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Abstract
We study the thermodynamics of open systems weakly driven out-of-equilibrium by
nonconservative and time-dependent forces using the linear regime of stochastic thermodynamics.
We make use of conservation laws to identify the potential and nonconservative components of the
forces. This allows us to formulate a unified near-equilibrium thermodynamics. For
nonequilibrium steady states, we obtain an Onsager theory ensuring nonsingular response
matrices that is consistent with phenomenological linear irreversible thermodynamics. For
time-dependent driving protocols that do not produce nonconservative forces, we identify the
equilibrium ensemble from which Green–Kubo relations are recovered. For arbitrary periodic
drivings, the averaged entropy production (EP) is expressed as an independent sum over each
driving frequency of non-negative contributions. These contributions are bilinear in the
nonconservative and conservative forces and involve a novel generalized Onsager matrix that is
symmetric. In the most general case of arbitrary time-dependent drivings, we advance a novel
decomposition of the EP rate into two non-negative contributions—one solely due to
nonconservative forces and the other solely due to deviation from the instantaneous
steady-state—directly implying a minimum EP principle close to equilibrium. This setting reveals
the geometric structure of near-equilibrium thermodynamics and generalizes previous approaches
to cases with nonconservative forces.

1. Introduction

The development of phenomenological irreversible thermodynamics in the first half of the twentieth

century primarily relies on the concept of local equilibrium. Since macroscopic bulk systems are considered,

equilibrium thermodynamics is assumed to hold within each volume element of the system. Exchange

processes of globally conserved quantities (e.g. energy and mass) between nearby volumes cause an

irreversible entropy production (EP). This fundamental quantity determines the amount of entropy which

is irreversibly dissipated over time, and it can be evaluated by relying on a second assumption: the gradients

of intensive quantities (e.g. temperature and chemical potential) are locally small enough to justify

linearizing the currents of the conjugated extensive conserved quantities (e.g. energy flow for temperature

gradients and particle flow for chemical potential gradients) [1–6]. A third important assumption is that

the Onsager matrix resulting from that linearization is symmetric. Justifications of this fact rely on

microreversibility and detailed balance, which holds at equilibrium. They follow two main directions. In the

first, the internal dynamics of the system is not modeled but linear stochastic equations are assumed to

describe the fluxes of extensive quantities [7–12]. The second approach is based on linear response theories,

where the internal dynamics of a system initially described by an equilibrium distribution is weakly

perturbed from the outside. The dynamical response of the system near equilibrium can then be expressed

in terms of equilibrium correlators [13–18].
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Stochastic thermodynamics (ST) is a more modern endeavor which formulates nonequilibrium
thermodynamics for systems far from equilibrium in contact with reservoirs and described by stochastic
dynamics [19–30], and has therefore become the standard setting to model far from equilibrium
mesoscopic systems. The scope of ST broadened with time: it started from describing the dynamics of the
averages of thermodynamic observables [17, 19, 21, 22] and arrived at a precise identification of their
fluctuating analogs. The central assumption of local detailed balance (LDB) relates features of the noise
induced by the reservoirs with the entropy change in the reservoir [17, 31–33]. This assumption can be
justified microscopically by assuming that the reservoirs are only weakly displaced from equilibrium by the
system [34, 35], and it is a key ingredient to study systems driven arbitrarily far from equilibrium. In fact,
the LDB property allows to translate the fluctuation theorems [36–39]—which are major breakthroughs in
nonequilibrium statistical physics—in the language of ST. These theorems provide a refinement of the
second law [24] and enable to extend thermodynamics at the trajectory level [25, 40–42]. By now, many
experimental validations of ST are available [43, 44] (and references therein).

To fix the terminology, let us consider a system in contact with two thermostats at temperatures
T1(t) and T2(t), which may depend on time. For T1(t) �= T2(t), the system is pushed away from equilibrium
by the nonconservative thermodynamic force F(t) = 1

T1(t) −
1

T2(t) . If F(t) changes in time because of a
driving protocol, this driving is said to be nonconservative. In contrast, if F(t) = 0 at all times, both the
system and the driving protocol are said to be detailed balanced. It may happen that a system does not
feature any nonconservative force, for example if a single thermal reservoir constitutes the whole
environment. In this case, the driving is detailed balanced by construction, and we speak of an
unconditionally detailed balance driving and system. Linear response theory provides a natural tool to
explore the close-to-equilibrium regime of ST and to establish connections with phenomenological
irreversible thermodynamics. Many such studies have been carried out in the past, but most consider
unconditionally detailed balance drivings (arbitrary [45–47] or periodic [48–53]) or nonequilibrium steady
states [41, 54]. Few also described systems driven by time-dependent nonconservative forces [53, 55].
However, these descriptions lack a systematic procedure to decompose the driving into its conservative and
nonconservative contributions, which is important since these two contributions generate very different
kinds of responses. A procedure to achieve this separation based on conservation laws is a quite recent
achievement [29, 56]. In this paper, we build on it to formulate a linear response theory of ST for arbitrary
drivings that makes contact with classic results of irreversible thermodynamics. We develop our theory
using Markov jump processes at the ensemble averaged level. For nonequilibrium steady states, macroscopic
theory for steady-state transport is recovered, and a symmetric nonsingular Onsager matrix ensues by
construction. For unconditionally detailed-balanced drivings, we show how to recover Green–Kubo
relations for the response of state observables. For periodically driven systems, we introduce a novel
frequency-resolved generalized Onsager matrix (75) that—in contrast to previous descriptions—is
symmetric and independent on the driving protocol. For arbitrary protocols, we show that the EPR
decomposes into two positive-definite quadratic forms, equation (118). The first reduces to the total EPR in
a NESS and contains the infinite-time response matrix of physical currents, i.e. the Onsager matrix
computed at steady state. The second gives the dissipation due to the lag of the dynamics with respect to the
instantaneous steady state identified by the forces. The minimum EP principle follows immediately.

Outline. We start by reviewing ST of Markov jump processes using conservation laws, section 2. In
section 3, we then formulate a linear response theory for perturbations only acting on the intensive field
that characterize the reservoirs. The generalisation to perturbations that also act on system quantities is
presented in section 4. The theory is illustrated on simple systems in section 5 and conclusions are drawn in
section 6.

2. Stochastic thermodynamics and conservation laws

In this section we revisit the formulation of ST that makes use of conservation laws to discriminate between
conservative and nonconservative driving forces.

2.1. Thermodynamics for Markov jump processes
We consider a system composed of a set V = {n} of mesoscopic states to which one assigns a set K = {κ}
of different extensive quantities (e.g. energy, particle numbers), denoted Yκn, see figure 1. If the system was
isolated, these quantities would be conserved. But the system is in contact with a set P = {ρ} of
equilibrium reservoirs. Each reservoir ρ is characterized by a number of intensive entropic fields [6]
conjugated with the extensive quantities exchanged with the system, e.g. inverse temperature with energy,
chemical potential divided by temperature with particle number, etc. These fields are denoted by fy with
y = (ρ,κ) and the set of all entropic fields by Y = {(ρ,κ)}. The reservoirs can trigger a set E+ = {e} of
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Figure 1. Schematic representation of a system coupled to two reservoirs. Both can exchange energy and particles with the
system through various transition mechanisms.

(directed) transitions between the mesoscopic states of the system n
e−→n′, where n, n′ are two different

states, and e is the transition mechanism. Mesoscopic states and transition mechanisms define the nodes
and edges of a directed graph (V , E+), which allows for multiple edges between pairs of nodes.
Micro-reversibility requires that each oriented edge e has a corresponding inverse transition denoted −e.
Using the notation o(e) to select the origin node of the edge e, the components of the incidence matrix that
identifies the multigraph are Dne = δno(−e) − δno(e). Since the extensive quantities are conserved in the union
of system plus reservoirs, their changes along each transition e satisfy a balance equation

Yo(−e)κ − Yo(e)κ =
∑

m

YκmDme =
∑
ρ

X(ρ,κ)e, (1)

where the matrix X = (Xye) encodes the amount of extensive quantities exchanged with each such reservoir
y along e. Micro-reversibility is formalized as the requirement that Xy,−e := − Xye. In addition to the
|K| trivial conservation laws leading to the balance equation (1), additional non-trivial conservation laws
may arise from constraints in the internal structure of the system.

The dynamics of the system obeys a continuous-time Markov process over the set of mesoscopic states.
This implies that the probability vector p(t) = (pn(t)) describing the probabilities to find the system in each
mesoscopic state at time t is the solution of the master equation generated by the |V| × |V| matrix of
transition rates W(t):

dtp(t) = W(t)p(t) = DJ(t), (2)

where the component of the vector of probability currents J(t) read

Je(t) :=we(t)po(e)(t) − w−e(t)po(−e)(t) = −J−e(t). (3)

The explicit time dependence will often be omitted in the rest of the paper.
Dynamically, the balance equations for the extensive quantities (1) give rise to the continuity equations

dt〈Yκ〉 := dt

∑
n

Yκnpn = 〈dtYκ〉+
∑
ρ

I(ρ,κ), (4)

where the last term represents the currents of extensive quantities exchanged with the reservoirs

I = X J. (5)

The thermodynamic consistency is ensured by the LDB which links the stochastic dynamics and
thermodynamics (the Boltzmann constant kB = 1) [17, 31–33]:

ln
we

w−e
= (DTS − XTf )e. (6)

Here S denotes the internal entropy of the mesoscopic states. As a result, the first term in the rhs of (6)
denotes the internal entropy change arising in the system along the transition e, while the second one
denotes the entropy changes in the reservoirs caused by the exchanges of extensive quantities.

