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In a recent Letter [A. Lapolla and A. Godec, Phys. Rev. Lett. 125, 110602 (2020)], thermal
relaxation was observed to occur faster from cold to hot (heating) than from hot to cold (cooling).
Here we show that overdamped diffusion in anharmonic potentials generically exhibits both faster
heating and faster cooling, depending on the initial temperatures and on the potential’s degree of
anharmonicity. We draw a relaxation-speed phase diagram that localises the different behaviours
in parameter space. In addition to faster-heating and faster-cooling regions, we identify a crossover
region in the phase diagram, where heating is initially slower but asymptotically faster than cooling.
The structure of the phase diagram is robust against the inclusion of a confining, harmonic term
in the potential as well as moderate changes of the measure used to define initially equidistant
temperatures.

Many thermal relaxation processes in nature and in-
dustry occur out of equilibrium, and thus outside of the
realm of the quasistatic approximation. As a conse-
quence, nonequilibrium thermal relaxation gives rise to
anomalous effects, such as ergodicity breaking [1] or the
Mpemba effect [2]. The latter describes the surprising
observation that some systems cool down faster, when
relaxing from a higher initial temperature. A better un-
derstanding of such anomalous relaxation effects in out-
of-equilibrium systems is important, because it may allow
us to use these phenomena to our advantage, for instance,
for increasing the rate of heating and cooling.

Although a complete understanding of anomalous
relaxation in macroscopic systems appears elusive at
present, much progress has been made recently in repro-
ducing anomalous relaxation phenomena on mesoscopic
scales. This has led to several important results such
as new theoretical [3–6] and experimental [7, 8] insights
into the Mpemba effect, strategies to increase the rate at
which systems can be cooled [9–11], and an information-
theoretic bound on the speed of relaxation to equilib-
rium [12].

Within a setup closely related to, yet slightly different
from, the Mpemba effect, a recent study [13] reported an
asymmetry in the rate at which systems heat up and cool
down. According to this study, and subsequent works
by other authors, heating occurs faster than cooling for
diffusive systems with harmonic potentials [13] and for
discrete-state two-level systems [14, 15]. On the other
hand, it was shown that this relaxation asymmetry is
non-generic for diffusion in potentials with multiple min-
ima [13] or in discrete-state systems with more than two
states [14, 15]. However, it appears to be widely be-
lieved that the described effect is a general property of
overdamped, diffusive systems with stable single-well po-
tentials [13–15].

In this Letter, we study the relaxation asymmetry for
overdamped diffusion in anharmonic potentials. Oppos-
ing common belief, we show that these systems exhibit
both behaviours, faster heating and faster cooling, even
for stable single-well potentials. Based on these results,
we draw a phase diagram locating the different regions of

“faster heating” and “faster cooling” in parameter space.
These two regions are separated by a crossover region
where cooling occurs faster at first, but heating over-
takes at a finite time. Our results suggest that the rel-
ative speed of thermal relaxation to equilibrium can be
substantially increased by varying the anharmonicity of
the potential. This should be testable in experiments and
has potential applications in the optimisation of cooling
strategies for small-scale systems [9].
To specify the problem, consider two equilibrium sys-

tems, otherwise identical, but at different temperatures
Tc < Th. We call the system at temperature Tc cold and
that at temperature Th hot. At time t = 0, both systems
experience an instantaneous temperature quench to the
same final temperature Tf , where Tc < Tf < Th. The
relaxation of the two systems toward equilibrium is mon-
itored by their nonequilibrium free-energy difference [13],

Fi(t) = ⟨∆Ei(t)⟩ − Tf ⟨∆Si(t)⟩ ,

=kBTf

∫ ∞

−∞
dx pi(x, t) ln

[
pi(x, t)

pf (x)

]
, (1)

with respect to the equilibrium distribution pf at final
temperature Tf . Here, ⟨∆Ei(t)⟩ and ⟨∆Si(t)⟩ are the av-
erage differences in the energy and entropy of the (cold or
hot) system at time t and its equilibrium state at tem-
perature Tf ; kB denotes the Boltzmann constant. The
index i in Eq. (1) takes the values c and h, and pc and ph
denote the probability densities of the initially cold and
hot system, respectively.
In order to quantitatively compare the distances Fi(t)

from equilibrium, the temperatures Tc and Th at t = 0 are
chosen so that Fc(0) = Fh(0) [13]. We call such a tem-
perature quench “F-equidistant,” i.e., at equal distance
with respect to the temperature measure (1). A com-
parison between this setup and the Markovian Mpemba
effect [3, 4] is made in Sec. I of the Supplemental Material
(SM) [16].
The specific measure (1) is used for two reasons. First,

