∇Tv+∇

T(λ ·∇T ),

with density ρ , velocity v ∈ R3, stress tensor S ∈ R3x3, pressure p, gravity and other body forces

g ∈ R3, total energy E, heat capacity cv, temperature T and heat conductivity λ . The material

derivative are given by d
dt =

∂

∂ t +vT∇. Furthermore, ∇ = ( ∂

∂x ,
∂

∂y ,
∂

∂ z)
T is the gradient operator, and

∇T represents the divergence operator. The stress tensor is defined by

S = η ·
(

∇vT +(∇vT)T− 2
3
·
(
∇

Tv
)
· I
)
. (2)

B. State Equations

Since polymer melts have a highly variable density, which depends in particular on pressure

and temperature, it is necessary to model these relationships for an injection molding simulation.

Therefore, in this study, the 2-domain-Tait-pvt-Equation31 is used to model the density. In this

model, the phase transition is represented by a separation into the liquid and solid state. It has

been shown that the density of polymers can be well approximated with this model32,33. The basic

equation of this model for the specific volume v = 1
ρ

is

v(T, p) = v0(T ) ·
[

1−0.0894 · ln
(

1+
p

B(T )

)]
+ vt(T, p). (3)

where p is the pressure and the remaining factors are evaluated by

v0(T ) =

bs
1 +bs

2 · (T −b5) for T ≤ TS

bm
1 +bm

2 · (T −b5) for T > TS.
(4)

B(T ) =

bs
3 · e[−bs

4·(T−b5)] for T ≤ TS

bm
3 · e[−bm

4 ·(T−b5)] for T > TS

(5)
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vt(T, p) =

b7 · eb8·(t−b5)−b9·p for T ≤ TS

0 for T > TS

(6)

The parameters bs
1,b

m
1 ,b

s
2,b

m
2 ,b

s
3,b

m
3 ,b

s
4,b

m
4 ,b5,b6,b7,b8 and b9 are used to model the properties

of a particular material. Thus, these equations form a coupling of the density of the fluid to the

temperature and the acting pressure. The values of these parameters for the materials considered

in the present work, which can be determined using a density gradient column, are summarized in

Table IV in Appendix A.

C. Viscosity

To model the flow behavior of a polymer, it is essential to model the viscosity correctly. As with

a large number of materials, the viscosity of a polymer melt depends on the temperature. A higher

temperature causes a decrease in viscosity. In experiments, this variation is typically measured

in high pressure capillary rheometers. A characteristic property of polymer melts that must be

modeled is the shear thinning behavior. This can be described with a strain rate dependence of

the viscosity, where the viscosity decreases as the strain rate γ̇ increases. Note that we have

γ̇ =
√

1
2 γ̇ : γ̇ where γ̇ = ∇vT +(∇vT)T.

In this work, the Cross-WLF-Model is used for the viscosity34 A variety of models have been

developed to represent the viscosity behavior of a material, with the Cross-WLF-Model becoming

the most common for use in commercial injection molding simulation software. For this reason,

the Cross-WLF-Model, which represents the material behavior described above, is chosen in this

work:

η(γ̇,T ) =
η0(T )

1+(η0(T )·γ̇
τ∗ )(1−n)

, (7)

η0(T ) = D1 · exp
[
−A1 · (T −D2)

A2 +T −D2

]
. (8)

D1 is the viscosity at a reference temperature and n, τ∗ D2, A1, A2 are material parameters.

The values of these parameters for the materials considered in the present work are summarized in

Table V in Appedix A.
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D. Thermal Properties

The thermal properties, heat capacity and thermal conductivity, are given in tabular form as a

function of temperature. These values can be measured using differential scanning calorimetry.

The corresponding values for both materials in this study can be found in Appendix A. The

transition from liquid to solid state does not need special handling, as it is covered by the used

material models.

E. Boundary Conditions

One of the advantages of using the present discretization method over other meshfree methods

such as SPH is the ease of imposing a variety of boundary conditions directly. In particular, here,

the interaction between the polymer melt and the mold walls can be handled naturally, without any

extra effort. The boundary conditions used in this study are presented in the following.

For the velocity, a no slip boundary condition is used at the mold walls while a constant inflow

velocity is defined at the gate, representing a constant inflow volume flux of polymer melt. The

free surface boundary conditions for the velocity are given by a stress evaluation in the normal and

tangential directions35

tT
1 ·S ·n = 0 (9)

tT
2 ·S ·n = 0 (10)

nT ·S ·n = p− p0−σκ (11)

where t1 and t2 are orthonormal free boundary tangents, n is the outward pointing boundary

normal, p0 is the reference atmospheric pressure, σ is the surface tension, and κ is the boundary

curvature.