By rewriting the probability currents (3) as

Je = wepo(e)

(
1 − e−Ae

)
, (7)
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we introduce the edge affinities

Ae := ln
wepo(e)

w−epo(−e)
(8)

which, using the LDB condition (6), take the form

A = −XTf + DT(S − ln p). (9)

Now and in the following, component-wise operations over vectors will be used: ab = (aibi), ln a = (ln ai)
and abT = (aibj). The affinities (9) represent the entropy changes in the reservoirs and in the system
(internal and self-information) induced by the transition e. The EPR along each transition can therefore be
expressed as the flux–force expression

σ̇ = JA � 0, (10)

and the total EPR by

Σ̇(t) =
∑

e

σ̇e(t) =
∑

e

Je(t)Ae(t) = JTA � 0. (11)

Here and in the rest of the paper the sum runs over the directed edges e ∈ E+. Indeed, using (9) and (6),
and introducing the average entropy of the system Ssys :=

∑
n(Sn − ln pn)pn, we find as expected [31] that

dtSsys = Σ̇ +
∑

n

pndtSn −
∑

e,y

fyXyeJe

︸ ︷︷ ︸
Entropy flow

. (12)

When the system is at equilibrium, the affinities, the currents and the EPR along every edge e vanish, which
coincides with the condition of detailed balance

Ae = 0 ⇔ wep
eq
o(e) = w−ep

eq
o(−e) ⇔ Je = 0 ⇔ σ̇ = 0. (13)

Master equations of the type (2) with (6) are widely used, for instance to model chemical and biological
systems [57–59] or electric circuits [43, 60, 61].

2.2. Topology and conservation laws
Introducing the incidence matrix D in equation (2) enables us to leverage the topological properties of the
systems. Indeed, Schnakenberg proved that cyclic sets of transitions form bases for the space of the
steady-state probability currents [19]. In reference [29] these sets were used to identify all the conservation
laws at work in the system, as well as characterizing their flowing through the system. Here, we briefly
review these results. The construction of all the quantities that we introduce is illustrated using a minimal
model in section 5.2.

The cycle decomposition of the Markov process is obtained by finding the kernel of the incidence matrix
D, i.e. the space of vectors satisfying DCα = 0. These vectors are called cycles since they identify sequences
of transitions such that one returns back to the initial state after their completion. The kernel A ≡ ker D is
spanned by |A| vectors Cα which are the column vectors of the matrix C = (Ceα). They are such that
Ceα = 0 if the cycle α does not contain the edge e and Ceα = ±1 otherwise. The sign defines the orientation
needed to complete the cycle (see the networks in the examples in section 5).

While cycles are enough to obtain the steady-state distribution of a Markov process [19], the extensive
quantities exchanged along each cycle are of relevance for thermodynamics. They are encoded in the
physical topology matrix

M :=XC. (14)

Each entry represents the amount of extensive quantity κ exchanged with physical reservoir ρ after
performing a cycle α. The constraints that the conservation laws impose on the cycle affinities are encoded
in the left null space Λ. This vector space is spanned by |Λ| = |cokerM| conservation law vectors �λ which
are the columns vectors of the matrix 𝕝 := (𝕝yλ) that satisfies

𝕝TM = 𝟘. (15)

For each conservation law �λ we can identify a corresponding conserved quantity Lλ, column vector of
the matrix L = (Lnλ), that satisfies the balance equation

DTLλ = XT�λ, (16)

or equivalently in matrix form
DTL = XT𝕝. (17)
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This result is obtained realizing that the definition (15) is equivalent to finding the subspace orthogonal to
ker D = span{Cα} because of (14). This means that the vectors �T

λX are in the cokernel of the incidence
matrix D, i.e. �T

λX ∈ cokerD = (ker D)⊥. It follows that, since (ker D)⊥ is isomorphic to the image of
DT (the coimage of D, see e.g. [62]), there exist |Λ| basis vectors Lλ that are mapped into the transposed of
�T
λX by DT. Physically, equations (16) and (17) are balance equations. The lhs quantify the changes of the

conserved quantities in the system when transitions occur. The rhs identifies the contributions to these
variations due to the different reservoirs. Notice that each Lλ is defined up to an additive constant, as only
their differences enter the balance equation. Importantly, these conserved quantities L encompass the
|K| trivial conservation laws, but also contain |Λ| − |K| � 0 non-trivial additional ones, which are system
specific (see examples 5.2 and 5.3).

In the rest of the article, we will assume that the topology is left invariant by the driving protocol, so that
the conservation laws and conserved quantities can be determined by solving equations (15) and (17) once.
If this is not the case, all results still apply, with the caveat that (15) will now have a solution 𝕝(t) that is
piece-wise constant in time, and all the objects that derive from it will inherit this property.

2.3. Fundamental forces
The balance equation (16) can be used to split the vector of entropic fields f into one block of potential

fields f p and one of fundamental nonconservative fields f f , f =
(

f f, f p

)T
. Physically, this corresponds to

selecting a minimal subset f p of entropic fields that defines a reference equilibrium for the system, and the
subset of remaining fields f f , whose presence may independently prevent the system from reaching such
equilibrium. The potential fields f p are obtained by selecting the maximal invertible submatrix of 𝕝, denoted
𝕝p. This matrix is always square, has dimension |Λ|, and is full rank, since from the definition equation (15)
it follows that rk 𝕝 = |Λ|. We call 𝕝f the remaining rectangular block of the matrix 𝕝. Equation (17) can be
solved for the exchanged quantities corresponding to f p, denoted Xp, in terms of 𝕝p, 𝕝f, and the remaining

|Y| − |Λ| exchanged quantities, Xf, with X =
(
Xf,Xp

)
:

XT
p = −XT

f 𝕝f 𝕝−1
p + DTL𝕝−1

p . (18)

This procedure leads to the following rewriting of the exchange contribution appearing in the LDB (6)

XTf = −XT
f F + DTL(𝕝−1

p )f p. (19)

Equation (19) features the nonconservative forces defined by

F := − f f + 𝕝f 𝕝−1
p f p, (20)

which we refer to as fundamental because they are a minimal set of independent mechanisms that break
detailed balance, i.e. prevent the system from reaching equilibrium. For example, in a system with two
reservoirs exchanging energy, the vector F contains the difference between the inverse temperatures of the
reservoirs (see also example 5.2).

Note that, because of the rank-nullity theorem for the |Y| × |A| physical topology matrix M, we have
that

|Fund. forces| = |Y| − |Λ| = rkM = |A| − |ker M|, (21)

i.e. the number of fundamental forces is given by the rank of M. When rkM = 0: |Y| = |Λ|; there are not
enough reservoirs for nonconservative forces to be generated; and the system is unconditionally detailed
balance. This further emphasizes how M encapsulates the thermodynamic properties of the system.

Finally, we make explicit that equation (20) defines a linear transformation from the entropic intensive
fields f to the fundamental forces and potential fields:

Tf =

(
F
f p

)
, (22)

with its block form being

T =

(
−𝟙 𝕝f 𝕝−1

p

𝟘 𝟙

)
. (23)

Notice that the transformation matrix T is involutory, i.e. T2 = 𝟙.
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2.4. EPR and thermodynamic potentials
The interplay between topological and thermodynamic properties of the system also shapes the expression
of the EPR. Indeed, using equation (19), the edge affinities (9) and the EP (10) can be rewritten as

A = XT
f F + DTΦ, (24)

and
σ̇ = JA = J

(
XT

f F + DTΦ
)
, (25)

respectively, where the stochastic Massieu potential

Φ :=φ− ln p (26)

is obtained by complementing the Massieu potential of the states

φ := S − L(𝕝−1
p )f p (27)

with the self-information −ln p. The first contribution in equations (24) and (25) describes the dissipative
contribution of the nonconservative forces, whereas the second that of the potential ones.

Using equation (25), the full EPR (11) can be thus rewritten as

Σ̇ = dtΦ +FTIf + ν̇ , (28)

where
Φ :=ΦTp (29)

is a nonequilibrium Massieu potential of the system,

If :=XfJ (30)

denotes the current of system quantities conjugated to the fundamental forces, and the residual term

ν̇ := − (dtφ)Tp (31)

denotes the average of the variation in time of the Massieu potential of the states. Equation (28)
discriminates the three core mechanisms that contribute to dissipation. The first term describes the
dissipation associated to transient relaxation effects, and it vanishes at steady state. The second term
describes the dissipation due to nonconservative flows of system quantities through the system, and it is the
only nonvanishing term for a NESS. Finally, the third term in equation (28) is a driving contribution which
describes the dissipation due to external time-dependent drivings.

In detailed-balanced systems—i.e. vanishing forces, F = 0—with no time-dependent driving, the EPR
is fully characterized by the changes of nonequilibrium Massieu potential, Φ, equation (29). Under these
conditions, this potential becomes a Lyapunov function which keeps increasing as the system relaxes to
equilibrium. To review this fact, let us first note that the state

peq =
(
peq

n

)
=
(
exp{φn − Φeq}

)
, (32)

with Φeq = ln
∑

n exp{φn} is the equilibrium state of the system, since it satisfies the detailed balance
property (13) (consider equation (24) with F = 0). Using this last expression, we obtain

Φ =
(
φ− ln p

)T
p = Φeq − DKL

(
p‖peq

)
, (33)

where we introduced the Kullback–Leibler divergence DKL

(
p‖peq

)
= pT ln

(
p

peq

)
� 0, which is

non-negative and vanishes solely at equilibrium. Using the fact that Φeq is constant, dtDKL = −Σ̇ � 0, we
recover the role of Φ as a Lyapunov function.

We conclude this section by writing the continuity equation constraining the evolution in time of the
average of each conserved quantity,

dt〈Lλ〉 = (dtLλ)Tp + LT
λdtp = (dtLλ)Tp + �T

λI, (34)

which is obtained using the master equation (2) together with equations (5) and (16). This equation
clarifies how the changes of 〈Lλ〉 follows from either intrinsic variations of Lλ due to time-dependent
driving (the first term on the rhs) or exchanges with the reservoirs (the second term on the rhs).
Equation (34) generalizes equation (4) to the case of non-trivial, system-dependent conserved quantities.

