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a b s t r a c t

Computer Aided Design (CAD) is widely used in the creation and optimization of various industrial
systems and processes. Transforming a CAD geometry into a computational discretization that be used
to solve PDEs requires care and a deep knowledge of the selected computational method. In this article,
we present a novel integrated collocation scheme based on smart clouds. It allows us to transform a
CAD geometry into a complete point collocation model, aware of the base geometry, with minimum
effort. For this process, only the geometry of the domain, in the form of a STEP file, and the boundary
conditions are needed. We also introduce an adaptive refinement process for the resultant smart
cloud using an a posteriori error indication. The scheme can be applied to any 2D or 3D geometry,
to any PDE and can be applied to most point collocation approaches. We illustrate this with the
meshfree Generalized Finite Difference (GFD) method applied to steady linear elasticity problems. We
further show that each step of this process, from the initial discretization to the refinement strategy, is
connected and is affected by the approach selected in the previous step, thus requiring an integrated
scheme where the whole solution process should be considered at once.

© 2022 Published by Elsevier Ltd.
1. Introduction

Computer Aided Design (CAD) software packages are used
n many domains of engineering to design components of var-
ous nature. A new design is often proposed based on previous
xperience and knowledge. It can then be optimized using calcu-
ation and/or simulation tools to increase its performance, lower
he manufacturing costs or for many other reasons. Reaching
satisfactory design often requires iterations. To minimize the
evelopment costs, both industry and academia have been trying
o speed-up this iteration process (design –> simulation –>
esign modification –> simulation . . . ) as much as possible.
Performing computer simulations directly from geometry can

e a tedious task. We introduce in this article an integrated smart
loud collocation scheme. The scheme, based on point collocation,
ims at simulating the behavior of components (the mechanical
esistance of a solid part, for instance) directly from the designed
AD geometry. The proposed scheme minimizes the size of the
olved problem by using a posteriori error indication and adaptive
efinement. The smart cloud is geometry-aware. Each point of
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-4364, Luxembourg.
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ttps://doi.org/10.1016/j.cad.2022.103409
010-4485/© 2022 Published by Elsevier Ltd.
the smart cloud has additional information related to the CAD
geometry and to the boundary conditions applied to the domain.

Many collocation schemes use meshes to generate point
clouds. The approach presented in this work does not require
this step. Mesh generation poses several additional constraints
on the aspect ratio and shape of the elements which do not
apply to point collocation methods. Therefore, skipping the mesh
generation step could lead to a more robust domain discretization
framework for point collocation methods.

Point collocation methods have been used for a long time
and can be applied to smooth and non-smooth solutions and
domains [1]. The selection of collocation stencil is a key aspect
of this family of methods. To ease their application to all types
of problems and domains, a unified approach was introduced
in Ref. [2]. The finite difference method was the first such col-
location method. It was introduced by C. Runge in 1908 [3]. A
Cartesian grid was used to approximate the field derivatives,
limiting the problems solved by this method to simple geome-
tries. The method was then generalized in 1972 by Jensen [4].
He introduced the basis of the Generalized Finite Difference
(GFD) method. The method was then successively developed by
Liszka [5], Orkisz [6], Benito [7], Milewski [8] and many other
contributors.

Recently, numerical methods based on point collocation have
regained interest with their use in meshfree frameworks. The
GFD method shows good performance compared to other point
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ollocation methods [1] and was used in this work. The scheme
resented in this article can however be readily applied, without
ny modification, to other collocation schemes such as the Mov-
ng Least Squares (MLS) method [9–11] or the Radial Basis Finite
ifference (RBF-FD) method [12–15].
The idea of using the CAD geometry to solve problems de-

ined by Partial Differential Equations (PDE) is at the heart of
he Isogeometric Analysis (IGA) methods. These methods became
apidly popular after their first introduction in 2005 [16] and
ave been proven robust for problems of various nature. IGA
ethods use the basis functions of the CAD geometry representa-

ion as shape functions to approximate the field derivatives and
olve PDEs over domains. The Isogeometric analysis boundary
lement method (IGABEM) is a popular IGA method successively
eveloped by Politis et al. [17], Belibassakis et al. [18], Simpson
t al. [19] and Ginnis et al. [20]. It combines the benefits of the
GA method (direct use of the functions of the CAD geometry)
nd the benefits of the Boundary Element Method (use of a
iscretization of the surface boundaries only). The clearest advan-
age of IGABEM is the possibility to solve PDEs without any mesh
eneration, which is particularly convenient for shape optimiza-
ion [21–24]. A collocation form of IGA has also been introduced
25].

Using the functions of the geometry to solve a given problem
an be seen both as a strength and a weak point of IGA compu-
ational methods. This assumes that the CAD geometry is suit-
ble for analysis, which is not always the case. Point collocation
ethods are deemed quite ‘‘flexible" compared to element-based
ethods and IGA methods since there are no strong connections
etween the nodes. Furthermore, the discretization of the domain
an be easily modified as needed during the simulation process
o provide the best possible solution for a given computational
ost.
Discretization adaptivity has always been of interest for point

ollocation methods. The performance of this approach in the
ramework of point collocation was shown in many articles for
he GFD [8,26–28] or the RBF-FD [29–31] method.

Many point collocation schemes use a surface mesh as an
nput for discretizing the geometry. Therefore, for geometries
omposed of curves or non-plane surfaces, the input is an approx-
mation of the exact geometry and any discretization adaptivity
ould not rely on the exact domain. In contrast to existing work,
he smart cloud collocation scheme presented in this work uses
he exact definition of a given geometry based on a CAD file. It
an therefore be applied to most domains with the assurance
hat the exactness of the geometry is not lost as part of the re-
inement process. Such an approach was not present in previous
ublications, to the authors’ knowledge. The proposed adaptive
ethod uses new nodes, placed at key locations in the domain,

o improve the solution. This approach is often referred to as
-adaptivity. The nodes of the initial point cloud are kept. This
ierarchical approach implies that the point cloud does not need
o be generated again before the next adaptive iteration step
hich saves computational effort.
Our work focuses on linear elasticity problems (2D and 3D)

sing the Generalized Finite Difference method. The smart cloud
oncept can also be applied to other types of elliptic problems
nd to most point collocation methods. The Generalized Finite
ifference method is based on a Taylor’s series expansion of the
nknown field. We provide here after a brief description of this
ollocation method for the case of a 2D problem. For a complete
escription of the method, refer to Ref. [1]. Considering a function
: R2

→ R, we can write the second order approximation
f the Taylor’s series expansion at a node Xpi = [xpi, ypi]T near

T
Xc = [xc, yc] as:

2

fh(Xpi) =f (Xc) + (xpi − xc)
∂ f (Xc)

∂x
+ (ypi − yc)

∂ f (Xc)
∂y

+
(xpi − xc)2

2!
∂2f (Xc)

∂x2
+ (xpi − xc)(ypi − yc)

∂2f (Xc)
∂x∂y

+
(ypi − yc)2

2!
∂2f (Xc)

∂y2
.

(1)

We wish to obtain an approximation of the field derivatives at
Xc based on the field value at Xc and in the vicinity of Xc. For
this, we write Eq. (1) at a minimum of five nodes Xpi around

c. We obtain a system of equations that can be solved for the
ield derivatives ∂ f (X)

∂x , ∂ f (X)
∂y , ∂2f (X)

∂x2
, ∂2f (X)

∂x∂y and ∂2f (X)
∂y2

. The system is
solved in a weighted moving least square form if Eq. (1) is written
at a number of nodes greater than the number of unknown field
derivatives. The selection of the nodes (stencil) to be considered
as part of the field derivatives approximation is a key parameter
of the method. The distance criterion is the most simple and
commonly used criterion. All the nodes located within a defined
radius of the reference collocation node are selected. The visibility
criterion introduced by Belytschko et al. [32] is an alternative
for singular problems. The nodes Xp included in the stencil of a
collocation node Xc are only the nodes for which the segment
connecting Xp to Xc does not intersect the boundary of the
domain. Jacquemin et al. [2] proposed to generalize this criterion
to all concave problems based on a selected maximum acceptable
intersection angle between the segment connecting Xp to Xc and
the boundary of the domain.

The article is composed of two main sections. We present in
the first one the method used to transform a CAD geometry into
a smart cloud. We show in a second section how error indicators
can be used to identify the zones of the domain where the error
is the greatest. Once these zones are identified, we show how
adaptive refinement can be used to converge efficiently to an
accurate solution.

A key novelty in the present work is that the discretization
of the domain and its adaptivity are based on the exact CAD
geometry to minimize the user input in the simulation workflow
and ensure that the domain is represented exactly throughout the
refinement process.

The codes and all the input files used to generate the results,
along with the results files, have been made open-source and are
freely available at https://gitlab.com/tjacquemin/smart-cloud.

2. From CAD to smart cloud

2.1. General

Most numerical methods used to solve partial differential
equations use some sort of discretization of the otherwise infi-
nite dimensional mathematical problem. Either the differential
operator is discretized (e.g., GFD, RBF-FD) or the unknown field
is discretized (e.g., MLS, Finite Element). Collocation methods
use nodes spread in the domain, on the boundary of the do-
main and sometimes even outside of the domain to approximate
the differential operator. Nodes placed outside of the domain,
called ghost nodes, can be used as additional degrees of freedom
to enforce boundary conditions or balance the stencils of the
collocation nodes located on, or close to the boundary of the
domain. The concept of ghost cells or ghost nodes was described
by Fedkiw et al. in 1999 in Ref. [33]. The approach was applied to
fluid flow solvers but can be applied to other types of problems
such as linear elasticity as presented in Ref. [34]. In this work,
we considered only discretizations featuring nodes placed in the
domain and on the boundary of the domain.