The pressure at the inflow gate and the mold wall is controlled by a homogenous Neumann

boundary condition

∂ p
∂n

= 0. (12)

The temperature at the inflow is assumed to be a constant value Tin jection. A Robin boundary

condition is imposed on the temperature field at the mold walls
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−λ · ∂T
∂n

= ξ · (T −Twall) (13)

where λ is the thermal conductivity of the material, Twall is the assumed mold temperature and

ξ is a proportionality coefficient for the convective heat flux. The value of this coefficient is set to

ξ = 5000 for this study, which is within the range found in the literature36. At the free surface, the

temperature is computed as the average of the surrounding points.

IV. NUMERICAL SCHEME

A coupled velocity-pressure scheme is used to solve the conservation equations. In following,

the time integration scheme is presented, followed by the developed approach for energy correc-

tion. Finally, the meshfree discretization procedure is explained.

A. Time Integration

The following description details the process of time integration from time level t(n) to t(n+1).

The time integration procedures starts with a Lagrangian update of particle positions with the

velocity using a second order method37.

x(n+1) = x(n)+v(n)+
1
2

v(n)−v(n−1)

∆t0
·∆t2 (14)

where the current time step is given by ∆t = t(n+1)− t(n) and the previous time step value is

∆t0 = t(n)− t(n−1).

The temperature is solved by a semi-implicit time integration. To simplify notation, the indices

of the point cloud are omitted below. The discrete temperature system is given by

(IT +DT ) ·T (n+1) = (ρ(n) · c(n)v ) ·T (n)+ fT , (15)

where

IT = ρ
(n) · c(n)v · I, (16)

DT =−∆t · ∇̃T
(

λ
(n) · ∇̃

)
,

fT = ∆t ·
(

∇̃
T
(

S(n) ·v(n)
)
−
(

∇̃
TS(n)

)
·v(n)− p(n) · ∇̃Tv(n)

)
.
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Here, ∇̃ denotes the discrete differential operators for the gradient, which are explained in Sec-

tion IV D. The above linear system is solved for the unknowns T (n+1). All sparse implicit linear

systems, including the ones appearing below, are solved with a BiCGSTAB iterative solver38.

Having determined the new temperature field T (n+1), the physical properties ρ(n+1), η(n+1),

λ (n+1) and c(n+1)
v are updated using the definitions in Sect. III and Appendix A.

The pressure field is split into hydrostatic and dynamic components20,39, which are considered

separately:

p = phyd + pdyn. (17)

No body forces are taken into account in the present application of injection molding. For the

test cases with no gravity, we have phyd = 0. When gravity effects are also included, we first

update the hydrostatic pressure by

∇̃
T
(

1
ρ(n+1)

· ∇̃p(n+1)
hyd

)
= ∇̃

Tg. (18)

Note that the hydrostatic pressure does not depend on the velocity, and thus p(n+1)
hyd can be

computed without the knowledge of the updated velocity v(n+1).

The velocity and dynamic pressure are computed using a coupled projection approach20,39. For

this, a pressure guess will be used

p̂ = p(n+1)
hyd + p(n)dyn. (19)

The coupled system is then solved by a penalty formulation39,40. The divergence of velocity

∇̃Tv(n+1) is used by solving the first equation in equation (1). The discrete system of equations

from equation (1) is built up, which is then solved for the unknown correction pressure p(n+1)
corr and

intermediate velocity v̂(n+1):

(
I− ∆t

ρ(n+1)
· ψ̃(n+1)

η̂(n+1)

)
· v̂(n+1)+

∆t
ρ(n+1)

· ∇̃p(n+1)
corr = v(n)− ∆t

ρ(n+1)
· ∇̃p̂+∆t ·g,

∇̃
T
(

∆tvirt

ρ(n+1)
· ∇̃p(n+1)

corr

)
= ∇̃

Tv̂(n+1)− ∇̃
Tv(n+1) ,
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with

(ψ̃
(n+1)
η̂(n+1))

T =∇̃
T(η̂(n+1) · ∇̃) · (v̂(n+1))T +(∇̃η̂

(n+1))T · (∇̃(v̂(n+1))T)T

+
η̂(n+1)

3
· (∇̃(∇̃Tv̂(n+1)))T− 2

3
· (∇̃Tv̂(n+1)) · (∇̃η̂

(n+1))T ,

and ∆tvirt = Avirt ·∆t, 0 ≤ Avirt ≤ 1. The characteristics of the system of equations depend on

Avirt. Avirt = 0 would give the exact solution, however, this value is not used because the resultant

linear system would then be ill-conditioned. With 0.001≤ Avirt ≤ 0.1 a good balance can be found

here40.