6
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3. Linear regime with protocols acting on the reservoirs

In this section we consider protocols that only act on the entropic fields characterizing the state of the
reservoirs, f , and do not affect the matrix X of physical quantities exchanged with the reservoirs. We first
obtain the linearized solution of the master equation (2) in terms of the fundamental forces and Massieu
potentials, section 3.1. In section 3.2 we consider detailed-balanced dynamics to show how Green–Kubo
relations and thermodynamic stability conditions are recovered from our approach. In section 3.3 we
consider generic periodic drivings and show that the EPR in steady conditions can be written as the
modulus of the protocol amplitudes with respect to a suitable scalar product. The matrix representing this
scalar product is used to obtain a generalized Onsager matrix in section 3.4. This is the main result of this
section. Finally, in sections 3.5 and 3.6 we analyze the response of the currents and the balance equations
under this type of protocols.

3.1. Dynamical response of generic systems
To characterize the dynamical response of systems close to equilibrium, we first establish how the currents
become linear in the edge affinities. Let the fields f eq identify some reference detailed balanced conditions
described by transition rates weq and whose equilibrium probability distribution is peq. Upon an
instantaneous and small displacement of these fields, f (t) = f eq + δf (t), the transition rates are displaced as
w(t) ≈ weq + δw(t), and in turn the probability responds as p(t) ≈ peq + δp(t). In δp and δw, only the
contributions linear in δf are retained. No probability current flows at equilibrium. Denoting by
jeq :=weqpeq the equilibrium fluxes, the first order contribution of the current (7) can be written as

J ≈ δJ = jeqδA, (35)

where the linearized affinities are obtained from equation (9), exploiting the identity for the linear
corrections δ ln p = δp/peq:

A ≈ δA = −XTδf − DTδ ln p. (36)

Equivalently, using equation (8) the affinities can be expressed in terms of the response of the rates

δA =

(
δwe

weq
e

− δw−e

weq
−e

−
∑

n

De,n
δpn

peq
n

)
, (37)

which in turn respond as

δwe =
∑

y

∂we

∂fy
δfy =

∑
y

(
∂ ln se

∂fy
− 1

2
Xey

)
weq

e δfy. (38)

For this last expression, we used the LDB (6) to write the rates in the form

we = se exp

{
1

2

(
−XTf + DTS

)
e

}
, (39)

with se :=
√

wew−e being a symmetric prefactor invariant under the exchange of e with −e. Without loss of
generality, we only consider protocols such that δS =

∑
y
∂S
∂fy

δfy = 0, as the additional term could be treated

as a perturbation in exchanged quantities X, considered in section 4.
Equations (35)–(37) establish the linear response of currents and affinities. Note however that the

response (36) is written in terms of two physically distinct contributions: the first one is due to the variation
of the external intensive fields, δf , while the second is a dynamic response and only depends on the current
state of the system, which is represented by the instantaneous relative deviation from the equilibrium
distribution, δ ln p = δp/peq.

Before we proceed with our derivation of the linearized master equation, we introduce the Hermitian
scalar product 〈·, ·〉 over the space of edge vectors defined (in matrix notation and by components resp.) by

〈a, b〉 := a†( jeqb) =
∑

e

jeq
e a∗e be, (40)

which corresponds to an equilibrium average (with equilibrium fluxes as weights over the edges instead of
probabilities). With a slight abuse of notation, we will use the same symbol for the matrix obtained from
the weighted contraction of two matrices over edges defined by

〈M,N〉ij :=
∑

e

jeq
e M∗

i,eNe,j. (41)

7
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It will be clear from the context if the result of the operation is a scalar or a matrix. Finally note that the
above definitions imply 〈Ma,Nb〉 = (Ma)†(jeqNb) = a†〈M,N〉b. This definition bears connections to the
one introduced in reference [63].

The linearized version of master equation (2), can thus be written as

dtδp = D δJ =
〈
DT, δA

〉
(42)

= −〈DT,XT〉δf − 〈DT,DT〉δ ln p, (43)

where we used equations (35) and (36). In addition, using equation (24), we can establish the alternative
formulation in terms of the nonconservative forces and the Massieu potential,

dtδp =
〈
DT,XT

f

〉
δF +

〈
DT,DT〉(δφ− δ ln p

)
, (44)

which follows from rewriting the linear contribution to the affinities (36) as

δA = XT
f δF + DT(δφ− δ ln p

)
, (45)

with

δF = −δf f + 𝕝f 𝕝−1
p δf p (46)

δφ = −L(𝕝−1
p )δf p. (47)

We remark that the perturbations acting on the symmetric part of the rates se do not contribute to δp near
equilibrium. In other words, a perturbation on the symmetric part of the rates does not influence the linear
response of the system [64, 65].

The solution of the linearized master equation (43) for a general perturbation over the intensive fields f
provides an ensemble description for near-equilibrium mesoscopic systems [64, 66] even when detailed
balance is violated. This description is readily obtained in Fourier transform, which we recall here for
convenience

ĝ(ω) :=
1

2π

∫ ∞

−∞
dτ e−iωτ ǧ(τ), (48)

(the corresponding inverse transform being ǧ(t) =
∫∞
−∞dω eiωt ĝ(ω)). Indeed, by solving for the Fourier

transform of the instantaneous deviations δ ln p̂(ω) in terms of the perturbation δf̂ (ω), we obtain

δ ln p̂(ω) =
δp̂(ω)

peq
= −A(ω)

〈
DT,XT〉δf̂ (ω), (49)

where
A(ω) :=

(
iωP+

〈
DT,DT〉)−1

, (50)

and Pnm := δnmpeq
m . The auxiliary matrix A(ω) encodes how the probability vector responds to different

frequencies. We can thus characterize the solution in time domain

p(t) ≈ peq

(
1 −
∫ ∞

−∞
dω eiωtA(ω)

〈
DT,XT〉δf̂ (ω)

)
(51)

= peq

(
1 +

∫ ∞

−∞
dω eiωtA(ω)

(
〈DT,XT

f 〉δF̂(ω) + 〈DT,DT〉δφ̂(ω)
))

, (52)

where we also used equation (24). This near-equilibrium solution of the master equation characterizes the
dynamical response of the system to protocols with arbitrary time-dependence.

3.2. Response of unconditionally detailed-balance systems
For unconditionally detailed-balanced systems, we can obtain simple expressions for both the response of
the system quantities and the total dissipation during the relaxation to equilibrium. These results will be
later generalized to systems in which detailed balance is broken by nonconservative forces.

3.2.1. Linear response theory for system quantities
Let us consider an unconditionally detailed-balanced system that is initially prepared in an equilibrium
steady state, peq′ , defined according to equation (32). Without loss of generality, we can write

φn = φ
eq′
n = Sn − Lnλ f ′λ, as a one-to-one mapping can be constructed between Y and Λ in absence of

nonconservative forces—in other words, we regard 𝕝p as similar to an identity matrix. A small perturbation

8
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of the intensive fields, f = f ′ + δf , causes a change δp(t) in the probability vector. Since F = 0, by solving
equation (44) we get

δp(t) =

∫ t

0
ds exp

{
−(t − s)

〈
DT,DT

〉
P

}〈
DT,DT〉 δφ(s). (53)

The matrix
〈
DT,DT

〉
enjoys the following important property

〈
DT,DT〉P−1 =

(∑
e

jeq
e

peq
m
DneDme

)
=

(∑
e

weq
−eDneδmo(e) −

∑
e

weq
e Dneδmo(−e)

)

=

(∑
e

jeq
e

peq
n
DmeDne

)
=
(〈
DT,DT〉P−1

)T
, (54)

which follows from the definition of the incidence matrix D and from the detailed-balance condition
jeq
e = jeq

−e. The above property also justifies the notation used in the matrix exponential in (53) to stress the
symmetry of the matrix at the exponent. Equation (53) shows how the instantaneous response of the
probability vector is the outcome of the propagation of the changes of the Massieu potential of the states
δφ. The propagator, in turn, is essentially determined by topological and thermodynamic properties of the
system through

〈
DT,DT

〉
P−1.

We now turn our attention to the linear response coefficients of the conserved quantities, Lλ, since these
provide a fundamental description of the state of the system. After the perturbation, the deviations of the
average Lλ from their equilibrium value are given by

δ〈Lλ(t)〉 = LT
λδp =

∫ t

0
ds

〈
L(t − s)

〈
DT,DT

〉
P

δφ(s)

〉
eq

, (55)

where we have introduced the evolved observable

Lλ(t) := LT
λ exp

{
−t

〈
DT,DT

〉
P

}
, (56)

and the equilibrium average must be intended as a component-wise multiplication by peq.
Equation (55) is the Agarwal fluctuation–response relation for the conserved quantities in an

unconditionally detailed balanced systems [18, 30, 67–70]. Since we are considering perturbations of
systems in thermal equilibrium, one can show that the response matrix is proportional to the derivative of
the self-correlation matrix. In fact, since these perturbations only act on the intensive fields f , we can
compute explicitly δφ = −

∑
λ Lλδfλ, and from equation (53) we obtain the Green–Kubo relation

δ〈Lλ(t)〉
δfλ′(s)

=
∂

∂t
〈Lλ(t − s)Lλ′ 〉eq. (57)

This formula immediately implies Onsager reciprocity

δ〈Lλ(t)〉
δfλ′(s)

=
δ〈Lλ′(t)〉
δfλ(s)

, (58)

because the exponential matrix appearing in (56) is symmetric.
We have here discussed the linear response regime of conserved quantities for the simplest class of

dynamics—viz unconditionally detailed balance—and recovered the celebrated Onsager’s reciprocity
relation. However, this proof cannot be used for system in which the nonconservative forces (such as
externally imposed gradients) are present: proofs of Onsager reciprocity in nonequilibrium steady states
indeed require different methods [19, 40, 41, 54, 71]. In section 3.4 we will give the construction of
response functions expressed in terms of fundamental thermodynamic forces (20). Our approach will (i)
provide a natural connection with results from macroscopic thermodynamics, and (ii) generalize the proof
of Onsager symmetry to time-dependent nonconservative forces.