The design of a new mechanical system very often requires
a model of the geometry. CAD software packages are used for

https://gitlab.com/tjacquemin/smart-cloud
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his purpose. Sophisticated user interfaces allow the design of
omplex geometries and the assembly of very large structures.
hilst many file formats are proprietary, the STEP file format

Standard for the Exchange of Product model) is a format defined
y the international norm ISO 10303-21. Such a definition makes
he STEP file format popular and most of the packages support
t. It is mostly oriented toward 3D geometries but can also be
sed for 2D geometries. STEP files store the exact geometry of the
omain using simple geometric features such as planes or conical
urfaces but also B-spline surfaces and trimmed surfaces.
We present in this section a method to discretize a given

eometry, provided in STEP file format, with the aim of solving a
roblem defined by a PDE over the domain using the Generalized
inite Difference point collocation method. We show how the
mart cloud is generated from the discretization and from the
AD geometry. Finally, we analyze the impact of the selected
arameters of the method.

.2. Domain discretization

We used the library Open CASCADE Technology [35] to com-
unicate with the STEP files and to get information about the
xact geometry. Our algorithm is composed of the following
teps:

1. Loading the information from the STEP file using Open
CASCADE Technology;

2. Discretization of the boundaries of the domain;
3. Regular discretization of a rectangle or box enclosing the

geometry;
4. Identification of the nodes of the rectangle or box included

in the domain.

We presented these steps in Fig. 1 for the case of a 2D gear.
e give more details about each of these steps in the paragraphs
elow.

tep 1. At the beginning of the discretization process key pa-
ameters, such as the bounding volume or the dimensions of the
ectangle or box enclosing the geometry, are computed from the
AD file.
A CAD geometry is composed of multiple topological entities.

hose are:

• solid;
• shell;
• face;
• edge loop;
• edge;

• vertex.

3

These entities are identified and used to discretize the bound-
aries of the domain and set the boundary conditions. Geomet-
rical entities are associated with each topological entity. For in-
stance, the geometrical entity associated with a face is a surface
(e.g., plane, cylindrical surface, B-spline surface) and the geomet-
rical entity associated with an edge is a curve (e.g., line, circle,
B-spline curve). The library Open CASCADE that we use supports
a large amount of geometric features. For the complete list of
features, refer to the reference manual [35].

The discretization process requires the selection of a charac-
teristic length noted h. h can be an input from the user or can be
approximated based on a target number of nodes of the domain
discretization. In this case, h is computed in this first step.

Step 2. The boundaries of the domain are discretized, based on
the characteristic length h, ensuring that the distance between
two adjacent boundary nodes is close to h. For 2D problems, all
he edges of the domain are discretized using a fixed distance,
lose to h, between two consecutive nodes. The duplicated corner
odes are removed.
For 3D problems, we used a Delaunay triangulation of the

oundary faces that compose the geometry. Generating such
mesh is robust since the boundary of the domain is com-
osed of faces of simple geometry. The duplicated edge nodes are
emoved. We used the library Gmsh [36] to mesh the surfaces.

The exact normal vectors are computed, at each boundary
ollocation node, using the information about the exact geometry
ontained in the STEP file.

tep 3. The rectangle or box is discretized based on the character-
stic length h. The nodes are placed regularly in the rectangle or
ox enclosing the geometry. The nodes can be organized in differ-
nt regular forms, also called lattices. In 2D and 3D, the nodes can
e placed following the Cartesian grid. In 2D, the rectangle can
lso be discretized using equilateral triangles. This corresponds
o a hexagonal close-packed lattice in 3D. We selected these two
attices for 2D and 3D problems as they lead to the most uniform
iscretizations. Fig. 2 shows a comparison of the mentioned 2D
nd 3D lattices. Many other lattices could be considered. The
ectangle or box could also be filled using the advancing front
ethod [37].

tep 4. The final step of the discretization process requires the
dentification of the nodes which are outside of the domain.
ultiple algorithms can be used for this purpose. The CAD file can
e used directly to assess the position of a node in a domain. We
sed this approach, based on classes of the Open CASCADE [35]
ramework. For 2D problems, we compute the distance between
given vertex and the shapes that compose the domain using

he class BRepExtrema_DistShapeShape of Open CASCADE. A null
Fig. 1. Steps of the discretization of a domain from a CAD file using the library Open CASCADE Technology [35].
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Fig. 2. Node arrangement configurations in 2D (a), (b) and 3D (c), (d). The
ubfigures (a) and (b) show the node arrangements for square and triangular
attices, respectively. The subfigures (c) and (d) show the node arrangements for
ubic and hexagonal close-packed lattices, respectively.

istance means that the vertex is located on the considered shape.
or 3D problems, we assess if a considered vertex is in the do-
ain using the class BRepClass3d_SolidClassifier. The algorithms
resented in Ref. [37] or in Ref. [2] are alternative algorithms
hat use boundary nodes and elements to decide upon the in-
lusion of nodes in the domain. Other algorithms such as the
‘crossing number’’ or the ‘‘winding number’’ methods, described
n Refs. [38–40], can be used in 2D. For 3D problems, the Möller–
rumbore algorithm [41] or the AABB tree algorithm [42] can be
sed if the boundaries of the domain are triangulated surfaces.
owever, these alternative approaches are imprecise because
hey depend on an approximation of the boundary of the domain.

The positions of all the box nodes X with respect to a do-
ain Ω do not need to be assessed. All the nodes located in a
isk or sphere centered at a considered node Xc and of radius
Xc − Xpc


2, where Xpc is the orthogonal projection of Xc on

he boundary of the domain ΓΩ , are located on the same side
f the boundary as Xc. This is illustrated by Fig. 3 for a node Xi
ocated inside of the domain and a node Xo located outside of the
omain. We use classes of the Open CASCADE [35] framework to
erform the orthogonal projection. For 2D problems, we use the
lass Geom2dAPI_ProjectPointOnCurve. For 3D problems, we use
he class GeomAPI_ProjectPointOnSurf.
4

The proximity of the interior nodes to nodes located on the
oundary of the domain shall also be considered to avoid the ill
onditioning of the system. This aspect is discussed in Section 2.4.

.3. From discretization to smart cloud

Transforming the discretization into a smart cloud, which
ontains all the required information for its solution using a
ollocation model and for model adaptivity, is the final step. It
onsists primarily in the enforcement of the boundary conditions
nd in the addition of additional information about the geometry
seful to improve the solution and adaptive refinement.
The topological entities are used to define the boundary condi-

ions. The boundary conditions are most often defined on edges,
or 2D problems, and on faces, for 3D problems. We defined in
n input file the boundary condition associated to the topological
ntities of interest of the CAD geometry. The boundary conditions
re transmitted from the topological entities to the collocation
odes during the discretization process. For nodes at the intersec-
ion between multiple CAD topological entities, we automatically
elect the boundary condition for each degree of freedom as
ollows. We first apply non-zero Neumann boundary conditions,
hen Dirichlet boundary conditions and, finally, homogeneous
eumann boundary conditions.
We explained in Section 2.2 that surface elements are used

o discretize the boundary of the domain. In case of adaptive
efinement, the smart nodes are used to carry pointers to the
oundary conditions from the initial model to the refined models.
his allows reducing the number of interactions between the
ollocation code and the geometry to the minimum, thus saving
omputational cost.
Each boundary node of the smart cloud has the following

ieces of information:

• reference to the base CAD geometry;
• the exact normal vector;
• the boundary conditions applied to the considered node;
• pointers to the parent CAD edge or surface(s);
• pointers to the boundary conditions applied to the parent

CAD edge or face(s);
• the connections to other boundary nodes if boundary ele-

ments are used to enforce the generalized visibility crite-
rion [2] or to speed-up the refinement of the surface.

.4. Threshold sensitivity analysis

Stencil nodes located close to the boundary of the domain
hould theoretically improve the quality of the field approxima-
ion. Boundary conditions are applied at the boundary nodes. At
hese nodes, the PDE cannot be enforced with classical collocation
ethods. Adding an inner node very close to a boundary node
ould allow enforcing both the PDE and boundary condition
lose to the boundary. However, this leads to ill-conditioning of
he linear system solved, for the GFD collocation method and
or most collocation methods, at these collocation centers to
btain an approximation of the field derivatives as a function
f the field itself. To avoid ill-conditioning, we used a threshold
atio, denoted by t , to determine if an interior node, obtained
rom the regular discretization of the rectangle or box, should be
ncluded in the point cloud. A node Xi located in the domain Ω

is included in the point cloud only if the closest boundary node
Xb is located at a distance larger than the product th (i.e., Xi

Ω if ∥Xi − Xb∥2 > th).
We used two benchmark problems from the field of linear

elasticity to assess the impact of the threshold on the error. The
problems considered are: an infinite plate with an elliptical hole
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Fig. 3. Identification of the position of interior nodes with respect to the domain Ω . Considering a node Xi and its projection Xpi on the boundary of the domain
Ω , all the nodes located within a disk or sphere of radius

Xi − Xpi

2 are located in the domain Ω if the node Xi is located in the domain Ω . Similarly, all the

odes located within a disk or sphere of radius
Xo − Xpo


2 are located outside of the domain Ω if the node Xo is outside of the domain Ω .
nd a infinite plate with a circular hole. The exact solution is
nown for each of the considered benchmark problems. The gov-
rning equations of linear elasticity and the problems considered
re presented in Sections 3.1 and 3.2, respectively.
To assess the impact of the threshold value t on the solution

of the benchmark problems, we selected threshold values ranging
from 0.02 to 1.2. For the purpose of the sensitivity analysis,
we generated coarse and fine discretizations of the considered
benchmark problems (approximately 4500 and 30,000 nodes,
respectively) based on the discretization method presented in
Section 2.2. We selected a square lattice to discretize the rectan-
gles (bounding box) which contain the geometries. We compared
the results in terms of the l2 relative error norm of the von Mises
stress. The calculation of this norm is described in Section 3.2.