Finally, the velocity and dynamic pressure are updated by

v(n+1) = v̂(n+1)− ∆tvirt

ρ(n+1)
· ∇̃p(n+1)

corr , (20)

p(n+1)
dyn = p(n)dyn + p(n+1)

corr .

For more details, and numerical verification and validation of the overall time integration proce-

dure, we refer the reader to our earlier work20,21,35,40–43.

B. Energy Conservation

Since thermal effects play a major role in injection molding, it is essential to model the energy

correctly in injection molding simulations. However, meshfree methods often require extra work

to ensure conservative behavior35,44,45. Due to their inherent local nature, without a global mesh to

balance fluxes, locally accurate discretizations can still lead to globally unconservative behavior.

This holds true for not just the GFDM / FPM approach used in the present work, but also for other

meshfree approaches such as SPH. To maintain a global energy balance in the discrete system,

we introduce a correction mechanism described below. We start by the considering the global or

integral form of the energy balance equation

d
dt

∫
Ω

ρ · cv ·T =−
∫

δΩ

(ρ · cv ·T ) · (vT ·n)+
∫

δΩ

λ · ((∇T )Tn)+
∫

δΩ

p(vTn)−∆E, (21)

where Ω is the computational domain with boundary δΩ. The stress tensor term is not included

here, since it is assumed that this has a subordinate role for the energy balance in injection molding.

In the above equation ∆E is the missing energy in the injection molding system. This fraction

represents the error that occurs during the numerical discretization. Therefore, the goal of the
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energy correction process used here is to bring ∆E to zero. For this purpose, a heat source Q is

introduced, which supplies the missing energy to the point cloud via a weighting function χ . To

increase numerical stability, this energy is to be entered into the system over five time steps. We

then get the following heat source

Q =
1

5∆t
∆E · χ∫

Ω
χ
. (22)

The weighting function used here is defined as

χ =

0 for T ≥ Tin jection

(T −Tin jection)
3 for T < Tin jection

(23)

As we shall show in section VI D, this procedure helps in ensuring energy conservative behavior

of the numerical results.

C. Domain Discretization

We now explain the meshfree domain discretization procedure. The computational domain is

discretized with a cloud of points, or a point cloud, consisting of N = N(t) points. This includes

points in the interior of the domain, and on the boundary of the domain. Unlike particle-based

meshfree methods like SPH, here points are not mass-carrying particles. They are simply collo-

cation nodes, or locations where approximations are carried out. For every point i = 1,2, . . . ,N,

all numerical computations are performed on a set of nearby points, referred to as the support

or neighborhood of point i. This neighborhood is determined by the closest points of i, Si =

{x j|‖x j−xi‖ ≤ hi}. Here, hi = h(xi, t) is the smoothing length or interaction radius, which gov-

erns both the inter-point distance and the size of the neighborhood35.

The point cloud is irregularly spaced, and there is no underlying mesh or grid that connects

the points. The only connectivity present is the neighborhoods defined above, which can change

as the points move in a Lagrangian fashion. While points are irregularly spaced, we maintain a

quasi-regularity of points, by ensuring that two points do not come closer than a fixed multiple of

h, here rminh, and that there are no holes in the domain of size rmaxh where points are missing35.
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D. Spatial derivatives

All discrete derivatives are computed using a meshfree Generalized Finite Different Method

(GFDM)46. The GFDM is a collocation method that generalizes classical finite differences to

arbitrarily spaced point clouds. Consider a function u defined at each point i on the computational

domain. The derivatives of u at a point xi are given by

∇u(xi)≈ ∇̃iu =


∑ j∈Si cx

i ju j

∑ j∈Si cy
i ju j

∑ j∈Si cz
i ju j

 , (24)