Fi is a thermodynamic quantity for systems at equilib-
rium and hence for t < 0 and in the limit t → ∞. Second,
it remains well defined out of equilibrium and thus for all
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finite times t.
In the long-time limit, both the cold and the hot sys-

tem relax to equilibrium so that Fc(t) and Fh(t) tend to
zero asymptotically. The relative distance from equilib-
rium of the two systems is conveniently measured by the
logarithmic ratio

R(t) ≡ ln

[
Fh(t)

Fc(t)

]
. (2)

For overdamped diffusion in a harmonic potential, one
can prove that R(t) > 0, i.e., Fh(t) > Fc(t) during the
relaxation [13], i.e., heating occurs faster than cooling;
R(t) < 0 corresponds to the opposite case, that of faster
cooling. Note also that R(0) = 0 by definition of F
equidistance, Fc(0) = Fh(0). Hence, the momentary,
relative distance from equilibrium is determined by the
sign of R(t).

We study the evolution of R(t) for overdamped dif-
fusion in an anharmonic potential V (x). For simplicity,
we analyse the case of one spatial dimension and assume
V (x) to be of the form V (x) = λx2 + k|x|α, where we
consider parameter values λ, k and α for which V is con-
fining, V (x) → ∞ as x → ±∞. We move to a dimension-
less formulation by defining a timescale τ and a length
scale ℓ as

τ =
1

µkBTf

(
k

kBTf

)−2/α

, ℓ =

(
k

kBTf

)−1/α

. (3)

Here, µ is the mobility. In the dimensionless coordinates,
times are measured in units of τ , lengths in units of ℓ, and
energies in units of kBTf . In particular, the transforma-

tion t → t̃ = t/τ, x → x̃ = x/ℓ, V (x) → Ṽ = V/(kBTf ),
to dimensionless coordinates yields, after dropping the
tildes, the potential

V (x) = σx2 + |x|α , (4)

with the dimensionless parameter σ =
λk−2/α(kBTf )

2/α−1. The parameter σ quantifies
the importance of the harmonic term x2 compared to
the anharmonic term |x|α. We focus here on either
monomial potentials with σ = 0, or on the case where
σ is small. Small σ occurs whenever (1) λ is small, i.e,
the harmonic coupling is weak, or (2) k is large, corre-
sponding to strong anharmonic coupling. In addition,
one has the cases (3) 0 < α < 2 and small Tf , where the
behaviour is dominated by the (anharmonic) shape of
the potential close to the origin, and (4) α > 2 and large
Tf , i.e., the dynamics takes place in the anharmonic
wings of the potential V (x).
The Fokker-Planck equation [17] that determines the

evolution of the probability density during the relaxation
reads, in the new coordinates, ∂tpi(x, t) = Lpi(x, t) with

L = ∂x [V
′(x) + ∂x] , (5)

and initial conditions,

pi(x, 0) =
exp[−V (x)/Ti]

ZTi

. (6)

Here, we introduced the dimensionless temperature ratios
Ti that are either Th ≡ Th/Tf or Tc ≡ Tc/Tf , depending
on whether the initial temperature before the quench is
Th or Tc. Note that for the final-temperature ratio Tf ≡
Tf/Tf = 1. The constants ZTi

in Eq. (6) are obtained
from normalising the probability density.
In the limit t → ∞, the densities pi(x, t) relax to

the equilibrium distribution, pf (x) = exp[−V (x)]/Z1.
Hence, after the F-equidistant temperature quench at
t = 0, the evolution of the relative distance from equi-
librium, measured by R(t) [Eq. (1)], is a function of the
parameters σ, and α of the potential V (x) [Eq. (4)] and
of the temperature ratios Ti that enter in the initial con-
ditions (6).
Prior to the temperature quench, the hot and cold sys-

tems are prepared at F equidistance so that their free-
energy differences match. This condition implicitly re-
lates the hot and cold temperature ratios, so that we can
write Tc(Th), with

Fh(0) = Fc(0)
∣∣
Tc(Th)

≡ F0 . (7)

Because F has a single minimum at equilibrium where
T = Tf = 1 and F = 0, there is always exactly one so-
lution to Eq. (7) for which Tc(Th) < 1 < Th. Figure 1(a)
shows schematically how the free-energy difference re-
lates the different temperatures.