The results are presented in Fig. 4. The results show that the
threshold has little impact on the error for the problem of a plate
with an elliptical hole for threshold values lower than 1.0. The
error varies by less than 9% for the coarse discretization in the
threshold range 0.02–1.0. For the fine discretization, the error
is lower by approximately 23% for a threshold of 0.8 than for a
threshold of 0.5. We observe a sharp increase of the error for
the threshold of 1.2. This result is expected, because a threshold
larger than 1.2 means that there is a gap between the boundary
of the domain and the closest inner nodes which is larger than
the discretization characteristic length h. The variations are more
important for the plate with a circular hole. A threshold of 0.3
leads to the lowest error for the fine discretization. A threshold
of 0.02 leads to the lowest error for the coarse discretization. For
both node densities, the lowest error is approximately 75% lower
than the maximum error.

To better understand these results, we plot in Fig. 5 the max-
imum condition number of the linear systems solved as part of
the field derivatives approximation as a function of the threshold
value. We see that this condition number is minimum for the
plate with a circular hole for threshold values ranging from 0.5 to
1.0 for the coarse discretization and from 0.7 to 1.0 for the fine
discretization. For the problem of a plate with an elliptical hole,
this condition number is little affected by the threshold value for
5

the coarse discretization and minimum for the fine discretization
for threshold values ranging from 0.3 to 1.0. An increase of the
condition number is associated with an increase of the error. This
can be observed in particular for the threshold of 1.2 for the
problem of a plate with an elliptical hole and for the threshold
of 0.3 for the fine discretization of a plate with a circular hole.
The condition number of the stencil is closely related to the node
selection algorithm. In this work, we selected the stencil nodes
based on the distance criterion [4]. Close to concave boundaries of
the domain, we used the visibility criterion with a threshold angle
of 5.0◦ as presented in Ref. [2]. Based on these results, we selected
in this work a threshold value of 0.3 as it leads to the lowest
error for the plate with a circular hole problem and to the most
significant error reduction compared to other threshold values.
We decided not to investigate other node selection algorithms
which could be more suitable for the lowest threshold values.

2.5. Discretization methods comparison

We compared the results obtained using the proposed dis-
cretization method to results obtained from discretizations gen-
erated using Gmsh [36]. Gmsh is a powerful mesh generator
that regroups several meshing algorithms. Gmsh is suitable for
both 2D and 3D problems. We selected unstructured meshing
algorithms based on the Delaunay algorithm. We used the bench-
mark problems mentioned in Section 2.4 for the purpose of
this comparison. We compare results for a square lattice and
a triangular lattice discretization of the rectangle enclosing the
geometry to results obtained from a discretization generated with
Gmsh (Delaunay triangulation). We used a threshold value of 0.3
for the square and triangular lattice discretizations. The results in
terms of the l2 relative error of the von Mises stress are shown in
Fig. 6.

The results show that the two discretization methods lead to
similar errors for the plate with an elliptical hole. For the plate
with a circular hole, the square and triangular lattice discretiza-
tions from CAD lead to errors approximately 40% lower than
those obtained from the discretization obtained from a Delaunay
triangulation of the geometry.
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Fig. 4. Error for threshold values ranging from 0.02 to 1.2 for coarse (approx. 4500 nodes) and fine (approx. 30,000 nodes) discretizations for the plate with an
elliptical hole problem (a) and for the plate with a circular hole problem (b). The error in terms of the l2 relative error norm is presented for the von Mises stress
noted σVM .

Fig. 5. Maximum stencil condition number for threshold values ranging from 0.02 to 1.2 for coarse (approx. 4500 nodes) and fine (approx. 30,000 nodes) discretizations
for the plate with an elliptical hole problem (a) and for the plate with a circular hole problem (b).

Fig. 6. Comparison of the error in terms of the l2 relative error norm obtained from different discretization techniques (i.e., square or triangular lattice discretization
from CAD and Delaunay triangulation generated using Gmsh). The results are presented for the plate with an elliptical hole problem (a) and for the plate with a
circular hole problem (b). The three discretization methods lead to similar errors for the plate with an elliptical hole problem. The square and triangular lattice
discretizations from CAD lead to similar results for the plate with a circular hole problem. The error obtained with these discretizations is lower than the error
obtained from the Delaunay triangulation of the domain.

6
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These results give confidence in the proposed discretization
methods as they lead to results not far from the ones obtained
from a discretization method based on a triangulation of the
domain.

3. Model adaptivity from CAD

We show in this section how the CAD geometry can be effec-
tively used in an adaptivity scheme using smart cloud discretiza-
tions presented in Section 2. We present results for problems
from the field of linear elasticity solved using the GFD method.
The governing equations for linear elasticity are introduced in
Section 3.1. We used two 2D benchmark problems, for which
analytical solutions are known, to assess the sensitivity of the
parameters of the presented method on the quality of the error
indicator and on the adaptive refinement scheme. The models
considered are presented in Section 3.2. Then, we present in
Section 3.3 two error indicators that we used to identify the zones
where the error is the greatest. Finally, we show in Section 3.4
how error indicators are used to refine locally the domain and
improve the convergence rate of the solution.

3.1. Governing equations

We present in this section the governing equations for linear
elasticity for the general case of a 3D problem. This section is
based on Ref. [2].

The equilibrium of a domain Ω subject to body forces b is
expressed as a function of the stress tensor σ by Newton’s second
law. For static problems, the equilibrium equation is:

∇ · σ + b = 0
or ∀i ∈ {1, 2, 3} σij,j + bi = 0.

(2)

The equilibrium equations are expressed as a function of the
displacement field u at each node of the domain using:

• the relationship between the displacement field and the
strain field ϵ (kinematics):

ϵ =
1
2

(
∇u ⊗ ∇uT )

or ∀i ∈ {1, 2, 3} ϵij =
1
2

(
ui,j + uj,i

)
,

(3)

• Hooke’s law which gives the relationship between the strain
field and the stress field (presented here in Voigt form). This
is the constitutive law:⎡⎢⎢⎢⎢⎢⎢⎣

σ11

σ22

σ33

σ23

σ13

σ12

⎤⎥⎥⎥⎥⎥⎥⎦ =
E

(1 + ν) (1 − 2ν)

×

⎡⎢⎢⎢⎢⎢⎢⎣

1 − ν ν ν 0 0 0
ν 1 − ν ν 0 0 0
ν ν 1 − ν 0 0 0
0 0 0 1 − 2ν 0 0
0 0 0 0 1 − 2ν 0
0 0 0 0 0 1 − 2ν

⎤⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎣

ϵ11

ϵ22

ϵ33

ϵ23

ϵ13

ϵ12

⎤⎥⎥⎥⎥⎥⎥⎦ .

(4)

The above equations can be used for 2D problems using either
he plane stress assumption (i.e., σ33 = 0, σ13 = 0 and σ23 = 0)
r the plane strain assumption (i.e., ϵ33 = 0, ϵ13 = 0 and ϵ33 = 0).
Dirichlet and Neumann boundary conditions are respectively

pplied to the degrees of freedom of the collocation nodes located
7

on the boundaries ΓD and ΓN . The known displacement field ue

is applied on ΓD. An external pressure fe is applied to the nodes
located on ΓN . The outer normal nN allows the computation of
the pressure at the nodes of ΓN . Dirichlet and Neumann boundary
conditions can be applied to different degrees of freedom of the
same node.

u = ue on ΓD

σnN = fe or ∀i ∈ {1, 2, 3} σijnj = f ei on ΓN .
(5)

3.2. Benchmark problems considered

We present in this section the benchmark problems that we
considered as part of our analysis. We selected 2D problems with
known solutions from the field of linear elasticity. These are:

• an infinite plate with an elliptical hole under biaxial loading;
• a infinite plate with a circular hole under remote stress

loading.

The reference problems are said to be infinite because the
boundary conditions are applied at an infinite distance from the

Fig. 7. 2D model of a plate with an elliptical hole under biaxial loading.
Symmetry boundary conditions are applied to the vertical edge on the left.
Considering a displacement field denoted u, this boundary condition corresponds
to u1=0, u2=free. Stress-free surface boundary conditions are applied to the
boundary of the elliptical hole. The displacement field of the exact solution is
applied to the other boundaries of the domain. To improve the quality of the
solution, three boundary nodes at the tip are considered as interior nodes.

Fig. 8. 2D model of a plate with a circular hole under remote stress loading.
Symmetry boundary conditions are applied to the vertical edge on the left and to
the horizontal edge at the bottom. Considering a displacement field denoted u,
these boundary conditions correspond respectively to u1=0, u2=free and u1=free,
u2=0. Stress-free surface boundary conditions are applied to the boundary of
the hole. The displacement field of the exact solution is applied to the other
boundaries of the domain.
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tudied portion of the domain. We considered only portions of
he domains, close to the holes, and applied boundary conditions
orresponding to the exact solution. The domain considered and
he boundary conditions applied are presented in Figs. 7 and 8,
espectively, for the first and second problems. The analytical
olutions to these problems are presented in Refs. [43,44], respec-
ively. We show the exact solution of these problems in terms of
on Mises stress in Fig. 9. The von Mises stress solution of the first
roblem varies rapidly at the point of highest curvature of the
llipse. The solution in terms of von Mises stress is smoother for
he second problem. We used the l2 relative error norm (denoted
y l2R) and the l2 weighted error norm (denoted by l2W ) in this
ork to compare the results obtained to the reference solutions.
At a collocation node Xk the exact stress and approximated

tress solutions are denoted σ e
ij (Xk) and σ h

ij (Xk), respectively. Con-
sidering a domain Ω discretized by n collocation nodes, the l2
relative error norm is calculated as per Eq. (6). The l2 weighted
error norm is calculated as per Eq. (7).

l2R(σij) =

√∑n
k=1

(
σ e
ij (Xk) − σ h

ij (Xk)
)2√∑n

k=1 σ e
ij (Xk)2

. (6)

l2W (σij) =

√∑n
k=1

(
σ e
ij (Xk) − σ h

ij (Xk)
)2

n
. (7)

3.3. Error indicators

We describe in this section two types of error indicators that
we used to assess the need for local refinement of the discretiza-
tion:

• a ZZ-type error indicator;
• a residual-type error indicator.