∆u(xi)≈ ∆̃iu = ∑
j∈Si

c∆
i ju j , (25)

where the ∼ denotes the corresponding numerical differential operator. The coefficients ci j are

determined using a least squares approach. First, we ensure that a certain set of test functions are

differentiated exactly. Here, we consider monomial function, upto a desired order. The resultant

under-determined linear system is solved using a weighted norm minimization. Consider, for

example, the computation of the discrete Laplacian operator. We get

∑
j∈Si

c∆
i jm j = ∆m(xi) , ∀m ∈Mp , (26)

min ∑
j∈Si

(
c∆

i j

Wi j

)2

, (27)

where Mp is the set of test functions. Here, we use monomials up to the order p = 2. The

weighting function W ensures that points closer to the center point i have a larger influence on

the derivative computation than points further away. Here, we consider a truncated Gaussian

weighting function, which has widely been used in GFDMs

Wi j = exp

(
−α
‖xi−x j‖2

h2
i +h2

j

)
, (28)

for a positive constant α chosen in the range of (2,6). We refer the reader to to45,47,48 for more

details on derivative computation with GFDMs, and to49–52 for examples on how GFDMs can be

applied.
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FIG. 1. Mold geometry used in the injection molding experiments

V. EXPERIMENTAL MEASUREMENTS

For a thorough validation of our model and simulations, we also perform injection molding

experiments. The design of these experiments is described in this section.

The used mold geometry for the experiments is shown in figure 1. The melt is injected into the

spiral mold at the center, through the shown sprue. The sprue has a conical shape with an upper

diameter of 6.7mm and a lower diameter of 8.7mm. The rectangular spiral cavity has a width of

5mm and a height of 2mm. The maximum flow length is 1220mm.

We use the experiments for both a quantitative and a qualitative validation of our simulations.

The primary measurements conducted in the experiments is the maximum flow path lengths at

prescribed injection pressures. As shown in figure 1, the cavity has flow path length markings at

10mm intervals. This allows the length of the fabricated spiral to be measured.

In this study, the experiments are carried out for two materials. Both materials are short glass

fiber reinforced polypropylene, with a different mass fractions of glass fiber, one with 25%, and
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p
max

 = 400bar p
max

 = 600bar p
max

 = 800bar

FIG. 2. Molded spirals from experiments for three maximum pressure values

the other with 30%. In the remainder of the text, these materials will be referred to as PPGF25

and PPGF30, where the PPGF stands for polypropylene glass fiber. PPGF25 has a melt flow rate

of 15 g
cm3 and PPGF30 of 4 g

cm3 according to ISO 1133. Consequently, the PPGF25 has a higher

flowability. We note there that these materials are also often used in industrial injection molding

processes, including in the glove box door test case considered in section VI E.

The injection molding process is carried out with a constant volume flow. Due to the viscous

character of the polymer melt as well as the progressive cooling of the melt, a steadily increasing

injection pressure can be observed as the flow length in the mold increases. When a defined

threshold pressure is reached, the injection process is stopped. After cooling and ejection of the

fabricated sample, its length is determined.

The spiral flow test is performed at varying injection parameters. For all settings examined,

three threshold injection pressures are considered. These are p1 = 400bar, p2 = 600bar and

p3 = 800bar. The injection process is controlled by a constant inflow velocity, which results in

a volume flow of vvol = 1E − 5m3

s . The inflow is stopped once the threshold pressure has been

reached.

The two other parameters of the experiment varied are the injection temperature and the wall
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FIG. 3. Results of spiral flow experiments for both materials

temperature of the injection molding tool. These are controlled by the heating elements on the

screw and the coolant flow through the mold. In the entire series of tests, the maximum difference

between the inflow and outflow temperature of the coolant is 0.5◦C. It is therefore assumed that

the influence of the cooling channels on the injection process can be neglected and it has not been

taken into account in the simulations.

The different cases considered are shown in table I. These cases represent the range of rec-

ommended processing temperatures for the used materials. With the three threshold injection

pressures, this leads to a total of 27 different test cases, in each of which the measurements of

the flow lengths are carried out for each material: PPGF25 and PPGF30. To reduce the impact of

measurement errors, each experiment is repeated 5 times.

In figure 2, three molded spirals are shown. Each using a different maximum pressure. It can

be seen how the spiral length increases with higher pressure. The markings on the geometry allow

the length to be measured exactly.

The results of the performed experiments are shown in figure 3. This figure displays the av-

erage flow length for each parameter configuration across the 5 repetitions. It can be seen, as

expected, that with rising injection pressure the flow length increases in each configuration of

temperatures. Furthermore, keeping either the wall or the injection temperature fixed, increasing
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the other temperature parameter leads to longer flow paths. The effect of injection temperature is

more dominant than the variation of wall temperatures. One significant difference in between the

two materials is the nonlinear dependency on the injection temperature for PPGF30.