At t = 0, the formula for the dimensionless free energy
difference F0 at equidistance [Eq. (1) in units of kBTf ]
can be conveniently written as

F0 = [1 + (1− T )∂T −1 ] ln

(
ZT

Z1

)
, (8)

where T = Th when T > 1 and T = Tc when T <
1. Hence, in order to obtain the required F-equidistant
temperatures, we need to solve and invert Eq. (8). This
can be done analytically for σ = 0, where we find

F0 =
1

α
[T − (1 + ln T )] , (9)

and by taking the inverse

Th = −W−1

(
−Tce−Tc

)
, Tc = −W0

(
−The−Th

)
. (10)

Here, Wn(x), n = −1, 0 denotes Lambert (or product-
log) function [18]. Figure 1(b) shows Th(Tc) (red line)
and Tc(Th) (blue line) from Eqs. (10). For σ ̸= 0 the
implicit condition (7) must to be inverted numerically
but the curves remain almost unchanged (not shown).
After preparing the hot and cold systems at F-

equidistant temperatures, both systems are put in con-
tact with the same heat bath with Tf = 1. At finite time
t > 0, the probability densities pi(x, t) that enter Fi(t)
and thus R(t) are obtained from the Fokker-Planck equa-
tion by

pi(x, t) = eLtpi(x, 0) . (11)
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FIG. 1. (a) Free-energy difference F0 at time t = 0 for hot
(red line) and cold (blue line) temperatures, Th and Tc, re-
spectively. The F-equidistance relation (7) is represented by
the grey lines. (b) Th(Tc) (red line) and Tc(Th) (blue line) for
σ = 0, Eqs. (10). The grey lines and coloured labels indicate
a temperature pair (T ′

c , T ′
h), related by F equidistance.

In other words, in order to compute R(t) we must eval-
uate the operator exponential in Eq. (11). This can be
done in the short- and long-time limits, leading to pre-
cise asymptotic results for R(t). As we show below, the
asymptotics of R(t) provide an excellent characterisation
of the dynamics, also at finite t.

For short times t ≪ 1, the logarithmic ratio (2) reads

R(t) ∼ Ṙ(0)t =
Ḟh(0)− Ḟc(0)

F0
t , (12)

where the dot denotes a time derivative and F0 is the
initial free-energy difference given in Eq. (8). Through

Ḟi(0) =
∫∞
−∞dx∂t pi(x, 0) ln[pi(x, 0)/pf (x)], the short-

time evaluation of R(t) depends on the time derivative
∂tp(x, 0), evaluated at t = 0. By expanding the expo-
nential in Eq. (11) for t ≪ 1, we obtain ∂tpi(x, 0) =
(1− Ti)∂2

xpi(x, 0), leading us, after integration by parts,

to the following integral expression for Ḟi(0):

Ḟi(0) = − (1− Ti)2

Ti

∫ ∞

−∞
dx pi(x, 0)V

′′(x) . (13)

Evaluating Eqs. (13) and (8) for i = h, c, we obtain R(t)
in the short-time limit; see Eq. (12). For σ = 0 we solve
Eq. (13) explicitly, which gives

Ḟi(0) = (1− α)
(Ti − 1)2

T 2/α
i

Γ(1− 1/α)

Γ(1 + 1/α)
, (14)

where Γ(x) denotes the gamma function [18]. Accord-
ing to Eq. (12), whether the hot or the cold system
relaxes faster at short times is determined by the sign
of Ṙ(0). As a function of α and Th, where Tc follows
from F equidistance, it is therefore instructive to draw
a “phase diagram,” marking the different regions in pa-
rameter space of initially faster heating [Ṙ(0) > 0] and

initially faster cooling [Ṙ(0) < 0].
Figure 2(a) shows the short-time phase diagram for