We use the term ‘‘error indicator‘‘ in this article rather than
the term ‘‘error estimator’’. Our methods only give an indication
of the zones of the domain where the solution is expected to be
the most imprecise rather than an estimation of the exact error.
Therefore, the computed error should be considered relatively to
the error computed at other locations of the domain rather than
as an estimation of the true error. The considered indicators are

described in the subsections below.

8

3.3.1. ZZ-type error indicator for the GFD method
The ZZ-type indicator refers to the class of error estimators

introduced by Zienkiewicz and Zhu in 1987 [45] and extended
by Bordas and Duflot [46,47] and Rodenas et al. [48] to enriched
approximations. Zienkiewicz and Zhu used a moving least square
approximation of the stress field (for linear elastic problems)
computed at superconvergent points to estimate the error. The
moving least square approximation is used to extrapolate the
stress computed at the superconvergent points at nodes of a
selected patch. ZZ-type error estimators can be understood as an
indication of the smoothness of the computed stress field over the
selected patch. If the stress field is smooth, the difference in terms
of stress at the recovery nodes will be small. A sharp variation of
the stress field leads to a large error. We build on this idea to
define an error indicator in the framework of the GFD method.

In many engineering problems, the stress field and in particu-
lar the von Mises stress, is the parameter of primary interest as it
is a criterion associated with the onset of material yielding (von
Mises plasticity). We considered this stress criterion to compute
a ZZ-type error indicator. The von Mises criterion (noted σvM) is
computed, for 2D plane stress problems, using the equation:

σvM =

√
(σ11 − σ22)

2
+ 6σ 2

12

2
. (8)

The solution of a linear elastic problem using the GFD methods
requires the estimation of the first and second derivatives of the
displacement field u to solve Eq. (2) at the collocation nodes
ocated in the domain and Eq. (5) at the collocation nodes located
n the boundary of the domain. A detailed description of all the
teps involved in the solution of a problem using the GFD method
s presented in Ref. [1]. Once the system of equations is solved, the
olution in terms of displacement field (usually at the collocation
odes) is used to compute the stress field using Eq. (3) and Eq. (4).
In this work, collocation is done at the nodes. This means that

he partial differential equations and the boundary conditions
re solved at the nodes. Therefore, the von Mises stress can be
omputed at each node of the domain.
We computed an indication of the error at each node of the

omain. For this, we used the von Mises stress calculated at each
ode based on the classical GFD method and based on a smoothed
recovered) von Mises field computed using a moving least square
pproximation of the von Mises stress values obtained at each
Fig. 9. Solutions in terms of von Mises stress for the problem of a plate with an elliptical hole under biaxial loading (a) and for the problem of a plate with a
circular hole under remote stress loading (b). The maximum von Mises stress is 150 at the point of highest curvature of the elliptical hole for the problem of a plate
with an elliptical hole. The von Mises stress decreases rapidly as the distance from the tip increases. We truncated the colorbar of the von Mises stress field to 30
to show the variations of the stress over the domain. (For interpretation of the references to color in this figure legend, the reader is referred to the web version
of this article.)
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Fig. 10. Discretization of a portion of a domain Ω and identification of the nodes
Xpi , located within a support of radius Rc of a collocation node Xc , involved in
he computation of the smooth von Mises field σ s

vM (Xc).

ollocation node. We base the indicator on patches composed
f a relatively large number of nodes. The patch size is compa-
able to the size of the collocation stencil. We select a second
rder polynomial function and weight the contribution of the
odes of the patch using a radial weight function. We expect
hat this approach be more reliable and lead to a smoothest
rror indication than methods based on closest neighbor nodes
lthough we did not compare in this article the proposed method
o other indicators such as the ones proposed by Davydov [29] or
avete [27] for instance.
More specifically, considering a domain Ω , the von Mises

tress obtained at a collocation node Xc (noted σ c
vM (Xc)) is com-

ared to a moving least square approximation of the von Mises
tress field at the collocation node Xc (noted σ s

vM (Xc)). The mov-
ng least square approximation is calculated based on the von
ises stress σ c

vM

(
Xpi

)
computed at the support nodes Xpi of the

ollocation node Xc (see Fig. 10).
The moving least square approximation is computed using a

econd order polynomial basis p (or a polynomial of the same
rder as the GFD approximation) and a vector of coefficients
determined for each collocation node. For the case of a 2D
roblem, the polynomial basis p at a point X = [x, y]T in the
icinity of Xc = [xc, yc ]T is:

(X,Xc) =

⎡⎢⎢⎢⎢⎢⎣
1

(x − xc)
(y − yc)
(x − xc)2

(x − xc)(y − yc)
(y − yc)2

⎤⎥⎥⎥⎥⎥⎦ . (9)

For a collocation node Xc, the smooth von Mises stress field
σ s
vM is written:

σ s
vM (X,Xc) = p (X,Xc)

T a (Xc) . (10)

The coefficients a (Xc) are computed to minimize the error
between σ c

vM and σ s
vM. For a collocation node Xc which has m

support nodes Xpi (Xc is not considered as a support node), we
write the functional B (Xc) presented in Eq. (11). The error is
weighted by a function w (X,Xc) which depends on the support
radius of the collocation node Xc and on a selected radial basis
function.

B (Xc) =

m∑
w

(
Xpi,Xc

) (
p

(
Xpi,Xc

)T a (Xc) − σ c (
Xpi

))2
. (11)
i=1

9

Fig. 11. Voronoi diagram for a set of collocation nodes. The residual-type error
indicator at a collocation node Xc is computed based on the residual of the PDE
at the corner points Xvi of the Voronoi cell associated to Xc .

The error is minimized at each collocation node Xc when:

∂B (Xc)

∂a (Xc)
= 0. (12)

This minimization problem can be transformed into a linear
problem of the form:

A (Xc) a (Xc) = E (Xc) f (Xc) . (13)

For a polynomial basis of size q (q = 6 for a 2D second order
basis), the matrices A (Xc), E (Xc) and f (Xc) are:

A (Xc) =

⎡⎢⎢⎢⎣
m11 m12 . . . m1q
m21 m22 . . . m2q
...

...

mq1 mq2 . . . mqq

⎤⎥⎥⎥⎦ ∈ Rq×q, (14)

E (Xc) =

⎡⎢⎢⎢⎣
w

(
Xp1,Xc

)
p

(
Xp1,Xc

)
1 . . . w

(
Xpm,Xc

)
p

(
Xpm,Xc

)
1

w
(
Xp1,Xc

)
p

(
Xp1,Xc

)
2 . . . w

(
Xpm,Xc

)
p

(
Xpm,Xc

)
2

...
...

w
(
Xp1,Xc

)
p

(
Xp1,Xc

)
q . . . w

(
Xpm,Xc

)
p

(
Xpm,Xc

)
q

⎤⎥⎥⎥⎦
∈ Rq×m, (15)

f (Xc) =
[
σ c

(
Xp1

)
σ c

(
Xp2

)
. . . σ c

(
Xpm

)]T
, (16)

where

mij =

m∑
k=1

w
(
Xpk,Xc

)
p

(
Xpk,Xc

)
i p

(
Xpk,Xc

)
j
. (17)

p
(
Xpk,Xc

)
i refers to the ith component of the vector

p
(
Xpk,Xc

)
.

The solution of Eq. (13) at Xc allows the computation of
σ s
vM (Xc) and of an error indicator e (Xc) as follows:

e (Xc) =
⏐⏐σ c (Xc) − σ s (Xc)

⏐⏐ . (18)

We presented in this section a ZZ-type error indicator based
on an assessment of the smoothness of the solution of the PDE.
We present in the next section of the article a residual-type error
indicator.

3.3.2. Residual-type error indicator
Residual-type error indicators are based on an estimation of

the residual of the PDE at locations where it is not enforced
as part of the solution process. This type of estimator has been
widely used in literature: for example, in Ref. [49,50]. In this
work, we selected the corners of the Voronoi cell surrounding
a considered collocation node Xc to compute the residual of the
PDE. The residual error at a collocation node Xc is calculated as
the average of the residual of the PDE at each Voronoi center Xvi
of the Voronoi cell associated to X (see Fig. 11).
c
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Fig. 12. Exact von Mises stress error for the problems of a plate with an elliptical hole under biaxial loading. The exact error is shown for a square lattice discretization
f the domain (left) and for a triangular lattice discretization of the domain (right). We see that both node arrangements lead to the same pattern of the exact error.
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The residual at each Voronoi center Xvi is approximated us-
ing the solution at the neighboring collocation nodes using the
GFD method. For a collocation node Xc for which the associ-
ated Voronoi cell has q corner points Xvi, we calculate the error
indicator e (Xc) as follows:

e (Xc) =
1
q

q∑
i=1

|∇ · σ (Xvi) + b (Xvi)|. (19)

.3.3. Parameter variation and indicators comparison
We compare in this section the error obtained from the indica-

ors presented in Sections 3.3.1 and 3.3.2. We show the impact of
ome parameters of the methods on the calculated error, compare
he error indicators to the true error, and also compare the
onvergence rates.
We start by presenting a comparison of the spatial pattern of

he error for the two benchmark problems considered. For this,
e selected discretizations composed of approximately 200,000
odes for the plate with an elliptical hole and 140,000 nodes for
he plate with a circular hole.