3.2.2. Relaxation between different equilibrium states and thermodynamic stability
We now specialize our discussion to purely relaxation processes and investigate the corresponding entropy
dissipation. In these processes, the system transitions from one equilibrium state to another as the outcome
of an instantaneous switch of the entropic fields from f ′ to f = f ′ + δf at t = 0. Since no nonconservative
force is present—i.e.F = 0—the two contributions to the EP (equation (28)) are the difference of Massieu
potential between the initial and final state and the work done by the driving mechanism to produce the

9
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switch. The latter contribution is readily evaluated: ν̇ = −(dtφ)T p = −δD(t)
∑

λδfλLT
λpeq′ , where δD(t) is a

Dirac delta distribution.
Upon integration of the EPR (28) with the help of (33) we obtain

Σ :=

∫ ∞

0
dt Σ̇(t) = Φeq − Φeq′ −

∑
λ

δfλLλnpeq′
n = DKL

(
peq′
∥∥∥peq
)
. (59)

The last equality follows from the definition (26), the fact that equilibrium Massieu potentials are constants,
and the constraints on the conservation of probability,

∑
n δpn = 0:

Φeq =
(
φ− ln peq

)T
(peq′ + δp) =

(
φ′ −

∑
λ

δfλLT
λ − ln peq

)T

peq′

= Φeq′ +

(
−
∑
λ

δfλLT
λ − ln

peq

peq′

)T

peq′ = Φeq′ −
∑
λ

δfλLT
λpeq′ + DKL

(
peq′
∥∥∥peq
)
.

(60)

By solving the integral in equation (53) with δφ(s) = θ(s)
∑

λδfλLT
λ one obtains the total probability

deviation
Δpn := lim

t→∞
δpn(t) =

∑
λ

δfλ
(
〈Lλ〉eq − Lλn

)
peq

n . (61)

Using this expression, and the conservation of probability, we can rewrite the total dissipation (59) at the
leading order as

Σ ≈ 1

2

〈(
(Δp)

peq

)2
〉

eq

=
1

2

∑
λ,λ′

δfλδfλ′
(
〈LλLλ′ 〉 − 〈Lλ〉〈Lλ′ 〉

)
. (62)

By recognizing the last term on the right-hand side as the covariance matrix of the conserved extensive
quantities Lλ, we immediately see that the matrix

∂2Σ

∂fλ∂fλ′
= −

∂2〈Φ〉eq

∂fλ∂fλ′
=

1

2

(
〈LλLλ′ 〉 − 〈Lλ〉〈Lλ′ 〉

)
(63)

is positive semi-definite. The first equality holds because of (59). In the thermodynamic limit, this relations
entail the so-called thermodynamic stability conditions. These constraints indeed follow from the fact that
the principal minors of ∂λ∂λ′ 〈Φ〉eq —which corresponds to quantities such as heat capacity and
compressibility—inherit the negative semi-definiteness.

In the following section, we develop the above treatment in the more general setting in which
nonconservative forces and arbitrary driving protocols are present.

3.3. EPR of periodic steady states
We here aim at expressing the EPR as bilinear form in terms of the protocol’s Fourier amplitudes, since this
provides a useful geometric characterization of the dissipation due to periodic protocols.

We start our derivation by linearizing the edge currents appearing in the EPR (11) in terms of the edge
affinities (9),

Σ̇(t) ≈ 〈δA(t), δA(t)〉. (64)

This expression is valid for weak perturbations with arbitrary time-dependence, and will serve as a basis for
the result presented in section 4.4.2. Focusing here on the frequency domain and applying the Fourier
transform (48) we obtain

Σ̇(t) ≈
∫

dω dω′ ei(ω+ω′)t
〈
δÂ(ω)∗, δÂ(ω′)

〉
. (65)

We seek to express the EPR (65) in terms of the variations of the entropic fields δf . We first combine
equations (36) and (51) to express the response of the edge affinities as δÂ(ω) = R(ω)δf̂ (ω), with the
response matrix given by

R(ω) := − XT + DTA(ω)
〈
DT,XT〉. (66)

Consider now the specific case of a periodic driving protocol of period T containing multiple
commensurate frequencies ωk =

2πk
T . The system will relax to a periodic steady state, as equation (51) shows

for a protocol of the form δf (t) =
∑

keiωkt f̂ (ωk). This periodic state is reached after the longest relaxation

10
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time of the dynamics. The edge affinities become

δÂ(ω) =
∞∑

k=−∞
δÂ(ωk)δD(ω − ωk) =

∞∑
k=−∞

R(ωk)δf̂ (ωk)δD(ω − ωk), (67)

and we can use this expression to characterize the lowest order contribution to the EPR (65) averaged over
one period

Σ̇ :=
1

T

∫ T

0
dt
∑

j,k

ei(ωj+ωk)t
〈
δÂ(ωj)

∗, δÂ(ωk)
〉

(68)

=
∞∑

k=−∞
Σ̇(ωk), (69)

with

Σ̇(ωk) :=
〈
δÂ(ωk), δÂ(ωk)

〉
(70)

= δf̂ (ωk)†〈R(ωk),R(ωk)〉δf̂ (ωk). (71)

Equation (69) is a first result obtained from of our approach: the EP per period in the periodic steady
state is written in terms of a scalar product over the space of the Fourier components of the perturbation.
Different frequencies contribute to the total EPR independently from each other, as a consequence of the
linearization procedure. This is instrumental for the next result of the paper, viz the construction of a
generalized Onsager matrix. Notice that the expression (69) is such that the average EPR of each Fourier

mode is non-negative, as it is the modulus of a vector, namely Σ̇(ωk) � 0. It follows that Σ̇ � 0.
Another implication of equation (69) is related to time-reversal invariance. Since the matrix product

(41) is Hermitian, we have that the EP corresponding to a forward protocol, f (t), coincides with that of to
the time reversal protocol, δf TR(t) = δf (−t). Indeed, from the equality
δf TR(ωk) =

∫
dt eiωktδf (−t) = δf (ωk)∗, we find that

Σ̇TR(ωk) =
〈
δÂ∗(ωk), δÂ∗(ωk)

〉
= Σ̇(ωk). (72)

We remark that, because of the presence of equilibrium fluxes in the Hermitian product (40), the average
EP of a mode depends on the complete knowledge of the equilibrium rates of the reference equilibrium
state.

3.4. Response of the EPR: a generalized Onsager matrix
We now build on equation (69) and the use of the fundamental thermodynamic forces introduced in
section 2.2 to construct a generalized Onsager matrix.

We preliminary recall the decomposition of the intensive fields introduced in equation (22),

Tδf̂ (ωk) =
(
δF̂(ωk), δf̂ p(ωk)

)
, (73)

which is here expressed in the frequency domain. The first subvector accounts for the nonconservative
forces δF̂(ωk) = −δf̂ f(ωk) + 𝕝f 𝕝−1

p δf̂ p(ωk), while the second for the perturbation to the potential fields,
which are left invariant by T. The latter term is responsible for changes of the reference equilibrium.
Inserting the identity matrix written as 𝟙 = T2 to the left and to the right of the quadratic form in
equation (69), we can rewrite the EPR of a mode as

Σ̇(ωk) :=

(
δF̂(ωk)

δf̂ p(ωk)

)†(
Off(ωk) Ofp(ωk)
Opf(ωk) Opp(ωk)

)(
δF̂(ωk)

δf̂ p(ωk)

)
. (74)

The matrix
O(ωk) = TT〈R(ωk),R(ωk)〉T (75)

appearing in equation (74) is the generalized Onsager matrix of the system. Indeed, it characterizes how the
EPR responds to the variations of the fundamental forces F̂(ωk) and the fields f̂ p(ωk) at frequency ωk. The
explicit blocks of the generalized Onsager matrix (75) are expressed in terms of the matrices Rf and Rp

defined by

Rf(ωk) := − XT
f + DTA(ωk)

〈
DT,XT

f

〉
, (76)

11
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Rp(ωk) := − XT
p + DTA(ωk)

〈
DT,XT

p

〉
, (77)

where the indices p and f selects the rows of X consistently with the identification of nonconservative forces
and potential fields in equation (23). The generalized Onsager matrix in block form reads

O(ωk) =

( −𝟙 𝟘
(𝕝−1

p )T𝕝Tf 𝟙

)(
〈Rf,Rf〉

〈
Rf,Rp

〉
〈
Rp,Rf

〉 〈
Rp,Rp

〉)(
−𝟙 𝕝f𝕝−1

p

𝟘 𝟙

)
(78)

=

⎛
⎝ 〈Rf,Rf〉 −

(
〈Rf,Rf〉𝕝f𝕝−1

p +
〈
Rf,Rp

〉)

−
(
〈Rf,Rf〉𝕝f𝕝−1

p +
〈
Rf,Rp

〉)T
(𝕝−1

p )T𝕝Tf 〈Rf,Rf〉𝕝f𝕝−1
p + (𝕝−1

p )T𝕝Tf
〈
Rf,Rp

〉
+

〈
Rp,Rf

〉
𝕝f𝕝−1

p +
〈
Rp,Rp

〉
⎞
⎠.

Equation (74) is a central result of this work. It is the bilinear form that gives the EPR for each frequency
mode of the protocol. Crucially, equation (74) discriminates the perturbations of different nature. The
blocks corresponding to F̂(ωk) describe the response to perturbation affecting the nonconservative forces.
In contrast, the blocks corresponding f̂ p(ωk) describe how the EPR responds to variations of the reference
equilibrium. The generalized Onsager matrix (75) is symmetric for each frequency as it results from
applying the matrix T and its transpose to the symmetric matrices 〈R(ωk),R(ωk)〉.

The first diagonal block at zero frequency Off(0), which we call static, plays a special role as it gives the
total dissipation for steady-state processes. In a later subsection, we will indeed prove that the other three
blocks in equation (74) do not contribute to the dissipation in steady state, viz Ofp(0) = OT

pf(0) and
Opp(0) all vanish.