σ = 0, spanned by Th and α. It separates into an upper
and a lower part with different short-time behaviours. In
the lower part, Ṙ(0) > 0 so that R(t) is initially positive
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FIG. 2. Relaxation-speed phase diagram for short and
long times. (a) Short-time phase diagram, calculated from
Eq. (13). Critical line for σ = 0 (dash-dotted line), σ = 0.5
and 1 (dashed lines), and σ = −0.1, −0.15, and −0.2 (dotted
lines). The black and white arrows indicate how the criti-
cal line changes as σ is increased and decreased, respectively,
from zero. (b) Long-time phase diagram, calculated using the
eigenvalue decomposition (17). Critical line for σ = 0 (solid
line), σ = 0.2 and 0.4 (dashed lines), and σ = −0.1, −0.15,
and −0.2 (dotted lines). As in Fig. 2(a), the black and white
arrows indicate how the critical line changes.

for all pairs Ti; heating is faster than cooling. In the up-
per part, cooling is initially faster than heating. The two
parts are separated by a critical line (red, dash-dotted

line) where Ṙ(0) = 0 so that R(t) vanishes to first order
in time, R(t) ∼ O(t2). For σ = 0, the critical line is ob-

tained by equating Ḟc(0) = Ḟh(0), and solving for α. The
smallest critical α value is found to be α = 3, approached
for infinitesimal temperature quenches, Ti → 1. We note
that this value, and the location of the critical line in
general, depends on the choice of temperature measure
F . However, the existence of the critical line is robust
against moderate changes of F ; see Sec. II of the SM [16].
Similarly, small variations of σ away from zero leave the

the topology of the short-time phase diagram unchanged.
The generic effect of σ > 0 on the critical line is shown
by the green, dashed lines and black arrows in Fig. 2(a),
for values of σ up to unity. We observe that slightly
increasing σ moves the critical line to higher values but
does not change the phase diagram qualitatively.
When σ is decreased to negative values, a more com-

plex behaviour emerges, shown by the blue, dotted lines
and white arrows in Fig. 2(a): For initial temperatures
close to equilibrium Ti ≈ 1, the critical line decreases
slightly, to α values below 3. For quenches far from
equilibrium, on the other hand, the critical line shifts
to higher α.
We now turn to the analysis of the long-time limit

t ≫ 1 which requires different methods. When the spec-
trum of L is discrete, the relaxation of the probability
densities pi to pf is exponential in the long-time limit.
As a result, the densities pi are determined by the leading
right eigenfunctions of L and their corresponding eigen-
values [3], obtained from the non-Hermitian eigenvalue
problem

Lrµ = λµrµ , L†lµ = λµlµ , (15)

where lµ and rµ are the left and right eigenfunctions,
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respectively, and λµ with λ0 = 0 > λ1 > λ2 > . . . are the
associated eigenvalues. Note that the right eigenfunction
r0 with eigenvalue λ0 = 0 is given by the steady-state
distribution r0 = pf and l0 = 1. The eigenfunctions
form a complete biorthogonal basis with orthonormality
relations

⟨lµ|rν⟩ =
∫ ∞

−∞
dx lµ(x)rν(x) = δµν . (16)

Expanding pi in Eq. (11) in the right eigenbasis of L we
obtain in the long-time limit t ≫ 1,

pi(x, t) ∼ pf (x) + ci,µe
λµtrµ(x) , (17)

where µ is the lowest number for which ci,µ ≡ ⟨lµ|pi(0)⟩ ≠
0. Because our problem is symmetric with respect to the
parity operation x → −x, ci,1 vanishes, so that µ = 2;
see Sec. III in the SM [16] for the case of a harmonic
potential. All higher-order terms in Eq. (17) that play
a role at finite times are exponentially suppressed in the
long-time limit considered here. Using Eqs. (2) and (17)
we find that R(t) approaches a constant R∞ for t ≫ 1
that depends only on the coefficients ci,2:

R(t) ∼ 2 ln

(∣∣∣∣ch,2cc,2

∣∣∣∣) ≡ R∞ . (18)

Hence, the relative magnitude of the free-energy differ-
ences is determined by the initial overlap between the left
eigenvector l2 of L and the initial distributions pi(x, 0)
before the temperature quench [3].

We determine ci,2 by solving the eigenvalue problem
(15) numerically, discretising it on an evenly spaced, fi-
nite lattice with small lattice spacing. Equations (15)
then become matrix eigenvalue problems involving large,
non-symmetric matrices, whose left and right eigenvec-
tors are approximations of the left and right eigenfunc-
tions rµ and lµ.