The exact error for the regular nodes arrangements presented
n Section 2 (i.e., square lattice and triangular lattice for 2D
roblems) is presented in Fig. 12 for the problem of a plate with
n elliptical hole and in Fig. 13 for the problem of a plate with a
ircular hole.
We observe that, for both problems, the pattern of the exact

rror is the same for both discretization techniques. For the
irst problem, we see that the error is the highest close to the
lliptical hole and in the region where the stress is the largest (see
ig. 9(a)). For the second problem, two regions can be identified,
oth close to the hole. A region at the top of the hole which
orresponds to the region where the stress is the largest and a
egion in the middle of the considered portion of the hole. This
econd region corresponds to a region where the stress solution
n terms of von Mises stress is the lowest and changes rapidly
long the hole (see Fig. 9(b)).
We compared the results obtained for an ‘‘unweighted’’ indica-

or (i.e., w(X,Xc) = 1 in Eq. (11)) and for a ‘‘weighted’’ indicator.
e selected a 4th order spline for the radial basis function w

n Eq. (11). The equation of the spline is presented in Eq. (20).

(s) =

{
1 − 6s2 + 8s3 − 3s4 if s ≤ 1
0 if s > 1.

(20)

or a node X within a support of radius Rc of a collocation node
c, the weight function w based on the 4th order spline is:

(X,Xc) = w(s) with s =
∥X − Xc∥2

. (21)

Rc

10
We observed little difference between the weighted and the
unweighted indicators. We selected the weighted error indicator
because we expect that such indicator be more appropriate in
case large stencils are selected. The results that we present for
the ZZ-type error indicator are, therefore, only based on weighted
indicators.

We also compared the results obtained from an ‘‘indirect’’
computation of the indicator to results obtained from a ‘‘direct’’
computation of the indicator. The ‘‘indirect’’ computation of the
indicator uses the computation of the individual components
of the stress tensor σ s

11 (Xc), σ s
12 (Xc) and σ s

22 (Xc) to compute
σ s

vM (Xc). The ‘‘direct’’ computation of the indicator uses the com-
utation of the von Mises stress components σ s

vM (Xvi) at each
support nodes Xvi of Xc to compute σ s

vM (Xc). The results obtained
from both approaches present a similar trend. Both approaches
should be equivalent for smooth fields. Therefore, we decided
to present only results obtained from the direct computation
method in this article.

Figs. 14 and 15 show error indicators obtained from the
weighted configurations of the ZZ-type error indicator, consider-
ing a direct computation of σ s

vM (Xc) and error indicators obtained
rom the residual-type indicator. The results for each of these
ndicators are shown for both the square and triangular lattice
iscretizations. We presented the error indicator using a log-
rithmic color scale as it allows a better identification of the
ifferent error zones of the solution. The amplitude of the scale
as been set constant for the ZZ-type error indicator and for
he residual-type error indicator to facilitate the analysis of the
esults.

The results obtained for the plate with an elliptical hole show
hat the discretization method selected for the interior of the
omain impacts significantly the pattern of the error indicator.
or both discretization techniques, we can observe lines where
he computed error indicator is lower. This phenomenon is the
ost significant for the square lattice discretization techniques.
uch lines are not observed for the residual-type error indicator
omputed for the domain discretized using a triangular lattice.
The trend of the results obtained for the problem of a plate

ith a circular hole is the same as the trend of the results
btained for the problem of a plate with an elliptical hole. The
iscretization technique impacts the pattern of the error. The
rror pattern is the most uniform for the residual-type error
ndicator. It can be noticed, however, that the ZZ-type error
ndicator allows for the identification of a zone, close to the
iddle of the considered portion of the cavity, where the error is
reater. The exact error presented in Fig. 13 shows that this zone
orresponds to a zone where the error is significant. This zone is
ot identified with the residual-type error indicator. The zone at
he top of the considered portion of the cavity is identified as a
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Fig. 13. Exact von Mises stress error for the problems of a plate with a circular hole under remote stress loading. The exact error is shown for a square lattice
discretization of the domain (left) and for a triangular lattice discretization of the domain (right). We see that both node arrangements lead to the same pattern of
the exact error.
Fig. 14. Comparison of the error pattern for the ZZ-type error indicator and for the residual-type error indicator for the problem of a plate with an elliptical hole.
The results are shown for square and triangular lattice discretizations of the interior of the domain. (For interpretation of the references to color in this figure
legend, the reader is referred to the web version of this article.)
s

a
i
s
a
t
0
p
r
r
F

3

i
w
o

zone where the error indicator is high. However, the computed
error indicators are not greater than in other zones close to the
cavity. The gradient in this zone is not as high as in the middle
of the considered portion of the cavity. This explains why the
computed error indicators are not larger at this location of the
cavity.

The trend of the results presented in Figs. 14 and 15 is in favor
of the residual-type indicator because this indicator appears to be
the least affected by the discretization of the geometry.

The computation of the ZZ-type error indicator necessitates
the selection of a stencil size or radius Rc since we considered the
istance criterion for the selection of the stencil nodes. The results
resented in Figs. 14 and 15 were computed based on the same
tencil as the stencil considered for the solution of the collocation
roblem. We present in Fig. 16 results showing the impact of
he size of the stencil on the pattern of the error indicator. We
onsidered two scaling factors applied to the size of the stencil
elected for the solution of the collocation problem. We preferred
pplying the scaling factor to the number of selected stencil nodes
ater than on the stencil radius Rc because our node selection
lgorithm is based on a target number of stencil nodes. We
 a

11
selected domains discretized based on a triangular lattice and a
direct computation of σ s

vM considering a weighted moving least
quare approximation.
The results presented in Fig. 16 show, for the problem of
plate with an elliptical hole, that the scaling factor has little

mpact on the pattern of the error indicator. The impact of the
caling factor is more significant for the problem of a plate with
circular hole. We observe that the intensity of the zones where
he error is the lowest is more significant for a scaling factor of
.8. In these zones, the error indicator does not represent well the
attern of the exact error and is expected to lead to an incorrect
efinement of the domain. A scaling factor of 1.5 leads to similar
esults than the base case (i.e., scaling factor of 1.0 presented in
ig. 15).

.3.4. Discussion
Both the ZZ-type error indicator and the residual-type error

ndicator enable the identification of zones of the point cloud
here the error is the greatest. We observe that a discretization
f the interior of the domain based on a triangular lattice leads to
n error indicator which is less dependent on the geometry than



T. Jacquemin, P. Suchde and S.P.A. Bordas Computer-Aided Design 154 (2023) 103409

s

o
b
a

o
t
u
t
m
i
t

Fig. 15. Comparison of the error pattern for the ZZ-type error indicator and for the residual-type error indicator for the problem of a plate with a circular hole. The
results are shown for square and triangular lattice discretizations of the interior of the domain. (For interpretation of the references to color in this figure legend,
the reader is referred to the web version of this article.)
Fig. 16. Impact of the size of the stencil considered in the computation of the ZZ-type error indicator. Results are shown for both benchmark problems for two
caling factors applied to the selected stencil size considered in the solution of the collocation problem.
ne based on a square lattice. This result is observed even though
oth discretization methods lead to similar exact error patterns
s per the results presented in Figs. 12 and 13.
The weighted-direct computation of σ s

vM is the configuration
f the ZZ-type error indicator that leads to the best results al-
hough little difference is observed between the weighted and the
nweighted indicators. The selection of a stencil larger or smaller
han the one used as part of the solution of the global collocation
odel does not improve the indicator. The residual-type error

ndicator leads to smoother results which are not affected by
he discretization of the geometry. However, the computational
12
cost of this indicator is much greater than for the ZZ-type error
indicator. Voronoi corner nodes are computed for all the nodes of
the domain. The stencil of each Voronoi corner node needs to be
determined and the derivatives approximated.

We show a comparison of the time required to compute the
error indicators for the two considered problems in Fig. 17. We
present these results in the form of a ratio of the indicator
computation time to the time needed to assemble and solve the
collocation problem. The results are indicative as they depend
heavily on the method selected to solve the linear system and
on the number of threads/processes involved in each step of
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Fig. 17. Comparison of the ratio of the indicator computation time to the time needed to assemble and solve the collocation problem. Both problems lead to similar
results. The computation time of the residual-type error indicator is approximately 10 times the computation time of the ZZ-type error indicator. The computation
of the residual-type error indicator corresponds to between 165% and 23% of the assembly and solution time of the collocation problem. The computation of the
ZZ-type error indicator corresponds to between 11% and 3% of the assembly and solution time of the collocation problem.
t
M
n

the solution process. The computation of the indicators at each
node of the domain is independent from the computation of the
indicator at other nodes of the domain. Therefore, both error
indicators can be parallelized with no extra effort. We used two
threads to assemble the linear system and compute the error
indicator and solved the linear system using a LU factorization
(one thread, one process). We see from Fig. 17 that the compu-
tation time of the residual-type error indicator is approximately
10 times the computation time of the ZZ-type error indicator.
For both indicators, the ratio mostly decreases as the number of
nodes increases. Such a result is expected since the computation
of the error indicators scales linearly with the number nodes
while the solution time of the collocation problem increases at an
increasing rate when solved with LU factorization. The problem
of the plate with an elliptical hole and the problem of a plate
with a circular hole lead to similar results. The computation of the
residual-type error indicator corresponds to between 165% and
13
23% of the assembly and solution time of the collocation problem.
The computation of the ZZ-type error indicator corresponds to
between 11% and 3% of the assembly and solution time of the
collocation problem for the considered discretizations.

Based on these results, the ZZ-type indicator appears to be a
better choice in terms of computational cost.

To complete the comparison of both error indicators, we com-
puted ZZ-type and residual-type error indicators for the problem
of a plate with an elliptical hole and the problem of a plate with
a circular hole for various node densities obtained with a global
refinement of the domains. We selected for both problems a dis-
cretization of the domain based on a triangular lattice. The results
are presented in Figs. 18 and 19. The ZZ-type error indicator is
based on a weighted-direct computation of σ s

vM . We computed
he exact error in terms of the l2 relative error norm for the von
ises stress component and compared it to a l2 relative error
orm where the ‘‘smooth’’ von Mises stress field is considered as
Fig. 18. Plate with an elliptical hole — Comparison of the exact and estimated error. The results are presented in terms of the l2 relative error norm for the exact
rror on the von Mises stress and for the ZZ-type indicator of the error on the von Mises stress. The results are presented in terms of the l2 weighted error norm
or the residual-type indicator.