Physically, finite values of δf̂ p(0) must be understood as adiabatic, infinitesimal changes of the reference
equilibrium, thus not affecting the EPR in a periodic steady state.

We remark that, in contrast to previous generalizations of the Onsager matrix, our construction
guaranties that (i) such a matrix is symmetric, (ii) it solely depends on the system and not on the protocol,
and (iii) the time-reversal operation (ω →−ω in frequency space) leaves the matrix invariant, cf references
[53, 55].

3.5. Response of the currents and conserved quantities
We focus now on the physical currents in the periodic steady state, I =

∑
kÎ(ωk)eiωkt , whose variations read

δI = XδJ =
〈
XT, δA

〉
. (79)

Using the response function introduced in equation (66), we readily obtain the Fourier components

δÎ(ωk) =
〈
XT,R(ωk)

〉
δf̂ (ωk). (80)

The validity of Onsager reciprocal relations is clear: from equation (66), one immediately sees that the
Onsager response matrix of the physical currents,

〈
XT,R(ωk)

〉
in equation (80), is symmetric.

To recover the Onsager reciprocal relation for perturbations described in terms of fundamental forces
and potential fields, an appropriate linear transformation of the currents is required. Using the
decomposition in terms of the fundamental forces and potential fields, equations (22) and (73), together
with equation (80), we obtain

(
δÎf(ωk)

−(𝕝−1
p )T𝕝Tf δÎf − δÎp(ωk)

)
= −TTδÎ(ωk) = TT〈−XT,R(ωk)

〉
T

(
δF̂(ωk)

δf̂ p(ωk)

)
. (81)

Again, it is readily seen that TT
〈
−XT,R(ωk)

〉
T is symmetric.

We can now characterize the response of conserved quantities. By rewriting the balance equation (34) in
terms of the perturbations in the frequency domain, and using equation (81), we obtain

iωkδ ̂〈Lλ(ωk)〉 = �T
λ

〈
XT,R(ωk)

〉
T

(
δF̂(ωk)

δf̂ p(ωk)

)
. (82)

This relation generalizes the fluctuation–response relation (55) to nonconservative dynamics (δF �= 0).
Equation (82) will be further generalized in the next section, where we will also account for the possibility
that the observables itself depends on time, cf equation (108).
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3.6. Nonequilibrium steady states and relation between response matrices
We now show that the linear regime thermodynamics of nonequilibrium steady states is fully characterized
by a single system-dependent matrix (the ordinary Onsager matrix), in terms of which we obtain the
response of both the EPR and the physical currents. In this regime, obtained when ωk = 0, for all k, the
right-hand side of equation (82) must vanish for any perturbation δf̂ . This implies that

�T
λ

〈
XT,R(0)

〉
= 0. (83)

A fact anticipated in section 3.4, we now prove that Opf(0), Ofp(0), and Opp(0) all vanish, as well as the
corresponding blocks of the response matrix of the currents, equation (81). To this end, using
equations (66) and (50), we obtain the identity

〈R(0),R(0)〉 =
〈
−XT,R(0)

〉
, (84)

and then we rewrite equation (83) in matrix form by separating the blocks corresponding to forces and
potential fields,

𝟘 = 𝕝Tf 〈Rf(0),R(0)〉+ 𝕝Tp
〈
Rp(0),R(0)

〉
. (85)

By multiplying both sides by the inverse of 𝕝Tp , we obtain

(𝕝−1
p )T𝕝Tf 〈Rf(0),R(0)〉 = −

〈
Rp(0),R(0)

〉
. (86)

Finally, using some algebra and this last equality in equation (78) (with ω = 0) allows us to see that all
blocks but Off(0) vanish.

We now turn to the response matrix of the currents appearing in equation (81). First, we apply the
identity (84) to the generalized Onsager matrix (75), yielding

TT〈−XT,R(0)
〉
T = O(0), (87)

i.e. that the generalized Onsager matrix coincides—at steady state—with the response matrix of the
currents, equation (81). Therefore, this latter matrix has only one nonvanishing block coinciding with
Off(0). The equivalence of these matrices is valid solely at steady state,

δÎf(0) =
〈
−XT

f ,Rf(0)
〉
δF̂(0) = Off(0)δF̂(0), (88)

in agreement with classical treatments of the linear regime [7]. A physical consequence of the above
reasoning is that no steady current can be sustained by just shifting the equilibrium state by δf̂ p(0). This
also clarifies that the response matrix of the currents, equation (81), does not coincide with the generalized
Onsager matrix (75) at arbitrary frequency.

We conclude this section with a simple yet important physical implication of the linear response regime
of periodically driven systems: no current can flow against the average thermodynamic force. Indeed, the
direction of the currents is determined by the average thermodynamic force applied since equation (88) can
be rewritten as

If ≈ δÎf(0) = Off(0) δF̂(0) = Off(0) δF . (89)

In other words, for perturbations to which this theory applies, it is not possible to establish a current
against a nonconservative force δF by acting on the potential fields f p. The components Ip can be obtained

as linear combinations of the fundamental currents If, as can be seen from equation (81).

3.7. Linear response theory for tightly-coupled systems
An important case in applications is the one of tightly-coupled systems [72], e.g. when transport of energy
can only be achieved by moving particles from one reservoir to another, as in the example 5.2.
Mathematically, this is expressed by the existence of a conservation law �t.c. that satisfies

�T
t.c.X = 0, (90)

that is a stronger condition compared to equation (15). It implies a constraint for the instantaneous
currents in the reservoirs, as it is shown by multiplying the definition on the right by the probability flux j

�T
t.c.I = 0. (91)

In the simple case of a system with two entropic fields and exchanged quantities, the above condition is
equivalent to require the proportionality of the two currents. In general, equation (91) means that the
emergence of system-specific conservation laws forces different transport mechanisms to happen

13



New J. Phys. 24 (2022) 083021 D Forastiere et al

simultaneously. The immediate consequence of (90) is that both the response matrix of the currents
(80) and the generalized Onsager matrix (75) have �t.c. as left null vector, and will thus be degenerate.

4. General protocol involving reservoirs and system quantities

We now consider the most general class of protocols: those that act not only on the intensive fields of the
reservoirs, f , but also on the extensive quantities of the system, X. This is motivated, for instance, by
experiments in which an electric or magnetic field is used to change the energy levels of the system. We first
derive the dynamical as well as topological effects that these protocols have on the system. We then
investigate thermodynamic forces and currents, highlighting the differences with the simplified picture
presented in section 3. Finally, we establish a general expression of the near equilibrium EPR that is valid at
finite times, and examine its consequences for the minimum EP principle and for the adiabatic regime of
driving.

4.1. Response of topology and dynamics
The additional perturbation of the system quantities is denoted by X(t) = Xeq + δX(t), and affects the
state-wise value of the conserved quantities L �→ L+ δL. In fact, adapting the definition of conservation
laws and the balance equation equations (16) and (15), we get the equation to compute the change in the
conservation law matrix

CT(X+ δX)T(𝕝+ δ𝕝) = 0, (92)

that in turn gives the balance obeyed by the perturbed conserved quantity

δXT�λ + XTδ�λ = DTδLλ. (93)

We mention that, as pointed out in section 2.2 and explained in more details in reference [29], only the
non-trivial (system-specific) conservation law vectors can depend on the protocol, giving δ𝕝 �= 0, since the
trivial ones (energy conservation, etc) will always be independent on the instantaneous value of the systems’
parameters.

Aware of the subtleties of this general type of perturbation, we now proceed to describe how the
linearized dynamics is affected. The expression of the affinities in equation (36) and the corresponding
master equation in equation (42), must now be replaced by

A ≈ δA = −δXTf eq − XTδf − DTδ ln p, (94)

and
dtδp = −

〈
DT, δXT〉f eq −

〈
DT,XT〉δf −

〈
DT,DT〉δ ln p, (95)

respectively. In contrast, equations (45) and (44)—which feature the decomposition in forces and potential
fields—remain formally correct since F eq = 0. However, the perturbations of the Massieu potential now
read

δF = −δf f + 𝕝f 𝕝−1
p δf p + δ(𝕝f 𝕝−1

p )f eq
p (96)

δφ = −L (𝕝−1
p ) δf p − δL (𝕝−1

p ) f eq
p − L δ(𝕝−1

p ) f eq
p , (97)

cf equation (47). Note that the nonconservative forces are affected by perturbations of system quantities
solely through the conservation law vector (the last term in equation (96)), see example 5.2.

4.2. Current response
The response of the physical currents changes when the perturbation acts both on X and f compared to the
situation in section 3.5. It features time-dependent terms containing δX and δf . Since at the reference
equilibrium Jeq = 0 by definition, the first order contribution to the physical currents is

δI = δ(XJ) = XδJ = −
〈
XT, δ(XTf ) + DTδp

〉
(98)

= −
〈
XT,XT〉δf −

〈
XT, δXT〉f eq −

〈
XT,DT〉δp. (99)

Comparing equation (99) to equation (79) combined with (36), we note that an additional term
containing the change δX of exchanged quantities appears. In addition, δX also implicitly determines the
solution δp to the linearized master equation, equation (95). As already seen, the situation is conceptually
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simpler in the language of fundamental forces and Massieu potentials of the state. Using the decomposition
(19), we rewrite equation (99) as

δI =
〈
XT,XT

f

〉
δF +

〈
XT,DT〉δ(φ− ln p), (100)

where we used F eq = 0. This expression still contains δp, which can here regarded as an implicit function
of δF and δφ through the master equation (44). By explicating the solution for each Fourier mode,

δ ln p̂(ωk) = A(ωk)
(〈

DT,XT
f

〉
δF̂(ωk) +

〈
DT,DT〉δφ̂(ωk)

)
, (101)

we can rewrite the current as (
Îf(ωk)
Îp(ωk)

)
=

(
Qff(ωk) Qfp(ωk)
Qpf(ωk) Qpp(ωk)

)(
δF̂ (ωk)

δφ̂(ωk)

)
, (102)

where (
Qff(ω)
Qpf(ω)

)
:=
〈
XT,Rf(ω)

〉
(103)

and (
Qfp(ω)
Qpp(ω)

)
:=
〈
XT,DT〉{𝟙− A(ω)

〈
DT,DT〉} (104)

= iω
〈
XT,DT〉A(ω)P. (105)

We obtained the equality (105) by writing 𝟙 = A(ω)A−1(ω) and using the definition (50).
Since the number of potential fields (the dimension of Ip) is different from the number of nodes over

which the Massieu potential φ is defined, the response matrix Q is not square in general, and Onsager
symmetry for the current response coefficients is lost. However, the symmetry is restored at ω = 0, when
solely Qff(ω) = 〈Rf(0),Rf(0)〉 = QT

ff(ω) does not vanish. Indeed, Qfp(0) = 𝟘 and Qpp(0) = 𝟘 from the
definition (105), while Qpf(0) = 𝟘 is a consequence of equation (83).