Figure 2(b) shows the long-time phase diagram for
σ = 0 obtained from numerically computing ci,2 and
evaluating R∞ in Eq. (18). The general structure of
the long-time phase diagram is qualitatively similar to
that of the short-time phase diagram in Fig. 2(a), featur-
ing regions of faster heating (R∞ > 0) and faster cooling
(R∞ < 0). For long times, however, the critical line [solid
line in Fig. 2(b)] is located at slightly higher values. Con-
sequently, the minimum of the critical line, attained for
close-to-equilibrium quenches, takes the slightly larger
value α ≈ 3.31. As in the short-time limit, the long-
time critical line is only weakly perturbed by moderate
changes of the temperature measure F ; see Sec. II of the
SM [16] for details.

Upon increasing σ, we again observe no qualita-
tive change of the phase diagram; the critical line is
merely pushed to larger α values [green, dashed lines in
Fig. 2(b)]. Negative σ, on the other hand, leads to a qual-
itative change: For σ < 0, the region of asymptotically
faster cooling becomes finite and is completely enclosed

10−1 100
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cooling faster

crossover

heating faster

Th − 1

α

0 0.1 0.2 0.3

−0.2

0

0.2 (b)

t

R

FIG. 3. (a) Superimposed short- and long-time phase dia-
grams for σ = 0, featuring the critical lines in the short-
time (dash-dotted line) and long-time (solid line) limits. The
crossover region is shown by the cross-hatched region. The
coloured dots correspond to the parameter values for the plots
in Fig. 3(b). (b) R(t) from different numerical methods for
Th = 3 and α = 3, 3.3 and 3.5, in blue, green and red, re-
spectively. The dash-dotted lines show results obtained from
Eq. (11), by numerically calculating the spectrum of L. The
solid lines are computed from numerical simulations of the
Langevin equation. The black, dashed lines correspond to
the short- and long-time asymptotics.

by the critical line [blue, dotted lines in Fig. 2(b)]. The
sensitive dependence of the relaxation dynamics on nega-
tive values of σ, observed both in the short- and long-time
limits, must be due to the emergence of bistability of the
potential V (x), Eq. (4). The existence of two potential
minima gives rise to multiple relaxation timescales asso-
ciated with the relaxation within the same minimum and
across the two minima.
From the general structure of the phase diagrams we

conclude that asymptotically steep potentials (large α)
lead to faster cooling, compared to F-equidistant heat-
ing, when the initial temperature differences are not too
large. For small α, the opposite is true. Intuitively, this
may be explained by noting that for an initially hot sys-
tem, more probability is located in the tails of the dis-
tribution. The steeper the potential, the faster this tail
probability is advectively transported toward the poten-
tial minimum, leading to faster cooling. For small α, this
advection effect is weaker, so that it is outperformed by
the diffusive broadening of the bulk of the distribution of
the cold system, thus resulting in faster heating.
Our analysis reveals the existence of distinct critical

lines in the short- and long-time limits. This results in
an overlap between the faster-heating and faster-cooling
regions at short and long times, giving rise to a crossover
region in the phase diagram. In the crossover region, the
hot system initially relaxes faster [R(t) < 0], but is even-
tually overtaken by the initially colder system [R(t) > 0].
Hence, there must be at least one finite time tc > 0 where
R(tc) = 0, i.e., the system crosses over from faster cool-
ing to faster heating.

Figure 3(a) shows the superimposed short- and long-
time phase diagrams for σ = 0 featuring the crossover
region (cross-hatched area). The dash-dotted and solid
lines show the critical lines from Figs. 2(a) and (b), re-
spectively.
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In order to study the behaviour ofR(t) in the crossover
region, and to validate our previous results, we perform
a numerical analysis of the finite-time evolution of R(t).
We focus on a few points in the phase diagram, shown
as the differently coloured dots in Fig. 3(a), where we
expect qualitatively different behaviours: For the param-
eter sets represented by the blue and red dots, we expect
heating and cooling, respectively, to be faster, both for
short and for long times. By contrast, for the parame-
ters of the green dot we expect at least one finite-time
crossover from faster cooling to faster heating.