T. Jacquemin, P. Suchde and S.P.A. Bordas Computer-Aided Design 154 (2023) 103409

e
f

t
n
s
p

l

a
c
c
c
a
w
s
a
l
M

t
o
p
t
c

3

b
W
o
c

e
S
t
a
w
m
b

Fig. 19. Plate with a circular hole — Comparison of the exact and indicative error. The results are presented in terms of the l2 relative error norm for the exact
rror on the von Mises stress and for the ZZ-type indicator of the error on the von Mises stress. The results are presented in terms of the l2 weighted error norm
or the residual-type indicator.
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he reference solution. We also computed the l2 weighted error
orm of the residual-type indicator computed using Eq. (22). We
elected this norm since a reference solution is not computed as
art of the indicator.

2W (e) =

√∑n
k=1 (e (Xc))

2

n
. (22)

We observe from the results presented in Fig. 18 and in Fig. 19
convergence of both error indicators for both problems. The

onvergence rate is higher for the problem of a plate with a
ircular hole. The convergence rate of the l2 weighted error norm
omputed for the residual-type indicator is 0.1 for the problem of
plate with an elliptical hole and 1.2 for the problem of a plate
ith a circular hole. This result is expected since the solution is
moother for this problem than for the problem of a plate with
n elliptical hole. For both problems, the convergence rate of the
2 relative error norm is similar when the exact or smooth von
ises stress components are considered.
Based on the results presented in this subsection, we selected

he ZZ-type error indicator, using a weighted-direct computation
f σ s

vM , as the main input to the discretization refinement scheme
resented in the next section. We preferred this indicator rather
han the residual-type error indicator because of its reduced
omputational expense and because of its simplicity.

.4. Discretization refinement

We describe in this subsection a scheme to refine a point cloud
ased on the results obtained from a posteriori error indicators.
e use the information of the smart cloud to place new nodes
n the exact geometry of the domain and to set the boundary
onditions of the updated collocation model.
A posteriori error indicators allow the identification of the ar-

as of the domain where the error is expected to be the greatest.
everal techniques can then be used to improve the solution in
hese zones. The most common ones are h- and p-adaptivity. h-
daptivity consists of an increase of the node density in the zone
here the error is the greatest. Such type of adaptivity is the
ost commonly used in the literature. For instance, it was used
y Benito [51], Davydov [29], Gavete [27] or Slak and Kosec [52]
14
within the framework of point collocation. h-adaptivity has also
be considered in literature based on geometric indicators [53,54].
p-adaptivity is another technique which consists in an increase
of the order of the approximation. Liszka et al. and Duarte et al.
made use of p-adaptivity, in the framework of meshless methods,
as part of the hp-meshless cloud method [55,56]. Jancic et al.
showed the benefits of p-refinement for a Poisson problem with
a strong source within the domain [57] in the framework of the
radial basis function-generated finite difference method (RBF-FD).

Our scheme is based on h-adaptivity. We selected this tech-
ique to be able to perform successive refinement iterations and
educe the observed error as much as possible. An h-adaptive
scheme is based on the repetition of a succession of steps. The
main steps that we followed are presented in the form of a
pseudo code in Fig. 20.

The algorithm is composed of three main steps:

1. Identification of the refinement areas;
2. Placement of new nodes;
3. Generation of the updated collocation model

e describe these steps in the subsections below.

.4.1. Identification of the refinement areas
The error indicators presented in Section 3 are computed at

he collocation nodes. Therefore, we decided to identify the areas
f the domain to be refined based on a selection of marked
ollocation nodes. The selection of these nodes is based on the
omputed error indicator. Different criteria can be used to deter-
ine the collocation nodes to be marked for local refinement of

he domain.
An error indicator threshold could be selected by the user.

owever, such a threshold is problem specific and cannot be
asily generalized to all problems. To help the definition of a node
election criterion, we presented the computed error indicator,
orted from the lowest error to the highest error in Fig. 21 for the
onsidered benchmark problems. The presented error indicators
re ZZ-type error indicators, computed based on the parameters
resented in Section 3.3. Vertical bars are used to visualize the
ercentage of nodes in the different error zones.
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We observe three distinct zones from the results presented
in Fig. 21. A limited number of nodes have a very low error
(approximately below 10-8 for both problems). A majority of the
nodes have an error between 10-8 and 10-4 for the plate with
an elliptical hole and between 10-8 and 10-5 for the plate with
a circular hole. Finally, a limited number of nodes have an error
larger than 10-4 and 10-5 for the plate with an elliptical hole and
the plate with a circular hole, respectively. The zones of low and
high error represent each approximately 5% of the total number
of nodes. Based on these observations, we decided to select the
nodes of highest error based on a defined fraction f of the total
number of nodes n. Therefore, the fn nodes having the highest
error are selected for local refinement. The impact of the selected
threshold on the convergence rate is analyzed in a later section
(see Section 3.4.4). This approach has similarities with the Dörfler
marking strategy [58] used in the framework of adaptive finite
element method [59].

In order to obtain as smooth a refinement pattern as possi-
ble, we also selected, for local refinement, all the stencil nodes
associated with the selected nodes of highest error. The results
presented in Fig. 22 show the benefits of this approach for the
problems of a plate with an elliptical hole and for the plate with a
circular hole. We presented first the pattern of the error indicator,
based on a ZZ-type error indicator. Then, we present the nodes
15
selected based on a fraction of the nodes of highest error. 10%
of the nodes showing the largest computed error indicator are
marked in red. Finally, we show all the nodes marked for local
refinement based on the method described above (i.e., the nodes
of highest error and their corresponding stencil nodes). We see
that the boundaries of the zones marked for local refinement are
smooth and correspond to the zones of highest computed error
indicator.

3.4.2. Placement of new nodes
We presented in Section 3.4.1 how we select the zones for

local refinement. Once these zones are identified, we add new
nodes to the domain with the aim of placing them as far as pos-
sible from existing nodes to avoid ill-conditioning of the refined
discretization. The refinement process consists in three steps:

1. Refinement of the boundaries of the domain;
2. Refinement of the interior of the domain;
3. Deletion of the nodes which are too close to other nodes.

Step 1: Refinement of the boundaries of the domain. The bound-
aries of the domain are refined first. We use boundary elements
to discretize surfaces for 3D problems and facilitate the im-
plementation of the visibility criterion as described in Ref. [2].

Those elements are used as part of the refinement process to
Fig. 20. h-adaptivity algorithm considered for the presented adaptive refinement method.
Fig. 21. Distribution of the error in terms of ZZ-type error indicator for the problem of a plate with an elliptical hole (left) and for the problem of a plate with a
ircular hole (right). Three distinct zones are observed on these graphs. Less than 10% of the nodes have a very low error (nearly zero). Approximately 80%–90% of
he nodes have an error in the similar range (10-8-10-4 for the plate with an elliptical hole, 10-8-10-5 for the plate with a circular hole). Less than 10% of the nodes
ave an error much larger than the other nodes.
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Fig. 22. Pattern of the ZZ-type error indicator and selection of the nodes for local refinement based on a fraction of the nodes of highest error and based on a
fraction of the nodes of highest error and all the stencil nodes of these collocation nodes. The results are presented for the problems of a plate with an elliptical
hole and for the plate with a circular hole.
facilitate the placement of new nodes far from existing nodes. The
approach for 2D and 3D problems is different. We present both
approaches below.

The elements connected to the boundary nodes marked for
local refinement are selected for local refinement. In 2D, new
nodes are added in the center of the elements selected for refine-
ment, and then projected onto the CAD boundary of the domain.
The elements are then split into two new surface elements. In
3D, the new nodes are added in the center of the edges of the
elements selected for refinement, and then projected onto the
CAD boundary of the domain. The refined surface elements are
split into four new surface elements if the surface is discretized
with triangular elements. The element normal vectors are then
re-computed.

Fig. 23 shows a domain Ω with boundary ΓΩ for the case of a
D problem (left) and a 3D problem (right). A collocation node
arked for local refinement is shown in red color. The edges
f surface elements connected to the marked collocation node
16
are shown by dashed lines in blue color. New boundary nodes
are added in the vicinity of the marked collocation node and
are shown in green color bounded by dotted lines. The nodes
obtained are part of the refined discretization.

In 2D, the projection of new nodes onto the boundary of the
domain consists only in a projection of the new node onto the
edge of the domain. In 3D, the new boundary nodes, not located
at the intersection between two faces, are projected onto the
surface, parent to the boundary element. If some edges of the
boundary elements are located at the intersection of faces of the
domain, the new nodes placed in the middle of those edges are
projected onto the intersection of faces. Those intersections often
correspond to edges of the domain. Therefore, such a projection
allows for an accurate refinement of the edges of the domain. This
projection is illustrated by Fig. 24. The new node, in the middle
of the refined edge, shown in red dotted line should be projected
onto the edge at the intersection between the gray and orange
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Fig. 23. Computation of the position of new boundary nodes. Collocation nodes marked for local refinement are shown in red color. New boundary nodes, shown
in green color bounded by dotted lines, are added in the middle of the edges of the elements connected to the collocation node and projected onto the surface
or edge of the domain. The obtained nodes are part of the refined discretization. (For interpretation of the references to color in this figure legend, the reader is
referred to the web version of this article.)
Fig. 24. 3D edge refinement. The true faces of the CAD geometry are shown on the left. The faces are discretized using boundary elements. The edge shown in the
ed dotted line is located at the intersection between two discretized surfaces. This edge is refined. The middle point of the edge, shown as a purple square, should
e projected onto the edge at the intersection between the gray and orange surfaces, marked 1⃝ and 2⃝ respectively since a projection onto one of these surfaces
ould lead to a node outside of the domain.
urfaces, marked 1⃝ and 2⃝ respectively. A projection on either
urface would lead to a node outside of the domain.
To facilitate the projection process, the reference of the CAD

opological entities (edge or face) should be associated with each
ode of the smart cloud. For 3D problems, the reference of the
arent edge should also be associated with the node of the smart
loud node located at the intersection between two surfaces.

tep 2: Refinement of the interior of the domain. The zones around
he interior nodes marked for local refinement are considered
nce the new boundary nodes have been added to the refined
iscretization. Voronoi diagrams are used to place the new nodes
s far as possible from existing nodes and new boundary nodes. In
wo dimensions, all the nodes located on the edges of a Voronoi
ell are located at equal distance from two adjacent nodes. The
orners of a Voronoi cell are located at equal distance from three
djacent nodes as shown in Fig. 25.
17
Voronoi diagrams are computed at all the collocation nodes
marked for local refinement. The existing nodes of the discretiza-
tion and the new boundary nodes are considered in the compu-
tation of the Voronoi diagrams. Only the Voronoi cells around
the marked collocation nodes are of interest. All the corners of
the selected cells are added to a list of new candidate nodes. The
duplicated nodes are deleted from this list.