We conclude this subsection with a remark concerning the possibility of pumping, i.e. inducing a current
by changing the Massieu potentials φ in absence of net time-averaged forces (δF̂(0) = 0). Since Qfp(0) = 𝟘
and Qpp(0) = 𝟘, the zero-frequency response to perturbation of the potentials φ reduces to zero. This
confirms the intuition gained in the discussion of equation (89): no pumping is possible in the realm of
linear ST. This extends the original no-pumping theorem [73, 74] to cases in which the nonconservative
forces are instantaneously different from zero, complementing previous results on nonequilibrium systems
with a specific form of the transition rates [75]. This is consistent with previous observations on
driving-induced net average currents in systems governed by time-dependent master equations [59, 76],
where the observed effect is nonlinear in the driving amplitude.

4.3. Response of conserved quantities
The analysis of the response of the conserved quantities in section 3.5 is here repeated for the case of general
perturbations. This time, one needs to introduce the values of the conserved quantities associated to the
reference equilibrium state, that we denote by Leq

λ . The overall change of the average conserved quantities
can be then properly defined,

δ〈Lλ(t)〉 := LT
λ(t)p(t) − (Leq

λ )Tpeq, (106)

and, upon linearizing and Fourier transforming its time derivative, with the help of equation (2), we find

iωδ ̂〈Lλ(ω)〉 = iω〈δL̂λ(ω)〉eq + (Leq
λ )TDδĴ(ω), (107)

where
〈
δL̂λ(ω)

〉
eq

:= δL̂T
λ(ω)peq. In the periodic steady state, using equations (16), (5), and (102) we find

iωk δ ̂〈Lλ(ωk)〉 = iωk

〈
δL̂λ(ωk)

〉
eq
+ �TQ(ωk)

(
δF̂(ωk)

δφ̂(ωk)

)
. (108)

This important relation is the general version of the Agarwal–Green–Kubo response formula when the
conservation laws are chosen as observables and the perturbation can act both on the reservoirs and on the
system quantities.
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The generalized version of the Agarwal–Green–Kubo relations (55) are recovered in detailed balanced
systems, for which δF = 0. Indeed, after expliciting Q, equation (105), with the help of equation (16),
equation (108) becomes

δ ̂〈Lλ(ωk)〉 =
〈
δL̂λ(ω)

〉
eq
+ LT

λ

〈
DT,DT〉A(ωk)peqδφ̂(ωk). (109)

By anti-transforming and using equation (56), we recover the expression of the response coefficients in
terms of integrals of equilibrium correlators,

δ〈Lλ(t)〉 = 〈δLλ(t)〉eq +

∫ +∞

−∞
dτ

〈
Lλ(t − τ)T

〈
DT,DT

〉
P

δφ(τ)

〉
eq

. (110)

The first contribution accounts for the explicit time-dependency of δLλ on the driving protocol, and was
assumed to be zero in the derivation of equation (55).

4.4. Response of the EPR
We complete our analysis by expressing the perturbations of the EPR. Remarkably, two distinct
decomposition of the EPR are possible, and they shed light on different aspects of the dynamics near
equilibrium. These decompositions constitute the main result of this paper. The first decomposition is
presented in section 4.4.1 and holds for periodic protocols in the periodic steady state. It provides a
generalization of equations (74) and (78). The second decomposition, introduced in section 4.4.2, holds at
finite time for an arbitrary protocol. It tells apart the contribution to the dissipation due to nonconservative
forces from that caused by the time-dependent protocol and transient relaxations. This latter decomposition
is related to the minimum EP theorem of Prigogine [5], which we recover as a corollary.

4.4.1. Time-averaged EPR decomposition
For systems in the periodic steady state caused by generic protocols, the EPR (70) retains its validity. By
expanding the edge affinity vector in terms of the variations of the nonconservative forces δF̂ and of the
Massieu potentials δφ̂, equation (45), we obtain the average EPR per period of a single mode

Σ̇(ωk) =

(
δF̂(ωk)

δφ̂(ωk)

)T

Õ(ωk)

(
δF̂(ωk)

δφ̂(ωk)

)
(111)

with the Onsager matrix defined as

Õ(ωk) :=

(
Off(ωk) ω2

k

〈
XT

f ,D
〉
PA(−ωk)A(ωk)P

ω2
kPA(−ωk)A(ωk)P

〈
DT,XT

f

〉
ω2

kPA(−ωk)
〈
DT,DT〉A(ωk)P

)
. (112)

To characterize the latter (|Y| − |Λ|+ |V|) × (|Y| − |Λ|+ |V|)-matrix, we also used the response term
δ ln p̂(ωk) in equation (101), as well as the property of the matrix A(ω) already used in (105), viz
𝟙− A(ω)

〈
DT,DT

〉
= iωAP. Equation (111) gives the most general formulation of the time-averaged EPR

of each frequency mode in the periodic steady state. It is expressed as a quadratic form of the
nonconservative forces and the Massieu potentials. A different representation of the EPR could be obtained
choosing the variations δX as control parameters. However, equation (111) is the representation with the
minimal number of ‘generalized thermodynamic forces’: the nonconservative forces and variations of the
Massieu potentials. In fact, if we subtract the dimension of the vectors featuring (111), namely
|Y| − |Λ|+ |V|, from the number of independent entries of the matrix X, |Y|+ |K|(|V| − 1), we reduce
the dimensionality by Δ = |Λ| − |K|+ |V|(|K| − 1) � 0, with the equality attained by unconditionally
detailed balanced systems with a single conserved quantity. We emphasize that such a complexity reduction
is obtained thanks to systematic identification and use of the conservation laws of the system.

We finally notice that the generalized Onsager matrix (112) is symmetric at every frequency, and that all
blocks except the top-left one, Off(ωk) vanish identically at ω = 0. It reduces to equation (78) when the
protocol does not affect the system quantities.

4.4.2. Finite-time EPR decomposition
In contrast to the previous characterization of the EPR, the decomposition of the EPR that we describe here
is valid at finite times and not only in the periodic steady state. It is expressed in terms of the instantaneous
steady-state distribution pss(t), which is obtained from the linearized master equation, equations (43) and
(44), as 〈

DT, δAss
〉
=
〈
DT,XT

f δF + DT(δφ− δ ln pss)
〉
= 0. (113)
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Figure 2. The single QD connected with two reservoirs (a) schematic representation (b) network representation: the system can
switch between the states 0, 1 through the transitions +1 and +2.

Using this relation and the following identity (see the expression of the affinity (45)),

δA + DTδ ln p = XT
f δF + DTδφ = δAss + DTδ ln pss, (114)

we can rewrite the EPR (64) as

Σ̇ ≈ 〈δAss, δAss〉+ (δ ln p − δ ln pss)T〈DT,DT〉(δ ln p − δ ln pss). (115)

The steady-state affinities δAss appearing in the first term on the right-hand side can be expressed in terms
of the sole nonconservative forces δF . Indeed, using the solution of equation (113) obtained through the

pseudoinverse matrix
〈
DT,DT

〉−1
= limω→0 A(ω),

δ ln pss =
〈
DT,DT〉−1〈

DT,XT〉δF + δφ, (116)

we can rewrite the steady-state affinities (see equation (45)) as

δAss = (XT − DT〈DT,DT〉−1〈
DT,XT〉)δF . (117)

We complete our derivation by substituting this expression and the definition of generalized Onsager
matrix, equation (75), into the EPR (115),

Σ̇ ≈ δFTOff(0)δF + (δ ln p − δ ln pss)T〈DT,DT〉(δ ln p − δ ln pss). (118)

This decomposition of the dissipation rate into two separately positive quadratic forms is a main result of
this paper. The first term describes the dissipation due to the currents generated by the nonconservative
forces, and it features the block of the Onsager matrix Off(0). It vanishes solely for unconditionally detailed
balanced systems or for detailed-balanced driving protocols, when no δF are present or δF vanish at all
times, respectively. In contrast, the second term accounts for the dissipation caused by transient effects, i.e.
instantaneous deviations from the steady state.