VI. NUMERICAL RESULTS

This section discusses the numerical results using the model and discretization method pre-

sented above. Before making comparisons with experimental results, we start by examining sim-

plified models.The simplified test cases in sections VI A and VI B are not directly related to injec-

tion molding applications. However, they are used for the initial validation of the method presented

here. The numerical stability and suitability of the method for viscous flow problems is illustrated.

A. Poiseuille Flow

As a basic test, the meshfree FPM discretization method as discussed in Section IV is applied

to the case of two-dimensional Poiseuille flow, with constant density ρ and viscosity η . This test

case is characterized by an initially steady liquid between two fixed walls. The fluid is accelerated

by a constant body force F . The analytical solution for this problem can be expressed by the series

solution53

v(y, t) =
F

2 ·ν
· y · (y−Ly)+

∞

∑
n=0

4 ·F ·L2
y

ν ·π3 · (2 ·n+1)3 sin

(
π · y
Ly
· (2 ·n+1) · e

− (2·n+1)2·π2·ν
L2y · t

)
, (29)

TABLE I. Injection and wall temperatures for spiral flow experiments

Test Nb. Injection Temperature (°C) Wall Temperature (°C)

1 230 20

2 230 40

3 230 60

4 250 20

5 250 40

6 250 60

7 270 20

8 270 40

9 270 60
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FIG. 4. Results of Poiseuille Flow simulation using FPM compared to analytical results. The vertical axes

"Position" refers to the y coordinate of the location. The red crosses represent different locations along the

x and z axis for a particular y coordinate

where v(y, t) is the velocity, 0 ≤ y ≤ Ly the vertical position, t the time and ν = η

ρ
the kinematic

viscosity. The FPM simulation result is compared against this analytical solution. The considered

domain is a cuboid of size


Lx

Ly

Lz

=


0.5mm

1mm

0.5mm

 , (30)

which is discretized with a number of N ≈ 2000 numerical points using a smoothing length of

h = 0.3mm. FPM points can pass through the boundaries at x = 0 and x = Lx. They are created

at the inflow boundary and deleted at the outflow. The example can therefore be understood as

a section of a channel through which flow occurs. The time step is set to ∆t = 1E − 3s. Figure

4 displays these result using the parameters shown in table II. It can be seen that the FPM result

is in good agreement with the analytical solution. There is a small scatter within the point cloud,

so that fluctuating differences to the analytical solution are present. The average difference for all

evaluated time points is < 7%.

For a further verification and validation, including convergence studies, of the FPM discretiza-

tion and time integration schemes, we refer to our earlier work20,21,39,41.
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FIG. 5. Jet Injection filling patterns for three different viscosity values

B. Jet Injection

Since the injection molding process of polymers is dominated by their viscosity, the ability of

FPM with regard to viscous effects must be investigated. Therefore, a jet injection process with

TABLE II. Parameters for Poiseuille flow simulations. Ly is the length of the channel in the direction of the

flow, ν is the kinematic viscosity, F is the external force and ρ is the fixed density.

Ly 0.001m

ν 1E-6 m2

s

F 1E-4 m
s2

ρ 1000 kg
m3
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different fluids is considered. The domain under consideration consists of a cube with a volume of

V = 0.001m3, on the top of which a circular injection boundary with a diameter of D = 0.01m is

present. The inflow velocity is kept fixed at vin = 1m
s , while the fluid with a density of ρ = 1000 kg

m3

also experiences gravity in vertical direction. A constant viscosity is used in each simulation

considered, with the value varied between simulations in order to examine the effect of viscosity

in this scenario.

In figure 5 the inflow patterns of three different viscosity values considered is shown in a side

view. It is evident that the viscosity has a significant influence on the flow behavior in this scenario.

In54 a theoretical approach for the prediction of buckling of a planar jet has been provided. In this

theory, two conditions are given for the occurring of buckling:

Re < 0.56 and
H
D

> 3π, (31)

where Re is the Reynolds number based on the inflow width D and H is the distance between the

inflow and bottom surface. In the tested scenario, the second criteria is met, since H
D = 10 > 3π .