Step 3: Deletion of the nodes too close to another node. The final
step of the node placement process consists in the deletion of
the nodes too close from other nodes. For this, a characteristic
length is computed at each node of the initial discretization. It
corresponds to the minimum distance between the considered
node and its adjacent closest node (also based on the initial
discretization). The characteristic length associated with a new
node of the domain is the characteristic length of its closest node



T. Jacquemin, P. Suchde and S.P.A. Bordas Computer-Aided Design 154 (2023) 103409

i

f
h
r

h

Fig. 25. Computed Voronoi diagram for a set of collocation nodes — Use for new node selection.
Fig. 26. Exact and indicative l2 relative error norm for the problem of a plate with an elliptical hole. Results from adaptive refinement based on a ZZ-type error
indicator for adaptive threshold ratio between 0.02 and 0.20 are compared results obtained from a global refinement of the domain discretization.
Fig. 27. Exact and indicative l2 relative error norm for the problem of a plate with a circular hole. Results from adaptive refinement based on a ZZ-type error
ndicator for adaptive threshold ratio between 0.02 and 0.20 are compared results obtained from a global refinement of the domain discretization.
rom the initial discretization. This minimum distance is noted
Loc. The minimum allowed inter-node distance, noted hMin, is the
atio of hLoc to a factor α:

Min =
hLoc

α
. (23)

We selected α = 3 in our work.
18
3.4.3. Generation of the updated collocation model
We presented in Section 3.4.2 a method to place new nodes

on the boundary of the domain and in the domain based on
a selection of marked collocation nodes. The generation of the
updated collocation model is the next step.
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The process is the same as the one described in Section 2.3.
The boundary nodes of the smart cloud have references to their
parent edge or surface and also references to the boundary con-
ditions associated to these entities. New boundary nodes can
be located at the intersection of multiple surfaces. In this case,
we apply first the boundary conditions of the surface associ-
ated to stress loading boundary conditions, if any. Then, we
set the Dirichlet boundary conditions and finally the stress-free
boundary conditions.

3.4.4. Node selection threshold sensitivity
We assessed in this section the impact of the node selection

threshold on the convergence of the error using model adaptivity.
We considered node selection threshold values between 0.02
and 0.2 based on the trend of the results presented in Fig. 21.
The results are presented in Figs. 26 and 27 for the benchmark
problems introduced in Section 3.2. We compared the results in
terms of ‘‘exact’’ l2 relative error norm and in terms of ‘‘indicative’’
l2 relative error norm. We also compared the results obtained
from the adaptive refinement technique presented in this article
to results obtained using global refinement (uniform refinement
of the domain).

The results show that the convergence rate is the largest for a
threshold of 0.02 for the problem of a plate with an elliptical hole.
After six iterations of iterative refinement, the error obtained is
more than three times as low as those obtained with the largest
node density considered for the case of global refinement. Such
a solution is obtained with approximately 40 times fewer nodes.
For the problem of a plate with a circular hole, a threshold of
0.02 leads to a non monotonic error reduction. A node selection
threshold of 0.2 leads to results similar to the results obtained
using a global refinement strategy. We selected a threshold of
0.05 for the problems solved in the next sections of the article.
This value is a good compromise between rapid convergence of
the solution and non monotonic error reduction.

3.4.5. Node relaxation
The addition of new nodes in the domain leads to regions of

relatively high node density and regions of relatively low node
density. Node relaxation can be used to smooth-out transitions
between these regions. It consists in the application of a Laplace
smoothing operator to nodes of the point cloud to obtain a uni-
form discretization. We used the relaxation method of the library
Medusa for this purpose [60].

Rather than applying node relaxation to the entire domain,
we preferred a local approach to smooth-out only the transitions
19
between fine and coarse regions. At each node of the refined
domain, we select the 30 nearest neighbor nodes for 2D problems.
Then, we count the number of nodes in the ‘‘fine’’ region of the
domain. The nodes marked for adaptive refinement and the new
nodes are considered located in the ‘‘fine’’ region of the domain.
Node relaxation is performed if between 20% and 80% of the
nearest neighbor nodes belong to the ‘‘fine’’ region of the domain.

The radius Rrc is the distance between the farthest selected
neighbor node and the considered collocation node Xc. All the
neighbor nodes located at a distance between Rrc and 2

3Rrc are
considered as boundary nodes, and fixed in position, during the
relaxation process. The position of the nodes is updated once re-
laxation is performed. The nodes moved are no longer considered
part of the ‘‘fine’’ region of the domain. This process is repeated
for all the nodes of the discretization. The relaxation process is
illustrated by Fig. 28.

We show in Figs. 29 and 30 the impact of node relaxation
on the convergence of the adaptivity scheme and on the error
indicator.

We observe from these figures that node relaxation improves
the convergence rate of the error for both benchmark problems
considered. This result is expected since the node discretization
is more uniform. We notice, however, that the trend is reversed
for the two finest discretizations considered in Fig. 30. The error
for these two discretizations is larger than the error obtained for
the previous step of the considered iterative refinement schemes.
This means that the change in node density of the discretizations
leads to imbalanced stencils that negatively affect the solution.
For these two discretizations, we cannot explain why the adaptive
iterative scheme considering node relaxation leads to a larger
error than the scheme that does not consider node relaxation.
The improvement is, however, not significant and its usefulness
may be considered debatable given the computational effort it
necessitates. We did not investigate this approach further in the
context of the problems solved in the next section of the article.

3.5. Practical applications

To show the applicability of our method to more compli-
cated test cases, we present in this section additional results for
practical 2D and 3D problems. The selected problems are:

• a gear coupled to a shaft (2D);
• a closed cylinder subject to pressure (3D).
Fig. 28. Point cloud before (left) and after (right) node relaxation. Node relaxation is performed locally around collocation nodes such as Xc over the domain of
adius Rrc . Relaxation is performed when between 20% and 80% of the nodes within Rrc are located in ‘‘fine’’ discretization regions.
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Fig. 29. Comparison of the error with and without node relaxation for the problem of a plate with an elliptical hole. The exact and indicative l2 relative error norms
are shown in subfigures (a) and (b), respectively. A node selection threshold ratio of 0.05 is selected. The error obtained with node relaxation is lower than the one
obtained without node relaxation. The trend of the results is similar for both cases.

Fig. 30. Comparison of the error with and without node relaxation for the problem of a plate with a circular hole. The exact and indicative l2 relative error norms
are shown in subfigures (a) and (b), respectively. A node selection threshold ratio of 0.05 is selected. The error obtained with node relaxation is lower than the one
obtained without node relaxation for the four first iteration steps. The trend of the error indicator is closer to the trend of the exact error for the case of adaptive
refinement with node relaxation.

Fig. 31. Boundary conditions applied to model a gear coupled to a shaft by a key.

20
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Fig. 32. Gear coupled to a shaft — Solution in terms of von Mises stress obtained from a finite element model composed of 132,665 nodes and 262,193 linear
riangular elements. The results are shown for the stress range 0–7 for comparison purposes.
We generated initial discretizations of the domains, directly
rom the CAD geometry, using a triangular lattice and a hexagonal
lose-packed lattice for the 2D and the 3D problems, respectively.
e used a threshold of 0.3 to select the nodes close to the
oundary of the domain that shall be deleted.
We performed several model adaptivity iterations. We used

he ZZ-type error indicator, based on the parameters presented
n Section 3.3, to determine the areas of the domain where the
rror is likely to be high. We selected the areas to be refined based
n a threshold ratio of 0.05. Finally, we placed new nodes on the
oundaries of the domain and in the domain based on the method
resented in Section 3.4.

.5.1. Gear coupled to a shaft
We present in Fig. 31 the geometry of a gear, coupled to
shaft by a key. The gear is loaded by uniform pressure on
tooth. We used a finite element solution of the test case as
reference solution which we computed using code_aster [61]

or this purpose. The finite element reference solution to this
roblem is shown in Fig. 32. We observed three areas of stress
oncentration: the top left corner of the groove and both roots of
he loaded tooth.