Remark. Equation (118) is reminiscent but not identical to the adiabatic–nonadiabatic decomposition of
the EPR [60, 77, 78] (the discrete analogous of the Hatano–Sasa decomposition [79]). Indeed, in this
decomposition, the steady-state distribution is introduced to separate steady-state contributions of the EPR
(11) from transient ones, see also reference [80]. The decomposition procedure solely acts at the level of the
affinities, as reflected in equation (113), and leaves the currents appearing in the EPR unchanged. As a
consequence, both terms of the adiabatic–nonadiabatic decomposition depend on δF and δ ln p − δ ln pss.
However, being in the linear regime allows us to decompose the currents as well, since they are proportional
to the affinities. In this way, one can disentangle completely the contributions involving δF and
δ ln p − δ ln pss, and recover equation (118). �

Remark. The decomposition of the EP in equation (118) can be specialized for a detailed-balanced
protocol δF = 0. In this case δ ln pss = δφ+ δΦ, with δΦ = Φeq′ − Φeq being a constant vector, and hence
belonging to the kernel of

〈
DT,DT

〉
. If we now substitute this expression for δ ln pss as well as δ ln p from

equation (44) in equation (118), we obtain

Σ̇ ≈ dtδpT〈DT,DT〉−1
dtδp. (119)

This can be interpreted as the EPR of a system relaxing toward an equilibrium state that is changing in time
at finite speed. In this sense, it extends the result on the EPR of relaxation obtained in section 3.2.2, that
holds only for instantaneous switching protocols, to cases in which the integral (53) cannot be computed
explicitly. �

Remark. An interesting limit is the one of adiabatic driving, that is obtained when δF = 0 and the
Massieu potential has the form φ = φ(kt), with the driving speed parameter k much smaller than the
intrinsic timescales of the system. The probability distribution is assumed to follow the driving as
δp ≈ δp(0)(kt) + O(k). By inserting this adiabatic ansatz in the master equation (44), we find
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δ ln p(kt) = δφ(kt) + δΦ(kt) + O(k). Substituting back in (119), we find an adiabatic expansion of the EPR
for detailed-balance protocols

Σ̇ ≈ k2dt[peq(δφ+ δΦ)]T〈DT,DT〉−1
dt[peq(δφ+ δΦ)]. (120)

This allows us to interpret the inverse weighted Laplacian
〈
DT,DT

〉−1
as a metric distance between

equilibrium states, i.e. as a thermodynamic length [45]. Compared to previous formulations [45, 47], our
formulation accounts for variations in both systems quantities and entropic fields. �

We conclude this section by discussing an important implication of equation (118). Since both terms in
equation (118) are separately positive-definite, and since the sole dependence on the instantaneous state
comes from the second term, the EPR is minimized by the steady-state distribution, i.e. when δp(t) = δpss

at all times. This is the minimum entropy production principle derived by Prigogine, valid in the
phenomenological framework of linear irreversible thermodynamics [5, 81–83]. A related result is the fact
that the EPR is a Lyapunov function of the relaxation dynamics. This fact was derived long ago [19, 22, 23]
for stochastic dynamics, and in our formalism is readily recovered. Indeed, starting from equation (64) the
derivative of the EPR reads

dtΣ̇ ≈ dt〈δA, δA〉 = 2〈δA, dtδA〉. (121)

Taking the time derivative of (36) in absence of time-dependent driving and using the linearized master
equation (42) gives us

dtδA = −DTP−1
〈
DT, δA

〉
. (122)

Substituting this expression back into equation (121), we find

dtΣ̇ ≈ −2〈δA,DT〉P−1〈DT, δA〉 ≈ −2I[p(t)] � 0, (123)

where the last equality uses the definition of Fisher information [84] I[p(t)] :=
〈

(dt ln p)2
〉

computed up
to linear orders using equation (42).

5. Examples

In this section we illustrate our theory on some examples that help elucidating the main results.

5.1. Quantum dot in contact with a time-dependent reservoir
The simplest system we consider is a single quantum dot working in the Coulomb blockade regime, where
only a single electronic state with energy ε is available, figure 4(a). The quantum dot is connected to a lead
with inverse temperature β and chemical potential μ. We call p(t) the probability of occupation at time t,
namely p(t) = P(n = 1, t), with n being the occupation number of the quantum dot. This probability
evolves according to the master equation

dtp(t) = −(w−1 + w+1)p(t) + w+1, (124)

where w±1 are the transition rates of the charge and discharge events. The LDB (6) takes the form

w+1

w−1
= e−β(t)(ε−μ) (125)

with (ε− μ). The equilibrium value of the occupancy is peq = e−β(ε−μ)(1 + e−β(ε−μ))−1. The occupation
number is n ∈ {0, 1}, and the only forward transition is labelled +1. The network representation of the
system is shown in figure 4(b). Its incidence matrix reads

(126)

This system is unconditionally detailed-balanced because of the absence fundamental nonconservative
forces. The extensive quantities corresponding to each of the states of the system are contained in the matrix

(127)
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Figure 3. Two-levels nanodevice powered by incoming radiation. (a) Schematics: the nanodevice is connected to two reservoirs
of particles, at different chemical potentials. The energy from the incoming radiation allows for transport against this gradient.
(b) Network of transitions between microscopic states. (c) Decomposition into fundamental cycles.

Figure 4. Single-level QD connected to a reservoir of particles.

The matrix of the exchanged quantities can be written as

(128)

using the fact that during the transition path we are simultaneously exchanging both energy and particles.
We see immediately that there is a tight-coupling conservation law �T

t.c. = (1,−ε) such that �T
t.c.X = 0, since

matter and energy are exchanged by the same physical mechanism. The entropic fields that characterize the
reservoirs are f = (β,−μβ). The equilibrium flux reduces to a single scalar value

j eq = weq
−1peq = weq

+1(1 − peq). (129)

The response matrices are constructed starting from the auxiliary matrices

iωP+
〈
DT,DT〉 = (iωpeq + j eq −j eq

−j eq iω(1 − peq) + j eq

)
(130)

〈
DT,XT〉 = (−εj eq −j eq

εj eq j eq

)
. (131)

The dynamic response in both frequency and time domain is computed plugging the above expressions
into equations (49) and (53) and rearranging them as

∂p̂

∂ f̂1

(ω) = − εj eq(
weq
+1 + weq

−1 + iω
) = ε

∂p̂

∂ f̂2

, (132)

δp

δf1
(τ) = −εj eq e−(w

eq
+1+w

eq
−1)τ θ(τ) = ε

δp

δf2
(τ). (133)

We now specialize the analysis to the case of periodic driving on the temperature of the reservoir. The
response function (80) of the currents to a generic change of the entropic fields δf̂ is

∇Î(Ω) =
iΩj eq

weq
+1 + weq

−1 + iΩ

(
ε2 ε

ε 1

)
. (134)

The generalized Onsager matrix (78) here consists of the Opp block only,

O(Ω) = Opp(Ω) =
j eqΩ2(

(weq
+1 + weq

−1)2 +Ω2
)(ε2 ε

ε 1

)
. (135)
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Since the system is tightly-coupled, both matrices have zero determinant, as it can be check directly
multiplying on by the conservation law �t.c.. Notice also that in equations (134) and (135) both the forward
and backward equilibrium rates are needed, and this implies the full knowledge of the transition rates, not
just their ratio as fixed by LDB, even if we are in presence of a single reservoir. When computing
steady-state responses, however, this additional information on the transition rates is no longer needed, as it
can be checked directly by imposing Ω = 0.

To make things more concrete, we compute the currents activated by a periodic perturbation on the
temperature and the dissipation associated to it. Note also that in terms of β and μ the probability
displacement is

δp =

(
δp

δf1
− μ

δp

δf2

)
δβ − δp

δf2
δμ (136)

=
δp

δf2
((ε− μ)δβ − δμ), (137)

because of equation (132). State observables are characterized by response functions that are directly
obtained from the dynamic response, i.e. δ〈E〉 = εδp = εδ〈N〉. The frequency-dependent response function
of the energy to the temperature is then

∂
〈

Ê(ω)
〉

∂β̂
= ε(ε− μ)

∂p̂

∂ f̂2

(ω). (138)

Note that its real and imaginary parts satisfy the Kramers–Kronig relations. The Fourier representation of
the current component I in the periodic state for the perturbation δβ(t) = eiΩtδβ(0) is obtained from
equation (80)

δÎ(Ω) =
〈
XT,R(Ω)

〉
δf̂ (Ω) (139)

and its response to temperature perturbation is obtained from the response to the entropic fields using the
relation

δI = (ε− μ)
∂I

∂f2
δβ − β

∂I

∂f2
δμ. (140)

We can then introduce the thermal admittance defined as Y(Ω) := (ε− μ) δI
δf̂2

with real and imaginary part

given by

RY(Ω) = (ε− μ)
Ω2j eq(

weq
−1 + weq

+1

)2
+Ω2

, (141)

IY(Ω) = (ε− μ)
Ωj eq(weq

−1 + weq
+1)

(weq
−1 + weq

+1)2 +Ω2 . (142)

The EP in this case is
Σ̇ ≈ (ε− μ)2O2,2(Ω)δβ2. (143)

In figure 5 we show how equations (141) and (143) behave when varying the driving frequency.

5.2. Electrical transport through a quantum dot
We now extend the setting of example 5.1 by an additional reservoir of particles at inverse temperature β

′

and chemical potential μ′. This is the minimal setup to display non-trivial realizations of the quantities
introduced in section 2.2. The incidence matrix after the addition of a second reservoir becomes

(144)

where a new transition path labeled +2 appears. The vector of entropic fields is then given by

f =
(
β −βμ β′ −β′μ′)T. (145)

The matrix of extensive quantities coincide with (127), as the states of the system are unaffected by the
connection of the second reservoir. The extensive quantities exchanged by the reservoirs with the system in
transitions +1 and +2 are

(146)
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Figure 5. Current response function and EP response function to a perturbation δβ of the inverse temperature. Parameters:
weq

+1 = 1, ε− μ = 0.1,β = 1. The real part of the stochastic admittance is related to dissipation by a change of scale and vanishes
for Ω = 0.