The first criteria however depends on the viscosity of the fluid. The corresponding Reynolds

numbers for the various viscosities considered are shown in table III. It can be seen that the

theoretical limit according to equation 31 can be confirmed with the FPM simulations, as buckling

only occurs for the fluid having Re = 0.4 < 0.56. Although the used theory is only valid for planar

jets, this confirms the ability of FPM to simulate viscous effects robustly.

C. Modeling of fountain flow effect

A major disadvantage of mesh-based methods is that the movement of the melt near the free

surface, especially the so called fountain flow effect, can only be modeled by special treatments55.

In56 SPH has been used to simulate the fountain flow effect in a simplified test case. In3 a two

TABLE III. Reynolds Numbers for the tested viscosity values in jet injection model

Viscosity (Pa · s) Re

0.001 10000

10 1

25 0.4
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FIG. 6. Visualization of the fountain flow effect in FPM. For the ease of visualization, a larger point size is

used for all points passing through the light blue line on the left

dimensional channel flow has been modeled using SPH, showing its abilities to model the fountain

flow effect automatically. However, the effect has not been shown using a complex material model

having temperature dependence in three dimensional models. Therefore, in this study the ability

of FPM for modeling the fountain flow effect is evaluated. Flow of polymer melt through a long

thin channel, as shown in figure 6 is considered. A constant inflow velocity of vin = 0.1m
s is used

at the inflow, on the left side as visualized by figure 6. The injection temperature is kept fixed at

Tin jection = 245◦C, while the wall temperature is fixed at Twall = 40◦C. In this simulation no gravity

is present. All material model and boundary conditions applied are as described in section III. For

this case, the PPGF25 material is used, for which material parameters are given in Appendix A.

In order to visualize the fountain flow effect, in figure 6 the size of all points passing through

the blue line is increased. It can be seen how these points travel steadily towards the free surface.

Here, they start moving to the outer walls, creating the typical flow pattern described as fountain

flow.
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D. Injection Molding Flow of Spiral Mold

In order to validate the flow behavior of the simulated polymer melt, injection in a spiral mold

is considered to match our experimental setup used in section V. The primary quantity used for

comparing numerical results and experiments is the flow path length as described in section V.

Other relevant aspects for a further quantitative and qualitative comparison will also be investi-

gated. No gravity is applied in these models and material parameters can be found in appendix

A.

In meshfree collocation methods like FPM and GFDM, conservation of mass and energy can

often by troublesome, and must be investigated during the validation of simulations. Figure 7

shows the mass balance of the simulated system, comparing the theoretical mass contained in

the system to the numerical mass. According to the characteristics of an injection process, the

mass in the system increases linearly over time. The figure shows that the theoretical inflow mass

and measured mass in the system lie on top of each other. Thus, the simulation satisfies the

conservation of mass.

Figure 8 shows the balance of energy in the system. The sum of the actual energy and the

energy dissipated over the edges is nearly identical to the calculated energy flowing into the sys-

tem. Thereby it can be shown that the methodology used for energy correction introduced in

section IV B ensures the conservation of energy in the system.

For the assessment of the flow path length, the simulation results are evaluated when a defined

injection pressure is reached. Figure 9 shows the pressure distribution in the spiral when the
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FIG. 9. Pressure field at a maximum injection pressure of 800bar for the spiral mold test case

maximum pressure of 800bar is reached. It can be seen that the pressure decreases with increasing

distance from the inflow boundary, until a pressure of p ≈ 0bar prevails on the free surface. The

drop in pressure is continuous and thus corresponds to the theoretical expectation.

In figure 10, the increase of injection pressure over the filling time is displayed. It can be

seen how the injection pressure initially rises only slightly and after a certain point increases

significantly faster. This bend point in the curves corresponds to the transition from the sprue

area to the narrower spiral. In order to evaluate the curves, the results of the commercial injection

molding software CADMOULD are shown besides. Both results are very close to each other, so

that the robustness of the method presented here is evident.
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FIG. 11. Temperature field at a maximum injection pressure of 800bar for the spiral mold test case. a) top

view on boundary b) cut view at half thickness

As thermal effects are of high relevance for injection molding, the simulated temperature field

is evaluated in figure 11. The simulated process has an injection temperature of Tin jection = 250◦C

and a wall temperature of Twall = 40◦C. It can be seen that the interior temperature in the spiral

is constant. Towards the outer surface however, there are significant differences. The cold wall

leads to a rapid temperature decrease as the melt touches the surface. Since the melt sticks to the

surface, the shear velocity increases in adjacent layers. Due to the highly viscous polymer melt,

this shear rate causes viscous energy dissipation which leads to an increase in temperature.