We show in Fig. 33 the evolution of the point cloud and of
he results in terms of von Mises stress through four adaptive
efinement iterations. We show a general view of the domain and
detailed view of the top left corner of the groove where the

tress concentration is the greatest. The results are shown for the
tress range 0–7 for comparison purposes.
We observe from this figure that new nodes are placed at the

oots of all the teeth at the first refinement iteration. The tooth
ubject to pressure loading is the tooth being the most refined.
he area around the groove is also refined successively at each
efinement iteration. We see from the third and fourth iterations
hat areas at the interface between coarse and fine discretization
ones are also being refined. The zones correspond to areas of the
omain where the discretization is not uniform leading to larger
alues of the computed error indicator.
The von Mises stress field obtained after four iterations of

daptive refinement is smooth and close to the von Mises stress
ield of the reference finite element solution presented in Fig. 32.
e compare both solutions in greater detail in Fig. 34. We focus
n the stress field on the left side of the groove and in the loaded
ooth. In the area around the groove, we see no difference in
21
the stress field obtained from both methods. At the root of the
loaded tooth, we see a slightly larger stress concentration for the
smart cloud collocation solution. The smart cloud has a much
higher node density at the root of the loaded tooth than the finite
element discretization. The inter-node distance is approximately
0.018 in the dense region of the smart cloud. For the finite
element discretization, the inter-node distance is approximately
0.15. This tends to explain the larger computed von Mises stress
values.

We present in Fig. 35 the computed error indicator for the re-
sults obtained from the initial discretization and the four
refined discretizations. The error indicator is shown in terms of
the l2 relative error. We see that the value of the error increases
at the first iteration and then reduces relatively steadily. The
error reduction between the initial discretization and the final
refinement iteration is approximately 63%.

3.5.2. Closed cylinder subject to pressure
We present in Fig. 36 the geometry of a closed cylinder subject

to uniform pressure loading on the top of its closed end and
the associated boundary condition. The bottom of the closed
cylinder is fixed in the direction normal to the closed end of the
cylinder. We considered only a quarter of the cylinder to reduce
the computational cost. We applied Dirichlet boundary conditions
in the directions normal to the surface on the symmetry planes
XZ and YZ.

We show the results obtained for the initial discretization and
for two refinement iterations in Fig. 37. To facilitate the analysis
of the results, we also present in this figure the results for a thick
‘‘slice’’ of the domain. This allows a closer view of a portion of the
domain. The ‘‘slice’’ is the intersection of a box and the geometry.
The position of the box is shown in Fig. 38. We focus on the fillet
between the closed top and the cylinder since this is the zone
where the von Mises stress is the largest. The results are shown
for the stress range 0–37 for comparison purposes.

We observe from Fig. 37 that new nodes are placed, at each
iteration, in two areas of the domain. The first area is the fillet,
where the stress concentration is the highest. The second area is
the center of the top surface. It corresponds to the area where
the displacement is the greatest. The refinement of the domain is
relatively symmetric.

We compare in Fig. 39 the results obtained from the refined
point cloud to reference finite element solutions obtained using
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Fig. 33. Gear coupled to a shaft — Evolution of the discretization of the domain and of the solution in terms of von Mises stress through four iterations of adaptive
refinement. The results are shown for the stress range 0–7 for comparison purposes.

22
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Fig. 34. Comparison of the results, in terms of von Mises stress, based on the smart cloud adaptive collocation scheme after four adaptive refinement iterations to
results from the reference finite element solution. The comparison focuses on the groove and on the loaded tooth which are the areas where the stress concentration
is the most important.
Fig. 35. Evolution of the error indicator for the four iterations of adaptive
refinement for the problem of the gear coupled to a shaft.

code_aster [61]. We used a uniform finite element mesh com-
posed of 166,1933 nodes and 900,039 linear tetrahedra for the
purpose of this comparison. The discretization of the domain is
uniform. The smart cloud collocation scheme leads to a larger
stress concentration in the fillet than the finite element method
solution obtained from the uniform mesh. The von Mises stress
in the fillet is approximately 34–37 units for the smart cloud
collocation solution and approximately 22–28 units for the finite
element solution. The node density in the fillet is larger for the
adapted smart cloud than for the finite element discretization,
because of the two adaptive refinement iterations. The inter-node
distance is approximately 0.0077 in the fillet for the smart cloud
discretization after two refinement iterations. It is approximately
0.011 for the finite element discretization. We generate a second
finite element mesh with a similar node density in the fillet
region of the domain as the one of the smart cloud after two steps
23
of adaptive refinement. The inter-node distance is approximately
0.007 units in the fillet region and 0.013 in the other regions of
the domain. The results obtained from this ‘‘focused’’ mesh are
very similar to the results obtained from the adapted smart cloud.

We present in Fig. 40 the computed error indicator for the
initial discretization and the two discretization obtained after two
refinement iterations. The error indicator is shown in terms of the
l2 relative error norm. We see that the value of the error does
not decrease much between the results obtained from the initial
discretization and from the discretization after two refinement
steps. The error reduction is approximately 6%. A very slight
increase of the error indicator is observed between the first and
second refinement steps.

4. Conclusion

We presented in this article an integrated smart cloud collo-
cation scheme to solve mechanics problems directly from CAD
geometries. We used model adaptivity to speed up convergence
of the results, while minimizing the input of the user.

The nodes of the smart cloud contain all the information re-
quired for optimum solution of the collocation problem (e.g., ref-
erence to the exact geometry, boundary conditions, connections
to other boundary nodes). This information is key for adaptive
refinement.

We used boundary-type elements to discretize the boundary
of the domain. This approach is fast and robust since it relies on
the discretization of the simple geometric features that compose
the CAD domain. Boundary-type elements are also used to im-
prove the accuracy of the solution using a generalization of the
visibility criterion for point collocation methods. A larger number
of interior nodes can be generated efficiently using regular node
lattices such as triangular lattice for 2D domains or hexagonal
close-packed lattice for 3D domains. The CAD file is used to select
the nodes of the regular discretization which are in the domain.
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Fig. 36. Closed cylinder subject to pressure loading on the top. Uniform pressure loading is applied on the top surface. The displacement is limited in the directions
normal to the surface on the symmetry planes XZ and YZ on the bottom surface. Stress-free boundary conditions are applied to the internal and external surface of
the cylinder.

Fig. 37. Closed cylinder subject to pressure — Evolution of the discretization of the domain and of the solution in terms of von Mises stress through two iterations
of adaptive refinement. The results are shown for the stress range 0–37 units for comparison purposes.

24
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Fig. 38. Selection of a thick ‘‘slice’’ of the domain to allow a closer analysis of
the discretization and of the results.

The proposed method only relies on the selection of a threshold
parameter which is used to assess if interior nodes that are close
to boundary nodes, are to be included in the collocation model or
not. We showed that a threshold of 0.3 leads to good results.

Model adaptivity from CAD using the smart cloud collocation
scheme is based on two key steps: error indication and cloud
refinement. We presented two error indicators in this article: a
ZZ-type error indicator and a residual-type error indicator. Their
computation can be parallelized easily. Both allow a successful
identification of the areas of the domain where the error is the
greatest. We did not select the residual-type error indicator for
our adaptive refinement method because of its complexity and
computational cost. The adaptive refinement method presented
in this article is based on the initial discretization of the CAD
geometry. New nodes are added to the initial discretization to
generate a refined discretization. Boundary elements are used to
speed up the refinement process of the boundary. Once a new
node is identified, it is projected onto the actual CAD geometry,
thus ensuring that the point cloud discretization remains true
to the original CAD geometry, and is not dependent on the el-
ement resolution. The required pieces of information about the
CAD geometry and/or boundary conditions are added to the new
nodes.

Two aspects of the proposed method should be further inves-
tigated: the quality of the error indicator and the convergence of
the linear system for very large 3D problems. The error indicator
considered here allows a proper identification of the refinement
areas but cannot be considered as a good estimator. Even if an
increase of the error indicator is a sign of an increase of the
exact error, we do not consider it as a reliable estimator. The
convergence of the linear systems obtained from adapted 3D
clouds was difficult to attain. The condition of the matrices is an
aspect that should be analyzed in greater detail to speed-up the
convergence to the solution.

The use of CAD files at the heart of a collocation method is a
great advantage to reduce the steps of the analysis to a minimum
and ensure that the key features of the geometry are not lost
during the refinement process, in the context of model adaptivity.
These aspects are particularly true for domains with significant
curvature, re-entrant corners or singularities.

To conclude, the work we have done to date on numerical
methods, both within a strong-form framework [1,2,54,62] and
within isogeometric boundary element approaches [19,21–24,63–
66] makes us hopeful that, with some significant work from the
community, those approaches may have a strong impact on the
way we simulate and optimize engineering systems.
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With the advent of imaging approaches, in particular LiDAR
and photogrammetry, solving directly from point clouds and
adapting them to the simulation that is required becomes an
urgent matter. Imaging approaches have been thought out to
improve and optimize visual rendering of different scenes. Sig-
nificant work remains to be done to make those point clouds
suitable for physics-based simulations. Based on our experience,
we suggest the following research directions in this nascent field:

• [Goal-oriented defeaturing] Simplify smart point clouds
through goal-oriented defeaturing such as done by Rahimi
et al. [67] and references therein [68,69];

• [Goal-oriented error estimation and adaptivity] Minimize
the error on a given quantity of engineering interest through
goal-oriented error estimation for smart point clouds [70,
71];

• [Smart clouds to CAD] Simplify smart point clouds into
CAD primitives using classification machine learning ap-
proaches [72–76];

• [Properties identification from photogrammetry] Infer pa-
rameter values based on texture and color from photogram-
metric images [77–79];

• [Solution process] Develop preconditioners and paralleliza-
tion schemes for smart point clouds [80–82];

• [Integrated simulation pipeline] Develop open source
pipelines based on libraries such as Open CASCADE Tech-
nology [35], VTK [83], CGAL [84], Medusa [60], Voro++ [85];

• [Multi-scale model reduction approaches] Defeature com-
plex point clouds in order to accelerate simulations us-
ing multi-scale, domain decomposition and model order
reduction approaches.

We will be pursuing the above directions, both in the context
of computational engineering and computational archaeology.
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Fig. 39. Comparison, in terms of von Mises stress, of results obtained with the smart cloud method after two adaptive refinement iterations to results from reference
inite element solutions.
Fig. 40. Evolution of the error indicator for the two iterations of adaptive
refinement for the problem of the closed cylinder subject to pressure.
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