LDB reads
w+1

w−1
= e−β(ε−μ),

w+2

w−2
= eβ

′(ε−μ′), (147)

and the reference equilibrium is defined setting β = β ′ and μ = μ′. Under these conditions the rates satisfy
detailed-balance for the equilibrium probability of occupancy peq = e−β(ε−μ)(1 + e−β(ε−μ))−1. The
equilibrium fluxes are

jeq =

(
jeq
+1

jeq
+2

)
=

(
w+1(1 − peq)

w+2peq

)
. (148)

Define j eq := jeq
1 + jeq

2 and w± :=w±1 + w±2. The matrices that appear in the response functions are then

iωP+
〈
DT,DT〉 = (iω(1 − peq) + j eq −j eq

−j eq iωpeq

)
(149)

〈
DT,XT〉 = j eq

(
−ε −1 −ε −1
ε 1 ε 1

)
. (150)

The dynamic response of the occupation probability to a generic perturbation δf is

δp̂(ω) = −1

2

weq
+

(weq
+ + weq

− ) + iω

(
ε, 1, ε, 1

)T
δf̂ (ω). (151)

This system has a single cycle C = (+1,−1) in ker D, and thus M = XC = (ε, 1,−ε,−1). The conservation
laws are thus given by the equation εx1 + x2 − εx3 − x4 = 0. Notice that the system is tight-coupled: in
addition to the (trivial) conservation of energy and particles �E = (1, 0, 1, 0) and �N = (0, 1, 0, 1), we have
the proportionality link between the exchange of energy and particles �t.c. = (−1/ε, 1, 0, 0).

Indeed, the conserved quantities L corresponding to �E and �N, coincide with the trivial ones contained
in (127). In contrast, the last conservation law, �t.c., is system-specific and reflects the tight-coupling
between energy and mass transport. The corresponding conserved quantity Lt.c. can be chosen to be any
constant vector.

We now select the right reservoir (characterized by the fields β′ and μ′) as the one that identifies the
reference equilibrium of the system. The other reservoir—the left one—is instead seen as the one breaking
detailed balance and driving the system out of equilibrium. Because of the tight-coupling conservation law,
one (rather than two, see equation (21)) fundamental force is engendered. To characterize this force, we
split the entropic field vector is f f = β, and f p = (−βμ,β′,−β′μ′)T, which corresponds to splitting the
matrix of conservation laws as

𝕝f = (0, 1,−1/ε), 𝕝p =

⎛
⎝1 0 1

0 1 0
1 0 0

⎞
⎠. (152)
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The transformation matrix T then reads

T =

⎛
⎜⎜⎝
−1 −1/ε 1 1/ε
0 1 0 0
0 0 1 0
0 0 0 1

⎞
⎟⎟⎠. (153)

Applying equation (20) we obtain

δF = [(ε− μ′)β′ − (ε− μ)β]/ε, (154)

which can be read as an effective difference of chemical potentials rescaled by inverse temperatures. Notice
how this nonconservative force depends explicitly on the system quantity ε, and hence on the protocol.
However, notice also that this dependence disappears when β = β ′. The Massieu potential of the states
contains no entropic contribution and reads

φ = (0,β′(ε− μ′))T. (155)

We now consider a perturbation with a single frequency Ω. The physical currents and the EP response
matrices read respectively

TT∇Î(Ω)T =
1(

weq
+ + weq

− + iΩ
)
⎛
⎜⎜⎝

jeq
+1ε

2
(
weq
+2 + weq

−2 + iΩ
)

0 −ijeq
+1Ωε

2 −ijeq
+1Ωε

0 0 0 0
−ijeq

+1Ωε
2 0 iΩε2(jeq

+1 + jeq
+2) iΩε(jeq

+1 + jeq
+2)

−ijeq
+1Ωε 0 iΩε(jeq

+1 + jeq
+2) iΩ(jeq

+1 + jeq
+2)

⎞
⎟⎟⎠,

(156)

O(Ω) =
1[

(weq
+ + weq

− )2 +Ω2
]
⎛
⎜⎜⎝

jeq
+1ε

2
[(

weq
+ + weq

−
)(

weq
+2 + weq

−2

)
+Ω2

]
0 −jeq

+1Ω
2ε2 −jeq

+1Ω
2ε

0 0 0 0
−jeq

+1Ω
2ε2 0 Ω2ε2jeq

+ Ω2εjeq
+

−jeq
+Ω

2ε 0 Ω2εjeq
+ Ω2jeq

+

⎞
⎟⎟⎠.

(157)
As discussed in section 4.2, the existence of a tight coupling conservation law makes these two matrices

degenerate at every frequency. Notice, furthermore, that these two matrices coincide at steady state, i.e.
when Ω = 0.

5.3. Photoelectric two-levels nanodevice
As a final example, we consider a photoelectric nanodevice that uses energy from incoming radiation to
transport particles between two reservoirs maintained at different chemical potential [85], depicted in
figure 3. In this model, the transport of energy and matter are decoupled. This follows from the presence of
a transition between the two levels that is mediated by the absorption or emission of a photon, and not by
an exchange of electrons with the reservoirs. This implies that the system is not tight-coupled for generic
choices of the parameters, as we will show in the following.

The incidence matrix reads

(158)

where the different labels refer to the transitions depicted in figure 5. The vector of entropic fields is then
given by

f =
(
β −βμ1 −βμ2 βs

)T
. (159)

The matrix of extensive quantities exchanged between system and reservoirs reads

(160)
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The cycles in the kernel of D are contained in the matrix

C =

⎛
⎜⎜⎝

1 0
−1 0
0 1
1 −1

⎞
⎟⎟⎠, (161)

and the physical topology matrix reads

M =

⎛
⎜⎜⎝

0 εd − εu

1 0
−1 0
0 εu − εd

⎞
⎟⎟⎠. (162)

The conservation law vectors are �1 = (1, 0, 0, 1) and �2 = (0, 1, 1, 0), and they are related through the
balance (16) respectively to the conservation of energy and particles. We choose the fields β, μ1 as the ones
fixing the reference equilibrium. The two fundamental forces that result from such a choice are obtained
applying equation (20), and are F 1 = β(μ2 − μ1) and F 2 = β − βs. The former corresponds to the force
created by the chemical potential gradient of the particle reservoir. The latter is instead created by the
thermal gradient generated by the coupling of the system plus particle reservoirs with the radiation source.
Thus the reference equilibrium is achieved when the temperature of the radiative source is the same as the
one of the ground, βs = β, and when the two reservoirs have the same chemical potential, μ2 = μ1.

For this model, the generalized Onsager matrix O(ω) and response matrix of the current Q can be
obtained analytically, using the same procedure of the previous examples. However, the resulting
expressions of the two matrices are neither compact nor enlightening enough to be included. Nevertheless,
we can make a conceptually important observation by studying the determinant of the generalized Onsager
matrix evaluated in the limit ω → 0, that is

detO(0) = 16
(εd − εu)4eβ(3μ1+μ2+2εd+2εu)+βs(εd−εu)(

eβ(μ1+εd) + eβ(εd+εu) + eβ(μ1+εu)
)4 . (163)

Since it is proportional to a power of the difference between the energy levels (εd − εu), the matrix becomes
singular when the two levels have the same energy. This condition also makes the system tightly coupled. In
fact, if εd = εu, a new conservation law appears, namely �t.c = (0, 0, 0, 1), which belongs to the cokernel of
X.

6. Conclusions and outlook

We now summarize our results going from the most general to the special cases covered by our theory.
The near equilibrium decomposition of the EPR in equation (118) is a direct consequence of the

systematic introduction of conservation laws in ST [29]. This decomposition describes the dissipation at
finite times caused by a general, non-periodic protocol acting both on the extensive quantities of the states
of the system and on the intensive parameters of the reservoirs. The decomposition strongly constrains the
dynamics near equilibrium, as it immediately implies the minimum EP principle, in absence of
time-dependent driving. In our formulation, the EPR is made up of two separately positive contributions.
The first one is a quadratic form in the vector δF of fundamental thermodynamic forces and identifies the
static part of the Onsager matrix. This term accounts for the dissipation due to maintaining a steady state,
while the other contribution describes the dissipation due to purely dynamical effects as it vanishes at steady
state or for adiabatic driving.

In the special case of periodic driving, the system settles on a periodic steady state. We derived the linear
response matrix (100) for the Fourier components of the currents, concluding that it is not possible to
generate currents against a nonconservative force by only performing time-dependent driving on the fields
that define the equilibrium. Response coefficients for conserved quantities can also be derived and expressed
via Green–Kubo-like formulas (107), and this general expression reduces to the classic one (110) when
detailed balanced protocols are considered. The EPR (111) allows to identify the minimal subset of
generalized thermodynamic forces that define a periodic protocol, namely the nonconservative forces (20)
and the Massieu potential (27) of each state of the system. The decomposition (111), as well as the more
general (118), also describes the regime of adiabatic driving, for which the only dissipation and currents are
associated to the existence of nonzero average nonconservative forces.

Finally, restricting ourselves to protocols that only act on the reservoir intensive parameters, we obtained
an expression for the response of the currents (81) and for the EPR in equation (75), and we call the latter a
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generalized Onsager matrix (for each frequency mode present in the driving). To account for all possible
mechanisms of dissipation, the set of fundamental forces must be extended by using the potential fields that
define the time-dependent equilibrium. Employing the formalism of conservation laws [29], we are able to
construct these matrices such that they are always symmetric. Even if the explicit time dependence of the
protocol does not destroy the symmetry, it makes the response matrix of the currents different from the
generalized Onsager matrix (75), unless steady perturbations are used. Our conclusion is that
time-dependent driving near equilibrium does not break the time-reversal symmetry of the dynamics as far
as response coefficients are concerned, as these are computed employing equilibrium quantities only. This
provides an alternative point of view compared to that presented in references [53, 55], where a single,
non-symmetric and protocol-dependent matrix was used to obtain both the time averaged currents and the
EPR. Furthermore, we proved the connection between the existence of tight-coupling conservation laws and
the vanishing of the determinant of the generalized Onsager matrix.

The present work only focuses on the thermodynamics of linear response around equilibrium. Linear
response of far-from-equilibrium steady has been explored using ST in recent years [65, 86–90] but the
implications of a proper identification of the thermodynamic forces in such situations is left for future
work. This work also provides a useful starting point to design optimal protocols in the linear regime. In
fact, equations (71) and (74) allow for straightforward optimization procedures to obtain protocols that
minimize dissipation in steady or periodic working conditions. This complements previous studies on
optimal protocols in the linear regime [91, 92] as well as the approaches based on thermodynamic length
[45, 47, 93, 94], that are concerned with transient transformations between different steady states.
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