For a quantitative validation of the simulations, we now compare the flow path lengths from

simulations to measured experimental ones. In figure 12, flow path lengths evaluated by the simu-
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lations are shown. By comparing these results to the experimental measurements, shown in figure

3, it becomes evident that the FPM simulations have a high agreement with the experiments. Just

as observed in the experiments, increasing the injection pressure increases the flow path length in

every temperature configuration. The effect of both the injection and wall temperature are pre-

dicted correctly, with the injection temperature playing a larger role in the flow path length than

the wall temperature, as also observed in the experiments. For better quantitative comparison be-

tween simulation and experiment, the relative difference is evaluated. This value indicating the

percentage deviation is given as

∆lrel =
lExperiment− lFPM

lExperiment
·100%. (32)

Figure 12 shows the relative difference for all configurations. The maximum relative difference

between the simulated flow path length and the experimental one is 6.74% for PPGF25. For

PPGF30, the maximum relative difference is 20.4%. This maximum value occurs at a injection

temperature of Tin = 270◦C, while maximum difference for lower injection temperatures is 9.4%.

Accordingly, the nonlinear temperature dependence of the flow path is not ideally represented

for this material. Nevertheless, it can be concluded that the flow behavior can be calculated for

different materials and that the coupling to thermal effects is successful.

The simulation of the spiral mold case was performed on 96 cores, resulting in a computation

time of 8 hours. At the maximum flow length, the model used N ≈ 1.8E5 numerical points

E. Glove Box Door

The previously examined test cases show the fundamental suitability of the presented method

for the simulation of injection molding processes. We now show that the presented numerical

framework can also be used for complex industrially relevant geometries.

In this test case, FPM is used to simulate the filling process of a glove box door of a cur-

rent vehicle. The mold has a volume of v ≈ 4E − 4m3 and with external dimensions of approx.

380mm× 250mm. This component is manufactured in a cascade gate, which means that the two

existing injection points are time-controlled, so that no weld lines occur. The gate locations are in

the top area of the geometry and can be easily identified in figure 13 1). In accordance with the

real process, an injection time of 2.7s, an injection temperature of 260◦C and a wall temperature

of 50◦C is chosen. The material used is PPGF25. Parameters can be found in appendix A. It is
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FIG. 12. Results of FPM simulations of the spiral flow for both materials. Bottom pictures are showing the

relative difference in flow length compared to experimental results

assumed that the influence of gravity can be neglected for this process, so that no gravity is set in

the simulations.

Figure 13 displays the filling patterns simulated by FPM. It can be seen that the cascade gate

can be modeled successfully. The movement of the melt front is realistic. As a result, all features

of the geometry such as rib reinforcements are completely filled. Thus, the applicability of the

method for the injection molding simulation can also be confirmed here.

For a more in-depth evaluation, the FPM simulation is compared with results from the commer-
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cial software CADMOULD. This software represents a state of art method for injection molding in

indutrial applications. In figure 14 the filling pattern using CADMOULD is shown. The computed

temperature differs significantly between both methods. This is due to different thermal bound-

ary conditions at the mold walls. Over all pictures, the comparison of the flow patterns however

show only small differences between both methods. Thus, the applicability of the method for the

injection molding simulation can also be confirmed here.

The thin-walled structure of this component requires a fine resolution of the point cloud. Un-

like mesh based methods, anisotropic domain discretizations are not easily possible in mesh free

methods. Thus, the fine resolution required to resolve the thin region must also be used in the

tangential direction, despite the much larger length scale there. This is a drawback of not just the

meshfree FPM used here, but of all meshfree methods. A smoothing length of h = 2mm is chosen

that results in N ≈ 1.7E6 points present when the cavity is filled completely. This increases the

computing effort, which leads to a computing time of 90 hours with a parallelization on 280 cores.

This aspect is a disadvantage compared to the established mesh-based methods.

VII. CONCLUSIONS

In this work, the meshfree Finite Pointset Method (FPM), which uses the generalized finite

difference method (GFDM), has been applied to simulate injection molding processes.

A complex material model was implemented for comparison with real injection molding pro-

cesses. This takes into account the compressible behavior based on a 2-domain Tait-pvt model, as

well as the shear thinning behavior using the Cross-WLF model for viscosity. Furthermore, the

temperature dependence of viscosity, density, heat capacity and thermal conductivity is consid-

ered. Compared to previous work, this is the most comprehensive depiction of polymer material

behavior with a mesh free method and is comparable with commercial mesh-based methods.