For the finite-time analysis we use two different nu-
merical methods. First, we obtain an approximation of
pi(x, t) by using the discretised analogue of Eq. (11) ob-
tained with the discretisation scheme discussed earlier.

The second method approximates the probability den-
sity pi(x, t) by means of a Langevin approach [19]: We
simulate a large number of trajectories xi(t), i = h, c,
following the dynamics ẋi(t) = −V ′(x)+ ξ(t), where ξ(t)
is a Gaussian white-noise signal with correlation func-
tion ⟨ξ(t)ξ(t′)⟩ = 2δ(t − t′). The initial values xi(0) are
sampled from the equilibrium distributions pi(x, 0) prior
to the temperature quench. The Langevin equation is
solved numerically using an Euler-Maruyama scheme [20]
with a small time step. The probability densities pi(x, t)
are then computed by generating histograms over all lo-
cations xi(t) at discrete times t.

These methods, whose parameters are summarised in
Sec. IV of the SM [16], yield two independent numeri-
cal approximations pi(x, t) from which we then calculate
R(t). Figure 3(b) shows the so-obtained R(t), where the
colours of the curves correspond to the colours of the dots
in Fig. 3(a). The dash-dotted lines show R(t) calculated
from the discretised operator L. The lighter, solid lines
show the corresponding results from the Langevin ap-
proach. Also shown are the short- and long-time asymp-
totes (dashed lines). We observe that the asymptotes
represent a good characterisation of the dynamics of R(t)
for all times. In particular, there are no finite-time cross-
ings R(tc) = 0 for the parameter values outside of the
crossover region in Fig. 3(a), i.e., for the blue and red
curves. Inside the crossover region [see green curve in
Fig. 3(b)] we observe only a single crossing.

Furthermore, there is good agreement between the
results from the different numerical methods and the
asymptotic results. Note that the deviations between the
equally coloured curves become larger for longer times.
The reason is that for long times, the individual free-
energy differences Fi(t) in Eq. (2) become exponentially
small, so that the relative errors increase as t becomes
large. Due to this numerical difficulty, we were unable
to evaluate R(t) until convergence, as can be seen by the
discrepancy between our numerical results and the long-
time asymptotics [horizontal, dashed lines in Fig. 3(b)].

Finally, we note that far from equilibrium, for Tc ≈

0.0229 and Th ≈ 5.50, the short- and long-time critical
lines cross [see Fig. 3(a)] which implies the existence of an
inverted crossover region very far from equilibrium where
heating is initially faster but asymptotically slower than
cooling.

In conclusion, F-equidistant thermal relaxation of
overdamped diffusions in anharmonic potentials V (x)
allows for both faster heating and faster cooling, even
when V (x) has a single minimum. As a consequence, the
short- and long-time phase diagrams [Figs. 2(a) and (b)],
spanned by the (Th, α)-parameter space, are nontrivial,
exhibiting regions of faster heating and faster cooling.
Both for short and for long times, we found that cooling is
faster than heating for sufficiently large α, and heating is
faster than cooling for small α. This can be explained in
terms of a competition between the advective relaxation
of the tail probability of the hot system, and the diffu-
sive broadening of the bulk-probability in the cold sys-
tem. Despite the similarities between the short- and long-
time phase diagrams, we found that their critical lines are
different, and that the faster-heating and faster-cooling
regions overlap. Superimposing the two, we localised a
crossover region [Fig. 3(a)] where cooling is initially faster
but the rate of heating eventually overtakes. Outside
of the crossover region, we found no crossings, suggest-
ing that the short- and long-time asymptotics faithfully
characterise the relative relaxation speeds. The critical
lines separating the parameter regions with different be-
haviours are only weakly perturbed by moderate changes
of the temperature measure F or by an additional har-
monic term in the potential V (x), as long as the latter
remains single-well, i.e., σ > 0.

It would be interesting to test the relaxation-speed
crossover in experiments and thus to reproduce our phase
diagram under experimental conditions. This requires
tracking the changes in energy and entropy of the system
throughout the experiment which is possible in state-of-
the-art setups [7, 21]. On the theoretical side, it would
be desirable to understand the precise dynamical origin
of the different relaxation behaviours [22]. This might
lead to optimisation methods for the potential to achieve
faster heating or cooling, perhaps in the spirit of first-
passage time optimisation [23, 24].
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