Due to the thermal coupling, the energy balance is of high relevance in this application. There-

fore, an approach to correct the energy in the system was developed and validated.

An experimental basis for the evaluation of the FPM simulations was created with flow spiral

tests. A spiral cavity was filled with two materials at variable melt and wall temperatures. The

comparison of the flow paths covered at defined pressure values shows that the FPM simulations

have reasonable agreement with the tests carried out. It could be proven that the non-Newtonian

flow behavior can be simulated taking into account the influence of temperature. The material
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FIG. 13. Filling pattern of injection molding process for glove box door

models considered allow various different materials to be modeled.

Finally, the method was used to simulate the filling process of a glove box door, using a ge-

ometry actually used in the automotive industry. A peculiar feature of the process is that the two

injection points are opened in a cascade. The realistic pattern image shows the suitability of the

method for the simulation of industrial injection molding processes. However, this is accompanied

by a relatively high computational effort in large part due to the lack of an anisotropic discretiza-

tion. In future work, this aspect should be further optimized.

The used method has starting points to compute engineering-relevant aspects such as the local-

ization of weld lines and air pockets. In addition, the simulation of the phase transition to calculate

shrinkage and warpage would be an important step towards a fully functional mesh-free injection

molding tool.
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FIG. 14. Filling pattern of injection molding process for glove box door using commercial code CAD-
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Appendix A: Material Parameters

The material parameters used in section VI for PPGF25 and PPGF30 are presented in tables IV

- IX. While the viscosity and density are modelled by analytical functions, the heat capacity and

thermal conductivity are given as tables depending on the temperature.

TABLE IV. 2-Domain-Tait Parameters

Parameter PPGF25 PPGF30

bs
1 ( m3

kg ) 0.000979 0.0009159

bm
1 ( m3

kg ) 0.00103 0.001003

bs
2 ( m3

kg·K ) 4.93E-7 3.28E-7

bm
2 ( m3

kg·K ) 6.76E-7 7.678E-7

bs
3 (Pa) 1.46E8 2.177553E8

bm
3 (Pa) 9.83E7 1.03095E8

bs
4 ( 1

K ) 0.00509 0.00437

bm
4 ( 1

K ) 0.005 0.006285

b5 (K) 430.0 433.15

b6 ( K
Pa ) 8.5E-8 1.105E-7

b7 ( m3

kg ) 5.1E-5 8.722E-5

b8 ( 1
K ) 0.156 0.1242

b9 ( 1
Pa ) 1.84E-8 1.746E-8
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TABLE V. Cross-WLF Parameters

Parameter PPGF25 PPGF30

A1 (-) 26.264 32.271

A2 (K) 51.6 51.6

D1 (Pa · s) 1.5E12 2.5E14

D2 (K) 263.15 263.15

n (-) 0.4069 0.345

τ∗ (Pa) 11204.9 17000.5

TABLE VI. PPGF25 heat capacity cv

Temperature (◦C) cv (
J

kg·K )

111.79 2025.3

115.97 2263.1

120.33 3260.8

122.59 4702.3

125.65 6810.8

128.33 3396.0

130.31 2128.2

131.33 1977.2

132.36 1925.9

172.57 2013.0

222.09 2116.6

244.77 2163.8

251.96 2153.7
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TABLE VII. PPGF30 heat capacity cv

Temperature (◦C) cv (
J

kg·K )

45.0 1218.0

80.0 1438.0

108.0 1723.0

118.0 2136.0

121.0 3080.0

124.0 17153.0

125.0 17153.0

129.0 2290.0

131.0 1720.0

180.0 1791.0

250.0 1918.0

TABLE VIII. PPGF25 thermal conductivity λ

Temperature (◦C) λ ( W
m·K )

65.0 0.320

80.0 0.323

100.0 0.325

120.0 0.322

140.0 0.313

160.0 0.242

180.0 0.238

200.0 0.235

220.0 0.232

240.0 0.230

250.0 0.228
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TABLE IX. PPGF30 thermal conductivity λ

Temperature (◦C) λ ( W
m·K )

31.9 0.234

48.7 0.232

68.5 0.23

88.2 0.2223

108.6 0.225

128.4 0.227

144.0 0.206

160.6 0.191

181.2 0.193

200.6 0.193

217.6 0.193

235.5 0.194
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